Sample records for placental multipotent mesenchymal

  1. Effects of Combined Transplantation of Multipotent Mesenchymal Stromal and Hemopoietic Stem Cells on Regeneration of the Hemopoietic Tissue.

    PubMed

    Maklakova, I Yu; Grebnev, D Yu

    2017-05-01

    The effect of allogenic combined transplantation of placental multipotent mesenchymal stromal and hemopoietic stem cells on regeneration of the myeloid tissue and spleen after acute blood loss was studied in laboratory mice. Combined transplantation of these cells did not change the content of cytogenetically modified cells in the bone marrow under normal conditions, but reduced their levels after acute blood loss. Combined transplantation of multipotent mesenchymal stromal and hemopoietic stem cells promoted activation of erythropoiesis and granulocytopoiesis. The major morphometric and cytological parameters of the white pulp of the spleen decreased, presumably due to immunosuppressive effect of multipotent mesenchymal stromal cells.

  2. Impaired Angiogenic Potential of Human Placental Mesenchymal Stromal Cells in Intrauterine Growth Restriction.

    PubMed

    Mandò, Chiara; Razini, Paola; Novielli, Chiara; Anelli, Gaia Maria; Belicchi, Marzia; Erratico, Silvia; Banfi, Stefania; Meregalli, Mirella; Tavelli, Alessandro; Baccarin, Marco; Rolfo, Alessandro; Motta, Silvia; Torrente, Yvan; Cetin, Irene

    2016-04-01

    Human placental mesenchymal stromal cells (pMSCs) have never been investigated in intrauterine growth restriction (IUGR). We characterized cells isolated from placental membranes and the basal disc of six IUGR and five physiological placentas. Cell viability and proliferation were assessed every 7 days during a 6-week culture. Expression of hematopoietic, stem, endothelial, and mesenchymal markers was evaluated by flow cytometry. We characterized the multipotency of pMSCs and the expression of genes involved in mitochondrial content and function. Cell viability was high in all samples, and proliferation rate was lower in IUGR compared with control cells. All samples presented a starting heterogeneous population, shifting during culture toward homogeneity for mesenchymal markers and occurring earlier in IUGR than in controls. In vitro multipotency of IUGR-derived pMSCs was restricted because their capacity for adipocyte differentiation was increased, whereas their ability to differentiate toward endothelial cell lineage was decreased. Mitochondrial content and function were higher in IUGR pMSCs than controls, possibly indicating a shift from anaerobic to aerobic metabolism, with the loss of the metabolic characteristics that are typical of undifferentiated multipotent cells. This study demonstrates that the loss of endothelial differentiation potential and the increase of adipogenic ability are likely to play a significant role in the vicious cycle of abnormal placental development in intrauterine growth restriction (IUGR). This is the first observation of a potential role for placental mesenchymal stromal cells in intrauterine growth restriction, thus leading to new perspectives for the treatment of IUGR. ©AlphaMed Press.

  3. Impaired Angiogenic Potential of Human Placental Mesenchymal Stromal Cells in Intrauterine Growth Restriction

    PubMed Central

    Mandò, Chiara; Razini, Paola; Novielli, Chiara; Anelli, Gaia Maria; Belicchi, Marzia; Erratico, Silvia; Banfi, Stefania; Meregalli, Mirella; Tavelli, Alessandro; Baccarin, Marco; Rolfo, Alessandro; Motta, Silvia

    2016-01-01

    Human placental mesenchymal stromal cells (pMSCs) have never been investigated in intrauterine growth restriction (IUGR). We characterized cells isolated from placental membranes and the basal disc of six IUGR and five physiological placentas. Cell viability and proliferation were assessed every 7 days during a 6-week culture. Expression of hematopoietic, stem, endothelial, and mesenchymal markers was evaluated by flow cytometry. We characterized the multipotency of pMSCs and the expression of genes involved in mitochondrial content and function. Cell viability was high in all samples, and proliferation rate was lower in IUGR compared with control cells. All samples presented a starting heterogeneous population, shifting during culture toward homogeneity for mesenchymal markers and occurring earlier in IUGR than in controls. In vitro multipotency of IUGR-derived pMSCs was restricted because their capacity for adipocyte differentiation was increased, whereas their ability to differentiate toward endothelial cell lineage was decreased. Mitochondrial content and function were higher in IUGR pMSCs than controls, possibly indicating a shift from anaerobic to aerobic metabolism, with the loss of the metabolic characteristics that are typical of undifferentiated multipotent cells. Significance This study demonstrates that the loss of endothelial differentiation potential and the increase of adipogenic ability are likely to play a significant role in the vicious cycle of abnormal placental development in intrauterine growth restriction (IUGR). This is the first observation of a potential role for placental mesenchymal stromal cells in intrauterine growth restriction, thus leading to new perspectives for the treatment of IUGR. PMID:26956210

  4. Co-Culturing of Multipotent Mesenchymal Stromal Cells with Autological and Allogenic Lymphocytes.

    PubMed

    Kapranov, N M; Davydova, Yu O; Gal'tseva, I V; Petinati, N A; Bakshinskaitė, M V; Drize, N I; Kuz'mina, L A; Parovichnikova, E N; Savchenko, V G

    2018-03-01

    We studied the effect of autologous and allogeneic lymphocytes on multipotent mesenchymal stromal cells in co-culture. It is shown that changes in multipotent mesenchymal stromal cells and in lymphocytes did not depend on the source of lymphocytes. Contact with lymphocytes triggers expression of HLA-DR molecules on multipotent mesenchymal stromal cells and these cells lose their immune privilege. In multipotent mesenchymal stromal cells, the relative level of expression of factors involved in immunomodulation (IDO1, PTGES, and IL-6) and expression of adhesion molecule ICAM1 increased, while expression of genes involved in the differentiation of multipotent mesenchymal stromal cells remained unchanged. Priming of multipotent mesenchymal stromal cells with IFN did not affect these changes. In turn, lymphocytes underwent activation, expression of HLA-DR increased, subpopulation composition of lymphocytes changed towards the increase in the content of naïve T cells. These findings are important for cell therapy.

  5. Changing the Properties of Multipotent Mesenchymal Stromal Cells by IFNγ Administration.

    PubMed

    Petinati, N A; Kapranov, N M; Bigil'deev, A E; Popova, M D; Davydova, Yu O; Gal'tseva, I V; Drize, N I; Kuz'mina, L A; Parovichnikova, E N; Savchenko, V G

    2017-06-01

    We studied changes in the population of human multipotent mesenchymal stromal cells activated by IFNγ. The cells were cultured under standard conditions; IFNγ was added in various concentrations for 4 h or over 2 passages. It was shown that the total cell production significantly decreased after long-term culturing with IFNγ, but 4-h exposure did not affect this parameter. After 4-h culturing, the expression levels of IDO1, CSF1, and IL-6 increased by 300, 7, and 2.4 times, respectively, and this increase persisted 1 and 2 days after removal of IFNγ from the culture medium. The expression of class I and II MHC (HLA) on cell surface practically did not change immediately after exposure to IFNγ, but during further culturing, HLA-ABC (MHC I) and HLA-DR (MHC II) expression significantly increased, which abolished the immune privilege in these cells, the property allowing clinical use of allogenic multipotent mesenchymal stromal cells. Multipotent mesenchymal stromal cells can suppress proliferation of lymphocytes. The degree of this suppression depends on individual properties of multipotent mesenchymal stromal cell donor. Treatment with IFNγ did not significantly affect the intensity of inhibition of lymphocyte proliferation by these cells.

  6. Therapeutic effect of mesenchymal multipotent stromal cells on memory in animals with Alzheimer-type neurodegeneration.

    PubMed

    Bobkova, N V; Poltavtseva, R A; Samokhin, A N; Sukhikh, G T

    2013-11-01

    Transplantation of human mesenchymal multipotent stromal cells improved spatial memory in bulbectomized mice with Alzheimer-type neurodegeneration. The positive effect was observed in 1 month after intracerebral transplantation and in 3 months after systemic injection of mesenchymal multipotent stromal cells. No cases of malignant transformation were noted. These findings indicate prospects of using mesenchymal multipotent stromal cells for the therapy of Alzheimer disease and the possibility of their systemic administration for attaining the therapeutic effect.

  7. Placental mesenchymal dysplasia complicated by hydrops fetalis and fetal death: a case report.

    PubMed

    Akbarzadeh-Jahromi, Mojgan; Sari Aslani, Fatemeh; Parvari, Shams

    2013-09-01

    Placental mesenchymal dysplasia is a rare condition of the placenta and its true incidence and underlying cause has remained unknown till now due to its rarity. Its accurate diagnosis is essential, because placental mesenchymal dysplasia is usually compatible with a good fetal and maternal outcome. A precise ultrasonographic evaluation can contribute to the identification of characteristic features, particularly to discriminate it from partial hydatidiform mole, its main differential diagnosis. We report an early third-trimester pathologically- diagnosed case of placental mesenchymal dysplasia. It was complicated by fetal hydrops and death. 

  8. FGF8 signaling sustains progenitor status and multipotency of cranial neural crest-derived mesenchymal cells in vivo and in vitro

    PubMed Central

    Shao, Meiying; Liu, Chao; Song, Yingnan; Ye, Wenduo; He, Wei; Yuan, Guohua; Gu, Shuping; Lin, Congxin; Ma, Liang; Zhang, Yanding; Tian, Weidong; Hu, Tao; Chen, YiPing

    2015-01-01

    The cranial neural crest (CNC) cells play a vital role in craniofacial development and regeneration. They are multi-potent progenitors, being able to differentiate into various types of tissues. Both pre-migratory and post-migratory CNC cells are plastic, taking on diverse fates by responding to different inductive signals. However, what sustains the multipotency of CNC cells and derivatives remains largely unknown. In this study, we present evidence that FGF8 signaling is able to sustain progenitor status and multipotency of CNC-derived mesenchymal cells both in vivo and in vitro. We show that augmented FGF8 signaling in pre-migratory CNC cells prevents cell differentiation and organogenesis in the craniofacial region by maintaining their progenitor status. CNC-derived mesenchymal cells with Fgf8 overexpression or control cells in the presence of exogenous FGF8 exhibit prolonged survival, proliferation, and multi-potent differentiation capability in cell cultures. Remarkably, exogenous FGF8 also sustains the capability of CNC-derived mesenchymal cells to participate in organogenesis such as odontogenesis. Furthermore, FGF8-mediated signaling strongly promotes adipogenesis but inhibits osteogenesis of CNC-derived mesenchymal cells in vitro. Our results reveal a specific role for FGF8 in the maintenance of progenitor status and in fate determination of CNC cells, implicating a potential application in expansion and fate manipulation of CNC-derived cells in stem cell-based craniofacial regeneration. PMID:26243590

  9. Neural crest stem cell multipotency requires Foxd3 to maintain neural potential and repress mesenchymal fates.

    PubMed

    Mundell, Nathan A; Labosky, Patricia A

    2011-02-01

    Neural crest (NC) progenitors generate a wide array of cell types, yet molecules controlling NC multipotency and self-renewal and factors mediating cell-intrinsic distinctions between multipotent versus fate-restricted progenitors are poorly understood. Our earlier work demonstrated that Foxd3 is required for maintenance of NC progenitors in the embryo. Here, we show that Foxd3 mediates a fate restriction choice for multipotent NC progenitors with loss of Foxd3 biasing NC toward a mesenchymal fate. Neural derivatives of NC were lost in Foxd3 mutant mouse embryos, whereas abnormally fated NC-derived vascular smooth muscle cells were ectopically located in the aorta. Cranial NC defects were associated with precocious differentiation towards osteoblast and chondrocyte cell fates, and individual mutant NC from different anteroposterior regions underwent fate changes, losing neural and increasing myofibroblast potential. Our results demonstrate that neural potential can be separated from NC multipotency by the action of a single gene, and establish novel parallels between NC and other progenitor populations that depend on this functionally conserved stem cell protein to regulate self-renewal and multipotency.

  10. Multipotent mesenchymal stromal cells: A promising strategy to manage alcoholic liver disease

    PubMed Central

    Ezquer, Fernando; Bruna, Flavia; Calligaris, Sebastián; Conget, Paulette; Ezquer, Marcelo

    2016-01-01

    Chronic alcohol consumption is a major cause of liver disease. The term alcoholic liver disease (ALD) refers to a spectrum of mild to severe disorders including steatosis, steatohepatitis, cirrhosis, and hepatocellular carcinoma. With limited therapeutic options, stem cell therapy offers significant potential for these patients. In this article, we review the pathophysiologic features of ALD and the therapeutic mechanisms of multipotent mesenchymal stromal cells, also referred to as mesenchymal stem cells (MSCs), based on their potential to differentiate into hepatocytes, their immunomodulatory properties, their potential to promote residual hepatocyte regeneration, and their capacity to inhibit hepatic stellate cells. The perfect match between ALD pathogenesis and MSC therapeutic mechanisms, together with encouraging, available preclinical data, allow us to support the notion that MSC transplantation is a promising therapeutic strategy to manage ALD onset and progression. PMID:26755858

  11. Multipotent human stromal cells isolated from cord blood, term placenta and adult bone marrow show distinct differences in gene expression pattern

    PubMed Central

    Matigian, Nicholas; Brooke, Gary; Zaibak, Faten; Rossetti, Tony; Kollar, Katarina; Pelekanos, Rebecca; Heazlewood, Celena; Mackay-Sim, Alan; Wells, Christine A.; Atkinson, Kerry

    2014-01-01

    Multipotent mesenchymal stromal cells derived from human placenta (pMSCs), and unrestricted somatic stem cells (USSCs) derived from cord blood share many properties with human bone marrow-derived mesenchymal stromal cells (bmMSCs) and are currently in clinical trials for a wide range of clinical settings. Here we present gene expression profiles of human cord blood-derived unrestricted somatic stem cells (USSCs), human placental-derived mesenchymal stem cells (hpMSCs), and human bone marrow-derived mesenchymal stromal cells (bmMSCs), all derived from four different donors. The microarray data are available on the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession number E-TABM-880. Additionally, the data has been integrated into a public portal, www.stemformatics.org. Our data provide a resource for understanding the differences in MSCs derived from different tissues. PMID:26484151

  12. Isolation and characterization of true mesenchymal stem cells derived from human term decidua capable of multilineage differentiation into all 3 embryonic layers.

    PubMed

    Macias, Maria I; Grande, Jesús; Moreno, Ana; Domínguez, Irene; Bornstein, Rafael; Flores, Ana I

    2010-11-01

    The objective of the study was to isolate and characterize a population of mesenchymal stem cells (MSCs) from human term placental membranes. We isolated an adherent cell population from extraembryonic membranes. Morphology, phenotype, growth characteristics, karyotype, and immunological and differentiation properties were analyzed. The isolated placental MSCs were from maternal origin and named as decidua-derived mesenchymal stem cells (DMSCs). DMSCs differentiated into derivatives of all germ layers. It is the first report about placental MSC differentiation into alveolar type II cells. Clonally expanded DMSCs differentiated into all embryonic layers, including pulmonary cells. DMSCs showed higher life span than placental cells from fetal origin and proliferated without genomic instability. The data suggest that DMSCs are true multipotent MSCs, distinguishing them from other placental MSCs. DMSCs could be safely used in the mother as a potential source of MSCs for pelvic floor dysfunctions and immunological diseases. Additionally, frozen DMSCs can be stored for both autologous and allogeneic tissue regeneration. Copyright © 2010 Mosby, Inc. All rights reserved.

  13. Yolk Sac Mesenchymal Progenitor Cells from New World Mice (Necromys lasiurus) with Multipotent Differential Potential

    PubMed Central

    Favaron, Phelipe Oliveira; Mess, Andrea; Will, Sônia Elisabete; Maiorka, Paulo César; de Oliveira, Moacir Franco; Miglino, Maria Angelica

    2014-01-01

    Fetal membranes are abundant, ethically acceptable and readily accessible sources of stem cells. In particular, the yolk sac is a source of cell lineages that do not express MHCs and are mainly free from immunological incompatibles when transferred to a recipient. Although data are available especially for hematopoietic stem cells in mice and human, whereas other cell types and species are dramatically underrepresented. Here we studied the nature and differentiation potential of yolk sac derived mesenchymal stem cells from a New World mouse, Necromys lasiurus. Explants from mid-gestation were cultured in DMEM-High glucose medium with 10% defined fetal bovine serum. The cells were characterized by standard methods including immunophenotyping by fluorescence and flow cytometry, growth and differentiation potential and tumorigenicity assays. The first adherent cells were observed after 7 days of cell culture and included small, elongated fibroblast-like cells (92.13%) and large, round epithelial-like cells with centrally located nuclei (6.5%). Only the fibroblast-like cells survived the first passages. They were positive to markers for mesenchymal stem cells (Stro-1, CD90, CD105, CD73) and pluripotency (Oct3/4, Nanog) as well as precursors of hematopoietic stem cells (CD117). In differentiation assays, they were classified as a multipotent lineage, because they differentiated into osteogenic, adipogenic, and chondrogenic lineages and, finally, they did not develop tumors. In conclusion, mesenchymal progenitor cells with multipotent differentiation potential and sufficient growth and proliferation abilities were able to be obtained from Necromys yolk sacs, therefore, we inferred that these cells may be promising for a wide range of applications in regenerative medicine. PMID:24918429

  14. Comparison of human mesenchymal stromal cells from four neonatal tissues: Amniotic membrane, chorionic membrane, placental decidua and umbilical cord.

    PubMed

    Araújo, Anelise Bergmann; Salton, Gabrielle Dias; Furlan, Juliana Monteiro; Schneider, Natália; Angeli, Melissa Helena; Laureano, Álvaro Macedo; Silla, Lúcia; Passos, Eduardo Pandolfi; Paz, Ana Helena

    2017-05-01

    Mesenchymal stromal cells (MSCs) are being investigated as a potential alternative for cellular therapy. This study was designed to compare the biological characteristics of MSCs isolated from amniotic membrane (A-MSCs), chorionic membrane (C-MSCs), placental decidua (D-MSCs) and umbilical cord (UC-MSCs) to ascertain whether any one of these sources is superior to the others for cellular therapy purposes. MSCs were isolated from amniotic membrane, chorionic membrane, umbilical cord and placental decidua. Immunophenotype, differentiation ability, cell size, cell complexity, polarity index and growth kinetics of MSCs isolated from these four sources were analyzed. MSCs were successfully isolated from all four sources. Surface marker profile and differentiation ability were consistent with human MSCs. C-MSCs in suspension were the smallest cells, whereas UC-MSCs presented the greatest length and least width. A-MSCs had the lowest polarity index and UC-MSCs, as more elongated cells, the highest. C-MSCs, D-MSCs and UC-MSCs exhibited similar growth capacity until passage 8 (P8); C-MSCs presented better lifespan, whereas insignificant proliferation was observed in A-MSCs. Neonatal and maternal tissues can serve as sources of multipotent stem cells. Some characteristics of MSCs obtained from four neonatal tissues were compared and differences were observed. Amniotic membrane was the least useful source of MSCs, whereas chorionic membrane and umbilical cord were considered good options for future use in cell therapy because of the known advantages of immature cells. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  15. Influence of Factors of Cryopreservation and Hypothermic Storage on Survival and Functional Parameters of Multipotent Stromal Cells of Placental Origin

    PubMed Central

    Pogozhykh, Olena; Mueller, Thomas; Prokopyuk, Olga

    2015-01-01

    Human placenta is a highly perspective source of multipotent stromal cells (MSCs) both for the purposes of patient specific auto-banking and allogeneic application in regenerative medicine. Implementation of new GMP standards into clinical practice enforces the search for relevant methods of cryopreservation and short-term hypothermic storage of placental MSCs. In this paper we analyze the effect of different temperature regimes and individual components of cryoprotective media on viability, metabolic and culture properties of placental MSCs. We demonstrate (I) the possibility of short-term hypothermic storage of these cells; (II) determine DMSO and propanediol as the most appropriate cryoprotective agents; (III) show the possibility of application of volume expanders (plasma substituting solutions based on dextran or polyvinylpyrrolidone); (IV) reveal the priority of ionic composition over the serum content in cryopreservation media; (V) determine a cooling rate of 1°C/min down to -40°C followed by immersion into liquid nitrogen as the optimal cryopreservation regime for this type of cells. This study demonstrates perspectives for creation of new defined cryopreservation methods towards GMP standards. PMID:26431528

  16. Influence of temperature fluctuations during cryopreservation on vital parameters, differentiation potential, and transgene expression of placental multipotent stromal cells.

    PubMed

    Pogozhykh, Denys; Pogozhykh, Olena; Prokopyuk, Volodymyr; Kuleshova, Larisa; Goltsev, Anatoliy; Blasczyk, Rainer; Mueller, Thomas

    2017-03-11

    Successful implementation of rapidly advancing regenerative medicine approaches has led to high demand for readily available cellular suspensions. In particular, multipotent stromal cells (MSCs) of placental origin have shown therapeutic efficiency in the treatment of numerous pathologies of varied etiology. Up to now, cryopreservation is the only effective way to preserve the viability and unique properties of such cells in the long term. However, practical biobanking is often associated with repeated temperature fluctuations or interruption of a cold chain due to various technical, transportation, and stocking events. While biochemical processes are expected to be suspended during cryopreservation, such temperature fluctuations may lead to accumulation of stress as well as to periodic release of water fractions in the samples, possibly leading to damage during long-term storage. In this study, we performed a comprehensive analysis of changes in cell survival, vital parameters, and differentiation potential, as well as transgene expression of placental MSCs after temperature fluctuations within the liquid nitrogen steam storage, mimicking long-term preservation in practical biobanking, transportation, and temporal storage. It was shown that viability and metabolic parameters of placental MSCs did not significantly differ after temperature fluctuations in the range from -196 °C to -100 °C in less than 20 cycles in comparison to constant temperature storage. However, increasing the temperature range to -80 °C as well as increasing the number of cycles leads to significant lowering of these parameters after thawing. The number of apoptotic changes increases depending on the number of cycles of temperature fluctuations. Besides, adhesive properties of the cells after thawing are significantly compromised in the samples subjected to temperature fluctuations during storage. Differentiation potential of placental MSCs was not compromised after cryopreservation

  17. Toward Brain Tumor Gene Therapy Using Multipotent Mesenchymal Stromal Cell Vectors

    PubMed Central

    Bexell, Daniel; Scheding, Stefan; Bengzon, Johan

    2010-01-01

    Gene therapy of solid cancers has been severely restricted by the limited distribution of vectors within tumors. However, cellular vectors have emerged as an effective migratory system for gene delivery to invasive cancers. Implanted and injected multipotent mesenchymal stromal cells (MSCs) have shown tropism for several types of primary tumors and metastases. This capacity of MSCs forms the basis for their use as a gene vector system in neoplasms. Here, we review the tumor-directed migratory potential of MSCs, mechanisms of the migration, and the choice of therapeutic transgenes, with a focus on malignant gliomas as a model system for invasive and highly vascularized tumors. We examine recent findings demonstrating that MSCs share many characteristics with pericytes and that implanted MSCs localize primarily to perivascular niches within tumors, which might have therapeutic implications. The use of MSC vectors in cancer gene therapy raises concerns, however, including a possible MSC contribution to tumor stroma and vasculature, MSC-mediated antitumor immune suppression, and the potential malignant transformation of cultured MSCs. Nonetheless, we highlight the novel prospects of MSC-based tumor therapy, which appears to be a promising approach. PMID:20407426

  18. [Long-term expansion of multipotent mesenchymal stromal cells under reduced oxygen tension].

    PubMed

    Rylova, Iu V; Buravkova, L B

    2013-01-01

    We have shown that the decrease in oxygen tension in the culture medium of multipotent mesenchymal stromal cells (MMSCs) results in a short-term reduction in the proportion of CD73(+)-cells in the population, without effecting the number of cells expressing other constitutive surface markers (CD90 and CD105). In this case, the heterogeneity of the cell population declined: large spread cells disappeared. The proliferative activity of MMSCs significantly increased and remained stable in conditions in which the oxygen content was close to the tissue oxygen levels (5% O2). At lower oxygen concentration, proliferative activity of the cells gradually reduced from passages 3-4. The increase in proliferative activity was not accompanied by increased expression of telomerase gene indicateding the alsance of cell transformation. However, genome-wide analysis of MMSC gene expression level revealed changes in expression of cyclins (CCND2 and PCNA), regulatory subunit cyclin-dependent kinase (CKS2) and an inhibitor of cyclin-dependent kinase (CDKN2C), regulating the cell cycle, which is obviously facilitated the increase in the proliferative capacity of cells at lower oxygen tension.

  19. Identification of Multipotent Stem/Progenitor Cells in Murine Sclera

    PubMed Central

    Tsai, Chia-Ling; Wu, Pei-Chang; Fini, M. Elizabeth; Shi, Songtao

    2011-01-01

    Purpose. The sclera forms the fibrous outer coat of the eyeball and acts as a supportive framework. The purpose of this study was to examine whether the sclera contains mesenchymal stem/progenitor cells. Method. Scleral tissue from C57BL6/J mice was separated from the retina and choroid and subsequently enzyme digested to release single cells. Proliferation capacity, self-renewal capacity, and ability for multipotent differentiation were analyzed by BrdU labeling, flow cytometry, reverse transcriptase–polymerase chain reaction, immunocytochemistry, and in vivo transplantation. Results. The scleral stem/progenitor cells (SSPCs) possessed clonogenic and high doubling capacities. These cells were positive for the mesenchymal markers Sca-1, CD90.2, CD44, CD105, and CD73 and negative for the hematopoietic markers CD45, CD11b, Flk1, CD34, and CD117. In addition to expressing stem cell genes ABCG2, Six2, Notch1, and Pax6, SSPCs were able to differentiate to adipogenic, chondrogenic, and neurogenic lineages. Conclusions. This study indicates that the sclera contains multipotent mesenchymal stem cells. Further study of SSPCs may help elucidate the cellular and molecular mechanism of scleral diseases such as scleritis and myopia. PMID:21788434

  20. Flow cytometric characterization of culture expanded multipotent mesenchymal stromal cells (MSCs) from horse adipose tissue: towards the definition of minimal stemness criteria.

    PubMed

    Pascucci, L; Curina, G; Mercati, F; Marini, C; Dall'Aglio, C; Paternesi, B; Ceccarelli, P

    2011-12-15

    In the last decades, multipotent mesenchymal progenitor cells have been isolated from many adult tissues of different species. The International Society for Cellular Therapy (ISCT) has recently established that multipotent mesenchymal stromal cells (MSCs) is the currently recommended designation. In this study, we used flow cytometry to evaluate the expression of several molecules related to stemness (CD90, CD44, CD73 and STRO-1) in undifferentiated, early-passaged MSCs isolated from adipose tissue of four donor horses (AdMSCs). The four populations unanimously expressed high levels of CD90 and CD44. On the contrary, they were unexpectedly negative to CD73. A small percentage of the cells, finally, showed the expression of STRO-1. This last result might be due to the existence of a small subpopulation of STRO-1+ cells or to a poor cross-reactivity of the antibody. A remarkable donor-to-donor consistency and reproducibility of these findings was demonstrated. The data presented herein support the idea that equine AdMSCs may be easily isolated and selected by adherence to tissue culture plastic and exhibit a surface profile characterized by some peculiar differences in comparison to those described in other species. Continued characterization of these cells will help to clarify several aspects of their biology and may ultimately enable the isolation of specific, purified subpopulations. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Long-term survival of donor bone marrow multipotent mesenchymal stromal cells implanted into the periosteum of patients with allogeneic graft failure.

    PubMed

    Kuzmina, L A; Petinati, N A; Sats, N V; Drize, N J; Risinskaya, N V; Sudarikov, A B; Vasilieva, V A; Drokov, M Y; Michalzova, E D; Parovichnikova, E N; Savchenko, V G

    2016-09-01

    The present study involved three patients with graft failure following allogeneic hematopoietic stem cell transplantation (allo-HSCT). We obtained multipotent mesenchymal stromal cells (MSCs) from the original hematopoietic cell donors and implanted these cells in the periosteum to treat long-term bone marrow aplasia. The results showed that in all patients endogenous blood formation was recovered 2 weeks after MSC administration. Donor MSCs were found in recipient bone marrow three and 5 months following MSC implantation. Thus, our findings indicate that functional donor MSCs can persist in patient bone marrow.

  2. [Simulated uterus microenvironment induced human placental mesenchymal stem cells differentiation to uterus smooth muscle cells in vitro].

    PubMed

    Li, Chang-dong; Zhang, Wei-yuan; Yuan, Chun-li; Han, Li-ying

    2008-12-09

    To develop a new method to promote the differentiation of mesenchymal stem cells derived from human placenta (pMSC) to uterus smooth muscle cells (uSMC) in simulated uterus microenvironment. MSCs were isolated from human placenta, cultivated, and analyzed for their phenotype by flow cytometry. The multipotential differentiation of the pMSC was examined by chondrogenic, adipogenic, and osteogenetic induction. uSMC were isolated from uteri resected during operation and co-cultivated with the pMSC in a Transwell chamber simulating Two, 4, and 8 days later RT-PCR and Western blotting were used to detect the mRNA and protein expression of alpha-actin, calmodulin, and myosin heavy chains (MHC), the markers of smooth muscle differentiation at the early, middle, and late stages. On day 8 RT-PCR was used to detect the expression of estrogen receptor in these 2 groups of cells, then estrogen was used to stimulate these cells and the protein kinase C (PKC) activity was examined. The pMSC could be induced into adipocytes, osteocytes, and chondrocytes respectively. After co-culture with uSMC, the morphology of the pMSC changed closely into that of the uSMC, and MHC was expressed in the pMSC. Estrogen receptor was positive in both groups of cells. The PKC activity increased, especially in the cell membrane, after stimulation of estrogen. The postpartum human placenta can be used as an important and novel source of multipotent stem cells for tissue engineering and genetic engineering. Placental MSC have the potential to differentiate into smooth muscle cells under the simulated uterus microenvironment in vitro.

  3. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction.

    PubMed

    Miyahara, Yoshinori; Nagaya, Noritoshi; Kataoka, Masaharu; Yanagawa, Bobby; Tanaka, Koichi; Hao, Hiroyuki; Ishino, Kozo; Ishida, Hideyuki; Shimizu, Tatsuya; Kangawa, Kenji; Sano, Shunji; Okano, Teruo; Kitamura, Soichiro; Mori, Hidezo

    2006-04-01

    Mesenchymal stem cells are multipotent cells that can differentiate into cardiomyocytes and vascular endothelial cells. Here we show, using cell sheet technology, that monolayered mesenchymal stem cells have multipotent and self-propagating properties after transplantation into infarcted rat hearts. We cultured adipose tissue-derived mesenchymal stem cells characterized by flow cytometry using temperature-responsive culture dishes. Four weeks after coronary ligation, we transplanted the monolayered mesenchymal stem cells onto the scarred myocardium. After transplantation, the engrafted sheet gradually grew to form a thick stratum that included newly formed vessels, undifferentiated cells and few cardiomyocytes. The mesenchymal stem cell sheet also acted through paracrine pathways to trigger angiogenesis. Unlike a fibroblast cell sheet, the monolayered mesenchymal stem cells reversed wall thinning in the scar area and improved cardiac function in rats with myocardial infarction. Thus, transplantation of monolayered mesenchymal stem cells may be a new therapeutic strategy for cardiac tissue regeneration.

  4. Systemic administration of multipotent mesenchymal stromal cells reverts hyperglycemia and prevents nephropathy in type 1 diabetic mice.

    PubMed

    Ezquer, Fernando E; Ezquer, Marcelo E; Parrau, Daniela B; Carpio, Daniel; Yañez, Alejandro J; Conget, Paulette A

    2008-06-01

    Multipotent mesenchymal stromal cells (MSCs), often labeled mesenchymal stem cells, contribute to tissue regeneration in injured bone and cartilage, as well as in the infarcted heart, brain, and kidney. We hypothesize that MSCs might also contribute to pancreas and kidney regeneration in diabetic individuals. Therefore, in streptozotocin (STZ)-induced type 1 diabetes C57BL/6 mice, we tested whether a single intravenous dose of MSCs led to recovery of pancreatic and renal function and structure. When hyperglycemia, glycosuria, massive beta-pancreatic islets destruction, and mild albuminuria were evident (but still without renal histopathologic changes), mice were randomly separated in 2 groups: 1 received 0.5 x 10(6) MSCs that have been ex vivo expanded (and characterized according to their mesenchymal differentiation potential), and the other group received the vehicle. Within a week, only MSC-treated diabetic mice exhibited significant reduction in their blood glucose levels, reaching nearly euglycemic values a month later. Reversion of hyperglycemia and glycosuria remained for 2 months at least. An increase in morphologically normal beta-pancreatic islets was observed only in MSC-treated diabetic mice. Furthermore, in those animals albuminuria was reduced and glomeruli were histologically normal. On the other side, untreated diabetic mice presented glomerular hyalinosis and mesangial expansion. Thus, MSC administration resulted in beta-pancreatic islets regeneration and prevented renal damage in diabetic animals. Our preclinical results suggest bone marrow-derived MSC transplantation as a cell therapy strategy to treat type 1 diabetes and prevent diabetic nephropathy, its main complication.

  5. Hyaluronic Acid (HA) Scaffolds and Multipotent Stromal Cells (MSCs) in Regenerative Medicine.

    PubMed

    Prè, Elena Dai; Conti, Giamaica; Sbarbati, Andrea

    2016-12-01

    Traditional methods for tissue regeneration commonly used synthetic scaffolds to regenerate human tissues. However, they had several limitations, such as foreign body reactions and short time duration. In order to overcome these problems, scaffolds made of natural polymers are preferred. One of the most suitable and widely used materials to fabricate these scaffolds is hyaluronic acid. Hyaluronic acid is the primary component of the extracellular matrix of the human connective tissue. It is an ideal material for scaffolds used in tissue regeneration, thanks to its properties of biocompatibility, ease of chemical functionalization and degradability. In the last few years, especially from 2010, scientists have seen that the cell-based engineering of these natural scaffolds allows obtaining even better results in terms of tissue regeneration and the research started to grow in this direction. Multipotent stromal cells, also known as mesenchymal stem cells, plastic-adherent cells isolated from bone marrow and other mesenchymal tissues, with self-renew and multi-potency properties are ideal candidates for this aim. Normally, they are pre-seeded onto these scaffolds before their implantation in vivo. This review discusses the use of hyaluronic acid-based scaffolds together with multipotent stromal cells, as a very promising tool in regenerative medicine.

  6. Bone morphogenetic protein 9 (BMP9) induces effective bone formation from reversibly immortalized multipotent adipose-derived (iMAD) mesenchymal stem cells.

    PubMed

    Lu, Shun; Wang, Jing; Ye, Jixing; Zou, Yulong; Zhu, Yunxiao; Wei, Qiang; Wang, Xin; Tang, Shengli; Liu, Hao; Fan, Jiaming; Zhang, Fugui; Farina, Evan M; Mohammed, Maryam M; Song, Dongzhe; Liao, Junyi; Huang, Jiayi; Guo, Dan; Lu, Minpeng; Liu, Feng; Liu, Jianxiang; Li, Li; Ma, Chao; Hu, Xue; Lee, Michael J; Reid, Russell R; Ameer, Guillermo A; Zhou, Dongsheng; He, Tongchuan

    2016-01-01

    Regenerative medicine and bone tissue engineering using mesenchymal stem cells (MSCs) hold great promise as an effective approach to bone and skeletal reconstruction. While adipose tissue harbors MSC-like progenitors, or multipotent adipose-derived cells (MADs), it is important to identify and characterize potential biological factors that can effectively induce osteogenic differentiation of MADs. To overcome the time-consuming and technically challenging process of isolating and culturing primary MADs, here we establish and characterize the reversibly immortalized mouse multipotent adipose-derived cells (iMADs). The isolated mouse primary inguinal MAD cells are reversibly immortalized via the retrovirus-mediated expression of SV40 T antigen flanked with FRT sites. The iMADs are shown to express most common MSC markers. FLP-mediated removal of SV40 T antigen effectively reduces the proliferative activity and cell survival of iMADs, indicating the immortalization is reversible. Using the highly osteogenic BMP9, we find that the iMADs are highly responsive to BMP9 stimulation, express multiple lineage regulators, and undergo osteogenic differentiation in vitro upon BMP9 stimulation. Furthermore, we demonstrate that BMP9-stimulated iMADs form robust ectopic bone with a thermoresponsive biodegradable scaffold material. Collectively, our results demonstrate that the reversibly immortalized iMADs exhibit the characteristics of multipotent MSCs and are highly responsive to BMP9-induced osteogenic differentiation. Thus, the iMADs should provide a valuable resource for the study of MAD biology, which would ultimately enable us to develop novel and efficacious strategies for MAD-based bone tissue engineering.

  7. SIRT1 directly regulates SOX2 to maintain self-renewal and multipotency in bone marrow-derived mesenchymal stem cells.

    PubMed

    Yoon, Dong Suk; Choi, Yoorim; Jang, Yeonsue; Lee, Moses; Choi, Woo Jin; Kim, Sung-Hwan; Lee, Jin Woo

    2014-12-01

    SOX2 is crucial for the maintenance of the self-renewal capacity and multipotency of mesenchymal stem cells (MSCs); however, the mechanism by which SOX2 is regulated remains unclear. Here, we report that RNA interference of sirtuin 1 (SIRT1) in human bone marrow (BM)-derived MSCs leads to a decrease of SOX2 protein, resulting in the deterioration of the self-renewal and differentiation capacities of BM-MSCs. Using immunoprecipitation, we demonstrated direct binding between SIRT1 and SOX2 in HeLa cells overexpressing SOX2. We further discovered that the RNA interference of SIRT1 induces the acetylation, nuclear export, and ubiquitination of SOX2, leading to proteasomal degradation in BM-MSCs. SOX2 suppression by trichostatin A (TSA), a known histone deacetylase inhibitor, was reverted by treatment with resveratrol (0.1 and 1 µM), a known activator of SIRT1 in BM-MSCs. Furthermore, 0.1 and 1 µM resveratrol reduced TSA-mediated acetylation and ubiquitination of SOX2 in BM-MSCs. SIRT1 activation by resveratrol enhanced the colony-forming ability and differentiation potential to osteogenic and adipogenic lineages in a dose-dependent manner. However, the enhancement of self-renewal and multipotency by resveratrol was significantly decreased to basal levels by RNA interference of SOX2. These results strongly suggest that the SIRT1-SOX2 axis plays an important role in maintaining the self-renewal capability and multipotency of BM-MSCs. In conclusion, our findings provide evidence for positive SOX2 regulation by post-translational modification in BM-MSCs through the inhibition of nuclear export and subsequent ubiquitination, and demonstrate that SIRT1-mediated deacetylation contributes to maintaining SOX2 protein in the nucleus. © 2014 AlphaMed Press.

  8. In utero transplantation of human bone marrow-derived multipotent mesenchymal stem cells in mice.

    PubMed

    Chou, Shiu-Huey; Kuo, Tom K; Liu, Ming; Lee, Oscar K

    2006-03-01

    Mesenchymal stem cells (MSCs) are multipotent cells that can be isolated from human bone marrow and possess the potential to differentiate into progenies of embryonic mesoderm. However, current evidence is based predominantly on in vitro experiments. We used a murine model of in utero transplantation (IUT) to study the engraftment capabilities of human MSCs. MSCs were obtained from bone marrow by negative immunoselection and limiting dilution, and were characterized by flow cytometry and by in vitro differentiation into osteoblasts, chondrocytes, and adipocytes. MSCs were transplanted into fetal mice at a gestational age of 14 days. Engraftment of human MSCs was determined by flow cytometry, polymerase chain reaction, and fluorescence in situ hybridization (FISH). MSCs engrafted into tissues originating from all three germ layers and persisted for up to 4 months or more after delivery, as evidenced by the expression of the human-specific beta-2 microglobulin gene and by FISH for donor-derived cells. Donor-derived CD45+ cells were detectable in the peripheral blood of recipients, suggesting the participation of MSCs in hematopoiesis at the fetal stage. This model can further serve to evaluate possible applications of MSCs. Copyright 2006 Orthopaedic Research Society.

  9. Isolation and culture of human multipotent stromal cells from the pancreas.

    PubMed

    Seeberger, Karen L; Eshpeter, Alana; Korbutt, Gregory S

    2011-01-01

    Mesenchymal stem cells, also termed multipotent mesenchymal stromal cells (MSCs), can be isolated from most adult tissues. Although the exact origin of MSCs expanded from the human pancreas has not been resolved, we have developed protocols to isolate and expand MSCs from human pancreatic tissue that remains after islet procurement. Similar to techniques used to isolate MSCs from bone marrow, pancreatic MSCs are isolated based on their cell adherence, expression of several cell surface antigens, and multilineage differentiation. The protocols for isolating, characterizing, and differentiating MSCs from the pancreas are presented in this chapter.

  10. Possibility of Aggravation of Tissue Sclerosis after Injection of Multipotent Mesenchymal Stromal Cells Near the Forming Cicatrix in the Experiment.

    PubMed

    Maiborodin, I V; Morozov, V V; Anikeev, A A; Figurenko, N F; Maslov, R V; Matveeva, V A; Chastikina, G A; Maiborodina, V I

    2017-08-01

    The peculiarities of tissue sclerosis after injection of autologous bone marrow multipotent mesenchymal stromal cells transfected with GFP gene and stained with Vybrant CM-Dil cell membrane dye were studied by light microscopy with luminescence. The surgical intervention consisting in ligation of the great vein was followed by tissue sclerotic transformation caused by direct damage and chronic inflammation caused by the presence of slowly resorbed ligature. Injection of stromal cells after this intervention led to formation of more extensive scar. This can attest to the possibility of stromal cells differentiation into connective tissue cells, fibroblasts, and stimulation of proliferation and collagen synthesis by host fibroblasts. A decrease in the volume of dense fibrous connective tissue due to scar reorganization at latter terms cannot not excluded.

  11. Human Fetal Keratocytes Have Multipotent Characteristics in the Developing Avian Embryo

    PubMed Central

    Chao, Jennifer R.; Bronner, Marianne E.

    2013-01-01

    The human cornea contains stem cells that can be induced to express markers consistent with multipotency in cell culture; however, there have been no studies demonstrating that human corneal keratocytes are multipotent. The objective of this study is to examine the potential of human fetal keratocytes (HFKs) to differentiate into neural crest-derived tissues when challenged in an embryonic environment. HFKs were injected bilaterally into the cranial mesenchyme adjacent to the neural tube and the periocular mesenchyme in chick embryos at embryonic days 1.5 and 3, respectively. The injected keratocytes were detected by immunofluorescence using the human cell-specific marker, HuNu. HuNu-positive keratocytes injected along the neural crest pathway were localized adjacent to HNK-1-positive migratory host neural crest cells and in the cardiac cushion mesenchyme. The HuNu-positive cells transformed into neural crest derivatives such as smooth muscle in cranial blood vessels, stromal keratocytes, and corneal endothelium. However, they failed to form neurons despite their presence in the condensing trigeminal ganglion. These results show that HFKs retain the ability to differentiate into some neural crest-derived tissues. Their ability to respond to embryonic cues and generate corneal endothelium and stromal keratocytes provides a basis for understanding the feasibility of creating specialized cells for possible use in regenerative medicine. PMID:23461574

  12. Multipotent mesenchymal stromal cell sheet therapy for bisphosphonate-related osteonecrosis of the jaw in a rat model.

    PubMed

    Kaibuchi, Nobuyuki; Iwata, Takanori; Yamato, Masayuki; Okano, Teruo; Ando, Tomohiro

    2016-09-15

    Bisphosphonates (BPs) inhibit bone resorption and are frequently used to treat osteoporosis, bone metastasis, and other conditions that result in bone fragility. However, numerous studies have reported that BPs are closely related to the development of osteonecrosis of the jaw (BRONJ), which is an intractable disease. Recent studies have demonstrated that intravenous infusion of multipotent mesenchymal stromal cells (MSCs) is effective for the treatment of BRONJ-like disease models. However, the stability of injected MSCs is relatively low. In this study, the protein level of vascular endothelial growth factor in BP-treated MSCs was significantly lower than untreated-MSCs. The mRNA expression levels of receptor activator of nuclear factor κ-B ligand and osteoprotegerin were significantly decreased in BP-treated MSCs. We developed a tissue-engineered cell sheet of allogeneic enhanced green fluorescent protein (EGFP)-labeled MSCs and investigated the effect of MSC sheet transplantation in a BRONJ-like rat model. The MSC sheet group showed wound healing in most cases compared with the control group and MSC intravenous injection group (occurrence of bone exposure: 12.5% compared with 80% and 100%, respectively). Immunofluorescence staining revealed that EGFP-positive cells were localized around newly formed blood vessels in the transplanted sub-mucosa at 2weeks after transplantation. Blood vessels were significantly observed in the MSC sheet group compared to in the control group and MSC intravenous injection group (106±9.6 compared with 40±5.3 and 62±10.2 vessels/mm(2), respectively). These results suggest that allogeneic MSC sheet transplantation is a promising alternative approach for treating BRONJ. Bisphosphonates are frequently used to treat osteoporosis, bone metastasis of various cancers, and other diseases. However, bisphosphonate related-osteonecrosis of the jaw (BRONJ) is an intractable disease because it often recurs after surgery or is exacerbated

  13. Comparison of the efficiency of transplantation of bone marrow multipotent mesenchymal stromal cells cultured under normoxic and hypoxic conditions and their conditioned media on the model of acute lung injury.

    PubMed

    Chailakhyan, R K; Aver'yanov, A V; Zabozlaev, F G; Sobolev, P A; Sorokina, A V; Akul'shin, D A; Gerasimov, Yu V

    2014-05-01

    The therapeutic efficiency of intravenous injection of rat bone marrow multipotent mesenchymal stromal cells grown under conditions of normoxia and hypoxia (3% O2) and conditioned media from these cultures were compared on the rat model of acute lung injury induced by intraperitoneal injection of lipopolysaccharide. The best therapeutic efficiency was demonstrated by cells grown under hypoxic conditions. The effect of conditioned media was less pronounced and did not depend on the culturing conditions.

  14. Persistence of human parvovirus B19 in multipotent mesenchymal stromal cells expressing the erythrocyte P antigen: implications for transplantation

    PubMed Central

    Sundin, Mikael; Lindblom, Anna; Örvell, Claes; Barrett, A.John; Sundberg, Berit; Watz, Emma; Wikman, Agneta; Broliden, Kristina; Le Blanc, Katarina

    2014-01-01

    Multipotent mesenchymal stromal cells (MSC) are used to improve the outcome of hematopoietic stem cell transplantation and in regenerative medicine. However, MSC may harbor persistent viruses that may compromise their clinical benefit. Retrospectively screened, 1 of 20 MSC from healthy donors contained parvovirus B19 (B19) DNA. We found that MSC express the B19 receptor (the globoside P antigen) and a co-receptor (Ku 80), and can transmit B19 to bone marrow cells in vitro, suggesting that the virus can persist in the marrow stroma of healthy individuals. Two stem cell transplant patients received the B19 positive MSC as treatment for graft-versus-host disease. Neither developed viremia nor symptomatic B19 infection. These results demonstrate for the first time that persistent B19 in MSC can infect hematopoietic cells and underscore the importance of monitoring B19 transmission by MSC products. PMID:18804048

  15. Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis.

    PubMed

    Santamaria-Martínez, Albert; Barquinero, Jordi; Barbosa-Desongles, Anna; Hurtado, Antoni; Pinós, Tomàs; Seoane, Joan; Poupon, Marie-France; Morote, Joan; Reventós, Jaume; Munell, Francina

    2009-10-15

    Cancer stem cells are a distinct cellular population that is believed to be responsible for tumor initiation and maintenance. Recent data suggest that solid tumors also contain another type of stem cells, the mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs), which contribute to the formation of tumor-associated stroma. The Hoechst 33342 efflux assay has proved useful to identify a rare cellular fraction, named Side Population (SP), enriched in cells with stem-like properties. Using this assay, we identified SP cells in a prostate cancer xenograft containing human prostate cancer cells and mouse stromal cells. The SP isolation, subculture and sequential sorting allowed the generation of single-cell-derived clones of murine origin that were recognized as MSC by their morphology, plastic adherence, proliferative potential, adipogenic and osteogenic differentiation ability and immunophenotype (CD45(-), CD81(+) and Sca-1(+)). We also demonstrated that SP clonal cells secrete transforming growth factor beta1 (TGF-beta1) and that their inhibition reduces proliferation and accelerates differentiation. These results reveal the existence of SP cells in the stroma of a cancer xenograft, and provide evidence supporting their MSC nature and the role of TGF-beta1 in maintaining their proliferation and undifferentiated status. Our data also reveal the usefulness of the SP assay to identify and isolate MSC cells from carcinomas.

  16. Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santamaria-Martinez, Albert; Universitat de Barcelona, Barcelona; Barquinero, Jordi

    2009-10-15

    Cancer stem cells are a distinct cellular population that is believed to be responsible for tumor initiation and maintenance. Recent data suggest that solid tumors also contain another type of stem cells, the mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs), which contribute to the formation of tumor-associated stroma. The Hoechst 33342 efflux assay has proved useful to identify a rare cellular fraction, named Side Population (SP), enriched in cells with stem-like properties. Using this assay, we identified SP cells in a prostate cancer xenograft containing human prostate cancer cells and mouse stromal cells. The SP isolation, subculture andmore » sequential sorting allowed the generation of single-cell-derived clones of murine origin that were recognized as MSC by their morphology, plastic adherence, proliferative potential, adipogenic and osteogenic differentiation ability and immunophenotype (CD45{sup -}, CD81{sup +} and Sca-1{sup +}). We also demonstrated that SP clonal cells secrete transforming growth factor {beta}1 (TGF-{beta}1) and that their inhibition reduces proliferation and accelerates differentiation. These results reveal the existence of SP cells in the stroma of a cancer xenograft, and provide evidence supporting their MSC nature and the role of TGF-{beta}1 in maintaining their proliferation and undifferentiated status. Our data also reveal the usefulness of the SP assay to identify and isolate MSC cells from carcinomas.« less

  17. Multipotent Mesenchymal Stromal Cells for the Prophylaxis of Acute Graft-versus-Host Disease—A Phase II Study

    PubMed Central

    Kuzmina, Larisa A.; Petinati, Natalia A.; Parovichnikova, Elena N.; Lubimova, Lidia S.; Gribanova, Elena O.; Gaponova, Tatjana V.; Shipounova, Irina N.; Zhironkina, Oxana A.; Bigildeev, Alexey E.; Svinareva, Daria A.; Drize, Nina J.; Savchenko, Valery G.

    2012-01-01

    The efficacy and the safety of the administration of multipotent mesenchymal stromal cells (MMSCs) for acute graft-versus-host disease (aGVHD) prophylaxis following allogeneic hematopoietic cell transplantation (HSCT) were studied. This prospective clinical trial was based on the random patient allocation to the following two groups receiving (1) standard GVHD prophylaxis and (2) standard GVHD prophylaxis combined with MMSCs infusion. Bone marrow MMSCs from hematopoietic stem cell donors were cultured and administered to the recipients at doses of 0.9–1.3 × 106/kg when the blood counts indicated recovery. aGVHD of stage II–IV developed in 38.9% and 5.3% of patients in group 1 and group 2, respectively, (P = 0.002). There were no differences in the graft rejection rates, chronic GVHD development, or infectious complications. Overall mortality was 16.7% for patients in group 1 and 5.3% for patients in group 2. The efficacy and the safety of MMSC administration for aGVHD prophylaxis were demonstrated in this study. PMID:22242033

  18. Multipotent Mesenchymal Stromal Cells for the Prophylaxis of Acute Graft-versus-Host Disease-A Phase II Study.

    PubMed

    Kuzmina, Larisa A; Petinati, Natalia A; Parovichnikova, Elena N; Lubimova, Lidia S; Gribanova, Elena O; Gaponova, Tatjana V; Shipounova, Irina N; Zhironkina, Oxana A; Bigildeev, Alexey E; Svinareva, Daria A; Drize, Nina J; Savchenko, Valery G

    2012-01-01

    The efficacy and the safety of the administration of multipotent mesenchymal stromal cells (MMSCs) for acute graft-versus-host disease (aGVHD) prophylaxis following allogeneic hematopoietic cell transplantation (HSCT) were studied. This prospective clinical trial was based on the random patient allocation to the following two groups receiving (1) standard GVHD prophylaxis and (2) standard GVHD prophylaxis combined with MMSCs infusion. Bone marrow MMSCs from hematopoietic stem cell donors were cultured and administered to the recipients at doses of 0.9-1.3 × 10(6)/kg when the blood counts indicated recovery. aGVHD of stage II-IV developed in 38.9% and 5.3% of patients in group 1 and group 2, respectively, (P = 0.002). There were no differences in the graft rejection rates, chronic GVHD development, or infectious complications. Overall mortality was 16.7% for patients in group 1 and 5.3% for patients in group 2. The efficacy and the safety of MMSC administration for aGVHD prophylaxis were demonstrated in this study.

  19. Low ATP level is sufficient to maintain the uncommitted state of multipotent mesenchymal stem cells.

    PubMed

    Buravkova, L B; Rylova, Y V; Andreeva, E R; Kulikov, A V; Pogodina, M V; Zhivotovsky, B; Gogvadze, V

    2013-10-01

    Multipotent mesenchymal stromal cells (MMSCs) are minimally differentiated precursors with great potential to transdifferentiate. These cells are quite resistant to oxygen limitation, suggesting that a hypoxic milieu can be physiological for MMSCs. Human MMSCs isolated from adipose tissue were grown at various oxygen concentrations. Alteration in cell immunophenotype was determined by flow cytometry after staining with specific antibodies. Concentrations of glucose and lactate were determined using the Biocon colorimetric test. Cellular respiration was assessed using oxygen electrode. The modes of cell death were analyzed by flow cytometry after staining with Annexin V and propidium iodide. We found that permanent oxygen deprivation attenuated cellular ATP levels in these cells, diminishing mitochondrial ATP production but stimulating glycolytic ATP production. At the same time, permanent hypoxia did not affect MMSCs' viability, stimulated their proliferation and reduced their capacity to differentiate. Further, permanent hypoxia decreased spontaneous cell death by MMSCs. Under hypoxic conditions glycolysis provides sufficient energy to maintain MMSCs in an uncommitted state. These findings are of interest not only for scientific reasons, but also in practical terms. Oxygen concentration makes an essential contribution to MMSC physiology and should be taken into account in the setting of protocols for cellular therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Vascular Wall-Resident Multipotent Stem Cells of Mesenchymal Nature within the Process of Vascular Remodeling: Cellular Basis, Clinical Relevance, and Implications for Stem Cell Therapy.

    PubMed

    Klein, Diana

    2016-01-01

    Until some years ago, the bone marrow and the endothelial cell compartment lining the vessel lumen (subendothelial space) were thought to be the only sources providing vascular progenitor cells. Now, the vessel wall, in particular, the vascular adventitia, has been established as a niche for different types of stem and progenitor cells with the capacity to differentiate into both vascular and nonvascular cells. Herein, vascular wall-resident multipotent stem cells of mesenchymal nature (VW-MPSCs) have gained importance because of their large range of differentiation in combination with their distribution throughout the postnatal organism which is related to their existence in the adventitial niche, respectively. In general, mesenchymal stem cells, also designated as mesenchymal stromal cells (MSCs), contribute to the maintenance of organ integrity by their ability to replace defunct cells or secrete cytokines locally and thus support repair and healing processes of the affected tissues. This review will focus on the central role of VW-MPSCs within vascular reconstructing processes (vascular remodeling) which are absolute prerequisite to preserve the sensitive relationship between resilience and stability of the vessel wall. Further, a particular advantage for the therapeutic application of VW-MPSCs for improving vascular function or preventing vascular damage will be discussed.

  1. Chorion Mesenchymal Stem Cells Show Superior Differentiation, Immunosuppressive, and Angiogenic Potentials in Comparison With Haploidentical Maternal Placental Cells

    PubMed Central

    González, Paz L.; Carvajal, Catalina; Cuenca, Jimena; Alcayaga-Miranda, Francisca; Figueroa, Fernando E.; Bartolucci, Jorge; Salazar-Aravena, Lorena

    2015-01-01

    Mesenchymal stem cells (MSCs) of placental origin have become increasingly translational owing to their abundance and accessibility. MSCs of different origin share several features but also present biological differences that might point to distinct clinical properties. Hence, mixing fetal and maternal cells from the same placenta can lead to contradicting results. We analyzed the biological characteristics of haploidentical MSCs isolated from fetal sources, including the umbilical cord (UC-MSCs) and chorion (Ch-MSCs), compared with maternal decidua MSCs (Dc-MSCs). All MSCs were analyzed for general stem cell properties. In addition, immunosuppressive capacity was assessed by the inhibition of T-cell proliferation, and angiogenic potential was evaluated in a Matrigel transplantation assay. The comparison between haploidentical MSCs displayed several distinct features, including (a) marked differences in the expression of CD56, (b) a higher proliferative capacity for Dc-MSCs and UC-MSCs than for Ch-MSCs, (c) a diversity of mesodermal differentiation potential in favor of fetal MSCs, (d) a higher capacity for Ch-MSCs to inhibit T-cell proliferation, and (e) superior angiogenic potential of Ch-MSCs evidenced by a higher capability to form tubular vessel-like structures and an enhanced release of hepatocyte growth factor and vascular endothelial growth factor under hypoxic conditions. Our results suggest that assessing the prevalence of fetomaternal contamination within placental MSCs is necessary to increase robustness and limit side effects in their clinical use. Finally, our work presents evidence positioning fetoplacental cells and notably Ch-MSCs in the forefront of the quest for cell types that are superior for applications in regenerative medicine. Significance This study analyzed the biological characteristics of mesenchymal stem cells (MSCs) isolated from fetal and maternal placental origins. The findings can be summarized as follows: (a) important differences

  2. Successful immortalization of mesenchymal progenitor cells derived from human placenta and the differentiation abilities of immortalized cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Xiaohong; Soda, Yasushi; Takahashi, Kenji

    2006-12-29

    We reported previously that mesenchymal progenitor cells derived from chorionic villi of the human placenta could differentiate into osteoblasts, adipocytes, and chondrocytes under proper induction conditions and that these cells should be useful for allogeneic regenerative medicine, including cartilage tissue engineering. However, similar to human mesenchymal stem cells (hMSCs), though these placental cells can be isolated easily, they are difficult to study in detail because of their limited life span in vitro. To overcome this problem, we attempted to prolong the life span of human placenta-derived mesenchymal cells (hPDMCs) by modifying hTERT and Bmi-1, and investigated whether these modified hPDMCsmore » retained their differentiation capability and multipotency. Our results indicated that the combination of hTERT and Bmi-1 was highly efficient in prolonging the life span of hPDMCs with differentiation capability to osteogenic, adipogenic, and chondrogenic cells in vitro. Clonal cell lines with directional differentiation ability were established from the immortalized parental hPDMC/hTERT + Bmi-1. Interestingly, hPDMC/Bmi-1 showed extended proliferation after long-term growth arrest and telomerase was activated in the immortal hPDMC/Bmi-1 cells. However, the differentiation potential was lost in these cells. This study reports a method to extend the life span of hPDMCs with hTERT and Bmi-1 that should become a useful tool for the study of mesenchymal stem cells.« less

  3. Multimodality imaging of placental masses: a pictorial review.

    PubMed

    Jha, Priyanka; Paroder, Viktoriya; Mar, Winnie; Horowtiz, Jeanne M; Poder, Liina

    2016-12-01

    Placental masses are uncommonly identified at the time of obstetric ultrasound evaluation. Understanding the pathologies presenting as placental masses is key for providing a differential diagnosis and guiding subsequent management, which may include additional imaging with magnetic resonance (MR) imaging. Potential benign entities include chorioangiomas and teratomas. Larger chorioangiomas can cause fetal cardiovascular issues from volume overload. Placental mesenchymal dysplasia has an association with fetal anomalies and detailed fetal evaluation should be performed when it is suspected. Identifying other cystic masses such as partial and complete moles is crucial to prevent erroneous pregnancy termination. This review addresses normal imaging appearance of the placenta on ultrasound and MR imaging and describes various trophoblastic and nontrophoblastic placental masses. Potential placental mass mimics including uterine contractions and thrombo-hematomas are also presented.

  4. Analysis of multipotent mesenchymal stromal cells used for acute graft-versus-host disease prophylaxis.

    PubMed

    Kuzmina, Larisa A; Petinati, Nataliya A; Shipounova, Irina N; Sats, Natalia V; Bigildeev, Alexey E; Zezina, Ekaterina A; Popova, Maria D; Drize, Nina J; Parovichnikova, Elena N; Savchenko, Valery G

    2016-04-01

    Multipotent mesenchymal stromal cells (MSCs) are used for prophylaxis of acute graft-versus-host disease (aGvHD) after allogeneic hematopoietic cell transplantation (allo-HCT). Not all samples of MSC are efficient for aGvHD prevention. The suitability of MSCs for aGvHD prophylaxis was studied. MSCs were derived from the bone marrow (BM) of HCT donor and cultivated for no more than three passages. The characteristics of donor BM samples including colony-forming unit fibroblast (CFU-F) concentration, growth parameters of MSCs, and the relative expression levels (REL) of different genes were analyzed. MSCs were injected intravenously precisely at the moment of blood cell reconstitution. MSCs infusion induced a significant threefold decrease in aGvHD development and improved overall survival compared with the standard prophylaxis group. In ineffective MSC samples (9.4%), a significant decrease in total cell production and the REL of CSF1, FGFR1, and PDGFRB was observed. In all studied BM samples, the cumulative MSC production and CFU-F concentrations decreased with age. The expression levels of FGFR2, PPARG, and VEGF differed by age. A universal single indicator for the prediction of MSC eligibility for aGvHD prophylaxis was not identified. A multiparameter mathematical model for selecting MSC samples effective for the prevention of aGvHD was proposed. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Labeling and Imaging Mesenchymal Stem Cells with Quantum Dots

    EPA Science Inventory

    Mesenchymal stem cells (MSCs) are multipotent cells with the potential to differentiate into bone, cartilage, adipose and muscle cells. Adult derived MSCs are being actively investigated because of their potential to be utilized for therapeutic cell-based transplantation. Methods...

  6. Human palatine tonsil: a new potential tissue source of multipotent mesenchymal progenitor cells

    PubMed Central

    Janjanin, Sasa; Djouad, Farida; Shanti, Rabie M; Baksh, Dolores; Gollapudi, Kiran; Prgomet, Drago; Rackwitz, Lars; Joshi, Arjun S; Tuan, Rocky S

    2008-01-01

    Introduction Mesenchymal progenitor cells (MPCs) are multipotent progenitor cells in adult tissues, for example, bone marrow (BM). Current challenges of clinical application of BM-derived MPCs include donor site morbidity and pain as well as low cell yields associated with an age-related decrease in cell number and differentiation potential, underscoring the need to identify alternative sources of MPCs. Recently, MPC sources have diversified; examples include adipose, placenta, umbilicus, trabecular bone, cartilage, and synovial tissue. In the present work, we report the presence of MPCs in human tonsillar tissue. Methods We performed comparative and quantitative analyses of BM-MPCs with a subpopulation of adherent cells isolated from this lymphoid tissue, termed tonsil-derived MPCs (T-MPCs). The expression of surface markers was assessed by fluorescent-activated cell sorting analysis. Differentiation potential of T-MPCs was analyzed histochemically and by reverse transcription-polymerase chain reaction for the expression of lineage-related marker genes. The immunosuppressive properties of MPCs were determined in vitro in mixed lymphocyte reactions. Results Surface epitope analysis revealed that T-MPCs were negative for CD14, CD31, CD34, and CD45 expression and positive for CD29, CD44, CD90, and CD105 expression, a characteristic phenotype of BM-MPCs. Similar to BM-MPCs, T-MPCs could be induced to undergo adipogenic differentiation and, to a lesser extent, osteogenic and chondrogenic differentiation. T-MPCs did not express class II major histocompatibility (MHC) antigens, and in a similar but less pronounced manner compared with BM-MPCs, T-MPCs were immunosuppressive, inhibiting the proliferation of T cells stimulated by allogeneic T cells or by non-specific mitogenic stimuli via an indoleamine 2,3-dioxygenase-dependent mechanism. Conclusion Human palatine T-MPCs represent a new source of progenitor cells, potentially applicable for cell-based therapies. PMID

  7. Haploidentical hematopoietic stem cell transplant with umbilical cord-derived multipotent mesenchymal cell infusion for the treatment of high-risk acute leukemia in children.

    PubMed

    Zhu, Ling; Wang, Zhidong; Zheng, Xiaoli; Ding, Li; Han, Dongmei; Yan, Hongmin; Guo, Zikuan; Wang, Hengxiang

    2015-05-01

    In this study, 25 children with high-risk acute leukemia received haploidentical hematopoietic stem cell transplant (haplo-HSCT) with co-transfusion of umbilical cord multipotent mesenchymal cells (UC-MSCs). Adverse effects, hematopoietic recovery, complications and outcome were observed during a median follow-up of 12.8 months (range: 3-25 months). Myeloid engraftment was rapid, and the median time to neutrophil and platelet recovery was 15.12 days and 20.08 days, respectively. Eight patients developed grade I skin acute graft-versus-host disease (aGVHD) that responded well to standard steroid therapy. Of note, cytomegalovirus viremia was observed in most patients (23/25 cases). Patients died mainly of leukemia relapse and pulmonary complication. Fourteen patients are currently alive and remain with full donor chimerism at the time of reporting. The present results suggest further clinical trials to testify the effectiveness of UC-MSCs to prevent aGVHD in haplo-HSCT for treating children with high-risk leukemia.

  8. Derivation of Multipotent Mesenchymal Precursors from Human Embryonic Stem Cells

    PubMed Central

    Barberi, Tiziano; Willis, Lucy M; Socci, Nicholas D; Studer, Lorenz

    2005-01-01

    Background Human embryonic stem cells provide access to the earliest stages of human development and may serve as a source of specialized cells for regenerative medicine. Thus, it becomes crucial to develop protocols for the directed differentiation of embryonic stem cells into tissue-restricted precursors. Methods and Findings Here, we present culture conditions for the derivation of unlimited numbers of pure mesenchymal precursors from human embryonic stem cells and demonstrate multilineage differentiation into fat, cartilage, bone, and skeletal muscle cells. Conclusion Our findings will help to elucidate the mechanism of mesoderm specification during embryonic stem cell differentiation and provide a platform to efficiently generate specialized human mesenchymal cell types for future clinical applications. PMID:15971941

  9. Effect of Priming of Multipotent Mesenchymal Stromal Cells with Interferon γ on Their Immunomodulating Properties.

    PubMed

    Kapranov, N M; Davydova, Y O; Galtseva, I V; Petinati, N A; Drize, N I; Kuzmina, L A; Parovichnikova, E N; Savchenko, V G

    2017-10-01

    Multipotent mesenchymal stromal cells (MSCs) are widely used for cell therapy, in particular for prophylaxis and treatment of graft-versus-host disease. Due to their immunomodulatory properties, MSCs affect the composition of lymphocyte subpopulations, which depends on the immunological state of the organism and can change in different diseases and during treatment. Administration of MSCs is not always effective. Treatment of MSCs with different cytokines (in particular IFN-γ) leads to enhancement of their immunomodulatory properties. The aim of this study was to investigate subpopulational alterations and activation markers in lymphocytes (activated and non-activated) after interaction with MSCs and MSCs pretreated with IFN-γ (γMSCs) in vitro. Lymphocytes were co-cultured with MSCs or γMSCs for 4 days. The proportion of CD4+ and CD8 + expressing CD25, CD38, CD69, HLA-DR, and PD-1 and distribution of memory and effector subsets were measured by flow cytometry after co-cultivation of lymphocytes with MSCs or γMSCs. The distribution of lymphocyte subpopulations changes during culturing. In non-activated lymphocytes cultured without MSCs, decrease in the proportion of naïve cells and increase in the number of effector cells was observed. That could be explained as activation of lymphocytes in the presence of serum in culturing medium. Co-culturing of lymphocytes with MSCs and γMSCs leads to retention of their non-activated state. Activation of lymphocytes with phytohemagglutinin increases the number of central memory cells and activates marker expression. Interaction with MSCs and γMSCs prevents activation of lymphocytes and keeps their naïve state. Priming with IFN-γ did not induce MSCs inhibitory effect on activation of lymphocytes.

  10. Animal serum-free culture conditions for isolation and expansion of multipotent mesenchymal stromal cells from human BM.

    PubMed

    Müller, I; Kordowich, S; Holzwarth, C; Spano, C; Isensee, G; Staiber, A; Viebahn, S; Gieseke, F; Langer, H; Gawaz, M P; Horwitz, E M; Conte, P; Handgretinger, R; Dominici, M

    2006-01-01

    Multipotent mesenchymal stromal cells (MSC) have become important tools in regenerative and transplantation medicine. Rapidly increasing numbers of patients are receiving in vitro-expanded MSC. Culture conditions typically include FSC because human serum does not fully support growth of human MSC in vitro (MSC(FCS)). Concerns regarding BSE, other infectious complications and host immune reactions have fueled investigation of alternative culture supplements. As PDGF has long been identified as a growth factor for MSC, we tested media supplementation with platelet lysate for support of MSC proliferation. We found that primary cultures of BM-derived MSC can be established with animal serum-free media containing fresh frozen plasma and platelets (MSC(FFPP)). Moreover, MSC(FFPP) showed vigorous proliferation that was superior to classical culture conditions containing FCS. MSC(FFPP) morphology was equivalent to MSC(FCS), and MSC(FFPP) expressed CD73, CD90, CD105, CD106, CD146 and HLA-ABC while being negative for CD34, CD45 and surface HLA-DR, as expected. In addition to being phenotypically identical, MSC(FFPP) could efficiently differentiate into adipocytes and osteoblasts. In terms of immune regulatory properties, MSC(FFPP) were indistinguishable from MSC(FCS). Proliferation of PBMC induced by IL-2 in combination with OKT-3 or by PHA was inhibited in the presence of MSC(FFPP). Taken together, FCS can be replaced safely by FFPP in cultures of MSC for clinical purposes.

  11. Packed Bed Bioreactor for the Isolation and Expansion of Placental-Derived Mesenchymal Stromal Cells

    PubMed Central

    Osiecki, Michael J.; Michl, Thomas D.; Kul Babur, Betul; Kabiri, Mahboubeh; Atkinson, Kerry; Lott, William B.; Griesser, Hans J.; Doran, Michael R.

    2015-01-01

    Large numbers of Mesenchymal stem/stromal cells (MSCs) are required for clinical relevant doses to treat a number of diseases. To economically manufacture these MSCs, an automated bioreactor system will be required. Herein we describe the development of a scalable closed-system, packed bed bioreactor suitable for large-scale MSCs expansion. The packed bed was formed from fused polystyrene pellets that were air plasma treated to endow them with a surface chemistry similar to traditional tissue culture plastic. The packed bed was encased within a gas permeable shell to decouple the medium nutrient supply and gas exchange. This enabled a significant reduction in medium flow rates, thus reducing shear and even facilitating single pass medium exchange. The system was optimised in a small-scale bioreactor format (160 cm2) with murine-derived green fluorescent protein-expressing MSCs, and then scaled-up to a 2800 cm2 format. We demonstrated that placental derived MSCs could be isolated directly within the bioreactor and subsequently expanded. Our results demonstrate that the closed system large-scale packed bed bioreactor is an effective and scalable tool for large-scale isolation and expansion of MSCs. PMID:26660475

  12. Packed Bed Bioreactor for the Isolation and Expansion of Placental-Derived Mesenchymal Stromal Cells.

    PubMed

    Osiecki, Michael J; Michl, Thomas D; Kul Babur, Betul; Kabiri, Mahboubeh; Atkinson, Kerry; Lott, William B; Griesser, Hans J; Doran, Michael R

    2015-01-01

    Large numbers of Mesenchymal stem/stromal cells (MSCs) are required for clinical relevant doses to treat a number of diseases. To economically manufacture these MSCs, an automated bioreactor system will be required. Herein we describe the development of a scalable closed-system, packed bed bioreactor suitable for large-scale MSCs expansion. The packed bed was formed from fused polystyrene pellets that were air plasma treated to endow them with a surface chemistry similar to traditional tissue culture plastic. The packed bed was encased within a gas permeable shell to decouple the medium nutrient supply and gas exchange. This enabled a significant reduction in medium flow rates, thus reducing shear and even facilitating single pass medium exchange. The system was optimised in a small-scale bioreactor format (160 cm2) with murine-derived green fluorescent protein-expressing MSCs, and then scaled-up to a 2800 cm2 format. We demonstrated that placental derived MSCs could be isolated directly within the bioreactor and subsequently expanded. Our results demonstrate that the closed system large-scale packed bed bioreactor is an effective and scalable tool for large-scale isolation and expansion of MSCs.

  13. Secretion of angiogenic proteins by human multipotent mesenchymal stromal cells and their clinical potential in the treatment of avascular osteonecrosis.

    PubMed

    Müller, I; Vaegler, M; Holzwarth, C; Tzaribatchev, N; Pfister, S M; Schütt, B; Reize, P; Greil, J; Handgretinger, R; Rudert, M

    2008-11-01

    Osteonecrosis is a frequent complication after treatment for childhood leukemia and other steroid-based therapies. The success rate of core decompression surgery is limited. Therefore, we evaluated relevant biological characteristics of human multipotent mesenchymal stromal cells (MSCs) in vitro. MSCs cultured under low-oxygen tensions showed decreased proliferation and differentiation into bone. However, these MSCs secreted significant amounts of vascular endothelial-derived factor in the presence of interferon-gamma. These in vitro results with potential effects on neovascularization and bone regeneration as well as findings in animal models prompted us to treat five patients with steroid-induced osteonecrosis of the femur by core decompression surgery and instillation of expanded autologous MSCs. Within 3 weeks of culture, sufficient numbers of MSCs were generated using animal protein-free culture conditions. No chromosomal aberrations were detected by matrix-based comparative genomic hybridization. Application of MSCs during core decompression was feasible and safe. Median follow-up is 16 months and the patients in this pilot study reported clinical improvement. Formation of mineralized bone in the osteonecrotic cavity was proven by computed tomography. Taken together, MSCs display biological properties that may add to the efficiency of surgical treatment in osteonecrosis and should be evaluated in larger patient cohorts.

  14. Organotins Are Potent Activators of PPARγ and Adipocyte Differentiation in Bone Marrow Multipotent Mesenchymal Stromal Cells

    PubMed Central

    Yanik, Susan C.; Baker, Amelia H.; Mann, Koren K.; Schlezinger, Jennifer J.

    2011-01-01

    Adipocyte differentiation in bone marrow is potentially deleterious to both bone integrity and lymphopoiesis. Here, we examine the hypothesis that organotins, common environmental contaminants that are dual ligands for peroxisome proliferator–activated receptor (PPAR) γ and its heterodimerization partner retinoid X receptor (RXR), are potent activators of bone marrow adipogenesis. A C57Bl/6-derived bone marrow multipotent mesenchymal stromal cell (MSC) line, BMS2, was treated with rosiglitazone, a PPARγ agonist, bexarotene, an RXR agonist, or a series of organotins. Rosiglitazone and bexarotene potently activated adipocyte differentiation; however, bexarotene had a maximal efficacy of only 20% of that induced by rosiglitazone. Organotins (tributyltin [TBT], triphenyltin, and dibutyltin) also stimulated adipocyte differentiation (EC50 of 10–20nM) but with submaximal, structure-dependent efficacy. In coexposures, both bexarotene and TBT enhanced rosiglitazone-induced adipogenesis. To investigate the contribution of PPARγ to TBT-induced adipogenesis, we examined expression of PPARγ2, as well as its transcriptional target FABP4. TBT-induced PPARγ2 and FABP4 protein expression with an efficacy intermediate between rosiglitazone and bexarotene, similar to lipid accumulation. A PPARγ antagonist and PPARγ-specific small hairpin RNA suppressed TBT-induced differentiation, although to a lesser extent than rosiglitazone-induced differentiation, suggesting that TBT may engage alternate pathways. TBT and bexarotene, but not rosiglitazone, also induced the expression of TGM2 (an RXR target) and ABCA1 (a liver X receptor target). The results show that an environmental contaminant, acting with the same potency as a therapeutic drug, induces PPARγ-dependent adipocyte differentiation in bone marrow MSCs. Activation of multiple nuclear receptor pathways by organotins may have significant implications for bone physiology. PMID:21622945

  15. Differentiating Human Multipotent Mesenchymal Stromal Cells Regulate microRNAs: Prediction of microRNA Regulation by PDGF During Osteogenesis

    PubMed Central

    Goff, Loyal A.; Boucher, Shayne; Ricupero, Christopher L.; Fenstermacher, Sara; Swerdel, Mavis; Chase, Lucas; Adams, Christopher; Chesnut, Jonathan; Lakshmipathy, Uma; Hart, Ronald P.

    2009-01-01

    Objective Human multipotent mesenchymal stromal cells (MSC) have the potential to differentiate into multiple cell types, although little is known about factors that control their fate. Differentiation-specific microRNAs may play a key role in stem cell self renewal and differentiation. We propose that specific intracellular signalling pathways modulate gene expression during differentiation by regulating microRNA expression. Methods Illumina mRNA and NCode microRNA expression analyses were performed on MSC and their differentiated progeny. A combination of bioinformatic prediction and pathway inhibition was used to identify microRNAs associated with PDGF signalling. Results The pattern of microRNA expression in MSC is distinct from that in pluripotent stem cells such as human embryonic stem cells. Specific populations of microRNAs are regulated in MSC during differentiation targeted towards specific cell types. Complementary mRNA expression analysis increases the pool of markers characteristic of MSC or differentiated progeny. To identify microRNA expression patterns affected by signalling pathways, we examined the PDGF pathway found to be regulated during osteogenesis by microarray studies. A set of microRNAs bioinformatically predicted to respond to PDGF signalling was experimentally confirmed by direct PDGF inhibition. Conclusion Our results demonstrate that a subset of microRNAs regulated during osteogenic differentiation of MSCs is responsive to perturbation of the PDGF pathway. This approach not only identifies characteristic classes of differentiation-specific mRNAs and microRNAs, but begins to link regulated molecules with specific cellular pathways. PMID:18657893

  16. Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos

    PubMed Central

    Katow, Hideki

    2015-01-01

    Sea urchin mesenchyme is composed of the large micromere-derived spiculogenetic primary mesenchyme cells (PMC), veg2-tier macromere-derived non-spiculogenetic mesenchyme cells, the small micromere-derived germ cells, and the macro- and mesomere-derived neuronal mesenchyme cells. They are formed through the epithelial-to-mesenchymal transition (EMT) and possess multipotency, except PMCs that solely differentiate larval spicules. The process of EMT is associated with modification of epithelial cell surface property that includes loss of affinity to the apical and basal extracellular matrices, inter-epithelial cell adherens junctions and epithelial cell surface-specific proteins. These cell surface structures and molecules are endocytosed during EMT and utilized as initiators of cytoplasmic signaling pathways that often initiate protein phosphorylation to activate the gene regulatory networks. Acquisition of cell motility after EMT in these mesenchyme cells is associated with the expression of proteins such as Lefty, Snail and Seawi. Structural simplicity and genomic database of this model will further promote detailed EMT research. PMID:26716069

  17. Distinct adipogenic differentiation phenotypes of human umbilical cord mesenchymal cells dependent on adipogenic conditions

    USDA-ARS?s Scientific Manuscript database

    The umbilical cord (UC) matrix is a source of multipotent mesenchymal stem cells (MSCs) that have adipogenic potential and thus can be a model to study adipogenesis. However, existing variability in adipocytic differentiation outcomes may be due to discrepancies in methods utilized for adipogenic d...

  18. The effect of bisphosphonates on the endothelial differentiation of mesenchymal stem cells

    PubMed Central

    Sharma, Dileep; Hamlet, Stephen Mark; Petcu, Eugen Bogdan; Ivanovski, Saso

    2016-01-01

    The contribution of the local stem cell niche to providing an adequate vascular framework during healing cannot be overemphasized. Bisphosphonates (BPs) are known to have a direct effect on the local vasculature, but their effect on progenitor cell differentiation is unknown. This in vitro study evaluated the effect(s) of various BPs on the differentiation of human placental mesenchymal stem cells (pMSCs) along the endothelial lineage and their subsequent functional and morphogenic capabilities. pMSC multipotency was confirmed by successful differentiation into cells of both the osteogenic and endothelial lineages, as demonstrated by positive Alizarin Red S staining and Ac-LDL uptake. pMSC differentiation in the presence of non-cytotoxic BP concentrations showed that nitrogen containing BPs had a significant inhibitory effect on cell migration and endothelial marker gene expression, as well as compromised endothelial differentiation as demonstrated using von Willebrand factor immunofluorescence staining and tube formation assay. This in vitro study demonstrated that at non-cytotoxic levels, nitrogen-containing BPs inhibit differentiation of pMSCs into cells of an endothelial lineage and affect the downstream functional capability of these cells supporting a multi-modal effect of BPs on angiogenesis as pathogenic mechanism contributing to bone healing disorders such as bisphosphonate related osteonecrosis of the jaws (BRONJ). PMID:26857282

  19. The ability of multipotent mesenchymal stromal cells from the bone marrow of patients with leukemia to maintain normal hematopoietic progenitor cells.

    PubMed

    Sorokina, Tamara; Shipounova, Irina; Bigildeev, Alexey; Petinati, Nataliya; Drize, Nina; Turkina, Anna; Chelysheva, Ekaterina; Shukhov, Oleg; Kuzmina, Larisa; Parovichnikova, Elena; Savchenko, Valery

    2016-09-01

    The development of leukemia impairs normal hematopoiesis and marrow stromal microenvironment. The aim of the investigation was to study the ability of multipotent mesenchymal stromal cells (MSCs) derived from the bone marrow of patients with leukemia to maintain normal hematopoietic progenitor cells. MSCs were obtained from the bone marrow of 14 patients with acute lymphoblastic (ALL), 25 with myeloid (AML), and 15 with chronic myeloid (CML) leukemia. As a control, MSCs from 22 healthy donors were used. The incidence of cobblestone area forming cells (CAFC 7-8 d) in the bone marrow of healthy donor cultivated on the supportive layer of patients MSCs was measured. The ability of MSCs from AML and ALL patients at the moment of diagnosis to maintain normal CAFC was significantly decreased when compared to donors. After chemotherapy, the restoration of ALL patients' MSCs functions was slower than that of AML. CML MSCs maintained CAFC better than donors' at the moment of diagnosis and this ability increased with treatment. The ability of patients' MSCs to maintain normal hematopoietic progenitor cells was shown to change in comparison with MSCs from healthy donors and depended on nosology. During treatment, the functional capacity of patients' MSCs had been partially restored. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Multipotent Stem Cell and Reproduction.

    PubMed

    Khanlarkhani, Neda; Baazm, Maryam; Mohammadzadeh, Farzaneh; Najafi, Atefeh; Mehdinejadiani, Shayesteh; Sobhani, Aligholi

    Stem cells are self-renewing and undifferentiated cell types that can be differentiate into functional cells. Stem cells can be classified into two main types based on their source of origin: Embryonic and Adult stem cells. Stem cells also classified based on the range of differentiation potentials into Totipotent, Pluripotent, Multipotent, and Unipotent. Multipotent stem cells have the ability to differentiate into all cell types within one particular lineage. There are plentiful advantages and usages for multipotent stem cells. Multipotent Stem cells act as a significant key in procedure of development, tissue repair, and protection. The accessibility and adaptability of these amazing cells create them a great therapeutic choice for different part of medical approaches, and it becomes interesting topic in the scientific researches to found obvious method for the most advantageous use of MSC-based therapies. Recent studies in the field of stem cell biology have provided new perspectives and opportunities for the treatment of infertility disorders.

  1. Osteoarthritis-derived chondrocytes are a potential source of multipotent progenitor cells for cartilage tissue engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oda, Tomoyuki; Sakai, Tadahiro; Hiraiwa, Hideki

    The natural healing capacity of damaged articular cartilage is poor, rendering joint surface injuries a prime target for regenerative medicine. While autologous chondrocyte or mesenchymal stem cell (MSC) implantation can be applied to repair cartilage defects in young patients, no appropriate long-lasting treatment alternative is available for elderly patients with osteoarthritis (OA). Multipotent progenitor cells are reported to present in adult human articular cartilage, with a preponderance in OA cartilage. These facts led us to hypothesize the possible use of osteoarthritis-derived chondrocytes as a cell source for cartilage tissue engineering. We therefore analyzed chondrocyte- and stem cell-related markers, cell growthmore » rate, and multipotency in OA chondrocytes (OACs) and bone marrow-derived MSCs, along with normal articular chondrocytes (ACs) as a control. OACs demonstrated similar phenotype and proliferation rate to MSCs. Furthermore, OACs exhibited multilineage differentiation ability with a greater chondrogenic differentiation ability than MSCs, which was equivalent to ACs. We conclude that chondrogenic capacity is not significantly affected by OA, and OACs could be a potential source of multipotent progenitor cells for cartilage tissue engineering. - Highlights: • Osteoarthritis chondrocytes (OACs) have multilineage differentiation capacity. • Articular chondrocytes (ACs) and OACs have similar gene expression profiles. • OACs have high chondrogenic potential. • OACs could be a cell resource for cartilage tissue engineering.« less

  2. Adipose-derived mesenchymal stem cells and regenerative medicine.

    PubMed

    Konno, Masamitsu; Hamabe, Atsushi; Hasegawa, Shinichiro; Ogawa, Hisataka; Fukusumi, Takahito; Nishikawa, Shimpei; Ohta, Katsuya; Kano, Yoshihiro; Ozaki, Miyuki; Noguchi, Yuko; Sakai, Daisuke; Kudoh, Toshihiro; Kawamoto, Koichi; Eguchi, Hidetoshi; Satoh, Taroh; Tanemura, Masahiro; Nagano, Hiroaki; Doki, Yuichiro; Mori, Masaki; Ishii, Hideshi

    2013-04-01

    Adipose tissue-derived mesenchymal stem cells (ADSCs) are multipotent and can differentiate into various cell types, including osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic β-cells, and hepatocytes. Compared with the extraction of other stem cells such as bone marrow-derived mesenchymal stem cells (BMSCs), that of ADSCs requires minimally invasive techniques. In the field of regenerative medicine, the use of autologous cells is preferable to embryonic stem cells or induced pluripotent stem cells. Therefore, ADSCs are a useful resource for drug screening and regenerative medicine. Here we present the methods and mechanisms underlying the induction of multilineage cells from ADSCs. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  3. Cartilage Engineering from Mesenchymal Stem Cells

    NASA Astrophysics Data System (ADS)

    Goepfert, C.; Slobodianski, A.; Schilling, A. F.; Adamietz, P.; Pörtner, R.

    Mesenchymal progenitor cells known as multipotent mesenchymal stromal cells or mesenchymal stem cells (MSC) have been isolated from various tissues. Since they are able to differentiate along the mesenchymal lineages of cartilage and bone, they are regarded as promising sources for the treatment of skeletal defects. Tissue regeneration in the adult organism and in vitro engineering of tissues is hypothesized to follow the principles of embryogenesis. The embryonic development of the skeleton has been studied extensively with respect to the regulatory mechanisms governing morphogenesis, differentiation, and tissue formation. Various concepts have been designed for engineering tissues in vitro based on these developmental principles, most of them involving regulatory molecules such as growth factors or cytokines known to be the key regulators in developmental processes. Growth factors most commonly used for in vitro cultivation of cartilage tissue belong to the fibroblast growth factor (FGF) family, the transforming growth factor-beta (TGF-β) super-family, and the insulin-like growth factor (IGF) family. In this chapter, in vivo actions of members of these growth factors described in the literature are compared with in vitro concepts of cartilage engineering making use of these growth factors.

  4. Mesenchymal Stem Cell Therapy for Nonhealing Cutaneous Wounds

    PubMed Central

    Hanson, Summer E.; Bentz, Michael L.; Hematti, Peiman

    2014-01-01

    Summary Chronic wounds remain a major challenge in modern medicine and represent a significant burden, affecting not only physical and mental health, but also productivity, health care expenditure, and long-term morbidity. Even under optimal conditions, the healing process leads to fibrosis or scar. One promising solution, cell therapy, involves the transplantation of progenitor/stem cells to patients through local or systemic delivery, and offers a novel approach to many chronic diseases, including nonhealing wounds. Mesenchymal stem cells are multipotent, adult progenitor cells of great interest because of their unique immunologic properties and regenerative potential. A variety of preclinical and clinical studies have shown that mesenchymal stem cells may have a useful role in wound-healing and tissue-engineering strategies and both aesthetic and reconstructive surgery. Recent advances in stem cell immunobiology can offer insight into the multiple mechanisms through which mesenchymal stem cells could affect underlying pathophysiologic processes associated with nonhealing mesenchymal stem cells. Critical evaluation of the current literature is necessary for understanding how mesenchymal stem cells could potentially revolutionize our approach to skin and soft-tissue defects and designing clinical trials to address their role in wound repair and regeneration. PMID:20124836

  5. Mesenchymal Stromal Cells for Antineoplastic Drug Loading and Delivery.

    PubMed

    Petrella, Francesco; Rimoldi, Isabella; Rizzo, Stefania; Spaggiari, Lorenzo

    2017-11-23

    Mesenchymal stromal cells are a population of undifferentiated multipotent adult cells possessing extensive self-renewal properties and the potential to differentiate into a variety of mesenchymal lineage cells. They express broad anti-inflammatory and immunomodulatory activity on the immune system and after transplantation can interact with the surrounding microenvironment, promoting tissue healing and regeneration. For this reason, mesenchymal stromal cells have been widely used in regenerative medicine, both in preclinical and clinical settings. Another clinical application of mesenchymal stromal cells is the targeted delivery of chemotherapeutic agents to neoplastic cells, maximizing the cytotoxic activity against cancer cells and minimizing collateral damage to non-neoplastic tissues. Mesenchymal stem cells are home to the stroma of several primary and metastatic neoplasms and hence can be used as vectors for targeted delivery of antineoplastic drugs to the tumour microenvironment, thereby reducing systemic toxicity and maximizing antitumour effects. Paclitaxel and gemcitabine are the chemotherapeutic drugs best loaded by mesenchymal stromal cells and delivered to neoplastic cells, whereas other agents, like pemetrexed, are not internalized by mesenchymal stromal cells and therefore are not suitable for advanced antineoplastic therapy. This review focuses on the state of the art of advanced antineoplastic cell therapy and its future perspectives, emphasizing in vitro and in vivo preclinical results and future clinical applications.

  6. Accumulation of Multipotent Progenitor Cells on Polymethylpentene Membranes During Extracorporeal Membrane Oxygenation.

    PubMed

    Lehle, Karla; Friedl, Lucas; Wilm, Julius; Philipp, Alois; Müller, Thomas; Lubnow, Matthias; Schmid, Christof

    2016-06-01

    Multipotent progenitor cells were mobilized during pediatric extracorporeal membrane oxygenation (ECMO). We hypothesize that these cells also adhered onto polymethylpentene (PMP) fibers within the membrane oxygenator (MO) during adult ECMO support. Mononuclear cells were removed from the surface of explanted PMP-MOs (n = 16). Endothelial-like outgrowth and mesenchymal-like cells were characterized by flow cytometric analysis using different surface markers. Spindle-shaped attaching cells were identified early, but without proliferative activity. After long-term cultivation palisading type or cobblestone-type outgrowth cells with high proliferative activity appeared and were characterized as (i) leukocytoid CD45+/CD31+ (CD133+/VEGFR-II+/CD90+/CD14+/CD146dim/CD105dim); (ii) endothelial-like CD45-/CD31+ (VEGF-RII+/CD146+/CD105+/CD133-/CD14-/CD90-); and (iii) mesenchymal-like cells CD45-/CD31- (CD105+/CD90+/CD133dim/VEGFR-II-/CD146-/CD14-). The distribution of the cell populations depended on the MO and cultivation time. Endothelial-like cells formed capillary-like structures and did uptake Dil-acetylated low-density lipoprotein. Endothelial- and mesenchymal-like cells adhered on the surface of PMP-MOs. Further research is needed to identify the clinical relevance of these cells. Copyright © 2015 The Authors. Artificial Organs published by Wiley Periodicals, Inc. on behalf of International Center for Artificial Organs and Transplantation (ICAOT).

  7. Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, Brandon M.; Leix, Kyle Alexander; Ji, Yajing

    Highlights: • Multipotent vascular stem cells (MVSCs) proliferate and differentiate. • Nitric oxide inhibits proliferation of MVSCs. • Nitric oxide inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs). • Smooth muscle cells (SMCs) neither de-differentiate nor proliferate. - Abstract: Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to suchmore » injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs) and subsequently to SMC as well.« less

  8. Musculoskeletal tissue engineering with human umbilical cord mesenchymal stromal cells

    PubMed Central

    Wang, Limin; Ott, Lindsey; Seshareddy, Kiran; Weiss, Mark L; Detamore, Michael S

    2011-01-01

    Multipotent mesenchymal stromal cells (MSCs) hold tremendous promise for tissue engineering and regenerative medicine, yet with so many sources of MSCs, what are the primary criteria for selecting leading candidates? Ideally, the cells will be multipotent, inexpensive, lack donor site morbidity, donor materials should be readily available in large numbers, immunocompatible, politically benign and expandable in vitro for several passages. Bone marrow MSCs do not meet all of these criteria and neither do embryonic stem cells. However, a promising new cell source is emerging in tissue engineering that appears to meet these criteria: MSCs derived from Wharton’s jelly of umbilical cord MSCs. Exposed to appropriate conditions, umbilical cord MSCs can differentiate in vitro along several cell lineages such as the chondrocyte, osteoblast, adipocyte, myocyte, neuronal, pancreatic or hepatocyte lineages. In animal models, umbilical cord MSCs have demonstrated in vivo differentiation ability and promising immunocompatibility with host organs/tissues, even in xenotransplantation. In this article, we address their cellular characteristics, multipotent differentiation ability and potential for tissue engineering with an emphasis on musculoskeletal tissue engineering. PMID:21175290

  9. Label retention identifies a multipotent mesenchymal stem cell-like population in the postnatal thymus.

    PubMed

    Osada, Masako; Singh, Varan J; Wu, Kenmin; Sant'Angelo, Derek B; Pezzano, Mark

    2013-01-01

    Thymic microenvironments are essential for the proper development and selection of T cells critical for a functional and self-tolerant adaptive immune response. While significant turnover occurs, it is unclear whether populations of adult stem cells contribute to the maintenance of postnatal thymic epithelial microenvironments. Here, the slow cycling characteristic of stem cells and their property of label-retention were used to identify a K5-expressing thymic stromal cell population capable of generating clonal cell lines that retain the capacity to differentiate into a number of mesenchymal lineages including adipocytes, chondrocytes and osteoblasts suggesting a mesenchymal stem cell-like phenotype. Using cell surface analysis both culture expanded LRCs and clonal thymic mesenchymal cell lines were found to express Sca1, PDGFRα, PDGFRβ,CD29, CD44, CD49F, and CD90 similar to MSCs. Sorted GFP-expressing stroma, that give rise to TMSC lines, contribute to thymic architecture when reaggregated with fetal stroma and transplanted under the kidney capsule of nude mice. Together these results show that the postnatal thymus contains a population of mesenchymal stem cells that can be maintained in culture and suggests they may contribute to the maintenance of functional thymic microenvironments.

  10. Adult mesenchymal stem cells and women's health.

    PubMed

    Caplan, Arnold I

    2015-02-01

    Adult mesenchymal stem cells (MSCs) were previously described as multipotent cells that could differentiate into bone, cartilage, muscle, and other mesenchymal tissues. New information suggests that MSCs can be found in every tissue of the body because they function as perivascular cells--pericytes--found outside all blood vessels. When these vessels break or are inflamed, pericytes are detached and form MSCs, which are activated by their local microenvironment of injury. Such MSCs function to secrete powerful immune-modulatory and regenerative agents; more than 450 clinical trials are now ongoing, covering a huge spectrum of clinical conditions. How such activated MSCs affect menstrual cycle, menopause, or osteotrophic cancers has only recently been studied. This article outlines these issues and challenges the scientific and medical community to use this newfound knowledge to uncover new clinical logics and medial solutions for women.

  11. Human platelet lysate stimulates high-passage and senescent human multipotent mesenchymal stromal cell growth and rejuvenation in vitro.

    PubMed

    Griffiths, Sarah; Baraniak, Priya R; Copland, Ian B; Nerem, Robert M; McDevitt, Todd C

    2013-12-01

    Multipotent mesenchymal stromal cells (MSCs) are clinically useful because of their immunomodulatory and regenerative properties, but MSC therapies are limited by the loss of self-renewal and cell plasticity associated with ex vivo expansion culture and, on transplantation, increased immunogenicity from xenogen exposure during culture. Recently, pooled human platelet lysate (hPL) has been used as a culture supplement to promote MSC growth; however, the effects of hPL on MSCs after fetal bovine serum (FBS) exposure remain unknown. MSCs were cultured in medium containing FBS or hPL for up to 16 passages, and cell size, doubling time and immunophenotype were determined. MSC senescence was assessed by means of a fluorometric assay for endogenous β-galactosidase expression. MSCs cultured with FBS for different numbers of passages were switched to hPL conditions to evaluate the ability of hPL to "rescue" the proliferative capacity of MSCs. hPL culture resulted in more rapid cell proliferation at earlier passages (passage 5 or earlier) than remove FBS; by day 4, hPL (5%) yielded an MSC doubling time of 1.28 days compared with 1.52 days in 16% FBS. MSCs cultured first in FBS and switched to hPL proliferated more and demonstrated less β-galactosidase production and smaller cell sizes than remove MSCs continuously propagated in FBS. hPL enables rapid expansion of MSCs without adversely affecting immunophenotype. hPL culture of aged and senescent MSCs demonstrated cellular rejuvenation, reflected by decreased doubling time and smaller cell size. These results suggest that expansion of MSCs in hPL after FBS exposure can enhance cell phenotype and proliferative capacity. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  12. Pancreatic exocrine adult cells and placental stem cells co-culture. Working together is always the best way to go.

    PubMed

    Suşman, S; Rus-Ciucă, D; Soriţău, Olga; Tomuleasa, C; Buigă, R; Mihu, D; Pop, V I; Mihu, Carmen Mihaela

    2011-01-01

    The progress made in the last few years have managed to come up withy the possibility of using different stem cell types in an endeavor to correct the alterations that appear in different degenerative diseases. The pancreas, an organ with extremely low regenerative capacity, both for the endocrine and for the exocrine component, is an organ perfect for cell therapy in the hope of restoring its function and cure diabetes mellitus or chronic pancreatitis. One main issue in the stem cell transplantation problem is represented by the influence of the cellular niche, formed by completely differentiated cells, on the phenotype and function of the transplanted cells. In this study, we challenge current knowledge in the field by evaluating the influence of exocrine pancreatic cells on placental stem-like cells using the co-culture technique. In our experiments, we used two different protocols in which adult pancreatic cells were cultured together with mesenchymal stem cells isolated from human placenta. In the case of the first protocol, we seeded pancreatic cells on a pre-adhered single-cell layer of mesenchymal stem cells and in the second one, the seeding of two cell populations in suspension was done at the same time, after passage. During the experiment, we evaluated the alteration of the morphology of the placental cells using and inverted phase microscope and reverse transcriptase-PCR. Based on morphology, in both cases the interaction between epithelial pancreatic cells and placental ones have determined a change in phenotype from mesenchymal to epithelial-like. Taking into consideration the gene expression, placental stem cells have maintained pluripotency gene expression throughout the study. They also expressed pancreatic amylase. These experiments bring out the plasticity of placental stem cells, the cell microenvironment with a decisive part in phenotype and the level of gene expression. The results obtained in vitro can bring a new picture on the effects of

  13. Brain mesenchymal stem cells: physiology and pathological implications.

    PubMed

    Pombero, Ana; Garcia-Lopez, Raquel; Martinez, Salvador

    2016-06-01

    Mesenchymal stem cells (MSCs) are defined as progenitor cells that give rise to a number of unique, differentiated mesenchymal cell types. This concept has progressively evolved towards an all-encompassing concept including multipotent perivascular cells of almost any tissue. In central nervous system, pericytes are involved in blood-brain barrier, and angiogenesis and vascular tone regulation. They form the neurovascular unit (NVU) together with endothelial cells, astrocytes and neurons. This functional structure provides an optimal microenvironment for neural proliferation in the adult brain. Neurovascular niche include both diffusible signals and direct contact with endothelial and pericytes, which are a source of diffusible neurotrophic signals that affect neural precursors. Therefore, MSCs/pericyte properties such as differentiation capability, as well as immunoregulatory and paracrine effects make them a potential resource in regenerative medicine. © 2016 Japanese Society of Developmental Biologists.

  14. Development and Differentiation of Mesenchymal Bone Marrow Cells in Porous Permeable Titanium Nickelide Implants In Vitro and In Vivo.

    PubMed

    Kokorev, O V; Khodorenko, V N; Radkevich, A A; Dambaev, G Ts; Gunter, V E

    2016-08-01

    We studied the structure of porous permeable titanium nickelide used as the scaffold. In vitro population of the porous scaffold with multipotent mesenchymal stem bone marrow cells on days 7, 14, 21, and 28 was analyzed by scanning electron microscopy. Stage-by-stage histogenesis of the tissues formed from the bone marrow cells in the titanium nickelide scaffold in vivo is described in detail. Using mesenchymal stem cells, we demonstrated that porous permeable titanium nickelide scaffolds are unique incubators for cell cultures applicable for tissue engineering.

  15. The potential of mesenchymal stem cells derived from amniotic membrane and amniotic fluid for neuronal regenerative therapy

    PubMed Central

    Kim, Eun Young; Lee, Kyung-Bon; Kim, Min Kyu

    2014-01-01

    The mesenchymal stem cells (MSCs), which are derived from the mesoderm, are considered as a readily available source for tissue engineering. They have multipotent differentiation capacity and can be differentiated into various cell types. Many studies have demonstrated that the MSCs identified from amniotic membrane (AM-MSCs) and amniotic fluid (AF-MSCs) are shows advantages for many reasons, including the possibility of noninvasive isolation, multipotency, self-renewal, low immunogenicity, anti-inflammatory and nontumorigenicity properties, and minimal ethical problem. The AF-MSCs and AM-MSCs may be appropriate sources of mesenchymal stem cells for regenerative medicine, as an alternative to embryonic stem cells (ESCs). Recently, regenerative treatments such as tissue engineering and cell transplantation have shown potential in clinical applications for degenerative diseases. Therefore, amnion and MSCs derived from amnion can be applied to cell therapy in neuro-degeneration diseases. In this review, we will describe the potential of AM-MSCs and AF-MSCs, with particular focus on cures for neuronal degenerative diseases. [BMB Reports 2014; 47(3): 135-140] PMID:24499672

  16. In vitro cultivation of canine multipotent mesenchymal stromal cells on collagen membranes treated with hyaluronic acid for cell therapy and tissue regeneration

    PubMed Central

    Wodewotzky, T.I.; Lima-Neto, J.F.; Pereira-Júnior, O.C.M.; Sudano, M.J.; Lima, S.A.F.; Bersano, P.R.O.; Yoshioka, S.A.; Landim-Alvarenga, F.C.

    2012-01-01

    Support structures for dermal regeneration are composed of biodegradable and bioresorbable polymers, animal skin or tendons, or are bacteria products. The use of such materials is controversial due to their low efficiency. An important area within tissue engineering is the application of multipotent mesenchymal stromal cells (MSCs) to reparative surgery. The combined use of biodegradable membranes with stem cell therapy may lead to promising results for patients undergoing unsuccessful conventional treatments. Thus, the aim of this study was to test the efficacy of using membranes composed of anionic collagen with or without the addition of hyaluronic acid (HA) as a substrate for adhesion and in vitro differentiation of bone marrow-derived canine MSCs. The benefit of basic fibroblast growth factor (bFGF) on the differentiation of cells in culture was also tested. MSCs were collected from dog bone marrow, isolated and grown on collagen scaffolds with or without HA. Cell viability, proliferation rate, and cellular toxicity were analyzed after 7 days. The cultured cells showed uniform growth and morphological characteristics of undifferentiated MSCs, which demonstrated that MSCs successfully adapted to the culture conditions established by collagen scaffolds with or without HA. This demonstrates that such scaffolds are promising for applications to tissue regeneration. bFGF significantly increased the proliferative rate of MSCs by 63% when compared to groups without the addition of the growth factor. However, the addition of bFGF becomes limiting, since it has an inhibitory effect at high concentrations in culture medium. PMID:22983182

  17. Human multipotent mesenchymal stem cells improve healing after collagenase tendon injury in the rat

    PubMed Central

    2014-01-01

    Background Mesenchymal stromal cells attract much interest in tissue regeneration because of their capacity to differentiate into mesodermal origin cells, their paracrine properties and their possible use in autologous transplantations. The aim of this study was to investigate the safety and reparative potential of implanted human mesenchymal stromal cells (hMSCs), prepared under Good Manufacturing Practice (GMP) conditions utilizing human mixed platelet lysate as a culture supplement, in a collagenase Achilles tendon injury model in rats. Methods Eighty-one rats with collagenase-induced injury were divided into two groups. The first group received human mesenchymal stromal cells injected into the site of injury 3 days after lesion induction, while the second group received saline. Biomechanical testing, morphometry and semiquantitative immunohistochemistry of collagens I, II and III, versican and aggrecan, neovascularization, and hMSC survival were performed 2, 4, and 6 weeks after injury. Results Human mesenchymal stromal cell-treated rats had a significantly better extracellular matrix structure and a larger amount of collagen I and collagen III. Neovascularization was also increased in hMSC-treated rats 2 and 4 weeks after tendon injury. MTCO2 (Cytochrome c oxidase subunit II) positivity confirmed the presence of hMSCs 2, 4 and 6 weeks after transplantation. Collagen II deposits and alizarin red staining for bone were found in 6 hMSC- and 2 saline-treated tendons 6 weeks after injury. The intensity of anti-versican and anti-aggrecan staining did not differ between the groups. Conclusions hMSCs can support tendon healing through better vascularization as well as through larger deposits and better organization of the extracellular matrix. The treatment procedure was found to be safe; however, cartilage and bone formation at the implantation site should be taken into account when planning subsequent in vivo and clinical trials on tendinopathy as an expected

  18. The mechanosensor of mesenchymal stem cells: mechanosensitive channel or cytoskeleton?

    PubMed

    Xiao, E; Chen, Chider; Zhang, Yi

    2016-09-20

    Mesenchymal stem cells (MSCs) are multipotent adult stem cells. MSCs and their potential for use in regenerative medicine have been investigated extensively. Recently, the mechanisms by which MSCs detect mechanical stimuli have been described in detail. As in other cell types, both mechanosensitive channels, such as transient receptor potential melastatin 7 (TRPM7), and the cytoskeleton, including actin and actomyosin, have been implicated in mechanosensation in MSCs. This review will focus on discussing the precise role of TRPM7 and the cytoskeleton in mechanosensation in MSCs.

  19. Allogeneic Transplantation of Periodontal Ligament-Derived Multipotent Mesenchymal Stromal Cell Sheets in Canine Critical-Size Supra-Alveolar Periodontal Defect Model.

    PubMed

    Tsumanuma, Yuka; Iwata, Takanori; Kinoshita, Atsuhiro; Washio, Kaoru; Yoshida, Toshiyuki; Yamada, Azusa; Takagi, Ryo; Yamato, Masayuki; Okano, Teruo; Izumi, Yuichi

    2016-01-01

    Periodontitis is a chronic inflammatory disease that induces the destruction of tooth-supporting tissues, followed by tooth loss. Although several approaches have been applied to periodontal regeneration, complete periodontal regeneration has not been accomplished. Tissue engineering using a combination of cells and scaffolds is considered to be a viable alternative strategy. We have shown that autologous transplantation of periodontal ligament-derived multipotent mesenchymal stromal cell (PDL-MSC) sheets regenerates periodontal tissue in canine models. However, the indications for autologous cell transplantation in clinical situations are limited. Therefore, this study evaluated the safety and efficacy of allogeneic transplantation of PDL-MSC sheets using a canine horizontal periodontal defect model. Canine PDL-MSCs were labeled with enhanced green fluorescent protein (EGFP) and were cultured on temperature-responsive dishes. Three-layered cell sheets were transplanted around denuded root surfaces either autologously or allogeneically. A mixture of β-tricalcium phosphate and collagen gel was placed on the bone defects. Eight weeks after transplantation, dogs were euthanized and subjected to microcomputed tomography and histological analyses. RNA and DNA were extracted from the paraffin sections to verify the presence of EGFP at the transplantation site. Inflammatory markers from peripheral blood sera were quantified using an enzyme-linked immunosorbent assay. Periodontal regeneration was observed in both the autologous and the allogeneic transplantation groups. The allogeneic transplantation group showed particularly significant regeneration of newly formed cementum, which is critical for the periodontal regeneration. Serum levels of inflammatory markers from peripheral blood sera showed little difference between the autologous and allogeneic groups. EGFP amplicons were detectable in the paraffin sections of the allogeneic group. These results suggest that

  20. Allogeneic Transplantation of Periodontal Ligament-Derived Multipotent Mesenchymal Stromal Cell Sheets in Canine Critical-Size Supra-Alveolar Periodontal Defect Model

    PubMed Central

    Tsumanuma, Yuka; Iwata, Takanori; Kinoshita, Atsuhiro; Washio, Kaoru; Yoshida, Toshiyuki; Yamada, Azusa; Takagi, Ryo; Yamato, Masayuki; Okano, Teruo; Izumi, Yuichi

    2016-01-01

    Abstract Periodontitis is a chronic inflammatory disease that induces the destruction of tooth-supporting tissues, followed by tooth loss. Although several approaches have been applied to periodontal regeneration, complete periodontal regeneration has not been accomplished. Tissue engineering using a combination of cells and scaffolds is considered to be a viable alternative strategy. We have shown that autologous transplantation of periodontal ligament-derived multipotent mesenchymal stromal cell (PDL-MSC) sheets regenerates periodontal tissue in canine models. However, the indications for autologous cell transplantation in clinical situations are limited. Therefore, this study evaluated the safety and efficacy of allogeneic transplantation of PDL-MSC sheets using a canine horizontal periodontal defect model. Canine PDL-MSCs were labeled with enhanced green fluorescent protein (EGFP) and were cultured on temperature-responsive dishes. Three-layered cell sheets were transplanted around denuded root surfaces either autologously or allogeneically. A mixture of β-tricalcium phosphate and collagen gel was placed on the bone defects. Eight weeks after transplantation, dogs were euthanized and subjected to microcomputed tomography and histological analyses. RNA and DNA were extracted from the paraffin sections to verify the presence of EGFP at the transplantation site. Inflammatory markers from peripheral blood sera were quantified using an enzyme-linked immunosorbent assay. Periodontal regeneration was observed in both the autologous and the allogeneic transplantation groups. The allogeneic transplantation group showed particularly significant regeneration of newly formed cementum, which is critical for the periodontal regeneration. Serum levels of inflammatory markers from peripheral blood sera showed little difference between the autologous and allogeneic groups. EGFP amplicons were detectable in the paraffin sections of the allogeneic group. These results suggest

  1. Mesenchymally-derived insulin-like growth factor 1 provides a paracrine stimulus for trophoblast migration.

    PubMed

    Lacey, Helen; Haigh, Teresa; Westwood, Melissa; Aplin, John D

    2002-04-24

    Trophoblast migration into maternal decidua is essential for normal pregnancy. It occurs in a defined time window, is spatially highly restricted, and is aberrant in some pathological pregnancies, but the control mechanisms are as yet ill-defined. At the periphery of the placenta, chorionic villi make contact with decidua to form specialised anchoring sites that feed interstitially migrating cytotrophoblast into the placental bed. Explants of first trimester mesenchymal villi on collagen type I developed cytotrophoblast outgrowths from the villous tips. However, in medium changed daily, cells did not progress to a migratory phenotype, remaining instead as a contiguous multi-layered sheet. This suggested the need for another migration stimulus. To test the possibility that this might arise from mesenchymal cells, serum-free conditioned medium from first trimester placental fibroblasts was added to explant cultures. Cytotrophoblasts were stimulated to migrate in streams across the gel. Affinity depletion of Insulin-like growth factor from fibroblast medium reduced streaming activity, while the addition of exogenous IGF-I (10 ng/ml) to serum-free medium produced a streaming phenotype. IGF receptor type 1 (IGFR1) was present on cells in the columns, and streaming could be inhibited by antibody to this receptor. IGF-II and activin, known stimulators of cytotrophoblast migration, were also active in this model. These data suggest a paracrine interaction between villous mesenchyme and the cytotrophoblast in anchoring sites that stimulates trophoblast infiltration of decidua. Such a signal would be self-limiting since it diminishes with distance from the placenta. This is a novel mechanism in placental development.

  2. Effect of Metformin on Viability, Morphology, and Ultrastructure of Mouse Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells and Balb/3T3 Embryonic Fibroblast Cell Line

    PubMed Central

    Czyrek, Aleksandra; Basinska, Katarzyna; Trynda, Justyna; Skaradzińska, Aneta; Siudzińska, Anna; Marycz, Krzysztof

    2015-01-01

    Metformin, a popular drug used to treat diabetes, has recently gained attention as a potentially useful therapeutic agent for treating cancer. In our research metformin was added to in vitro cultures of bone marrow-derived multipotent mesenchymal stromal cells (BMSCs) and Balb/3T3 fibroblast at concentration of 1 mM, 5 mM, and 10 mM. Obtained results indicated that metformin negatively affected proliferation activity of investigated cells. The drug triggered the formation of autophagosomes and apoptotic bodies in all tested cultures. Additionally, we focused on determination of expression of genes involved in insulin-like growth factor 2 (IGF2) signaling pathway. The most striking finding was that the mRNA level of IGF2 was constant in both BMSCs and Balb/3T3. Further, the analysis of IGF2 concentration in cell supernatants showed that it decreased in BMSC cultures after 5 and 10 mM metformin treatments. In case of Balb/3T3 the concentration of IGF2 in culture supernatants decreased after 1 and 5 mM and increased after 10 mM of metformin. Our results suggest that metformin influences the cytophysiology of somatic cells in a dose- and time-dependent manner causing inhibition of proliferation and abnormalities of their morphology and ultrastructure. PMID:26064951

  3. Administration of multipotent mesenchymal stromal cells restores liver regeneration and improves liver function in obese mice with hepatic steatosis after partial hepatectomy.

    PubMed

    Ezquer, Fernando; Bahamonde, Javiera; Huang, Ya-Lin; Ezquer, Marcelo

    2017-01-28

    The liver has the remarkable capacity to regenerate in order to compensate for lost or damaged hepatic tissue. However, pre-existing pathological abnormalities, such as hepatic steatosis (HS), inhibits the endogenous regenerative process, becoming an obstacle for liver surgery and living donor transplantation. Recent evidence indicates that multipotent mesenchymal stromal cells (MSCs) administration can improve hepatic function and increase the potential for liver regeneration in patients with liver damage. Since HS is the most common form of chronic hepatic illness, in this study we evaluated the role of MSCs in liver regeneration in an animal model of severe HS with impaired liver regeneration. C57BL/6 mice were fed with a regular diet (normal mice) or with a high-fat diet (obese mice) to induce HS. After 30 weeks of diet exposure, 70% hepatectomy (Hpx) was performed and normal and obese mice were divided into two groups that received 5 × 10 5 MSCs or vehicle via the tail vein immediately after Hpx. We confirmed a significant inhibition of hepatic regeneration when liver steatosis was present, while the hepatic regenerative response was promoted by infusion of MSCs. Specifically, MSC administration improved the hepatocyte proliferative response, PCNA-labeling index, DNA synthesis, liver function, and also reduced the number of apoptotic hepatocytes. These effects may be associated to the paracrine secretion of trophic factors by MSCs and the hepatic upregulation of key cytokines and growth factors relevant for cell proliferation, which ultimately improves the survival rate of the mice. MSCs represent a promising therapeutic strategy to improve liver regeneration in patients with HS as well as for increasing the number of donor organs available for transplantation.

  4. CRISPR/Cas9-mediated reversibly immortalized mouse bone marrow stromal stem cells (BMSCs) retain multipotent features of mesenchymal stem cells (MSCs).

    PubMed

    Hu, Xue; Li, Li; Yu, Xinyi; Zhang, Ruyi; Yan, Shujuan; Zeng, Zongyue; Shu, Yi; Zhao, Chen; Wu, Xingye; Lei, Jiayan; Li, Yasha; Zhang, Wenwen; Yang, Chao; Wu, Ke; Wu, Ying; An, Liping; Huang, Shifeng; Ji, Xiaojuan; Gong, Cheng; Yuan, Chengfu; Zhang, Linghuan; Liu, Wei; Huang, Bo; Feng, Yixiao; Zhang, Bo; Haydon, Rex C; Luu, Hue H; Reid, Russell R; Lee, Michael J; Wolf, Jennifer Moriatis; Yu, Zebo; He, Tong-Chuan

    2017-12-19

    Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells that can undergo self-renewal and differentiate into multi-lineages. Bone marrow stromal stem cells (BMSCs) represent one of the most commonly-used MSCs. In order to overcome the technical challenge of maintaining primary BMSCs in long-term culture, here we seek to establish reversibly immortalized mouse BMSCs (imBMSCs). By exploiting CRISPR/Cas9-based homology-directed-repair (HDR) mechanism, we target SV40T to mouse Rosa26 locus and efficiently immortalize mouse BMSCs (i.e., imBMSCs). We also immortalize BMSCs with retroviral vector SSR #41 and establish imBMSC41 as a control line. Both imBMSCs and imBMSC41 exhibit long-term proliferative capability although imBMSC41 cells have a higher proliferation rate. SV40T mRNA expression is 130% higher in imBMSC41 than that in imBMSCs. However, FLP expression leads to 86% reduction of SV40T expression in imBMSCs, compared with 63% in imBMSC41 cells. Quantitative genomic PCR analysis indicates that the average copy number of SV40T and hygromycin is 1.05 for imBMSCs and 2.07 for imBMSC41, respectively. Moreover, FLP expression removes 92% of SV40T in imBMSCs at the genome DNA level, compared with 58% of that in imBMSC41 cells, indicating CRISPR/Cas9 HDR-mediated immortalization of BMSCs can be more effectively reversed than that of retrovirus-mediated random integrations. Nonetheless, both imBMSCs and imBMSC41 lines express MSC markers and are highly responsive to BMP9-induced osteogenic, chondrogenic and adipogenic differentiation in vitro and in vivo . Thus, the engineered imBMSCs can be used as a promising alternative source of primary MSCs for basic and translational research in the fields of MSC biology and regenerative medicine.

  5. CRISPR/Cas9-mediated reversibly immortalized mouse bone marrow stromal stem cells (BMSCs) retain multipotent features of mesenchymal stem cells (MSCs)

    PubMed Central

    Hu, Xue; Li, Li; Yu, Xinyi; Zhang, Ruyi; Yan, Shujuan; Zeng, Zongyue; Shu, Yi; Zhao, Chen; Wu, Xingye; Lei, Jiayan; Li, Yasha; Zhang, Wenwen; Yang, Chao; Wu, Ke; Wu, Ying; An, Liping; Huang, Shifeng; Ji, Xiaojuan; Gong, Cheng; Yuan, Chengfu; Zhang, Linghuan; Liu, Wei; Huang, Bo; Feng, Yixiao; Zhang, Bo; Haydon, Rex C.; Luu, Hue H.; Reid, Russell R.; Lee, Michael J.; Wolf, Jennifer Moriatis; Yu, Zebo; He, Tong-Chuan

    2017-01-01

    Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells that can undergo self-renewal and differentiate into multi-lineages. Bone marrow stromal stem cells (BMSCs) represent one of the most commonly-used MSCs. In order to overcome the technical challenge of maintaining primary BMSCs in long-term culture, here we seek to establish reversibly immortalized mouse BMSCs (imBMSCs). By exploiting CRISPR/Cas9-based homology-directed-repair (HDR) mechanism, we target SV40T to mouse Rosa26 locus and efficiently immortalize mouse BMSCs (i.e., imBMSCs). We also immortalize BMSCs with retroviral vector SSR #41 and establish imBMSC41 as a control line. Both imBMSCs and imBMSC41 exhibit long-term proliferative capability although imBMSC41 cells have a higher proliferation rate. SV40T mRNA expression is 130% higher in imBMSC41 than that in imBMSCs. However, FLP expression leads to 86% reduction of SV40T expression in imBMSCs, compared with 63% in imBMSC41 cells. Quantitative genomic PCR analysis indicates that the average copy number of SV40T and hygromycin is 1.05 for imBMSCs and 2.07 for imBMSC41, respectively. Moreover, FLP expression removes 92% of SV40T in imBMSCs at the genome DNA level, compared with 58% of that in imBMSC41 cells, indicating CRISPR/Cas9 HDR-mediated immortalization of BMSCs can be more effectively reversed than that of retrovirus-mediated random integrations. Nonetheless, both imBMSCs and imBMSC41 lines express MSC markers and are highly responsive to BMP9-induced osteogenic, chondrogenic and adipogenic differentiation in vitro and in vivo. Thus, the engineered imBMSCs can be used as a promising alternative source of primary MSCs for basic and translational research in the fields of MSC biology and regenerative medicine. PMID:29340096

  6. High-resolution molecular validation of self-renewal and spontaneous differentiation in adipose-tissue derived human mesenchymal stem cells cultured in human platelet lysate

    PubMed Central

    Dudakovic, Amel Dudakovic; Camilleri, Emily; Riester, Scott M.; Lewallen, Eric A.; Kvasha, Sergiy; Chen, Xiaoyue; Radel, Darcie J.; Anderson, Jarett M.; Nair, Asha A.; Evans, Jared M.; Krych, Aaron J.; Smith, Jay; Deyle, David R.; Stein, Janet L.; Stein, Gary S.; Im, Hee-Jeong; Cool, Simon M.; Westendorf, Jennifer J.; Kakar, Sanjeev; Dietz, Allan B.; van Wijnen, Andre J.

    2014-01-01

    Improving the effectiveness of adipose-tissue derived human mesenchymal stromal/stem cells (AMSCs) for skeletal therapies requires a detailed characterization of mechanisms supporting cell proliferation and multi-potency. We investigated the molecular phenotype of AMSCs that were either actively proliferating in platelet lysate or in a basal non-proliferative state. Flow cytometry combined with high-throughput RNA sequencing (RNASeq) and RT-qPCR analyses validate that AMSCs express classic mesenchymal cell surface markers (e.g., CD44, CD73/NT5E, CD90/THY1 and CD105/ENG). Expression of CD90 is selectively elevated at confluence. Self-renewing AMSCs express a standard cell cycle program that successively mediates DNA replication, chromatin packaging, cyto-architectural enlargement and mitotic division. Confluent AMSCs preferentially express genes involved in extracellular matrix (ECM) formation and cellular communication. For example, cell cycle-related biomarkers (e.g., cyclins E2 and B2, transcription factor E2F1) and histone-related genes (e.g., H4, HINFP, NPAT) are elevated in proliferating AMSCs, while ECM genes are strongly upregulated (>10 fold) in quiescent AMSCs. AMSCs also express pluripotency genes (e.g., POU5F1, NANOG, KLF4) and early mesenchymal markers (e.g., NES, ACTA2) consistent with their multipotent phenotype. Strikingly, AMSCs modulate expression of WNT signaling components and switch production of WNT ligands (from WNT5A/WNT5B/WNT7B to WNT2/WNT2B), while up-regulating WNT-related genes (WISP2, SFRP2 and SFRP4). Furthermore, post-proliferative AMSCs spontaneously express fibroblastic, osteogenic, chondrogenic and adipogenic biomarkers when maintained in confluent cultures. Our findings validate the biological properties of self-renewing and multi-potent AMSCs by providing high-resolution quality control data that support their clinical versatility. PMID:24905804

  7. Placentation in the anteaters Myrmecophaga tridactyla and Tamandua tetradactyla (Eutheria, Xenarthra).

    PubMed

    Mess, Andrea M; Favaron, Phelipe O; Pfarrer, Christiane; Osmann, Christine; Melo, Allan P F; Rodrigues, Rosangela F; Ambrósio, Carlos E; Bevilacqua, Estela; Miglino, Maria A

    2012-11-30

    Since Xenarthra are serious candidates for being basal to Eutheria, their characteristics, e.g. the placental system, influence perceptions of evolution. However, in the subgroup containing the anteaters, data are very limited. The present study aims to elucidate the nature of the feto-maternal interface in the anteater placenta and to interpret these data within an evolutionary context. Placentas of two species were investigated with histology, immunohistochemistry and transmission electron microscopy. Remnants of the maternal vessel endothelium were absent, resulting in a fully haemochorial barrier throughout the placenta. Two structurally different parts, the villous and trabecular areas were complex and intermingled. In particular, the trabeculae which consisted of cellular, proliferative trophoblast, associated with connective tissue, were attached to the decidua. The villi contained fetal capillaries and hypertrophied mesenchymal cells that occurred near the surface near the end of gestation. The surface of the villi consisted of flat, syncytial trophoblast, interspersed with proliferative trophoblast cells. Based on fundamental differences between anteaters and armadillos, we inferred that placental evolution was more complex than previously thought. The haemochorial pattern of anteaters was likely an ancient condition of xenarthrans. Consequently, villous placentation may be attributed, at least in part, by convergent evolution, but was also characterized by some features that were widespread among xenarthrans.

  8. Clinical-Grade Human Multipotent Adult Progenitor Cells Block CD8+ Cytotoxic T Lymphocytes

    PubMed Central

    Dekimpe, Emily; Van Woensel, Matthias; Roobrouck, Valerie D.; Bullens, Dominique M.; Pinxteren, Jef; Verfaillie, Catherine M.; Van Gool, Stefaan W.

    2016-01-01

    MultiStem cells are clinical-grade multipotent adult bone marrow-derived progenitor cells (MAPCs), with extensive replication potential and broader differentiation capacity compared with mesenchymal stem cells. Human MAPCs suppress T-cell proliferation induced by alloantigens and mutually interact with allogeneic natural killer cells. In this study, the interaction between MultiStem and CD8+ cytotoxic T lymphocytes (CTLs) was addressed for the first time. In an in vitro setting, the immunogenicity of MultiStem, the susceptibility of MultiStem toward CTL-mediated lysis, and its effects on CTL function were investigated. MultiStem was nonimmunogenic for alloreactive CTL induction and was—even after major histocompatibility complex class I upregulation—insensitive to alloantigen-specific CTL-mediated lysis. Furthermore, MultiStem reduced CTL proliferation and significantly decreased perforin expression during the T-cell activation phase. As a consequence, MultiStem dose-dependently impaired the induction of CTL function. These effects of MultiStem were mediated predominantly through contact-dependent mechanisms. Moreover, MultiStem cells considerably influenced the expression of T-cell activation markers CD25, CD69, and human leukocyte antigen-DR. The MultiStem-induced CD8−CD69+ T-cell population displayed a suppressive effect on the induction of CTL function during a subsequent mixed-lymphocyte culture. Finally, the killer activity of activated antigen-specific CTLs during their cytolytic effector phase was also diminished in the presence of MultiStem. This study confirms that these clinical-grade MAPCs are an immune-modulating population that inhibits CTL activation and effector responses and are, consequently, a highly valuable cell population for adoptive immunosuppressive therapy in diseases where damage is induced by CTLs. Significance Because multipotent adult progenitor cells (MAPCs) are among the noteworthy adult mesenchymal stem cell populations for

  9. Clinical-Grade Human Multipotent Adult Progenitor Cells Block CD8+ Cytotoxic T Lymphocytes.

    PubMed

    Plessers, Jeroen; Dekimpe, Emily; Van Woensel, Matthias; Roobrouck, Valerie D; Bullens, Dominique M; Pinxteren, Jef; Verfaillie, Catherine M; Van Gool, Stefaan W

    2016-12-01

    : MultiStem cells are clinical-grade multipotent adult bone marrow-derived progenitor cells (MAPCs), with extensive replication potential and broader differentiation capacity compared with mesenchymal stem cells. Human MAPCs suppress T-cell proliferation induced by alloantigens and mutually interact with allogeneic natural killer cells. In this study, the interaction between MultiStem and CD8 + cytotoxic T lymphocytes (CTLs) was addressed for the first time. In an in vitro setting, the immunogenicity of MultiStem, the susceptibility of MultiStem toward CTL-mediated lysis, and its effects on CTL function were investigated. MultiStem was nonimmunogenic for alloreactive CTL induction and was-even after major histocompatibility complex class I upregulation-insensitive to alloantigen-specific CTL-mediated lysis. Furthermore, MultiStem reduced CTL proliferation and significantly decreased perforin expression during the T-cell activation phase. As a consequence, MultiStem dose-dependently impaired the induction of CTL function. These effects of MultiStem were mediated predominantly through contact-dependent mechanisms. Moreover, MultiStem cells considerably influenced the expression of T-cell activation markers CD25, CD69, and human leukocyte antigen-DR. The MultiStem-induced CD8 - CD69 + T-cell population displayed a suppressive effect on the induction of CTL function during a subsequent mixed-lymphocyte culture. Finally, the killer activity of activated antigen-specific CTLs during their cytolytic effector phase was also diminished in the presence of MultiStem. This study confirms that these clinical-grade MAPCs are an immune-modulating population that inhibits CTL activation and effector responses and are, consequently, a highly valuable cell population for adoptive immunosuppressive therapy in diseases where damage is induced by CTLs. Because multipotent adult progenitor cells (MAPCs) are among the noteworthy adult mesenchymal stem cell populations for immune therapy

  10. Human Myocardial Pericytes: Multipotent Mesodermal Precursors Exhibiting Cardiac Specificity

    PubMed Central

    Chen, William C.W.; Baily, James E.; Corselli, Mirko; Diaz, Mary; Sun, Bin; Xiang, Guosheng; Gray, Gillian A.; Huard, Johnny; Péault, Bruno

    2015-01-01

    Perivascular mesenchymal precursor cells (i.e. pericytes) reside in skeletal muscle where they contribute to myofiber regeneration; however, the existence of similar microvessel-associated regenerative precursor cells in cardiac muscle has not yet been documented. We tested whether microvascular pericytes within human myocardium exhibit phenotypes and multipotency similar to their anatomically and developmentally distinct counterparts. Fetal and adult human heart pericytes (hHPs) express canonical pericyte markers in situ, including CD146, NG2, PDGFRβ, PDGFRα, αSMA, and SM-MHC, but not CD117, CD133 and desmin, nor endothelial cell (EC) markers. hHPs were prospectively purified to homogeneity from ventricular myocardium by flow cytometry, based on a combination of positive- (CD146) and negative-selection (CD34, CD45, CD56, and CD117) cell lineage markers. Purified hHPs expanded in vitro were phenotypically similar to human skeletal muscle-derived pericytes (hSkMPs). hHPs express MSC markers in situ and exhibited osteo- chondro-, and adipogenic potentials but, importantly, no ability for skeletal myogenesis, diverging from pericytes of all other origins. hHPs supported network formation with/without ECs in Matrigel cultures; hHPs further stimulated angiogenic responses under hypoxia, markedly different from hSkMPs. The cardiomyogenic potential of hHPs was examined following 5-azacytidine treatment and neonatal cardiomyocyte co-culture in vitro, and intramyocardial transplantation in vivo. Results indicated cardiomyocytic differentiation in a small fraction of hHPs. In conclusion, human myocardial pericytes share certain phenotypic and developmental similarities with their skeletal muscle homologs, yet exhibit different antigenic, myogenic, and angiogenic properties. This is the first example of an anatomical restriction in the developmental potential of pericytes as native mesenchymal stem cells. PMID:25336400

  11. Human placental mesenchymal stem cells (pMSCs) play a role as immune suppressive cells by shifting macrophage differentiation from inflammatory M1 to anti-inflammatory M2 macrophages.

    PubMed

    Abumaree, M H; Al Jumah, M A; Kalionis, B; Jawdat, D; Al Khaldi, A; Abomaray, F M; Fatani, A S; Chamley, L W; Knawy, B A

    2013-10-01

    Mesenchymal stem cells (MSCs) have a therapeutic potential in tissue repair because of capacity for multipotent differentiation and their ability to modulate the immune response. In this study, we examined the ability of human placental MSCs (pMSCs) to modify the differentiation of human monocytes into macrophages and assessed the influence of pMSCs on important macrophage functions. We used GM-CSF to stimulate the differentiation of monocytes into the M1 macrophage pathway and then co-cultured these cells with pMSCs in the early stages of macrophage differentiation. We then evaluated the effect on differentiation by microscopic examination and by quantification of molecules important in the differentiation and immune functions of macrophages using flow cytometry and ELISA. The mechanism by which pMSCs could mediate their effects on macrophage differentiation was also studied. The co-culture of pMSCs with monocytes stimulated to follow the inflammatory M1 macrophage differentiation pathway resulted in a shift to anti-inflammatory M2-like macrophage differentiation. This transition was characterized by morphological of changes typical of M2 macrophages, and by changes in cell surface marker expression including CD14, CD36, CD163, CD204, CD206, B7-H4 and CD11b, which are distinctive of M2 macrophages. Co-culture with pMSCs reduced the expression of the costimulatory molecules (CD40, CD80 and CD86) and increased the expression of co-inhibitory molecules (CD273, CD274 and B7-H4) as well as the surface expression of major histocompatibility complex (MHC-II) molecules. Furthermore, the secretion of IL-10 was increased while the secretion of IL-1β, IL-12 (p70) and MIP-1α was decreased; a profile typical of M2 macrophages. Finally, pMSCs induced the phagocytic activity and the phagocytosis of apoptotic cells associated with M2- like macrophages; again a profile typical of M2 macrophages. We found that the immunoregulatory effect of pMSCs on macrophage differentiation was

  12. Cryopreservation does not alter main characteristics of Good Manufacturing Process-grade human multipotent mesenchymal stromal cells including immunomodulating potential and lack of malignant transformation.

    PubMed

    Luetzkendorf, Jana; Nerger, Katrin; Hering, Julian; Moegel, Angelika; Hoffmann, Katrin; Hoefers, Christiane; Mueller-Tidow, Carsten; Mueller, Lutz P

    2015-02-01

    The immunomodulating capacity of multipotent mesenchymal stromal cells (MSCs) qualifies them as a therapeutic tool in several diseases. However, repeated transplantation with products of reproducible characteristics may be required. This could be achieved with cryopreserved aliquots of Good Manufacturing Practice (GMP)-grade MSCs. However, the impact of cryopreservation on the characteristics of GMP-MSCs is ill defined. We produced fresh and cryopreserved MSCs from human donors with a xenogen-free GMP protocol. Immunogenicity and immunomodulating capacity were tested in co-culture with putative recipient-specific peripheral blood mononuclear cells (PBMCs). Risk of malignant transformation was assessed in vitro and in vivo. Cryopreservation had no impact on viability and consensus criteria of MSCs. In co-culture with PBMCs, MSCs showed low immunogenicity and suppressed mitogen-stimulated proliferation of PBMC irrespective of cryopreservation. Cytogenetic aberrations were not observed consistently in fresh and cryopreserved products, and no signs of malignant transformation occurred in functional assays. MSC products from an elderly pretreated donor showed reduced functional quality, but imminent failure of functional criteria could be detected by an increased population doubling time in early passages. This study is the first systematic analysis on cryopreservation of xenogen-free human bone marrow-derived GMP-MSCs. The data support that cryopreservation does not alter the characteristics of the cells and thus may allow the generation of products for serial transplantation. In addition, the protocol allowed early detection of MSC products with low functional capacity. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  13. Immunoregulation by Mesenchymal Stem Cells: Biological Aspects and Clinical Applications

    PubMed Central

    Castro-Manrreza, Marta E.; Montesinos, Juan J.

    2015-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiation into mesenchymal lineages and that can be isolated from various tissues and easily cultivated in vitro. Currently, MSCs are of considerable interest because of the biological characteristics that confer high potential applicability in the clinical treatment of many diseases. Specifically, because of their high immunoregulatory capacity, MSCs are used as tools in cellular therapies for clinical protocols involving immune system alterations. In this review, we discuss the current knowledge about the capacity of MSCs for the immunoregulation of immunocompetent cells and emphasize the effects of MSCs on T cells, principal effectors of the immune response, and the immunosuppressive effects mediated by the secretion of soluble factors and membrane molecules. We also describe the mechanisms of MSC immunoregulatory modulation and the participation of MSCs as immune response regulators in several autoimmune diseases, and we emphasize the clinical application in graft versus host disease (GVHD). PMID:25961059

  14. Improving the Post-Stroke Therapeutic Potency of Mesenchymal Multipotent Stromal Cells by Cocultivation With Cortical Neurons: The Role of Crosstalk Between Cells.

    PubMed

    Babenko, Valentina A; Silachev, Denis N; Zorova, Ljubava D; Pevzner, Irina B; Khutornenko, Anastasia A; Plotnikov, Egor Y; Sukhikh, Gennady T; Zorov, Dmitry B

    2015-09-01

    The goal of the present study was to maximally alleviate the negative impact of stroke by increasing the therapeutic potency of injected mesenchymal multipotent stromal cells (MMSCs). To pursue this goal, the intercellular communications of MMSCs and neuronal cells were studied in vitro. As a result of cocultivation of MMSCs and rat cortical neurons, we proved the existence of intercellular contacts providing transfer of cellular contents from one cell to another. We present evidence of intercellular exchange with fluorescent probes specifically occupied by cytosol with preferential transfer from neurons toward MMSCs. In contrast, we observed a reversed transfer of mitochondria (from MMSCs to neural cells). Intravenous injection of MMSCs in a postischemic period alleviated the pathological indexes of a stroke, expressed as a lower infarct volume in the brain and partial restoration of neurological status. Also, MMSCs after cocultivation with neurons demonstrated more profound neuroprotective effects than did unprimed MMSCs. The production of the brain-derived neurotrophic factor was slightly increased in MMSCs, and the factor itself was redistributed in these cells after cocultivation. The level of Miro1 responsible for intercellular traffic of mitochondria was increased in MMSCs after cocultivation. We conclude that the exchange by cellular compartments between neural and stem cells improves MMSCs' protective abilities for better rehabilitation after stroke. This could be used as an approach to enhance the therapeutic benefits of stem cell therapy to the damaged brain. The idea of priming stem cells before practical use for clinical purposes was applied. Thus, cells were preconditioned by coculturing them with the targeted cells (i.e., neurons for the treatment of brain pathological features) before the transfusion of stem cells to the organism. Such priming improved the capacity of stem cells to treat stroke. Some additional minimal study will be required to

  15. Hematopoietic-to-mesenchymal transition of adipose tissue macrophages is regulated by integrin β1 and fabricated fibrin matrices

    PubMed Central

    Majka, Susan M.; Kohrt, Wendy M.; Miller, Heidi L.; Sullivan, Timothy M.; Klemm, Dwight J.

    2017-01-01

    ABSTRACT Some bona fide adult adipocytes arise de novo from a bone marrow-derived myeloid lineage. These studies further demonstrate that adipose tissue stroma contains a resident population of myeloid cells capable of adipocyte and multilineage mesenchymal differentiation. These resident myeloid cells lack hematopoietic markers and express mesenchymal and progenitor cell markers. Because bone marrow mesenchymal progenitor cells have not been shown to enter the circulation, we hypothesized that myeloid cells acquire mesenchymal differentiation capacity in adipose tissue. We fabricated a 3-dimensional fibrin matrix culture system to define the adipose differentiation potential of adipose tissue-resident myeloid subpopulations, including macrophages, granulocytes and dendritic cells. Our data show that multilineage mesenchymal potential was limited to adipose tissue macrophages, characterized by the acquisition of adipocyte, osteoblast, chondrocyte and skeletal muscle myocyte phenotypes. Fibrin hydrogel matrices stimulated macrophage loss of hematopoietic cell lineage determinants and the expression of mesenchymal and progenitor cell markers, including integrin β1. Ablation of integrin β1 in macrophages inhibited adipocyte specification. Therefore, some bona fide adipocytes are specifically derived from adipose tissue-resident macrophages via an integrin β1-dependent hematopoietic-to-mesenchymal transition, whereby they become capable of multipotent mesenchymal differentiation. The requirement for integrin β1 highlights this molecule as a potential target for controlling the production of marrow-derived adipocytes and their contribution to adipose tissue development and function. PMID:28441086

  16. Expansion of mesenchymal stem cells from human pancreatic ductal epithelium.

    PubMed

    Seeberger, Karen L; Dufour, Jannette M; Shapiro, Andrew M James; Lakey, Jonathan R T; Rajotte, Ray V; Korbutt, Gregory S

    2006-02-01

    Fibroblast-like cells emerging from cultured human pancreatic endocrine and exocrine tissue have been reported. Although a thorough phenotypic characterization of these cells has not yet been carried out, these cells have been hypothesized to be contaminating fibroblasts, mesenchyme and/or possibly beta-cell progenitors. In this study, we expanded fibroblast-like cells from adult human exocrine pancreas following islet isolation and characterized these cells as mesenchymal stem cells (MSCs) based on their cell surface antigen expression and ability to differentiate into mesoderm. Analysis by flow cytometry demonstrated that pancreatic MSCs express cell surface antigens used to define MSCs isolated from bone marrow such as CD13, CD29, CD44, CD49b, CD54, CD90 and CD105. In addition, utilizing protocols used to differentiate MSCs isolated from other somatic tissues, we successfully differentiated pancreatic MSCs into: (1) osteocytes that stained positive for alkaline phosphatase, collagen, mineralization (calcification) and expressed osteocalcin, (2) adipocytes that contained lipid inclusions and expressed fatty acid binding protein 4 and (3) chondrocytes that expressed aggrecan. We also demonstrated that pancreatic MSCs are multipotent and capable of deriving cells of endodermal origin. Pancreatic MSCs were differentiated into hepatocytes that stained positive for human serum albumin and expressed endoderm and liver-specific genes such as GATA 4 and tyrosine aminotransferase. In addition, preliminary protocols used to differentiate these cells into insulin-producing cells resulted in the expression of genes necessary for islet and beta-cell development such as Pax4 and neurogenin 3. Therefore, multipotent MSCs residing within the adult exocrine pancreas could represent a progenitor cell, which when further manipulated could result in the production of functional islet beta-cells.

  17. Human papillomavirus infects placental trophoblast and Hofbauer cells, but appears not to play a causal role in miscarriage and preterm labor.

    PubMed

    Ambühl, Lea M M; Leonhard, Anne K; Widen Zakhary, Carina; Jørgensen, Annemette; Blaakaer, Jan; Dybkaer, Karen; Baandrup, Ulrik; Uldbjerg, Niels; Sørensen, Suzette

    2017-10-01

    Recently, an association between human papillomavirus infection and both spontaneous abortion and spontaneous preterm delivery was suggested. However, the reported human papillomavirus prevalence in pregnant women varies considerably and reliable conclusions are difficult. We aimed to investigate human papillomavirus infection in placental tissue of a Danish study cohort. Furthermore, we studied the cellular localization of human papillomavirus. In this prospective case-control study, placental tissue was analyzed for human papillomavirus infection by nested PCR in the following four study groups: full-term delivery (n = 103), spontaneous preterm delivery (n = 69), elective abortion (n = 54), and spontaneous abortion (n = 44). Moreover, human papillomavirus cellular target was identified using in situ hybridization. Human papillomavirus prevalence in placental tissue was 8.7% in full-term deliveries, 8.8% in spontaneous preterm deliveries, 10.9% in spontaneous abortions, and 20.4% in elective abortions. Twelve different human papillomavirus types were detected, and placental human papillomavirus infection was associated to a disease history of cervical cancer. Human papillomavirus DNA was identified in trophoblast cells, cells of the placental villi mesenchyme including Hofbauer cells, and in parts of the encasing endometrium. Placental human papillomavirus infections are not likely to constitute a risk factor for spontaneous preterm labor or spontaneous abortions in the Danish population, although an effect of human papillomavirus DNA in placental cells cannot be excluded. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.

  18. Brain mesenchymal stem cells: The other stem cells of the brain?

    PubMed

    Appaix, Florence; Nissou, Marie-France; van der Sanden, Boudewijn; Dreyfus, Matthieu; Berger, François; Issartel, Jean-Paul; Wion, Didier

    2014-04-26

    Multipotent mesenchymal stromal cells (MSC), have the potential to differentiate into cells of the mesenchymal lineage and have non-progenitor functions including immunomodulation. The demonstration that MSCs are perivascular cells found in almost all adult tissues raises fascinating perspectives on their role in tissue maintenance and repair. However, some controversies about the physiological role of the perivascular MSCs residing outside the bone marrow and on their therapeutic potential in regenerative medicine exist. In brain, perivascular MSCs like pericytes and adventitial cells, could constitute another stem cell population distinct to the neural stem cell pool. The demonstration of the neuronal potential of MSCs requires stringent criteria including morphological changes, the demonstration of neural biomarkers expression, electrophysiological recordings, and the absence of cell fusion. The recent finding that brain cancer stem cells can transdifferentiate into pericytes is another facet of the plasticity of these cells. It suggests that the perversion of the stem cell potential of pericytes might play an even unsuspected role in cancer formation and tumor progression.

  19. Rationale of mesenchymal stem cell therapy in kidney injury.

    PubMed

    Cantaluppi, Vincenzo; Biancone, Luigi; Quercia, Alessandro; Deregibus, Maria Chiara; Segoloni, Giuseppe; Camussi, Giovanni

    2013-02-01

    Numerous preclinical and clinical studies suggest that mesenchymal stem cells, also known as multipotent mesenchymal stromal cells (MSCs), may improve pathologic conditions involving different organs. These beneficial effects initially were ascribed to the differentiation of MSCs into organ parenchymal cells. However, at least in the kidney, this is a very rare event and the kidney-protective effects of MSCs have been attributed mainly to paracrine mechanisms. MSCs release a number of trophic, anti-inflammatory, and immune-modulatory factors that may limit kidney injury and favor recovery. In this article, we provide an overview of the biologic activities of MSCs that may be relevant for the treatment of kidney injury in the context of a case vignette concerning a patient at high immunologic risk who underwent a second kidney transplantation followed by the development of ischemia-reperfusion injury and acute allograft rejection. We discuss the possible beneficial effect of MSC treatment in the light of preclinical and clinical data supporting the regenerative and immunomodulatory potential of MSCs. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  20. Placentation in the anteaters Myrmecophaga tridactyla and Tamandua tetradactyla (Eutheria, Xenarthra)

    PubMed Central

    2012-01-01

    Background Since Xenarthra are serious candidates for being basal to Eutheria, their characteristics, e.g. the placental system, influence perceptions of evolution. However, in the subgroup containing the anteaters, data are very limited. The present study aims to elucidate the nature of the feto-maternal interface in the anteater placenta and to interpret these data within an evolutionary context. Methods Placentas of two species were investigated with histology, immunohistochemistry and transmission electron microscopy. Results Remnants of the maternal vessel endothelium were absent, resulting in a fully haemochorial barrier throughout the placenta. Two structurally different parts, the villous and trabecular areas were complex and intermingled. In particular, the trabeculae which consisted of cellular, proliferative trophoblast, associated with connective tissue, were attached to the decidua. The villi contained fetal capillaries and hypertrophied mesenchymal cells that occured near the surface near the end of gestation. The surface of the villi consisted of flat, syncytial trophoblast, interspersed with proliferative trophoblast cells. Conclusions Based on fundamental differences between anteaters and armadillos, we inferred that placental evolution was more complex than previously thought. The haemochorial pattern of anteaters was likely an ancient condition of xenarthrans. Consequently, villous placentation may be attributed, at least in part, by convergent evolution, but was also characterized by some features that were widespread among xenarthrans. PMID:23199198

  1. Exploring the human mesenchymal stem cell tubule communication network through electron microscopy.

    PubMed

    Valente, Sabrina; Rossi, Roberta; Resta, Leonardo; Pasquinelli, Gianandrea

    2015-04-01

    Cells use several mechanisms to transfer information to other cells. In this study, we describe micro/nanotubular connections and exosome-like tubule fragments in multipotent mesenchymal stem cells (MSCs) from human arteries. Scanning and transmission electron microscopy allowed characterization of sinusoidal microtubular projections (700 nm average size, 200 µm average length, with bulging mitochondria and actin microfilaments); short, uniform, variously shaped nanotubular projections (100 nm, bidirectional communication); and tubule fragments (50 nm). This is the first study demonstrating that MSCs from human arteries constitutively interact through an articulate and dynamic tubule network allowing long-range cell to cell communication.

  2. Placental genome and maternal-placental genetic interactions: a genome-wide and candidate gene association study of placental abruption.

    PubMed

    Denis, Marie; Enquobahrie, Daniel A; Tadesse, Mahlet G; Gelaye, Bizu; Sanchez, Sixto E; Salazar, Manuel; Ananth, Cande V; Williams, Michelle A

    2014-01-01

    While available evidence supports the role of genetics in the pathogenesis of placental abruption (PA), PA-related placental genome variations and maternal-placental genetic interactions have not been investigated. Maternal blood and placental samples collected from participants in the Peruvian Abruptio Placentae Epidemiology study were genotyped using Illumina's Cardio-Metabochip platform. We examined 118,782 genome-wide SNPs and 333 SNPs in 32 candidate genes from mitochondrial biogenesis and oxidative phosphorylation pathways in placental DNA from 280 PA cases and 244 controls. We assessed maternal-placental interactions in the candidate gene SNPS and two imprinted regions (IGF2/H19 and C19MC). Univariate and penalized logistic regression models were fit to estimate odds ratios. We examined the combined effect of multiple SNPs on PA risk using weighted genetic risk scores (WGRS) with repeated ten-fold cross-validations. A multinomial model was used to investigate maternal-placental genetic interactions. In placental genome-wide and candidate gene analyses, no SNP was significant after false discovery rate correction. The top genome-wide association study (GWAS) hits were rs544201, rs1484464 (CTNNA2), rs4149570 (TNFRSF1A) and rs13055470 (ZNRF3) (p-values: 1.11e-05 to 3.54e-05). The top 200 SNPs of the GWAS overrepresented genes involved in cell cycle, growth and proliferation. The top candidate gene hits were rs16949118 (COX10) and rs7609948 (THRB) (p-values: 6.00e-03 and 8.19e-03). Participants in the highest quartile of WGRS based on cross-validations using SNPs selected from the GWAS and candidate gene analyses had a 8.40-fold (95% CI: 5.8-12.56) and a 4.46-fold (95% CI: 2.94-6.72) higher odds of PA compared to participants in the lowest quartile. We found maternal-placental genetic interactions on PA risk for two SNPs in PPARG (chr3:12313450 and chr3:12412978) and maternal imprinting effects for multiple SNPs in the C19MC and IGF2/H19 regions. Variations in

  3. Vectorization of ultrasound-responsive nanoparticles in placental mesenchymal stem cells for cancer therapy.

    PubMed

    Paris, Juan L; de la Torre, Paz; Victoria Cabañas, M; Manzano, Miguel; Grau, Montserrat; Flores, Ana I; Vallet-Regí, María

    2017-05-04

    A new platform constituted by engineered responsive nanoparticles transported by human mesenchymal stem cells is here presented as a proof of concept. Ultrasound-responsive mesoporous silica nanoparticles are coated with polyethylenimine to favor their effective uptake by decidua-derived mesenchymal stem cells. The responsive-release ability of the designed nanoparticles is confirmed, both in vial and in vivo. In addition, this capability is maintained inside the cells used as carriers. The migration capacity of the nanoparticle-cell platform towards mammary tumors is assessed in vitro. The efficacy of this platform for anticancer therapy is shown against mammary tumor cells by inducing the release of doxorubicin only when the cell vehicles are exposed to ultrasound.

  4. Invited review: mesenchymal progenitor cells in intramuscular connective tissue development.

    PubMed

    Miao, Z G; Zhang, L P; Fu, X; Yang, Q Y; Zhu, M J; Dodson, M V; Du, M

    2016-01-01

    The abundance and cross-linking of intramuscular connective tissue contributes to the background toughness of meat, and is thus undesirable. Connective tissue is mainly synthesized by intramuscular fibroblasts. Myocytes, adipocytes and fibroblasts are derived from a common pool of progenitor cells during the early embryonic development. It appears that multipotent mesenchymal stem cells first diverge into either myogenic or non-myogenic lineages; non-myogenic mesenchymal progenitors then develop into the stromal-vascular fraction of skeletal muscle wherein adipocytes, fibroblasts and derived mesenchymal progenitors reside. Because non-myogenic mesenchymal progenitors mainly undergo adipogenic or fibrogenic differentiation during muscle development, strengthening progenitor proliferation enhances the potential for both intramuscular adipogenesis and fibrogenesis, leading to the elevation of both marbling and connective tissue content in the resulting meat product. Furthermore, given the bipotent developmental potential of progenitor cells, enhancing their conversion to adipogenesis reduces fibrogenesis, which likely results in the overall improvement of marbling (more intramuscular adipocytes) and tenderness (less connective tissue) of meat. Fibrogenesis is mainly regulated by the transforming growth factor (TGF) β signaling pathway and its regulatory cascade. In addition, extracellular matrix, a part of the intramuscular connective tissue, provides a niche environment for regulating myogenic differentiation of satellite cells and muscle growth. Despite rapid progress, many questions remain in the role of extracellular matrix on muscle development, and factors determining the early differentiation of myogenic, adipogenic and fibrogenic cells, which warrant further studies.

  5. Telomerase-immortalized non-malignant human prostate epithelial cells retain the properties of multipotent stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Hongzhen; Zhou Jianjun; Miki, Jun

    2008-01-01

    Understanding prostate stem cells may provide insight into the origin of prostate cancer. Primary cells have been cultured from human prostate tissue but they usually survive only 15-20 population doublings before undergoing senescence. We report here that RC-170N/h/clone 7 cells, a clonal cell line from hTERT-immortalized primary non-malignant tissue-derived human prostate epithelial cell line (RC170N/h), retain multipotent stem cell properties. The RC-170N/h/clone 7 cells expressed a human embryonic stem cell marker, Oct-4, and potential prostate epithelial stem cell markers, CD133, integrin {alpha}2{beta}1{sup hi} and CD44. The RC-170N/h/clone 7 cells proliferated in KGM and Dulbecco's Modified Eagle Medium with 10% fetalmore » bovine serum and 5 {mu}g/ml insulin (DMEM + 10% FBS + Ins.) medium, and differentiated into epithelial stem cells that expressed epithelial cell markers, including CK5/14, CD44, p63 and cytokeratin 18 (CK18); as well as the mesenchymal cell markers, vimentin, desmin; the neuron and neuroendocrine cell marker, chromogranin A. Furthermore the RC170 N/h/clone 7 cells differentiated into multi tissues when transplanted into the sub-renal capsule and subcutaneously of NOD-SCID mice. The results indicate that RC170N/h/clone 7 cells retain the properties of multipotent stem cells and will be useful as a novel cell model for studying the mechanisms of human prostate stem cell differentiation and transformation.« less

  6. Discovery of a stem-like multipotent cell fate.

    PubMed

    Paffhausen, Emily S; Alowais, Yasir; Chao, Cara W; Callihan, Evan C; Creswell, Karen; Bracht, John R

    2018-01-01

    Adipose derived stem cells (ASCs) can be obtained from lipoaspirates and induced in vitro to differentiate into bone, cartilage, and fat. Using this powerful model system we show that after in vitro adipose differentiation a population of cells retain stem-like qualities including multipotency. They are lipid (-), retain the ability to propagate, express two known stem cell markers, and maintain the capacity for trilineage differentiation into chondrocytes, adipocytes, and osteoblasts. However, these cells are not traditional stem cells because gene expression analysis showed an overall expression profile similar to that of adipocytes. In addition to broadening our understanding of cellular multipotency, our work may be particularly relevant to obesity-associated metabolic disorders. The adipose expandability hypothesis proposes that inability to differentiate new adipocytes is a primary cause of metabolic syndrome in obesity, including diabetes and cardiovascular disease. Here we have defined a differentiation-resistant stem-like multipotent cell population that may be involved in regulation of adipose expandability in vivo and may therefore play key roles in the comorbidities of obesity.

  7. Maf promotes osteoblast differentiation in mice by mediating the age-related switch in mesenchymal cell differentiation

    PubMed Central

    Nishikawa, Keizo; Nakashima, Tomoki; Takeda, Shu; Isogai, Masashi; Hamada, Michito; Kimura, Ayako; Kodama, Tatsuhiko; Yamaguchi, Akira; Owen, Michael J.; Takahashi, Satoru; Takayanagi, Hiroshi

    2010-01-01

    Aging leads to the disruption of the homeostatic balance of multiple biological systems. In bone marrow multipotent mesenchymal cells undergo differentiation into various anchorage-dependent cell types, including osteoblasts and adipocytes. With age as well as with treatment of antidiabetic drugs such as thiazolidinediones, mesenchymal cells favor differentiation into adipocytes, resulting in an increased number of adipocytes and a decreased number of osteoblasts, causing osteoporosis. The mechanism behind this differentiation switch is unknown. Here we show an age-related decrease in the expression of Maf in mouse mesenchymal cells, which regulated mesenchymal cell bifurcation into osteoblasts and adipocytes by cooperating with the osteogenic transcription factor Runx2 and inhibiting the expression of the adipogenic transcription factor Pparg. The crucial role of Maf in both osteogenesis and adipogenesis was underscored by in vivo observations of delayed bone formation in perinatal Maf–/– mice and an accelerated formation of fatty marrow associated with bone loss in aged Maf+/– mice. This study identifies a transcriptional mechanism for an age-related switch in cell fate determination and may provide a molecular basis for novel therapeutic strategies against age-related bone diseases. PMID:20877012

  8. Intra-femoral injection of human mesenchymal stem cells.

    PubMed

    Mohanty, Sindhu T; Bellantuono, Ilaria

    2013-01-01

    In vivo transplantation of putative populations of hematopoietic stem cells (HSC) and assessment of their engraftment is considered the golden standard to assess their quality and degree of stemness. Transplantation is usually carried out by intravenous injection in murine models and assessment of engraftment is performed by monitoring the number and type of mature blood cells produced by the donor cells in time. In contrast intravenous injection of mesenchymal stem cells (MSC), the multipotent stem cells present in bone marrow and capable of differentiating to osteoblasts, chondrocytes and adipocytes, has not been successful. This is due to limited or absent engraftment levels. Here, we describe the use of intra-femoral injection as an improved method to assess MSC engraftment to bone and bone marrow and their quality.

  9. A comparison between placental and amniotic mesenchymal stem cells for transamniotic stem cell therapy (TRASCET) in experimental spina bifida.

    PubMed

    Feng, Christina; D Graham, Christopher; Connors, John Patrick; Brazzo, Joseph; Zurakowski, David; Fauza, Dario O

    2016-06-01

    We compared placental-derived and amniotic fluid-derived mesenchymal stem cells (pMSCs and afMSCs, respectively) in transamniotic stem cell therapy (TRASCET) for experimental spina bifida. Pregnant dams (n=29) exposed to retinoic acid for the induction of fetal spina bifida were divided into four groups. Three groups received volume-matched intraamniotic injections of either saline (n=38 fetuses) or a suspension of 2×10(6) cells/mL of syngeneic, labeled afMSCs (n=73) or pMSCs (n=115) on gestational day 17 (term=21-22days). Untreated fetuses served as controls. Animals were killed before term. Statistical comparisons were by Fisher's exact test (p<0.05). Survival was similar across treatment groups (p=0.08). In fetuses with isolated spina bifida (n=100), there were higher percentages of defect coverage (either partial or complete) in both afMSC and pMSC groups compared with saline and untreated groups (p<0.001-0.03 in pairwise comparisons). There were no differences in coverage rates between afMSC and pMSC groups (p=0.94) or between saline and untreated groups (p=0.98). Both pMSC and afMSC can induce comparable rates of coverage of experimental spina bifida after concentrated intraamniotic injection in the rodent model. This broadens the options for timing and cell source for TRASCET as a potential alternative in the prenatal management of spina bifida. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Placental Adaptation: What Can We Learn from Birthweight:Placental Weight Ratio?

    PubMed Central

    Hayward, Christina E.; Lean, Samantha; Sibley, Colin P.; Jones, Rebecca L.; Wareing, Mark; Greenwood, Susan L.; Dilworth, Mark R.

    2016-01-01

    Appropriate fetal growth relies upon adequate placental nutrient transfer. Birthweight:placental weight ratio (BW:PW ratio) is often used as a proxy for placental efficiency, defined as the grams of fetus produced per gram placenta. An elevated BW:PW ratio in an appropriately grown fetus (small placenta) is assumed to be due to up-regulated placental nutrient transfer capacity i.e., a higher nutrient net flux per gram placenta. In fetal growth restriction (FGR), where a fetus fails to achieve its genetically pre-determined growth potential, placental weight and BW:PW ratio are often reduced which may indicate a placenta that fails to adapt its nutrient transfer capacity to compensate for its small size. This review considers the literature on BW:PW ratio in both large cohort studies of normal pregnancies and those studies offering insight into the relationship between BW:PW ratio and outcome measures including stillbirth, FGR, and subsequent postnatal consequences. The core of this review is the question of whether BW:PW ratio is truly indicative of altered placental efficiency, and whether changes in BW:PW ratio reflect those placentas which adapt their nutrient transfer according to their size. We consider this question using data from mice and humans, focusing upon studies that have measured the activity of the well characterized placental system A amino acid transporter, both in uncomplicated pregnancies and in FGR. Evidence suggests that BW:PW ratio is reduced both in FGR and in pregnancies resulting in a small for gestational age (SGA, birthweight < 10th centile) infant but this effect is more pronounced earlier in gestation (<28 weeks). In mice, there is a clear association between increased BW:PW ratio and increased placental system A activity. Additionally, there is good evidence in wild-type mice that small placentas upregulate placental nutrient transfer to prevent fetal undergrowth. In humans, this association between BW:PW ratio and placental system A

  11. Clinicopathologic findings following intra-articular injection of autologous and allogeneic placentally derived equine mesenchymal stem cells in horses.

    PubMed

    Carrade, Danielle D; Owens, Sean D; Galuppo, Larry D; Vidal, Martin A; Ferraro, Gregory L; Librach, Fred; Buerchler, Sabine; Friedman, Michael S; Walker, Naomi J; Borjesson, Dori L

    2011-04-01

    The development of an allogeneic mesenchymal stem cell (MSC) product to treat equine disorders would be useful; however, there are limited in vivo safety data for horses. We hypothesized that the injection of self (autologous) and non-self (related allogeneic or allogeneic) MSC would not elicit significant alterations in physical examination, gait or synovial fluid parameters when injected into the joints of healthy horses. Sixteen healthy horses were used in this study. Group 1 consisted of foals (n = 6), group 2 consisted of their dams (n = 5) and group 3 consisted of half-siblings (n = 5) to group 1 foals. Prior to injection, MSC were phenotyped. Placentally derived MSC were injected into contralateral joints and MSC diluent was injected into a separate joint (control). An examination, including lameness evaluation and synovial fluid analysis, was performed at 0, 24, 48 and 72 h post-injection. MSC were major histocompatibility complex (MHC) I positive, MHC II negative and CD86 negative. Injection of allogeneic MSC did not elicit a systemic response. Local responses such as joint swelling or lameness were minimal and variable. Intra-articular MSC injection elicited marked inflammation within the synovial fluid (as measured by nucleated cell count, neutrophil number and total protein concentration). However, there were no significant differences between the degree and type of inflammation elicited by self and non-self-MSC. The healthy equine joint responds similarly to a single intra-articular injection of autologous and allogeneic MSC. This pre-clinical safety study is an important first step in the development of equine allogeneic stem cell therapies.

  12. Abnormal placentation.

    PubMed

    Bauer, Samuel T; Bonanno, Clarissa

    2009-04-01

    Abnormal placentation poses a diagnostic and treatment challenge for all providers caring for pregnant women. As one of the leading causes of postpartum hemorrhage, abnormal placentation involves the attachment of placental villi directly to the myometrium with potentially deeper invasion into the uterine wall or surrounding organs. Surgical procedures that disrupt the integrity of uterus, including cesarean section, dilatation and curettage, and myomectomy, have been implicated as key risk factors for placenta accreta. The diagnosis is typically made by gray-scale ultrasound and confirmed with magnetic resonance imaging, which may better delineate the extent of placental invasion. It is critical to make the diagnosis before delivery because preoperative planning can significantly decrease blood loss and avoid substantial morbidity associated with placenta accreta. Aggressive management of hemorrhage through the use of uterotonics, fluid resuscitation, blood products, planned hysterectomy, and surgical hemostatic agents can be life-saving for these patients. Conservative management, including the use of uterine and placental preservation and subsequent methotrexate therapy or pelvic artery embolization, may be considered when a focal accreta is suspected; however, surgical management remains the current standard of care.

  13. Sheep, Wolf, or Werewolf: Cancer Stem Cells and the Epithelial-to-Mesenchymal Transition

    PubMed Central

    2013-01-01

    Multiple cancers contain subpopulations that exhibit characteristics of cancer stem cells (CSCs), the ability to self-renew and seed heterogeneous tumors. Recent evidence suggests two potentially overlapping models for these phenotypes: one where stem cells arise from multipotent progenitor cells, and another where they are created via an epithelial to mesenchymal transition. Unraveling this issue is critical, as it underlies phenomena such as metastasis and therapeutic resistance. Therefore, there is intense interest in understanding these two types of CSSs, how they differ from differentiated cancer cells, the mechanisms that drive their phenotypes, and how that knowledge can be incorporated into therapeutics. PMID:23499890

  14. Osteogenic potential of human adipose-tissue-derived mesenchymal stromal cells cultured on 3D-printed porous structured titanium.

    PubMed

    Lewallen, Eric A; Jones, Dakota L; Dudakovic, Amel; Thaler, Roman; Paradise, Christopher R; Kremers, Hilal M; Abdel, Matthew P; Kakar, Sanjeev; Dietz, Allan B; Cohen, Robert C; Lewallen, David G; van Wijnen, Andre J

    2016-05-01

    Integration of porous metal prosthetics, which restore form and function of irreversibly damaged joints, into remaining healthy bone is critical for implant success. We investigated the biological properties of adipose-tissue-derived mesenchymal stromal/stem cells (AMSCs) and addressed their potential to alter the in vitro microenvironment of implants. We employed human AMSCs as a practical source for musculoskeletal applications because these cells can be obtained in large quantities, are multipotent, and have trophic paracrine functions. AMSCs were cultured on surgical-grade porous titanium disks as a model for orthopedic implants. We monitored cell/substrate attachment, cell proliferation, multipotency, and differentiation phenotypes of AMSCs upon osteogenic induction. High-resolution scanning electron microscopy and histology revealed that AMSCs adhere to the porous metallic surface. Compared to standard tissue culture plastic, AMSCs grown in the porous titanium microenvironment showed differences in temporal expression for genes involved in cell cycle progression (CCNB2, HIST2H4), extracellular matrix production (COL1A1, COL3A1), mesenchymal lineage identity (ACTA2, CD248, CD44), osteoblastic transcription factors (DLX3, DLX5, ID3), and epigenetic regulators (EZH1, EZH2). We conclude that metal orthopedic implants can be effectively seeded with clinical-grade stem/stromal cells to create a pre-conditioned implant. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Bioreactor-induced mesenchymal progenitor cell differentiation and elastic fiber assembly in engineered vascular tissues.

    PubMed

    Lin, Shigang; Mequanint, Kibret

    2017-09-01

    In vitro maturation of engineered vascular tissues (EVT) requires the appropriate incorporation of smooth muscle cells (SMC) and extracellular matrix (ECM) components similar to native arteries. To this end, the aim of the current study was to fabricate 4mm inner diameter vascular tissues using mesenchymal progenitor cells seeded into tubular scaffolds. A dual-pump bioreactor operating either in perfusion or pulsatile perfusion mode was used to generate physiological-like stimuli to promote progenitor cell differentiation, extracellular elastin production, and tissue maturation. Our data demonstrated that pulsatile forces and perfusion of 3D tubular constructs from both the lumenal and ablumenal sides with culture media significantly improved tissue assembly, effectively inducing mesenchymal progenitor cell differentiation to SMCs with contemporaneous elastin production. With bioreactor cultivation, progenitor cells differentiated toward smooth muscle lineage characterized by the expression of smooth muscle (SM)-specific markers smooth muscle alpha actin (SM-α-actin) and smooth muscle myosin heavy chain (SM-MHC). More importantly, pulsatile perfusion bioreactor cultivation enhanced the synthesis of tropoelastin and its extracellular cross-linking into elastic fiber compared with static culture controls. Taken together, the current study demonstrated progenitor cell differentiation and vascular tissue assembly, and provides insights into elastin synthesis and assembly to fibers. Incorporation of elastin into engineered vascular tissues represents a critical design goal for both mechanical and biological functions. In the present study, we seeded porous tubular scaffolds with multipotent mesenchymal progenitor cells and cultured in dual-pump pulsatile perfusion bioreactor. Physiological-like stimuli generated by bioreactor not only induced mesenchymal progenitor cell differentiation to vascular smooth muscle lineage but also actively promoted elastin synthesis and

  16. Human cadaver multipotent stromal/stem cells isolated from arteries stored in liquid nitrogen for 5 years

    PubMed Central

    2014-01-01

    Introduction Regenerative medicine challenges researchers to find noncontroversial, safe and abundant stem cell sources. In this context, harvesting from asystolic donors could represent an innovative and unlimited reservoir of different stem cells. In this study, cadaveric vascular tissues were established as an alternative source of human cadaver mesenchymal stromal/stem cells (hC-MSCs). We reported the successful cell isolation from postmortem arterial segments stored in a tissue-banking facility for at least 5 years. Methods After thawing, hC-MSCs were isolated with a high efficiency (12 × 106) and characterized with flow cytometry, immunofluorescence, molecular and ultrastructural approaches. Results In early passages, hC-MSCs were clonogenic, highly proliferative and expressed mesenchymal (CD44, CD73, CD90, CD105, HLA-G), stemness (Stro-1, Oct-4, Notch-1), pericyte (CD146, PDGFR-β, NG2) and neuronal (Nestin) markers; hematopoietic and vascular markers were negative. These cells had colony and spheroid-forming abilities, multipotency for their potential to differentiate in multiple mesengenic lineages and immunosuppressive activity to counteract proliferation of phytohemagglutinin-stimulated blood mononuclear cells. Conclusions The efficient procurement of stem cells from cadaveric sources, as postmortem vascular tissues, demonstrates that such cells can survive to prolonged ischemic insult, anoxia, freezing and dehydration injuries, thus paving the way for a scientific revolution where cadaver stromal/stem cells could effectively treat patients demanding cell therapies. PMID:24429026

  17. Placental Growth Factor Administration Abolishes Placental Ischemia-Induced Hypertension.

    PubMed

    Spradley, Frank T; Tan, Adelene Y; Joo, Woo S; Daniels, Garrett; Kussie, Paul; Karumanchi, S Ananth; Granger, Joey P

    2016-04-01

    Preeclampsia is a pregnancy-specific disorder of new-onset hypertension. Unfortunately, the most effective treatment is early delivery of the fetus and placenta. Placental ischemia appears central to the pathogenesis of preeclampsia because placental ischemia/hypoxia induced in animals by reduced uterine perfusion pressure (RUPP) or in humans stimulates release of hypertensive placental factors into the maternal circulation. The anti-angiogenic factor soluble fms-like tyrosine kinase-1 (sFlt-1), which antagonizes and reduces bioavailable vascular endothelial growth factor and placental growth factor (PlGF), is elevated in RUPP rats and preeclampsia. Although PlGF and vascular endothelial growth factor are both natural ligands for sFlt-1, vascular endothelial growth factor also has high affinity to VEGFR2 (Flk-1) causing side effects like edema. PlGF is specific for sFlt-1. We tested the hypothesis that PlGF treatment reduces placental ischemia-induced hypertension by antagonizing sFlt-1 without adverse consequences to the mother or fetus. On gestational day 14, rats were randomized to 4 groups: normal pregnant or RUPP±infusion of recombinant human PlGF (180 μg/kg per day; AG31, a purified, recombinant human form of PlGF) for 5 days via intraperitoneal osmotic minipumps. On day 19, mean arterial blood pressure and plasma sFlt-1 were higher and glomerular filtration rate lower in RUPP than normal pregnant rats. Infusion of recombinant human PlGF abolished these changes seen with RUPP along with reducing oxidative stress. These data indicate that the increased sFlt-1 and reduced PlGF resulting from placental ischemia contribute to maternal hypertension. Our novel finding that recombinant human PlGF abolishes placental ischemia-induced hypertension, without major adverse consequences, suggests a strong therapeutic potential for this growth factor in preeclampsia. © 2016 American Heart Association, Inc.

  18. PLACENTAL GROWTH FACTOR ADMINISTRATION ABOLISHES PLACENTAL ISCHEMIA-INDUCED HYPERTENSION

    PubMed Central

    Spradley, Frank T.; Tan, Adelene Y.; Joo, Woo S.; Daniels, Garrett; Kussie, Paul; Karumanchi, S. Ananth; Granger, Joey P.

    2016-01-01

    Preeclampsia is a pregnancy-specific disorder of new-onset hypertension. Unfortunately, the most effective treatment is early delivery of the fetus and placenta. Placental ischemia appears central to the pathogenesis of preeclampsia as placental ischemia/hypoxia induced in animals by reduced uterine perfusion pressure (RUPP) or in humans stimulates release of hypertensive placental factors into the maternal circulation. The anti-angiogenic factor soluble fms-like tyrosine kinase-1 (sFlt-1), which antagonizes and reduces bioavailable vascular endothelial growth factor (VEGF) and placental growth factor (PlGF), is elevated in RUPP rats and preeclampsia. Although PlGF and VEGF are both natural ligands for sFlt-1, VEGF also has high affinity to VEGFR2 (Flk-1) causing side effects like edema. PlGF is specific for sFlt-1. We tested the hypothesis that PlGF treatment reduces placental ischemia-induced hypertension by antagonizing sFlt-1 without adverse consequences to the mother or fetus. On gestational day 14, rats were randomized to four groups: normal pregnant (NP) or RUPP ± infusion of rhPlGF (180 μg/kg/day; AG31, a purified, recombinant human form of PlGF) for 5 days via intraperitoneal osmotic minipumps. On day 19, mean arterial blood pressure and plasma sFlt-1 were higher and glomerular filtration rate lower in RUPP than NP rats. Infusion of rhPlGF abolished these changes seen with RUPP along with reducing oxidative stress. These data indicate that the increased sFlt-1 and reduced PlGF resulting from placental ischemia contribute to maternal hypertension. Our novel finding that rhPlGF abolishes placental ischemia-induced hypertension, without major adverse consequences, suggests a strong therapeutic potential for this growth factor in preeclampsia. PMID:26831193

  19. The Impact of GFP Reporter Gene Transduction and Expression on Metabolomics of Placental Mesenchymal Stem Cells Determined by UHPLC-Q/TOF-MS.

    PubMed

    Yang, Jinfeng; Wang, Nan; Chen, Deying; Yu, Jiong; Pan, Qiaoling; Wang, Dan; Liu, Jingqi; Shi, Xiaowei; Dong, Xiaotian; Cao, Hongcui; Li, Liang; Li, Lanjuan

    2017-01-01

    Green fluorescent protein (GFP) is widely used as a reporter gene in regenerative medicine research to label and track stem cells. Here, we examined whether expressing GFP gene may impact the metabolism of human placental mesenchymal stem cells (hPMSCs). The GFP gene was transduced into hPMSCs using lentiviral-based infection to establish GFP + hPMSCs. A sensitive 13 C/ 12 C-dansyl labeling LC-MS method targeting the amine/phenol submetabolome was used for in-depth cell metabolome profiling. A total of 1151 peak pairs or metabolites were detected from 12 LC-MS runs. Principal component analysis and partial least squares discriminant analysis showed poor separation, and the volcano plots demonstrated that most of the metabolites were not significantly changed when hPMSCs were tagged with GFP. Overall, 739 metabolites were positively or putatively identified. Only 11 metabolites showed significant changes. Metabolic pathway analyses indicated that three of the identified metabolites were involved in nine pathways. However, these metabolites are unlikely to have a large impact on the metabolic pathways due to their nonessential roles and limited hits in pathway analysis. This study indicated that the expression of ectopic GFP reporter gene did not significantly alter the metabolomics pathways covered by the amine/phenol submetabolome.

  20. Characterization and Classification of Mesenchymal Stem Cells in Several Species Using Surface Markers for Cell Therapy Purposes.

    PubMed

    Ghaneialvar, Hori; Soltani, Leila; Rahmani, Hamid Reza; Lotfi, Abbas Sahebghadam; Soleimani, Masoud

    2018-01-01

    Mesenchymal stem cells are multipotent cells capable of replicating as undifferentiated cells, and have the potential of differentiating into mesenchymal tissue lineages such as osteocytes, adipocytes and chondrocytes. Such lineages can then be used in cell therapy. The aim of present study was to characterize bone marrow derived mesenchymal stem cells in four different species, including: sheep, goat, human and mouse. Human bone-marrow mesenchymal stem cells were purchased, those of sheep and goat were isolated from fetal bone marrow, and those of mouse were collected by washing bone cavity of femur and tibia with DMEM/F12. Using flow-cytometry, they were characterized by CD surface antigens. Furthermore, cells of third passage were examined for their osteogenic and adipogenic differentiation potential by oil red and alizarin red staining respectively. According to the results, CD markers studied in the four groups of mesenchymal stem cells showed a different expression. Goat and sheep expressed CD44 and CD166, and weakly expressed CD34, CD45, CD105 and CD90. Similarly, human and mouse mesenchymal cells expressed CD44, CD166, CD105 and CD90 whereas the expression of CD34 and CD45 was negative. In conclusion, although all mesenchymal stem cells display plastic adherence and tri-lineage differentiation, not all express the same panel of surface antigens described for human mesenchymal stem cells. Additional panel of CD markers are necessary to characterize regenerative potential and possible application of these stem cells in regenerative medicine and implantology.

  1. Spontaneous transformation of adult mesenchymal stem cells from cynomolgus macaques in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Zhenhua; Key Laboratory of Neurodegeneration, Ministry of Education, Beijing; Department of Anatomy, Anhui Medical University, Hefei, 230032

    2011-12-10

    Mesenchymal stem cells (MSCs) have shown potential clinical utility in cell therapy and tissue engineering, due to their ability to proliferate as well as to differentiate into multiple lineages, including osteogenic, adipogenic, and chondrogenic specifications. Therefore, it is crucial to assess the safety of MSCs while extensive expansion ex vivo is a prerequisite to obtain the cell numbers for cell transplantation. Here we show that MSCs derived from adult cynomolgus monkey can undergo spontaneous transformation following in vitro culture. In comparison with MSCs, the spontaneously transformed mesenchymal cells (TMCs) display significantly different growth pattern and morphology, reminiscent of the characteristicsmore » of tumor cells. Importantly, TMCs are highly tumorigenic, causing subcutaneous tumors when injected into NOD/SCID mice. Moreover, no multiple differentiation potential of TMCs is observed in vitro or in vivo, suggesting that spontaneously transformed adult stem cells may not necessarily turn into cancer stem cells. These data indicate a direct transformation of cynomolgus monkey MSCs into tumor cells following long-term expansion in vitro. The spontaneous transformation of the cultured cynomolgus monkey MSCs may have important implications for ongoing clinical trials and for models of oncogenesis, thus warranting a more strict assessment of MSCs prior to cell therapy. -- Highlights: Black-Right-Pointing-Pointer Spontaneous transformation of cynomolgus monkey MSCs in vitro. Black-Right-Pointing-Pointer Transformed mesenchymal cells lack multipotency. Black-Right-Pointing-Pointer Transformed mesenchymal cells are highly tumorigenic. Black-Right-Pointing-Pointer Transformed mesenchymal cells do not have the characteristics of cancer stem cells.« less

  2. Multipotent progenitor cells are present in human peripheral blood.

    PubMed

    Cesselli, Daniela; Beltrami, Antonio Paolo; Rigo, Silvia; Bergamin, Natascha; D'Aurizio, Federica; Verardo, Roberto; Piazza, Silvano; Klaric, Enio; Fanin, Renato; Toffoletto, Barbara; Marzinotto, Stefania; Mariuzzi, Laura; Finato, Nicoletta; Pandolfi, Maura; Leri, Annarosa; Schneider, Claudio; Beltrami, Carlo Alberto; Anversa, Piero

    2009-05-22

    To determine whether the peripheral blood in humans contains a population of multipotent progenitor cells (MPCs), products of leukapheresis were obtained from healthy donor volunteers following the administration of granulocyte colony-stimulating factor. Small clusters of adherent proliferating cells were collected, and these cells continued to divide up to 40 population doublings without reaching replicative senescence and growth arrest. MPCs were positive for the transcription factors Nanog, Oct3/4, Sox2, c-Myc, and Klf4 and expressed several antigens characteristic of mesenchymal stem cells. However, they were negative for markers of hematopoietic stem/progenitor cells and bone marrow cell lineages. MPCs had a cloning efficiency of approximately 3%, and following their expansion, retained a highly immature phenotype. Under permissive culture conditions, MPCs differentiated into neurons, glial cells, hepatocytes, cardiomyocytes, endothelial cells, and osteoblasts. Moreover, the gene expression profile of MPCs partially overlapped with that of neural and embryonic stem cells, further demonstrating their primitive, uncommitted phenotype. Following subcutaneous transplantation in nonimmunosuppressed mice, MPCs migrated to distant organs and integrated structurally and functionally within the new tissue, acquiring the identity of resident parenchymal cells. In conclusion, undifferentiated cells with properties of embryonic stem cells can be isolated and expanded from human peripheral blood after granulocyte colony-stimulating factor administration. This cell pool may constitute a unique source of autologous cells with critical clinical import.

  3. Pericytes of Multiple Organs Do Not Behave as Mesenchymal Stem Cells In Vivo.

    PubMed

    Guimarães-Camboa, Nuno; Cattaneo, Paola; Sun, Yunfu; Moore-Morris, Thomas; Gu, Yusu; Dalton, Nancy D; Rockenstein, Edward; Masliah, Eliezer; Peterson, Kirk L; Stallcup, William B; Chen, Ju; Evans, Sylvia M

    2017-03-02

    Pericytes are widely believed to function as mesenchymal stem cells (MSCs), multipotent tissue-resident progenitors with great potential for regenerative medicine. Cultured pericytes isolated from distinct tissues can differentiate into multiple cell types in vitro or following transplantation in vivo. However, the cell fate plasticity of endogenous pericytes in vivo remains unclear. Here, we show that the transcription factor Tbx18 selectively marks pericytes and vascular smooth muscle cells in multiple organs of adult mouse. Fluorescence-activated cell sorting (FACS)-purified Tbx18-expressing cells behaved as MSCs in vitro. However, lineage-tracing experiments using an inducible Tbx18-CreERT2 line revealed that pericytes and vascular smooth muscle cells maintained their identity in aging and diverse pathological settings and did not significantly contribute to other cell lineages. These results challenge the current view of endogenous pericytes as multipotent tissue-resident progenitors and suggest that the plasticity observed in vitro or following transplantation in vivo arises from artificial cell manipulations ex vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Placental pathology and hypospadias.

    PubMed

    Chen, Yan; Sun, Luming; Geng, Hongquan; Lei, Xiaoping; Zhang, Jun

    2017-03-01

    Studies have shown that hypospadias is associated with placenta-mediated pregnancy complication (PMPC). The role of placental lesions is still unclear. We aimed to examine the association between hyposadias and placental pathology, and the effect of PMPC. Using data from the US Collaborative Perinatal Project in 1959-1966, we identified 15,780 male subjects (167 hypospadias) for analysis. Detailed placental examinations were conducted following a standard protocol. Subjects were divided into two groups according to whether they had PMPC, including small-for-gestational-age, pre-eclampsia/eclampsia or placental abruption. Logistic regression models were used to explore the association. The prevalence of hypospadias was two times higher in subjects with PMPC than those without. Compared to pregnancies with PMPC but no hypospadias, those with both PMPC and hypospadias had significant higher prevalence of placental lesions, such as low placental weight, vascular lesions, villous lesions, and membranous insertion of cord (adjusted odds ratio (OR) ranging from 2.6 to 5.2) after adjusting for potential confounders. In subjects without PMPC, no significant difference of placental pathology was found between those with or without hypospadias. About one third of hypospadias cases were complicated with PMPC and had a higher risk of placental lesions, suggesting heterogeneity of hypospadias etiology and mechanisms.

  5. Brain mesenchymal stem cells: The other stem cells of the brain?

    PubMed Central

    Appaix, Florence; Nissou, Marie-France; van der Sanden, Boudewijn; Dreyfus, Matthieu; Berger, François; Issartel, Jean-Paul; Wion, Didier

    2014-01-01

    Multipotent mesenchymal stromal cells (MSC), have the potential to differentiate into cells of the mesenchymal lineage and have non-progenitor functions including immunomodulation. The demonstration that MSCs are perivascular cells found in almost all adult tissues raises fascinating perspectives on their role in tissue maintenance and repair. However, some controversies about the physiological role of the perivascular MSCs residing outside the bone marrow and on their therapeutic potential in regenerative medicine exist. In brain, perivascular MSCs like pericytes and adventitial cells, could constitute another stem cell population distinct to the neural stem cell pool. The demonstration of the neuronal potential of MSCs requires stringent criteria including morphological changes, the demonstration of neural biomarkers expression, electrophysiological recordings, and the absence of cell fusion. The recent finding that brain cancer stem cells can transdifferentiate into pericytes is another facet of the plasticity of these cells. It suggests that the perversion of the stem cell potential of pericytes might play an even unsuspected role in cancer formation and tumor progression. PMID:24772240

  6. Large-scale expansion of Wharton's jelly-derived mesenchymal stem cells on gelatin microbeads, with retention of self-renewal and multipotency characteristics and the capacity for enhancing skin wound healing.

    PubMed

    Zhao, Guifang; Liu, Feilin; Lan, Shaowei; Li, Pengdong; Wang, Li; Kou, Junna; Qi, Xiaojuan; Fan, Ruirui; Hao, Deshun; Wu, Chunling; Bai, Tingting; Li, Yulin; Liu, Jin Yu

    2015-03-19

    Successful stem cell therapy relies on large-scale generation of stem cells and their maintenance in a proliferative multipotent state. This study aimed to establish a three-dimension culture system for large-scale generation of hWJ-MSC and investigated the self-renewal activity, genomic stability and multi-lineage differentiation potential of such hWJ-MSC in enhancing skin wound healing. hWJ-MSC were seeded on gelatin microbeads and cultured in spinning bottles (3D). Cell proliferation, karyotype analysis, surface marker expression, multipotent differentiation (adipogenic, chondrogenic, and osteogenic potentials), and expression of core transcription factors (OCT4, SOX2, NANOG, and C-MYC), as well as their efficacy in accelerating skin wound healing, were investigated and compared with those of hWJ-MSC derived from plate cultres (2D), using in vivo and in vitro experiments. hWJ-MSC attached to and proliferated on gelatin microbeads in 3D cultures reaching a maximum of 1.1-1.30×10(7) cells on 0.5 g of microbeads by days 8-14; in contrast, hWJ-MSC derived from 2D cultures reached a maximum of 6.5 -11.5×10(5) cells per well in a 24-well plate by days 6-10. hWJ-MSC derived by 3D culture incorporated significantly more EdU (P<0.05) and had a significantly higher proliferation index (P<0.05) than those derived from 2D culture. Immunofluorescence staining, real-time PCR, flow cytometry analysis, and multipotency assays showed that hWJ-MSC derived from 3D culture retained MSC surface markers and multipotency potential similar to 2D culture-derived cells. 3D culture-derived hWJ-MSC also retained the expression of core transcription factors at levels comparable to their 2D culture counterparts. Direct injection of hWJ-MSC derived from 3D or 2D cultures into animals exhibited similar efficacy in enhancing skin wound healing. Thus, hWJ-MSC can be expanded markedly in gelatin microbeads, while retaining MSC surface marker expression, multipotent differential potential, and

  7. Epigenetic Plasticity Drives Adipogenic and Osteogenic Differentiation of Marrow-derived Mesenchymal Stem Cells*

    PubMed Central

    Meyer, Mark B.; Benkusky, Nancy A.; Sen, Buer; Rubin, Janet; Pike, J. Wesley

    2016-01-01

    Terminal differentiation of multipotent stem cells is achieved through a coordinated cascade of activated transcription factors and epigenetic modifications that drive gene transcription responsible for unique cell fate. Within the mesenchymal lineage, factors such as RUNX2 and PPARγ are indispensable for osteogenesis and adipogenesis, respectively. We therefore investigated genomic binding of transcription factors and accompanying epigenetic modifications that occur during osteogenic and adipogenic differentiation of mouse bone marrow-derived mesenchymal stem cells (MSCs). As assessed by ChIP-sequencing and RNA-sequencing analyses, we found that genes vital for osteogenic identity were linked to RUNX2, C/EBPβ, retinoid X receptor, and vitamin D receptor binding sites, whereas adipocyte differentiation favored PPARγ, retinoid X receptor, C/EBPα, and C/EBPβ binding sites. Epigenetic marks were clear predictors of active differentiation loci as well as enhancer activities and selective gene expression. These marrow-derived MSCs displayed an epigenetic pattern that suggested a default preference for the osteogenic pathway; however, these patterns were rapidly altered near the Adipoq, Cidec, Fabp4, Lipe, Plin1, Pparg, and Cebpa genes during adipogenic differentiation. Surprisingly, we found that these cells also exhibited an epigenetic plasticity that enabled them to trans-differentiate from adipocytes to osteoblasts (and vice versa) after commitment, as assessed by staining, gene expression, and ChIP-quantitative PCR analysis. The osteogenic default pathway may be subverted during pathological conditions, leading to skeletal fragility and increased marrow adiposity during aging, estrogen deficiency, and skeletal unloading. Taken together, our data provide an increased mechanistic understanding of the epigenetic programs necessary for multipotent differentiation of MSCs that may prove beneficial in the development of therapeutic strategies. PMID:27402842

  8. Simple surface engineering of polydimethylsiloxane with polydopamine for stabilized mesenchymal stem cell adhesion and multipotency

    PubMed Central

    Chuah, Yon Jin; Koh, Yi Ting; Lim, Kaiyang; Menon, Nishanth V.; Wu, Yingnan; Kang, Yuejun

    2015-01-01

    Polydimethylsiloxane (PDMS) has been extensively exploited to study stem cell physiology in the field of mechanobiology and microfluidic chips due to their transparency, low cost and ease of fabrication. However, its intrinsic high hydrophobicity renders a surface incompatible for prolonged cell adhesion and proliferation. Plasma-treated or protein-coated PDMS shows some improvement but these strategies are often short-lived with either cell aggregates formation or cell sheet dissociation. Recently, chemical functionalization of PDMS surfaces has proved to be able to stabilize long-term culture but the chemicals and procedures involved are not user- and eco-friendly. Herein, we aim to tailor greener and biocompatible PDMS surfaces by developing a one-step bio-inspired polydopamine coating strategy to stabilize long-term bone marrow stromal cell culture on PDMS substrates. Characterization of the polydopamine-coated PDMS surfaces has revealed changes in surface wettability and presence of hydroxyl and secondary amines as compared to uncoated surfaces. These changes in PDMS surface profile contribute to the stability in BMSCs adhesion, proliferation and multipotency. This simple methodology can significantly enhance the biocompatibility of PDMS-based microfluidic devices for long-term cell analysis or mechanobiological studies. PMID:26647719

  9. Sheep, wolf, or werewolf: cancer stem cells and the epithelial-to-mesenchymal transition.

    PubMed

    Chang, Jeffrey T; Mani, Sendurai A

    2013-11-28

    Multiple cancers contain subpopulations that exhibit characteristics of cancer stem cells (CSCs), the ability to self-renew and seed heterogeneous tumors. Recent evidence suggests two potentially overlapping models for these phenotypes: one where stem cells arise from multipotent progenitor cells, and another where they are created via an epithelial to mesenchymal transition. Unraveling this issue is critical, as it underlies phenomena such as metastasis and therapeutic resistance. Therefore, there is intense interest in understanding these two types of CSSs, how they differ from differentiated cancer cells, the mechanisms that drive their phenotypes, and how that knowledge can be incorporated into therapeutics. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Placental Mesenchymal Stromal Cells Rescue Ambulation in Ovine Myelomeningocele

    PubMed Central

    Brown, Erin G.; Lankford, Lee; Keller, Benjamin A.; Pivetti, Christopher D.; Sitkin, Nicole A.; Beattie, Michael S.; Bresnahan, Jacqueline C.; Farmer, Diana L.

    2015-01-01

    Myelomeningocele (MMC)—commonly known as spina bifida—is a congenital birth defect that causes lifelong paralysis, incontinence, musculoskeletal deformities, and severe cognitive disabilities. The recent landmark Management of Myelomeningocele Study (MOMS) demonstrated for the first time in humans that in utero surgical repair of the MMC defect improves lower limb motor function, suggesting a capacity for improved neurologic outcomes in this disorder. However, functional recovery was incomplete, and 58% of the treated children were unable to walk independently at 30 months of age. In the present study, we demonstrate that using early gestation human placenta-derived mesenchymal stromal cells (PMSCs) to augment in utero repair of MMC results in significant and consistent improvement in neurologic function at birth in the rigorous fetal ovine model of MMC. In vitro, human PMSCs express characteristic MSC markers and trilineage differentiation potential. Protein array assays and enzyme-linked immunosorbent assay show that PMSCs secrete a variety of immunomodulatory and angiogenic cytokines. Compared with adult bone marrow MSCs, PMSCs secrete significantly higher levels of brain-derived neurotrophic factor and hepatocyte growth factor, both of which have known neuroprotective capabilities. In vivo, functional and histopathologic analysis demonstrated that human PMSCs mediate a significant, clinically relevant improvement in motor function in MMC lambs and increase the preservation of large neurons within the spinal cord. These preclinical results in the well-established fetal ovine model of MMC provide promising early support for translating in utero stem cell therapy for MMC into clinical application for patients. Significance This study presents placenta-derived mesenchymal stromal cell (PMSC) treatment as a potential therapy for myelomeningocele (MMC). Application of PMSCs can augment current in utero surgical repair in the well-established and rigorously

  11. Sphingosine-1-phosphate mediates proliferation maintaining the multipotency of human adult bone marrow and adipose tissue-derived stem cells.

    PubMed

    He, Xiaoli; H'ng, Shiau-Chen; Leong, David T; Hutmacher, Dietmar W; Melendez, Alirio J

    2010-08-01

    High renewal and maintenance of multipotency of human adult stem cells (hSCs), are a prerequisite for experimental analysis as well as for potential clinical usages. The most widely used strategy for hSC culture and proliferation is using serum. However, serum is poorly defined and has a considerable degree of inter-batch variation, which makes it difficult for large-scale mesenchymal stem cells (MSCs) expansion in homogeneous culture conditions. Moreover, it is often observed that cells grown in serum-containing media spontaneously differentiate into unknown and/or undesired phenotypes. Another way of maintaining hSC development is using cytokines and/or tissue-specific growth factors; this is a very expensive approach and can lead to early unwanted differentiation. In order to circumvent these issues, we investigated the role of sphingosine-1-phosphate (S1P), in the growth and multipotency maintenance of human bone marrow and adipose tissue-derived MSCs. We show that S1P induces growth, and in combination with reduced serum, or with the growth factors FGF and platelet-derived growth factor-AB, S1P has an enhancing effect on growth. We also show that the MSCs cultured in S1P-supplemented media are able to maintain their differentiation potential for at least as long as that for cells grown in the usual serum-containing media. This is shown by the ability of cells grown in S1P-containing media to be able to undergo osteogenic as well as adipogenic differentiation. This is of interest, since S1P is a relatively inexpensive natural product, which can be obtained in homogeneous high-purity batches: this will minimize costs and potentially reduce the unwanted side effects observed with serum. Taken together, S1P is able to induce proliferation while maintaining the multipotency of different human stem cells, suggesting a potential for S1P in developing serum-free or serum-reduced defined medium for adult stem cell cultures.

  12. Inhibition of IKK/NF-κB Signaling Enhances Differentiation of Mesenchymal Stromal Cells from Human Embryonic Stem Cells.

    PubMed

    Deng, Peng; Zhou, Chenchen; Alvarez, Ruth; Hong, Christine; Wang, Cun-Yu

    2016-04-12

    Embryonic stem cell-derived mesenchymal stromal cells (MSCs; also known as mesenchymal stem cells) represent a promising source for bone regenerative medicine. Despite remarkable advances in stem cell biology, the molecular mechanism regulating differentiation of human embryonic stem cells (hESCs) into MSCs remains poorly understood. Here, we report that inhibition of IκB kinase (IKK)/nuclear factor kappa B (NF-κB) signaling enhances differentiation of hESCs into MSCs by expediting the loss of pluripotent markers and increasing the expression of MSC surface markers. In addition, a significantly higher quantity of MSCs was produced from hESCs with IKK/NF-κB suppression. These isolated MSCs displayed evident multipotency with capacity to terminally differentiate into osteoblasts, chondrocytes, and adipocytes in vitro and to form bone in vivo. Collectively, our data provide important insights into the role of NF-κB in mesenchymal lineage specification during hESC differentiation, suggesting that IKK inhibitors could be utilized as an adjuvant in generating MSCs for cell-mediated therapies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. In Vivo Immunogenic Response to Allogeneic Mesenchymal Stem Cells and the Role of Preactivated Mesenchymal Stem Cells Cotransplanted with Allogeneic Islets

    PubMed Central

    Chagastelles, Pedro Cesar; Sesterheim, Patrícia

    2017-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating into cells from the mesenchymal lineage. The hypoimmunogenic characteristic of MSCs has encouraged studies using allogeneic MSCs for the treatment of autoimmune diseases and inflammatory conditions. Promising preclinical results and the safety of allogeneic MSC transplantation have created the possibility of “off-the-shelf” clinical application of allogeneic cells. This study has aimed to evaluate the survival of untreated and IFN-γ- and TNF-α-treated (preactivated) allogeneic MSCs transplanted under the kidney capsule of immunocompetent mice together with the role of preactivated MSCs after cotransplantation with allogeneic islets. The preactivation of MSCs upregulated the gene expression of anti-inflammatory molecules and also enhanced their immunomodulatory capacity in vitro. In vivo, allogeneic MSCs provoked an immunogenic response, with the infiltration of inflammatory cells at the transplant site and full graft rejection in both the untreated and preactivated groups. Allogeneic islets cotransplanted with preactivated MSCs prolonged graft survival for about 6 days, compared with islet alone. The present results corroborate the hypothesis that allogeneic MSCs are not immune-privileged and that after playing their therapeutic role they are rejected. Strategies that reduce allogeneic MSC immunogenicity can potentially prolong their in vivo persistence and improve the therapeutic effects. PMID:28553360

  14. Enhanced Biological Functions of Human Mesenchymal Stem-Cell Aggregates Incorporating E-Cadherin-Modified PLGA Microparticles.

    PubMed

    Zhang, Yan; Mao, Hongli; Gao, Chao; Li, Suhua; Shuai, Qizhi; Xu, Jianbin; Xu, Ke; Cao, Lei; Lang, Ren; Gu, Zhongwei; Akaike, Toshihiro; Yang, Jun

    2016-08-01

    Mesenchymal stem cells (MSCs) have emerged as a promising source of multipotent cells for various cell-based therapies due to their unique properties, and formation of 3D MSC aggregates has been explored as a potential strategy to enhance therapeutic efficacy. In this study, poly(lactic-co-glycolic acid) (PLGA) microparticles modified with human E-cadherin fusion protein (hE-cad-PLGA microparticles) have been fabricated and integrated with human MSCs to form 3D cell aggregates. The results show that, compared with the plain PLGA, the hE-cad-PLGA microparticles distribute within the aggregates more evenly and further result in a more significant improvement of cellular proliferation and secretion of a series of bioactive factors due to the synergistic effects from the bioactive E-cadherin fragments and the PLGA microparticles. Meanwhile, the hE-cad-PLGA microparticles incorporated in the aggregates upregulate the phosphorylation of epidermal growth factor receptors and activate the AKT and ERK1/2 signaling pathways in the MSCs. Additionally, the E-cadherin/β-catenin cellular membrane complex in the MSCs is markedly stimulated by the hE-cad-PLGA microparticles. Therefore, engineering 3D cell aggregates with hE-cad-PLGA microparticles can be a promising method for ex vivo multipotent stem-cell expansion with enhanced biological functions and may offer a novel route to expand multipotent stem-cell-based clinical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. RACK1 regulates mesenchymal cell recruitment during sexual and asexual reproduction of budding tunicates.

    PubMed

    Tatzuke, Yuki; Sunanaga, Takeshi; Fujiwara, Shigeki; Kawamura, Kaz

    2012-08-15

    A homolog of receptor for activated protein kinase C1 (RACK1) was cloned from the budding tunicate Polyandrocarpa misakiensis. By RT-PCR and in situ hybridization analyses, PmRACK1 showed biphasic gene expression during asexual and sexual reproduction. In developing buds, the signal was exclusively observed in the multipotent atrial epithelium and undifferentiated mesenchymal cells that contributed to morphogenesis by the mesenchymal-epithelial transition (MET). In juvenile zooids, the signal was first observable in germline precursor cells that arose as mesenchymal cell aggregated in the ventral hemocoel. In mature zooids, the germinal epithelium in the ovary and the pharynx were the most heavily stained parts. GFP reporter assay indicated that the ovarian expression of PmRACK1 was constitutive from germline precursor cells to oocytes. To elucidate the in vivo function of PmRACK1, RNA interference was challenged. When growing buds were incubated with 5 nmol/mL siRNA, most mesenchymal cells remained round and appeared to have no interactions with the extracellular matrix (ECM), causing lower activity of MET without any apparent effects on cell proliferation. The resultant zooids became growth-deficient. The dwarf zooids did not form buds or mature gonads. Prior to RNAi, buds were treated with human BMP4 that could induce PmRACK1 expression, which resulted in MET activity. We conclude that in P. misakiensis, PmRACK1 plays roles in mesenchymal cell recruitment during formation of somatic and gonad tissues, which contributes to zooidal growth and sexual and asexual reproduction. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Bone marrow and umbilical cord blood human mesenchymal stem cells: state of the art.

    PubMed

    Malgieri, Arianna; Kantzari, Eugenia; Patrizi, Maria Patrizia; Gambardella, Stefano

    2010-09-07

    Mesenchymal stem cells (MSCs) are multipotent adult stem cells present in all tissues, as part of the perivascular population. As multipotent cells, MSCs can differentiate into different tissues originating from mesoderm ranging from bone and cartilage, to cardiac muscle. MSCs are an excellent candidate for cell therapy because they are easily accessible, their isolation is straightforward, they can be bio-preserved with minimal loss of potency, and they have shown no adverse reactions to allogeneic versus autologous MSCs transplants. Therefore, MSCs are being explored to regenerate damaged tissue and treat inflammation, resulting from cardiovascular disease and myo-cardial infarction (MI), brain and spinal cord injury, stroke, diabetes, cartilage and bone injury, Crohn's disease and graft versus host disease (GvHD). Most of the application and clinical trials involve MSCs from bone marrow (BMMSCs). Transplantation of MSCs from bone marrow is considered safe and has been widely tested in clinical trials of cardiovascular, neurological, and immunological disease with encouraging results. There are examples of MSCs utilization in the repair of kidney, muscle and lung. The cells were also found to promote angiogenesis, and were used in chronic skin wound treatment. Recent studies involve also mesenchymal stem cell transplant from umbilical cord (UCMSCt). One of these demonstrate that UCMSCt may improve symptoms and biochemical values in patients with severe refractory systemic lupus erythematosus (SLE), and therefore this source of MSCs need deeper studies and require more attention. However, also if there are 79 registered clinical trial sites for evaluating MSC therapy throughout the world, it is still a long way to go before using these cells as a routinely applied therapy in clinics.

  17. Design and validation of a consistent and reproducible manufacture process for the production of clinical-grade bone marrow-derived multipotent mesenchymal stromal cells.

    PubMed

    Codinach, Margarita; Blanco, Margarita; Ortega, Isabel; Lloret, Mireia; Reales, Laura; Coca, Maria Isabel; Torrents, Sílvia; Doral, Manel; Oliver-Vila, Irene; Requena-Montero, Miriam; Vives, Joaquim; Garcia-López, Joan

    2016-09-01

    Multipotent mesenchymal stromal cells (MSC) have achieved a notable prominence in the field of regenerative medicine, despite the lack of common standards in the production processes and suitable quality controls compatible with Good Manufacturing Practice (GMP). Herein we describe the design of a bioprocess for bone marrow (BM)-derived MSC isolation and expansion, its validation and production of 48 consecutive batches for clinical use. BM samples were collected from the iliac crest of patients for autologous therapy. Manufacturing procedures included: (i) isolation of nucleated cells (NC) by automated density-gradient centrifugation and plating; (ii) trypsinization and expansion of secondary cultures; and (iii) harvest and formulation of a suspension containing 40 ± 10 × 10(6) viable cells. Quality controls were defined as: (i) cell count and viability assessment; (ii) immunophenotype; and (iii) sterility tests, Mycoplasma detection, endotoxin test and Gram staining. A 3-week manufacturing bioprocess was first designed and then validated in 3 consecutive mock productions, prior to producing 48 batches of BM-MSC for clinical use. Validation included the assessment of MSC identity and genetic stability. Regarding production, 139.0 ± 17.8 mL of BM containing 2.53 ± 0.92 × 10(9) viable NC were used as starting material, yielding 38.8 ± 5.3 × 10(6) viable cells in the final product. Surface antigen expression was consistent with the expected phenotype for MSC, displaying high levels of CD73, CD90 and CD105, lack of expression of CD31 and CD45 and low levels of HLA-DR. Tests for sterility, Mycoplasma, Gram staining and endotoxin had negative results in all cases. Herein we demonstrated the establishment of a feasible, consistent and reproducible bioprocess for the production of safe BM-derived MSC for clinical use. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  18. Mesenchymal stem cells in tumor development

    PubMed Central

    Cuiffo, Benjamin G.; Karnoub, Antoine E.

    2012-01-01

    Mesenchymal stem cells (MSCs) are multipotent progenitor cells that participate in the structural and functional maintenance of connective tissues under normal homeostasis. They also act as trophic mediators during tissue repair, generating bioactive molecules that help in tissue regeneration following injury. MSCs serve comparable roles in cases of malignancy and are becoming increasingly appreciated as critical components of the tumor microenvironment. MSCs home to developing tumors with great affinity, where they exacerbate cancer cell proliferation, motility, invasion and metastasis, foster angiogenesis, promote tumor desmoplasia and suppress anti-tumor immune responses. These multifaceted roles emerge as a product of reciprocal interactions occurring between MSCs and cancer cells and serve to alter the tumor milieu, setting into motion a dynamic co-evolution of both tumor and stromal tissues that favors tumor progression. Here, we summarize our current knowledge about the involvement of MSCs in cancer pathogenesis and review accumulating evidence that have placed them at the center of the pro-malignant tumor stroma. PMID:22863739

  19. Mesenchymal stem cells in cartilage regeneration.

    PubMed

    Savkovic, Vuk; Li, Hanluo; Seon, Jong-Keun; Hacker, Michael; Franz, Sandra; Simon, Jan-Christoph

    2014-01-01

    Articular cartilage provides life-long weight-bearing and mechanical lubrication with extraordinary biomechanical performance and simple structure. However, articular cartilage is apparently vulnerable to multifactorial damage and insufficient to self-repair, isolated in articular capsule without nerves or blood vessels. Osteoarthritis (OA) is known as a degenerative articular cartilage deficiency progressively affecting large proportion of the world population, and restoration of hyaline cartilage is clinical challenge to repair articular cartilage lesion and recreate normal functionality over long period. Mesenchymal stem cells (MSC) are highly proliferative and multipotent somatic cells that are able to differentiate mesoderm-derived cells including chondrocytes and osteoblasts. Continuous endeavors in basic research and preclinical trial have achieved promising outcomes in cartilage regeneration using MSCs. This review focuses on rationale and technologies of MSC-based hyaline cartilage repair involving tissue engineering, 3D biomaterials and growth factors. By comparing conventional treatment and current research progress, we describe insights of advantage and challenge in translation and application of MSC-based chondrogenesis for OA treatment.

  20. Ectodermal Differentiation of Wharton's Jelly Mesenchymal Stem Cells for Tissue Engineering and Regenerative Medicine Applications.

    PubMed

    Jadalannagari, Sushma; Aljitawi, Omar S

    2015-06-01

    Mesenchymal stem cells (MSCs) from Wharton's jelly (WJ) of the human umbilical cord are perinatal stem cells that have self-renewal ability, extended proliferation potential, immunosuppressive properties, and are accordingly excellent candidates for tissue engineering. These MSCs are unique, easily accessible, and a noncontroversial cell source of regeneration in medicine. Wharton's jelly mesenchymal stem cells (WJMSCs) are multipotent and capable of multilineage differentiation into cells like adipocytes, bone, cartilage, and skeletal muscle upon exposure to appropriate conditions. The ectoderm is one of the three primary germ layers found in the very early embryo that differentiates into the epidermis, nervous system (spine, peripheral nerves, brain), and exocrine glands (mammary, sweat, salivary, and lacrimal glands). Accumulating evidence shows that MSCs obtained from WJ have an ectodermal differentiation potential. The current review examines this differentiation potential of WJMSC into the hair follicle, skin, neurons, and sweat glands along with discussing the potential utilization of such differentiation in regenerative medicine.

  1. Interactions of Human Endothelial and Multipotent Mesenchymal Stem Cells in Cocultures

    PubMed Central

    Ern, Christina; Krump-Konvalinkova, Vera; Docheva, Denitsa; Schindler, Stefanie; Rossmann, Oliver; Böcker, Wolfgang; Mutschler, Wolf; Schieker, Matthias

    2010-01-01

    Current strategies for tissue engineering of bone rely on the implantation of scaffolds, colonized with human mesenchymal stem cells (hMSC), into a recipient. A major limitation is the lack of blood vessels. One approach to enhance the scaffold vascularisation is to supply the scaffolds with endothelial cells (EC). The main goal of this study was to establish a coculture system of hMSC and EC for the purposes of bone tissue engineering. Therefore, the cell behaviour, proliferation and differentiation capacity in various cell culture media as well as cell interactions in the cocultures were evaluated. The differentiation capacity of hMSC along osteogenic, chondrogenic, and adipogenic lineage was impaired in EC medium while in a mixed EC and hMSC media, hMSC maintained osteogenic differentiation. In order to identify and trace EC in the cocultures, EC were transduced with eGFP. Using time-lapse imaging, we observed that hMSC and EC actively migrated towards cells of their own type and formed separate clusters in long term cocultures. The scarcity of hMSC and EC contacts in the cocultures suggest the influence of growth factor-mediated cell interactions and points to the necessity of further optimization of the coculture conditions. PMID:21625373

  2. Serum-deprived human multipotent mesenchymal stromal cells (MSCs) are highly angiogenic

    PubMed Central

    Oskowitz, Adam; McFerrin, Harris; Gutschow, Miriam; Carter, Mary Leita; Pochampally, Radhika

    2016-01-01

    Recent reports have indicated that mesenchymal stromal cells (MSCs) from bone marrow have a potential in vascular remodeling and angiogenesis. Here, we report a unique phenomenon that under serum-deprived conditions MSCs survive and replicate. Secretome analysis of MSCs grown under serum-deprived conditions (SD-MSCs) identified a significant upregulation of prosurvival and angiogenic factors including VEGF-A, ANGPTs, IGF-1, and HGF. An ex vivo rat aortic assay demonstrated longer neovascular sprouts generated from rat aortic rings cultured in SD-MSC-conditioned media compared to neovascular sprouts from aortas grown in MSC-conditioned media. With prolonged serum deprivation, a subpopulation of SD-MSCs began to exhibit an endothelial phenotype. This population expressed endothelial-specific proteins including VEGFR2, Tie2/TEK, PECAM/CD31, and eNOS and also demonstrated the ability to uptake acetylated LDL. SD-MSCs also exhibited enhanced microtubule formation in an in vitro angiogenesis assay. Modified chick chorioallantoic membrane (CAM) angiogenesis assays showed significantly higher angiogenic potential for SD-MSCs compared to MSCs. Analysis of CAMs grown with SD-MSCs identified human-specific CD31-positive cells in vascular structures. We conclude that under the stress of serum deprivation MSCs are highly angiogenic and a population of these cells has the potential to differentiate into endothelial-like cells. PMID:21421339

  3. Mesenchymal Stem Cells Derived from Human Gingiva Are Capable of Immunomodulatory Functions and Ameliorate Inflammation-Related Tissue Destruction in Experimental Colitis1

    PubMed Central

    Zhang, Qunzhou; Shi, Shihong; Liu, Yi; Uyanne, Jettie; Shi, Yufang; Shi, Songtao; Le, Anh D.

    2010-01-01

    Aside from the well-established self-renewal and multipotent differentiation properties, mesenchymal stem cells exhibit both immunomodulatory and anti-inflammatory roles in several experimental autoimmune and inflammatory diseases. In this study, we isolated a new population of stem cells from human gingiva, a tissue source easily accessible from the oral cavity, namely, gingiva-derived mesenchymal stem cells (GMSCs), which exhibited clonogenicity, self-renewal, and multipotent differentiation capacities. Most importantly, GMSCs were capable of immunomodulatory functions, specifically suppressed peripheral blood lymphocyte proliferation, induced expression of a wide panel of immunosuppressive factors including IL-10, IDO, inducible NO synthase (iNOS), and cyclooxygenase 2 (COX-2) in response to the inflammatory cytokine, IFN-γ. Cell-based therapy using systemic infusion of GMSCs in experimental colitis significantly ameliorated both clinical and histopathological severity of the colonic inflammation, restored the injured gastrointestinal mucosal tissues, reversed diarrhea and weight loss, and suppressed the overall disease activity in mice. The therapeutic effect of GMSCs was mediated, in part, by the suppression of inflammatory infiltrates and inflammatory cytokines/mediators and the increased infiltration of regulatory T cells and the expression of anti-inflammatory cytokine IL-10 at the colonic sites. Taken together, GMSCs can function as an immunomodulatory and anti-inflammatory component of the immune system in vivo and is a promising cell source for cell-based treatment in experimental inflammatory diseases. PMID:19923445

  4. Comparative study of regenerative effects of mesenchymal stem cells derived from placental amnion, chorion and umbilical cord on dermal wounds.

    PubMed

    Ertl, Juliane; Pichlsberger, Melanie; Tuca, Alexandru-Cristian; Wurzer, Paul; Fuchs, Jakob; Geyer, Stefan H; Maurer-Gesek, Barbara; Weninger, Wolfgang J; Pfeiffer, Dagmar; Bubalo, Vladimir; Parvizi, Daryousch; Kamolz, Lars-Peter; Lang, Ingrid

    2018-05-01

    Mesenchymal stem/stromal cells derived from human term placentas (PMSCs) are novel therapeutic agents and more topical than ever. Here we evaluated the effects of three types of PMSCs on wound healing in an in vivo mouse model: Amnion-derived MSCs (AMSCs), blood vessel-derived MSCs (BV-MSCs) from the chorionic plate and Wharton's jelly-derived MSCs (WJ-MSCs) from the umbilical cord. We topically applied PMSCs onto skin wounds in mice using the dermal substitute Matriderm ® as carrier and evaluated wound healing parameters. In addition, we investigated the effects of all PMSC types under co-application with placental endothelial cells (PLECs). After 8 days, we compared the percent of wound closure and the angiogenic potential between all groups. AMSCs, BV-MSCs and WJ-MSCs significantly induced a faster healing and a higher number of blood vessels in the wound when compared to controls (Matriderm ® -alone). PLECs did not further improve the advantageous effects of PMSC-treatment. Quantitative data and 3D analysis by high resolution episcopic microscopy confirmed a lower density of vessels in Matriderm ® /PMSCs/PLECs co-application compared to Matriderm ® /PMSCs treatment. Results indicate that all three PMSC types exert similar beneficial effects on wound closure and neovascularization in our mouse model. Using Matriderm ® as carrier for PMSCs propagates rapid cell migration towards the wound area that allows a fast and clinically practicable method for stem cell application. These promising effects warrant further investigation in clinical trials. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Different effects of resveratrol on early and late passage mesenchymal stem cells through β-catenin regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Dong Suk; Choi, Yoorim; Choi, Seong Mi

    2015-11-27

    Resveratrol is a sirtuin 1 (SIRT1) activator and can function as an anti-inflammatory and antioxidant factor. In mesenchymal stem cells (MSCs), resveratrol enhances the proliferation and differentiation potential and has an anti-aging effect. However, contradictory effects of resveratrol on MSC cultures have been reported. In this study, we found that resveratrol had different effects on MSC cultures according to their cell passage and SIRT1 expression. Resveratrol enhanced the self-renewal potential and multipotency of early passage MSCs, but accelerated cellular senescence of late passage MSCs. In early passage MSCs expressing SIRT1, resveratrol decreased ERK and GSK-3β phosphorylation, suppressing β-catenin activity. Inmore » contrast, in late passage MSCs, which did not express SIRT1, resveratrol increased ERK and GSK-3β phosphorylation, activating β-catenin. We confirmed that SIRT1-deficient early passage MSCs treated with resveratrol lost their self-renewal potential and multipotency, and became senescent due to increased β-catenin activity. Sustained treatment with resveratrol at early passages maintained the self-renewal potential and multipotency of MSCs up to passage 10. Our findings suggest that resveratrol can be effectively applied to early passage MSC cultures, whereas parameters such as cell passage and SIRT1 expression must be taken into consideration before applying resveratrol to late passage MSCs. - Highlights: • Resveratrol enhances self-renewal potential and multipotency of early passage MSCs. • Resveratrol accelerates the cellular senescence of late passage MSCs. • The effects of resveratrol on MSCs are dependent on the presence of SIRT1. • SIRT1 modulates ERK/GSK-3β/β-catenin signaling. • Sustained resveratrol treatment maintains MSC stemness up to P10.« less

  6. Establishment and characterization of fetal and maternal mesenchymal stem/stromal cell lines from the human term placenta.

    PubMed

    Qin, Sharon Q; Kusuma, Gina D; Al-Sowayan, Batla; Pace, Rishika A; Isenmann, Sandra; Pertile, Mark D; Gronthos, Stan; Abumaree, Mohamed H; Brennecke, Shaun P; Kalionis, Bill

    2016-03-01

    Human placental mesenchymal stem/stromal cells (MSC) are an attractive source of MSC with great therapeutic potential. However, primary MSC are difficult to study in vitro due to their limited lifespan and patient-to-patient variation. Fetal and maternal MSC were prepared from cells of the chorionic and basal plates of the placenta, respectively. Fetal and maternal MSC were transduced with the human telomerase reverse transcriptase (hTERT). Conventional stem cell assays assessed the MSC characteristics of the cell lines. Functional assays for cell proliferation, cell migration and ability to form colonies in soft agar were used to assess the whether transduced cells retained properties of primary MSC. Fetal chorionic and maternal MSC were successfully transduced with hTERT to create the cell lines CMSC29 and DMSC23 respectively. The lifespans of CMSC29 and DMSC23 were extended in cell culture. Both cell lines retained important MSC characteristics including cell surface marker expression and multipotent differentiation potential. Neither of the cell lines was tumourigenic in vitro. Gene expression differences were observed between CMSC29 and DMSC23 cells and their corresponding parent, primary MSC. Both cell lines show similar migration potential to their corresponding primary, parent MSC. The data show that transduced MSC retained important functional properties of the primary MSC. There were gene expression and functional differences between cell lines CMSC29 and DMSC23 that reflect their different tissue microenvironments of the parent, primary MSC. CMSC29 and DMSC23 cell lines could be useful tools for optimisation and functional studies of MSC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Long-term culture and differentiation of porcine red bone marrow hematopoietic cells co-cultured with immortalized mesenchymal cells.

    PubMed

    Garba, Abubakar; Acar, Delphine D; Roukaerts, Inge D M; Desmarets, Lowiese M B; Devriendt, Bert; Nauwynck, Hans J

    2017-09-01

    Mesenchymal cells are multipotent stromal cells with self-renewal, differentiation and immunomodulatory capabilities. We aimed to develop a co-culture model for differentiating hematopoietic cells on top of immortalized mesenchymal cells for studying interactions between hematopoietic and mesenchymal cells, useful for adequately exploring the therapeutic potential of mesenchymal cells. In this study, we investigated the survival, proliferation and differentiation of porcine red bone marrow hematopoietic cells co-cultured with immortalized porcine bone marrow mesenchymal cells for a period of five weeks. Directly after collection, primary porcine bone marrow mesenchymal cells adhered firmly to the bottom of the culture plates and showed a fibroblast-like appearance, one week after isolation. Upon immortalization, porcine bone marrow mesenchymal cells were continuously proliferating. They were positive for simian virus 40 (SV40) large T antigen and the mesenchymal cell markers CD44 and CD55. Isolated red bone marrow cells were added to these immortalized mesenchymal cells. Five weeks post-seeding, 92±6% of the red bone marrow hematopoietic cells were still alive and their number increased 3-fold during five weekly subpassages on top of the immortalized mesenchymal cells. The red bone marrow hematopoietic cells were originally small and round; later, the cells increased in size. Some of them became elongated, while others remained round. Tiny dendrites appeared attaching hematopoietic cells to the underlying immortalized mesenchymal cells. Furthermore, weekly differential-quick staining of the cells indicated the presence of monoblasts, monocytes, macrophages and lymphocytes in the co-cultures. At three weeks of co-culture, flow cytometry analysis showed an increased surface expression of CD172a, CD14, CD163, CD169, CD4 and CD8 up to 37±0.8%, 40±8%, 41±4%, 23±3% and 19±5% of the hematopoietic cells, respectively. In conclusion, continuous mesenchymal cell

  8. [Placental transfer of drugs].

    PubMed

    Evain-Brion, Danièle; Berveiller, Paul; Gil, Sophie

    2014-01-01

    With more than 830,000 live births in France, a great number of pregnant women are concerned by a treatment during pregnancy and many questions revolve around appreciating medication-related risks during pregnancy. The human placenta is the interface between mother and fetus and remains difficult to study for ethical reasons. Placental transfer of drugs from mother to fetus is dependent on their physicochemical properties, maternal and fetal factors and placental factors. The human placental perfusion model is the only experimental model to study human placental transfer of drugs in organized placental tissue. In vitro models utilizing cell cultures are mostly limited to the investigation of cellular toxicity along pregnancy or specific transfer mechanisms, such as their interaction with transporters. Taking advantage of the complementarity of these models, it will be possible to develop a rational use of drugs during this period. © 2014 Société Française de Pharmacologie et de Thérapeutique.

  9. Combinatorial effect of substratum properties on mesenchymal stem cell sheet engineering and subsequent multi-lineage differentiation.

    PubMed

    Chuah, Yon Jin; Zhang, Ying; Wu, Yingnan; Menon, Nishanth V; Goh, Ghim Hian; Lee, Ann Charlene; Chan, Vincent; Zhang, Yilei; Kang, Yuejun

    2015-09-01

    Cell sheet engineering has been exploited as an alternative approach in tissue regeneration and the use of stem cells to generate cell sheets has further showed its potential in stem cell-mediated tissue regeneration. There exist vast interests in developing strategies to enhance the formation of stem cell sheets for downstream applications. It has been proved that stem cells are sensitive to the biophysical cues of the microenvironment. Therefore we hypothesized that the combinatorial substratum properties could be tailored to modulate the development of cell sheet formation and further influence its multipotency. For validation, polydimethylsiloxane (PDMS) of different combinatorial substratum properties (including stiffness, roughness and wettability) were created, on which the human bone marrow derived mesenchymal stem cells (BMSCs) were cultured to form cell sheets with their multipotency evaluated after induced differentiation. The results showed that different combinatorial effects of these substratum properties were able to influence BMSC behavior such as adhesion, spreading and proliferation during cell sheet development. Collagen formation within the cell sheet was enhanced on substrates with lower stiffness, higher hydrophobicity and roughness, which further assisted the induced chondrogenesis and osteogenesis, respectively. These findings suggested that combinatorial substratum properties had profound effects on BMSC cell sheet integrity and multipotency, which had significant implications for future biomaterials and scaffold designs in the field of BMSC-mediated tissue regeneration. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Isolation and Characterization of Canine Amniotic Membrane-Derived Multipotent Stem Cells

    PubMed Central

    Kim, Hyung-Sik; Kang, Kyung-Sun

    2012-01-01

    Recent studies have shown that amniotic membrane tissue is a rich source of stem cells in humans. In clinical applications, the amniotic membrane tissue had therapeutic effects on wound healing and corneal surface reconstruction. Here, we successfully isolated and identified multipotent stem cells (MSCs) from canine amniotic membrane tissue. We cultured the canine amniotic membrane-derived multipotent stem cells (cAM-MSCs) in low glucose DMEM medium. cAM-MSCs have a fibroblast-like shape and adhere to tissue culture plastic. We characterized the immunophenotype of cAM-MSCs by flow cytometry and measured cell proliferation by the cumulative population doubling level (CPDL). We performed differentiation studies for the detection of trilineage multipotent ability, under the appropriate culture conditions. Taken together, our results show that cAM-MSCs could be a rich source of stem cells in dogs. Furthermore, cAM-MSCs may be useful as a cell therapy application for veterinary regenerative medicine. PMID:23024756

  11. Generation of functional islets from human umbilical cord and placenta derived mesenchymal stem cells.

    PubMed

    Kadam, Sachin; Govindasamy, Vijayendran; Bhonde, Ramesh

    2012-01-01

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) have been used for allogeneic application in tissue engineering but have certain drawbacks. Therefore, mesenchymal stem cells (MSCs) derived from other adult tissue sources have been considered as an alternative. The human umbilical cord and placenta are easily available noncontroversial sources of human tissue, which are often discarded as biological waste, and their collection is noninvasive. These sources of MSCs are not subjected to ethical constraints, as in the case of embryonic stem cells. MSCs derived from umbilical cord and placenta are multipotent and have the ability to differentiate into various cell types crossing the lineage boundary towards endodermal lineage. The aim of this chapter is to provide a detailed reproducible cookbook protocol for the isolation, propagation, characterization, and differentiation of MSCs derived from human umbilical cord and placenta with special reference to harnessing their potential towards pancreatic/islet lineage for utilization as a cell therapy product. We show here that mesenchymal stromal cells can be extensively expanded from umbilical cord and placenta of human origin retaining their multilineage differentiation potential in vitro. Our report indicates that postnatal tissues obtained as delivery waste represent a rich source of mesenchymal stromal cells, which can be differentiated into functional islets employing three-stage protocol developed by our group. These islets could be used as novel in vitro model for screening hypoglycemics/insulin secretagogues, thus reducing animal experimentation for this purpose and for the future human islet transplantation programs to treat diabetes.

  12. Placental genetic variations in circadian clock-related genes increase the risk of placental abruption.

    PubMed

    Qiu, Chunfang; Gelaye, Bizu; Denis, Marie; Tadesse, Mahlet G; Enquobahrie, Daniel A; Ananth, Cande V; Pacora, Percy N; Salazar, Manuel; Sanchez, Sixto E; Williams, Michelle A

    2016-01-01

    The genetic architecture of placental abruption (PA) remains poorly understood. We examined variations in SNPs of circadian clock-related genes in placenta with PA risk. We also explored placental and maternal genomic contributions to PA risk. Placental genomic DNA samples were isolated from 280 PA cases and 244 controls. Genotyping was performed using the Illumina Cardio-MetaboChip. We examined 116 SNPs in 13 genes known to moderate circadian rhythms. Logistic regression models were fit to estimate odds ratios (ORs). The combined effect of multiple SNPs on PA risk was estimated using a weighted genetic risk score. We examined independent and joint associations of wGRS derived from placental and maternal genomes with PA. Seven SNPs in five genes (ARNTL2, CRY2, DEC1, PER3 and RORA), in the placental genome, were associated with PA risk. Each copy of the minor allele (G) of a SNP in the RORA gene (rs2899663) was associated with a 30% reduced odds of PA (95% CI 0.52-0.95). The odds of PA increased with increasing placental-wGRS (Ptrend<0.001). The ORs were 1.00, 2.16, 3.24 and 4.48 across quartiles. Associations persisted after the maternal-wGRS was included in the model. There was evidence of an additive contribution of placental and maternal genetic contributions to PA risk. Participants with placental- and maternal-wGRS in the highest quartile, compared with those in the lowest quartile, had a 15.57-fold (95% CI 3.34-72.60) increased odds of PA. Placental variants in circadian clock-related genes are associated with PA risk; and the association persists after control of genetic variants in the maternal genome.

  13. Multipotent mesenchymal stromal cells decrease transforming growth factor β1 expression in microglia/macrophages and down-regulate plasminogen activator inhibitor 1 expression in astrocytes after stroke.

    PubMed

    Xin, Hongqi; Chopp, Michael; Shen, Li Hong; Zhang, Rui Lan; Zhang, Li; Zhang, Zheng Gang; Li, Yi

    2013-05-10

    Multipotent mesenchymal stromal cells (MSCs) decrease the expression of transforming growth factor β1 (TGFβ1) in astrocytes and subsequently decrease astrocytic plasminogen activator inhibitor 1 (PAI-1) level in an autocrine manner. Since activated microglia/macrophages are also a source of TGFβ1 after stroke, we therefore tested whether MSCs regulate TGFβ1 expression in microglia/macrophages and subsequently alters PAI-1 expression after ischemia. TGFβ1 and its downstream effector phosphorylated SMAD 2/3 (p-SMAD 2/3) were measured in mice subjected to middle cerebral artery occlusion (MCAo). MSC treatment significantly decreased TGFβ1 protein expression in both astrocytes and microglia/macrophages in the ischemic boundary zone (IBZ) at day 14 after stroke. However, the p-SMAD 2/3 was only detected in astrocytes and decreased after MSC treatment. In vitro, RT-PCR results showed that the TGFβ1 mRNA level was increased in both astrocytes and microglia/macrophages in an astrocyte-microglia/macrophage co-culture system after oxygen-glucose deprived (OGD) treatment. MSCs treatment significantly decreased the above TGFβ1 mRNA level under OGD conditions, respectively. OGD increased the PAI-1 mRNA in astrocytes in the astrocyte-microglia/macrophage co-culture system, and MSC administration significantly decreased this level. PAI-1 mRNA was very low in microglia/macrophages compared with that in astrocytes under different conditions. Western blot results also verified that MSC administration significantly decreased p-SMAD 2/3 and PAI-1 level in astrocytes in astrocyte-microglia/macrophage co-culture system under OGD conditions. Our in vivo and in vitro data, in concert, suggest that MSCs decrease TGFβ1 expression in microglia/macrophages in the IBZ which contribute to the down-regulation of PAI-1 level in astrocytes. Published by Elsevier Ireland Ltd.

  14. Tumor-educated mesenchymal stem cells promote pro-metastatic phenotype

    PubMed Central

    Passaro, Nunzia; Zannetti, Antonella

    2017-01-01

    Multipotent mesenchymal stem cells (MSCs) are recruited into tumor microenvironment in response to multiple signals produced by cancer cells. Molecules involved in their homing to tumors are the same inflammatory mediators produced by injured tissues: chemokines, cytokines and growth factors. When MSCs arrive into the tumor microenvironment these are “educated” to have pro-metastatic behaviour. Firstly, they promote cancer immunosuppression modulating both innate and adaptive immune systems. Moreover, tumor associated-MSCs trans-differentiating into cancer-associated fibroblasts can induce epithelial-mesenchymal-transition program in tumor cells. This process determinates a more aggressive phenotype of cancer cells by increasing their motility and invasiveness and favoring their dissemination to distant sites. In addition, MSCs are involved in the formation and modelling of pre-metastatic niches creating a supportive environment for colonization of circulating tumor cells. The development of novel therapeutic approaches targeting the different functions of MSCs in promoting tumor progression as well as the mechanisms underlying their activities could enhance the efficacy of conventional and immune anti-cancer therapies. Furthermore, many studies report the use of MSCs engineered to express different genes or as vehicle to specifically deliver novel drugs to tumors exploiting their strong tropism. Importantly, this approach can enhance local therapeutic efficacy and reduce the risk of systemic side effects. PMID:29069870

  15. Placental Apoptosis in Health and Disease

    PubMed Central

    Sharp, Andrew N.; Heazell, Alexander E.P.; Crocker, Ian P.; Mor, Gil

    2011-01-01

    Apoptosis, programmed cell death, is an essential feature of normal placental development but is exaggerated in association with placental disease. Placental development relies upon effective implantation and invasion of the maternal decidua by the placental trophoblast. In normal pregnancy, trophoblast apoptosis increases with placental growth and advancing gestation. However, apoptosis is notably exaggerated in the pregnancy complications, hydatidiform mole, pre-eclampsia, and intra-uterine growth restriction (IUGR). Placental apoptosis may be initiated by a variety of stimuli, including hypoxia and oxidative stress. In common with other cell-types, trophoblast apoptosis follows the extrinsic or intrinsic pathways culminating in the activation of caspases. In contrast, the formation of apoptotic bodies is less clearly identified, but postulated by some to involve the clustering of apoptotic nuclei and liberation of this material into the maternal circulation. In addition to promoting a favorable maternal immune response, the release of this placental-derived material is thought to provoke the endothelial dysfunction of pre-eclampsia. Widespread apoptosis of the syncytiotrophoblast may also impair trophoblast function leading to the reduction in nutrient transport seen in IUGR. A clearer understanding of placental apoptosis and its regulation may provide new insights into placental pathologies, potentially suggesting therapeutic targets. PMID:20367628

  16. Dynamic equilibrium of heterogeneous and interconvertible multipotent hematopoietic cell subsets.

    PubMed

    Weston, Wendy; Zayas, Jennifer; Perez, Ruben; George, John; Jurecic, Roland

    2014-06-06

    Populations of hematopoietic stem cells and progenitors are quite heterogeneous and consist of multiple cell subsets with distinct phenotypic and functional characteristics. Some of these subsets also appear to be interconvertible and oscillate between functionally distinct states. The multipotent hematopoietic cell line EML has emerged as a unique model to study the heterogeneity and interconvertibility of multipotent hematopoietic cells. Here we describe extensive phenotypic and functional heterogeneity of EML cells which stems from the coexistence of multiple cell subsets. Each of these subsets is phenotypically and functionally heterogeneous, and displays distinct multilineage differentiation potential, cell cycle profile, proliferation kinetics, and expression pattern of HSC markers and some of the key lineage-associated transcription factors. Analysis of their maintenance revealed that on a population level all EML cell subsets exhibit cell-autonomous interconvertible properties, with the capacity to generate all other subsets and re-establish complete parental EML cell population. Moreover, all EML cell subsets generated during multiple cell generations maintain their distinct phenotypic and functional signatures and interconvertible properties. The model of EML cell line suggests that interconvertible multipotent hematopoietic cell subsets coexist in a homeostatically maintained dynamic equilibrium which is regulated by currently unknown cell-intrinsic mechanisms.

  17. Drosophila E-Cadherin Functions in Hematopoietic Progenitors to Maintain Multipotency and Block Differentiation

    PubMed Central

    Gao, Hongjuan; Wu, Xiaorong; Fossett, Nancy

    2013-01-01

    A fundamental question in stem cell biology concerns the regulatory strategies that control the choice between multipotency and differentiation. Drosophila blood progenitors or prohemocytes exhibit key stem cell characteristics, including multipotency, quiescence, and niche dependence. As a result, studies of Drosophila hematopoiesis have provided important insights into the molecular mechanisms that control these processes. Here, we show that E-cadherin is an important regulator of prohemocyte fate choice, maintaining prohemocyte multipotency and blocking differentiation. These functions are reminiscent of the role of E-cadherin in mammalian embryonic stem cells. We also show that mis-expression of E-cadherin in differentiating hemocytes disrupts the boundary between these cells and undifferentiated prohemocytes. Additionally, upregulation of E-cadherin in differentiating hemocytes increases the number of intermediate cell types expressing the prohemocyte marker, Patched. Furthermore, our studies indicate that the Drosophila GATA transcriptional co-factor, U-shaped, is required for E-cadherin expression. Consequently, E-cadherin is a downstream target of U-shaped in the maintenance of prohemocyte multipotency. In contrast, we showed that forced expression of the U-shaped GATA-binding partner, Serpent, repressed E-cadherin expression and promoted lamellocyte differentiation. Thus, U-shaped may maintain E-cadherin expression by blocking the inhibitory activity of Serpent. Collectively, these observations suggest that GATA:FOG complex formation regulates E-cadherin levels and, thereby, the choice between multipotency and differentiation. The work presented in this report further defines the molecular basis of prohemocyte cell fate choice, which will provide important insights into the mechanisms that govern stem cell biology. PMID:24040319

  18. Peptide modified nanofibrous scaffold promotes human mesenchymal stem cell proliferation and long-term passaging.

    PubMed

    Mobasseri, Rezvan; Tian, Lingling; Soleimani, Masoud; Ramakrishna, Seeram; Naderi-Manesh, Hossein

    2018-03-01

    Long-term culture, passage and proliferation of human mesenchymal stem cells (hMSCs) cause loss of their stemness properties including self-renewal and multipotency. By optimizing the MSCs environment in vitro, maintaining the stemness state and better controlling the cell fate might be possible. We have recently reported the significant effects of bioactive Tat protein-derived peptide named R-peptide on hMSC adhesion, morphology and proliferation, which has demonstrated R-peptide enhanced MSC early adhesion and proliferation in comparison to other bioactive molecules including RGD peptide, fibronectin and collagen. In this study, R-peptide was used to evaluate stemness properties of MSCs after long-term passaging. R-peptide conjugated poly caprolactone (PCL) nanofibrous scaffold and unmodified nanofibrous scaffold were used to study the impact of R-peptide modified PCL nanofibers and PCL nanofibers on cell behavior. The results showed early formation of focal adhesion (FA) complex on R-peptide modified scaffolds at 30min after cell seeding. The rate of cell proliferation was significantly increased due to presence of R-peptide, and the MSCs marker analyses using flow cytometry and immunocytochemistry staining proved the ability of R-peptide to maintain mesenchymal stem cell properties (high proliferation, expression of multipotent markers and differentiation capacity) even after long-term passage culturing. Accordingly, our (The) results concluded that bioactive R-peptide in combination with nanofibrous scaffold can mimic the native ECM comprising micro/nano architecture and biochemical molecules in a best way. The designed scaffold can link extracellular matrix (ECM) to nucleus via formation of FA and organization of cytoskeleton, causing fast and strong attachment of MSCs and allowing integrin-mediated signaling to start. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. [Placental features in intrauterine growth retardation].

    PubMed

    Marcorelles, P

    2013-12-01

    To evaluate the placental pathological patterns in intrauterine growth restriction (IUGR) in order to determinate which placental lesions are linked to clinically significant anomalies and to predict the child outcome and the mother risk of recurrence. Bibliographic review using the Medline and PubMed databases. Placental studies designed in order to provide macroscopic and microscopic information about the mechanism of IUGR are not numerous and retrospective; files are most of the time very small. Meta-analyses are an exception. Maternal vascular underperfusion is admitted to be the most frequent etiology of IUGR. None of the associated placental lesions is pathognomonic but the combination of a number of placental changes is. Low placental weight and microscopic lesions are more frequent than gross anomalies. Other pathophysiological groups of placental pathologies are reported to be linked to fetal growth restriction: umbilical cord anomalies, fetal thrombotic vasculopathy, chronic villitis of unknown etiology and chronic histiocytic intervillositis. Some placental lesions have been reported associated with infants with neurologic impairment and can be as different as vascular lesions, villitis of unknown origin with stem villi vasculopathy, fetal thrombotic vasculopathy or umbilical cord anomalies. However, there is no direct link between a type of placental pathology and the infant's adverse outcome or his neurological risk. The maternal risk of recurrence is not easily predictable except for the chronic histiocytic intervillositis in which the estimated recurrence rate is very high. Placental morphological findings can play a critical role in explaining the IUGR. They always need to be correlated with clinical findings. Copyright © 2013. Published by Elsevier Masson SAS.

  20. Key Transcription Factors in the Differentiation of Mesenchymal Stem Cells

    PubMed Central

    Almalki, Sami G.; Agrawal, Devendra K.

    2016-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells that represent a promising source for regenerative medicine. MSCs are capable of osteogenic, chondrogenic, adipogenic and myogenic differentiation. Efficacy of differentiated MSCs to regenerate cells in the injured tissues requires the ability to maintain the differentiation toward the desired cell fate. Since MSCs represent an attractive source for autologous transplantation, cellular and molecular signaling pathways and micro-environmental changes have been studied in order to understand the role of cytokines, chemokines, and transcription factors on the differentiation of MSCs. The differentiation of MSC into a mesenchymal lineage is genetically manipulated and promoted by specific transcription factors associated with a particular cell lineage. Recent studies have explored the integration of transcription factors, including Runx2, Sox9, PPARγ, MyoD, GATA4, and GATA6 in the differentiation of MSCs. Therefore, the overexpression of a single transcription factor in MSCs may promote trans-differentiation into specific cell lineage, which can be used for treatment of some diseases. In this review, we critically discussed and evaluated the role of transcription factors and related signaling pathways that affect the differentiation of MSCs toward adipocytes, chondrocytes, osteocytes, skeletal muscle cells, cardiomyocytes, and smooth muscle cells. PMID:27012163

  1. Simultaneous inhibition of multiple oncogenic miRNAs by a multi-potent microRNA sponge.

    PubMed

    Jung, Jaeyun; Yeom, Chanjoo; Choi, Yeon-Sook; Kim, Sinae; Lee, EunJi; Park, Min Ji; Kang, Sang Wook; Kim, Sung Bae; Chang, Suhwan

    2015-08-21

    The roles of oncogenic miRNAs are widely recognized in many cancers. Inhibition of single miRNA using antagomiR can efficiently knock-down a specific miRNA. However, the effect is transient and often results in subtle phenotype, as there are other miRNAs contribute to tumorigenesis. Here we report a multi-potent miRNA sponge inhibiting multiple miRNAs simultaneously. As a model system, we targeted miR-21, miR-155 and miR-221/222, known as oncogenic miRNAs in multiple tumors including breast and pancreatic cancers. To achieve efficient knockdown, we generated perfect and bulged-matched miRNA binding sites (MBS) and introduced multiple copies of MBS, ranging from one to five, in the multi-potent miRNA sponge. Luciferase reporter assay showed the multi-potent miRNA sponge efficiently inhibited 4 miRNAs in breast and pancreatic cancer cells. Furthermore, a stable and inducible version of the multi-potent miRNA sponge cell line showed the miRNA sponge efficiently reduces the level of 4 target miRNAs and increase target protein level of these oncogenic miRNAs. Finally, we showed the miRNA sponge sensitize cells to cancer drug and attenuate cell migratory activity. Altogether, our study demonstrates the multi-potent miRNA sponge is a useful tool to examine the functional impact of simultaneous inhibition of multiple miRNAs and proposes a therapeutic potential.

  2. Placental gene expression of the placental growth factor (PlGF) in intrauterine growth restriction.

    PubMed

    Joó, József Gábor; Rigó, János; Börzsönyi, Balázs; Demendi, Csaba; Kornya, László

    2017-06-01

    We analyzed changes in gene expression of placental growth factor (PIGF) in human placental samples obtained postpartum from pregnancies with IUGR. During a twelve-month study period representing the calendar year of 2012 placental samples from 101 pregnancies with IUGR and from 140 normal pregnancies were obtained for analysis of a potential difference in PIGF gene expression. There was no significant difference in gene activity of the PIGF gene between the IUGR versus normal pregnancy groups (Ln2 α : 0.92; p < 0.06). Within the IUGR group, no fetal gender-dependent differences were seen in placental PIGF gene expression (Ln2 α : 0.72; p = 0.05). Placental PIGF gene activity was significantly lower in fetuses with more severe IUGR versus less severe cases (Ln2 α : -1.49; p < 0.03). We found no difference in gene expression of PIGF in placental samples obtained from IUGR pregnancies versus normal pregnancy suggesting the absence of a direct role of PIGF gene activity in the development of defective angiogenesis in IUGR during the later stages of gestation. However, in more severe cases of intrauterine growth restriction PIGF expression does show a significant decrease indicating its potential role in the profound defect in angiogenesis in these cases.

  3. Functional vascular smooth muscle cells derived from human induced pluripotent stem cells via mesenchymal stem cell intermediates

    PubMed Central

    Bajpai, Vivek K.; Mistriotis, Panagiotis; Loh, Yuin-Han; Daley, George Q.; Andreadis, Stelios T.

    2012-01-01

    Aims Smooth muscle cells (SMC) play an important role in vascular homeostasis and disease. Although adult mesenchymal stem cells (MSC) have been used as a source of contractile SMC, they suffer from limited proliferation potential and culture senescence, particularly when originating from older donors. By comparison, human induced pluripotent stem cells (hiPSC) can provide an unlimited source of functional SMC for autologous cell-based therapies and for creating models of vascular disease. Our goal was to develop an efficient strategy to derive functional, contractile SMC from hiPSC. Methods and results We developed a robust, stage-wise, feeder-free strategy for hiPSC differentiation into functional SMC through an intermediate stage of multipotent MSC, which could be coaxed to differentiate into fat, bone, cartilage, and muscle. At this stage, the cells were highly proliferative and displayed higher clonogenic potential and reduced senescence when compared with parental hair follicle mesenchymal stem cells. In addition, when exposed to differentiation medium, the myogenic proteins such as α-smooth muscle actin, calponin, and myosin heavy chain were significantly upregulated and displayed robust fibrillar organization, suggesting the development of a contractile phenotype. Indeed, tissue constructs prepared from these cells exhibited high levels of contractility in response to receptor- and non-receptor-mediated agonists. Conclusion We developed an efficient stage-wise strategy that enabled hiPSC differentiation into contractile SMC through an intermediate population of clonogenic and multipotent MSC. The high yield of MSC and SMC derivation suggests that our strategy may facilitate an acquisition of the large numbers of cells required for regenerative medicine or for studying vascular disease pathophysiology. PMID:22941255

  4. Body Management: Mesenchymal Stem Cells Control the Internal Regenerator

    PubMed Central

    Hariri, Robert

    2015-01-01

    Summary It has been assumed that adult tissues cannot regenerate themselves. With the current understanding that every adult tissue has its own intrinsic progenitor or stem cell, it is now clear that almost all tissues have regenerative potential partially related to their innate turnover dynamics. Moreover, it appears that a separate class of local cells originating as perivascular cells appears to provide regulatory oversight for localized tissue regeneration. The management of this regeneration oversight has a profound influence on the use of specific cells for cell therapies as a health care delivery tool set. The multipotent mesenchymal stem cell (MSC), now renamed the medicinal signaling cell, predominantly arises from pericytes released from broken and inflamed blood vessels and appears to function as both an immunomodulatory and a regeneration mediator. MSCs are being tested for their management capabilities to produce therapeutic outcomes in more than 480 clinical trials for a wide range of clinical conditions. Local MSCs function by managing the body’s primary repair and regeneration activities. Supplemental MSCs can be provided from either endogenous or exogenous sources of either allogeneic or autologous origin. This MSC-based therapy has the potential to change how health care is delivered. These medicinal cells are capable of sensing their surroundings. Also, by using its complex signaling circuitry, these cells organize site-specific regenerative responses as if these therapeutic cells were well-programmed modern computers. Given these facts, it appears that we are entering a new age of cellular medicine. Significance This report is a perspective from an active scientist and an active entrepreneur and commercial leader. It is neither a comprehensive review nor a narrowly focused treatise. The broad themes and the analogy to the working component of a computer and that of a cell are meant to draw several important scientific principles and health

  5. Amniotic mesenchymal tissue cells inhibit dendritic cell differentiation of peripheral blood and amnion resident monocytes.

    PubMed

    Magatti, Marta; De Munari, Silvia; Vertua, Elsa; Nassauto, Claudia; Albertini, Alberto; Wengler, Georg S; Parolini, Ornella

    2009-01-01

    Cells derived from the amniotic membranes of human term placenta have drawn much interest for their characteristics of multipotency and low immunogenicity, supporting a variety of possible clinical applications in the field of cell transplantation and regenerative medicine. We have previously shown that cells derived from the mesenchymal region of human amnion (AMTC) can strongly inhibit T-lymphocyte proliferation. In this study, we demonstrate that AMTC can block differentiation and maturation of monocytes into dendritic cells (DC), preventing the expression of the DC marker CD1a and reducing the expression of HLA-DR, CD80, and CD83. The monocyte maturation block resulted in impaired allostimulatory ability of these cells on allogeneic T cells. In attempting to define the mechanisms responsible for these findings, we have observed that the presence of AMTC in differentiating DC cultures results in the arrest of the cells to the G(0) phase and abolishes the production of inflammatory cytokines such as TNF-alpha, CXCL10, CXCL9, and CCL5. Finally, we also demonstrate that the monocytic cells present in the amniotic mesenchymal region fail to differentiate toward the DC lineage. Taken together, our data suggest that the mechanisms by which AMTC exert immumodulatory effects do not only relate directly to T cells, but also include inhibition of the generation and maturation of antigen-presenting cells. In this context, AMTC represent a very attractive source of multipotent allogeneic cells that promise to be remarkably valuable for cell transplantation approaches, not only due to their low immunogenicity, but also because of the added potential of modulating immune responses, which could be fundamental both for controlling graft rejection after transplantation and also for controlling diseases characterized by inflammatory processes.

  6. Placental weight and birth weight to placental weight ratio in monochorionic and dichorionic growth-restricted and non-growth-restricted twins

    PubMed Central

    Souza, Mariângela Alves; de Lourdes Brizot, Maria; Biancolin, Sckarlet Ernandes; Schultz, Regina; de Carvalho, Mário Henrique Burlacchini; Francisco, Rossana Pulcineli Vieira; Zugaib, Marcelo

    2017-01-01

    OBJECTIVE: The aim of the present study was to compare the placental weight and birth weight/placental weight ratio for intrauterine growth-restricted and non-intrauterine growth-restricted monochorionic and dichorionic twins. METHODS: This was a retrospective analysis of placentas from twin pregnancies. Placental weight and the birth weight/placental weight ratio were compared in intrauterine growth-restricted and non-intrauterine growth-restricted monochorionic and dichorionic twins. The association between cord insertion type and placental lesions in intrauterine growth-restricted and non-intrauterine growth-restricted monochorionic and dichorionic twins was also investigated. RESULTS: A total of 105 monochorionic (intrauterine growth restriction=40; non-intrauterine growth restriction=65) and 219 dichorionic (intrauterine growth restriction=57; non-intrauterine growth restriction=162) placentas were analyzed. A significantly lower placental weight was observed in intrauterine growth-restricted monochorionic (p=0.022) and dichorionic (p<0.001) twins compared to non-intrauterine growth-restricted twins. There was no difference in the birth weight/placental weight ratio between the intrauterine growth restriction and non-intrauterine growth restriction groups for either monochorionic (p=0.36) or dichorionic (p=0.68) twins. Placental weight and the birth weight/placental weight ratio were not associated with cord insertion type or with placental lesions. CONCLUSION: Low placental weight, and consequently reduced functional mass, appears to be involved in fetal growth restriction in monochorionic and dichorionic twins. The mechanism by which low placental weight influences the birth weight/placental weight ratio in intrauterine growth-restricted monochorionic and dichorionic twins needs to be determined in larger prospective studies. PMID:28591337

  7. Dynamic equilibrium of heterogeneous and interconvertible multipotent hematopoietic cell subsets

    PubMed Central

    Weston, Wendy; Zayas, Jennifer; Perez, Ruben; George, John; Jurecic, Roland

    2014-01-01

    Populations of hematopoietic stem cells and progenitors are quite heterogeneous and consist of multiple cell subsets with distinct phenotypic and functional characteristics. Some of these subsets also appear to be interconvertible and oscillate between functionally distinct states. The multipotent hematopoietic cell line EML has emerged as a unique model to study the heterogeneity and interconvertibility of multipotent hematopoietic cells. Here we describe extensive phenotypic and functional heterogeneity of EML cells which stems from the coexistence of multiple cell subsets. Each of these subsets is phenotypically and functionally heterogeneous, and displays distinct multilineage differentiation potential, cell cycle profile, proliferation kinetics, and expression pattern of HSC markers and some of the key lineage-associated transcription factors. Analysis of their maintenance revealed that on a population level all EML cell subsets exhibit cell-autonomous interconvertible properties, with the capacity to generate all other subsets and re-establish complete parental EML cell population. Moreover, all EML cell subsets generated during multiple cell generations maintain their distinct phenotypic and functional signatures and interconvertible properties. The model of EML cell line suggests that interconvertible multipotent hematopoietic cell subsets coexist in a homeostatically maintained dynamic equilibrium which is regulated by currently unknown cell-intrinsic mechanisms. PMID:24903657

  8. Reprogramming multipotent tumor cells with the embryonic neural crest microenvironment

    PubMed Central

    Kasemeier-Kulesa, Jennifer C.; Teddy, Jessica M.; Postovit, Lynne-Marie; Seftor, Elisabeth A.; Seftor, Richard E.B.; Hendrix, Mary J.C.; Kulesa, Paul M.

    2008-01-01

    The embryonic microenvironment is an important source of signals that program multipotent cells to adopt a particular fate and migratory path, yet its potential to reprogram and restrict multipotent tumor cell fate and invasion is unrealized. Aggressive tumor cells share many characteristics with multipotent, invasive embryonic progenitors, contributing to the paradigm of tumour cell plasticity. In the vertebrate embryo, multiple cell types originate from a highly invasive cell population called the neural crest. The neural crest and the embryonic microenvironments they migrate through represent an excellent model system to study cell diversification during embryogenesis and phenotype determination. Recent exciting studies of tumor cells transplanted into various embryo models, including the neural crest rich chick microenvironment, have revealed the potential to control and revert the metastatic phenotype, suggesting further work may help to identify new targets for therapeutic intervention derived from a convergence of tumorigenic and embryonic signals. In this mini-review, we summarize markers that are common to the neural crest and highly aggressive human melanoma cells. We highlight advances in our understanding of tumor cell behaviors and plasticity studied within the chick neural crest rich microenvironment. In so doing, we honor the tremendous contributions of Professor Elizabeth D. Hay towards this important interface of developmental and cancer biology. PMID:18629870

  9. Chitosan-coated amyloid fibrils increase adipogenesis of mesenchymal stem cells.

    PubMed

    Gilbert, Jay; Reynolds, Nicholas P; Russell, Sarah M; Haylock, David; McArthur, Sally; Charnley, Mirren; Jones, Owen G

    2017-10-01

    Mesenchymal stem cells (MSCs) have the potential to revolutionize medicine due to their ability to differentiate into specific lineages for targeted tissue repair. Development of materials and cell culture platforms that improve differentiation of either autologous or allogenic stem cell sources into specific lineages would enhance clinical utilization of MCSs. In this study, nanoscale amyloid fibrils were evaluated as substrate materials to encourage viability, proliferation, multipotency, and differentiation of MSCs. Fibrils assembled from the proteins lysozyme or β-lactoglobulin, with and without chitosan coatings, were deposited on planar mica surfaces. MSCs were cultured and differentiated on fibril-covered surfaces, as well as on unstructured controls and tissue culture plastic. Expression of CD44 and CD90 proteins indicated that multipotency was maintained for all fibrils, and osteogenic differentiation was similarly comparable among all tested materials. MSCs grown for 7days on fibril-covered surfaces favored multicellular spheroid formation and demonstrated a >75% increase in adipogenesis compared to tissue culture plastic controls, although this benefit could only be achieved if MSCs were transferred to TCP for the final differentiation step. The largest spheroids and greatest tendency to undergo adipogenesis was evidenced among MSCs grown on fibrils coated with the positively-charged polysaccharide chitosan, suggesting that spheroid formation is prompted by both topography and cell-surface interactivity and that there is a connection between multicellular spheroid formation and adipogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Analysis of results of acute graft-versus-host disease prophylaxis with donor multipotent mesenchymal stromal cells in patients with hemoblastoses after allogeneic bone marrow transplantation.

    PubMed

    Shipounova, I N; Petinati, N A; Bigildeev, A E; Zezina, E A; Drize, N I; Kuzmina, L A; Parovichnikova, E N; Savchenko, V G

    2014-12-01

    Allogeneic bone marrow transplantation (allo-BMT) is currently the only way to cure many hematoproliferative disorders. However, allo-BMT use is limited by severe complications, the foremost being graft-versus-host disease (GVHD). Due to the lack of efficiency of the existing methods of GVHD prophylaxis, new methods are being actively explored, including the use of donors' multipotent mesenchymal stromal cells (MMSC). In this work, we analyzed the results of acute GVHD (aGVHD) prophylaxis by means of MMSC injections after allo-BMT in patients with hematological malignancies. The study included 77 patients. They were randomized into two groups - those receiving standard prophylaxis of aGVHD and those who were additionally infused with MMSC derived from the bone marrow of hematopoietic stem cell donors. We found that the infusion of MMSC halves the incidence of aGVHD and increases the overall survival of patients. Four of 39 MMSC samples were ineffective for preventing aGVHD. Analysis of individual donor characteristics (gender, age, body mass index) and the MMSC properties of these donors (growth parameters, level of expression of 30 genes involved in proliferation, differentiation, and immunomodulation) revealed no significant difference between the MMSC that were effective or ineffective for preventing aGVHD. We used multiple logistic regression to establish a combination of features that characterize the most suitable MMSC samples for the prevention of aGVHD. A model predicting MMSC sample success for aGVHD prophylaxis was constructed. Significant model parameters were increased relative expression of the FGFR1 gene in combination with reduced expression levels of the PPARG and IGF1 genes. Depending on the chosen margin for probability of successful application of MMSC, this model correctly predicts the outcome of the use of MMSC in 82-94% of cases. The proposed model of prospective evaluation of the effectiveness of MMSC samples will enable prevention of the

  11. Human Adipose-Derived Mesenchymal Stem Cells Cryopreservation and Thawing Decrease α4-Integrin Expression.

    PubMed

    Irioda, Ana Carolina; Cassilha, Rafael; Zocche, Larissa; Francisco, Julio Cesar; Cunha, Ricardo Correa; Ferreira, Priscila Elias; Guarita-Souza, Luiz Cesar; Ferreira, Reginaldo Justino; Mogharbel, Bassam Felipe; Garikipati, Venkata Naga Srikanth; Souza, Daiany; Beltrame, Mirian Perlingeiro; de Carvalho, Katherine Athayde Teixeira

    2016-01-01

    Aim. The effects of cryopreservation on adipose tissue-derived mesenchymal stem cells are not clearly documented, as there is a growing body of evidence about the importance of adipose-derived mesenchymal stem cells for regenerative therapies. The aim of this study was to analyze human adipose tissue-derived mesenchymal stem cells phenotypic expression (CD34, CD45, CD73, CD90, CD105, and CD49d), colony forming unit ability, viability, and differentiation potential before and after cryopreservation. Materials and Methods. 12 samples of the adipose tissue were collected from a healthy donor using the liposuction technique. The cell isolation was performed by enzymatic digestion and then the cells were cultured up to passage 2. Before and after cryopreservation the immunophenotype, cellular viability analysis by flow cytometer, colony forming units ability, differentiation potential into adipocytes and osteoblasts as demonstrated by Oil Red O and Alizarin Red staining, respectively. Results. The immunophenotypic markers expression was largely preserved, and their multipotency was maintained. However, after cryopreservation, the cells decreased α4-integrin expression (CD49d), cell viability, and number of colony forming units. Conclusions. These findings suggest that ADMSC transplanted after cryopreservation might compromise the retention of transplanted cells in the host tissue. Therefore, further studies are warranted to standardize protocols related to cryopreservation to attain full benefits of stem cell therapy.

  12. Placental immune state shifts with gestational age.

    PubMed

    Lewis, Emma L; Sierra, Luz-Jeannette; Barila, Guillermo O; Brown, Amy G; Porrett, Paige M; Elovitz, Michal A

    2018-06-01

    Placental immunologic functions are implicated in both the maintenance of a healthy pregnancy and the pathogenesis of obstetric complications. Immune populations at the maternal-fetal interface are hypothesized to support fetomaternal tolerance, defend the fetus from infection, and contribute to labor initiation. Despite the many potential roles of placental immune cells in normal and abnormal pregnancy, little is known about placental immune population dynamics over gestation, particularly near parturition. A daily placental immune cell census was established in a murine model by flow cytometry from mid to late gestation and compared to the maternal systemic immune census. Shifts in the placental immune state were further characterized through cytokine ELISAs. The placental immune census is distinct from the maternal systemic immune census, although the cells are primarily maternal in origin. Near term parturition, the placenta contains fewer CD11c-positive myeloid cells and regulatory T cells, and there is a concurrent decrease in placental IL-9 and IL-35. The immune profile of the placenta demonstrates a decrease in both regulatory immune cell types and cytokines late in gestation. Establishing the placental immune population dynamics over a healthy pregnancy will allow future investigation of placental immune cells during abnormal pregnancy. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Extrinsic and intrinsic mechanisms by which mesenchymal stem cells suppress the immune system

    PubMed Central

    Coulson-Thomas, Vivien J.; Coulson-Thomas, Yvette M.; Gesteira, Tarsis F.; Kao, Winston W.-Y.

    2016-01-01

    Mesenchymal stem cells (MSCs) are a group of fibroblast-like multipotent mesenchymal stromal cells that have the ability to differentiate into osteoblasts, adipocytes, and chondrocytes. Recent studies have demonstrated that MSCs possess a unique ability to exert suppressive and regulatory effects on both adaptive and innate immunity in an autologous and allogeneic manner. A vital step in stem cell transplantation is overcoming the potential graft-versus-host disease, which is a limiting factor to transplantation success. Given that MSCs attain powerful differentiation capabilities and also present immunosuppressive properties, which enable them to survive host immune rejection, MSCs are of great interest. Due to their ability to differentiate into different cell types and to suppress and modulate the immune system, MSCs are being developed for treating a plethora of diseases, including immune disorders. Moreover, in recent years, MSCs have been genetically engineered to treat and sometimes even cure some diseases, and the use of MSCs for cell therapy presents new perspectives for overcoming tissue rejection. In this review, we discuss the potential extrinsic and intrinsic mechanisms that underlie MSCs’ unique ability to modulate inflammation, and both innate and adaptive immunity. PMID:26804815

  14. Cell-free placental mRNA in maternal plasma to predict placental invasion in patients with placenta accreta.

    PubMed

    El Behery, Manal M; Rasha L, Etewa; El Alfy, Yehya

    2010-04-01

    To evaluate whether measuring cell-free placental mRNA in maternal plasma improves the diagnostic accuracy of ultrasound and color Doppler in detecting placental invasion in patients at risk for placenta accreta. Thirty-five singleton pregnant women of more than 28 weeks of gestation and at risk for placenta accreta underwent ultrasound and color Doppler assessment. Cell-free placental mRNA in maternal plasma was measured using real-time reverse-transcription polymerase chain reaction. Patients were classified into 2 groups based on the findings at cesarean delivery and histological examination: women with placenta accreta (n=7) and women without placenta accreta (n=28). The median MoM (multiples of the median) value of cell-free placental mRNA was significantly higher in patients with placenta accreta than in those without placenta accreta (6.50 vs 2.60; P<0.001. Moreover, cell-free placental mRNA was significantly elevated in patients with placenta increta and percreta than in those with simple accreta. Six false-positive results were found on ultrasound, all from patients without placenta accreta and an insignificant rise in cell-free placental mRNA levels. Measuring cell-free placental mRNA in maternal plasma may increase the accuracy of ultrasound and color Doppler in prenatal prediction of placental invasion in patients with suspected placenta accreta. Copyright 2009 International Federation of Gynecology and Obstetrics. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Placental transfer and metabolism: an overview of the experimental models utilizing human placental tissue.

    PubMed

    Myllynen, Päivi; Vähäkangas, Kirsi

    2013-02-01

    Over the decades several ex vivo and in vitro models which utilize delivered human placenta have been developed to study various placental functions. The use of models originating from human placenta to study transplacental transfer and related mechanisms is an attractive option because human placenta is relatively easily available for experimental studies. After delivery placenta has served its purpose and is usually disposed of. The purpose of this review is to give an overview of the use of human placental models for the studies on human placental transfer and related mechanisms such as transporter functions and xenobiotic metabolism. Human placental perfusion, the most commonly used continuous cell lines, primary cells and tissue culture, as well as subcellular fractions are briefly introduced and their major advantages and disadvantages are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. 18F-FDG labeling of mesenchymal stem cells and multipotent adult progenitor cells for PET imaging: effects on ultrastructure and differentiation capacity.

    PubMed

    Wolfs, Esther; Struys, Tom; Notelaers, Tineke; Roberts, Scott J; Sohni, Abhishek; Bormans, Guy; Van Laere, Koen; Luyten, Frank P; Gheysens, Olivier; Lambrichts, Ivo; Verfaillie, Catherine M; Deroose, Christophe M

    2013-03-01

    Because of their extended differentiation capacity, stem cells have gained great interest in the field of regenerative medicine. For the development of therapeutic strategies, more knowledge on the in vivo fate of these cells has to be acquired. Therefore, stem cells can be labeled with radioactive tracer molecules such as (18)F-FDG, a positron-emitting glucose analog that is taken up and metabolically trapped by the cells. The aim of this study was to optimize the radioactive labeling of mesenchymal stem cells (MSCs) and multipotent adult progenitor cells (MAPCs) in vitro with (18)F-FDG and to investigate the potential radiotoxic effects of this labeling procedure with a range of techniques, including transmission electron microscopy (TEM). Mouse MSCs and rat MAPCs were used for (18)F-FDG uptake kinetics and tracer retention studies. Cell metabolic activity, proliferation, differentiation and ultrastructural changes after labeling were evaluated using an Alamar Blue reagent, doubling time calculations and quantitative TEM, respectively. Additionally, mice were injected with MSCs and MAPCs prelabeled with (18)F-FDG, and stem cell biodistribution was investigated using small-animal PET. The optimal incubation period for (18)F-FDG uptake was 60 min. Significant early tracer washout was observed, with approximately 30%-40% of the tracer being retained inside the cells 3 h after labeling. Cell viability, proliferation, and differentiation capacity were not severely affected by (18)F-FDG labeling. No major changes at the ultrastructural level, considering mitochondrial length, lysosome size, the number of lysosomes, the number of vacuoles, and the average rough endoplasmic reticulum width, were observed with TEM. Small-animal PET experiments with radiolabeled MAPCs and MSCs injected intravenously in mice showed a predominant accumulation in the lungs and a substantial elution of (18)F-FDG from the cells. MSCs and MAPCs can be successfully labeled with (18)F-FDG for

  17. Characteristics, applications and prospects of mesenchymal stem cells in cell therapy.

    PubMed

    Guadix, Juan A; Zugaza, José L; Gálvez-Martín, Patricia

    2017-05-10

    Recent advances in the field of cell therapy and regenerative medicine describe mesenchymal stem cells (MSCs) as potential biological products due to their ability to self-renew and differentiate. MSCs are multipotent adult cells with immunomodulatory and regenerative properties, and, given their therapeutic potential, they are being widely studied in order to evaluate their viability, safety and efficacy. In this review, we describe the main characteristics and cellular sources of MSCs, in addition to providing an overview of their properties and current clinical applications, as well offering updated information on the regulatory aspects that define them as somatic cell therapy products. Cell therapy based on MSCs is offered nowadays as a pharmacological alternative, although there are still challenges to be addressed in this regard. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  18. Recruited brain tumor-derived mesenchymal stem cells contribute to brain tumor progression.

    PubMed

    Behnan, Jinan; Isakson, Pauline; Joel, Mrinal; Cilio, Corrado; Langmoen, Iver A; Vik-Mo, Einar O; Badn, Wiaam

    2014-05-01

    The identity of the cells that contribute to brain tumor structure and progression remains unclear. Mesenchymal stem cells (MSCs) have recently been isolated from normal mouse brain. Here, we report the infiltration of MSC-like cells into the GL261 murine glioma model. These brain tumor-derived mesenchymal stem cells (BT-MSCs) are defined with the phenotype (Lin-Sca-1+CD9+CD44+CD166+/-) and have multipotent differentiation capacity. We show that the infiltration of BT-MSCs correlates to tumor progression; furthermore, BT-MSCs increased the proliferation rate of GL261 cells in vitro. For the first time, we report that the majority of GL261 cells expressed mesenchymal phenotype under both adherent and sphere culture conditions in vitro and that the non-MSC population is nontumorigenic in vivo. Although the GL261 cell line expressed mesenchymal phenotype markers in vitro, most BT-MSCs are recruited cells from host origin in both wild-type GL261 inoculated into green fluorescent protein (GFP)-transgenic mice and GL261-GFP cells inoculated into wild-type mice. We show the expression of chemokine receptors CXCR4 and CXCR6 on different recruited cell populations. In vivo, the GL261 cells change marker profile and acquire a phenotype that is more similar to cells growing in sphere culture conditions. Finally, we identify a BT-MSC population in human glioblastoma that is CD44+CD9+CD166+ both in freshly isolated and culture-expanded cells. Our data indicate that cells with MSC-like phenotype infiltrate into the tumor stroma and play an important role in tumor cell growth in vitro and in vivo. Thus, we suggest that targeting BT-MSCs could be a possible strategy for treating glioblastoma patients. © 2013 AlphaMed Press.

  19. 2011 and 2012 Early Careers Achievement Awards: Placental programming: how the maternal environment can impact placental function.

    PubMed

    Vonnahme, K A; Lemley, C O; Shukla, P; O'Rourke, S T

    2013-06-01

    Proper establishment of the placenta is important for fetal survival; however, placental adaptations to inadequate maternal nutrition or other stressors are imperative for fetal growth to be optimal. The effects of maternal nutritional status and activity level on placental vascular function and uteroplacental blood flows are important to understand as improper placental function leads to reduced growth of the fetus. In environments where fetal growth can be compromised, potential therapeutics may augment placental function and delivery of nutrients to improve offspring performance during postnatal life. Factors that could enhance placental function include supplementation of specific nutrients, such as protein, hormone supplements, such as indolamines, and increased activity levels of the dam. To understand the mechanism of how the maternal environment can impact uterine or umbilical blood flows, assessment of placental vascular reactivity has been studied in several large animal models. As we begin to understand how the maternal environment impacts uterine and umbilical blood flows and other uteroplacental hemodynamic parameters, development of management methods and therapeutics for proper fetal growth can be achieved.

  20. [Isolation and Characterization of Multipotent Precursor Cells from Murine Adipose Tissue using a Clinically Approved Cell Separation System].

    PubMed

    Krug, C; Beer, A; Saller, M M; Aszodi, A; Holzbach, T; Giunta, R E; Volkmer, E

    2016-04-01

    Recent studies underscored the clinical potential of adipose-derived multipotent stem-/precursor cells (ASPCs). One of the main hurdles en route to clinical application was to isolate cells without having to perform expansion cultures outside the OR. A new generation of clinically approved, commercially available cell separation systems claims to provide ASPCs ready for application without further expansion cultures. However, it is unclear if the new systems yield sufficient cells of adequate quality for the use in autologous murine models. The aim of this study was to isolate and characterize adipose-derived precursor cells taken from the inguinal fat pat of wistar rats using InGeneron's clinically approved ARC™-cell separation system. We isolated cells from the inguinal fat pad of 3 male Wistar rats according to the manufacturer's protocol. In order to reduce the influence of the atmospheric oxygen on the multipotent precursor cells, one half of the cell suspension was cultivated under hypoxia (2% O2) simulating physiological conditions for ASPCs. As a control, the other half of the cells were cultivated under normoxia (21% O2). Cell surface markers CD90, CD29, CD45 and CD11b/c were analyzed by FACS, and osteogenic and adipogenic differentiation of the ASPCs was performed. Finally, cellular growth characteristics were assessed by evaluation of the cumulative population doublings and CFU assay, and metabolic activity was evaluated by WST-1 assay. Processing time was 90 (± 12) min. 1 g of adipose tissue yielded approximately 60 000 plastic adhering cells. Both groups showed a high expression of the mesenchymal stem cell markers CD90 and CD29 while they were negative for the leucocyte markers CD45 and CD11b/c. A strong osteogenic differentiation and a sufficient adipogenic differentiation potential was proven for all ASPCs. Under hypoxia, ASPCs showed increased proliferation characteristics and CFU efficiency as well as a significantly increased metabolic

  1. Mesenchymal stem cell-derived microparticles: a promising therapeutic strategy.

    PubMed

    Tan, Xi; Gong, Yong-Zhen; Wu, Ping; Liao, Duan-Fang; Zheng, Xi-Long

    2014-08-18

    Mesenchymal stem cells (MSCs) are multipotent stem cells that give rise to various cell types of the mesodermal germ layer. Because of their unique ability to home in on injured and cancerous tissues, MSCs are of great potential in regenerative medicine. MSCs also contribute to reparative processes in different pathological conditions, including cardiovascular diseases and cancer. However, many studies have shown that only a small proportion of transplanted MSCs can actually survive and be incorporated into host tissues. The effects of MSCs cannot be fully explained by their number. Recent discoveries suggest that microparticles (MPs) derived from MSCs may be important for the physiological functions of their parent. Though the physiological role of MSC-MPs is currently not well understood, inspiring results indicate that, in tissue repair and anti-cancer therapy, MSC-MPs have similar pro-regenerative and protective properties as their cellular counterparts. Thus, MSC-MPs represent a promising approach that may overcome the obstacles and risks associated with the use of native or engineered MSCs.

  2. Directed Differentiation of Human-Induced Pluripotent Stem Cells to Mesenchymal Stem Cells.

    PubMed

    Lian, Qizhou; Zhang, Yuelin; Liang, Xiaoting; Gao, Fei; Tse, Hung-Fat

    2016-01-01

    Multipotent stromal cells, also known as mesenchymal stem cells (MSCs), possess great potential to generate a wide range of cell types including endothelial cells, smooth muscle cells, bone, cartilage, and lipid cells. This protocol describes in detail how to perform highly efficient, lineage-specific differentiation of human-induced pluripotent stem cells (iPSCs) with an MSCs fate. The approach uses a clinically compliant protocol with chemically defined media, feeder-free conditions, and a CD105 positive and CD24 negative selection to achieve a single cell-based MSCs derivation from differentiating human pluripotent cells in approximately 20 days. Cells generated with this protocol express typical MSCs surface markers and undergo adipogenesis, osteogenesis, and chondrogenesis similar to adult bone marrow-derived MSCs (BM-MSCs). Nonetheless, compared with adult BM-MSCs, iPSC-MSCs display a higher proliferative capacity, up to 120 passages, without obvious loss of self-renewal potential and constitutively express MSCs surface antigens. MSCs generated with this protocol have numerous applications, including expansion to large scale cell numbers for tissue engineering and the development of cellular therapeutics. This approach has been used to rescue limb ischemia, allergic disorders, and cigarette smoke-induced lung damage and to model mesenchymal and vascular disorders of Hutchinson-Gilford progeria syndrome (HGPS).

  3. Hepatocyte growth factor induces proliferation and differentiation of multipotent and erythroid hemopoietic progenitors.

    PubMed

    Galimi, F; Bagnara, G P; Bonsi, L; Cottone, E; Follenzi, A; Simeone, A; Comoglio, P M

    1994-12-01

    Hepatocyte growth factor (HGF) is a mesenchymal derived growth factor known to induce proliferation and "scattering" of epithelial and endothelial cells. Its receptor is the tyrosine kinase encoded by the c-MET protooncogene. Here we show that highly purified recombinant HGF stimulates hemopoietic progenitors to form colonies in vitro. In the presence of erythropoietin, picomolar concentrations of HGF induced the formation of erythroid burst-forming unit colonies from CD34-positive cells purified from human bone marrow, peripheral blood, or umbilical cord blood. The growth stimulatory activity was restricted to the erythroid lineage. HGF also stimulated the formation of multipotent CFU-GEMM colonies. This effect is synergized by stem cell factor, the ligand of the tyrosine kinase receptor encoded by the c-KIT protooncogene, which is active on early hemopoietic progenitors. By flow cytometry analysis, the receptor for HGF was found to be expressed on the cell surface in a fraction of CD34+ progenitors. Moreover, in situ hybridization experiments showed that HGF receptor mRNA is highly expressed in embryonic erythroid cells (megaloblasts). HGF mRNA was also found to be produced in the embryonal liver. These data show that HGF plays a direct role in the control of proliferation and differentiation of erythroid progenitors, and they suggest that it may be one of the long-sought mediators of paracrine interactions between stromal and hemopoietic cells within the hemopoietic microenvironment.

  4. [Role of placental apoptosis in fetal growth restriction].

    PubMed

    Liu, Yuan; Gao, Peng; Xie, Yingbo; Wang, Shuyun; Dai, Minsheng; Jiang, Sen

    2002-12-01

    To determine the relationship of placental cellular apoptosis and pathophysiology of fetal growth restriction (FGR). Placental samples were obtained from 18 pregnancies complicated by FGR and 14 normal pregnancies. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) and transmission electron microscopy were used to confirm the occurrence of apoptosis. In FGR group the placental apoptosis rate was (n = 18) 12.1 per thousand, the average placental weight was (236 +/- 24) g, the average birth weight was (2,071 +/- 428) g; In normal group (n = 14), the placental apoptosis rate was 7.3 per thousand, the average placental weight was (354 +/- 63) g, the average birth weight was (3,411 +/- 588) g (P < 0.05). The incidence of apoptosis was significantly higher in placental samples from pregnancies with FGR compared with normal placental samples (P < 0.05). Under transmission election microscopy, apoptosis was obviously compact and the chromatins were formed as mass. These results suggest that apoptosis may play a role in the pathophysiologic mechanisms of FGR.

  5. The variable role of SIRT1 in the maintenance and differentiation of mesenchymal stem cells.

    PubMed

    Zainabadi, Kayvan

    2018-04-01

    SIRT1 is an NAD + -dependent deacetylase that acts as a nutrient sensitive regulator of longevity. SIRT1 also acts as a key regulator of mesenchymal stem cells (MSCs), adult stem cells that give rise to tissues such as bone, fat, muscle and cartilage. This review focuses on how SIRT1 regulates the self-renewal, multipotency and differentiation of MSCs. The variable role of SIRT1 in promoting the differentiation of MSCs towards certain lineages, while repressing others, will be examined within the broader context of aging, calorie restriction, and regenerative medicine. Finally, recent animal and human studies will be highlighted which paint an overall salutary role for SIRT1 in protecting MSCs (and resulting tissues) from age-related atrophy and dysfunction.

  6. A stochastic model for early placental development†

    PubMed Central

    Cotter, Simon L.; Klika, Václav; Kimpton, Laura; Collins, Sally; Heazell, Alexander E. P.

    2014-01-01

    In the human, placental structure is closely related to placental function and consequent pregnancy outcome. Studies have noted abnormal placental shape in small-for-gestational-age infants which extends to increased lifetime risk of cardiovascular disease. The origins and determinants of placental shape are incompletely understood and are difficult to study in vivo. In this paper, we model the early development of the human placenta, based on the hypothesis that this is driven by a chemoattractant effect emanating from proximal spiral arteries in the decidua. We derive and explore a two-dimensional stochastic model, and investigate the effects of loss of spiral arteries in regions near to the cord insertion on the shape of the placenta. This model demonstrates that disruption of spiral arteries can exert profound effects on placental shape, particularly if this is close to the cord insertion. Thus, placental shape reflects the underlying maternal vascular bed. Abnormal placental shape may reflect an abnormal uterine environment, predisposing to pregnancy complications. Through statistical analysis of model placentas, we are able to characterize the probability that a given placenta grew in a disrupted environment, and even able to distinguish between different disruptions. PMID:24850904

  7. The Immunomodulatory and Neuroprotective Effects of Mesenchymal Stem Cells (MSCs) in Experimental Autoimmune Encephalomyelitis (EAE): A Model of Multiple Sclerosis (MS)

    PubMed Central

    Al Jumah, Mohammed A.; Abumaree, Mohamed H.

    2012-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells that differentiate into the mesenchymal lineages of adipocytes, osteocytes and chondrocytes. MSCs can also transdifferentiate and thereby cross lineage barriers, differentiating for example into neurons under certain experimental conditions. MSCs have anti-proliferative, anti-inflammatory and anti-apoptotic effects on neurons. Therefore, MSCs were tested in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), for their effectiveness in modulating the pathogenic process in EAE to develop effective therapies for MS. The data in the literature have shown that MSCs can inhibit the functions of autoreactive T cells in EAE and that this immunomodulation can be neuroprotective. In addition, MSCs can rescue neural cells via a mechanism that is mediated by soluble factors, which provide a suitable environment for neuron regeneration, remyelination and cerebral blood flow improvement. In this review, we discuss the effectiveness of MSCs in modulating the immunopathogenic process and in providing neuroprotection in EAE. PMID:22942767

  8. A small population of resident limb bud mesenchymal cells express few MSC-associated markers, but the expression of these markers is increased immediately after cell culture.

    PubMed

    Marín-Llera, Jessica Cristina; Chimal-Monroy, Jesús

    2018-05-01

    Skeletal progenitors are derived from resident limb bud mesenchymal cells of the vertebrate embryos. However, it remains poorly understood if they represent stem cells, progenitors, or multipotent mesenchymal stromal cells (MSC). Derived-MSC of different adult tissues under in vitro experimental conditions can differentiate into the same cellular lineages that are present in the limb. Here, comparing non-cultured versus cultured mesenchymal limb bud cells, we determined the expression of MSC-associated markers, the in vitro differentiation capacity and their gene expression profile. Results showed that in freshly isolated limb bud mesenchymal cells, the proportion of cells expressing Sca1, CD44, CD105, CD90, and CD73 is very low and a low expression of lineage-specific genes was observed. However, recently seeded limb bud mesenchymal cells acquired Sca1 and CD44 markers and the expression of the key differentiation genes Runx2 and Sox9, while Scx and Pparg genes decreased. Also, their chondrogenic differentiation capacity decreased through cellular passages while the osteogenic increased. Our findings suggest that the modification of the cell adhesion process through the in vitro method changed the limb mesenchymal cell immunophenotype leading to the expression and maintenance of common MSC-associated markers. These findings could have a significant impact on MSC study and isolation strategy because they could explain common variations observed in the MSC immunophenotype in different tissues. © 2018 International Federation for Cell Biology.

  9. The Holy Grail of Orthopedic Surgery: Mesenchymal Stem Cells—Their Current Uses and Potential Applications

    PubMed Central

    Berebichez-Fridman, Roberto; Gómez-García, Ricardo; Berebichez-Fastlicht, Enrique; Olivos-Meza, Anell; Granados, Julio; Velasquillo, Cristina

    2017-01-01

    Only select tissues and organs are able to spontaneously regenerate after disease or trauma, and this regenerative capacity diminishes over time. Human stem cell research explores therapeutic regenerative approaches to treat various conditions. Mesenchymal stem cells (MSCs) are derived from adult stem cells; they are multipotent and exert anti-inflammatory and immunomodulatory effects. They can differentiate into multiple cell types of the mesenchyme, for example, endothelial cells, osteoblasts, chondrocytes, fibroblasts, tenocytes, vascular smooth muscle cells, and sarcomere muscular cells. MSCs are easily obtained and can be cultivated and expanded in vitro; thus, they represent a promising and encouraging treatment approach in orthopedic surgery. Here, we review the application of MSCs to various orthopedic conditions, namely, orthopedic trauma; muscle injury; articular cartilage defects and osteoarthritis; meniscal injuries; bone disease; nerve, tendon, and ligament injuries; spinal cord injuries; intervertebral disc problems; pediatrics; and rotator cuff repair. The use of MSCs in orthopedics may transition the practice in the field from predominately surgical replacement and reconstruction to bioregeneration and prevention. However, additional research is necessary to explore the safety and effectiveness of MSC treatment in orthopedics, as well as applications in other medical specialties. PMID:28698718

  10. Conditioned Medium from Placental Mesenchymal Stem Cells Reduces Oxidative Stress during the Cryopreservation of Ex Vivo Expanded Umbilical Cord Blood Cells.

    PubMed

    Kadekar, Darshana; Rangole, Sonal; Kale, Vaijayanti; Limaye, Lalita

    2016-01-01

    The limited cell dose in umbilical cord blood (UCB) necessitates ex vivo expansion of UCB. Further, the effective cryopreservation of these expanded cells is important in widening their use in the clinics. During cryopreservation, cells experience oxidative stress due to the generation of reactive oxygen species (ROS). Conditioned medium from mesenchymal stem cells (MSCs-CM) has been shown to alleviate the oxidative stress during wound healing, Alzheimer's disease and ischemic disease. This premise prompted us to investigate the influence of MSCs-CM during cryopreservation of expanded UCB cells. CM-was collected from cord/placental MSCs(C-MSCs-CM, P-MSC-CM). UCB CD34+cells were expanded as suspension cultures in serum free medium containing cytokines for 10 days. Cells were frozen with/without C-MSCs-CM and or P-MSCs-CM in the conventional freezing medium containing 20%FCS +10%DMSO using a programmable freezer and stored in liquid nitrogen. Upon revival, cells frozen with MSCs-CM were found to be superior to cells frozen in conventional medium in terms of viability, CD34+content and clonogenecity. Priming of revived cells for 48 hrs with MSCs-CM further improved their transplantation ability, as compared to those cultured without MSCs-CM. P-MSCs-CM radically reduced the oxidative stress in cryopreserved cells, resulting in better post thaw functionality of CD34+ cells than with C-MSCs-CM. The observed cryoprotective effect of MSCs-CM was primarily due to anti-oxidative and anti-apoptotic properties of the MSCs-CM and not because of the exosomes secreted by them. Our data suggest that MSCs-CM can serve as a valuable additive to the freezing or the priming medium for expanded UCB cells, which would increase their clinical applicability.

  11. Conditioned Medium from Placental Mesenchymal Stem Cells Reduces Oxidative Stress during the Cryopreservation of Ex Vivo Expanded Umbilical Cord Blood Cells

    PubMed Central

    Kadekar, Darshana; Rangole, Sonal; Kale, Vaijayanti; Limaye, Lalita

    2016-01-01

    Background The limited cell dose in umbilical cord blood (UCB) necessitates ex vivo expansion of UCB. Further, the effective cryopreservation of these expanded cells is important in widening their use in the clinics. During cryopreservation, cells experience oxidative stress due to the generation of reactive oxygen species (ROS). Conditioned medium from mesenchymal stem cells (MSCs-CM) has been shown to alleviate the oxidative stress during wound healing, Alzheimer’s disease and ischemic disease. This premise prompted us to investigate the influence of MSCs-CM during cryopreservation of expanded UCB cells. Methodology/Principle findings CM-was collected from cord/placental MSCs(C-MSCs-CM, P-MSC-CM). UCB CD34+cells were expanded as suspension cultures in serum free medium containing cytokines for 10 days. Cells were frozen with/without C-MSCs-CM and or P-MSCs-CM in the conventional freezing medium containing 20%FCS +10%DMSO using a programmable freezer and stored in liquid nitrogen. Upon revival, cells frozen with MSCs-CM were found to be superior to cells frozen in conventional medium in terms of viability, CD34+content and clonogenecity. Priming of revived cells for 48 hrs with MSCs-CM further improved their transplantation ability, as compared to those cultured without MSCs-CM. P-MSCs-CM radically reduced the oxidative stress in cryopreserved cells, resulting in better post thaw functionality of CD34+ cells than with C-MSCs-CM. The observed cryoprotective effect of MSCs-CM was primarily due to anti-oxidative and anti-apoptotic properties of the MSCs-CM and not because of the exosomes secreted by them. Conclusions/Significance Our data suggest that MSCs-CM can serve as a valuable additive to the freezing or the priming medium for expanded UCB cells, which would increase their clinical applicability. PMID:27780236

  12. Entropy, Ergodicity, and Stem Cell Multipotency

    NASA Astrophysics Data System (ADS)

    Ridden, Sonya J.; Chang, Hannah H.; Zygalakis, Konstantinos C.; MacArthur, Ben D.

    2015-11-01

    Populations of mammalian stem cells commonly exhibit considerable cell-cell variability. However, the functional role of this diversity is unclear. Here, we analyze expression fluctuations of the stem cell surface marker Sca1 in mouse hematopoietic progenitor cells using a simple stochastic model and find that the observed dynamics naturally lie close to a critical state, thereby producing a diverse population that is able to respond rapidly to environmental changes. We propose an information-theoretic interpretation of these results that views cellular multipotency as an instance of maximum entropy statistical inference.

  13. Identification of Multipotent Stem Cells in Human Brain Tissue Following Stroke.

    PubMed

    Tatebayashi, Kotaro; Tanaka, Yasue; Nakano-Doi, Akiko; Sakuma, Rika; Kamachi, Saeko; Shirakawa, Manabu; Uchida, Kazutaka; Kageyama, Hiroto; Takagi, Toshinori; Yoshimura, Shinichi; Matsuyama, Tomohiro; Nakagomi, Takayuki

    2017-06-01

    Perivascular regions of the brain harbor multipotent stem cells. We previously demonstrated that brain pericytes near blood vessels also develop multipotency following experimental ischemia in mice and these ischemia-induced multipotent stem cells (iSCs) can contribute to neurogenesis. However, it is essential to understand the traits of iSCs in the poststroke human brain for possible applications in stem cell-based therapies for stroke patients. In this study, we report for the first time that iSCs can be isolated from the poststroke human brain. Putative iSCs were derived from poststroke brain tissue obtained from elderly stroke patients requiring decompressive craniectomy and partial lobectomy for diffuse cerebral infarction. Immunohistochemistry showed that these iSCs were localized near blood vessels within poststroke areas containing apoptotic/necrotic neurons and expressed both the stem cell marker nestin and several pericytic markers. Isolated iSCs expressed these same markers and demonstrated high proliferative potential without loss of stemness. Furthermore, isolated iSCs expressed other stem cell markers, such as Sox2, c-myc, and Klf4, and differentiated into multiple cells in vitro, including neurons. These results show that iSCs, which are likely brain pericyte derivatives, are present within the poststroke human brain. This study suggests that iSCs can contribute to neural repair in patients with stroke.

  14. Altered feto-placental vascularization, feto-placental malperfusion and fetal growth restriction in mice with Egfl7 loss of function.

    PubMed

    Lacko, Lauretta A; Hurtado, Romulo; Hinds, Samantha; Poulos, Michael G; Butler, Jason M; Stuhlmann, Heidi

    2017-07-01

    EGFL7 is a secreted angiogenic factor produced by embryonic endothelial cells. To understand its role in placental development, we established a novel Egfl7 knockout mouse. The mutant mice have gross defects in chorioallantoic branching morphogenesis and placental vascular patterning. Microangiography and 3D imaging revealed patchy perfusion of Egfl7 -/- placentas marked by impeded blood conductance through sites of narrowed vessels. Consistent with poor feto-placental perfusion, Egfl7 knockout resulted in reduced placental weight and fetal growth restriction. The placentas also showed abnormal fetal vessel patterning and over 50% reduction in fetal blood space. In vitro , placental endothelial cells were deficient in migration, cord formation and sprouting. Expression of genes involved in branching morphogenesis, Gcm1 , Syna and Synb , and in patterning of the extracellular matrix, Mmrn1 , were temporally dysregulated in the placentas. Egfl7 knockout did not affect expression of the microRNA embedded within intron 7. Collectively, these data reveal that Egfl7 is crucial for placental vascularization and embryonic growth, and may provide insight into etiological factors underlying placental pathologies associated with intrauterine growth restriction, which is a significant cause of infant morbidity and mortality. © 2017. Published by The Company of Biologists Ltd.

  15. Cellular Reparative Mechanisms of Mesenchymal Stem Cells for Retinal Diseases.

    PubMed

    Ding, Suet Lee Shirley; Kumar, Suresh; Mok, Pooi Ling

    2017-07-28

    The use of multipotent mesenchymal stem cells (MSCs) has been reported as promising for the treatment of numerous degenerative disorders including the eye. In retinal degenerative diseases, MSCs exhibit the potential to regenerate into retinal neurons and retinal pigmented epithelial cells in both in vitro and in vivo studies. Delivery of MSCs was found to improve retinal morphology and function and delay retinal degeneration. In this review, we revisit the therapeutic role of MSCs in the diseased eye. Furthermore, we reveal the possible cellular mechanisms and identify the associated signaling pathways of MSCs in reversing the pathological conditions of various ocular disorders such as age-related macular degeneration (AMD), retinitis pigmentosa, diabetic retinopathy, and glaucoma. Current stem cell treatment can be dispensed as an independent cell treatment format or with the combination of other approaches. Hence, the improvement of the treatment strategy is largely subjected by our understanding of MSCs mechanism of action.

  16. Cellular Reparative Mechanisms of Mesenchymal Stem Cells for Retinal Diseases

    PubMed Central

    Ding, Suet Lee Shirley; Kumar, Suresh; Mok, Pooi Ling

    2017-01-01

    The use of multipotent mesenchymal stem cells (MSCs) has been reported as promising for the treatment of numerous degenerative disorders including the eye. In retinal degenerative diseases, MSCs exhibit the potential to regenerate into retinal neurons and retinal pigmented epithelial cells in both in vitro and in vivo studies. Delivery of MSCs was found to improve retinal morphology and function and delay retinal degeneration. In this review, we revisit the therapeutic role of MSCs in the diseased eye. Furthermore, we reveal the possible cellular mechanisms and identify the associated signaling pathways of MSCs in reversing the pathological conditions of various ocular disorders such as age-related macular degeneration (AMD), retinitis pigmentosa, diabetic retinopathy, and glaucoma. Current stem cell treatment can be dispensed as an independent cell treatment format or with the combination of other approaches. Hence, the improvement of the treatment strategy is largely subjected by our understanding of MSCs mechanism of action. PMID:28788088

  17. Intravenous administration of bone marrow-derived multipotent mesenchymal stromal cells enhances the recruitment of CD11b(+) myeloid cells to the lungs and facilitates B16-F10 melanoma colonization.

    PubMed

    Souza, Lucas E B; Almeida, Danilo C; Yaochite, Juliana N U; Covas, Dimas T; Fontes, Aparecida M

    2016-07-15

    The discovery that the regenerative properties of bone marrow multipotent mesenchymal stromal cells (BM-MSCs) could collaterally favor neoplastic progression has led to a great interest in the function of these cells in tumors. However, the effect of BM-MSCs on colonization, a rate-limiting step of the metastatic cascade, is unknown. In this study, we investigated the effect of BM-MSCs on metastatic outgrowth of B16-F10 melanoma cells. In in vitro experiments, direct co-culture assays demonstrated that BM-MSCs stimulated the proliferation of B16-F10 cells in a dose-dependent manner. For in vivo experiments, luciferase-expressing B16-F10 cells were injected through tail vein and mice were subsequently treated with four systemic injections of BM-MSCs. In vivo bioluminescent imaging during 16 days demonstrated that BM-MSCs enhanced the colonization of lungs by B16-F10 cells, which correlated with a 2-fold increase in the number of metastatic foci. Flow cytometry analysis of lungs demonstrated that although mice harboring B16-F10 metastases displayed more endothelial cells, CD4 T and CD8 T lymphocytes in the lungs in comparison to metastases-free mice, BM-MSCs did not alter the number of these cells. Interestingly, BM-MSCs inoculation resulted in a 2-fold increase in the number of CD11b(+) myeloid cells in the lungs of melanoma-bearing animals, a cell population previously described to organize "premetastatic niches" in experimental models. These findings indicate that BM-MSCs provide support to B16-F10 cells to overcome the constraints that limit metastatic outgrowth and that these effects might involve the interplay between BM-MSCs, CD11b(+) myeloid cells and tumor cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Isolation of canine mesenchymal stem cells from amniotic fluid and differentiation into hepatocyte-like cells.

    PubMed

    Choi, Seon-A; Choi, Hoon-Sung; Kim, Keun Jung; Lee, Dong-Soo; Lee, Ji Hey; Park, Jie Yeun; Kim, Eun Young; Li, Xiaoxia; Oh, Hyun-Yang; Lee, Dong-Seok; Kim, Min Kyu

    2013-01-01

    Recent findings have demonstrated that amniotic fluid cells are an interesting and potential source of mesenchymal stem cells (MSCs). In this study, we isolated MSCs from canine amniotic fluid and then characterized their multilineage differentiation ability. Canine amniotic fluid stem (cAFS) cells at passage 5 had a fibroblast-like morphology instead of forming colonies and were positive for pluripotent stem cell markers such as OCT4, NANOG, and SOX2. Flow cytometry analysis showed the expression of MSC surface markers CD44, CD29, and CD90 on the cAFS cells. In addition, these cells were cultured under conditions favorable for adipogenic, chondrogenic, and osteogenic induction. The results of this experiment confirmed the mesenchymal nature of cAFS cells and their multipotent potential. Interestingly, although the cells exhibited a fibroblast-like morphology after hepatogenic induction, reverse transcription-polymerase chain reaction revealed that the expression of several hepatic genes, such as albumin, tyrosine aminotransferase, and alpha-1 antiproteinase, increased following maturation and differentiation. These findings indicated that cAFS cells have functional properties similar to those of hepatocytes. Taken together, the results of our study demonstrated that cAFS cells with mesenchymal characteristics can be successfully isolated from canine amniotic fluid and possess functional properties characteristic of hepatocytes. The findings of our work suggest that cAFS cells have the potential to be a resource for cell-based therapies in a canine model of hepatic disease.

  19. Mesenchymal stem cell mechanobiology and emerging experimental platforms

    PubMed Central

    MacQueen, Luke; Sun, Yu; Simmons, Craig A.

    2013-01-01

    Experimental control over progenitor cell lineage specification can be achieved by modulating properties of the cell's microenvironment. These include physical properties of the cell adhesion substrate, such as rigidity, topography and deformation owing to dynamic mechanical forces. Multipotent mesenchymal stem cells (MSCs) generate contractile forces to sense and remodel their extracellular microenvironments and thereby obtain information that directs broad aspects of MSC function, including lineage specification. Various physical factors are important regulators of MSC function, but improved understanding of MSC mechanobiology requires novel experimental platforms. Engineers are bridging this gap by developing tools to control mechanical factors with improved precision and throughput, thereby enabling biological investigation of mechanics-driven MSC function. In this review, we introduce MSC mechanobiology and review emerging cell culture platforms that enable new insights into mechanobiological control of MSCs. Our main goals are to provide engineers and microtechnology developers with an up-to-date description of MSC mechanobiology that is relevant to the design of experimental platforms and to introduce biologists to these emerging platforms. PMID:23635493

  20. The relationship between human placental morphometry and ultrasonic measurements of utero-placental blood flow and fetal growth.

    PubMed

    Salavati, N; Sovio, U; Mayo, R Plitman; Charnock-Jones, D S; Smith, G C S

    2016-02-01

    Ultrasonic fetal biometry and arterial Doppler flow velocimetry are widely used to assess the risk of pregnancy complications. There is an extensive literature on the relationship between pregnancy outcomes and the size and shape of the placenta. However, ultrasonic fetal biometry and arterial Doppler flow velocimetry have not previously been studied in relation to postnatal placental morphometry in detail. We conducted a prospective cohort study of nulliparous women in The Rosie Hospital, Cambridge (UK). We studied a group of 2120 women who had complete data on uterine and umbilical Doppler velocimetry and fetal biometry at 20, 28 and 36 weeks' gestational age, digital images of the placenta available, and delivered a liveborn infant at term. Associations were expressed as the difference in the standard deviation (SD) score of the gestational age adjusted ultrasound measurement (z-score) comparing the lowest and highest decile of the given placental morphometric measurement. The lowest decile of placental surface area was associated with 0.87 SD higher uterine artery Doppler mean pulsatility index (PI) at 20 weeks (95% CI: 0.68 to 1.07, P < 0.001). The lowest decile of placental weight was associated with 0.73 SD higher umbilical artery Doppler PI at 36 weeks (95% CI: 0.54 to 0.93, P < 0.001). The lowest decile of both placental weight and placental area were associated with reduced growth velocity of the fetal abdominal circumference between 20 and 36 weeks (both P < 0.001). Placental area and weight are associated with uterine and umbilical blood flow, respectively, and both are associated with fetal growth rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Extensive shift in placental transcriptome profile in preeclampsia and placental origin of adverse pregnancy outcomes

    PubMed Central

    Sõber, Siim; Reiman, Mario; Kikas, Triin; Rull, Kristiina; Inno, Rain; Vaas, Pille; Teesalu, Pille; Marti, Jesus M. Lopez; Mattila, Pirkko; Laan, Maris

    2015-01-01

    One in five pregnant women suffer from gestational complications, prevalently driven by placental malfunction. Using RNASeq, we analyzed differential placental gene expression in cases of normal gestation, late-onset preeclampsia (LO-PE), gestational diabetes (GD) and pregnancies ending with the birth of small-for-gestational-age (SGA) or large-for-gestational-age (LGA) newborns (n = 8/group). In all groups, the highest expression was detected for small noncoding RNAs and genes specifically implicated in placental function and hormonal regulation. The transcriptome of LO-PE placentas was clearly distinct, showing statistically significant (after FDR) expressional disturbances for hundreds of genes. Taqman RT-qPCR validation of 45 genes in an extended sample (n = 24/group) provided concordant results. A limited number of transcription factors including LRF, SP1 and AP2 were identified as possible drivers of these changes. Notable differences were detected in differential expression signatures of LO-PE subtypes defined by the presence or absence of intrauterine growth restriction (IUGR). LO-PE with IUGR showed higher correlation with SGA and LO-PE without IUGR with LGA placentas. Whereas changes in placental transcriptome in SGA, LGA and GD cases were less prominent, the overall profiles of expressional disturbances overlapped among pregnancy complications providing support to shared placental responses. The dataset represent a rich catalogue for potential biomarkers and therapeutic targets. PMID:26268791

  2. The distinct proteome of placental malaria parasites.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fried, Michal; Hixson, Kim K.; Anderson, Lori

    Malaria proteins expressed on the surface of Plasmodium falciparum infected erythrocytes (IE) mediate adhesion and are targeted by protective immune responses. During pregnancy, IE sequester in the placenta. Placental IE bind to the molecule chondroitin sulfate A (CSA) and preferentially transcribe the gene that encodes VAR2CSA, a member of the PfEMP1 variant surface antigen family. Over successive pregnancies women develop specific immunity to CSA-binding IE and antibodies to VAR2CSA. We used tandem mass spectrometry together with accurate mass and time tag technology to study IE membrane fractions of placental parasites. VAR2CSA peptides were detected in placental IE and in IEmore » from children, but the MC variant of VAR2CSA was specifically associated with placental IE. We identified six conserved hypothetical proteins with putative TM or signal peptides that were exclusively expressed by the placental IE, and 11 such proteins that were significantly more abundant in placental IE. One of these hypothetical proteins, PFI1785w, is a 42kDa molecule detected by Western blot in parasites infecting pregnant women but not those infecting children.« less

  3. Human multipotent adult progenitor cells are nonimmunogenic and exert potent immunomodulatory effects on alloreactive T-cell responses.

    PubMed

    Jacobs, Sandra A; Pinxteren, Jef; Roobrouck, Valerie D; Luyckx, Ariane; van't Hof, Wouter; Deans, Robert; Verfaillie, Catherine M; Waer, Mark; Billiau, An D; Van Gool, Stefaan W

    2013-01-01

    Multipotent adult progenitor cells (MAPCs) are bone marrow-derived nonhematopoietic stem cells with a broad differentiation potential and extensive expansion capacity. A comparative study between human mesenchymal stem cells (hMSCs) and human MAPCs (hMAPCs) has shown that hMAPCs have clearly distinct phenotypical and functional characteristics from hMSCs. In particular, hMAPCs express lower levels of MHC class I than hMSCs and cannot only differentiate into typical mesenchymal cell types but can also differentiate in vitro and in vivo into functional endothelial cells. The use of hMSCs as cellular immunomodulatory stem cell products gained much interest since their immunomodulatory capacities in vitro became evident over the last decade. Currently, the clinical grade stem cell product of hMAPCs is already used in clinical trials to prevent graft-versus-host disease (GVHD), as well as for the treatment of acute myocardial infarct, ischemic stroke, and Crohn's disease. Therefore, we studied the immune phenotype, immunogenicity, and immunosuppressive effect of hMAPCs in vitro. We demonstrated that hMAPCs are nonimmunogenic for T-cell proliferation and cytokine production. In addition, hMAPCs exert strong immunosuppressive effects on T-cell alloreactivity and on T-cell proliferation induced by mitogens and recall antigens. This immunomodulatory effect was not MHC restricted, which makes off-the-shelf use promising. The immunosuppressive effect of hMAPCs is partially mediated via soluble factors and dependent on indoleamine 2,3-dioxygenase (IDO) activity. At last, we isolated hMAPCs, the clinical grade stem cell product of hMAPCs, named MultiStem, and hMSCs from one single donor and observed that both the immunogenicity and the immunosuppressive capacities of all three stem cell products are comparable in vitro. In conclusion, hMAPCs have potent immunomodulatory properties in vitro and can serve as a valuable cell source for the clinical use of immunomodulatory cellular

  4. Analysis of Reparative Activity of Platelet Lysate: Effect on Cell Monolayer Recovery In Vitro and Skin Wound Healing In Vivo.

    PubMed

    Sergeeva, N S; Shanskii, Ya D; Sviridova, I K; Karalkin, P A; Kirsanova, V A; Akhmedova, S A; Kaprin, A D

    2016-11-01

    Platelet lysate prepared from donor platelet concentrate and pooled according to a developed technique stimulates migration of multipotent mesenchymal stromal cells of the human adipose tissue and promotes healing of the monolayer defect in cultures of human fibroblasts and multipotent mesenchymal stromal cells in vitro in concentrations close those of fetal calf serum (5-10%). Lysate of platelets from platelet-rich rat blood plasma stimulated healing of the skin defect by promoting epithelialization and granulation tissue formation. The regenerative properties of platelet lysate in vivo increased with increasing its concentration.

  5. Agonism of Wnt/β-catenin signaling promotes mesenchymal stem cell (MSC) expansion

    PubMed Central

    Hoffman, Michael D.; Benoit, Danielle S.W.

    2014-01-01

    Promoting mesenchymal stem cell (MSC) proliferation has numerous applications in stem cell therapies, particularly in the area of regenerative medicine. In order for cell-based regenerative approaches to be realized, MSC proliferation must be achieved in a controlled manner without compromising stem cell differentiation capacities. Here we demonstrate that 6-bromoindirubin-3’-oxime (BIO) increases MSC β-catenin activity 106-fold and stem cell-associated gene expression ~33-fold respectively over untreated controls. Subsequently, BIO treatment increases MSC populations 1.8-fold in typical 2D culture conditions, as well as 1.3-fold when encapsulated within hydrogels compared to untreated cells. Furthermore, we demonstrate that BIO treatment does not reduce MSC multipotency, where MSCs maintain their ability to differentiate into osteoblasts, chondrocytes, and adipocytes using standard conditions. Taken together, our results demonstrate BIOs potential utility as a proliferative agent for cell transplantation and tissue regeneration. PMID:23554411

  6. MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles

    PubMed Central

    Xin, Hongqi; Li, Yi; Liu, Zhongwu; Wang, Xinli; Shang, Xia; Cui, Yisheng; Zhang, Zheng Gang; Chopp, Michael

    2013-01-01

    To test, in vivo, the hypothesis that exosomes from multipotent mesenchymal stromal cells (MSCs) mediate microRNA 133b (miR-133b) transfer which promotes neurological recovery from stroke, we employed knock-in and knock-down technologies to up-regulate or down-regulate the miR-133b level in MSCs (miR-133b+MSCs or miR-133b−MSCs) and their corresponding exosomes, respectively. Rats were subjected to middle cerebral artery occlusion (MCAo) and were treated with naïve MSCs, miR-133b+MSCs, or miR-133b−MSC at one day after MCAo. Compared with controls, rats receiving naïve MSC treatment significantly improved functional recovery, and exhibited increased axonal plasticity and neurite remodeling in the ischemic boundary zone (IBZ) at day 14 after MCAo. The outcomes were significantly enhanced with miR-133b+MSC treatment, and were significantly decreased with miR-133b−MSC treatment, compared to naïve MSC treatment. The miR-133b level in exosomes collected from the cerebral spinal fluid was significantly increased after miR-133b+MSC treatment, and was significantly decreased after miR-133b−MSC treatment at day 14 after MCAo, compared to naïve MSC treatment. Tagging exosomes with green fluorescent protein demonstrated that exosomes-enriched extracellular particles were released from MSCs and transferred to adjacent astrocytes and neurons. The expression of selective targets for miR-133b, connective tissue growth factor and ras homolog gene family member A, were significantly decreased in the IBZ after miR-133b+MSC treatment, while their expression remained at similar elevated levels after miR-133b−MSC treatment, compared to naïve MSC treatment. Collectively, our data suggest that exosomes from MSCs mediate the miR-133b transfer to astrocytes and neurons, which regulate gene expression, subsequently benefit neurite remodeling and functional recovery after stroke. PMID:23630198

  7. FGF2 and insulin signaling converge to regulate cyclin D expression in multipotent neural stem cells.

    PubMed

    Adepoju, Adedamola; Micali, Nicola; Ogawa, Kazuya; Hoeppner, Daniel J; McKay, Ronald D G

    2014-03-01

    The ex vivo expansion of stem cells is making major contribution to biomedical research. The multipotent nature of neural precursors acutely isolated from the developing central nervous system has been established in a series of studies. Understanding the mechanisms regulating cell expansion in tissue culture would support their expanded use either in cell therapies or to define disease mechanisms. Basic fibroblast growth factor (FGF2) and insulin, ligands for tyrosine kinase receptors, are sufficient to sustain neural stem cells (NSCs) in culture. Interestingly, real-time imaging shows that these cells become multipotent every time they are passaged. Here, we analyze the role of FGF2 and insulin in the brief period when multipotent cells are present. FGF2 signaling results in the phosphorylation of Erk1/2, and activation of c-Fos and c-Jun that lead to elevated cyclin D mRNA levels. Insulin signals through the PI3k/Akt pathway to regulate cyclins at the post-transcriptional level. This precise Boolean regulation extends our understanding of the proliferation of multipotent NSCs and provides a basis for further analysis of proliferation control in the cell states defined by real-time mapping of the cell lineages that form the central nervous system. © 2013 AlphaMed Press.

  8. Transplantation of human umbilical cord-derived mesenchymal stems cells for the treatment of Becker muscular dystrophy in affected pedigree members.

    PubMed

    Li, Pang; Cui, Kai; Zhang, Bo; Wang, Zhendan; Shen, Yangyang; Wang, Xiangyu; Zhang, Jianbo; Tong, Feng; Li, Sheng

    2015-04-01

    The regeneration of muscle tissue has been achieved using multipotent mesenchymal stem cells in mouse models of injured skeletal muscle. In the present study, the utility of multipotent human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) in the treatment of Becker muscular dystrophy (BMD), a genetic disease where muscle tissue fails to regenerate, was examined in members from a pedigree affected by BMD. The disease status was evaluated in 4 affected pedigree members (II1, II2, II3 and III2; aged 50, 46, 42 and 6 years, respectively). The transplantation of the hUC‑MSCs (performed on 3 patients, I2, II3 and III2) was performed by infusion with an intravenous drip over a 30‑min period, and the patients were evaluated at 1, 3, 4 and 12 weeks following the procedure. The evaluation was based on physical characteristics, as well as on molecular testing for serum creatine kinase (CK) and lactate dehydrogenase (LDH) levels and a histological examination of muscle biopsies. The patients suffered no adverse reactions in response to the transplantation of the hUC‑MSCs. At 1 week following transplantation all 3 patients showed improvement in the muscle force of the limbs, muscle size and daily activity. The walking gait of patient III2 had improved by 1 week post-transplantation and reached a normal status by 12 weeks. Serum CK and LDH levels were decreased relative to the baseline levels. A histological examination of muscle biopsies displayed no obvious tissue regeneration. In conclusion, the treatment of patients with BMD using hUC-MSCs was safe and of therapeutic benefit that lasted for up to 12 weeks. hUC-MSCs are, therefore, a potential cell therapy-based treatment option for patients with muscular dystrophies.

  9. Maternal dietary omega-3 fatty acid supplementation reduces placental oxidative stress and increases fetal and placental growth in the rat.

    PubMed

    Jones, Megan L; Mark, Peter J; Mori, Trevor A; Keelan, Jeffrey A; Waddell, Brendan J

    2013-02-01

    Placental oxidative stress plays a key role in the pathophysiology of several placenta-related disorders including intrauterine growth restriction. Oxidative stress occurs when accumulation of reactive oxygen species damages DNA, proteins, and lipids, an outcome normally limited by antioxidant defenses. Dietary supplementation with omega-3 polyunsaturated fatty acids (n-3 PUFAs) may limit oxidative stress by increasing antioxidant capacity, but n-3 PUFAs are also highly susceptible to lipid peroxidation; so n-3 PUFA supplementation is potentially harmful. Here we examined the effect of n-3 PUFAs on placental oxidative stress and on placental and fetal growth in the rat. We also investigated whether diet-induced changes in maternal plasma fatty acid profiles are associated with comparable changes in placental and fetal tissues. Rats were fed either standard or high n-3 PUFA diets from Day 1 of pregnancy, and tissues were collected on Day 17 or 22 (term = Day 23). Dietary supplementation with n-3 PUFAs increased fetal (6%) and placental (12%) weights at Day 22, the latter attributable primarily to growth of the labyrinth zone (LZ). Increased LZ weight was accompanied by reduced LZ F(2)-isoprostanes (by 31% and 11% at Days 17 and 22, respectively), a marker of oxidative damage. Maternal plasma PUFA profiles were altered by dietary fatty acid intake and were strongly predictive of corresponding profiles in placental and fetal tissues. Our data indicate that n-3 PUFA supplementation reduces placental oxidative stress and enhances placental and fetal growth. Moreover, fatty acid profiles in the mother, placenta, and fetus are highly dependent on dietary fatty acid intake.

  10. microRNAs as regulators of adipogenic differentiation of mesenchymal stem cells.

    PubMed

    Hamam, Dana; Ali, Dalia; Kassem, Moustapha; Aldahmash, Abdullah; Alajez, Nehad M

    2015-02-15

    microRNAs (miRNAs) constitute complex regulatory network, fine tuning the expression of a myriad of genes involved in different biological and physiological processes, including stem cell differentiation. Mesenchymal stem cells (MSCs) are multipotent stem cells present in the bone marrow stroma, and the stroma of many other tissues, and can give rise to a number of mesoderm-type cells including adipocytes and osteoblasts, which form medullary fat and bone tissues, respectively. The role of bone marrow fat in bone mass homeostasis is an area of intensive investigation with the aim of developing novel approaches for enhancing osteoblastic bone formation through inhibition of bone marrow fat formation. A number of recent studies have reported several miRNAs that enhance or inhibit adipogenic differentiation of MSCs and with potential use in microRNA-based therapy to regulate adipogenesis in the context of treating bone diseases and metabolic disorders. The current review focuses on miRNAs and their role in regulating adipogenic differentiation of MSCs.

  11. Long-Term Cultured Human Term Placenta-Derived Mesenchymal Stem Cells of Maternal Origin Displays Plasticity

    PubMed Central

    Sabapathy, Vikram; Ravi, Saranya; Srivastava, Vivi; Srivastava, Alok; Kumar, Sanjay

    2012-01-01

    Mesenchymal stem cells (MSCs) are an alluring therapeutic resource because of their plasticity, immunoregulatory capacity and ease of availability. Human BM-derived MSCs have limited proliferative capability, consequently, it is challenging to use in tissue engineering and regenerative medicine applications. Hence, placental MSCs of maternal origin, which is one of richest sources of MSCs were chosen to establish long-term culture from the cotyledons of full-term human placenta. Flow analysis established bonafied MSCs phenotypic characteristics, staining positively for CD29, CD73, CD90, CD105 and negatively for CD14, CD34, CD45 markers. Pluripotency of the cultured MSCs was assessed by in vitro differentiation towards not only intralineage cells like adipocytes, osteocytes, chondrocytes, and myotubules cells but also translineage differentiated towards pancreatic progenitor cells, neural cells, and retinal cells displaying plasticity. These cells did not significantly alter cell cycle or apoptosis pattern while maintaining the normal karyotype; they also have limited expression of MHC-II antigens and are Naive for stimulatory factors CD80 and CD 86. Further soft agar assays revealed that placental MSCs do not have the ability to form invasive colonies. Taking together all these characteristics into consideration, it indicates that placental MSCs could serve as good candidates for development and progress of stem-cell based therapeutics. PMID:22550499

  12. Placental fatty acid transport in maternal obesity.

    PubMed

    Cetin, I; Parisi, F; Berti, C; Mandò, C; Desoye, G

    2012-12-01

    Pregestational obesity is a significant risk factor for adverse pregnancy outcomes. Maternal obesity is associated with a specific proinflammatory, endocrine and metabolic phenotype that may lead to higher supply of nutrients to the feto-placental unit and to excessive fetal fat accumulation. In particular, obesity may influence placental fatty acid (FA) transport in several ways, leading to increased diffusion driving force across the placenta, and to altered placental development, size and exchange surface area. Animal models show that maternal obesity is associated with increased expression of specific FA carriers and inflammatory signaling molecules in placental cotyledonary tissue, resulting in enhanced lipid transfer across the placenta, dislipidemia, fat accumulation and possibly altered development in fetuses. Cell culture experiments confirmed that inflammatory molecules, adipokines and FA, all significantly altered in obesity, are important regulators of placental lipid exchange. Expression studies in placentas of obese-diabetic women found a significant increase in FA binding protein-4 expression and in cellular triglyceride content, resulting in increased triglyceride cord blood concentrations. The expression and activity of carriers involved in placental lipid transport are influenced by the endocrine, inflammatory and metabolic milieu of obesity, and further studies are needed to elucidate the strong association between maternal obesity and fetal overgrowth.

  13. Quercetin potentiates transdifferentiation of bone marrow mesenchymal stem cells into the beta cells in vitro.

    PubMed

    Miladpour, B; Rasti, M; Owji, A A; Mostafavipour, Z; Khoshdel, Z; Noorafshan, A; Zal, F

    2017-05-01

    Type 1 diabetes is an autoimmune disease caused by the destruction of β-cells in the pancreas. Bone marrow mesenchymal stem cells are multipotent and easy accessible adult stem cells that may provide options in the treatment of type 1 diabetes. Injured pancreatic extract can promote the differentiation of rat bone marrow mesenchymal stem cells into β-cells. We aimed to observe the effect of quercetin in differentiation and insulin secretion in β-cells. Bone marrow mesenchymal stem cells were obtained from the tibiae of rats. Cell surface markers were analyzed by flow cytometry. The cells were treated with rat injured pancreatic extract and quercetin for 2 weeks. Insulin secretion was measured by ELISA. Insulin expression and some islet factors were evaluated by RT-PCR. PDX1, a marker for β-cell function and differentiation, was evaluated by both immunocytochemistry and Western blot. β-cell count was determined by stereology and cell count assay. ELISA showed significant differences in insulin secretion in the cells treated with RIPE + 20 μM quercetin (0.55 ± 0.01 µg/L) compared with the cells treated with RIPE alone (0.48 ± 0.01 µg/L) (P = 0.026). RT-PCR results confirmed insulin expression in both groups. PDX1 protein was detected in both groups by Western blot and immunocytochemistry. Stereology results showed a significant increase in β-cell number in the RIPE + quercetin-treated cells (47 ± 2.0) when compared with RIPE treatment alone (44 ± 2.5) (P = 0.015). Quercetin has a strengthening effect on the differentiation of rat bone marrow mesenchymal stem cells into β-cells and increases insulin secretion from the differentiated β-cells in vitro.

  14. Mesenchymal stem cells for the treatment of systemic lupus erythematosus: is the cure for connective tissue diseases within connective tissue?

    PubMed

    Carrion, Flavio A; Figueroa, Fernando E

    2011-05-11

    Mesenchymal stem cells (MSCs) are now known to display not only adult stem cell multipotency but also robust anti-inflammatory and regenerative properties. After widespread in vitro and in vivo preclinical testing in several autoimmune disease models, allogenic MSCs have been successfully applied in patients with severe treatment-refractory systemic lupus erythematosus. The impressive results of these uncontrolled phase I and II trials - mostly in patients with non-responding renal disease - point to the need to perform controlled multicentric trials. In addition, they suggest that there is much to be learned from the basic and clinical science of MSCs in order to reap the full potential of these multifaceted progenitor cells in the treatment of autoimmune diseases.

  15. β2-Microglobulin as a potential factor for the expansion of mesenchymal stem cells

    PubMed Central

    Zhu, Ying; Su, Yongping; Cheng, Tianmin; Chung, Leland W. K.

    2010-01-01

    Multipotent mesenchymal stem cells (MSCs) hold great promise in regenerative medicine, but one of the biggest challenges facing for their application is the ex vivo expansion to obtain enough undifferentiated cells. Fetal bovine serum (FBS), which can elicit possible contaminations of prion, virus, zoonosis or immunological reaction against xenogenic serum antigens, still remains essential to the culture formulations. There is an urgent need to identify potential factors for the undifferentiated expansion of MSCs to reduce the use of FBS or eventually replace it. A previously recognized housekeeping gene, β2-microglobulin (β2M), is demonstrated to act as a novel growth factor to stimulate the undifferentiated ex vivo expansion and preserve the pluripotency of adult MSCs from various sources. The use of β2M might have promising implications for future clinical application of MSCs. PMID:19466557

  16. Mesenchymal Stem Cell-Derived Microparticles: A Promising Therapeutic Strategy

    PubMed Central

    Tan, Xi; Gong, Yong-Zhen; Wu, Ping; Liao, Duan-Fang; Zheng, Xi-Long

    2014-01-01

    Mesenchymal stem cells (MSCs) are multipotent stem cells that give rise to various cell types of the mesodermal germ layer. Because of their unique ability to home in on injured and cancerous tissues, MSCs are of great potential in regenerative medicine. MSCs also contribute to reparative processes in different pathological conditions, including cardiovascular diseases and cancer. However, many studies have shown that only a small proportion of transplanted MSCs can actually survive and be incorporated into host tissues. The effects of MSCs cannot be fully explained by their number. Recent discoveries suggest that microparticles (MPs) derived from MSCs may be important for the physiological functions of their parent. Though the physiological role of MSC-MPs is currently not well understood, inspiring results indicate that, in tissue repair and anti-cancer therapy, MSC-MPs have similar pro-regenerative and protective properties as their cellular counterparts. Thus, MSC-MPs represent a promising approach that may overcome the obstacles and risks associated with the use of native or engineered MSCs. PMID:25196436

  17. Placental Adaptations in Growth Restriction

    PubMed Central

    Zhang, Song; Regnault, Timothy R.H.; Barker, Paige L.; Botting, Kimberley J.; McMillen, Isabella C.; McMillan, Christine M.; Roberts, Claire T.; Morrison, Janna L.

    2015-01-01

    The placenta is the primary interface between the fetus and mother and plays an important role in maintaining fetal development and growth by facilitating the transfer of substrates and participating in modulating the maternal immune response to prevent immunological rejection of the conceptus. The major substrates required for fetal growth include oxygen, glucose, amino acids and fatty acids, and their transport processes depend on morphological characteristics of the placenta, such as placental size, morphology, blood flow and vascularity. Other factors including insulin-like growth factors, apoptosis, autophagy and glucocorticoid exposure also affect placental growth and substrate transport capacity. Intrauterine growth restriction (IUGR) is often a consequence of insufficiency, and is associated with a high incidence of perinatal morbidity and mortality, as well as increased risk of cardiovascular and metabolic diseases in later life. Several different experimental methods have been used to induce placental insufficiency and IUGR in animal models and a range of factors that regulate placental growth and substrate transport capacity have been demonstrated. While no model system completely recapitulates human IUGR, these animal models allow us to carefully dissect cellular and molecular mechanisms to improve our understanding and facilitate development of therapeutic interventions. PMID:25580812

  18. Proteomic Cornerstones of Hematopoietic Stem Cell Differentiation: Distinct Signatures of Multipotent Progenitors and Myeloid Committed Cells*

    PubMed Central

    Klimmeck, Daniel; Hansson, Jenny; Raffel, Simon; Vakhrushev, Sergey Y.; Trumpp, Andreas; Krijgsveld, Jeroen

    2012-01-01

    Regenerative tissues such as the skin epidermis, the intestinal mucosa or the hematopoietic system are organized in a hierarchical manner with stem cells building the top of this hierarchy. Somatic stem cells harbor the highest self-renewal activity and generate a series of multipotent progenitors which differentiate into lineage committed progenitors and subsequently mature cells. In this report, we applied an in-depth quantitative proteomic approach to analyze and compare the full proteomes of ex vivo isolated and FACS-sorted populations highly enriched for either multipotent hematopoietic stem/progenitor cells (HSPCs, LinnegSca-1+c-Kit+) or myeloid committed precursors (LinnegSca-1−c-Kit+). By employing stable isotope dimethyl labeling and high-resolution mass spectrometry, more than 5000 proteins were quantified. From biological triplicate experiments subjected to rigorous statistical evaluation, 893 proteins were found differentially expressed between multipotent and myeloid committed cells. The differential protein content in these cell populations points to a distinct structural organization of the cytoskeleton including remodeling activity. In addition, we found a marked difference in the expression of metabolic enzymes, including a clear shift of specific protein isoforms of the glycolytic pathway. Proteins involved in translation showed a collective higher expression in myeloid progenitors, indicating an increased translational activity. Strikingly, the data uncover a unique signature related to immune defense mechanisms, centering on the RIG-I and type-1 interferon response systems, which are installed in multipotent progenitors but not evident in myeloid committed cells. This suggests that specific, and so far unrecognized, mechanisms protect these immature cells before they mature. In conclusion, this study indicates that the transition of hematopoietic stem/progenitors toward myeloid commitment is accompanied by a profound change in processing of

  19. Heart grafts tolerized through third-party multipotent adult progenitor cells can be retransplanted to secondary hosts with no immunosuppression.

    PubMed

    Eggenhofer, Elke; Popp, Felix C; Mendicino, Michael; Silber, Paula; Van't Hof, Wouter; Renner, Philipp; Hoogduijn, Martin J; Pinxteren, Jef; van Rooijen, Nico; Geissler, Edward K; Deans, Robert; Schlitt, Hans J; Dahlke, Marc H

    2013-08-01

    Multipotent adult progenitor cells (MAPCs) are an adherent stem cell population that belongs to the mesenchymal-type progenitor cell family. Although MAPCs are emerging as candidate agents for immunomodulation after solid organ transplantation, their value requires further validation in a clinically relevant cell therapy model using an organ donor- and organ recipient-independent, third-party cell product. We report that stable allograft survival can be achieved following third-party MAPC infusion in a rat model of fully allogeneic, heterotopic heart transplantation. Furthermore, long-term accepted heart grafts recovered from MAPC-treated animals can be successfully retransplanted to naïve animals without additional immunosuppression. This prolongation of MAPC-mediated allograft acceptance depends upon a myeloid cell population since depletion of macrophages by clodronate abrogates the tolerogenic MAPC effect. We also show that MAPC-mediated allograft acceptance differs mechanistically from drug-induced tolerance regarding marker gene expression, T regulatory cell induction, retransplantability, and macrophage dependence. MAPC-based immunomodulation represents a promising pathway for clinical immunotherapy that has led us to initiate a phase I clinical trial for testing safety and feasibility of third-party MAPC therapy after liver transplantation.

  20. Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death.

    PubMed

    Curtis, Brandon M; Leix, Kyle Alexander; Ji, Yajing; Glaves, Richard Samuel Elliot; Ash, David E; Mohanty, Dillip K

    2014-07-18

    Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to such injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs) and subsequently to SMC as well. Published by Elsevier Inc.

  1. Placental transfer of antidepressant medications: implications for postnatal adaptation syndrome.

    PubMed

    Ewing, Grace; Tatarchuk, Yekaterina; Appleby, Dina; Schwartz, Nadav; Kim, Deborah

    2015-04-01

    Seven to thirteen percent of women are either prescribed or taking (depending on the study) an antidepressant during pregnancy. Because antidepressants freely cross into the intrauterine environment, we aim to summarize the current findings on placental transfer of antidepressants. Although generally low risk, antidepressants have been associated with postnatal adaptation syndrome (PNAS). Specifically, we explore whether the antidepressants most closely associated with PNAS (paroxetine, fluoxetine, venlafaxine) cross the placenta to a greater extent than other antidepressants. We review research on antidepressants in the context of placental anatomy, placental transport mechanisms, placental metabolism, pharmacokinetics, as well as non-placental maternal and fetal factors. This provides insight into the complexity involved in understanding how placental transfer of antidepressants may relate to adverse perinatal outcomes. Ultimately, from this data there is no pattern in which PNAS is related to placental transfer of antidepressant medications. In general, there is large interindividual variability for each type of antidepressant. To make the most clinically informed decisions about the use of antidepressants in pregnancy, studies that link maternal, placental and fetal genetic polymorphisms, placental transfer rates and infant outcomes are needed.

  2. Immortalized porcine mesenchymal cells derived from nasal mucosa, lungs, lymph nodes, spleen and bone marrow retain their stemness properties and trigger the expression of siglec-1 in co-cultured blood monocytic cells

    PubMed Central

    Garba, Abubakar; Desmarets, Lowiese M. B.; Acar, Delphine D.; Devriendt, Bert; Nauwynck, Hans J.

    2017-01-01

    Mesenchymal stromal cells have been isolated from different sources. They are multipotent cells capable of differentiating into many different cell types, including osteocytes, chondrocytes and adipocytes. They possess a therapeutic potential in the management of immune disorders and the repair of damaged tissues. Previous work in our laboratory showed an increase of the percentages of CD172a+, CD14+, CD163+, Siglec-1+, CD4+ and CD8+ hematopoietic cells, when co-cultured with immortalized mesenchymal cells derived from bone marrow. The present work aimed to demonstrate the stemness properties of SV40-immortalized mesenchymal cells derived from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow and their immunomodulatory effect on blood monocytes. Mesenchymal cells from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow were isolated and successfully immortalized using simian virus 40 large T antigen (SV40LT) and later, co-cultured with blood monocytes, in order to examine their differentiation stage (expression of Siglec-1). Flow cytometric analysis revealed that the five mesenchymal cell lines were positive for mesenchymal cell markers CD105, CD44, CD90 and CD29, but lacked the expression of myeloid cell markers CD16 and CD11b. Growth analysis of the cells demonstrated that bone marrow derived-mesenchymal cells proliferated faster compared with those derived from the other tissues. All five mesenchymal cell lines co-cultured with blood monocytes for 1, 2 and 7 days triggered the expression of siglec-1 in the monocytes. In contrast, no siglec-1+ cells were observed in monocyte cultures without mesenchymal cell lines. Mesenchymal cells isolated from nasal mucosa, lungs, spleen, lymph nodes and bone marrow were successfully immortalized and these cell lines retained their stemness properties and displayed immunomodulatory effects on blood monocytes. PMID:29036224

  3. Immortalized porcine mesenchymal cells derived from nasal mucosa, lungs, lymph nodes, spleen and bone marrow retain their stemness properties and trigger the expression of siglec-1 in co-cultured blood monocytic cells.

    PubMed

    Garba, Abubakar; Desmarets, Lowiese M B; Acar, Delphine D; Devriendt, Bert; Nauwynck, Hans J

    2017-01-01

    Mesenchymal stromal cells have been isolated from different sources. They are multipotent cells capable of differentiating into many different cell types, including osteocytes, chondrocytes and adipocytes. They possess a therapeutic potential in the management of immune disorders and the repair of damaged tissues. Previous work in our laboratory showed an increase of the percentages of CD172a+, CD14+, CD163+, Siglec-1+, CD4+ and CD8+ hematopoietic cells, when co-cultured with immortalized mesenchymal cells derived from bone marrow. The present work aimed to demonstrate the stemness properties of SV40-immortalized mesenchymal cells derived from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow and their immunomodulatory effect on blood monocytes. Mesenchymal cells from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow were isolated and successfully immortalized using simian virus 40 large T antigen (SV40LT) and later, co-cultured with blood monocytes, in order to examine their differentiation stage (expression of Siglec-1). Flow cytometric analysis revealed that the five mesenchymal cell lines were positive for mesenchymal cell markers CD105, CD44, CD90 and CD29, but lacked the expression of myeloid cell markers CD16 and CD11b. Growth analysis of the cells demonstrated that bone marrow derived-mesenchymal cells proliferated faster compared with those derived from the other tissues. All five mesenchymal cell lines co-cultured with blood monocytes for 1, 2 and 7 days triggered the expression of siglec-1 in the monocytes. In contrast, no siglec-1+ cells were observed in monocyte cultures without mesenchymal cell lines. Mesenchymal cells isolated from nasal mucosa, lungs, spleen, lymph nodes and bone marrow were successfully immortalized and these cell lines retained their stemness properties and displayed immunomodulatory effects on blood monocytes.

  4. Mesenchymal Stem Cells of Dental Origin for Inducing Tissue Regeneration in Periodontitis: A Mini-Review

    PubMed Central

    Hernández-Monjaraz, Beatriz; Santiago-Osorio, Edelmiro; Monroy-García, Alberto; Ledesma-Martínez, Edgar; Mendoza-Núñez, Víctor Manuel

    2018-01-01

    Periodontitis is a chronic disease that begins with a period of inflammation of the supporting tissues of the teeth table and then progresses, destroying the tissues until loss of the teeth occurs. The restoration of the damaged dental support apparatus is an extremely complex process due to the regeneration of the cementum, the periodontal ligament, and the alveolar bone. Conventional treatment relies on synthetic materials that fill defects and replace lost dental tissue, but these approaches are not substitutes for a real regeneration of tissue. To address this, there are several approaches to tissue engineering for regenerative dentistry, among them, the use of stem cells. Mesenchymal stem cells (MSC) can be obtained from various sources of adult tissues, such as bone marrow, adipose tissue, skin, and tissues of the orofacial area. MSC of dental origin, such as those found in the bone marrow, have immunosuppressive and immunotolerant properties, multipotency, high proliferation rates, and the capacity for tissue repair. However, they are poorly used as sources of tissue for therapeutic purposes. Their accessibility makes them an attractive source of mesenchymal stem cells, so this review describes the field of dental stem cell research and proposes a potential mechanism involved in periodontal tissue regeneration induced by dental MSC. PMID:29565801

  5. Human mesenchymal stromal cells reduce influenza A H5N1-associated acute lung injury in vitro and in vivo.

    PubMed

    Chan, Michael C W; Kuok, Denise I T; Leung, Connie Y H; Hui, Kenrie P Y; Valkenburg, Sophie A; Lau, Eric H Y; Nicholls, John M; Fang, Xiaohui; Guan, Yi; Lee, Jae W; Chan, Renee W Y; Webster, Robert G; Matthay, Michael A; Peiris, J S Malik

    2016-03-29

    Influenza can cause acute lung injury. Because immune responses often play a role, antivirals may not ensure a successful outcome. To identify pathogenic mechanisms and potential adjunctive therapeutic options, we compared the extent to which avian influenza A/H5N1 virus and seasonal influenza A/H1N1 virus impair alveolar fluid clearance and protein permeability in an in vitro model of acute lung injury, defined the role of virus-induced soluble mediators in these injury effects, and demonstrated that the effects are prevented or reduced by bone marrow-derived multipotent mesenchymal stromal cells. We verified the in vivo relevance of these findings in mice experimentally infected with influenza A/H5N1. We found that, in vitro, the alveolar epithelium's protein permeability and fluid clearance were dysregulated by soluble immune mediators released upon infection with avian (A/Hong Kong/483/97, H5N1) but not seasonal (A/Hong Kong/54/98, H1N1) influenza virus. The reduced alveolar fluid transport associated with down-regulation of sodium and chloride transporters was prevented or reduced by coculture with mesenchymal stromal cells. In vivo, treatment of aged H5N1-infected mice with mesenchymal stromal cells increased their likelihood of survival. We conclude that mesenchymal stromal cells significantly reduce the impairment of alveolar fluid clearance induced by A/H5N1 infection in vitro and prevent or reduce A/H5N1-associated acute lung injury in vivo. This potential adjunctive therapy for severe influenza-induced lung disease warrants rapid clinical investigation.

  6. MRI in the diagnosis and surgical management of abnormal placentation.

    PubMed

    Palacios-Jaraquemada, José Miguel; Bruno, Claudio Hernán; Martín, Eduardo

    2013-04-01

    To determine the usefulness of placental magnetic resonance imaging (MRI) in the diagnosis and surgical management of abnormal placentation. Retrospective follow-up. Buenos Aires, Argentina. 547 pregnant women. In all cases, a direct and reliable description of abnormal placentation features was obtained by the operating surgeon. Placental MRI was analyzed according to: (1) primary description, (2) invasion topography, (3) modification required to the surgical tactics or techniques and (4) by positive and negative predictive values. Ultrasound and MRI findings were compared with surgical results, which were considered a final diagnosis in relation to primary diagnostic indications. Placental MRI was obtained because of diagnostic doubt in 78 cases, for deep invasion diagnosis in 148 cases and to define the invasion area in 346 cases. Placental MRI allowed accurate demarcation and assessment of the degree of placental invasion, parametrial involvement and cervico-trigonal vascular hyperplasia, permitting changes in the surgical tactical approach. Ultrasound and MRI differences were associated with placenta previa, uterine scar thinning and use of different criteria for placental invasion through definitions or terminology. Six cases of false-negative and 11 of false-positive findings were reported. Placental MRI provides excellent characterization of the degree and extension of placental invasion. Its usefulness in cases of adherent placentation is directly associated to the therapeutic measures, especially where dissection maneuvers are needed. Diagnostic differences between ultrasound and MRI related to the presence or not of placenta previa and uterine scar thinning. © 2012 The Authors Acta Obstetricia et Gynecologica Scandinavica © 2012 Nordic Federation of Societies of Obstetrics and Gynecology.

  7. Different characteristics of mesenchymal stem cells isolated from different layers of full term placenta

    PubMed Central

    Ha, Chul-Won; Kim, Jin A; Heo, Jin-Chul; Han, Woo-Jung; Oh, Soo-Young; Choi, Suk-Joo

    2017-01-01

    Background The placenta is a very attractive source of mesenchymal stem cells (MSCs) for regenerative medicine due to readily availability, non-invasive acquisition, and avoidance of ethical issues. Isolating MSCs from parts of placenta tissue has obtained growing interest because they are assumed to exhibit different proliferation and differentiation potentials due to complex structures and functions of the placenta. The objective of this study was to isolate MSCs from different parts of the placenta and compare their characteristics. Methods Placenta was divided into amniotic epithelium (AE), amniotic membrane (AM), chorionic membrane (CM), chorionic villi (CV), chorionic trophoblast without villi (CT-V), decidua (DC), and whole placenta (Pla). Cells isolated from each layer were subjected to analyses for their morphology, proliferation ability, surface markers, and multi-lineage differentiation potential. MSCs were isolated from all placental layers and their characteristics were compared. Findings Surface antigen phenotype, morphology, and differentiation characteristics of cells from all layers indicated that they exhibited properties of MSCs. MSCs from different placental layers had different proliferation rates and differentiation potentials. MSCs from CM, CT-V, CV, and DC had better population doubling time and multi-lineage differentiation potentials compared to those from other layers. Conclusions Our results indicate that MSCs with different characteristics can be isolated from all layers of term placenta. These finding suggest that it is necessary to appropriately select MSCs from different placental layers for successful and consistent outcomes in clinical applications. PMID:28225815

  8. Exercise in pregnancy: an association with placental weight?

    PubMed

    Hilde, Gunvor; Eskild, Anne; Owe, Katrine Mari; Bø, Kari; Bjelland, Elisabeth K

    2017-02-01

    Women with high levels of physical exercise have an increased demand for oxygen and nutrients. Thus, in pregnancies of women with high levels of exercise, it is conceivable that the supply of oxygen and nutrients to the placenta is suboptimal, and growth could be impaired. The objective was to study the association of frequency of exercise during pregnancy with placental weight and placental to birthweight ratio. This was a prospective study of 80,515 singleton pregnancies in the Norwegian Mother and Child Cohort Study. Frequency of exercise was self-reported by a questionnaire at pregnancy weeks 17 and 30. Information on placental weight and birthweight was obtained by linkage to the Medical Birth Registry of Norway. Placental weight decreased with increasing frequency of exercise (tests for trend, P < .001). For nonexercisers in pregnancy week 17, the crude mean placental weight was 686.1 g compared with 667.3 g in women exercising ≥6 times weekly (difference, 18.8 g; 95% confidence interval, 12.0-25.5). Likewise, in nonexercisers in pregnancy week 30, crude mean placental weight was 684.9 g compared with 661.6 g in women exercising ≥6 times weekly (difference, 23.3 g; 95% confidence interval, 14.9-31.6). The largest difference in crude mean placental weight was seen between nonexercisers at both time points and women exercising ≥6 times weekly at both time points (difference, 31.7 g; 95% confidence interval, 19.2-44.2). Frequency of exercise was not associated with placental to birthweight ratio. We found decreasing placental weight with increasing frequency of exercise in pregnancy. The difference in placental weight between nonexercisers and women with exercising ≥6 times weekly was small and may have no clinical implications. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Elevated placental adenosine signaling contributes to the pathogenesis of preeclampsia.

    PubMed

    Iriyama, Takayuki; Sun, Kaiqi; Parchim, Nicholas F; Li, Jessica; Zhao, Cheng; Song, Anren; Hart, Laura A; Blackwell, Sean C; Sibai, Baha M; Chan, Lee-Nien L; Chan, Teh-Sheng; Hicks, M John; Blackburn, Michael R; Kellems, Rodney E; Xia, Yang

    2015-02-24

    Preeclampsia is a prevalent hypertensive disorder of pregnancy and a leading cause of maternal and neonatal morbidity and mortality worldwide. This pathogenic condition is speculated to be caused by placental abnormalities that contribute to the maternal syndrome. However, the specific factors and signaling pathways that lead to impaired placentas and maternal disease development remain elusive. Using 2 independent animal models of preeclampsia (genetically engineered pregnant mice with elevated adenosine exclusively in placentas and a pathogenic autoantibody-induced preeclampsia mouse model), we demonstrated that chronically elevated placental adenosine was sufficient to induce hallmark features of preeclampsia, including hypertension, proteinuria, small fetuses, and impaired placental vasculature. Genetic and pharmacological approaches revealed that elevated placental adenosine coupled with excessive A₂B adenosine receptor (ADORA2B) signaling contributed to the development of these features of preeclampsia. Mechanistically, we provided both human and mouse evidence that elevated placental CD73 is a key enzyme causing increased placental adenosine, thereby contributing to preeclampsia. We determined that elevated placental adenosine signaling is a previously unrecognized pathogenic factor for preeclampsia. Moreover, our findings revealed the molecular basis underlying the elevation of placental adenosine and the detrimental role of excess placental adenosine in the pathophysiology of preeclampsia, and thereby, we highlight novel therapeutic targets. © 2014 American Heart Association, Inc.

  10. Cell Encapsulating Biomaterial Regulates Mesenchymal Stromal/Stem Cell Differentiation and Macrophage Immunophenotype

    PubMed Central

    Cantu, David Antonio; Hematti, Peiman

    2012-01-01

    Bone marrow mesenchymal stromal/stem cell (MSC) encapsulation within a biomatrix could improve cellular delivery and extend survival and residence time over conventional intravenous administration. Although MSCs modulate monocyte/macrophage (Mø) immunophenotypic properties, little is known about how such interactions are influenced when MSCs are entrapped within a biomaterial. Furthermore, the impact of the cell-encapsulating matrix on MSC multipotency and on Møs, which infiltrate biomaterials, remains poorly understood. Here we elucidate this three-way interaction. The Mø immunophenotype and MSC differentiation were examined with regard to established and experimental collagen-based biomaterials for MSC entrapment. Tumor necrosis factor-α secretion was acutely inhibited at 4 days. MSCs cocultured with Møs demonstrated attenuated chondrocyte differentiation, whereas osteoblast differentiation was enhanced. Adipocyte differentiation was considerably enhanced for MSCs entrapped within the gelatin/polyethylene glycol-based matrix. A better understanding of the effect of cell encapsulation on differentiation potency and immunomodulation of MSCs is essential for MSC-based, biomaterial-enabled therapies. PMID:23197666

  11. 21 CFR 862.1585 - Human placental lactogen test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Human placental lactogen test system. 862.1585... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1585 Human placental lactogen test system. (a) Identification. A human placental lactogen...

  12. 21 CFR 862.1585 - Human placental lactogen test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Human placental lactogen test system. 862.1585... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1585 Human placental lactogen test system. (a) Identification. A human placental lactogen...

  13. 21 CFR 862.1585 - Human placental lactogen test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Human placental lactogen test system. 862.1585... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1585 Human placental lactogen test system. (a) Identification. A human placental lactogen...

  14. 21 CFR 862.1585 - Human placental lactogen test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Human placental lactogen test system. 862.1585... (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems § 862.1585 Human placental lactogen test system. (a) Identification. A human placental lactogen...

  15. Early Dexamethasone Treatment Induces Placental Apoptosis in Sheep

    PubMed Central

    Meng, Wenbin; Shang, Hongkai; Li, Shaofu; Sloboda, Deborah M.; Ehrlich, Loreen; Lange, Karolin; Xu, Huaisheng; Henrich, Wolfgang; Dudenhausen, Joachim W.; Plagemann, Andreas; Newnham, John P.; Challis, John R. G.

    2015-01-01

    Glucocorticoid treatment given in late pregnancy in sheep resulted in altered placental development and function. An imbalance of placental survival and apoptotic factors resulting in an increased rate of apoptosis may be involved. We have now investigated the effects of dexamethasone (DEX) in early pregnancy on binucleate cells (BNCs), placental apoptosis, and fetal sex as a determinant of these responses. Pregnant ewes carrying singleton fetuses (n = 105) were randomized to control (n = 56, 2 mL saline/ewe) or DEX treatment (n = 49, intramuscular injections of 0.14 mg/kg ewe weight per 12 hours over 48 hours) at 40 to 41 days of gestation (dG). Placentomes were collected at 50, 100, 125, and 140 dG. At 100 dG, DEX in females reduced BNC numbers, placental antiapoptotic (proliferating cell nuclear antigen), and increased proapoptotic factors (Bax, p53), associated with a temporarily decrease in fetal growth. At 125 dG, BNC numbers and apoptotic markers were restored to normal. In males, ovine placental lactogen-protein levels after DEX were increased at 50 dG, but at 100 and 140 dG significantly decreased compared to controls. In contrast to females, these changes were independent of altered BNC numbers or apoptotic markers. Early DEX was associated with sex-specific, transient alterations in BNC numbers, which may contribute to changes in placental and fetal development. Furthermore, in females, altered placental apoptosis markers may be involved. PMID:25063551

  16. Review: Maternal health and the placental microbiome.

    PubMed

    Pelzer, Elise; Gomez-Arango, Luisa F; Barrett, Helen L; Nitert, Marloes Dekker

    2017-06-01

    Over the past decade, the role of the microbiome in regulating metabolism, immune function and behavior in humans has become apparent. It has become clear that the placenta is not a sterile organ, but rather has its own endogenous microbiome. The composition of the placental microbiome is distinct from that of the vagina and has been reported to resemble the oral microbiome. Compared to the gut microbiome, the placental microbiome exhibits limited microbial diversity. This review will focus on the current understanding of the placental microbiota in normal healthy pregnancy and also in disease states including preterm birth, chorioamnionitis and maternal conditions such as obesity, gestational diabetes mellitus and preeclampsia. Factors known to alter the composition of the placental microbiota will be discussed in the final part of this review. Copyright © 2016. Published by Elsevier Ltd.

  17. Placental transcriptome co-expression analysis reveals conserved regulatory program across gestation

    USDA-ARS?s Scientific Manuscript database

    Mammalian development in utero is absolutely dependent on proper placental development, which is ultimately regulated by the placental genome. The regulation of the placental genome can be directly studied by exploring the underlying organization of the placental transcriptome through a systematic a...

  18. Maternal Administration of Sildenafil Citrate Alters Fetal and Placental Growth and Fetal-Placental Vascular Resistance in the Growth-Restricted Ovine Fetus.

    PubMed

    Oyston, Charlotte; Stanley, Joanna L; Oliver, Mark H; Bloomfield, Frank H; Baker, Philip N

    2016-09-01

    Intrauterine growth restriction (IUGR) causes short- and long-term morbidity. Reduced placental perfusion is an important pathogenic component of IUGR; substances that enhance vasodilation in the uterine circulation, such as sildenafil citrate (sildenafil), may improve placental blood flow and fetal growth. This study aimed to examine the effects of sildenafil in the growth-restricted ovine fetus. Ewes carrying singleton pregnancies underwent insertion of vascular catheters, and then, they were randomized to receive uterine artery embolization (IUGR) or to a control group. Ewes in the IUGR group received a daily infusion of sildenafil (IUGR+SC; n=10) or vehicle (IUGR+V; n=8) for 21 days. The control group received no treatment (n=9). Umbilical artery blood flow was measured using Doppler ultrasound and the resistive index (RI) calculated. Fetal weight, biometry, and placental weight were obtained at postmortem after treatment completion. Umbilical artery RI in IUGR+V fell less than in controls; the RI of IUGR+SC was intermediate to that of the other 2 groups (mean±SEM for control versus IUGR+V versus IUGR+SC: ∆RI, 0.09±0.03 versus -0.01±0.02 versus 0.03±0.02; F(2, 22)=4.21; P=0.03). Compared with controls, lamb and placental weights were reduced in IUGR+V but not in IUGR+SC (control versus IUGR+V versus IUGR+SC: fetal weight, 4381±247 versus 3447±235 versus 3687±129 g; F(2, 24)=5.49; P=0.01 and placental weight: 559.7±35.0 versus 376.2±32.5 versus 475.2±42.5 g; F(2, 24)=4.64; P=0.01). Sildenafil may be a useful adjunct in the management of IUGR. An increase in placental weight and fall in fetal-placental resistance suggests that changes to growth are at least partly mediated by changes to placental growth rather than alterations in placental efficiency. © 2016 American Heart Association, Inc.

  19. Teratogenicity induced by targeting a placental immunoglobulin transporter

    PubMed Central

    Kolonin, Mikhail G.; Pasqualini, Renata; Arap, Wadih

    2002-01-01

    Approximately 3% of children in developed countries are born with nongenetic birth defects. However, the nature and mechanisms of teratogenesis are poorly understood. We investigated mechanisms of teratogen-mediated blockade of maternofetal transport by screening a combinatorial library for peptides that bind nonendothelial placental vasculature in pregnant mice. Here, we identified a peptide motif, TPKTSVT, that homes to the yolk sac, induces placental necrosis, and disrupts embryo development. We show that TPKTSVT promotes transcytosis of phage into the embryo and blocks the transplacental transport of immunoglobulins. Based on these data, we propose a model in which TPKTSVT targets a placental Fc receptor. Absence of TPKTSVT placental homing in mice lacking β2-microglobulin (β2m) suggests FcRn/β2m as a target for the TPKTSVT, which is unexpected, given the normal development of FcRn/β2m-deficient progeny. High-throughput screening for embryotoxins that target placental receptors could be developed to systematically identify and avoid exposure to teratogenic drugs. PMID:12242328

  20. A SYSTEMATIC REVIEW OF PLACENTAL PATHOLOGY IN MATERNAL DIABETES MELLITUS

    PubMed Central

    Huynh, J.; Dawson, D.; Roberts, D.; Bentley-Lewis, R.

    2014-01-01

    During a pregnancy complicated by diabetes, the human placenta undergoes a number of functional and structural pathologic changes, such as increased placental weight and increased incidence of placental lesions including villous maturational defects and fibrinoid necrosis. The pathologic findings reported have differed among studies, potentially reflecting differences in type of diabetes, study methodology, or glycemic control of study participants. Alternatively, these discrepancies may represent different biologic adaptations to distinct metabolic diseases. In order to clarify these distinctions, we conducted a comprehensive review of English language citations in Pubmed and Embase using the keywords “diabetes”, “placenta”, AND “pathology”. Abstracts were reviewed for relevance then full-text articles were reviewed in order to extract a comprehensive summary of current pathological findings associated with pregestational and gestational diabetes mellitus, as well as an understanding of the impact of glycemic control on placental pathology. Placental abnormalities most consistently associated with maternal diabetes are an increased incidence of villous immaturity, increased measures of angiogenesis, and increased placental weight. The literature suggests that, despite similarities in placental abnormalities, differences in placental pathology may reflect differences in pathophysiology among different types of diabetes. Consequently, standardization of terminology used to define placental lesions is warranted. Moreover, further research is needed to investigate the impact of pathophysiology, glycemic control and clinical factors, such as infant sex, weight and race, on placental structure and function. PMID:25524060

  1. Placental Hypoxia During Early Pregnancy Causes Maternal Hypertension and Placental Insufficiency in the Hypoxic Guinea Pig Model.

    PubMed

    Thompson, Loren P; Pence, Laramie; Pinkas, Gerald; Song, Hong; Telugu, Bhanu P

    2016-12-01

    Chronic placental hypoxia is one of the root causes of placental insufficiencies that result in pre-eclampsia and maternal hypertension. Chronic hypoxia causes disruption of trophoblast (TB) development, invasion into maternal decidua, and remodeling of maternal spiral arteries. The pregnant guinea pig shares several characteristics with humans such as hemomonochorial placenta, villous subplacenta, deep TB invasion, and remodeling of maternal arteries, and is an ideal animal model to study placental development. We hypothesized that chronic placental hypoxia of the pregnant guinea pig inhibits TB invasion and alters spiral artery remodeling. Time-mated pregnant guinea pigs were exposed to either normoxia (NMX) or three levels of hypoxia (HPX: 16%, 12%, or 10.5% O 2 ) from 20 day gestation until midterm (39-40 days) or term (60-65 days). At term, HPX (10.5% O 2 ) increased maternal arterial blood pressure (HPX 57.9 ± 2.3 vs. NMX 40.4 ± 2.3, P < 0.001), decreased fetal weight by 16.1% (P < 0.05), and increased both absolute and relative placenta weights by 10.1% and 31.8%, respectively (P < 0.05). At midterm, there was a significant increase in TB proliferation in HPX placentas as confirmed by increased PCNA and KRT7 staining and elevated ESX1 (TB marker) gene expression (P < 0.05). Additionally, quantitative image analysis revealed decreased invasion of maternal blood vessels by TB cells. In summary, this animal model of placental HPX identifies several aspects of abnormal placental development, including increased TB proliferation and decreased migration and invasion of TBs into the spiral arteries, the consequences of which are associated with maternal hypertension and fetal growth restriction. © 2016 by the Society for the Study of Reproduction, Inc.

  2. Associations between intrapartum death and piglet, placental, and umbilical characteristics.

    PubMed

    Rootwelt, V; Reksen, O; Farstad, W; Framstad, T

    2012-12-01

    Intrapartum death in multiparous gestations in sows (Sus scrofa) is often caused by hypoxia. There is little information in the literature on the assessment of the placenta in relation to intrapartum death in piglets. The aim of this study was to evaluate the impact of the placental area and weight upon piglet birth characteristics and intrapartum death. Litters from 26 Landrace-Yorkshire sows were monitored during farrowing and the status of each piglet was recorded, including blood parameters of piglets and their umbilical veins. Of 413 piglets born, 6.5% were stillborn. Blood concentrations of glucose, lactate, and CO(2) partial pressure were increased in the stillborn piglets (P < 0.05) and corresponding umbilical veins (P < 0.01) vs. live-born piglets, whereas pH and base excess were decreased (P < 0.001). Time from onset of parturition until birth was increased for piglets born dead vs. live (P < 0.001). Mean birth weight for piglets born dead was not different from live-born piglets (P = 0.631), whereas mean body mass index was reduced (P < 0.001). Mean placental area and placental weight belonging to stillborn piglets were not different from live-born piglets (P = 0.662 and P = 0.253, respectively). Blood concentrations of lactate, hemoglobin, and hematocrit recorded in all piglets pooled were associated with placental area (P < 0.05), but not with placental weight (P > 0.2). Piglet BW was positively correlated with placental area and placental weight (P < 0.001). The risk of being born dead increased with increasing birth order group, and broken umbilical cords explained 71% of the stillbirths (P = 0.001). We conclude that placental area and placental weight are both positively associated with piglet birth weight, but not with the probability of being born dead. Placental area was a better predictor of piglet vitality than placental weight. Because umbilical cord rupture and prolonged birth time were associated with being born dead, umbilical cord rupture

  3. Increased Insulin-like Growth Factor Binding Protein-1 Phosphorylation in Decidualized Stromal Mesenchymal Cells in Human Intrauterine Growth Restriction Placentas.

    PubMed

    Singal, Sahil S; Nygard, Karen; Gratton, Robert; Jansson, Thomas; Gupta, Madhulika B

    2018-05-01

    Intrauterine growth restriction (IUGR) is often caused by placental insufficiency, which is believed to be associated with decreased delivery of oxygen and nutrients to the placental barrier. We recently reported that hypoxia and/or leucine deprivation triggered hyperphosphorylation of insulin-like growth factor binding protein-1 (IGFBP-1) in decidualized human immortalized endometrial stromal cells (HIESCs), resulting in decreased insulin-like growth factor-1 (IGF-1) bioactivity. To test the hypothesis that human IUGR is associated with increased decidual IGFBP-1 phosphorylation at discrete sites, we used IUGR and gestational age matched appropriate for gestational age (AGA) placentas ( n=5 each). We performed dual immunofluorescence immunohistochemistry (IHC) using IGFBP-1 and vimentin as decidual and mesenchymal markers, respectively. Employing a unique strategy with imaging software, we extracted signal intensity of IGFBP-1 expressed specifically from truly decidualized cells of the placenta. Relative IGFBP-1 was increased (85%; p=0.0001) and using custom phospho-site-specific antibodies, we found that IGFBP-1 phosphorylation (pSer101; +40%, p=0.0677/pSer119; +60%, p=0.0064/pSer169; +100%, p=0.0021) was markedly enhanced in IUGR. Together, our data links for the first time, increased decidual IGFBP-1 phosphorylation at discrete sites with human IUGR. These novel findings suggest that hyperphosphorylation of IGFBP-1 in decidualized stromal mesenchymal decidua basalis contributes to potentially elevated levels of phosphorylated IGFBP-1 in maternal circulation in IUGR pregnancies.

  4. Placental angiogenesis in sheep models of compromised pregnancy

    PubMed Central

    Reynolds, Lawrence P; Borowicz, Pawel P; Vonnahme, Kimberly A; Johnson, Mary Lynn; Grazul-Bilska, Anna T; Redmer, Dale A; Caton, Joel S

    2005-01-01

    Because the placenta is the organ that transports nutrients, respiratory gases and wastes between the maternal and fetal systems, development of its vascular beds is essential to normal placental function, and thus in supporting normal fetal growth. Compromised fetal growth and development have adverse health consequences during the neonatal period and throughout adult life. To establish the role of placental angiogenesis in compromised pregnancies, we first evaluated the pattern of placental angiogenesis and expression of angiogenic factors throughout normal pregnancy. In addition, we and others have established a variety of sheep models to evaluate the effects on fetal growth of various factors including maternal nutrient excess or deprivation and specific nutrients, maternal age, maternal and fetal genotype, increased numbers of fetuses, environmental thermal stress, and high altitude (hypobaric) conditions. Although placental angiogenesis is altered in each of these models in which fetal growth is adversely affected, the specific effect on placental angiogenesis depends on the type of ‘stress’ to which the pregnancy is subjected, and also differs between the fetal and maternal systems and between genotypes. We believe that the models of compromised pregnancy and the methods described in this review will enable us to develop a much better understanding of the mechanisms responsible for alterations in placental vascular development. PMID:15760944

  5. Evidence for altered placental blood flow and vascularity in compromised pregnancies

    PubMed Central

    Reynolds, Lawrence P; Caton, Joel S; Redmer, Dale A; Grazul-Bilska, Anna T; Vonnahme, Kimberly A; Borowicz, Pawel P; Luther, Justin S; Wallace, Jacqueline M; Wu, Guoyao; Spencer, Thomas E

    2006-01-01

    The placenta is the organ that transports nutrients, respiratory gases, and wastes between the maternal and fetal systems. Consequently, placental blood flow and vascular development are essential components of normal placental function and are critical to fetal growth and development. Normal fetal growth and development are important to ensure optimum health of offspring throughout their subsequent life course. In numerous sheep models of compromised pregnancy, in which fetal or placental growth, or both, are impaired, utero-placental blood flows are reduced. In the models that have been evaluated, placental vascular development also is altered. Recent studies found that treatments designed to increase placental blood flow can ‘rescue’ fetal growth that was reduced due to low maternal dietary intake. Placental blood flow and vascular development are thus potential therapeutic targets in compromised pregnancies. PMID:16469783

  6. Placental Hypoxia During Early Pregnancy Causes Maternal Hypertension and Placental Insufficiency in the Hypoxic Guinea Pig Model1

    PubMed Central

    Thompson, Loren P.; Pence, Laramie; Pinkas, Gerald; Song, Hong; Telugu, Bhanu P.

    2016-01-01

    Chronic placental hypoxia is one of the root causes of placental insufficiencies that result in pre-eclampsia and maternal hypertension. Chronic hypoxia causes disruption of trophoblast (TB) development, invasion into maternal decidua, and remodeling of maternal spiral arteries. The pregnant guinea pig shares several characteristics with humans such as hemomonochorial placenta, villous subplacenta, deep TB invasion, and remodeling of maternal arteries, and is an ideal animal model to study placental development. We hypothesized that chronic placental hypoxia of the pregnant guinea pig inhibits TB invasion and alters spiral artery remodeling. Time-mated pregnant guinea pigs were exposed to either normoxia (NMX) or three levels of hypoxia (HPX: 16%, 12%, or 10.5% O2) from 20 day gestation until midterm (39–40 days) or term (60–65 days). At term, HPX (10.5% O2) increased maternal arterial blood pressure (HPX 57.9 ± 2.3 vs. NMX 40.4 ± 2.3, P < 0.001), decreased fetal weight by 16.1% (P < 0.05), and increased both absolute and relative placenta weights by 10.1% and 31.8%, respectively (P < 0.05). At midterm, there was a significant increase in TB proliferation in HPX placentas as confirmed by increased PCNA and KRT7 staining and elevated ESX1 (TB marker) gene expression (P < 0.05). Additionally, quantitative image analysis revealed decreased invasion of maternal blood vessels by TB cells. In summary, this animal model of placental HPX identifies several aspects of abnormal placental development, including increased TB proliferation and decreased migration and invasion of TBs into the spiral arteries, the consequences of which are associated with maternal hypertension and fetal growth restriction. PMID:27806942

  7. Biotechnological and biomedical applications of mesenchymal stem cells as a therapeutic system.

    PubMed

    Rahimzadeh, Amirbahman; Mirakabad, Fatemeh Sadat Tabatabaei; Movassaghpour, Aliakbar; Shamsasenjan, Karim; Kariminekoo, Saber; Talebi, Mehdi; Shekari, Abolfazl; Zeighamian, Vahideh; Ghalhar, Masoud Gandomkar; Akbarzadeh, Abolfazl

    2016-01-01

    Mesenchymal stem cells (MSCs) are non-hematopoietic, multipotent progenitor cells which reside in bone marrow (BM), support homing of hematopoietic stem cells (HSCs) and self-renewal in the BM. These cells have the potential to differentiate into tissues of mesenchymal origin, such as fibroblasts, adipocytes, cardiomyocytes, and stromal cells. MSCs can express surface molecules like CD13, CD29, CD44, CD73, CD90, CD166, CXCL12 and toll-like receptors (TLRs). Different factors, such as TGF-β, IL-10, IDO, PGE-2, sHLA-G5, HO, and Galectin-3, secreted by MSCs, induce interaction in cell to cell immunomodulatory effects on innate and adaptive cells of the immune system. Furthermore, these cells can stimulate and increase the TH2 and regulatory T-cells through inhibitory effects on the immune system. MSCs originate from the BM and other tissues including the brain, adipose tissue, peripheral blood, cornea, thymus, spleen, fallopian tube, placenta, Wharton's jelly and umbilical cord blood. Many studies have focused on two significant features of MSC therapy: (I) MSCs can modulate T-cell-mediated immunological responses, and (II) systemically administered MSCs home in to sites of ischemia or injury. In this review, we describe the known mechanisms of immunomodulation and homing of MSCs. As a result, this review emphasizes the functional role of MSCs in modulating immune responses, their capability in homing to injured tissue, and their clinical therapeutic potential.

  8. BMP2 repression and optimized culture conditions promote human bone marrow-derived mesenchymal stem cell isolation.

    PubMed

    Kay, Alasdair Gawain; Dale, Tina Patricia; Akram, Khondoker Mehedi; Mohan, Param; Hampson, Karen; Maffulli, Nicola; Spiteri, Monica A; El Haj, Alicia Jennifer; Forsyth, Nicholas Robert

    2015-01-01

    Human mesenchymal stem cells (hMSC) are multipotent progenitor cells. We propose the optimization of hMSC isolation and recovery using the application of a controlled hypoxic environment. We evaluated oxygen, glucose and serum in the recovery of hMSC from bone marrow (BMhMSC). Colony forming units-fibroblastic, cell numbers, tri-lineage differentiation, immunofluorescence and microarray were used to confirm and characterize BMhMSC. In an optimized (2% O(2), 4.5 g/l glucose and 5% serum) environment both colony forming units-fibroblastic (p = 0.01) and cell numbers (p = 0.0001) were enhanced over standard conditions. Transcriptional analysis identified differential expression of bone morphogenetic protein 2 (BMP2) and, putatively, chemokine (C-X-C motif) receptor 2 (CXCR2) signaling pathways. We have detailed a potential milestone in the process of refinement of the BMhMSC isolation process.

  9. Dopaminergic differentiation of neural progenitors derived from placental mesenchymal stem cells in the brains of Parkinson's disease model rats and alleviation of asymmetric rotational behavior.

    PubMed

    Park, Saeyoung; Kim, Eungpil; Koh, Seong-Eun; Maeng, Sungho; Lee, Won-Don; Lim, Jinho; Shim, Insop; Lee, Young-Jay

    2012-07-23

    Parkinson's disease (PD) is caused by the progressive loss of dopaminergic neurons in the mesencephalic substantia nigra and is accompanied by behavioral abnormalities. Pharmacological administration of L-dihydroxyphenylalanine (l-dopa) improves the abnormalities in the early phase of the illness, but numerous adverse effects hinder long-term administration. Transplantation of fetal mesencephalic tissues has been suggested as an alternative to l-dopa treatment; however, the use of human fetal tissues is controversial. Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation and are thus a promising substitute for fetal tissue for the replacement of diseased tissues or organs. Previously, this group isolated 17 independent MSCs from the first trimester human placenta (termed first trimester placental MSCs, or fPMSCs) and reported their successful in vitro differentiation into fPMSC-derived neural progenitors (fPMSC-NPs) (Park et al., Placenta 2011; 32:269-276). In the current study, the in vitro-generated fPMSC-NPs were transplanted into the striatum of a rat model of PD to evaluate whether they could undergo terminal differentiation and mediate behavioral recovery. As early as 2 weeks after transplantation, a minor but significant amelioration of rotational asymmetry was observed, and near-normal motor function was achieved at 24weeks. Immunohistochemical and positron emission tomography (PET) analyses provided experimental evidence for the dopaminergic differentiation of the transplanted progenitors. These results show that in vitro-generated fPMSC-NPs are capable of terminal differentiation in vivo and can attenuate motor defects associated with PD. Hence, the placenta is an auspicious source of stem cells for the therapeutic treatment of neurological disorders. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. The technology of obtaining multipotent spheroids from limbal mesenchymal stromal cells for reparation of injured eye tissues.

    PubMed

    Kosheleva, N V; Saburina, I N; Zurina, I M; Gorkun, A A; Borzenok, S A; Nikishin, D A; Kolokoltsova, T D; Ustinova, E E; Repin, V S

    2016-01-01

    It is known that stem and progenitor cells open new possibilities for restoring injured eye tissues. Limbal eye zone, formed mainly by derivatives of neural crest, is the main source of stem cells for regeneration. The current study considers development of innovative technology for obtaining 3D spheroids from L-MMSC. It was shown that under 3D conditions L-MMSC due to compactization and mesenchymal-epithelial transition self-organize into cellular reparative modules. Formed L-MMSC spheroids retain and promote undifferentiated population of stem and progenitor limbal cells, as supported by expression of pluripotency markers - Oct4, Sox2, Nanog. Extracellular matrix synthetized by cells in spheroids allows retaining the functional potential of L-MMSC that are involved in regeneration of both anterior and, probably, posterior eye segment.

  11. High Aldehyde Dehydrogenase Activity Identifies a Subset of Human Mesenchymal Stromal Cells with Vascular Regenerative Potential.

    PubMed

    Sherman, Stephen E; Kuljanin, Miljan; Cooper, Tyler T; Putman, David M; Lajoie, Gilles A; Hess, David A

    2017-06-01

    During culture expansion, multipotent mesenchymal stromal cells (MSCs) differentially express aldehyde dehydrogenase (ALDH), an intracellular detoxification enzyme that protects long-lived cells against oxidative stress. Thus, MSC selection based on ALDH-activity may be used to reduce heterogeneity and distinguish MSC subsets with improved regenerative potency. After expansion of human bone marrow-derived MSCs, cell progeny was purified based on low versus high ALDH-activity (ALDH hi ) by fluorescence-activated cell sorting, and each subset was compared for multipotent stromal and provascular regenerative functions. Both ALDH l ° and ALDH hi MSC subsets demonstrated similar expression of stromal cell (>95% CD73 + , CD90 + , CD105 + ) and pericyte (>95% CD146 + ) surface markers and showed multipotent differentiation into bone, cartilage, and adipose cells in vitro. Conditioned media (CDM) generated by ALDH hi MSCs demonstrated a potent proliferative and prosurvival effect on human microvascular endothelial cells (HMVECs) under serum-free conditions and augmented HMVEC tube-forming capacity in growth factor-reduced matrices. After subcutaneous transplantation within directed in vivo angiogenesis assay implants into immunodeficient mice, ALDH hi MSC or CDM produced by ALDH hi MSC significantly augmented murine vascular cell recruitment and perfused vessel infiltration compared with ALDH l ° MSC. Although both subsets demonstrated strikingly similar mRNA expression patterns, quantitative proteomic analyses performed on subset-specific CDM revealed the ALDH hi MSC subset uniquely secreted multiple proangiogenic cytokines (vascular endothelial growth factor beta, platelet derived growth factor alpha, and angiogenin) and actively produced multiple factors with chemoattractant (transforming growth factor-β, C-X-C motif chemokine ligand 1, 2, and 3 (GRO), C-C motif chemokine ligand 5 (RANTES), monocyte chemotactic protein 1 (MCP-1), interleukin [IL]-6, IL-8) and matrix

  12. Posttransplant Intramuscular Injection of PLX-R18 Mesenchymal-Like Adherent Stromal Cells Improves Human Hematopoietic Engraftment in A Murine Transplant Model

    PubMed Central

    Metheny, Leland; Eid, Saada; Lingas, Karen; Ofir, Racheli; Pinzur, Lena; Meyerson, Howard; Lazarus, Hillard M.; Huang, Alex Y.

    2018-01-01

    Late-term complications of hematopoietic cell transplantation (HCT) are numerous and include incomplete engraftment. One possible mechanism of incomplete engraftment after HCT is cytokine-mediated suppression or dysfunction of the bone marrow microenvironment. Mesenchymal stromal cells (MSCs) elaborate cytokines that nurture or stimulate the marrow microenvironment by several mechanisms. We hypothesize that the administration of exogenous MSCs may modulate the bone marrow milieu and improve peripheral blood count recovery in the setting of incomplete engraftment. In the current study, we demonstrated that posttransplant intramuscular administration of human placental derived mesenchymal-like adherent stromal cells [PLacental eXpanded (PLX)-R18] harvested from a three-dimensional in vitro culture system improved posttransplant engraftment of human immune compartment in an immune-deficient murine transplantation model. As measured by the percentage of CD45+ cell recovery, we observed improvement in the peripheral blood counts at weeks 6 (8.4 vs. 24.1%, p < 0.001) and 8 (7.3 vs. 13.1%, p < 0.05) and in the bone marrow at week 8 (28 vs. 40.0%, p < 0.01) in the PLX-R18 cohort. As measured by percentage of CD19+ cell recovery, there was improvement at weeks 6 (12.6 vs. 3.8%) and 8 (10.1 vs. 4.1%). These results suggest that PLX-R18 may have a therapeutic role in improving incomplete engraftment after HCT. PMID:29520362

  13. Posttransplant Intramuscular Injection of PLX-R18 Mesenchymal-Like Adherent Stromal Cells Improves Human Hematopoietic Engraftment in A Murine Transplant Model.

    PubMed

    Metheny, Leland; Eid, Saada; Lingas, Karen; Ofir, Racheli; Pinzur, Lena; Meyerson, Howard; Lazarus, Hillard M; Huang, Alex Y

    2018-01-01

    Late-term complications of hematopoietic cell transplantation (HCT) are numerous and include incomplete engraftment. One possible mechanism of incomplete engraftment after HCT is cytokine-mediated suppression or dysfunction of the bone marrow microenvironment. Mesenchymal stromal cells (MSCs) elaborate cytokines that nurture or stimulate the marrow microenvironment by several mechanisms. We hypothesize that the administration of exogenous MSCs may modulate the bone marrow milieu and improve peripheral blood count recovery in the setting of incomplete engraftment. In the current study, we demonstrated that posttransplant intramuscular administration of human placental derived mesenchymal-like adherent stromal cells [PLacental eXpanded (PLX)-R18] harvested from a three-dimensional in vitro culture system improved posttransplant engraftment of human immune compartment in an immune-deficient murine transplantation model. As measured by the percentage of CD45 + cell recovery, we observed improvement in the peripheral blood counts at weeks 6 (8.4 vs. 24.1%, p  < 0.001) and 8 (7.3 vs. 13.1%, p  < 0.05) and in the bone marrow at week 8 (28 vs. 40.0%, p  < 0.01) in the PLX-R18 cohort. As measured by percentage of CD19 + cell recovery, there was improvement at weeks 6 (12.6 vs. 3.8%) and 8 (10.1 vs. 4.1%). These results suggest that PLX-R18 may have a therapeutic role in improving incomplete engraftment after HCT.

  14. Endothelium trans differentiated from Wharton's jelly mesenchymal cells promote tissue regeneration: potential role of soluble pro-angiogenic factors.

    PubMed

    Aguilera, Valeria; Briceño, Luis; Contreras, Hector; Lamperti, Liliana; Sepúlveda, Esperanza; Díaz-Perez, Francisca; León, Marcelo; Veas, Carlos; Maura, Rafael; Toledo, Jorge Roberto; Fernández, Paulina; Covarrubias, Ambart; Zuñiga, Felipe Andrés; Radojkovic, Claudia; Escudero, Carlos; Aguayo, Claudio

    2014-01-01

    Mesenchymal stem cells have a high capacity for trans-differentiation toward many adult cell types, including endothelial cells. Feto-placental tissue, such as Wharton's jelly is a potential source of mesenchymal stem cells with low immunogenic capacity; make them an excellent source of progenitor cells with a potential use for tissue repair. We evaluated whether administration of endothelial cells derived from mesenchymal stem cells isolated from Wharton's jelly (hWMSCs) can accelerate tissue repair in vivo. Mesenchymal stem cells were isolated from human Wharton's jelly by digestion with collagenase type I. Endothelial trans-differentiation was induced for 14 (hWMSC-End14d) and 30 (hWMSC-End30d) days. Cell phenotyping was performed using mesenchymal (CD90, CD73, CD105) and endothelial (Tie-2, KDR, eNOS, ICAM-1) markers. Endothelial trans-differentiation was demonstrated by the expression of endothelial markers and their ability to synthesize nitric oxide (NO). hWMSCs can be differentiated into adipocytes, osteocytes, chondrocytes and endothelial cells. Moreover, these cells show high expression of CD73, CD90 and CD105 but low expression of endothelial markers prior to differentiation. hWMSCs-End express high levels of endothelial markers at 14 and 30 days of culture, and also they can synthesize NO. Injection of hWMSC-End30d in a mouse model of skin injury significantly accelerated wound healing compared with animals injected with undifferentiated hWMSC or injected with vehicle alone. These effects were also observed in animals that received conditioned media from hWMSC-End30d cultures. These results demonstrate that mesenchymal stem cells isolated from Wharton's jelly can be cultured in vitro and trans-differentiated into endothelial cells. Differentiated hWMSC-End may promote neovascularization and tissue repair in vivo through the secretion of soluble pro-angiogenic factors.

  15. Human mesenchymal stromal cells reduce influenza A H5N1-associated acute lung injury in vitro and in vivo

    PubMed Central

    Chan, Michael C. W.; Kuok, Denise I. T.; Leung, Connie Y. H.; Hui, Kenrie P. Y.; Valkenburg, Sophie A.; Lau, Eric H. Y.; Nicholls, John M.; Fang, Xiaohui; Guan, Yi; Lee, Jae W.; Chan, Renee W. Y.; Webster, Robert G.; Matthay, Michael A.; Peiris, J. S. Malik

    2016-01-01

    Influenza can cause acute lung injury. Because immune responses often play a role, antivirals may not ensure a successful outcome. To identify pathogenic mechanisms and potential adjunctive therapeutic options, we compared the extent to which avian influenza A/H5N1 virus and seasonal influenza A/H1N1 virus impair alveolar fluid clearance and protein permeability in an in vitro model of acute lung injury, defined the role of virus-induced soluble mediators in these injury effects, and demonstrated that the effects are prevented or reduced by bone marrow-derived multipotent mesenchymal stromal cells. We verified the in vivo relevance of these findings in mice experimentally infected with influenza A/H5N1. We found that, in vitro, the alveolar epithelium’s protein permeability and fluid clearance were dysregulated by soluble immune mediators released upon infection with avian (A/Hong Kong/483/97, H5N1) but not seasonal (A/Hong Kong/54/98, H1N1) influenza virus. The reduced alveolar fluid transport associated with down-regulation of sodium and chloride transporters was prevented or reduced by coculture with mesenchymal stromal cells. In vivo, treatment of aged H5N1-infected mice with mesenchymal stromal cells increased their likelihood of survival. We conclude that mesenchymal stromal cells significantly reduce the impairment of alveolar fluid clearance induced by A/H5N1 infection in vitro and prevent or reduce A/H5N1-associated acute lung injury in vivo. This potential adjunctive therapy for severe influenza-induced lung disease warrants rapid clinical investigation. PMID:26976597

  16. Gestational diabetes is associated with changes in placental microbiota and microbiome.

    PubMed

    Bassols, Judit; Serino, Matteo; Carreras-Badosa, Gemma; Burcelin, Rémy; Blasco-Baque, Vincent; Lopez-Bermejo, Abel; Fernandez-Real, José-Manuel

    2016-12-01

    The human microbiota is a modulator of the immune system. Variations in the placental microbiota could be related with pregnancy disorders. We profiled the placental microbiota and microbiome in women with gestational diabetes (GDM) and studied its relation to maternal metabolism and placental expression of anti-inflammatory cytokines. Placental microbiota and microbiome and expression of anti-inflammatory cytokines (IL10, TIMP3, ITGAX, and MRC1MR) were analyzed in placentas from women with GDM and from control women. Fasting insulin, glucose, O'Sullivan glucose, lipids, and blood cell counts were assessed at second and third trimester of pregnancy. Bacteria belonging to the Pseudomonadales order and Acinetobacter genus showed lower relative abundance in women with GDM compared to control (P < 0.05). In GDM, lower abundance of placental Acinetobacter associated with a more adverse metabolic (higher O'Sullivan glucose) and inflammatory phenotype (lower blood eosinophil count and lower placental expression of IL10 and TIMP3) (P < 0.05 to P = 0.001). Calcium signaling pathway was increased in GDM placental microbiome. A distinct microbiota profile and microbiome is present in GDM. Acinetobacter has been recently shown to induce IL-10 in mice. GDM could constitute a state of placental microbiota-driven altered immunologic tolerance, making placental microbiota a new target for therapy in GDM.

  17. The duration of pregnancy in ecologically-challenged area. The effects of environmental pollution with aromatic hydrocarbons on the angiogenesis and elements of the mesenchymal tissue of the human placenta.

    PubMed

    Wierzba, Waldemar; Radowicki, Stanisław; Bojar, Iwona; Pinkas, Jarosław

    2017-01-01

    The literature presents only few reports regarding the effects of elevated levels of aromatic hydrocarbons (AH) on the functions of the human placenta. The effects of environmental contamination with AH (including phenol and 1-hydroxypyrene) have certain negative effects on parenchymal organs such as human placenta. The paper aimed to assess the effects of elevated levels of AH on the placental angiogenesis and elements of the mesenchymal tissue of the placenta. Tissue material from 50 afterbirths from Płock constituted a study group, whereas 50 afterbirths from Kutno constituted a control group. Immunohistochemical reactions with the peroxidase method using LSAB kits (DAKO) were performed. The extent and intensity of reactions were analysed. The levels of phenols and 1-hydroxypyrene in the excreted urine of pregnant women (undergoing delivery) were detected using gas chromatography and colorimetry. The levels of phenol and 1-hydroxypyrene in the excreted urine were demonstrated to be statistically significantly higher in patients living in the area of Płock. Statistically significantly higher expression of antibodies indicating placental angiogenesis was observed in the placentas in the Płock group (p < 0.01). Moreover, lower expression of vimentin indicating reactions with proteins in mesenchymal cells was observed in the Kutno group (p < 0.01). Pregnancy in the environment with elevated levels of aromatic hydrocarbons has detrimental effects on the human placenta. The foetus is protected by activation of adaptation and compensation mechanisms that are manifested as significant angiogenesis and greater development and differentiation of mesenchymal cells compared to the control group.

  18. The Differential Expression of Adhesion Molecule and Extracellular Matrix Genes in Mesenchymal Stromal Cells after Interaction with Cord Blood Hematopoietic Progenitors.

    PubMed

    Buravkova, L B; Andreeva, E R; Lobanova, M V; Cotnezova, E V; Grigoriev, A I

    2018-03-01

    The dynamics of the expression of genes encoding adhesion molecules, molecules of the connective tissue matrix, and its remodeling enzymes was studied in multipotent mesenchymal stromal cells (MSCs) from human adipose tissue after interaction with cord blood hematopoietic progenitors (HSPCs). An upregulation of ICAM1 and VCAM1, directly proportional to the coculture time (24-72 h), was found. After 72 h of culturing, a downregulation of the genes encoding the majority of matrix molecules (SPP1; COL6A2,7A1; MMP1,3; TIMP1,3; and HAS1) and cell-matrix adhesion molecules (ITGs) was revealed. The detected changes may ensure the realization of the stromal MSC function due to improvement of adhesion and transmigration of HSPCs into the subcellular space.

  19. Mesenchymal Stem/Multipotent Stromal Cells from Human Decidua Basalis Reduce Endothelial Cell Activation.

    PubMed

    Alshabibi, Manal A; Al Huqail, Al Joharah; Khatlani, Tanvir; Abomaray, Fawaz M; Alaskar, Ahmed S; Alawad, Abdullah O; Kalionis, Bill; Abumaree, Mohamed Hassan

    2017-09-15

    Recently, we reported the isolation and characterization of mesenchymal stem cells from the decidua basalis of human placenta (DBMSCs). These cells express a unique combination of molecules involved in many important cellular functions, which make them good candidates for cell-based therapies. The endothelium is a highly specialized, metabolically active interface between blood and the underlying tissues. Inflammatory factors stimulate the endothelium to undergo a change to a proinflammatory and procoagulant state (ie, endothelial cell activation). An initial response to endothelial cell activation is monocyte adhesion. Activation typically involves increased proliferation and enhanced expression of adhesion and inflammatory markers by endothelial cells. Sustained endothelial cell activation leads to a type of damage to the body associated with inflammatory diseases, such as atherosclerosis. In this study, we examined the ability of DBMSCs to protect endothelial cells from activation through monocyte adhesion, by modulating endothelial proliferation, migration, adhesion, and inflammatory marker expression. Endothelial cells were cocultured with DBMSCs, monocytes, monocyte-pretreated with DBMSCs and DBMSC-pretreated with monocytes were also evaluated. Monocyte adhesion to endothelial cells was examined following treatment with DBMSCs. Expression of endothelial cell adhesion and inflammatory markers was also analyzed. The interaction between DBMSCs and monocytes reduced endothelial cell proliferation and monocyte adhesion to endothelial cells. In contrast, endothelial cell migration increased in response to DBMSCs and monocytes. Endothelial cell expression of adhesion and inflammatory molecules was reduced by DBMSCs and DBMSC-pretreated with monocytes. The mechanism of reduced endothelial proliferation involved enhanced phosphorylation of the tumor suppressor protein p53. Our study shows for the first time that DBMSCs protect endothelial cells from activation by

  20. Reduced risk for placental malaria in iron deficient women

    PubMed Central

    2011-01-01

    Background Nutritional iron deficiency may limit iron availability to the malaria parasite reducing infection risk, and/or impair host immunity thereby increasing this risk. In pregnant women, there is evidence of an adverse effect with iron supplementation, but the few reported studies are strongly confounded. Methods A case control study in pregnant Malawian women was undertaken in Chikhwawa southern Malawi in order to describe iron status in relation to placental malaria controlling for several confounding factors. Pregnancy characteristics were obtained and a blood sample at delivery. A full blood count was performed and serum ferritin and transferrin receptor quantified by enzyme-linked immunoassay. DNA analysis was used to identify genetic polymorphisms for ABO phenotype, hemoglobin HbS, and glucose -6 phosphate dehydrogenase deficiency. Placental tissue was obtained and malaria histology classified as active, past or no malaria infection. Results 112 cases with placental malaria were identified and 110 women with no evidence of placental infection. Iron deficiency was less frequent in women with placental Plasmodium falciparum infection. In those with acute, chronic or past placental infections the odds ratio for iron deficiency was 0.4, 95% CI 0.2-0.8, p = 0.01; for acute and chronic infections 0.4, 0.2-0.8, p = 0.006; for acute infection 0.3, 0.1-0.7, p = 0.001. The association was greater in multigravidae. Conclusion Women with either acute, or acute and chronic placental malaria were less likely to have iron deficiency than women without placental malaria infection There is a priority to establish if reversing iron deficiency through iron supplementation programs either prior to or during pregnancy enhances malaria risk. PMID:21345193

  1. Isolation and cellular properties of mesenchymal cells derived from the decidua of human term placenta.

    PubMed

    Kanematsu, Daisuke; Shofuda, Tomoko; Yamamoto, Atsuyo; Ban, Chiaki; Ueda, Takafumi; Yamasaki, Mami; Kanemura, Yonehiro

    2011-09-01

    The clinical promise of cell-based therapies is generally recognized, and has driven an intense search for good cell sources. In this study, we isolated plastic-adherent cells from human term decidua vera, called decidua-derived-mesenchymal cells (DMCs), and compared their properties with those of bone marrow-derived-mesenchymal stem cells (BM-MSCs). The DMCs strongly expressed the mesenchymal cell marker vimentin, but not cytokeratin 19 or HLA-G, and had a high proliferative potential. That is, they exhibited a typical fibroblast-like morphology for over 30 population doublings. Cells phenotypically identical to the DMCs were identified in the decidua vera, and genotyping confirmed that the DMCs were derived from the maternal components of the fetal adnexa. Flow cytometry analysis showed that the expression pattern of CD antigens on the DMCs was almost identical to that on BM-MSCs, but some DMCs expressed the CD45 antigen, and over 50% of them also expressed anti-fibroblast antigen. In vitro, the DMCs showed good differentiation into chondrocytes and moderate differentiation into adipocytes, but scant evidence of osteogenesis, compared with the BM-MSCs. Gene expression analysis showed that, compared with BM-MSCs, the DMCs expressed higher levels of TWIST2 and RUNX2 (which are associated with early mesenchymal development and/or proliferative capacity), several matrix metalloproteinases (MMP1, 3, 10, and 12), and cytokines (BMP2 and TGFB2), and lower levels of MSX2, interleukin 26, and HGF. Although DMCs did not show the full multipotency of BM-MSCs, their higher proliferative ability indicates that their cultivation would require less maintenance. Furthermore, the use of DMCs avoids the ethical concerns associated with the use of embryonic tissues, because they are derived from the maternal portion of the placenta, which is otherwise discarded. Thus, the unique properties of DMCs give them several advantages for clinical use, making them an interesting and

  2. Fibrin glue as the cell-delivery vehicle for mesenchymal stromal cells in regenerative medicine.

    PubMed

    Wu, Xiuwen; Ren, Jianan; Li, Jieshou

    2012-05-01

    The use of tissue-engineering techniques such as stem-cell therapy to renew injured tissues is a promising strategy in regenerative medicine. As a cell-delivery vehicle, fibrin glues (FG) facilitate cell attachment, growth and differentiation and, ultimately, tissue formation and organization by its three-dimensional structure. Numerous studies have provided evidence that stromal cells derived from bone marrow (bone marrow stromal cells; BMSC) and adipose tissue (adipose-derived stromal cells; ADSC) contain a population of adult multipotent mesenchymal stromal cells (MSC) and endothelial progenitor cells that can differentiate into several lineages. By combining MSC with FG, the implantation could take advantage of the mutual benefits. Researchers and physicians have pinned their hopes on stem cells for developing novel approaches in regenerative medicine. This review focuses on the therapeutic potential of MSC with FG in bone defect reconstruction, cartilage and tendon injury repair, ligament, heart and nerve regeneration, and, furthermore, wound healing.

  3. Homing of mesenchymal stem cells: mechanistic or stochastic? Implications for targeted delivery in arthritis.

    PubMed

    Eseonu, Onyedikachi I; De Bari, Cosimo

    2015-02-01

    Mesenchymal stem cells (MSCs) are multipotent cells with the capacity to undergo chondrogenic differentiation. Systemically administered MSCs have been shown to preferentially accumulate at sites of tissue damage and inflammation, thus MSC-based therapy holds great promise for the treatment of inflammatory diseases such as RA. Modulation of MSC homing may allow targeted delivery of systemically administered MSCs to damaged articular cartilage, where they can suppress immune-mediated cartilage destruction and contribute to cartilage repair via a combination of chondrogenic differentiation and paracrine stimulation of intrinsic residual repair. To harness the potential of MSC homing, a thorough understanding of the mechanism is key. This review discusses current knowledge of the mechanism of MSC homing to injured/inflamed tissue and its implications for targeted MSC-based therapy in arthritis. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Chondrogenesis, osteogenesis and adipogenesis of canine mesenchymal stem cells: a biochemical, morphological and ultrastructural study.

    PubMed

    Csaki, C; Matis, U; Mobasheri, A; Ye, H; Shakibaei, M

    2007-12-01

    Musculoskeletal diseases with osteochondrotic articular cartilage defects, such as osteoarthritis, are an increasing problem for humans and companion animals which necessitates the development of novel and improved therapeutic strategies. Canine mesenchymal stem cells (cMSCs) offer significant promise as a multipotent source for cell-based therapies and could form the basis for the differentiation and cultivation of tissue grafts to replace damaged tissue. However, no comprehensive analysis has been undertaken to characterize the ultrastructure of in vitro differentiated cMSCs. The main goal of this paper was to focus on cMSCs and to analyse their differentiation capacity. To achieve this aim, bone marrow cMSCs from three canine patients were isolated, expanded in monolayer culture and characterized with respect to their ability for osteogenic, adipogenic and chondrogenic differentiation capacities. cMSCs showed proliferative potential and were capable of osteogenic, adipogenic and chondrogenic differentiation. cMSCs treated with the osteogenic induction medium differentiated into osteoblasts, produced typical bone matrix components, beta1-integrins and upregulated the osteogenic specific transcription factor Cbfa-1. cMSCs treated with the adipogenic induction medium showed typical adipocyte morphology, produced adiponectin, collagen type I and beta1-integrins, and upregulated the adipogenic specific transcription factor PPAR-gamma. cMSCs treated with the chondrogenic induction medium exhibited a round to oval shape, produced a cartilage-specific extracellular matrix, beta1-integrins and upregulated the chondrogenic specific transcription factor Sox9. These results demonstrate, at the biochemical, morphological and ultrastructural levels, the multipotency of cMSCs and thus highlight their potential therapeutic value for cell-based tissue engineering.

  5. Effects of maternal obesity on placental function and fetal development

    PubMed Central

    Howell, Kristy R.; Powell, Theresa L.

    2017-01-01

    Obesity has reached epidemic proportions and pregnancies in obese mothers have increased risk for complications including gestational diabetes, hypertensive disorders, preterm birth and caesarian section. Children born to obese mothers are at increased risk of obesity and metabolic disease and are susceptible to develop neuropsychiatric and cognitive disorders. Changes in placental function not only play a critical role in the development of pregnancy complications but may also be involved in linking maternal obesity to long-term health risks in the infant. Maternal adipokines i.e., interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), leptin and adiponectin link maternal nutritional status and adipose tissue metabolism to placental function. Adipokines and metabolic hormones have direct impact on placental function by modulating placental nutrient transport. Nutrient delivery to the fetus is regulated by a complex interaction between insulin signaling, cytokine profile and insulin responsiveness, which is modulated by adiponectin and IL-1β. In addition, obese pregnant women are at risk for hypertension and preeclampsia with reduced placental vascularity and blood flow, which would restrict placental nutrient delivery to the developing fetus. These sometimes opposing signals regulating placental function may contribute to the diversity of short and long-term outcomes observed in pregnant obese women. This review focuses on the changes in adipokines and obesity-related metabolic hormones, how these factors influence placental function and fetal development to contribute to long-term metabolic and behavioral consequences of children born to obese mothers. PMID:27864335

  6. Placental transport and in vitro effects of Bisphenol A.

    PubMed

    Mørck, Thit J; Sorda, Giuseppina; Bechi, Nicoletta; Rasmussen, Brian S; Nielsen, Jesper B; Ietta, Francesca; Rytting, Erik; Mathiesen, Line; Paulesu, Luana; Knudsen, Lisbeth E

    2010-08-01

    Bisphenol A (BPA), an estrogen-like chemical, leaches from consumer products potentially causing human exposure. To examine the effects of BPA exposure during pregnancy, we performed studies using the BeWo trophoblast cell line, placental explant cultures, placental perfusions and skin diffusion models, all of human origin. Results showed BPA cytotoxicity in BeWo cells with an apparent EC50 at 100-125 microM. BPA exposure significantly increased beta-hCG secretion and caspase-3 expression in placental explants at an environmentally relevant concentration of 1 nM. In the transport studies, a rapid transfer of BPA was observed across the term placentae and the BeWo cell monolayer. Further, transdermal transport of BPA was observed. These results indicate that fetal BPA exposure through placental exchange occurs with potential adverse implications for placental and fetal development. This battery of test systems within the realm of human implantation and fetal development represents important elements in risk assessment of reproductive toxicity. Copyright 2010 Elsevier Inc. All rights reserved.

  7. Placental lactogen secretion during prolonged-pregnancy in the rat: the ovary plays a pivotal role in the control of placental function.

    PubMed

    Shiota, K; Furuyama, N; Takahashi, M

    1991-10-01

    The serum of rats at mid-pregnancy contains at least 2 distinct placental lactogen (PL)-like substances tentatively termed placental lactogen-alpha (PL-alpha) and placental lactogen-beta (PL-beta) (Endocrinol Japon 38: 533-540, 1991). We have investigated the secretory patterns of three placental lactogens (PL-alpha, PL-beta and placental lactogen-II) during normal pregnancy and in two prolonged-pregnancy models. Pregnancy was prolonged by the introduction of new corpora lutea by inducing ovulation on day 15 of pregnancy by successive treatments with PMSG (30 IU/rat, sc on day 12) and hCG (10 IU/rat, iv on day 14), and in the second model by progesterone implants on day 15 of pregnancy. During normal pregnancy, each of the 3 PLs exhibited only one secretory peak in the serum; PL-alpha and PL-beta on day 12 and placental lactogen II (PL-II) on day 20. Interestingly, in the rats with new sets of corpora lutea, serum PL-alpha and PL-beta levels began to increase again on day 18 and showed peaks on day 20 for PL-alpha and on day 22 for PL-beta. In this model, the initiation of PL-II secretion was not affected, but high levels were maintained until day 26, when parturition occurred. In rats receiving either PMSG or hCG, the secretory patterns of the PLs were similar to as those during normal pregnancy.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. The maternal to fetal transfer of immunoglobulins associated with placental lesions in sheep.

    PubMed Central

    Poitras, B J; Miller, R B; Wilkie, B N; Bosu, W T

    1986-01-01

    In this study we evaluated maternofetal transmission of immunoglobulins in ewes under conditions of altered placental morphology. Intravenous injection of human red blood cells was used to induce immunoglobulins in pregnant ewes. The hemagglutination test was used to detect antibody in maternal serum, fetal and placental fluids. Placental injury was induced by intravenous inoculation of Escherichia coli endotoxin or spores of Aspergillus fumigatus into pregnant ewes at days 99 or 100 of gestation respectively. Placental infarction, thrombosis of maternal placental vessels and variable neutrophil infiltrate characterized lesions produced by A. fumigatus. Endotoxin treated ewes developed marked placental edema, congestion, hemorrhage and focal loss of uterine epithelium. Human red blood cell agglutinating antibody was not detected in placental or fetal fluids obtained from ewes with either of the above placental lesions. Placentitis of undetermined etiology was observed in seven ewes. Two ewes had received A. fumigatus, two had received endotoxin and three were untreated ewes. Histological examination of their placentas revealed trophoblastic and endometrial epithelial necrosis and necrotizing vasculitis of the chorioallantois. Human red blood cell agglutinating antibody was detected only in the fetal and placental fluids of the seven ewes with these placental lesions. The nature of these lesions would have produced a functional confluence of the maternal and fetal circulations. Antibody transfer from dam to fetus was observed only in association with placental lesions which produced this confluence of circulations. The character of the placental lesions, rather than the mere presence of placental lesions apparently determined the transfer of immunoglobulins.(ABSTRACT TRUNCATED AT 250 WORDS) Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:3742359

  9. Placental abruption possibly due to parvovirus B19 infection.

    PubMed

    Kawabe, Ayaka; Takai, Yasushi; Tamaru, Jun-Ichi; Samejima, Kouki; Seki, Hiroyuki

    2016-01-01

    There is concern about the development of anemia-associated fetal hydrops associated with maternal parvovirus B19 infection. Parvovirus B19 infection occurs via the globoside (P antigen) receptor, the main glycolipid of erythroid cells, which induces apoptosis. Similar findings have been reported for the P antigen of globoside-containing placental trophoblast cells. A 32-year-old woman was infected with human parvovirus B19 at week 32 of pregnancy, and had severe anemia at week 34. At week 37, an emergency cesarean section was performed because of sudden abdominal pain and fetal bradycardia; placental abruption was found. A live male infant was delivered with no sign of fetal hydrops or fetal infection. Placental tissue was positive for parvovirus B19 according to polymerase chain reaction. Immunohistochemical analysis using caspase-related M30 CytoDEATH monoclonal antibody revealed M30 staining of the placental villous trophoblasts. Placental trophoblasts and erythroid precursor cells have been reported to express globoside (P antigen), which is necessary for parvovirus B19 infectivity, and to show apoptotic activity as a result of infection. Placentas from three other pregnancies with documented abruption showed no M30 staining. The present case strongly suggests an association between placental abruption and apoptosis resulting from parvovirus B19 infection.

  10. Induction of hair follicle dermal papilla cell properties in human induced pluripotent stem cell-derived multipotent LNGFR(+)THY-1(+) mesenchymal cells

    PubMed Central

    Veraitch, Ophelia; Mabuchi, Yo; Matsuzaki, Yumi; Sasaki, Takashi; Okuno, Hironobu; Tsukashima, Aki; Amagai, Masayuki; Okano, Hideyuki; Ohyama, Manabu

    2017-01-01

    The dermal papilla (DP) is a specialised mesenchymal component of the hair follicle (HF) that plays key roles in HF morphogenesis and regeneration. Current technical difficulties in preparing trichogenic human DP cells could be overcome by the use of highly proliferative and plastic human induced pluripotent stem cells (hiPSCs). In this study, hiPSCs were differentiated into induced mesenchymal cells (iMCs) with a bone marrow stromal cell phenotype. A highly proliferative and plastic LNGFR(+)THY-1(+) subset of iMCs was subsequently programmed using retinoic acid and DP cell activating culture medium to acquire DP properties. The resultant cells (induced DP-substituting cells [iDPSCs]) exhibited up-regulated DP markers, interacted with human keratinocytes to up-regulate HF related genes, and when co-grafted with human keratinocytes in vivo gave rise to fibre structures with a hair cuticle-like coat resembling the hair shaft, as confirmed by scanning electron microscope analysis. Furthermore, iDPSCs responded to the clinically used hair growth reagent, minoxidil sulfate, to up-regulate DP genes, further supporting that they were capable of, at least in part, reproducing DP properties. Thus, LNGFR(+)THY-1(+) iMCs may provide material for HF bioengineering and drug screening for hair diseases. PMID:28220862

  11. Computerized assessment of placental calcification post-ultrasound: a novel software tool.

    PubMed

    Moran, M; Higgins, M; Zombori, G; Ryan, J; McAuliffe, F M

    2013-05-01

    Placental calcification is associated with an increased risk of perinatal morbidity and mortality. The subjectivity of current ultrasound methods of assessment of placental calcification indicates that a more objective method is required. The aim of this study was to correlate the percentage of calcification defined by the clinician using a new software tool for calculating the extent of placental calcification with traditional ultrasound methods and with pregnancy outcome. Ninety placental images were individually assessed. An upper threshold was defined, based on high intensity, to quantify calcification within the placenta. Output metrics were then produced including the overall percentage of calcification with respect to the total number of pixels within the region of interest. The results were correlated with traditional ultrasound methods of assessment of placental calcification and with pregnancy outcome. The results demonstrate a significant correlation between placental calcification, as defined using the software, and traditional methods of Grannum grading of placental calcification. Whilst correlation with perinatal outcome and cord pH was not significant as a result of small numbers, patients with placental calcification assessed using the computerized software at the upper quartile had higher rates of poor perinatal outcome when compared with those at the lower quartile (8/22 (36%) vs 3/23 (13%); P = 0.069). These results suggest that this computerized software tool has the potential to become an alternative method of assessing placental calcification. Copyright © 2012 ISUOG. Published by John Wiley & Sons Ltd.

  12. Classics revisited: Dietrich Starck on comparative embryology and placentation.

    PubMed

    Carter, A M

    2017-10-01

    Dietrich Starck (1908-2001) was a German embryologist who wrote extensive reviews on comparative placentation. Starck's embryology textbook and his comprehensive review of comparative embryology and placentation give excellent insights into the foundational literature and are extensively referenced. The many original illustrations include placentas from species that are not well described elsewhere. These resources are especially valuable as a portal to the early literature on comparative placentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Maternal protein restriction in the rat inhibits placental insulin, mTOR, and STAT3 signaling and down-regulates placental amino acid transporters.

    PubMed

    Rosario, Fredrick J; Jansson, Nina; Kanai, Yoshikatsu; Prasad, Puttur D; Powell, Theresa L; Jansson, Thomas

    2011-03-01

    The mechanisms underlying reduced fetal growth in response to maternal protein restriction are not well established. Maternal levels of insulin, IGF-I, and leptin are decreased in rats fed a low protein (LP) diet. Because these hormones stimulate placental amino acid transporters in vitro, we hypothesized that maternal protein restriction inhibits placental leptin, insulin/IGF-I, and mammalian target of rapamycin signaling and down-regulates the expression and activity of placental amino acid transporters. Pregnant rats were fed either an isocaloric low protein (LP, 4% protein) or control diet (18% protein) and studied at gestational day (GD)15, GD19, or GD21 (term 23). At GD19 and GD21, placental expression of phosphorylated eukaryotic initiation factor 4E binding protein 1 (Thr-36/46 or Thr-70) and phosphorylated S6 ribosomal protein (Ser-235/236) was decreased in the LP group. In addition, placental expression of phosphorylated S6 kinase 1 (Thr-389), phosphorylated Akt (Thr-308), and phosphorylated signal transducer and activator of transcription 3 (Tyr-705) was reduced at GD21. In microvillous plasma membranes (MVM) isolated from placentas of LP animals, protein expression of the sodium-coupled neutral amino acid transporter (SNAT)2 and the large neutral amino acid transporters 1 and 2 was reduced at GD19 and GD21. MVM SNAT1 protein expression was reduced at GD21 in LP rats. SNAT4 and 4F2 heavy chain expression in MVM was unaltered. System A and L amino acid transporter activity was decreased in MVM from LP animals at GD19 and GD21. In conclusion, maternal protein restriction inhibits placental insulin, mammalian target of rapamycin signaling, and signal transducer and activator of transcription 3 signaling, which is associated with a down-regulation of placental amino acid transporters. We speculate that maternal endocrine and metabolic control of placental nutrient transport reduces fetal growth in response to protein restriction.

  14. 21 CFR 862.1585 - Human placental lactogen test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... placental lactogen are used in the diagnosis and clinical management of high-risk pregnancies involving fetal distress associated with placental insufficiency. Measurements of HPL are also used in pregnancies...

  15. Use of Placental Membranes for the Treatment of Chronic Diabetic Foot Ulcers

    PubMed Central

    Brantley, Jonathan N.; Verla, Thomas D.

    2015-01-01

    Significance: Chronic diabetic foot ulcers (DFUs) remain a challenge for physicians to treat. High mortality rates for DFU patients have pointed to the low effectiveness of standard care and lack of quality wound care products. The composition (collagen-rich tissue matrix and endogenous growth factors and cells) and functional properties (anti-inflammatory, anti-bacterial, and angiogenic) of placental membranes are uniquely suited to address the needs of chronic wounds. This led to the commercialization of placental membranes, which are now widely available to physicians as a new advanced wound treatment option. Recent Advances: Progress in tissue processing and preservation methods has facilitated the development of placental products for wounds. Currently, a variety of commercial placental products are available to physicians for the treatment of chronic DFUs and other wounds. This review summarizes the key factors that negatively impact DFU healing (including social factors, such as smoking, vascular deficiencies, hyperglycemia, and other metabolic abnormalities), describes the structure and biology of placental membranes, and overviews commercially available placental products for wounds and data from the most recent DFU clinical trials utilizing commercial placental membranes. Critical Issues: Although the effects of diabetes on wound healing are complex and not fully understood, some of the key factors and pathways that interfere with healing have been identified. However, a multidisciplinary approach for the assessment of patients with chronic DFUs and guidelines for selection of appropriate treatment modalities remain to be implemented. Future Directions: The biological properties of placental membranes show benefits for the treatment of chronic DFUs, but scientific and clinical data for commercially available placental products are limited. Therefore, we need (1) more randomized, controlled clinical trials for commercial placental products; (2) studies

  16. Macrosomia has its roots in early placental development

    PubMed Central

    Schwartz, Nadav; Quant, Hayley S.; Sammel, Mary D.; PARRY, Samuel

    2014-01-01

    Introduction We sought to determine if early placental size, as measured by 3-dimensional ultrasonography, is associated with an increased risk of delivering a macrosomic or large-for-gestational age (LGA) infant. Methods We prospectively collected 3-dimensional ultrasound volume sets of singleton pregnancies at 11–14 weeks and 18–24 weeks. Birth weights were collected from the medical records. After delivery, the ultrasound volume set were used to measure the placental volume (PV) and placental quotient (PQ=PV/gestational age), as well as the mean placental and chorionic diameters (MPD and MCD, respectively). Placental measures were analyzed as predictors of macrosomia (birth weight ≥4000 grams) and LGA (birth weight ≥90th percentile). Results The 578 pregnancies with first trimester volumes included 44 (7.6%) macrosomic and 43 (7.4%) LGA infants. 373 subjects also had second trimester volumes available. A higher PV and PQ were both significantly associated with macrosomia and LGA in both the first and second trimesters. Second trimester MPD was significantly associated with both outcomes as well, while second trimester MCD was only associated with LGA. The above associations remained significant after adjusting for maternal demographic variables such as race, ethnicity, age and diabetes. Adjusted models yielded moderate prediction of macrosomia and LGA (AUC: 0.71–0.77). Conclusions Sonographic measurement of the early placenta can identify pregnancies at greater risk of macrosomia and LGA. Macrosomia and LGA are already determined in part by early placental growth and development. PMID:25064071

  17. Oxygen and tissue culture affect placental gene expression.

    PubMed

    Brew, O; Sullivan, M H F

    2017-07-01

    Placental explant culture is an important model for studying placental development and functions. We investigated the differences in placental gene expression in response to tissue culture, atmospheric and physiologic oxygen concentrations. Placental explants were collected from normal term (38-39 weeks of gestation) placentae with no previous uterine contractile activity. Placental transcriptomic expressions were evaluated with GeneChip ® Human Genome U133 Plus 2.0 arrays (Affymetrix). We uncovered sub-sets of genes that regulate response to stress, induction of apoptosis programmed cell death, mis-regulation of cell growth, proliferation, cell morphogenesis, tissue viability, and protection from apoptosis in cultured placental explants. We also identified a sub-set of genes with highly unstable pattern of expression after exposure to tissue culture. Tissue culture irrespective of oxygen concentration induced dichotomous increase in significant gene expression and increased enrichment of significant pathways and transcription factor targets (TFTs) including HIF1A. The effect was exacerbated by culture at atmospheric oxygen concentration, where further up-regulation of TFTs including PPARA, CEBPD, HOXA9 and down-regulated TFTs such as JUND/FOS suggest intrinsic heightened key biological and metabolic mechanisms such as glucose use, lipid biosynthesis, protein metabolism; apoptosis, inflammatory responses; and diminished trophoblast proliferation, differentiation, invasion, regeneration, and viability. These findings demonstrate that gene expression patterns differ between pre-culture and cultured explants, and the gene expression of explants cultured at atmospheric oxygen concentration favours stressed, pro-inflammatory and increased apoptotic transcriptomic response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A Unique Opportunity to Test Whether Cell Fusion is a Mechanism of Breast Cancer Metastasis

    DTIC Science & Technology

    2015-06-01

    conditions for T47D and human mesenchymal stem cell populations. As a result we have been able to conduct our first co-culture experiments to determine...spontaneously and reliably with mesenchymal stem cells . We found that fusion occurs more frequently with hypoxia and that one means by which...in hypoxic conditions, we decided to investigate whether the mechanism of breast cancer cell fusion with mesenchymal stem /multipotent stromal cells

  19. In vitro differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocyte-like cells.

    PubMed

    Hong, Seung Hyun; Gang, Eun Ji; Jeong, Ju Ah; Ahn, Chiyoung; Hwang, Soo Han; Yang, Il Ho; Park, Hwon Kyum; Han, Hoon; Kim, Hoeon

    2005-05-20

    In addition to long-term self-renewal capability, human mesenchymal stem cells (MSCs) possess versatile differentiation potential ranging from mesenchyme-related multipotency to neuroectodermal and endodermal competency. Of particular concern is hepatogenic potential that can be used for liver-directed stem cell therapy and transplantation. In this study, we have investigated whether human umbilical cord blood (UCB)-derived MSCs are also able to differentiate into hepatocyte-like cells. MSCs isolated from UCB were cultured under the pro-hepatogenic condition similar to that for bone marrow (BM)-derived MSCs. Expression of a variety of hepatic lineage markers was analyzed by flow cytometry, RT-PCR, Western blot, and immunofluorescence. The functionality of differentiated cells was assessed by their ability to incorporate DiI-acetylated low-density lipoprotein (DiI-Ac-LDL). As the cells were morphologically transformed into hepatocyte-like cells, they expressed Thy-1, c-Kit, and Flt-3 at the cell surface, as well as albumin, alpha-fetoprotein, and cytokeratin-18 and 19 in the interior. Moreover, about a half of the cells were found to acquire the capability to transport DiI-Ac-LDL. Based on these observations, and taking into account immense advantages of UCB over other stem cell sources, we conclude that UCB-derived MSCs retain hepatogenic potential suitable for cell therapy and transplantation against intractable liver diseases.

  20. Mesenchymal stem cells for cartilage regeneration in osteoarthritis

    PubMed Central

    Kristjánsson, Baldur; Honsawek, Sittisak

    2017-01-01

    Osteoarthritis (OA) is a slowly progressive disease where cartilage of the synovial joint degenerates. It is most common in the elderly where patients experience pain and reduce physical activity. In combination with lack of conventional treatment, patients are often left with no other choices than arthroplasty. Over the last years, multipotent stromal cells have been used in efforts to treat OA. Mesenchymal stem/progenitor cells (MSCs) are stromal cells that can differentiate into bone, fat, and cartilage cells. They reside within bone marrow and fat. MSCs can also be found in synovial joints where they affect the progression of OA. They can be isolated and proliferated in an incubator before being applied in clinical trials. When it comes to treatment, emphasis has hitherto been on autologous MSCs, but allogenic cells from healthy donors are emerging as another source of the cells. The first adaptations of MSCs revolved in the use of cell-rich matrix, delivered as invasive surgical procedure, which resulted in production of hyaline cartilage and fibrocartilage. However, the demand for less invasive delivery of cells has prompted the use of direct intra-articular injections, wherein a large amount of suspended cells are implanted in the cartilage defect. PMID:28979850

  1. Identification of senescence-associated genes in human bone marrow mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Eunsook; Hong, Su; Kang, Jaeku

    2008-07-04

    Human bone marrow mesenchymal stem cells (hBMMSCs) are multipotent stem cells that can differentiate into several specialized cell types, including bone, cartilage, and fat cells. The proliferative capacity of hBMMSCs paves the way for the development of regenerative medicine and tissue engineering. However, long-term in vitro culture of hBMMSCs leads to a reduced life span of the cells due to senescence, which leads eventually to growth arrest. To investigate the molecular mechanism behind the cellular senescence of hBMMSCs, microarray analysis was used to compare the expression profiles of early passage hBMMSCs, late passage hBMMSCs and hBMMSCs ectopically expressing human telomerasemore » reverse transcriptase (hTERT). Using an intersection analysis of 3892 differentially expressed genes (DEGs) out of 27,171 total genes analyzed, we identified 338 senescence-related DEGs. GO term categorization and pathway network analysis revealed that the identified genes are strongly related to known senescence pathways and mechanisms. The genes identified using this approach will facilitate future studies of the mechanisms underlying the cellular senescence of hBMMSCs.« less

  2. Clinical development of placental malaria vaccines and immunoassays harmonization: a workshop report.

    PubMed

    Chêne, Arnaud; Houard, Sophie; Nielsen, Morten A; Hundt, Sophia; D'Alessio, Flavia; Sirima, Sodiomon B; Luty, Adrian J F; Duffy, Patrick; Leroy, Odile; Gamain, Benoit; Viebig, Nicola K

    2016-09-17

    Placental malaria caused by Plasmodium falciparum infection constitutes a major health problem manifesting as severe disease and anaemia in the mother, impaired fetal development, low birth weight or spontaneous abortion. Prevention of placental malaria currently relies on two key strategies that are losing efficacy due to spread of resistance: long-lasting insecticide-treated nets and intermittent preventive treatment during pregnancy. A placental malaria vaccine would be an attractive, cost-effective complement to the existing control tools. Two placental malaria vaccine candidates are currently in Phase Ia/b clinical trials. During two workshops hosted by the European Vaccine Initiative, one in Paris in April 2014 and the other in Brussels in November 2014, the main actors in placental malaria vaccine research discussed the harmonization of clinical development plans and of the immunoassays with a goal to define standards that will allow comparative assessment of different placental malaria vaccine candidates. The recommendations of these workshops should guide researchers and clinicians in the further development of placental malaria vaccines.

  3. Human Decidua-Derived Mesenchymal Cells Are a Promising Source for the Generation and Cell Banking of Human Induced Pluripotent Stem Cells

    PubMed Central

    Shofuda, Tomoko; Kanematsu, Daisuke; Fukusumi, Hayato; Yamamoto, Atsuyo; Bamba, Yohei; Yoshitatsu, Sumiko; Suemizu, Hiroshi; Nakamura, Masato; Sugimoto, Yoshikazu; Furue, Miho Kusuda; Kohara, Arihiro; Akamatsu, Wado; Okada, Yohei; Okano, Hideyuki; Yamasaki, Mami; Kanemura, Yonehiro

    2013-01-01

    Placental tissue is a biomaterial with remarkable potential for use in regenerative medicine. It has a three-layer structure derived from the fetus (amnion and chorion) and the mother (decidua), and it contains huge numbers of cells. Moreover, placental tissue can be collected without any physical danger to the donor and can be matched with a variety of HLA types. The decidua-derived mesenchymal cells (DMCs) are highly proliferative fibroblast-like cells that express a similar pattern of CD antigens as bone marrow-derived mesenchymal cells (BM-MSCs). Here we demonstrated that induced pluripotent stem (iPS) cells could be efficiently generated from DMCs by retroviral transfer of reprogramming factor genes. DMC-hiPS cells showed equivalent characteristics to human embryonic stem cells (hESCs) in colony morphology, global gene expression profile (including human pluripotent stem cell markers), DNA methylation status of the OCT3/4 and NANOG promoters, and ability to differentiate into components of the three germ layers in vitro and in vivo. The RNA expression of XIST and the methylation status of its promoter region suggested that DMC-iPSCs, when maintained undifferentiated and pluripotent, had three distinct states: (1) complete X-chromosome reactivation, (2) one inactive X-chromosome, or (3) an epigenetic aberration. Because DMCs are derived from the maternal portion of the placenta, they can be collected with the full consent of the adult donor and have considerable ethical advantages for cell banking and the subsequent generation of human iPS cells for regenerative applications. PMID:26858858

  4. Effects Of Hypoxia in Long-Term In Vitro Expansion of Human Bone Marrow Derived Mesenchymal Stem Cells.

    PubMed

    Pezzi, Annelise; Amorin, Bruna; Laureano, Álvaro; Valim, Vanessa; Dahmer, Alice; Zambonato, Bruna; Sehn, Filipe; Wilke, Ianaê; Bruschi, Lia; Silva, Maria Aparecida Lima da; Filippi-Chiela, Eduardo; Silla, Lucia

    2017-10-01

    Mesenchymal stem cells (MSC) are considered multipotent stromal, non-hematopoietic cells with properties of self-renovation and differentiation. Optimal conditions for culture of MSC have been under investigation. The oxygen tension used for cultivation has been studied and appears to play an important role in biological behavior of mesenchymal cells. The aim is characterize MSC in hypoxia and normoxia conditions comparing their morphological and functional characteristics. Bone marrow-derived mesenchymal stem cells obtained from 15 healthy donors and cultured. MSC obtained from each donor were separated into two cultivation conditions normoxia (21% O 2 ) and hypoxia (three donors at 1%, three donors at 2%, five donors at 3%, and four donors at 4% O 2 ) up to second passage. MSC were evaluated for proliferation, differentiation, immunophenotyping, size and cell complexity, oxidative stress, mitochondrial activity, and autophagy. Culture conditions applied did not seem to affect immunophenotypic features and cellular plasticity. However, cells subjected to hypoxia showed smaller size and greater cellular complexity, besides lower proliferation (P < 0.002). Furthermore, cells cultured in low O 2 tension had lower mitochondrial activity (P < 0.03) and a reduced tendency to autophagy, although oxidative stress did not vary among groups (P < 0.39). Oxygen tension seems to be a key regulator of cellular adaptation in vitro, and metabolic effects underlying this variable remain undescribed. Heterogeneity or even lack of results on the impact of oxygen concentration used for expanding MSC highlights the need for further research, in order to optimize conditions of cultivation and expansion and achieve greater safety and therapeutic efficacy. J. Cell. Biochem. 118: 3072-3079, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. The association of maternal thyroid function with placental hemodynamics.

    PubMed

    Barjaktarovic, M; Korevaar, T I M; Chaker, L; Jaddoe, V W V; de Rijke, Y B; Visser, T J; Steegers, E A P; Peeters, R P

    2017-03-01

    What is the clinical association of maternal thyroid function with placental hemodynamic function? A higher free thyroxine (FT4) concentration in early pregnancy is associated with higher placental vascular resistance. Suboptimal placental function is associated with preeclampsia (which, in turn, further deteriorates placental hemodynamics and impairs the fetal blood supply), fetal growth restriction and premature delivery. Studies have suggested that thyroid hormone (TH) has a role in placental development through effects on trophoblast proliferation and invasion. This study was embedded in The Generation R cohort, a population-based prospective study from early fetal life onwards in Rotterdam, the Netherlands. In total, 7069 mothers with expected delivery date between April 2002 and January 2006 were enrolled during early pregnancy. Thyroid-stimulating hormone (TSH) and free thyroxine (FT4) concentrations were measured during early pregnancy (median 13.4 weeks, 95% range 9.7-17.6 weeks). Placental function was assessed by Doppler ultrasound via measurement of arterial vascular resistance, i.e. umbilical artery pulsatility index (PI) and uterine artery resistance index (RI) (both measured twice, between 18-25th and after 25th gestational weeks) and the presence of uterine artery notching (once after the 25th gestational week) in 5184 pregnant women. FT4 was positively linearly associated with umbilical artery PI in the second and third trimesters as well as with uterine artery RI in the second trimester and the risk of uterine artery notching in the third trimester (P < 0.05 for all). The association of thyroid function with preeclampsia and birth weight was partially mediated through changes in placental function, with the percentages of mediated effects being 10.4% and 12.5%, respectively. A potential limitation is the availability of only a single time point for TH measurements and different numbers of missing placental ultrasound measurements for the adverse

  6. Ted (G.J.) Kloosterman: on intrauterine growth. The significance of prenatal care. Studies on birth weight, placental weight and placental index.

    PubMed

    Bleker, O P; Buimer, M; van der Post, J A M; van der Veen, F

    2006-01-01

    In the last century, there was a heated debate on whether fetal growth retardation is caused by a small placenta or whether a placenta is small because the baby is small. One of the active participants in this debate was Kloosterman who studied 80,000 birth weights, and 30,000 placental weights, in relation to gestational age at birth, fetal sex, maternal parity, and perinatal mortality. He found that pregnancies related to heavier placentas last longer. He also found that, from about 32 weeks of gestation onwards, children from primiparous women as compared to those from multiparous women, like twin children as compared to singleton children, are relatively growth retarded, most likely related to prior relatively poor placental growth. He concluded that poor fetal growth is not the cause, but the result of poor placental growth. The clinical implication of all these is that future early detection of poor placental growth may prospect poor fetal growth, and may even allow for early interventions to improve fetal outcome.

  7. Diverse functions of secreted frizzled-related proteins in the osteoblastogenesis of human multipotent mesenchymal stromal cells.

    PubMed

    Yamada, Azusa; Iwata, Takanori; Yamato, Masayuki; Okano, Teruo; Izumi, Yuichi

    2013-04-01

    Osteoinductive pretreatment of human mesenchymal stromal cells (hMSCs) has been widely accepted in bone tissue engineering before the use of cell transplantation; however, the mechanisms by which osteoinductive medium (OIM) enhances osteoblastic differentiation are not well understood. Using periodontal ligament-derived hMSCs, we identified key signalling molecules for osteoblastogenesis. Alkaline phosphatase activity induced by OIM, which contains ascorbic acid, β-glycerophosphate, and dexamethasone, was decreased by XAV939, which is an inhibitor of canonical WNT signalling, in a dose-dependent manner. A quantitative RT-PCR array demonstrated the upregulation of secreted frizzled-related protein (SFRP) 3 and the downregulation of SFRP4 during osteoinduction. Functional studies showed that SFRP3 promoted and SFRP4 suppressed the osteoblastic differentiation of hMSCs. In addition, SFRP3 inhibited non-canonical WNT signalling by binding WNT5A, which is a representative non-canonical WNT protein. These results indicate the involvement of the WNT signalling pathway during the osteoblastic differentiation of hMSCs. SFRPs oppositely control osteoblastogenesis through canonical and non-canonical pathways and may be useful for directing the lineage of hMSCs in cytotherapeutic use. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. The Use of Mesenchymal Stem Cells for the Treatment of Autoimmunity: From Animals Models to Human Disease.

    PubMed

    Fierabracci, Alessandra; Del Fattore, Andrea; Muraca, Marta; Delfino, Domenico Vittorio; Muraca, Maurizio

    2016-01-01

    Mesenchymal stem cells are multipotent progenitors able to differentiate into osteoblasts, chondrocytes and adipocytes. These cells also exhibit remarkable immune regulatory properties, which stimulated both in vitro and in vivo experimental studies to unravel the underlying mechanisms as well as extensive clinical applications. Here, we describe the effects of MSCs on immune cells and their application in animal models as well as in clinical trials of autoimmune diseases. It should be pointed out that, while the number of clinical applications is increasing steadily, results should be interpreted with caution, in order to avoid rising false expectations. Major issues conditioning clinical application are the heterogeneity of MSCs and their unpredictable behavior following therapeutic administration. However, increasing knowledge on the interaction between exogenous cell and host tissue, as well as some encouraging clinical observations suggest that the therapeutic applications of MSCs will be further expanded on firmer grounds in the near future.

  9. Web-based education for placental complications of pregnancy.

    PubMed

    Walker, Melissa G; Windrim, Catherine; Ellul, Katie N; Kingdom, John C P

    2013-04-01

    The objective of this study was to determine whether a web-based education strategy could improve maternal knowledge of placental complications of pregnancy and reduce maternal anxiety in high risk-pregnancies. Prospective study in the Placenta Clinic at Mount Sinai Hospital, Toronto, Ontario. Maternal demographics and Internet usage were recorded at the patient's baseline appointment. Placental knowledge was determined using structured verbal and illustrative assessments. The six-item State-Trait Anxiety Inventory (STAI) was administered to assess baseline maternal anxiety. Women were asked to visit the Placenta Clinic website for a minimum of 15 minutes before their follow-up appointment, at which time their placental knowledge and STAI assessments were repeated. Eighteen women were included in the study. Patient knowledge at the baseline appointment was generally poor (median score 10.5 out of a maximum score of 27, range 1 to 22), with major deficits in basic placental knowledge, placenta previa/increta, and preeclampsia. At the follow-up appointment, placental knowledge was significantly improved (median score 23, range 10 to 27; P < 0.001). Educational status (high school or less vs. college or more) had no effect on either baseline knowledge or knowledge improvement. Maternal anxiety at baseline (median score 12 out of a maximum score of 24, range 6 to 23) was significantly reduced at the follow-up appointment (median score 8.5, range 6 to 20; P = 0.005). Deficits in maternal knowledge of placental complications of pregnancy in high-risk pregnant women were substantial but easily rectified with a disease-targeted web-based educational resource. This intervention significantly improved patient knowledge and significantly reduced maternal anxiety.

  10. Loss of Thrombomodulin in Placental Dysfunction in Preeclampsia.

    PubMed

    Turner, Rosanne J; Bloemenkamp, Kitty W M; Bruijn, Jan A; Baelde, Hans J

    2016-04-01

    Preeclampsia is a pregnancy-specific syndrome characterized by placental dysfunction and an angiogenic imbalance. Systemically, levels of thrombomodulin, an endothelium- and syncytiotrophoblast-bound protein that regulates coagulation, inflammation, apoptosis, and tissue remodeling, are increased. We aimed to investigate placental thrombomodulin dysregulation and consequent downstream effects in the pathogenesis of preeclampsia. Placentas from 28 preeclampsia pregnancies, 30 uncomplicated pregnancies, and 21 pregnancies complicated by growth restriction as extra controls were included. Immunohistochemical staining of thrombomodulin, caspase-3, and fibrin was performed. Placental mRNA expression of thrombomodulin, inflammatory markers, matrix metalloproteinases 2 and 9, and soluble Flt-1 were measured with quantitative polymerase chain reaction. Thrombomodulin mRNA expression was determined in vascular endothelial growth factor-transfected trophoblast cell lines. Thrombomodulin protein and mRNA expression were decreased in preeclampsia as compared with both control groups (P=0.001). Thrombomodulin mRNA expression correlated with maternal body mass index (P<0.01) and diastolic blood pressure (P<0.05) in preeclampsia. An increase in placental apoptotic cells was associated with preeclampsia (P<0.001). Thrombomodulin expression correlated positively with matrix metalloproteinase expression (P<0.01) in preeclampsia, but not with fibrin deposits or inflammatory markers. Placental soluble Flt-1 expression correlated with decreased thrombomodulin expression. Vascular endothelial growth factor induced upregulation of thrombomodulin expression in trophoblast cells. Decreased thrombomodulin expression in preeclampsia may play a role in placental dysfunction in preeclampsia and is possibly caused by an angiogenic imbalance. Hypertension and obesity are associated with thrombomodulin downregulation. These results set the stage for further basic and clinical research on

  11. Placental Malaria in Colombia: Histopathologic Findings in Plasmodium vivax and P. falciparum Infections

    PubMed Central

    Carmona-Fonseca, Jaime; Arango, Eliana; Maestre, Amanda

    2013-01-01

    Studies on gestational malaria and placental malaria have been scarce in malaria-endemic areas of the Western Hemisphere. To describe the histopathology of placental malaria in Colombia, a longitudinal descriptive study was conducted. In this study, 179 placentas were studied by histologic analysis (112 with gestational malaria and 67 negative for malaria). Placental malaria was confirmed in 22.35%, 50.0% had previous infections, and 47.5% had acute infections. Typical malaria-associated changes were observed in 37%. The most common changes were villitis, intervillitis, deciduitis, increased fibrin deposition, increased syncytial knots, mononuclear (monocytes/macrophages and lymphocytes), polymorphonuclear cell infiltration, and trophozoites in fetal erythrocytes. No association was found between type of placental changes observed and histopathologic classification of placental malaria. The findings are consistent with those reported for placental malaria in other regions. Plasmodium vivax was the main parasite responsible for placental and gestational malaria, but its role in the pathogenesis of placental malaria was not conclusive. PMID:23546807

  12. Placental-derived stem cells: Culture, differentiation and challenges

    PubMed Central

    Oliveira, Maira S; Barreto-Filho, João B

    2015-01-01

    Stem cell therapy is a promising approach to clinical healing in several diseases. A great variety of tissues (bone marrow, adipose tissue, and placenta) are potentially sources of stem cells. Placenta-derived stem cells (p-SCs) are in between embryonic and mesenchymal stem cells, sharing characteristics with both, such as non-carcinogenic status and property to differentiate in all embryonic germ layers. Moreover, their use is not ethically restricted as fetal membranes are considered medical waste after birth. In this context, the present review will be focused on the biological properties, culture and potential cell therapy uses of placental-derived stem cells. Immunophenotype characterization, mainly for surface marker expression, and basic principles of p-SC isolation and culture (mechanical separation or enzymatic digestion of the tissues, the most used culture media, cell plating conditions) will be presented. In addition, some preclinical studies that were performed in different medical areas will be cited, focusing on neurological, liver, pancreatic, heart, muscle, pulmonary, and bone diseases and also in tissue engineering field. Finally, some challenges for stem cell therapy applications will be highlighted. The understanding of the mechanisms involved in the p-SCs differentiation and the achievement of pure cell populations (after differentiation) are key points that must be clarified before bringing the preclinical studies, performed at the bench, to the medical practice. PMID:26029347

  13. Angiogenic proteins, placental weight and perinatal outcomes among pregnant women in Tanzania.

    PubMed

    McDonald, Chloe R; Darling, Anne M; Liu, Enju; Tran, Vanessa; Cabrera, Ana; Aboud, Said; Urassa, Willy; Kain, Kevin C; Fawzi, Wafaie W

    2016-01-01

    Placental vascular development, and ultimately placental weight, is essential to healthy fetal development. Here, we examined placental weight in a cohort of Tanzanian women in association with angiogenic proteins known to regulate placental vascular development and perinatal outcomes. A total of n = 6579 women with recorded placental weight were included in this study. The relative risk of adverse perinatal outcomes (Apgar score, death, asphyxia, respiratory distress, seizures, pneumonia and sepsis) was compared between placental weight in the bottom and top 10th percentiles. We quantified angiogenic mediators (Ang-1, Ang-2, VEGF, PGF and sFlt-1) in plasma samples (n = 901) collected between 12 to 27 weeks of pregnancy using ELISA and assessed the relative risk of placental weight in the bottom and top 10th percentiles by protein levels in quartiles. Women with Ang-2 levels in the highest quartile had an increased relative risk of placental weight in the bottom 10th percentile (RR = 1.45 (1.10, 1.91), p = 0.01). Women with VEGF-A (RR = 0.73 (0.56, 0.96), p = 0.05) and PGF (RR = 0.58 (0.44, 0.72), p = 0.002) in the highest quartile had a reduced relative risk of placental weight in the bottom 10th percentile. Low placental weight (in bottom 10th percentile) was associated with an increased relative risk of Apgar score of <7 at 1 minute (RR = 2.31 (1.70, 3.13), p = 0.001), at 5 minutes (RR = 3.53 (2.34, 5.33), p = 0.001), neonatal death (RR = 5.02 (3.61, 7.00), p = 0.001), respiratory distress (RR = 4.80(1.71, 13.45), p = 0.001), and seizures (RR = 4.18 (1.16, 15.02), p = 0.03). The association between low placental weight and risk of adverse perinatal outcomes in this cohort suggests that placental weight could serve as a useful indicator, providing additional insight into high-risk pregnancies and identifying neonates that may require additional monitoring and follow-up.

  14. Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction

    PubMed Central

    Yoon, Young-sup; Wecker, Andrea; Heyd, Lindsay; Park, Jong-Seon; Tkebuchava, Tengiz; Kusano, Kengo; Hanley, Allison; Scadova, Heather; Qin, Gangjian; Cha, Dong-Hyun; Johnson, Kirby L.; Aikawa, Ryuichi; Asahara, Takayuki; Losordo, Douglas W.

    2005-01-01

    We have identified a subpopulation of stem cells within adult human BM, isolated at the single-cell level, that self-renew without loss of multipotency for more than 140 population doublings and exhibit the capacity for differentiation into cells of all 3 germ layers. Based on surface marker expression, these clonally expanded human BM-derived multipotent stem cells (hBMSCs) do not appear to belong to any previously described BM-derived stem cell population. Intramyocardial transplantation of hBMSCs after myocardial infarction resulted in robust engraftment of transplanted cells, which exhibited colocalization with markers of cardiomyocyte (CMC), EC, and smooth muscle cell (SMC) identity, consistent with differentiation of hBMSCs into multiple lineages in vivo. Furthermore, upregulation of paracrine factors including angiogenic cytokines and antiapoptotic factors, and proliferation of host ECs and CMCs, were observed in the hBMSC-transplanted hearts. Coculture of hBMSCs with CMCs, ECs, or SMCs revealed that phenotypic changes of hBMSCs result from both differentiation and fusion. Collectively, the favorable effect of hBMSC transplantation after myocardial infarction appears to be due to augmentation of proliferation and preservation of host myocardial tissues as well as differentiation of hBMSCs for tissue regeneration and repair. To our knowledge, this is the first demonstration that a specific population of multipotent human BM-derived stem cells can induce both therapeutic neovascularization and endogenous and exogenous cardiomyogenesis. PMID:15690083

  15. Safety and efficacy of multipotent adult progenitor cells in acute ischaemic stroke (MASTERS): a randomised, double-blind, placebo-controlled, phase 2 trial.

    PubMed

    Hess, David C; Wechsler, Lawrence R; Clark, Wayne M; Savitz, Sean I; Ford, Gary A; Chiu, David; Yavagal, Dileep R; Uchino, Ken; Liebeskind, David S; Auchus, Alexander P; Sen, Souvik; Sila, Cathy A; Vest, Jeffrey D; Mays, Robert W

    2017-05-01

    Multipotent adult progenitor cells are a bone marrow-derived, allogeneic, cell therapy product that modulates the immune system, and represents a promising therapy for acute stroke. We aimed to identify the highest, well-tolerated, and safest single dose of multipotent adult progenitor cells, and if they were efficacious as a treatment for stroke recovery. We did a phase 2, randomised, double-blind, placebo-controlled, dose-escalation trial of intravenous multipotent adult progenitor cells in 33 centres in the UK and the USA. We used a computer-generated randomisation sequence and interactive voice and web response system to assign patients aged 18-83 years with moderately severe acute ischaemic stroke and a National Institutes of Health Stroke Scale (NIHSS) score of 8-20 to treatment with intravenous multipotent adult progenitor cells (400 million or 1200 million cells) or placebo between 24 h and 48 h after symptom onset. Patients were ineligible if there was a change in NIHSS of four or more points during at least a 6 h period between screening and randomisation, had brainstem or lacunar infarct, a substantial comorbid disease, an inability to undergo an MRI scan, or had a history of splenectomy. In group 1, patients were enrolled and randomly assigned in a 3:1 ratio to receive 400 million cells or placebo and assessed for safety through 7 days. In group 2, patients were randomly assigned in a 3:1 ratio to receive 1200 million cells or placebo and assessed for safety through the first 7 days. In group 3, patients were enrolled, randomly assigned, and stratified by baseline NIHSS score to receive 1200 million cells or placebo in a 1:1 ratio within 24-48 h. Patients, investigators, and clinicians were masked to treatment assignment. The primary safety outcome was dose-limiting toxicity effects. The primary efficacy endpoint was global stroke recovery, which combines dichotomised results from the modified Rankin scale, change in NIHSS score from baseline, and

  16. Placental baseline conditions modulate the hyperoxic BOLD-MRI response.

    PubMed

    Sinding, Marianne; Peters, David A; Poulsen, Sofie S; Frøkjær, Jens B; Christiansen, Ole B; Petersen, Astrid; Uldbjerg, Niels; Sørensen, Anne

    2018-01-01

    Human pregnancies complicated by placental dysfunction may be characterized by a high hyperoxic Blood oxygen level-dependent (BOLD) MRI response. The pathophysiology behind this phenomenon remains to be established. The aim of this study was to evaluate whether it is associated with altered placental baseline conditions, including a lower oxygenation and altered tissue morphology, as estimated by the placental transverse relaxation time (T2*). We included 49 normal pregnancies (controls) and 13 pregnancies complicated by placental dysfunction (cases), defined by a birth weight < 10th percentile in combination with placental pathological signs of vascular malperfusion. During maternal oxygen inhalation, we measured the relative ΔBOLD response ((hyperoxic BOLD - baseline BOLD)/baseline BOLD) from a dynamic single-echo gradient-recalled echo (GRE) MRI sequence and the absolute ΔT2* (hyperoxic T2*- baseline T2*) from breath-hold multi-echo GRE sequences. In the control group, the relative ΔBOLD response increased during gestation from 5% in gestational week 20 to 20% in week 40. In the case group, the relative ΔBOLD response was significantly higher (mean Z-score 4.94; 95% CI 2.41, 7.47). The absolute ΔT2*, however, did not differ between controls and cases (p = 0.37), whereas the baseline T2* was lower among cases (mean Z-score -3.13; 95% CI -3.94, -2.32). Furthermore, we demonstrated a strong negative linear correlation between the Log 10 ΔBOLD response and the baseline T2* (r = -0.88, p < 0.0001). The high hyperoxic ΔBOLD response demonstrated in pregnancies complicated by placental dysfunction may simply reflect altered baseline conditions, as the absolute increase in placental oxygenation (ΔT2*) does not differ between groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. CD74-Downregulation of Placental Macrophage-Trophoblastic Interactions in Preeclampsia.

    PubMed

    Przybyl, Lukasz; Haase, Nadine; Golic, Michaela; Rugor, Julianna; Solano, Maria Emilia; Arck, Petra Clara; Gauster, Martin; Huppertz, Berthold; Emontzpohl, Christoph; Stoppe, Christian; Bernhagen, Jürgen; Leng, Lin; Bucala, Richard; Schulz, Herbert; Heuser, Arnd; Weedon-Fekjær, M Susanne; Johnsen, Guro M; Peetz, Dirk; Luft, Friedrich C; Staff, Anne Cathrine; Müller, Dominik N; Dechend, Ralf; Herse, Florian

    2016-06-24

    We hypothesized that cluster of differentiation 74 (CD74) downregulation on placental macrophages, leading to altered macrophage-trophoblast interaction, is involved in preeclampsia. Preeclamptic pregnancies feature hypertension, proteinuria, and placental anomalies. Feto-placental macrophages regulate villous trophoblast differentiation during placental development. Disturbance of this well-balanced regulation can lead to pathological pregnancies. We performed whole-genome expression analysis of placental tissue. CD74 was one of the most downregulated genes in placentas from preeclamptic women. By reverse transcriptase-polymerase chain reaction, we confirmed this finding in early-onset (<34 gestational week, n=26) and late-onset (≥34 gestational week, n=24) samples from preeclamptic women, compared with healthy pregnant controls (n=28). CD74 protein levels were analyzed by Western blot and flow cytometry. We identified placental macrophages to express CD74 by immunofluorescence, flow cytometry, and RT-PCR. CD74-positive macrophages were significantly reduced in preeclamptic placentas compared with controls. CD74-silenced macrophages showed that the adhesion molecules ALCAM, ICAM4, and Syndecan-2, as well as macrophage adhesion to trophoblasts were diminished. Naive and activated macrophages lacking CD74 showed a shift toward a proinflammatory signature with an increased secretion of tumor necrosis factor-α, chemokine (C-C motif) ligand 5, and monocyte chemotactic protein-1, when cocultured with trophoblasts compared with control macrophages. Trophoblasts stimulated by these factors express more CYP2J2, sFlt1, TNFα, and IL-8. CD74-knockout mice showed disturbed placental morphology, reduced junctional zone, smaller placentas, and impaired spiral artery remodeling with fetal growth restriction. CD74 downregulation in placental macrophages is present in preeclampsia. CD74 downregulation leads to altered macrophage activation toward a proinflammatory signature and

  18. Cryopreservation of Human Mesenchymal Stem Cells for Clinical Applications: Current Methods and Challenges.

    PubMed

    Yong, Kar Wey; Wan Safwani, Wan Kamarul Zaman; Xu, Feng; Wan Abas, Wan Abu Bakar; Choi, Jane Ru; Pingguan-Murphy, Belinda

    2015-08-01

    Mesenchymal stem cells (MSCs) hold many advantages over embryonic stem cells (ESCs) and other somatic cells in clinical applications. MSCs are multipotent cells with strong immunosuppressive properties. They can be harvested from various locations in the human body (e.g., bone marrow and adipose tissues). Cryopreservation represents an efficient method for the preservation and pooling of MSCs, to obtain the cell counts required for clinical applications, such as cell-based therapies and regenerative medicine. Upon cryopreservation, it is important to preserve MSCs functional properties including immunomodulatory properties and multilineage differentiation ability. Further, a biosafety evaluation of cryopreserved MSCs is essential prior to their clinical applications. However, the existing cryopreservation methods for MSCs are associated with notable limitations, leading to a need for new or improved methods to be established for a more efficient application of cryopreserved MSCs in stem cell-based therapies. We review the important parameters for cryopreservation of MSCs and the existing cryopreservation methods for MSCs. Further, we also discuss the challenges to be addressed in order to preserve MSCs effectively for clinical applications.

  19. Mesenchymal Stem Cell Preparation and Transfection-free Ferumoxytol Labeling for MRI Cell Tracking.

    PubMed

    Liu, Li; Ho, Chien

    2017-11-15

    Mesenchymal stem cells (MSCs) are multipotent cells and are the most widely studied cell type for stem cell therapies. In vivo cell tracking of MSCs labeled with an FDA-approved superparamagnetic iron-oxide (SPIO) particle by magnetic resonance imaging (MRI) provides essential information, e.g., MSC engraftment, survival, and fate, thus improving cell therapy accuracy. However, current methodology for labeling MSCs with Ferumoxytol (Feraheme ® ), the only FDA-approved SPIO particle, needs transfection agents. This unit describes a new "bio-mimicry" protocol to prepare more native MSCs by using more "in vivo environment" of MSCs, so that the phagocytic activity of cultured MSCs is restored and expanded MSCs can be labeled with Ferumoxytol, without the need for transfection agents and/or electroporation. Moreover, MSCs re-size to a more native size, reducing from 32.0 to 19.5 μm. The MSCs prepared from this protocol retain more native properties and would be useful for biomedical applications and MSC-tracking studies by MRI. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  20. Mesenchymal Stem Cell-Based Therapy for Kidney Disease: A Review of Clinical Evidence

    PubMed Central

    2016-01-01

    Mesenchymal stem cells form a population of self-renewing, multipotent cells that can be isolated from several tissues. Multiple preclinical studies have demonstrated that the administration of exogenous MSC could prevent renal injury and could promote renal recovery through a series of complex mechanisms, in particular via immunomodulation of the immune system and release of paracrine factors and microvesicles. Due to their therapeutic potentials, MSC are being evaluated as a possible player in treatment of human kidney disease, and an increasing number of clinical trials to assess the safety, feasibility, and efficacy of MSC-based therapy in various kidney diseases have been proposed. In the present review, we will summarize the current knowledge on MSC infusion to treat acute kidney injury, chronic kidney disease, diabetic nephropathy, focal segmental glomerulosclerosis, systemic lupus erythematosus, and kidney transplantation. The data obtained from these clinical trials will provide further insight into safety, feasibility, and efficacy of MSC-based therapy in renal pathologies and allow the design of consensus protocol for clinical purpose. PMID:27721835

  1. Correlation of ultrasound estimated placental volume and umbilical cord blood volume in term pregnancy.

    PubMed

    Pannopnut, Papinwit; Kitporntheranunt, Maethaphan; Paritakul, Panwara; Kongsomboon, Kittipong

    2015-01-01

    To investigate the correlation between ultrasound measured placental volume and collected umbilical cord blood (UCB) volume in term pregnancy. An observational cross-sectional study of term singleton pregnant women in the labor ward at Maha Chakri Sirindhorn Medical Center was conducted. Placental thickness, height, and width were measured using two-dimensional (2D) ultrasound and calculated for placental volume using the volumetric mathematic model. After the delivery of the baby, UCB was collected and measured for its volume immediately. Then, birth weight, placental weight, and the actual placental volume were analyzed. The Pearson's correlation was used to determine the correlation between each two variables. A total of 35 pregnant women were eligible for the study. The mean and standard deviation of estimated placental volume and actual placental volume were 534±180 mL and 575±118 mL, respectively. The median UCB volume was 140 mL (range 98-220 mL). The UCB volume did not have a statistically significant correlation with the estimated placental volume (correlation coefficient 0.15; p=0.37). However, the UCB volume was significantly correlated with the actual placental volume (correlation coefficient 0.62; p<0.001) and birth weight (correlation coefficient 0.38; p=0.02). The estimated placental volume by 2D ultrasound was not significantly correlated with the UCB volume. Further studies to establish the correlation between the UCB volume and the estimated placental volume using other types of placental imaging may be needed.

  2. Submicroscopic placental infection by non-falciparum Plasmodium spp.

    PubMed Central

    Doritchamou, Justin Y. A.; Akuffo, Richard A.; Moussiliou, Azizath; Luty, Adrian J. F.; Massougbodji, Achille; Deloron, Philippe

    2018-01-01

    Background Among the Plasmodium species that infect humans, adverse effects of P. falciparum and P. vivax have been extensively studied and reported with respect to poor outcomes particularly in first time mothers and in pregnant women living in areas with unstable malaria transmission. Although, other non-falciparum malaria infections during pregnancy have sometimes been reported, little is known about the dynamics of these infections during pregnancy. Methods and findings Using a quantitative PCR approach, blood samples collected from Beninese pregnant women during the first antenatal visit (ANV) and at delivery including placental blood were screened for Plasmodium spp. Risk factors associated with Plasmodium spp. infection during pregnancy were assessed as well as the relationships with pregnancy outcomes. P. falciparum was the most prevalent Plasmodium species detected during pregnancy, irrespective either of parity, of age or of season during which the infection occurred. Although no P. vivax infections were detected in this cohort, P. malariae (9.2%) and P. ovale (5.8%) infections were observed in samples collected during the first ANV. These non-falciparum infections were also detected in maternal peripheral blood (1.3% for P. malariae and 1.2% for P. ovale) at delivery. Importantly, higher prevalence of P. malariae (5.5%) was observed in placental than peripheral blood while that of P. ovale was similar (1.8% in placental blood). Among the non-falciparum infected pregnant women with paired peripheral and placental samples, P. malariae infections in the placental blood was significantly higher than in the peripheral blood, suggesting a possible affinity of P. malariae for the placenta. However, no assoctiation of non-falciparum infections and the pregnancy outcomes was observed Conclusions Overall this study provided insights into the molecular epidemiology of Plasmodium spp. infection during pregnancy, indicating placental infection by non

  3. Submicroscopic placental infection by non-falciparum Plasmodium spp.

    PubMed

    Doritchamou, Justin Y A; Akuffo, Richard A; Moussiliou, Azizath; Luty, Adrian J F; Massougbodji, Achille; Deloron, Philippe; Tuikue Ndam, Nicaise G

    2018-02-01

    Among the Plasmodium species that infect humans, adverse effects of P. falciparum and P. vivax have been extensively studied and reported with respect to poor outcomes particularly in first time mothers and in pregnant women living in areas with unstable malaria transmission. Although, other non-falciparum malaria infections during pregnancy have sometimes been reported, little is known about the dynamics of these infections during pregnancy. Using a quantitative PCR approach, blood samples collected from Beninese pregnant women during the first antenatal visit (ANV) and at delivery including placental blood were screened for Plasmodium spp. Risk factors associated with Plasmodium spp. infection during pregnancy were assessed as well as the relationships with pregnancy outcomes. P. falciparum was the most prevalent Plasmodium species detected during pregnancy, irrespective either of parity, of age or of season during which the infection occurred. Although no P. vivax infections were detected in this cohort, P. malariae (9.2%) and P. ovale (5.8%) infections were observed in samples collected during the first ANV. These non-falciparum infections were also detected in maternal peripheral blood (1.3% for P. malariae and 1.2% for P. ovale) at delivery. Importantly, higher prevalence of P. malariae (5.5%) was observed in placental than peripheral blood while that of P. ovale was similar (1.8% in placental blood). Among the non-falciparum infected pregnant women with paired peripheral and placental samples, P. malariae infections in the placental blood was significantly higher than in the peripheral blood, suggesting a possible affinity of P. malariae for the placenta. However, no assoctiation of non-falciparum infections and the pregnancy outcomes was observed. Overall this study provided insights into the molecular epidemiology of Plasmodium spp. infection during pregnancy, indicating placental infection by non-falciparum Plasmodium and the lack of association of these

  4. Protective Antibodies against Placental Malaria and Poor Outcomes during Pregnancy, Benin

    PubMed Central

    Denoeud-Ndam, Lise; Doritchamou, Justin; Viwami, Firmine; Salanti, Ali; Nielsen, Morten A.; Fievet, Nadine; Massougbodji, Achille; Luty, Adrian J.F.; Deloron, Philippe

    2015-01-01

    Placental malaria is caused by Plasmodium falciparum–infected erythrocytes that bind to placental tissue. Binding is mediated by VAR2CSA, a parasite antigen coded by the var gene, which interacts with chondroitin sulfate A (CSA). Consequences include maternal anemia and fetal growth retardation. Antibody-mediated immunity to placental malaria is acquired during successive pregnancies, but the target of VAR2CSA-specific protective antibodies is unclear. We assessed VAR2CSA-specific antibodies in pregnant women and analyzed their relationships with protection against placental infection, preterm birth, and low birthweight. Antibody responses to the N-terminal region of VAR2CSA during early pregnancy were associated with reduced risks for infections and low birthweight. Among women infected during pregnancy, an increase in CSA binding inhibition was associated with reduced risks for placental infection, preterm birth, and low birthweight. These data suggest that antibodies against VAR2CSA N-terminal region mediate immunity to placental malaria and associated outcomes. Our results validate current vaccine development efforts with VAR2CSA N-terminal constructs. PMID:25898123

  5. Placental Nutrient Transport and Intrauterine Growth Restriction

    PubMed Central

    Gaccioli, Francesca; Lager, Susanne

    2016-01-01

    Intrauterine growth restriction refers to the inability of the fetus to reach its genetically determined potential size. Fetal growth restriction affects approximately 5–15% of all pregnancies in the United States and Europe. In developing countries the occurrence varies widely between 10 and 55%, impacting about 30 million newborns per year. Besides having high perinatal mortality rates these infants are at greater risk for severe adverse outcomes, such as hypoxic ischemic encephalopathy and cerebral palsy. Moreover, reduced fetal growth has lifelong health consequences, including higher risks of developing metabolic and cardiovascular diseases in adulthood. Numerous reports indicate placental insufficiency as one of the underlying causes leading to altered fetal growth and impaired placental capacity of delivering nutrients to the fetus has been shown to contribute to the etiology of intrauterine growth restriction. Indeed, reduced expression and/or activity of placental nutrient transporters have been demonstrated in several conditions associated with an increased risk of delivering a small or growth restricted infant. This review focuses on human pregnancies and summarizes the changes in placental amino acid, fatty acid, and glucose transport reported in conditions associated with intrauterine growth restriction, such as maternal undernutrition, pre-eclampsia, young maternal age, high altitude and infection. PMID:26909042

  6. Second-Trimester 3-Dimensional Placental Sonography as a Predictor of Small-for-Gestational-Age Birth Weight.

    PubMed

    Quant, Hayley S; Sammel, Mary D; Parry, Samuel; Schwartz, Nadav

    2016-08-01

    We previously reported the association between first-trimester 3-dimensional (3D) placental measurements and small-for-gestational-age (SGA) neonates. In this study, we sought to determine whether second-trimester measurements further contribute to the antenatal detection of SGA and preeclampsia. We prospectively collected 3D sonographic volume sets and uterine artery pulsatility indices of singleton pregnancies at 18 to 24 weeks. Placental volume, placental quotient (placental volume/gestational age), mean placental diameter and chorionic diameter, placental morphologic index (mean placental diameter/placental quotient), placental chorionic index (mean chorionic diameter/placental quotient), and placental growth (volume per week) were assessed and evaluated as predictors of SGA and preeclampsia as a composite and alone. Of 373 pregnancies, the composite outcome occurred in 67 (18.0%): 36 (9.7%) manifested SGA alone; 27 (7.2%) developed preeclampsia alone, and 4 (1.1%) developed both. The placental volume, placental quotient, mean placental diameter, mean chorionic diameter, and volume per week were significantly smaller, whereas the placental morphologic index and chorionic index were significantly larger in pregnancies with the composite outcome (P < .01). Further analyses revealed that the significant associations with placental parameters were limited to the SGA outcome. Each placental measure remained significantly associated with SGA after adjusting for confounders. The mean uterine artery pulsatility index was not associated with either outcome. Placental parameters were moderately predictive of SGA, with adjusted areas under the curve ranging from 0.72 to 0.76. Sensitivity for detection of SGA ranged from 32.5% to 45.0%, with positive predictive values ranging from 17.3% to 22.7%. Second-trimester 3D placental measurements can identify pregnancies at risk of SGA. However, there appears to be no significant improvement compared to those obtained in the first

  7. Mesenchymal stem cell and regenerative medicine: regeneration versus immunomodulatory challenges

    PubMed Central

    Law, Sujata; Chaudhuri, Samaresh

    2013-01-01

    Mesenchymal Stem cells (MSC) are now presented with the opportunities of multifunctional therapeutic approaches. Several reports are in support of their self-renewal, capacity for multipotent differentiation, and immunomodulatory properties. They are unique to contribute to the regeneration of mesenchymal tissues such as bone, cartilage, muscle, ligament, tendon, and adipose. In addition to promising trials in regenerative medicine, such as in the treatment of major bone defects and myocardial infarction, MSC has shown a therapeutic effect other than direct hematopoiesis support in hematopoietic reconstruction. MSCs are identified by the expression of many molecules including CD105 (SH2) and CD73(SH3/4) and are negative for the hematopoietic markers CD34, CD45, and CD14. Manufacturing of MSC for clinical trials is also an important aspect as their differentiation, homing and Immunomodulatory properties may differ. Their suppressive effects on immune cells, including T cells, B cells, NK cells and DC cells, suggest MSCs as a novel therapy for GVHD and other autoimmune disorders. Since the cells by themselves are non-immunogenic, tissue matching between MSC donor and recipient is not essential and, MSC may be the first cell type able to be used as an “off-the-shelf” therapeutic product. Following a successful transplantation, the migration of MSC to the site of injury refers to the involvement of chemokines and chemokine receptors of respective specificity. It has been demonstrated that cultured MSCs have the ability to engraft into healthy as well as injured tissue and can differentiate into several cell types in vivo, which facilitates MSC to be an ideal tool for regenerative therapy in different disease types. However, some observations have raised questions about the limitations for proper use of MSC considering some critical factors that warn regular clinical use. PMID:23671814

  8. MRI of placental adhesive disorder

    PubMed Central

    Prapaisilp, P; Bangchokdee, S

    2014-01-01

    Placental adhesive disorder (PAD) is a serious pregnancy complication that occurs when the chorionic villi invade the myometrium. Placenta praevia and prior caesarean section are the two important risk factors. PAD is classified on the basis of the depth of myometrial invasion (placenta accreta, placenta increta and placenta percreta). MRI is the preferred image modality for pre-natal diagnosis of PAD and as complementary technique when ultrasonography is inconclusive. Imaging findings that are helpful for the diagnosis include dark intraplacental bands, direct invasion of adjacent structures by placental tissue, interruption of normal trilayered myometrium and uterine bulging. Clinicians should be aware of imaging features of PAD to facilitate optimal patient management. PMID:25060799

  9. [Placental gene activity of significant angiogenetic factors in the background of intrauterine growth restriction].

    PubMed

    Kovács, Péter; Rab, Attila; Szentpéteri, Imre; Joó, József Gábor; Kornya, László

    2017-04-01

    Placental vascular endothelial growth factor A (VEGF-A) gene and endoglin gene are both overexpressed in placental samples obtained from pregnancies with intrauterine growth restriction compared to normal pregnancies. In the background of these changes a mechanism can be supposed, in which the increased endoglin activity in intrauterine growth restriction (IUGR) leads to impaired placental circulation through an antioangiogenetic effect. This results in the development of placental vascular dysfunction and chronic fetal hypoxia. It is chronic hypoxia that turns on VEGF-A as a compensatory mechanism to improve fetal vascular blood supply by promoting placental blood vessel formation. Although the maternal serum placental growth factor (PlGF) level is a potential predictor for both IUGR and praeeclampsia, placental PlGF gene activity may be less of an active in the regulation of placental circulation in IUGR pregnancies during the later stages of gestation. Orv. Hetil., 2017, 158(16), 612-617.

  10. Biomaterial-mesenchymal stem cell constructs for immunomodulation in composite tissue engineering.

    PubMed

    Hanson, Summer; D'Souza, Rena N; Hematti, Peiman

    2014-08-01

    Cell-based treatments are being developed as a novel approach for the treatment of many diseases in an effort to repair injured tissues and regenerate lost tissues. Interest in the potential use of multipotent progenitor or stem cells has grown significantly in recent years, specifically the use of mesenchymal stem cells (MSCs), for tissue engineering in combination with extracellular matrix-based scaffolds. An area that warrants further attention is the local or systemic host responses toward the implanted cell-biomaterial constructs. Such immunological responses could play a major role in determining the clinical efficacy of the therapeutic device or biomaterials used. MSCs, due to their unique immunomodulatory properties, hold great promise in tissue engineering as they not only directly participate in tissue repair and regeneration but also modulate the host foreign body response toward the engineered constructs. The purpose of this review was to summarize the current state of knowledge and applications of MSC-biomaterial constructs as a potential immunoregulatory tool in tissue engineering. Better understanding of the interactions between biomaterials and cells could translate to the development of clinically relevant and novel cell-based therapeutics for tissue reconstruction and regenerative medicine.

  11. IFPA Meeting 2011 workshop report III: Placental immunology; epigenetic and microRNA-dependent gene regulation; comparative placentation; trophoblast differentiation; stem cells☆

    PubMed Central

    Ackerman, W.E.; Bulmer, J.N.; Carter, A.M.; Chaillet, J.R.; Chamley, L.; Chen, C.P.; Chuong, E.B.; Coleman, S.J.; Collet, G.P.; Croy, B.A.; de Mestre, A.M.; Dickinson, H.; Ducray, J.; Enders, A.C.; Fogarty, N.M.E.; Gauster, M.; Golos, T.; Haider, S.; Heazell, A.E.; Holland, O.J.; Huppertz, B.; Husebekk, A.; John, R.M.; Johnsen, G.M.; Jones, C.J.P.; Kalionis, B.; König, J.; Lorenzon, A.R.; Moffett, A.; de Mello, J.C. Moreira; Nuzzo, A.M.; Parham, P.; Parolini, O.; Petroff, M.G.; Pidoux, G.; Ramírez-Pinilla, M.P.; Robinson, W.P.; Rolfo, A.; Sadovsky, Y.; Soma, H.; Southcombe, J.H.; Tilburgs, T.; Lash, G.E.

    2014-01-01

    Workshops are an important part of the IFPA annual meeting as they allow for discussion of specialised topics. At IFPA meeting 2011 there were twelve themed workshops, five of which are summarized in this report. These workshops related to various aspects of placental biology: 1) immunology; 2) epigenetics; 3) comparative placentation; 4) trophoblast differentiation; 5) stem cells. PMID:22154501

  12. Placental morphometry and Doppler flow velocimetry in cases of chronic human fetal hypoxia.

    PubMed

    Kuzmina, Irina Y; Hubina-Vakulik, Galina I; Burton, Graham J

    2005-06-01

    To investigate the structural basis of abnormal Doppler waveforms in the utero-placental circulations in cases of chronic fetal hypoxia. Morphometric analysis was performed on placental samples from 58 pregnancies with abnormal Doppler waveforms in the uterine, placental and umbilical circulations at 32-34 weeks, and 10 pregnancies with normal waveforms. The volume of placental villi reduced from 350.5 cm3 in controls to 286.4 cm3 (P<0.05) in the severest cases. The volume of the fetal capillaries reduced from 59.7 cm3 to 20.5 cm3 (P<0.05). These reductions were associated with increased placental infarction. The myometrial segments of the spiral arteries were severely constricted, demonstrating failure of physiological conversion secondary to deficient trophoblast invasion. The placental vascular bed is greatly reduced in cases of chronic fetal hypoxia. We propose impaired placental perfusion causes oxidative stress and regression of the fetal vasculature, leading to fetal growth retardation and distress.

  13. Arsenic exposure in pregnant mice disrupts placental vasculogenesis and causes spontaneous abortion.

    PubMed

    He, Wenjie; Greenwell, Robert J; Brooks, Diane M; Calderón-Garcidueñas, Lilian; Beall, Howard D; Coffin, J Douglas

    2007-09-01

    Arsenic is an abundant toxicant in ground water and soil around areas with extractive industries. Human epidemiological studies have shown that arsenic exposure is linked to developmental defects and miscarriage. The placenta is known to utilize vasculogenesis to develop its circulation. The hypothesis tested here states the following: arsenic exposure causes placental dysmorphogenesis and defective placental vasculogenesis resulting in placental insufficiency and subsequent spontaneous abortion. To test this hypothesis, pregnant mice were exposed to sodium arsenite (AsIII) through drinking water from conception through weanling stages. Neonatal assessment of birth rates, pup weights, and litter sizes in arsenic exposed and control mothers revealed that AsIII-exposed mothers had only 40% the fecundity of controls. Preterm analysis at E12.5 revealed a loss of fecundity at E12.5 from either 20 ppm or greater exposures to AsIII. There was no loss of fecundity at E7.5 suggesting that spontaneous abortion occurs during placentation. Histomorphometry on E12.5 placentae from arsenic-exposed mice revealed placental dysplasia especially in the vasculature. These results suggest that arsenic toxicity is causative for mammalian spontaneous abortion by virtue of aberrant placental vasculogenesis and placental insufficiency.

  14. Plasma membrane characterization, by scanning electron microscopy, of multipotent myoblasts-derived populations sorted using dielectrophoresis.

    PubMed

    Muratore, Massimo; Mitchell, Steve; Waterfall, Martin

    2013-09-06

    Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Labor Inhibits Placental Mechanistic Target of Rapamycin Complex 1 Signaling

    PubMed Central

    LAGER, Susanne; AYE, Irving L.M.H.; GACCIOLI, Francesca; RAMIREZ, Vanessa I.; JANSSON, Thomas; POWELL, Theresa L.

    2014-01-01

    Introduction Labor induces a myriad of changes in placental gene expression. These changes may represent a physiological adaptation inhibiting placental cellular processes associated with a high demand for oxygen and energy (e.g., protein synthesis and active transport) thereby promoting oxygen and glucose transfer to the fetus. We hypothesized that mechanistic target of rapamycin complex 1 (mTORC1) signaling, a positive regulator of trophoblast protein synthesis and amino acid transport, is inhibited by labor. Methods Placental tissue was collected from healthy, term pregnancies (n=15 no-labor; n=12 labor). Activation of Caspase-1, IRS1/Akt, STAT, mTOR, and inflammatory signaling pathways was determined by Western blot. NFκB p65 and PPARγ DNA binding activity was measured in isolated nuclei. Results Labor increased Caspase-1 activation and mTOR complex 2 signaling, as measured by phosphorylation of Akt (S473). However, mTORC1 signaling was inhibited in response to labor as evidenced by decreased phosphorylation of mTOR (S2448) and 4EBP1 (T37/46 and T70). Labor also decreased NFκB and PPARγ DNA binding activity, while having no effect on IRS1 or STAT signaling pathway. Discussion and conclusion Several placental signaling pathways are affected by labor, which has implications for experimental design in studies of placental signaling. Inhibition of placental mTORC1 signaling in response to labor may serve to down-regulate protein synthesis and amino acid transport, processes that account for a large share of placental oxygen and glucose consumption. We speculate that this response preserves glucose and oxygen for transfer to the fetus during the stressful events of labor. PMID:25454472

  16. Resolving the relationships of Paleocene placental mammals.

    PubMed

    Halliday, Thomas J D; Upchurch, Paul; Goswami, Anjali

    2017-02-01

    The 'Age of Mammals' began in the Paleocene epoch, the 10 million year interval immediately following the Cretaceous-Palaeogene mass extinction. The apparently rapid shift in mammalian ecomorphs from small, largely insectivorous forms to many small-to-large-bodied, diverse taxa has driven a hypothesis that the end-Cretaceous heralded an adaptive radiation in placental mammal evolution. However, the affinities of most Paleocene mammals have remained unresolved, despite significant advances in understanding the relationships of the extant orders, hindering efforts to reconstruct robustly the origin and early evolution of placental mammals. Here we present the largest cladistic analysis of Paleocene placentals to date, from a data matrix including 177 taxa (130 of which are Palaeogene) and 680 morphological characters. We improve the resolution of the relationships of several enigmatic Paleocene clades, including families of 'condylarths'. Protungulatum is resolved as a stem eutherian, meaning that no crown-placental mammal unambiguously pre-dates the Cretaceous-Palaeogene boundary. Our results support an Atlantogenata-Boreoeutheria split at the root of crown Placentalia, the presence of phenacodontids as closest relatives of Perissodactyla, the validity of Euungulata, and the placement of Arctocyonidae close to Carnivora. Periptychidae and Pantodonta are resolved as sister taxa, Leptictida and Cimolestidae are found to be stem eutherians, and Hyopsodontidae is highly polyphyletic. The inclusion of Paleocene taxa in a placental phylogeny alters interpretations of relationships and key events in mammalian evolutionary history. Paleocene mammals are an essential source of data for understanding fully the biotic dynamics associated with the end-Cretaceous mass extinction. The relationships presented here mark a critical first step towards accurate reconstruction of this important interval in the evolution of the modern fauna. © 2015 The Authors. Biological Reviews

  17. Basal Cells Are a Multipotent Progenitor Capable of Renewing the Bronchial Epithelium

    PubMed Central

    Hong, Kyung U.; Reynolds, Susan D.; Watkins, Simon; Fuchs, Elaine; Stripp, Barry R.

    2004-01-01

    Commitment of the pulmonary epithelium to bronchial and bronchiolar airway lineages occurs during the transition from pseudoglandular to cannalicular phases of lung development, suggesting that regional differences exist with respect to the identity of stem and progenitor cells that contribute to epithelial maintenance in adulthood. We previously defined a critical role for Clara cell secretory protein-expressing (CE) cells in renewal of bronchiolar airway epithelium following injury. Even though CE cells are also the principal progenitor for maintenance of the bronchial airway epithelium, CE cell injury is resolved through a mechanism involving recruitment of a second progenitor cell population that we now identify as a GSI-B4 reactive, cytokeratin-14-expressing basal cell. These cells exhibit multipotent differentiation capacity as assessed by analysis of cellular phenotype within clones of LacZ-tagged cells. Clones were derived from K14-expressing cells tagged in a cell-type-specific fashion by ligand-regulable Cre recombinase-mediated genomic rearrangement of the ROSA26 recombination substrate allele. We conclude that basal cells represent an alternative multipotent progenitor cell population of bronchial airways and that progenitor cell selection is dictated by the type of airway injury. PMID:14742263

  18. Intravenous administration of bone marrow-derived multipotent mesenchymal stromal cells enhances the recruitment of CD11b{sup +} myeloid cells to the lungs and facilitates B16-F10 melanoma colonization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza, Lucas E.B., E-mail: lucasebsouza@usp.br; Hemotherapy Center of Ribeirão Preto, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP; Almeida, Danilo C., E-mail: gudaalmeida@gmail.com

    The discovery that the regenerative properties of bone marrow multipotent mesenchymal stromal cells (BM-MSCs) could collaterally favor neoplastic progression has led to a great interest in the function of these cells in tumors. However, the effect of BM-MSCs on colonization, a rate-limiting step of the metastatic cascade, is unknown. In this study, we investigated the effect of BM-MSCs on metastatic outgrowth of B16-F10 melanoma cells. In in vitro experiments, direct co-culture assays demonstrated that BM-MSCs stimulated the proliferation of B16-F10 cells in a dose-dependent manner. For in vivo experiments, luciferase-expressing B16-F10 cells were injected through tail vein and mice weremore » subsequently treated with four systemic injections of BM-MSCs. In vivo bioluminescent imaging during 16 days demonstrated that BM-MSCs enhanced the colonization of lungs by B16-F10 cells, which correlated with a 2-fold increase in the number of metastatic foci. Flow cytometry analysis of lungs demonstrated that although mice harboring B16-F10 metastases displayed more endothelial cells, CD4 T and CD8 T lymphocytes in the lungs in comparison to metastases-free mice, BM-MSCs did not alter the number of these cells. Interestingly, BM-MSCs inoculation resulted in a 2-fold increase in the number of CD11b{sup +} myeloid cells in the lungs of melanoma-bearing animals, a cell population previously described to organize “premetastatic niches” in experimental models. These findings indicate that BM-MSCs provide support to B16-F10 cells to overcome the constraints that limit metastatic outgrowth and that these effects might involve the interplay between BM-MSCs, CD11b{sup +} myeloid cells and tumor cells. - Highlights: • BM-MSCs enhanced B16-F10 proliferation in a dose-dependent manner in vitro. • BM-MSCs facilitated lung colonization by B16-F10 melanoma cells. • BM-MSCs administration did not alter the number of endothelial cells and T lymphocytes in the lungs. • BM

  19. Placental oxidative status in rural residents environmentally exposed to organophosphates.

    PubMed

    Chiapella, Graciela; Genti-Raimondi, Susana; Magnarelli, Gladis

    2014-07-01

    The impact of environmental organophosphate pesticide exposure on the placenta oxidative status was assessed. Placental samples were collected from women residing in an agricultural area during pesticide pulverization period, non-pulverization period and from control group. Carboxylesterase activity was significantly decreased in pulverization period group. Enzymatic and non-enzymatic defense system, the oxidative stress biomarkers and the nuclear factor erythroid 2-related factor levels showed no differences among groups. However, in the pulverization period group, an inverse association between catalase activity and placental index, a useful metric for estimating placental inefficiency, was found. This result suggests that catalase may serve as a potential placental biomarker of susceptibility to pesticides. Further studies designed from a gene-environment perspective are needed. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Concise Review: The Clinical Application of Mesenchymal Stem Cells for Musculoskeletal Regeneration: Current Status and Perspectives

    PubMed Central

    Steinert, Andre F.; Rackwitz, Lars; Gilbert, Fabian; Nöth, Ulrich

    2012-01-01

    Regenerative therapies in the musculoskeletal system are based on the suitable application of cells, biomaterials, and/or factors. For an effective approach, numerous aspects have to be taken into consideration, including age, disease, target tissue, and several environmental factors. Significant research efforts have been undertaken in the last decade to develop specific cell-based therapies, and in particular adult multipotent mesenchymal stem cells hold great promise for such regenerative strategies. Clinical translation of such therapies, however, remains a work in progress. In the clinical arena, autologous cells have been harvested, processed, and readministered according to protocols distinct for the target application. As outlined in this review, such applications range from simple single-step approaches, such as direct injection of unprocessed or concentrated blood or bone marrow aspirates, to fabrication of engineered constructs by seeding of natural or synthetic scaffolds with cells, which were released from autologous tissues and propagated under good manufacturing practice conditions (for example, autologous chondrocyte implantation). However, only relatively few of these cell-based approaches have entered the clinic, and none of these treatments has become a “standard of care” treatment for an orthopaedic disease to date. The multifaceted reasons for the current status from the medical, research, and regulatory perspectives are discussed here. In summary, this review presents the scientific background, current state, and implications of clinical mesenchymal stem cell application in the musculoskeletal system and provides perspectives for future developments. PMID:23197783

  1. Advanced techniques in placental biology -- workshop report.

    PubMed

    Nelson, D M; Sadovsky, Y; Robinson, J M; Croy, B A; Rice, G; Kniss, D A

    2006-04-01

    Major advances in placental biology have been realized as new technologies have been developed and existing methods have been refined in many areas of biological research. Classical anatomy and whole-organ physiology tools once used to analyze placental structure and function have been supplanted by more sophisticated techniques adapted from molecular biology, proteomics, and computational biology and bioinformatics. In addition, significant refinements in morphological study of the placenta and its constituent cell types have improved our ability to assess form and function in highly integrated manner. To offer an overview of modern technologies used by investigators to study the placenta, this workshop: Advanced techniques in placental biology, assembled experts who discussed fundamental principles and real time examples of four separate methodologies. Y. Sadovsky presented the principles of microRNA function as an endogenous mechanism of gene regulation. J. Robinson demonstrated the utility of correlative microscopy in which light-level and transmission electron microscopy are combined to provide cellular and subcellular views of placental cells. A. Croy provided a lecture on the use of microdissection techniques which are invaluable for isolating very small subsets of cell types for molecular analysis. Finally, G. Rice presented an overview methods on profiling of complex protein mixtures within tissue and/or fluid samples that, when refined, will offer databases that will underpin a systems approach to modern trophoblast biology.

  2. Single-Factor SOX2 Mediates Direct Neural Reprogramming of Human Mesenchymal Stem Cells via Transfection of In Vitro Transcribed mRNA.

    PubMed

    Kim, Bo-Eun; Choi, Soon Won; Shin, Ji-Hee; Kim, Jae-Jun; Kang, Insung; Lee, Byung-Chul; Lee, Jin Young; Kook, Myoung Geun; Kang, Kyung-Sun

    2018-01-01

    Neural stem cells (NSCs) are a prominent cell source for understanding neural pathogenesis and for developing therapeutic applications to treat neurodegenerative disease because of their regenerative capacity and multipotency. Recently, a variety of cellular reprogramming technologies have been developed to facilitate in vitro generation of NSCs, called induced NSCs (iNSCs). However, the genetic safety aspects of established virus-based reprogramming methods have been considered, and non-integrating reprogramming methods have been developed. Reprogramming with in vitro transcribed (IVT) mRNA is one of the genetically safe reprogramming methods because exogenous mRNA temporally exists in the cell and is not integrated into the chromosome. Here, we successfully generated expandable iNSCs from human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) via transfection with IVT mRNA encoding SOX2 (SOX2 mRNA) with properly optimized conditions. We confirmed that generated human UCB-MSC-derived iNSCs (UM-iNSCs) possess characteristics of NSCs, including multipotency and self-renewal capacity. Additionally, we transfected human dermal fibroblasts (HDFs) with SOX2 mRNA. Compared with human embryonic stem cell-derived NSCs, HDFs transfected with SOX2 mRNA exhibited neural reprogramming with similar morphologies and NSC-enriched mRNA levels, but they showed limited proliferation ability. Our results demonstrated that human UCB-MSCs can be used for direct reprogramming into NSCs through transfection with IVT mRNA encoding a single factor, which provides an integration-free reprogramming tool for future therapeutic application.

  3. Are nestin-positive mesenchymal stromal cells a better source of cells for CNS repair?

    PubMed

    Lindsay, Susan L; Barnett, Susan C

    2017-06-01

    In recent years there has been a great deal of research within the stem cell field which has led to the definition and classification of a range of stem cells from a plethora of tissues and organs. Stem cells, by classification, are considered to be pluri- or multipotent and have both self-renewal and multi-differentiation capabilities. Presently there is a great deal of interest in stem cells isolated from both embryonic and adult tissues in the hope they hold the therapeutic key to restoring or treating damaged cells in a number of central nervous system (CNS) disorders. In this review we will discuss the role of mesenchymal stromal cells (MSCs) isolated from human olfactory mucosa, with particular emphasis on their potential role as a candidate for transplant mediated repair in the CNS. Since nestin expression defines the entire population of olfactory mucosal derived MSCs, we will compare these cells to a population of neural crest derived nestin positive population of bone marrow-MSCs. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Lower Placental Leptin Promoter Methylation in Association with Fine Particulate Matter Air Pollution during Pregnancy and Placental Nitrosative Stress at Birth in the ENVIRONAGE Cohort.

    PubMed

    Saenen, Nelly D; Vrijens, Karen; Janssen, Bram G; Roels, Harry A; Neven, Kristof Y; Vanden Berghe, Wim; Gyselaers, Wilfried; Vanpoucke, Charlotte; Lefebvre, Wouter; De Boever, Patrick; Nawrot, Tim S

    2017-02-01

    Particulate matter with a diameter ≤ 2.5 μm (PM2.5) affects human fetal development during pregnancy. Oxidative stress is a putative mechanism by which PM2.5 may exert its effects. Leptin (LEP) is an energy-regulating hormone involved in fetal growth and development. We investigated in placental tissue whether DNA methylation of the LEP promoter is associated with PM2.5 and whether the oxidative/nitrosative stress biomarker 3-nitrotyrosine (3-NTp) is involved. LEP DNA methylation status of 361 placentas from the ENVIRONAGE birth cohort was assessed using bisulfite-PCR-pyrosequencing. Placental 3-NTp (n = 313) was determined with an ELISA assay. Daily PM2.5 exposure levels were estimated for each mother's residence, accounting for residential mobility during pregnancy, using a spatiotemporal interpolation model. After adjustment for a priori chosen covariates, placental LEP methylation was 1.4% lower (95% CI: -2.7, -0.19%) in association with an interquartile range increment (7.5 μg/m3) in second-trimester PM2.5 exposure and 0.43% lower (95% CI: -0.85, -0.02%) in association with a doubling of placental 3-NTp content. LEP methylation status in the placenta was negatively associated with PM2.5 exposure during the second trimester, and with placental 3-NTp, a marker of oxidative/nitrosative stress. Additional research is needed to confirm our findings and to assess whether oxidative/nitrosative stress might contribute to associations between PM2.5 and placental epigenetic events. Potential consequences for health during the neonatal period and later in life warrant further exploration. Citation: Saenen ND, Vrijens K, Janssen BG, Roels HA, Neven KY, Vanden Berghe W, Gyselaers W, Vanpoucke C, Lefebvre W, De Boever P, Nawrot TS. 2017. Lower placental leptin promoter methylation in association with fine particulate matter air pollution during pregnancy and placental nitrosative stress at birth in the ENVIRONAGE cohort. Environ Health Perspect 125:262-268;

  5. Lower Placental Leptin Promoter Methylation in Association with Fine Particulate Matter Air Pollution during Pregnancy and Placental Nitrosative Stress at Birth in the ENVIRONAGE Cohort

    PubMed Central

    Saenen, Nelly D.; Vrijens, Karen; Janssen, Bram G.; Roels, Harry A.; Neven, Kristof Y.; Vanden Berghe, Wim; Gyselaers, Wilfried; Vanpoucke, Charlotte; Lefebvre, Wouter; De Boever, Patrick; Nawrot, Tim S.

    2016-01-01

    Background: Particulate matter with a diameter ≤ 2.5 μm (PM2.5) affects human fetal development during pregnancy. Oxidative stress is a putative mechanism by which PM2.5 may exert its effects. Leptin (LEP) is an energy-regulating hormone involved in fetal growth and development. Objectives: We investigated in placental tissue whether DNA methylation of the LEP promoter is associated with PM2.5 and whether the oxidative/nitrosative stress biomarker 3-nitrotyrosine (3-NTp) is involved. Methods: LEP DNA methylation status of 361 placentas from the ENVIRONAGE birth cohort was assessed using bisulfite-PCR-pyrosequencing. Placental 3-NTp (n = 313) was determined with an ELISA assay. Daily PM2.5 exposure levels were estimated for each mother’s residence, accounting for residential mobility during pregnancy, using a spatiotemporal interpolation model. Results: After adjustment for a priori chosen covariates, placental LEP methylation was 1.4% lower (95% CI: –2.7, –0.19%) in association with an interquartile range increment (7.5 μg/m3) in second-trimester PM2.5 exposure and 0.43% lower (95% CI: –0.85, –0.02%) in association with a doubling of placental 3-NTp content. Conclusions: LEP methylation status in the placenta was negatively associated with PM2.5 exposure during the second trimester, and with placental 3-NTp, a marker of oxidative/nitrosative stress. Additional research is needed to confirm our findings and to assess whether oxidative/nitrosative stress might contribute to associations between PM2.5 and placental epigenetic events. Potential consequences for health during the neonatal period and later in life warrant further exploration. Citation: Saenen ND, Vrijens K, Janssen BG, Roels HA, Neven KY, Vanden Berghe W, Gyselaers W, Vanpoucke C, Lefebvre W, De Boever P, Nawrot TS. 2017. Lower placental leptin promoter methylation in association with fine particulate matter air pollution during pregnancy and placental nitrosative stress at birth in the

  6. New insights into the heterogeneity and functional diversity of human mesenchymal stem cells.

    PubMed

    Han, Z C; Du, W J; Han, Z B; Liang, L

    2017-01-01

    Mesenchymal stem cells (MSCs) are being tested in several biological systems and clinical settings with the aim of exploring their therapeutic potentials for a variety of diseases. MSCs are also known to be heterogeneous populations with variable functions. In the context of this multidimensional complexity, a recurrent question is what source or population of MSCs is suitable for specific clinical indications. Here, we reported that the biological features of MSCs varied with the individual donor, the tissue source, the culture condition and the subpopulations. Placental chorionic villi (CV) derived MSCs exhibited superior activities of immunomodulation and pro-angiogenesis compared to MSCs derived from bone marrow (BM), adipose and umbilical cord (UC). We identified a subpopulation of CD106(VCAM-1)+MSCs, which are present richly in placental CV, moderately in BM, and lowly in adipose and UC. The CD106+MSCs possess significantly increased immunomodutory and pro-angiogenic activities compared to CD106-MSCs. Analysis of gene expression and cytokine secretion revealed that CD106+MSCs highly expressed several immnumodulatory and pro-angiogenic cytokines. Our data offer new insights on the identification and selection of suitable source or population of MSCs for clinical applications. Further efforts should be concentrated on standardizing methods which will ultimately allow the validation of MSC products with defined biomarkers as predictive of potency in suitable pre-clinical models and clinical settings.

  7. A Novel Combination of Homeobox Genes Is Expressed in Mesenchymal Chorionic Stem/Stromal Cells in First Trimester and Term Pregnancies

    PubMed Central

    Liu, Haiying; Murthi, Padma; Qin, Sharon; Kusuma, Gina D.; Borg, Anthony J.; Knöfler, Martin; Haslinger, Peter; Manuelpillai, Ursula; Pertile, Mark D.; Abumaree, Mohamed

    2014-01-01

    Human chorionic mesenchymal stem/stromal cells (CMSCs) derived from the placenta are similar to adult tissue-derived MSCs. The aim of this study was to investigate the role of these cells in normal placental development. Transcription factors, particularly members of the homeobox gene family, play crucial roles in maintaining stem cell proliferation and lineage specification in embryonic tissues. In adult tissues and organs, stem cells proliferate at low levels in their niche until they receive cues from the microenvironment to differentiate. The homeobox genes that are expressed in the CMSC niche in placental tissues have not been identified. We used the novel strategy of laser capture microdissection to isolate the stromal component of first trimester villi and excluded the cytotrophoblast and syncytiotrophoblast layers that comprise the outer layer of the chorionic villi. Microarray analysis was then used to screen for homeobox genes in the microdissected tissue. Candidate homeobox genes were selected for further RNA analysis. Immunohistochemistry of candidate genes in first trimester placental villous stromal tissue revealed homeobox genes Meis1, myeloid ectropic viral integration site 1 homolog 2 (MEIS2), H2.0-like Drosophila (HLX), transforming growth factor β-induced factor (TGIF), and distal-less homeobox 5 (DLX5) were expressed in the vascular niche where CMSCs have been shown to reside. Expression of MEIS2, HLX, TGIF, and DLX5 was also detected in scattered stromal cells. Real-time polymerase chain reaction and immunocytochemistry verified expression of MEIS2, HLX, TGIF, and DLX5 homeobox genes in first trimester and term CMSCs. These data suggest a combination of regulatory homeobox genes is expressed in CMSCs from early placental development to term, which may be required for stem cell proliferation and differentiation. PMID:24692208

  8. Pre-clinical and clinical development of the first placental malaria vaccine.

    PubMed

    Pehrson, Caroline; Salanti, Ali; Theander, Thor G; Nielsen, Morten A

    2017-06-01

    Malaria during pregnancy is a massive health problem in endemic areas. Placental malaria infections caused by Plasmodium falciparum are responsible for up to one million babies being born with a low birth weight every year. Significant efforts have been invested into preventing the condition. Areas covered: Pub Med was searched using the broad terms 'malaria parasite placenta' to identify studies of interactions between parasite and host, 'prevention of placental malaria' to identify current strategies to prevent placental malaria, and 'placental malaria vaccine' to identify pre-clinical vaccine development. However, all papers from these searches were not systematically included. Expert commentary: The first phase I clinical trials of vaccines are well underway. Trials testing efficacy are more complicated to carry out as only women that are exposed to parasites during pregnancy will contribute to endpoint measurements, further it may require extensive follow-up to establish protection. Future second generation vaccines may overcome the inherent challenges in making an effective placental malaria vaccine.

  9. Infant sex-specific placental cadmium and DNA methylation associations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, April F., E-mail: april.mohanty@va.gov; Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA; Farin, Fred M., E-mail: freddy@u.washington.edu

    Background: Recent evidence suggests that maternal cadmium (Cd) burden and fetal growth associations may vary by fetal sex. However, mechanisms contributing to these differences are unknown. Objectives: Among 24 maternal-infant pairs, we investigated infant sex-specific associations between placental Cd and placental genome-wide DNA methylation. Methods: We used ANOVA models to examine sex-stratified associations of placental Cd (dichotomized into high/low Cd using sex-specific Cd median cutoffs) with DNA methylation at each cytosine-phosphate-guanine site or region. Statistical significance was defined using a false discovery rate cutoff (<0.10). Results: Medians of placental Cd among females and males were 5 and 2 ng/g, respectively.more » Among females, three sites (near ADP-ribosylation factor-like 9 (ARL9), siah E3 ubiquitin protein ligase family member 3 (SIAH3), and heparin sulfate (glucosamine) 3-O-sulfotransferase 4 (HS3ST4) and one region on chromosome 7 (including carnitine O-octanoyltransferase (CROT) and TP5S target 1 (TP53TG1)) were hypomethylated in high Cd placentas. Among males, high placental Cd was associated with methylation of three sites, two (hypomethylated) near MDS1 and EVI1 complex locus (MECOM) and one (hypermethylated) near spalt-like transcription factor 1 (SALL1), and two regions (both hypomethylated, one on chromosome 3 including MECOM and another on chromosome 8 including rho guanine nucleotide exchange factor (GEF) 10 (ARHGEF10). Differentially methylated sites were at or close to transcription start sites of genes involved in cell damage response (SIAH3, HS3ST4, TP53TG1) in females and cell differentiation, angiogenesis and organ development (MECOM, SALL1) in males. Conclusions: Our preliminary study supports infant sex-specific placental Cd-DNA methylation associations, possibly accounting for previously reported differences in Cd-fetal growth associations across fetal sex. Larger studies are needed to replicate and extend these

  10. Placental perfusion in 3rd trimester pregnancy

    NASA Astrophysics Data System (ADS)

    Sitepu, M.; Syahriza, A.; Sibuea, D.; Hanafiah, T. M.

    2018-03-01

    The placenta is an organ for transmitting nutrition and oxygen to thefetus; it means if there is a defect in the placenta could make growth restriction to the fetus, even death. Uterine artery flow escalated since the halfway point of the pregnancy or the complete trophoblast invasion of spiralis artery, and keep going in every week. 3D power Doppler examination on placenta could show the uterineplacenta circulation and fetoplacental at once so could give themore accurate result. A cross-sectional study in RSUP HAM and theprivate specialist clinic was conducted in 100 pregnant samples with 28-40 week gestational age, exact last menstrual period date, and no underlying disease to examine the alteration of placental perfusion by gestationalage and placental location. There was a correlation between VI and VFI in placenta toward umbilical artery flow, but no correlation in FI. The placental location also plays a role in interval blood flow, especially FI and VFI, it means the VFI hold the strongest correlation in both ways.

  11. Effects of obesity and gestational diabetes mellitus on placental phospholipids.

    PubMed

    Uhl, Olaf; Demmelmair, Hans; Segura, María Teresa; Florido, Jesús; Rueda, Ricardo; Campoy, Cristina; Koletzko, Berthold

    2015-08-01

    Gestational diabetes mellitus (GDM) is associated with adverse effects in the offspring. The composition of placental glycerophospholipids (GPL) is known to be altered in GDM and might reflect an aberrant fatty acid transfer across the placenta and thus affect the foetal body composition. The aim of this study was to investigate possible effects of obesity and GDM, respectively, on placental GPL species composition. We investigated molecular species of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS) in term placentas from controls (lean non-diabetic, body-mass-index [BMI] 18-24.9k g/m(2), n=31), obese non-diabetics (BMI ≥30 kg/m(2), n=17) and lean diabetics (n=15), using liquid chromatography - triple quadrupole mass spectrometry. PE(16:0/22:6) and PE(18:0/20:4) were increased in GDM and decreased species were PC(18:0/20:3), PC(18:1/20:3) and PS(18:0/18:2). A consistent difference between BMI related changes and changes caused by GDM was not observed. Arachidonic acid percentages of cord blood correlated with placental PC(16:0/20:4), whereas foetal docosahexaenoic acid correlated to placental PE species. Furthermore, a positive correlation of placental weight was found to levels of PE containing arachidonic acid. We demonstrated that obesity and GDM are associated with decreased dihomo-gamma-linolenic acid and increased arachidonic acid and docosahexaenoic acid contents of placental GPL, with unknown consequences for the foetus. PC(16:0/20:4) was identified as the major component for the supply of arachidonic acid to the foetal circulation, whereas PE containing arachidonic acid was found to be associated to the placental and infant growth. Copyright © 2015. Published by Elsevier Ireland Ltd.

  12. Induction of Heme Oxygenase-1 Attenuates Placental-Ischemia Induced Hypertension

    PubMed Central

    George, Eric M.; Cockrell, Kathy; Aranay, Marietta; Csongradi, Eva; Stec, David E.; Granger, Joey P.

    2011-01-01

    Recent in vitro studies have reported that heme oxygenase-1 (HO-1) downregulates the angiostatic protein sFlt-1 from placental villous explants and that the HO-1 metabolites CO and bilirubin negatively regulates endothelin-1 and reactive oxygen species (ROS). Although sFlt-1, ET-1, and ROS have been implicated in the pathophysiology of hypertension during preeclampsia and in response to placental ischemia in pregnant rats, it is unknown whether chronic induction of HO-1 alters the hypertensive response to placental ischemia. The present study examined the hypothesis that HO-1 induction in a rat model of placental ischemia would beneficially affect blood pressure, angiogenic balance, superoxide, and ET-1 production in the ischemic placenta. To achieve this goal we examined the effects of cobalt protoporphyrin (CoPP), an HO-1 inducer, in the reduced uterine perfusion pressure (RUPP) placental ischemia model and in normal pregnant rats. In response to RUPP treatment, MAP increases 29mmHg (136 ± 7 vs. 106 ± 5 mmHg) which is significantly attenuated by CoPP (118 ± 5 mmHg). While RUPP treatment causes placental sFlt-1/VEGF ratios to alter significantly to an angiostatic balance (1 ± 0.1 vs 1.27 ± 0.2,), treatment with CoPP causes a significant shift in the ratio to an angiogenic balance (0.68 ± 0.1). Placental superoxide increased in RUPP (952.5 ± 278.8 vs 243.9 ± 70.5 RLU/min/mg), but was significantly attenuated by HO-1 induction (482.7 ± 117.4 RLU/min/mg). Also, preproendothelin message was significantly increased in RUPP, which was prevented by CoPP. These data indicate that HO-1, or its metabolites, are potential therapeutics for the treatment of preeclampsia. PMID:21383306

  13. Three-dimensional high-definition flow in the diagnosis of placental lakes.

    PubMed

    Inubashiri, Eisuke; Deguchi, Keizou; Abe, Kiyotaka; Saitou, Atushi; Watanabe, Yukio; Akutagawa, Noriyuki; Kuroki, Katumaru; Sugawara, Masaki; Maeda, Nobuhiko

    2014-10-01

    Placental lakes are sonolucent areas often found in the normal placenta. Most of them are asymptomatic. They are sometimes related to placenta accreta or intrauterine fetal growth restriction, among other conditions. Although Doppler sonography is useful for evaluating noxious placental lakes, it is not easy to adapt Doppler studies to conventional two-dimensional color Doppler sonography because of the low-velocity blood flow and high vascularity in the placenta. Here, we demonstrate how three-dimensional high-definition imaging of flow provides a novel visual depiction of placental lakes, which helps substantially with the differential diagnosis. As far as we know, there have been no previous reports of observation of placental lakes using three-dimensional high-definition imaging of flow.

  14. Placental villous hypermaturation is associated with idiopathic preterm birth

    PubMed Central

    Morgan, Terry K.; Tolosa, Jorge E.; Mele, Lisa; Wapner, Ronald J.; Spong, Catherine Y.; Sorokin, Yoram; Dudley, Donald J.; Peaceman, Alan M.; Mercer, Brian M.; Thorp, John M.; O’Sullivan, Mary Jo; Ramin, Susan M.; Rouse, Dwight J.; Sibai, Baha

    2014-01-01

    Objective Pregnancy complications such as intra-amniotic infection, preeclampsia, and fetal intrauterine growth restriction (IUGR) account for most cases of preterm birth (PTB), but many spontaneous PTB cases do not have a clear etiology. We hypothesize that placental insufficiency may be a potential cause of idiopathic PTB. Methods Secondary analysis of 82 placental samples from women with PTB obtained from a multicenter trial of repeat versus single antenatal corticosteroids. Samples were centrally reviewed by a single placental pathologist masked to clinical outcomes. The histopathologic criterion for infection was the presence of acute chorioamnionitis defined as neutrophils marginating into the chorionic plate. Placental villous hypermaturation (PVH) was defined as a predominance of terminal villi (similar to term placenta) with extensive syncytial knotting. Idiopathic PTB comprised a group without another known etiology such as preeclampsia, IUGR or infection. Results Acute chorioamnionitis was observed in 33/82 (40%) cases. Other known causes of PTB were reported in 18/82 (22%). The remaining 31/82 (38%) were idiopathic. The frequency of PVH in idiopathic PTB (26/31=84%) was similar to cases with IUGR or preeclampsia (16/ 18=89%), but significantly more common than PVH in the group with acute chorioamnionitis (10/33=30%) (p<0.001). Conclusions PVH, which is a histologic marker of relative placental insufficiency, is a common finding in idiopathic PTB. PMID:23130816

  15. Acute diabetes insipidus mediated by vasopressinase after placental abruption.

    PubMed

    Wallia, Amisha; Bizhanova, Aigerim; Huang, Wenyu; Goldsmith, Susan L; Gossett, Dana R; Kopp, Peter

    2013-03-01

    Postpartum, diabetes insipidus (DI) can be part of Sheehan's syndrome or lymphocytic hypophysitis in combination with anterior pituitary hormone deficiencies. In contrast, acute onset of isolated DI in the postpartum period is unusual. This patient presented at 33 weeks gestation with placental abruption, prompting a cesarean delivery of twins. Immediately after delivery, she developed severe DI. The DI could be controlled with the vasopressinase-resistant 1-deamino-8-D-arginine vasopressin (DDAVP), but not with arginine vasopressin (AVP), and it resolved within a few weeks. The aim of this study was to demonstrate that the postpartum DI in this patient was caused by the release of placental vasopressinase into the maternal bloodstream. Cells were transiently transfected with the AVP receptor 2 (AVPR2) and treated with either AVP or DDAVP in the presence of the patient's serum collected postpartum or 10 weeks after delivery. The response to the different treatments was evaluated by measuring the activity of a cAMP-responsive firefly luciferase reporter construct. The in vitro studies demonstrate that the patient's postpartum serum disrupts activation of the AVPR2 by AVP, but not by the vasopressinase-resistant DDAVP. Placental abruption can rarely be associated with acute postpartum DI caused by release of placental vasopressinase into the bloodstream. This clinical entity must be considered in patients with placental abruption and when evaluating patients presenting with DI after delivery.

  16. Placental Hypomethylation Is More Pronounced in Genomic Loci Devoid of Retroelements

    PubMed Central

    Chatterjee, Aniruddha; Macaulay, Erin C.; Rodger, Euan J.; Stockwell, Peter A.; Parry, Matthew F.; Roberts, Hester E.; Slatter, Tania L.; Hung, Noelyn A.; Devenish, Celia J.; Morison, Ian M.

    2016-01-01

    The human placenta is hypomethylated compared to somatic tissues. However, the degree and specificity of placental hypomethylation across the genome is unclear. We assessed genome-wide methylation of the human placenta and compared it to that of the neutrophil, a representative homogeneous somatic cell. We observed global hypomethylation in placenta (relative reduction of 22%) compared to neutrophils. Placental hypomethylation was pronounced in intergenic regions and gene bodies, while the unmethylated state of the promoter remained conserved in both tissues. For every class of repeat elements, the placenta showed lower methylation but the degree of hypomethylation differed substantially between these classes. However, some retroelements, especially the evolutionarily younger Alu elements, retained high levels of placental methylation. Surprisingly, nonretrotransposon-containing sequences showed a greater degree of placental hypomethylation than retrotransposons in every genomic element (intergenic, introns, and exons) except promoters. The differentially methylated fragments (DMFs) in placenta and neutrophils were enriched in gene-poor and CpG-poor regions. The placentally hypomethylated DMFs were enriched in genomic regions that are usually inactive, whereas hypermethylated DMFs were enriched in active regions. Hypomethylation of the human placenta is not specific to retroelements, indicating that the evolutionary advantages of placental hypomethylation go beyond those provided by expression of retrotransposons and retrogenes. PMID:27172225

  17. Frequent mechanical stress suppresses proliferation of mesenchymal stem cells from human bone marrow without loss of multipotency

    NASA Astrophysics Data System (ADS)

    Frank, Viktoria; Kaufmann, Stefan; Wright, Rebecca; Horn, Patrick; Yoshikawa, Hiroshi Y.; Wuchter, Patrick; Madsen, Jeppe; Lewis, Andrew L.; Armes, Steven P.; Ho, Anthony D.; Tanaka, Motomu

    2016-04-01

    Mounting evidence indicated that human mesenchymal stem cells (hMSCs) are responsive not only to biochemical but also to physical cues, such as substrate topography and stiffness. To simulate the dynamic structures of extracellular environments of the marrow in vivo, we designed a novel surrogate substrate for marrow derived hMSCs based on physically cross-linked hydrogels whose elasticity can be adopted dynamically by chemical stimuli. Under frequent mechanical stress, hMSCs grown on our hydrogel substrates maintain the expression of STRO-1 over 20 d, irrespective of the substrate elasticity. On exposure to the corresponding induction media, these cultured hMSCs can undergo adipogenesis and osteogenesis without requiring cell transfer onto other substrates. Moreover, we demonstrated that our surrogate substrate suppresses the proliferation of hMSCs by up to 90% without any loss of multiple lineage potential by changing the substrate elasticity every 2nd days. Such “dynamic in vitro niche” can be used not only for a better understanding of the role of dynamic mechanical stresses on the fate of hMSCs but also for the synchronized differentiation of adult stem cells to a specific lineage.

  18. Mesenchymal stem cell-like properties of CD133+ glioblastoma initiating cells

    PubMed Central

    Pavon, Lorena Favaro; Sibov, Tatiana Tais; de Oliveira, Daniela Mara; Marti, Luciana C.; Cabral, Francisco Romero; de Souza, Jean Gabriel; Boufleur, Pamela; Malheiros, Suzana M.F.; de Paiva Neto, Manuel A.; da Cruz, Edgard Ferreira; Chudzinski-Tavassi, Ana Marisa; Cavalheiro, Sérgio

    2016-01-01

    Glioblastoma is composed of dividing tumor cells, stromal cells and tumor initiating CD133+ cells. Recent reports have discussed the origin of the glioblastoma CD133+ cells and their function in the tumor microenvironment. The present work sought to investigate the multipotent and mesenchymal properties of primary highly purified human CD133+ glioblastoma-initiating cells. To accomplish this aim, we used the following approaches: i) generation of tumor subspheres of CD133+ selected cells from primary cell cultures of glioblastoma; ii) analysis of the expression of pluripotency stem cell markers and mesenchymal stem cell (MSC) markers in the CD133+ glioblastoma-initiating cells; iii) side-by-side ultrastructural characterization of the CD133+ glioblastoma cells, MSC and CD133+ hematopoietic stem cells isolated from human umbilical cord blood (UCB); iv) assessment of adipogenic differentiation of CD133+ glioblastoma cells to test their MSC-like in vitro differentiation ability; and v) use of an orthotopic glioblastoma xenograft model in the absence of immune suppression. We found that the CD133+ glioblastoma cells expressed both the pluripotency stem cell markers (Nanog, Mush-1 and SSEA-3) and MSC markers. In addition, the CD133+ cells were able to differentiate into adipocyte-like cells. Transmission electron microscopy (TEM) demonstrated that the CD133+ glioblastoma-initiating cells had ultrastructural features similar to those of undifferentiated MSCs. In addition, when administered in vivo to non-immunocompromised animals, the CD133+ cells were also able to mimic the phenotype of the original patient's tumor. In summary, we showed that the CD133+ glioblastoma cells express molecular signatures of MSCs, neural stem cells and pluripotent stem cells, thus possibly enabling differentiation into both neural and mesodermal cell types. PMID:27244897

  19. Mesenchymal-epithelial interaction techniques

    PubMed Central

    Baskin, Lawrence

    2016-01-01

    This paper reviews the importance of mesenchymal-epithelial interactions in development and gives detailed technical protocols for investigating these interactions. Successful analysis of mesenchymal-epithelial interactions requires knowing the ages in which embryonic, neonatal and adult organs can be separated into mesenchymal and epithelial tissues. Methods for separation of mesenchymal and epithelial and preparation of tissue recombinants are described. PMID:26610327

  20. IL-7Rα and E47: independent pathways required for development of multipotent lymphoid progenitors

    PubMed Central

    Kee, Barbara L.; Bain, Gretchen; Murre, Cornelis

    2002-01-01

    Mice that lack the transcription factors encoded by the E2A gene or the receptor for interleukin 7 (IL-7R) have severe overlapping defects in lymphocyte development. Here, we show that E2A proteins are required for the survival of early T-lineage cells; however, they function through a pathway that is distinct from the survival pathway initiated by IL-7R signaling. While E2A proteins are required to suppress caspase 3 activation, ectopic expression of the anti-apoptotic protein Bcl-2 is not sufficient to overcome the lymphopoietic defects observed in the absence of E2A. Remarkably, mice that lack both IL-7Rα and E47 display a synergistic decrease in the number of T-cell, NK-cell and multipotent progenitors in the thymus, indicating that these distinct survival pathways converge to promote the development of multipotent lymphoid progenitors. PMID:11782430

  1. Engineering mesenchymal stem cells for regenerative medicine and drug delivery.

    PubMed

    Park, Ji Sun; Suryaprakash, Smruthi; Lao, Yeh-Hsing; Leong, Kam W

    2015-08-01

    Researchers have applied mesenchymal stem cells (MSC) to a variety of therapeutic scenarios by harnessing their multipotent, regenerative, and immunosuppressive properties with tropisms toward inflamed, hypoxic, and cancerous sites. Although MSC-based therapies have been shown to be safe and effective to a certain degree, the efficacy remains low in most cases when MSC are applied alone. To enhance their therapeutic efficacy, researchers have equipped MSC with targeted delivery functions using genetic engineering, therapeutic agent incorporation, and cell surface modification. MSC can be genetically modified virally or non-virally to overexpress therapeutic proteins that complement their innate properties. MSC can also be primed with non-peptidic drugs or magnetic nanoparticles for enhanced efficacy and externally regulated targeting, respectively. Furthermore, MSC can be functionalized with targeting moieties to augment their homing toward therapeutic sites using enzymatic modification, chemical conjugation, or non-covalent interactions. These engineering techniques are still works in progress, requiring optimization to improve the therapeutic efficacy and targeting effectiveness while minimizing any loss of MSC function. In this review, we will highlight the advanced techniques of engineering MSC, describe their promise and the challenges of translation into clinical settings, and suggest future perspectives on realizing their full potential for MSC-based therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Interactions between human mesenchymal stem cells and natural killer cells.

    PubMed

    Sotiropoulou, Panagiota A; Perez, Sonia A; Gritzapis, Angelos D; Baxevanis, Constantin N; Papamichail, Michael

    2006-01-01

    Mesenchymal stem cells (MSCs) are multipotent progenitor cells representing an attractive therapeutic tool for regenerative medicine. They possess unique immunomodulatory properties, being capable of suppressing T-cell responses and modifying dendritic cell differentiation, maturation, and function, whereas they are not inherently immunogenic, failing to induce alloreactivity to T cells and freshly isolated natural killer (NK) cells. To clarify the generation of host immune responses to implanted MSCs in tissue engineering and their potential use as immunosuppressive elements, the effect of MSCs on NK cells was investigated. We demonstrate that at low NK-to-MSC ratios, MSCs alter the phenotype of NK cells and suppress proliferation, cytokine secretion, and cyto-toxicity against HLA-class I- expressing targets. Some of these effects require cell-to-cell contact, whereas others are mediated by soluble factors, including transforming growth factor-beta1 and prostaglandin E2, suggesting the existence of diverse mechanisms for MSC-mediated NK-cell suppression. On the other hand, MSCs are susceptible to lysis by activated NK cells. Overall, these data improve our knowledge of interactions between MSCs and NK cells and consequently of their effect on innate immune responses and their contribution to the regulation of adaptive immunity, graft rejection, and cancer immunotherapy.

  3. Mesenchymal stem cells derived from peripheral blood protects against ischemia.

    PubMed

    Ukai, Ryo; Honmou, Osamu; Harada, Kuniaki; Houkin, Kiyohiro; Hamada, Hirofumi; Kocsis, Jeffery D

    2007-03-01

    Intravenous delivery of mesenchymal stem cells (MSCs) prepared from bone marrow (BMSCs) reduces infarction volume and ameliorates functional deficits in a rat cerebral ischemia model. MSC-like multipotent precursor cells (PMSCs) have also been suggested to exist in peripheral blood. To test the hypothesis that treatment with PMSCs may have a therapeutic benefit in stroke, we compared the efficacy of systemic delivery of BMSCs and PMSCs. A permanent middle cerebral artery occlusion (MCAO) in rat was induced by intraluminal vascular occlusion with a microfilament. Rat BMSCs and PMSCs were prepared in culture and intravenously injected into the rats 6 h after MCAO. Lesion size was assessed at 6 h, and 1, 3, and 7 days using MR imaging and histology. The hemodynamic change of cerebral blood perfusion on stroke was assessed the same times using perfusion-weighted image (PWI). Functional outcome was assessed using the treadmill stress test. Both BMSCs and PMSCs treated groups had reduced lesion volume, improved regional cerebral blood flow, and functional improvement compared to the control group. The therapeutic benefits of both MSC-treated groups were similar. These data suggest that PMSCs derived from peripheral blood could be an important cell source of cell therapy for stroke.

  4. The significance of placental ratios in pregnancies complicated by small for gestational age, preeclampsia, and gestational diabetes mellitus.

    PubMed

    Kim, Hee Sun; Cho, Soo Hyun; Kwon, Han Sung; Sohn, In Sook; Hwang, Han Sung

    2014-09-01

    This study aimed to evaluate the placental weight, volume, and density, and investigate the significance of placental ratios in pregnancies complicated by small for gestational age (SGA), preeclampsia (PE), and gestational diabetes mellitus (GDM). Two hundred and fifty-four pregnant women were enrolled from August 2005 through July 2013. Participants were divided into four groups: control (n=82), SGA (n=37), PE (n=102), and GDM (n=33). The PE group was classified as PE without intrauterine growth restriction (n=65) and PE with intrauterine growth restriction (n=37). Birth weight, placental weight, placental volume, placental density, and placental ratios including birth weight/placental weight ratio (BPW) and birth weight/placental volume ratio (BPV) were compared between groups. Birth weight, placental weight, and placental volume were lower in the SGA group than in the control group. However, the BPW and BPV did not differ between the two groups. Birth weight, placental weight, placental volume, BPW, and BPV were all significantly lower in the PE group than in the control group. Compared with the control group, birth weight, BPW, and BPV were higher in the GDM group, whereas placental weight and volume did not differ in the two groups. Placental density was not significantly different among the four groups. Placental ratios based on placental weight, placental volume, placental density, and birth weight are helpful in understanding the pathophysiology of complicated pregnancies. Moreover, they can be used as predictors of pregnancy complications.

  5. Cooperative function of Pdx1 and Oc1 in multipotent pancreatic progenitors impacts postnatal islet maturation and adaptability.

    PubMed

    Kropp, Peter A; Dunn, Jennifer C; Carboneau, Bethany A; Stoffers, Doris A; Gannon, Maureen

    2018-04-01

    The transcription factors pancreatic and duodenal homeobox 1 (Pdx1) and onecut1 (Oc1) are coexpressed in multipotent pancreatic progenitors (MPCs), but their expression patterns diverge in hormone-expressing cells, with Oc1 expression being extinguished in the endocrine lineage and Pdx1 being maintained at high levels in β-cells. We previously demonstrated that cooperative function of these two factors in MPCs is necessary for proper specification and differentiation of pancreatic endocrine cells. In those studies, we observed a persistent decrease in expression of the β-cell maturity factor MafA. We therefore hypothesized that Pdx1 and Oc1 cooperativity in MPCs impacts postnatal β-cell maturation and function. Here our model of Pdx1-Oc1 double heterozygosity was used to investigate the impact of haploinsufficiency for both of these factors on postnatal β-cell maturation, function, and adaptability. Examining mice at postnatal day (P) 14, we observed alterations in pancreatic insulin content in both Pdx1 heterozygotes and double heterozygotes. Gene expression analysis at this age revealed significantly decreased expression of many genes important for glucose-stimulated insulin secretion (e.g., Glut2, Pcsk1/2, Abcc8) exclusively in double heterozygotes. Analysis of P14 islets revealed an increase in the number of mixed islets in double heterozygotes. We predicted that double-heterozygous β-cells would have an impaired ability to respond to stress. Indeed, we observed that β-cell proliferation fails to increase in double heterozygotes in response to either high-fat diet or placental lactogen. We thus report here the importance of cooperation between regulatory factors early in development for postnatal islet maturation and adaptability.

  6. Association between placental morphology and childhood systolic blood pressure.

    PubMed

    Wen, Xiaozhong; Triche, Elizabeth W; Hogan, Joseph W; Shenassa, Edmond D; Buka, Stephen L

    2011-01-01

    We tested hypotheses that disproportionately large placental size and vascular lesions were associated with high systolic blood pressure (SBP); and these associations might be more evident with age. The sample included 13 273 of 40 666 full-term singletons in the Collaborative Perinatal Project. Placentas were examined by pathologists blinded of pregnancy courses and outcomes. The 4-month and 7-year SBPs were measured with palpation and auscultation methods, respectively. We found that placental weight (adjusted mean difference corresponding to an increase by 1 SD 0.50 [95% CI, 0.33 to 0.68]) and placenta-fetus weight ratio (0.37 [95% CI, 0.19 to 0.54]) was positively associated with 7-year SBP but not associated with 4-month SBP. Placental largest and smallest diameters and area were negatively associated with 4-month SBP but positively with 7-year SBP. Placental thickness was negatively associated with 4-month SBP only. Placental volume was negatively associated with 4-month SBP (-0.60 [95% CI, - 0.85 to -0.35]) but positively associated with 7-year SBP (0.48 [95% CI, 0.30 to 0.67]). Thrombi in cord vessels (adjusted mean difference versus absence 2.73 [95% CI, - 0.03 to 5.50]) and decidual vessels (2.58 [95% CI, 0.24 to 4.91]), villous microinfarcts (1.63 [95% CI, 0.71 to 2.55]), necrosis at the decidual margin (1.57 [95% CI, 0.54 to 2.59]), and basalis (3.44 [95% CI, 1.55 to 5.32]) were associated with higher 4-month SBP only. We conclude that placental inefficiency, reflected by disproportionately large weight and size, predicts long-term blood pressure, whereas vascular resistance and lesions may only influence short-term blood pressure.

  7. Long Noncoding RNAs: New Players in the Osteogenic Differentiation of Bone Marrow- and Adipose-Derived Mesenchymal Stem Cells.

    PubMed

    Yang, Qiaolin; Jia, Lingfei; Li, Xiaobei; Guo, Runzhi; Huang, Yiping; Zheng, Yunfei; Li, Weiran

    2018-06-01

    Mesenchymal stem cells (MSCs) are an important population of multipotent stem cells that differentiate into multiple lineages and display great potential in bone regeneration and repair. Although the role of protein-coding genes in the osteogenic differentiation of MSCs has been extensively studied, the functions of noncoding RNAs in the osteogenic differentiation of MSCs are unclear. The recent application of next-generation sequencing to MSC transcriptomes has revealed that long noncoding RNAs (lncRNAs) are associated with the osteogenic differentiation of MSCs. LncRNAs are a class of non-coding transcripts of more than 200 nucleotides in length. Noncoding RNAs are thought to play a key role in osteoblast differentiation through various regulatory mechanisms including chromatin modification, transcription factor binding, competent endogenous mechanism, and other post-transcriptional mechanisms. Here, we review the roles of lncRNAs in the osteogenic differentiation of bone marrow- and adipose-derived stem cells and provide a theoretical foundation for future research.

  8. [Placental metastases from maternal malignancies: review of the literature].

    PubMed

    Dessolle, L; Dalmon, C; Roche, B; Daraï, E

    2007-06-01

    The purpose of this paper was to update and analyse all the reported cases of placental metastasis. These tumours are rare and seem to complicate aggressive or disseminated malignant melanomas, leukaemias, breast cancers and lung cancers. Maternal prognosis is poor. The risk factors of cancer in the newborn are unknown. In a pregnant woman with a history of malignancy, a systematic histological examination of the placenta for evidence of metastasis is required. Close observation and follow-up of the infant has to be recommended, especially in case of placental involvement. To estimate the incidence of placental metastases and to improve knowledge of their natural history, the creation of registries of malignancies associated with pregnancy is required.

  9. Chorioallantoic placentation in Galea spixii (Rodentia, Caviomorpha, Caviidae)

    PubMed Central

    Oliveira, Moacir F; Mess, Andrea; Ambrósio, Carlos E; Dantas, Carlos AG; Favaron, Phelipe O; Miglino, Maria A

    2008-01-01

    Background Placentas of guinea pig-related rodents are appropriate animal models for human placentation because of their striking similarities to those of humans. To optimize the pool of potential models in this context, it is essential to identify the occurrence of characters in close relatives. Methods In this study we first analyzed chorioallantoic placentation in the prea, Galea spixii, as one of the guinea pig's closest relatives. Material was collected from a breeding group at the University of Mossoró, Brazil, including 18 individuals covering an ontogenetic sequence from initial pregnancy to term. Placentas were investigated by means of histology, electron microscopy, immunohistochemistry (vimentin, α-smooth muscle actin, cytokeration) and proliferation activity (PCNA). Results Placentation in Galea is primarily characterized by an apparent regionalization into labyrinth, trophospongium and subplacenta. It also has associated growing processes with clusters of proliferating trophoblast cells at the placental margin, internally directed projections and a second centre of proliferation in the labyrinth. Finally, the subplacenta, which is temporarily supplied in parallel by the maternal and fetal blood systems, served as the center of origin for trophoblast invasion. Conclusion Placentation in Galea reveals major parallels to the guinea pig and other caviomorphs with respect to the regionalization of the placenta, the associated growing processes, as well as trophoblast invasion. A principal difference compared to the guinea pig occurred in the blood supply of the subplacenta. Characteristics of the invasion and expanding processes indicate that Galea may serve as an additional animal model that is much smaller than the guinea pig and where the subplacenta partly has access to both maternal and fetal blood systems. PMID:18771596

  10. Indomethacin is a Placental Vasodilator in the Dog

    PubMed Central

    Gerber, John G.; Branch, Robert A.; Hubbard, Walter C.; Nies, Alan S.

    1978-01-01

    The effect of 8 mg/kg of indomethacin on uterine blood flow, prostaglandin production, and intraamniotic fluid pressure was examined in late pregnant dogs. Uterine blood flow was measured with 15 μm radiolabeled microspheres. Because we found that a significant percentage of the microspheres shunted through the placental circulation into the lungs, we calculated placental blood flow by adding the shunted microspheres through the placenta to the nonshunted microspheres in the placenta. Total uterine blood flow significantly increased from 271±69 ml/min during control period to 371±72 ml/min (P < 0.01) 30 min after indomethacin. This increase was attributable to the change in blood flow to the placental circulation (222±58 to 325±63 ml/min; P < 0.01). Associated with these hemodynamic changes we found an almost complete suppression of uterine prostaglandin E2 production (1,654±305 to 51±25 pg/ml; P < 0.01) as measured by gas chromatography-mass spectrometry. In addition, we found that indomethacin treatment resulted in uterine relaxation as measured by intraamniotic fluid pressure changes (11.2±1.3 mm Hg to 8.5±1.2 mm Hg; P < 0.001). We conclude that indomethacin causes an increase in placental blood flow without any change in flow to the rest of the uterus, and that this dose of the drug inhibits greater than 95% of uterine prostaglandin production. In addition, indomethacin is responsible for uterine relaxation. The increase in placental blood flow after indomethacin is probably a result of uterine relaxation, which is secondary to prostaglandin synthesis inhibition. PMID:659627

  11. Gene therapy with mesenchymal stem cells expressing IFN-ß ameliorates neuroinflammation in experimental models of multiple sclerosis.

    PubMed

    Marin-Bañasco, C; Benabdellah, K; Melero-Jerez, C; Oliver, B; Pinto-Medel, M J; Hurtado-Guerrero, I; de Castro, F; Clemente, D; Fernández, O; Martin, F; Leyva, L; Suardíaz, M

    2017-02-01

    Recombinant IFN-ß is one of the first-line treatments in multiple sclerosis (MS), despite its lack of efficacy in some patients. In this context, mesenchymal stem cells (MSCs) represent a promising therapeutic alternative due to their immunomodulatory properties and multipotency. Moreover, by taking advantage of their pathotropism, these cells can be genetically modified to be used as carriers for delivering or secreting therapeutic drugs into injured tissues. Here, we report the therapeutic effect of systemic delivery of adipose-derived MSCs (AdMSCs), transduced with the IFN-β gene, into mice with experimental autoimmune encephalomyelitis (EAE). Relapsing-remitting and chronic progressive EAE were induced in mice. Cells were injected i.v. Disease severity, inflammation and tissue damage were assessed clinically, by flow cytometry of spleens and histopathological evaluation of the CNS respectively. Genetic engineering did not modify the biological characteristics of these AdMSCs (morphology, growth rate, immunophenotype and multipotency). Furthermore, the transduction of IFN-ß to AdMSCs maintained and, in some cases, enhanced the functional properties of AdMSCs by ameliorating the symptoms of MS in EAE models and by decreasing indications of peripheral and central neuro-inflammation. Gene therapy was found to be more effective than cell therapy in ameliorating several clinical parameters in both EAE models, presumably due to the continuous expression of IFN-β. Furthermore, it has significant advantages over AdMSC therapy, and also over systemic IFN-ß treatment, by providing long-term expression of the cytokine at therapeutic concentrations and reducing the frequency of injections, while minimizing dose-limiting side effects. © 2016 The British Pharmacological Society.

  12. Gene therapy with mesenchymal stem cells expressing IFN‐ß ameliorates neuroinflammation in experimental models of multiple sclerosis

    PubMed Central

    Marin‐Bañasco, C; Benabdellah, K; Melero‐Jerez, C; Oliver, B; Pinto‐Medel, M J; Hurtado‐Guerrero, I; de Castro, F; Clemente, D; Fernández, O; Martin, F; Leyva, L

    2017-01-01

    Background and Purpose Recombinant IFN‐ß is one of the first‐line treatments in multiple sclerosis (MS), despite its lack of efficacy in some patients. In this context, mesenchymal stem cells (MSCs) represent a promising therapeutic alternative due to their immunomodulatory properties and multipotency. Moreover, by taking advantage of their pathotropism, these cells can be genetically modified to be used as carriers for delivering or secreting therapeutic drugs into injured tissues. Here, we report the therapeutic effect of systemic delivery of adipose‐derived MSCs (AdMSCs), transduced with the IFN‐β gene, into mice with experimental autoimmune encephalomyelitis (EAE). Experimental Approach Relapsing–remitting and chronic progressive EAE were induced in mice. Cells were injected i.v. Disease severity, inflammation and tissue damage were assessed clinically, by flow cytometry of spleens and histopathological evaluation of the CNS respectively. Key Results Genetic engineering did not modify the biological characteristics of these AdMSCs (morphology, growth rate, immunophenotype and multipotency). Furthermore, the transduction of IFN‐ß to AdMSCs maintained and, in some cases, enhanced the functional properties of AdMSCs by ameliorating the symptoms of MS in EAE models and by decreasing indications of peripheral and central neuro‐inflammation. Conclusion and Implications Gene therapy was found to be more effective than cell therapy in ameliorating several clinical parameters in both EAE models, presumably due to the continuous expression of IFN‐β. Furthermore, it has significant advantages over AdMSC therapy, and also over systemic IFN‐ß treatment, by providing long‐term expression of the cytokine at therapeutic concentrations and reducing the frequency of injections, while minimizing dose‐limiting side effects. PMID:27882538

  13. Three-dimensional spheroid culture of human umbilical cord mesenchymal stem cells promotes cell yield and stemness maintenance.

    PubMed

    Li, Yi; Guo, Gang; Li, Li; Chen, Fei; Bao, Ji; Shi, Yu-Jun; Bu, Hong

    2015-05-01

    Mesenchymal stem cell (MSC) transplantation is a promising treatment of many diseases. However, conventional techniques with cells being cultured as a monolayer result in slow cell proliferation and insufficient yield to meet clinical demands. Three-dimensional (3D) culture systems are gaining attention with regard to recreating a complex microenvironment and to understanding the conditions experienced by cells. Our aim is to establish a novel 3D system for the culture of human umbilical cord MSCs (hUC-MSCs) within a real 3D microenvironment but with no digestion or passaging. Primary hUC-MSCs were isolated and grown in serum-free medium (SFM) on a suspension Rocker system. Cell characteristics including proliferation, phenotype and multipotency were recorded. The therapeutic effects of 3D-cultured hUC-MSCs on carbon tetrachloride (CCl4)-induced acute liver failure in mouse models were examined. In the 3D Rocker system, hUC-MSCs formed spheroids in SFM and maintained high viability and active proliferation. Compared with monolayer culture, the 3D-culture system yielded more hUC-MSCs cells within the same volume. The spheroids expressed higher levels of stem cell markers and displayed stronger multipotency. After transplantation into mouse, 3D hUC-MSCs significantly promoted the secretion of interferon-γ and interleukin-6 but inhibited that of tumor necrosis factor-α, thereby alleviating liver necrosis and promoting regeneration following CCl4 injury. The 3D culture of hUC-MSCs thus promotes cell yield and stemness maintenance and represents a promising strategy for hUC-MSCs expansion on an industrial scale with great potential for cell therapy and biotechnology.

  14. Placental stress and pre-eclampsia: a revised view.

    PubMed

    Redman, C W G; Sargent, I L

    2009-03-01

    In pre-eclampsia, poor placentation causes both oxidative and endoplasmic reticulum stress of the placenta. It is believed placental hypoxia stimulates excessive production of soluble fms-like tyrosine kinase 1 (sFlt-1), which binds and deactivates circulating vascular endothelial growth factor (VEGF). When maternal endothelium is deprived of VEGF it becomes dysfunctional hence leading to the clinical syndrome of the mother. In this paper the previous claim that poor placentation may predispose more to placental oxidative stress than hypoxia is reiterated. We show why pre-eclampsia is not only an endothelial disease, but also a disorder of systemic inflammation. We question that hypoxia is the only or indeed the main stimulus to release of sFlt-1; and emphasise the role of inflammatory mechanisms. Hypoxia cannot be assumed simply because hypoxia-inducible transcription factors (HIF) are upregulated. Concurrent assessments of nuclear factor-kappaB (NF-kappaB), a transcription factor for inflammatory responses are desirable to obtain a more complete picture. We point out that the pre-eclampsia placenta is the source of bioactive circulating factors other than sFlt-1 in concentrations that are much higher than in normal pregnancy. These may also contribute to the final inflammatory syndrome. We propose a modified version of the two-stage model for pre-eclampsia.

  15. A safe and efficient method to retrieve mesenchymal stem cells from three-dimensional fibrin gels.

    PubMed

    Carrion, Bita; Janson, Isaac A; Kong, Yen P; Putnam, Andrew J

    2014-03-01

    Mesenchymal stem cells (MSCs) display multipotent characteristics that make them ideal for potential therapeutic applications. MSCs are typically cultured as monolayers on tissue culture plastic, but there is increasing evidence suggesting that they may lose their multipotency over time in vitro and eventually cease to retain any resemblance to in vivo resident MSCs. Three-dimensional (3D) culture systems that more closely recapitulate the physiological environment of MSCs and other cell types are increasingly explored for their capacity to support and maintain the cell phenotypes. In much of our own work, we have utilized fibrin, a natural protein-based material that serves as the provisional extracellular matrix during wound healing. Fibrin has proven to be useful in numerous tissue engineering applications and has been used clinically as a hemostatic material. Its rapid self-assembly driven by thrombin-mediated alteration of fibrinogen makes fibrin an attractive 3D substrate, in which cells can adhere, spread, proliferate, and undergo complex morphogenetic programs. However, there is a significant need for simple cost-effective methods to safely retrieve cells encapsulated within fibrin hydrogels to perform additional analyses or use the cells for therapy. Here, we present a safe and efficient protocol for the isolation of MSCs from 3D fibrin gels. The key ingredient of our successful extraction method is nattokinase, a serine protease of the subtilisin family that has a strong fibrinolytic activity. Our data show that MSCs recovered from 3D fibrin gels using nattokinase are not only viable but also retain their proliferative and multilineage potentials. Demonstrated for MSCs, this method can be readily adapted to retrieve any other cell type from 3D fibrin gel constructs for various applications, including expansion, bioassays, and in vivo implantation.

  16. A Safe and Efficient Method to Retrieve Mesenchymal Stem Cells from Three-Dimensional Fibrin Gels

    PubMed Central

    Carrion, Bita; Janson, Isaac A.; Kong, Yen P.

    2014-01-01

    Mesenchymal stem cells (MSCs) display multipotent characteristics that make them ideal for potential therapeutic applications. MSCs are typically cultured as monolayers on tissue culture plastic, but there is increasing evidence suggesting that they may lose their multipotency over time in vitro and eventually cease to retain any resemblance to in vivo resident MSCs. Three-dimensional (3D) culture systems that more closely recapitulate the physiological environment of MSCs and other cell types are increasingly explored for their capacity to support and maintain the cell phenotypes. In much of our own work, we have utilized fibrin, a natural protein-based material that serves as the provisional extracellular matrix during wound healing. Fibrin has proven to be useful in numerous tissue engineering applications and has been used clinically as a hemostatic material. Its rapid self-assembly driven by thrombin-mediated alteration of fibrinogen makes fibrin an attractive 3D substrate, in which cells can adhere, spread, proliferate, and undergo complex morphogenetic programs. However, there is a significant need for simple cost-effective methods to safely retrieve cells encapsulated within fibrin hydrogels to perform additional analyses or use the cells for therapy. Here, we present a safe and efficient protocol for the isolation of MSCs from 3D fibrin gels. The key ingredient of our successful extraction method is nattokinase, a serine protease of the subtilisin family that has a strong fibrinolytic activity. Our data show that MSCs recovered from 3D fibrin gels using nattokinase are not only viable but also retain their proliferative and multilineage potentials. Demonstrated for MSCs, this method can be readily adapted to retrieve any other cell type from 3D fibrin gel constructs for various applications, including expansion, bioassays, and in vivo implantation. PMID:23808842

  17. Mesenchymal stromal cells and rheumatic diseases: new tools from pathogenesis to regenerative therapies.

    PubMed

    Cipriani, Paola; Ruscitti, Piero; Di Benedetto, Paola; Carubbi, Francesco; Liakouli, Vasiliki; Berardicurti, Onorina; Ciccia, Francesco; Triolo, Giovanni; Giacomelli, Roberto

    2015-07-01

    In recent years, mesenchymal stromal cells (MSCs) have been largely investigated and tested as a new therapeutic tool for several clinical applications, including the treatment of different rheumatic diseases. MSCs are responsible for the normal turnover and maintenance of adult mesenchymal tissues as the result of their multipotent differentiation abilities and their secretion of a variety of cytokines and growth factors. Although initially derived from bone marrow, MSCs are present in many different tissues such as many peri-articular tissues. MSCs may exert immune-modulatory properties, modulating different immune cells in both in vitro and in vivo models, and they are considered immune-privileged cells. At present, these capacities are considered the most intriguing aspect of their biology, introducing the possibility that these cells may be used as effective therapy in autoimmune diseases. Therefore, stem cell therapies may represent an innovative approach for the treatment of rheumatic diseases, especially for the forms that are not responsive to standard treatments or alternatively still lacking a definite therapy. At present, although the data from scientific literature appear to suggest that such treatments might be more effective whether administered as soon as possible, the use of MSCs in clinical practice is likely to be restricted to patients with a long history of a severe refractory disease. Further results from larger clinical trials are needed to corroborate preclinical findings and human non-controlled studies, and advancement in the knowledge of MSCs might provide information about the therapeutic role of these cells in the treatment of many rheumatic diseases. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  18. Incorporating placental tissue in cord blood banking for stem cell transplantation.

    PubMed

    Teofili, Luciana; Silini, Antonietta R; Bianchi, Maria; Valentini, Caterina Giovanna; Parolini, Ornella

    2018-06-01

    Human term placenta is comprised of various tissues from which different cell populations can be obtained, including hematopoietic stem cells and mesenchymal stem/stromal cells (MSCs). Areas covered: This review will discuss the possibility to incorporate placental tissue cells in cord blood banking. It will discuss general features of human placenta, with a brief review of the immune cells at the fetal-maternal interface and the different cell populations isolated from placenta, with a particular focus on MSCs. It will address the question as to why placenta-derived MSCs should be banked with their hematopoietic counterparts. It will discuss clinical trials which are studying safety and efficacy of placenta tissue-derived MSCs in selected diseases, and preclinical studies which have proven their therapeutic properties in other diseases. It will discuss banking of umbilical cord blood and raise several issues for improvement, and the applications of cord blood cells in non-malignant disorders. Expert Commentary: Umbilical cord blood banking saves lives worldwide. The concomitant banking of non-hematopoietic cells from placenta, which could be applied therapeutically in the future, alone or in combination to their hematopoietic counterparts, could exploit current banking processes while laying the foundation for clinical trials exploring placenta-derived cell therapies in regenerative medicine.

  19. Phenotypic and functional characterisation of ovine mesenchymal stem cells: application to a cartilage defect model.

    PubMed

    Mrugala, D; Bony, C; Neves, N; Caillot, L; Fabre, S; Moukoko, D; Jorgensen, C; Noël, D

    2008-03-01

    Multipotent mesenchymal stromal cells (MSC) are of particular interest for their potential clinical use in cartilage engineering, but a consistent model is missing in large animals. In the absence of any detailed study reporting a complete characterisation of the mesenchymal cells isolated from sheep bone marrow, we fully characterised adherent stromal cells and developed a pre-clinical model of cartilage engineering by implantation of autologous MSC in the Merinos sheep. Ovine MSC (oMSC) were isolated from bone marrow, expanded and further characterised according to the recently proposed definition of the MSC. The experimental model consists of partial-thickness lesions created in the inner part of the patellae of the posterior legs. Lesions were filled with oMSC with or without chitosan, with or without transforming growth factor (TGF)beta-3, in a fibrin clot. oMSC were shown to display the three main characteristics of MSC: adherence to plastic, phenotypic profile (positive for CD44, CD105, vimentin and negative for CD34 and CD45), and trilineage differentiation potential. We also report two other important functional characteristics of MSC: support of long-term haematopoiesis and immunosuppressive capacity. In vivo, 2 months after implantation the histological analysis revealed chondrocyte-like cells surrounded by a hyaline-like cartilaginous matrix that was integrated to the host cartilage when oMSC were combined with chitosan and TGFbeta-3. This study provides for the first time a strong characterisation of oMSC and establishes the basis for a model of cartilage engineering in a large animal.

  20. Biomarker-free dielectrophoretic sorting of differentiating myoblast multipotent progenitor cells and their membrane analysis by Raman spectroscopy.

    PubMed

    Muratore, Massimo; Srsen, Vlastimil; Waterfall, Martin; Downes, Andrew; Pethig, Ronald

    2012-09-01

    Myoblasts are muscle derived mesenchymal stem cell progenitors that have great potential for use in regenerative medicine, especially for cardiomyogenesis grafts and intracardiac cell transplantation. To utilise such cells for pre-clinical and clinical applications, and especially for personalized medicine, it is essential to generate a synchronised, homogenous, population of cells that display phenotypic and genotypic homogeneity within a population of cells. We demonstrate that the biomarker-free technique of dielectrophoresis (DEP) can be used to discriminate cells between stages of differentiation in the C2C12 myoblast multipotent mouse model. Terminally differentiated myotubes were separated from C2C12 myoblasts to better than 96% purity, a result validated by flow cytometry and Western blotting. To determine the extent to which cell membrane capacitance, rather than cell size, determined the DEP response of a cell, C2C12 myoblasts were co-cultured with GFP-expressing MRC-5 fibroblasts of comparable size distributions (mean diameter ∼10 μm). A DEP sorting efficiency greater than 98% was achieved for these two cell types, a result concluded to arise from the fibroblasts possessing a larger membrane capacitance than the myoblasts. It is currently assumed that differences in membrane capacitance primarily reflect differences in the extent of folding or surface features of the membrane. However, our finding by Raman spectroscopy that the fibroblast membranes contained a smaller proportion of saturated lipids than those of the myoblasts suggests that the membrane chemistry should also be taken into account.

  1. Biomarker-free dielectrophoretic sorting of differentiating myoblast multipotent progenitor cells and their membrane analysis by Raman spectroscopy

    PubMed Central

    Muratore, Massimo; Srsen, Vlastimil; Waterfall, Martin; Downes, Andrew; Pethig, Ronald

    2012-01-01

    Myoblasts are muscle derived mesenchymal stem cell progenitors that have great potential for use in regenerative medicine, especially for cardiomyogenesis grafts and intracardiac cell transplantation. To utilise such cells for pre-clinical and clinical applications, and especially for personalized medicine, it is essential to generate a synchronised, homogenous, population of cells that display phenotypic and genotypic homogeneity within a population of cells. We demonstrate that the biomarker-free technique of dielectrophoresis (DEP) can be used to discriminate cells between stages of differentiation in the C2C12 myoblast multipotent mouse model. Terminally differentiated myotubes were separated from C2C12 myoblasts to better than 96% purity, a result validated by flow cytometry and Western blotting. To determine the extent to which cell membrane capacitance, rather than cell size, determined the DEP response of a cell, C2C12 myoblasts were co-cultured with GFP-expressing MRC-5 fibroblasts of comparable size distributions (mean diameter ∼10 μm). A DEP sorting efficiency greater than 98% was achieved for these two cell types, a result concluded to arise from the fibroblasts possessing a larger membrane capacitance than the myoblasts. It is currently assumed that differences in membrane capacitance primarily reflect differences in the extent of folding or surface features of the membrane. However, our finding by Raman spectroscopy that the fibroblast membranes contained a smaller proportion of saturated lipids than those of the myoblasts suggests that the membrane chemistry should also be taken into account. PMID:23940503

  2. Adult multipotent stromal cell cryopreservation: Pluses and pitfalls

    PubMed Central

    Duan, Wei; Hicok, Kevin

    2017-01-01

    Abstract Study and clinical testing of adult multipotent stromal cells (MSCs) are central to progressive improvements in veterinary regenerative medicine. Inherent limitations to long‐term culture preclude use for storage. Until cell line creation from primary isolates becomes routine, MSC stasis at cryogenic temperatures is required for this purpose. Many protocols and reagents, including cryoprotectants, used for veterinary MSCs are derived from those for human and rodent cells. Dissimilarities in cryopreservation strategies play a role in variable MSC behaviors. Familiarity with contemporary cryopreservation reagents and processes is essential to an appreciation of their impact on MSC survival and post‐cryopreservation behavior. In addition to these points, this review includes a brief history and description of current veterinary stem cell regulation. PMID:29023790

  3. Ovine uterine space restriction alters placental transferrin receptor and fetal iron status during late pregnancy

    PubMed Central

    Sun, Mary Y.; Habeck, Jason M.; Meyer, Katie M.; Koch, Jill M.; Ramadoss, Jayanth; Blohowiak, Sharon E.; Magness, Ronald R.; Kling, Pamela J.

    2013-01-01

    Background Fetal growth restriction is reported to be associated with impaired placental iron transport. Transferrin receptor (TfR) is a major placental iron transporter in humans, but is unstudied in sheep. TfR is regulated by both iron and nitric oxide (NO), the molecule produced by endothelial NOS (eNOS). We hypothesized that limited placental development downregulates both placental TfR and eNOS expression, thereby lowering fetal tissue iron. Methods An ovine surgical uterine space restriction (USR) model, combined with multifetal gestation, tested the extremes of uterine and placental adaptation. Blood, tissues, and placentomes from non-space restricted (NSR) singletons were compared to USR fetuses at 120 or 130 days of gestation (GD). Results When expressed proportionate to fetal weight, liver iron content did not differ while renal iron was higher in USR vs. NSR fetuses. Renal TfR protein expression did not differ, but placental TfR expression was lower in USR fetuses at GD130. Placental levels of TfR correlated to eNOS. TfR was localized throughout the placentome, including the hemophagous zone, implicating a role for TfR in ovine placental iron transport. Conclusion In conclusion, fetal iron was regulated in an organ-specific fashion. In USR fetuses, NO-mediated placental adaptations may prevent the normal upregulation of placental TfR at GD130. PMID:23202722

  4. Placental membrane aging and HMGB1 signaling associated with human parturition.

    PubMed

    Menon, Ramkumar; Behnia, Faranak; Polettini, Jossimara; Saade, George R; Campisi, Judith; Velarde, Michael

    2016-02-01

    Aging is associated with the onset of several diseases in various organ systems; however, different tissues may age differently, rendering some of them dysfunctional sooner than others. Placental membranes (fetal amniochorionic membranes) protect the fetus throughout pregnancy, but their longevity is limited to the duration of pregnancy. The age-associated dysfunction of these membranes is postulated to trigger parturition. Here, we investigated whether cellular senescence-the loss of cell division potential as a consequence of stress-is involved in placental membrane function at term. We show telomere reduction, p38 MAPK activation, increase in p21 expression, loss of lamin B1 loss, increase in SA-β-galactosidase , and senescence-associated secretory phenotype (SASP) gene expression in placental membranes after labor and delivery (term labor [TL]) compared to membranes prior to labor at term (term, not-in-labor [TNIL]). Exposing TNIL placental membranes to cigarette smoke extract, an oxidative stress inducer, also induced markers of cellular senescence similar to those in TL placental membranes. Bioinformatics analysis of differentially expressed SASP genes revealed HMGB1 signaling among the top pathways involved in labor. Further, we show that recombinant HMGB1 upregulates the expression of genes associated with parturition in myometrial cells. These data suggest that the natural physiologic aging of placental tissues is associated with cellular senescence and human parturition.

  5. Placental membrane aging and HMGB1 signaling associated with human parturition

    PubMed Central

    Menon, Ramkumar; Behnia, Faranak; Polettini, Jossimara; Saade, George R; Campisi, Judith; Velarde, Michael

    2016-01-01

    Aging is associated with the onset of several diseases in various organ systems; however, different tissues may age differently, rendering some of them dysfunctional sooner than others. Placental membranes (fetal amniochorionic membranes) protect the fetus throughout pregnancy, but their longevity is limited to the duration of pregnancy. The age-associated dysfunction of these membranes is postulated to trigger parturition. Here, we investigated whether cellular senescence—the loss of cell division potential as a consequence of stress—is involved in placental membrane function at term. We show telomere reduction, p38 MAPK activation, increase in p21 expression, loss of lamin B1 loss, increase in SA-β-galactosidase, and senescence-associated secretory phenotype (SASP) gene expression in placental membranes after labor and delivery (term labor [TL]) compared to membranes prior to labor at term (term, not-in-labor [TNIL]). Exposing TNIL placental membranes to cigarette smoke extract, an oxidative stress inducer, also induced markers of cellular senescence similar to those in TL placental membranes. Bioinformatics analysis of differentially expressed SASP genes revealed HMGB1 signaling among the top pathways involved in labor. Further, we show that recombinant HMGB1 upregulates the expression of genes associated with parturition in myometrial cells. These data suggest that the natural physiologic aging of placental tissues is associated with cellular senescence and human parturition. PMID:26851389

  6. High rate of placental infarcts in type 2 compared with type 1 diabetes.

    PubMed

    Beauharnais, Catherine C; Roberts, Drucilla J; Wexler, Deborah J

    2012-07-01

    Timing and cause of pregnancy loss differ between type 1 (T1DM) and type 2 diabetes mellitus (T2DM). The objective of the study was to determine whether placental histology corresponds to differing causes of pregnancy loss in T1DM and T2DM. We hypothesized that placentas from mothers with T2DM would be more likely to demonstrate vascular pathology than those from mothers with T1DM. RESEARCH DESIGN/SETTING/PARTICIPANTS: We reviewed medical histories, pregnancy outcomes, and placental histology of women with pregestational T1DM and T2DM with singleton pregnancies between 2001 and 2009 at a single tertiary care medical center. Placental weight, placental dysmaturity, villous maturation, villitis of unclear etiology, and histological evidence of placental infarction were measured. Ninety-eight placentas were available for review, 53 from T1DM mothers (56%) and 45 from T2DM mothers (46%). Mean age and glycemic control each trimester did not differ between diabetes types. T2DM placentas had a higher prevalence of placental infarcts (22 vs. 6%, P = 0.02) and a lower prevalence of placental dysmaturity (12 vs. 29%, P = 0.05) compared with T1DM; rates differed from those reported in the general population. There was no difference in placental weight, villous maturity, or villitis of unclear etiology between diabetes types. There were many similarities in placental histological findings between diabetes types. Still, one in five T2DM placentas displayed histological infarcts, consistent with a vascular, rather than glycemic, etiology of pregnancy complications, whereas T1DM placentas showed signs of abnormal development.

  7. (1)H MRS: a potential biomarker of in utero placental function.

    PubMed

    Macnaught, Gillian; Gray, Calum; Walker, Jane; Simpson, Mary; Norman, Jane; Semple, Scott; Denison, Fiona

    2015-10-01

    The placenta is a temporary organ that is essential for a healthy pregnancy. It performs several important functions, including the transport of nutrients, the removal of waste products and the metabolism of certain substances. Placental disorders have been found to account for over 50% of stillbirths. Despite this, there are currently no methods available to directly and non-invasively assess placental function in utero. The primary aim of this pilot study was to investigate the use of (1)H MRS for this purpose. (1)H MRS offers the possibility to detect several placental metabolites, including choline, lipids and the amino acids glutamine and glutamate (Glx), which are vital to fetal development and placental function. Here, in utero placental spectra were acquired from nine small for gestational age (SGA) pregnancies, a cohort who are at increased risk of perinatal morbidity and mortality, and from nine healthy gestation-matched pregnancies. All subjects were between 26 and 39 weeks of gestation. Placenta Glx, choline and lipids at 1.3 and 0.9 ppm were quantified as amplitude ratios to that of intrinsic H2O. Wilcoxon signed rank tests indicated a significant difference in Glx/H2O (p = 0.024) between the two groups, but not in choline/H2O (p = 0.722) or in either lipid/H2O ratio (1.3 ppm, p = 0.813; 0.9 ppm, p = 0.058). This study has demonstrated that (1)H MRS has potential for the detection of placental metabolites in utero. This warrants further investigation as a tool for the monitoring of placental function. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Soluble FLT-1 rules placental destiny.

    PubMed

    Yamashita, Michiko; Kumasawa, Keiichi; Nakamura, Hitomi; Kimura, Tadashi

    2018-02-19

    Placenta previa is an abnormality in which the placenta covers the internal uterine os, and it can cause serious morbidity and mortality in both mother and fetus due to catastrophic hemorrhage. Some pregnant women recover from placenta previa due to a phenomenon called "migration." However, the mechanism of "migration" of the placenta has not been elucidated. Human placentas were collected from patients with placenta previa and those with no abnormal placentation (control). A microarray analysis was performed to detect the genes up- or down-regulated only in the caudal part in the previa group. Specific mRNA expression was evaluated using real-time quantitative reverse transcription PCR (qRT-PCR). Unilateral uterine artery ablation of 8.5 dpc mice was performed to reproduce the reduction of placental blood supply, and weights of the placentas and fetuses were evaluated in 18.5 dpc. Specific mRNA expression was also evaluated in mice placentas. According to the result of the microarray analysis, we focused on soluble fms-like tyrosine kinase-1 (sFLT-1) and hypoxia-inducible factor-1 (HIF-1) alpha. The sFLT-1 expression level is locally high in the caudal part of the human placenta in patients with placenta previa. In mice experiments, the weights of the placentas and fetuses were significantly smaller in the ablation side than those in the control side, and the sFlt-1 expression level was significantly higher in the ablation side than in the control side. Our study suggests that "migration" of the placenta is derived from placental degeneration at the caudal part of the placenta, and sFlt-1 plays a role in this placental degeneration. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Analysis of the original causes of placental oxidative stress in normal pregnancy and pre-eclampsia: a hypothesis.

    PubMed

    Yang, Xiang; Guo, Lili; Li, Huaifang; Chen, Xinliang; Tong, Xiaowen

    2012-07-01

    Pre-eclampsia (PE) and eclampsia remain enigmatic despite intensive research. Growing evidence suggests that placental oxidative stress (OS) is involved in the etiopathogenesis of pre-eclampsia. Reduced perfusion as a result of abnormal placentation was proposed to be responsible for placental OS in PE. However, placental OS was also observed in normal pregnancy. The exact differences and correlation of placental OS in PE and normal pregnancy remain elusive. In this review, we attempted to link both normal pregnancy and PE on the causes of placental OS and proposed a hypothesis that placental OS in normal pregnancy, plus the exploration of other placental and/or maternal factors, could provide a novel explanation of that in PE. We concluded that pregnancy, placental abnormality and preexisting maternal constitutional conditions are three principle factors that could contribute to placental OS in PE. The specific causes in each clinical case could be heterogeneous, which requires individual analysis.

  10. Generation of a human airway epithelium derived basal cell line with multipotent differentiation capacity

    PubMed Central

    2013-01-01

    Background As the multipotent progenitor population of the airway epithelium, human airway basal cells (BC) replenish the specialized differentiated cell populations of the mucociliated airway epithelium during physiological turnover and repair. Cultured primary BC divide a limited number of times before entering a state of replicative senescence, preventing the establishment of long-term replicating cultures of airway BC that maintain their original phenotype. Methods To generate an immortalized human airway BC cell line, primary human airway BC obtained by brushing the airway epithelium of healthy nonsmokers were infected with a retrovirus expressing human telomerase (hTERT). The resulting immortalized cell line was then characterized under non-differentiating and differentiating air-liquid interface (ALI) culture conditions using ELISA, TaqMan quantitative PCR, Western analysis, and immunofluorescent and immunohistochemical staining analysis for cell type specific markers. In addition, the ability of the cell line to respond to environmental stimuli under differentiating ALI culture was assessed. Results We successfully generated an immortalized human airway BC cell line termed BCi-NS1 via expression of hTERT. A single cell derived clone from the parental BCi-NS1 cells, BCi-NS1.1, retains characteristics of the original primary cells for over 40 passages and demonstrates a multipotent differentiation capacity into secretory (MUC5AC, MUC5B), goblet (TFF3), Clara (CC10) and ciliated (DNAI1, FOXJ1) cells on ALI culture. The cells can respond to external stimuli such as IL-13, resulting in alteration of the normal differentiation process. Conclusion Development of immortalized human airway BC that retain multipotent differentiation capacity over long-term culture should be useful in understanding the biology of BC, the response of BC to environmental stress, and as a target for assessment of pharmacologic agents. PMID:24298994

  11. Placental sulphate transport: a review of functional and molecular studies.

    PubMed

    Shennan, D B

    2012-08-01

    Sulphate is required by the feto-placental unit for a number of important conjugation and biosynthetic pathways. Functional studies performed several decades ago established that sulphate transport in human placental microvillus and basal membrane vesicles was mainly via a DIDS-sensitive anion-exchange mechanism. In contrast, no evidence was found for Na⁺-dependent transport. Studies performed using isolated human placental tissue confirmed anion-exchange as the main mechanism. More recently, molecular studies have established the presence of anion-exchange proteins which could play a role in transplacental sulphate movement. However, the presence of transcripts for NaS2 has been reported and has prompted the suggestion that Na⁺-sulphate cotransport may play an important role in maternal-fetal sulphate transport. This article reviews our present knowledge of placental sulphate transport, both functional and molecular, and attempts to form a model based on the available evidence. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Endometrial VEGF induces placental sFLT1 and leads to pregnancy complications

    PubMed Central

    Fan, Xiujun; Rai, Anshita; Kambham, Neeraja; Sung, Joyce F.; Singh, Nirbhai; Petitt, Matthew; Dhal, Sabita; Agrawal, Rani; Sutton, Richard E.; Druzin, Maurice L.; Gambhir, Sanjiv S.; Ambati, Balamurali K.; Cross, James C.; Nayak, Nihar R.

    2014-01-01

    There is strong evidence that overproduction of soluble fms-like tyrosine kinase-1 (sFLT1) in the placenta is a major cause of vascular dysfunction in preeclampsia through sFLT1-dependent antagonism of VEGF. However, the cause of placental sFLT1 upregulation is not known. Here we demonstrated that in women with preeclampsia, sFLT1 is upregulated in placental trophoblasts, while VEGF is upregulated in adjacent maternal decidual cells. In response to VEGF, expression of sFlt1 mRNA, but not full-length Flt1 mRNA, increased in cultured murine trophoblast stem cells. We developed a method for transgene expression specifically in mouse endometrium and found that endometrial-specific VEGF overexpression induced placental sFLT1 production and elevated sFLT1 levels in maternal serum. This led to pregnancy losses, placental vascular defects, and preeclampsia-like symptoms, including hypertension, proteinuria, and glomerular endotheliosis in the mother. Knockdown of placental sFlt1 with a trophoblast-specific transgene caused placental vascular changes that were consistent with excess VEGF activity. Moreover, sFlt1 knockdown in VEGF-overexpressing animals enhanced symptoms produced by VEGF overexpression alone. These findings indicate that sFLT1 plays an essential role in maintaining vascular integrity in the placenta by sequestering excess maternal VEGF and suggest that a local increase in VEGF can trigger placental overexpression of sFLT1, potentially contributing to the development of preeclampsia and other pregnancy complications. PMID:25329693

  13. The multiple roles of EG-VEGF/PROK1 in normal and pathological placental angiogenesis.

    PubMed

    Alfaidy, Nadia; Hoffmann, Pascale; Boufettal, Houssine; Samouh, Naima; Aboussaouira, Touria; Benharouga, Mohamed; Feige, Jean-Jacques; Brouillet, Sophie

    2014-01-01

    Placentation is associated with several steps of vascular adaptations throughout pregnancy. These vascular changes occur both on the maternal and fetal sides, consisting of maternal uterine spiral arteries remodeling and placental vasculogenesis and angiogenesis, respectively. Placental angiogenesis is a pivotal process for efficient fetomaternal exchanges and placental development. This process is finely controlled throughout pregnancy, and it involves ubiquitous and pregnancy-specific angiogenic factors. In the last decade, endocrine gland derived vascular endothelial growth factor (EG-VEGF), also called prokineticin 1 (PROK1), has emerged as specific placental angiogenic factor that controls many aspects of normal and pathological placental angiogenesis such as recurrent pregnancy loss (RPL), gestational trophoblastic diseases (GTD), fetal growth restriction (FGR), and preeclampsia (PE). This review recapitulates EG-VEGF mediated-angiogenesis within the placenta and at the fetomaternal interface and proposes that its deregulation might contribute to the pathogenesis of several placental diseases including FGR and PE. More importantly this paper argues for EG-VEGF clinical relevance as a potential biomarker of the onset of pregnancy pathologies and discusses its potential usefulness for future therapeutic directions.

  14. The development of hematopoietic and mesenchymal stem cell transplantation as an effective treatment for multiple sclerosis

    PubMed Central

    Holloman, Jameson P; Ho, Calvin C; Hukki, Arushi; Huntley, Jennifer L; Gallicano, G Ian

    2013-01-01

    This article examines the current use and future implications of stem cell therapy in treating Multiple Sclerosis (MS). MS is the most common neurological disease in young adults, affecting approximately two million people worldwide. Currently there is no cure for MS. The standard treatment of MS involves disease-modifying drugs, which work to alleviate the symptoms of MS. However, these drugs carry adverse side effects and are ineffective in preventing disease progression in many MS patients. Hematopoietic stem cell transplantation (HSCT) was first used in 1995 to treat patients with severe rapidly progressing MS. The HSCT treatment protocol has evolved into a less intense conditioning regimen that is currently demonstrating efficacy in treating patients with variable disease severity—with best results in early-stage rapidly progressing MS patients with active CNS inflammation. Mesenchymal stem cell therapy (MSCT) is an experimental stem cell therapy currently undergoing clinical trials. Animal models and early clinical trials have shown promise that MSCT might be a low risk treatment to precipitate neuroregeneration and immunomodulation in MS patients. Specifically, neuroprogenitor and placental-derived mesenchymal stem cells offer the best hope for a practical treatment for MS. Stem cell therapy, and perhaps a combinatorial therapeutic approach, holds promise for a better treatment for MS. PMID:23862098

  15. Placental alterations in structure and function in intra-uterine growth-retarded horses.

    PubMed

    Robles, M; Peugnet, P M; Valentino, S A; Dubois, C; Dahirel, M; Aubrière, M-C; Reigner, F; Serteyn, D; Wimel, L; Couturier-Tarrade, A; Chavatte-Palmer, P

    2018-05-01

    Following embryo transfer (ET), the size and breed of the recipient mare can affect fetal development and subsequent post natal growth rate and insulin sensitivity in foals. To investigate placental adaptation in pregnancies where increased or restricted fetal growth was induced through ET between Pony, Saddlebred and Draught horses. In vivo experiment. Control Pony (P, n = 21) and Saddlebred (S, n = 28) pregnancies were obtained by artificial insemination. Increased pregnancies were obtained by transferring Pony (P-D, n = 6) and Saddlebred (S-D, n = 8) embryos into Draught mares. Restricted pregnancies were obtained by transferring Saddlebred embryos into Pony mares (S-P, n = 6). Placental weight and surface were recorded and samples collected for stereology and analysis of expression of genes involved in placental growth, vascularisation and nutrient transport. Data were analysed by linear model. S-P foals were growth retarded when compared with controls despite increased gestational length. Placental weight was reduced but placental surface density and volume fraction were increased. Placental expression of genes involved in growth and development and nutrient transfer was strongly reduced. In contrast, placental size and weight were increased in enhanced growth P-D and S-D foals. The trophoblastic surface density and the allantoic vessels surface density were decreased in P-D and S-D, respectively, both with very few modifications in gene expression. Control embryos were produced by artificial insemination whereas experimental embryos were produced by ET. Placental structure and gene expression are modified after ET into a smaller or larger breed than that of the embryo. These adaptations contribute to the observed phenotype of foal growth restriction or enhanced growth at birth. © 2017 EVJ Ltd.

  16. Development of a rapid culture method to induce adipocyte differentiation of human bone marrow-derived mesenchymal stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ninomiya, Yuichi; Sugahara-Yamashita, Yzumi; Nakachi, Yutaka

    2010-04-02

    Human mesenchymal stem cells (hMSCs) derived from bone marrow are multipotent stem cells that can regenerate mesenchymal tissues such as adipose, bone or muscle. It is thought that hMSCs can be utilized as a cell resource for tissue engineering and as human models to study cell differentiation mechanisms, such as adipogenesis, osteoblastogenesis and so on. Since it takes 2-3 weeks for hMSCs to differentiate into adipocytes using conventional culture methods, the development of methods to induce faster differentiation into adipocytes is required. In this study we optimized the culture conditions for adipocyte induction to achieve a shorter cultivation time formore » the induction of adipocyte differentiation in bone marrow-derived hMSCs. Briefly, we used a cocktail of dexamethasone, insulin, methylisobutylxanthine (DIM) plus a peroxisome proliferator-activated receptor {gamma} agonist, rosiglitazone (DIMRo) as a new adipogenic differentiation medium. We successfully shortened the period of cultivation to 7-8 days from 2-3 weeks. We also found that rosiglitazone alone was unable to induce adipocyte differentiation from hMSCs in vitro. However, rosiglitazone appears to enhance hMSC adipogenesis in the presence of other hormones and/or compounds, such as DIM. Furthermore, the inhibitory activity of TGF-{beta}1 on adipogenesis could be investigated using DIMRo-treated hMSCs. We conclude that our rapid new culture method is very useful in measuring the effect of molecules that affect adipogenesis in hMSCs.« less

  17. Comparison of L-serine uptake by human placental microvillous membrane vesicles and placental villous fragments.

    PubMed

    Brand, A P; Greenwood, S L; Glazier, J D; Bennett, E J; Godfrey, K M; Sibley, C P; Hanson, M A; Lewis, R M

    2010-05-01

    Both syncytiotrophoblast microvillous plasma membrane vesicles (MVM) and placental villous fragments are used to characterize the placental uptake of maternal substrate and to investigate changes in uptake associated with pathological conditions. However, the two techniques have not been directly compared. In this study uptake of (14)C-L-serine was compared in placental villous fragments and in MVM prepared from the same placentas. (14)C-L-serine uptake into MVM vesicles was mediated by System L and System A and smaller unidentified Na(+)-dependent and Na(+)-independent components. In villous fragments an unidentified Na(+)-dependent component mediated the majority of (14)C-L-serine uptake followed by System A and System L. The unidentified Na(+)-independent component of L-serine uptake was not detected in villous fragments. The ratio of System A activity to System L activity was similar in villous fragments and MVM vesicles. However, the unidentified Na(+)-dependent component in villous fragments was significantly higher than that in MVM vesicles. This indicates that the main differences in serine uptake mechanisms identified using the two techniques were not due to differences in System A and System L activity but to differences in the unidentified Na(+)-dependent component. This study suggests that uptake of L-serine into MVM vesicles and villous fragments via Systems A and L is comparable, but that this is not true for all components of L-serine uptake. (c) 2010 Elsevier Ltd. All rights reserved.

  18. Short placental telomere was associated with cadmium pollution in an electronic waste recycling town in China.

    PubMed

    Lin, Shuiqin; Huo, Xia; Zhang, Qingying; Fan, Xiaojuan; Du, Li; Xu, Xijin; Qiu, Shaoshan; Zhang, Yuling; Wang, Yun; Gu, Jiang

    2013-01-01

    In Guiyu, an electronic waste recycling site near Shantou, Guangdong province, China, primitive ways of e-waste processing have caused severe cadmium and lead pollution to the local residents. However, the possible effects of cadmium or lead pollution to genomic integrity of the local residents have not been investigated. We examined the possible relationship between cadmium and lead concentrations in placenta and placental telomere length in Guiyu and compared the data with that of a non-polluted town. Graphite furnace atomic absorption spectrometry and real-time PCR were used to determine placental cadmium and lead concentrations, and placental telomere length. We found that placental cadmium concentration was negatively correlated with placental telomere length (r = -0.138, p = 0.013). We also found that placental cadmium concentration of 0.0294 µg/g might be a critical point at which attrition of placental telomere commenced. No significant correlation between placental lead concentration and placental telomere length was detected (r = 0.027, p = 0.639). Our data suggest that exposure to cadmium pollution during pregnancy may be a risk factor for shortened placental telomere length that is known to be related to cancer development and aging. Furthermore, grave consequence on the offspring from pregnancies in e-waste polluted area is indicated.

  19. Short Placental Telomere was Associated with Cadmium Pollution in an Electronic Waste Recycling Town in China

    PubMed Central

    Zhang, Qingying; Fan, Xiaojuan; Du, Li; Xu, Xijin; Qiu, Shaoshan; Zhang, Yuling; Wang, Yun; Gu, Jiang

    2013-01-01

    In Guiyu, an electronic waste recycling site near Shantou, Guangdong province, China, primitive ways of e-waste processing have caused severe cadmium and lead pollution to the local residents. However, the possible effects of cadmium or lead pollution to genomic integrity of the local residents have not been investigated. We examined the possible relationship between cadmium and lead concentrations in placenta and placental telomere length in Guiyu and compared the data with that of a non-polluted town. Graphite furnace atomic absorption spectrometry and real-time PCR were used to determine placental cadmium and lead concentrations, and placental telomere length. We found that placental cadmium concentration was negatively correlated with placental telomere length (r = −0.138, p = 0.013). We also found that placental cadmium concentration of 0.0294 µg/g might be a critical point at which attrition of placental telomere commenced. No significant correlation between placental lead concentration and placental telomere length was detected (r = 0.027, p = 0.639). Our data suggest that exposure to cadmium pollution during pregnancy may be a risk factor for shortened placental telomere length that is known to be related to cancer development and aging. Furthermore, grave consequence on the offspring from pregnancies in e-waste polluted area is indicated. PMID:23565277

  20. Characterization of glycol chitosan grafted with low molecular weight polyethylenimine as a gene carrier for human adipose-derived mesenchymal stem cells.

    PubMed

    Bae, Yoonhee; Lee, Young Hwa; Lee, Sunray; Han, Jin; Ko, Kyung Soo; Choi, Joon Sig

    2016-11-20

    Mesenchymal stem cells (MSCs) have a great capacity for self-renewal while still maintaining their multipotency, and can differentiate into a variety of cell types. The delivery of genes to a site of injury is a current and interesting field of gene therapy. In the present study, we describe a nonviral gene delivery carrier, glycol chitosan-methyl acrylate-polyethylenimine (GMP) polymer targeted towards human adipose-derived mesenchymal stem cells (AD-MSCs). Transfection efficiency, using luciferase (Luc) and a pDNA encoding enhanced green fluorescent protein (EGFP), along with cytotoxicity assays, were performed in human AD-MSCs. The results show that the transfection efficiency of the GMP polymer was similar to that of PEI25kD, and the cytotoxicity was lower. Moreover, human AD-MSCs were treated with the GMP polymer/pDNA polyplex and its cellular uptake and distribution were analyzed by flow cytometry and confocal microscopy. Furthermore, we performed endosomal escape analysis using LysoTracker Red, and found that the conjugated GMP polymer could escape from the endosome to the cytosol. Human AD-MSCs treated with the GMP polymer maintained their potential for osteogenic differentiation and phenotypic expression of human AD-MSCs based on flow cytometry analysis. The present study demonstrates that the GMP polymer can be used as a potential targeted-delivery carrier for effective gene delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Genomic evidence reveals a radiation of placental mammals uninterrupted by the KPg boundary

    PubMed Central

    Liu, Liang; Zhang, Jin; Rheindt, Frank E.; Lei, Fumin; Qu, Yanhua; Wang, Yu; Zhang, Yu; Sullivan, Corwin; Nie, Wenhui; Wang, Jinhuan; Yang, Fengtang; Chen, Jinping; Edwards, Scott V.; Meng, Jin; Wu, Shaoyuan

    2017-01-01

    The timing of the diversification of placental mammals relative to the Cretaceous–Paleogene (KPg) boundary mass extinction remains highly controversial. In particular, there have been seemingly irreconcilable differences in the dating of the early placental radiation not only between fossil-based and molecular datasets but also among molecular datasets. To help resolve this discrepancy, we performed genome-scale analyses using 4,388 loci from 90 taxa, including representatives of all extant placental orders and transcriptome data from flying lemurs (Dermoptera) and pangolins (Pholidota). Depending on the gene partitioning scheme, molecular clock model, and genic deviation from molecular clock assumptions, extensive sensitivity analyses recovered widely varying diversification scenarios for placental mammals from a given gene set, ranging from a deep Cretaceous origin and diversification to a scenario spanning the KPg boundary, suggesting that the use of suboptimal molecular clock markers and methodologies is a major cause of controversies regarding placental diversification timing. We demonstrate that reconciliation between molecular and paleontological estimates of placental divergence times can be achieved using the appropriate clock model and gene partitioning scheme while accounting for the degree to which individual genes violate molecular clock assumptions. A birth-death-shift analysis suggests that placental mammals underwent a continuous radiation across the KPg boundary without apparent interruption by the mass extinction, paralleling a genus-level radiation of multituberculates and ecomorphological diversification of both multituberculates and therians. These findings suggest that the KPg catastrophe evidently played a limited role in placental diversification, which, instead, was likely a delayed response to the slightly earlier radiation of angiosperms. PMID:28808022

  2. Genomic evidence reveals a radiation of placental mammals uninterrupted by the KPg boundary.

    PubMed

    Liu, Liang; Zhang, Jin; Rheindt, Frank E; Lei, Fumin; Qu, Yanhua; Wang, Yu; Zhang, Yu; Sullivan, Corwin; Nie, Wenhui; Wang, Jinhuan; Yang, Fengtang; Chen, Jinping; Edwards, Scott V; Meng, Jin; Wu, Shaoyuan

    2017-08-29

    The timing of the diversification of placental mammals relative to the Cretaceous-Paleogene (KPg) boundary mass extinction remains highly controversial. In particular, there have been seemingly irreconcilable differences in the dating of the early placental radiation not only between fossil-based and molecular datasets but also among molecular datasets. To help resolve this discrepancy, we performed genome-scale analyses using 4,388 loci from 90 taxa, including representatives of all extant placental orders and transcriptome data from flying lemurs (Dermoptera) and pangolins (Pholidota). Depending on the gene partitioning scheme, molecular clock model, and genic deviation from molecular clock assumptions, extensive sensitivity analyses recovered widely varying diversification scenarios for placental mammals from a given gene set, ranging from a deep Cretaceous origin and diversification to a scenario spanning the KPg boundary, suggesting that the use of suboptimal molecular clock markers and methodologies is a major cause of controversies regarding placental diversification timing. We demonstrate that reconciliation between molecular and paleontological estimates of placental divergence times can be achieved using the appropriate clock model and gene partitioning scheme while accounting for the degree to which individual genes violate molecular clock assumptions. A birth-death-shift analysis suggests that placental mammals underwent a continuous radiation across the KPg boundary without apparent interruption by the mass extinction, paralleling a genus-level radiation of multituberculates and ecomorphological diversification of both multituberculates and therians. These findings suggest that the KPg catastrophe evidently played a limited role in placental diversification, which, instead, was likely a delayed response to the slightly earlier radiation of angiosperms.

  3. Placental pathologic changes and perinatal outcomes in placenta previa.

    PubMed

    Jung, Eun Jung; Cho, Hwa Jin; Byun, Jung Mi; Jeong, Dae Hoon; Lee, Kyung Bok; Sung, Moon Su; Kim, Ki Tae; Kim, Young Nam

    2018-03-01

    Placenta previa is a condition in which the placenta implants in the poorly vascularized lower uterine segment, which may result in inadequate uteroplacental perfusion, in turn, adversely affect the neonatal outcome. Abnormal placentation may also lead to severe postpartum hemorrhage as placenta separation proceeds. We aimed to evaluate the differences in placental histopathology and perinatal outcomes in pregnancies complicated with placenta previa and controls. We undertook a retrospective case-control study of 93 pregnancies with placenta previa and 81 controls between 2011 and 2017. Gross findings of the placenta showed that the placentas in placenta previa had significantly higher mean large chorionic plate diameters (18.5 ± 3.2 vs 17.5 ± 2.6 cm, P = .0298), chorionic plate areas (218.4 ± 62.9 cm 2 vs 198.7 ± 56.0 cm 2 , P = .0344), and marginal cord insertion (19.8% vs 8.6%, P = .0411) than control groups. Placental histopathological findings showed that placentas in placenta previa was significantly associated with maternal underperfusion, including villous infarction (50.5% vs 25.9%, P = .0009) and increased intervillous fibrin deposition (38.7% vs 7.4%, P < .0001). Also, women in the placenta previa group had a higher rate of abnormally invasive placenta and severe postpartum hemorrhage. However, placenta previa was not associated with the increased risk of neonatal mortality and morbidity. Abnormal placentation into the poorly vascularized lower uterine segment induces compensatory placental growth and increased surface area in response to reduced placental perfusion, which was consistent with the histopathological findings of coagulative necrosis of chorionic villi and fibrin deposition in the intervillous space. The morphological changes occurring in placenta previa may have important roles in maintaining adequate uteroplacental-fetal perfusion, which may prevent adverse neonatal outcomes. Copyright © 2017

  4. Secondary Release of Exosomes from Astrocytes Contributes to the Increase in Neural Plasticity and Improvement of Functional Recovery after Stroke in Rats Treated with Exosomes Harvested from MicroRNA 133b-Overexpressing Multipotent Mesenchymal Stromal Cells

    PubMed Central

    Xin, Hongqi; Wang, Fengjie; Li, Yanfeng; Lu, Qing-E; Cheung, Wing Lee; Zhang, Yi; Zhang, Zheng Gang; Chopp, Michael

    2017-01-01

    We previously demonstrated that multipotent mesenchymal stromal cells (MSCs) that overexpress microRNA 133b (miR-133b) significantly improve functional recovery in rats subjected to middle cerebral artery occlusion (MCAO) compared with naive MSCs and that exosomes generated from naive MSCs mediate the therapeutic benefits of MSC therapy for stroke. Here we investigated whether exosomes isolated from miR-133b-overexpressing MSCs (Ex-miR-133b+) exert amplified therapeutic effects. Rats subjected to 2 h of MCAO were intra-arterially injected with Ex-miR-133b+, exosomes from MSCs infected by blank vector (Ex-Con), or phosphate-buffered saline (PBS) and were sacrificed 28 days after MCAO. Compared with the PBS treatment, both exosome treatment groups exhibited significant improvement of functional recovery. Ex-miR-133b+ treatment significantly increased functional improvement and neurite remodeling/brain plasticity in the ischemic boundary area compared with the Ex-Con treatment. Treatment with Ex-miR-133b+ also significantly increased brain exosome content compared with Ex-Con treatment. To elucidate mechanisms underlying the enhanced therapeutic effects of Ex-miR-133b+, astrocytes cultured under oxygen- and glucose-deprived (OGD) conditions were incubated with exosomes harvested from naive MSCs (Ex-Naive), miR-133b downregulated MSCs (Ex-miR-133b−), and Ex-miR-133b+. Compared with the Ex-Naive treatment, Ex-miR-133b+ significantly increased exosomes released by OGD astrocytes, whereas Ex-miR-133b− significantly decreased the release. Also, exosomes harvested from OGD astrocytes treated with Ex-miR-133b+ significantly increased neurite branching and elongation of cultured cortical embryonic rat neurons compared with the exosomes from OGD astrocytes subjected to Ex-Con. Our data suggest that exosomes harvested from miR-133b-overexpressing MSCs improve neural plasticity and functional recovery after stroke with a contribution from a stimulated secondary release of

  5. MRI of placenta percreta: differentiation from other entities of placental adhesive disorder.

    PubMed

    Thiravit, Shanigarn; Lapatikarn, Sukanya; Muangsomboon, Kobkun; Suvannarerg, Voraparee; Thiravit, Phakphoom; Korpraphong, Pornpim

    2017-01-01

    To retrospectively review the MRI findings of placenta percreta and identify those helpful for differentiation from non-placenta percreta. The MRI images of 21 patients with a preliminary diagnosis of placental adhesive disorder scanned between 2005 and 2014 were evaluated. Radiologists blinded to the final diagnosis evaluated six previously described MRI findings of placenta adhesive disorder. The sensitivity, specificity, accuracy, negative predictive value (NPV), and positive predictive value (PPV) of MRI for the diagnosis of placenta percreta were also calculated. The study included 12 cases of placenta percreta and 9 cases of non-placenta percreta. Invasion of placental tissue outside the uterus was found only in placenta percreta (p = 0.045; sensitivity 41.7 %; specificity 100 %). All placenta percreta cases also had a moderate to marked degree of heterogeneous placental signal intensity (p = 0.063; sensitivity 100 %; specificity 33.3 %). The size of the dark bands on T2-weighted imaging, and the presence of disorganized intra-placental vessels, showed no statistically significant difference between placenta percreta and non-placenta percreta. The sensitivity, specificity, NPV, PPV, and accuracy of MRI for detection of placenta percreta were 91.7, 44, 80, 68, and 71.4 %, respectively. MRI is recommended for the evaluation of placenta percreta, with the most specific signs including the invasion of placental tissue outside the uterus on B-FFE sequences, and consideration of the degree of placental signal heterogeneity. The size of the T2 dark band alone, or bizarre disorganized intra-placental vessels, did not correlate with the severity of invasion.

  6. History of reptile placentology, part III: Giacomini's 1891 histological monograph on lizard placentation.

    PubMed

    Blackburn, D G; Paulesu, L; Avanzati, A M; Roth, M

    2017-12-01

    By the 1890s, placental arrangements had been documented macroscopically in lizards and fishes, but placental studies on such species lagged far behind research on mammals. In 1891, the biologist Ercole Giacomini (at the University of Siena, Italy) published the first histological analysis of a reptile placenta. Focusing on a placentotrophic lizard (Chalcides chalcides) with a morphologically complex placenta, Giacomini documented the histological and cellular bases for placental nutrient transfer and gas exchange. In conjunction with a follow-up study in 1906, he demonstrated that placental structure is correlated with function and can vary dramatically between related species. Giacomini's work was highly influential in showing that placentation in lizards had converged evolutionarily on that of mammals, while establishing reptile placentology as a highly promising area for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Hypoxia-cultured human adipose-derived mesenchymal stem cells are non-oncogenic and have enhanced viability, motility, and tropism to brain cancer

    PubMed Central

    Feng, Y; Zhu, M; Dangelmajer, S; Lee, Y M; Wijesekera, O; Castellanos, C X; Denduluri, A; Chaichana, K L; Li, Q; Zhang, H; Levchenko, A; Guerrero-Cazares, H; Quiñones-Hinojosa, A

    2014-01-01

    Adult human adipose-derived mesenchymal stem cells (hAMSCs) are multipotent cells, which are abundant, easily collected, and bypass the ethical concerns that plague embryonic stem cells. Their utility and accessibility have led to the rapid development of clinical investigations to explore their autologous and allogeneic cellular-based regenerative potential, tissue preservation capabilities, anti-inflammatory properties, and anticancer properties, among others. hAMSCs are typically cultured under ambient conditions with 21% oxygen. However, physiologically, hAMSCs exist in an environment of much lower oxygen tension. Furthermore, hAMSCs cultured in standard conditions have shown limited proliferative and migratory capabilities, as well as limited viability. This study investigated the effects hypoxic culture conditions have on primary intraoperatively derived hAMSCs. hAMSCs cultured under hypoxia (hAMSCs-H) remained multipotent, capable of differentiation into osteogenic, chondrogenic, and adipogenic lineages. In addition, hAMSCs-H grew faster and exhibited less cell death. Furthermore, hAMSCs-H had greater motility than normoxia-cultured hAMSCs and exhibited greater homing ability to glioblastoma (GBM) derived from brain tumor-initiating cells from our patients in vitro and in vivo. Importantly, hAMSCs-H did not transform into tumor-associated fibroblasts in vitro and were not tumorigenic in vivo. Rather, hAMSCs-H promoted the differentiation of brain cancer cells in vitro and in vivo. These findings suggest an alternative culturing technique that can enhance the function of hAMSCs, which may be necessary for their use in the treatment of various pathologies including stroke, myocardial infarction, amyotrophic lateral sclerosis, and GBM. PMID:25501828

  8. Elevated Adenosine Induces Placental DNA Hypomethylation Independent of A2B Receptor Signaling in Preeclampsia.

    PubMed

    Huang, Aji; Wu, Hongyu; Iriyama, Takayuki; Zhang, Yujin; Sun, Kaiqi; Song, Anren; Liu, Hong; Peng, Zhangzhe; Tang, Lili; Lee, Minjung; Huang, Yun; Ni, Xin; Kellems, Rodney E; Xia, Yang

    2017-07-01

    Preeclampsia is a prevalent pregnancy hypertensive disease with both maternal and fetal morbidity and mortality. Emerging evidence indicates that global placental DNA hypomethylation is observed in patients with preeclampsia and is linked to altered gene expression and disease development. However, the molecular basis underlying placental epigenetic changes in preeclampsia remains unclear. Using 2 independent experimental models of preeclampsia, adenosine deaminase-deficient mice and a pathogenic autoantibody-induced mouse model of preeclampsia, we demonstrate that elevated placental adenosine not only induces hallmark features of preeclampsia but also causes placental DNA hypomethylation. The use of genetic approaches to express an adenosine deaminase minigene specifically in placentas, or adenosine deaminase enzyme replacement therapy, restored placental adenosine to normal levels, attenuated preeclampsia features, and abolished placental DNA hypomethylation in adenosine deaminase-deficient mice. Genetic deletion of CD73 (an ectonucleotidase that converts AMP to adenosine) prevented the elevation of placental adenosine in the autoantibody-induced preeclampsia mouse model and ameliorated preeclampsia features and placental DNA hypomethylation. Immunohistochemical studies revealed that elevated placental adenosine-mediated DNA hypomethylation predominantly occurs in spongiotrophoblasts and labyrinthine trophoblasts and that this effect is independent of A2B adenosine receptor activation in both preeclampsia models. Extending our mouse findings to humans, we used cultured human trophoblasts to demonstrate that adenosine functions intracellularly and induces DNA hypomethylation without A2B adenosine receptor activation. Altogether, both mouse and human studies reveal novel mechanisms underlying placental DNA hypomethylation and potential therapeutic approaches for preeclampsia. © 2017 American Heart Association, Inc.

  9. Gestational bisphenol S impairs placental endocrine function and the fusogenic trophoblast signaling pathway.

    PubMed

    Gingrich, Jeremy; Pu, Yong; Roberts, Jennifer; Karthikraj, Rajendiran; Kannan, Kurunthachalam; Ehrhardt, Richard; Veiga-Lopez, Almudena

    2018-05-01

    Exposure to bisphenolic chemicals during pregnancy occurs in > 90% of pregnancies. Bisphenolic compounds can cross the placental barrier reaching fetal circulation. However, the effects of emerging bisphenolic compounds, such as bisphenol S (BPS), on placental function remain untested. The aim was to determine if bisphenol A (BPA) or BPS, at an environmentally relevant dose, impairs placental function. Pregnant sheep were randomly distributed into three treatment groups (n = 7-8/group): control, BPA, and BPS. All animals received daily injections of corn oil (control), BPA, or BPS (0.5 mg/kg; s.c.; internal fetal doses were ~ 2.6 ng/mL unconjugated BPA and ~ 7.7 ng/mL of BPS) from gestational day 30-100. After a 20-day washout period, placentas were weighed and placentomes collected. Placental endocrine function was assessed on biweekly maternal blood samples. Gestational exposure to BPS, but not BPA, reduced maternal circulating pregnancy-associated glycoproteins without change in placental weight or placental stereology. BPS-exposed placentas had 50% lower e-cadherin protein expression, ~ 20% fewer binucleate cells, and ~ threefold higher glial cell missing-1 protein expression. BPA placentas were not affected highlighting the intrinsic differences among bisphenolic chemicals. This is the first study to demonstrate that gestational BPS can result in placental endocrine dysfunction and points to a dysregulation in the fusogenic trophoblast signaling pathway.

  10. Placenta and Placental Derivatives in Regenerative Therapies: Experimental Studies, History, and Prospects

    PubMed Central

    Prokopyuk, Volodymyr; Pogozhykh, Denys

    2018-01-01

    Placental structures, capable to persist in a genetically foreign organism, are a natural model of allogeneic engraftment carrying a number of distinctive properties. In this review, the main features of the placenta and its derivatives such as structure, cellular composition, immunological and endocrine aspects, and the ability to invasion and deportation are discussed. These features are considered from a perspective that determines the placental material as a unique source for regenerative cell therapies and a lesson for immunological tolerance. A historical overview of clinical applications of placental extracts, cells, and tissue components is described. Empirically accumulated data are summarized and compared with modern research. Furthermore, we define scopes and outlooks of application of placental cells and tissues in the rapidly progressing field of regenerative medicine. PMID:29535770

  11. Congenital renal rhabdoid tumor with placental metastases: immunohistochemistry, cytogenetic, and ultrastructural findings.

    PubMed

    de Tar, Michael; Sanford Biggerstaff, Julie

    2006-01-01

    Malignant congenital tumors of fetal origin are rare lesions, the most common type being congenital neuroblastoma. Although prenatal diagnosis is possible in large tumors, occasionally the tumor will be diagnosed first by its metastatic involvement of the placenta. Placental metastases can reflect either maternal or fetal primary sites, and each has relatively specific patterns of placental involvement. We describe the clinical and pathologic features of a widely metastatic congenital renal rhabdoid tumor with its placental and autopsy findings, and include the immunohistochemical, cytogenetic, and ultrastructural features. The pathologic features of the placenta in congenital renal rhabdoid tumor with placental metastasis have not been previously described. The examination of the placenta in this case led to the initial diagnosis and obviated the need for additional diagnostic procedures.

  12. Placental Origins of Chronic Disease

    PubMed Central

    Burton, Graham J.; Fowden, Abigail L.; Thornburg, Kent L.

    2016-01-01

    Epidemiological evidence links an individual's susceptibility to chronic disease in adult life to events during their intrauterine phase of development. Biologically this should not be unexpected, for organ systems are at their most plastic when progenitor cells are proliferating and differentiating. Influences operating at this time can permanently affect their structure and functional capacity, and the activity of enzyme systems and endocrine axes. It is now appreciated that such effects lay the foundations for a diverse array of diseases that become manifest many years later, often in response to secondary environmental stressors. Fetal development is underpinned by the placenta, the organ that forms the interface between the fetus and its mother. All nutrients and oxygen reaching the fetus must pass through this organ. The placenta also has major endocrine functions, orchestrating maternal adaptations to pregnancy and mobilizing resources for fetal use. In addition, it acts as a selective barrier, creating a protective milieu by minimizing exposure of the fetus to maternal hormones, such as glucocorticoids, xenobiotics, pathogens, and parasites. The placenta shows a remarkable capacity to adapt to adverse environmental cues and lessen their impact on the fetus. However, if placental function is impaired, or its capacity to adapt is exceeded, then fetal development may be compromised. Here, we explore the complex relationships between the placental phenotype and developmental programming of chronic disease in the offspring. Ensuring optimal placentation offers a new approach to the prevention of disorders such as cardiovascular disease, diabetes, and obesity, which are reaching epidemic proportions. PMID:27604528

  13. RAT PLACENTATION: AN EXPERIMENTAL MODEL FOR INVESTIGATING THE HEMOCHORIAL MATERNAL-FETAL INTERFACE

    PubMed Central

    Soares, Michael J.; Chakraborty, Damayanti; Rumi, M.A. Karim; Konno, Toshihiro; Renaud, Stephen J.

    2011-01-01

    The rat possesses hemochorial placentation with deep intrauterine trophoblast cell invasion and trophoblast-directed uterine spiral artery remodeling; features shared with human placentation. Recognition of these similarities spurred the establishment of in vitro and in vivo research methods using the rat as an animal model to address mechanistic questions regarding development of the hemochorial placenta. The purpose of this review is to provide the requisite background to help move the rat to the forefront in placentation research. PMID:22284666

  14. Bisphenol A disrupts gene expression in human placental trophoblast cells.

    PubMed

    Rajakumar, Chandrew; Guan, Haiyan; Langlois, David; Cernea, Maria; Yang, Kaiping

    2015-06-01

    This study examined the effect of bisphenol A (BPA) on human placental gene expression using primary trophoblast cells as an in vitro model system. Trophoblast cells were isolated from human placentas at term, cultured and then exposed to environmentally relevant concentrations of BPA (0.1-2 μg/ml) for up to 24h, after which levels of 11β-HSD2 mRNA, protein and activity were determined by standard radiometric conversion assay, western blotting, and qRT-PCR, respectively. The mRNA levels of several other prominent placental hormones/factors were also assessed by qRT-PCR. BPA dramatically increased levels of 11β-HSD2 activity, protein and mRNA in a time- and concentration-dependent manner (> 4-fold). BPA also augmented aromatase, glucose transporter-1, CRH, and hCG mRNA levels while reducing the level of leptin mRNA. These findings demonstrate that BPA severely disrupts human placental gene expression in vitro, which suggests that exposure to BPA may contribute to altered placental function and consequent pregnancy complications. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Docosahexaenoic Acid Supplementation in Pregnancy Modulates Placental Cellular Signaling and Nutrient Transport Capacity in Obese Women.

    PubMed

    Lager, Susanne; Ramirez, Vanessa I; Acosta, Ometeotl; Meireles, Christiane; Miller, Evelyn; Gaccioli, Francesca; Rosario, Fredrick J; Gelfond, Jonathan A L; Hakala, Kevin; Weintraub, Susan T; Krummel, Debra A; Powell, Theresa L

    2017-12-01

    Maternal obesity in pregnancy has profound impacts on maternal metabolism and promotes placental nutrient transport, which may contribute to fetal overgrowth in these pregnancies. The fatty acid docosahexaenoic acid (DHA) has bioactive properties that may improve outcomes in obese pregnant women by modulating placental function. To determine the effects of DHA supplementation in obese pregnant women on maternal metabolism and placental function. Pregnant women were supplemented with DHA or placebo. Maternal fasting blood was collected at 26 and 36 weeks' gestation, and placentas were collected at term. Academic health care institution. Thirty-eight pregnant women with pregravid body mass index ≥30 kg/m2. DHA (800 mg, algal oil) or placebo (corn/soy oil) daily from 26 weeks to term. DHA content of maternal erythrocyte and placental membranes, maternal fasting blood glucose, cytokines, metabolic hormones, and circulating lipids were determined. Insulin, mTOR, and inflammatory signaling were assessed in placental homogenates, and nutrient transport capacity was determined in isolated syncytiotrophoblast plasma membranes. DHA supplementation increased erythrocyte (P < 0.0001) and placental membrane DHA levels (P < 0.0001) but did not influence maternal inflammatory status, insulin sensitivity, or lipids. DHA supplementation decreased placental inflammation, amino acid transporter expression, and activity (P < 0.01) and increased placental protein expression of fatty acid transporting protein 4 (P < 0.05). Maternal DHA supplementation in pregnancy decreases placental inflammation and differentially modulates placental nutrient transport capacity and may mitigate adverse effects of maternal obesity on placental function. Copyright © 2017 Endocrine Society

  16. Targeted inhibition of osteosarcoma tumor growth by bone marrow-derived mesenchymal stem cells expressing cytosine deaminase/5-fluorocytosine in tumor-bearing mice.

    PubMed

    NguyenThai, Quynh-Anh; Sharma, Neelesh; Luong, Do Huynh; Sodhi, Simrinder Singh; Kim, Jeong-Hyun; Kim, Nameun; Oh, Sung-Jong; Jeong, Dong Kee

    2015-01-01

    Mesenchymal stem cells (MSCs) are considered as an attractive approach for gene or drug delivery in cancer therapy. In the present study, the ability of human bone marrow-derived MSCs expressing the cytosine deaminase/5-fluorocytosine prodrug (CD/5-FC MSCs) to target the human osteosarcoma cell line Cal72 was evaluated. The stable CD/5-FC MSC cell line was established by transfection of pEGFP containing the cytosine deaminase gene into MSCs with G418 selection. The anti-tumor effect was verified by a bystander effect assay in vitro and co-injection of Cal72 and CD/5-FC MSCs in cancer-bearing mice. The therapeutic CD/5-FC MSCs retained the characteristics of multipotent cells, such as differentiation into adipocytes/osteocytes and expression of mesenchymal markers (CD90 and CD44), and showed migration toward Cal72 cells to a greater extent than the native MSCs. The bystander effect assay showed that the CD/5-FC MSCs significantly augmented Cal72 cytotoxicity in direct co-culture and in the presence of 5-FC through the application of conditioned medium. In osteosarcoma-bearing mice, the CD/5-FC MSCs inhibited tumor growth compared to control mice subcutaneously injected with only Cal72 cells. Taken together, these findings suggest that CD/5-FC MSCs may be suitable for targeting human osteosarcoma. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Gastro-intestinal autoimmunity: preclinical experiences and successful therapy of fistulizing bowel diseases and gut Graft versus host disease by mesenchymal stromal cells.

    PubMed

    Voswinkel, Jan; Francois, Sabine; Gorin, Norbert-Claude; Chapel, Alain

    2013-07-01

    Mesenchymal stromal cells (MSC) are multipotent adult stem cells with the potential to regenerate tissue damage and inhibit inflammation and fibrosis in parallel. As they are non-immunogenic, MSC can be safely auto- and allotransplanted and consequently represent a therapeutic option for refractory connective tissue diseases and fistulizing colitis like Crohn's disease. Actually, there are more than 200 registered clinical trial sites for evaluating MSC therapy, 22 are on autoimmune diseases and 27 are actually recruiting bowel disease' patients. More than 1,500 patients with bowel diseases like Crohn's disease were treated in clinical trials by local as well as systemic MSC therapy. Phase I and II trials on fistula documented the feasibility and safety of MSC therapy, and a significant superiority compared to fibrin glue in fistulizing bowel diseases was demonstrated. Autologous as well as allogeneic use of Bone marrow as well as of adipose tissue-derived MSC are feasible. In refractory Graft versus host disease, especially in refractory gut Graft versus host diseases, encouraging results were reported using MSC. Systemic MSC therapy of refractory irradiation-induced colitis was safe and effective on pain, diarrhea, hemorrhage, inflammation and fistulization accompanied by modulation of the lymphocyte subsets toward an increase in T regulatory cells and a decrease in activated effector T cells. Mesenchymal stem cells represent a safe therapy for patients with refractory inflammatory bowel diseases.

  18. The Interrelationships of Placental Mammals and the Limits of Phylogenetic Inference.

    PubMed

    Tarver, James E; Dos Reis, Mario; Mirarab, Siavash; Moran, Raymond J; Parker, Sean; O'Reilly, Joseph E; King, Benjamin L; O'Connell, Mary J; Asher, Robert J; Warnow, Tandy; Peterson, Kevin J; Donoghue, Philip C J; Pisani, Davide

    2016-01-05

    Placental mammals comprise three principal clades: Afrotheria (e.g., elephants and tenrecs), Xenarthra (e.g., armadillos and sloths), and Boreoeutheria (all other placental mammals), the relationships among which are the subject of controversy and a touchstone for debate on the limits of phylogenetic inference. Previous analyses have found support for all three hypotheses, leading some to conclude that this phylogenetic problem might be impossible to resolve due to the compounded effects of incomplete lineage sorting (ILS) and a rapid radiation. Here we show, using a genome scale nucleotide data set, microRNAs, and the reanalysis of the three largest previously published amino acid data sets, that the root of Placentalia lies between Atlantogenata and Boreoeutheria. Although we found evidence for ILS in early placental evolution, we are able to reject previous conclusions that the placental root is a hard polytomy that cannot be resolved. Reanalyses of previous data sets recover Atlantogenata + Boreoeutheria and show that contradictory results are a consequence of poorly fitting evolutionary models; instead, when the evolutionary process is better-modeled, all data sets converge on Atlantogenata. Our Bayesian molecular clock analysis estimates that marsupials diverged from placentals 157-170 Ma, crown Placentalia diverged 86-100 Ma, and crown Atlantogenata diverged 84-97 Ma. Our results are compatible with placental diversification being driven by dispersal rather than vicariance mechanisms, postdating early phases in the protracted opening of the Atlantic Ocean. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Maternal Choline Supplementation Alters Fetal Growth Patterns in a Mouse Model of Placental Insufficiency.

    PubMed

    King, Julia H; Kwan, Sze Ting Cecilia; Yan, Jian; Klatt, Kevin C; Jiang, Xinyin; Roberson, Mark S; Caudill, Marie A

    2017-07-18

    Impairments in placental development can adversely affect pregnancy outcomes. The bioactive nutrient choline may mitigate some of these impairments, as suggested by data in humans, animals, and human trophoblasts. Herein, we investigated the effects of maternal choline supplementation (MCS) on parameters of fetal growth in a Dlx3 +/- (distal-less homeobox 3) mouse model of placental insufficiency. Dlx3 +/- female mice were assigned to 1X (control), 2X, or 4X choline intake levels during gestation. Dams were sacrificed at embryonic days E10.5, 12.5, 15.5, and 18.5. At E10.5, placental weight, embryo weight, and placental efficiency were higher in 4X versus 1X choline. Higher concentrations of hepatic and placental betaine were detected in 4X versus 1X choline, and placental betaine was positively associated with embryo weight. Placental mRNA expression of Igf1 was downregulated by 4X (versus 1X) choline at E10.5. No differences in fetal growth parameters were detected at E12.5 and 15.5, whereas a small but significant reduction in fetal weight was detected at E18.5 in 4X versus 1X choline. MCS improved fetal growth during early pregnancy in the Dlx3 +/- mice with the compensatory downregulation of Igf1 to slow growth as gestation progressed. Placental betaine may be responsible for the growth-promoting effects of choline.

  20. Maternal Choline Supplementation Alters Fetal Growth Patterns in a Mouse Model of Placental Insufficiency

    PubMed Central

    Kwan, Sze Ting (Cecilia); Yan, Jian; Klatt, Kevin C.; Jiang, Xinyin; Roberson, Mark S.; Caudill, Marie A.

    2017-01-01

    Impairments in placental development can adversely affect pregnancy outcomes. The bioactive nutrient choline may mitigate some of these impairments, as suggested by data in humans, animals, and human trophoblasts. Herein, we investigated the effects of maternal choline supplementation (MCS) on parameters of fetal growth in a Dlx3+/− (distal-less homeobox 3) mouse model of placental insufficiency. Dlx3+/− female mice were assigned to 1X (control), 2X, or 4X choline intake levels during gestation. Dams were sacrificed at embryonic days E10.5, 12.5, 15.5, and 18.5. At E10.5, placental weight, embryo weight, and placental efficiency were higher in 4X versus 1X choline. Higher concentrations of hepatic and placental betaine were detected in 4X versus 1X choline, and placental betaine was positively associated with embryo weight. Placental mRNA expression of Igf1 was downregulated by 4X (versus 1X) choline at E10.5. No differences in fetal growth parameters were detected at E12.5 and 15.5, whereas a small but significant reduction in fetal weight was detected at E18.5 in 4X versus 1X choline. MCS improved fetal growth during early pregnancy in the Dlx3+/− mice with the compensatory downregulation of Igf1 to slow growth as gestation progressed. Placental betaine may be responsible for the growth-promoting effects of choline. PMID:28718809

  1. Chitinase genes (CHIAs) provide genomic footprints of a post-Cretaceous dietary radiation in placental mammals

    PubMed Central

    Emerling, Christopher A.

    2018-01-01

    The end-Cretaceous extinction led to a massive faunal turnover, with placental mammals radiating in the wake of nonavian dinosaurs. Fossils indicate that Cretaceous stem placentals were generally insectivorous, whereas their earliest Cenozoic descendants occupied a variety of dietary niches. It is hypothesized that this dietary radiation resulted from the opening of niche space, following the extinction of dinosaurian carnivores and herbivores. We provide the first genomic evidence for the occurrence and timing of this dietary radiation in placental mammals. By comparing the genomes of 107 placental mammals, we robustly infer that chitinase genes (CHIAs), encoding enzymes capable of digesting insect exoskeletal chitin, were present as five functional copies in the ancestor of all placental mammals, and the number of functional CHIAs in the genomes of extant species positively correlates with the percentage of invertebrates in their diets. The diverse repertoire of CHIAs in early placental mammals corroborates fossil evidence of insectivory in Cretaceous eutherians, with descendant lineages repeatedly losing CHIAs beginning at the Cretaceous/Paleogene (K/Pg) boundary as they radiated into noninsectivorous niches. Furthermore, the timing of gene loss suggests that interordinal diversification of placental mammals in the Cretaceous predates the dietary radiation in the early Cenozoic, helping to reconcile a long-standing debate between molecular timetrees and the fossil record. Our results demonstrate that placental mammal genomes, including humans, retain a molecular record of the post-K/Pg placental adaptive radiation in the form of numerous chitinase pseudogenes. PMID:29774238

  2. Avoidance of Maternal Cell Contamination and Overgrowth in Isolating Fetal Chorionic Villi Mesenchymal Stem Cells from Human Term Placenta

    PubMed Central

    Sardesai, Varda S.; Shafiee, Abbas; Fisk, Nicholas M.

    2017-01-01

    Abstract Human placenta is rich in mesenchymal stem/stromal cells (MSC), with their origin widely presumed fetal. Cultured placental MSCs are confounded by a high frequency of maternal cell contamination. Our recent systematic review concluded that only a small minority of placental MSC publications report fetal/maternal origin, and failed to discern a specific methodology for isolation of fetal MSC from term villi. We determined isolation conditions to yield fetal and separately maternal MSC during ex vivo expansion from human term placenta. MSCs were isolated via a range of methods in combination; selection from various chorionic regions, different commercial media, mononuclear cell digest and/or explant culture. Fetal and maternal cell identities were quantitated in gender‐discordant pregnancies by XY chromosome fluorescence in situ hybridization. We first demonstrated reproducible maternal cell contamination in MSC cultures from all chorionic anatomical locations tested. Cultures in standard media rapidly became composed entirely of maternal cells despite isolation from fetal villi. To isolate pure fetal cells, we validated a novel isolation procedure comprising focal dissection from the cotyledonary core, collagenase/dispase digestion and explant culture in endothelial growth media that selected, and provided a proliferative environment, for fetal MSC. Comparison of MSC populations within the same placenta confirmed fetal to be smaller, more osteogenic and proliferative than maternal MSC. We conclude that in standard media, fetal chorionic villi‐derived MSC (CV‐MSC) do not grow readily, whereas maternal MSC proliferate to result in maternal overgrowth during culture. Instead, fetal CV‐MSCs require isolation under specific conditions, which has implications for clinical trials using placental MSC. Stem Cells Translational Medicine 2017;6:1070–1084 PMID:28205414

  3. Low midpregnancy placental volume in rural Indian women: A cause for low birth weight?

    PubMed

    Kinare, A S; Natekar, A S; Chinchwadkar, M C; Yajnik, C S; Coyaji, K J; Fall, C H; Howe, D T

    2000-02-01

    We sought to study midpregnancy placental volume in rural Indian women, its maternal determinants, and its relationship to neonatal size. We performed a prospective community-based study of maternal nutrition and fetal growth in 6 villages near the city of Pune. Measurements included midpregnancy placental volume determined by means of ultrasonography at 15 to 18 weeks' gestation, maternal anthropometric measurements before and during pregnancy, and maternal blood pressure and biochemical parameters during pregnancy. Neonatal size and placental weight were measured at birth. The mothers were short and underweight (mean height, 1.52 m; weight, 42 kg; body mass index, 18 kg/m(2)) and produced small babies (mean birth weight, 2648 g). Midpregnancy placental volume (median, 144 mL) was related to the mother's prepregnancy weight (r = 0.15; P <.001) but not to weight gain during pregnancy, blood pressure, or circulating hemoglobin, ferritin, red blood cell folate, or glucose concentrations. Midpregnancy placental volume was related to placental weight at birth (r = 0.29; P <.001) and birth weight (r = 0.25; P <.001) independent of maternal size. In Indian mothers midpregnancy placental volume is significantly associated with prepregnant maternal weight and is an independent predictor of birth weight. Our findings may provide clues to the high prevalence of low-birth-weight infants in India.

  4. Human trabecular meshwork cells exhibit several characteristics of, but are distinct from, adipose-derived mesenchymal stem cells.

    PubMed

    Morgan, Joshua T; Wood, Joshua A; Walker, Naomi J; Raghunathan, Vijay Krishna; Borjesson, Dori L; Murphy, Christopher J; Russell, Paul

    2014-01-01

    To support the growing promise of regenerative medicine in glaucoma, we characterized the similarities and differences between human trabecular meshwork (HTM) cells and human mesenchymal stem cells (hMSCs). HTM cells and hMSCs were phenotypically characterized by flow cytometry. Using quantitative polymerase chain reaction, the expression of myoc, angptl7, sox2, pou5f1, and notch1 was determined in both cell types with and without dexamethasone (Dex). Immunosuppressive behavior of HTM cells and hMSCs was determined using T cells activated with phytohemagglutinin. T-cell proliferation was determined using BrdU incorporation and flow cytometry. Multipotency of HTM cells and hMSCs was determined using adipogenic and osteogenic differentiation media as well as aqueous humor (AH). Alpha-smooth muscle actin (αSMA) expression was determined in HTM cells, hMSCs, and HTM tissue. Phenotypically, HTM and hMSCs expressed CD73, CD90, CD105, and CD146 but not CD31, CD34, and CD45 and similar sox2, pou5f1, and notch1 expression. Both cell types suppressed T-cell proliferation. However, HTM cells, but not hMSCs, upregulated myoc and angptl7 in response to Dex. Additionally, HTM cells did not differentiate into adipocytes or osteocytes. Culture of hMSCs in 20%, but not 100%, AH potently induced alkaline phosphatase activity. HTM cells in culture possessed uniformly strong expression of αSMA, which contrasted with the limited expression in hMSCs and spatially discrete expression in HTM tissue. HTM cells possess a number of important similarities with hMSCs but lack multipotency, one of the defining characteristics of stem cells. Further work is needed to explore the molecular mechanisms and functional implications underlying the phenotypic similarities.

  5. Human Trabecular Meshwork Cells Exhibit Several Characteristics of, but Are Distinct from, Adipose-Derived Mesenchymal Stem Cells

    PubMed Central

    Morgan, Joshua T.; Wood, Joshua A.; Walker, Naomi J.; Raghunathan, Vijay Krishna; Borjesson, Dori L.; Murphy, Christopher J.

    2014-01-01

    Abstract Purpose: To support the growing promise of regenerative medicine in glaucoma, we characterized the similarities and differences between human trabecular meshwork (HTM) cells and human mesenchymal stem cells (hMSCs). Methods: HTM cells and hMSCs were phenotypically characterized by flow cytometry. Using quantitative polymerase chain reaction, the expression of myoc, angptl7, sox2, pou5f1, and notch1 was determined in both cell types with and without dexamethasone (Dex). Immunosuppressive behavior of HTM cells and hMSCs was determined using T cells activated with phytohemagglutinin. T-cell proliferation was determined using BrdU incorporation and flow cytometry. Multipotency of HTM cells and hMSCs was determined using adipogenic and osteogenic differentiation media as well as aqueous humor (AH). Alpha-smooth muscle actin (αSMA) expression was determined in HTM cells, hMSCs, and HTM tissue. Results: Phenotypically, HTM and hMSCs expressed CD73, CD90, CD105, and CD146 but not CD31, CD34, and CD45 and similar sox2, pou5f1, and notch1 expression. Both cell types suppressed T-cell proliferation. However, HTM cells, but not hMSCs, upregulated myoc and angptl7 in response to Dex. Additionally, HTM cells did not differentiate into adipocytes or osteocytes. Culture of hMSCs in 20%, but not 100%, AH potently induced alkaline phosphatase activity. HTM cells in culture possessed uniformly strong expression of αSMA, which contrasted with the limited expression in hMSCs and spatially discrete expression in HTM tissue. Conclusions: HTM cells possess a number of important similarities with hMSCs but lack multipotency, one of the defining characteristics of stem cells. Further work is needed to explore the molecular mechanisms and functional implications underlying the phenotypic similarities. PMID:24456002

  6. A novel mechanism of angiotensin II-regulated placental vascular tone in the development of hypertension in preeclampsia.

    PubMed

    Gao, Qinqin; Tang, Jiaqi; Li, Na; Zhou, Xiuwen; Li, Yongmei; Liu, Yanping; Wu, Jue; Yang, Yuxian; Shi, Ruixiu; He, Axin; Li, Xiang; Zhang, Yingying; Chen, Jie; Zhang, Lubo; Sun, Miao; Xu, Zhice

    2017-05-09

    The present study tested the hypothesis that angiotensin II plays a role in the regulation of placental vascular tone, which contributes to hypertension in preeclampsia. Functional and molecular assays were performed in large and micro placental and non-placental vessels from humans and animals. In human placental vessels, angiotensin II induced vasoconstrictions in 78.7% vessels in 155 tests, as referenced to KCl-induced contractions. In contrast, phenylephrine only produced contractions in 3.0% of 133 tests. In non-placental vessels, phenylephrine induced contractions in 76.0% of 67 tests, whereas angiotensin II failed to produce contractions in 75 tests. Similar results were obtained in animal placental and non-placental vessels. Compared with non-placental vessels, angiotensin II receptors and β-adrenoceptors were significantly increased in placental vessels. Compared to the vessels from normal pregnancy, angiotensin II-induced vasoconstrictions were significantly reduced in preeclamptic placentas, which was associated with a decrease in angiotensin II receptors. In addition, angiotensin II and angiotensin converting enzyme in the maternal-placenta circulation in preeclampsia were increased, whereas angiotensin I and angiotensin1-7 concentrations were unchanged. The study demonstrates a selective effect of angiotensin II in maintaining placental vessel tension, which may play an important role in development of hypertension in preeclampsia.

  7. Preparation of anti-inflammatory mesenchymal stem/precursor cells (MSCs) through sphere formation using hanging-drop culture technique.

    PubMed

    Bartosh, Thomas J; Ylostalo, Joni H

    2014-02-06

    Herein, we describe a protocol for preparation of pre-activated anti-inflammatory human mesenchymal stem/precursor cells (MSCs) in 3-D culture without addition of exogenous chemicals or gene-transfer approaches. MSCs are an easily procurable source of multipotent adult stem cells with therapeutic potential largely attributed to their paracrine regulation of inflammation and immunity. However, the culture conditions to prepare the ideal MSCs for cell therapy remain elusive. Furthermore, the reported lag time for activation in experimental models has prompted investigations on pre-activating the cells prior to their administration. In this protocol, standard 2-D culture-expanded MSCs are activated by aggregation into 3-D spheres using hanging-drop cultures. MSC activation is evaluated by real-time PCR and/or ELISA for anti-inflammatory factors (TSG-6, STC-1, PGE2), and by a functional assay using lipopolysaccharide-stimulated macrophage cultures. Further, we elucidate methods to prepare MSC-sphere conditioned medium, intact spheres, and suspension of single cells from spheres for experimental and clinical applications. Copyright © 2014 John Wiley & Sons, Inc.

  8. Preparation of anti-inflammatory mesenchymal stem/precursor cells (MSCs) through sphere formation using hanging drop culture technique

    PubMed Central

    Bartosh, Thomas J.

    2014-01-01

    Herein, we describe a protocol for preparation of pre-activated anti-inflammatory human mesenchymal stem/precursor cells (MSCs) in 3D culture without addition of exogenous chemicals or gene transfer approaches. MSCs are an easily procurable source of multipotent adult stem cells with therapeutic potential largely attributed to their paracrine regulation of inflammation and immunity. However, the culture conditions to prepare the ideal MSCs for cell therapy remain elusive. Furthermore, reported lag time for activation in experimental models have prompted investigations to pre-activate the cells prior to their administration. In this protocol, standard 2D culture expanded MSCs are activated by aggregation into 3D spheres using hanging drop cultures. MSC activation is evaluated by real-time PCR and/or ELISA for anti-inflammatory factors (TSG-6, STC-1, PGE2), and by a functional assay using lipopolysaccharide-stimulated macrophage cultures. Furthermore, we elucidate methods to prepare MSC sphere conditioned medium, intact spheres, and suspension of single cells from spheres for experimental and clinical applications. PMID:24510769

  9. Exosomes of human placenta-derived mesenchymal stem cells stimulate angiogenesis.

    PubMed

    Komaki, Motohiro; Numata, Yuri; Morioka, Chikako; Honda, Izumi; Tooi, Masayuki; Yokoyama, Naoki; Ayame, Hirohito; Iwasaki, Kengo; Taki, Atsuko; Oshima, Noriko; Morita, Ikuo

    2017-10-03

    The therapeutic potential of mesenchymal stem cells (MSCs) may be attributed partly to humoral factors such as growth factors, cytokines, and chemokines. Human term placental tissue-derived MSCs (PlaMSCs), or conditioned medium left over from cultures of these cells, have been reported to enhance angiogenesis. Recently, the exosome, which can transport a diverse suite of macromolecules, has gained attention as a novel intercellular communication tool. However, the potential role of the exosome in PlaMSC therapeutic action is not well understood. The purpose of this study was to evaluate PlaMSC-derived exosome angiogenesis promotion in vitro and in vivo. MSCs were isolated from human term placental tissue by enzymatic digestion. Conditioned medium was collected after 48-h incubation in serum-free medium (PlaMSC-CM). Angiogenic factors present in PlaMSC-CM were screened by a growth factor array. Exosomes were prepared by ultracentrifugation of PlaMSC-CM, and confirmed by transmission electron microscopy, dynamic light scattering, and western blot analyses. The proangiogenic activity of PlaMSC-derived exosomes (PlaMSC-exo) was assessed using an endothelial tube formation assay, a cell migration assay, and reverse transcription-PCR analysis. The in-vivo angiogenic activity of PlaMSC-exo was evaluated using a murine auricle ischemic injury model. PlaMSC-CM contained both angiogenic and angiostatic factors, which enhanced endothelial tube formation. PlaMSC-exo were incorporated into endothelial cells; these exosomes stimulated both endothelial tube formation and migration, and enhanced angiogenesis-related gene expression. Laser Doppler blood flow analysis showed that PlaMSC-exo infusion also enhanced angiogenesis in an in-vivo murine auricle ischemic injury model. PlaMSC-exo enhanced angiogenesis in vitro and in vivo, suggesting that exosomes play a role in the proangiogenic activity of PlaMSCs. PlaMSC-exo may be a novel therapeutic approach for treating ischemic

  10. Gestational age, gender and parity specific centile charts for placental weight for singleton deliveries in Aberdeen, UK.

    PubMed

    Wallace, J M; Bhattacharya, S; Horgan, G W

    2013-03-01

    The weight of the placenta is a crude but useful proxy for its function in vivo. Accordingly extremes of placental weight are associated with adverse pregnancy outcomes while even normal variations in placental size may impact lifelong health. Centile charts of placental weight for gestational age and gender are used to identify placental weight extremes but none report the effect of parity. Thus the objective was to produce gender and gestational age specific centile charts for placental weight in nulliparous and multiparous women. Data was extracted from the Aberdeen Maternity and Neonatal Databank for all women delivering singleton babies in Aberdeen city and district after 24 weeks gestation. Gestational age specific centile charts for placental weight by gender and parity grouping (n = 88,649 deliveries over a 30 year period) were constructed using the LMS method after exclusion of outliers (0.63% of deliveries meeting study inclusion criteria). Tables and figures are presented for placental weight centiles according to gestational age, gender and parity grouping. Tables are additionally presented for the birth weight to placental weight ratio by gender. Placental weight and the fetal:placental weight ratio were higher in male versus female deliveries. Placental weight was greater in multiparous compared with nulliparous women. We present strong evidence that both gender and parity grouping influence placental weight centiles. The differences at any given gestational age are small and the effects of parity are greater overall than those of gender. In contrast the birth weight to placental weight ratio differs by gender only. These UK population specific centile charts may be useful in studies investigating the role of the placenta in mediating pregnancy outcome and lifelong health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Prolonged exposure to bacterial toxins downregulated expression of toll-like receptors in mesenchymal stromal cell-derived osteoprogenitors

    PubMed Central

    Mo, Irene Fung Ying; Yip, Kevin Hak Kong; Chan, Wing Keung; Law, Helen Ka Wai; Lau, Yu Lung; Chan, Godfrey Chi Fung

    2008-01-01

    Background Human mesenchymal stromal cells (MSCs, also known as mesenchymal stem cells) are multipotent cells with potential therapeutic value. Owing to their osteogenic capability, MSCs may be clinically applied for facilitating osseointegration in dental implants or orthopedic repair of bony defect. However, whether wound infection or oral microflora may interfere with the growth and osteogenic differentiation of human MSCs remains unknown. This study investigated whether proliferation and osteogenic differentiation of MSCs would be affected by potent gram-positive and gram-negative derived bacterial toxins commonly found in human settings. Results We selected lipopolysaccharide (LPS) from Escherichia coli and lipoteichoic acid (LTA) from Streptococcus pyogenes as our toxins of choice. Our findings showed both LPS and LTA did not affect MSC proliferation, but prolonged LPS challenge upregulated the osteogenic differentiation of MSCs, as assessed by alkaline phosphatase activity and calcium deposition. Because toll-like receptors (TLRs), in particularly TLR4 and TLR2, are important for the cellular responsiveness to LPS and LTA respectively, we evaluated their expression profiles serially from MSCs to osteoblasts by quantitative PCR. We found that during osteogenic differentiation, MSC-derived osteoprogenitors gradually expressed TLR2 and TLR4 by Day 12. But under prolonged incubation with LPS, MSC-derived osteoprogenitors had reduced TLR2 and TLR4 gene expression. This peculiar response to LPS suggests a possible adaptive mechanism when MSCs are subjected to continuous exposure with bacteria. Conclusion In conclusion, our findings support the potential of using human MSCs as a biological graft, even under a bacterial toxin-rich environment. PMID:18799018

  12. Maternal BMI and gestational diabetes alter placental lipid transporters and fatty acid composition.

    PubMed

    Segura, Maria Teresa; Demmelmair, Hans; Krauss-Etschmann, Susanne; Nathan, Petra; Dehmel, Stefan; Padilla, Maria Carmen; Rueda, Ricardo; Koletzko, Berthold; Campoy, Cristina

    2017-09-01

    Placental fatty acid (FA) uptake and metabolism depend on maternal supply which may be altered when women have a high pre-pregnancy body mass index (BMI) or develop gestational diabetes (GDM). Consequently, an impaired FA transport to the fetus may negatively affect fetal development. While placental adaptation of maternal-fetal glucose transfer in mild GDM has been described, knowledge on placental FA acid metabolism and possible adaptations in response to maternal obesity or GDM is lacking. We aimed to analyze the FA composition and the expression of key genes involved in FA uptake and metabolism in placentas from women with pre-pregnancy normal weight (18.5 ≤ BMI<25 kg/m2), overweight (25 ≤ BMI<30 kg/m 2 ), obesity (BMI ≥ 30 kg/m 2 ), and lean pregnant women with GDM. Placental FA content was determined by gas liquid chromatography. Placental mRNA expression of FA transport proteins (FATP1, FATP4, FATP6), FA binding proteins (FABP3, FABP4, FABP7), FA translocase (FAT/CD36) and enzymes (Endothelial lipase (EL) and lipoprotein lipase (LPL)) were quantified by qRT-PCR. High pre-pregnancy BMI and GDM were associated with decreased placental FATP1, FATP4, EL and increased FAT/CD36 and FATP6 expressions. LPL mRNA levels and placental total FA content were similar among groups. Specific FA, including some long-chain polyunsaturated FA, were altered. Our results demonstrate that high pre-pregnancy BMI or GDM independently alter mRNA expression levels of genes involved in FA uptake and metabolism and the placental FA profile, which could affect fetal development and long-term health. Copyright © 2017. Published by Elsevier Ltd.

  13. Maternal Choline Supplementation Modulates Placental Nutrient Transport and Metabolism in Late Gestation of Mouse Pregnancy.

    PubMed

    Kwan, Sze Ting Cecilia; King, Julia H; Yan, Jian; Wang, Zhen; Jiang, Xinyin; Hutzler, Jason S; Klein, Hallie R; Brenna, J Thomas; Roberson, Mark S; Caudill, Marie A

    2017-11-01

    Background: Fetal growth is dependent on placental nutrient supply, which is influenced by placental perfusion and transporter abundance. Previous research indicates that adequate choline nutrition during pregnancy improves placental vascular development, supporting the hypothesis that choline may affect placental nutrient transport. Objective: The present study sought to determine the impact of maternal choline supplementation (MCS) on placental nutrient transporter abundance and nutrient metabolism during late gestation. Methods: Female non-Swiss albino mice were randomly assigned to the 1×, 2×, or 4× choline diet (1.4, 2.8, and 5.6 g choline chloride/kg diet, respectively) 5 d before mating ( n = 16 dams/group). The placentas and fetuses were harvested on gestational day (E) 15.5 and E18.5. The placental abundance of macronutrient, choline, and acetylcholine transporters and glycogen metabolic enzymes, and the placental concentration of glycogen were quantified. Choline metabolites and docosahexaenoic acid (DHA) concentrations were measured in the placentas and/or fetal brains. Data were stratified by gestational day and fetal sex and were analyzed by using mixed linear models. Results: At E15.5, MCS downregulated the placental transcript and protein abundance of glucose transporter 1 (GLUT1) (-40% to -73%, P < 0.05) and the placental transcript abundance of glycogen-synthesizing enzymes (-24% to -50%, P ≤ 0.05). At E18.5, MCS upregulated GLUT3 protein abundance (+55%, P = 0.016) and the transcript abundance of glycogen-synthesizing enzymes only in the female placentas (+36% to +60%, P < 0.05), resulting in a doubling ( P = 0.01) of the glycogen concentration. A higher placental transcript abundance of the transporters for DHA, choline, and acetylcholine was also detected in response to MCS, consequently altering their concentrations in the placentas or fetal brains ( P ≤ 0.05). Conclusions: These data suggest that MCS modulates placental nutrient

  14. Rationale for the potential use of mesenchymal stromal cells in liver transplantation

    PubMed Central

    Vandermeulen, Morgan; Grégoire, Céline; Briquet, Alexandra; Lechanteur, Chantal; Beguin, Yves; Detry, Olivier

    2014-01-01

    Mesenchymal stromal cells (MSCs) are multipotent and self-renewing cells that reside essentially in the bone marrow as a non-hematopoietic cell population, but may also be isolated from the connective tissues of most organs. MSCs represent a heterogeneous population of adult, fibroblast-like cells characterized by their ability to differentiate into tissues of mesodermal lineages including adipocytes, chondrocytes and osteocytes. For several years now, MSCs have been evaluated for their in vivo and in vitro immunomodulatory and ‘tissue reconstruction’ properties, which could make them interesting in various clinical settings, and particularly in organ transplantation. This paper aims to review current knowledge on the properties of MSCs and their use in pre-clinical and clinical studies in solid organ transplantation, and particularly in the field of liver transplantation. The first available clinical data seem to show that MSCs are safe to use, at least in the medium-term, but more time is needed to evaluate the potential adverse effects of long-term use. Many issues must be resolved on the correct use of MSCs. Intensive in vitro and pre-clinical research are the keys to a better understanding of the way that MSCs act, and to eventually lead to clinical success. PMID:25469010

  15. [Therapeutic effect of human mesenchymal stem cells in skin after radiation damage].

    PubMed

    Bensidhoum, Morad; Gobin, Stéphanie; Chapel, Alain; Lemaitre, Gilles; Bouet, Stéphan; Waksman, Gilles; Thierry, Dominique; Martin, Michèle T

    2005-01-01

    Over 50% of all cancer patients presently receive radiotherapy at one stage in their treatment course. Inevitably skin is one of the most frequently damaged tissue due to its localization and constant turn-over. Our present goal is to reduce radiation-induced complications in human skin through stem cell therapy, particulary in human epidermis. Mesenchymal Stem Cells (MSCs) have been shown to be multipotent cells able to engraft in many tissues after injury. Herein, we isolated human MSCs and tested their capability to improve skin wound healing after irradiation. This potential was assessed in NOD/SCID mice which received 30 Gy locally on the thigh. This dose caused within 3 weeks local epidermis necrosis which was repaired within 13 weeks. MSCs were intravenously injected in irradiated mice 24 hours after exposure. Clinical scoring throughout 6 weeks gave indications that human MSCs reduced the extent of damage and accelerated the wound healing process. We show by quantitative qPCR and histological studies the presence of human MSCs derived cells into the scar. Human MSCs homed to the damaged skin and participated to the wound healing process. These results open prospects for cellular therapy by MSCs in irradiated epithelial tissues and could be extended to the whole general field of cutaneous cicatrization, particularly after burns.

  16. Mesenchymal stromal cells in the antimicrobial host response of hematopoietic stem cell recipients with graft-versus-host disease--friends or foes?

    PubMed

    Balan, A; Lucchini, G; Schmidt, S; Schneider, A; Tramsen, L; Kuçi, S; Meisel, R; Bader, P; Lehrnbecher, T

    2014-10-01

    Mesenchymal stromal cells (MSCs) are multipotent cells, which exhibit broad immunosuppressive activities. Moreover, they may be administered irrespectively of human leukocyte antigen (HLA) compatibility, without inducing life-threatening immunological reactions, as they express no HLA class II and limited HLA class I antigens under resting conditions. These characteristics have made MSC an appealing candidate for cell therapy after hematopoietic stem cell transplantation (HSCT), for example, for treatment of graft-versus-host disease (GvHD) or for graft rejection prevention/treatment in allogeneic HSCT recipients. Unfortunately, information regarding the effect of MSC infusion on the host response to infectious agents is scarce, and study results on infectious complications in patients receiving MSC are conflicting. The present review focuses on the available data from in vitro studies and animal models regarding the interaction of MSC with bacterial, viral and fungal pathogens. In a clinical part, we present the current information on infectious complications in allogeneic HSCT recipients who had received MSCs as prophylaxis or treatment of GvHD disease.

  17. Tracing the destiny of mesenchymal stem cells from embryo to adult bone marrow and white adipose tissue via Pdgfrα expression.

    PubMed

    Miwa, Hiroyuki; Era, Takumi

    2018-01-29

    Mesenchymal stem cells (MSCs) are somatic stem cells that can be derived from adult bone marrow (BM) and white adipose tissue (WAT), and that display multipotency and self-renewal capacity. Although MSCs are essential for tissue formation and have already been used in clinical therapy, the origins and markers of these cells remain unknown. In this study, we first investigated the developmental process of MSCs in mouse embryos using the gene encoding platelet-derived growth factor receptor α ( Pdgfra ) as a marker. We then traced cells expressing Pdgfra and other genes (brachyury, Sox1 and Pmx1 ) in various mutant mouse embryos until the adult stage. This tracing of MSC origins and destinies indicates that embryonic MSCs emerge in waves and that almost all adult BM MSCs and WAT MSCs originate from mesoderm and embryonic Pdgfrα-positive cells. Furthermore, we demonstrate that adult Pdgfrα-positive cells are involved in some pathological conditions. © 2018. Published by The Company of Biologists Ltd.

  18. Intentional placental removal on suspicious placenta accreta spectrum: still prohibited?

    PubMed

    Matsubara, Shigeki; Takahashi, Hironori

    2018-01-01

    Intentional placental removal for abnormally invasive placenta (AIP) is fundamentally abandoned at planned surgery for it. Whether this holds true even after recent introduction of various hemostatic procedures is unclear. We discussed on this issue based on our own experiences and also on the recent reports on various hemostatic procedures. Studies directly answering this question have been lacking. We must weigh the balance between the massive bleeding and possibility of uterus-preservation when intentional placental removal strategy is employed. An almost forgotten strategy, the "intentional placental removal" for planned AIP surgery may regain its position when appropriate hemostatic procedures are concomitantly used depending on the situation. Even employing this strategy, quick decision to perform hysterectomy under multidisciplinary team may be important.

  19. Human placental perfusion method in the assessment of transplacental passage of antiepileptic drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myllynen, Paeivi; Pienimaeki, Paeivi; Vaehaekangas, Kirsi

    2005-09-01

    Epilepsy is one of the most common neurological diseases, affecting about 0.5 to 1% of pregnant women. It is commonly accepted that older antiepileptic drugs bear teratogenic potential. So far, no agreement has been reached about the safest antiepileptic drug during pregnancy. It is known that nearly all drugs cross the placenta at least to some extent. Nowadays, there is very little information available of the pharmacokinetics of drugs in the feto-placental unit. Detailed information about drug transport across the placenta would be valuable for the development of safe and effective treatments. For reasons of safety, human studies on placentalmore » transfer are restricted to a limited number of drugs. Interspecies differences limit the extrapolation of animal data to humans. Several in vitro methods for the study of placental transfer have been developed over the past decades. The placental perfusion method is the only experimental method that has been used to study human placental transfer of substances in organized placental tissue. The aim of this article is to review human placental perfusion data on antiepileptic drugs. According to perfusion data, it seems that most of the antiepileptic drugs are transferred across the placenta meaning significant fetal exposure.« less

  20. Placental abruption: etiopathogenic aspects, diagnostic and therapeutic implications.

    PubMed

    Brăila, Anca Daniela; Gluhovschi, Adrian; Neacşu, Adrian; Lungulescu, Cristian Virgil; Brăila, Mihai; Vîrcan, Elena Luminiţa; Cotoi, Bogdan Virgil; Gogănău, Alexandru Marian

    2018-01-01

    The severe form of retroplacental hematoma is a serious accident in the second stage of pregnancy and at birth with frightening for the mother and fetus that often lead to death. The pathological mechanism presumes conditions for a "special ground" capital for the "efficiency" of the acute intradecidual vascular accident with the rupture of the uterus-placental arterioles. The complete clinical picture of this severe form of retroplacental hematoma - the placental abruption, observed and mentioned by the classics (vascular drama of Couvelaire) consists of five syndromes, 18 signs and symptoms, four paradoxes, phenomena not fully met in the other forms of retroplacental hematoma (minor and intermediate). The rate of incidence of retroplacental hematoma is in between 0.13-1.38% and depends on the environment, on the socio-economic and medical conditions, on the "obstetric education" and associated pathology. Our study aims at re-evaluating the clinico-paraclinical phenomenon imposed by the dramatism of the phenomenon of in utero placental apoplexy, the impact on neonatal mortality and on the functional prognosis from the point of view of surgical climax.

  1. Comparison of placental traits and their relation to litter size and parity weight in sheep.

    PubMed

    Ocak, S; Emsen, E; Köycegiz, F; Kutluca, M; Onder, H

    2009-10-01

    The relationships between genotype and placental traits, parity and litter weight (LW), and factors affecting these characteristics were investigated in this study. In total, 112 ewes (Romanov crossbred and local breeds) were utilized. One-way ANOVA was used for statistical comparison, and a Pearson correlation was used to determine the relationships between the variables. Significant differences in parity weight within genotype and breed have been determined. A negative correlation was revealed between placental weight (PW) and placental efficiency (r = -0.743, P < 0.01; and r = -0.732, P < 0.01). There was no relationship between litter sex and placental traits. Birth type had a significant effect on PW (P < 0.05), and significant differences within sex-birth type interactions occurred (P < 0.05). The results of the present study have shown a positive correlation between cotyledon density and placental efficiency among all genotypes and breeds that were used in the study. In conclusion, it has been determined that placental traits were affected by LW and Romanov crossbreed ewes had greater PW than local breeds. Further studies are required to investigate the relationship between parity and placental traits in sheep.

  2. Association between cerebral palsy and microscopically verified placental infarction in extremely preterm infants.

    PubMed

    Vinnars, Marie-Therese; Vollmer, Brigitte; Nasiell, Josefine; Papadogiannakis, Nikos; Westgren, Magnus

    2015-09-01

    Previously, cerebral palsy has been associated with placental infarctions diagnosed macroscopically by midwifes. However, the risk of misclassification of infarctionsis is high without a histological verification. Therefore, the objective of this study was to study placental histopathology in relation to developmental outcome at 2.5 years corrected age in a population born extremely preterm. A prospective cohort study was carried out at Karolinska University Hospital, Stockholm, Sweden on a population of 139 live born infants delivered <27 gestational weeks during 2004-2007. A senior perinatal pathologist, who was blinded to outcome data, evaluated all placental slides microscopically. Neuromotor and sensory functions of the children were evaluated. Bayley Scales of Infant and Toddler Development-III (Bayley-III) were used to assess development at corrected age 2.5 years. The outcome data were evaluated without reference to obstetrical and pathology data. The primary outcome measure was neurological and developmental status at 2.5 years of corrected age. This was measured as diagnosis of cerebral palsy, visual impairment, hearing impairment as well as performance on Bayley-III scales evaluating cognitive, language and motor functions. Two out of seven children with placental infarction were diagnosed with cerebral palsy compared with one child of 51 without placental infarction (p = 0.036). For developmental outcome according to Bayley-III at 2.5 years no statistically significant associations with placental pathology were found. A possible association between placental infarction, verified by microscopic examination, and cerebral palsy has been identified in this extremely preterm population. © 2015 Nordic Federation of Societies of Obstetrics and Gynecology.

  3. The Human Placenta Project: Placental Structure, Development, and Function in Real Time

    PubMed Central

    Guttmacher, Alan E.; Maddox, Yvonne T.; Spong, Catherine Y.

    2014-01-01

    Despite its crucial role in the health of both the fetus and the pregnant woman, the placenta is the least understood human organ. Since a growing body of evidence also underscores the importance of placental development in the lifelong health of both mother and offspring, this lack of knowledge about placental structure and function is particularly concerning. Given modern approaches and technologies and the ability to develop new methods, we propose a coordinated “Human Placenta Project,” with the ultimate goal of understanding human placental structure, development, and function in real time. PMID:24661567

  4. The placentation of eulipotyphla-reconstructing a morphotype of the Mammalian placenta.

    PubMed

    Ferner, Kirsten; Siniza, Swetlana; Zeller, Ulrich

    2014-10-01

    Placentation determines the developmental status of the neonate, which can be considered as the most vulnerable stage in the mammalian life cycle. In this respect, the different evolutionary and ecological adaptations of marsupial and placental mammals have most likely been associated with the different reproductive strategies of the two therian clades. The morphotypes of marsupial and placental neonates, as well as the placental stem species pattern of Marsupialia, have already been reconstructed. To contribute to a better understanding of the evolution of Placentalia, a histological and ultrastructural investigation of the placenta in three representatives of Eulipotyphla, that is, core insectivores, has been carried out in this study. We studied the Musk shrew (Suncus murinus), the four-toed hedgehog (Atelerix albiventris), and the Iberian mole (Talpa occidentalis). As a result, a eulipotyphlan placental morphotype consisting of a compact and invasive placenta was reconstructed. This supports the widely accepted hypothesis that the stem lineage of Placentalia is characterized by an invasive, either endothelio- or hemochorial placenta. Evolutionary transformations toward a diffuse, noninvasive placenta occurred in the stem lineages of lower primates and cetartiodactyles and were associated with prolonged gestation and the production of few and highly precocial neonates. Compared to the choriovitelline placenta of Marsupialia, the chorioallantoic placenta of Placentalia allows for a more intimate contact and is associated with more advanced neonates. © 2014 Wiley Periodicals, Inc.

  5. Intra-discal injection of autologous, hypoxic cultured bone marrow-derived mesenchymal stem cells in five patients with chronic lower back pain: a long-term safety and feasibility study.

    PubMed

    Elabd, Christian; Centeno, Christopher J; Schultz, John R; Lutz, Gregory; Ichim, Thomas; Silva, Francisco J

    2016-09-01

    Chronic low back pain due to disc degeneration represents a major social and economic burden worldwide. The current standard of care is limited to symptomatic relief and no current approved therapy promotes disc regeneration. Bone marrow-derived mesenchymal stem cells (MSCs) are easily accessible and well characterized. These MSCs are multipotent and exhibit great tissue regenerative potential including bone, cartilage, and fibrous tissue regeneration. The use of this cell-based biologic for treating protruding disc herniation and/or intervertebral disc degeneration is a promising therapeutic strategy, due to their known regenerative, immuno-modulatory and anti-inflammatory properties. Five patients diagnosed with degenerative disc disease received an intra-discal injection of autologous, hypoxic cultured, bone marrow-derived mesenchymal stem cells (15.1-51.6 million cells) as part of a previous study. These patients were re-consented to participate in this study in order to assess long-term safety and feasibility of intra-discal injection of autologous, hypoxic cultured, bone marrow-derived mesenchymal stem cells 4-6 years post mesenchymal stem cell infusion. The follow-up study consisted of a physical examination, a low back MRI, and a quality of life questionnaire. Patients' lower back MRI showed absence of neoplasms or abnormalities surrounding the treated region. Based on the physical examination and the quality of life questionnaire, no adverse events were reported due to the procedure or to the stem cell treatment 4-6 years post autologous, hypoxic cultured mesenchymal stem cell infusion. All patients self-reported overall improvement, as well as improvement in strength, post stem cell treatment, and four out of five patients reported improvement in mobility. This early human clinical data suggests the safety and feasibility of the clinical use of hypoxic cultured bone marrow-derived mesenchymal stem cells for the treatment of lower back pain due to

  6. Oxidative stress and maternal obesity: feto-placental unit interaction.

    PubMed

    Malti, N; Merzouk, H; Merzouk, S A; Loukidi, B; Karaouzene, N; Malti, A; Narce, M

    2014-06-01

    To determine oxidative stress markers in maternal obesity during pregnancy and to evaluate feto-placental unit interaction, especially predictors of fetal metabolic alterations. 40 obese pregnant women (prepregnancy BMI > 30 kg/m²) were compared to 50 control pregnant women. Maternal, cord blood and placenta samples were collected at delivery. Biochemical parameters (total cholesterol and triglycerides) and oxidative stress markers (malondialdehyde, carbonyl proteins, superoxide anion expressed as reduced Nitroblue Tetrazolium, nitric oxide expressed as nitrite, reduced glutathione, catalase, superoxide dismutase) were assayed by biochemical methods. Maternal, fetal and placental triglyceride levels were increased in obese group compared to control. Maternal malondialdehyde, carbonyl proteins, nitric oxide and superoxide anion levels were high while reduced glutathione concentrations and superoxide dismutase activity were low in obesity. In the placenta and in newborns of these obese mothers, variations of redox balance were also observed indicating high oxidative stress. Maternal and placental interaction constituted a strong predictor of fetal redox variations in obese pregnancies. Maternal obesity compromised placental metabolism and antioxidant status which strongly impacted fetal redox balance. Oxidative stress may be one of the key downstream mediators that initiate programming of the offspring. Maternal obesity is associated with metabolic alterations and dysregulation of redox balance in the mother-placenta - fetus unit. These perturbations could lead to maternal and fetal complications and should be carefully considered. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Adipogenesis and epicardial adipose tissue: A novel fate of the epicardium induced by mesenchymal transformation and PPARγ activation

    PubMed Central

    Yamaguchi, Yukiko; Cavallero, Susana; Patterson, Michaela; Shen, Hua; Xu, Jian; Kumar, S. Ram; Sucov, Henry M.

    2015-01-01

    The hearts of many mammalian species are surrounded by an extensive layer of fat called epicardial adipose tissue (EAT). The lineage origins and determinative mechanisms of EAT development are unclear, in part because mice and other experimentally tractable model organisms are thought to not have this tissue. In this study, we show that mouse hearts have EAT, localized to a specific region in the atrial–ventricular groove. Lineage analysis indicates that this adipose tissue originates from the epicardium, a multipotent epithelium that until now is only established to normally generate cardiac fibroblasts and coronary smooth muscle cells. We show that adoption of the adipocyte fate in vivo requires activation of the peroxisome proliferator activated receptor gamma (PPARγ) pathway, and that this fate can be ectopically induced in mouse ventricular epicardium, either in embryonic or adult stages, by expression and activation of PPARγ at times of epicardium–mesenchymal transformation. Human embryonic ventricular epicardial cells natively express PPARγ, which explains the abundant presence of fat seen in human hearts at birth and throughout life. PMID:25646471

  8. Placental Dysfunction Underlies Increased Risk of Fetal Growth Restriction and Stillbirth in Advanced Maternal Age Women.

    PubMed

    Lean, Samantha C; Heazell, Alexander E P; Dilworth, Mark R; Mills, Tracey A; Jones, Rebecca L

    2017-08-29

    Pregnancies in women of advanced maternal age (AMA) are susceptible to fetal growth restriction (FGR) and stillbirth. We hypothesised that maternal ageing is associated with utero-placental dysfunction, predisposing to adverse fetal outcomes. Women of AMA (≥35 years) and young controls (20-30 years) with uncomplicated pregnancies were studied. Placentas from AMA women exhibited increased syncytial nuclear aggregates and decreased proliferation, and had increased amino acid transporter activity. Chorionic plate and myometrial artery relaxation was increased compared to controls. AMA was associated with lower maternal serum PAPP-A and sFlt and a higher PlGF:sFlt ratio. AMA mice (38-41 weeks) at E17.5 had fewer pups, more late fetal deaths, reduced fetal weight, increased placental weight and reduced fetal:placental weight ratio compared to 8-12 week controls. Maternofetal clearance of 14 C-MeAIB and 3 H-taurine was reduced and uterine arteries showed increased relaxation. These studies identify reduced placental efficiency and altered placental function with AMA in women, with evidence of placental adaptations in normal pregnancies. The AMA mouse model complements the human studies, demonstrating high rates of adverse fetal outcomes and commonalities in placental phenotype. These findings highlight placental dysfunction as a potential mechanism for susceptibility to FGR and stillbirth with AMA.

  9. Involvement of Wnt/β-catenin signaling in the mesenchymal stem cells promote metastatic growth and chemoresistance of cholangiocarcinoma.

    PubMed

    Wang, Weiwei; Zhong, Wei; Yuan, Jiahui; Yan, Congcong; Hu, Shaoping; Tong, Yinping; Mao, Yubin; Hu, Tianhui; Zhang, Bing; Song, Gang

    2015-12-08

    Mesenchymal stem cells (MSCs) are multi-potent progenitor cells with ability to differentiate into multiple lineages, including bone, cartilage, fat, and muscles. Recent research indicates that MSCs can be efficiently recruited to tumor sites, modulating tumor growth and metastasis. However, the underlying molecular mechanisms are not fully understood. Here, we first demonstrated that human umbilical cord-derived mesenchymal stem cells (hUC-MSCs), when mixed with human cholangiocarcinoma cell lines QBC939 in a xenograft tumor model, significantly increased the cancer cells proliferation and metastatic potency. MSCs and their conditioned media (MSC-CM) could improve the drug resistance of tumor when the compound K (CK) as an anti-cancer drug, a major intestinal bacterial metabolite of panaxoside, was administered to xenograft tumor mice. Furthermore, MSCs greatly increased the colony formation and invasion of cholangiocarcinoma cells QBC939 and Mz-ChA-1. Immunochemistry studies of cholangiocarcinoma tissue chips and transplantation tumor from nude mice showed that the expression of β-catenin was important for cholangiocarcinoma development. We further demonstrated that MSCs and MSCs-CM could promote proliferation and migration of cholangiocarcinoma cells through targeting the Wnt/β-catenin signaling pathway. hUC-MSCs or MSCs-CM stimulated Wnt activity by promoting the nuclear translocation of β-catenin, and up-regulated Wnt target genes MMPs family, cyclin D1 and c-Myc. Together, our studies highlight a critical role for MSCs on cancer metastasis and indicate MSCs promote metastatic growth and chemoresistance of cholangiocarcinoma cells via activation of Wnt/β-catenin signaling.

  10. Involvement of Wnt/β-catenin signaling in the mesenchymal stem cells promote metastatic growth and chemoresistance of cholangiocarcinoma

    PubMed Central

    Yuan, Jiahui; Yan, Congcong; Hu, Shaoping; Tong, Yinping; Mao, Yubin; Hu, Tianhui; Zhang, Bing; Song, Gang

    2015-01-01

    Mesenchymal stem cells (MSCs) are multi-potent progenitor cells with ability to differentiate into multiple lineages, including bone, cartilage, fat, and muscles. Recent research indicates that MSCs can be efficiently recruited to tumor sites, modulating tumor growth and metastasis. However, the underlying molecular mechanisms are not fully understood. Here, we first demonstrated that human umbilical cord-derived mesenchymal stem cells (hUC-MSCs), when mixed with human cholangiocarcinoma cell lines QBC939 in a xenograft tumor model, significantly increased the cancer cells proliferation and metastatic potency. MSCs and their conditioned media (MSC-CM) could improve the drug resistance of tumor when the compound K (CK) as an anti-cancer drug, a major intestinal bacterial metabolite of panaxoside, was administered to xenograft tumor mice. Furthermore, MSCs greatly increased the colony formation and invasion of cholangiocarcinoma cells QBC939 and Mz-ChA-1. Immunochemistry studies of cholangiocarcinoma tissue chips and transplantation tumor from nude mice showed that the expression of β-catenin was important for cholangiocarcinoma development. We further demonstrated that MSCs and MSCs-CM could promote proliferation and migration of cholangiocarcinoma cells through targeting the Wnt/β-catenin signaling pathway. hUC-MSCs or MSCs-CM stimulated Wnt activity by promoting the nuclear translocation of β-catenin, and up-regulated Wnt target genes MMPs family, cyclin D1 and c-Myc. Together, our studies highlight a critical role for MSCs on cancer metastasis and indicate MSCs promote metastatic growth and chemoresistance of cholangiocarcinoma cells via activation of Wnt/β-catenin signaling. PMID:26474277

  11. Three-dimensional spheroid culture of human gingiva-derived mesenchymal stem cells enhances mitigation of chemotherapy-induced oral mucositis.

    PubMed

    Zhang, Qunzhou; Nguyen, Andrew L; Shi, Shihong; Hill, Colin; Wilder-Smith, Petra; Krasieva, Tatiana B; Le, Anh D

    2012-04-10

    Mesenchymal stem cells (MSCs) are capable of regenerative and immunomodulatory functions in cell-based therapies in a variety of human diseases and injuries; however, their therapeutic efficacy and potential side effects remain major obstacles in clinical applications. We report here a 3D spheroid culture approach to optimize stem cell properties and therapeutic effects of human gingiva-derived mesenchymal stem cells (GMSCs) in mitigation of experimental oral mucositis. Under growth condition of ultra-low attachment, GMSCs spontaneously aggregated into 3D spheroids and exhibited distinct early stem cell phenotype characterized by elevated expression Stro-1 and CXC chemokine receptor 4 (CXCR-4) as well as OCT-4 and Nanog, 2 important transcriptional factors relevant to stem cell properties, and decreased expression of MSC-associated markers, including CD29, CD90, and CD105. Functionally, spheroid GMSCs are capable of enhanced multipotency and augmented secretion of several chemokines and cytokines relevant to cell migration, survival, and angiogenesis. More importantly, spheroid GMSCs expressed increased levels of reactive oxygen species, hypoxia-inducible factor (HIF)-1 and -2α, and manganese superoxide dismutase, which correlated with improved resistance to oxidative stress-induced apoptosis. Using an in vivo murine model of chemotherapy-induced oral mucositis, we demonstrated that spheroid-derived GMSCs possessed better therapeutic efficacy than their adherent cells in reversing body weight loss and promoting the regeneration of disrupted epithelial lining of the mucositic tongues. These findings suggest that 3D spheroid culture allows early stemness preservation and potentially precondition GMSCs for enhanced mitigation of oral mucositis. © Mary Ann Liebert, Inc.

  12. Placental labyrinth formation in mice requires endothelial FLRT2/UNC5B signaling.

    PubMed

    Tai-Nagara, Ikue; Yoshikawa, Yusuke; Numata, Naoko; Ando, Tomofumi; Okabe, Keisuke; Sugiura, Yuki; Ieda, Masaki; Takakura, Nobuyuki; Nakagawa, Osamu; Zhou, Bin; Okabayashi, Koji; Suematsu, Makoto; Kitagawa, Yuko; Bastmeyer, Martin; Sato, Kohji; Klein, Rüdiger; Navankasattusas, Sutip; Li, Dean Y; Yamagishi, Satoru; Kubota, Yoshiaki

    2017-07-01

    The placental labyrinth is the interface for gas and nutrient exchange between the embryo and the mother; hence its proper development is essential for embryogenesis. However, the molecular mechanism underlying development of the placental labyrinth, particularly in terms of its endothelial organization, is not well understood. Here, we determined that fibronectin leucine-rich transmembrane protein 2 (FLRT2), a repulsive ligand of the UNC5 receptor family for neurons, is unexpectedly expressed in endothelial cells specifically in the placental labyrinth. Mice lacking FLRT2 in endothelial cells exhibited embryonic lethality at mid-gestation, with systemic congestion and hypoxia. Although they lacked apparent deformities in the embryonic vasculature and heart, the placental labyrinths of these embryos exhibited aberrant alignment of endothelial cells, which disturbed the feto-maternal circulation. Interestingly, this vascular deformity was related to endothelial repulsion through binding to the UNC5B receptor. Our results suggest that the proper organization of the placental labyrinth depends on coordinated inter-endothelial repulsion, which prevents uncontrolled layering of the endothelium. © 2017. Published by The Company of Biologists Ltd.

  13. PP128. Placental Caspase-3 gene polymorphisms is associated with preeclampsia.

    PubMed

    Hsu, C-D; Polavarapu, S; Parton, L

    2012-07-01

    Increased placental trophoblastic apoptosis (programmed cell death) was previously reported in pregnancies complicated by preeclampsia. Caspase-3 is one of the key executioners of apoptosis. Caspase are expressed in many tissues including human placental trophoblast and other tissues. Variations in the promoter area of the Caspase genes may modulate apoptotic signaling, contributing to an increased risk of preeclampsia To determine if gene polymorphisms of Caspase 3 proteins differ between patient with and without preeclampsia. Forty-three singleton placentas were studied. Twenty-two placentas were with preeclampsia and 21 were normotensive controls. DNA was extracted from placentas using QIAAmp DNA Minikit. Genotyping of Caspase 3 +567 was determined by real-time PCR using the Applied Biosystems Prism 7900 HT SDS machine. Chi-square and Fisher's exact tests were used for statistical analysis. There were no significant differences in maternal age, parity or race between the two groups. Preeclamptic placentas had higher frequency of wild type TT of Caspase-3 SNP (+567) as compared with normotensive controls (59% versus 28.5%). Preeclamptic placentas expressed significantly more genotype of TT of Caspase-3 SNP (+567) than normotensive patients when compared to CC (p=0.02). The alle frequencies of the Caspase SNP (+567) in preeclampstic placentas were 0.77 and 0.23 for T and C, respectively, as compared to 0.52 and 0.48, respectively, in placentas from normotensive pregnancies. Immune intolerance of maternal and placental interaction plays an important role in the pathogenesis of preeclampsia. Increased of placental apoptosis was reported in pregnancy complicated with preeclamsia. Our findings indicate placental Caspase 3 (+567) gene polymorphisms is associated with preeclampsia. Altered placental alle frequencies and caspase-3 SNP (+567) in preeclampsia further suggests preeclampsia is a trophoblastic disorder. Copyright © 2012. Published by Elsevier B.V.

  14. Low birth weight in response to salt restriction during pregnancy is not due to alterations in uterine-placental blood flow or the placental and peripheral renin-angiotensin system.

    PubMed

    Leandro, Sandra Márcia; Furukawa, Luzia Naôko Shinohara; Shimizu, Maria Heloisa Massola; Casarini, Dulce Elena; Seguro, Antonio Carlos; Patriarca, Giuliana; Coelho, Michella Soares; Dolnikoff, Miriam Sterman; Heimann, Joel Claudio

    2008-09-03

    A number of studies conducted in humans and in animals have observed that events occurring early in life are associated with the development of diseases in adulthood. Salt overload and restriction during pregnancy and lactation are responsible for functional (hemodynamic and hormonal) and structural alterations in adult offspring. Our group observed that lower birth weight and insulin resistance in adulthood is associated with salt restriction during pregnancy. On the other hand, perinatal salt overload is associated with higher blood pressure and higher renal angiotensin II content in adult offspring. Therefore, we hypothesised that renin-angiotensin system (RAS) function is altered by changes in sodium intake during pregnancy. Such changes may influence fetoplacental blood flow and thereby fetal nutrient supply, with effects on growth in utero and, consequently, on birth weight. Female Wistar rats were fed low-salt (LS), normal-salt (NS), or high-salt (HS) diet, starting before conception and continuing until day 19 of pregnancy. Blood pressure, heart rate, fetuses and dams' body weight, placentae weight and litter size were measured on day 19 of pregnancy. Cardiac output, uterine and placental blood flow were also determined on day 19. Expressions of renin-angiotensin system components and of the TNF-alpha gene were evaluated in the placentae. Plasma renin activity (PRA) and plasma and tissue angiotensin-converting enzyme (ACE) activity, as well as plasma and placental levels of angiotensins I, II, and 1-7 were measured. Body weight and kidney mass were greater in HS than in NS and LS dams. Food intake did not differ among the maternal groups. Placental weight was lower in LS dams than in NS and HS dams. Fetal weight was lower in the LS group than in the NS and HS groups. The PRA was greater in LS dams than in NS and HS dams, although ACE activity (serum, cardiac, renal, and placental) was unaffected by the level of sodium intake. Placental levels of

  15. Self-reported smoking habits and serum cotinine levels in women with placental abruption.

    PubMed

    Tikkanen, Minna; Surcel, Heljä-Marja; Bloigu, Aini; Nuutila, Mika; Ylikorkala, Olavi; Hiilesmaa, Vilho; Paavonen, Jorma

    2010-12-01

    smoking is an important risk factor for placental abruption with strong dose-dependency. Pregnant smokers often underreport tobacco use which can be objectively assessed by measuring serum cotinine levels. We examined the accuracy between self-reported smoking habits and early pregnancy serum cotinine levels in women with or without placental abruption. retrospective case-control study. university Hospital. a total of 175 women with placental abruption and 370 control women. serum samples collected during the first trimester were analyzed for serum cotinine levels. Cotinine concentration over 15 ng/ml was considered as the cutoff indicating active smoking. Smoking habits of the women and their partners were recorded at the same visit. placental abruption. of the cases of women with placental abruption, 27.4% reported smoking compared with 14.3% of the controls (p < 0.001). Based on serum cotinine levels, 30.3% of the case women and 17.6% of the control women were considered smokers (p = 0.003). Serum cotinine levels among smokers were higher in the abruption group than in the control group (median 229.5 ng/ml (interquartile range 169.8-418.1) vs. 153.5 ng/ml (56.6-241.4), p = 0.002). Self-reported number of cigarettes smoked daily correlated well with the cotinine levels (r = 0.68, p < 0.001). Of the women reporting as nonsmokers, approximately 7% were considered smokers based on cotinine testing. pregnant women with subsequent placental abruption are heavier smokers than pregnant control women. Self-reported smoking habits correlate well with serum cotinine levels in Finland. Therefore, self-reported smoking can be considered as a risk marker for placental abruption.

  16. High-efficiency generation of induced pluripotent mesenchymal stem cells from human dermal fibroblasts using recombinant proteins.

    PubMed

    Chen, Fanfan; Zhang, Guoqiang; Yu, Ling; Feng, Yanye; Li, Xianghui; Zhang, Zhijun; Wang, Yongting; Sun, Dapeng; Pradhan, Sriharsa

    2016-07-30

    Induced pluripotent mesenchymal stem cells (iPMSCs) are novel candidates for drug screening, regenerative medicine, and cell therapy. However, introduction of transcription factor encoding genes for induced pluripotent stem cell (iPSC) generation which could be used to generate mesenchymal stem cells is accompanied by the risk of insertional mutations in the target cell genome. We demonstrate a novel method using an inactivated viral particle to package and deliver four purified recombinant Yamanaka transcription factors (Sox2, Oct4, Klf4, and c-Myc) resulting in reprogramming of human primary fibroblasts. Whole genome bisulfite sequencing was used to analyze genome-wide CpG methylation of human iPMSCs. Western blot, quantitative PCR, immunofluorescence, and in-vitro differentiation were used to assess the pluripotency of iPMSCs. The resulting reprogrammed fibroblasts show high-level expression of stem cell markers. The human fibroblast-derived iPMSC genome showed gains in DNA methylation in low to medium methylated regions and concurrent loss of methylation in previously hypermethylated regions. Most of the differentially methylated regions are close to transcription start sites and many of these genes are pluripotent pathway associated. We found that DNA methylation of these genes is regulated by the four iPSC transcription factors, which functions as an epigenetic switch during somatic reprogramming as reported previously. These iPMSCs successfully differentiate into three embryonic germ layer cells, both in vitro and in vivo. Following multipotency induction in our study, the delivered transcription factors were degraded, leading to an improved efficiency of subsequent programmed differentiation. Recombinant transcription factor based reprogramming and derivatization of iPMSC offers a novel high-efficiency approach for regenerative medicine from patient-derived cells.

  17. Prevalence, pattern, and determinants of placental malaria in a population of southeastern Nigerian parturients.

    PubMed

    Ezebialu, Ifeanyichukwu U; Eke, Ahizechukwu C; Ezeagwuna, Dorothy A; Nwachukwu, Chukwuemeka E; Ifediata, Francis; Ezebialu, Chinenye U

    2012-12-01

    Placental malaria is a complication of malaria in pregnancy and is associated with adverse outcomes. Its burden is highest in Sub-Saharan Africa, but despite this, data based on histological analysis are scarce from this region. Questionnaires administered by the researchers were used to obtain information from parturients at a university teaching hospital in southeastern Nigeria between April and November 2010. Maternal blood and placental blood were collected for analysis. Placental blocks were taken for histological analysis. Statistical analyses were done using SPSS v. 17. Three hundred and sixty-five placentas were analyzed, out of which 254 showed histological evidence of malaria parasitization, giving a prevalence of 69.6%. Of the 254 placentas, 23 (9.0%) showed active infection and 196 (77.2%) showed active-on-past infection, while 35 (13.8%) showed past infection. Rural residence, hemoglobin genotype AA, not receiving intermittent preventive treatment in pregnancy (IPTp), and not sleeping under insecticide-treated bed nets (ITN) were significantly associated with placental malaria. Placental parasite density was inversely related to parity. This study showed that the prevalence of placental malaria in southeastern Nigeria is high, and demonstrated that the mean parasite density was inversely related to parity. Significant factors associated with placental malaria were also identified. Appreciation of these significant factors will assist program managers in implementing the strategies for the prevention of malaria in pregnancy. Copyright © 2012 International Society for Infectious Diseases. All rights reserved.

  18. The Role of Placental Nutrient Sensing in Maternal-Fetal Resource Allocation1

    PubMed Central

    Díaz, Paula; Powell, Theresa L.; Jansson, Thomas

    2014-01-01

    ABSTRACT The placenta mediates maternal-fetal exchange and has historically been regarded as a passive conduit for nutrients. However, emerging evidence suggests that the placenta actively responds to nutritional and metabolic signals from the mother and the fetus. We propose that the placenta integrates a multitude of maternal and fetal nutritional cues with information from intrinsic nutrient-sensing signaling pathways to match fetal demand with maternal supply by regulating maternal physiology, placental growth, and nutrient transport. This process, which we have called placental nutrient sensing, ensures optimal allocation of resources between the mother and the fetus to maximize the chances for propagation of parental genes without jeopardizing maternal health. We suggest that these mechanisms have evolved because of the evolutionary pressures of maternal undernutrition, which result in decreased placental growth and down-regulation of nutrient transporters, thereby limiting fetal growth to ensure maternal survival. These regulatory loops may also function in response to maternal overnutrition, leading to increased placental growth and nutrient transport in cases of maternal obesity or gestational diabetes. Thus, placental nutrient sensing modulates maternal-fetal resource allocation to increase the likelihood of reproductive success. This model implies that the placenta plays a critical role in mediating fetal programming and determining lifelong health. PMID:25122064

  19. O-linked N-acetyl-glucosamine deposition in placental proteins varies according to maternal glycemic levels.

    PubMed

    Dela Justina, Vanessa; Dos Passos Junior, Rinaldo R; Bressan, Alecsander F; Tostes, Rita C; Carneiro, Fernando S; Soares, Thaigra S; Volpato, Gustavo T; Lima, Victor Vitorino; Martin, Sebastian San; Giachini, Fernanda R

    2018-05-07

    Hyperglycemia increases glycosylation with O-linked N‑acetyl‑glucosamine (O-GlcNAc) contributing to placental dysfunction and fetal growth impairment. Our aim was to determine how O-GlcNAc levels are affected by hyperglycemia and the O-GlcNAc distribution in different placental regions. Female Wistar rats were divided into the following groups: severe hyperglycemia (>300 mg/dL; n = 5); mild hyperglycemia (>140 mg/dL, at least than two time points during oral glucose tolerance test; n = 7) or normoglycemia (<120 mg/dL; n = 6). At 21 days of pregnancy, placental tissue was collected and processed for morphometry and immunohistochemistry analyses, or properly stored at -80 °C for protein quantification by western blot. Placental index was increased only in severe hyperglycemic rats. Morphometric analysis showed increased junctional zone and decreased labyrinth region in placentas exclusively from the severe hyperglycemic group. Proteins targeted by O-GlcNAc were detected in all regions, with increased O-GlcNAc levels in the hyperglycemic group compared to control and mild hyperglycemic rats. Proteins in endothelial and trophoblast cells were the main target for O-GlcNAc. Whereas no changes in O-GlcNAc transferase (OGT) expression were detected, O-GlcNAcase (OGA) expression was reduced in placentas from the severe hyperglycemic group and augmented in placentas from the mild hyperglycemic group, compared with their respective control groups. Placental O-GlcNAc overexpression may contribute to placental dysfunction, as indicated by the placental index. Additionally, morphometric alterations, occurring simultaneously with increased O-GlcNAc accumulation in the placental tissue may contribute to placental dysfunction during hyperglycemia. Copyright © 2017. Published by Elsevier Inc.

  20. Evaluating effects of L-carnitine on human bone-marrow-derived mesenchymal stem cells.

    PubMed

    Fujisawa, Koichi; Takami, Taro; Fukui, Yumi; Quintanilha, Luiz Fernando; Matsumoto, Toshihiko; Yamamoto, Naoki; Sakaida, Isao

    2017-05-01

    Mesenchymal stem cells (MSCs) are multipotent cells showing potential for use in regenerative medicine. Culture techniques that are more stable and methods for the more efficient production of MSCs with therapeutic efficacy are needed. We evaluate the effects of growing bone marrow (Bm)-derived MSCs in the presence of L-carnitine, which is believed to promote lipid metabolism and to suppress apoptosis. The presence of L-carnitine decreased the degree of drug-induced apoptosis and suppressed adipogenic differentiation. Metabolomic analysis by means of the exhaustive investigation of metabolic products showed that, in addition to increased β-oxidation and the expression of all carnitine derivatives other than deoxycarnitine (an intermediate in carnitine synthesis), polysaturated and polyunsaturated acids were down-regulated. An integrated analysis incorporating both serial analysis of gene expression and metabolomics revealed increases in cell survival, suggesting the utility of carnitine. The addition of carnitine elevated the oxygen consumption rate by BmMSCs that had been cultured for only a few generations and those that had become senescent following repeated replication indicating that mitochondrial activation occurred. Our exhaustive analysis of the effects of various carnitine metabolites thus suggests that the addition of L-carnitine to BmMSCs during expansion enables efficient cell production.

  1. Cholinergic and dopaminergic neuronal differentiation of human adipose tissue derived mesenchymal stem cells.

    PubMed

    Marei, Hany El Sayed; El-Gamal, Aya; Althani, Asma; Afifi, Nahla; Abd-Elmaksoud, Ahmed; Farag, Amany; Cenciarelli, Carlo; Thomas, Caceci; Anwarul, Hasan

    2018-02-01

    Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into various cell types such as cartilage, bone, and fat cells. Recent studies have shown that induction of MSCs in vitro by growth factors including epidermal growth factor (EGF) and fibroblast growth factor (FGF2) causes them to differentiate into neural like cells. These cultures also express ChAT, a cholinergic marker; and TH, a dopaminergic marker for neural cells. To establish a protocol with maximum differentiation potential, we examined MSCs under three experimental culture conditions using neural induction media containing FGF2, EGF, BMP-9, retinoic acid, and heparin. Adipose-derived MSCs were extracted and expanded in vitro for 3 passages after reaching >80% confluency, for a total duration of 9 days. Cells were then characterized by flow cytometry for CD markers as CD44 positive and CD45 negative. MSCs were then treated with neural induction media and were characterized by morphological changes and Q-PCR. Differentiated MSCs expressed markers for immature and mature neurons; β Tubulin III (TUBB3) and MAP2, respectively, showing the neural potential of these cells to differentiate into functional neurons. Improved protocols for MSCs induction will facilitate and ensure the reproducibility and standard production of MSCs for therapeutic applications in neurodegenerative diseases. © 2017 Wiley Periodicals, Inc.

  2. Tunable Surface Repellency Maintains Stemness and Redox Capacity of Human Mesenchymal Stem Cells.

    PubMed

    Balikov, Daniel A; Crowder, Spencer W; Boire, Timothy C; Lee, Jung Bok; Gupta, Mukesh K; Fenix, Aidan M; Lewis, Holley N; Ambrose, Caitlyn M; Short, Philip A; Kim, Chang Soo; Burnette, Dylan T; Reilly, Matthew A; Murthy, N Sanjeeva; Kang, Mi-Lan; Kim, Won Shik; Sung, Hak-Joon

    2017-07-12

    Human bone marrow derived mesenchymal stem cells (hMSCs) hold great promise for regenerative medicine due to their multipotent differentiation capacity and immunomodulatory capabilities. Substantial research has elucidated mechanisms by which extracellular cues regulate hMSC fate decisions, but considerably less work has addressed how material properties can be leveraged to maintain undifferentiated stem cells. Here, we show that synthetic culture substrates designed to exhibit moderate cell-repellency promote high stemness and low oxidative stress-two indicators of naïve, healthy stem cells-in commercial and patient-derived hMSCs. Furthermore, the material-mediated effect on cell behavior can be tuned by altering the molar percentage (mol %) and/or chain length of poly(ethylene glycol) (PEG), the repellant block linked to hydrophobic poly(ε-caprolactone) (PCL) in the copolymer backbone. Nano- and angstrom-scale characterization of the cell-material interface reveals that PEG interrupts the adhesive PCL domains in a chain-length-dependent manner; this prevents hMSCs from forming mature focal adhesions and subsequently promotes cell-cell adhesions that require connexin-43. This study is the first to demonstrate that intrinsic properties of synthetic materials can be tuned to regulate the stemness and redox capacity of hMSCs and provides new insight for designing highly scalable, programmable culture platforms for clinical translation.

  3. Nomenclature and placental mammal phylogeny

    PubMed Central

    2010-01-01

    An issue arising from recent progress in establishing the placental mammal Tree of Life concerns the nomenclature of high-level clades. Fortunately, there are now several well-supported clades among extant mammals that require unambiguous, stable names. Although the International Code of Zoological Nomenclature does not apply above the Linnean rank of family, and while consensus on the adoption of competing systems of nomenclature does not yet exist, there is a clear, historical basis upon which to arbitrate among competing names for high-level mammalian clades. Here, we recommend application of the principles of priority and stability, as laid down by G.G. Simpson in 1945, to discriminate among proposed names for high-level taxa. We apply these principles to specific cases among placental mammals with broad relevance for taxonomy, and close with particular emphasis on the Afrotherian family Tenrecidae. We conclude that no matter how reconstructions of the Tree of Life change in years to come, systematists should apply new names reluctantly, deferring to those already published and maximizing consistency with existing nomenclature. PMID:20406454

  4. Cannabidiol Activates Neuronal Precursor Genes in Human Gingival Mesenchymal Stromal Cells.

    PubMed

    Soundara Rajan, Thangavelu; Giacoppo, Sabrina; Scionti, Domenico; Diomede, Francesca; Grassi, Gianpaolo; Pollastro, Federica; Piattelli, Adriano; Bramanti, Placido; Mazzon, Emanuela; Trubiani, Oriana

    2017-06-01

    In the last years, mesenchymal stromal cells (MSCs) from oral tissues have received considerable interest in regenerative medicine since they can be obtained with minimal invasive procedure and exhibit immunomodulatory properties. This study was aimed to investigate whether in vitro pre-treatment of MSCs obtained from human gingiva (hGMSCs) with Cannabidiol (CBD), a cannabinoid component produced by the plant Cannabis sativa, may promote human gingiva derived MSCs to differentiate toward neuronal precursor cells. Specifically, we have treated the hGMSCs with CBD (5 µM) for 24 h in order to evaluate the expression of genes involved in cannabidiol signaling, cell proliferation, self-renewal and multipotency, and neural progenitor cells differentiation. Next generation sequencing (NGS) demonstrated that CBD activates genes associated with G protein coupled receptor signaling in hGMSCs. Genes involved in DNA replication, cell cycle, proliferation, and apoptosis were regulated. Moreover, genes associated with the biological process of neuronal progenitor cells (NCPs) proliferation, neuron differentiation, neurogenesis, and nervous system development were significantly modulated. From our results, we hypothesize that human gingiva-derived MSCs conditioned with CBD could represent a valid method for improving the hGMSCs phenotype and thus might be a potential therapeutic tool in the treatment of neurodegenerative diseases. J. Cell. Biochem. 118: 1531-1546, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Placental dysfunction is associated with altered microRNA expression in pregnant women with low folate status

    PubMed Central

    Mackie, Fiona L.; Lean, Samantha C.; Greenwood, Susan L.; Heazell, Alexander E. P.; Forbes, Karen; Jones, Rebecca L.

    2017-01-01

    Scope Low maternal folate status during pregnancy increases the risk of delivering small for gestational age (SGA) infants, but the mechanistic link between maternal folate status, SGA, and placental dysfunction is unknown. microRNAs (miRNAs) are altered in pregnancy pathologies and by folate in other systems. We hypothesized that low maternal folate status causes placental dysfunction, mediated by altered miRNA expression. Methods and results A prospective observational study recruited pregnant adolescents and assessed third trimester folate status and placental function. miRNA array, QPCR, and bioinformatics identified placental miRNAs and target genes. Low maternal folate status is associated with higher incidence of SGA infants (28% versus 13%, p < 0.05) and placental dysfunction, including elevated trophoblast proliferation and apoptosis (p < 0.001), reduced amino acid transport (p < 0.01), and altered placental hormones (pregnancy‐associated plasma protein A, progesterone, and human placental lactogen). miR‐222‐3p, miR‐141‐3p, and miR‐34b‐5p were upregulated by low folate status (p < 0.05). Bioinformatics predicted a gene network regulating cell turnover. Quantitative PCR demonstrated that key genes in this network (zinc finger E‐box binding homeobox 2, v‐myc myelocytomatosis viral oncogene homolog (avian), and cyclin‐dependent kinase 6) were reduced (p < 0.05) in placentas with low maternal folate status. Conclusion This study supports that placental dysfunction contributes to impaired fetal growth in women with low folate status and suggests altered placental expression of folate‐sensitive miRNAs and target genes as a mechanistic link. PMID:28105727

  6. BROMODICHLOROMETHANE INHIBITS HUMAN PLACENTAL TROPHOBLAST DIFFERENTIATION

    EPA Science Inventory

    BROMODICHLOROMETHANE INHIBITS HUMAN PLACENTAL
    TROPHOBLAST DIFFERENTIATION
    Jiangang Chen, Twanda L. Thirkill, Peter N. Lohstroh, Susan R. Bielmeier, Michael
    G. Narotsky, Deborah S. Best, Randy A. Harrison, Kala Natarajan, Rex A. Pegram,
    Bill L. Lasley, and Gordon C. Do...

  7. ACCRETA COMPLICATING COMPLETE PLACENTA PREVIA IS CHARACTERIZED BY REDUCED SYSTEMIC LEVELS OF VASCULAR ENDOTHELIAL GROWTH FACTOR AND EPITHELIAL-TO-MESENCHYMAL TRANSITION OF THE INVASIVE TROPHOBLAST

    PubMed Central

    Wehrum, Mark J.; Buhimschi, Irina A.; Salafia, Carolyn; Thung, Stephen; Bahtiyar, Mert O.; Werner, Erica F.; Campbell, Katherine H.; Laky, Christine; Sfakianaki, Anna K.; Zhao, Guomao; Funai, Edmund F.; Buhimschi, Catalin S.

    2011-01-01

    OBJECTIVE To characterize serum angiogenic factor profile of women with complete placenta previa and determine if invasive trophoblast differentiation characteristic of accreta, increta or percreta shares features of epitehelial-mesenchymal-transition (EMT). STUDY DESIGN We analyzed gestational age matched serum samples from 90 pregnant women with either complete placenta previa (n=45) or uncomplicated pregnancies (n=45). Vascular-endothelial-growth-factor (VEGF), placental-growth-factor (PlGF) and soluble fms-like-tyrosine-kinase-1 (sFlt-1) were immunoassayed. VEGF and phosphotyrosine (P-Tyr) immunoreactivity was surveyed in histological specimens relative to expression of vimentin and cytokeratin-7. RESULTS Women with previa and invasive placentation [accreta (n=5); increta (n=6); percreta (n=2)] had lower systemic VEGF (invasive previa: median [IQR]: 0.8[0.02–3.4] vs. control: 6.5[2.7–10.5] pg/mL, P=0.02). VEGF and P-Tyr immunostaining predominated in the invasive extravillous trophoblasts (EVT) which co-expressed vimentin and cytokeratin-7, a EMT feature and tumor-like cell phenotype. CONCLUSIONS Lower systemic free VEGF and a switch of the interstitial EVT to a metastable cell phenotype characterize placenta previa with excessive myometrial invasion. PMID:21316642

  8. Genetic recapitulation of human pre-eclampsia risk during convergent evolution of reduced placental invasiveness in eutherian mammals

    PubMed Central

    Elliot, Michael G.; Crespi, Bernard J.

    2015-01-01

    The relationship between phenotypic variation arising through individual development and phenotypic variation arising through diversification of species has long been a central question in evolutionary biology. Among humans, reduced placental invasion into endometrial tissues is associated with diseases of pregnancy, especially pre-eclampsia, and reduced placental invasiveness has also evolved, convergently, in at least 10 lineages of eutherian mammals. We tested the hypothesis that a common genetic basis underlies both reduced placental invasion arising through a developmental process in human placental disease and reduced placental invasion found as a derived trait in the diversification of Euarchontoglires (rodents, lagomorphs, tree shrews, colugos and primates). Based on whole-genome analyses across 18 taxa, we identified 1254 genes as having evolved adaptively across all three lineages exhibiting independent evolutionary transitions towards reduced placental invasion. These genes showed strong evidence of enrichment for associations with pre-eclampsia, based on genetic-association studies, gene-expression analyses and gene ontology. We further used in silico prediction to identify a subset of 199 genes that are likely targets of natural selection during transitions in placental invasiveness and which are predicted to also underlie human placental disorders. Our results indicate that abnormal ontogenies can recapitulate major phylogenetic shifts in mammalian evolution, identify new candidate genes for involvement in pre-eclampsia, imply that study of species with less-invasive placentation will provide useful insights into the regulation of placental invasion and pre-eclampsia, and recommend a novel comparative functional-evolutionary approach to the study of genetically based human disease and mammalian diversification. PMID:25602073

  9. Regulation of Iodide Uptake in Placental Primary Cultures

    PubMed Central

    Burns, R.; O'Herlihy, C.; Smyth, P.P.A.

    2013-01-01

    Background Maintenance of adequate iodide supply to the developing fetus is dependent not only on maternal dietary iodine intake but also on placental iodide transport. The objective of this study was to examine the effects of different pregnancy-associated hormones on the uptake of radioiodide by the placenta and to determine if iodide transporter expression is affected by hormone incubation. Methods Primary cultures of placental trophoblast cells were established from placentas obtained at term from pre-labor caesarean sections. They were pre-incubated with 17β-estradiol, prolactin, oxytocin, human chorionic gonadotropin (hCG) and progesterone either singly or in combination over 12 h with 125I uptake being measured after 6 h. RNA was isolated from placental trophoblasts and real-time RT-PCR performed using sodium iodide symporter (NIS) and pendrin (PDS) probes. Results Significant dose response increments in 125I uptake by trophoblast cells (p < 0.01) were observed following incubation with hCG (60% increase), oxytocin (45% increase) and prolactin (32% increase). Although progesterone (50-200 ng/ml) and 17β-estradiol (1,000-15,000 pg/ml) alone produced no significant differences in uptake, they facilitated increased uptake when combined with prolactin or oxytocin, with a combination of all four hormones producing the greatest increase (82%). Increased 125I uptake was accompanied by corresponding increments in NIS mRNA (ratio 1.52) compared to untreated control cells. No significantly increased expression levels of PDS were observed. Conclusions Pregnancy-associated hormones, particularly oxytocin and hCG, have a role in promoting placental iodide uptake which may protect the fetus against iodine deficiency. PMID:24783055

  10. New multipotent tetracyclic tacrines with neuroprotective activity.

    PubMed

    Marco-Contelles, José; León, Rafael; de los Ríos, Cristóbal; García, Antonio G; López, Manuela G; Villarroya, Mercedes

    2006-12-15

    The synthesis and the biological evaluation (neuroprotection, voltage dependent calcium channel blockade, AChE/BuChE inhibitory activity and propidium binding) of new multipotent tetracyclic tacrine analogues (5-13) are described. Compounds 7, 8 and 11 showed a significant neuroprotective effect on neuroblastoma cells subjected to Ca(2+) overload or free radical induced toxicity. These compounds are modest AChE inhibitors [the best inhibitor (11) is 50-fold less potent than tacrine], but proved to be very selective, as for most of them no BuChE inhibition was observed. In addition, the propidium displacement experiments showed that these compounds bind AChE to the peripheral anionic site (PAS) of AChE and, consequently, are potential agents that can prevent the aggregation of beta-amyloid. Overall, compound 8 is a modest and selective AChE inhibitor, but an efficient neuroprotective agent against 70mM K(+) and 60microM H(2)O(2). Based on these results, some of these molecules can be considered as lead candidates for the further development of anti-Alzheimer drugs.

  11. Biochemical tests of placental function for assessment in pregnancy.

    PubMed

    Neilson, James P

    2012-08-15

    Biochemical tests of placental or feto-placental function were widely used in the 1960s and 1970s in high-risk pregnancies to try to predict, and thus try to avoid, adverse fetal outcome. To assess the effects of performing biochemical tests of placental function in high-risk, low-risk, or unselected pregnancies. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (10 May 2012). Controlled trials (randomized or 'quasi-randomized') that compare the use of biochemical tests of placental function in pregnancy with non-use. Trial quality was assessed and data were extracted by the review author. A single eligible trial of poor quality was identified. It involved 622 women with high-risk pregnancies who had had plasma (o)estriol estimations. Women were allocated to have their (o)estriol results revealed or concealed on the basis of hospital record number (with attendant risk of selection bias). There were no obvious differences in perinatal mortality (relative risk (RR) 0.88, 95% confidence interval (CI) 0.36 to 2.13) or planned delivery (RR 0.97, 95% CI 0.81 to 1.15) between the two groups. The available trial data do not support the use of (o)estriol estimation in high-risk pregnancies. The single small trial available does not have the power to exclude a beneficial effect but this is probably of historical interest since biochemical testing has been superseded by biophysical testing in antepartum fetal assessment.

  12. Overlap Chronic Placental Inflammation Is Associated with a Unique Gene Expression Pattern.

    PubMed

    Raman, Kripa; Wang, Huaqing; Troncone, Michael J; Khan, Waliul I; Pare, Guillaume; Terry, Jefferson

    2015-01-01

    Breakdown of the balance between maternal pro- and anti-inflammatory pathways is thought to allow an anti-fetal maternal immune response that underlies development of chronic placental inflammation. Chronic placental inflammation is manifested by the influx of maternal inflammatory cells, including lymphocytes, histiocytes, and plasma cells, into the placental membranes, villi, and decidua. These infiltrates are recognized pathologically as chronic chorioamnionitis, chronic villitis of unknown etiology, and chronic deciduitis. Each of these histological entities is associated with adverse fetal outcomes including intrauterine growth restriction and preterm birth. Studying the gene expression patterns in chronically inflamed placenta, particularly when overlapping histologies are present, may lead to a better understanding of the underlying mechanism(s). Therefore, this study compared tissue with and without chronic placental inflammation, manifested as overlapping chronic chorioamnionitis, chronic villitis of unknown etiology, and chronic deciduitis. RNA expression profiling was conducted on formalin fixed, paraffin embedded placental tissue using Illumina microarrays. IGJ was the most significant differentially expressed gene identified and had increased expression in the inflamed tissue. In addition, IGLL1, CXCL13, CD27, CXCL9, ICOS, and KLRC1 had increased expression in the inflamed placental samples. These differentially expressed genes are associated with T follicular helper cells, natural killer cells, and B cells. Furthermore, these genes differ from those typically associated with the individual components of chronic placental inflammation, such as chronic villitis, suggesting that the inflammatory infiltrate associated with overlapping chronic chorioamnionitis, chronic villitis of unknown etiology, and chronic deciduitis differs is unique. To further explore and validate gene expression findings, we conducted immunohistochemical assessment of protein level

  13. Placental hormones, nutrition, and fetal development.

    PubMed

    Mulay, S; Browne, C A; Varma, D R; Solomon, S

    1980-02-01

    Fetal growth retardation due to maternal malnutrition is widespread especially in the Third World. Little is known about the mechanisms that regulate the growth of the fetus and placenta during protein malnutrition. It is known that the placental size and levels of circulating placental hormones such as human chorionic gonadotrophins (hCG), human placental lactogen (hPL), and estrogens are affected by the nutritional status of the mother. There is suggestive evidence that during malnutrition, hPL may increase lipolysis and exert a glucose sparing effect in the mother, thereby promoting glucose availability to the fetus. We have studied the influence of dietary protein deficiency on the binding of dexamethasone to the specific cytosol receptors in adult and fetal tissues. A low protein diet in adult male rats is associated with a decrease in dexamethasone binding to liver cytosol receptors. On the other hand, protein deprivation in pregnant female rats leads to an increase in dexamethasone binding to liver cytosol receptors of both the mother and fetus. However, the influences of maternal protein deprivation on dexamethasone receptors in the fetal liver and lungs are not similar. At 21 days gestation the binding of dexamethasone to fetal lung receptors of protein-deficient mothers is lower than that in the controls. These differences at a critical time in the fetal lung development indicate that a fall in receptors for dexamethasone may lead to impaired phospholipid synthesis in fetuses of protein-deficient mothers and point to the importance of nutritional factors in the biochemistry of fetal development.

  14. CD4+ T cells are important mediators of oxidative stress that cause hypertension in response to placental ischemia.

    PubMed

    Wallace, Kedra; Cornelius, Denise C; Scott, Jeremy; Heath, Judith; Moseley, Janae; Chatman, Krystal; LaMarca, Babbette

    2014-11-01

    Preeclampsia is associated with oxidative stress, which is suspected to play a role in hypertension, placental ischemia, and fetal demise associated with the disease. Various cellular sources of oxidative stress, such as neutrophils, monocytes, and CD4(+) T cells have been suggested as culprits in the pathophysiology of preeclampsia. The objective of this study was to examine a role of circulating and placental CD4(+) T cells in oxidative stress in response to placental ischemia during pregnancy. CD4(+) T cells and oxidative stress were measured in preeclamptic and normal pregnant women, placental ischemic and normal pregnant rats, and normal pregnant recipient rats of placental ischemic CD4(+) T cells. Women with preeclampsia had significantly increased circulating (P=0.02) and placental CD4(+) T cells (P=0.0001); lymphocyte secretion of myeloperoxidase (P=0.004); and placental reactive oxygen species (P=0.0004) when compared with normal pregnant women. CD4(+) T cells from placental ischemic rats cause many facets of preeclampsia when injected into normal pregnant recipient rats on gestational day 13. On gestational day 19, blood pressure increased in normal pregnant recipients of placental ischemic CD4(+) T cells (P=0.002) compared with that in normal pregnant rats. Similar to preeclamptic patients, CD4(+) T cells from placental ischemic rats secreted significantly more myeloperoxidase (P=0.003) and induced oxidative stress in cultured vascular cells (P=0.003) than normal pregnant rat CD4(+)Tcells. Apocynin, a nicotinamide adenine dinucleotide phosphate inhibitor, attenuated hypertension and all oxidative stress markers in placental ischemic and normal pregnant recipient rats of placental ischemic CD4(+)Tcells (P=0.05). These data demonstrate an important role for CD4(+) T cells in mediating another factor, oxidative stress, to cause hypertension during preeclampsia. © 2014 American Heart Association, Inc.

  15. The SK3 channel promotes placental vascularization by enhancing secretion of angiogenic factors.

    PubMed

    Rada, Cara C; Murray, Grace; England, Sarah K

    2014-11-15

    Proper placental perfusion is essential for fetal exchange of oxygen, nutrients, and waste with the maternal circulation. Impairment of uteroplacental vascular function can lead to pregnancy complications, including preeclampsia and intrauterine growth restriction (IUGR). Potassium channels have been recognized as regulators of vascular proliferation, angiogenesis, and secretion of vasoactive factors, and their dysfunction may underlie pregnancy-related vascular diseases. Overexpression of one channel in particular, the small-conductance calcium-activated potassium channel 3 (SK3), is known to increase vascularization in mice, and mice overexpressing the SK3 channel (SK3(T/T) mice) have a high rate of fetal demise and IUGR. Here, we show that overexpression of SK3 causes fetal loss through abnormal placental vascularization. We previously reported that, at pregnancy day 14, placentas isolated from SK3(T/T) mice are smaller than those obtained from wild-type mice. In this study, histological analysis reveals that SK3(T/-) placentas at this stage have abnormal placental morphology, and microcomputed tomography shows that these placentas have significantly larger and more blood vessels than those from wild-type mice. To identify the mechanism by which these vascularization defects occur, we measured levels of vascular endothelial growth factor (VEGF), placental growth factor, and the soluble form of VEGF receptor 1 (sFlt-1), which must be tightly regulated to ensure proper placental development. Our data reveal that overexpression of SK3 alters systemic and placental ratios of the angiogenic factor VEGF to antiangiogenic factor sFlt-1 throughout pregnancy. Additionally, we observe increased expression of hypoxia-inducing factor 2α in SK3(T/-) placentas. We conclude that the SK3 channel modulates placental vascular development and fetal health by altering VEGF signaling. Copyright © 2014 the American Physiological Society.

  16. Isolation, culture and chondrogenic differentiation of canine adipose tissue- and bone marrow-derived mesenchymal stem cells--a comparative study.

    PubMed

    Reich, Christine M; Raabe, Oksana; Wenisch, Sabine; Bridger, Philip S; Kramer, Martin; Arnhold, Stefan

    2012-06-01

    In the dog, mesenchymal stem cells (MSCs) have been shown to reside in the bone marrow (bone marrow-derived mesenchymal stem cells: BM-MSCs) as well as in the adipose tissue (adipose tissue-derived stem cells: ADSCs). Potential application fields for these multipotent MSCs in small animal practice are joint diseases as MSCs of both sources have shown to possess chondrogenic differentiation ability. However, it is not clear whether the chondrogenic differentiation potential of cells of these two distinct tissues is truly equal. Therefore, we compared MSCs of both origins in this study in terms of their chondrogenic differentiation ability and suitability for clinical application. BM-MSCs harvested from the femoral neck and ADSCs from intra-abdominal fat tissue were examined for their morphology, population doubling time (PDT) and CD90 surface antigen expression. RT-PCR served to assess expression of pluripotency marker Oct4 and early differentiation marker genes. Chondrogenic differentiation ability was compared and validated using histochemistry, transmission electron microscopy (TEM) and quantitative RT-PCR. Both cell populations presented a highly similar morphology and marker expression in an undifferentiated stage except that freshly isolated ADSCs demonstrated a significantly faster PDT than BM-MSCs. In contrast, BM-MSCs revealed a morphological superior cartilage formation by the production of a more abundant and structured hyaline matrix and higher expression of lineage specific genes under the applied standard differentiation protocol. However, further investigations are necessary in order to find out if chondrogenic differentiation can be improved in canine ADSCs using different protocols and/or supplements.

  17. [Effects of bisphenol A on the placental function and reproduction in rats].

    PubMed

    Lee, Chae-Kwan; Kim, Seog-Hyun; Moon, Deog-Hwan; Kim, Jeong-Ho; Son, Byung-Chul; Kim, Dae-Hwan; Lee, Chang-Hee; Kim, Hwi-Dong; Kim, Jung-Won; Kim, Jong-Eun; Lee, Chae-Un

    2005-08-01

    The aim of this study was to investigate the effects of bisphenol A (BPA), an estrogen-like environmental endocrine disrupter, on the placental function and reproduction in rats. The mRNA levels of the placental prolactin-growth hormone(PRL-GH) gene family, placental trophoblast cell frequency and reproductive data were analyzed. The pregnancies of F344 Fisher rats (160 g +/-20 g) were detected by the presence of the copulatory plug or sperm in the vaginal smear, which marked Day 0 of pregnancy. Pregnant rats were divided into three groups. The control group was intraperitoneally injected with a sesame oil vehicle. The two remaining groups were injected with 50 or 500 mg/kg B.W/day of BPA, resuspended in sesame oil, on either days 7 to 11 or 16 to 20 of pregnancy, with the rats sacrificed on either day 11 or 20, respectively. The mRNA levels of PRL-GH and Pit-1a and b isotype genes were analyzed by Northern blot hybridization and reverse transcription-polymerase chain reaction. The hormone concentrations were analyzed by radioimmunoassay, and the frequency of the placental trophoblast cells observed by a histochemical study. Reproductive data, such as the placental weight and litter size, were surveyed on day 20. The fetal weight was surveyed for 4 weeks after birth. A statistical analysis was carried out using the SAS program (version 8.1). The mRNA levels of the PRL-GH gene family, such as placental lactogen I, Iv and II, prolactin like protein A, C and Cv, and decidual prolactin-related protein were significantly reduced due to BPA exposure. The mRNA levels of the Pit-1a and b isotype genes, which induce the expression of the PRL-GH gene family in the rat placenta, were also reduced due to BPA exposure. The PL-Iv and PL-II concentrations were reduced in the BPA exposed group. During the middle to last stage of pregnancy (Days 11-20), a high dose of BPA exposure reduced the frequency of spongiotrophoblast cells, which are responsible for the secretion of the PRL

  18. Effects of captopril on the human foetal placental circulation: an interaction with bradykinin and angiotensin I.

    PubMed Central

    de Moura, R; Lopes, M A

    1995-01-01

    1. The mechanism underlying the foetal toxicity induced by captopril is not well understood. Since bradykinin and angiotensin II appear to be important in the regulation of the placental circulation, experiments were performed to assess the effects of captopril on the vascular actions of these peptides on the human foetal placental circulation. 2. Full-term human placentas, obtained from normal pregnancy, were perfused with a modified Tyrode solution bubbled with O2 using a pulsatile pump. The placental perfusion pressure was measured with a Statham pressure transducer and recorded continuously on a Hewlett-Packard polygraph. 3. Bradykinin (0.1, 0.3 and 1.0 nmol) injected into the placental arterial circulation produced an increase in placental perfusion pressure in all experiments. This effect of bradykinin was significantly inhibited by indomethacin (3 x 10(-7) M). 4. Captopril (10(-7) M) significantly potentiated the pressor effect of bradykinin on the human placental circulation (n = 6). This effect of captopril was reversed by indomethacin (3 x 10(-7) M). 5. Angiotensin I (n = 6) and angiotensin II (n = 6), injected into the placental arterial circulation, both produced dose-dependent increases in placental perfusion pressure. The dose-response curves to angiotensin I (n = 6) were significantly displaced to the right by captopril in a concentration-dependent manner. 6. We suggest that the toxic effects of captopril on the foetus, rather than reflecting an inhibition of angiotensin II formation, may instead be related to a potentiation of the vasoconstrictor effect of bradykinin on the foetal placental circulation, thereby reducing blood flow and causing foetal damage. The reasons for this are discussed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7669485

  19. Histologic Changes Associated With Placental Separation in Gilts Infected with Porcine Reproductive and Respiratory Syndrome Virus.

    PubMed

    Novakovic, Predrag; Detmer, Susan E; Suleman, Muhammad; Malgarin, Carol M; MacPhee, Daniel J; Harding, John C S

    2018-07-01

    The placenta is a vital organ providing the developing fetus with nutrient and gas exchange, thermoregulation, and waste elimination necessary for fetal development, as well as producing hormones to maintain pregnancy. It is hypothesized that fetal pig death in porcine reproductive and respiratory syndrome may be attributed to pathology of the maternal-fetal interface leading to premature placental separation. This study was designed to evaluate the chronologic progression of porcine reproductive and respiratory syndrome virus (PRRSV)-induced lesions at the maternal-fetal interface, with particular focus on placental separation in experimentally challenged third-trimester gilts. Fifteen gilts were inoculated with a virulent strain of PRRSV-2 on gestation day 86 ± 0.4. On multiple days postinoculation, 3 gilts along with 1 sham-inoculated control per time point were euthanized, and uterine and fetal placental tissues corresponding to each fetus were collected for histopathologic evaluation. The presence of any fetal lesion was 23 times more likely in compromised (meconium-stained and decomposed) compared with viable fetuses ( P < .001). In PRRSV-infected gilts, endometritis was more severe than placentitis, and the severity of endometrial inflammation and vasculitis increased progressively from 2 to 14 days postinoculation. Neither placental vasculitis nor a chronologic progression in the severity of placental detachment was observed. Severe placental detachment was more frequently present in PRRSV-infected compared with noninfected samples and was most significantly associated with placental inflammation, compared with other uterine lesions, viral load, or termination day. The results of this study suggest that placental separation by itself is not sufficient to significantly compromise fetal viability in reproductive porcine reproductive and respiratory syndrome.

  20. Establishment of oct4:gfp transgenic zebrafish line for monitoring cellular multipotency by GFP fluorescence.

    PubMed

    Kato, Hiroyuki; Abe, Kota; Yokota, Shinpei; Matsuno, Rinta; Mikekado, Tsuyoshi; Yokoi, Hayato; Suzuki, Tohru

    2015-01-01

    The establishment of induced pluripotent stem (iPS) cell technology in fish could facilitate the establishment of novel cryopreservation techniques for storing selected aquaculture strains as frozen cells. In order to apply iPS cell technology to fish, we established a transgenic zebrafish line, Tg(Tru.oct4:EGFP), using green fluorescent protein (GFP) expression under the control of the oct4 gene promoter as a marker to evaluate multipotency in iPS cell preparations. We used the oct4 promoter from fugu (Takifugu rubripes) due to the compact nature of the fugu genome and to facilitate future applications of this technology in marine fishes. During embryogenesis, maternal GFP fluorescence was observed at the cleavage stage and zygotic GFP expression was observed from the start of the shield stage until approximately 24 h after fertilization. gfp messenger RNA (mRNA) was expressed by whole embryonic cells at the shield stage, and then restricted to the caudal neural tube in the latter stages of embryogenesis. These observations showed that GFP fluorescence and the regulation of gfp mRNA expression by the exogenous fugu oct4 promoter are well suited for monitoring endogenous oct4 mRNA expression in embryos. Bisulfite sequencing revealed that the rate of CpG methylation in the transgenic oct4 promoter was high in adult cells (98%) and low in embryonic cells (37%). These findings suggest that, as with the endogenous oct4 promoter, demethylation and methylation both take place normally in the transgenic oct4 promoter during embryogenesis. The embryonic cells harvested at the shield stage formed embryonic body-like cellular aggregates and maintained GFP fluorescence for 6 d when cultured on Transwell-COL Permeable Supports or a feeder layer of adult fin cells. Loss of GFP fluorescence by cultured cells was correlated with cellular differentiation. We consider that the Tg(Tru.oct4:EGFP) zebrafish line established here is well suited for monitoring multipotency in

  1. Rapid Diagnostic Test Performance Assessed Using Latent Class Analysis for the Diagnosis of Plasmodium falciparum Placental Malaria.

    PubMed

    Liu, Yunhao; Mwapasa, Victor; Khairallah, Carole; Thwai, Kyaw L; Kalilani-Phiri, Linda; Ter Kuile, Feiko O; Meshnick, Steven R; Taylor, Steve M

    2016-10-05

    Placental malaria causes low birth weight and neonatal mortality in malaria-endemic areas. The diagnosis of placental malaria is important for program evaluation and clinical care, but is compromised by the suboptimal performance of current diagnostics. Using placental and peripheral blood specimens collected from delivering women in Malawi, we compared estimation of the operating characteristics of microscopy, rapid diagnostic test (RDT), polymerase chain reaction, and histopathology using both a traditional contingency table and a latent class analysis (LCA) approach. The prevalence of placental malaria by histopathology was 13.8%; concordance between tests was generally poor. Relative to histopathology, RDT sensitivity was 79.5% in peripheral and 66.2% in placental blood; using LCA, RDT sensitivities increased to 93.7% and 80.2%, respectively. Our results, if replicated in other cohorts, indicate that RDT testing of peripheral or placental blood may be suitable approaches to detect placental malaria for surveillance programs, including areas where intermittent preventive therapy in pregnancy is not used. © The American Society of Tropical Medicine and Hygiene.

  2. DREAM Mediated Regulation of GCM1 in the Human Placental Trophoblast

    PubMed Central

    Baczyk, Dora; Kibschull, Mark; Mellstrom, Britt; Levytska, Khrystyna; Rivas, Marcos; Drewlo, Sascha; Lye, Stephen J.; Naranjo, Jose R.; Kingdom, John C. P.

    2013-01-01

    The trophoblast transcription factor glial cell missing-1 (GCM1) regulates differentiation of placental cytotrophoblasts into the syncytiotrophoblast layer in contact with maternal blood. Reduced placental expression of GCM1 and abnormal syncytiotrophoblast structure are features of hypertensive disorder of pregnancy – preeclampsia. In-silico techniques identified the calcium-regulated transcriptional repressor – DREAM (Downstream Regulatory Element Antagonist Modulator) - as a candidate for GCM1 gene expression. Our objective was to determine if DREAM represses GCM1 regulated syncytiotrophoblast formation. EMSA and ChIP assays revealed a direct interaction between DREAM and the GCM1 promoter. siRNA-mediated DREAM silencing in cell culture and placental explant models significantly up-regulated GCM1 expression and reduced cytotrophoblast proliferation. DREAM calcium dependency was verified using ionomycin. Furthermore, the increased DREAM protein expression in preeclamptic placental villi was predominantly nuclear, coinciding with an overall increase in sumolylated DREAM and correlating inversely with GCM1 levels. In conclusion, our data reveal a calcium-regulated pathway whereby GCM1-directed villous trophoblast differentiation is repressed by DREAM. This pathway may be relevant to disease prevention via calcium-supplementation. PMID:23300953

  3. Placental share and hemoglobin level in relation to birth weight in twin anemia-polycythemia sequence.

    PubMed

    Zhao, D; Slaghekke, F; Middeldorp, J M; Duan, T; Oepkes, D; Lopriore, E

    2014-12-01

    Twin anemia-polycythemia sequence (TAPS) is a newly described form of chronic twin transfusion. Previous observational studies noted a discordance between birth weight and individual placental share in TAPS. The purpose of this study was to investigate if fetal growth in monochorionic (MC) twins with TAPS is determined by placental share or by the net inter-twin blood transfusion. All consecutive MC twin placentas of live-born twin pairs with and without TAPS examined at our center between June 2002 and February 2014 were included in this study. Hemoglobin (Hb) levels and individual placental share were evaluated at birth and correlated with birth weight share. We excluded MC twin pregnancies with twin-twin transfusion syndrome. A total of 270 MC twin pregnancies (TAPS group, n = 20; control group without TAPS, n = 250) were included in this study. Donors with TAPS had a lower birth weight than recipients in 90% (18/20) of cases, but a larger placental share in 65% (13/20) of cases. In the TAPS group, birth weight share was positively correlated with Hb share at birth (P < 0.01) but not with placental share (P = 0.54). In the control group without TAPS, birth weight share was strongly correlated with placental share (P < 0.01) but not with Hb share (P = 0.14). A relatively larger placental share may enable the survival of the anemic twin in TAPS. In contrast with uncomplicated MC twins, fetal growth in MC twins with TAPS is determined primarily by the net inter-twin blood transfusion instead of placental share. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Mesenchymal stem cells with osteogenic potential in human maxillary sinus membrane: an in vitro study.

    PubMed

    Berbéri, Antoine; Al-Nemer, Fatima; Hamade, Eva; Noujeim, Ziad; Badran, Bassam; Zibara, Kazem

    2017-06-01

    The aim of our study is to prove and validate the existence of an osteogenic progenitor cell population within the human maxillary Schneiderian sinus membrane (hMSSM) and to demonstrate their potential for bone formation. Ten hMSSM samples of approximately 2 × 2 cm were obtained during a surgical nasal approach for treatment of chronic rhinosinusitis and were retained for this study. The derived cells were isolated, cultured, and assayed at passage 3 for their osteogenic potential using the expression of Alkaline phosphatase, alizarin red and Von Kossa staining, flow cytometry, and quantitative real-time polymerase chain reaction. hMSSM-derived cells were isolated, showed homogenous spindle-shaped fibroblast-like morphology, characteristic of mesenchymal progenitor cells (MPCs), and demonstrated very high expression of MPC markers such as STRO-1, CD44, CD90, CD105, and CD73 in all tested passages. In addition, von Kossa and Alizarin red staining showed significant mineralization, a typical feature of osteoblasts. Moreover, alkaline phosphatase (ALP) activity was significantly increased at days 7, 14, 21, and 28 of culture in hMSSM-derived cells grown in osteogenic medium, in comparison to controls. Furthermore, osteogenic differentiation significantly upregulated the transcriptional expression of osteogenic markers such as ALP, Runt-related transcription factor 2 (Runx-2), bone morphogenetic protein (BMP)-2, osteocalcin (OCN), osteonectin (ON), and osteopontin (OPN), confirming that hMSSM-derived cells are of osteoprogenitor origin. Finally, hMSSM-derived cells were also capable of producing OPN proteins upon culturing in an osteogenic medium. Our data showed that hMSSM holds mesenchymal osteoprogenitor cells capable of differentiating to the osteogenic lineage. hMSSM contains potentially multipotent postnatal stem cells providing a promising clinical application in preimplant and implant therapy.

  5. The effect of Ramadan fasting and maternal hypoalbuminaemia on neonatal anthropometric parameters and placental weight.

    PubMed

    Sakar, M N; Balsak, D; Verit, F F; Zebitay, A G; Buyuk, A; Akay, E; Turfan, M; Demir, S; Yayla, M

    2016-05-01

    In Islamic religion, daytime fasting during the month called Ramadan is an annual practice. In this study, we aimed to investigate the effect of Ramadan fasting and maternal hypoalbuminaemia on neonatal growth parameters. A prospective case-control study was conducted in Diyarbakir and Istanbul, Turkey. The sample size of fasting group was 168 and that of non-fasting group was 170. Demographic characteristics, obstetrics ultrasonographic findings and laboratory parameters of the participants were recorded. Neonatal anthropometric parameters and placental weight were noted. The mean placental weight was significantly higher in the fasting group (p = 0.037). Also, in the fasting group, pregnant women with hypoalbuminaemia had significantly higher placental weight (p = 0.009). In conclusion, the mean placental weight in the fasting group was significantly higher. Also a significant correlation between placental weight and maternal serum albumin level was observed in the fasting group.

  6. Prevalence of gestational, placental and congenital malaria in north-west Colombia

    PubMed Central

    2013-01-01

    Background The frequency of pregnancy-associated malaria is increasingly being documented in American countries. In Colombia, with higher frequency of Plasmodium vivax over Plasmodium falciparum infection, recent reports confirmed gestational malaria as a serious public health problem. Thick smear examination is the gold standard to diagnose malaria in endemic settings, but in recent years, molecular diagnostic methods have contributed to elucidate the dimension of the problem of gestational malaria. The study was aimed at exploring the prevalence of gestational, placental and congenital malaria in women who delivered at the local hospitals of north-west Colombia, between June 2008 and April 2011. Methods A group of 129 parturient women was selected to explore the prevalence of gestational, placental and congenital malaria in a descriptive, prospective and transversal (prevalence) design. Diagnosis was based on the simultaneous application of two independent diagnostic tests: microscopy of thick blood smears and a polymerase chain reaction assay (PCR). Results The prevalence of gestational malaria (thick smear /PCR) was 9.1%/14.0%; placental malaria was 3.3%/16.5% and congenital malaria was absent. A history of gestational malaria during the current pregnancy was significantly associated with gestational malaria at delivery. Plasmodium vivax caused 65% of cases of gestational malaria, whereas P. falciparum caused most cases of placental malaria. Conclusions Gestational and placental malaria are a serious problem in the region, but the risk of congenital malaria is low. A history of malaria during pregnancy may be a practical indicator of infection at delivery. PMID:24053184

  7. Prenatal caffeine exposure induced a lower level of fetal blood leptin mainly via placental mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yi-meng; Luo, Han-wen; Kou, Hao

    It's known that blood leptin level is reduced in intrauterine growth retardation (IUGR) fetus, and placental leptin is the major source of fetal blood leptin. This study aimed to investigate the decreased fetal blood leptin level by prenatal caffeine exposure (PCE) and its underlying placental mechanisms. Pregnant Wistar rats were intragastrically administered caffeine (30–120 mg/kg day) from gestational day 9 to 20. The level of fetal serum leptin and the expression of placental leptin-related genes were analyzed. Furthermore, we investigated the molecular mechanism of the reduced placental leptin's expression by treatment with caffeine (0.8–20 μM) in the BeWo cells. Inmore » vivo, PCE significantly decreased fetal serum leptin level in caffeine dose-dependent manner. Meanwhile, placental mRNA expression of adenosine A2a receptor (Adora2a), cAMP-response element binding protein (CREB), a short-type leptin receptor (Ob-Ra) and leptin was reduced in the PCE groups. In vitro, caffeine significantly decreased the mRNA expression of leptin, CREB and ADORA2A in concentration and time-dependent manners. The addition of ADORA2A agonist or adenylyl cyclase (AC) agonist reversed the inhibition of leptin expression induced by caffeine. PCE induced a lower level of fetal blood leptin, which the primary mechanism is that caffeine inhibited antagonized Adora2a and AC activities to decreased cAMP synthesis, thus inhibited the expression of the transcription factor CREB and target gene leptin in the placenta. Meantime, the reduced transportation of maternal leptin by placental Ob-Ra also contributed to the reduced fetal blood leptin. Together, PCE decreased fetal blood leptin mainly via reducing the expression and transportation of leptin in the placenta. - Highlights: • Caffeine reduced fetal blood leptin level. • Caffeine inhibited placental leptin production and transport. • Caffeine down-regulated placental leptin expression via antagonizing ADORA2. • Caffeine

  8. Vitamin C supplementation ameliorates the adverse effects of nicotine on placental hemodynamics and histology in nonhuman primates.

    PubMed

    Lo, Jamie O; Schabel, Matthias C; Roberts, Victoria H J; Morgan, Terry K; Rasanen, Juha P; Kroenke, Christopher D; Shoemaker, Sophie R; Spindel, Eliot R; Frias, Antonio E

    2015-03-01

    We previously demonstrated that prenatal nicotine exposure decreases neonatal pulmonary function in nonhuman primates, and maternal vitamin C supplementation attenuates these deleterious effects. However, the effect of nicotine on placental perfusion and development is not fully understood. This study utilizes noninvasive imaging techniques and histological analysis in a nonhuman primate model to test the hypothesis that prenatal nicotine exposure adversely effects placental hemodynamics and development but is ameliorated by vitamin C. Time-mated macaques (n = 27) were divided into 4 treatment groups: control (n = 5), nicotine only (n = 4), vitamin C only (n = 9), and nicotine plus vitamin C (n = 9). Nicotine animals received 2 mg/kg per day of nicotine bitartrate (approximately 0.7 mg/kg per day free nicotine levels in pregnant human smokers) from days 26 to 160 (term, 168 days). Vitamin C groups received ascorbic acid at 50, 100, or 250 mg/kg per day with or without nicotine. All underwent placental dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) at 135-140 days and Doppler ultrasound at 155 days to measure uterine artery and umbilical vein velocimetry and diameter to calculate uterine artery volume blood flow and placental volume blood flow. Animals were delivered by cesarean delivery at 160 days. A novel DCE-MRI protocol was utilized to calculate placental perfusion from maternal spiral arteries. Placental tissue was processed for histopathology. Placental volume blood flow was significantly reduced in nicotine-only animals compared with controls and nicotine plus vitamin C groups (P = .03). Maternal placental blood flow was not different between experimental groups by DCE-MRI, ranging from 0.75 to 1.94 mL/mL per minute (P = .93). Placental histology showed increased numbers of villous cytotrophoblast cell islands (P < .05) and increased syncytiotrophoblast sprouting (P < .001) in nicotine-only animals, which was mitigated by vitamin C. Prenatal

  9. The effect of dimethyl sulfoxide on hepatic differentiation of mesenchymal stem cells.

    PubMed

    Alizadeh, Effat; Zarghami, Nosratollah; Eslaminejad, Mohamadreza Baghaban; Akbarzadeh, Abolfazl; Barzegar, Abolfazl; Mohammadi, Seyed Abolghasem

    2016-01-01

    Adipose tissue-derived mesenchymal stem cells (AT-MSCs) are suitable choices in autologous stem cell treatment of liver-associated diseases due to their hepatic differentiation potential. Dimethyl sulfoxide (DMSO) is an amphipathic molecule with potential of delivering both lipophilic and hydrophilic agents into cells, also a common cryoprotectant for freezing of the cells. DMSO was used in some protocols for induction of AT-MSCs towards hepatocyte like cells. However, the effect of DMSO on hepatogenic differentiation of AT-MSCs were not surveyed, previously. In the present study, we aimed at evaluation of the effect of DMSO on differentiation of AT-MSCs into hepatic lineage. We isolated mesenchymal stem cells (MSCs) from adipose tissue, and then verifies multi-potency and surface markers of AT-MSCs . Isolated AT-MSCs randomly dispensed in four groups including Group 1: HGF treated, 2: HGF+ DMSO treated, 3: HGF+ DMSO+ OSM treated, and group control for a period of 3 weeks in the expansion medium without serum; EGF and bFGF were also included in the first days of inductions. The morphologic changes during induction period was observed with microscopy. The secretion of albumin (ALB) of the differentiating MSCs was investigated using ELISA, and urea production was evaluated using colorimetric assay. The qRT-PCR was performed for quantitation of hepatocyte marker genes including AFP, ALB, CK18, HNF4a, and HNF6. The glycogen storage of differentiated cells was visualized by periodic-acid Schiff‘s staining. The results demonstrate that DMSO speeds up hepatic differentiation of AT-MSCs characterized by rapid changes in morphology; higher expression of hepatic marker gene (ALB) in both mRNA and protein level (P < 0.05); also increased transcriptional levels of other liver genes including CK18, HNF4a, and HNF6 (P < 0.01); and moreover, greater percentage of glycogen storage(p < 0.05) in DMSO-treated groups. DMSO catalyzes hepatic

  10. Monitoring the biology stability of human umbilical cord-derived mesenchymal stem cells during long-term culture in serum-free medium.

    PubMed

    Chen, Gecai; Yue, Aihuan; Ruan, Zhongbao; Yin, Yigang; Wang, Ruzhu; Ren, Yin; Zhu, Li

    2014-12-01

    Mesenchymal stem cells (MSCs) are multipotent adult stem cells that have an immunosuppressive effect. The biological stability of MSCs in serum-free medium during long-term culture in vitro has not been elucidated clearly. The morphology, immunophenotype and multi-lineage potential were analyzed at passages 3, 5, 10, 15, 20, and 25 (P3, P5, P10, P15, P20, and P25, respectively). The cell cycle distribution, apoptosis, and karyotype of human umbilical cord-derived (hUC)-MSCs were analyzed at P3, P5, P10, P15, P20, and P25. From P3 to P25, the three defining biological properties of hUC-MSCs [adherence to plastic, specific surface antigen expression, multipotent differentiation potential] met the standards proposed by the International Society for Cellular Therapy for definition of MSCs. The cell cycle distribution analysis at the P25 showed that the percentage of cells at G0/G1 was increased, compared with the cells at P3 (P < 0.05). Cells at P25 displayed an increase in the apoptosis rate (to 183 %), compared to those at P3 (P < 0.01). Within subculture generations 3-20 (P3-P20), the differences between the cell apoptotic rates were not statistically significant (P > 0.05). There were no detectable chromosome eliminations, displacements, or chromosomal imbalances, as assessed by the karyotyping guidelines of the International System for Human Cytogenetic Nomenclature (ISCN, 2009). Long-term culture affects the biological stability of MSCs in serum-free MesenCult-XF medium. MSCs can be expanded up to the 25th passage without chromosomal changes by G-band. The best biological activity period and stability appeared between the third to 20th generations.

  11. Ultrasound predictors of placental invasion: the Placenta Accreta Index.

    PubMed

    Rac, Martha W F; Dashe, Jodi S; Wells, C Edward; Moschos, Elysia; McIntire, Donald D; Twickler, Diane M

    2015-03-01

    We sought to apply a standardized evaluation of ultrasound parameters for the prediction of placental invasion in a high-risk population. This was a retrospective review of gravidas with ≥1 prior cesarean delivery who received an ultrasound diagnosis of placenta previa or low-lying placenta in the third trimester at our institution from 1997 through 2011. Sonographic images were reviewed by an investigator blinded to pregnancy outcome and sonography reports. Parameters assessed included loss of retroplacental clear zone, irregularity and width of uterine-bladder interface, smallest myometrial thickness, presence of lacunar spaces, and bridging vessels. Diagnosis of placental invasion was based on histologic confirmation. Statistical analyses were performed using linear logistic regression and multiparametric analyses to generate a predictive equation evaluated using a receiver operating characteristic curve. Of 184 gravidas who met inclusion criteria, 54 (29%) had invasion confirmed on hysterectomy specimen. All sonographic parameters were associated with placental invasion (P < .001). Constructing a receiver operating characteristic curve, the combination of smallest sagittal myometrial thickness, lacunae, and bridging vessels, in addition to number of cesarean deliveries and placental location, yielded an area under the curve of 0.87 (95% confidence interval, 0.80-0.95). Using logistic regression, a predictive equation was generated, termed the "Placenta Accreta Index." Each parameter was weighted to create a 9-point scale in which a score of 0-9 provided a probability of invasion that ranged from 2-96%, respectively. Assignment of the Placenta Accreta Index may be helpful in predicting individual patient risk for morbidly adherent placenta. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Effect of Maternal Obesity on Fetal Growth and Expression of Placental Fatty Acid Transporters.

    PubMed

    Ye, Kui; Li, Li; Zhang, Dan; Li, Yi; Wang, Hai Qing; Lai, Han Lin; Hu, Chuan Lai

    2017-12-15

    To explore the effects of maternal high-fat (HF) diet-induced obesity on fetal growth and the expression of placental nutrient transporters. Maternal obesity was established in rats by 8 weeks of pre-pregnancy fed HF diet, while rats in the control group were fed normal (CON) diet. Diet-induced obesity (DIO) rats and diet-induced obesity-resistant (DIR) rats were selected according to body weight gain over this period. After copulation, the CON rats were divided into two groups: switched to HF diet (CON-HF group) or maintained on the CON diet (CON-CON group). The DIO rats and DIR rats were maintained on the HF diet throughout pregnancy. Pregnant rats were euthanized at day 21 gestation, fetal and placental weights were recorded, and placental tissue was collected. Reverse transcription-polymerase chain reaction was used to determine mRNA expression of placental nutrient transporters. Protein expression was determined by Western blot. Average fetal weight of DIO dams was reduced by 6.9%, and the placentas of CON-HF and DIO dams were significantly heavier than the placentas of CON-CON and DIR dams at day 21 of gestation (p<0.05). The fetal/placental weight ratio of DIO dams was significantly reduced compared with the fetal/placental weight ratio of CON-CON dams (p<0.05). The mRNA expression of GLUT-1 and SNAT-2 were not significantly different between groups. The mRNA and protein expression levels of CD36, FATP-1, and FATP-4 in DIO dams were decreased significantly (p<0.05). Maternal obesity induced by a HF diet led to intrauterine growth retardation and down-regulated the expression of placental fatty acid transporters.

  13. Tracking and Functional Characterization of Epithelial-Mesenchymal Transition and Mesenchymal Tumor Cells During Prostate Cancer Metastasis

    PubMed Central

    Ruscetti, Marcus; Quach, Bill; Dadashian, Eman L.; Mulholland, David J.; Wu, Hong

    2015-01-01

    The epithelial-mesenchymal transition (EMT) has been postulated as a mechanism by which cancer cells acquire the invasive and stem-like traits necessary for distant metastasis. However, direct in vivo evidence for the role of EMT in the formation of cancer stem-like cells (CSC) and the metastatic cascade remains lacking. Here we report the first isolation and characterization of mesenchymal and EMT tumor cells, which harbor both epithelial and mesenchymal characteristics, in an autochthonous murine model of prostate cancer. By crossing the established Pb-Cre+/−;PtenL/L;KrasG12D/+ prostate cancer model with a vimentin-GFP reporter strain, generating CPKV mice, we were able to isolate epithelial, EMT and mesenchymal cancer cells based on expression of vimentin and EpCAM. CPKV mice (but not mice with Pten deletion alone) exhibited expansion of cells with EMT (EpCAM+/Vim-GFP+) and mesenchymal (EpCAM−/Vim-GFP+) characteristics at the primary tumor site and in circulation. These EMT and mesenchymal tumor cells displayed enhanced stemness and invasive character compared to epithelial tumor cells. Moreover, they displayed an enriched tumor-initiating capacity and could regenerate epithelial glandular structures in vivo, indicative of epithelia-mesenchyme plasticity. Interestingly, while mesenchymal tumor cells could persist in circulation and survive in the lung following intravenous injection, only epithelial and EMT tumor cells could form macrometastases. Our work extends the evidence that mesenchymal and epithelial states in cancer cells contribute differentially to their capacities for tumor initiation and metastatic seeding, respectively, and that EMT tumor cells exist with plasticity that can contribute to multiple stages of the metastatic cascade. PMID:25948589

  14. Placental expression of anti-angiogenic proteins in mirror syndrome: a case report.

    PubMed

    Graham, N; Garrod, A; Bullen, P; Heazell, A E P

    2012-06-01

    Mirror syndrome is a rare disorder in which fetal hydrops is associated with maternal oedema, proteinuria and hypertension. The aetiology of the maternal condition is unknown, but it is thought to be related to preeclampsia. Few descriptions exist of placental morphology in mirror syndrome, but placentomegaly is consistently observed. In this case placental morphology showed villous oedema and syncytial nuclear aggregates where villi were in direct contact. Immunoperoxidase staining for VEGFR1 and Endoglin was more intense in mirror syndrome compared to gestational-age matched controls,and at a similar level to a case of preeclampsia. Placentally-derived anti-angiogenic factors may be involved in the pathogenesis of mirror syndrome. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Effects of L-carnitine on reproductive performance, milk composition, placental development and IGF concentrations in blood plasma and placental chorions in sows.

    PubMed

    Zhang, Shihai; Tian, Min; Song, Hanqing; Shi, Kui; Wang, Yijiang; Guan, Wutai

    2018-05-29

    Recent studies have shown that L-carnitine supplementation of sows during pregnancy and lactation enhances their reproductive performance, but the underlying mechanisms are still needed to be further confirmed. This study was conducted to investigate the function of L-carnitine on placental development, milk nutrient content and release of hormones in sows. In this experiment, 40 multiparous crossbred sows (Yorkshire × Landrace) were allotted to two groups fed diets with or without a supplemental 50 mg/kg L-carnitine. The experimental diets were fed from d 1 post-coitus until d 21 post-partum. L-carnitine-treated sow had fewer weak piglets (p < 0.05) and a greater percentage of oestrus by 5 after 5-d post-partum (p < 0.05) than control sows. The percentage fat from colostrum was greater in L-carnitine-treated sow than control sows (p < 0.05). L-carnitine-treated sows had greater plasma concentrations of triglyceride and insulin-like growth factor (IGF)-1 and lesser plasma concentrations of glucose and IGF-binding protein (IGFBP-3) on day 60 of pregnancy (p < 0.05). A clearer structure of chorions, better-developed capillaries and absence of necrosis were observed in L-carnitine-treated sows compared with control sows. The protein abundance of IGF-1 and IGF-2 in placental chorions was greater in L-carnitine-treated sows compared with control sows (p < 0.05). This study suggests that sows fed an L-carnitine supplemented diet during pregnancy improved reproductive performance through enhancement of placental development and by increasing IGF concentrations in blood plasma and placental chorions.

  16. Short-Term Exposure to Urban Air Pollution and Influences on Placental Vascularization Indexes.

    PubMed

    Hettfleisch, Karen; Bernardes, Lisandra Stein; Carvalho, Mariana Azevedo; Pastro, Luciana Duzolina Manfré; Vieira, Sandra Elisabete; Saldiva, Silvia R D M; Saldiva, Paulo; Francisco, Rossana Pulcineli Vieira

    2017-04-01

    It has been widely demonstrated that air pollution can affect human health and that certain pollutant gases lead to adverse obstetric outcomes, such as preeclampsia and fetal growth restriction. We evaluated the influence of individual maternal exposure to air pollution on placental volume and vascularization evaluated in the first trimester of pregnancy. This was a cross-sectional study on low-risk pregnant women living in São Paulo, Brazil. The women carried passive personal NO 2 and O 3 monitors in the week preceding evaluation. We employed the virtual organ computer-aided analysis (VOCAL) technique using three-dimensional power Doppler ultrasound to evaluate placental volume and placental vascular indexes [vascularization index (VI), flow index (FI), and vascularization flow index (VFI)]. We analyzed the influence of pollutant levels on log-transformed placental vascularization and volume using multiple regression models. We evaluated 229 patients. Increased NO 2 levels had a significant negative association with log of VI ( p = 0.020 and beta = -0.153) and VFI ( p = 0.024 and beta = -0.151). NO 2 and O 3 had no influence on the log of placental volume or FI. NO 2 , an estimator of primary air pollutants, was significantly associated with diminished VI and VFI in the first trimester of pregnancy.

  17. Placental development and function in women with a history of placenta-related complications: a systematic review.

    PubMed

    Reijnders, Ignatia F; Mulders, Annemarie G M G J; Koster, Maria P H

    2018-03-01

    Women with a history of placenta-related pregnancy complications, such as preeclampsia, intrauterine growth restriction or preterm delivery, have an increased risk for recurrence of such complications. This recurrence is likely the result of underlying endothelial dysfunction that leads to abnormal placentation, especially in complications with an early onset. This study provides an overview of biomarkers of placental development and function in pregnancies from women with a history of placenta-related complications. A systematic literature search was conducted limited to human studies and including keywords related to a history of placenta-related complications and markers of placental development and function. Two independent reviewers assessed eligibility and quality of 1553 retrieved unique articles. Five articles reporting on placental development and function in women with an obstetric history of preeclampsia (n = 3), intrauterine growth restriction (n = 1) and preterm delivery (n = 2) were eligible for quality assessment. We identified associations between a history of preeclampsia and abnormal placental histological findings at term in the current pregnancy, but found contradictory results regarding presence of uterine artery notching. In women with a history of very preterm delivery (<32 weeks), one study showed associations with abnormal placental histology. Literature on the association between a history of placenta-related complications and placental development and function in subsequent pregnancies is scarce and studies are heterogeneous. However, literature shows that placenta-related pregnancy complications are associated with subsequent placental histology. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.

  18. Tributyltin engages multiple nuclear receptor pathways and suppresses osteogenesis in bone marrow multipotent stromal cells.

    PubMed

    Baker, Amelia H; Watt, James; Huang, Cassie K; Gerstenfeld, Louis C; Schlezinger, Jennifer J

    2015-06-15

    Organotins are members of the environmental obesogen class of contaminants because they activate peroxisome proliferator-activated receptor γ (PPARγ), the essential regulator of adipogenesis. Exposure to thiazolidinediones (PPARγ ligands used to treat type 2 diabetes) is associated with increased fractures. Diminished bone quality likely results from PPARγ's role in promoting adipogenesis while suppressing osteogenesis of bone marrow multipotent mesenchymal stromal cells (BM-MSC). We hypothesized that tributyltin (TBT) would be a potent modifier of BM-MSC differentiation and a negative regulator of bone formation. Organotins interact with both PPARγ and retinoid X receptors (RXR), suggesting that they activate multiple nuclear receptor pathways. To investigate the role of RXR in the actions of TBT, the effects of PPARγ (rosiglitazone) and RXR (bexarotene, LG100268) agonists were compared to the effects of TBT in BMS2 cells and primary mouse BM-MSC cultures. In BMS2 cells, TBT induced the expression of Fabp4, Abca1, and Tgm2 in an RXR-dependent manner. All agonists suppressed osteogenesis in primary mouse BM-MSC cultures, based on decreased alkaline phosphatase activity, mineralization, and expression of osteoblast-related genes. While rosiglitazone and TBT strongly activated adipogenesis, based on lipid accumulation and expression of adipocyte-related genes, the RXR agonists did not. Extending these analyses to other RXR heterodimers showed that TBT and the RXR agonists activated the liver X receptor pathway, whereas rosiglitazone did not. Application of either a PPARγ antagonist (T0070907) or an RXR antagonist (HX531) significantly reduced rosiglitazone-induced suppression of bone nodule formation. Only the RXR antagonist significantly reduced LG100268- and TBT-induced bone suppression. The RXR antagonist also inhibited LG100268- and TBT-induced expression of Abca1, an LXR target gene, in primary BM-MSC cultures. These results provide novel evidence that

  19. A dating success story: genomes and fossils converge on placental mammal origins

    PubMed Central

    2012-01-01

    The timing of the placental mammal radiation has been a source of contention for decades. The fossil record of mammals extends over 200 million years, but no confirmed placental mammal fossils are known prior to 64 million years ago, which is approximately 1.5 million years after the Cretaceous-Paleogene (K-Pg) mass extinction that saw the end of non-avian dinosaurs. Thus, it came as a great surprise when the first published molecular clock studies suggested that placental mammals originated instead far back in the Cretaceous, in some cases doubling divergence estimates based on fossils. In the last few decades, more than a hundred new genera of Mesozoic mammals have been discovered, and molecular divergence studies have grown from simple clock-like models applied to a few genes to sophisticated analyses of entire genomes. Yet, molecular and fossil-based divergence estimates for placental mammal origins have remained remote, with knock-on effects for macro-scale reconstructions of mammal evolution. A few recent molecular studies have begun to converge with fossil-based estimates, and a new phylogenomic study in particular shows that the palaeontological record was mostly correct; most placental mammal orders diversified after the K-Pg mass extinction. While a small gap still remains for Late Cretaceous supraordinal divergences, this study has significantly improved the congruence between molecular and palaeontological data and heralds a broader integration of these fields of evolutionary science. PMID:22883371

  20. Differential Spatiotemporal Patterns of Galectin Expression are a Hallmark of Endotheliochorial Placentation.

    PubMed

    Conrad, Melanie L; Freitag, Nancy; Diessler, Mónica E; Hernandez, Rocío; Barrientos, Gabriela; Rose, Matthias; Casas, Luciano A; Barbeito, Claudio G; Blois, Sandra M

    2016-03-01

    Galectins influence the progress of pregnancy by regulating key processes associated with embryo-maternal cross talk, including angiogenesis and placentation. Galectin family members exert multiple roles in the context of hemochorial and epitheliochorial placentation; however, the galectin prolife in endotheliochorial placenta remains to be investigated. Here, we used immunohistochemistry to analyze galectin (gal)-1, gal-3 and gal-9 expression during early and late endotheliochorial placentation in two different species (dogs and cats). We found that during early feline gestation, all three galectin members were more strongly expressed on trophoblast and maternal vessels compared to the decidua. This was accompanied by an overall decrease of gal-1, gal-3 and gal-9 expressions in late feline gestation. In canine early pregnancy, we observed that gal-1 and gal-9 were expressed strongly in cytotrophoblast (CTB) cells compared to gal-3, and no galectin expression was observed in syncytiotrophoblast (STB) cells. Progression of canine gestation was accompanied by increased gal-1 and gal-3 expressions on STB cells, whereas gal-9 expression remained similar in CTB and STB. These data suggest that both the maternal and fetal compartments are characterized by a spatiotemporal regulation of galectin expression during endotheliochorial placentation. This strongly suggests the involvement of the galectin family in important developmental processes during gestation including immunemodulation, trophoblast invasion and angiogenesis. A conserved functional role for galectins during mammalian placental development emerges from these studies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Prenatal Exposure to the Environmental Obesogen Tributyltin Predisposes Multipotent Stem Cells to Become Adipocytes

    PubMed Central

    Kirchner, Séverine; Kieu, Tiffany; Chow, Connie; Casey, Stephanie; Blumberg, Bruce

    2010-01-01

    The environmental obesogen hypothesis proposes that pre- and postnatal exposure to environmental chemicals contributes to adipogenesis and the development of obesity. Tributyltin (TBT) is an agonist of both retinoid X receptor (RXR) and peroxisome proliferator-activated receptor γ (PPARγ). Activation of these receptors can elevate adipose mass in adult mice exposed to the chemical in utero. Here we show that TBT sensitizes human and mouse multipotent stromal stem cells derived from white adipose tissue [adipose-derived stromal stem cells (ADSCs)] to undergo adipogenesis. In vitro exposure to TBT, or the PPARγ activator rosiglitazone increases adipogenesis, cellular lipid content, and expression of adipogenic genes. The adipogenic effects of TBT and rosiglitazone were blocked by the addition of PPARγ antagonists, suggesting that activation of PPARγ mediates the effect of both compounds on adipogenesis. ADSCs from mice exposed to TBT in utero showed increased adipogenic capacity and reduced osteogenic capacity with enhanced lipid accumulation in response to adipogenic induction. ADSCs retrieved from animals exposed to TBT in utero showed increased expression of PPARγ target genes such as the early adipogenic differentiation gene marker fatty acid-binding protein 4 and hypomethylation of the promoter/enhancer region of the fatty acid-binding protein 4 locus. Hence, TBT alters the stem cell compartment by sensitizing multipotent stromal stem cells to differentiate into adipocytes, an effect that could likely increase adipose mass over time. PMID:20160124

  2. Prenatal exposure to the environmental obesogen tributyltin predisposes multipotent stem cells to become adipocytes.

    PubMed

    Kirchner, Séverine; Kieu, Tiffany; Chow, Connie; Casey, Stephanie; Blumberg, Bruce

    2010-03-01

    The environmental obesogen hypothesis proposes that pre- and postnatal exposure to environmental chemicals contributes to adipogenesis and the development of obesity. Tributyltin (TBT) is an agonist of both retinoid X receptor (RXR) and peroxisome proliferator-activated receptor gamma (PPARgamma). Activation of these receptors can elevate adipose mass in adult mice exposed to the chemical in utero. Here we show that TBT sensitizes human and mouse multipotent stromal stem cells derived from white adipose tissue [adipose-derived stromal stem cells (ADSCs)] to undergo adipogenesis. In vitro exposure to TBT, or the PPARgamma activator rosiglitazone increases adipogenesis, cellular lipid content, and expression of adipogenic genes. The adipogenic effects of TBT and rosiglitazone were blocked by the addition of PPARgamma antagonists, suggesting that activation of PPARgamma mediates the effect of both compounds on adipogenesis. ADSCs from mice exposed to TBT in utero showed increased adipogenic capacity and reduced osteogenic capacity with enhanced lipid accumulation in response to adipogenic induction. ADSCs retrieved from animals exposed to TBT in utero showed increased expression of PPARgamma target genes such as the early adipogenic differentiation gene marker fatty acid-binding protein 4 and hypomethylation of the promoter/enhancer region of the fatty acid-binding protein 4 locus. Hence, TBT alters the stem cell compartment by sensitizing multipotent stromal stem cells to differentiate into adipocytes, an effect that could likely increase adipose mass over time.

  3. A role of placental growth factor in hair growth.

    PubMed

    Yoon, Sun-Young; Yoon, Ji-Seon; Jo, Seong Jin; Shin, Chang Yup; Shin, Jong-Yeon; Kim, Jong-Il; Kwon, Ohsang; Kim, Kyu Han

    2014-05-01

    The dermal papilla (DP) comprises specialized mesenchymal cells at the bottom of the hair follicle and plays a pivotal role in hair formation, anagen induction and the hair cycle. In this study, DPs were isolated from human hair follicles and serially subcultured. From each subculture at passages 1, 3, and 5 (n=4), we compared gene expression profiles using mRNA sequencing. Among the growth factors that were down-regulated in later passages of human DP cells (hDPCs), placental growth factor (PlGF) was selected. To elucidate the effect of PlGF on hair growth. We evaluated the effect of PlGF on hDPCs and on ex vivo hair organ culture. We investigated the effect of PlGF on an in vivo model of depilation-induced hair regeneration. We confirmed that the mRNA and protein expression levels of PlGF significantly decreased following subculture of the cells. It was shown that PlGF enhanced hair shaft elongation in ex vivo hair organ culture. Furthermore, PlGF significantly accelerated hair follicle growth and markedly prolonged anagen hair growth in an in vivo model of depilation-induced hair regeneration. PlGF prevented cell death by increasing the levels of phosphorylated extracellular signal-regulated kinase (ERK) and cyclin D1 and promoted survival by up-regulation of phosphorylated Akt and Bcl2, as determined by Western blotting. Our results suggest that PlGF plays a role in the promotion of hair growth and therefore may serve as an additional therapeutic target for the treatment of alopecia. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Use of biochemical tests of placental function for improving pregnancy outcome.

    PubMed

    Heazell, Alexander E P; Whitworth, Melissa; Duley, Lelia; Thornton, Jim G

    2015-11-25

    The placenta has an essential role in determining the outcome of pregnancy. Consequently, biochemical measurement of placentally-derived factors has been suggested as a means to improve fetal and maternal outcome of pregnancy. To assess whether clinicians' knowledge of the results of biochemical tests of placental function is associated with improvement in fetal or maternal outcome of pregnancy. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 July 2015) and reference lists of retrieved studies. Randomised, cluster-randomised or quasi-randomised controlled trials assessing the merits of the use of biochemical tests of placental function to improve pregnancy outcome.Studies were eligible if they compared women who had placental function tests and the results were available to their clinicians with women who either did not have the tests, or the tests were done but the results were not available to the clinicians. The placental function tests were any biochemical test of placental function carried out using the woman's maternal biofluid, either alone or in combination with other placental function test/s. Two review authors independently assessed trials for inclusion, extracted data and assessed trial quality. Authors of published trials were contacted for further information. Three trials were included, two quasi-randomised controlled trials and one randomised controlled trial. One trial was deemed to be at low risk of bias while the other two were at high risk of bias. Different biochemical analytes were measured - oestrogen was measured in one trial and the other two measured human placental lactogen (hPL). One trial did not contribute outcome data, therefore, the results of this review are based on two trials with 740 participants.There was no evidence of a difference in the incidence of death of a baby (risk ratio (RR) 0.88, 95% confidence interval (CI) 0.36 to 2.13, two trials, 740 participants (very low quality evidence)) or the

  5. Production of a Recombinant Antibody Specific for i Blood Group Antigen, a Mesenchymal Stem Cell Marker

    PubMed Central

    Suila, Heli; Tiitinen, Sari; Natunen, Suvi; Laukkanen, Marja-Leena; Kotovuori, Annika; Reinman, Mirka; Satomaa, Tero; Alfthan, Kaija; Laitinen, Saara; Takkinen, Kristiina; Räbinä, Jarkko; Valmu, Leena

    2013-01-01

    Abstract Multipotent mesenchymal stem/stromal cells (MSCs) offer great promise for future regenerative and anti-inflammatory therapies. Panels of functional and phenotypical markers are currently used in characterization of different therapeutic stem cell populations from various sources. The i antigen (linear poly-N-acetyllactosamine) from the Ii blood group system has been suggested as a marker for MSCs derived from umbilical cord blood (UCB). However, there are currently no commercially available antibodies recognizing the i antigen. In the present study, we describe the use of antibody phage display technology to produce recombinant antibodies recognizing a structure from the surface of mesenchymal stem cells. We constructed IgM phage display libraries from the lymphocytes of a donor with an elevated serum anti-i titer. Antibody phage display technology is not dependent on immunization and thus allows the generation of antibodies against poorly immunogenic molecules, such as carbohydrates. Agglutination assays utilizing i antigen–positive red blood cells (RBCs) from UCB revealed six promising single-chain variable fragment (scFv) antibodies, three of which recognized epitopes from the surface of UCB-MSCs in flow cytometric assays. The amino acid sequence of the VH gene segment of B12.2 scFv was highly similar to the VH4.21 gene segment required to encode anti-i specificities. Further characterization of binding properties revealed that the binding of B12.2 hyperphage was inhibited by soluble linear lactosamine oligosaccharide. Based on these findings, we suggest that the B12.2 scFv we have generated is a prominent anti-i antibody that recognizes i antigen on the surface of both UCB-MSCs and RBCs. This binder can thus be utilized in UCB-MSC detection and isolation as well as in blood group serology. PMID:24083089

  6. Thyroperoxidase and thyroglobulin antibodies in early pregnancy and placental abruption.

    PubMed

    Haddow, James E; McClain, Monica R; Palomaki, Glenn E; Neveux, Louis M; Lambert-Messerlian, Geralyn; Canick, Jacob A; Malone, Fergal D; Porter, T Flint; Nyberg, David A; Bernstein, Peter S; D'Alton, Mary E

    2011-02-01

    To estimate the relationship between thyroid antibodies and placental abruption. This cohort study assesses thyroperoxidase and thyroglobulin antibodies in relation to placental abruption among 10,062 women with singleton viable pregnancies (from the First and Second Trimester Risk of Aneuploidy [FaSTER] trial). A thyroperoxidase antibody cutoff of 50 international units/mL is used for comparison with published data from another cohort. Women with elevated thyroperoxidase antibody levels in the first and second trimesters have a higher rate of placental abruption than antibody-negative women. This relationship is less strong in the first trimester (1.51% compared with 0.83%; odds ratio [OR], 1.83; 95% confidence interval [CI], 0.99-3.37) than in the second trimester (1.78% compared with 0.82%; OR, 2.20; 95% CI, 1.21-3.99). A similar, but weaker, relationship is present for thyroglobulin antibodies. Sixty-four of 782 thyroperoxidase antibody-positive pregnancies without abruption become negative by the second trimester; one pregnancy with abruption becomes antibody-positive. Odds ratios for pregnancies with both thyroperoxidase and thyroglobulin antibody elevations are also higher (first trimester: OR, 2.10; 95% CI, 0.91-4.86; second trimester: OR, 2.73; 95% CI, 1.17-6.33). The present data confirm an association between thyroid antibody elevations and placental abruption described in a recent report. These findings, however, do not provide support for recommending routine testing for thyroid antibodies during pregnancy. II.

  7. Cyclin-dependent kinase 4 signaling acts as a molecular switch between syngenic differentiation and neural transdifferentiation in human mesenchymal stem cells

    PubMed Central

    Lee, Janet; Baek, Jeong-Hwa; Choi, Kyu-Sil; Kim, Hyun-Soo; Park, Hye-Young; Ha, Geun-Hyoung; Park, Ho; Lee, Kyo-Won; Lee, Chang Geun; Yang, Dong-Yun; Moon, Hyo Eun; Paek, Sun Ha; Lee, Chang-Woo

    2013-01-01

    Multipotent mesenchymal stem/stromal cells (MSCs) are capable of differentiating into a variety of cell types from different germ layers. However, the molecular and biochemical mechanisms underlying the transdifferentiation of MSCs into specific cell types still need to be elucidated. In this study, we unexpectedly found that treatment of human adipose- and bone marrow-derived MSCs with cyclin-dependent kinase (CDK) inhibitor, in particular CDK4 inhibitor, selectively led to transdifferentiation into neural cells with a high frequency. Specifically, targeted inhibition of CDK4 expression using recombinant adenovial shRNA induced the neural transdifferentiation of human MSCs. However, the inhibition of CDK4 activity attenuated the syngenic differentiation of human adipose-derived MSCs. Importantly, the forced regulation of CDK4 activity showed reciprocal reversibility between neural differentiation and dedifferentiation of human MSCs. Together, these results provide novel molecular evidence underlying the neural transdifferentiation of human MSCs; in addition, CDK4 signaling appears to act as a molecular switch from syngenic differentiation to neural transdifferentiation of human MSCs. PMID:23324348

  8. Maternal residential air pollution and placental imprinted gene expression.

    PubMed

    Kingsley, Samantha L; Deyssenroth, Maya A; Kelsey, Karl T; Awad, Yara Abu; Kloog, Itai; Schwartz, Joel D; Lambertini, Luca; Chen, Jia; Marsit, Carmen J; Wellenius, Gregory A

    2017-11-01

    Maternal exposure to air pollution is associated with reduced fetal growth, but its relationship with expression of placental imprinted genes (important regulators of fetal growth) has not yet been studied. To examine relationships between maternal residential air pollution and expression of placental imprinted genes in the Rhode Island Child Health Study (RICHS). Women-infant pairs were enrolled following delivery between 2009 and 2013. We geocoded maternal residential addresses at delivery, estimated daily levels of fine particulate matter (PM 2.5 ; n=355) and black carbon (BC; n=336) using spatial-temporal models, and estimated residential distance to nearest major roadway (n=355). Using linear regression models we investigated the associations between each exposure metric and expression of nine candidate genes previously associated with infant birthweight in RICHS, with secondary analyses of a panel of 108 imprinted genes expressed in the placenta. We also explored effect measure modification by infant sex. PM 2.5 and BC were associated with altered expression for seven and one candidate genes, respectively, previously linked with birthweight in this cohort. Adjusting for multiple comparisons, we found that PM 2.5 and BC were associated with changes in expression of 41 and 12 of 108 placental imprinted genes, respectively. Infant sex modified the association between PM 2.5 and expression of CHD7 and between proximity to major roadways and expression of ZDBF2. We found that maternal exposure to residential PM 2.5 and BC was associated with changes in placental imprinted gene expression, which suggests a plausible line of investigation of how air pollution affects fetal growth and development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Ovine placental steroid synthesis and metabolism in late gestation.

    PubMed

    Reynolds, Lawrence P; Legacki, Erin L; Corbin, C Jo; Caton, Joel S; Vonnahme, Kimberly A; Stanley, Scott; Conley, Alan J

    2018-04-14

    Steroid synthesis is required for pregnancy maintenance and for parturition but comparatively little is known about the major metabolic routes that influence circulating concentrations. Dietary intake changes progesterone and estradiol concentrations in pregnant ewes but whether this reflects placental synthesis is unknown. Progesterone metabolism by 5alpha-reduction is a major metabolic route in other species and can influence the onset of parturition. Therefore, studies were conducted to 1) determine placental enzyme activity, progesterone and estradiol measured by immuno-assay in late gestation ewes on low, moderate and high nutritional planes, 2) to assess the significance of 5alpha-reduction of progesterone in determining progesterone concentrations in late gestation ewes (gestation day 145) given finasteride to inhibit 5alpha-reductase metabolism. In the second experiment, steroid profiles were examined comprehensively in blood and tissues by liquid chromatography tandem mass spectrometry for the first time in this species. Dietary intake altered progesterone and estradiol serum concentrations but without correlated changes in placental 3beta-hydroxysteroid dehydrogenase, 17alpha-hydroxylase/17,20-lyase cytochrome P450 or aromatase activity. 5alpha-reduced pregnane metabolites were identified in ewes at 145 days of gestation, but concentrations were lower than those of progesterone. Finasteride inhibited 5alpha-reduced progesterone metabolism but did not impact serum progesterone concentrations in these ewes. We conclude 1) that diet-induced changes in serum progesterone and estradiol concentrations are not likely a result of altered placental synthesis of sex steroid but most likely by their metabolism, and 2) metabolism by 5α-reduction is not a major determinant of systemic progesterone concentrations in late gestation ewes.

  10. Placental Alpha Microglobulin-1 Compared With Fetal Fibronectin to Predict Preterm Delivery in Symptomatic Women.

    PubMed

    Wing, Deborah A; Haeri, Sina; Silber, Angela C; Roth, Cheryl K; Weiner, Carl P; Echebiri, Nelson C; Franco, Albert; Pappas, Lanissa M; Yeast, John D; Brebnor, Angelle A; Quirk, J Gerald; Murphy, Aisling M; Laurent, Louise C; Field, Nancy T; Norton, Mary E

    2017-12-01

    To compare the rapid bedside test for placental α microglobulin-1 with the instrumented fetal fibronectin test for prediction of imminent spontaneous preterm delivery among women with symptoms of preterm labor. We conducted a prospective observational study on pregnant women with signs or symptoms suggestive of preterm labor between 24 and 35 weeks of gestation with intact membranes and cervical dilatation less than 3 cm. Participants were prospectively enrolled at 15 U.S. academic and community centers. Placental α microglobulin-1 samples did not require a speculum examination. Health care providers were blinded to placental α microglobulin-1 results. Fetal fibronectin samples were collected through speculum examination per manufacturer requirements and sent to a certified laboratory for testing using a cutoff of 50 ng/mL. The coprimary endpoints were positive predictive value (PPV) superiority and negative predictive value (NPV) noninferiority of placental α microglobulin-1 compared with fetal fibronectin for the prediction of spontaneous preterm birth within 7 days and within 14 days. Of 796 women included in the study cohort, 711 (89.3%) had both placental α microglobulin-1 and fetal fibronectin results and valid delivery outcomes available for analysis. The overall rate of preterm birth was 2.4% (17/711) within 7 days of testing and 4.2% (30/711) within 14 days of testing with respective rates of spontaneous preterm birth of 1.3% (9/703) and 2.9% (20/701). Fetal fibronectin was detected in 15.5% (110/711), and placental α microglobulin-1 was detected in 2.4% (17/711). The PPVs for spontaneous preterm delivery within 7 days or less among singleton gestations (n=13) for placental α microglobulin-1 and fetal fibronectin were 23.1% (3/13) and 4.3% (4/94), respectively (P<.025 for superiority). The NPVs were 99.5% (619/622) and 99.6% (539/541) for placental α microglobulin-1 and fetal fibronectin, respectively (P<.001 for noninferiority). Although placental

  11. Placental malaria among HIV-infected and uninfected women receiving anti-folates in a high transmission area of Uganda

    PubMed Central

    2009-01-01

    Background HIV infection increases the risk of placental malaria, which is associated with poor maternal and infant outcomes. Recommendations in Uganda are for HIV-infected pregnant women to receive daily trimethoprim-sulphamethoxazole (TS) and HIV-uninfected women to receive intermittent sulphadoxine-pyrimethamine (SP). TS decreases the risk of malaria in HIV-infected adults and children but has not been evaluated among pregnant women. Methods This was a cross sectional study comparing the prevalence of placental malaria between HIV-infected women prescribed TS and HIV-uninfected women prescribed intermittent preventive therapy with sulphadoxine-pyrimethamine (IPT-SP) in a high malaria transmission area in Uganda. Placental blood was evaluated for malaria using smear and PCR. Results Placentas were obtained from 150 HIV-infected women on TS and 336 HIV-uninfected women on IPT-SP. The proportion of HIV-infected and HIV-uninfected women with placental malaria was 19% vs. 26% for those positive by PCR and 6% vs. 9% for those positive by smear, respectively. Among all infants, smear+ placental malaria was most predictive of low birth weight (LBW). Primigravidae were at higher risk than multigravidae of having placental malaria among HIV-uninfected, but not HIV-infected, women. Adjusting for gravidity, age, and season at the time of delivery, HIV-infected women on TS were not at increased risk for placental malaria compared to HIV-uninfected women on IPT-SP, regardless of the definition used. Conclusion Prevalence of placental malaria was similar in HIV-infected women on TS and HIV-uninfected women on IPT-SP. Nonetheless, while nearly all of the women in this study were prescribed anti-folates, the overall risk of placental malaria and LBW was unacceptably high. The population attributable risk of placental malaria on LBW was substantial, suggesting that future interventions that further diminish the risk of placental malaria may have a considerable impact on the

  12. The ability of computed tomography to diagnose placental abruption in the trauma patient.

    PubMed

    Kopelman, Tammy R; Berardoni, Nicole E; Manriquez, Maria; Gridley, Daniel; Vail, Sydney J; Pieri, Paola G; O'Neill; Pressman, Melissa A

    2013-01-01

    Fetal demise following trauma remains a devastating complication largely owing to placental injury and abruption. Our objective was to determine if abdominopelvic computed tomographic (CT) imaging can assess for placental abruption (PA) when obtained to exclude associated maternal injuries. Retrospective review of pregnant trauma patients of 20-week gestation or longer presenting to a trauma center during a 7-year period who underwent CT imaging as part of their initial evaluation. Radiographic images were reviewed by a radiologist for evidence of PA and classified based on percentage of visualized placental enhancement. Blinded to CT results, charts were reviewed by an obstetrician for clinical evidence of PA and classified as strongly positive, possibly positive, or no evidence. A total of 176 patients met inclusion criteria. CT imaging revealed evidence of PA in 61 patients (35%). As the percentage of placental enhancement decreased, patients were more likely to have strong clinical manifestations of PA, reaching statistical significance when enhancement was less than 50%. CT imaging evidence of PA was apparent in all patients who required delivery for nonassuring fetal heart tones. CT imaging evaluation of the placenta can accurately identify PA and therefore can help stratify patients at risk for fetal complications. The likelihood of requiring delivery increased as placental enhancement declined to less than 25%. Diagnostic study, level III.

  13. Lipopolysaccharide and cAMP modify placental calcitriol biosynthesis reducing antimicrobial peptides gene expression.

    PubMed

    Olmos-Ortiz, Andrea; García-Quiroz, Janice; Avila, Euclides; Caldiño-Soto, Felipe; Halhali, Ali; Larrea, Fernando; Díaz, Lorenza

    2018-06-01

    Calcitriol, the hormonal form of vitamin D 3 (VD), stimulates placental antimicrobial peptides expression; nonetheless, the regulation of calcitriol biosynthesis in the presence of bacterial products and its consequence on placental innate immunity have scarcely been addressed. We investigated how some bacterial products modify placental VD metabolism and its ability to induce antimicrobial peptides gene expression. Cultured human trophoblasts biosynthesized calcitriol only in the presence of its precursor calcidiol, a process that was inhibited by cyclic-AMP but stimulated by lipopolysaccharide (LPS). Intracrine calcitriol upregulated cathelicidin, S100A9, and β-defensins (HBDs) gene expression, while LPS further stimulated HBD2 and S100A9. Unexpectedly, LPS significantly repressed cathelicidin basal mRNA levels and drastically diminished calcidiol ability to induce it. Meanwhile, cyclic-AMP, which is used by many microbes to avoid host defenses, suppressed calcitriol biosynthesis, resulting in significant inhibition of most VD-dependent microbicidal peptides gene expression. While LPS stimulated calcitriol biosynthesis, cyclic-AMP inhibited it. LPS downregulated cathelicidin mRNA expression, whereas cyclic-AMP antagonized VD-dependent-upregulation of most antimicrobial peptides. These findings reveal LPS and cyclic-AMP involvement in dampening placental innate immunity, highlighting the importance of cyclic-AMP in the context of placental infection and suggesting its participation to facilitate bacterial survival. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Calcitonin gene related family peptides: importance in normal placental and fetal development.

    PubMed

    Yallampalli, Chandra; Chauhan, Madhu; Endsley, Janice; Sathishkumar, Kunju

    2014-01-01

    Synchronized molecular and cellular events occur between the uterus and the implanting embryo to facilitate successful pregnancy outcome. Nevertheless, the molecular signaling network that coordinates strategies for successful decidualization, placentation and fetal growth are not well understood. The discovery of calcitonin/calcitonin gene-related peptides (CT/CGRP) highlighted new signaling mediators in various physiological processes, including reproduction. It is known that CGRP family peptides including CGRP, adrenomedulin and intermedin play regulatory functions during implantation, trophoblast proliferation and invasion, and fetal organogenesis. In addition, all the CGRP family peptides and their receptor components are found to be expressed in decidual, placental and fetal tissues. Additionally, plasma levels of peptides of the CGRP family were found to fluctuate during normal gestation and to induce placental cellular differentiation, proliferation, and critical hormone signaling. Moreover, aberrant signaling of these CGRP family peptides during gestation has been associated with pregnancy disorders. It indicates the existence of a possible regulatory role for these molecules during decidualization and placentation processes, which are known to be particularly vulnerable. In this review, the influence of the CGRP family peptides in these critical processes is explored and discussed.

  15. Evaluation of mechanical properties of human mesenchymal stem cells during differentiation to smooth muscle cells.

    PubMed

    Khani, Mohammad-Mehdi; Tafazzoli-Shadpour, Mohammad; Rostami, Mostafa; Peirovi, Habibollah; Janmaleki, Mohsen

    2014-07-01

    Human mesenchymal stem cells (hMSCs) are multipotent cells appropriate for a variety of tissue engineering and cell therapy applications. Mechanical properties of hMSCs during differentiation are associated with their particular metabolic activity and regulate cell function due to alternations in cytoskeleton and structural elements. The objective of this study is to evaluate elastic and viscoelastic properties of hMSCs during long term cultivation in control and transforming growth factor-β1 treatment groups using micropipette aspiration technique. The mean Young's modulus (E) of the control samples remained nearly unchanged during 6 days of cultivation, but that of the test samples showed an initial reduction compared to its relevant control sample after 2 days of treatment by biological growth factor, followed by a significant rise after 4 and 6 days. The viscoelastic creep tests showed that both instantaneous and equilibrium moduli significantly increased with the treatment time and reached to maximum values of 622.9 ± 114.2 and 144.3 ± 11.6 Pa at the sixth day, respectively, while increase in apparent viscosity was not statistically significant. Such change of mechanical properties of hMSCs during specific lineage commitment contributes to regenerative medicine as well as stem-cell-based therapy in which biophysical signals regulate stem cell fate.

  16. Mechanisms of T-Cell Immunosuppression by Mesenchymal Stromal Cells: What Do We Know So Far?

    PubMed Central

    Haddad, Rodrigo; Saldanha-Araujo, Felipe

    2014-01-01

    Mesenchymal stromal cells (MSCs) are multipotent cells, which can give rise to several cell types including osteoblasts, adipocytes, and chondroblasts. These cells can be found in a variety of adult and fetal tissues, such as bone marrow, adipose tissue, cord blood, and placenta. In recent years, the biological properties of MSCs have attracted the attention of researchers worldwide due to their potential application for treating a series of clinical situations. Among these properties, special attention should be given to the immunoregulatory potential of those cells. MSCs are able to act on all cells of the immune system, which includes the capacity to inhibit the proliferation and function of T-cells. This feature renders them natural candidates to treat several diseases in which cellular immune response is exacerbated. In this review, we outline the main mechanisms by which MSCs immunosuppress T-cell response, focusing on cell-cell contact, secretion of soluble factors, and regulatory T-cell generation. The influence of surface markers in the immunosuppression process and features of MSCs isolated from different sources are also discussed. Finally, the influences of toll-like receptors and cytokines on the inflammatory microenvironment are highlighted regarding the activation of MSCs to exert their immunoregulatory function. PMID:25025040

  17. Bioactive nanofibers for fibroblastic differentiation of mesenchymal precursor cells for ligament/tendon tissue engineering applications.

    PubMed

    Sahoo, Sambit; Ang, Lay-Teng; Cho-Hong Goh, James; Toh, Siew-Lok

    2010-02-01

    Mesenchymal stem cells and precursor cells are ideal candidates for tendon and ligament tissue engineering; however, for the stem cell-based approach to succeed, these cells would be required to proliferate and differentiate into tendon/ligament fibroblasts on the tissue engineering scaffold. Among the various fiber-based scaffolds that have been used in tendon/ligament tissue engineering, hybrid fibrous scaffolds comprising both microfibers and nanofibers have been recently shown to be particularly promising. With the nanofibrous coating presenting a biomimetic surface, the scaffolds can also potentially mimic the natural extracellular matrix in function by acting as a depot for sustained release of growth factors. In this study, we demonstrate that basic fibroblast growth factor (bFGF) could be successfully incorporated, randomly dispersed within blend-electrospun nanofibers and released in a bioactive form over 1 week. The released bioactive bFGF activated tyrosine phosphorylation signaling within seeded BMSCs. The bFGF-releasing nanofibrous scaffolds facilitated BMSC proliferation, upregulated gene expression of tendon/ligament-specific ECM proteins, increased production and deposition of collagen and tenascin-C, reduced multipotency of the BMSCs and induced tendon/ligament-like fibroblastic differentiation, indicating their potential in tendon/ligament tissue engineering applications. 2009 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  18. Placental Nano-vesicles Target to Specific Organs and Modulate Vascular Tone In Vivo.

    PubMed

    Tong, Mancy; Stanley, Joanna L; Chen, Q; James, Joanna L; Stone, Peter R; Chamley, Larry W

    2017-11-01

    How do nano-vesicles extruded from normal first trimester human placentae affect maternal vascular function? Placental nano-vesicles affect the ability of systemic mesenteric arteries to undergo endothelium- and nitric oxide- (NO-) dependent vasodilation in vivo in pregnant mice. Dramatic cardiovascular adaptations occur during human pregnancy, including a substantial decrease in total peripheral resistance in the first trimester. The human placenta constantly extrudes extracellular vesicles that can enter the maternal circulation and these vesicles may play an important role in feto-maternal communication. Human placental nano-vesicles were administered into CD1 mice via a tail vein and their localization and vascular effects at 30 min and 24 h post-injection were investigated. Nano-vesicles from normal first trimester human placentae were collected and administered into pregnant (D12.5) or non-pregnant female mice. After either 30 min or 24 h of exposure, all major organs were dissected for imaging (n = 7 at each time point) while uterine and mesenteric arteries were dissected for wire myography (n = 6 at each time point). Additional in vitro studies using HMEC-1 endothelial cells were also conducted to investigate the kinetics of interaction between placental nano-vesicles and endothelial cells. Nano-vesicles from first trimester human placentae localized to the lungs, liver and kidneys 24 h after injection into pregnant mice (n = 7). Exposure of pregnant mice to placental nano-vesicles for 30 min in vivo increased the vasodilatory response of mesenteric arteries to acetylcholine, while exposure for 24 h had the opposite effect (P < 0.05, n = 6). These responses were prevented by L-NAME, an NO synthase inhibitor. Placental nano-vesicles did not affect the function of uterine arteries or mesenteric arteries from non-pregnant mice. Placental nano-vesicles rapidly interacted with endothelial cells via a combination of phagocytosis, endocytosis and cell surface

  19. Risk of fetal death associated with maternal drug dependence and placental abruption: a population-based study.

    PubMed

    McDonald, Sarah D; Vermeulen, Marian J; Ray, Joel G

    2007-07-01

    Substance use in pregnancy is associated with placental abruption, but the risk of fetal death independent of abruption remains undetermined. Our objective was to examine the effect of maternal drug dependence on placental abruption and on fetal death in association with abruption and independent of it. To examine placental abruption and fetal death, we performed a retrospective population-based study of 1 854 463 consecutive deliveries of liveborn and stillborn infants occurring between January 1, 1995 and March 31, 2001, using the Canadian Institute for Health Information Discharge Abstract Database. Maternal drug dependence was associated with a tripling of the risk of placental abruption in singleton pregnancies (adjusted odds ratio [OR] 3.1; 95% confidence intervals [CI] 2.6-3.7), but not in multiple gestations (adjusted OR 0.88; 95% CI 0.12-6.4). Maternal drug dependence was associated with an increased risk of fetal death independent of abruption (adjusted OR 1.6: 95% CI 1.1-2.2) in singleton pregnancies, but not in multiples. Risk of fetal death was increased with placental abruption in both singleton and multiple gestations, even after controlling for drug dependence (adjusted OR 11.4 in singleton pregnancy; 95% CI 10.6-12.2, and 3.4 in multiple pregnancy; 95% CI 2.4-4.9). Maternal drug use is associated with an increased risk of intrauterine fetal death independent of placental abruption. In singleton pregnancies, maternal drug dependence is associated with an increased risk of placental abruption.

  20. Mesenchymal Stem Cells: Time to Change the Name!

    PubMed Central

    2017-01-01

    Summary Mesenchymal stem cells (MSCs) were officially named more than 25 years ago to represent a class of cells from human and mammalian bone marrow and periosteum that could be isolated and expanded in culture while maintaining their in vitro capacity to be induced to form a variety of mesodermal phenotypes and tissues. The in vitro capacity to form bone, cartilage, fat, etc., became an assay for identifying this class of multipotent cells and around which several companies were formed in the 1990s to medically exploit the regenerative capabilities of MSCs. Today, there are hundreds of clinics and hundreds of clinical trials using human MSCs with very few, if any, focusing on the in vitro multipotential capacities of these cells. Unfortunately, the fact that MSCs are called “stem cells” is being used to infer that patients will receive direct medical benefit, because they imagine that these cells will differentiate into regenerating tissue‐producing cells. Such a stem cell treatment will presumably cure the patient of their medically relevant difficulties ranging from osteoarthritic (bone‐on‐bone) knees to various neurological maladies including dementia. I now urge that we change the name of MSCs to Medicinal Signaling Cells to more accurately reflect the fact that these cells home in on sites of injury or disease and secrete bioactive factors that are immunomodulatory and trophic (regenerative) meaning that these cells make therapeutic drugs in situ that are medicinal. It is, indeed, the patient's own site‐specific and tissue‐specific resident stem cells that construct the new tissue as stimulated by the bioactive factors secreted by the exogenously supplied MSCs. Stem Cells Translational Medicine 2017;6:1445–1451 PMID:28452204