Science.gov

Sample records for plagioclase

  1. Elasticity of plagioclase feldspars

    NASA Astrophysics Data System (ADS)

    Brown, J. Michael; Angel, Ross J.; Ross, Nancy L.

    2016-02-01

    Elastic properties are reported for eight plagioclase feldspars that span compositions from albite (NaSi3AlO8) to anorthite (CaSi2Al2O8). Surface acoustic wave velocities measured using Impulsive Stimulated Light Scattering and compliance sums from high-pressure X-ray compression studies accurately determine all 21 components of the elasticity tensor for these triclinic minerals. The overall pattern of elasticity and the changes in individual elastic components with composition can be rationalized on the basis of the evolution of crystal structures and chemistry across this solid-solution join. All plagioclase feldspars have high elastic anisotropy; a* (the direction perpendicular to the b and c axes) is the softest direction by a factor of 3 in albite. From albite to anorthite the stiffness of this direction undergoes the greatest change, increasing twofold. Small discontinuities in the elastic components, inferred to occur between the three plagioclase phases with distinct symmetry (C1>¯, I1>¯, and P1>¯), appear consistent with the nature of the underlying conformation of the framework-linked tetrahedra and the associated structural changes. Measured body wave velocities of plagioclase-rich rocks, reported over the last five decades, are consistent with calculated Hill-averaged velocities using the current moduli. This confirms long-standing speculation that previously reported elastic moduli for plagioclase feldspars are systematically in error. The current results provide greater assurance that the seismic structure of the middle and lower crusts can be accurately estimated on the basis of specified mineral modes, chemistry, and fabric.

  2. Plagioclase flotation and lunar crust formation

    NASA Technical Reports Server (NTRS)

    Walker, D.; Hays, J. F.

    1977-01-01

    Anorthitic plagioclase floats in liquids parental to the lunar highlands crust. The plagioclase enrichment that is characteristic of lunar highlands rocks can be the result of plagioclase flotation. Such rocks would form a gravitationally stable upper crust on their parental magma.

  3. Reflectance properties of spinel-plagioclase mixtures

    NASA Astrophysics Data System (ADS)

    Cheek, L.; Jackson, C.; Dhingra, D.; Pieters, C. M.; Prissel, T. C.; Williams, K. B.

    2012-12-01

    Near-infrared spectra displaying the diagnostic properties of Mg-spinel have recently been reported in several lunar craters based on Moon Mineralogy Mapper (M3) data [1-5]. These spectra lack evidence for olivine or pyroxene, suggesting that they represent a spinel-plagioclase lithology [1]. Current hypotheses [6, 7] suggest that this lithology formed by interactions of a mafic or ultramafic liquid with an anorthositic country rock, but the proportions of spinel and plagioclase are unknown. The aim of this work is to constrain the modal abundances of spinel and plagioclase in the observed lithology using laboratory reflectance spectroscopy of particulate mixtures. Reflectance spectra of Mg-spinel display a strong absorption at ~2000 nm due to Fe2+ in a tetrahedral site [e.g., 8]. At higher FeO contents, > ~5 wt%, an octahedral absorption near 1000 nm is also apparent [9]. Plagioclase often displays a broad absorption centered near 1250 nm due to trace amounts (0.1 wt%) of Fe2+ in the Ca2+ site. Previous studies have noted that plagioclase must be present in extremely high abundances (~85 vol%) in order for the 1250 nm absorption to be apparent in mixtures with olivine and pyroxene [10, 11]. Recent nonlinear modeling has suggested that at least 50% plagioclase is necessary for the 1250 nm absorption to be apparent in a calculated mixture with spinel [12]. Our approach involves making mineral mixtures of spinel and plagioclase particulate samples and measuring near-infrared spectra of the bulk material. For the plagioclase endmember, we use terrestrial gem quality labradorite with ~0.3 wt% FeO. The spinel endmember was produced experimentally at Brown University (1500 C; fO2~ IW; sintered 72 hrs), and contains 5 wt% FeO. Preliminary results show that spectra of a 90% plagioclase - 10% spinel mixture only display the spectral properties of the spinel component; the 1250 nm absorption is not apparent. Importantly, the addition of 90% plagioclase does not significantly

  4. Plagioclase mineralogy of olivine alkaline basalt

    NASA Technical Reports Server (NTRS)

    Hoffer, J. M.

    1973-01-01

    A geological and mineralogical study of the Potrillo volcanics is reported. The investigation consisted first of field mapping to establish and identify the different rock types and volcanic features in order to determine the geological history. Next, samples were collected and analyzed petrographically to determine suitable rocks from the various stratigraphic units for study of plagioclase. Samples selected for further study were crushed and the plagioclase extracted for the determination of composition and structural state. These results were then related to the petrology and crystallization of the basalt.

  5. Effects of shock pressures on calcic plagioclase

    NASA Technical Reports Server (NTRS)

    Gibbons, R. V.; Ahrens, T. J.

    1977-01-01

    Calcic plagioclase single crystals were subjected to shock loading up to a pressure of 496 kbar; optical and electron microscope studies were conducted to investigate the shock-induced effects on the mineral, which is found in terrestrial and lunar rocks and in meteorites. It was observed that up to 287 kbar pressure, the recovered samples are essentially crystalline, while samples subjected to pressures between 300 and 400 kbar are almost 100% diaplectic glasses, suggesting shock transformation in the solid state. Samples shock-loaded to pressures greater than 400 kbar yielded glasses with refractive indices similar to those of thermally fused glass. It is concluded that planar features, absent in all the specimens, may not be definitive shock indicators, but may be linked to local heterogeneous dynamic stresses experienced by plagioclase grains within shocked rocks.

  6. Uncommon behavior of plagioclase and the ancient lunar crust

    NASA Astrophysics Data System (ADS)

    Nekvasil, Hanna; Lindsley, Donald H.; DiFrancesco, Nicholas; Catalano, Tristan; Coraor, Aron E.; Charlier, Bernard

    2015-12-01

    Calcic plagioclase, the dominant mineral of the anorthositic lunar crust, fails to show the Na enrichment during cooling that is typical of magmatic plagioclase. We show that this enigmatic behavior may arise during fractionation of highly calcic plagioclase at depths greater than ~70 km in the lunar magma ocean because of the development of a negative azeotropic configuration at high anorthite contents that impedes and may even reverse the standard plagioclase albite enrichment with dropping temperature. This result supports a high-pressure origin of this plagioclase consistent with the lunar magma ocean model. It also provides a new mechanism for forming lunar lithologies with sodic plagioclase from a highly Na-depleted Moon through gravitational settling of spinel and refines the compositional characteristics of the late stage residual liquids of the lunar magma ocean.

  7. Europium anomaly in plagioclase feldspar: experimental results and semiquantitative model.

    PubMed

    Weill, D F; Drake, M J

    1973-06-01

    The partition of europium between plagioclase feldspar and magmatic liquid is considered in terms of the distribution coefficients for divalent and trivalent europium. A model equation is derived giving the europium anomaly in plagioclase as a function of temperature and oxygen fugacity. The model explains europium anomalies in plagioclase synthesized under controlled laboratory conditions as well as the variations of the anomaly observed in natural terrestrial and extraterrestrial igneous rocks.

  8. Europium anomaly in plagioclase feldspar - Experimental results and semiquantitative model.

    NASA Technical Reports Server (NTRS)

    Weill, D. F.; Drake, M. J.

    1973-01-01

    The partition of europium between plagioclase feldspar and magmatic liquid is considered in terms of the distribution coefficients for divalent and trivalent europium. A model equation is derived giving the europium anomaly in plagioclase as a function of temperature and oxygen fugacity. The model explains europium anomalies in plagioclase synthesized under controlled laboratory conditions as well as the variations of the anomaly observed in natural terrestrial and extraterrestrial igneous rocks.

  9. Europium anomaly in plagioclase feldspar: experimental results and semiquantitative model.

    PubMed

    Weill, D F; Drake, M J

    1973-06-01

    The partition of europium between plagioclase feldspar and magmatic liquid is considered in terms of the distribution coefficients for divalent and trivalent europium. A model equation is derived giving the europium anomaly in plagioclase as a function of temperature and oxygen fugacity. The model explains europium anomalies in plagioclase synthesized under controlled laboratory conditions as well as the variations of the anomaly observed in natural terrestrial and extraterrestrial igneous rocks. PMID:17806582

  10. Petrogenesis of calcic plagioclase megacrysts in Archean rocks

    NASA Technical Reports Server (NTRS)

    Phinney, W. C.; Morrison, D. A.

    1986-01-01

    Anorthositic complexes with large equidimensional plagioclase grains of highly calcic composition occur in nearly all Archean cratons. Similar plagioclase occur as megacrysts in many Archean sills, dikes, and volcanic flows. In the Canadian Shield these units occur throughout the Archean portions of the entire shield and are particularly common as dikes over an area of a few 100,000 sq km in Ontario and Manitoba during a period of at least 100 m.y. in many different rock types and metamorphic grades. The plagioclase generally occurs in three modes: as inclusions in mafic intrusions at various stages of fractionation, as crystal segregations in anorthosite complexes, or as megacrysts in fractionated sills, dikes, and flows. Most occurrences suggest that the plagioclase was formed elsewhere before being transported to its present location. The evidence seems to be quite clear that occurrences of these types of calcic plagioclase require: (1) ponding of a relatively undifferentiated Archean tholeiitic melt at some depth; (2) isothermal crystallization of large, equidimensional homogeneous plagioclase crystals; (3) separation of the plagioclase crystals from any other crystalline phases; (4) further fractionation of melt; (5)transport of various combinations of individual plagioclase crystals and clusters of crystals by variously fractionated melts; and (6) emplacement as various types of igneous intrusions or flows.

  11. Electron microprobe study of lunar and planetary zoned plagioclase feldspars: An analytical and experimental study of zoning in plagioclase

    NASA Technical Reports Server (NTRS)

    Smith, R. K.; Lofgren, G. E.

    1982-01-01

    Natural and experimentally grown zoned plagioclase feldspars were examined by electron microprobe. The analyses revealed discontinuous, sector, and oscillary chemical zoning superimposed on continuous normal or reverse zoning trends. Postulated mechanisms for the origin of zoning are based on either physical changes external to the magma (P, T, H2O saturation) or kinetic changes internal to the magma (diffusion, supersaturation, growth rate). Comparison of microprobe data on natural zoned plagioclase with zoned plagioclase grown in controlled experiments show that it may be possible to distinguish zonal development resulting from physio-chemical changes to the bulk magma from local kinetic control on the growth of individual crystals.

  12. Plagioclase-rich inclusions in carbonaceous chondrite meteorites - Liquid condensates?

    NASA Technical Reports Server (NTRS)

    Wark, D. A.

    1987-01-01

    The characteristics and formation of coarse-grained, plagioclase-rich inclusions are investigated. The textures, mineralogical compositions, and initial Al-26/Al-27 ratios for the plagioclase-rich inclusions are described. It is observed that plagioclase-rich inclusions in carbonaceous chondrites are either Ca-Al-rich inclusions (CAIs) composed of 30-60 vol pct anorthite, and less than 35 vol pct Ti-Al-pyroxene and melilite, or CA chondrites composed of plagioclase, pyroxene, olivine, spinel, and melilite. It is observed that CA chondrules are chemically and mineralogically the most similar components shared by carbonaceous and ordinary chondrites. The textural changes observed in the inclusions are examined. The data reveal that the CAIs have three textural groups: coarse anorthite laths, equigranular anorthite and Ti-Al-pyroxene, and lacy Ti-Al-pyroxene and fine-grained anorthite.

  13. Partition coefficients for calcic plagioclase - Implications for Archean anorthosites

    NASA Technical Reports Server (NTRS)

    Phinney, W. C.; Morrison, D. A.

    1990-01-01

    In most Archean cratons, cumulates of equant plagioclase megacrysts form anorthositic complexes, including those at Bad Vermilion Lake (Ontario). In this paper, partition coefficients (Ds) of REEs between natural high-Ca plagioclase megacrysts and their basaltic matrices were determined, using a multiple aliquot techique, and megacrystic plagioclases occurring in anorthosites were analyzed for the same components which, in conjunction with their Ds, were applied to calculations of melts in equilibrium with anorthosites. The REE's Ds were found to agree well with experimentally determined values and to predict equilibrium melts for Archean anorthosites that agree well with coeval basaltic flows and dikes. The Ds also appear to be valid for both the tholeiitic and alkali basalts over a wide range of mg numbers and REE concentrations. It is suggested that the moderately Fe-rich tholeiites that are hosts to plagioclase megacrysts in greenstone belts form the parental melts for megacrysts which make up the Bad Vermilion Lake Archean anorthositic complex.

  14. Plagioclase-Hosted Magnetite Inclusions From the Bushveld Complex

    NASA Astrophysics Data System (ADS)

    Feinberg, J. M.; Scott, G. R.; Renne, P. R.; Wenk, H.

    2004-12-01

    Gabbros from the Main Zone of the 2.064 Ga Bushveld Complex have long been known to possess unusually stable magnetizations due to the presence of high coercivity, exsolved magnetite inclusions in plagioclase and clinopyroxene. The paleomagnetic pole for these rocks has been used to anchor apparent polar wander paths for the Kaapval craton during the Early-Mid Proterozoic. To better understand the rock magnetic properties of silicate-hosted magnetite inclusions, oriented paleomagnetic samples of gabbro were collected from quarries near Belfast and Rustenberg, South Africa, sampling the eastern and western limbs of the Complex, respectively. Plagioclase composition at both sites ranges from An55 (rims) to An65 (cores) based on optical and electron microprobe data. Four kinds of inclusions are present within the plagioclase: elongate magnetite needles, nanometer-scale magnetite particles (responsible for the "cloudy" appearance of some crystals), translucent brown hematite/ilmenite platelets, and colorless euhedral inclusions of pyroxene and/or feldspar. Magnetite inclusions are most abundant at the cores of the plagioclase crystals. Orientations of the needles and the platelets are crystallographically controlled by the silicate host. Although the elongation direction of the magnetite inclusions can occur in any of five possible orientations, only two or three of these directions dominates each plagioclase crystal. Alternating field demagnetization of bulk samples (NRM = 1.5 x 101 A m-1) shows univectorial remanence with average median destructive fields (MDF) of 115 mT (Belfast) and 90 mT (Rustenberg). AF demagnetization of single plagioclase crystals (NRM = 100 A m-1) also shows single component remanence with average MDFs >150 mT. The NRM coercivity spectra of single plagioclase crystals are indistinguishable from that of the bulk samples. When normalized to their abundance in bulk samples the magnetite-bearing plagioclase fully accounts for the NRM of Bushveld

  15. Linking Plagioclase Zoning Patterns to Active Magma Processes

    NASA Astrophysics Data System (ADS)

    Izbekov, P. E.; Nicolaysen, K. P.; Neill, O. K.; Shcherbakov, V.; Plechov, P.; Eichelberger, J. C.

    2015-12-01

    Plagioclase, one of the most common and abundant mineral phases in volcanic products, will vary in composition in response to changes in temperature, pressure, composition of the ambient silicate melt, and melt H2O concentration. Changes in these parameters may cause dissolution or growth of plagioclase crystals, forming characteristic textural and compositional variations (zoning patterns), the complete core-to-rim sequence of which describes events experienced by an individual crystal from its nucleation to the last moments of its growth. Plagioclase crystals in a typical volcanic rock may look drastically dissimilar despite their spatial proximity and the fact that they have erupted together. Although they shared last moments of their growth during magma ascent and eruption, their prior experiences could be very different, as plagioclase crystals often come from different domains of the same magma system. Distinguishing similar zoning patterns, correlating them across the entire population of plagioclase crystals, and linking these patterns to specific perturbations in the magmatic system may provide additional perspective on the variety, extent, and timing of magma processes at active volcanic systems. Examples of magma processes, which may be distinguished based on plagioclase zoning patterns, include (1) cooling due to heat loss, (2) heating and/or pressure build up due to an input of new magmatic material, (3) pressure drop in response to magma system depressurization, and (4) crystal transfer between different magma domains/bodies. This review will include contrasting examples of zoning patters from recent eruptions of Karymsky, Bezymianny, and Tolbachik Volcanoes in Kamchatka, Augustine and Cleveland Volcanoes in Alaska, as well as from the drilling into an active magma body at Krafla, Iceland.

  16. The origin of olivine-rich troctolites/plagioclase-dunites

    NASA Astrophysics Data System (ADS)

    Garapic, G.; Faul, U.; Kruckenberg, S. C.; Wiejaczka, J.; Newton, J. C.

    2015-12-01

    Olivine-rich troctolites or plagioclase dunites are a type of rock commonly found in oceanic crust and peridotite massifs that does not fit into a IUGS classification. Part of the reason is that their origin is poorly constrained, in particular whether these rocks are cumulates or residual mantle rocks. To avoid implications for origin or process Blackman et al. 2006 defined as olivine-rich troctolites rocks that contain > 70% olivine,with plagioclase, cpx and spinel. We examined this type of rock in Krivaja peridotite massif in Bosnia-Herzegovina where it occurs as massive outcrops with an area of several tens of square kilometres. The plagioclase dunites are underlain by peridotites that contain plagioclase patches indicative of melt migration. These peridotites are progressively depleted of pyroxene and cross-cut by gabbro veins. The plagioclase dunites have Mg# predominantly from 89 - 90 and Ni contents from 2500 - 3500 ppm, similar to the peridotites. EBSD mapping of whole thin sections shows orientation distribution functions (odf) that are unlike any of the fabric types observed in naturally or experimentally deformed rocks with a strong maximum in (001) near the foliation plane (although this plane is poorly defined) and weak girdles of the other two axes perpendicular to it. For comparison, we also mapped known cumulates from the Rum and Stillwater layered intrusions with somewhat lower Mg# of 84 - 86. The odf of these samples show a strong maximum of (010) perpendicular to the foliation plane and weak girdles of the other two axes in the plane. This fabric type has been explained by crystal settling and compaction in a magma chamber. Together these observations show that the plagioclase dunites from Krivaja, as well as rocks with similar characteristics e.g. from the Mid-Atlantic Ridge (Drouin et al. 2010) and Italy (Renna and Tribuzio, 2011) are not cumulates but are of mantle origin. An important characteristic of the plagioclase dunites is that the

  17. Synthesis for Lunar Simulants: Glass, Agglutinate, Plagioclase, Breccia

    NASA Technical Reports Server (NTRS)

    Weinstein, Michael; Wilson, Stephen A.; Rickman, Douglas L.; Stoeser, Douglas

    2012-01-01

    The video describes a process for making glass for lunar regolith simulants that was developed from a patented glass-producing technology. Glass composition can be matched to simulant design and specification. Production of glass, pseudo agglutinates, plagioclase, and breccias is demonstrated. The system is capable of producing hundreds of kilograms of high quality glass and simulants per day.

  18. Plagioclase-melt equilibria. [crystallization from magmatic liquid

    NASA Technical Reports Server (NTRS)

    Drake, M. J.

    1976-01-01

    Results of experiments investigating the crystallization of plagioclase from natural and synthetic melts are presented and are analyzed in terms of empirical and semiquantitative mixing models for the melt. Elemental partition constants were determined from the results and from other published data. Activities of the melt components were modeled by assuming that the melt consists of two independent quasi-lattices of network-forming and network-modifying components, each of which is an ideal solution of its respective component. The semiquantitative analysis supports the suggestion that Na(+) is strongly associated with tetrahedrally-coordinated Al in the melt. It is shown that it is possible to predict the composition of plagioclase crystallizing under equilibrium conditions from a dry melt of known composition and known temperature at low total pressure.

  19. Skaergaard Liquidus Temperatures and the Frailty of Plagioclase Thermometry

    NASA Astrophysics Data System (ADS)

    Morse, S. A.

    2010-12-01

    Because of its refractory nature and low diffusivity, plagioclase is the only mineral likely to record liquidus temperatures of mafic magmas. As such, it has become a talisman of such thermometry, but with limited success. Precise thermal information can perhaps best be obtained experimentally by finding the unique cotectic assemblage of all relevant mineral compositions with melt at relevant pressure. By repeating such experiments at more evolved compositions a relevant plagioclase thermometric history should be obtained. This principle of cotectic calibration was that used as a starting point by Morse (2008). By contrast, unfiltered literature results of experimental plagioclase - liquid determinations were used by Thy et al. (2009), with a T-X regression through all the data including evolved compositions, to describe the Skaergaard liquidus. Implicit in this exercise was the hypothesis that all the data represented stable equilibria and that low-melting components at static melting behaved the same as if in fractional crystallization. Tests for stable equilibrium in such a database [including that of Putirka (2005) and many others as e.g. in LEPR (lepr.ofm-research.org)] can usefully start with an examination of plagioclase loop width versus temperature or plagioclase composition. The loop width of a binary solution against either T or X is described by a slightly skewed parabola anchored at zero at both ends and rising to a broad maximum near An60 in the case of plagioclase. The peak width in XAn (Sol - Liq) has a value of 0.32 at 1 atm in Di-An-Ab and 0.24 at An-57 in a MORB fractional crystallization exercise. Values falling outside this range downward are likely to reflect metastable compositions. All of the 54 data points in one source used by Thy et al. (2009) fall below this range and are scattered to as low as 0.04. Such a shotgun scatter defines metastability and the loss of calibration. Moderate scatter at much higher values of loop width in the LEPR

  20. Raman Study of Shock Effects in Plagioclase Feldspar from the Mistastin Lake Impact Structure, Canada

    NASA Astrophysics Data System (ADS)

    Xie, T. X.; Shieh, S. R. S.; Osinski, G. R. O.

    2016-08-01

    This study mainly uses Raman spectroscopy with a 514 nm laser to study anorthosite from Mistastin Lake Impact Crater, Canada, which mainly contains plagioclase with composition of An 28–55, to better understand shock processes in plagioclase feldspar.

  1. Raman Study of Shock Effects in Plagioclase Feldspar from the Mistastin Lake Impact Structure, Canada

    NASA Astrophysics Data System (ADS)

    Xie, T. X.; Shieh, S. R. S.; Osinski, G. R. O.

    2016-08-01

    This study mainly uses Raman spectroscopy with a 514 nm laser to study anorthosite from Mistastin Lake Impact Crater, Canada, which mainly contains plagioclase with composition of An 28-55, to better understand shock processes in plagioclase feldspar.

  2. Grain-Recycling Zoning of Plagioclase and Metamorphic Fractionation

    NASA Astrophysics Data System (ADS)

    Pearce, M. A.; Wheeler, J.

    2008-12-01

    Quartzo-feldspathic gneisses make up much of the continental crust often having enjoyed a complex thermal history. Determining peak metamorphic conditions using conventional equilibrium thermodynamics is difficult because there are too many degrees of freedom. Zoned minerals are problematic, because of uncertainties in the exact equilibrium assemblage at any particular time, but provide a time-dependent measure of changes in equilibrium conditions. Zoning can arise due to diffusion of atoms into a homogeneous lattice from grain boundarys or through mineral growth under changing pressure, temperature or bulk rock composition. Conventional growth zoning considers a porphyroblast (commonly garnet) growing in an effectively homogeneous matrix with the growth rate controlled by reactions that produce new porphyroblast material. However, simulations of zoning developed by grain growth in a monophase domains of more complex rocks show boundary migration rates control the zoning geometry as shrinking grains are cannibalised by growing grains. This new grain-recycling zoning develops because chemical reactions change the composition of the material that is swept by the grain boundary without changing the mineral. A model of this process has been created using the Gibbs free energy minimisation software Theriak-Domino controlled by our custom written Matlab control program. This program assumes an initially homogeneous composition of equigranular plagioclase then uses the experimentally determined normal growth law for plagioclase to calculate the grain-size increase for a given time-step thus giving the amount of material swept. Assuming this is all available for reaction at the same time, the rest of the plagioclase is removed from the bulk composition, the equilibrium plagioclase composition calculated, and added to the growing grain. This fractionation alters the range of plagioclase compositions available over a given temperature range, changing PT estimates obtained

  3. Origin of strongly reversed rims on plagioclase in cumulates

    NASA Astrophysics Data System (ADS)

    Morse, S. A.; Nolan, Kathleen M.

    1984-06-01

    Narrow reversed rims on plagioclase are ubiquitous in troctolites and olivine gabbros of the Kiglapait intrusion and may be a common feature of all such cumulates. The rims occur at plag/plag, plag/ol, and less strongly at plag/aug grain boundaries. They are optically obvious at ΔAn < 10 mol.% and can reach ΔAn = 32 mol.% or more. In parallel, K/Na drops sharply. Although ubiquitous from sample to sample, the reversed rims are only locally present at grain boundaries even for the same pair of crystals in contact; they are prominent in linear networks suggesting the last trace of intercumulus liquid. A subsolidus origin is ruled out by the absence of reactants at plag/plag and plag/ol boundaries and by the local rather than pervasive development of rims. The rims are required to grow from intercumulus liquid, in which the partition of An component between crystals and liquid increases with the trapped augite component of the liquid. Calculations from published experimental data show that ΔAn > 30 can easily be achieved by such a process. It is also probable that the trapped liquid is part of an An-rich boundary layer generated by solute rejection during adcumulus growth. The ability of the rims to sustain steep K/Na gradients despite a long subsolidus cooling history proves that the K sbnd Na exchange rate is vanishingly small over a geologic time scale in An-rich feldspar, suggesting that at low K content the potassium is site-bound to the tetrahedral Al/Si distribution. Reversed rims therefore provide important information on diffusion limits as well as on the late-stage solidification history of plagioclase-rich cumulates. Moreover, they demonstrate that plagioclase geothermometry cannot be divorced from effects of liquid composition and structure as monitored, for example, by augite content.

  4. Shishaldin volcano: Aleutian high-alumina basalts and the question of plagioclase accumulation

    SciTech Connect

    Fournelle, J.; Marsh, B.D. )

    1991-03-01

    High-alumina basalts (HABs) from volcanic arcs commonly contain 30%-50% (modal) plagioclase. It has been suggested that they reflect plagioclase addition and are not primary compositions. In rocks from the Aleutian volcano Shishaldin, the authors search for evidence of plagioclase accumulation: Al{sub 2}O{sub 3}, CaO, and Na{sub 2}O vs. modal plagioclase; europium anomalies in HABs; plagioclase-liquid equilibrium; and the HAB groundmass. The HABs do not appear to be results of plagioclase addition to liquids of dacitic, Fe-Ti enriched, or high-Mg basaltic compositions. Plagioclase loss from HABs does appear to yield the Fe-Ti-enriched basalts. Shishaldin HABs may reflect near-primary compositions, and HAB phase equilibria may thus be useful in evaluating the origin of such arc basalts.

  5. Origin of plagioclase-olivine inclusions in carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Sheng, Y. J.; Hutcheon, I. D.; Wasserburg, G. J.

    1991-02-01

    The origin of plagioclase-olivine inclusions (POIs) from three CV chondrites and one ungrouped chondrite was investigated by examining the chemical, mineralogical, and isotopic characteristics of a group of POIs from these chondrites. Results of these analyses demonstrate that the mixing and the partial melting processes in these inclusions were superimposed on more ancient isotopically heterogeneous material. A comparison of the essential characteristics of POIs and CAIs suggests that the major processes leading to the formation of POIs (such as condensation, dust/gas fractionation, aggregation of chemically and isotopically disparate materials, and partial melting) are common to most CAIs and chondrules. A scenario for the origin of POIs is proposed, showing that the homogeneity of the final assemblage (whether a POI, a CAI, or a chondrite) is primarily a reflection of the thermal history rather than the nature of precursor materials.

  6. Thermal infrared spectroscopy and modeling of experimentally shocked plagioclase feldspars

    USGS Publications Warehouse

    Johnson, J. R.; Horz, F.; Staid, M.I.

    2003-01-01

    Thermal infrared emission and reflectance spectra (250-1400 cm-1; ???7???40 ??m) of experimentally shocked albite- and anorthite-rich rocks (17-56 GPa) demonstrate that plagioclase feldspars exhibit characteristic degradations in spectral features with increasing pressure. New measurements of albite (Ab98) presented here display major spectral absorptions between 1000-1250 cm-1 (8-10 ??m) (due to Si-O antisymmetric stretch motions of the silica tetrahedra) and weaker absorptions between 350-700 cm-1 (14-29 ??m) (due to Si-O-Si octahedral bending vibrations). Many of these features persist to higher pressures compared to similar features in measurements of shocked anorthite, consistent with previous thermal infrared absorption studies of shocked feldspars. A transparency feature at 855 cm-1 (11.7 ??m) observed in powdered albite spectra also degrades with increasing pressure, similar to the 830 cm-1 (12.0 ??m) transparency feature in spectra of powders of shocked anorthite. Linear deconvolution models demonstrate that combinations of common mineral and glass spectra can replicate the spectra of shocked anorthite relatively well until shock pressures of 20-25 GPa, above which model errors increase substantially, coincident with the onset of diaplectic glass formation. Albite deconvolutions exhibit higher errors overall but do not change significantly with pressure, likely because certain clay minerals selected by the model exhibit absorption features similar to those in highly shocked albite. The implication for deconvolution of thermal infrared spectra of planetary surfaces (or laboratory spectra of samples) is that the use of highly shocked anorthite spectra in end-member libraries could be helpful in identifying highly shocked calcic plagioclase feldspars.

  7. Infrared reflectance spectra (2. 2-15. mu. m) of plagioclase feldspars

    SciTech Connect

    Nash, D.B. ); Salisbury, J.W. )

    1991-06-01

    Laboratory results show that (1) the Christiansen frequency (CF) feature in mid-infrared reflectance spectra of powders can be used to accurately distinguish plagioclase composition, and (2) the wavelength position of the CF is not affected by vitrification of the plagioclase. Although the CF position does not distinguish glass from crystalline forms of plagioclase, other features (combination-tone, overtone, restrahlen bands) in the mid-IR spectra of plagioclase can be used for that purpose. These results have important implications for application of thermal emission spectroscopy to mapping the surface composition of regolith-covered planetary bodies like the Moon, Mars, and asteroids.

  8. Diversity in the Visible-NIR Absorption Band Characteristics of Lunar and Asteroidal Plagioclase

    NASA Technical Reports Server (NTRS)

    Hiroi, T.; Kaiden, H.; Misawa, K.; Kojima, H.; Uemoto, K.; Ohtake, M.; Arai, T.; Sasaki, S.; Takeda, H.; Nyquist, L. E.; Shih, C.-Y.

    2012-01-01

    Studying the visible and near-infrared (VNIR) spectral properties of plagioclase has been challenging because of the difficulty in obtaining good plagioclase separates from pristine planetary materials such as meteorites and returned lunar samples. After an early study indicated that the 1.25 m band position of plagioclase spectrum might be correlated with the molar percentage of anorthite (An#) [1], there have been few studies which dealt with the band center behavior. In this study, the VNIR absorption band parameters of plagioclase samples have been derived using the modified Gaussian model (MGM) [2] following a pioneering study by [3].

  9. Cordierite formation during the experimental reaction of plagioclase with Mg-rich aqueous solutions

    NASA Astrophysics Data System (ADS)

    Hövelmann, J.; Austrheim, H.; Putnis, A.

    2014-09-01

    The reaction between plagioclase (labradorite and oligoclase) and Mg-rich aqueous solutions was studied experimentally at hydrothermal conditions (600-700 °C, 2 kbar). During the experiments, plagioclase grains were readily converted to cordierite and quartz within 4 days. The cordierite crystals had well-developed polyhedral shapes, but showed skeletal internal morphologies suggesting that the initial growth occurred fast under high-driving-force conditions. In pure MgCl2 solutions (0.5-5 M), plagioclase dissolution and cordierite precipitation were spatially uncoupled indicating that Al was to some extent mobile in the fluid. Cordierite crystals formed at 700 °C showed orthorhombic symmetry, whereas those formed at 600 °C dominantly persisted in the metastable hexagonal form suggesting a strong increase in Al, Si ordering speed between 600 and 700 °C. The thermodynamic evolution of the fluid-solid system ultimately resulted in stabilization of Ca-rich plagioclase as demonstrated by partial anorthitization of unreacted plagioclase grains. Cordierite was also observed to form when Mg was added to a potentially albitizing Na-silicate-bearing solution. In that case, cordierite precipitation appeared to be more closely coupled to plagioclase dissolution, and secondary alteration of remnant plagioclase grains did not occur most likely due to armoring of the plagioclase by the cordierite overgrowth. The fast reaction rates observed in our experimental study have potential implications for Mg-metasomatism as a rock-forming process.

  10. Ion microprobe mass analysis of plagioclase from 'non-mare' lunar samples

    NASA Technical Reports Server (NTRS)

    Meyer, C., Jr.; Anderson, D. H.; Bradley, J. G.

    1974-01-01

    The ion microprobe was used to measure the composition and distribution of trace elements in lunar plagioclase, and these analyses are used as criteria in determining the possible origins of some nonmare lunar samples. The Apollo 16 samples with metaclastic texture and high-bulk trace-element contents contain plagioclase clasts with extremely low trace-element contents. These plagioclase inclusions represent unequilibrated relicts of anorthositic, noritic, or troctolitic rocks that have been intermixed as a rock flour into the KREEP-rich matrix of these samples. All of the plagioclase-rich inclusions which were analyzed in the KREEP-rich Apollo 14 breccias were found to be rich in trace elements. This does not seem to be consistent with the interpretation that the Apollo 14 samples represent a pre-Imbrium regolith, because such an ancient regolith should have contained many plagioclase clasts with low trace-element contents more typical of plagioclase from the pre-Imbrium crust. Ion-microprobe analyses for Ba and Sr in large plagioclase phenocrysts in 14310 and 68415 are consistent with the bulk compositions of these rocks and with the known distribution coefficients for these elements. The distribution coefficient for Li (basaltic liquid/plagioclase) was measured to be about 2.

  11. The origin of amorphous rims on lunar plagioclase grains: Solar wind damage or vapor condensates

    NASA Technical Reports Server (NTRS)

    Keller, Lindsay P.; Mckay, David S.

    1991-01-01

    A distinctive feature of micron sized plagioclase grains from mature lunar soils is a thin (20 to 100 nm) amorphous rim surrounding the grains. These rims were originally described from high voltage electron microscope observations of lunar plagioclase grains by Dran et al., who observed rims up to 100 nm thick on plagioclase grains from Apollo 11 and 12 soils. These rims are believed to be the product of solar wind damage. The amorphous rims were studied on micron sized plagioclase grains from a mature Apollo 16 soil using a JEOL 200FX transmission electron microscope equipped with an energy dispersive x ray spectrometer. It was found that the amorphous rims are compositionally distinct from the interior plagioclase and it is proposed that a major component of vapor condensates is present in the rims.

  12. Magmatic interactions as recorded in plagioclase phenocrysts of Chaos Crags, Lassen Volcanic Center, California

    USGS Publications Warehouse

    Tepley, F. J.; Davidson, J.P.; Clynne, M.A.

    1999-01-01

    The silicic lava domes of Chaos Crags in Lassen Volcanic National Park contain a suite of variably quenched, hybrid basaltic andesite magmatic inclusions. The inclusions represent thorough mixing between rhyodacite and basalt recharge liquids accompanied by some mechanical disaggregation of the inclusions resulting in crystals mixing into the rhyodacite host preserved by quenching on dome emplacement. 87Sr/86Sr ratios (~0.7037-0.7038) of the inclusions are distinctly lower than those of the host rhyodacite (~0.704-0.7041), which are used to fingerprint the origin of mineral components and to monitor the mixing and mingling process. Chemical, isotopic, and textural characteristics indicate that the inclusions are hybrid magmas formed from the mixing and undercooling of recharge basaltic magma with rhyodacitic magma. All the host magma phenocrysts (biotite, plagioclase, hornblende and quartz crystals) also occur in the inclusions, where they are rimmed by reaction products. Compositional and strontium isotopic data from cores of unresorbed plagioclase crystals in the host rhyodacite, partially resorbed plagioclase crystals enclosed within basaltic andesite inclusions, and partially resorbed plagioclase crystals in the rhyodacitic host are all similar. Rim 87Sr/86Sr ratios of the partially resorbed plagioclase crystals in both inclusions and host are lower and close to those of the whole-rock hybrid basaltic andesite values. This observation indicates that some crystals originally crystallized in the silicic host, were partially resorbed and subsequently overgrown in the hybrid basaltic andesite magma, and then some of these partially resorbed plagioclase crystals were recycled back into the host rhyodacite. Textural evidence, in the form of sieve zones and major dissolution boundaries of the resorbed plagioclase crystals, indicates immersion of crystals into a hotter, more calcic magma. The occurrence of partially resorbed plagioclase together with plagioclase

  13. Investigating the origin of anorthitic plagioclase through a combination of experiments and natural observations

    NASA Astrophysics Data System (ADS)

    Lundstrom, Craig C.; Tepley, Frank J.

    2006-09-01

    The origin of anorthitic plagioclase in volcanic rocks worldwide remains an enigma. Arenal volcano, Costa Rica, provides a good example of the problem: up to An 96 plagioclase are found within moderately evolved basaltic andesites. We follow up a recent suggestion [Lundstrom, C.C., Boudreau, A., Pertermann, M., 2005. Diffusion-reaction in a thermal gradient: Implications for the genesis of anorthitic plagioclase, high alumina basalt and igneous mineral layering. Earth Planet. Sci. Lett. 237, 829-854] that diffusion-reaction processes occurring between ascending magmas and gabbroic wall rocks might provide a means of producing anorthitic plagioclase without requiring exotic, ultra-calcic melt compositions by integrating observations from three analytical methods: (1) laboratory diffusion-reaction experiments in the diopside-albite-anorthite (DAA) system; (2) transmission electron microscopy (TEM) of plagioclase grains from both a diffusion-reaction experiment and an Arenal lava; and (3) Sr isotope microstratigraphy of phenocrysts and megacrysts from natural lavas from the current eruption at Arenal. Two plagioclase saturated DAA melts, juxtaposed in experiments at either 1 bar pressure (anhydrous) or at 0.5 GPa pressure (hydrous) for 3-5 days at 1244 or 1125 °C, illustrate the dramatic effect of H 2O on facilitating plagioclase reaction. In the presence of wet melt, enrichment in anorthitic plagioclase occurs at the material interface while in the presence of the dry 1 bar melt, plagioclase shows no reaction. TEM analyses of a homogeneous anorthitic plagioclase from a diffusion-reaction experiment indicates heterogeneous columns of more anorthite-rich plagioclase at the < 100 nm scale while a homogeneous anorthitic plagioclase phenocryst from a 1968 lava from Arenal found much of the crystal to be composed of 20-50 μm diameter subgrains, having ˜ 1 μm diameter tubes filled with Fe, K, Si-rich glass. Large core-rim variations in 87Sr/ 86Sr occur within three

  14. Crystallization of An-rich plagioclase in 'dacitic' melt at Arenal volcano: Natural occurrence and experiments

    NASA Astrophysics Data System (ADS)

    Parat, F.; Streck, M.; Holtz, F.; Almeev, R.

    2006-12-01

    High-An plagioclase (An85-94) is ubiquitous in crystal-rich basaltic andesitic lavas of the current eruption and of the entire eruptive history of Arenal volcano, Costa Rica. An85-91 plagioclase was found to host glassy melt inclusions of dacitic composition suggesting that high An plagioclase may also crystallize in melts as silicic as ~63 wt.% SiO2 (Streck &Wacaster, 2006). Such dacitic melt inclusion compositions resemble dacite tephra units that erupted a few times in Arenal's history. We investigated one pumice clast from the dacitic ET2 tephra (e.g. Borgia et al., 1988) to shed light on the possibility to crystallize high An plagioclase from dacitic melt. The natural ET2 pumice sample is phenocryst poor (~7 wt.%) with a fine-grained, vesicular, and mostly crystalline matrix. Phenocrysts are dominated by plagioclase with subordinate amphibole, pyroxenes and oxides. Apatite occurs as accessory phase. Plagioclase cores indeed display high An between An94 to An85. On the other hand, rim compositions tend to be significantly less anorthitic (~An75 to 65). A natural glass made from a split of the natural ET2 pumice clast was utilized as starting material for an experimental investigation into phase equilibria of this dacite magma. The first experiments were carried out at high pressure (4 kbar), high temperature (900-950°C) and water-rich conditions (4-9 wt.% H2O in melt) in an internally heated pressure vessel (ΔlogfO2~NNO+3). Plagioclase with up to 83 mole % anorthite crystallizes at 900°C and for H2Omelt=9 wt.% (water-saturated). An-rich plagioclase coexists with amphibole (Mg#~70) and magnetite (Xulvo=10) in 60 wt.% SiO2 melt. As expected, An content increases with increasing temperature and water content in the melt. At 950°C, current experiments found plagioclase (An75) to be stable with H2Omelt<6.4 wt.% (no plagioclase at water-saturated conditions, only magnetite crystallizes). We infer that plagioclase begins crystallizing at H2Omelt = 8 wt.% and is

  15. Effects of changing H2O concentrations and viscosities on plagioclase crystallization in a rhyolite obsidian: experiments and plagioclase speedometry (Invited)

    NASA Astrophysics Data System (ADS)

    Waters, L.; Andrews, B. J.; Lange, R. A.

    2013-12-01

    H2O-saturated phase equilibrium and decompression experiments on a rhyolite obsidian (73 wt% SiO2) from Medicine Lake Volcano, CA demonstrate the effect of changing melt H2O concentrations and melt viscosity on plagioclase crystallization. The natural sample is saturated in plagioclase + orthopyroxene + ilmenite + magnetite + apatite + zircon, despite low phenocryst abundances (<2.3%) and no microlite crystallization. Eruptive temperature and oxygen fugacity (×1σ), on the basis of Fe-Ti oxide thermometry, are 852 × 12°C and ΔNNO +0.3 × 0.1. Plagioclase compositions range from 33-53 mol% An. Given the low crystallinity and absence of significant cooling, the progressive loss of dissolved melt H2O during ascent best explains the broad range in phenocryst composition and the low crystallinity. Phase equilibrium experiments were conducted at temperatures and pressures ranging from 750-950°C and 50-300 MPa, respectively. Experiments were conducted in a Ni-rich pressure vessel (Waspaloy) with Ni filler rod, which produces an intrinsic fO2 of ΔNNO +1 × 0.5 (Geshwind & Rutherford, 1992) and pressurized with H2O (where Ptotal= PH2O). The results of the phase equilibrium experiments show that the most anorthitic plagioclase crystallized at ~3.95 wt% H2O and the most albitic at ~3.49 wt% H2O. Plagioclase crystallization in the natural sample ceased at relatively high melt H2O content (3.49 wt%), which corresponds to a viscosity of 4.85 log10 Pa s (Hui & Zhang, 2007). To evaluate the effect of decompression rate on plagioclase crystallization, experiments were conducted on the rhyolite at two different continuous decompression rates, 3.0 MPa/hr and 0.8 MPa/hr. Two decompression experiments were conducted for each rate over two pressure interals:150 to 89 MPa and from 150 to 58 MPa. The results from our study are combined with the results of single- and multi-step decompression experiments on rhyolites/rhyodacites from Geshwind & Rutherford (1995), Couch et al., (2003

  16. Visible/near-infrared spectra of experimentally shocked plagioclase feldspars

    USGS Publications Warehouse

    Johnson, J. R.; Horz, F.

    2003-01-01

    High shock pressures cause structural changes in plagioclase feldspars such as mechanical fracturing and disaggregation of the crystal lattice at submicron scales, the formation of diaplectic glass (maskelynite), and genuine melting. Past studies of visible/ near-infrared spectra of shocked feldspars demonstrated few spectral variations with pressure except for a decrease in the depth of the absorption feature near 1250-1300 nm and an overall decrease in reflectance. New visible/near-infrared spectra (400-2500 nm) of experimentally shocked (17-56 GPa) albite- and anorthite-rich rock powders demonstrate similar trends, including the loss of minor hydrated mineral bands near 1410, 1930, 2250, and 2350 nm. However, the most interesting new observations are increases in reflectance at intermediate pressures, followed by subsequent decreases in reflectance at higher pressures. The amount of internal scattering and overall sample reflectance is controlled by the relative proportions of micro-fractures, submicron grains, diaplectic glass, and melts formed during shock metamorphism. We interpret the observed reflectance increases at intermediate pressures to result from progressively larger proportions of submicron feldspar grains and diaplectic glass. The ensuing decreases in reflectance occur after diaplectic glass formation is complete and the proportion of genuine melt inclusions increases. The pressure regimes over which these reflectance variations occur differ between albite and anorthite, consistent with thermal infrared spectra of these samples and previous studies of shocked feldspars. These types of spectral variations associated with different peak shock pressures should be considered during interpretation and modeling of visible/near-infrared remotely sensed spectra of planetary and asteroidal surfaces.

  17. Magma mixing, recharge and eruption histories recorded in plagioclase phenocrysts from El Chichon Volcano, Mexico

    USGS Publications Warehouse

    Tepley, F. J.; Davidson, J.P.; Tilling, R.I.; Arth, Joseph G.

    2000-01-01

    Consistent core-to-rim decreases of 87Sr/86Sr ratios and coincident increases in Sr concentrations in plagioclase phenocrysts of varying size (~ 1 cm to 2 mm) are reported from samples of the 1982 and pre-1982 (~ 200 ka) eruptions of El Chichon Volcano. Maximum 87Sr/86Sr ratios of ~ 0.7054, significantly higher than the whole-rock isotopic ratios (~ 0.7040-0.7045), are found in the cores of plagioclase phenocrysts, and minimum 87Sr/86Sr ratios of ~ 0.7039 are found near some of the rims. Plagioclase phenocrysts commonly display abrupt fluctuations in An content (up to 25 mol %) that correspond to well-developed dissolution surfaces The isotopic, textural and compositional characteristics suggest that these plagioclase phenocrysts grew in a system that was periodically recharged by higher-temperature magma with a lower 87Sr/86Sr ratio and a higher Sr concentration. Rim 87Sr/86Sr ratios in plagioclase phenocrysts of rocks from the 200 ka eruption indicate that, at that time, the magma had already attained the lowest recorded 87Sr/86Sr value of the system (~ 0.7039). In contrast, cores from plagioclase phenocrysts of the 1982 eruption, inferred to have grown in the past few thousand years, have the highest recorded 87Sr/86Sr ratios of the system. Collectively, the Sr isotopic data (for plagioclase and whole rock), disequilibrium textural features of the phenocrysts, known eruption frequencies, and inferred crystal-residence times of the plagioclases are best interpreted in terms of an intermittent magma chamber model. Similar processes, including crustal contamination, magma mixing, periodic recharge by addition of more mafic magma to induce plagioclase disequilibrium (possibly triggering eruption) and subsequent re-equilibration, apparently were operative throughout the 200 ky history of the El Chichon magma system.

  18. The Petrographic Distinction between Basalt and Andesite Based upon the Arrested Fractionation of Plagioclase Phenocrysts.

    ERIC Educational Resources Information Center

    Garlick, G. Donald; Garlick, Benjamin J.

    1987-01-01

    Discusses the need to take into account the effects of arrested fractional crystallization in the petrographic classification of volcanic rocks containing plagioclase phenocrysts. Describes the development and use of a computer program to accomplish this task graphically. (TW)

  19. Selective Dissolution of Plagioclase in Semarkona: Low-Temperature Fluid-Solid Interactions

    NASA Astrophysics Data System (ADS)

    Dobrica, E.; Brearley, A. J.

    2016-08-01

    We are focusing on evidence of aqueous alteration at the boundary between matrix lumps and chondrule phenocrysts. This study shows that dissolution of plagioclase can take place at the lower metamorphic temperatures experienced by Semarkona.

  20. Mg in plagioclase: Experimental calibration of a new geothermometer and diffusion coefficients

    NASA Astrophysics Data System (ADS)

    Faak, Kathrin; Chakraborty, Sumit; Coogan, Laurence A.

    2013-12-01

    The temperature-sensitive exchange of Mg between plagioclase (Pl) and clinopyroxene (Cpx) has been studied experimentally, accounting for different anorthite-contents in plagioclase (XAn) and various silica activities (aSiO2) in the system. The partitioning of Mg between plagioclase and clinopyroxene was determined over a temperature range of 1100-1200 °C, using plagioclase single crystals of different compositions (XAn = 0.5-0.8), surrounded by different clinopyroxene-bearing matrix powders to account for different silica activities from 0.55 to 1.0. The experimental design also allows the diffusivity (DMgPl) of Mg in plagioclase under these conditions to be determined. Both KMgPl/Cpx (defined as KMgPl/Cpx=CMgPl/CMgCpx) and DMgPl decrease with temperature and increase with aSiO2. Isothermal data for different XAn in plagioclase show a linear increase of ln KMgPl/Cpx with increasing XAn, but DMgPl appears to be insensitive to XAn. The partitioning data allow a new geothermometer to be calibrated, which may be widely applicable to terrestrial and extraterrestrial rocks where plagioclase and clinopyroxene coexist: T[K]=(-9219+2034XAn)/(ln KMgPl/Cpx-1.6-ln aSiO2). Application of this geothermometer to experimental data from this study reproduces the experimental temperatures within ±20 °C. Diffusion of Mg in plagioclase is described by DMgPl[m s]=1.25×10-4[ms]·exp(-320,924[J mol]/(RT))·(.

  1. Oxygen isotopic determinations of sequentially erupted plagioclases in the 1974 magma of Fuego Volcano, Guatemala

    USGS Publications Warehouse

    Rose, W.I.; Friedman, I.; Woodruff, L.G.

    1980-01-01

    Plagioclases in the 1974 high-Al basalt from Fuego Volcano have ??O18 values of +6.0 to +8.5 per mil. Meteoric water cannot have played a significant role in Fuego's magma. Large, weakly zone clear phenocrysts had ??O18 values in the accepted mantle range, while patchyzoned and oscillatory-zoned plagioclases inferred to have formed later and shallower levels have slightly heavier oxygen isotopic ratios. ?? 1980 Intern. Association of Volcanology and Chemistry of the Earth's Interior.

  2. Deconvolution of mixtures with high plagioclase content for the remote interpretation of lunar plagioclase-rich regions

    NASA Astrophysics Data System (ADS)

    Serventi, Giovanna; Carli, Cristian; Sgavetti, Maria

    2016-07-01

    Anorthositic rocks are widespread on the lunar surface and have probably been formed by flotation of PL over a magma ocean. A large portion of pristine rocks are characterized by a low Mg/(Mg+Fe) ratio, and have been classified as ferroan anorthosite, and recently, after observation from SELENE Spectral Profiler,pure anorthosites regions with more than 98% PL have been recognized. In this paper, we analyze a set of mixtures with PL content similar to the ferroan anorthosites and to the pure anorthosite regions, using the Origin Software and the Modified Gaussian Model. We consider three plagioclases with varying FeOwt% contents (PL1, PL2 and PL3)andthree mafic end-members (1) 100% orthopyroxene, (2) 56% orthopyroxene and 44% clinopyroxene, and (3) 100% olivine (OL). The spectral parameters considered here are: band depth, band center, band width, c0 (the continuum intercept) and c1 (the continuum offset). Here we have shown that in pyroxene (PX)-bearing mixtures, the PX is distinguishable even in mixtures with only 1% PX and that PX band at ca. 900 nm is always deeper than PL1 band while PL2 and PL3 are deeperthan OPX 900 nm band from 95, 96% PL. In OL-bearing mixtures, OL detection limit is 2% when mixed with PL1, and 3% and 4% if mixed with PL2 and PL3. We also demonstrated how spectral parameters vary with PL%, and, generally, increasing the PL content: (1) 1250 nm band depth decreases when mixed with OL, while it deepens in mixtures with PX; (2) 1250 nm band centers generally move towards longer wavelength for PL1-bearing mixtures, while do not show significant variations considering PL2/PL3-mixtures; (3) 1250 nm band width of PL1 in E1 and E5-mixtures substantially widens while in other mixtures it only slightly varies. Here we also proposed an application to a real case, from Proclus crater, revealing how studying terrestrial analogues is fundamental to infer hypothesis on the mineralogical composition of a planetary surface, but also how the spectral

  3. Early differentiation of the moon - Evidence from trace elements in plagioclase

    SciTech Connect

    Palme, H.; Spettel, B.

    1984-11-15

    Bulk samples and plagioclase mineral grains from lunar cataclastic ferroan anorthosites were analyzed for trace elements by instrumental neutron activation analysis. Some pure plagioclase crystals have lower concentrations of Cr, Co, Sc, and heavy REEs than previous analyses indicated. Concentrations of Sr, Eu, Na, Ga, and the REEs in plagioclases from different anorthosites vary in a systematic way, and the trace element patterns of plagioclases from pristine norites and troctolites are very different from the plagioclase pattern of anorthosites. The following model is suggested to account for these observations: (1) melting of a large fraction of the moon, formation of a magma ocean, precipitation of olivine and later pyroxene, followed by flotation of cumulus plagioclase; (2) mixing of KREEP with a mafic component enriched in Mg, Cr, and Co; (3) precipitation of noritic and troctolitic cumulates and metallic iron from this magma; and (4) eruption of these KREEP and Mg-rich lavas and/or distribution of these materials over the front-side of the moon by basin-forming impacts 3.9-4.0 b.y. ago.

  4. Laser Raman Spectroscopic Characterization of Shocked Plagioclase from the Lonar Impact Crater, India.

    NASA Astrophysics Data System (ADS)

    Chakrabarti, R.; Basu, A. R.; Peterson, J.; Misra, S.

    2004-12-01

    We report Raman spectra of shocked plagioclase grains from the Lonar impact Crater of India. The Lonar Crater, located in the Buldana district of Maharashtra, India (19° 58'N, 76° 31'E), is an almost circular depression in the 65Ma old basalt flows of the Deccan Traps. Age estimates of this impact crater range from 10-50ka. Tektite and basalt samples were collected for this study from the rim of the crater, which is raised about 20 meters above the surrounding plains. For comparison, a Manicouagan maskelynite and an unaltered mid-oceanic ridge basalt with plagioclase laths were also analyzed. Polished thin sections of all these samples were first petrographically studied. The MORB plagioglase as well as the plagioclase from Lonar host-basalts show first order interference colors and distinct multiple lamellar twinning. The Manicouagan maskelynite is isotropic under crossed-polars. The Lonar tektite samples characteristically demonstrate spherules which are identified by their perfectly circular cross-section and isotropic nature. The spherules also contain fragments of the host basalt with plagioclase laths showing lamellar twinning. The groundmass within the spherules shows lath shaped plagioclase grains, most of which show varying degrees of isotropism due to maskelynitization. Raman scattering measurements were performed using the 514.5 nm line of an argon ion laser at an intensity of 40 kW/cm2. An inverted microscope (Nikon TE3000) with 50x objective (NA 0.55) was used for confocal imaging. A holographic notch filter removed residual laser scatter and the Raman scattering was detected by a silicon CCD at -90° C (Princeton Instruments Spec10-400R). Raman spectra were collected from ~250 cm-1 through 2000 cm-1. Raman spectra of crystalline unshocked plagioclase feldspars from the MORB and the Lonar host basalt show strongest peaks at 265 cm-1, 410 cm-1, 510 cm-1 and 1110 cm-1. The results remain the same for different points in a single grain but vary slightly

  5. Plagioclase sub-species in Chinese loess deposits: Implications for dust source migration and past climate change

    NASA Astrophysics Data System (ADS)

    He, Tong; Liu, Lianwen; Chen, Yang; Sheng, Xuefen; Ji, Junfeng

    2016-01-01

    Plagioclase mineral sub-species in the Lingtai Section in central Chinese Loess Plateau are examined using Mineral Liberation Analyzer techniques, showing that loess and paleosol samples exhibit similar patterns in terms of plagioclase feldspar sub-species content. This suggests that both loess and paleosol units have preserved their primary Ca-bearing plagioclase compositions of loess source regions. Weighted average CaO (%) in Ca-bearing plagioclase lies within a narrow range and is equivalent to the average plagioclase composition for upper continental crust. This fact supports the hypothesis that Chinese loess deposits are the result of a thorough mixing of dust sources. The sum of Ca-bearing plagioclase content exhibits a general increasing trend superimposed by glacial-interglacial oscillations. In combination with observed plagioclase data in the deserts, the variations of Ca-bearing plagioclase minerals might be used as a proxy for dust source migration and climate changes in the loess source regions. Furthermore, linear relationship between lithogenic magnetic susceptibility (MS) component input and contents of Ca-bearing plagioclase in loess units revises a MS proxy for reconstructing paleo-monsoon precipitation history. The revised MS and plagioclase sub-species records help in understanding the mechanism of glaciation across northern Tibetan Plateau.

  6. Is plagioclase removal responsible for the negative Eu anomaly in the source regions of mare basalts

    SciTech Connect

    Shearer, C.K.; Papike, J.J. )

    1989-12-01

    The nearly ubiquitous presence of a negative Eu anomaly in the mare basalts has been suggested to indicate prior separation and flotation of plagioclase from the basalt source region during its crystallization from a lunar magma ocean (LMO). Are there any mare basalts derived from a mantle source which did not experience prior plagioclase separation Crystal chemical rationale for REE substitution in pyroxene suggests that the combination of REE size and charge, M2 site characteristics of pyroxene, fO{sub 2}, magma chemistry, and temperature may account for the negative Eu anomaly in the source region of some types of primitive, low TiO{sub 2} mare basalts. This origin for the negative Eu anomaly does not preclude the possibility of the LMO as many mare basalts still require prior plagioclase crystallization and separation and/or hybridization involving a KREEP component.

  7. Is plagioclase removal responsible for the negative Eu anomaly in the source regions of mare basalts?

    NASA Technical Reports Server (NTRS)

    Shearer, C. K.; Papike, J. J.

    1989-01-01

    The nearly ubiquitous presence of a negative Eu anomaly in the mare basalts has been suggested to indicate prior separation and flotation of plagioclase from the basalt source region during its crystallization from a lunar magma ocean (LMO). Are there any mare basalts derived from a mantle source which did not experience prior plagioclase separation? Crystal chemical rationale for REE substitution in pyroxene suggests that the combination of REE size and charge, M2 site characteristics of pyroxene, fO2, magma chemistry, and temperature may account for the negative Eu anomaly in the source region of some types of primitive, low TiO2 mare basalts. This origin for the negative Eu anomaly does not preclude the possibility of the LMO as many mare basalts still require prior plagioclase crystallization and separation and/or hybridization involving a KREEP component.

  8. SCR and GCR exposure ages of plagioclase grains from lunar soil

    NASA Technical Reports Server (NTRS)

    Etique, P.; Baur, H.; Signer, P.; Wieler, R.

    1986-01-01

    The concentrations of solar wind implanted Ar-36 in mineral grains extracted from lunar soils show that they were exposed to the solar wind on the lunar surface for an integrated time of 10E4 to 10E5 years. From the bulk soil 61501 plagioclase separates of 8 grain size ranges was prepared. The depletion of the implanted gases was achieved by etching aliquot samples of 4 grain sizes to various degrees. The experimental results pertinent to the present discussion are: The spallogenic Ne is, as in most plagioclases from lunar soils, affected by diffusive losses and of no use. The Ar-36 of solar wind origin amounts to (2030 + or - 100) x 10E-8 ccSTP/g in the 150 to 200 mm size fraction and shows that these grains were exposed to the solar wind for at least 10,000 years. The Ne-21/Ne-22 ratio of the spallogenic Ne is 0.75 + or - 0.01 and in very good agreement with the value of this ratio in a plagioclase separate from rock 76535. This rock has had a simple exposure history and its plagioclases have a chemical composition quite similar to those studied. In addition to the noble gases, the heavy particle tracks in an aliquot of the 150 to 200 mm plagioclase separate were investigated and found 92% of the grains to contain more than 10E8 tracks/sq cm. This corresponds to a mean track density of (5 + or - 1) x 10E8 tracks/sq cm. The exploration of the exposure history of the plagioclase separates from the soil 61501 do not contradict the model for the regolith dynamics but also fail to prove it.

  9. Uptaking of plagioclase xenocryst into H2O-rich rear-arc basaltic magma

    NASA Astrophysics Data System (ADS)

    Hamada, M.

    2015-12-01

    Kuritani et al. (2013, Mineral. Petrol.) and Kuritani et al. (2014, Contrib. Mineral. Petrol.) estimated genetic conditions of primary arc magmas beneath the Iwate volcano (a frontal arc volcano in the northeast Japan arc) and the Sannome-gata volcano (a rear-arc volcano in the northeast Japan arc) based on analyses of volcanic rocks and numerical simulation. They estimated that H2O concentrations of primary melts are 4-5 wt.% beneath the Iwate volcano and 6-7 wt.% beneath the Sannnome-gata volcano, respectively. Their arguments mean that primary melts beneath frontal-arc volcanoes and rear-arc volcanoes are both H2O-rich, yet there has been no direct evidence to support their arguments at the Sannnome-gata volcano because volcanic rocks are either almost aphyric and/or almost no melt inclusions were found. Hydrogen concentration in nominally anhydrous minerals serves as a hygrometer of arc basaltic melts (e.g., Hamada et al. 2013, Earth Planet. Sci. Lett.). In this study, hydrogen concentration of plagioclase as a crustal xenocryst was analyzed to estimate H2O concentration of basaltic melt coexisted with plagioclase before the eruption. Plagioclase xenocrists were separated from crushed scoria which erupted from the Sannome-gata volcano 20,000-24,000 years ago. Composition of the plagioclase core is homogeneous and ranges from An30 through An35. The rim is 150 to 200-μm-thick dusty zone whose composition is around An60, suggesting that the rim crystallized rapidly from degassed basaltic melt. The profiles of infrared absorption area per unit thickness across the plagioclase core were obtained using Fourier Transform InfraRed spectrometer (FTIR). The inner core contains hydrogen of about 60 wt. ppm H2O, and hydrogen concentration elevates at outer core. Hydrogen concentration at the outermost core of plagioclase is >200 wt. ppm H2O, suggesting that plagioclase xenocrists were taken by hydrous melt (H2O>5 wt.%; Hamada et al. 2014, Earth Planet. Sci. Lett.) and

  10. Compositional controls on spinel clouding and garnet formation in plagioclase of olivine metagabbros, Adirondack Mountains, New York

    USGS Publications Warehouse

    McLelland, J.M.; Whitney, P.R.

    1980-01-01

    Olivine metagabbros from the Adirondacks usually contain both clear and spinel-clouded plagioclase, as well as garnet. The latter occurs primarily as the outer rim of coronas surrounding olivine and pyroxene, and less commonly as lamellae or isolated grains within plagioclase. The formation of garnet and metamorphic spinel is dependent upon the anorthite content of the plagioclase. Plagioclase more sodic than An38??2 does not exhibit spinel clouding, and garnet rarely occurs in contact with plagioclase more albitic than An36??4. As a result of these compositional controls, the distribution of spinel and garnet mimics and visually enhances original igneous zoning in plagioclase. Most features of the arrangement of clear (unclouded) plagioclase, including the shells or moats of clear plagioclase which frequently occur inside the garnet rims of coronas, can be explained on the basis of igneous zoning. The form and distribution of the clear zones may also be affected by the metamorphic reactions which have produced the coronas, and by redistribution of plagioclase in response to local volume changes during metamorphism. ?? 1980 Springer-Verlag.

  11. TEM observation of bacteria-induced plagioclase dissolution and secondary mineral formation

    NASA Astrophysics Data System (ADS)

    Tamura, T.; Kyono, A.; Nishimiya, Y.

    2015-12-01

    Silicate minerals are the most common minerals in the earth's crust. Bacteria are also distributed throughout the earth's surface environment. The silicate minerals are known to be dissolved by organic acids and polysaccharides known as bacteria metabolites. The metabolic activity of bacteria therefore plays an important role in the interaction between dissolution of the silicate minerals and formation of secondary minerals. However, little is known about the secondary mineral formation process associated with the bacterial metabolism. To clarify the bacterial effect on the mineral dissolution and the secondary mineral formation, we closely investigated the effect of bacterial activity on surface texture modification and chemical composition changes of plagioclase which is the most abundant silicate mineral in the earth's crust. The bacteria were isolated from soil and then added in a suitable medium with several plagioclase fragments (Ab100% and An100%). It was incubated for 10 days. Al and Si concentrations in the medium were measured by ICP-AES to monitor the dissolution of the plagioclase. Secondary mineral formation during the incubation was observed by TEM, EDS and SAED methods. The authors will give the experiment results and discuss the effect of bacterial activity on the plagioclase dissolution and the secondary mineral formation in detail.

  12. High-temperature hydrothermal alteration of tje Boehls Butte anorthosite: Origin of a bimodal plagioclase assemblage

    SciTech Connect

    Mora, Claudia I; Riciputi, Lee R; Cole, David; Walker, Karen

    2008-01-01

    The Boehls Butte anorthosite consists predominantly of an unusual bimodal assemblage of andesine and bytownite anorthite. Oxygen isotope compositions of the anorthosite were profoundly altered by high temperature, retrograde interaction with meteorichydrothermal fluids that varied in composition from isotopically evolved to nearly pristine meteoric water. Oxygen isotope ratios of bulk plagioclase separates are in the range ?7.0 to -6.2% V-SMOW, however, secondary ion mass spectrometry indicates spot-sized isotope values as low as -16%. Typical inter- and intra-plagioclase grain variability is 3 6%, and extreme heterogeneity of up to 20%is noted in a few samples. High-temperature hydrothermal alteration of intermediate plagioclase is proposed to explain the origin of bytownite anorthite in the anorthosite and creation of its unusual bimodal plagioclase assemblage. The anorthite-forming reaction created retrograde reaction-enhanced permeability which, together with rapid decompression, extension, and unroofing of the anorthosite complex, helped to accommodated influx of significant volumes of meteoric-hydrothermal fluids into the anorthosite.

  13. Shock effects in plagioclase feldspar from the Mistastin Lake impact structure, Canada

    NASA Astrophysics Data System (ADS)

    Pickersgill, Annemarie E.; Osinski, Gordon R.; Flemming, Roberta L.

    2015-09-01

    Shock metamorphism, caused by hypervelocity impact, is a poorly understood process in feldspar due to the complexity of the crystal structure, the relative ease of weathering, and chemical variations, making optical studies of shocked feldspars challenging. Understanding shock metamorphism in feldspars, and plagioclase in particular, is vital for understanding the history of Earth's moon, Mars, and many other planetary bodies. We present here a comprehensive study of shock effects in andesine and labradorite from the Mistastin Lake impact structure, Labrador, Canada. Samples from a range of different settings were studied, from in situ central uplift materials to clasts from various breccias and impact melt rocks. Evidence of shock metamorphism includes undulose extinction, offset twins, kinked twins, alternate twin deformation, and partial to complete transformation to diaplectic plagioclase glass. In some cases, isotropization of alternating twin lamellae was observed. Planar deformation features (PDFs) are notably absent in the plagioclase, even when present in neighboring quartz grains. It is notable that various microlites, twin planes, and compositionally different lamellae could easily be mistaken for PDFs and so care must be taken. A pseudomorphous zeolite phase (levyne-Ca) was identified as a replacement mineral of diaplectic feldspar glass in some samples, which could, in some instances, also be potentially mistaken for PDFs. We suggest that the lack of PDFs in plagioclase could be due to a combination of structural controls relating to the crystal structure of different feldspars and/or the presence of existing planes of weakness in the form of twin and cleavage planes.

  14. FeO and MgO in plagioclase of lunar anorthosites: Igneous or metamorphic?

    NASA Technical Reports Server (NTRS)

    Phinney, W. C.

    1994-01-01

    The combined evidence from terrestrial anorthosites and experimental laboratory studies strongly implies that lunar anorthosites have been subjected to high-grade metamorphic events that have erased the igneous signatures of FeO and MgO in their plagioclases. Arguments to the contrary have, to this point, been more hopeful than rigorous.

  15. Anomalous Plagioclase Compositions from Apollo 16 Impact Melts: Modification of Impact Melts on the Lunar Surface

    NASA Astrophysics Data System (ADS)

    Fagan, A.; Neal, C. R.

    2011-12-01

    A study of Apollo 16 impact melts has been initiated as part of the NASA Lunar Science Institute's Center for Lunar Science and Exploration. The investigation uses a novel approach to investigate the crystallization conditions for the igneous textured samples returned by Apollo 16. This approach uses a combination of crystal size distributions and mineral chemistry to develop a crystal stratigraphy approach to examine crystallization conditions. The Apollo 16 impact melts are enriched in Al2O3 (~25-28%) and are highly feldspathic with only minor amounts of pyroxene, olivine, and opaque minerals. Initial studies focused on sample 60635 where previous whole rock analyses show that, surprisingly this sample possesses a small negative Eu anomaly [1,2]. This is intriguing given the feldspathic nature of the sample (~70% modal plagioclase), which should impart a strong positive Eu anomaly on the whole rock signature. The major element compositions of the plagioclases are relatively homogeneous with a range of An94-98 and an average of An97.2. Plagioclase trace element compositions exhibit a much wider compositional range with some crystals having the predicted positive Eu anomaly but other showing an unexpected negative Eu anomaly. There are about the same number of crystals with a negative Eu anomaly as there are with a positive anomaly and both are equally distributed through the thin section (60635,2). Intriguingly, 5 plagioclase crystals from this sample contain both positive and negative Eu anomalies in different sections of the crystals. Subsequent analyses of other impact melt samples show that a further 4 samples from the LM/Station 10 site also contain plagioclase with both positive and negative Eu anomalies (60235,5; 60335,13; 60615,8; 60618,3 and ,4), along with one sample from Station 4 (64817,3). The hypothesis we are considering is that the impact melt(s) represented by these anomalous samples were generated by impact into typical lunar highlands materials

  16. Giant plagioclase growth during storage of basaltic magma in Emeishan Large Igneous Province, SW China

    NASA Astrophysics Data System (ADS)

    Cheng, Li-Lu; Yang, Zong-Feng; Zeng, Ling; Wang, Yu; Luo, Zhao-Hua

    2014-02-01

    Giant plagioclase basalts (GPBs) reflect the storage of flood basalt magma in subvolcanic magma chambers at crustal depths. In this study of the Late Permian Emeishan large igneous province in southwest China, we focus on understanding the plumbing system and ascent of large-volume basaltic magma. We report a quantitative textural analysis and bulk-rock geochemical composition of clustered touching crystals (CT-type) and single isolated crystal (SI-type) GPB samples from 5- to 240-m-thick flows in the Daqiao section. Both types of GPBs are evolved (<6 MgO wt%), but have high Ti/Y ratios (>500) and high total FeO content (11.5-15.2 wt%). The mineral chemistry of the two types of plagioclase displays a small range of anorthite content (<5 mol%), which is consistent with their unzoned characteristics. The two types of GPBs have S-type crystal size distributions but have quite different slopes, intercepts, and characteristic lengths. The characteristic lengths of the five flows are 1.54, 2.99, 1.70, 3.22, and 1.86 mm, respectively. For plagioclase growth rates of 10-11 to 10-10 mm/s, steady-state magma chamber models with simple continuous crystal growth suggest that CT-type plagioclase megacrysts have the residence time of about 500-6,000 years, whereas the residence time for SI-type plagioclase is significantly longer, about 1,000-10,000 years. By combining field geology, quantitative textural data with geochemistry, we suggest that CT- and SI-type crystals grew and were coarsened in the outer part and inner part of a magma chamber, respectively. Magma evolution during storage is controlled by crystallization, crystal growth, and magma mixing, and pulsating eruptions occur in response to the continuous supply of hot magma.

  17. Degassing driving crystallization of plagioclase phenocrysts in lava tube stalactites on Mount Etna (Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Lanzafame, Gabriele; Ferlito, Carmelo

    2014-10-01

    Basaltic lava flows can form tubes in response to the cooling of the outer surface. We collected lava stalactites (frozen lava tears) and sampled lava from the ceilings of three lava tubes on Mount Etna. Comparison of the petrographic characters between ceiling lavas and relative stalactites reveals surprising differences in the groundmass textures and crystal compositions. Major and trace element contents in stalactites show only a slight increase in alkali and SiO2 compared to ceiling lava, whereas significant differences exist in composition and textures between plagioclases within the ceiling lava and those within the stalactites, being in the last case definitively more An-rich. We advance the hypothesis that the high temperature reached in the cave caused the exsolution of the volatiles still trapped in the dripping melt. The volatiles, mainly H2O, formed bubbles and escaped from the melt; such a water-loss might have promoted the silicate polymerization in the stalactites resulting in the growth of An-rich plagioclase phenocrysts. Our results have important implications: in fact plagioclase phenocrysts are usually associated with intratelluric growth and are often considered as the main petrologic evidence for the existence of a magma chamber. The textural and chemical features of plagioclases in stalactites prove that phenocryst growth in syn to post-eruptive conditions is plausible and clearly explains the relatively low viscosity of many phenocryst-rich lava flows on Mount Etna, as well as on many other volcanoes around the world. Therefore, we can conclude that plagioclase phenocrysts cannot exclusively be considered as having originated within a magma chamber.

  18. Investigation of Plagioclase Reactivity in Wet Supercritical CO2 by In Situ Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Thompson, C.; Gauglitz, K.; Loring, J.; Schaef, T.; Miller, Q.; Johnson, K. T.; Wang, Z.; Rosso, K. M.; McGrail, P.

    2013-12-01

    Increasingly, CO2 capture and subsequent storage in deep geologic reservoirs is being implemented as a viable approach for reducing anthropogenic emissions of CO2 into the atmosphere. Several mechanisms may act to secure the injected CO2, including hydrodynamic confinement, dissolution into reservoir fluids, retention of CO2 as a separate phase in pore spaces, and carbonation of reservoir minerals. This latter mechanism is the most permanent, but it requires the presence of reactive minerals and potentially significant amounts of time for the reactions to proceed. Plagioclase feldspars are highly abundant in the earth's crust and are present in the caprocks and storage formations of many target reservoirs. Although the dissolution kinetics and carbonation reactions of feldspars have been well studied in the aqueous phase, comparatively little work has focused on plagioclase reactivity in the CO2-rich fluid at conditions relevant to geologic carbon sequestration. In this study, we used in situ infrared spectroscopy to investigate the carbonation potential of a powdered plagioclase sample similar to labradorite [(Ca,Na)(Al,Si)4O8] that had been isolated from a Hawaiian basalt. Experiments were carried out at 50 °C and 91 bar by circulating a stream of dry or wet supercritical CO2 (scCO2) past a sample overlayer deposited on the window of a high-pressure infrared flow cell. Water concentrations ranged from 0% to 125% relative to saturation, and transmission-mode absorbance spectra were recorded as a function of time for 24 hours. In experiments with excess water, a controlled temperature gradient was used to intentionally condense a film of liquid water on the overlayers' surfaces. No discernible reaction was detected when the samples were exposed to anhydrous scCO2. When water was added, a thin film of liquid-like water was observed on the samples' surfaces, and up to 0.3% of the plagioclase was converted to a carbonate phase. Calcite is the most likely reaction

  19. Clouding of pyroxene and plagioclase in eucrites - Implications for post-crystallization processing

    NASA Technical Reports Server (NTRS)

    Harlow, G. E.; Klimentidis, R.

    1980-01-01

    The clouding of pyroxene and plagioclase in the basaltic eucrites ALHA 77302, Juvinas, Pasamonte, and Stannern, is caused by finely disseminated inclusions. This clouding is interpreted to be the result of exsolution of minor components which became incompatible and crystallized on microfractures and other nucleation sites during postbrecciation metamorphism. The phases found in clouding require reduction of silicate FeO to metallic Fe in both pyroxene and plagioclase and possible redox of Cr(2+) to Cr(3+) in pyroxene. The assemblage of coexisting phases that make up clouding record conditions of T approximately equal to 900 C and f(O2) of 10 to the -16th to 10 to the -18th during slow cooling. Thus, clouding can be a useful indicator of postcrystallization conditions.

  20. Orthopyroxene-plagioclase fragments in the lunar soil from apollo 12.

    PubMed

    Fuchs, L H

    1970-08-28

    Rock fragments consisting of orthopyroxene-calcic plagioclase assemblages appear to be more common in Apollo 12 soil samples than in the breccias or soil from Apollo 11 and are mineralogically and chemically different from any of the crystalline rocks returned by either Apollo 11 or Apollo 12. Compositionally, these fragments are orthopyroxenites and feldspathic orthopyroxenites. They are probably not fragments of meteorites; other considerations point to a near-surface lunar origin.

  1. Plagioclase nucleation and growth kinetics in a hydrous basaltic melt by decompression experiments

    NASA Astrophysics Data System (ADS)

    Arzilli, Fabio; Agostini, C.; Landi, P.; Fortunati, A.; Mancini, L.; Carroll, M. R.

    2015-12-01

    Isothermal single-step decompression experiments (at temperature of 1075 °C and pressure between 5 and 50 MPa) were used to study the crystallization kinetics of plagioclase in hydrous high-K basaltic melts as a function of pressure, effective undercooling (Δ T eff) and time. Single-step decompression causes water exsolution and a consequent increase in the plagioclase liquidus, thus imposing an effective undercooling (∆ T eff), accompanied by increased melt viscosity. Here, we show that the decompression process acts directly on viscosity and thermodynamic energy barriers (such as interfacial-free energy), controlling the nucleation process and favoring the formation of homogeneous nuclei also at high pressure (low effective undercoolings). In fact, this study shows that similar crystal number densities ( N a) can be obtained both at low and high pressure (between 5 and 50 MPa), whereas crystal growth processes are favored at low pressures (5-10 MPa). The main evidence of this study is that the crystallization of plagioclase in decompressed high-K basalts is more rapid than that in rhyolitic melts on similar timescales. The onset of the crystallization process during experiments was characterized by an initial nucleation event within the first hour of the experiment, which produced the largest amount of plagioclase. This nucleation event, at short experimental duration, can produce a dramatic change in crystal number density ( N a) and crystal fraction ( ϕ), triggering a significant textural evolution in only 1 h. In natural systems, this may affect the magma rheology and eruptive dynamics on very short time scales.

  2. Anorthosites and anorthosites: Contrasting plagioclase-rich rocks in the Archaean and Proterozoic

    SciTech Connect

    Owens, B.E. . Dept. of Earth Planetary Sciences)

    1993-03-01

    Anorthosites -- rocks consisting predominantly of plagioclase feldspar -- have figured prominently in at least two distinct intervals of Earth history: the late-Archaean and mid-Proterozoic. Archaean anorthosites (AA) are a key component of high-grade gneiss terranes, where they typically form laterally extensive deformed sheets or sills up to a km thick. In contrast, Proterozoic anorthosites (PA) form plutons or plutonic complexes, and are most abundant in a quasi-continuous belt across NE N. America. In addition to these temporal and structural contrasts, AA and PA display markedly different mineralogical and geochemical properties, including, respectively: (1) equant plagioclase megacrysts vs. tabular megacrysts; (2) highly calcic compositions vs. intermediate to alkalic compositions; (3) amphibole vs. olivine or orthopyroxene as the dominant mafic mineral; (4) the presence of chromite, locally in ore-grade layers vs. massive, cross-cutting Fe-Ti oxide ores; (5) low levels of Sr and Ba vs. high to extreme levels; (6) high levels of ferromagnesian trace elements vs. low levels; (7) Ga/Al values typical of basaltic plagioclase vs. much lower values; and (8) moderately vs. extremely fractionated REE patterns. Given these contrasts, it appears that the only property AA and PA share is their plag-rich nature, suggesting that there must be more than one process (and probably multiple processes) capable of producing anorthosite.

  3. Recycled oceanic crust observed in 'ghost plagioclase' within the source of Mauna Loa lavas

    PubMed

    Sobolev; Hofmann; Nikogosian

    2000-04-27

    The hypothesis that mantle plumes contain recycled oceanic crust is now widely accepted. Some specific source components of the Hawaiian plume have been inferred to represent recycled oceanic basalts, pelagic sediments or oceanic gabbros. Bulk lava compositions, however, retain the specific trace-element fingerprint of the original crustal component in only a highly attenuated form. Here we report the discovery of exotic, strontium-enriched melt inclusions in Mauna Loa olivines. Their complete trace-element patterns strongly resemble those of layered gabbros found in ophiolites, which are characterized by cumulus plagioclase with very high strontium abundances. The major-element compositions of these melts indicate that their composition cannot be the result of the assimilation of present-day oceanic crust through which the melts have travelled. Instead, the gabbro has been transformed into a (high-pressure) eclogite by subduction and recycling, and this eclogite has then been incorporated into the Hawaiian mantle plume. The trace-element signature of the original plagioclase is present only as a 'ghost' signature, which permits specific identification of the recycled rock type. The 'ghost plagioclase' trace-element signature demonstrates that the former gabbro can retain much of its original chemical identity through the convective cycle without completely mixing with other portions of the former oceanic crust.

  4. Recycled oceanic crust observed in 'ghost plagioclase' within the source of Mauna Loa lavas

    PubMed

    Sobolev; Hofmann; Nikogosian

    2000-04-27

    The hypothesis that mantle plumes contain recycled oceanic crust is now widely accepted. Some specific source components of the Hawaiian plume have been inferred to represent recycled oceanic basalts, pelagic sediments or oceanic gabbros. Bulk lava compositions, however, retain the specific trace-element fingerprint of the original crustal component in only a highly attenuated form. Here we report the discovery of exotic, strontium-enriched melt inclusions in Mauna Loa olivines. Their complete trace-element patterns strongly resemble those of layered gabbros found in ophiolites, which are characterized by cumulus plagioclase with very high strontium abundances. The major-element compositions of these melts indicate that their composition cannot be the result of the assimilation of present-day oceanic crust through which the melts have travelled. Instead, the gabbro has been transformed into a (high-pressure) eclogite by subduction and recycling, and this eclogite has then been incorporated into the Hawaiian mantle plume. The trace-element signature of the original plagioclase is present only as a 'ghost' signature, which permits specific identification of the recycled rock type. The 'ghost plagioclase' trace-element signature demonstrates that the former gabbro can retain much of its original chemical identity through the convective cycle without completely mixing with other portions of the former oceanic crust. PMID:10801125

  5. A Plagioclase-Olivine-Spinel-Magnetite Inclusion from Maralinga (CK): A Record of Sequential Condensation

    NASA Astrophysics Data System (ADS)

    Zinner, E.; Brandstatter, F.; Kurat, G.

    1995-09-01

    An unusual inclusion of triangular cross section (5 mm x 2.5 mm in size) from the Maralinga CK chondrite has a zonal structure, consisting of core, mantle, and crust. The core (2.5 x 1 mm) consists mainly of plagioclase-olivine intergrowth (troctolite) with ophitic texture, but also contains minor clinopyroxene and Cl-apatite, as well as some calcite, which partially fills pore space. The mantle varies in thickness (0.1-1.5 mm) and consists of a dense intergrowth of green spinel and plagioclase with abundant dispersed magnetite grains of widely varying sizes (1-100 micrometer) and shapes. The spinel-plagioclase intergrowth has, in places, symplectitic texture and variable plag/sp ratios and grain-sizes. The mantle is frequently cut by plagioclase-rich veins connecting the core with the crust. Minor phases in the mantle are ilmenite (exsolution lamellae in magnetite) and calcite (in rare pore space). The thin (^about10 micrometer) discontinuous crust consists mainly of plagioclase with some olivine and magnetite and is commonly intimately intergrown with the chondrite matrix. An indentation contains an olivine-plagioclase intergrowth with subophitic texture in places. A super-crust of calcite almost continuously covers the inclusion. Phase compositions, as determined by EMP, are: Olivine - Fa = 33.1, NiO = 0.62 wt%, plagioclase - An 55-74 with high-An compositions in the mantle, clinopyroxene - Fs 10, Wo 46.7, spinel - Fe/Fe+Mg = 0.55, NiO = 1.53 wt%, and magnetite - TiO2 = 0.50 wt%, NiO = 0.57 wt%. Abundances of up to 37 trace elements were determined by secondary ion mass spectrometry[1]. Most phases are rich in trace elements and have group II REE patterns[2] with depletions of the refractory HREEs, a strong positive Tm anomaly and, commonly, a negative Eu anomaly. The exceptions are olivine, which has LREE depletions relative to the HREEs, and calcite, which does not show any significant REE fractionation at the 1xCI abundance level. Thus, trace element

  6. Monoclinic and Tetragonal Plagioclase (An54) in Shock Veins from the Central Uplift of the Manicouagan Impact Structure

    NASA Astrophysics Data System (ADS)

    Spray, J. G.; Boonsue, S.

    2016-08-01

    This work documents the discovery of monoclinic- and tetragonal-structured plagioclase. Critically, the high-pressure polymorphs possess the same composition as the non-shocked triclinic phase (An54).

  7. Water in Olivine, Clinopyroxenen and Plagioclase of Lunar Meteorites of the NWA 773 Clan by IR Micro-Spectrosocpy

    NASA Astrophysics Data System (ADS)

    Kayama, M.; Nakashima, S.; Tomioka, N.; Ohtani, E.; Seto, Y.; Nagaoka, H.; Ozawa, S.; Sekine, T.; Miyahara, M.; Miyake, A.; Götze, J.; Tomeoka, K.

    2016-08-01

    Water in olivine, clinopyroxene and plagioclase of gabbroic lunar meteorites of Northwest Africa 2977 and 6950 and gabbroic/basaltic brecciated lunar meteorite of NWA 2727 were characterized by in-situ Fourier-transform infrared micro-spectroscopy.

  8. Three Magmatic Components in the 1973 Eruption of Eldfell Volcano, Iceland: Evidence From Plagioclase Crystal Size Distribution (CSD) and Geochemistry

    NASA Astrophysics Data System (ADS)

    Higgins, M. D.; Roberge, J.

    2006-12-01

    The 1973 eruption of Eldfell volcano, Iceland, appears to have been a short, simple event, but textural and geochemical evidence suggest that it may have had three different magmatic components. The first-erupted fissure magmas were chemically evolved, rich in plagioclase (~18%) and had shallow, straight crystal size distribution (CSD) curves. The early lavas were less evolved chemically, had lower plagioclase contents (~13%) and steeper, slightly concave up CSDs. The late lavas were chemically similar to the early lavas, but even richer in plagioclase than the initial magmas (~24%) and had the steepest CSDs. There is no chemical evidence for plagioclase fractionation, but compositional diversity could be produced by clinopyroxene fractionation which must have occurred at depth. We propose that the eruption started with old, coarsened (Ostwald ripened) magma left over from a previous eruption, possibly that which produced Surtsey Island ten years earlier. The early flows are mixtures of small amounts of this old magma with a new, low crystallinity, uncoarsened magma. The late flows are yet another new magma from depth, chemically similar to the early flows, but which has grown plagioclase under increasing saturation (undercooling) perhaps during ascent to a higher level staging chamber. All three magmatic components may have originated from the same parent, but had varying degrees of clinopyroxene fractionation, plagioclase nucleation and growth, and coarsening. Eichelberger et al. (2006) have suggested that compositional diversity in arc volcanoes reflects mixing of independently evolved magma batches. Perhaps the same also occurs in other settings.

  9. Three magmatic components in the 1973 eruption of Eldfell volcano, Iceland: Evidence from plagioclase crystal size distribution (CSD) and geochemistry

    NASA Astrophysics Data System (ADS)

    Higgins, Michael D.; Roberge, Julie

    2007-03-01

    The 1973 eruption of Eldfell volcano, Iceland, appears to have been a short, simple event, but textural and geochemical evidence suggest that it may have had three different magmatic components. The first-erupted fissure magmas were chemically evolved, rich in plagioclase (˜ 18%) and had shallow, straight crystal size distribution (CSD) curves. The early lavas were less evolved chemically, had lower plagioclase contents (˜ 13%) and steeper, slightly concave up CSDs. The late lavas were chemically similar to the early lavas, but even richer in plagioclase than the initial magmas (˜ 24%) and had the steepest CSDs. There was no chemical evidence for plagioclase fractionation, but compositional diversity could be produced by clinopyroxene fractionation which must have occurred at depth. We propose that the eruption started with old, coarsened (Ostwald ripened) magma left over from a previous eruption, possibly that which produced Surtsey Island ten years earlier. The early flows may be mixtures of small amounts of this old magma with a new, low crystallinity, uncoarsened magma or a completely new magma. The late flows are another new magma from depth, chemically similar to the early flows, but which has grown plagioclase under increasing saturation (undercooling) perhaps during its ascent. All three magmatic components may have originated from the same parent, but had varying degrees of clinopyroxene fractionation, plagioclase nucleation and growth, and coarsening.

  10. Origin of biotite-hornblende-garnet coronas between oxides and plagioclase in olivine metagabbros, Adirondack region, New York

    USGS Publications Warehouse

    Whitney, P.R.; McLelland, J.M.

    1982-01-01

    Complex multivariant reactions involving Fe-Ti oxide minerals, plagioclase and olivine have produced coronas of biotite, hornblende and garnet between ilmenite and plagioclase in Adirondack olivine metagabbros. Both the biotite (6-10% TiO2) and the hornblende (3-6% TiO2) are exceptionally Titanium-rich. The garnet is nearly identical in composition to the garnet in coronas around olivine in the same rocks. The coronas form in two stages: (a) Plagioclase+Fe-Ti Oxides+Olivine+water =Hornblende+Spinel+Orthopyroxene??Biotite +more-sodic Plagioclase (b) Hornblende+Orthopyroxene??Spinel+Plagioclase =Garnet+Clinopyroxene+more-sodic Plagioclase The Orthopyroxene and part of the clinopyroxene form adjacent to olivine. Both reactions are linked by exchange of Mg2+ and Fe2+ with the reactions forming pyroxene and garnet coronas around olivine in the same rocks. The reactions occur under granulite fades metamorphic conditions, either during isobaric cooling or with increasing pressure at high temperature. ?? 1983 Springer-Verlag.

  11. A shock-metamorphic model for silicate darkening and compositionally variable plagioclase in CK and ordinary chondrites

    SciTech Connect

    Rubin, A.E. )

    1992-04-01

    Silicate darkening in ordinary chondrites (OC) is caused by tiny grains of metallic Fe-Ni and troilite occurring mainly within curvilinear trails that traverse silicate interiors and decorate or, in some cases, cut across silicate grain boundaries. Highly shocked OC tend to have greater degrees of silicate darkening than lightly shocked OC; this indicates that silicate darkening is probably a result of shock metamorphism. The low Fe-FeS eutectic temperature (988C) renders metal and troilite susceptible to melting and mobilization during shock heating. Unshocked OC tend to have plagioclase with uniform compositions; shocked OC tend to have plagioclase with more variable (albeit still stoichiometric) compositions. The low impedance of plagioclase to shock compression makes it particularly susceptible to melting and mobilization; this is consistent with the molten appearance of plagioclase in highly shocked OC (e.g., Rose City and Paragould). CK chondrites also have compositionally variable plagioclase. The common association of silicate darkening with compositionally variable plagioclase is consistent with the hypothesis that both are products of shock metamorphism. Some CK and OC chondrites exhibit light shock effects in olivine that are consistent with equilibrium peak shock pressures that are too low to account for the silicate darkening or opaque shock veins in these meteorites. Therefore, the olivine in these chondrites may have been annealed after intense shock produced these effects. A few CK chondrites that contain olivine with undulose or mosaic extinction (e.g., LEW87009 and EET83311) may have been shocked again, after annealing.

  12. Giant Plagioclase "Mosaicrysts" and Other Textures in the Steens Basalt, Columbia River Flood Basalt Province

    NASA Astrophysics Data System (ADS)

    Grunder, A.; Moore, N. E.; Bohrson, W. A.

    2015-12-01

    The Steens Basalts (~16.7 Ma), the oldest and most mafic stage of Columbia River flood basalt volcanism, are known for lavas with conspicuous giant plagioclase laths (2 - 5 cm in diameter). Such flows are intercalated with ones that are nearly aphyric or that bear plagioclase (plag) phenocrysts of 0.5-2 cm. Addition textures are distinctive radial, snowflake plag clusters and sandwich glomerocrysts of plag, with olivine trapped between laths. These clusters and glomerocrysts are typically 1, but as large as 3 cm in diameter. Plag composition of all textural types is limited (An76-60). Plag dominates the phenocryst mode; rare flows, mainly low in the section, have olivine > plag and phenocrystic clinopyroxene occurs rarely, and mainly high in the section. Unlike the flows, dikes have few phenocrysts; giant laths are rare and the snowflake texture has not been observed. Giant plag laths are euhedral and make up a few percent to more than 50% of the rock. Many plag megacrysts are made of several plag crystals that form a mosaic, where the constituent crystals are crystallographically distinct and are overgrown with feldspar to make the crystal euhedral. We describe these composite megacrysts as "mosaicrysts". We are exploring magmatic conditions that would trigger oversaturation to spawn rapid growth yielding clusters and overgrowths that form mosaicrysts. Giant plagioclase basalts (so-called GPB) are also described for the Deccan and Emeishan flood basalt provinces attesting to similar magmatic processes. Plag laths typically define strong flow foliation at the flow base, have a swirled distribution in the flow core, and are sparse in the top. Some particularly crystal-rich flows (or sills) have an abrupt transition to a crystal-poor upper few decimeters of the several-m- thick flow. We interpret the crystal-poor top to be the expelled melt from crystal accumulation in the flow, which locally reinjects and is entrained in lower crystal mush.

  13. Evolution of the lunar crust: SIMS study of plagioclase from ferroan anorthosites

    SciTech Connect

    Papike, J.J.; Fowler, G.W.; Shearer, C.K.

    1997-06-01

    The lunar crust, down to a depth of {approximately}65 km, is composed of older (>4.5 Ga) ferroan anorthosites and younger (4.43-4.17 Ga) Mg-suite lithologies which include dunites, troctolites, and norites. The anorthosites are generally inferred to represent floating cumulates in a lunar magma ocean (possible depth 800 km, moon`s radius {approximately}1,738 km). The cumulates that are inferred to be located near the base of the magma ocean are dominantly olivine and pyroxene. The last dregs of the magma ocean are enriched in incompatible elements and have been named KREEP (K, rare earth elements, P). KREEP, formed in this manner, is probably concentrated near the crust/mantle boundary at {approximately}70 km depth. We are attempting to characterize melts parental to ferroan anorthosites and Mg-suite norites by analyzing REEs (La, Ce, Nd, Sm, Eu, Dy, Er, Yb) and Ba, Sr, and Y in their cumulus plagioclase. If the cumulus grains have not been compromised by postcrystallization effects and if we know the relevant mineral/melt partition coefficients (Ds) we can invert the trace element data for plagioclase to parental melt compositions. Melts parental to ferroan anorthosites are estimated to contain REE at concentrations ten to fifty times chondrites. Melts parental to the earlier crystallizing anorthosites (lower REE) have virtually no Eu anomaly, while melts parental to later crystallizing anorthosites (higher REE) have small negative Eu anomalies. This is qualitatively consistent with the fractionation of Eu relative to other REE by crystallization of plagioclase with large positive Eu anomalies. Melts parental to the Mg-suite have much higher total REE and very large negative Eu anomalies. 42 refs., 5 figs., 4 tabs.

  14. Ion microprobe magnesium isotope analysis of plagioclase and hibonite from ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Hinton, R. W.; Bischoff, A.

    1984-01-01

    Ion and electron microprobes were used to examine Mg-26 excesses from Al-26 decay in four Al-rich objects from the type 3 ordinary hibonite clast in the Dhajala chondrite. The initial Al-26/Al-27 ratio was actually significantly lower than Al-rich inclusions in carbonaceous chondrites. Also, no Mg-26 excesses were found in three plagioclase-bearing chondrules that were also examined. The Mg-26 excesses in the hibonite chondrites indicated a common origin for chondrites with the excesses. The implied Al-26 content in a proposed parent body could not, however, be confirmed as a widespread heat source in the early solar system.

  15. Change in Magma Dynamics at Okataina Rhyolite Caldera revealed by Plagioclase Textures and Geochemistry

    NASA Astrophysics Data System (ADS)

    Shane, P. A. R.

    2015-12-01

    A fundamental reorganization of magma dynamics at Okataina volcano, New Zealand, occurred at 26 ka involving a change from smaller volume, high-temperature rhyodacite magmas to a lower eruptive tempo of larger volume, low-temperature, rhyolite magmas. Zircon studies demonstrate the presence of a periodically active, long-lived (100,000 yr) magmatic reservoir. However, there is little correlation between periods of zircon crystallization and eruption events. In contrast, the changing magmatic dynamics is revealed in plagioclase growth histories. Crystals from the ~0.7 ka Kaharoa eruption are characterized by resorbed cores displaying a cellular-texture of high-An (>40) zones partially replaced by low-An (<30) zones, surrounded by a resorption surface and a prominent normal-zoned rim (An50-20). Elevated An, Fe, Mg, Sr and Ti follow the resorption surface and display rimward depletion trends, accompanied by Ba and REE enrichment. The zonation is consistent with fractional crystallization and cooling. The cores display wide trace element diversity, pointing to crystallization in a variety of melts, before transport and mixing into a common magma where the rims grew. Plagioclase from the ~36 ka Hauparu eruption display several regrowth zones separated by resorption surfaces, which surround small resorbed cores with a spongy cellular texture of variable An content (An 40-50). The crystals display step-wise re-growth of successively higher An, Fe, Mg and Ti content, consistent with progressive mafic recharge. Two crystal groups are distinguished by trace element chemistry indicating growth in separate melts and co-occurrence via magma-mingling. The contrasting zoning patterns in plagioclase correspond to the evolutionary history of magmatism at Okataina. Emptying of the magma reservoir following caldera eruption at 46 ka reduced barriers to mafic magma ascent. This is recorded by the frequent resorption and recharge episodes in Hauparu crystals. Subsequent re

  16. Diffuse reflectance spectra of orthopyroxene, olivine, and plagioclase as a function of composition and structure

    NASA Technical Reports Server (NTRS)

    Zolensky, M. E.; Le, L.; Galindo, C.; Morris, R.; Lauer, V.; Vilas, F.

    1993-01-01

    Although many similarities exist between meteorite spectra and 'primitive' asteroids, there are unexplained discrepancies. These discrepancies do not appear to arise from grain size effects. Assuming that primitive meteorites did in fact originate from the 'primitive' asteroids, we believe that there are two testable explanations for the observed spectral discrepancies: compositional or structural differences. We have begun to synthesize and collect reflectance and Mossbauer spectra of pertinent materials, beginning with olivine, pyroxene, and plagioclase (all found in primitive meteorites), and to assess the possible effects composition may have on spectral features. Our study focuses on the combination of composition and structural effects.

  17. A Clinopyroxene-Plagioclase Geobarometer for A-type Silicic Volcanic Rocks

    NASA Astrophysics Data System (ADS)

    Wolff, J.; Iveson, A. A.; Davis, K.; Johnson, T. A.; Gahagan, S.; Ellis, B. S.

    2015-12-01

    Constraining the crustal storage depths of magmas is important in understanding volcanism. The reaction: anorthite (pl) = Ca-Tschermak's (cpx) + silica (Q or liq) has a large volume change and hence offers potential as a geobarometer, but has not been extensively exploited as such. One of the chief barriers to its wide application is consistent estimation of melt silica activity for assemblages that lack quartz. We have skirted this problem by confining attention to metaluminous silicic compositions (SiO2 > 60% by weight), for which silica activity during crystallization is presumed to be close to 1, and calibrated the barometer for the range 0 - 2 GPa using the LEPR database and additional experiments from the literature. Additional improvement is obtained by excluding hydrous phase-bearing assemblages. Despite the analytical uncertainties present in older experimental investigations, with knowledge of temperature, and clinopyroxene, plagioclase and host melt compositions, pressures for amphibole- and biotite-free dacites and rhyolites can be estimated to ±0.17 GPa (1 sigma). The limitations of the barometer render it most applicable to intraplate, A-type rhyolites. Application to one such system, the Snake River Plain rhyolites, indicate that both melt-hosted phenocrysts and clinopyroxene-plagioclase aggregate grains found in these rhyolites formed at low pressures, <0.5 GPa. This is consistent with isotopic evidence for a shallow crustal origin for Snake River Plain rhyolites.

  18. Trace element partitioning between high-An plagioclase and basaltic to basaltic andesite melt at 1 atmosphere pressure

    NASA Astrophysics Data System (ADS)

    Tepley, Frank J., III; Lundstrom, Craig C.; McDonough, William F.; Thompson, Amy

    2010-07-01

    We determined plagioclase-melt partition coefficients for 18 elements by performing controlled cooling rate, 1-atmosphere experiments using both natural and synthetic basaltic (51 wt.% SiO 2) and basaltic andesite (56 wt.% SiO 2) powders in a vertical quench furnace. The experiments produced An 69 to An 87 composition plagioclase. Three starting powders were Gorda Ridge basalt, synthetic diopside (40%)-albite (28%)-anorthite (32%) mixture, and Arenal volcano (Costa Rica) basaltic andesite. The Gorda and synthetic powders were doped at both low concentrations (20-200 ppm) and high concentration (200-5000 ppm), whereas the Arenal powder was doped only at high concentrations resulting in two doped Gorda powders (low: NP, and high: SDP), two doped diopside/albite/anorthite powders (low: DAD, high: SDD) and one doped Arenal powder (high: AR99-2). Trace elements concentrations in both glass and plagioclase were measured by secondary ion mass spectrometry (SIMS) and/or by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Results for the partitioning of trace elements between plagioclase and melt at different doping levels demonstrate both adherence to Henry's Law and good agreement between the different analytical techniques. In general, plagioclase-melt partition coefficients determined in the An 69-73 range are similar to other published values, however, some of those occurring for plagioclase compositions > An 75 are distinctly lower than those predicted by current regression formulations. We applied a two-lattice melt model to these data to account for differences in melt composition and temperature and found that there were no aberrations associated with partition coefficients. A new set of regression formulations is determined involving the newly determined dataset for plagioclase with An contents between 75 and 87.

  19. Chromite-plagioclase assemblages as a new shock indicator; implications for the shock and thermal histories of ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Rubin, Alan E.

    2003-07-01

    Chromite in ordinary chondrites (OC) can be used as a shock indicator. A survey of 76 equilibrated H, L and LL chondrites shows that unshocked chromite grains occur in equant, subhedral and rounded morphologies surrounded by silicate or intergrown with metallic Fe-Ni and/or troilite. Some unmelted chromite grains are fractured or crushed during whole-rock brecciation. Others are transected by opaque veins; the veins form when impacts cause localized heating of metal-troilite intergrowths above the Fe-FeS eutectic (988°C), mobilization of metal-troilite melts, and penetration of the melt into fractures in chromite grains. Chromite-plagioclase assemblages occur in nearly every shock-stage S3-S6 OC; the assemblages range in size from 20-300 μm and consist of 0.2-20-μm-size euhedral, subhedral, anhedral and rounded chromite grains surrounded by plagioclase or glass of plagioclase composition. Plagioclase has a low impedance to shock compression. Heat from shock-melted plagioclase caused adjacent chromite grains to melt; chromite grains crystallized from this melt. Those chromite grains in the assemblages that are completely surrounded by plagioclase are generally richer in Al 2O 3 than unmelted, matrix chromite grains in the same meteorite. Chromite veinlets (typically 0.5-2 μm thick and 10-300 μm long) occur typically in the vicinity of chromite-plagioclase assemblages. The veinlets formed from chromite-plagioclase melts that were injected into fractures in neighboring silicate grains; chromite crystallized in the fractures and the residual plagioclase-rich melt continued to flow, eventually pooling to form plagioclase-rich melt pockets. Chromite-rich "chondrules" (consisting mainly of olivine, plagioclase-normative mesostasis, and 5-15 vol.% chromite) occur in many shocked OC and OC regolith breccias but they are absent from primitive type-3 OC. They may have formed by impact melting chromite, plagioclase and adjacent mafic silicates during higher-energy shock

  20. Chromite-Plagioclase Assemblages as a New Shock Indicator; Implications for the Shock and Thermal Histories of Ordinary Chondrites

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    2006-01-01

    Chromite in ordinary chondrites (OC) can be used as a shock indicator. A survey of 76 equilibrated H, L and LL chondrites shows that unshocked chromite grains occur in equant, subhedral and rounded morphologies surrounded by silicate or intergrown with metallic Fe-Ni and/or troilite. Some unmelted chromite grains are fractured or crushed during whole-rock brecciation. Others are transected by opaque veins; the veins form when impacts cause localized heating of metal-troilite intergrowths above the Fe-FeS eutectic (988 C), mobilization of metal-troilite melts, and penetration of the melt into fractures in chromite grains. Chromite-plagioclase assemblages occur in nearly every shock-stage S3-S6 OC; the assemblages range in size from 20-300 microns and consist of 0.2-20-micron-size euhedral, subhedral, anhedral and rounded chromite grains surrounded by plagioclase or glass of plagioclase composition. Plagioclase has a low impedance to shock compression. Heat from shock-melted plagioclase caused adjacent chromite grains to melt; chromite grains crystallized from this melt. Those chromite grains in the assemblages that are completely surrounded by plagioclase are generally richer in Al2O3, than unmelted, matrix chromite grains in the same meteorite. Chromite veinlets (typically 0.5-2 microns thick and 10-300 microns long) occur typically in the vicinity of chromite-plagioclase assemblages. The veinlets formed from chromite-plagioclase melts that were injected into fractures in neighboring silicate grains; chromite crystallized in the fractures and the residual plagioclase-rich melt continued to flow, eventually pooling to form plagioclase-rich melt pockets. Chromite-rich chondrules (consisting mainly of olivine, plagioclase-normative mesostasis, and 5-15 vol.% chromite) occur in many shocked OC and OC regolith breccias but they are absent from primitive type-3 OC. They may have formed by impact melting chromite, plagioclase and adjacent mafic silicates during higher

  1. Cryptic young zircon and young plagioclase in the Kaharoa Rhyolite, Tarawera, New Zealand: Implications for crystal recycling in magmatic systems

    NASA Astrophysics Data System (ADS)

    Klemetti, E. W.; Cooper, K. M.

    2007-12-01

    We measured in-situ 238U-230Th zircon and bulk plagioclase 238U-230Th-226Ra disequilibria in rhyolite lava and tephra from the ~1315 AD Kaharoa eruption of Tarawera Volcano, New Zealand in order to constrain its history of chemical evolution. These data suggest that zircon records a protracted history (10s of kyr) whereas plagioclase is dominantly young (few kyr), but both phases crystallize up to the eruption. The Kaharoa eruptive period at Tarawera consists of ~2.5 km3 of crystal-rich rhyolite (74-75 wt% silica) lava and ~5 km3 of coeval tephra deposits, making it the largest silicic eruption in New Zealand in the last 1,000 years. 238U-230Th disequilibria measurements of zircon determined via SHRIMP-RG analyses produce an array of ages, with three main populations: (1) within error of eruption age; (2) 15-80 k.y.; (3) 100-175 k.y. Very few analyzed zircon fall within error of eruption age and little difference is seen in the age distribution of zircon between the lava and tephra. In contrast, 238U-230Th and 230Th-226Ra plagioclase ages appear to be within error of eruption age however this age is complicated zircon inclusions in the plagioclase. This contamination by zircon is seen in the 238U-230Th disequilibria and trace element data, where the addition of zircon pushes the bulk plagioclase separate towards more U-enriched values and high Zr values. However, the (230Th)/(232Th) ratios for the separates are the same as the whole rock values, indicating that any zircon in the bulk separate must be young (eruption age). This finding is also borne out in 230Th-226Ra disequilibria, where zero-age zircon contamination is reflected in increased (230Th)/[Ba] with no change in (226Ra)/[Ba]. In both cases, as little as 1 ppm of zero-age zircon contamination is needed to create these patterns. This signal of young plagioclase and zircon growth is in contrast to the protracted history seen in the SHRIMP-RG zircon data. This suggests that young zircon growth in the Kaharoa

  2. High geomagnetic intensity during the mid-Cretaceous from Thellier analyses of single plagioclase crystals.

    PubMed

    Tarduno, J A; Cottrell, R D; Smirnov, A V

    2001-03-01

    Recent numerical simulations have yielded the most efficient geodynamo, having the largest dipole intensity when reversal frequency is low. Reliable paleointensity data are limited but heretofore have suggested that reversal frequency and paleointensity are decoupled. We report data from 56 Thellier-Thellier experiments on plagioclase crystals separated from basalts of the Rajmahal Traps (113 to 116 million years old) of India that formed during the Cretaceous Normal Polarity Superchron. These data suggest a time-averaged paleomagnetic dipole moment of 12.5 +/- 1.4 x 10(22) amperes per square meter, three times greater than mean Cenozoic and Early Cretaceous-Late Jurassic dipole moments when geomagnetic reversals were frequent. This result supports a correlation between intervals of low reversal frequency and high geomagnetic field strength. PMID:11230692

  3. Strong climate and tectonic control on plagioclase weathering in granitic terrain

    USGS Publications Warehouse

    Rasmussen, C.; Brantley, S.; Richter, D.D.B.; Blum, A.; Dixon, J.; White, A.F.

    2011-01-01

    Investigations to understand linkages among climate, erosion and weathering are central to quantifying landscape evolution. We approach these linkages through synthesis of regolith data for granitic terrain compiled with respect to climate, geochemistry, and denudation rates for low sloping upland profiles. Focusing on Na as a proxy for plagioclase weathering, we quantified regolith Na depletion, Na mass loss, and the relative partitioning of denudation to physical and chemical contributions. The depth and magnitude of regolith Na depletion increased continuously with increasing water availability, except for locations with mean annual temperature <5??C that exhibited little Na depletion, and locations with physical erosion rates <20gm-2yr-1 that exhibited deep and complete regolith Na depletion. Surface Na depletion also tended to decrease with increasing physical erosion. Depth-integrated Na mass loss and regolith depth were both three orders of magnitude greater in the fully depleted, low erosion rate sites relative to other locations. These locations exhibited strong erosion-limitation of Na chemical weathering rates based on correlation of Na chemical weathering rate to total Na denudation. Sodium weathering rates in cool locations with positive annual water balance were strongly correlated to total Na denudation and precipitation, and exhibited an average apparent activation energy (Ea) of 69kJmol-1 Na. The remaining water-limited locations exhibited kinetic limitation of Na weathering rates with an Ea of 136kJmol-1 Na, roughly equivalent to the sum of laboratory measures of Ea and dissolution reaction enthalpy for albite. Water availability is suggested as the dominant factor limiting rate kinetics in the water-limited systems. Together, these data demonstrate marked transitions and nonlinearity in how climate and tectonics correlate to plagioclase chemical weathering and Na mass loss. ?? 2010 Elsevier B.V.

  4. Sims Analysis of Water Abundance and Hydrogen Isotope in Lunar Highland Plagioclase

    NASA Technical Reports Server (NTRS)

    Hui, Hejiu; Guan, Yunbin; Chen, Yang; Peslier, Anne H.; Zhang, Youxue; Liu, Yang; Rossman, George R.; Eiler, John M.; Neal, Clive R.

    2015-01-01

    The detection of indigenous water in mare basaltic glass beads has challenged the view established since the Apollo era of a "dry" Moon. Since this discovery, measurements of water in lunar apatite, olivine-hosted melt inclusions, agglutinates, and nominally anhydrous minerals have confirmed that lunar igneous materials contain water, implying that some parts of lunar mantle may have as much water as Earth's upper mantle. The interpretation of hydrogen (H) isotopes in lunar samples, however, is controversial. The large variation of H isotope ratios in lunar apatite (delta Deuterium = -202 to +1010 per mille) has been taken as evidence that water in the lunar interior comes from the lunar mantle, solar wind protons, and/or comets. The very low deuterium/H ratios in lunar agglutinates indicate that solar wind protons have contributed to their hydrogen content. Conversely, H isotopes in lunar volcanic glass beads and olivine-hosted melt inclusions being similar to those of common terrestrial igneous rocks, suggest a common origin for water in both Earth and Moon. Lunar water could be inherited from carbonaceous chondrites, consistent with the model of late accretion of chondrite-type materials to the Moon as proposed by. One complication about the sources of lunar water, is that geologic processes (e.g., late accretion and magmatic degassing) may have modified the H isotope signatures of lunar materials. Recent FTIR analyses have shown that plagioclases in lunar ferroan anorthosite contain approximately 6 ppm H2O. So far, ferroan anorthosite is the only available lithology that is believed to be a primary product of the lunar magma ocean (LMO). A possible consequence is that the LMO could have contained up to approximately 320 ppm H2O. Here we examine the possible sources of water in the LMO through measurements of water abundances and H isotopes in plagioclase of two ferroan anorthosites and one troctolite from lunar highlands.

  5. Dislocation generation, slip systems, and dynamic recrystallization in experimentally deformed plagioclase single crystals

    NASA Astrophysics Data System (ADS)

    Stünitz, H.; Fitz Gerald, J. D.; Tullis, J.

    2003-09-01

    Three samples of gem quality plagioclase crystals of An60 were experimentally deformed at 900 °C, 1 GPa confining pressure and strain rates of 7.5-8.7×10 -7 s -1. The starting material is effectively dislocation-free so that all observed defects were introduced during the experiments. Two samples were shortened normal to one of the principal slip planes (010), corresponding to a "hard" orientation, and one sample was deformed with a Schmid factor of 0.45 for the principal slip system [001](010), corresponding to a "soft" orientation. Several slip systems were activated in the "soft" sample: dislocations of the [001](010) and <110>(001) system are about equally abundant, whereas <110>{111} and [101] in (1¯31) to (2¯42) are less common. In the "soft" sample plastic deformation is pervasive and deformation bands are abundant. In the "hard" samples the plastic deformation is concentrated in rims along the sample boundaries. Deformation bands and shear fractures are common. Twinning occurs in close association with fracturing, and the processes are clearly interrelated. Glissile dislocations of all observed slip systems are associated with fractures and deformation bands indicating that deformation bands and fractures are important sites of dislocation generation. Grain boundaries of tiny, defect-free grains in healed fracture zones have migrated subsequent to fracturing. These grains represent former fragments of the fracture process and may act as nuclei for new grains during dynamic recrystallization. Nucleation via small fragments can explain a non-host-controlled orientation of recrystallized grains in plagioclase and possibly in other silicate materials which have been plastically deformed near the semi-brittle to plastic transition.

  6. Linking Deformation and Diffusion to Develop a Strain Speedometer in Plagioclase

    NASA Astrophysics Data System (ADS)

    Barshi, N.; Rowe, C. D.; van Hinsberg, V.

    2015-12-01

    Microscopic mobility of atoms in minerals controls macroscopic metamorphic and tectonic processes in Earth's crust. Deformation and diffusion, each an expression of this mobility, are both processes of breaking and reforming bonds and take energy to proceed. Deformation can facilitate diffusion by supplying strain energy that facilitates breaking bonds and enhance diffusion rates by mobilizing dislocations, which localize atomic migration. Deformation-enhanced diffusion may therefore lower closure temperatures for geochronometers and thermobarometers. If the effect of deformation on diffusion is measurable, we must reevaluate these tools for deformed rocks. We explore this effect and its potential as the basis for estimating duration and rate of strain in the rock record. We focus on feldspar, a rheologically and modally dominant mineral in Earth's crust for which deformation and diffusion parameters are well known. Different elements have different diffusion rates within each mineral, which are differentially accelerated by a deformation-induced reduction of their activation energies for diffusion. We present the first comprehensive study of strain enhancement of diffusion in plagioclase, a combination of km-scale, thin-section-scale, and grain-scale strain and chemical measurements for major and trace elements in naturally deformed plagioclase phenocrysts from the San José Pluton, Peninsular Ranges Batholith, México. Our samples had low initial compositional contrasts and experienced low strain. Under these conditions, the effect of strain-enhanced element mobility, as predicted from our model, is below analytical detection limits. For these rocks, a static diffusion model is sufficient, and thermobarometers and geochronometers can still be applied to yield accurate results.

  7. Partition coefficients for iron between plagioclase and basalt as a function of oxygen fugacity - Implications for Archean and lunar anorthosites

    NASA Technical Reports Server (NTRS)

    Phinney, W. C.

    1992-01-01

    As a prelude to determinations of the content of total iron as FeO(T) in melts in equilibrium with calcic anorthosites, the partition coefficients (Ds) for FeO(T) between calcic plagioclase and basaltic melt were determined, as a function of oxygen fugacity (f(O2)), for a basaltic composition that occurs as matrices for plagioclase megacrysts. Results showed that, at the liquidus conditions, the value of D for FeO(T) between calcic plagioclase and tholeiitic basalt changed little (from 0.030 to 0.044) between the very low f(O2) of the iron-wustite buffer and that of the quartz-fayalite-magnetite (QFM) buffer. At fugacities above QFM, the value for D increased rapidly to 0.14 at the magnetite-hematite buffer and to 0.33 in air. The increase in D results from the fact that, at f(O2) below QFM, nearly all of the Fe is in the Fe(2+) state; above QFM, the Fe(3+)/Fe(2+) ratio in the melt increases rapidly, causing more Fe to enter the plagioclase which accepts Fe(3+) more readily than Fe(2+).

  8. Valid garnet biotite (GB) geothermometry and garnet aluminum silicate plagioclase quartz (GASP) geobarometry in metapelitic rocks

    NASA Astrophysics Data System (ADS)

    Wu, Chun-Ming; Cheng, Ben-He

    2006-06-01

    At present there are many calibrations of both the garnet-biotite (GB) thermometer and the garnet-aluminum silicate-plagioclase-quartz (GASP) barometer that may confuse geologists in choosing a reliable thermometer and/or barometer. To test the accuracy of the GB thermometers we have applied the various GB thermometers to reproduce the experimental data and data from natural metapelitic rocks of various prograde sequences, inverted metamorphic zones and thermal contact aureoles. We have concluded that the four GB thermometers (Perchuk, L.L., Lavrent'eva, I.V., 1983. Experimental investigation of exchange equilibria in the system cordierite-garnet-biotite. In: Saxena, S.K. (ed.) Kinetics and equilibrium in mineral reactions. Springer-Verlag New York, Berlin, Heidelberg. pp. 199-239.; Kleemann, U., Reinhardt, J., 1994. Garnet-biotite thermometry revised: the effect of Al VI and Ti in biotite. European Journal of Mineralogy 6, 925-941.; Holdaway, M.J., 2000. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. American Mineralogist 85, 881-892., Model 6AV; Kaneko, Y., Miyano, T., 2004. Recalibration of mutually consistent garnet-biotite and garnet-cordierite geothermometers. Lithos 73, 255-269. Model B) are the most valid and reliable of this kind of thermometer. More specifically, we prefer the Holdaway (Holdaway, M.J., 2000. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer. American Mineralogist 85, 881-892.) and the Kleemann and Reinhardt (Kleemann, U., Reinhardt, J., 1994. Garnet-biotite thermometry revised: the effect of Al VI and Ti in biotite. European Journal of Mineralogy 6, 925-941.) calibrations due to their small errors in reproducing the experimental temperatures and good accuracy in successfully discerning the systematic temperature changes of the different sequences. In addition, after applying the GASP barometer to 335 natural metapelitic samples containing one kind

  9. Multiphase inclusions in plagioclase from anorthosites in the Stillwater Complex, Montana: implications for the origin of the anorthosites

    USGS Publications Warehouse

    Loferski, P.J.; Arculus, R.J.

    1993-01-01

    Multiphase inclusions, consisting of clinopyroxene+ilmenite+apatite, occur within cumulus plagioclase grains from anorthosites in the Stillwater Complex, Montana, and in other rocks from the Middle Banded series of the intrusion. The textures and constant modal mineralogy of the inclusions indicate that they were incorporated in the plagioclase as liquid droplets that later crystallized rather than as solid aggregates. Their unusual assemblage, including a distinctive manganiferous ilmenite and the presence of baddeleyite (ZrO2), indicates formation from an unusual liquid. A process involving silicater liquid immiscibility is proposed, whereby small globules of a liquid enriched in Mg, Fe, Ca, Ti, P, REE, Zr and Mn exsolved from the main liquid that gave rise to the anorthosites, became trapped in the plagioclase, and later crystallized to form the inclusions. The immiscibility could have occurred locally within compositional boundaries around crystallizing plagioclase grains or it could have occurred pervasively throughout the liquid. It is proposed that the two immiscible liquids were analogous, n terms of their melt structures, to immiscible liquid pairs reported in the literature both in experiments and in natural basalts. For the previously reported pairs, immiscibility is between a highly polymerized liquid, typically granitic in composition, and a depolymerized liquid, typically ferrobasaltic in composition. In the case of the anorthosites, the depolymerized liquid is represented by the inclusions, and the other liquid was a highly polymerized aluminosilicate melt with a high normative plagioclase content from which the bulk of the anorthosites crystallized. Crystallization of the anorthosites from this highly polymerized liquid accounts for various distinctive textural and chemical features of the anorthosites compared to other rocks in the Stillwater Complex. A lack of correlation between P contents and chondrite-normalized rare earth element (REE) ratios

  10. Application of the Plagioclase-Liquid Hygrometer to the Bishop Tuff: Consistency with Melt Inclusion H2O Contents

    NASA Astrophysics Data System (ADS)

    Jolles, J.; Lange, R. A.

    2015-12-01

    High-silica (74-77 wt% SiO2) rhyolites are the most evolved magmas on Earth and constitute some of the largest eruptions (1000s of km3). Of these, one classic example is the Bishop Tuff, a 760 ka eruption of >670 km3 of high-silica rhyolite erupted from Long Valley caldera, CA. Documenting dissolved H2O contents is crucial for understanding its origin and evolution. Analyses of water contents measured in quartz-hosted melt inclusions from the Bishop Tuff (Wallace et al. 1999; Anderson et al. 2000) show that the Early and Middle Bishop Tuff (Ig1Eb, Ig2Ea) have higher water contents (≤ 6.3 wt% H2O) than the Late Bishop Tuff (Ig2NWa; ≤ 5.2 wt%). Our work utilizes the revised plagioclase-liquid hygrometer (Waters & Lange, 2015), which is applicable to rhyolite, to evaluate internal consistency between Fe-Ti oxide temperatures, the plagioclase hygrometer, and melt inclusion H2O analyses. Two-oxide thermometry (Ghiorso & Evans, 2008), using all possible Fe-Ti oxide pairs (between 56 and 1500 pairs for individual samples), was carried out on 2-3 pumice clasts for each sampled eruptive unit. Resulting temperatures (°C ± 1σ) for individual clasts are: 705 ± 12, 728 ± 10 for unit Ig1Eb; 710 ± 12, 728 ± 11 for unit Ig2Ea; 752 ±10, 776 ± 8, 778 ± 7 for unit Ig2NWa; 791 ± 7, 795 ± 8 for unit Ig2Nb. The compositions of the most calcic plagioclase phenocrysts in the Early and Middle units are An17-19, whereas in the Late units they are An29-30. When the Fe-Ti oxide temperatures, whole rock analyses, and plagioclase compositions are incorporated into the plagioclase hygrometer, they give water contents at the onset of plagioclase crystallization of 6.6-6.9 wt% for the Early and Middle units and 4.8-4.9 wt % for the Late units. These results show internal consistency between melt inclusion analyses of water, Fe-Ti oxide thermometry, and the plagioclase-liquid hygrometer; they further support a temperature gradient across the Early, Middle, and Late Bishop Tuff units.

  11. Diffusion-Reaction Between Basaltic Andesite and Gabbro at 0.5 GPa: an Explanation for Anorthitic Plagioclase?

    NASA Astrophysics Data System (ADS)

    Lundstrom, C. C.; Boudreau, A. E.; Pertermann, M.

    2004-12-01

    Despite the remarkably smooth variation in bulk composition of erupted lavas at Arenal volcano (1968-2003), mineral compositions vary widely. Plagioclase ranges from An52 to An95 while Cr2O3 in CPX varies from 0.7 to 0.05 wt % (Streck et al., 2003). To address the question "how do bulk compositions remain near-steady-state while crystal compositions vary widely," we have performed 2 diffusion-reaction experiments in the piston cylinder at 0.5 GPa. These juxtaposed Arenal basaltic andesite AR-8 at 1200° C with a Stillwater Complex gabbro, lying in a thermal gradient toward the piston. In one experiment, we synthesized a glass-plagioclase (An67-75) aggregate of AR-8 in a graphite-Pt-Ti capsule at P-T, polished one end, dried tracer solutions of 45Ca, 6Li, 84Sr and 136Ba on its surface, and juxtaposed it with gabbro for 13 days. Profiles of bulk composition as a function of distance from the interface show that AR-8 gains Al2O3, MgO and CaO from the gabbro and loses Na2O, K2O, SiO2 and FeO to it. Notably, a plagioclase rich (65%) layer develops at the interface between the two materials as CPX disappears. This layer and the compositional profiles are reproduced by diffusion-reaction models using IRIDIUM (Boudreau, 2003). Plagioclase at the interface develops a texture of homogeneous anorthitic cores (An90) that abruptly shift to 10μ m rims having compositions (An67) in Na-Ca exchange equilibrium with the co-existing melt. A beta track map shows that 45Ca is incorporated into the plagioclase cores while SIMS analyses indicate isotopic equilibration between core and melt. Thus, these anorthitic plagioclase result from diffusion-reaction with efficient chemical communication between the melt and the plagioclase core. Microchannels cutting through the rim, rather than solid-state diffusion, appear to control re-equilibration. Other observations from the experiment parallel Arenal lavas: Mg# variation in OPX is small in both experiments and lavas while profiles of Cr

  12. Crystal origins and magmatic system beneath Ngauruhoe volcano (New Zealand) revealed by plagioclase textures and compositions

    NASA Astrophysics Data System (ADS)

    Coote, Alisha C.; Shane, Phil

    2016-09-01

    The textural variation and compositional zoning of plagioclase in pre-historic and historic basaltic andesite lava flows from Ngauruhoe volcano reveals extensive crystal recycling from a multi-level magma system. Most phenocrysts have a calcic (~ An80-90) resorbed core with diffuse or no zonation that is depleted in Fe and Mg. Some cores display patchy zonation from replacement by high An crystallization prior to resorption. The cores are mantled by oscillatory-zoned rims of lower An content (< An60), and are enriched in Fe and Mg. Rim zones vary in relative thickness and textural complexity, and include sieve-textured bands, and/or cyclic calcic growth following dissolution events. A subordinate crystal population display similar features, but lack a resorbed core. These latter crystals display overall rimward enrichment in An, Fe and Mg. The resorbed cores crystallized from magmas more mafic than those erupted at Ngauruhoe, and slow cooling and prolonged storage resulted in loss of An zoning patterns and depletion of Fe and Mg by diffusion. These crystals are likely to have originated from deep cumulates or intrusions, and were subsequently entrained in ascending magmas. Patchy-textured cores were produced during decompression in a water under-saturated magma and staged ascent. The diversity in crystal cores reflect different conduits and ascent histories. The crystal rims grew in a more differentiated magma reservoir, and are in equilibrium with the erupted melt. Most of the zoning patterns in the rim zone require water pressure and/or temperature changes. These changes could have been caused by convective self-mixing in a closed system and/or the intrusion of hydrous melts of similar bulk composition. Other crystals display rimward elemental enrichments consistent with mafic recharge. Previously reported rimward enrichment in 87Sr-86Sr compositions can be explained by the re-cycled origin of the crystal cores and progressive crustal assimilation at shallower

  13. The effect of dynamic recrystallization and LPO formation on deformation mechanisms in experimentally deformed plagioclase aggregates

    NASA Astrophysics Data System (ADS)

    Meyers, C. D.; Hirth, G.; Cross, A. J.; Prior, D. J.

    2013-12-01

    We performed a series of deformation experiments on intermediate plagioclase aggregates (An60) that explored the role of dynamic recrystallization and LPO formation on the deformation mechanisms active and their effect on the mechanical strength of the aggregates. Our experiments were executed using a molten salt cell in a Tullis-modified Griggs Rig at 1 GPa, temperatures between 950-1100 C. These experiments were run in both axial compression and general shear geometries at both constant strain rates and with strain rate steps. The imposed strain rates ranged from 10^-4 to 5*10^-7 s^-1. The sample aggregates were prepared by sintering powders ranging from 20-45 micron at experimental P-T conditions prepared from pulverized single crystals of labradorite. We observed a strong dependence of strength on the strain-rate history of the experiment. Initially the samples weaken dramatically as the grain-size is reduced in the sample aggregate. During strain-rate stepping experiments, used to calculate the stress exponent, we observe variation in the strain-rate dependence of the strength related to whether there is an increasing or decreasing strain rate. Increasing the strain-rate tends to show stress exponent close to n=3, consistent with deformation by dislocation creep. Decreasing the strain-rate tends to decrease the stress exponent towards n=1, consistent with deformation by diffusion creep. Further, analysis using electron backscatter diffraction (EBSD) revealed distinctive LPOs that were different between larger relict porphryclast grains (>20 micron) and smaller recrystallized grains (1-4 micron). Larger relict grains have an LPO with {001} poles perpendicular to the shear plane, while smaller recrystallized grains have an LPO with {010} poles perpendicular to the shear plane. This is evidence that the processes that facilitate deformation are different between the relict and recrystallized grains. We also observe grain scale shear bands oriented roughly 30

  14. Crystallization temperature determination of Itokawa particles by plagioclase thermometry with X-ray diffraction data obtained by a high-resolution synchrotron Gandolfi camera

    NASA Astrophysics Data System (ADS)

    Tanaka, Masahiko; Nakamura, Tomoki; Noguchi, Takaaki; Nakato, Aiko; Ishida, Hatsumi; Yada, Toru; Shirai, Kei; Fujimura, Akio; Ishibashi, Yukihiro; Abe, Masanao; Okada, Tatsuaki; Ueno, Munetaka; Mukai, Toshifumi

    2014-02-01

    The crystallization temperatures of Itokawa surface particles recovered by the space probe Hayabusa were estimated by a plagioclase geothermometer using sodic plagioclase triclinicity. The Δ131-index required for the thermometer, which is the difference in X-ray diffraction peak positions between the 131 and 13¯1 reflections of plagioclase, was obtained by a high-resolution synchrotron Gandolfi camera developed for the third generation synchrotron radiation beamline, BL15XU at SPring-8. Crystallization temperatures were successfully determined from the Δ131-indices for four particles. The observed plagioclase crystallization temperatures were in a range from 655 to 660 °C. The temperatures indicate crystallization temperatures of plagioclases in the process of prograde metamorphism before the peak metamorphic stage.

  15. Oxygen isotope heterogeneity of arc magma recorded in plagioclase from the 2010 Merapi eruption (Central Java, Indonesia)

    NASA Astrophysics Data System (ADS)

    Borisova, Anastassia Y.; Gurenko, Andrey A.; Martel, Caroline; Kouzmanov, Kalin; Cathala, Annick; Bohrson, Wendy A.; Pratomo, Indyo; Sumarti, Sri

    2016-10-01

    Chemical and isotopic compositions of magmatic crystals provide important information to distinguish between deep juvenile and crustal contributions. In this work, high-resolution multicollector secondary ion mass spectrometry data reveal strong variations of δ18O values in three plagioclase crystals (800-1700 μm) from two representative basaltic andesite samples of the 2010 Merapi eruption (Central Java, Indonesia). The δ18O values (from 4.6‰ to 7.9‰) are interpreted to reflect oxygen isotope heterogeneity in the melt composition during plagioclase growth. The lowest δ18O values (4.6-6.6‰) are found in anorthite-rich cores (An82-97), whereas higher δ18O values (5.7-7.9‰) are found in anorthite-poorer zones (An33-86), typically in crystal rims. Combining these new plagioclase δ18O data with δ18O of calc-silicate crustal xenoliths erupted between 1994 and 1998, the composition of glass inclusions hosted by the anorthite-rich plagioclase (An82-92), available experimental data, and the results of thermodynamic modeling using the Magma Chamber Simulator code, we conclude that the abundant anorthite-rich cores crystallized from a mantle-derived hydrous basaltic to basaltic trachyandesite melt that recharged a deeper (200-600 MPa) magma storage zone, whereas lower anorthite zones crystallized at shallower levels (100-200 MPa). The oxygen isotope variations in the plagioclase are explained by a two-stage model of interaction of the hydrous, mafic mantle-derived magma (1) with old crustal rocks depleted in 18O due to high temperature alteration that yielded the low δ18O values in the anorthite-rich cores at deep levels (13-20 km), and later (2) with 18O-enriched carbonate material that yielded the high δ18O values in anorthite-poorer zones at shallow levels (∼4.5-9 km). Thermodynamic modeling is consistent with ∼18 wt.% assimilation of crustal calc-silicate material at 925-950 °C and 100-200 MPa by the 2010 Merapi basaltic andesite magma prior to

  16. Modeling H, Na, and K diffusion in plagioclase feldspar by relating point defect parameters to bulk properties

    NASA Astrophysics Data System (ADS)

    Zhang, Baohua; Shan, Shuangming; Wu, Xiaoping

    2016-02-01

    Hydrogen and alkali ion diffusion in plagioclase feldspars is important to study the evolution of the crust and the kinetics of exsolution and ion-exchange reactions in feldspars. Using the available PVT equation of state of feldspars, we show that the diffusivities of H and alkali in plagioclase feldspars as a function of temperature can be successfully reproduced in terms of the bulk elastic and expansivity data through a thermodynamic model that interconnects point defect parameters with bulk properties. Our calculated diffusion coefficients of H, Na, and K well agree with experimental ones when uncertainties are considered. Additional point defect parameters such as activation enthalpy, activation entropy, and activation volume are also predicted. Furthermore, the electrical conductivity of feldspars inferred from our predicted diffusivities of H, Na, and K through the Nernst-Einstein equation is compared with previous experimental data.

  17. Preferred lattice orientations of plagioclase from amphibolite and greenschist facies rocks near the Insubric Line (Western Alps)

    NASA Astrophysics Data System (ADS)

    Kruhl, Jörn H.

    1987-04-01

    Preferred lattice orientations of plagioclase, measured by the universal stage, from deformed amphibolite and greenschist facies rocks near the Insubric Line (Western Alps), reflect the type and orientation of the strain system: either (001) or (010) are oriented parallel or subparallel to the schistosity and form more or less complete girdles around the stretching direction. By the preferred orientation patterns dominant (010) [001] slip is indicated and, additionally, slip on (001) parallel to the a direction, possibly at somewhat higher temperatures and/or at a higher An content of the plagioclase. It is suggested that obliquities of the symmetry-planes of the orientation patterns against the principle axes of strain are related to the sense of shearing.

  18. Pristine moon rocks - An alkali anorthosite with coarse augite exsolution from plagioclase, a magnesian harzburgite, and other oddities

    NASA Technical Reports Server (NTRS)

    Warren, P. H.; Jerde, E. A.; Kallemeyn, G. W.

    1990-01-01

    Results are presented on the analyses of 18 samples of pristine rocks obtained from the primarily mare Apollo 12 site and from the primarily highland Apollo 14 site, as well as samples from the nonmare Apollo 15 site. It was found that, while two of anorthosites from Apollo 12 were similar in composition to most other anorthosites from the west-central near region, the texture of an alkali anorthosite featured a long and narrow crystal of augite surrounded by a single crystal of plagioclase, clearly suggesting that the augite formed by exsolution out of the plagioclase. Another Apollo 12 rocklet was an unusual magnesian harzburite, with subequal amounts of enstatite and olivine, traces of Cr-Fe spinel, and FeNi metal, but no plagioclase; the bulk composition was found to be remarkably Ir-rich (53 percent) for a pristine rock, and the texture was also unusual. Apollo 14 samples included several uncommonly Al-rich and REE-poor impact melt breccias.

  19. Spectral variability of plagioclase-mafic mixtures (1): Effects of chemistry and modal abundance in reflectance spectra of rocks and mineral mixtures

    NASA Astrophysics Data System (ADS)

    Serventi, Giovanna; Carli, Cristian; Sgavetti, Maria; Ciarniello, Mauro; Capaccioni, Fabrizio; Pedrazzi, Giuseppe

    2013-09-01

    Remote sensing from lunar highland and from Hermean surface showed reflectance spectra with no detectable absorption bands in the visible and near infrared, and recently M3 data from the lunar surface (e.g., Orientale Basin) have shown spectra with a weak absorption band centered at 1250 nm. Those terrains were generally interpreted as plagioclase rich regions. Plagioclase, however, has often been considered a spectrally transparent and almost featureless mineral. So it is difficult to recognize its presence and to quantify the abundance of this mineral even if it is one of the most important mineralogical component of the planetary surfaces. In this work we investigate the influence of plagioclase absorption band on the absorption of Fe, Mg minerals. We consider three plagioclases with different FeO wt.% contents which have been mixed with three mafic end-members (1) pyroxene-bearing and olivine-free, (2) olivine-poor and (3) olivine-rich, at two different grain size. Plagioclase’s influence has been expressed considering variation of different spectral parameters: band position, band intensity and band width. We show that plagioclase has spectroscopically different behavior when mixed with olivine-bearing or olivine-free end-members, but, in general, adding modal abundance of plagioclase produces higher albedo and reduced spectral contrast. Increasing FeO content in plagioclase and coarsening the grain size have similar effects on the mixture spectra. We also observed the spectral convergence of mixtures with different composition and grain size. With these results, we point out the importance of considering the plagioclase absorption on mixture’s mineralogical composition, when spectra from different terrain are considered. Moreover, accurate evaluation of the abundance of plagioclase in those mixture should be discussed in subsequent works.

  20. Plagioclase and pyroxene hosted melt inclusions in basaltic andesites of the current eruption of Arenal volcano, Costa Rica

    NASA Astrophysics Data System (ADS)

    Streck, Martin J.; Wacaster, Sue

    2006-09-01

    In this study, we investigated melt inclusions hosted in pyroxene and plagioclase to find direct evidence for the composition of melt components in the pre-eruptive magmas of the current eruption of Arenal volcano and to further shed light on the petrogenetic history of remarkably uniform basaltic andesitic bulk compositions. Composition of melt inclusions ranges widely regardless of whether an inclusion is hosted by plagioclase or by pyroxene and whether crystals with inclusions came from tephra samples or from slower emplaced lava flows. However, inclusions from each type of host mineral have distinct evolutionary trends most consistent with being mainly introduced by post-emplacement crystallization of the enclosing host, which is also supported by the composition of groundmass glasses. At the least-modified compositions, plagioclase and pyroxene inclusion trends overlap allowing for identification of melt compositions entrapped by both phases and, thus, strongly suggesting that these melt compositions existed in the reservoir prior to entrapment. Most of these are "dacitic" (61 to 64 wt.% SiO 2) and strongly match phenocryst-poor dacitic magmas of earlier eruptive phases of Arenal [Borgia, A., Poore, C., Carr, M.J., Melson, W.G., Alvarado, G.E., 1988. Structural, stratigraphic, and petrologic aspects of the Arenal-Chato volcanic system, Costa Rica: evolution of a young stratovolcanic complex. Bull Volcanol, 50, 86-105], suggesting earlier dacitic magmas may have been generated by melt-extraction processes. Correction for host crystallization of some inclusions also suggests that melt components as mafic as ˜ 53 wt.% may have been entrapped. All melt components inferred to have existed in the magmatic reservoirs prior to entrapment have low Mg# (38-45) yielding evidence for liquid compositions required for crystallizing the bulk of observed pyroxene and likely also olivine. Water rich (> 5 wt.%, by difference) and probably undegassed (S = 400-1600 ppm, Cl =

  1. FTIR Analysis of Water in Pyroxene and Plagioclase in ALH 84001 and Nakhlites

    NASA Technical Reports Server (NTRS)

    Peslier, A. H.; Cintala, M. J.; Montes, R.; Cardenas, F.

    2016-01-01

    with crustal reservoirs or hydrothermal fluids. Here, nominally anhydrous minerals (pyroxene, olivine, plagioclase, or maskelynite) in orthopyroxenite ALH 84001 and selected nakhlites are analyzed for water and major elements, in order to determine 1) whether they contain any water; 2) if they do, what controls its distribution (crystallization, degassing, hydrothermal or impact processes); and 3) if any of these measurements can be used to infer the water contents of the parent magma and their mantle sources. A shock-reverberation experiment was also performed on terrestrial orthopyroxenes (opx) to simulate the heavily shocked conditions of ALH 84001 (> 31 GPa [17]).

  2. The origin of felsic microgranitoid enclaves: Insights from plagioclase crystal size distributions and thermodynamic models

    NASA Astrophysics Data System (ADS)

    Alves, Adriana; Pereira, Giovanna de Souza; Janasi, Valdecir de Assis; Higgins, Michael; Polo, Liza Angelica; Juriaans, Orlando Stanley; Ribeiro, Bruno Vieira

    2015-12-01

    Magma mixing is widely recognized in contemporary petrology as one of the primary igneous processes. Microgranitoid enclaves (MEs) are considered to be remnants of such mixing processes, and the term has a well-established genetic implication. However, microgranitoid enclaves span a wide range of compositions, and felsic varieties are also frequently reported. Nd-Sr isotope and textural data from felsic microgranitoid enclaves (FMEs), mafic microgranitoid enclaves (MMEs) and host granites from the Salto pluton, Itu Granitic Province, show that the cm-sized MMEs are dioritic, have medium-grained igneous textures and xenocrysts of alkali feldspar and quartz. The FMEs are cm- to meter-sized, have spheric shapes, show corrugated contacts with the host granites, and have resorbed feldspars and deformed quartz crystals interpreted as xenocrysts set in a fine-grained groundmass. Compared to the host granites, both MME and FME samples have increased FeO, MgO, TiO2, P2O5 and Zr contents, but their Sr and Nd isotope signatures are identical: FME 87Sr/86Sri = 0.7088-0.7063, εNdi = - 10.0 to - 10.2; MME 87Sr/86Sri = 0.7070, εNdi = - 10.5; host granite 87Sr/86Sri 0.7056-0.7060, εNdi = - 10.2 to - 10.3. These indicate that the enclaves derive from a similar source, although the melts from which they formed were probably hotter and chemically more primitive than their host granites. Crystal size distributions (CSDs) of plagioclase in samples drilled from rinds and cores of three FMEs show that the rind samples are systematically finer-grained than the samples from the cores, which indicates that the FMEs cooled inwards and contradict interpretations that the FMEs are autoliths. Thermal modeling suggests that a slightly more primitive, hotter magma would be thermally equilibrated with an evolved resident melt within weeks after mixing/mingling. Upon thermal equilibrium, the FMEs would have an increased crystal cargo, and the resulting touching framework would impart a solid

  3. Wishstone to Watchtower: Alteration of Plagioclase-rich Rocks in Gusev Crater, Mars

    NASA Astrophysics Data System (ADS)

    Ruff, S. W.; Hamilton, V. E.

    2014-12-01

    The Mars Exploration Rover Spirit encountered a remarkable diversity of rocks during its traverse of the Columbia Hills in Gusev crater, manifested both as variations in primary mineralogy and in secondary alteration. The Wishstone and Watchtower Classes represent examples where the less altered (Wishstone) and more altered versions (Watchtower) were recognized as members of an alteration series identified by variations in geochemistry and Fe-bearing mineral phases [1-3]. Work by [1] demonstrated a geochemical relationship consistent with two-component mixing between a high Al2O3, TiO2, CaO, Na2O, P2O5 end-member and a second end-member enriched in MgO, Zn, S, Br, and Cl. The first end-member probably is Wishstone Class, with Watchtower Class intermediate between it and an unrecognized second end-member lithology [1]. New results using mirror-dust corrected spectra from Spirit's Miniature Thermal Emission Spectrometer [4] affirm the dominant plagioclase component in Wishstone and an amorphous component resembling basaltic glass in Watchtower identified previously [5]. But now we recognize a suite of rocks spanning the full range of alteration, including one dubbed Bruce that appears to be an alteration spectral end-member [4]. The spectra of some rocks with an intermediate level of alteration are well modeled as a simple two-component mixture of Wishstone and Bruce spectra. This is consistent with a style of alteration that progressively obscures spectral contributions of the host rock minerals and is inconsistent with a surface coating. The Bruce spectrum is poorly modeled by primary and secondary phases including phyllosilicates and amorphous silicates. This suggests a style of alteration not recognized in terrestrial settings. Based on the similarity of the Bruce spectrum to TES type 2, this style of alteration may be more widespread on Mars. The conditions that produced this alteration are poorly constrained, hence the relationship to habitability is unknown at

  4. [Influence of surface roughness on degree of polarization of biotite plagioclase gneiss varying with viewing angle].

    PubMed

    Xiang, Yun; Yan, Lei; Zhao, Yun-sheng; Gou, Zhi-yang; Chen, Wei

    2011-12-01

    Polarized reflectance is influenced by such factors as its physical and chemical properties, the viewing geometry composed of light incident zenith, viewing zenith and viewing azimuth relative to light incidence, surface roughness and texture, surface density, detection wavelengths, polarization phase angle and so on. In the present paper, the influence of surface roughness on the degree of polarization (DOP) of biotite plagioclase gneiss varying with viewing angle was inquired and analyzed quantitatively. The polarized spectra were measured by ASD FS3 spectrometer on the goniometer located in Northeast Normal University. When the incident zenith angle was fixed at 50 degrees, it was showed that on the rock surfaces with different roughness, in the specular reflection direction, the DOP spectrum within 350-2500 nm increased to the highest value first, and then began to decline varying with viewing zenith angle from 0 degree to 80 degrees. The characterized band (520 +/- 10) nm was picked out for further analysis. The correlation analysis between the peak DOP value of zenith and surface roughness showed that they are in a power function relationship, with the regression equation: y = 0.604x(-0.297), R2 = 0.985 4. The correlation model of the angle where the peak is in and the surface roughness is y = 3.4194x + 51.584, y < 90 degrees , R2 = 0.8177. With the detecting azimuth farther away from 180 degrees azimuth where the maximum DOP exists, the DOP lowers gradually and tends to 0. In the detection azimuth 180 dgrees , the correlation analysis between the peak values of DOP on the (520 =/- 10) nm band for five rocks and their surface roughness indicates a power function, with the regression equation being y = 0.5822x(-0.333), R2 = 0.9843. F tests of the above regression models indicate that the peak value and its corresponding viewing angle correlate much with surface roughness. The study provides a theoretical base for polarization remote sensing, and impels the

  5. Anomalous isotopes and trace element zoning in plagioclase peridotite xenoliths of Oahu (Hawaii): implications for the Hawaiian plume

    NASA Astrophysics Data System (ADS)

    Sen, Gautam; Yang, Huai-Jen; Ducea, Mihai

    2003-02-01

    Survival of plagioclase in the residual melting column during melting can have a significant impact on the melting process beneath a mid-oceanic ridge [Asimow et al., Phil. Trans. R. Soc. London Ser. A 355 (1997) 255-281]. Here we investigate the origin of plagioclase that occurs in some rare mantle xenoliths from Oahu, Hawaii. The xenoliths are harzburgitic with less than 2 modal% clinopyroxene and are characterized by strong foliation and porphyroclastic texture. Olivine and orthopyroxene are common porphyroclasts; and only one xenolith (77PAII-9) contains a single large clinopyroxene porphyroclast with thick exsolved orthopyroxene lamellae. The strongly foliated groundmass shows well-developed triple-point junctions and is dominantly composed of olivine (ol 85-90 opx 7-14 cpx <1-2 plag 3-5 spinel trace). Spinel grains are small and dispersed through the groundmass and show extreme variation in Cr/Al ratio within individual thin sections, indicating that they are out of equilibrium with the other phases in these xenoliths. A highly anorthitic plagioclase (An 92-96) occurs only in the groundmass and its modal abundance (˜3-5%) is too high relative to the abundance of clinopyroxene (commonly <1%) for it to be a residual phase, implying that plagioclase may have an exotic origin. The porphyroclasts show strong compositional zoning near the rims and appear to be relict phases (as are all the spinel grains) that had once equilibrated with melts within the stability field of spinel peridotite (pressure ˜1-3 GPa). Clinopyroxene neoblasts and the single porphyroclast in PAII-9 are all characterized by lithosphere-like strongly depleted light rare earth element (chondrite-normalized) patterns. The clinopyroxene porphyroclast in PAII-9 is zoned in Al, Eu, Cr, and Na. The porphyroclastic ortho- and clinopyroxenes give a homogenized (host+exsolution) temperature of 1300°C, which is inferred to be the temperature at which the porphyroclast cores equilibrated with a MORB

  6. Ion microprobe investigation of plagioclase and orthopyroxene from lunar Mg-suite norites: Implications for calculating parental melt REE concentrations and for assessing postcrystallization REE redistribution

    SciTech Connect

    Papike, J.J.; Fowler, G.W.; Shearer, C.K.; Layne, G.D.

    1996-10-01

    The lunar Mg-suite, which includes dunites, troctolites, and norites, makes up to 20-30% of the Moon`s crust down to a depth of {approximately}60 km. The remainder is largely anorthosite. This report focuses on norites (which consist mostly of orthopyroxene and plagioclase) because we have found that both phases are effective recorders of their parental melt compositions. In an earlier report, we analyzed orthopyroxene from twelve samples (three from Apollo 14, two from A-15, and seven from A-17) by orthopyroxene from twelve samples (three from Apollo 14, two from A-15, and seven from A-17) by SIMS for eight REE (La, Ce, Nd, Sm, Eu, Dy, Er, Yb). Inversion of these data to estimated melt compositions yielded extremely high REE concentrations similar to KREEP. In this study, we report SIMS REE data for plagioclase from these same twelve samples. The major objective of this study is to estimate parental REE concentrations from both orthopyroxene and plagioclase data to see if both data inversions produce concordant from both orthopyroxene and plagioclase data to see if both data inversions produce concordant melt compositions and thus better constrain the composition of melts parental to Mg-suite norites. The estimated REE concentrations from both phases show some evidence of slight postcrystallization REE redistribution. Comparison of the observed ratio of REE for pyroxene/plagioclase to the ratio of the Ds for pyroxene/plagioclase is consistent with REE redistribution which involves LREE diffusing from pyroxene into plagioclase and HREE diffusing from plagioclase into pyroxene. However, apparently these postcrystallization exchanges have not seriously affected our ability to estimate melt REE concentrations. 34 refs., 7 figs., 5 tabs.

  7. Water content in arc basaltic magma in the Northeast Japan and Izu arcs: an estimate from Ca/Na partitioning between plagioclase and melt

    NASA Astrophysics Data System (ADS)

    Ushioda, Masashi; Takahashi, Eiichi; Hamada, Morihisa; Suzuki, Toshihiro

    2014-12-01

    The variation in water content of arc basaltic magmas in the Northeast Japan arc and the Izu arc was estimated using a simple plagioclase phenocryst hygrometer. In order to construct a plagioclase phenocryst hygrometer optimized for arc basalt magmas, we have conducted high-pressure melting experiments of relatively primitive basalt from the Miyakejima volcano, a frontal-arc volcano in the Izu arc. As a result of the experiments, we found that the Ca/Na partition coefficient between plagioclase and hydrous basaltic melt increases linearly with an increase in H2O content in the melts. We then selected from literature geochemical data sets of relatively primitive basaltic rocks with no evidence of magma mixing and the most frequent Ca-rich plagioclase phenocrysts from 15 basaltic arc volcanoes including both frontal-arc and rear-arc volcanoes. In the 15 volcanoes studied, plagioclase phenocrysts of high anorthite content (An > 90) were commonly observed, whereas plagioclase phenocrysts in rear arc volcanoes usually had a lower anorthite content (90 > An > 80). In all volcanoes studied, the estimated H2O content of basaltic magma was at least 3 wt.% H2O or higher. The magmas of volcanoes located on the volcanic front have about 5 wt.% H2O in magma whereas those from the rear-arc side are slightly lower in H2O content.

  8. Water content in arc basaltic magma in the Northeast Japan and Izu arcs: an estimate from Ca/Na partitioning between plagioclase and melt

    NASA Astrophysics Data System (ADS)

    Ushioda, M.; Takahashi, E.; Hamada, M.; Suzuki, T.

    2015-12-01

    The variation in water content of arc basaltic magmas in the Northeast Japan arc and the Izu arc was estimatedusing a simple plagioclase phenocryst hygrometer. In order to construct a plagioclase phenocryst hygrometeroptimized for arc basalt magmas, we have conducted hydrous melting experiments of relatively primitive basaltfrom the Miyakejima volcano, a frontal-arc volcano in the Izu arc. As a result of the experiments, we found that theCa/Na partition coefficient between plagioclase and hydrous basaltic melt increases linearly with an increase in H2Ocontent in the melts. We then compiled published geochemical data sets of relatively primitive basaltic rocks with no evidence of magma mixing and the most frequent Ca-rich plagioclase phenocrysts from 15 basaltic arc volcanoesincluding both frontal-arc and rear-arc volcanoes. In the 15 volcanoes studied, plagioclase phenocrysts of high anorthitecontent (An > 90) were commonly observed, whereas plagioclase phenocrysts in rear arc volcanoes usually had a loweranorthite content (90 > An > 80). In all volcanoes studied, the estimated H2O content of basaltic magma was at least3 wt.% H2O or higher. The magmas of volcanoes located on the volcanic front have about 5 wt.% H2O in magmawhereas those from the rear-arc side are slightly lower in H2O content.

  9. Contrasting Sr isotope ratios in plagioclase from different formations of the mid-Miocene Columbia River Basalt Group

    NASA Astrophysics Data System (ADS)

    Starkel, W. A.; Wolff, J.; Eckberg, A.; Ramos, F.

    2008-12-01

    Many early Columbia River Basalt flows of the Steens and Imnaha Formations are characterized by abundant, texturally complex, coarse plagioclase phenocrysts. In Imnaha lavas, the feldspars typically have more radiogenic 87Sr/86Sr than whole rock and matrix, and may exhibit complex isotopic zoning that is not correlated with An content. Imnaha plagioclase grains are interpreted as variably-contaminated crystals produced when high-crystallinity mid-crustal basaltic intrusions exchanged interstitial melt with adjacent partly-melted crustal rock; this isotopically variable debris was then remobilized by subsequent intrusion of mantle-derived basalt and brought to the surface as an isotopically heterogeneous mixture. In contrast, plagioclase grains in the texturally very similar Steens lavas are isotopically near-homogeneous and 87Sr/86Sr is not significantly displaced from that of the bulk rock. This is consistent with magma- crust interaction at low degrees of crustal melting during the early stages of the Columbia River flood basalt episode, where Steens and Imnaha lavas were erupted from distinct magma systems hosted by different types of crust that exerted different degrees of isotopic leverage on the mantle-derived magmas [1]. Thermal input to the Steens system declined at the same time as the Imnaha magmatic flux increased to ultimately produce the huge outpouring of Grande Ronde lavas, which are mixtures of mantle- and crust-derived liquids, the latter produced during high degrees of crustal melting during the time of peak magmatic flux. [1] Wolff et al. (2008) Nature Geoscience 1, 177-180.

  10. The importance of plagioclase in the reflectance spectra of Fe, Mg mixtures: a better understanding of spectra from Lunar and Hermean terrains.

    NASA Astrophysics Data System (ADS)

    Serventi, G.; Sgavetti, M.; Carli, C.; Pompilio, L.

    2012-04-01

    Spectra obtained on Lunar highland and on Mercury show low contrast features. We suggest the interference of adjacent absorptions bands due to different minerals as a possible cause of low contrast spectra. While the combined effects of Fe2+ absorptions in various clinopyroxene, orthopyroxene and olivine mixtures have been widely studied, the spectroscopic effects of plagioclase have been considered only for <0,26 wt% FeO-bearing compositions, even if plagioclase is considered an important constituent of Lunar and Hermean terrains. Here we consider mixtures composed by various abundances of multimineral grains and plagioclase, separated from cumulate rocks of a layered intrusion belonging to the anorthosite kindred. Three different Fe, Mg multimineral compositions have been considered. The first is olivine-free and consists of clinopyroxene En45-Wo46 (43.9%) and orthopyroxene En77 (56.1%). The second one is olivine-poor and includes orthopyroxene En86 (70%) and olivine Fo87 (30%). The third one, olivine-rich, is composed by orthopyroxene En82 (28.2%), clinopyroxene En45-Wo46 (3.4%), olivine Fo84 (68.4%). Two distinct plagioclase compositions, having FeO wt.% concentration of 0.36 (medium-iron), and 0.5 (rich-iron) were systematically mixed to each starting assemblage. The amount of plagioclase in the mixtures ranges between 30% and 90%. Mixtures with grain sizes of 63-125 μm and 125-250 μm were prepared. Bidirectional reflectance spectra (i=30°, e=0° angle phase) on these mixtures were acquired at the SLAB (Spectroscopy Laboratory, Iasf-INAF, Roma) in the VIS-NIR range (0.3-2.5 µm). Preliminary results show that increasing plagioclase content produces higher albedo and lower spectral contrast. In olivine-free mixtures, plagioclase produces a flattening in the 1.2 µm region at about 70% of medium-iron plagioclase and 50% of iron-rich plagioclase; for higher content of plagioclase a clear absorption band appears. In olivine-poor mixtures, the presence of

  11. Constraints on the accretion of the gabbroic lower oceanic crust from plagioclase lattice preferred orientation in the Samail ophiolite

    NASA Astrophysics Data System (ADS)

    VanTongeren, J. A.; Hirth, G.; Kelemen, P. B.

    2015-12-01

    The debate over the processes of igneous accretion of gabbroic lower crust at submarine spreading centers is centered on two end-member hypotheses: Gabbro Glaciers and Sheeted Sills. In order to determine which of these two hypotheses is most applicable to a well-studied lower crustal section, we present newly published data (VanTongeren et al., 2015 EPSL v. 427, p. 249-261) on plagioclase lattice preferred orientations (LPO) in the Wadi Khafifah section of the Samail ophiolite, Oman. Based on our results we provide five critical observations that any model for the accretion of the lower oceanic crust must satisfy: (1) There is a distinctive change in the orientation of the outcrop-scale layering from near-vertical to sub-horizontal that is also reflected in the plagioclase fabrics in the uppermost ~1000-1500 m of the gabbroic crust; (2) The distinction between the upper gabbros and lower gabbros is not a geochemical boundary. Rather, the change in outcrop-scale orientation from near-vertical to sub-horizontal occurs stratigraphically lower in the crust than a change in whole-rock geochemistry; (3) There is no systematic difference in plagioclase fabric strength in any crystallographic axis between the upper gabbros and the lower gabbros; (4) Beneath the abrupt transition from sub-vertical to sub-horizontal fabric, there is no systematic change in the geographic orientation of the plagioclase fabric, or in the development of a dominant lineation direction within the upper gabbros or the lower gabbros; (5) In the lower gabbros, the obliquity between the (010) and the modal layering remains approximately constant and indicates a consistent top to the right sense of shear throughout the stratigraphy. Our observations are most consistent with the Sheeted Sills hypothesis, in which the majority of lower crustal gabbros are crystallized in situ and fabrics are dominated by compaction and localized extension rather than by systematically increasing shear strain with

  12. Effect of Plagioclase Crystallization on Liquid and Magma Viscosity in the An-Di-Fo-Q System

    NASA Astrophysics Data System (ADS)

    Getson, J. M.; Whittington, A.

    2006-05-01

    In this study we compare the chemical effect of changing composition on residual liquid viscosity and the physical effect of entrained crystals on magma viscosity during plagioclase crystallization. Seventeen CMAS glasses based on dacitic and basaltic bulk compositions were synthesized. Eight are contained in the An-Di- Fo system lying approximately on the An-Di90Fo10 pseudobinary and running through the 1 atm eutectic; nine form two separate series in the An-Fo-Q system. The first lies on the An-En binary between An and the An-En cotectic; the second joins anorthite and the An-En-Q eutectic. Liquid viscosities were measured in the range from 101 to 104 and 108 to 1012 Pa.s using concentric cylinder and parallel plate viscometry. Liquidus viscosities were interpolated using TVF equations fitted to both low and high temperature datasets. Viscosity varies smoothly with liquid composition. Within the anorthite field of the An-En binary, a starting liquid of molar composition An50Fo25Q25 has a viscosity of 101.5 Pa.s at the liquidus temperature of 1400°C. Progressive crystallization generates liquid of An34Fo33Q33 on the An-En cotectic, with a viscosity of 101.4 Pa.s at its liquidus temperature of 1300°C. Therefore, plagioclase fractionation can lead to constant or decreasing liquid viscosities even during cooling due to changing liquid composition. Magma viscosity depends on both the liquid viscosity and the physical effect of crystals. For the same example, assuming the 37% volume fraction of plagioclase crystals are fully retained, the calculated magma viscosity would be 102.45 Pa.s. These results confirm that magma viscosities increase with crystallization, but demonstrate that residual liquid composition must be accounted for. Tracking viscosity during progressive cooling and plagioclase crystallization suggests that magma viscosity will initially decrease, as changing liquid composition outweighs decreasing temperature and increasing crystal content. At higher

  13. Experimental determination of plagioclase dissolution rates as a function of its composition and pH at 22 °C

    NASA Astrophysics Data System (ADS)

    Gudbrandsson, Snorri; Wolff-Boenisch, Domenik; Gislason, Sigurdur R.; Oelkers, Eric H.

    2014-08-01

    The steady-state, far-from-equilibrium dissolution rates of nine distinct plagioclases ranging in composition from An2 to An89 were measured in mixed flow reactors at 22 ± 2 °C and pH from 2 to 11. The dissolution rates of all plagioclases based on silica release show a common U-shaped behaviour as a function of pH, where rates decrease with increasing pH at acid condition but rise with increasing pH at alkaline conditions. Consistent with literature findings, constant pH plagioclase dissolution rates increase with increasing anorthite content at acidic conditions; measured anorthite dissolution rates are ∼2.5 orders of magnitude faster than those of albite at pH ∼2. Perhaps more significantly, rates are independent of plagioclase composition at alkaline conditions. Interpretation and data fitting suggests that plagioclase dissolution rates are consistent with their control by the detachment of Si-rich activated complexes formed by the removal of Al from the mineral framework. Taking account of this mechanism and transition state theory yields equations describing plagioclase dissolution rates (r+) as a function of both the mineral and aqueous fluid compositions found in natural Earth surface systems. For pH ⩾ 6 rates are consistent with Log(r+/(mol/cm/s))=0.35Log(aH3/aAl)-11.53 and for pH < 6 rates are consistent with Log(r+/(mol/cm/s))=nacidLog(aH3/aAl)+0.033An%-14.77 where An% represents the percent anorthite in the plagioclase solid solution, ai corresponds to the activity of the ith aqueous species, and nacid is given by nacid=0.004An%+0.05 .

  14. Plagioclase deformation in upper-greenschist facies meta-pegmatite mylonites from the Austroalpine Matsch Unit (Eastern Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Eberlei, Tobias; Habler, Gerlinde; Abart, Rainer; Grasemann, Bernhard

    2014-05-01

    Feldspars are common rock forming minerals as they are stable over a wide range of bulk rock compositions and metamorphic conditions within the Earth's crust. The deformation mechanisms of feldspar play an important role in rheological models for the crust and therefore have received considerable attention in studies on natural rocks and in experimental studies. The interaction of frictional and viscous deformation mechanisms and the onset of crystal plastic deformation in feldspars occur over a broad range of pressures and temperatures. In this work, we present new microstructural, textural and mineral chemical data of plagioclase from Permian metapegmatites within the Austroalpine Matsch Unit in Southern Tyrol (Italy). These crystalline basement rocks were deformed and metamorphosed at conditions close to the greenschist/amphibolites facies transition at 480±26°C during the Cretaceous (Habler et al., 2009). The investigated samples have been collected from meter-scale shear zones which typically occur at boundaries of lithological subunits. The southern tectonic boundary of this unit is commonly referred to as the "Vinschgau Shear Zone" (Schmid & Haas, 1989). We applied the Electron Backscatter Diffraction method to investigate the grain- and subgrain-boundaries and the nature of effective deformation mechanisms in plagioclase. Large albite porphyroclasts in the mylonitic Permian metapegmatites show grain internal traces of dissolution surfaces and the formation of new, strain-free grains with straight grain boundary segments and partly 120° grain boundary triple junctions in dilatant sites. The aggregates of new grains neither have a lattice preferred orientation nor a crystallographic orientation relation with the adjacent clast, and are characterized by the lack of grain internal deformation, suggesting that these are new precipitates rather than clast-fragments or recrystallized subgrains. Furthermore, the porphyroclasts show cracks and kinks, associated

  15. Melting of metasomatized subcontinental mantle: New experiments and a new predictive models for plagioclase, spinel and garnet lherzolite melting

    NASA Astrophysics Data System (ADS)

    Grove, T. L.; Till, C. B.; Barr, J. A.; Krawczynski, M. J.

    2010-12-01

    Data from new experiments where liquid is in equilibrium with olivine + orthopyroxene + high-Ca clinopyroxene + Al-phase (plagioclase, spinel or garnet) have allowed us to recalibrate and update the melting model of Kinzler and Grove (K&G, JGR 97: 6885-6926, 1992) for melting under nominally anhydrous conditions over a larger range of pressure. We use existing literature data along with new experiments on melting of a high K2O primitive high alumina olivine tholeiite (HAOT) from the Oregon High Lava Plains, a high-K olivine leucitite from the Tibetan Plateau and low alkali, high FeO + MgO lunar ultramafic glasses. The new spinel lherzolite model is constrained by 114 experimental data that span a temperature range of 1200 to 1580 oC, a pressure range of 1 to 2.7 GPa and liquid alkali contents of up to 4.5 wt. % K2O and 5 wt. % Na2O. The garnet-lherzolite melting model uses 26 experimental constraints with new experiments containing up to 3.4 wt. % K2O. We use the following dependent variables to represent the melt composition in terms of oxygen-based mineral components: Olivine - Clinopyroxene - Plagioclase - Quartz and temperature. The independent variables are: pressure (P), molar Mg/(Mg+Fe) (Mg#), wt. % (K2O + Na2O)/(Na2O + K2O + CaO) (1-Ca#), wt.% Al2O3/(Al2O3+SiO2) (Al#), wt% K2O and wt. % TiO2. These variables describe the departure of melting behavior from the simplified lherzolite analog in CMAS (CaO-MgO-Al2O3-SiO2) in which melting behavior in univariant. This revised model facilitates a prediction of the liquid composition and temperature of multiple saturation with a mantle mineral assemblage for a given pressure. The new model allows compositional dependent calibration of the spinel to garnet lherzolite transition in sub-continental mantle environments. For example, beneath the Tibetan Plateau melting occurs near this transition and primitive high-K lavas show evidence of derivation from spinel- and garnet-bearing lherzolite. In addition, the HAOT lavas

  16. Experimental quantification of P-T conditions of mantle refertilisation at shallow depth under spreading ridges and formation of plagioclase + spinel lherzolite

    NASA Astrophysics Data System (ADS)

    Chalot-Prat, Françoise; Falloon, Trevor J.; Green, David H.

    2014-05-01

    We studied the first-order melting process of differentiation in the Earth, and the major process of rejuvenation of the upper mantle after melting related to plate spreading (Chalot-Prat et al, 2010; 2013). We conducted experiments at High Pressure (0.75 and 0.5 GPa) and High Temperature (1260-1100°C) to obtain magma compositions in equilibrium with the mineral assemblages of a plagioclase + spinel lherzolite. These PT conditions prevail at 17-30km below axial oceanic spreading ridges. We used a "trial and error" approach in a system involving nine elements (Cr-Na-Fe-Ca-Mg-Al-Si-Ti-Ni). This approaches as closely as possible a natural mantle composition, Cr being a key element in the system. Our objectives were : • to determine experimentally the compositions of melts in equilibrium with plagioclase + spinel lherzolite, with emphasis on the role of plagioclase composition in controlling melt compositions; • to test the hypothesis that MORB are produced at shallow depth (17-30kms) • to quantify liquid- and mantle residue compositional paths at decreasing T and low P to understand magma differentiation by "percolation-reaction" at shallow depth in the mantle; • to compare experimental mantle mineral compositions to those of re-fertilised oceanic mantle lithosphere outcropping at the axis of oceanic spreading ridges, enabling quantification of the pressure (i.e. depth) and temperature of the re-fertilisation process that leads to formation of plagioclase and indicates the minimum thickness of the lithosphere at ridge axes. In the normative basalt tetrahedron, liquids plot on two parallel cotectic lines from silica-oversaturated (basaltic andesite at 0.75 GPa or andesite at 0.5 GPa) at the calcic end to silica-undersaturated compositions (trachyte) at the sodic end. The lower the pressure, the greater the silica oversaturation. Besides the plagioclase solid solution has a dominant role in determining the solidus temperature of plagioclase + spinel lherzolites

  17. Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning

    NASA Astrophysics Data System (ADS)

    Molina, J. F.; Moreno, J. A.; Castro, A.; Rodríguez, C.; Fershtater, G. B.

    2015-09-01

    Dependencies of plagioclase/amphibole Al-Si partitioning, DAl/Siplg/amp, and amphibole/liquid Mg partitioning, DMgamp/liq, on temperature, pressure and phase compositions are investigated employing robust regression methods based on MM-estimators. A database with 92 amphibole-plagioclase pairs - temperature range: 650-1050 °C; amphibole compositional limits: > 0.02 apfu (23O) Ti and > 0.05 apfu Al - and 148 amphibole-glass pairs - temperature range: 800-1100 °C; amphibole compositional limit: CaM4/(CaM4 + NaM4) > 0.75 - compiled from experiments in the literature was used for the calculations (amphibole normalization scheme: 13-CNK method). Statistical analysis reveals a significant dependence of DAl/Siplg/amp on pressure, temperature, Al fraction in amphibole T1-site, XAlT1, and albite fraction in plagioclase, XAb, leading to the barometric expression:

  18. Evidence for an approximately 4.5 aeon age of plagioclase clasts in a lunar highland breccia

    NASA Technical Reports Server (NTRS)

    Jessberger, E. K.; Huneke, J. C.; Wasserburg, G. J.

    1974-01-01

    Argon from neutron-irradiated mineral separates and whole rock samples of a metamorphosed breccia (65015) from Apollo 16 has been analyzed with a large number of gas extraction steps in order to obtain a high resolution in the apparent ages and to identify the gas released from different sources. The results on plagioclase show a Ar-40/Ar-39 plateau age of 3.98 b.y. which is attributed to the time of metamorphism, and an age of about 4.5 b.y. in the high-temperature fraction. Correlation of the release pattern with Ar-37 instead of Ar-39 permits the association of the approximate 4.5 b.y. age with relict plagioclasts which were demonstrated in previous petrographic and Rb-Sr studies as being unequilibrated. This result suggests that it is possible to identify lithic components which represent the early lunar crust.

  19. Lingunite-a high-pressure plagioclase polymorph at mineral interfaces in doleritic rock of the Lockne impact structure (Sweden)

    NASA Astrophysics Data System (ADS)

    Agarwal, Amar; Reznik, Boris; Kontny, Agnes; Heissler, Stefan; Schilling, Frank

    2016-05-01

    Lingunite nanocrystals and amorphous plagioclase (maskelynite) are identified at the contacts between augite and labradorite wedge-shaped interfaces in the doleritic rocks of the Lockne impact structure in Sweden. The occurrence of lingunite suggests that the local pressure was above 19 GPa and the local temperature overwhelmed 1000 °C. These values are up to 10 times higher than previous values estimated numerically for bulk pressure and temperature. High shock-induced temperatures are manifested by maskelynite injections into microfractures in augite located next to the wedges. We discuss a possible model of shock heterogeneity at mineral interfaces, which may lead to longer duration of the same shock pressure and a concentration of high temperature thus triggering the kinetics of labradorite transformation into lingunite and maskelynite.

  20. Lingunite-a high-pressure plagioclase polymorph at mineral interfaces in doleritic rock of the Lockne impact structure (Sweden)

    PubMed Central

    Agarwal, Amar; Reznik, Boris; Kontny, Agnes; Heissler, Stefan; Schilling, Frank

    2016-01-01

    Lingunite nanocrystals and amorphous plagioclase (maskelynite) are identified at the contacts between augite and labradorite wedge-shaped interfaces in the doleritic rocks of the Lockne impact structure in Sweden. The occurrence of lingunite suggests that the local pressure was above 19 GPa and the local temperature overwhelmed 1000 °C. These values are up to 10 times higher than previous values estimated numerically for bulk pressure and temperature. High shock-induced temperatures are manifested by maskelynite injections into microfractures in augite located next to the wedges. We discuss a possible model of shock heterogeneity at mineral interfaces, which may lead to longer duration of the same shock pressure and a concentration of high temperature thus triggering the kinetics of labradorite transformation into lingunite and maskelynite. PMID:27188436

  1. A Plagioclase Ultraphyric Basalt group in the Neogene flood basalt piles of eastern Iceland: Volcanic architecture and mode of emplacement

    NASA Astrophysics Data System (ADS)

    Oskarsson, B. V.; Riishuus, M. S.

    2013-12-01

    3D photogrammetry in conjunction with ground mapping was applied in order to assess the architecture of a Plagioclase Ultraphyric Basalt (PUB) group in eastern Iceland, namely the Grænavatn group. The ~10 Myr old group is exposed in steep glacially carved fjords and can be traced over 60 km along strike. Two feeder dikes have been found and show that the group erupted along the trend of the dike swarm associated with the Breiddalur central volcano. The group has 9--14 flows where thickest, and thins to about 3--4 flows up-dip to the east within the distance of 15-20 km from the source. We have estimated the volume of the group to exceed 40 km3. The flows have mixed architecture of simple and compound morphology. The flow lobes have thicknesses from 1--24 m and many reach lengths over 1000 m. The surface morphology varies from rubbly to scoriaceous, but is dominantly of pahoehoe style. The internal structure of the lava flows is well preserved and the flows display abundant vesicle cylinders. The modal percentage of An-rich plagioclase macrocrysts varies from 25--50 % and they are in the range of 5--30 mm. The aspect ratio of the group and the nature of the flows indicate fissure-fed eruptions. A thick flow found at the base of the group in various locations seems to record the largest eruption episode in the formation of the group. This phase is also the most abundant in macrocryst. An asymmetric buildup is seen in one location and may have characterized the general buildup of the group. The general morphology of the lava flows suggests low viscous behavior, at odds with the high crystal content. Petrographic observations and mineral chemistry shows that the plagioclase macrocrysts are very calcic (An80-85) and in disequilibrium with the groundmass and plagioclases therein (An50-70). Thus the apparent lava rheology and emplacement of the PUBs was likely achieved due to fast ascent of the magma through the crust and transfer of heat from the primitive macrocrysts

  2. 40Ar/39Ar and cosmic ray exposure ages of plagioclase-rich lithic fragments from Apollo 17 regolith, 78461

    NASA Astrophysics Data System (ADS)

    Das, J. P.; Baldwin, S. L.; Delano, J. W.

    2016-01-01

    Argon isotopic data is used to assess the potential of low-mass samples collected by sample return missions on planetary objects (e.g., Moon, Mars, asteroids), to reveal planetary surface processes. We report the first 40Ar/39Ar ages and 38Ar cosmic ray exposure (CRE) ages, determined for eleven submillimeter-sized (ranging from 0.06 to 1.2 mg) plagioclase-rich lithic fragments from Apollo 17 regolith sample 78461 collected at the base of the Sculptured Hills. Total fusion analysis was used to outgas argon from the lithic fragments. Three different approaches were used to determine 40Ar/39Ar ages and illustrate the sensitivity of age determination to the choice of trapped (40Ar/36Ar)t. 40Ar/39Ar ages range from ~4.0 to 4.4 Ga with one exception (Plag#10). Surface CRE ages, based on 38Ar, range from ~1 to 24 Ma. The relatively young CRE ages suggest recent re-working of the upper few centimeters of the regolith. The CRE ages may result from the effect of downslope movement of materials to the base of the Sculptured Hills from higher elevations. The apparent 40Ar/39Ar age for Plag#10 is >5 Ga and yielded the oldest CRE age (i.e., ~24 Ma). We interpret this data to indicate the presence of parentless 40Ar in Plag#10, originating in the lunar atmosphere and implanted in lunar regolith by solar wind. Based on a chemical mixing model, plagioclase compositions, and 40Ar/39Ar ages, we conclude that lithic fragments originated from Mg-suite of highland rocks, and none were derived from the mare region.

  3. Plagioclase and epidote buffering of cation ratios in mid-ocean ridge hydrothermal fluids: Experimental results in and near the supercritical region

    SciTech Connect

    Berndt, M.E.; Seyfried, W.E. Jr. ); Janecky, D.R. )

    1989-09-01

    Experiments have been performed with Na-Ca-K-Cl fluids of seawater chlorinity and diabase, basalt, and plagioclase bearing mineral mixtures at 350-425{degree}C and 250-400 bars to help constrain hydrothermal alteration processes at mid-ocean ridges. Dissolved Ca, Na, and pH for all experiments responded systematically to differences in dissolved SiO{sub 2} concentrations and the compositions of plagioclase reactants. Diabase alteration at low fluid/rock mass ratios (0.5 to 1) produces fluids undersaturated with respect to quartz during hydration of primary olivine and orthopyroxene, whereas basalt alteration under similar conditions yields fluids slightly supersaturated with respect to quartz during breakdown of glass to smectite and amphibole. Fluid chemistry in all experiments appears to approach a partial equilibrium state with the albite and anorthite components in plagioclase and approaches a pH consistent with plagioclase alteration to epidote. Trace element data from vent fluids, specifically B and Sr, together with major element chemistry, provides evidence that the reaction zone for black-smoker fluids at mid-ocean ridges is composed of only slightly altered diabase and is characterized by small amounts of epidote, nearly fresh plagioclase and clinopyroxene, and partially to completely hydrated olivine and orthopyroxene. Using equilibrium between plagioclase, the dominant reactant, and epidote, the dominant reaction product in experiments, the authors estimate that temperatures in reaction zones are in excess of 375{degree}C for most vent systems. These temperatures are higher than measured vent temperatures, suggesting that hot spring fluids commonly loose heat during ascent to the sea floor.

  4. Trace element and Pb isotope composition of plagioclase from dome samples from the 2004-2005 eruption of Mount St. Helens, Washington: Chapter 35 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Kent, Adam J.R.; Rowe, Michael C.; Thornber, Carl R.; Pallister, John S.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Plagioclase crystals from gabbronorite inclusions in three dacite samples have markedly different trace-element and Pbisotope compositions from those of plagioclase phenocrysts, despite having a similar range of anorthite contents. Inclusions show some systematic differences from each other but typically have higher Ti, Ba, LREE, and Pb and lower Sr and have lower 208Pb/206Pb and 207Pb/206Pb ratios than coexisting plagioclase phenocrysts. The compositions of plagioclase from inclusions cannot be related to phenocryst compositions by any reasonable petrologic model. From this we suggest that they are unlikely to represent magmatic cumulates or restite inclusions but instead are samples of mafic Tertiary basement from beneath the volcano.

  5. Dynamics of magma supply at Mt. Etna volcano (Southern Italy) as revealed by textural and compositional features of plagioclase phenocrysts

    NASA Astrophysics Data System (ADS)

    Viccaro, Marco; Giacomoni, Pier Paolo; Ferlito, Carmelo; Cristofolini, Renato

    2010-04-01

    A systematic study of textural and compositional zoning (An% and FeO variation) in plagioclase phenocrysts of historic (pre-1971) and recent (post-1971) lavas at Mount Etna was made through back-scattered electron (BSE) images and electron microprobe analyses (EMP). The textures considered include oscillatory zoning and several types of dissolution, resorption and growth textures at the phenocryst cores and/or rims. Two patterns of oscillation were recognized from the combined An-FeO variation: 1) Low Amplitude-High Frequency (LAHF) and 2) High Amplitude-Low Frequency (HALF). The first pattern is interpreted here as due to kinetic effects at the plagioclase/melt interface which developed during crystallization in closed reservoirs. The second, which sometimes involves thin dissolution surfaces marked by irregular edges, angular unconformities and complex dissolution-regrowth patterns, might imply crystallization in a more dynamic regime, probably driven by chemical and physical gradients of the system (e.g., convection in a steadily degassing open-conduit). Dissolution and resorption textures at the core vary from patchy (exclusive to plagioclases within pre-1971 lavas) to strongly sieved, and can be related to increasing rates of decompression under H 2O-undersaturated conditions. Thick sieve-textured envelopes at the phenocryst rims, generally coupled with marked An-FeO increase, result from mixing with more primitive and volatile-rich magmas. In the same crystals from recent activity, An and, to a lesser extent, FeO increase, consistent with the mixing of H 2O-rich magmas similar in their mafic character to the resident magma (cryptic mixing). Two types of growth textures were also recognized at the crystal rims: 1) stripes of regularly-shaped melt inclusions and 2) swallow-tailed, skeletal crystals. In the first instance, the concordant An-FeO decrease suggests crystallization caused by fast ascent-related decompression accompanied by volatile loss. In the

  6. Plagioclase zonation styles in hornblende gabbro inclusions from Little Glass Mountain, Medicine Lake volcano, California: Implications for fractionation mechanisms and the formation of composition gaps

    USGS Publications Warehouse

    Brophy, J.G.; Dorais, M.J.; Donnelly-Nolan, J.; Singer, B.S.

    1997-01-01

    The rhyolite of Little Glass Mountain (73-74% SiO2) is a single eruptive unit that contains inclusions of quenched andesite liquid (54-61% SiO2) and partially crystalline cumulate hornblende gabbro (53-55% SiO2). Based on previous studies, the quenched andesite inclusions and host rhyolite lava are related to one another through fractional crystallization and represent an example of a fractionation-generated composition gap. The hornblende gabbros represent the cumulate residue associated with the rhyolite-producing and composition gap-forming fractionation event. This study combines textural (Nomarski Differential Interference Contrast, NDIC, imaging), major element (An content) and trace element (Mg, Fe, Sr, K, Ti, Ba) data on the style of zonation of plagioclase crystals from representative andesite and gabbro inclusions, to assess the physical environment in which the fractionation event and composition gap formation took place. The andesite inclusions (54-61% SiO2) are sparsely phyric with phenocrysts of plagioclase, augite and Fe-oxide??olivine, +/-orthopyroxene, +/-hornblende set within a glassy to crystalline matrix. The gabbro cumulates (53-55% SiO2) consist of an interconnected framework of plagioclase, augite, olivine, orthopyroxene, hornblende and Fe-oxide along with highly vesicular interstitial glass (70-74% SiO2). The gabbros record a two-stage crystallization history of plagioclase + olivine + augite (Stage I) followed by plagioclase+orthopyroxene + hornblende + Fe-oxide (Stage II). Texturally, the plagioclase crystals in the andesite inclusions are characterized by complex, fine-scale oscillatory zonation and abundant dissolution surfaces. Compositionally (An content) the crystals are essentially unzoned from core-to-rim. These features indicate growth within a dynamic (convecting?), reservoir of andesite magma. In contrast, the plagioclase crystals in the gabbros are texturally smooth and featureless with strong normal zonation from An74 at the

  7. Dry and Wet Friction of Plagioclase: Pure Cataclastic Flow(CF) vs. CF with Concurrent Pressure Solution

    NASA Astrophysics Data System (ADS)

    He, C.; Tan, W.

    2015-12-01

    To distinguish different deformation mechanisms at hydrothermal conditions, friction experiments of plagioclase under nominally dry conditions were compared with that at hydrothermal conditions documented in a previous study[He et al.,2013]. Preliminary result[Tan and He, 2008] shows that the rate dependence of plagioclase under confining pressure of 150MPa and nominally dry conditions is velocity strengthening at temperatures of 50-600oC, in contrast to the full velocity weakening at hydrothermal conditions. Here a) we conducted data fitting to the rate and state friction law to compare with the hydrothermal case; b) microstructural comparison was performed to understand the difference between the dry and wet conditions in the operative deformation mechanisms. The evolution effect (b value) under dry conditions exhibits much smaller values than that at wet conditions, and in contrast to the increasing trend at wet conditions, b values under dry conditions have a decreasing trend as temperature increases, from ~0.007 at 300oC down to 0 at 600oC. The direct effect (a value) at dry conditions has a peak of ~0.01 at 300oC and decreases to a level of 0.007-0.008 at higher temperatures, in contrast to the increasing trend seen at hydrothermal conditions. In the dry case, microstructure at temperatures of 300-600oC transitions gradually from a fabric characterized by localized Riedel shear zones to pervasive shear deformation, with the grain size reduced to a level of 1-3 micron in a submicron matrix in the latter case, corresponding to a lower porosity. The close association between porosity evolution and that of state variable revealed in previous studies[Morrow and Byerlee, 1989; Marone et al.,1990] suggests that the porosity change contributes largely to the evolution effect in addition to plasticity at intergranular contacts, probably due to gradual switching between different densities of packing. Our dry experiments indicate a cataclastic flow where the evolution

  8. Increased mantle heat flow with on-going rifting of the West Antarctic rift system inferred from characterisation of plagioclase peridotite in the shallow Antarctic mantle

    NASA Astrophysics Data System (ADS)

    Martin, A. P.; Cooper, A. F.; Price, R. C.

    2014-03-01

    The lithospheric, and shallow asthenospheric, mantle in Southern Victoria Land are known to record anomalously high heat flow but the cause remains imperfectly understood. To address this issue plagioclase peridotite xenoliths have been collected from Cenozoic alkalic igneous rocks at three localities along a 150 km transect across the western shoulder of the West Antarctic rift system in Southern Victoria Land, Antarctica. There is a geochemical, thermal and chronological progression across this section of the rift shoulder from relatively hot, young and thick lithosphere in the west to cooler, older and thinner lithosphere in the east. Overprinting this progression are relatively more recent mantle refertilising events. Melt depletion and refertilisation was relatively limited in the lithospheric mantle to the west but has been more extensive in the east. Thermometry obtained from orthopyroxene in these plagioclase peridotites indicates that those samples most recently affected by refertilising melts have attained the highest temperatures, above those predicted from idealised dynamic rift or Northern Victoria Land geotherms and higher than those prevailing in the equivalent East Antarctic mantle. Anomalously high heat flow can thus be attributed to entrapment of syn-rift melts in the lithosphere, probably since regional magmatism commenced at least 24 Myr ago. The chemistry and mineralogy of shallow plagioclase peridotite mantle can be explained by up to 8% melt extraction and a series of refertilisation events. These include: (a) up to 8% refertilisation by a N-MORB melt; (b) metasomatism involving up to 1% addition of a subduction-related component; and (c) addition of ~ 1.5% average calcio-carbonatite. A high MgO group of clinopyroxenes can be modelled by the addition of up to 1% alkalic melt. Melt extraction and refertilisation mainly occurred in the spinel stability field prior to decompression and uplift. In this region mantle plagioclase originates by a

  9. Crystal residence times from trace element zoning in plagioclase reveal changes in magma transfer dynamics at Mt. Etna during the last 400 years

    NASA Astrophysics Data System (ADS)

    Viccaro, Marco; Barca, Donatella; Bohrson, Wendy A.; D'Oriano, Claudia; Giuffrida, Marisa; Nicotra, Eugenio; Pitcher, Bradley W.

    2016-04-01

    Trace element zoning in plagioclase of selected alkaline lavas from the historic (1607-1892 AD) and recent (1983-2013 AD) activity of Mt. Etna volcano has been used to explore the possible role that volcano-tectonics exert on magma transfer dynamics. The observed textural characteristics of crystals include near-equilibrium textures (i.e., oscillatory zoning) and textures with variable extent of disequilibrium (patchy zoning, coarse sieve textures and dissolved cores). Historic crystals exhibit lower K concentrations at lower anorthite contents, a feature in agreement with the general more potassic character of the recent lavas if compared to the historic products. Historic plagioclases have statistically higher Ba and lower Sr concentrations than the recent crystals, which result in different Sr/Ba ratios for the two suites of plagioclase. Variations in the anorthite content along core-to-rim profiles obtained on crystals with different types of textures for both the historic and recent eruptive periods were evaluated particularly versus Sr/Ba. At comparable average An contents, crystals characterized by oscillatory zoning, which are representative of near-equilibrium crystallization from the magma, display distinct Sr/Ba ratios. We suggest that these features are primarily related to recharge of a new, geochemically-distinct magma into the storage and transport system of the volcano. In addition to distinct trace element and textural characteristics of plagioclase, Sr diffusion modeling for plagioclase suggests that residence times are generally shorter for crystals found in recently erupted lavas (25-77 years, average 43 years) compared to those of the historic products (43-163 years, average 99 years). Shorter residences times correlate with gradual increases in eruption volume and eruption frequency rates through time. We attribute these features to an increasing influence, since the 17th century, of extensional tectonic structures within the upper 10 km of

  10. Microstructural evidence for the transition from dislocation creep to dislocation-accommodated grain boundary sliding in naturally deformed plagioclase

    NASA Astrophysics Data System (ADS)

    Miranda, Elena A.; Hirth, Greg; John, Barbara E.

    2016-11-01

    We use quantitative microstructural analysis including misorientation analysis based on electron backscatter diffraction (EBSD) data to investigate deformation mechanisms of naturally deformed plagioclase in an amphibolite gabbro mylonite. The sample is from lower oceanic crust exposed near the Southwest Indian Ridge, and it has a high ratio of recrystallized matrix grains to porphyroclasts. Microstructures preserved in porphyroclasts suggest that early deformation was achieved principally by dislocation creep with subgrain rotation recrystallization; recrystallized grain (average diameter ∼8 μm) microstructures indicate that subsequent grain boundary sliding (GBS) was active in the continued deformation of the recrystallized matrix. The recrystallized matrix shows four-grain junctions, randomized misorientation axes, and a shift towards higher angles for neighbor-pair misorientations, all indicative of GBS. The matrix grains also exhibit a shape preferred orientation, a weak lattice preferred orientation consistent with slip on multiple slip systems, and intragrain microstructures indicative of dislocation movement. The combination of these microstructures suggest deformation by dislocation-accommodated GBS (DisGBS). Strain localization within the recrystallized matrix was promoted by a transition from grain size insensitive dislocation creep to grain size sensitive GBS, and sustained by the maintenance of a small grain size during superplasticity.

  11. Formation of andesite melts and Ca-rich plagioclase in the submarine Monowai volcanic system, Kermadec arc

    NASA Astrophysics Data System (ADS)

    Kemner, Fabian; Haase, Karsten M.; Beier, Christoph; Krumm, Stefan; Brandl, Philipp A.

    2015-12-01

    Andesites are typical rocks of island arcs and may either form by fractional crystallization processes or by mixing between a mafic and a felsic magma. Here we present new petrographic and geochemical data from lavas of the submarine Monowai volcanic system in the northern Kermadec island arc that display a continuous range in composition from basalt to andesite. Using petrology, major, trace, and volatile element data, we show that basaltic magmas mostly evolve to andesitic magmas by fractional crystallization. Our thermobarometric calculations indicate that the formation of the large caldera is related to eruption of basaltic-andesitic to andesitic magmas from a magma reservoir in the deeper crust. Small variations in trace element ratios between the caldera and the large active cone imply a homogeneous mantle source. Contrastingly, resurgent dome melts of the caldera stagnated at shallower depths are more depleted and show a stronger subduction input than the other edifices. The Monowai basaltic glasses contain less than 1 wt % H2O and follow typical tholeiitic fractionation trends. High-An plagioclase crystals observed in the Monowai lavas likely reflect mixing of H2O-saturated melt batches with hot and dry tholeiitic, decompression melt batches. The result is a relatively H2O-poor mafic magma at Monowai implying that partial melting of the mantle wedge is only partly due to the volatile flux and that adiabatic melting may play a significant role in the formation of the parental melts of the Monowai volcanic system and possibly other arc volcanoes.

  12. Albitization of plagioclase crystals in the Stevens sandstone (Miocene), San Joaquin Basin, California, and the Frio Formation (Oligocene), Gulf Coast, Texas. A TEM/AEM study

    SciTech Connect

    Hirt, W.G. ); Wenk, H.R. ); Boles, J.R. )

    1993-06-01

    Conventional Transmission Electron Microscopy (CTEM) and Analytical Electron Microscopy (AEM) studies of partially albitized plagioclase crystals taken from drill cores from the Stevens sandstone (Miocene), San Joaquin, California, and the Frio Formation (Oligocene), Gulf Coast, Texas, reveal that replacement of Ca-rich plagioclase cores by nearly pure albite (Ab[sub 96]-Ab[sub 100]) occurs along submicroscopic ([minus]15 nm wide) en echelon (001) and (110) cleavages. The cleavages are the result of changes in the localized stress regime created by dissolution of adjacent phases. Photomicrographs show albite-lined brittle cleavage crosscutting albitized semibrittle fractures. Such crosscutting relationships can be explained by a reduction in effective stress associated with the albitization process. On a macroscopic scale, this reduction in effective stress implies that the transition from hydrostatic to lithostatic pressure is discontinuous. 30 refs., 7 figs.

  13. Evaluation of the Variation in Cooling Rate with Depth in the Lower Oceanic Crust at Fast-Spreading Ridges Using a Newly Developed Mg in Plagioclase Geospeedometer

    NASA Astrophysics Data System (ADS)

    Faak, K.; Chakraborty, S.; Coogan, L. A.

    2011-12-01

    The crystallization and cooling of new oceanic crust is regenerating two thirds of the Earth's surface continuously but the processes that occur during the cooling and crystallization of the magma are still poorly understood. Two end-member models have been proposed for lower crustal accretion at intermediate- to fast-spreading ridges (the "gabbro glacier" and "sheeted sill" models). These require different depth distributions of hydrothermal circulation and are likely to result in different variations of cooling rates with depth. Mapping cooling rates of samples of the lower oceanic crust as a function of depth can, therefore, allow us to distinguish between the models and constrain the thermal evolution during the generation of oceanic crust. We have developed a new geospeedometer, based on the exchange of Mg between plagioclase and clinopyroxene, to address this problem. New experiments demonstrate that the partitioning of Mg between clinopyroxene and plagioclase is strongly temperature dependent, changing by a factor of 4 between 1200°C and 900°C, such that during cooling Mg diffuses out of plagioclase into adjacent clinopyroxene grains. A finite difference diffusion model of Mg redistribution during cooling is applied to natural samples from the north wall of the Hess Deep Rift at the East Pacific Rise. 90 concentration profiles (rim - rim) from 45 crystals in 14 samples (from a depth range 0-520m below the sheeted dikes) were measured using an electron microprobe. For obtaining reliable cooling rates, Mg concentration profiles were measured along two crystallographic directions in a grain, and profiles from several crystals in one thin section are modeled. Cooling rate determinations are considered reliable only when results from all of these calculations are consistent. Fresh plagioclase crystals in coarse grained gabbros (mean grain size ~ 1mm) were chosen for the measurement of Mg contents. The shapes of these measured concentration profiles are very

  14. Crustal Assimilation and Magma Recharge in the Recent Mt. Etna Magma Plumbing System: Evidence from In Situ Plagioclase Textural and Compositional Data

    NASA Astrophysics Data System (ADS)

    Pitcher, B. W.; Bohrson, W. A.; Viccaro, M.

    2011-12-01

    Mt. Etna is Europe's largest and most active volcano, and as a result of its proximity to populated areas, understanding the structure of its magma plumbing system and the nature of its magmatic processes is essential for better predicting eruptive hazards. The aim of this study is to document core to rim textural, chemical, and isotopic variations in plagioclase, in order to investigate the physical characteristics of the subvolcanic magma system and processes by which magmas evolve. Nomarski Differential Interference Contrast (NDIC) imaging was used to characterize the complex textures of plagioclase crystals in six trachybasaltic samples from eruption years 1974, 1981, 2001, and 2004. Approximately 30 NDIC images per sample revealed 6 textural categories defined by combinations of monotonous, oscillatory, sieve, and patchy zoning. Core to rim electron microprobe analyses carried out at distinct textural boundaries revealed variable anorthite (An) (mol %) values ranging from 92 to 44. In most phenocrysts, An decreases non-monotonically from core to rim, and simple correlations among An, FeO (wt. %), textural type, and eruption year are lacking, indicating intricate crystallization histories that likely reflect changing magma chamber conditions. Laser Ablation Inductively Coupled Plasma Mass Spectrometer (LA-ICPMS) 87Sr/86Sr analyses were performed on cores and rims of selected crystals from each textural type within each sample. Phenocryst 87Sr/86Sr values ranged from ~0.70300 to 0.70370 (±.00002), and were significantly lower than preliminary groundmass 87Sr/86Sr values, which ranged from ~0.70466 to 0.70498. Whole-rock 87Sr/86Sr values are between groundmass and crystal values. The Δ87Sr/86Sr within each crystal, defined as rim minus core, varied from -0.00030 to +0.00011; while most crystals exhibit a core to rim increase, some showed a decrease and some had constant 87Sr/86Sr. The prevalence of core to rim increases, combined with whole rock and preliminary

  15. Analysis of Silicate Melt Inclusions in Plagioclase Phenocrysts in Prehistoric Tephra ˜1400 Years B.P. From Augustine Volcano, Alaska.

    NASA Astrophysics Data System (ADS)

    Tappen, C. M.; Webster, J. D.; Mandeville, C. W.

    2003-12-01

    Augustine volcano, located in southern Cook Inlet, Alaska, has been historically active, erupting 6 times in the last 200 years. Eruptions first began prior to 40,000 years B.P. (Begét and Kienle, 1992). There are a minimum of 6 prehistoric tephra layers, G (oldest), I, H, C, M and B (youngest), present on Augustine Island (Waitt et al, 1996). In this study, we analyzed glassy silicate melt inclusions in plagioclase phenocrysts from tephra layer H ( ˜1400 years B.P.) for major and minor and some trace elements (Cl, F, S, Ba, and Sr) by electron microprobe. We use the data to determine the chemical variation of melt inclusions in specific locations within zoned plagioclase phenocrysts. Plagioclase phenocrysts (0.5 to 4 mm long) exhibit unzoned, oscillatory or patchy zoned regions. Unzoned phenocryst cores lack melt inclusions. Patchy zonation occurs in cores and is sometimes found in intermediate zones between the core and rim. Planar oscillatory zones are distinguished in BSE images by light (An56-90) and dark (An46-55) bands. In some phenocrysts light and dark layers differ only by 1% An. Most phenocrysts show 2-3 repeated oscillating pairs of light and dark plagioclase compositional layers. Normal and reverse zoning are apparent in phenocrysts. Rims tend to be more calcic than the cores, varying from 1-5% An. Large melt inclusions (60 to 70 μ m long) are located in patchy zoned cores. Small melt inclusions (2 to 10 μ m long) are located at the contact of high calcic and low calcic oscillatory layers. All melt inclusions are trapped along compositional boundaries and occur in the more calcic plagioclase. Petrography suggests that melt inclusions may have been formed by partial dissolution of a less calcic plagioclase layer. The composition of the melt inclusions are rhyolitic (71 to 75% SiO2). The chlorine concentrations range from 3020 to 6100 ppm with the more chlorine enriched concentrations occurring in the outer rims of the phenocryst. Sr and Ba vary from

  16. Compositional Characteristics of Plagioclase Crystal Size Distributions (CSDs) from the 2000 B.P. Eruption of El Misti Volcano, Southern Peru

    NASA Astrophysics Data System (ADS)

    Marshall, L. X.; Tepley, F. J.; de Silva, S. L.

    2011-12-01

    The most recent significant explosive eruption of El Misti in southern Peru occurred 2000 yr B.P., producing considerable pyroclastic deposits and extensive lahars. Juvenile blocks from the 2000 B.P. eruption reveal the mixing of two magmas: a plagioclase rhyolite and amphibole-plagioclase andesite (Tepley et al., 2011). Plagioclase phenocrysts, microphenocrysts and microlites in both magmas have a wide compositional range, but can be organized based on composition: a Low-An group (An60-35) that grew from the rhyolitic magma and a High-An group (An88-65) that grew from the andesitic magma. To better understand the evolution of these magmas and the exchange of material during mixing, crystal size distributions (CSDs) of plagioclase were determined on five samples across the compositional spectrum to assess and quantify both the mixing relationship and cooling history of each magma. For all samples, CSDs were determined via high-resolution Al Kα x-ray maps, and were collected on a large (35 mm x 20 mm) and small scale (3 mm x 3 mm) to allow for measurement of a large range of crystal sizes. Individual crystals were outlined and processed through ImageJ, and crystal distributions were determined through CSDCorrections (v. 1.39; Higgins, 2000). Crystal aspect ratios of plagioclase were determined through CSDSlice5 (Morgan and Jerram, 2006), a method of inverting 2D data (short axis/long axis) into 3D volumetric data. CSDs for each sample are defined by two distinct slopes (shallow and steep) with a pronounced change in slope at ~0.3 mm crystal length. CSD slopes for phenocrysts (crystals >0.3 mm) are shallow with low intercepts, reflecting low nucleation rates and low degrees of undercooling. In comparison, CSD slopes for microphenocrysts and microlites (<0.3 mm) are steep with high intercepts, and these patterns may reflect both higher nucleation rates and cooling rates than for the phenocrysts. Kinked CSDs are commonly associated with magma mixing, based on the

  17. Non-Newtonian behavior of plagioclase-bearing basaltic magma: Subliquidus viscosity measurement of the 1707 basalt of Fuji volcano, Japan

    NASA Astrophysics Data System (ADS)

    Ishibashi, Hidemi

    2009-03-01

    Laboratory measurements of viscosity were done for basalt erupted in 1707 AD from Fuji volcano, Japan, using a concentric cylinder rotational viscometer at temperatures of 1297-1157 °C, 1 atm pressure, and fO 2 near the Ni-NiO buffer. On cooling, elongated plagioclase crystals with a mean length/width ratio of ca. 8.5 appeared at 1237 °C, followed by olivine at 1157 °C. At progressively lower temperatures, the total crystal volume fraction increased monotonously to ca. 0.25; viscosity increased from 38.9 to 765 Pa s at a shear strain rate of 1 s - 1 . This basalt magma behaves as a Newtonian fluid at temperatures greater than 1217 °C, but shear-thinning behavior occurs at temperatures less than 1197 °C because of the suspended plagioclase crystals. This behavior is well approximated as a power law fluid. At the onset of shear thinning, the crystal volume fraction was between 0.06 and 0.13, which is attributed to the pronounced lath-shape of plagioclase crystals. The relative viscosity increases monotonously with increase of crystal volume fraction at a constant shear strain rate, and with decrease of shear strain rate at a constant crystal volume fraction. A modified form of the Krieger-Dougherty equation is introduced herein. It enables us to describe the dependencies of relative viscosity on both the crystal volume fraction and shear strain rate, and consequently the onset of shear-thinning behavior.

  18. A mechanistic understanding of plagioclase dissolution based on Al occupancy and T-O bond length: from geologic carbon sequestration to ambient conditions.

    PubMed

    Yang, Yi; Min, Yujia; Jun, Young-Shin

    2013-11-14

    A quantitative description of how the bulk properties of aluminosilicates affect their dissolution kinetics is important in helping people understand the regulation of atmospheric CO2 concentration by silicate weathering and predict the fate and transport of geologically sequestered CO2 through brine-rock interactions. In this study, we employed a structure model based on the C1 space group to illustrate how differences in crystallographic properties of aluminosilicates, such as T-O (Tetrahedral site-Oxygen) bond length and Al/Si ordering, can result in quantifiable variations in mineral dissolution rates. The dissolution rates of plagioclases were measured under representative geologic carbon sequestration (GCS) conditions (90 °C, 100 atm of CO2, 1.0 M NaCl, and pH ∼ 3.1), and used to validate the model. We found that the logarithm of the characteristic time of the breakdown of Al-O-Si linkages in plagioclases follows a good linear relation with the mineral's aluminum content (nAl). The Si release rates of plagioclases can be calculated based on an assumption of dissolution congruency or on the regularity of Al/Si distribution in the constituent tetrahedra of the mineral. We further extended the application of our approach to scenarios where dissolution incongruency arises because of different linkage reactivities in the solid matrix, and compared the model predictions with published data. The application of our results enables a significant reduction of experimental work for determining the dissolution rates of structurally related aluminosilicates, given a reaction environment.

  19. A Record of Magmatic Water Content Preserved in Hydroxyl Concentrations of Plagioclase Phenocrysts From the 1980-1981 Eruption Sequence of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Johnson, E. A.

    2004-12-01

    Volatiles, and particularly water, influence many of the properties of volcanic systems including melt viscosity and crystallinity, and the explosive or effusive nature of an eruption. Magmatic water content could potentially be determined by measurement of OH concentrations in phenocrysts, assuming an equilibrium partitioning of water between the phenocrysts and melt. The concentration of OH in volcanic feldspars may also reflect many factors other than magmatic water content, including melt composition, oxygen fugacity, and thermal history. In this study, the OH concentrations of plagioclase phenocryts from four eruptions of Mount St. Helens between May 18, 1980 and April 1981 were measured using infrared spectroscopy in order to evaluate this method of determining magmatic water content. The eruption temperature, oxygen fugacity, and bulk chemical composition were all fairly constant through the eruption sequence from 1980-1981 at Mount St. Helens. The water content of melts from successive eruptions decreased from 4.6 wt% H2O for the Plinian eruption on May 18, 1980 (Rutherford et al. 1985, JGR 90, 2929-2947), to less than 1 wt% H2O for the latest dome-forming dacites. Plagioclase from the pumice erupted during the May 18, 1980 event contains 200 ppm H2O by weight as structural hydroxyl groups, whereas feldspars from subsequent explosive eruptions with melt water concentrations about half that of the May 18 eruption (Melson 1983, Science 221, 1387-1391) contain about half the structural OH content (about 110 ppm for the October 16, 1980 and August 7, 1980 eruptions). The effusive dome-building eruption of April 1981 contains plagioclase with very low (about 20 ppm) water content, implying possible diffusive loss of hydrogen during the prolonged period of eruption. Homogeneous distribution of OH in feldspar grains > 100 micrometers is observed even for those grains with pronounced major element zoning. These data show that, in the absence of changes in oxygen

  20. Toward quantification of strain-related mosaicity in shocked lunar and terrestrial plagioclase by in situ micro-X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Pickersgill, Annemarie E.; Flemming, Roberta L.; Osinski, Gordon R.

    2015-11-01

    Studies of shock metamorphism of feldspar typically rely on qualitative petrographic observations, which, while providing invaluable information, can be difficult to interpret. Shocked feldspars, therefore, are now being studied in greater detail by various groups using a variety of modern techniques. We apply in situ micro-X-ray diffraction (μXRD) to shocked lunar and terrestrial plagioclase feldspar to contribute to the development of a quantitative scale of shock deformation for the feldspar group. Andesine and labradorite from the Mistastin Lake impact structure, Labrador, Canada, and anorthite from Earth's Moon, returned during the Apollo program, were examined using optical petrography and assigned to subgroups of the optical shock level classification system of Stöffler (1971). Two-dimensional μXRD patterns from the same samples revealed increased peak broadening in the chi dimension (χ), due to strain-related mosaicity, with increased optical signs of deformation. Measurement of the full width at half maximum along χ (FWHMχ) of these peaks provides a quantitative way to measure strain-related mosaicity in plagioclase feldspar as a proxy for shock level.

  1. 238U-230Th-226Ra disequilibria in dacite and plagioclase from the 2004-2005 eruption of Mount St. Helens: Chapter 36 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Cooper, Kari M.; Donnelly, Carrie T.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    230Th)/(232Th) measured for the 1980s reference suite. However, (230Th)/(232Th) for plagioclase separates for dome samples erupted during October and November 2004 are significantly different from corresponding whole-rock values, which suggests that a large fraction (>30 percent) of crystals in each sample are foreign to the host liquid. Furthermore, plagioclase in the two 2004 samples have U-series characteristics distinct from each other and from plagioclase in dacite erupted in 1982, indicating that (1) the current eruption must include a component of crystals (and potentially associated magma) that were not sampled by the 1980-86 eruption, and (2) dacite magmas erupted only a month apart in 2004 contain different populations of crystals, indicating that this foreign component is highly heterogeneous within the 2004-5 magma reservoir.

  2. Shock melting of K-feldspar and interlacing with cataclastically deformed plagioclase in granitic rocks at Toqqusap Nunaa, southern West Greenland: Implications for the genesis of the Maniitsoq structure

    NASA Astrophysics Data System (ADS)

    Keulen, Nynke; Garde, Adam A.; Jørgart, Tommy

    2015-11-01

    Folded sheets of Mesoarchaean, leucocratic plagioclase-K-feldspar-mesoperthite-bearing granitic rocks in the Toqqusap Nunaa area of the Maniitsoq structure, West Greenland, are characterised by their very fine grain sizes and microstructures without normal igneous or planar/linear tectonic fabrics. Quartz forms equidimensional and branching, ductilely deformed aggregates and bifurcating panels with protrusions, constrictions and chains of ball-shaped grains with healed, radiating intergranular fractures. Plagioclase (An10-20) was cataclastically deformed and comminuted, whereas K-feldspar and mesoperthite are devoid of cataclastic microstructures. K-feldspar forms dispersed, highly irregular grains with numerous cusps and saddles, indicating almost ubiquitous direct (shock) melting of this mineral. It is commonly located along former fractures in plagioclase, resulting in an 'interlaced' feldspar microstructure with contact shapes indicating subsequent melting of plagioclase directly adjacent to K-feldspar. Mesoperthite forms separate, rounded, and irregular grains with protrusions and cusped margins indicating crystallisation from melts. Some mesoperthite grains are texturally and compositionally heterogeneous and contain internal lenses of K-feldspar and/or plagioclase. Other mesoperthite grains comprise coarsened, 'unzipped' areas, presumably due to localised, fluid-controlled dissolution-reprecipitation processes. The ternary feldspar precursor of the mesoperthite is interpreted as having crystallised from variably effectively mixed K-feldspar shock melts and plagioclase contact melts. Direct melting of K-feldspar, but no whole-rock melting, requires shock metamorphism with a short-lived temperature excursion to above the melting temperature of K-feldspar (~ 1300 °C). The presence of three different feldspar species and absence of chemical zonation, magmatic mantling, or metamorphic coronas furthermore hinders interpretations solely by means of endogenic

  3. A coupled model between mechanical deformation and chemical diffusion: An explanation for the preservation of chemical zonation in plagioclase at high temperatures

    NASA Astrophysics Data System (ADS)

    Zhong, Xin; Vrijmoed, Johannes; Moulas, Evangelos; Tajcmanová, Lucie

    2016-04-01

    Compositional zoning in metamorphic minerals have been generally recognized as an important geological feature to decipher the metamorphic history of rocks. The observed chemical zoning of, e.g. garnet, is commonly interpreted as disequilibrium between the fractionated inner core and the surrounding matrix. However, chemically zoned minerals were also observed in high grade rocks (T>800 degree C) where the duration of metamorphic processes was independently dated to take several Ma. This implies that temperature may not be the only factor that controls diffusion timescales, and grain scale pressure variation was proposed to be a complementary factor that may significantly contribute to the formation and preservation of chemical zoning in high temperature metamorphic minerals [Tajcmanová 2013, 2015]. Here, a coupled model is developed to simulate viscous deformation and chemical diffusion. The numerical approach considers the conservation of mass, momentum, and a constitutive relation developed from equilibrium thermodynamics. A compressible viscoelastic rheology is applied, which associates the volumetric change triggered by deformation and diffusion to a change of pressure. The numerical model is applied to the chemically zoned plagioclase rim described by [Tajcmanová 2014]. The diffusion process operating during the plagioclase rim formation can lead to a development of a pressure gradient. Such a pressure gradient, if maintained during ongoing viscous relaxation, can lead to the preservation of the observed chemical zonation in minerals. An important dimensionless number, the Deborah number, is defined as the ratio between the Maxwell viscoelastic relaxation time and the characteristic diffusion time. It characterizes the relative influence between the maintenance of grain scale pressure variation and chemical diffusion. Two extreme regimes are shown: the mechanically-controlled regime (high Deborah number) and diffusion-controlled regime (low Deborah number

  4. Crystallography of some lunar plagioclases

    USGS Publications Warehouse

    Stewart, D.B.; Appleman, D.E.; Huebner, J.S.; Clark, J.R.

    1970-01-01

    Crystals of calcic bytownite from type B rocks have space group U with c ??? 14 angstroms. Bytownite crystals from type A rocks are more sodic and have space group C1, c ??? 7 angstroms. Cell parameters of eight bulk feldspar separates from crystalline rocks indicate that the range of angle gamma is about 23 times the standard error of measurement, and its value might be useful for estimation of composition. Cell parameters of seven ilmenites are close to those of pure FeTiO3.

  5. The Late Cretaceous igneous rocks of Romania (Apuseni Mountains and Banat): the possible role of amphibole versus plagioclase deep fractionation in two different crustal terranes

    NASA Astrophysics Data System (ADS)

    Vander Auwera, Jacqueline; Berza, Tudor; Gesels, Julie; Dupont, Alain

    2016-04-01

    We provide new whole-rock major and trace elements as well as 87Sr/86Sr and 143Nd/144Nd isotopic data of a suite of samples collected in the Late Cretaceous volcanic and plutonic bodies of the Apuseni Mts. (Romania) that belong to the Banatitic Magmatic and Metallogenic Belt, also called the Apuseni-Banat-Timok-Srednogorie belt. The samples define a medium- to high-K calc-alkaline differentiation trend that can be predicted by a three-step fractional crystallization process which probably took place in upper crustal magma chambers. Published experimental data indicate that the parent magma (Mg# = 0.47) of the Apuseni Mts. trend could have been produced by the lower crustal differentiation of a primary (in equilibrium with a mantle source) magma. The Late Cretaceous magmatic rocks of the Apuseni Mts. and Banat display overlapping major and trace element trends except that Sr is slightly lower and Ga is higher in the Apuseni Mts. parent magma. This difference can be accounted for by fractionating plagioclase-bearing (Apuseni Mts.) or amphibole-bearing (Banat) cumulates during the lower crustal differentiation of the primary magma to the composition of the parent magma of both trends. This, together with results obtained on the Late Cretaceous igneous rocks from the Timok area in Eastern Serbia, further suggests variation of the water content of the primary magma along and across the belt. The Apuseni Mts. versus the Banat samples display different isotopic compositions that likely resulted from the assimilation of two distinct crustal contaminants, in agreement with their emplacement in two separate mega-units of Alpine Europe.

  6. Timing of degassing and plagioclase growth in lavas erupted from Mount St. Helens, 2004-2005, from 210Po-210Pb-226Ra disequilibria: Chapter 37 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Reagan, Mark K.; Cooper, Kari M.; Pallister, John S.; Thornber, Carl R.; Wortel, Matthew; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Disequilibrium between 210Po, 210Pb, and 226Ra was measured on rocks and plagioclase mineral separates erupted during the first year of the ongoing eruption of Mount St. Helens. The purpose of this study was to monitor the volatile fluxing and crystal growth that occurred in the weeks, years, and decades leading up to eruption. Whole-rock samples were leached in dilute HCl to remove 210Po precipitated in open spaces. Before leaching, samples had variable initial (210Po) values, whereas after leaching, the groundmasses of nearly all juvenile samples were found to have had (210Po) ≈ 0 when they erupted. Thus, most samples degassed 210Po both before and after the magmas switched from open- to closed-system degassing. All juvenile samples have (210Pb)/(226Ra) ratios within 2 δ of equilibrium, suggesting that the magmas involved in the ongoing eruption did not have strong, persistent fluxes of 222Rn in or out of magmas during the decades and years leading to eruption. These equilibrium values also require a period of at least a century after magma generation and the last significant differentiation of the Mount St. Helens dacites. Despite this, the elevated (210Pb)/(226Ra) value measured in a plagioclase mineral separate from lava erupted in 2004 suggests that a significant proportion of this plagioclase grew within a few decades of eruption. The combined dataset suggests that for most 2004-5 lavas, the last stage of open-system degassing of the dacite magmas at Mount St. Helens is confined to the period between 1-2 years and 1-2 weeks before eruption, whereas plagioclase large enough to be included in the mineral separate grew around the time of the 1980s eruption or earlier.

  7. Formation conditions of leucogranite dykes and aplite-pegmatite dykes in the eastern Mt. Capanne plutonic complex (Elba, Italy): fluid inclusion studies in quartz, tourmaline, andalusite and plagioclase

    NASA Astrophysics Data System (ADS)

    Bakker, Ronald J.; Schilli, Sebastian E.

    2016-02-01

    Leucogranite and aplite-pegmatite dykes are associated with the Mt. Capanne pluton (Elba) and partly occur in the thermally metamorphosed host rock (serpentinites). Crystallization conditions of these dykes in the late magmatic-hydrothermal stage are estimated from fluid inclusion studies and mineralogical characterisation, obtained from detailed microthermometry, Raman spectroscopy, and electron microprobe analyses. Fluid inclusion assemblages are analysed in andalusite, quartz, and plagioclase from the leucogranite dykes, and in tourmaline and quartz from the aplite-pegmatite dykes. The fluid inclusion assemblages record multiple pulses of low salinity H2O-rich magmatic and reduced metamorphic fluid stages. Magmatic fluids are characterized by the presence of minor amounts of CO2 and H3BO3, whereas the metamorphic fluids contain CH4 and H2. The highly reduced conditions are also inferred from the presence of native arsenic in some fluid inclusions. Several fluid inclusion assemblages reveal fluid compositions that must have resulted from mixing of both fluid sources. In leucogranite dykes, magmatic andalusite contains a low-density magmatic CO2-rich gas mixture with minor amounts of CH4 and H2. Accidentally trapped crystals (mica) and step-daughters (quartz and diaspore) are detected in some inclusions in andalusite. The first generation of inclusions in quartz that crystallized after andalusite contains a highly reduced H2O-H2 mixture and micas. The second type of inclusions in quartz from the leucogranite is similar to the primary inclusion assemblage in tourmaline from the aplite-pegmatite, and contains up to 4.2 mass% H3BO3, present as a sassolite daughter crystal or dissolved ions, in addition to a CO2-CH4 gas mixture, with traces of H2, N2, H2S, and C2H6. H2O is the main component of all these fluids ( x = 0.91 to 0.96) with maximally 7 mass% NaCl. Some accidentally trapped arsenolite and native arsenic are also detected. These fluids were trapped in the

  8. Immiscible Fe- and Si-rich silicate melts in plagioclase from the Baima mafic intrusion (SW China): Implications for the origin of bi-modal igneous suites in large igneous provinces

    NASA Astrophysics Data System (ADS)

    Liu, Ping-Ping; Zhou, Mei-Fu; Ren, Zhongyuan; Wang, Christina Yan; Wang, Kun

    2016-09-01

    The Emeishan large igneous province (ELIP) in SW China is characterized by voluminous high-Ti and low-Ti basalts and spatially associated Fe-Ti oxide-bearing mafic-ultramafic and syenitic/granitic intrusions. The Baima layered mafic intrusion in the central part of the ELIP is surrounded by syenitic and granitic rocks and contains a Lower Zone of interlayered Fe-Ti oxide ores, troctolites and clinopyroxenites and an Upper Zone of isotropic olivine gabbros and gabbros (UZa) and apatite gabbros and Fe-Ti-P oxide ores (UZb). Polycrystalline mineral inclusions, for the first time, were observed in primocryst plagioclase from the basal part of the UZa through to the top of the UZb and consist mostly of clinopyroxene, plagioclase, magnetite, ilmenite and apatite with minor orthopyroxene, sulfide and hornblende. These minerals are commonly anhedral and form irregular shapes. Daughter plagioclase usually crystallizes on the walls of host primocryst plagioclase and has An contents typically 3-6 An% lower than the host plagioclase. Daughter clinopyroxene has similar Mg# but lower TiO2 and Al2O3 contents than primocryst clinopyroxene. These polycrystalline mineral inclusions are considered to crystallize from melts contemporaneous with host plagioclase. The compositional differences between daughter and primocryst minerals can be attributed to equilibrium crystallization in a closed system of the trapped melt inclusions in contrast to fractional crystallization and possible magma replenishment in an open system typical for primo-cumulates of large layered intrusions. Heated and homogenized melt inclusions have variable SiO2 (33-52 wt%), CaO (7-20 wt%), TiO2 (0.1-12 wt%), FeOt (5-20 wt%), P2O5 (0.2-10 wt%) and K2O (0-2.2 wt%). The large ranges of melt compositions are interpreted to result from heterogeneous trapping of different proportions of immiscible Si-rich and Fe-Ti-rich silicate liquids, together with entrapment of various microphenocrysts. The separation of micrometer

  9. Abundance and Charge State of Implanted Solar Wind Transition Metals in Individual Apollo 16 and 17 Lunar Soil Plagioclase Grains Determined In Situ Using Synchrotron X-ray Fluorescence

    SciTech Connect

    Kitts, K.; Sutton, S.; Newville, M.

    2007-03-06

    We report (1) a new method for determining the relative abundances in situ of Cr, Mn, Fe and Ni in implanted solar wind in individual Apollo 16 and 17 lunar plagioclases via synchrotron X-ray fluorescence and (2) the charge states of these metals. By virture of its mass alone, the Sun provides a representative composition of the solar system and can be used as a background against which to gauge excesses or deficiencies of specific components. One way of sampling the Sun is by measuring solar wind implanted ions in lunar soil grains. Such measurements are valuable because of their long exposure ages which compliment shorter time scale collections, such as those obtained by the Genesis spacecraft. Kitts et al. sought to determine the isotopic composition of solar Cr by analyzing the solar wind implanted into plagioclase grains from Apollo 16 lunar soils. The isotopic composition of the solar wind bearing fraction was anomalous and did not match any other known Cr isotopic signature. This could only be explained by either (1) an enrichment in the solar wind of heavy Cr due to spallation in the solar atmosphere or (2) that the Earth and the various parent bodies of the meteorites are distinct from the Sun and must have formed from slightly different mixes of presolar materials. To help resolve this issue, we have developed a wholly independent method for determining the relative abundances of transition metals in the solar wind implanted in individual lunar soil grains. This method is based on in situ abundance measurements by microbeam x-ray fluorescence in both the implantation zone and bulk grains using the synchrotron x-ray microprobe at the Advanced Photon Source (GSECARS sector 13) at Argonne National Laboratory. Here, we report results for Apollo 16 and 17 plagioclase grains. Additionally, a micro-XANES technique was used to determine charge states of the implanted Cr, Mn, Fe and Ni.

  10. Mercury'S Dark Plains West Of Caloris Basin--high Ca Clinopyroxene, Na-rich Plagioclase, Mg-rich Olivine, Tio2: Caloris Basin--k-spar, High Ca Clinopyroxene, Tio2, Na-rich Plagioclase, Hornblende And Mg- And Ca-rich Garnets

    NASA Astrophysics Data System (ADS)

    Sprague, Ann L.; Donaldson Hanna, K. L.; Kozlowski, R. W. H.; Helbert, J.; Maturilli, A.

    2008-09-01

    We identify mineral phases and approximate abundances on Mercury's surface for spectral measurements made over Caloris Basin and the dark plains to the west. Our results are obtained by fitting spectra obtained with the Mid-Infrared Spectrometer and Imager (MIRSI) at the Infrared Telescope Facility (IRTF) using an established spectral deconvolution algorithm (Ramsey 1996, Ph.D. Dissertation, ASU; Ramsey and Christiansen 1998, JGR). We have assembled several laboratory mineral spectral libraries (JHU, Salisbury et al. 1987, Open-File Report 87-263, USGS; JPL, http://speclib.jpl.nasa.gov; RELAB, http://www.planetary.brown.edu/relab; ASU, Christensen et al. 2000, JGR; BED, Helbert et al. 2007, Adv. Space Res.; USGS, Clark et al. 2007, USGS digital spectral library) with a wide range of known mineral compositions with grain sizes ranging from the finest separates, 0 - 45 µm, incrementally increasing to 250 - 400 µm. Head et al. and Murchie et al. (Science, 2008) show ample evidence for one or more episodes of extrusive volcanism in around Caloris Basin. Our spectral fitting suggests similarities and differences between Caloris infill and the dark plains to the west. Both contain high-Ca clinopyroxene, Mg-rich orthopyroxene (Sprague et al. 1998, Icarus), Na-rich to intermediate plagioclase (Sprague et al. 1994, Icarus), and TiO2 likely in the form of rutile. Sanidine appears to be the dominate K-spar in Caloris Basin, but not in the dark plains (Donaldson Hanna et al. 2008, EGU Abs). A slight improvement in spectral fitting was made to one spectrum from Caloris by including a Na- and K-rich hornblende. In addition small abundances of pyrope and grossular (Ca- and Mg-rich garnets) are apparently present in Caloris Basin infill. This indicates extrusive volcanic episodes moved lava to the surface quickly before entrained garnets from the upper mantle could dissolve and equilibrate with the source magma. This work was funded by NSF AST0406796.

  11. Plagioclase populations and zoning in dacite of the 2004-2005 Mount St. Helens eruption: constraints for magma origin and dynamics: Chapter 34 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Streck, Martin J.; Broderick, Cindy A.; Thronber, Carl R.; Clynne, Michael A.; Pallister, John S.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    We propose that crystals with no dissolution surfaces are those that were supplied last to the shallow reservoir, whereas plagioclase with increasingly more complex zoning patterns (that is, the number of zoned bands bounded by dissolution surfaces) result from prolonged residency and evolution in the reservoir. We propose that banding and An zoning across multiple bands are primarily a response to thermally induced fluctuations in crystallinity of the magma in combination with recharge; a lesser role is ascribed to cycling crystals through pressure gradients. Crystals without dissolution surfaces, in contrast, could have grown only in response to steady(?) decompression. Some heating-cooling cycles probably postdate the final eruption in 1986. They resulted from small recharge events that supplied new crystals that then experienced resorption-growth cycles. We suggest that magmatic events shortly prior to the current eruption, recorded in the outermost zones of plagioclase phenocrysts, began with the incorporation of acicular orthopyroxene, followed by last resorption, and concluded with crystallization of euhedral rims. Finally, we propose that 2004-5 dacite is composed mostly of dacite magma that remained after 1986 and underwent subsequent magmatic evolution but, more importantly, contains a component of new dacite from deeper in the magmatic system, which may have triggered the new eruption.

  12. Multiple plagioclase crystal populations identified by crystal size distribution and in situ chemical data: Implications for timescales of magma chamber processes associated with the 1915 eruption of Lassen Peak, CA

    USGS Publications Warehouse

    Salisbury, M.J.; Bohrson, W.A.; Clynne, M.A.; Ramos, F.C.; Hoskin, P.

    2008-01-01

    Products of the 1915 Lassen Peak eruption reveal evidence for a magma recharge-magma mixing event that may have catalyzed the eruption and from which four compositional members were identified: light dacite, black dacite, andesitic inclusion, and dark andesite. Crystal size distribution, textural, and in situ chemical (major and trace element and Sr isotope) data for plagioclase from these compositional products define three crystal populations that have distinct origins: phenocrysts (long axis > 0??5 mm) that typically have core An contents between 34 and 36 mol %, microphenocrysts (long axis between 0??1 and 0??5 mm) that have core An contents of 66-69, and microlites (long axis < 0??1 mm) with variable An core contents from 64 to 52. Phenocrysts are interpreted to form in an isolated dacitic magma chamber that experienced slow cooling. Based on textural, compositional, and isotopic data for the magma represented by the dacitic component, magma recharge was not an important process until just prior to the 1915 eruption. Average residence times for phenocrysts are in the range of centuries to millennia. Microphenocrysts formed in a hybrid layer that resulted from mixing between end-member reservoir dacite and recharge magma of basaltic andesite composition. High thermal contrast between the two end-member magmas led to relatively high degrees of undercooling, which resulted in faster crystal growth rates and acicular and swallowtail crystal habits. Some plagioclase phenocrysts from the dacitic chamber were incorporated into the hybrid layer and underwent dissolution-precipitation, seen in both crystal textures and rim compositions. Average microphenocryst residence times are of the order of months. Microlites may have formed in response to decompression and/ or syn-eruptive degassing as magma ascended from the chamber through the volcanic conduit. Chemical distinctions in plagioclase microlite An contents reveal that melt of the dark andesite was more mafic than

  13. Mineralogy, Petrology, Chemistry, and Ar-39 - Ar-40 and Ages of the Caddo County IAB Iron: Evidence for Early Partial Melt Segregation of a Gabbro Area Rich in Plagioclase-Diopside

    NASA Technical Reports Server (NTRS)

    Takeda, Hiroshi; Bogard, Donald D.; Mittlefehldt, David W.; Garrison, Daniel H.

    2000-01-01

    We found coarse-grained gabbroic material rich in plagioclase and diopside in the Caddo County IAB iron meteorite. The polished thin sections studied were made from areas rich in Al and Ca detected by a micro-focus X-ray fluorescence (XRF) mapping technique. The gabbro is not a clast within a breccia, but rather this area is located mainly at silicate-metal boundaries only a few cm away from an area with fine-grained, ultramafic silicate similar to winonaites. Medium-grained orthopyroxene and olivine are found in transitional areas showing no disturbance of their crystalline textures. A vein-like region, starting at the area rich in fine-grained mafic silicate, extends towards the gabbroic area with a gradual increase in abundance of plagioclase and diopside. This texture and our accumulated knowledge of the formation mechanism of IAB/winonaltes meteorites, suggest that the gabbroic materials were formed by inhomogeneous segregation of partial melts of chondritic source materials. Compositional data on two mineralogically distinct samples of the gabbro-rich portion of the inclusion were obtained by INAA. Compared to an average of LAB silicate inclusions or winonaites, the Caddo County gabbro is enriched in the incompatible lithophile elements Na, Ca, Sc, REE and Hf, which is consistent with a melt origin for the gabbro. The cosmogenic space exposure age of Caddo County (511 Ma) is significantly younger than exposure ages of some other IAB meteorites, An 39Ar-40Ar age determination of the gabbroic material indicates a series of upward steps in age from 4.516 Ga to 4.523 Ga, with a few high temperature ages up to 4.54 Ga. The older age could approximate the primary recrystallization age of silicates. The stepped Ar age spectrum may indicate differences in Ar closure temperatures during slow cooling of -2-20'C/Myr in the parent body. Alternatively, the younger Ar-Ar ages may date a shock event which occurred while Caddo County was hot and which also created textures

  14. Microbial extracellular polysaccharides and plagioclase dissolution

    NASA Astrophysics Data System (ADS)

    Welch, S. A.; Barker, W. W.; Banfield, J. F.

    1999-05-01

    Bytownite feldspar was dissolved in batch reactors in solutions of starch (glucose polymer), gum xanthan (glucose, mannose, glucuronic acid), pectin (poly-galacturonic acid), and four alginates (mannuronic and guluronic acid) with a range of molecular weights (low, medium, high and uncharacterized) to evaluate the effect of extracellular microbial polymers on mineral dissolution rates. Solutions were analyzed for dissolved Si and Al as an indicator of feldspar dissolution. At neutral pH, feldspar dissolution was inhibited by five of the acid polysaccharides, gum xanthan, pectin, alginate low, alginate medium, alginate high, compared to an organic-free control. An uncharacterized alginate substantially enhanced both Si and Al release from the feldspar. Starch, a neutral polysaccharide, had no apparent effect. Under mildly acidic conditions, initial pH ≈ 4, all of the polymers enhanced feldspar dissolution compared to the inorganic controls. Si release from feldspar in starch solution exceeded the control by a factor of three. Pectin and gum xanthan increased feldspar dissolution by a factor of 10, and the alginates enhanced feldspar dissolution by a factor of 50 to 100. Si and Al concentrations increased with time, even though solutions were supersaturated with respect to several possible secondary phases. Under acidic conditions, initial pH ≈ 3, below the pK a of the carboxylic acid groups, dissolution rates increased, but the relative increase due to the polysaccharides is lower, approximately a factor of two to ten. Microbial extracellular polymers play a complex role in mineral weathering. Polymers appear to inhibit dissolution under some conditions, possibly by irreversibly binding to the mineral surfaces. The extracellular polysaccharides can also enhance dissolution by providing protons and complexing with ions in solution.

  15. Melting in the system CaO-MgO-Al2O3-SiO2-FeO-Cr2O3 spanning the plagioclase-spinel lherzolite transition at 7 to 10 kbar: experiments versus thermodynamics

    NASA Astrophysics Data System (ADS)

    Keshav, S.; Tirone, M.; Gudfinnsson, G.; Presnall, D.

    2008-12-01

    Voluminous basaltic magmas erupt at mid-oceanic ridges (mid-ocean ridge basalts, MORB) as a consequence of mantle upwelling and melting beneath spreading plates. However, because the geochemistry of MORB is distinct from OIB (ocean-island basalts), both have great petrogenetic significance and carry important information about the chemical and physical properties/dynamics of the mantle. In the context of MORB, a critical yet unresolved question is how phase transitions within a polybaric melting zone affect melt productivity and thereby, possibly exert control on major and trace element composition of erupted magmas. Currently, the disagreements on these issues are fundamental, with great consequences that extend beyond petrology to global issues of potential temperatures, mantle melting, mantle heterogeneity, and mantle dynamics. Thermodynamics show that melt productivity depends critically on the transition reaction, and melting can in principle increase, decrease, or even stop at a transition. Phase equilibrium work from both systems CaO-MgO-Al2O3-SiO2-Na2O (CMASN) and CMAS-FeO (CMASF) have been used to argue that melt productivity may increase at the plagioclase-spinel (pl-sp) transition because the univariant solidus transition reaction has a positive dT/dP slope in these systems, moving to higher pressure relative to the CMAS system. However, melting models derived on the basis of MELTS and pMELTS show that the solidus has a negative slope on the pl-sp transition. If correct, this would cause suppression of melting as the mantle decompresses along a pertinent adiabat. Owing to these vast discrepancies between experiments and thermodynamics and to further clarify MORB genesis, in this work we present melting phase relations in the system CMASFCr at the plagioclase-spinel lherzolite transition from 7 to 10 kbar. Cr was chosen since recent work has shown that the addition of Cr to CMAS has an unusually large effect on Ca/Al of melt compositions at 1.1 GPa. With

  16. Chapter G: Tentative Correlation Between CIPW Normin pl (Total Plagioclase) and Los Angeles Wear in Precambrian Midcontinental Granites-Examples from Missouri and Oklahoma, with Applications and Limitations for Use

    USGS Publications Warehouse

    Davis, George H.

    2004-01-01

    The normative chemical classification of Cross, Iddings, Pirsson, and Washington (CIPW) is commonly used in igneous petrology to distinguish igneous rocks by comparing their magmatic chemistries for similar and dissimilar components. A potential use for this classification other than in petrologic studies is in the rapid assessment of aggregate sources, possibly leading to an economic advantage for an aggregate producer or user, by providing the opportunity to determine whether further physical testing of an aggregate is warranted before its use in asphalt or concrete pavement. However, the CIPW classification currently should not be substituted for the physical testing required in specifications by State departments of transportation. Demands for physical testing of aggregates have increased nationally as users seek to maximize the quality of the aggregate they purchase for their pavements. Concrete pavements are being laid with increased thicknesses to withstand increasing highway loads. New pavement mixes, most notably Superior Performance Asphalt Pavement ('Superpave'), are designed for additional service life. For both concrete and asphalt, the intent is to generate a durable pavement with a longer service life that should decrease overall life-cycle costs. Numerous aggregate producers possess chemical-composition data available for examination to answer questions from the potential user. State geological surveys also possess chemical-composition data for stone sources. Paired with the results of physical testing, chemical- composition data provide indicative information about stone durability and aggregate strength. The Missouri Department of Transportation has noted a possible relation among coarse-grained Precambrian granites of the midcontinental region, correlating the results of abrasion testing with the contents of normative minerals, also known as normins, calculated from chemical composition data. Thus, normin pl ( total plagioclase) can predict, by

  17. Shocked plagioclase signatures in Thermal Emission Spectrometer data of Mars

    USGS Publications Warehouse

    Johnson, J. R.; Staid, M.I.; Titus, T.N.; Becker, K.

    2006-01-01

    The extensive impact cratering record on Mars combined with evidence from SNC meteorites suggests that a significant fraction of the surface is composed of materials subjected to variable shock pressures. Pressure-induced structural changes in minerals during high-pressure shock events alter their thermal infrared spectral emission features, particularly for feldspars, in a predictable fashion. To understand the degree to which the distribution and magnitude of shock effects influence martian surface mineralogy, we used standard spectral mineral libraries supplemented by laboratory spectra of experimentally shocked bytownite feldspar [Johnson, J.R., Ho??rz, F., Christensen, P., Lucey, P.G., 2002b. J. Geophys. Res. 107 (E10), doi:10.1029/2001JE001517] to deconvolve Thermal Emission Spectrometer (TES) data from six relatively large (>50 km) impact craters on Mars. We used both TES orbital data and TES mosaics (emission phase function sequences) to study local and regional areas near the craters, and compared the differences between models using single TES detector data and 3 ?? 2 detector-averaged data. Inclusion of shocked feldspar spectra in the deconvolution models consistently improved the rms errors compared to models in which the spectra were not used, and resulted in modeled shocked feldspar abundances of >15% in some regions. However, the magnitudes of model rms error improvements were within the noise equivalent rms errors for the TES instrument [Hamilton V., personal communication]. This suggests that while shocked feldspars may be a component of the regions studied, their presence cannot be conclusively demonstrated in the TES data analyzed here. If the distributions of shocked feldspars suggested by the models are real, the lack of spatial correlation to crater materials may reflect extensive aeolian mixing of martian regolith materials composed of variably shocked impact ejecta from both local and distant sources. ?? 2005 Elsevier Inc. All rights reserved.

  18. Anisotropy of magnetic susceptibility in alkali feldspar and plagioclase

    NASA Astrophysics Data System (ADS)

    Biedermann, Andrea R.; Pettke, Thomas; Angel, Ross J.; Hirt, Ann M.

    2016-04-01

    Feldspars are the most abundant rock-forming minerals in the Earth's crust, but their magnetic properties have not been rigorously studied. This work focuses on the intrinsic magnetic anisotropy of 31 feldspar samples with various chemical compositions. Because feldspar is often twinned or shows exsolution textures, measurements were performed on twinned and exsolved samples as well as single crystals. The anisotropy is controlled by the diamagnetic susceptibility and displays a consistent orientation of principal susceptibility axes; the most negative or minimum susceptibility is parallel to [010], and the maximum (least negative) is close to the crystallographic [001] axis. However, the magnetic anisotropy is weak when compared to other rock-forming minerals, 1.53 × 10-9 m3 kg-1 at maximum. Therefore, lower abundance minerals, such as augite, hornblende or biotite, often dominate the bulk paramagnetic anisotropy of a rock. Ferromagnetic anisotropy is not significant in most samples. In the few samples that do show ferromagnetic anisotropy, the principal susceptibility directions of the ferromagnetic subfabric do not display a systematic orientation with respect to the feldspar lattice. These results suggest that palaeointensity estimates of the geomagnetic field made on single crystals of feldspar will not be affected by a systematic orientation of the ferromagnetic inclusions within the feldspar lattice.

  19. Shocked Plagioclase Signatures in Thermal Emission Spectrometer Data of Mars

    NASA Technical Reports Server (NTRS)

    Johnson, J. R.; Staid, M. I.; Titus, T. N.

    2002-01-01

    Deconvolution of TES (Thermal Emission Spectrometer) data using a spectral library that includes spectra of experimentally shocked anorthosite (bytownite) suggests that shocked materials can be identified on Mars at low to intermediate abundances (10 - 20%) over a range of pressures. Additional information is contained in the original extended abstract.

  20. Use of olivine and plagioclase saturation surfaces for the petrogenetic modeling of recrystallized basic plutonic systems

    NASA Technical Reports Server (NTRS)

    Hanson, G. N.

    1983-01-01

    During petrogenetic studies of basic plutonic rocks, there are at least three major questions to be considered: (1) what were the relative proportions of cumulate crystals and intercumulus melt in a given sample? (2) what is the composition and variation in composition of the melts within the pluton? and (3) what is the original composition of the liquids, their source and evolution prior to the time of emplacement? Use of both saturation surfaces can place strong limits on the compositions of potential cumulate phases and intercumulus melts. Consideration of appropriate trace elements can indicate whether a sample is an orthocumulate, adcumulate or mesocumulate. Thus, when trace element and petrographic data are considered together with the saturation surfaces, it should be possible to begin to answer the three major questions given above, even for strongly recrystallized basic plutons.

  1. Oxalate adsorption at a plagioclase (An47) surface and models for ligand-promoted dissolution

    USGS Publications Warehouse

    Stillings, L.L.; Drever, J.I.; Poulson, S.R.

    1998-01-01

    Previous work on adsorption of oxalate at aluminosilicate surfaces suggests that maximum adsorption occurs through a bidentate attachment of the organic ligand, at near-neutral pH. Rates of ligand-promoted dissolution are expected to be greatest at this pH as well. We tested this model by measuring oxalate adsorption on the surface of andesine (An47), in solutions of pH 3- 5 and total oxalate concentrations of 0-8 mM. Contrary to expectation, the greatest adsorption density of 24 ??mol m-2 total oxalate was observed at pH 3 and 8 mM total oxalate. Adsorption is dependent upon the activities of both oxalate (C2O42-) and bioxalate (HC2O4-) in solution and can be modeled with either a two-term Langmuir or a two-term Freundlich isotherm. A Freundlich adsorption model provided the best fit to rate data because it was not constrained to a finite number of adsorption sites, as was the Langmuir model. The two-term ligand adsorption model was incorporated into a rate model: R(tot) = k(H-)[H(ads)/+](L) + k(HOx-)[HOx(ads)/-] + k(Ox2- )[Ox2(ads)/-] where R(tot) is the net dissolution rate of the feldspar, [i(ads)] is the concentration of species i adsorbed to the surface, and k(i) is the rate constant for release of the surface complex. The model was fit to data for oxalate-promoted dissolution of andesine, resulting in estimates for the rate constants of k(HOx-) = 1.16 x 10-12, k(Ox2-) = 1.05 x 10-12, and k(H-) = 9.61 x 10-13 mol of feldspar (??mol of i) (??mol of i)-1 s-1.Previous work on adsorption of oxalate at aluminosilicate surfaces suggests that maximum adsorption occurs through a bidentate attachment of the organic ligand, at near-neutral pH. Rates of ligand-promoted dissolution are expected to be greatest at this pH as well. We tested this model by measuring oxalate adsorption on the surface of andesine (An47), in solutions of pH 3-5 and total oxalate concentrations of 0-8 mM. Contrary to expectation, the greatest adsorption density of 24 ??mol m-2 total oxalate was observed at pH 3 and 8 mM total oxalate. Adsorption is dependent upon the activities of both oxalate (C2O42-) and bioxalate (HC2O4-) in solution and can be modeled with either a two-term Langmuir or a two-term Freundlich isotherm. A Freundlich adsorption model provided the best fit to rate data because it was not constrained to a finite number of adsorption sites, as was the Langmuir model. The two-term ligand adsorption model was incorporated into a rate model: Rtot = kH(+)[Hads+]L +kHOx(-) [HOxads-]+kOx(2-) [Oxads 2-] where Rtot is the net dissolution rate of the feldspar, [iads] is the concentration of species i adsorbed to the surface, and ki is the rate constant for release of the surface complex. The model was fit to data for oxalate-promoted dissolution of andesine, resulting in estimates for the rate constants of kHOx(-) = 1.16??10-12, kOx(2-) = 1.05??10-12, and kH(+) = 9.61??10-13 mol of feldspar (??mol of i)-1 s-1.

  2. Partitioning of Eu and Sr between coexisting plagioclase and K-feldspar.

    NASA Technical Reports Server (NTRS)

    Nagasawa, H.

    1971-01-01

    Minerals were separated by an EM approach and with the aid of liquids of great density. An analysis of K, Rb, Ca, Sr, Ha, and rare earth elements was conducted by means of a mass spectrometer isotope dilution technique. The behavior of the divalent europium ions during the partition process was found to be very similar to that of divalent strontium ions, taking into consideration data of the partition coefficients between coexisting feldspars in acidic rocks.

  3. The Characteristics of -OH/H2O in Plagioclase by Solar Wind Implantation Simulate

    NASA Astrophysics Data System (ADS)

    Tang, H.; Li, X. Y.; Wang, S. J.; Yu, W.; Li, S. J.; Li, Y.

    2016-08-01

    FTIR analyses has showed the obvious increased hydroxyl and H2O peak about 3622 cm-1 and about 3356 cm-1after ion implantation respectively, compared with small OH and H2O absorption before ion implantation.

  4. Genesis of compositional characteristics of Stillwater AN-I and AN-II thick anorthosite units

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.; Salpas, Peter A.

    1992-01-01

    Compositional variations among samples of the thick Stillwater anorthosite units are used here to model the mechanism by which the anorthosite formed. Suspended plagioclase, on reaching a volumetric crystal concentration of about 65 percent, formed a plagioclase framework here called cumulus plagioclase (CP). Within the interstices among the crystals, some plagioclase and pyroxene precipitated, producing what is here called adcumulus plagioclase and pyroxene (APP). The final materials consists mainly of plagioclase and pyroxene formed from complete crystallization of trapped supporting liquid and called intercumulus plagioclase and pyroxene (IPP). Where the CP framework was relatively open initially, bulk liquid communicated with the interior of the framework to produce APP. Where this communication with the bulk liquid stopped or was prevented initially, the intercumulus liquid froze. Where the CP framework was more tightly packed initially, a relatively higher proportion of IPP to APP was produced.

  5. Mineralogy of Apollo 15415 ?genesis rock' - Source of anorthosite on moon.

    NASA Technical Reports Server (NTRS)

    Steele, I. M.; Smith, J. V.

    1971-01-01

    Results of electron microprobe analyses of plagioclase points and pyroxene grains of Apollo 15415 ?genesis rock.' It is pointed out that no evidence of cumulate textures has yet appeared to support suggestions of extensive crystal-liquid differentiation producing an anorthositic crust or a lunar crust composed of a mixture of plagioclase-rich rock, basalts and minor ultramafic material, which require that plagioclase crystals float in a basaltic liquid. The plagioclase in 15415 does not show cumulate texture either. It is noted that it remains to be seen whether rock 15415 is correctly named the ?genesis rock.'

  6. Shock and thermal metamorphism of basalt by nuclear explosion, Nevada test site

    USGS Publications Warehouse

    James, O.B.

    1969-01-01

    Olivine trachybasalt metamorphosed by nuclear explosion is classified into categories of progressive metamorphism: (i) Weak. Plagioclase is microfractured, and augite cotainis fine twin lamellae. (ii) Moderate. Plagioclase is converted to glass, and mafic minerals show intragranular deformation (undulatory extinction, twin lamellae, and, possibly, deformation lamellae), but rock texture is preserved. (iii) Moderately strong. Plagioclase glass shows small-scale flow, mafic minerals are fractured and show intragranular deformation, and rocks contain tension fractures. (iv) Strong. Plagioclase glass is vesicular, augite is minutely fractured, and olivine is coarsely fragmented, shows mosaic extinction, distinctive lamellar structures, and is locally recrystallized. (v) Intense. Rocks are converted to inhomogeneous basaltic glass.

  7. Shock and thermal metamorphism of basalt by nuclear explosion, nevada test site.

    PubMed

    James, O B

    1969-12-26

    Olivine trachybasalt metamorphosed by nuclear explosion is classified into categories of progressive metamorphism: (i) Weak. Plagioclase is microfracruree, and augite contains twin lamellae. (ii) Moderate. Plagioclase is converted to glass, amd mafic minerals show intragranular deformation (undulatory extinction, twin lamellae, and, possibly, defomation lamellae), but rock texture is preserved. (iii) Moderately strong. Plagioclase glass shows small-scale flow, mafic minerals are fractured and show intragranular deformation, and rocks contain tension fractures. (iv) Strong. Plagioclase glass is vesicular, augite is minutely fractured, and olivine is coarsely fragmented, shows moscaic extinction, distinctive lamellar structures, and is locally recrystallized. (v) Intense. Rocks are converted to inhomogeneous basaltic glass.

  8. Indiction of Work Function in Mineral Electrostatic Migration

    NASA Astrophysics Data System (ADS)

    Li, X. Y.; Gan, H.; Mo, B.; Wang, S. J.; Tang, H.; Wei, G. F.; Zhao, Y.-Y. S.

    2016-08-01

    Our preliminary experiments measured WFs of olivine, plagioclase, pyroxene, ilmenite using the SPM. These mineral grains can be charged to several thousand positive electrons under solar UV irrdations.

  9. Rare earth element contents and multiple mantle sources of the transform-related Mount Edgecumbe basalts, southeastern Alaska

    USGS Publications Warehouse

    Riehle, J.R.; Budahn, J.R.; Lanphere, M.A.; Brew, D.A.

    1994-01-01

    Pleistocene basalt of the Mount Edgecumbe volcanic field (MEF) is subdivided into a plagioclase type and an olivine type. Th/La ratios of plagioclase basalt are similar to those of mid-ocean-ridge basalt (MORB), whereas those of olivine basalt are of continental affinity. Rare earth element (REE) contents of the olivine basalt, which resemble those of transitional MORB, are modelled by 10-15% partial melting of fertile spinel-plagioclase lherzolite followed by removal of 8-13% olivine. It is concluded that olivine basalt originated in subcontinental spinel lherzolite and that plagioclase basalt may have originated in suboceanic lithosphere of the Pacific plate. -from Authors

  10. Beneficiation of Stillwater Complex Rock for the Production of Lunar Simulants

    NASA Technical Reports Server (NTRS)

    Rickman, D. L.; Young, C.; Stoeser, D.; Edmunson, J.

    2014-01-01

    The availability of pure, high calcium plagioclase would be a significant asset in any attempt to manufacture high-quality lunar simulants. A suitable plagioclase product can be obtained from materials obtained from the Stillwater Complex of Montana. The access, geology, petrology, and mineralogy of the relevant rocks and the mill tailings are described here. This study demonstrates successful plagioclase recovery from mill tailings produced by the Stillwater Mine Company. Hydrogen peroxide was used to remove carboxymethyl cellulose from the tailing. The characteristics of the plagioclase products are shown and locked grains are identified as a limit to achievable purity. Based on the experimental results, flowsheets were developed showing how these resources could be processed and made into 'separates' of (1) high calcium plagioclase and (2) orthopyroxene/clinopyroxene with the thought that they would be combined later to make simulant.

  11. Using Apollo 17 high-Ti mare basalts as windows to the lunar mantle

    NASA Technical Reports Server (NTRS)

    Neal, Clive R.; Taylor, Lawrence A.

    1992-01-01

    The Apollo 17 high-Ti mare basalts are derived from source regions containing plagioclase that was not retained in the residue. Ilmenite appears to remain as a residual phase, but plagioclase is exhausted. The open-system behavior of the type B2 basalts results in slightly higher Yb/Hf and La/Sm ratios. The nature of the added component is not clear, but may be a KREEP derivative or residue. The recognition of plagioclase in the source(s) of these basalts suggests that the location of the source region(s) would be more likely to be less than 150 km (i.e., closer to the plagioclase-rich crust), which would allow incorporation of plagioclase into the source through incomplete separation of crustal feldspar.

  12. Origin of coronas in metagabbros of the Adirondack mts., N. Y

    USGS Publications Warehouse

    Whitney, P.R.; McLelland, J.M.

    1973-01-01

    Metagabbros from two widely separated areas in the Adirondacks show development of coronas. In the Southern Adirondacks, these are cored by olivine which is enclosed in a shell of orthopyroxene that is partially, or completely, rimmed by symplectites consisting of clinopyroxene and spinel. Compositions of the corona phases have been determined by electron probe and are consistent with a mechanism involving three partial reactions, thus: (a) Olivine=Orthopyroxene+(Mg, Fe)++. (b) Plagioclase+(Mg, Fe)+++Ca++=Clinopyroxene+Spinel+Na+. (c) Plagioclase+(Mg, Fe)+++Na+=Spinel+more sodic plagioclase+Ca++. Reaction (a) occurs in the inner shell of the corona adjacent to olivine; reaction (b) in the outer shell; and (c) in the surrounding plagioclase, giving rise to the spinel clouding which is characteristic of the plagioclase in these rocks. Alumina and silica remain relatively immobile. These reactions, when balanced, can be generalized to account for the aluminous nature of the pyroxenes and for changing plagioclase composition. Summed together, the partial reactions are equivalent to: (d) Olivine + Anorthite = Aluminous orthopyroxene + Aluminous Clinopyroxene + Spinel (Kushiro and Yoder, 1966). In the Adirondack Highlands, coronas between olivine and plagioclase commonly have an outer shell of garnet replacing the clinopyroxene/spinel shell. The origin of the garnet can also be explained in terms of three partial reactions: (e) Orthopyroxene+Ca++=Clinopyroxene+(Mg, Fe)++. (f) Clinopyroxene+Spinel+Plagioclase+(Mg, Fe)++=Garnet+Ca+++Na+. (g) Plagioclase+(Mg, Fe)+++Na+=Spinel + more sodic plagioclase+Ca++. These occur in the inner and outer corona shell and the surrounding plagioclase, respectively, and involve the products of reactions (a)-(d). Alumina and silica are again relatively immobile. Balanced, and generalized to account for aluminous pyroxenes and variable An content of plagioclase, they are equivalent to: (h) Orthopyroxene+Anorthite+Spinel=Garnet (Green and

  13. Understanding Magmatic Plumbing System Dynamics at Fernandina Island, Galapagos

    NASA Astrophysics Data System (ADS)

    Varga, K. C.; McGuire, M.; Geist, D.; Harpp, K. S.

    2015-12-01

    Fernandina is the most active Galápagos volcano, and is located closest to the seismically defined hotspot. Allan and Simkin (2000) observed that the subaerial edifice is constructed of homogeneous basalts (Mg# = 49 ± 2) with highly variable plagioclase phenocryst contents and sparse olivine. Geist et al. (2006) proposed a magmatic plumbing system in which the volcano is supplied by interconnected sills, the shallowest of which is density-stratified: olivine and pyroxene are concentrated at greater depths, whereas less dense plagioclase mush is higher in the sill. Consequently, olivine-rich lava erupts laterally during submarine events, but plagioclase-rich lava supplies subaerial vents. To test this hypothesis, we examine lavas erupted in 1995, 2005, and 2009. These SW flank eruptions emerged alternatively from en echelon radial fissures on the lower flanks and circumferential fissures near the caldera rim. The 1995 radial fissure unzipped downslope and then formed a cone 4 km from the coast, sending flows to the ocean. In 2005, circumferential fissures erupted five flows south of the 1995 fissure. As in 1995, the 2009 fissures opened down the SW flank before focusing to a cone near the 1995 vents, producing 6 km-long flows that also reached the ocean. By correlating plagioclase crystal size distribution and morphologies with single event chronological sequences, we examine Fernandina's magmatic plumbing system. Modal plagioclase in 1995 lava decreases (20% to <5%) throughout the middle eruptive phase. Early 2005 samples are nearly aphyric (Chadwick et al., 2010), with 1-2% plagioclase. The 2009 eruption has reduced plagioclase, similar to mid-1995 samples. Preliminary observations suggest that less plagioclase-rich mush is being flushed out during early-to-medial event sequences, whereas plag phenocrysts are transported more during later phases. Plausible plumbing dynamics suggest a zone of plagioclase-rich mush that is eroded and incorporated into radial

  14. Lunar ferroan anorthosite petrogenesis: clues from trace element distributions in FAN subgroups

    USGS Publications Warehouse

    Floss, C.; James, O.B.; McGee, J.J.; Crozaz, G.

    1998-01-01

    The rare earth elements (REE) and selected other trace elements were measured in plagioclase and pyroxene from nine samples of the lunar ferroan anorthosite (FAN) suite of rocks. Samples were selected from each of four FAN subgroups previously defined by James et al. (1989). Plagioclase compositions are homogeneous within each sample, but high- and low-Ca pyroxenes from lithic clasts typically have different REE abundances from their counterparts in the surrounding granulated matrices. Measured plagioclase/low-Ca pyroxene concentration ratios for the REE have steeper patterns than experimentally determined plagioclase/low-Ca pyroxene partition coefficients in most samples. Textural and trace element evidence suggest that, although subsolidus equilibration may be responsible for some of the discrepancy, plagioclase compositions in most samples have been largely unaffected by intermineral redistribution of the REE. The REE systematics of plagioclase from the four subgroups are broadly consistent with their deviation through crystallization from a single evolving magma. However, samples from some of the subgroups exhibit a decoupling of plagioclase and pyroxene compositions that probably reflects the complexities inherent in crystallization from a large-scale magmatic system. For example, two anorthosites with very magnesian mafic minerals have highly evolved trace element compositions; major element compositions in plagioclase also do not reflect the evolutionary sequence recorded by their REE compositions. Finally, a noritic anorthosite breccia with relatively ferroan mafic minerals contains several clasts with high and variable REE and other trace element abundances. Although plagioclase REE compositions are consistent with their derivation from a magma with a KREEPy trace element signature, very shallow REE patterns in the pyroxenes suggest the addition of a component enriched in the light REE.

  15. Cryptic trace-element alteration of Anorthosite, Stillwater complex, Montana

    USGS Publications Warehouse

    Czamanske, G.K.; Loferski, P.J.

    1996-01-01

    Evidence of cryptic alteration and correlations among K, Ba, and LREE concentrations indicate that a post-cumulus, low-density aqueous fluid phase significantly modified the trace-element contents of samples from Anorthosite zones I and II of the Stillwater Complex, Montana. Concentrations of Ba, Ca, Co, Cr, Cu, Fe, Hf, K, Li, Mg, Mn, Na, Ni, Sc, Sr, Th, Zn, and the rare-earth elements (REE) were measured in whole rocks and plagioclase separates from five traverses across the two main plagioclase cumulate (anorthosite) zones and the contiguous cumulates of the Stillwater Complex in an attempt to better understand the origin and solidification of the anorthosites. However, nearly the entire observed compositional range for many trace elements can be duplicated at a single locality by discriminating between samples rich in oikocrystic pyroxene and those which are composed almost entirely of plagioclase and show anhedral-granular texture. Plagioclase separates with high trace-element contents were obtained from the pyroxene-poor samples, for which maps of K concentration show plagioclase grains to contain numerous fractures hosting a fine-grained, K-rich phase, presumed to be sericite. Secondary processes in layered intrusions have the potential to cause cryptic disturbance, and the utmost care must be taken to ensure that samples provide information about primary processes. Although plagioclase from Anorthosite zones I and II shows significant compositional variation, there are no systematic changes in the major- or trace-element compositions of plagioclase over as much as 630 m of anorthosite thickness or 18 km of strike length. Plagioclase in the two major anorthosite zones shows little distinction in trace-element concentrations from plagioclase in the cumulates immediately below, between, and above these zones.

  16. Rb-Sr age of the Civet Cat clast, 72255, 41. [radioactive age determination for lunar rocks

    NASA Technical Reports Server (NTRS)

    Compston, W.; Gray, C. M.

    1974-01-01

    Plagioclase rich clasts, orthopyroxene rich matrix, purified pyroxene, and plagioclase from the Civet Cat clast define a Rb-Sr isochron age of 4.18 + or - 0.04 x 10 to the 9th power yr and an initial Sr-87/Sr-86 ratio of 0.69922 + or - 0.00005. The fit of all data to the line is within error except for plagioclase 3, and blank corrections are essentially negligible. The decay constant used is 1.39 x 10 to the minus 11th power yr.

  17. Mineralogic and petrologic study of lunar anorthosite slide 15415,18.

    PubMed

    Hargraves, R B; Hollister, L S

    1972-01-28

    The anorthosite slide 15415,18 contains 98 percent subhedral plagioclase (97 mole percent anorthite), two pyroxenes: diopsidic augite (46 percent wollastonite, 39 percent enstatite, 16 percent ferrosilite) with subsidiary (100) lamellae and grains of hypersthene (2.5 percent wollastonite, 58 percent enstatite, 39.5 percent ferrosilite), and traces of ilmenite. The pyroxene occurs interstitial to, and as small grains enclosed within, plagioclase. The textures and compositions of the phases appear compatible with an origin by concentration and adcumulus growth of plagioclase from a gabbroic anorthosite (or hyperaluminous) magma in a "plutonic" environment. PMID:17731366

  18. Shock Metamorphism of the Dhofar 378 Basaltic Shergottite

    NASA Technical Reports Server (NTRS)

    Mikouchi, T.; McKay, G.

    2006-01-01

    Shock metamorphism is one of the most fundamental processes in the history of Martian meteorites, especially shergottites, which affect their mineralogy and chronology. The formation of "maskelynite" from plagioclase and shock melts is such major mineralogical effects. Dhofar 378 is one of the recently found desert shergottites that is mainly composed of plagioclase and pyroxene. This shergottite is important because of its highly shocked nature and unique plagioclase texture, and thus has a great potential for assessing a "shock" age of shergottites. We have been working on a combined study of mineralogy and chronology of the same rock chip of Dhofar 378. This abstract reports its mineralogical part.

  19. Mineralogic and petrologic study of lunar anorthosite slide 15415,18.

    PubMed

    Hargraves, R B; Hollister, L S

    1972-01-28

    The anorthosite slide 15415,18 contains 98 percent subhedral plagioclase (97 mole percent anorthite), two pyroxenes: diopsidic augite (46 percent wollastonite, 39 percent enstatite, 16 percent ferrosilite) with subsidiary (100) lamellae and grains of hypersthene (2.5 percent wollastonite, 58 percent enstatite, 39.5 percent ferrosilite), and traces of ilmenite. The pyroxene occurs interstitial to, and as small grains enclosed within, plagioclase. The textures and compositions of the phases appear compatible with an origin by concentration and adcumulus growth of plagioclase from a gabbroic anorthosite (or hyperaluminous) magma in a "plutonic" environment.

  20. Thermoluminescence of the mineral components in granite

    SciTech Connect

    Schwartzman, R.G.; Kierstead, J.A.; Levy, P.W.

    1982-01-01

    The thermoluminescence (TL) of the minerals in Climax Stock (Nevada, USA) granite has been studied. The principal mineral constituents are plagioclase, quartz, potassium feldspar and biotite. Pyrite, sphene apatite and zircon occur at one percent or less. All exhibit TL except biotite. The TL kinetics were determined for plagioclase, quartz, potassium feldspar and pyrite. Plagioclase and potassium feldspar exhibit second order and pyrite first orker kinetics. Natural TL of quartz follows second order and artificial TL first order kinetics. However, in these four minerals unrealistic kinetic parameters are often obtained; thus more general kinetics, e.g. interactive kinetics, may apply. 8 figures.

  1. Shocked Feldspar in L Chondrites: Deformation, Transformation and Local Melting

    NASA Astrophysics Data System (ADS)

    Fudge, C.; Sharp, T. G.

    2016-08-01

    We present textures and compositional profiles of partially to completely transformed plagioclase to maskelynite. Evidence for transformation mechanisms, including solid state transformation and crystallization from melt will be discussed.

  2. The global distribution of pure anorthosite on the Moon.

    PubMed

    Ohtake, Makiko; Matsunaga, Tsuneo; Haruyama, Junichi; Yokota, Yasuhiro; Morota, Tomokatsu; Honda, Chikatoshi; Ogawa, Yoshiko; Torii, Masaya; Miyamoto, Hideaki; Arai, Tomoko; Hirata, Naru; Iwasaki, Akira; Nakamura, Ryosuke; Hiroi, Takahiro; Sugihara, Takamitsu; Takeda, Hiroshi; Otake, Hisashi; Pieters, Carle M; Saiki, Kazuto; Kitazato, Kohei; Abe, Masanao; Asada, Noriaki; Demura, Hirohide; Yamaguchi, Yasushi; Sasaki, Sho; Kodama, Shinsuke; Terazono, Junya; Shirao, Motomaro; Yamaji, Atsushi; Minami, Shigeyuki; Akiyama, Hiroaki; Josset, Jean-Luc

    2009-09-10

    It has been thought that the lunar highland crust was formed by the crystallization and floatation of plagioclase from a global magma ocean, although the actual generation mechanisms are still debated. The composition of the lunar highland crust is therefore important for understanding the formation of such a magma ocean and the subsequent evolution of the Moon. The Multiband Imager on the Selenological and Engineering Explorer (SELENE) has a high spatial resolution of optimized spectral coverage, which should allow a clear view of the composition of the lunar crust. Here we report the global distribution of rocks of high plagioclase abundance (approaching 100 vol.%), using an unambiguous plagioclase absorption band recorded by the SELENE Multiband Imager. If the upper crust indeed consists of nearly 100 vol.% plagioclase, this is significantly higher than previous estimates of 82-92 vol.% (refs 2, 6, 7), providing a valuable constraint on models of lunar magma ocean evolution. PMID:19741704

  3. Lunar anorthosite paradox - An alternative explanation

    NASA Technical Reports Server (NTRS)

    Drake, M. J.

    1975-01-01

    In most lunar terrae samples a trend of decreasing Ab-content of plagioclase with increasing Fa-content of olivine is observed. This covariance of composition is the opposite of the trend observed in terrestrial layered intrusions, and contradicts Bowen's reaction series. The 'anomalous' trend is considered in terms of olivine-melt and plagioclase-melt equilibria. The composition of plagioclase crystallizing from a melt depends directly upon the activity of silica in the melt, while the composition of olivine does not. It is proposed that the inverse correlation of plagioclase and olivine compositions in most lunar terrae rocks is a predictable consequence of crystallization from a lunar bulk composition which is poorer in silica than the bulk compositions of terrestrial layered intrusions. The data of Roedder and Weiblen (1974) lend support to this hypothesis.

  4. The global distribution of pure anorthosite on the Moon.

    PubMed

    Ohtake, Makiko; Matsunaga, Tsuneo; Haruyama, Junichi; Yokota, Yasuhiro; Morota, Tomokatsu; Honda, Chikatoshi; Ogawa, Yoshiko; Torii, Masaya; Miyamoto, Hideaki; Arai, Tomoko; Hirata, Naru; Iwasaki, Akira; Nakamura, Ryosuke; Hiroi, Takahiro; Sugihara, Takamitsu; Takeda, Hiroshi; Otake, Hisashi; Pieters, Carle M; Saiki, Kazuto; Kitazato, Kohei; Abe, Masanao; Asada, Noriaki; Demura, Hirohide; Yamaguchi, Yasushi; Sasaki, Sho; Kodama, Shinsuke; Terazono, Junya; Shirao, Motomaro; Yamaji, Atsushi; Minami, Shigeyuki; Akiyama, Hiroaki; Josset, Jean-Luc

    2009-09-10

    It has been thought that the lunar highland crust was formed by the crystallization and floatation of plagioclase from a global magma ocean, although the actual generation mechanisms are still debated. The composition of the lunar highland crust is therefore important for understanding the formation of such a magma ocean and the subsequent evolution of the Moon. The Multiband Imager on the Selenological and Engineering Explorer (SELENE) has a high spatial resolution of optimized spectral coverage, which should allow a clear view of the composition of the lunar crust. Here we report the global distribution of rocks of high plagioclase abundance (approaching 100 vol.%), using an unambiguous plagioclase absorption band recorded by the SELENE Multiband Imager. If the upper crust indeed consists of nearly 100 vol.% plagioclase, this is significantly higher than previous estimates of 82-92 vol.% (refs 2, 6, 7), providing a valuable constraint on models of lunar magma ocean evolution.

  5. Implications for the origins of pure anorthosites found in the feldspathic lunar meteorites, Dhofar 489 group

    NASA Astrophysics Data System (ADS)

    Nagaoka, Hiroshi; Takeda, Hiroshi; Karouji, Yuzuru; Ohtake, Makiko; Yamaguchi, Akira; Yoneda, Shigekazu; Hasebe, Nobuyuki

    2014-12-01

    Remote observation by the reflectance spectrometers onboard the Japanese lunar explorer Kaguya (SELENE) showed the purest anorthosite (PAN) spots (>98% plagioclase) at some large craters. Mineralogical and petrologic investigations on the feldspathic lunar meteorites, Dhofar 489 and Dhofar 911, revealed the presence of several pure anorthosite clasts. A comparison with Apollo nearside samples of ferroan anorthosite (FAN) indicated that of the FAN samples returned by the Apollo missions, sample 60015 is the largest anorthosite with the highest plagioclase abundance and homogeneous mafic mineral compositions. These pure anorthosites (>98% plagioclase) have large chemical variations in Mg number (Mg# = molar 100 × Mg/(Mg + Fe)) of each coexisting mafic mineral. The variations imply that these pure anorthosites underwent complex formation processes and were not formed by simple flotation of plagioclase. The lunar highland samples with pure anorthosite and the PAN observed by Kaguya suggest that pure anorthosite is widely distributed as lunar crust lithology over the entire Moon.

  6. The Distribution and Mineralogy of Anorthosite in the Orientale Basin: New Perspectives from M^3 Data

    NASA Astrophysics Data System (ADS)

    Cheek, L. C.; Donaldson Hanna, K. L.; Pieters, C. M.; Head, J. W.; Whitten, J. L.

    2012-07-01

    A detailed mineralogic analysis of the Orientale Basin using M^3 data reveals that crystalline anorthosite (shocked to <25 GPa) is abundant, and that the most highly pure examples (> ~98% plagioclase) are concentrated in the Inner Rook Mountains.

  7. Magnetic and microscopic features of silicate-hosted Fe-oxide inclusions in an oceanic gabbro section

    NASA Astrophysics Data System (ADS)

    Till, Jessica

    2015-04-01

    The magnetic mineralogy of oceanic gabbros is typically dominated by magnetite, which occurs in several forms: as a cumulus or intercumulus phase, as a secondary phase formed through alteration, or as exsolved inclusions in plagioclase and pyroxene. This study characterizes the contribution of magnetic inclusions in plagioclase and pyroxene to the bulk rock remanence and examines changes in the distribution of remanence carriers with crustal depth. Selected samples were taken throughout a 1500-m-long section of drilled oceanic gabbro cores collected from the Oceanic Drilling Program Site 735B at Atlantis Bank on the Southwest Indian Ridge. Hysteresis parameters and curves of isothermal remanence acquisition were measured for plagioclase and clinopyroxene mineral separates and compared with whole rock measurements for samples from various depths to determine the relative contributions of each to the bulk sample remanence properties. In whole-rock samples, bulk saturation magnetization decreases and coercivity distributions become dominated by harder magnetic components with increasing depth. The changes in rock magnetic properties with depth are interpreted to result from variations in composition as well as cooling rates. Coercivity distributions in both plagioclase and pyroxene systematically shift to higher coercivities with increasing depth in the section, although the change is more pronounced in plagioclase, indicating that the size distributions of magnetic inclusions in plagioclase become progressively finer. First-order reversal curves for plagioclase separates provide a striking example of non-interacting single-domain particles. Variations in exsolution textures and compositions of the inclusions were also investigated by microanalysis and electron microscopy. Microscopic examination revealed unexpected complexity in the structure of exsolution features, with several oxide phases commonly present as inclusions in plagioclase and multiple generations of

  8. Serpentinization and alteration in an olivine cumulate from the Stillwater Complex, Southwestern Montana

    USGS Publications Warehouse

    Page, N.J.

    1976-01-01

    Some of the olivine cumulates of the Ultramafic zone of the Stillwater Complex, Montana, are progressively altered to serpentine minerals and thompsonite. Lizardite and chrysotile developed in the cumulus olivine and postcumulus pyroxenes; thompsonite developed in postcumulus plagioclase. The detailed mineralogy, petrology, and chemistry indicate that olivine and plagioclase react to form the alteration products, except for H2O, without changes in the bulk composition of the rocks. ?? 1976 Springer-Verlag.

  9. Maskelynite: Formation by Explosive Shock.

    PubMed

    Milton, D J; de Carli, P S

    1963-05-10

    When high pressure (250 to 300 kilobars) was applied suddenly (shock-loading) to gabbro, the plagioclase was transformed to a noncrystalline phase (maskelynite) by a solid-state reaction at a low temperature, while the proxene remained crystalline. The shock-loaded gabbro resembles meteorites of the shergottite class; this suggests that the latter formed as a result of shock. The shock-loading of gabbro at 600 to 800 kilobars raised the temperature above the melting range of the plagioclase.

  10. The Seoni chondrite.

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Mall, A. P.; Lewis, C. F.

    1972-01-01

    Description of the Seoni (India, 1966) chondrite in terms of its mineralogy, bulk chemistry, and sample shape and mass. It is an H6 group ordinary chondrite that contains olivine, orthopyroxene, clinopyroxene, plagioclase, together with chromite, troilite, kamacite, taenite, chlorapatite, and whitlockite. Recrystallization has been quite extensive, as indicated by the presence of a few remnant chondrules, low abundance of clinopyroxene, and relatively high abundance of well formed plagioclase.

  11. Expanding the REE Partitioning Database for Lunar Materials

    NASA Technical Reports Server (NTRS)

    Rapp, Jennifer F.; Draper, David S.

    2014-01-01

    Positive europium anomalies are ubiquitous in the plagioclase-rich rocks of the lunar highlands, and complementary negative Eu anomalies are found in most lunar basalts. This is taken as evidence of a large-scale differentation event, with crystallization of a global-scale lunar magma ocean (LMO) resulting in a plagioclase flotation crust and a mafic lunar interior from which mare basalts were later derived. However, the extent of the Eu anomaly in lunar rocks is variable. Some plagioclase grains in a lunar impact rock (60635) have been reported to display a negative Eu anomaly, or in some cases single grains display both positive and neagtive anomalies. Cathodoluminescence images reveal that some crystals have a negative anomaly in the core and positive at the rim, or vice versa, and the negative anomalies are not associated with crystal overgrowths. Oxygen fugacity is known to affect Eu partitioning into plagioclase, as under low fO2 conditions Eu can be divalent, and has an ionic radius similar to Ca2+ - significant in lunar samples where plagioclase compositions are predominantly anorthitic. However, there are very few experimental studies of rare earth element (REE) partitioning in plagioclase relevant to lunar magmatism, with only two plagioclase DEu measurements from experiments using lunar materials, and little data in low fO2 conditions relevant to the Moon. We report on REE partitioning experiments on lunar compositions. We investigate two lunar basaltic compositions, high-alumina basalt 14072 and impact melt breccia 60635. These samples span a large range of lunar surface bulk compositions. The experiments are carried out at variable fO2 in 1 bar gas mixing furnaces, and REE are analysed by and LA-ICP-MS. Our results not only greatly expand the existing plagioclase DREE database for lunar compositions, but also investigate the significance of fO2 in Eu partitioning, and in the interpretation of Eu anomalies in lunar materials.

  12. Shape of pinch and swell structures as a viscosity indicator: Application to lower crustal polyphase rocks

    NASA Astrophysics Data System (ADS)

    Gardner, Robyn L.; Piazolo, Sandra; Daczko, Nathan R.

    2016-07-01

    Pinch and swell structures occur where a more competent layer in a weaker matrix is subjected to layer-parallel extension. In this contribution, we use numerical models to explore the use of pinch and swell structure shape symmetry and asymmetry as a determinant of relative viscosity between layers. Maximum asymmetry is attained when the matrix viscosity on one side is subtly weaker than the competent layer, while the other side is significantly weaker. Our numerical results are directly applied to asymmetrically developed pinch and swell structures in exposed lower continental crust. Here, shape geometries observed in a shear zone comprised of plagioclase-dominated, garnet-dominated and mixed amphibole-plagioclase-dominated bands, reveals that the plagioclase-dominated band is the most competent band and is marginally stronger (2×) and significantly stronger (10-40×) than the fine grained garnet-dominated and mixed amphibole-plagioclase-dominated band, respectively. Based on the experimentally determined viscosity of a plagioclase-dominated material and quantitative microstructural analysis, the viscosity range of the natural rock bands is 2.8 × 1015 to 1.1 × 1017 Pa s. Consequently, the assumption that the experimentally-derived plagioclase flow law is an appropriate proxy for the middle to lower continental crust may lead to a viscosity over-estimation by up to forty times.

  13. Calcic myrmekite in anorthositic and gabbroic rocks

    SciTech Connect

    Schiffries, C.M.; Dymek, R.F.

    1985-01-01

    Myrmekite is a common feature of granitic plutonic rocks and quartzo-feldspathic gneisses, but it is rarely reported in anorthositic and gabbroic rocks. The authors have identified myrmekitic intergrowths of quartz and calcic plagioclase in a variety of plagioclase-rich cumulate rocks, including samples from a number of massif anorthosites and layered igneous intrusions. It appears that calcic myrmekite has been frequently overlooked, and is a common accessory feature in these rock types. Chemical and textural characteristics of myrmekite in the St-Urbain massif anorthosite (Quebec) and the Bushveld Igneous Complex (South Africa) have several features in common, but this myrmekite appears to be fundamentally different from that described by most previous investigators. Whereas myrmekite typically consists of a vermicular intergrowth of sodic plagioclase and quartz that occurs adjacent to alkali feldspar, the intergrowths in these rocks contain highly calcic plagioclase and lack the intervening alkali feldspar. In addition, the plagioclase in the myrmekite is more calcic than that in the surrounding rock. The boundary between the myrmekite and the host material is generally extremely sharp, although reverse zoning of host plagioclase may obscure the contact in some cases. The textural and chemical evidence is consistent with a replacement origin for these intergrowths; the proportion of quartz in the myrmekite is in close agreement with the predicted amount of silica that is generated by the theoretical replacement reaction. It appears that water played a key role in the replacement process.

  14. The Case for a Heat-Pipe Phase of Planet Evolution on the Moon

    NASA Technical Reports Server (NTRS)

    Simon, J. I.; Moore, W. B.; Webb, A. A. G.

    2015-01-01

    The prevalence of anorthosite in the lunar highlands is generally attributed to the flotation of less dense plagioclase in the late stages of the solidification of the lunar magma ocean. It is not clear, however, that these models are capable of producing the extremely high plagioclase contents (near 100%) observed in both Apollo samples and remote sensing data, since a mostly solid lithosphere forms (at 60-70% solidification) before plagioclase feldspar reaches saturation (at approximately 80% solidification). Formation as a floating cumulate is made even more problematic by the near uniformity of the alkali composition of the plagioclase, even as the mafic phases record significant variations in Mg/(Mg+Fe) ratios. These problems can be resolved for the Moon if the plagioclase-rich crust is produced and refined through a widespread episode of heat-pipe magmatism rather than a process dominated by density-driven plagioclase flotation. Heat-pipes are an important feature of terrestrial planets at high heat flow, as illustrated by Io's present activity. Evidence for their operation early in Earth's history suggests that all terrestrial bodies should experience an early episode of heat-pipe cooling. As the Moon likely represents the most wellpreserved example of early planetary thermal evolution in our solar system, studies of the lunar surface and of lunar materials provide useful data to test the idea of a universal model of the way terrestrial bodies transition from a magma ocean state into subsequent single-plate, rigid-lid convection or plate tectonic phases.

  15. Metamorphism of San Antonio Terrane metapelites, San Gabriel Mountains, California

    SciTech Connect

    Archuleta, L.; Ishimatsu, J.; Schneiderman, J.S. . Geology Dept.)

    1993-04-01

    Pelitic schists and gneisses from the San Antonio terrane in the eastern San Gabriel Mountains consist of garnet, biotite, plagioclase, quartz, sillimanite, cordierite, hercynite [+-] alkali feldspar. Large garnet porphyroblasts contain quartz, plagioclase and sillimanite inclusions. Cordierite occurs as haloes around garnet porphyroblasts and as small subgrains always associated with hercynite and together replacing sillimanite blades. Hercynite additionally appears to have nucleated on the edges of sillimanite blades. Contrary to previous investigations, hercynite appears to be a late mineral phase. Reaction textures described above have been used to calculate a set of net-transfer reactions that can be used (1) to characterize all possible exchanges of matter between minerals in the system and (2) to construct a reaction space for the system. Fourteen thin sections with large garnet porphyroblasts and abundant biotite were used for microprobe analysis. Detailed probe analyses show well-developed zoning in the plagioclase and alkali feldspar whose character varies depending on location in the thin section relative to neighboring minerals. Generally, large plagioclase porphyroblasts display normal zoning and are not as calcium-rich as plagioclase inclusions in the garnet. Garnet porphyroblasts have flat zoning profiles due to high temperatures of metamorphism. Pressures and temperatures of metamorphism have been calculated from these assemblages using garnet-biotite geothermometry and quartz-garnet-aluminosilicate-plagioclase geobarometry.

  16. Geochemical and mineralogical evidence for the occurrence of at least three distinct magma types in the `famous' region

    NASA Astrophysics Data System (ADS)

    Le Roex, Anton P.; Erlank, A. J.; Needham, H. D.

    1981-03-01

    Bulk rock major and trace element variations in selected basalts from the Famous area, in conjunction with a detailed study of the chemical compositions of phenocryst minerals and associated melt inclusions are used to place constraints on the genetic relationship among the various lava types. The distribution of NiO in olivine and Cr-spinel phenocrysts distinguishes the picritic basalts, plagioclase phyric basalts and plagioclase-pyroxene basalts from the olivine basalts. For a given Mg/Mg+Fe2+ atomic ratio of the mineral, the NiO content of these phenocrysts in the former three basalt types is low relative to that in the phenocrysts in the olivine basalts. The Zr/Nb ratio of the lavas similarly distinguishes the olivine basalts from the plagioclase phyric and plagioclase pyroxene basalts and, in addition, distinguishes the picritic basalts from the other basalt types. These differences indicate that the different magma groups could not have been processed through the same magma chamber, and preclude any direct inter-relationship via open or closed system fractional crystallization. The Fe-Mg partitioning between olivine and host rock suggests that the picritic basalts represent olivine (±Cr-spinel) enriched magmas, derived from a less MgO rich parental magma. The partitioning of Fe and Mg between olivine, Cr-spinel and coexisting liquid is used to predict a primary magma composition parental to the picritic basalts. This magma is characterized by relatively high MgO (12.3%) and CaO (12.6%) and low FeO* (7.96%) and TiO2 (0.63%). Least squares calculations indicate that the plagioclase phyric basalts are related to the plagioclase-pyroxene basalts by plagioclase and minor clinopyroxene and olivine accumulation. The compositional variations within the olivine basalts can be accounted for by fractionation of plagioclase, clinopyroxene and olivine in an open system, steady state, magma chamber in the average proportions 45∶32∶23. It is suggested that the most

  17. Dissolution kinetics of oceanic lower-crustal cumulate-minerals and the potential effect of the melts on ascending magmas

    NASA Astrophysics Data System (ADS)

    Kvassnes, A. J.; Grove, T. L.; Dick, H. J.

    2003-12-01

    The most primitive Atlantis Bank (SWIR) olivine-gabbros have augite oikocrysts surrounding more evolved plagioclase chadacrysts. In addition, this coarse type of augite commonly shows reverse zoning. The observations motivated an experimental study. We investigated the kinetics of melting of the grain-boundaries between mineral-pairs commonly found in lower ocean-crust, and discovered rapid melting rates and melt-compositions that may explain the phenomenon. In our study, An62 and An54 plagioclase were melted together with Fo73 or Fo82 and with Mg#86 augite. The experiments were distributed over a melting interval of 1240-1330° C and 1180-1300° C respectively. No melting was observed below 1210° C (augite - An54) and 1255° C (Fo82 - An54). Plagioclase is buoyant in the melt, therefore the minerals were melted with the heavier mineral on top, to preserve a short distance between them. The duration of the experiments varied from 30 minutes to 24 hours. The solidus for the plagioclase-clinopyroxene-olivine system was determined to be 1150° C, and the solidus for augite-plagioclase and olivine-plagioclase was inferred to be 5° C and 40degC higher, respectively, on the basis of previous studies. Olivine, the mineral that experiences the fastest internal solid-state diffusion, has very narrow (tens of μ ms) or no observable diffusion gradient along the actively melting surface, indicating that the melting rate is similar to or faster than the diffusion rate for Fe/Mg in olivine. Some recrystallization occurred in the melt close to olivine, away from the most active melt interface. Plagioclase and clinopyroxene grains melted without internal diffusion of major elements in the crystals. Augite starts disintegrating internally at the highest temperatures, but does not show any sign of preferential melting of exsolution lamellae or preferential melting of different crystal faces. Plagioclase show a very narrow (10μ m) jagged reaction zone, but no significant

  18. Injection of vesicular magma into an andesitic dome at the effusive-explosive transition

    NASA Astrophysics Data System (ADS)

    Williamson, B. J.; Di Muro, A.; Horwell, C. J.; Spieler, O.; Llewellin, E. W.

    2010-06-01

    A single, vesicular pyroclast collected from a major (11 × 106 m3) dome collapse eruption of the Soufrière Hills volcano, Montserrat (21st September 1997) was found to contain textural and Raman evidence for multiple decompression events and magma injection into the dome just prior to the onset of dome collapse. Quartz, plagioclase and hornblende phenocrysts contain closed and burst melt inclusions (MIs), the latter in the form of either foam or cylindrical melt extrusions from cavities on fracture surfaces. Fractures within ruptured quartz phenocrysts were infilled with glass, whereas those within plagioclase are entirely free of glass, indicating relatively early fracturing (decompression) of the quartz. This interpretation is supported by slightly higher measured H2OT in burst MIs in quartz (0.44 wt.% ± 0.07, 1 s.d.) compared with plagioclase (0.31 wt.% ± 0.05, 1 s.d.), indicating equilibration on rupturing of the quartz at higher PH2O. H2OT levels in glass from burst MIs in plagioclase are consistent with plagioclase fragmentation at H2O saturation pressures < 5 MPa, at an estimated depth of < 210 m, within the dome. The fragmentation occurred whilst the groundmass glass was still plastic, as evident from the presence of stretched vesicles in glass at fracture terminations. The fractures in plagioclase are empty of vapour phase precipitates (mainly cristobalite that infills matrix vesicles) which constrains the fracturing of plagioclase to the last depressurisation event recorded in the pyroclast, which was the dome collapse which led to the pyroclast being ejected from the dome. We suggest that our study provides the first direct (i.e. non seismic) evidence for the injection of gas-charged magma into the dome at the onset of dome collapse, marking the transition from effusive to explosive eruption, and that the magma injection could have provided the triggering mechanism for dome collapse.

  19. Magma Injection as a Trigger for Dome Collapse Eruption of the Soufriere Hills Volcano, Montserrat: Evidence from a Single Pyroclast

    NASA Astrophysics Data System (ADS)

    Williamson, B. J.; di Muro, A.; Horwell, C.

    2009-05-01

    A single, pumiceous pyroclast collected following a major (85 million m3) dome collapse eruption of the Soufriere Hills volcano, Montserrat (21 September 1997) was found to contain textural and geochemical evidence for: 1) multiple decompression events, and 2) magma injection into the dome at the onset of dome collapse. Quartz, plagioclase and hornblende phenocrysts contain a variety of closed and burst melt inclusions (MIs). Burst MIs occur on fracture surfaces within exploded phenocrysts, with melt extruded as either foam or cylindrical pipe-forms. Fractures within exploded quartz phenocrysts are infilled with glass, whereas those within plagioclase are entirely free of glass, indicating relatively early fracturing (decompression) of the quartz. This interpretation is supported by slightly higher measured H2OT in burst MIs in quartz (av. 0.45 wt%) compared with plagioclase (av. 0.34 wt%), indicating equilibration on bursting of the quartz at higher relative pressures. From the low levels of H2OT in glass from the burst MIs in quartz, this fracturing occurred within the dome or upper conduit/dense plug at pressures < 10 MPa, probably at a depth much less than 400 m. The fracturing of plagioclase occurred at even higher levels. Both the fracturing of quartz and plagioclase occurred whilst the matrix was still molten, as evident from the presence of stretched vesicles in matrix glass at fracture terminations. The fractures in plagioclase are empty of vapour phase precipitates (such as cristobalite), whereas the pumiceous vesicles commonly contain such crystals, and therefore the fracturing of plagioclase is thought to have been the last depressurisation event recorded in the pyroclast. Indeed the fracturing is considered to have occurred due to the overpressure caused by the dome collapse which resulted in the pyroclast being ejected from the dome. We suggest that this is the first direct evidence for the injection of magma into the dome at the onset of dome

  20. Structure and petrology of the La Perouse gabbro intrusion, Fairweather Range, southeastern Alaska.

    USGS Publications Warehouse

    Loney, R.A.; Himmelberg, G.R.

    1983-01-01

    The gabbro was intruded during the Middle Tertiary into a Mesozoic granulite-facies metamorphic environment dominated by strike-slip fault movement, compression and possible minor subduction. The asymmetric funnel form of the intrusion is due to subsidence from magmatic loading at high T, coupled with control from pre-existing structures, and not from tectonic compression. The intrusion is 12 X 27 km and has exposed cumulate layering of approx 6000 m. Probe analyses of olivines (24), Ca-poor pyroxenes (28), augites (22) and plagioclases (35) are tabulated. Cumulus mineral compositions in the basal cumulates are: olivine Fo86-71, plagioclase An81-63, bronzite Ca3Mg82Fe15 - Ca4Mg75Fe21, augite Ca45Mg47Fe8 - Ca42Mg48Fe10. The layered gabbro above the basal cumulates consists dominantly of lenticularly interlayered plagioclase-augite-orthopyroxene-olivine, plagioclase-augite- olivine and plagioclase-orthopyroxene-augite cumulates, the composition ranges being olivine Fo75-50, plagioclase An78-42, orthopyroxene and inverted pigeonite Ca2.8Mg76.4Fe20.8 - Ca1.4Mg31.0Fe67.6, augite Ca43.1Mg46.9Fe10.0 - Ca40.5Mg27.1Fe32.4. The most iron-rich pyroxene and albite-rich plagioclase occur in a zone near the margin of the intrusion and are probably related to exchange reactions with the country rock. It is considered that the gabbro did not accumulate by simple fractional crystallization of a single or even several large batches of magma, but by numerous influxes of previously fractionated magma from a deeper reservoir. Conditions of crystallization are interpreted as approx 1055oC, 5.4 kbar and fO2 near the wustite-magnetite buffer.-R.A.H.

  1. Cogenetic Rock Fragments from a Lunar Soil: Evidence of a Ferroan Noritic-Anorthosite Pluton on the Moon

    NASA Technical Reports Server (NTRS)

    Jolliff, B. L.; Haskin, L. A.

    1995-01-01

    The impact that produced North Ray Crater, Apollo 16 landing site, exhumed rocks that include relatively mafic members of the lunar ferroan anorthositic suite. Bulk and mineral compositions indicate that a majority of 2-4 mm lithic fragments from sample 67513, including impact breccias and monomict igneous rocks, are related to a common noritic-anorthosite precursor. Compositions and geochemical trends of these lithic fragments and of related samples collected along the rim of North Ray Crater suggest that these rocks derived from a single igneous body. This body developed as an orthocumulate from a mixture of cumulus plagioclase and mafic intercumulus melt, after the plagioclase had separated from any cogenetic mafic minerals and had become concentrated into a crystal mush (approximately 70 wt% plagioclase, 30 wt% intercumulus melt). We present a model for the crystallization of the igneous system wherein "system" is defined as cumulus plagioclase and intercumulus melt. The initial accumulation of plagioclase is analogous to the formation of thick anorthosites of the terrestrial Stillwater Complex; however, a second stage of formation is indicated, involving migration of the cumulus-plagioclase-intercumulus-melt system to a higher crustal level, analogous to the emplacement of terrestrial massif anorthosites. Compositional variations of the lithic fragments from sample 67513 are consistent with dominantly equilibrium crystallization of intercumulus melt. The highly calcic nature of orthocumulus pyroxene and plagioclase suggests some reaction between the intercumulus melt and cumulus plagioclase, perhaps facilitated by some recrystallization of cumulus plagioclase. Bulk compositions and mineral assemblages of individual rock fragments also require that most of the mafic minerals fortned in close contact with cumulus plagioclase, not as separate layers. The distribution of compositions (and by inference, modes) has a narrow peak at anorthosite and a broader, larger

  2. Shearing within lower crust during progressive retrogression: structural analysis of gabbroic rocks from the Godzilla Mullion, an oceanic core complex in the Parece Vela backarc basin

    NASA Astrophysics Data System (ADS)

    Harigane, Y.; Michibayashi, K.; Ohara, Y.

    2008-12-01

    Microstructural and petrological analyses of gabbroic rocks sampled from the Godzilla Mullion, located along the Parece Vela Basin spreading ridge (Parece Vela Rift), Philippine Sea. We reveal the development of a ductile shear zone in the lower crust. The shear zone is interpreted to represent a detachment fault within an oceanic core complex. Microstructures indicative of intense deformation, characterized by porphyroclastic textures consisting dominantly of coarse plagioclase porphyroclasts and lesser clinopyroxene porphyroclasts in a fine-grained matrix, are observed within samples of gabbroic rocks dredged near the breakaway area of the Godzilla Mullion (dredge site D6). Samples are classified into three types based upon the grain size of fine-grained plagioclase in the matrix: coarse (80--130micron), medium (25micron), and fine (~10micron). Although the chemical composition of plagioclase porphyroclasts is consistently An 40--50 among all sample types, the compositions of fine grains in the matrix vary with decreasing grain size, being An 40--50 for the coarse-type, An 30--40 for the medium-type, and An 5--30 for the fine-type. This finding implies that the composition of fine-grained plagioclase in the matrix is related to the following retrograde reaction that occurred during deformation: clinopyroxene + plagioclase + Fe-Ti oxide + fluid - hornblende + plagioclase. Plagioclase crystal-preferred orientations also show a gradual change with grain size and plagioclase composition, varying from a (010)[100] pattern for the coarse-type, (010)[100] and (001)[100] patterns for the medium-type, and a weak (001)[100] pattern or random orientations for the fine-type. These patterns are interpreted to result from a change in the deformation mechanism of plagioclase from dislocation creep to grain-size-sensitive creep with decreasing temperature, thereby leading to strain softening and localization during cooling. Although secondary amphibole occurs ubiquitously within

  3. Shock-induced melting in anorthositic rock 60015 and a fragment of anorthositic breccia from the 'picking pot' /70052/. [meteoritic impacts on moon

    NASA Technical Reports Server (NTRS)

    Sclar, C. B.; Bauer, J. F.

    1974-01-01

    Microscopic and chemical evidence are presented to support the contention that shock-generated incipient grain-boundary melting of plagioclase occurred in an anorthositic lunar rock and that shock-generated plagioclase liquid was present along grain boundaries during post-shock adiabatic expansion in a fragment of anorthositic breccia. The first contention is supported by microtextural relationships in the rock, the composition of its metal particles (most iron with some cobalt and less nickel), and glass inclusions with vapor bubbles. The second contention is supported by angular irregular voids in the fragment as well as the occurrence of oriented glass filaments in some of the voids. It is shown that shock-generation of 'cataclastic anorthosite' and high-temperature plagioclase liquids can explain the exceptionally young lead and argon ages of the anorthositic rock. The results of the breccia study indicate that shock lithification of plagioclase-rich particulate material from the highland regolith is due to grain-boundary melting of plagioclase.

  4. Geochemistry of apollo 15 basalt 15555 and soil 15531.

    PubMed

    Schnetzler, C C; Philpotts, J A; Nava, D F; Schuhmann, S; Thomas, H H

    1972-01-28

    Major and trace element concentrations have been determined by atomic absorption spectrophotometry, colorimetry, and isotope dilution in Apollo 15 mare basalt 15555 from the Hadley Rille area; trace element concentrations have also been determined in plagioclase and pyroxene separates from basalt 15555 and in soil 15531 from the same area. Basalt 15555 most closely resembles in composition the Apollo 12 olivine-rich basalts. The concentrations of lithium, potassium, rubidium, barium, rare-earth elements, and zirconium in basalt 15555 are the lowest, and the negative europium anomaly is the smallest, reported for lunar basalts; this basalt might be the least differentiated material yet returned from the moon. Crystallization and removal of about 6 percent of plagioclase similar to that contained in the basalt would account for the observed europium anomaly; if plagioclase is not on the liquidus of this basalt, a multistage origin is indicated. Mineral data indicate that plagioclase and pyroxene approached quasi-equilibrium. Most of the chemical differences between basalt 15555 and soil 15531 would be accounted for if the soil were a mixture of 88 percent basalt, 6 percent KREEP (a component, identified in other Apollo soils, rich in potassium, rare-earth elements, and phosphorus) and 6 percent plagioclase (anorthosite?). PMID:17731364

  5. Th-230 - U-238 series disequilibrium of the Olkaria basalts Gregory Rift Valley, Kenya

    NASA Technical Reports Server (NTRS)

    Black, S.; Macdonald, R.; Kelly, M.

    1993-01-01

    U-Th disequilibrium analyses of the Naivasha basalts show a very small (U-238/Th-230) ratios which are lower than any previously analyzed basalts. The broadly positive internal isochron trend from one sample indicates that the basalts may have source heterogeneities, this is supported by earlier work. The Naivasha complex comprises a bimodal suite of basalts and rhyolites. The basalts are divided into two stratigraphic groups each of a transitional nature. The early basalt series (EBS) which were erupted prior to the Group 1 comendites and, the late basalt series (LBS) which erupted temporally between the Broad Acres and the Ololbutot centers. The basalts represent a very small percentage of the overall eruptive volume of material at Naivasha (less than 2 percent). The analyzed samples come from four stratigraphic units in close proximity around Ndabibi, Hell's Gate and Akira areas. The earliest units occur as vesicular flows from the Ndabibi plain. These basalts are olivine-plagioclase phyric with the associated hawaiites being sparsely plagioclase phyric. An absolute age of 0.5Ma was estimated for these basalts. The next youngest basalts flows occur as younger tuft cones in the Ndabibi area and are mainly olivine-plagioclase-clinopyroxcene phyric with one purely plagioclase phyric sample. The final phase of activity at Ndabibi resulted in much younger tuft cones consisting of air fall ashes and lapilli tufts. Many of these contain resorbed plagioclase phenocrysts with sample number 120c also being clinopyroxene phyric. The isotopic evidence for the basalt formation is summarized.

  6. Post-igneous redistribution of components in eucrites

    NASA Technical Reports Server (NTRS)

    Phinney, W. C.; Lindstrom, D. J.; Mittlefehldt, D. W.; Martinez, R. R.

    1993-01-01

    In our analyses, we utilize a microdrilling technique that removes 40 to 100 micron diameter cores from mineral grains in thin sections analyzed by microprobe. The cores are then analyzed by INAA using the technique of Lindstrom. Three eucrites were selected for application of this analytical technique: monomict breccias Pasamonte and Stannern and unbrecciated EET90020. Pasamonte is among the most unequilibrated of the eucrites on the basis of zoning in pyroxenes and is considered to be an igneous rock not significantly affected by metamorphism. Stannern has igneous texture but its pyroxenes indicate some re-equilibration, although little, if any, recrystallization. EET90020 has a granulite texture and has been substantially recrystallized. Our sample of Pasamonte contains several clasts of different grain sizes ranging from glass to fine grained with diabasic texture containing lathy plagioclase, unexsolved pigeonite, and mesostasis. Cores were taken of the glass and from minerals and mesostases in six lithic clasts which normally allowed sampling of more than one phase per clast. Our sample of Stannern is also a breccia but with little difference in grain size between clasts and matrix. The plagioclase and pigeonite are blocky, twinned, and exsolved and coexist with a bit of mesostasis. Cores were taken of plagioclase and pigeonite with no attempt to distinguish separate clasts. EET90020 is a granular mixture of twinned plagioclase and pigeonite having rather uniform size and many triple junctions. Several cores were taken of both phases. Both clear and cloudy grains of plagioclase and pyroxene were sampled in all three eucrites.

  7. Magma evolution in the Nain Complex, Labrador, and implications for the origin of anorthosite

    SciTech Connect

    Berg, J.H.

    1985-01-01

    Analyses of over 50 chilled margins of plutons and contemporaneous dikes in the anorthositic Nain Complex reveal a well-defined trend of liquid evolution along a plagioclase-olivine cotectic. Fractional crystallization of olivine and plagioclase has resulted in extreme enrichment of TiO/sub 2/ and FeO/sub T/ and depletion of Al/sub 2/O/sub 3/ in the more evolved compositions. The contemporaneous Harp Dikes and Seal Lake Volcanics of southern Labrador also fall along this trend. Although rare, other dikes in the Nain complex are very olivine-rich and the olivine is quench-textured. Modeling of major and trace elements indicates that the leucotroctolitic liquids can be derived from the melatroctolites by olivine removal, and that the more evolved cotectic liquids can be derived from the leucotroctolitic liquids by removal of o1 + plag in a 25:75 ratio. If the equilibrium saturation surface of plagioclase is ignored, continued olivine removal from the leucotroctolites is capable of producing compositions very similar to compositions of hypothesized anorthositic magmas. In the Nain Complex, field evidence for supersaturation of plagioclase is abundant. Since all of the compositions discussed above are low in normative diopside, it may be that such liquids are less capable of nucleating plagioclase than liquid with more normal diopside contents, thus permitting the supersaturation.

  8. Geochemistry of apollo 15 basalt 15555 and soil 15531.

    PubMed

    Schnetzler, C C; Philpotts, J A; Nava, D F; Schuhmann, S; Thomas, H H

    1972-01-28

    Major and trace element concentrations have been determined by atomic absorption spectrophotometry, colorimetry, and isotope dilution in Apollo 15 mare basalt 15555 from the Hadley Rille area; trace element concentrations have also been determined in plagioclase and pyroxene separates from basalt 15555 and in soil 15531 from the same area. Basalt 15555 most closely resembles in composition the Apollo 12 olivine-rich basalts. The concentrations of lithium, potassium, rubidium, barium, rare-earth elements, and zirconium in basalt 15555 are the lowest, and the negative europium anomaly is the smallest, reported for lunar basalts; this basalt might be the least differentiated material yet returned from the moon. Crystallization and removal of about 6 percent of plagioclase similar to that contained in the basalt would account for the observed europium anomaly; if plagioclase is not on the liquidus of this basalt, a multistage origin is indicated. Mineral data indicate that plagioclase and pyroxene approached quasi-equilibrium. Most of the chemical differences between basalt 15555 and soil 15531 would be accounted for if the soil were a mixture of 88 percent basalt, 6 percent KREEP (a component, identified in other Apollo soils, rich in potassium, rare-earth elements, and phosphorus) and 6 percent plagioclase (anorthosite?).

  9. Precambrian tholeiitic-dacitic rock-suites and Cambrian ultramafic rocks in the Pennine nappe system of the Alps: Evidence from Sm-Nd isotopes and rare earth elements

    USGS Publications Warehouse

    Stille, P.; Tatsumoto, M.

    1985-01-01

    Major element, trace element and Sm-Nd isotope analyses were made of polymetamorphic hornblendefelses, plagioclase amphibolites and banded amphibolites from the Berisal complex in the Simplon area (Italy, Switzerland) to determine their age, origin and genetic relationships. In light of major and rare earth element data, the hornblendefelses are inferred to have originally been pyroxene-rich cumulates, the plagioclase amphibolites and the dark layers of the banded amphibolites to have been tholeiitic basalts and the light layers dacites. The Sm-Nd isotope data yield isochron ages of 475??81 Ma for the hornblendefelses, 1,018??59 Ma for the plagioclase amphibolites and 1,071??43 Ma for the banded amphibolites. The 1 Ga magmatic event is the oldest one ever found in the crystalline basement of the Pennine nappes. The Sm -Nd isotope data support the consanguinity of the tholeiitic dark layers and the dacitic light layers of the banded amphibolites with the tholeiitic plagioclase amphibolites and the ultramafic hornblendefelses. The initial e{open}Nd values indicate that all three rock types originated from sources depleted in light rare earth elements. We suggest that plagioclase and banded amphibolites were a Proterozoic tholeiite-dacite sequence that was strongly deformed and flattened during subsequent folding. The hornblendefelses are thought to be Cambrian intrusions of pyroxene-rich material. ?? 1985 Springer-Verlag.

  10. The petrogenesis of sodic island arc magmas at Savo volcano, Solomon Islands

    NASA Astrophysics Data System (ADS)

    Smith, D. J.; Petterson, M. G.; Saunders, A. D.; Millar, I. L.; Jenkin, G. R. T.; Toba, T.; Naden, J.; Cook, J. M.

    2009-12-01

    Savo, Solomon Islands, is a historically active volcano dominated by sodic, alkaline lavas, and pyroclastic rocks with up to 7.5 wt% Na2O, and high Sr, arc-like trace element chemistry. The suite is dominated by mugearites (plagioclase-clinopyroxene-magnetite ± amphibole ± olivine) and trachytes (plagioclase-amphibole-magnetite ± biotite). The presence of hydrous minerals (amphibole, biotite) indicates relatively wet magmas. In such melts, plagioclase is relatively unstable relative to iron oxides and ferromagnesian silicates; it is the latter minerals (particularly hornblende) that dominate cumulate nodules at Savo and drive the chemical differentiation of the suite, with a limited role for plagioclase. This is potentially occurring in a crustal “hot zone”, with major chemical differentiation occurring at depth. Batches of magma ascend periodically, where they are subject to decompression, water saturation and further cooling, resulting in closed-system crystallisation of plagioclase, and ultimately the production of sodic, crystal and feldspar-rich, high-Sr rocks. The sodic and hydrous nature of the parental magmas is interpreted to be the result of partial melting of metasomatised mantle, but radiogenic isotope data (Pb, Sr, Nd) cannot uniquely identify the source of the metasomatic agent.

  11. Deformation and hydrothermal metamorphism of gabbroic rocks within the Godzilla Megamullion, Parece Vela Basin, Philippine Sea

    NASA Astrophysics Data System (ADS)

    Harigane, Yumiko; Michibayashi, Katsuyoshi; Ohara, Yasuhiko

    2011-06-01

    Microstructural and petrologic analyses of 7 gabbroic rocks sampled from the medial area of the Godzilla Megamullion (site KH07-02-D18), located along the Parece Vela Basin spreading ridge (Parece Vela Rift), Philippine Sea, reveal the development of a high-temperature ductile shear zone associated with hydrothermal metamorphism in the lower crust. The deformed gabbroic rocks are petrographically classified into mylonites and an ultramylonite, and are characterized by porphyroclastic textures consisting mainly of coarse plagioclase and clinopyroxene/amphibole porphyroclasts in a fine-grained matrix. Plagioclase crystallographic-preferred orientations vary from (010)[100] and (001)[100] patterns in the mylonites to a weak (001)[100] pattern in the some mylonites and ultramylonite, suggesting a change in the deformation mechanism from dislocation creep to grain-size-sensitive creep with increasing intensity of deformation. The chemical composition of matrix plagioclase is generally more sodic than that of porphyroclasts. Secondary amphibole is ubiquitous, consisting mainly of pargasite and magnesiohornblende (brown hornblende) and actinolite (green hornblende). The mineral assemblage is consistent with the hydrothermal metamorphic reaction: clinopyroxene + calcic plagioclase + fluid → amphibole + sodic plagioclase. Compared with deformed gabbroic rocks from the breakaway and termination areas of the Godzilla Megamullion, the samples record ductile shearing under high temperature conditions, possibly related to the development of the Godzilla Megamullion, although hydrothermal activity in the medial area appears to have been less intense than in both the breakaway and termination areas.

  12. Sm-Nd Age and Nd- and Sr- Isotopic Evidence for the Petrogenesis of Dhofar 378

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Ikeda, Y.; Shih, C.-Y.; Reese, Y. D.; Nakamura, N.; Takeda, H.

    2006-01-01

    Dhofar 378 (hereafter Dho 378) is one of the most ferroan lithologies among martian meteorites, resembling the Los Angeles basaltic shergottite in lithology and mineral chemistry, although it is more highly shocked than Los Angeles. All plagioclase (Pl) grains in the original lithology were melted by an intense shock in the range 55-75 GPa. Clinopyroxenes (Cpx) sometimes show mosaic extinction under a microscope showing that they, too, experienced intense shock. Nevertheless, they zone from magnesian cores to ferroan rims, reflecting the original lithology. Cpx grains also often contain exsolution lamellae, showing that the original lithology cooled slowly enough for the lamellae to form. Because all plagioclase grains were melted by the intense shock and subsequently quenched, the main plagioclase component is glass (Pl-glass) rather than maskelynite. Like Los Angeles, but unlike most basaltic shergottites, Dho 378 contains approximately equal modal abundances of Cpx and Pl-glass. The grain sizes of the original minerals were comparatively large (approximately 1 mm). The original plagioclase zoning has been severely modified. Following shock melting, the plagioclase melts crystallized from the outside inward, first forming outer rims of Cpx-Pl intergrowths (approximately 10 micrometers) followed by inner rims (10's to 100 micrometers) of An(sub 40-50) feldspar, and finally Pl-gl cores of compositions An(sub 33-50) with orthoclase compositions up to Or(sub 12).

  13. Interaction between two contrasting magmas in the Albtal pluton (Schwarzwald, SW Germany): textural and mineral-chemical evidence

    NASA Astrophysics Data System (ADS)

    Michel, Lorenz; Wenzel, Thomas; Markl, Gregor

    2016-07-01

    The magmatic evolution of the Variscan Albtal pluton, Schwarzwald, SW Germany, is explored using detailed textural observations and the chemical composition of plagioclase and biotite in both granite and its mafic magmatic enclaves (MMEs). MMEs probably formed in a two-step process. First, mafic magma intruded a granitic magma chamber and created a boundary layer, which received thermal and compositional input from the mafic magma. This is indicated by corroded "granitic" quartz crystals and by large "granitic" plagioclase xenocrysts, which contain zones of higher anorthite and partly crystallized from a melt of higher Sr content. Texturally, different plagioclase types (e.g. zoned and inclusion-rich types) correspond to different degrees of overprint most likely caused by a thermal and compositional gradient in the boundary layer. The intrusion of a second mafic magma batch into the boundary layer is recorded by a thin An50 zone along plagioclase rims that crystallized from a melt enriched in Sr. Most probably, the second mafic intrusion caused disruption of the boundary layer, dispersal of the hybrid magma in the granite magma and formation of the enclaves. Rapid thermal quenching of the MMEs in the granite magma is manifested by An30 overgrowths on large plagioclase grains that contain needle apatites. Our results demonstrate the importance of microtextural investigations for the reconstruction of possible mixing end members in the formation of granites.

  14. Shooting stars: Our guide to the early solar system`s formation

    SciTech Connect

    O`Reilly, J.

    1995-11-01

    Plagioclase grains were studied from the Allende meteorite, sample 916, to determine a chronology of events that occurred within the first ten million years of the solar system`s formation. Radiometric dating of the {sup 26}-Al-{sup 26}Mg system was accomplished on the ion microprobe mass spectromer. The excess {sup 26}-Mg in core plagioclase grains of calcium-aluminum rich inclusions (CAIs) provided a time of original condensation for {sup 26}-Al of {approximately}4.55 million years ago, a hundred million years prior to the formation of the planets. This data has been found to correlate with other excess {sup 26}-Mg samples. Measurements of plagioclase in the CAI`s periphery dated 1.52 million years later, suggesting an interesting history of collision and melting.

  15. Mechanical processess affecting differentiation of protolunar material

    NASA Technical Reports Server (NTRS)

    Kaula, W. M.

    1977-01-01

    Mechanisms prior to lunar formation are sought to account for the loss of volatiles, the depletion of iron, and the enrichment of plagioclase. Some of the same mechanisms are necessary to account for achondritic, stony-iron, and iron meteorites. Collisions seem marginally capable of providing the heat to accomplish the differentiation into iron, magnesian silicates, and plagioclase. Once this differentiation is accomplished, the subsequent mechanical history should have been sufficient to sort material according to composition in the protolunar circumterrestrial cloud. Effects operating include the correlation of body size with mechanical strength; the lesser ability of the cloud to trap the larger, denser infalling bodies; the more rapid drawing into the Earth of the larger moonlets; and the higher energy orbits for dominantly plagioclase smaller pieces broken off by collision.

  16. Phenocryst compositional diversity as a consequence of degassing induced crystallization

    NASA Astrophysics Data System (ADS)

    Frey, H. M.; Lange, R. A.

    2006-12-01

    In volcanic arc lavas, compositional diversity in phenocryst populations has commonly been attributed to magma mingling or mixing. However, the amount of dissolved water in the magma appears to have a significant effect on composition of the phenocrysts that crystallize from the melt. Tens of plagioclase and pyroxene phenocrysts were analyzed from six crystal-poor (<6 vol%) andesite and dacite scoria cones on the flanks of Volcán Tequila in western Mexico. The compositions and phase assemblages in the crystal-poor lavas are remarkably similar to that of the crystal-rich lavas (15-30 vol%) from the main edifice and flank flows of Volcán Tequila. Both lava types have plagioclase phenocrysts that span a wide compositional range, up to 45 mol% anorthite. In the crystal-rich lavas, individual phenocrysts have significant compositional variation, from oscillatory zoning of tens of mol% to relatively homogenous composition cores with a 5-10 um rim of significantly different composition. In contrast, plagioclase in the crystal-poor lavas has compositional variation within the population, but not individual phenocrysts. The plagioclase have little core to rim zoning and remarkable euhedral shapes, irrespective of composition. They are often riddled with melt inclusion channels, which broadly parallel the long axis of the crystal. These textures have been recognized in plagioclase crystallization experiments to be the result of rapid and large degrees of undercooling during crystallization. In the crystal-poor lavas, there is no textural evidence to suggest the phenocrysts were ever out of equilibrium with the host magma, so an alternative to magma mingling/mixing must be considered. The composition of plagioclase is dependent on several parameters, but varies most strongly with H2O content. Because of this relationship, a new plagioclase hygrometer (Lange and Frey, 2006) calibrated on plagioclase compositions from water-saturated experiments in the literature, can be used

  17. Short-lived oxygen diffusion during hot, deep-seated meteoric alteration of anorthosite

    PubMed

    Mora; Riciputi; Cole

    1999-12-17

    Heterogeneous oxygen isotope compositions of plagioclase from the Boehls Butte anorthosite include some of the most oxygen-18-depleted values (to -16 per mil) reported for plagioclase in meta-igneous rocks and indicate high-temperature (T > 500 degrees C) isotopic exchange between plagioclase and nearly pristine meteoric fluid. Retrograde reaction-enhanced permeability assisted influx of meteoric-hydrothermal fluids into the deep-seated anorthosite. Isotopic gradients of about 14 per mil over 600 micrometers in single crystals require short-lived (about 10(4) years) diffusional exchange of oxygen and locally large effective water:rock ratios, followed by rapid loss of water and cessation of oxygen diffusion in the anorthosite. PMID:10600738

  18. Repeated shock and thermal metamorphism of the Abernathy meteorite

    NASA Technical Reports Server (NTRS)

    Lambert, P.; Lewis, C.; Moore, C. B.

    1984-01-01

    Based on the example of Abernathy (L6 chondrite), it is shown how petrographic investigation can be used to unravel the nature, chronology and conditions of superposed metamorphic events in chondrites. Features considered include the texture of the rock, optical characteristics of olivine, pyroxene and plagioclase, refractive index of plagioclase, metallographical characteristics and microhardness of Fe-Ni alloys. It is deduced that Abernathy has been involved in at least six metamorphic events since the formation of the chondrite. Four distinct shock events and two separate reheating events have been identified. The chronology of these events is established. The conditions for the last four events are reasonably well constrained. These include severe reheating (T greater than 1200 C); severe shock causing complete melting of plagioclase and local melting of the rock (P between 90 and 110 GPa, T between 1250 and 1350 C); mild shock (P between 10 and 25 GPa, T less than 500 C); and reheating below 800 C.

  19. Theoretical prediction of phase relationships in planetary mantles

    NASA Astrophysics Data System (ADS)

    Wood, B. J.; Holloway, J. R.

    Thermodynamic and phase equilibrium data are used to generate an internally consistent set of enthalpies and entropies for important components of the CaO-MgO-Al2O3-SiO2 (CMAS) system in silica-undersaturated compositions. The addition of Na and Fe(2+) to the CMAS system produces shifts in the plagioclase, spinel and garnet stability fields. While the Morgan and Anders (1979) model Martian composition has stability fields of plagioclase and garnet lherzolite, and a small spinel lherzolite field at temperatures below 900 C, the Martian mantle composition of McGetchin and Smyth (1978) would not contain orthopyroxene, and a low pressure assemblage of plagioclase-spinel wehrlite would be replaced by garnet-spinel wehrlite at higher pressure. In both cases, the Fe-Mg ratio would be substantially greater than that found in primitive terrestrial basalts.

  20. Shock compression of a recrystallized anorthositic rock from Apollo 15

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.; Gibbons, R. V.; O'Keefe, J. D.

    1973-01-01

    Hugoniot measurements on 15,418, a recrystallized and brecciated gabbroic anorthosite, yield a value of the Hugoniot elastic limit (HEL) varying from 45 to 70 kbar as the final shock pressure is varied from 70 to 280 kbar. Above the HEL and to 150 kbar, the pressure-density Hugoniot is closely described by a hydrostatic equation of state constructed from ultrasonic data for single-crystal plagioclase and pyroxene. Above 150 kbar, the Hugoniot states indicate that a series of one or more shock-induced phase changes are occurring in the plagioclase and pyroxene. From Hugoniot data for both the single-crystal minerals and the Frederick diabase, we infer that the shock-induced high-pressure phases in 15,418 probably consists of a 3.71 g/cu cm density, high-pressure structure for plagioclase and a 4.70 g/cu cm perovskite-type structure for pyroxene.

  1. Epidote-amphibolite to amphibolite facies transition in the southern Appalachian Piedmont: P-T conditions across the garnet and calc-silicate isograds

    SciTech Connect

    Chalokwu, C.I. )

    1989-06-01

    Amphibolites occur in three distinct localities (Hudson Rapids, Davis Mill, and Lindsey Creek) in the west-central Georgia part of the Uchee belt, southern Appalachian Piedmont. Epidote-amphibolite facies assemblage (plagioclase (An{sub 24-36}) + hornblende + epidote + sphene + quartz) at the Davis Mill occurrence gives way to the amphibolite assemblage (calcic plagioclase (An{sub 33-88}) + hornblende + garnet + epidote + ilmenite + quartz) at Hudson Rapids. Mineral chemistries indicate that the transition was controlled by increasing pressure and unusual bulk compositions. Equilibrium mineral assemblages record temperatures ranging from 610 to 780 C at the garnet isograd, and from 570 to 634 C close to the calc-silicate isograd. Estimated pressures range from 7 to 9.25 {plus minus} 2 kbar. These P-T conditions are consistent with a thickened crustal section caused by emplacement of the Piedmont allochthon, followed by isobaric cooling (or isothermal compression), and the formation of symplectites of epidote + amphibole around plagioclase + clinopyroxene.

  2. Short-lived oxygen diffusion during hot, deep-seated meteoric alteration of anorthosite

    PubMed

    Mora; Riciputi; Cole

    1999-12-17

    Heterogeneous oxygen isotope compositions of plagioclase from the Boehls Butte anorthosite include some of the most oxygen-18-depleted values (to -16 per mil) reported for plagioclase in meta-igneous rocks and indicate high-temperature (T > 500 degrees C) isotopic exchange between plagioclase and nearly pristine meteoric fluid. Retrograde reaction-enhanced permeability assisted influx of meteoric-hydrothermal fluids into the deep-seated anorthosite. Isotopic gradients of about 14 per mil over 600 micrometers in single crystals require short-lived (about 10(4) years) diffusional exchange of oxygen and locally large effective water:rock ratios, followed by rapid loss of water and cessation of oxygen diffusion in the anorthosite.

  3. Geologic setting and petrology of Apollo 15 anorthosite /15415/.

    NASA Technical Reports Server (NTRS)

    Wilshire, H. G.; Schaber, G. G.; Jackson, E. D.; Silver, L. T.; Phinney, W. C.

    1972-01-01

    The geological setting, petrography and history of this Apollo 15 lunar rock sample are discussed, characterizing the sample as coarse-grained anorthosite composed largely of calcic plagioclase with small amounts of three pyroxene phases. The presence of shattered and granulated minerals in the texture of the rock is traced to two or more fragmentation events, and the presence of irregular bands of coarsely recrystallized plagioclase and minor pyroxene crossing larger plagioclase grains is traced to an earlier thermal metamorphic event. It is pointed out that any of these events may have affected apparent radiometric ages of elements in this rock. A comparative summarization of data suggests that this rock is the least-deformed member of a suite of similar rocks ejected from beneath the regolith at Spur crater.

  4. Observations of silicate reststrahlen bands in lunar infrared spectra

    NASA Technical Reports Server (NTRS)

    Potter, A. E., Jr.; Morgan, T. H.

    1982-01-01

    Thermal emission spectra of three lunar sites (Apollo 11, Descartes Formation, and Tycho central peak) are measured in the 8-14 micron spectral range. Transmission and instrument effects are accounted for by forming ratios of the Descartes and Tycho spectra to the Apollo 11 spectrum. The ratio spectra are compared with ratios of published laboratory spectra of returned lunar samples and also with ratio spectra calculated using the Aronson-Emslie (1975) model. The comparisons show pyroxene bands in the Descartes ratio spectrum and plagioclase bands in the Tycho ratio spectrum. The Tycho spectrum is found to be consistent with the existence of fine plagioclase dust (approximately 1 micron) at the rock surface and a higher-than-usual sodium content of the plagioclase.

  5. Melting behavior and phase relations of lunar samples

    NASA Technical Reports Server (NTRS)

    Hays, J. F.

    1976-01-01

    An attempt was made to show that feldspar would float during melting. Large anorthite crystals were placed beneath a silicate glass representative of liquid in which plagioclase accumulation is thought to have occurred. In less than 3 hours at 1,300 C, the crystals rose to the top in a Pt crucible 3 cm deep equilibrated in air and in a Mo crucible 1.5 cm deep equilibrated in an H2/CO2 gas stream of log PO2 = -10.9 (below Fe/FeO). These results suggest that lunar crustal formation by feldspar flotation is possible without special recourse to differential sinking of plagioclase versus mafic minerals or selective elutriation of plagioclase.

  6. Partial melting of amphibolite to trondhjemite at Nunatak Fiord, St. Elias Mountains, Alaska

    SciTech Connect

    Barker, F.; McLellan, E.L.; Plafker, G.

    1985-01-01

    At Nunatak Fiord, 55km NE of Yakutat, Alaska, a uniform layer of Cretaceous basalt ca. 3km thick was metamorphosed ca. 67 million years ago to amphibolite and locally partially melted to pegmatitic trondhjemite. Segregations of plagioclase-quartz+/-biotite rock, leucosomes in amphibolite matrix, range from stringers 5-10mm thick to blunt pods as thick as 6m. They tend to be parallel to foliation of the amphibolite, but crosscutting is common. The assemblage aluminous hornblende-plagioclase-epidote-sphene-quartz gave a hydrous melt that crystallized to plagioclase-quartz+/-biotite pegmatitic trondhjemite. 5-10% of the rock melted. Eu at 2x chondrites is positively anomalous. REE partitioning in melt/residum was controlled largely by hornblende and sphene. Though the mineralogical variability precludes quantitative modeling, partial melting of garnet-free amphibolite to heavy-REE-depleted trondhjemitic melt is a viable process.

  7. Experiments and Spectral Studies of Martian Volcanic Rocks: Implications for the Origin of Pathfinder Rocks and Soils

    NASA Technical Reports Server (NTRS)

    Rutherford, Malcolm J.; Mustard, Jack; Weitz, Catherine

    2002-01-01

    The composition and spectral properties of the Mars Pathfinder rocks and soils together with the identification of basaltic and andesitic Mars terrains based on Thermal Emission Spectrometer (TES) data raised interesting questions regarding the nature and origin of Mars surface rocks. We have investigated the following questions: (1) are the Pathfinder rocks igneous and is it possible these rocks could have formed by known igneous processes, such as equilibrium or fractional crystallization, operating within SNC magmas known to exist on Mars? If it is possible, what P (depth) and PH2O conditions are required? (2) whether TES-based interpretations of plagioclase-rich basalt and andesitic terrains in the south and north regions of Mars respectively are unique. Are the surface compositions of these regions plagioclase-rich, possibly indicating the presence of old AI-rich crust of Mars, or are the spectra being affected by something like surface weathering processes that might determine the spectral pyroxene to plagioclase ratio?

  8. Theoretical prediction of phase relationships in planetary mantles

    NASA Technical Reports Server (NTRS)

    Wood, B. J.; Holloway, J. R.

    1982-01-01

    Thermodynamic and phase equilibrium data are used to generate an internally consistent set of enthalpies and entropies for important components of the CaO-MgO-Al2O3-SiO2 (CMAS) system in silica-undersaturated compositions. The addition of Na and Fe(2+) to the CMAS system produces shifts in the plagioclase, spinel and garnet stability fields. While the Morgan and Anders (1979) model Martian composition has stability fields of plagioclase and garnet lherzolite, and a small spinel lherzolite field at temperatures below 900 C, the Martian mantle composition of McGetchin and Smyth (1978) would not contain orthopyroxene, and a low pressure assemblage of plagioclase-spinel wehrlite would be replaced by garnet-spinel wehrlite at higher pressure. In both cases, the Fe-Mg ratio would be substantially greater than that found in primitive terrestrial basalts.

  9. Geochemistry of the lunar highlands as revealed by measurements of thermal neutrons

    NASA Astrophysics Data System (ADS)

    Peplowski, Patrick N.; Beck, Andrew W.; Lawrence, David J.

    2016-03-01

    Thermal neutron emissions from the lunar surface provide a direct measure of bulk elemental composition that can be used to constrain the chemical properties of near-surface (depth <1 m) lunar materials. We present a new calibration of the Lunar Prospector thermal neutron map, providing a direct link between measured count rates and bulk elemental composition. The data are used to examine the chemical and mineralogical composition of the lunar surface, with an emphasis on constraining the plagioclase concentration across the highlands. We observe that the regions of lowest neutron absorption, which correspond to estimated plagioclase concentrations of >85%, are generally associated with large impact basins and are colocated with clusters of nearly pure plagioclase identified with spectral reflectance data.

  10. Disequilibrium dihedral angles in dolerite sills

    USGS Publications Warehouse

    Holness, Marian B.; Richardson, Chris; Helz, Rosalind T.

    2012-01-01

    The geometry of clinopyroxene-plagioclase-plagioclase junctions in mafic rocks, measured by the median dihedral angle Θcpp, is created during solidification. In the solidifying Kilauea Iki (Hawaii) lava lake, the wider junctions between plagioclase grains are the first to be filled by pyroxene, followed by the narrower junctions. The final Θcpp, attained when all clinopyroxene-plagioclase-plagioclase junctions are formed, is 78° in the upper crust of the lake, and 85° in the lower solidification front. Θcpp in the 3.5-m-thick Traigh Bhàn na Sgùrra sill (Inner Hebrides) is everywhere 78°. In the Whin Sill (northern England, 38 m thick) and the Portal Peak sill (Antarctica, 129 m thick), Θcpp varies symmetrically, with the lowest values at the margins. The 266-m-thick Basement Sill (Antarctica) has asymmetric variation of Θcpp, attributed to a complex filling history. The chilled margins of the Basement Sill are partially texturally equilibrated, with high Θcpp. The plagioclase grain size in the two widest sills varies asymmetrically, with the coarsest rocks found in the upper third. Both Θcpp and average grain size are functions of model crystallization times. Θcpp increases from 78° to a maximum of ∼100° as the crystallization time increases from 1 to 500 yr. Because the use of grain size as a measure of crystallization time is dependent on an estimate of crystal growth rates, dihedral angles provide a more direct proxy for cooling rates in dolerites.

  11. Groundmass crystallisation and cooling rates of lava-like ignimbrites: the Grey's Landing ignimbrite, southern Idaho, USA

    NASA Astrophysics Data System (ADS)

    Ellis, B. S.; Cordonnier, B.; Rowe, M. C.; Szymanowski, D.; Bachmann, O.; Andrews, G. D. M.

    2015-10-01

    Constraining magmatic and eruptive processes is key to understanding how volcanoes operate. However, reconstructing eruptive and pre-eruptive processes requires the ability to see through any post-eruptive modification of the deposit. The well-preserved Grey's Landing ignimbrite from the central Snake River Plain provides an opportunity to systematically investigate the post-eruptive processes occurring through a single deposit sheet. Despite overall compositional homogeneity in both bulk and glass compositions, the Grey's Landing ignimbrite does preserve differences in the abundance of Li in plagioclase crystals which are strongly associated with the host lithology. Li abundances in plagioclase from the quickly cooled upper and basal vitrophyres are typically low (average 5 ppm, n = 262) while plagioclase from the microcrystalline interior of the deposit has higher Li contents (average 33 ppm, n = 773). Given that no other trace elemental parameter in plagioclase varies, we interpret the variability in Li to reflect a post-depositional process. Groundmass crystallisation of a rhyolite like Grey's Landing requires ˜50 % crystallisation of sanidine and variable amounts of a silica-rich phase (quartz, tridymite, cristobalite) and plagioclase to satisfy mass balance. We suggest the low affinity of Li for sanidine causes migration of groundmass Li into plagioclase during crystallisation. Even within the microcrystalline interior of the deposit, the morphology of the groundmass varies. The more marginal, finer-grained regions are dominated by cristobalite as the SiO2-rich phase while tridymite and quartz are additionally found in the more slowly cooled, coarser-grained portions of thick sections of the ignimbrite. Numerical models of cooling and crystallisation tested against field observations indicate that the groundmass crystallisation occurred relatively rapidly following emplacement (a maximum of a few years where the ignimbrite is thickest). These numerical

  12. Petrographic and geochemical comparisons between the lower crystalline basement-derived section and the granite megablock and amphibolite megablock of the Eyreville-B core, Chesapeake Bay impact structure

    USGS Publications Warehouse

    Townsend, Gabrielle N.; Gibson, Roger L.; Horton, J. Wright; Reimold, Wolf Uwe; Schmitt, Ralf T.; Bartosova, Katerina

    2009-01-01

    The Eyreville B core from the Chesapeake Bay impact structure, Virginia, USA, contains a lower basement-derived section (1551.19 m to 1766.32 m deep) and two megablocks of dominantly (1) amphibolite (1376.38 m to 1389.35 m deep) and (2) granite (1095.74 m to 1371.11 m deep), which are separated by an impactite succession. Metasedimentary rocks (muscovite-quartz-plagioclase-biotite-graphite ± fibrolite ± garnet ± tourmaline ± pyrite ± rutile ± pyrrhotite mica schist, hornblende-plagioclase-epidote-biotite-K-feldspar-quartz-titanite-calcite amphibolite, and vesuvianite-plagioclase-quartz-epidote calc-silicate rock) are dominant in the upper part of the lower basement-derived section, and they are intruded by pegmatitic to coarse-grained granite (K-feldspar-plagioclase-quartz-muscovite ± biotite ± garnet) that increases in volume proportion downward. The granite megablock contains both gneissic and weakly or nonfoliated biotite granite varieties (K-feldspar-quartz-plagioclase-biotite ± muscovite ± pyrite), with small schist xenoliths consisting of biotite-plagioclase-quartz ± epidote ± amphibole. The lower basement-derived section and both megablocks exhibit similar middle- to upper-amphibolite-facies metamorphic grades that suggest they might represent parts of a single terrane. However, the mica schists in the lower basement-derived sequence and in the megablock xenoliths show differences in both mineralogy and whole-rock chemistry that suggest a more mafic source for the xenoliths. Similarly, the mineralogy of the amphibolite in the lower basement-derived section and its association with calc-silicate rock suggest a sedimentary protolith, whereas the bulk-rock and mineral chemistry of the megablock amphibolite indicate an igneous protolith. The lower basement-derived granite also shows bulk chemical and mineralogical differences from the megablock gneissic and biotite granites.

  13. Petrographic and geochemical comparisons between the lower crystalline basement-derived section and the granite megablock and amphibolite megablock of the Eyreville B core, Chesapeake Bay impact structure, USA

    USGS Publications Warehouse

    Townsend, G.N.; Gibson, R.L.; Horton, J.W.; Reimold, W.U.; Schmitt, R.T.; Bartosova, K.

    2009-01-01

    The Eyreville B core from the Chesapeake Bay impact structure, Virginia, USA, contains a lower basement-derived section (1551.19 m to 1766.32 m deep) and two megablocks of dominantly (1) amphibolite (1376.38 m to 1389.35 m deep) and (2) granite (1095.74 m to 1371.11 m deep), which are separated by an impactite succession. Metasedimentary rocks (muscovite-quartz-plagioclase-biotite-graphite ?? fibrolite ?? garnet ?? tourmaline ?? pyrite ?? rutile ?? pyrrhotite mica schist, hornblende-plagioclase-epidote-biotite- K-feldspar-quartz-titanite-calcite amphibolite, and vesuvianite-plagioclase- quartz-epidote calc-silicate rock) are dominant in the upper part of the lower basement-derived section, and they are intruded by pegmatitic to coarse-grained granite (K-feldspar-plagioclase-quartz-muscovite ?? biotite ?? garnet) that increases in volume proportion downward. The granite megablock contains both gneissic and weakly or nonfoliated biotite granite varieties (K-feldspar-quartz-plagioclase-biotite ?? muscovite ?? pyrite), with small schist xenoliths consisting of biotite-plagioclase-quartz ?? epidote ?? amphibole. The lower basement-derived section and both megablocks exhibit similar middleto upper-amphibolite-facies metamorphic grades that suggest they might represent parts of a single terrane. However, the mica schists in the lower basement-derived sequence and in the megablock xenoliths show differences in both mineralogy and whole-rock chemistry that suggest a more mafi c source for the xenoliths. Similarly, the mineralogy of the amphibolite in the lower basement-derived section and its association with calc-silicate rock suggest a sedimentary protolith, whereas the bulk-rock and mineral chemistry of the megablock amphibolite indicate an igneous protolith. The lower basement-derived granite also shows bulk chemical and mineralogical differences from the megablock gneissic and biotite granites. ?? 2009 The Geological Society of America.

  14. Crystal-poor, multiply saturated rhyolites (obsidians) from the Cascade and Mexican arcs: evidence of degassing-induced crystallization of phenocrysts

    NASA Astrophysics Data System (ADS)

    Waters, Laura E.; Lange, Rebecca A.

    2013-09-01

    A detailed petrological study is presented for six phenocryst-poor obsidian samples (73-75 wt% SiO2) erupted as small volume, monogenetic domes in the Mexican and Cascade arcs. Despite low phenocryst (+microphenocryst) abundances (2-6 %), these rhyolites are each multiply saturated with five to eight mineral phases (plagioclase + orthopyroxene + titanomagnetite + ilmenite + apatite ± zircon ± hornblende ± clinopyroxene ± sanidine ± pyrrhotite). Plagioclase and orthopyroxene phenocrysts (identified using phase-equilibrium constraints) span ≤30 mol % An and ≤15 % Mg#, respectively. Eruptive temperatures (±1 σ), on the basis of Fe-Ti two oxide thermometry, range from 779 (±25) to 940 (±18) °C. Oxygen fugacities (±1 σ) range from -0.4 to 1.4 (±0.1) log units relative to those along the Ni-NiO buffer. With temperature known, the plagioclase-liquid hygrometer was applied; maximum water concentrations calculated for the most calcic plagioclase phenocryst in each sample range from 2.6 to 6.5 wt%. This requires that the rhyolites were fluid-saturated at depths ≥2-7 km. It is proposed that the wide compositional range in plagioclase and orthopyroxene phenocrysts, despite their low abundance, can be attributed to changing melt water concentrations owing to degassing during magma ascent. Phase-equilibrium experiments from the literature show that higher dissolved water concentrations lead to more Fe-rich orthopyroxene, as well as more calcic plagioclase. Loss of dissolved water leads to a progressive increase in melt viscosity, and phenocrysts often display diffusion-limited growth textures (e.g., dendritic and vermiform), consistent with large undercoolings caused by degassing. A kinetic barrier to microlite crystallization occurred at viscosities from 4.5 to 5.0 log10 Pa s for these rhyolites, presumably because the rate at which melt viscosity changed was high owing to rapid loss of dissolved water during magma ascent.

  15. Shearing within lower crust during progressive retrogression: Structural analysis of gabbroic rocks from the Godzilla Mullion, an oceanic core complex in the Parece Vela backarc basin

    NASA Astrophysics Data System (ADS)

    Harigane, Yumiko; Michibayashi, Katsuyoshi; Ohara, Yasuhiko

    2008-10-01

    Microstructural and petrological analyses of gabbroic rocks sampled from the Godzilla Mullion, located along the Parece Vela Basin spreading ridge (Parece Vela Rift), Philippine Sea, reveal the development of a ductile shear zone in the lower crust. The shear zone is interpreted to represent a detachment fault within an oceanic core complex. Microstructures indicative of intense deformation, characterized by porphyroclastic textures consisting dominantly of coarse plagioclase porphyroclasts and lesser clinopyroxene porphyroclasts in a fine-grained matrix, are observed within samples of gabbroic rocks dredged near the breakaway area of the Godzilla Mullion (dredge site D6). Samples are classified into three types based upon the grain-size of fine-grained plagioclase in the matrix: coarse (80-130 µm), medium (25 µm), and fine (˜ 10 µm). Although the chemical composition of plagioclase porphyroclasts is consistently An 40-50 among all sample types, the compositions of fine grains in the matrix vary with decreasing grain-size, being An 40-50 for the coarse-type, An 30-40 for the medium-type, and An 5-30 for the fine-type. This finding implies that the composition of fine-grained plagioclase in the matrix is related to the following retrograde reaction that occurred during deformation: clinopyroxene + plagioclase + Fe-Ti oxide + fluid → hornblende + plagioclase. Plagioclase crystal-preferred orientations also show a gradual change with grain-size, varying from a (010)[100] pattern for the coarse-type, (010)[100] and (001)[100] patterns for the medium-type, and a weak (001)[100] pattern or random orientations for the fine-type. These patterns are interpreted to result from a change in the deformation mechanism of plagioclase from dislocation creep to grain-size-sensitive creep with decreasing temperature, thereby leading to strain softening and localization during cooling. Although secondary amphibole occurs ubiquitously within all samples, the chemical composition

  16. Petrologic characteristics of the 1982 and pre-1982 eruptive products of El Chichon volcano, Chiapas, Mexico.

    USGS Publications Warehouse

    McGee, J.J.; Tilling, R.I.; Duffield, W.A.

    1987-01-01

    Studies on a suite of rocks from this volcano indicate that the juvenile materials of the 1982 and pre-1982 eruptions of the volcano have essentially the same mineralogy and chemistry. Data suggest that chemical composition changed little over the 0.3 m.y. sample period. Modally, plagioclase is the dominant phenocryst, followed by amphibole, clinopyroxene and minor phases including anhydrite. Plagioclase phenocrysts show complex zoning: the anorthite-rich zones are probably the result of changing volatile P on the magma and may reflect the changes in the volcano's magma reservoir in response to repetitive, explosive eruptive activity.-R.E.S.

  17. Pb isotopes in anorthositic breccias 67075 and 62237 - A search for primitive lunar lead

    NASA Technical Reports Server (NTRS)

    Premo, W. R.; Tatsumoto, M.; Wang, J.-W.

    1989-01-01

    The lunar Pb isotopic evolution is explored based on an investigation of the U-Th-Pb systematics of the primitive Apollo 16 anorthositic breccias 76075 and 62237. The isotope data for acid-leached residues from 67075 lie within or on a triangle formed by plagioclase, opaques, and a pyroxen-olivine mixture, and the isotope data for 62237 lie within or on a triangle formed by plagioclase, olivine, and pyroxene. The results suggest that the moon had high first-stage values for the Pb evolution equations from the onset.

  18. Decompression-Induced Crystallization of Hydrous Basalt

    NASA Astrophysics Data System (ADS)

    Teasdale, R.; Brooker, R. A.

    2014-12-01

    Decompression-induced crystallization of hydrous basalt during magma ascent from 1.5 kb (150 MPa) is quantified using isothermal decompression TZM experiments. The starting composition is a synthetic glass based on the 1921 Kilauea basalt, with 1% H2O added. In all cases, the liquidus phase is aluminous spinel, followed by clinopyroxene, then plagioclase. The plagioclase liquidus temperatures for isobaric (equilibrium) experiments range from 1175°C (at 1.5 kb) to 1217°C (at 200b), which are 35-75°C hotter than predicted by MELTS (Ghiorso & Sack 1995). Experiments were decompressed at 1kb/hr and quenched at 800, 400, 200, or 100b for three temperatures (1160°, 1150°, and 1140°C). Plagioclase crystals formed during decompression have long axes that range from less than 1 micron to 20 microns. Increasing decompression yields larger plagioclase crystal sizes and aspect ratios for experiments at equal temperatures. However, the number of crystals does not vary systematically, indicating that crystallization is dominated by growth rather than nucleation during decompression. Plagioclase compositions for experiments were measured with University of Bristol's Electron Microprobe and the Hyperprobe with Field Emission Gun. Plagioclase compositions from equilibrium experiments (An60-An80) span the range of those from decompression experiments (An60-An73). Equilibrium experiments generated higher An compositions at lower pressures (500b) than at higher pressure (1.5kb) but do not systematically vary with temperature. Variations in plagioclase compositions are minimal above H2O saturation (100-200°C, based on Papale et al., 2006). Below H2O saturation, An content decreases slightly, by approximately 4% An. One application of this work is better characterization of groundmass crystallization in hydrous basalt as it traverses the conduit during eruption. This work also provides a means of distinguishing groundmass plagioclase related to decompression from crystals

  19. Determination of Planetary Basalt Parentage: A Simple Technique Using the Electron Microprobe

    NASA Technical Reports Server (NTRS)

    Papike, J. J.; Karner, J. M.; Shearer, C. K.

    2003-01-01

    Previous studies have demonstrated the usefulness of major and minor elements in silicate phases to understand differences among basaltic systems and the influence of different planetary environments on basalt chemistry (e.g., Papike [1]). Intriguing data displays presented by Papike [1] include a plot of Mn vs. Fe (atoms per formula unit, afu) for pyroxene and olivine and a plot showing the anorthite content of plagioclase from different planetary basalts. Here we combine portions of these plots (Fig. 4) and provide all new data for olivine and plagioclase.

  20. Anorthosite on the Lunar Nearside and Farside

    NASA Astrophysics Data System (ADS)

    Peterson, C. A.; Hawke, B. R.; Lucey, P. G.; Taylor, G. J.; Blewett, D. T.; Spudis, P. D.

    1996-03-01

    The distribution of anorthosite (rock composed of at least 90% plagioclase feldspar) on the lunar surface can provide important information regarding the geologic history of the Moon. Evidence suggests that the early Moon was covered by a magma ocean which differentiated as it crystallized, forming a plagioclase flotation crust and a cumulate pile of denser mafic minerals. Subsequent bombardment of the lunar surface has disrupted the original flotation crust, and most of the remnants have been obscured by more mafic deposits, but the distribution of the outcrops of pure anorthosite that have been identified holds important implications for the evolution of the lunar crust.

  1. Supercooling on the lunar surface - A review of analogue information

    NASA Technical Reports Server (NTRS)

    Donaldson, C. H.; Johnston, R.; Drever, H. I.

    1977-01-01

    Terrestrial analog studies of the phase petrology of supercooled melts and rapid crystal growth are reviewed for possible light shed on lunar crystallization, supercooling, and petrogenic processes, in particular rapid consolidation of lavas extruded on the lunar surface, and impact liquids. Crystallization of major constituent minerals (olivine, pyroxene, plagioclase) in dendritic or skeletal forms is found much more characteristic of lunar igneous rocks than of terrestrial counterparts. Olivine and pyroxene occur often as skeletal phenocrysts, and their stage of crystallization is crucial to the genesis and cooling history of porphyritic lavas. Widespread occurrence of glass and of immature radiate crystallization, particularly of highly zoned pyroxenes and zoned plagioclase, is noted.

  2. Activity composition relationships in silicate melts. Final report

    SciTech Connect

    Glazner, A.F.

    1990-12-31

    Equipment progress include furnace construction and electron microprobe installation. The following studies are underway: phase equilibria along basalt-rhyolite mixing line (olivine crystallization from natural silicic andensites, distribution of Fe and Mg between olivine and liquid, dist. of Ca and Na between plagioclase and liquid), enthalpy-composition relations in magmas (bulk heat capacity of alkali basalt), density model for magma ascent and contamination, thermobarometry in igneous systems (olivine/plagioclase phenocryst growth in Quat. basalt), high-pressure phase equilibria of alkali basalt, basalt-quartz mixing experiments, phase equilibria of East African basalts, and granitic minerals in mafic magma. (DLC)

  3. Activity composition relationships in silicate melts

    SciTech Connect

    Glazner, A.F.

    1990-01-01

    Equipment progress include furnace construction and electron microprobe installation. The following studies are underway: phase equilibria along basalt-rhyolite mixing line (olivine crystallization from natural silicic andensites, distribution of Fe and Mg between olivine and liquid, dist. of Ca and Na between plagioclase and liquid), enthalpy-composition relations in magmas (bulk heat capacity of alkali basalt), density model for magma ascent and contamination, thermobarometry in igneous systems (olivine/plagioclase phenocryst growth in Quat. basalt), high-pressure phase equilibria of alkali basalt, basalt-quartz mixing experiments, phase equilibria of East African basalts, and granitic minerals in mafic magma. (DLC)

  4. Groundmass Crystallization of A'a and Pahoehoe flows of Cerro Azul, Galapagos and Mauna Loa, Hawaii

    NASA Astrophysics Data System (ADS)

    Teasdale, R.; Geist, D.; Wanless, D.; Cashman, K.

    2001-12-01

    Crystallinities of 1998 lavas from Cerro Azul, Galapagos are distinguished from 1843 Mauna Loa, Hawaii lavas by higher modal proportions of groundmass plagioclase crystals. In both cases, a'a lava was erupted first, followed by emplacement of pahoehoe flows. The 1843 Mauna Loa eruption lasted 90 days and produced both a'a and inflated pahoehoe flows (1). The 1998 Galapagos flows were emplaced over the course of 37 days, and the transition from a'a to pahoehoe flow morphology corresponds with decreased eruption rate during the last week of the eruption. Samples were collected along the length of flows from both volcanoes. Modal groundmass plagioclase increases down-flow for each flow type from each volcano. A'a and pahoehoe flows of Cerro Azul consistently have higher crystallinities (41% and 14%) than equivalent flow types at Mauna Loa (29% and 7%). Whereas Cerro Azul groundmass crystals are exclusively plagioclase, the groundmass of Mauna Loa lavas consists of plagioclase and pyroxene crystals, similar to Kilauea lavas. Proportions of plagioclase crystals and flow morphologies are consistent with predictions that groundmass crystal morphology plays a significant role in the development of crystal networks and yield strength, which instigates the development of a'a flow morphology (2, 3). Galapagos volcanoes tend to have more a'a than their Hawaiian counterparts Mauna Loa and Kilauea. Volcano slopes do not appear to control the proportion of each flow type (4); rather, abundance of groundmass plagioclase appears to be the distinguishing factor. An important distinction between the two systems is that Galapagos lavas have consistently higher Al2O3 content than Hawaiian volcanoes. High Al203 results in a comparatively high abundance of groundmass plagioclase, and may partly explain the prevalence of a'a. We note that while the relative abundance of a'a and pahoehoe flow morphologies on other volcanoes is rarely quantified, Mount Etna is also distinguished by abundant

  5. Maskelynite: Formation by Explosive Shock.

    PubMed

    Milton, D J; de Carli, P S

    1963-05-10

    When high pressure (250 to 300 kilobars) was applied suddenly (shock-loading) to gabbro, the plagioclase was transformed to a noncrystalline phase (maskelynite) by a solid-state reaction at a low temperature, while the proxene remained crystalline. The shock-loaded gabbro resembles meteorites of the shergottite class; this suggests that the latter formed as a result of shock. The shock-loading of gabbro at 600 to 800 kilobars raised the temperature above the melting range of the plagioclase. PMID:17737107

  6. Shock metamorphism in lunar samples.

    PubMed

    von Engelhardt, W; Arndt, J; Müller, W F; Stöffler, D

    1970-01-30

    Indications of shock metamorphism produced by pressures up to the megabar region have been observed in the fine material and the breccias, but very rarely in the coarser fragments of crystalline rocks. These indications are deformation structures in plagioclase and pyroxene, diaplectic plagioclase glasses, and glasses formed by shock-induced melting of lunar rocks. Two sources of shock waves have been distinguished: primary impact of meteorites and secondary impact of crater ejecta. There are two major chemical types of shock-induced melts. The differences in chemistry may be related to impact sites in mare and highland areas.

  7. Differential rates of feldspar weathering in granitic regoliths

    USGS Publications Warehouse

    White, A.F.; Bullen, T.D.; Schulz, M.S.; Blum, A.E.; Huntington, T.G.; Peters, N.E.

    2001-01-01

    Differential rates of plagioclase and K-feldspar weathering commonly observed in bedrock and soil environments are examined in terms of chemical kinetic and solubility controls and hydrologic permeability. For the Panola regolith, in the Georgia Piedmont Province of southeastern United States, petrographic observations, coupled with elemental balances and 87Sr/86Sr ratios, indicate that plagioclase is being converted to kaolinite at depths > 6 m in the granitic bedrock. K-feldspar remains pristine in the bedrock but subsequently weathers to kaolinite at the overlying saprolite. In contrast, both plagioclase and K-feldspar remain stable in granitic bedrocks elsewhere in Piedmont Province, such as Davis Run, Virginia, where feldspars weather concurrently in an overlying thick saprolite sequence. Kinetic rate constants, mineral surface areas, and secondary hydraulic conductivities are fitted to feldspar losses with depth in the Panola and Davis Run regoliths using a time-depth computer spreadsheet model. The primary hydraulic conductivities, describing the rates of meteoric water penetration into the pristine granites, are assumed to be equal to the propagation rates of weathering fronts, which, based on cosmogenic isotope dating, are 7 m/106 yr for the Panola regolith and 4 m/106 yr for the Davis Run regolith. Best fits in the calculations indicate that the kinetic rate constants for plagioclase in both regoliths are factors of two to three times faster than K-feldspar, which is in agreement with experimental findings. However, the range for plagioclase and K-feldspar rates (kr = 1.5 x 10-17 to 2.8 x 10-16 mol m-2 s-1) is three to four orders of magnitude lower than for that for experimental feldspar dissolution rates and are among the slowest yet recorded for natural feldspar weathering. Such slow rates are attributed to the relatively old geomorphic ages of the Panola and Davis Run regoliths, implying that mineral surface reactivity decreases significantly with

  8. Mineral chemical compositions of late Cretaceous volcanic rocks in the Giresun area, NE Turkey: Implications for the crystallization conditions

    NASA Astrophysics Data System (ADS)

    Oǧuz, Simge; Aydin, Faruk; Uysal, İbrahim; Şen, Cüneyt

    2016-04-01

    This contribution contains phenocryst assemblages and mineral chemical data of late Cretaceous volcanic (LCV) rocks from the south of Görele and Tirebolu areas (Giresun, NE Turkey) in order to investigate their crystallization conditions. The LCV rocks in the study area occur in two different periods (Coniasiyen-Early Santonian and Early-Middle Campanian), which generally consist of alternation of mafic-intermediate (basaltic to andesitic) and felsic rock series (dacitic and rhyolitic) within each period. The basaltic and andesitic rocks in both periods generally exhibit porphyritic to hyalo-microlitic porphyritic texture, and contain phenocrysts of plagioclase and pyroxene, whereas the dacitic and rhyolitic rocks of the volcanic sequence usually show a vitrophyric texture with predominant plagioclase, K-feldspar, quartz and lesser amphibole-biotite phenocrysts. Zoned plagioclase crystals of the mafic and felsic rocks in different volcanic periods are basically different in composition. The compositions of plagioclase in the first-stage mafic rocks range from An52 to An78 whereas those of plagioclase from the first-stage felsic rocks have lower An content varying from An38 to An50. Rim to core profile for the zoned plagioclase of the first-stage mafic rocks show quite abrupt and notable compositional variations whereas that of the first-stage felsic rocks show slight compositional variation, although some of the grains may display reverse zoning. On the other hand, although no zoned plagioclase phenocryst observed in the second-stage mafic rocks, the compositions of microlitic plagioclase show wide range of compositional variation (An45-80). The compositions of zoned plagioclase in the second-stage felsic rocks are more calcic (An65-81) than those of the first-stage felsic rocks, and their rim to core profile display considerable oscillatory zoning. The compositions of pyroxenes in the first- and second-stage mafic-intermediate rocks vary over a wide range from

  9. Kinetics of crystal evolution as a probe to magmatism at Stromboli (Aeolian Archipelago, Italy)

    NASA Astrophysics Data System (ADS)

    Agostini, C.; Fortunati, A.; Arzilli, F.; Landi, P.; Carroll, M. R.

    2013-06-01

    The kinetics of hydrated basaltic melts erupted during the present activity at Stromboli have been studied to estimate the growth and dissolution rate of plagioclase. Specifically, a high-K basalt composition (PST-9) has been studied to investigate magma and eruption dynamics at Stromboli volcano by combining crystallization kinetics of plagioclase and CSD measurements on natural samples from literature (Armienti et al., 2007; Fornaciai et al., 2009). A series of water-saturated decompression experiments over a range of final water pressure (Pf = 75-5 MPa) at constant temperature (1075 °C) show that plagioclase is systematically present from 50 to 5 MPa at water saturated conditions. Moreover, these experiments show that anorthite (An) content decreases with decreasing PO, reaching the same composition as the natural plagioclase in Stromboli scoria at pressure below ˜20 MPa and that the plagioclase crystal fraction increases as the experimental conditions tend to lower final pressure. Plagioclase growth rate (GL) is observed to increase with undercooling for the Pf investigated during decompression experiments, except for the 75 MPa Pf serie that only has two samples with the presence of plagioclase crystals. The values of GL vary from 10-7 to 10-8 cm/s for Pf from 75 to 25 MPa, while at Pf from 10 to 5 MPa growth rates are approximately of 10-6 cm/s. A series of dissolution experiments at atmospheric pressure and over a range of temperature has been done for plagioclase (T range of 1220-1240 °C). Dissolution rate (G-) for plagioclase (10-7 cm/s) tends to be slightly higher at higher temperature in the range of 1220-1240 °C and appears to be time independent for the experimental durations investigated (10-30 h). These trends could be related to development of a diffusion-limited boundary layer adjacent to the dissolving crystal. By comparison of the experimental data on plagioclase composition, growth rates and dissolution in Stromboli basalt, it is possible to

  10. Mineral chemical compositions of late Cretaceous volcanic rocks in the Giresun area, NE Turkey: Implications for the crystallization conditions

    NASA Astrophysics Data System (ADS)

    Oǧuz, Simge; Aydin, Faruk; Uysal, İbrahim; Şen, Cüneyt

    2016-04-01

    This contribution contains phenocryst assemblages and mineral chemical data of late Cretaceous volcanic (LCV) rocks from the south of Görele and Tirebolu areas (Giresun, NE Turkey) in order to investigate their crystallization conditions. The LCV rocks in the study area occur in two different periods (Coniasiyen-Early Santonian and Early-Middle Campanian), which generally consist of alternation of mafic-intermediate (basaltic to andesitic) and felsic rock series (dacitic and rhyolitic) within each period. The basaltic and andesitic rocks in both periods generally exhibit porphyritic to hyalo-microlitic porphyritic texture, and contain phenocrysts of plagioclase and pyroxene, whereas the dacitic and rhyolitic rocks of the volcanic sequence usually show a vitrophyric texture with predominant plagioclase, K-feldspar, quartz and lesser amphibole-biotite phenocrysts. Zoned plagioclase crystals of the mafic and felsic rocks in different volcanic periods are basically different in composition. The compositions of plagioclase in the first-stage mafic rocks range from An52 to An78 whereas those of plagioclase from the first-stage felsic rocks have lower An content varying from An38 to An50. Rim to core profile for the zoned plagioclase of the first-stage mafic rocks show quite abrupt and notable compositional variations whereas that of the first-stage felsic rocks show slight compositional variation, although some of the grains may display reverse zoning. On the other hand, although no zoned plagioclase phenocryst observed in the second-stage mafic rocks, the compositions of microlitic plagioclase show wide range of compositional variation (An45‑80). The compositions of zoned plagioclase in the second-stage felsic rocks are more calcic (An65‑81) than those of the first-stage felsic rocks, and their rim to core profile display considerable oscillatory zoning. The compositions of pyroxenes in the first- and second-stage mafic-intermediate rocks vary over a wide range

  11. Occurrence and Mineral Chemistry of High Pressure Phases, Potrillo Basalt, Southcentral New Mexico. M.S. Thesis Final Technical Report, 1 Jun. 1980 - 31 May 1982

    NASA Technical Reports Server (NTRS)

    Sheffield, T. M.

    1982-01-01

    The presence of an older plagioclase-rich basalt and a younger olivine-rich basalt were confirmed by modal and chemical analysis. Chemical analysis also confirmed the presence of flows that are tholeiitic in composition and could be remnants of an original tholeittic parent magma. Eruptions from different levels of a differentiated magma chamber are proposed to account for the two members.

  12. Crystallization Experiments of the Martian Meteorite QUE94201: Additional Constraints on Its Formation Condition

    NASA Technical Reports Server (NTRS)

    Koizumi, E.; McKay, G.; Mikouchi, T.; Le, L.; Schwandt, C.; Monkawa, A.; Miyamoto, M.

    2002-01-01

    We focused on the Al/Ti ratio in synthetic pyroxenes as a marker for the onset of plagioclase crystallization and discuss the effects of oxygen fugacity on the Kd(Fe/Mg)ol/gl in our experiments using the same composition of QUE94201. Additional information is contained in the original extended abstract.

  13. The infrared spectrum of asteroid 433 Eros

    NASA Technical Reports Server (NTRS)

    Larson, H. P.; Fink, U.; Treffers, R. R.; Gautier, T. N., III

    1976-01-01

    The mineralogical composition of asteroid Eros has been determined from its infrared spectrum (0.9-2.7 micrometers; 28/cm resolution). Major minerals include metallic Ni-Fe and pyroxene; no spectroscopic evidence for olivine or plagioclase feldspar was found. The IR spectrum of Eros is most consistent with a stony-iron composition.

  14. Petrographic-mineralogical investigation of magmatic rocks from the Sea of Fertility

    NASA Technical Reports Server (NTRS)

    Tarasov, L. S.; Shevaleyevskiy, I. D.; Nazarov, M. A.

    1974-01-01

    Petrographic and mineralogical features of fragments of magmatic rock of regolith from the Sea of Fertility are examined. The textures and mineral composition vary in relation to the type of rock. More than 50 X-ray spectral analyses of minerals (olivine, pyroxenes, plagioclases, and ores) were made; their chemical composition varies even within the limits of individual rock fragments.

  15. Regolith breccia consisting of H and LL chondrite mixture

    NASA Technical Reports Server (NTRS)

    Yanai, Keizo; Kojima, Hideyasu

    1993-01-01

    Antarctic meteorite Yamato-8424 (Y-8424) is a regolith breccia that is homogenized mixture of H and LL chondrite components. The breccia consists mainly of a fine-grained material with mineral fragments of olivine, pyroxene, and Fe-Ni metal with traces of plagioclase.

  16. Spatially-Correlated Mass Spectrometric Analysis of Microbe-Mineral Interactions

    SciTech Connect

    Jill R. Scott; Beizhan Yan; Daphne L. Stoner

    2006-11-01

    A new methodology for examining the interactions of microbes with heterogeneous minerals is presented. Imaging laser-desorption Fourier transform mass spectrometry was used to examine the colonization patterns of Burkholderia vietnamiensis (Burkholderia cepacia) G4 on a heterogeneous basalt sample. Depth-profile imaging found that the bacterium preferentially colonized the plagioclase mineral phases within the basalt.

  17. Estimation of trace element concentrations in the lunar magma ocean using mineral- and metal-silicate melt partition coefficients

    NASA Astrophysics Data System (ADS)

    Sharp, Miriam; Righter, Kevin; Walker, Richard J.

    2015-04-01

    This study uses experimentally determined plagioclase-melt D values to estimate the trace element concentrations of Sr, Hf, Ga, W, Mo, Ru, Pd, Au, Ni, and Co in a crystallizing lunar magma ocean at the point of plagioclase flotation. Similarly, experimentally determined metal-silicate partition experiments combined with a composition model for the Moon are used to constrain the concentrations of W, Mo, Ru, Pd, Au, Ni, and Co in the lunar magma ocean at the time of core formation. The metal-silicate derived lunar mantle estimates are generally consistent with previous estimates for the concentration of these elements in the lunar mantle. Plagioclase-melt derived concentrations for Sr, Ga, Ru, Pd, Au, Ni, and Co are also consistent with prior estimates. Estimates for Hf, W, and Mo, however, are higher. These elements may be concentrated in the residual liquid during fractional crystallization due to their incompatibility. Alternatively, the apparent enrichment could reflect the inappropriate use of bulk anorthosite data, rather than data for plagioclase separates.

  18. Formation of anorthosite-Gabbro rhythmic phase layering: an example at North Arm Mountain, Bay of Isands ophiolite

    USGS Publications Warehouse

    Komor, S.C.; Elthon, D.

    1990-01-01

    Rhythmically layered anorthosite and gabbro are exposed in a 4-10-m thick interval at the base of the layered gabbro unit on North Arm Mountain, one of four massifs that compose the Bay of Islands ophiolite, Newfoundland. The rhythmically layered interval is sandwiched between thick layers of adcumulate to orthocumulate uniform gabbro. Calculated fractional crystallization paths and correlated cryptic variation patterns suggest that uniform and rhythmically layered gabbros represent 20-30% in situ crystallization of two distinct magma batches, one more evolved and the other more primitive. When the more primitive magma entered the crystallization site of the NA300-301 gabbros, it is estimated to have been ~40??C hotter than the resident evolved magma, and may have been chilled by contact with a magma chamber margin composed of uniform gabbro. In this model, chilling caused the liquid to become supercooled with respect to plagioclase nucleation temperatures, resulting in crystallization of gabbro deficient in plagioclase relative to equilibrium cotectic proportions. Subtraction of a plagioclase-poor melagabbro enriched the liquid in normative plagioclase, which in turn led to crystallization of an anorthosite layer. -from Authors

  19. Mechanisms of myrmekite formation: case study from the Weinsberg granite, Moldanubian zone, Upper Austria

    NASA Astrophysics Data System (ADS)

    Abart, Rainer; Heuser, David; Habler, Gerlinde

    2014-11-01

    Myrmekites have attracted the attention of petrographers over more than a century, and several genetic models have been proposed. We report on myrmekites from the Weinsberg granite of the Moldanubian zone of Upper Austria. Based on petrographic evidence, fluid-mediated replacement of alkali feldspar by myrmekite during the sub-solidus evolution of the granite is inferred. The replacement was metasomatic on the scale of the myrmekite domains requiring addition of sodium and calcium and removal of potassium from the reaction site. In contrast, silica and aluminum were conserved across the reaction front. Myrmekite formation appears to have been synchronous with and related to the hydration of orthopyroxene and concomitant replacement of primary magmatic plagioclase by biotite at around 500 °C. The evolution of the myrmekite microstructure and a peculiar composition zoning of the plagioclase constituting the myrmekite matrix is qualitatively explained by a model for discontinuous precipitation, which accounts for chemical segregation by diffusion within the reaction front and the propagation of the reaction front with finite mobility as potentially rate limiting processes. Constraints on the underlying reaction rates are derived from the preserved microstructure and chemical pattern. Crystal orientation imaging by electron backscatter diffraction reveals grain-internal deformation, which is primarily concentrated in the quartz and less pronounced in the plagioclase matrix of the myrmekite. This is interpreted as a growth feature related to different transformation strain at the segments of the myrmekite reaction front, where quartz and plagioclase are formed.

  20. Evidence for Oxygen-Isotope Exchange in Chondrules and Refractory Inclusions During Fluid-Rock Interaction on the CV Chondrite Parent Body

    NASA Astrophysics Data System (ADS)

    Krot, A. N.; Nagashima, K.

    2016-08-01

    Plagioclase in chondrules, CAIs and AOAs from the carbonaceous chondrite Kaba (CV3.1) experienced oxygen-isotope exchange with a metasomatic fluid responsible for the formation of magnetite, fayalite and Ca,Fe-rich silicates on the CV parent body.

  1. Controls on variation of calcite content in arkose beds of the Sangre de Cristo Formation, (Pennsylvanian-Permian) Colorado

    SciTech Connect

    Wysong, J.R.; Bain, R.J. . Dept. of Geology)

    1994-04-01

    Arkosic conglomerates and sandstones of the Pennsylvanian-Permian Sangre de Cristo Formation of south-central Colorado were deposited on alluvial plains and nearshore marine shelves adjacent to the highlands of the Ancestral Rocky Mountains. Thin limestone units occur locally, however calcite content of arkoses varies independent of these limestones. The thinly bedded to laminated arkoses contain abundant detrital orthoclase and plagioclase feldspars, micas and quartz. Authigenic clay (kaolinite) and calcite occur both as void-filling cement and replacement of feldspars. Fine-grained arkoses possess more calcite and authigenic clay than their coarse-grained counterparts. Calcite occurs as plagioclase replacement in fine-grained samples whereas in coarse-grained rocks it fills interstitial voids. Calcite content in fine-grained arkoses is low where laminae are preserved and increases with the presence of bioturbation. Diagenetic processes responsible for calcite and clay content of these arkoses were controlled by several factors including original sediment texture, composition, and grain orientation. Plagioclase has been altered to produce calcite and clay more than orthoclase. Permeability of coarse-grained rocks was higher and resulted in primarily void-filling cement. In fine-grained arkoses, permeability was less and water remained in contact with grains longer thereby altering plagioclase. Aligned mica grains of laminae retarded flow and impeded diagenetic alteration whereas bioturbation disrupted grain orientation thereby enhancing diagenesis.

  2. Rare earth element abundances in rocks and minerals from the Fiskenaesset Complex, West Greenland. [comparison with lunar anorthosites

    NASA Technical Reports Server (NTRS)

    Henderson, P.; Fishlock, S. J.; Laul, J. C.; Cooper, T. D.; Conard, R. L.; Boynton, W. V.; Schmitt, R. A.

    1976-01-01

    The paper reports activation-analysis determinations of rare-earth-element (REE) and other trace-element concentrations in selected rocks, plagioclase, and mafic separates from the Fiskenaesset Complex. The REE abundances are found to be very low and atypical in comparison with other terrestrial anorthosites. The plagioclases are shown to be characterized by a deficiency in heavy RE elements relative to light ones and a positive Eu anomaly, while the mafic separates are enriched in heavy rare earths and have no Eu anomaly, except in one sample. It is found that the bulk and trace-element abundances of the plagioclases are similar to those observed in some lunar anorthosites, but the degree of Eu anomaly is less in the plagioclases. The data are taken as confirmation of the idea that fractionation processes were involved in the origin of the Complex, and it is concluded that the Complex may have been produced from a magma generated by partial melting of a garnet-bearing source.

  3. Petrology and crystal chemistry of poikilitic anorthositic gabbro 77017. [lunar rocks

    NASA Technical Reports Server (NTRS)

    Mccallum, I. S.; Mathez, E. A.; Okamura, F. P.; Ghose, S.

    1974-01-01

    Aspects of mineralogy are considered, taking into account the occurrence and the characteristics of plagioclase, pyroxene, and olivine. Attention is also given to oxides, opaque minerals, and glass components. Questions regarding the temperature of formation and the origin of the considered lunar poikilitic rocks are discussed. It is pointed out that the presented hypothesis may not be applicable to other poikilitic lunar rocks.

  4. Evidence for the compaction of feldspar-rich cumulates in the Pleasant Bay layered intrusion, coastal Maine

    SciTech Connect

    Horrigan, E.K. )

    1993-03-01

    The Pleasant Bay intrusion is roughly 12 km by 20 km. It consists of prominent rhythmic layers, up to 100 m thick, that grade from chilled gabbro on the base, to coarse-grained gabbroic, dioritic, or granitic rocks on the top. These layers were formed by multiple injections of basalt into a large chamber of silicic magma. The focus of this study is on one layer that is about 100 m thick, and is overlain by another basally chilled gabbroic layer at least 50 m thick. Silicic pipes and veins extend upward into the overlying gabbroic chill. The lower part of the layer has dominant calcic plagioclase, An60, augite, and olivine, with subordinate hornblende and biotite. The uppermost part has dominant sodic plagioclase, An20, and two pyroxenes with subordinate quartz, K-feldspar and hornblende. SiO[sub 2] and MgO vary from 49% and 5% at the base to 58% and 1% at the top, respectively. The top 7 m of this layer are characterized by variably deformed minerals. The deformation grades from bent biotite and plagioclase near the bottom to sutured plagioclase at the top. Pockets of undeformed quartz and K-feldspar in the uppermost rocks demonstrate that interstitial liquid was present during a after compaction. The pipes and veins probably represent trapped liquid and some crystals that were expelled into the overlying gabbroic chill.

  5. The distribution and purity of anorthosite across the Orientale basin: New perspectives from Moon Mineralogy Mapper data

    NASA Astrophysics Data System (ADS)

    Cheek, L. C.; Donaldson Hanna, K. L.; Pieters, C. M.; Head, J. W.; Whitten, J. L.

    2013-09-01

    The Orientale basin is a multiring impact structure on the western limb of the Moon that provides a clear view of the primary lunar crust exposed during basin formation. Previously, near-infrared reflectance spectra suggested that Orientale's Inner Rook Ring (IRR) is very poor in mafic minerals and may represent anorthosite excavated from the Moon's upper crust. However, detailed assessment of the mineralogy of these anorthosites was prohibited because the available spectroscopic data sets did not identify the diagnostic plagioclase absorption feature near 1250 nm. Recently, however, this absorption has been identified in several spectroscopic data sets, including the Moon Mineralogy Mapper (M3), enabling the unique identification of a plagioclase-dominated lithology at Orientale for the first time. Here we present the first in-depth characterization of the Orientale anorthosites based on direct measurement of their plagioclase component. In addition, detailed geologic context of the exposures is discussed based on analysis of Lunar Reconnaissance Orbiter Narrow Angle Camera images for selected anorthosite identifications. The results confirm that anorthosite is overwhelmingly concentrated in the IRR. Comparison with nonlinear spectral mixing models suggests that the anorthosite is exceedingly pure, containing >95 vol % plagioclase in most areas and commonly ~99-100 vol %. These new data place important constraints on magma ocean crystallization scenarios, which must produce a zone of highly pure anorthosite spanning the entire lateral extent of the 430 km diameter IRR.

  6. Crystals stirred up: 2. Numerical insights into the formation of the earliest crust on the Moon

    NASA Astrophysics Data System (ADS)

    Suckale, Jenny; Elkins-Tanton, Linda T.; Sethian, James A.

    2012-08-01

    This is the second paper in a two-part series examining the fluid dynamics of crystal settling and flotation in the lunar magma ocean. In the first paper, we develop a direct numerical method for resolving the hydrodynamic interactions between crystals and their feedback on the flow field in magmatic liquid. In this paper, we use this computational technique to test the leading model for the formation of the earliest crust on the Moon. The anorthositic lithology of the lunar crust is thought to have been formed by the flotation of buoyant plagioclase crystals at a time when the lunar mantle was still wholly or largely molten. This model is appealing from an observational point of view, but its fluid dynamical validity is not obvious, because (1) plagioclase probably started crystallizing very late (i.e., when the magma ocean was already 80% solidified) and (2) a significant portion of the shallow lunar crust consists of almost pure plagioclase (>90 vol. %), requiring very efficient plagioclase segregation. The goal of this study is to better understand the fluid dynamical conditions that hinder or facilitate crystal settling or flotation. Our approach complements earlier studies by explicitly linking the petrological and fluid dynamical evolution and by focusing on the effect of increasing crystal fraction. We find that crystal settling was probably possible throughout the entire solidification history of the lunar magma ocean as long as crystal sizes were sufficiently large (r > 1 mm) and crystal fraction sufficiently low (ϕ < 13%).

  7. The Linum chondrite

    NASA Astrophysics Data System (ADS)

    Matthes, J.; Adam, K.

    1988-12-01

    Based on optical microscopy and electron microprobe analysis, the Linum (East Germany) chondrite is classified as an L6b chondrite that contains olivine (Fa24), orthopyroxene (Fs20), clinopyroxene (Wo45En47Fs8), plagioclase (An10Ab84Or6), nickel-iron, troilite, chromite and accessory amounts of chlorapatite and whitlockite.

  8. Petrology and provenance of modern sands from Cascade Range Forearc and Canadian Rocky Mountain fold-thrust belt

    SciTech Connect

    Kretchmer, A.G.; Ingersoll, R.V.

    1987-05-01

    The Cascade Range volcanic arc and forearc, and the Canadian Rocky Mountain fold-thrust belt represent the two sides of a continental margin arc-trench system. Sands from these areas show clear compositional differences. The most significant discriminating parameters are volcanic lithic grains, metamorphic lithic grains, plagioclase-to-feldspar ratio, and quartz. Variable sediment composition is also evident within each setting. Cascade sands are volcaniclastic and have high plagioclase-to-feldspar ratios. They divide into three categories (volcanic arc, alluvial forearc, and coastal forearc) that differ in their lithic contents and plagioclase-to-feldspar ratios. These changes reflect the attrition of volcanic lithics with distance from the arc and the input of recycled sediment and subduction-complex lithologies. Rocky Mountain sands are sedimenticlastic. They are of two types, a miogeocline-shelf provenance and a clastic-wedge provenance. These linear belts differ in clastic-carbonate content, plagioclase-to-feldspar ratio, and quartz content. The compositional differences reflect interstratified petrofacies of fold-thrust belts. Just as they can use detrital modes of modern sands to characterize provenance and tectonic setting, modes of ancient sandstones help up to recognize provenance terranes and reconstruct paleotectonic settings.

  9. Quantitative textural investigation of trachyandesites of Damavand volcano (N Iran): Insights into the magmatic processes

    NASA Astrophysics Data System (ADS)

    Zadsaleh, Mohsen; Pourkhorsandi, Hamed

    2016-08-01

    Damavand volcano is a dormant stratovolcano in northern Iran in the middle of the Alborz Mountains. Investigation of the magmatic processes responsible for the eruption of the volcano and the conditions of the magma chamber is important in order to understand the volcanism of this system. Owing to their higher abundance and younger age, trachyandesitic rocks are the main components of this volcano. To get insights into the crystallization of these rocks, we carried out a quantitative and qualitative petrographic study of three main volcanic units erupted between 63 and 66.5 years ago. Crystal Size Distribution (CSD) studies can reveal details about magmatic processes. Measuring 4732 individual plagioclase crystals and conducting a CSD study, revealed a non-straight and concave-up CSD curve for nearly all of the studied volcanic units which suggests the occurrence of similar physico-chemical processes responsible for their magmatism. Plagioclase crystals occur as microlites and phenocrysts; the phenocrysts show either oscillatory zoning or sieve textures. Each segment of the CSD curves are consistent with a particular plagioclase texture in all the studied volcanic units. The presence of different plagioclase textures and the concave-up shape of the CSD curves suggests the variation of the physico-chemical conditions of the magma chamber during the magmatism of the Damavand in this time period. Mixing of magmas with different crystal populations can be an alternative for this phenomena.

  10. 40Ar/39Ar dating of Quaternary feldspar: examples from the Taupo Volcanic Zone, New Zealand

    USGS Publications Warehouse

    Pringle, M.S.; McWilliams, M.; Houghton, B.F.; Lanphere, M.A.; Wilson, C.J.N.

    1992-01-01

    Using a continuous laser and resistance furnace, we have measured ages on Quaternary plagioclase with an absolute precision of about ??30 ka and on Quaternary sanidine with a relative precision of better than 1%. Such precision was achieved by using low-temperature heating steps to remove much of the nonradiogenic argon contamination. Plagioclase is one of the most common mineral phases in volcanic rocks; thus, these procedures will be widely applicable to many problems for which precise radiometric age control has not been available. We studied plagioclase and plagioclase-sanidine concentrates from the oldest and the three largest silicic ash-flow deposits of the Taupo Volcanic Zone, New Zealand, one of the world's largest and most active volcanic systems. The results are in close agreement with new magnetostratigraphic data, suggesting that existing fission-track age determinations significantly underestimate the age of older units, and shift the inception of Taupo Vaolcanic Zone volcanism back to at least 1600 ka. -from Authors

  11. REE Partitioning in Lunar Minerals

    NASA Technical Reports Server (NTRS)

    Rapp, J. F.; Lapen, T. J.; Draper, D. S.

    2015-01-01

    Rare earth elements (REE) are an extremely useful tool in modeling lunar magmatic processes. Here we present the first experimentally derived plagioclase/melt partition coefficients in lunar compositions covering the entire suite of REE. Positive europium anomalies are ubiquitous in the plagioclase-rich rocks of the lunar highlands, and complementary negative Eu anomalies are found in most lunar basalts. These features are taken as evidence of a large-scale differentiation event, with crystallization of a global-scale lunar magma ocean (LMO) resulting in a plagioclase flotation crust and a mafic lunar interior from which mare basalts were subsequently derived. However, the extent of the Eu anomaly in lunar rocks is variable. Fagan and Neal [1] reported highly anorthitic plagioclase grains in lunar impact melt rock 60635,19 that displayed negative Eu anomalies as well as the more usual positive anomalies. Indeed some grains in the sample are reported to display both positive and negative anomalies. Judging from cathodoluminescence images, these anomalies do not appear to be associated with crystal overgrowths or zones.

  12. Expected Storage of Nanobacteria Fossils in the Lunar Interior Transported from Old Planets by Giant Impact

    NASA Astrophysics Data System (ADS)

    Miura, Yas.

    2010-04-01

    1) The Moon has impact remnants from planetary giant impact of Ca-rich plagioclases, C and Cl-bearing breccias, and probable CO2 fluids in the lunar interior. 2) There will be nano-fossils stored in the lunar crust of separated blocks of old planets.

  13. Ar40-Ar39 systematics in rocks and separated minerals from Apollo 14.

    NASA Technical Reports Server (NTRS)

    Turner, G.; Huneke, J. C.; Podosek, F. A.; Wasserburg, G. J.

    1972-01-01

    The Ar40-Ar39 dating technique has been applied to separated minerals (plagioclase, pyroxene, quintessence and an 'ilmenite' concentrate), and whole rock samples of Apollo 14 rocks 14310 and 14073. Plagioclase shows the best gas retention characteristics, with no evidence of anomalous behavior and only a small amount of gas loss in the initial release. Ages determined from the plagioclase of 14310 and 14073 are (3.87 plus or minus 0.05) and (3.88 plus or minus 0.05) AE respectively. Low apparent ages at low release temperatures, which are frequently observed in whole rock Ar40-Ar39 experiments on lunar basalts, are shown to be principally due to gas loss in the high-K interstitial glass (quintessence) phase, confirming earlier suggestions. The decrease in apparent ages in the high-temperature release previously observed in several total rock samples of Apollo 14 basalts has been identified with the pyroxene. Plagioclase is also found to be the most suitable mineral for the determination of cosmic ray exposure ages, and exposure ages of 280 and 113 m.y. are found for 14310 and 14073, respectively, indicating that these rocks, which are very similar in many respects, have different exposure histories.

  14. Silicate mineralogy of martian meteorites

    NASA Astrophysics Data System (ADS)

    Papike, J. J.; Karner, J. M.; Shearer, C. K.; Burger, P. V.

    2009-12-01

    Basalts and basaltic cumulates from Mars (delivered to Earth as meteorites) carry a record of the history of that planet - from accretion to initial differentiation and subsequent volcanism, up to recent times. We provide new microprobe data for plagioclase, olivine, and pyroxene from 19 of the martian meteorites that are representative of the six types of martian rocks. We also provide a comprehensive WDS map dataset for each sample studied, collected at a common magnification for easy comparison of composition and texture. The silicate data shows that plagioclase from each of the rock types shares similar trends in Ca-Na-K, and that K 2O/Na 2O wt% of plagioclase multiplied by the Al content of the bulk rock can be used to determine whether a rock is "enriched" or "depleted" in nature. Olivine data show that meteorite Y 980459 is a primitive melt from the martian mantle as its olivine crystals are in equilibrium with its bulk rock composition; all other olivine-bearing Shergottites have been affected by fractional crystallization. Pyroxene quadrilateral compositions can be used to isolate the type of melt from which the grains crystallized, and minor element concentrations in pyroxene can lend insight into parent melt compositions. In a comparative planetary mineralogy context, plagioclase from Mars is richer in Na than terrestrial and lunar plagioclase. The two most important factors contributing to this are the low activity of Al in martian melts and the resulting delayed nucleation of plagioclase in the crystallizing rock. Olivine from martian rocks shows distinct trends in Ni-Co and Cr systematics compared with olivine from Earth and Moon. The trends are due to several factors including oxygen fugacity, melt compositions and melt structures, properties which show variability among the planets. Finally, Fe-Mn ratios in both olivine and pyroxene can be used as a fingerprint of planetary parentage, where minerals show distinct planetary trends that may have been

  15. Hydrothermal alteration and mass exchange in the hornblende latite porphyry, Rico, Colorado

    NASA Astrophysics Data System (ADS)

    Larson, Peter B.; Cunningham, Charles G.; Naeser, Charles W.

    1994-03-01

    The Rico paleothermal anomaly, southwestern Colorado, records the effects of a large hydrothermal system that was active at 4 Ma. This hydrothermal system produced the deep Silver Creek stockwork Mo deposit, which formed above the anomaly's heat source, and shallower base and precious-metal vein and replacement deposits. A 65 Ma hornblende latite porphyry is present as widespread sills throughout the area and provided a homogenous material that recorded the effects of the hydrothermal system up to 8 km from the center. Hydrothermal alteration in the latite can be divided into a proximal facies which consists of two assemblages, quartz-illite-calcite and chlorite-epidote, and a distal facies which consists of a distinct propylitic assemblage. Temperatures were gradational vertically and laterally in the anomaly, and decreased away from the centra heat source. A convective hydrothermal plume, 3 km wide and at least 2 km high, was present above the stock-work molybdenum deposit and consisted of upwelling, high-temperature fluids that produced the proximal alteration facies. Distal facies alteration was produced by shallower cooler fluids. The most important shallow base and precious-metal vein deposits in the Rico district are at or close to the boundary of the thermal plume. Latite within the plume had a large loss of Na2O, large addition of CaO, and variable SiO2 exchante. Distal propylitized latite samples lost small amounts of Na2O and CaO and exchanged minor variable amounts of SiO2. The edge of the plume is marked by steep Na2O exchange gradients. Na2O exchange throughout the paleothermal anomaly was controlled by the reaction of the albite components in primary plagioclase and alkali feldspars. Initial feldspar alteration in the distal facies was dominated by reaction of the plagioclase, and the initial molar ratio of reactants (alkali feldspar albite component to plagioclase albite component) was 0.35. This ratio of the moles of plagioclase to alkali feldspar

  16. Increasing Interaction of Alkaline Magmas with Lower Crustal Gabbroic Cumulates over the Evolution of Mt. Taylor Volcanic Field, New Mexico

    NASA Astrophysics Data System (ADS)

    Schmidt, M. E.; Crumpler, L. S.; Schrader, C.

    2010-12-01

    The Mount Taylor Volcanic Field at the southeastern edge of the Colorado Plateau, New Mexico erupted diverse alkaline magmas from ~3.8 to 1.5 Ma (Crumpler, 1980; Perry et al., 1990). The earliest eruptions include high silica topaz rhyolites of Grants Ridge (plagioclase, quartz, biotite) and Si-under saturated basanites and trachytes at Mt Taylor stratovolcano. Mt. Taylor was later constructed of stacks of thick, trachyandesitic to rhyolitic lava flows that were subsequently eroded into a ~4-km across amphitheatre opening toward the southeast. Early Mt. Taylor rhyolitic lavas exposed within the amphitheatre contain quartz, plagioclase, hornblende, and biotite (± sanidine) phenocrysts. Later cone-building trachydacite to trachyandesite lavas are crystal-rich with plagioclase and augite megacrysts (± hornblende, ± quartz) and record an overall trend of decreasing SiO2 with time. The last eruptions ~1.5 Ma from the stratovolcano (Perry et al. 1990) produced thick (>70 m), viscous lava flows that contain up to 50% zoned plagioclase phenocrysts. While SiO2 decreased among the silicic magmas, the degree of silica saturation increased among peripheral basaltic magmas from basanite to ne-normative hawaiite to hy-normative basalts. Evidence of increasing crustal contamination within the basalts includes zoned plagioclase megacrysts, augite and plagioclase cumulate texture xenoliths with accompanying xenocrysts. These textures within the basalts combined with abundant, complex plagioclase among the cone-building silicic magmas imply interaction and mixing with gabbroic cumulate mush in the lower crust beneath Mt. Taylor Volcano. Contemporaneous basanitic to trachytitc volcanism in the northern part of the volcanic field at Mesa Chivato (Crumpler, 1980) was more widely distributed, smaller volume, and produced mainly aphyric magmas. The lower crustal gabbroic cumulates either do not extend northward beneath Mesa Chivato, or they were not accessed by lower magma flux rate

  17. Eruption styles of Quaternary basalt in the southern Sierra Nevada Kern Plateau recorded in outcrop and mineral-scale stratigraphies

    NASA Astrophysics Data System (ADS)

    Browne, B. L.; Becerra, R. A.

    2015-12-01

    The Kern River Plateau in the southern Sierra Nevada contains Quaternary basalt (~0.1 km3) and rhyolite (~2 km3) that ascended through ~30 km of Mesozoic granitic crust. Basaltic vents include from oldest to youngest: Little Whitney Cone, Tunnel and South Fork Cones, and unglaciated Groundhog Cone. Little Whitney Cone is a 120-m-high pile of olivine-CPX-phyric scoria overlying two columnar jointed lava flows extending to the south and east. Tunnel Cone formed through a Hawaiian style eruption along a 400-m-long north-south trending fissure that excavated at least three 25-65-m-wide craters. Crater walls up to 12 meters high are composed of plagioclase-olivine-phyric spatter-fed flows that dip radially away from the crater center and crumble to form steep unconsolidated flanks. South Fork Cone is a 170-m-tall pile of plagioclase-olivine-phyric scoria that formed as a result of Strombolian to violent Strombolian eruptions. It overlies the South Fork Cone lava, the largest lava flow of the Kern Plateau (~0.05 km3), which flowed 7.5 km west into the Kern River Canyon. Scoria and ash fall deposits originating from South Fork Cone are found up to 2 km from the vent. Groundhog Cone is a 140-m-tall cinder and spatter cone breached on the north flank by a 0.03 km3 lava flow that partially buried the South Fork Cone lava and extends 5 km west to Kern River Canyon. Trends in mineral assemblage, texture, composition, and xenocryst abundance exist as a function of eruption style. Scoria and spatter deposits typically have (1) elevated olivine/plagioclase ratios, (2) oscillatory zoned (An63-An72) plagioclase phenocrysts surrounded by unzoned rims and (3) abundant xenocrysts, where up to 20% of plagioclase >200 micron diameter in some samples are granitoid xenocrysts with resorbed and/or reacted textures overprinted by abrupt compositional changes. In contrast, lava flow samples have (1) reduced olivine/plagioclase ratios and (2) plagioclase aggregates with oscillatory zoned

  18. Textural analysis of obsidian lava flow in Shirataki, Northern Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Sano, K.; Toramaru, A.; Wada, K.

    2013-12-01

    Formation process of obsidian is poorly understood and it is thought that gas loss (outgassing) plays an important role. Glass formation needs the high-effective undercooling resulted from a high ascent and decompression rates, which process increases magma viscosity. The vesiculation, crystallization, and outgassing processes of such a highly viscous magma is also unclear. In this study, we conducted textural and chemical analyses for Tokachi-Ishizawa (TI) obsidian lava one of Shirataki rhyolite lava, Hokkaido, northern part of Japan, in order to elucidate the magma ascent process. At TI lava, the interior structure of the lava can be observed, right from the outer obsidian layer to the inner rhyolite layer. That is, TI lava is an appropriate subject for textural analysis focused on the interior of obsidian lavas In Shirataki rhyolite lava area there are monogenetic volcanoes composed of 10 obsidian lava flow units, which were erupted at 2.2Ma. The TI lava is about 50 m in height and stratigraphic sequence from the bottom is a brecciated perlite layer, obsidian layer (7m), banded obsidian layer, and rhyolite layer. In this study, we define the obsidian and rhyolite based on the difference in appearance of specimen and rock texture, especially crystallinity. Rhyolite has perlitic cracks on glass, and contains the crystalline materials (i.e. spherulite and lithophysae). Banded obsidian layer, which is located between the obsidian and rhyolite layer, is composed of obsidian and rhyolite. In this study, we focused on the texture of flow bands and plagioclase microlites in glassy part of obsidian and rhyolite layers. The flow bands can be identified based on the color of glass (dark and clear), and have a contrast in abundance of oxide and transparent tiny crystals, which are plagioclase nanolites (<15μm) and micro-spherulites (<20μm). We newly defined micro-spherulite, which shows radial growth of crystals like a spherulite. The plagioclase nanolites were identified

  19. A generalized garnet-forming reaction for metaigneous rocks in the Adirondacks

    USGS Publications Warehouse

    McLelland, J.M.; Whitney, P.R.

    1980-01-01

    A generalized reaction is presented to account for garnet formation in a variety of Adirondack metaigneous rocks. This reaction, which is the sum of five partial reactions written in aluminum-fixed frames of reference, is given by: 4(y+1+w)Anorthite+4 k(y+1+2 w)Olivine +4(1-k)(y+1+2 w)Fe-oxide+(8(y+1) -4 k(y+1+2 w))Orthopyroxene = 2(y+1)Garnet +2(y+1+2 w)Clinopyroxene+4 wSpinel where y is a function of plagioclase composition, k refers to the relative amounts of olivine and Fe-oxide participating in the reaction, and w is a measure of silicon mobility. When mass balanced for Mg and Fe, this reaction is found to be consistent with analyzed mineral compositions in a wide range of Adirondack metaigneous rocks. The reaction applies equally well whether the garnets were formed directly from the rectants given above or went through an intermadiate stage involving the formation of spinel, orthopyroxene, and clinopyroxene. The actual reactions which have produced garnet in both undersaturated and quartz-bearing rocks are special cases of the above general reaction. The most important special cases appear to be those in which the reactants include either olivine alone (k=1) or Fe-oxide alone (k=0). Silicon is relatively immobile (w =2) in olivine bearing, magnesium-rich rocks (k???1), and this correlates with the increased intensity in spinel clouding of plagioclase in these rocks. Silicon mobility apparently increases in the more iron-rich rocks, which also tend to contain clear or lightly clouded plagioclase. In all the rocks studied the most common composition of metamorphic plagioclase is close to An33 (i.e., y=1). Plagioclase of lower anorthite content may be too sodic to participate in garnet formation at the P-T conditions involved. ?? 1980 Springer-Verlag.

  20. Occurrence of chromian, hercynitic spinel ("pleonaste") in Apollo-14 samples and its petrologic implications

    USGS Publications Warehouse

    Roedder, E.; Weiblen, P.W.

    1972-01-01

    Many isolated grains of a reddish pleonaste-type spinel occur in fines and metabreccia samples, particularly 14 319. Electron microprobe analyses (104) of spinels and their associated phases include 58 of pleonaste which show Mg/(Mg + Fe) 0.44-0.62 and Cr/(Cr + Al) 0.017-0.134 (atomic), plus minor amounts of other ions, and differ greatly from almost all previously recorded lunar spinels; almost no spinels of intermediate composition were found. Two types of compositional zoning exist: a diffuse primary one with cores lower in Ti, and a narrow secondary one from reaction with matrix yielding rims higher in Cr, Ti, and Mn. At contacts with breccia matrix there is a narrow corona of almost pure plagioclase (An80-An94), free of opaque minerals and pyroxene. Two types of solid inclusions found in the pleonaste are calcic plagioclase, and tiny spherical masses of nickel-rich sulfide. Similar pleonaste occurs in crystalline rock clasts, mainly with plagioclase; one clast (A) consists only of coarse olivine, plagioclase, and pleonaste, with granulated grain boundaries suggestive of deformation. From composition and texture, this clast is one possible candidate for the mafic cumulate counterpart of the "anorthositic" crust. Another clast (B), also made solely of olivine, plagioclase and pleonaste, is itself a breccia. These data suggest a two-stage brecciation process: 1) disruption (probably pre-Imbrian) of a deep-seated pleonaste-bearing source rock like A and reconsolidation to form a breccia without addition of pyroxene, ilmenite or other minerals; and 2) disruption of this breccia to yield breccia clast B which was then incorporated into the Fra Mauro formation. ?? 1972.

  1. Evidence for a lower crustal origin of high-Al orthopyroxene megacrysts in Proterozoic anorthosites

    SciTech Connect

    Wiebe, R.A.

    1985-01-01

    Nodules and xenocrysts dominated by high-Al orthopyroxene (HAO) occur in strongly chilled Proterozoic basaltic dikes which cut the Nain anorthosite complex, Labrador. HAO (En 73-68, Al/sub 2/O/sub 3/ = 6.5-4.5) lacks exsolution; it occurs both as anhedral xenocrysts up to 10 cm in diameter and with euhedral plagioclase (An55) in ophitic nodules. Rarely, olivine occurs with HAO and Al-spinel with plagioclase. Scarce Fe-rich nodules contain: (1) opx + pig, (2) aug + pig, and (3) coarsely exsolved ulvospinel. Pyroxene pairs yield T's of 1250 to 1170/degree/C, whereas coexisting lamellae in exsolved ulvospinel yield T's between 1145 and 1120/degree/C, with fO/sub 2/ near the WM buffer. If all nodules came from a similar depth, the rare occurrence of olivine with plagioclase suggests a maximum pressure of about 11 kb. The high subsolidus T's of the nodules contrasts with the low T of the host anorthosites at the time of dike emplacement and hence indicates a deep source for the nodules. HAO is nearly identical in composition to the high-Al orthopyroxene megacrysts with exsolved plagioclase (HAOM) found in most Proterozoic anorthosites. Many nodules of plagioclase and HAO also have textures comparable to ophitic occurrences of HAOM in anorthosite. Rafting of cotectic nodules from the lower crust could explain occurrences of HAOM in shallow-level anorthosites. The nodules and xenocrysts are samples of lower crustal cumulates. Their compositions suggest that they were produced by magmas similar to those that were parental to the anorthosites. They lend support to models which derive anorthosites by fractional crystallization of basaltic magma.

  2. Europium mass balance in polymict samples and implications for plutonic rocks of the lunar crust

    SciTech Connect

    Korotev, R.L.; Haskin, L.A. )

    1988-07-01

    From correlations of SM concentration and Sm/Eu ratio with Th concentration for a large number of polymict samples from various locations in the lunar highlands and the value of 0.91 {mu}g/g for the mean Th concentration of the highlands surface crust obtained by the orbiting gamma-ray experiments. The authors estimate the mean concentrations of Sm and Eu in the lunar surface crust to be between 2 and 3 {mu}g/g Sm and 0.7 and 1.2 {mu}g/g Eu. The compositional trends indicate that there is no significant enrichment or depletion of Eu, on the average, compared to Sm relative to chondritic abundances, i.e., there is no significant Eu anomaly in average upper crust. Although rich in plagioclase ({approximately}70%), the upper crust does not offer evidence for a gross vertical separation of plagioclase from the final liquid from which it crystallized. This and the chondritic ratio of Eu/Al in average highlands material imply that the net effect of the processes that led to formation of the lunar crust was to put most of the Al and incompatible elements in the crust. Among plutonic rocks, only plagioclase in rocks from the magnesian suite can supply the excess Eu in the polymict rocks. Owing to the intermediate value of the mean Mg/Fe ratio of the crust, a significant fraction of the mafic rocks of the lunar highlands must have lower Mg/Fe ratios than the norites and troctolites of the magnesian-suite of plutonic rocks. A large fraction of the plagioclase in the lunar crust is associated not with ferroan anorthosite, but with more mafic rocks. There is little evidence in the Eu data that the lunar crust ever consisted of a thick shell of nearly pure plagioclase, as envisioned in some formulations of the magma ocean model of its formation.

  3. A first find of retrogressed eclogites in the Odenwald Crystalline Complex, Mid-German Crystalline Rise, Germany: evidence for a so far unrecognised high-pressure metamorphism in the Central Variscides

    NASA Astrophysics Data System (ADS)

    Will, Thomas M.; Schmädicke, Esther

    2001-11-01

    Metabasic rocks were recently found in the Böllsteiner Odenwald, being part of the Variscan Mid-German Crystalline Rise (MGCR), that give evidence of a so far unrecognised eclogite-facies metamorphic event and testify, for the first time, to high-pressure metamorphism in the MGCR, the assumed suture zone of the European Variscides. Eclogite-facies metamorphism is indicated by both widespread clinopyroxene-plagioclase symplectites—interpreted as breakdown products of omphacite—and the composition of symplectitic clinopyroxene with measured jadeite contents of up to 27 mol%, extending into the omphacite field. Reintegration of numerous clinopyroxene-plagioclase symplectites implies minimum jadeite contents of the former omphacite of at least 38 mol%. For the eclogite stage, the four-phase assemblage omphacite-garnet-quartz-rutile can be reconstructed. A post-eclogitic overprint led to the formation of symplectitic intergrowths of clinopyroxene and plagioclase, amphibole-plagioclase coronas around garnet and domains with recrystallised amphibole and plagioclase. Preliminary P- T estimates for the eclogite-facies metamorphism indicate minimum pressures of some 16-17 kbar and temperatures of approximately 700±50 °C. Geothermobarometry for the subsequent symplectitic breakdown of omphacite yields some 14 kbar and 700 °C. P- T estimates on retrograde amphibolite-facies domains and on prograde mineral assemblages preserved in garnet cores point to a clockwise P- T path experienced by these rocks. The eclogites formed from a tholeiitic protolith, that may have been genetically linked to a continental extension zone or a young oceanic ridge or back-arc environment.

  4. Evidence for pervasive melt-rock reaction within the uppermost mantle at Hess Deep

    NASA Astrophysics Data System (ADS)

    Shejwalkar, A. S.; Coogan, L. A.

    2015-12-01

    A suite of spinel harzburgites from ODP Site 895 at Hess Deep have been analysed for the major and trace element compositions of the major mineral phases and of the bulk rock to investigate the effect of melt rock reaction on mineral and bulk rock geochemistry. The harzburgites are at the depleted end of the global array of abyssal peridotite compositions in terms of moderately incompatible elements such as Al2O3, CaO, V and Sc. The whole-rock HREE abundances can be modeled as the residues of 15-25% near fractional melting of DMM however the LREE have much higher concentrations than predicted by this model and the samples show a significant positive Eu anomaly. The data can be fit well by a model of near-fractional melting followed by 0.5 to 2% precipitation of plagioclase that has a trace element composition in equilibrium with MORB. Plagioclase impregnation is common in the mantle section drilled at Site 895 although plagioclase is not observed petrographically in the samples studied here. The rocks are 20-70% altered and we hypothesize that plagioclase was entirely replaced during this alteration. The LREE-enrichment, relative to a melting residue, observed in the bulk-rock is not observed in clinopyroxene compositions. One explanation for this could be that the rocks were relatively cool when plagioclase impregnation occurred meaning diffusion was inefficient at modifying the clinopyroxene compositions [e.g. 1]. Whether melt-rock reaction occurs on- or off-axis is currently being investigated. Refs: [1] Niu, 2004. Journal of Petrology. Volume 45 (12), 2423-2458.

  5. Megacrystic pyroxene basalts sample deep crustal gabbroic cumulates beneath the Mount Taylor volcanic field, New Mexico

    NASA Astrophysics Data System (ADS)

    Schmidt, Mariek E.; Schrader, Christian M.; Crumpler, Larry S.; Rowe, Michael C.; Wolff, John A.; Boroughs, Scott P.

    2016-04-01

    Distributed over the ~ 2.3 m.y. history of the alkaline and compositionally diverse Mount Taylor Volcanic Field (MTVF), New Mexico is a widespread texturally distinct family of differentiated basalts that contain resorbed megacrysts (up to 3 cm) of plagioclase, clinopyroxene, and olivine ± Ti-magnetite ± ilmenite ± orthopyroxene. These lavas have gabbroic cumulate inclusions with mineral compositions similar to the megacrysts, suggesting a common origin. Gabbroic and megacrystic clinopyroxenes form positive linear arrays in TiO2 (0.2-2.3 wt.%) with respect to Al2O3 (0.7-9.3 wt.%). Plagioclase (An41-80) from representative thin sections analyzed for 87Sr/86Sr by laser ablation ICP-MS range from 0.7036 to 0.7048. The low 87Sr/86Sr plagioclases (0.7036 to 0.7037) are associated with high Ti-Al clinopyroxenes. Likewise, the higher 87Sr/86Sr plagioclases (0.7043 to 0.7047) are associated with the low-Al clinopyroxenes. Taken together, the pyroxene and plagioclase megacrysts appear to track the differentiation of a gabbroic pluton (or related plutons) from alkaline to Si-saturated conditions by fractional crystallization and crustal assimilation. Clinopyroxene-liquid geobarometry calculations suggest that crystallization occurred near the crust-mantle transition at an average of ~ 1200 °C and 12-13 kbar. The distribution of the megacrystic pyroxene basalts suggests that a gabbroic intrusive body underlies subregions of the MTVF that have generated silicic magmas. The gabbro is interpreted to be a significant heat and mass input into the lower crust that is capable of driving the petrogenesis of diverse silicic compositions (through fractionation and crustal assimilation), including mugearites, trachytes, trachy-andesites and dacites, high-Si rhyolites, and topaz rhyolites of the MTVF.

  6. Mineralogy of new Antarctic achondrites with affinity to Lodran and a model of their evolution in an asteroid

    NASA Technical Reports Server (NTRS)

    Takeda, Hiroshi; Mori, Hiroshi; Hiroi, Takahiro; Saito, Jun

    1994-01-01

    We studied five new Antartic achondrites, MacAlpine Hills (MAC) 88177, Yamato (Y)74357, Y75274, Y791491 and Elephant Moraine (EET)84302 by mineralogical techniques to gain a better understanding of the mineral assemblages of a group of meteorites with an affinity to Lodran (stony-iron meteorite) and their formation processes. This group is being called lodranites. These meteorites contain major coarse-grained orthopyroxene (Opx) and olivine as in Lodran and variable amounts of FeNi metal and troilite etc. MAC88177 has more augite and less FeNi than Lodran; Y74357 has more olivine and contains minor augite; Y791491 contains in addition plagioclase. EET84302 has an Acapulco-like chondritic mineral assembladge and is enriched in FeNi metal and plagioclase, but one part is enriched in Opx and chromite. The EET84302 and MAC88177 Opx crystals have dusty cores as in Acapulco. EET84302 and Y75274 are more Mg-rich than other members of the lodranite group, and Y74357 is intermediate. Since these meteorites all have coarse-grained textures, similar major mineral assemblages, variable amounts of augite, plagioclase, FeNi metal, chromite and olivine, we suggest that they are related and are linked to a parent body with modified chondritic compositions. The variability of the abundances of these minerals are in line with a proposed model of the surface mineral assemblages of the S asteroids. The mineral assemblages can best be explained by differing degrees of loss or movements of lower temperature partial melts and recrystallization, and reduction. A portion of EET84302 rich in metal and plagioclase may represent a type of component removed from the lodranite group meteorites. Y791058 and Caddo County, which were studied for comparison, are plagioclase-rich silicate inclusions in IAB iron meteorites and may have been derived by similar process but in a different body.

  7. High-temperature fracturing and subsequent grain-size-sensitive creep in lower crustal gabbros: Evidence for coseismic loading followed by creep during decaying stress in the lower crust?

    NASA Astrophysics Data System (ADS)

    Okudaira, Takamoto; Jeřábek, Petr; Stünitz, Holger; Fusseis, Florian

    2015-05-01

    The mechanism of shear zone formation in lower crustal, relatively "dry" rocks is still poorly understood. We have studied the high-temperature deformation of the Hasvik gabbro (northern Norway) which commences by fracturing. The 10-20 µm wide fractures show little displacement. The fine-grained plagioclase and orthopyroxene in the fractures lack a crystallographic preferred orientation (CPO) or a systematic crystallographic orientation with respect to the host grains. Fractures grade into narrow shear zones, which are composed of fine (10-20 µm), equant grains of recrystallized plagioclase, amphibole, and pyroxene. Recrystallized plagioclase and pyroxene have compositions different from the magmatic grains, suggesting that they have formed by nucleation and growth. Based on conventional plagioclase-amphibole thermobarometry, the shear zones have formed at temperatures and pressures of 700-750°C and 0.5-0.6 GPa. The observed primary minerals cut by fractures suggest high-temperature fracturing in the absence of high pore pressures, which implies a high strength of the lower crustal gabbros and high stresses at fracturing. The shear zones are characterized by the lack of CPO and a small grain size, suggesting that the mechanism of deformation of the fine-grained plagioclase and orthopyroxene has been grain boundary sliding accommodated by diffusive mass transfer. The amphibole grains have strong CPOs, which most likely result from oriented growth and/or rigid body rotations during deformation. The process that initiated the fracturing and subsequent viscous creep in the Hasvik gabbro may have resulted from a process of coseismic loading followed by creep during decaying stress in the lower crust.

  8. Constraining the deformation and exhumation history of the Ronda Massif, Southern Spain

    NASA Astrophysics Data System (ADS)

    Myall, Jack; Donaldson, Colin

    2016-04-01

    The Ronda peridotite, southern Spain is comprised of four peridotite units hosted within metasedimentary units of the Betic Cordillera, Western Alps. These four areas of differing mineral facies are termed: the Garnet Mylonite , the Foliated Spinel Peridotite, the Granular Spinel Peridotite and the Foliated Plagioclase Peridotite. Whilst two of these units show a strong NE-SW foliation, the granular unit has no foliation and the Plagioclase facies shows a NW-SE foliation. The massif is separated from the metasedimentary host through a mylonite shear zone to the NW and thrust faults to the SE. The Garnets contain rims of Kelyphite which when combined with the rims of Spinel on the Plagioclase crystals illustrate the complicated exhumation of this massif. The Kelyphite shows the breakdown of garnet back to spinel and pyroxene showing the deeper high pressure high temperature mineral is under shallowing conditions whereas in contrast to this the low pressure low temperature plagioclase crystals have spinel rims showing that they have been moved into deeper conditions. The P-T-t pathway of the massif suggests slow exhumation to allow for partial recrystallisation of not only the garnets and plagioclases but of a 100m band of peridotite between the Foliated Spinel Peridotite and the Granular Spinel Peridotite facies. The tectonic model for the Ronda Peridotite that best describes the field data and subsequent lab work of this study is Mantle Core complex and slab roll back models. These models support mantle uprising during an extensional event that whereby slab roll back of the subducting lithosphere provides uplift into a void and emplacement into the crust. Further extension and final exhumation causes rotation of a mantle wedge into its present day position.

  9. Modelling the heat pulses generated on a fault plane during coseismic slip: Inferences from the pseudotachylites of the Copanello cliffs (Calabria, Italy)

    NASA Astrophysics Data System (ADS)

    Caggianelli, A.; de Lorenzo, S.; Prosser, G.

    2005-08-01

    A pseudotachylite vein network crosscutting late Hercynian foliated tonalites can be observed along the Copanello cliffs (Calabria, Southern Italy). Pseudotachylites formed during the Oligocene-Miocene at intermediate crustal levels (ca. 10 km). They show variable thickness ranging from few mm up to 10 cm, as observed in injection veins branching from the fault plane. Microscopic observations indicate that pseudotachylite matrix mainly consists of plagioclase (An 46-An 58) and biotite microlites. Rounded clasts of quartz, plagioclase or of plagioclase-quartz lithic fragments are disseminated in the matrix. Intergranular, flow and spherulitic textures are commonly observed. Microstructural features are consistent with rapid crystallisation from melt. EDS analyses of rare and tiny glass veins indicated a trachyandesite or An 50 plagioclase melt composition. The conditions for pseudotachylite formation were reproduced by an analytical model taking into account the heat released by friction along a horizontal fault plane during a seismic event. The model is based on a three-stage rupture history that includes nucleation, propagation and stopping. In addition, by means of a numerical approach, the model reproduces cooling that follows the stopping stage. According to previous studies, the thermal perturbation induced by fault displacement is very intense. In fact, temperatures exceeding the tonalite and even An 50 plagioclase liquidus (1470 °C) are reproduced by small amount of slip (≤ 6 cm) in suprahydrostatic regime. On the other hand, the thermal perturbation is strongly localised and of short duration. Peak temperatures abruptly decrease at a short distance from the fault plane (typically in few millimetres). In these conditions a thin film of melt can be produced. Therefore, the presence of cm-scale pseudotachylite veins can be only explained assuming an efficient and fast melt migration towards dilatant sites, such as pull-apart structures and injections veins

  10. Petrogenesis of Sierra Nevada plutons inferred from the Sr, Nd, and O isotopic signatures of mafic igneous complexes in Yosemite Valley, California

    NASA Astrophysics Data System (ADS)

    Nelson, Wendy R.; Dorais, Michael J.; Christiansen, Eric H.; Hart, Garret L.

    2013-02-01

    Mafic complexes in the central Sierra Nevada batholith record valuable geochemical information regarding the role mafic magmas play in arc magmatism and the generation of continental crust. In the intrusive suite of Yosemite Valley, major and trace element compositions of the hornblende-bearing gabbroic rocks from the Rockslides mafic complex and of the mafic dikes in the North America Wall are compositionally similar to high-alumina basalt. Of these rocks, two samples have higher Ni and Cr abundances as well as higher ɛNd values than previously recognized for the intrusive suite. Plagioclase crystals in rocks from the North America Wall and the Rockslides have prominent calcic cores and sharply defined sodic rims, a texture commonly associated with mixing of mafic and felsic magmas. In situ analyses of 87Sr/86Sr in plagioclase show no significant isotopic difference from the cores to the rims of these grains. We propose that the high 87Sr/86Sr (~0.7067) and low ɛNd (~-3.4) of bulk rocks, the homogeneity of 87Sr/86Sr in plagioclase, and the high δ18O values of bulk rocks (6.6-7.3 ‰) and zircon (Lackey et al. in J Petrol 49:1397-1426, 2008) demonstrate that continental crust was assimilated into the sublithospheric mantle-derived basaltic precursors of the mafic rocks in Yosemite Valley. Contamination (20-40 %) likely occurred in the lower crust as the magma differentiated to high-alumina basalt prior to plagioclase (and zircon) crystallization. As a consequence, the isotopic signatures recorded by whole rocks, plagioclase, and zircon do not represent the composition of the underlying lithospheric mantle. We conclude that the mafic and associated felsic members of the intrusive suite of Yosemite Valley represent 60-80 % new additions to the crust and include significant quantities of recycled ancient crust.

  11. Enigmatic Late-Stage Textures In Mafic Cumulates: Skaergaard Intrusion, East Greenland.

    NASA Astrophysics Data System (ADS)

    Stripp, G.; Holness, M.; Veksler, I.

    2006-12-01

    The complexities of slow solidification in deep-seated silicate liquid bodies are poorly understood. Late-stage melt migration, due to compaction of the crystal mush, drives re-crystallisation and metasomatism which can have significant effects on chamber-wide chemical evolution. In this contribution we present novel textural observations from mafic cumulates of the Skaergaard Layered Intrusion which may shed light on liquid movement during the last stages of solidification of the crystal mush. Previously undescribed mafic symplectites are widespread in the Skaergaard Layered Series, and comprise vermicular intergrowths of plagioclase and olivine, which may be replaced by clinopyroxene in the outer parts of the symplectite. The symplectites grow outwards from Fe-Ti oxide grains, consuming adjacent cumulus plagioclase. In the Middle Zone of the Layered Series (where symplectites are best developed) symplectite plagioclase adjacent to the Fe-Ti oxide grains contains 1.2 wt% FeOtot which decreases to 0.6 wt% FeOtot at the symplectite margin, compared to a ~ 0.35 wt% average for adjacent cumulus plagioclase. Symplectite plagioclase is up to 40 mol% more An-rich than the adjacent cumulus grains. Olivine compositions range from Fo45 to Fo32 along the growth direction of the symplectite, compared to ~ Fo44 for cumulus olivine at this level in the intrusion. Biotite commonly replaces olivine. Texturally- and compositionally-related patches of intergrown clinopyroxene and An-rich plagioclase occur locally on plagioclase triple junctions and plagioclase grain boundaries. Symplectites are present, but rare, in the lower parts of the Skaergaard Layered Series; increase significantly in volumetric importance in Lower Zone b; are very common in Middle Zone and disappear in UZ. The symplectites resemble those formed by hydrous partial melting of oceanic gabbros (Koepke et al., 2005) but important differences include the presence of clinopyroxene and Fe-rich plagioclase, and the

  12. Origin of High Electrical Conductivity in the Lower Continental Crust: A Review

    NASA Astrophysics Data System (ADS)

    Yang, Xiaozhi

    2011-11-01

    Electromagnetic measurements have demonstrated that the lower continental crust has remarkable electrical anomalies of high conductivity and electrical anisotropy on a global scale (probably with some local exceptions), but their origin is a long-standing and controversial problem. Typical electrical properties of the lower continental crust include: (1) the electrical conductivity is usually 10-4 to 10-1 S/m; (2) the overlying shallow crust and underlying upper mantle are in most cases less conductive; (3) the electrical conductivity is statistically much higher in Phanerozoic than in Precambrian areas; (4) horizontal anisotropy has been resolved in many areas; and (5) in some regions there appear to be correlations between high electrical conductivity and other physical properties such as seismic reflections. The explanation based on conduction by interconnected, highly conductive phases such as fluids, melts, or graphite films in grain boundary zones has various problems in accounting for geophysically resolved electrical conductivity and other chemical and physical properties of the lower crust. The lower continental crust is dominated by mafic granulites (in particular beneath stable regions), with nominally anhydrous clinopyroxene, orthopyroxene, and plagioclase as the main assemblages, and the prevailing temperatures are mostly 700-1,000°C as estimated from xenolith data, surface heat flow, and seismic imaging. Pyroxenes have significantly higher Fe content in the lower crust than in the upper mantle (peridotites), and plagioclase has higher Na content in the lower crust than in the shallow crust (granites). Minerals in the lower continental crust generally contain trace amounts of water as H-related point defects, from less than 100 to more than 1,000 ppm H2O (by weight), with concentrations usually higher than those in the upper mantle. Observations of xenolith granulites captured by volcano-related eruptions indicate that the lower continental crust is

  13. Phenocryst complexity in andesites and dacites from the Tequila volcanic field, Mexico: resolving the effects of degassing vs. magma mixing

    NASA Astrophysics Data System (ADS)

    Frey, Holli M.; Lange, Rebecca A.

    2011-08-01

    The petrology of five phenocryst-poor (2-5%) andesites and dacites, all of which were erupted from different short-lived, monogenetic vents, is compared to that of phenocryst-rich (10-25%) andesites erupted from the adjacent stratovolcano, Volcán Tequila, in the Mexican arc. Despite differences in phenocryst abundances, these magmas have comparable phase assemblages (plagioclase + orthopyroxene + titanomagnetite + ilmenite + apatite ± augite ± hornblende), and similarly wide variations in phenocryst compositions, coupled to complex zoning patterns. For the phenocryst-poor lavas, equilibrium pairs of two Fe-Ti oxides lead to a narrow range of calculated temperatures for each sample that range from 934 (±24) to 1,073 (±6)°C and oxygen fugacities that range from +0.1 to +0.7 log units relative to the Ni-NiO buffer. Application of the plagioclase-liquid hygrometer to each sample at these calculated temperatures leads to maximum melt water concentrations of 4.6-3.1 wt% during plagioclase crystallization, indicating that the magmas were fluid saturated at depths ≥6.4-4.5 km. There is a wide, continuous range in the composition of plagioclase (≤44 mol% An) and orthopyroxene (≤16% Mg#) phenocrysts in each sample, which is consistent with a loss of dissolved water (≤2.8 wt%) from the melt phase during degassing as the magmas ascended rapidly to the surface. Evidence is presented that shows the effect of dissolved water is to reduce the activity of MgO relative to FeO in the melt phase, which indicates that degassing will also affect the Mg# of pyroxene phenocrysts, with higher melt water concentrations favoring Fe-rich pyroxene. Both plagioclase and orthopyroxene commonly display diffusion-limited growth textures (e.g., skeletal and hopper crystals, large interior melt hollows, and swallow tails), which are consistent with large undercoolings produced by degassing-induced crystallization. Therefore, degassing is proposed as a possible cause for the phenocryst

  14. Laser Raman Spectroscopic Confirmation of Maskelynite in the Bedout Impact Breccia, Offshore, NW Australia.

    NASA Astrophysics Data System (ADS)

    Basu, A. R.; Chakrabarti, R.; Peterson, J.; Poreda, R. J.; Becker, L.

    2004-12-01

    We report the results of a detailed laser Raman spectroscopic study of isotropic plagioclase laths ( ˜An50) from the 9986 ft. core sample of the Bedout High, interpreted recently by us (Becker et al. Science, 304, p1469, 2004) as the possible remnant of an end-Permian impact crater, offshore of NW Australia. These plagioclase laths are associated with spherulitic glass fragments of nearly pure silica in composition, as well as pure albite and other heterogeneous glassy fragments in a highly brecciated volcanic-like host rock. We performed laser Raman analysis on the same grains shown in Fig 6 of our paper referred above and identified as maskelynite. We also performed a comparative analysis of other known shocked plagioclase grains from the Manicouagan Crater, Canada and from the Lonar Crater, India (to be reported in this meeting, Chakrabarti et al.) Raman scattering measurements were performed using the 514.5 nm line of an argon ion laser at an intensity of 40 kW/cm2. An inverted microscope (Nikon TE3000) with 50x objective (NA 0.55) was used for confocal imaging. A holographic notch filter removed residual laser scatter and the Raman scattering was detected by a silicon CCD at -900 C (Princeton Instruments Spec10-400R). Raman spectra were collected from ~250 cm-1 through 2000 cm-1 in all these samples. An anisotropic plagioclase lath from the same 9986 polished thin section shows prominent peaks at 827 cm-1, 1109 cm-1 and 1180 cm-1 with much smaller peaks at 433 cm-1 and 634 cm-1. The Raman spectra of the isotropic grains of Fig 6 from our earlier study are conspicuously featureless and show a progressive increase in the luminescent background with higher wave numbers. Our observations are consistent with the Raman spectra of experimentally shocked plagioclase (Heymann and Herz, 1990, Cont. Min. Petr. 17, 38-44, 1990) as well as those of plagioclases from the tektites of the Lonar Impact Crater. Therefore we strongly believe that we had correctly identified

  15. Mineralogy of Meteorite Groups

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    1997-01-01

    Approximately 275 mineral species have been identified in meteorites, reflecting diverse redox environments, and, in some cases, unusual nebular formation conditions. Anhydrous ordinary, carbonaceous and R chondrites contain major olivine, pyroxene and plagioclase; major opaque phases include metallic Fe-Ni, troilite and chromite. Primitive achondrites are mineralogically similar. The highly reduced enstatite chondrites and achondrites contain major enstatite, plagioclase, free silica and kamacite as well as nitrides, a silicide and Ca-, Mg-, Mn-, Na-, Cr-, K- and Ti-rich sulfides. Aqueously altered carbonaceous chondrites contain major amounts of hydrous phyllosilicates, complex organic compounds, magnetite, various sulfates and sulfides, and carbonates. In addition to kamacite and taenite, iron meteorites contain carbides, elemental C, nitrides, phosphates, phosphides, chromite and sulfides. Silicate inclusions in IAB/IIICD and lIE iron meteorites consist of mafic silicates, plagioclase and various sulfides, oxides and phosphates. Eucrites, howardites and diogenites have basaltic to orthopyroxenitic compositions and consist of major pyroxene and calcic plagioclase and several accessory oxides. Ureilttes .are made up mainly of calcic, chromian olivine and low-Ca clinopyroxene embedded in a carbonaceous matrix; accessory phases include the C polymorphs graphite, diamond, lonsdaleite and chaoite as well as metallic Fe-Ni, troilite and halides. Angrites are achondrites rich in fassaitic pyroxene (i.e. , AI-Ti diopside); minor olivine with included magnesian kirschsteinite is also present. Martian meteorites comprise basalts, Iherzolites, a dunite and an orthopyroxenite. Major phases include various pyroxenes and olivine; minor to accessory phases include various sulfides, magnetite, chromite and Ca-phosphates. Lunar meteorites comprise mare basalts with major augite and calcic plagioclase and anorthositic breccias with major calcic plagioclase. Several meteoritic

  16. High and low pressure phase equilibria of a mildly alkalic lava from the 1965 Surtsey eruption: Experimental results

    NASA Astrophysics Data System (ADS)

    Thy, P.

    1991-01-01

    Melting experiments have been performed on a primitive, mildly alkalic glassy lava (10 wt.% MgO) from the 1965 eruption of the Surtsey volcano located at the tip of the south-eastern propagating rift zone of Iceland. At atmospheric pressure, approximately on the FMQ oxygen buffer, olivine (Fo 81) crystallizes from 1240°C, followed by plagioclase (An 70) from 1180°C and augite from 1140°C. The experimental glasses coexisting with olivine, plagioclase and augite are ferrobasaltic enriched in FeO (13.6-14.2 wt.%) and TiO 2 (4.0-4.4 wt.%). In high pressure, piston-cylinder, graphite-controlled runs, olivine occurs as the liquidus phase until 14 kbar, above which augite is the liquidus phase. Low-Ca pyroxene is not a liquidus phase at any pressure. The high pressure liquids are, relative to the one atmosphere liquids, significantly enriched in Al 2O 3 and Na 2O and depleted in CaO as a result of changes in the crystallizing assemblages. Furthermore, liquidus augite is dominantly subcalcic and shows significant enrichment in Al and depletion in Ti. Subliquidus plagioclase is enriched in sodium relative to low pressure phase compositions. Evaluated in normative projections, contrasting liquid lines of descent are revealed as a function of pressure. At one atmosphere, the multisaturated liquids are located close to the thermal divide defined by the plane olivine-plagioclase-augite, but appear, with advanced degrees of crystallization, to be moving away from the thermal divide toward normative quartz. The augites crystallizing in the one atmosphere experiments are calcic and slightly nepheline normative. In the 10 and 12.5 kbar experiments, the augites become subcalcic and dominantly hypersthene normative. Because of this shift in augite compositions, transitional basaltic liquids may at high pressure evolve from the tholeiitic side of the olivine-plagioclase-diopside normative divide onto the alkalic side. With increasing pressure above 15 kbar, the liquidus augite

  17. Re-equilibration history and P- T path of eclogites from Variscan Sardinia, Italy: a case study from the medium-grade metamorphic complex

    NASA Astrophysics Data System (ADS)

    Cruciani, Gabriele; Franceschelli, Marcello; Groppo, Chiara; Oggiano, Giacomo; Spano, Maria Elena

    2015-04-01

    Retrogressed eclogites are hosted within the Variscan low- to medium-grade metamorphic complex near Giuncana, north-central Sardinia. These rocks are medium to fine grained with garnet and amphibole as the most abundant mineral phases along with clinopyroxene, plagioclase, quartz, biotite, chlorite, epidote, ilmenite, rutile and titanite. Four stages of mineralogical re-equilibration have been distinguished. The stage I is characterized by the occurrence of omphacite, epidote, quartz, amphibole, rutile and ilmenite in garnet poikiloblasts. The stage II is characterized by two types of symplectitic microstructures: (1) amphibole + quartz symplectite and (2) clinopyroxene + plagioclase ± amphibole symplectite. The first symplectite type replaces omphacite included in garnet, whereas the second one is widespread in the matrix. Biotite droplets and/or lamellae intimately growing with fine-grained plagioclase resemble biotite + plagioclase symplectite after phengite. The stage III is characterized by the widespread formation of amphibole: (1) as zoned porphyroblasts in the matrix, (2) as corona-type microstructure replacing garnet. Subordinate plagioclase (oligoclase) is also present in the amphibole corona. The stage IV is characterized by the local formation of biotite replacing garnet, actinolite, chlorite, albite and titanite. P- T pseudosections calculated with Perple_X give P- T conditions 580 < T < 660 °C, 1.3 < P < 1.8 GPa for the stage I. After the stage I, pressure decrease and temperature increase led to the breakdown of omphacite with the formation of clinopyroxene + plagioclase ± amphibole symplectite at ~1.25-1.40 GPa and 650-710 °C (stage II). P- T conditions of the amphibolite-facies stage III have been defined at 600-670 °C, P = 0.65-0.95 GPa. P- T conditions of the latest stage IV are in the range of greenschist facies. The P- T path of the retrogressed eclogite hosted in the medium-grade micaschist and paragneiss of Giuncana recalls the P- T

  18. Gabbroic and Peridotitic Enclaves from the 2008 Kasatochi Eruption, Aleutian Islands, Alaska

    NASA Astrophysics Data System (ADS)

    Kentner, A.; Nadin, E. S.; Izbekov, P. E.; Nye, C. J.; Neill, O. K.

    2012-12-01

    Kasatochi volcano of the Andreanof Islands in the western Aleutian Arc violently erupted over a two day period from August 7-8, 2008. The eruption involved multiple explosive events generating pyroclastic flows, which included abundant mafic and ultramafic enclaves that have since weathered out and accumulated in talus along the coast. These and other mafic enclaves sampled by modern island arc lavas provide insight into subduction magmatism because they emerge from a section of the subduction system that is less likely than shallower zones to be modified by magmatic processes such as mixing, assimilation, or fractionation. We present new whole rock, clinopyroxene, amphibole, plagioclase, and melt compositions from Kasatochi enclaves of the 2008 eruption. The highly crystalline (~40 vol. % phenocryst content), medium-K basaltic andesite host rock contains ~52-55 wt. % SiO2 and 0.6-0.9 wt. % K2O, and is composed of plagioclase, ortho- and clinopyroxene, amphibole, and Ti-magnetite in a microlite-rich groundmass. Upon eruption, this magma sampled two distinct enclave populations: gabbro and peridotite. The gabbro has abundant amphibole (mostly magnesio-hastingsite) and plagioclase with minor clinopyroxene, olivine, and magnetite, while the peridotite is composed of olivine with minor amounts of clinopyroxene and orthopyroxene. There is little textural variation amongst the peridotitic samples collected, but the gabbroic samples vary from layered to massive and cover a range in grain size from fine-grained to pegmatitic. The layered gabbros display centimeter-scale bands of alternating plagioclase- and amphibole-rich layers, with a strong preferential alignment of the amphibole grains. The coarser-grained samples are very friable, with ~10% pore space; disaggregation of these upon host-magma ascent likely formed the amphibole and plagioclase xenocrysts in the andesitic host. Based on the textural and compositional differences, we divide the enclaves into four groups

  19. Can cathodoluminescence of feldspar be used as provenance indicator?

    NASA Astrophysics Data System (ADS)

    Scholonek, Christiane; Augustsson, Carita

    2016-05-01

    We have studied feldspar from crystalline rocks for its textural and spectral cathodoluminescence (CL) characteristics with the aim to reveal their provenance potential. We analyzed ca. 60 rock samples of plutonic, volcanic, metamorphic, and pegmatitic origin from different continents and of 16 Ma to 2 Ga age for their feldspar CL textures and ca. 1200 feldspar crystals from these rocks for their CL color spectra. Among the analyzed rocks, igneous feldspar is most commonly zoned, whereby oscillatory zoning can be confirmed to be typical for volcanic plagioclase. The volcanic plagioclase also less commonly contains twin lamellae that are visible in CL light than crystals from other rock types. Alkali feldspar, particularly from igneous and pegmatitic rocks, was noted to be most affected by alteration features, visible as dark spots, lines and irregular areas. The size of all textural features of up to ca. 150 μm, in combination with possible alteration in both the source area and the sedimentary system, makes the CL textures of feldspar possible to use for qualitative provenance research only. We observed alkali feldspar mostly to luminesce in a bluish color and sometimes in red, and plagioclase in green to yellow. The corresponding CL spectra are dominated by three apparent intensity peaks at 440-520 nm (mainly blue), 540-620 nm (mainly green) and 680-740 nm (red to infrared). A dominance of the peak in the green wavelength interval over the blue one for plagioclase makes CL particularly useful for the differentiation of plagioclase from alkali feldspar. An apparent peak position in red to infrared at < 710 nm for plagioclase mainly is present in mafic rocks. Present-day coastal sand from Peru containing feldspar with the red to infrared peak position mainly exceeding 725 nm for northern Peruvian sand and a larger variety for sand from southern Peru illustrates a discriminative effect of different source areas. We conclude that the provenance application

  20. Crystallographic Preferred Orientations and Seismic Properties of troctolitic rocks from fast-spread lower ocean crust (IODP Expedition 345 at Hess Deep

    NASA Astrophysics Data System (ADS)

    Ildefonse, B.; Akizawa, N.; Mainprice, D.; Godard, M.; Arai, S.

    2014-12-01

    IODP Expedition 345 (Dec 2012 - Feb 2013) recovered the first significant sections of modally layered gabbroic rocks from fast-spread lower ocean crust exposed at the Hess Deep Rift (Gillis et al., 2014, doi:10.1038/nature12778). Olivine gabbro and troctolite are the dominant plutonic rock types recovered, with minor gabbro and gabbronorite. Magmatic foliation is moderate to strong in intervals with simple modal layering but weak to absent in troctolitic intervals, and typically absent in intervals with heterogeneous textures and/or diffuse banding. We present crystallographic preferred orientations (CPO) of primary igneous phases (plagioclase, olivine, cpx) in troctolitic samples, measured using the Electron-Backscattered Electron Diffraction (EBSD) technique at Géosciences Montpellier. The samples are divided into 12 coarse-grained troctolites, 3 fine-grained troctolites, 9 clinopyroxene oikocryst-bearing troctolites, 1 skeletal olivine-bearing troctolite, and 3 olivine gabbros. Plagioclase CPO are typical magmatic fabrics, dominantly axial-B, or intermediate between axial-B and type P (BA-index ranges from 0.1 to 0.6; Satsukawa et al., 2013, doi:10.5194/se-4-511-2013). BA increases when the [100] point maximum, indicating the mineral lineation, becomes better defined. The coarse-grained troctolite samples, from the troctolite series in Holes U1415 J and P, generally display too large grains for the CPO to be statistically meaningful; fabrics appear poorly defined at the scale of the thin sections. Large olivine grains commonly display subgrains resulting from crystal-plastic deformation. In the other troctolitic samples, the plagioclase fabrics are generally well defined, and vary in intensity (J-index) from 1.8 to 7. The olivine gabbros are from banded intervals in Hole U1415P; they display weak, oblate plagioclase CPO (J = 1.5 to 2, BA < 0.2). CPO are used to model seismic properties of the samples. The fast direction of elastic P-wave propagation in

  1. A New Hygrometer based on the Europium Anomaly in Clinopyroxene Phenocrysts in Arc Volcanic Rocks

    NASA Astrophysics Data System (ADS)

    Plank, T.; Benjamin, E.; Wade, J.; Grove, T.

    2004-12-01

    Water is arguably the most important chemical component in arc magmas, affecting everything from liquidus temperatures to crystal fractionation trends to melt rheology. Water concentrations in arc magmas provide a first-order constraint on water contents in the mantle wedge, and the mechanisms of wet mantle melting. However, measuring the water content of primary arc magmas has been difficult, or in some cases impossible, due to the near complete degassing of volcanic rocks, and the scarcity of olivine-hosted melt inclusions in many arc volcanoes. We have thus developed a new hygrometer using the composition of clinopyroxene phenocrysts, which are common in arc basalts and andesites. The hygrometer is based on the well-known suppression of plagioclase by water dissolved in the melt, and the effect on the rare earth element (REE) pattern of coexisting phases, such as clinopyroxene. Dry melts saturate in plagioclase early, and the preferential partitioning of Eu2+ in plagioclase causes a negative Eu anomaly to develop in coexisting melts and clinopyroxene. In wet magmas, clinopyroxene crystallizes before plagioclase, and so initially appears with a negligible Eu anomaly. Clinopyroxenes then record water content in the delayed development of their negative Eu anomaly, caused by the delayed appearance of plagioclase along the cotectic with increasing water. We have tested this model using tephras from the 1723 eruption of Irazu, the ET3 unit of Arenal and the 1995 eruption of Cerro Negro volcanoes in Central America, with known water contents of ˜ 3, 4 and 5 wt%, respectively, based on olivine-hosted melt inclusions. Clinopyroxene phenocrysts separated from these samples vary in Mg# from 86-72, and in some cases span the entire liquid line of descent of the volcano. REE patterns were determined by laser ablation ICPMS on 150 micron spots. A marked increase in the magnitude of the negative Eu anomaly occurs in clinopyroxenes with Mg# < 84 in Irazu, < 82 in Arenal and

  2. Cathodoluminescence of quartz and feldspar in provenance research

    NASA Astrophysics Data System (ADS)

    Augustsson, Carita; Reker, Annalena; Scholonek, Christiane

    2013-04-01

    Quartz often dominates in siliciclastic sandstone and feldspar mostly is present. Despite this, the use of quartz and feldspar in provenance research is limited. Feldspar is less stable than both quartz and many other minerals that are used to trace sources rocks, such as zircon and rutile. Nevertheless, particularly quartz and zircon may survive many sedimentary recycling phases. Therefore they do not necessarily give information about first-cycle sources. Hence, the wide occurrence of feldspar and quartz in sedimentary rocks is an excellent condition to trace both first-cycle and multi-cycle sediment sources. The cathodoluminescence (CL) technique enables the consideration of both minerals. We analysed ca. 1000 quartz crystals and ca. 1200 feldspar crystals in ca. 60 samples each for their CL colour spectra to investigate their provenance potential. They originate from different plutonic, volcanic, metamorphic, and pegmatitic rocks. The CL colours of quartz vary from red over violet to different shades of blue and brown. They are due to lattice defects and trace element contents that are caused by different crystallisation conditions and later lattice reorganisation. The corresponding CL spectra are dominated by two apparent intensity peaks at 470-490 nm (blue) and at 600-640 nm (red). Distinctive relative intensity differences in these two peaks occur for (1) quartz of volcanic origin, (2) felsic plutonic and high-temperature metamorphic quartz, and (3) low-temperature metamorphic quartz. Feldspar often luminesces in different shades of blue, green, yellow, and red due to substitution elements. Alkali feldspar usually has a bright blue colour and plagioclase often is green. The corresponding CL spectra are dominated by three apparent intensity peaks at 420-500 nm (blue), 540-570 nm (green) and 690-760 nm (red to infrared). The CL is particularly useful for the distinction of plagioclase from alkali feldspar. Here, a dominance of the peak in green over the peak

  3. Direct measurement of the combined effects of lichen, rainfall, and temperature onsilicate weathering

    USGS Publications Warehouse

    Brady, P.V.; Dorn, R.I.; Brazel, A.J.; Clark, J.; Moore, R.B.; Glidewell, T.

    1999-01-01

    A key uncertainty in models of the global carbonate-silicate cycle and long-term climate is the way that silicates weather under different climatologic conditions, and in the presence or absence of organic activity. Digital imaging of basalts in Hawaii resolves the coupling between temperature, rainfall, and weathering in the presence and absence of lichens. Activation energies for abiotic dissolution of plagioclase (23.1 ?? 2.5 kcal/mol) and olivine (21.3 ?? 2.7 kcal/mol) are similar to those measured in the laboratory, and are roughly double those measured from samples taken underneath lichen. Abiotic weathering rates appear to be proportional to rainfall. Dissolution of plagioclase and olivine underneath lichen is far more sensitive to rainfall.

  4. Sedimentology of clastic rocks from the Fra Mauro region of the moon.

    NASA Technical Reports Server (NTRS)

    Lindsay, J. F.

    1972-01-01

    A thin-section examination of sixteen clastic rock samples returned by the Apollo 14 mission from the Fra Mauro region of the moon suggests the presence of at least two distinctly different lithologies. Five of the samples (group I) are characterized by an abundant glassy matrix and glass particles and lesser amounts of plagioclase and pyroxene grains, and lithic clasts. The other eleven samples (group II) are relatively fine grained, very poorly sorted, and consist largely of pyroxene, plagioclase, and lithic clasts set in an abundant mineralic matrix. Group I and II lithologies were probably both deposited from impact generated base surges. The differences between them stem not as much from the basic sedimentary processes as from the differences in the magnitude of the events generating the base surges and the resultant difference in available detrital materials.

  5. Mineralogy and petrology of some Apollo 16 rocks and fines - General petrologic model of moon

    NASA Technical Reports Server (NTRS)

    Steele, I. M.; Smith, J. V.

    1973-01-01

    Data published in the literature and original results of mineralogical and petrological analyses of Apollo 16 rocks and fines indicate that Apollo 16 and Luna 20 sites are dominated by plagioclase-rich rocks with minor olivine and/or pyroxene. Data suggest that shock, brecciation, and recrystallization have largely eliminated primary textures. In general, all data are consistent with derivation from ejecta blankets produced from plagioclase-rich rocks by impacts. The lunar crust is discussed as a product of an early differentiation of the entire moon, and Mg/Fe data for experimental olivine-liquid and olivine-orthopyroxene equilibria are used as constraints to examine compositional data for rocks, glasses, and fragments in the light of specific models for crystal-liquid differentiation.

  6. Construction of Layered Mafic Intrusions by Repeated Emplacement of Crystal Mushes

    NASA Astrophysics Data System (ADS)

    Ashwal, Lewis

    2013-04-01

    A widely accepted physical model for the origin of Proterozoic massif type anorthosites (e.g. Nain, Rogaland, Adirondacks) involves emplacement of plagioclase-rich mushes that ascended to shallow crustal emplacement sites from deep (~Moho) staging chambers in which ~An50 crystals floated due to density relations at high pressure. Supporting evidence includes large (up to ~1 m) grain size, compositional homogeneity of plagioclase with variable Mg# (caused by trapped liquid effects), and protoclastic textures. Isotopic disequilibrium (Sr, Nd, Pb) between cumulus plagioclase and post-cumulus pyroxene result from progressive contamination with continental components. This is dramatically demonstrated at Nain (Labrador), where the anorthositic crystal mushes (~1.3 Ga) were emplaced into early Archean (~3.8 Ga) country rocks. High-Al, high-pressure orthopyroxene megacrysts are commonly dragged upward in feldspathic mushes to shallow emplacement sites, where they exsolved plagioclase lamellae. Can a similar model be applied to layered mafic intrusions (LMI)? Many LMI (e.g. Bushveld, Stillwater, Dufek, Duluth) contain thick horizons of anorthosite with compositionally uniform plagioclase, in some cases throughout >1000 m of stratigraphy. This is best interpreted as representing repeated emplacement of plagioclase-rich mushes from one or more deeper crystallizing magma chambers, although the depths of these sub-chambers in the lithosphere are as yet uncertain. In the Bushveld Complex (South Africa), where deep drill cores have allowed near-continuous measurements of mineral compositions and geophysical properties, the results reveal a subtle cyclicity, invisible in outcrops, over scales of 50 - 100 m, commonly associated with broad reversals in mineral compositional trends. Each of these can be interpreted as a blending zone involving a new addition of crystal-laden magma. Much of Bushveld stratigraphy, and that of other LMI contains plagioclase : pyroxene demonstrably

  7. Stagnation and Storage of Strongly Depleted Melts in Slow-Ultraslow Spreading Oceans: Evidence from the Ligurian Tethys

    NASA Astrophysics Data System (ADS)

    Piccardo, Giovanni; Guarnieri, Luisa; Padovano, Matteo

    2013-04-01

    Our studies of Alpine-Apennine ophiolite massifs (i.e., Lanzo, Voltri, Ligurides, Corsica) show that the Jurassic Ligurian Tethys oceanic basin was a slow-ultraslow spreading basin, characterized by the exposures on the seafloor of mantle peridotites with extreme compositional variability. The large majority of these peridotites are made of depleted spinel harzburgites and plagioclase peridotites. The former are interpreted as reactive peridotites formed by the reactive percolation of under-saturated, strongly trace element depleted asthenospheric melts migrated by porous flow through the mantle lithosphere. The latter are considered as refertilized peridotites formed by peridotite impregnation by percolated silica-saturated, strongly trace element depleted melts. Strongly depleted melts were produced as low-degrees, single melt increments by near fractional melting of the passively upwelling asthenosphere during the rifting stage of the basin. They escaped single melt increment aggregation, migrated isolated through the mantle lithosphere by reactive porous or channeled flow before oceanic opening, and were transformed into silica-saturated derivative liquids that underwent entrapment and stagnation in the shallow mantle lithosphere forming plagioclase-enriched peridotites. Widespread small bodies of strongly depleted gabbro-norites testify for the local coalescence of these derivative liquids. These melts never reached the surface (i.e., the hidden magmatism), since lavas with their composition have never been found in the basin. Subsequently, aggregated MORB melts upwelled within replacive dunite channels (as evidenced by composition of magmatic clinopyroxenes in dunites), intruded at shallow levels as olivine gabbro bodies and extruded as basaltic lavas, to form the crustal rocks of the oceanic lithosphere (i.e., the oceanic magmatism). Km-scale bodies of MORB olivine gabbros were intruded into the plagioclase-enriched peridotites, which were formed in the

  8. Implications of Smectite Subduction at the Costa Rican Convergent Margin

    NASA Astrophysics Data System (ADS)

    Cardace, D.; Morris, J. D.; Underwood, M. B.; Spinelli, G.

    2003-12-01

    Legs 205/170 of the Ocean Drilling Program (ODP) drilled a reference section on the incoming plate and sites at the toe of the sedimentary prism at the Costa Rican convergent margin. Complete sediment subduction has been documented, with the prism described by Leg 205/170 shipboard scientists as a paleoslump prism. Despite sediment subduction, Costa Rican arc lava geochemistry shows little sediment signal. Though subduction erosion has been posited as a mechanism for damping the geochemical sediment signal, this abstract addresses whether the clay content and distribution in the subducting pile can (a) play a role in localizing the decollement and (b) impact subduction of sediment to depth. X-ray diffraction (XRD) analyses of bulk sediment, with biogenic silica determinations, have been carried out for samples from the prism, through the decollement, to the underthrust sediments. Clay fractions have been isolated and silica studied for a subset of these samples. XRD peak areas of bulk samples were transformed into relative abundances via matrix singular value decomposition (Fisher and Underwood, 1995, Proc. ODP, Init. Repts., 156: 29-37), and adjusted following silica determination; volcanic ash has been neglected as a sedimentary component. Average relative weight percents of dominant minerals and biogenic silica (bSiO2) for prism toe units (Site 1040) are: P1A (silty clay, 74.8 m thick) 82 wt% clay, 5 wt% quartz, 13 wt% plagioclase, 0 wt% calcite; P1B (silty clay, 296.4 m thick) 82.1 wt% clay, 6.0 wt% quartz, 10.4 wt% plagioclase, 0 wt% calcite, 1.4 wt% bSiO2. Below the decollement, underthrust abundances are: U1A (clayey diatomite, 13.2 m thick) 82.7 wt% clay, 5.2 wt% quartz, 8.9 wt% plagioclase, 0 wt% calcite, 3.2 wt% bSiO2; U1B (clayey diatomite, 38.2 m thick) 80.7 wt% clay, 4.4 wt% quartz, 6.6 wt% plagioclase, 0 wt% calcite, 8.2 wt% bSiO2; U2 (silty claystone, 57.1 m thick) 84.8 wt% clay, 4.5 wt% quartz, 6.8 wt% plagioclase, 0 wt% calcite, 3.9 wt% bSiO2; U3A

  9. Effect of water on the composition of partial melts of greenstone and amphibolite

    NASA Technical Reports Server (NTRS)

    Beard, James S.; Lofgren, Gary E.

    1989-01-01

    Closed-system partial melts of hydrated, metamorphosed arc basalts and andesites (greenstones and amphibolites), where only water structurally bound in metamorphic minerals is available for melting (dehydration melting), are generally water-undersaturated, coexist with plagioclase-rich, anhydrous restites, and have compositions like island arc tonalites. In contrast, water-saturated melting at water pressures of 3 kilobars yields strongly peraluminous, low iron melts that coexist with an amphibole-bearing, plagioclase-poor restite. These melt compositions are unlike those of most natural silicic rocks. Thus, dehydration melting over a range of pressures in the crust of island arcs is a plausible mechanism for the petrogenesis of islands arc tonalite, whereas water-saturated melting at pressure of 3 kilobars and above is not.

  10. Origin of High-Alumina Basalt, Andesite, and Dacite Magmas.

    PubMed

    Hamilton, W

    1964-10-30

    The typical volcanic rocks of most island arcs and eugeosynclines, and of some continental environments, are basalt, andesite, and dacite, of high alumina content. The high-alumina basalt differs from tholeiitic basalt primarily in having a greater content of the components of calcic plagioclase. Laboratory data indicate that in the upper mantle, below the level at which the basaltic component of mantle rock is transformed by pressure to eclogite or pyroxenite, the entire basaltic portion probably is melted within a narrow temperature range, but that above the level of that transformation plagioclase is melted selectively before pyroxene over a wide temperature range. The broad spectrum of high-alumina magmas may represent widely varying degrees of partial melting above the transformation level, whereas narrow-spectrum tholeiite magma may represent more complete melting beneath it.

  11. Dynamic deformation of volcanic ejecta from the Toba caldera: possible relevance to Cretaceous/Tertiary boundary phenomena

    SciTech Connect

    Carter, N.L.; Officer, C.B.; Chesner, C.A.; Rose, W.I.

    1986-05-01

    Plagioclase and biotite phenocrysts in ignimbrites erupted from the Toba caldera, Sumatra, show microstructures and textures indicative of shock stress levels higher than 10 GPa. Strong dynamic deformation has resulted in intense kinking in biotite and, with increasing shock intensity, the development of plagioclase of planar features, shock mosaicism, incipient recrystallization, and possible partial melting. Microstructures in quartz indicative of strong shock deformation are rare, however, and many shock lamellae, if formed, may have healed during post-shock residence in the hot ignimbrite; they might be preserved in ash falls. Peak shock stresses from explosive silicic volcanism and other endogenous processes may be high and if so would obviate the need for extraterrestrial impacts to produce all dynamically deformed structures, possibly including shock features observed near the Cretaceous/Tertiary boundary. 38 references, 3 figures.

  12. Rates and processes of crystal growth in the system anorthite-albite. [magmatic liquids in igneous rock formation

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, R. J.; Klein, L.; Uhlmann, D. R.; Hays, J. F.

    1979-01-01

    The growth rates and interface morphologies of crystals of synthetic compositions in the anorthite (CaAl2Si2O8)-albite (NaAlSi3O8) plagioclase feldspar system are measured in an investigation of the crystallization of igneous rocks. Mixed plagioclase glasses with compositions of 75% and 50% anorthite were observed using the microscope heating technique as they crystallized at temperatures near the liquidus, and 75%, 50% and 20% anorthite crystals were treated by resistance heating and observed at greater degrees of undercooling. Growth rates were found to be independent of time and to decrease with increasing albite content, ranging from 0.5 to 2 x 10 to the -5th cm/min. The crystal morphologies for all compositions are faceted near the liquidus and become progressively skeletal, dendritic and fibrillar with increasing undercooling.

  13. Igneous history of the aubrite parent asteroid - Evidence from the Norton County enstatite achondrite

    NASA Technical Reports Server (NTRS)

    Okada, Akihiko; Keil, Klaus; Taylor, G. Jeffrey; Newsom, Horton

    1988-01-01

    Numerous specimens of the Norton County enstatite achondrite (aubrite) were studied by optical microscopy, electron microprobe, and neutron-activation analysis. Norton County is found to be a fragmental impact breccia, consisting of a clastic matrix made mostly of crushed enstatite, into which are embedded a variety of mineral and lithic clasts of both igneous and impact melt origin. The Norton County precursor materials were igneous rocks, mostly plutonic orthopyroxenites, not grains formed by condensation from the solar nebula. The Mg-silicate-rich aubrite parent body experienced extensive melting and igneous differentiation, causing formation of diverse lithologies including dunites, plutonic orthopyroxenites, plutonic pyroxenites, and plagioclase-silica rocks. The presence of impact melt breccias (the microporphyritic clasts and the diopside-plagioclase-silica clast) of still different compositions further attests to the lithologic diversity of the aubrite parent body.

  14. Lunar ferroan anorthosite 60025 - Petrology and chemistry of mafic lithologies

    NASA Technical Reports Server (NTRS)

    James, O. B.; Mcgee, J. J.; Lindstrom, M. M.

    1991-01-01

    Eleven splits from the mafic-mineral-rich part of anorthosite 60025 were studied in order to establish the exact nature and causes of compositional variations in the minerals of lunar ferroan anorthosites. All splits were analyzed by INAA, and five were studied intensively by petrologic techniques. All splits were found to have similar cataclastic textures and show textural evidence of at least two episodes of deformation. The whole-rock split contains mafic minerals having a wide range of compositions and is probably polymict. It is suggested that the rare-earth patterns for all splits can be duplicated safactorily, assuming that the equilibrium liquids had flat, or nearly flat, chondrite-normalized rare-earth patterns. The plagioclases in all splits were found to be identical. Data obtained indicate that in ferroan anorthosites An content in plagioclase and mg' of associated mafic minerals are not strongly correlated.

  15. Feldspathic rocks on Mars: Compositional constraints from infrared spectroscopy and possible formation mechanisms

    NASA Astrophysics Data System (ADS)

    Rogers, A. Deanne; Nekvasil, Hanna

    2015-04-01

    Rare feldspar-dominated surfaces on Mars were previously reported based on near-infrared (NIR) spectral data and were interpreted to consist of anorthosite or felsic rocks. Using thermal infrared (TIR) data over the feldspar detections with the largest areal extent in Nili Patera and Noachis Terra, we rule out felsic interpretations. Basaltic or anorthositic compositions are consistent with TIR measurements, but the geologic contexts for these regions do not support a plutonic origin. Laboratory NIR spectral measurements demonstrate that large plagioclase crystals (>~840 µm) can be detected in mixtures with as much as 50 vol % mafics, which is higher than the previously stated requirement of no more than 15% mafics. Thus, anorthositic or felsic interpretations need not be invoked for all NIR-based feldspar detections. Plagioclase-enriched basaltic eruptive products can be formed from Martian basalts through partial crystallization at the base of a thick crust, followed by low-pressure crystallization of the residual liquids.

  16. Role of replacement in the genesis of anorthosite in the Boehls Butte area, Idaho.

    USGS Publications Warehouse

    Hietanen, A.

    1986-01-01

    In this area in N Idaho, three large and numerous small lenses of layered to massive anorthosite consisting of two, and locally three, types of plagioclase with minor hornblende and mica occur in aluminium silicate-rich garnet mica schist. In most of this anorthosite, megacrysts of andesine with bytownite inclusions are embedded in a fine-grained groundmass of bytownite or anorthite; locally, labradorite occurs rather than andesine. Some labradorite laths show Carlsbad twinning and rims of andesine around anorthite inclusions. Along the contacts, lenses of fine-grained bytownite anorthosite with some hornblende or garnet and quartz are common. These lenses could represent calcic parent rocks converted to two-plagioclase rocks by partial replacement of bytownite by andesine. -R.A.H.

  17. Petrology and geochemistry of mafic and ultramafic cumulates occurring as xenoliths in volcanic rocks from Polish part of Central European Volcanic Province.

    NASA Astrophysics Data System (ADS)

    Dajek, Michał; Matusiak-Małek, Magdalena; Puziewicz, Jacek; Ntaflos, Theodoros

    2015-04-01

    Mafic xenoliths coexisting with the peridotitic ones in rocks from Polish part of Cenozoic European Volcanic Province have been scarcely examined. (Bakun-Czubarow and Białowolska, 2003, Mineralogical Society of Poland- Spec. Pap. and references therein; Matusiak, 2006, Min. Polonica- Spec. Pap.; Puziewicz et al., 2011, JoP). In this study we present new results on mafic and ultramafic xenolithic rocks from the Wilcza Góra, Winna Góra, Góra Świątek, Mnisia Górka and Grodziec volcanic rocks in the Złotoryja-Jawor Volcanic Complex. The studied xenoliths are either plagioclase-free (clinopyroxenite, websterite) or plagioclase-bearing (anorthosite, gabbro, olivine-bearing gabbro and norite). Both the types may occur in the same volcanic rock. The cumulative xenoliths are smaller than peridotitic ones, blackish and show clear cumulative, coarse grained textures. Beside the rock-forming phases, the xenoliths occasionally contain spinel, sulfides and amphibole. Usually clinopyroxene grains occurring in gabbros are strongly corroded or disintegrated, while other phases are well-preserved. Contacts between xenolith and host volcanic rock are usually sharp with subhedral crystals of clinopyroxene growing at the xenolith surface. The mineral grains are usually zoned and chemical equilibrium between phases is scarce. Clinopyroxene in plagioclase-free rocks has composition of diopside with occasionally elevated Al, Ti and Cr contents. It's mg# varies from 0.89 to 0.79. It is slightly to moderately enriched in LREE; the REE patterns are concave, and the normalized values vary significantly between localities. It shows negative Sr anomaly, depth of Ti anomaly is variable. Orthopyroxene is Al-rich enstatite with mg# varying from 0.85 down to 0.75. Orthopyroxene in websterites is LREE depleted and show strong positive Ti and Zr-Hf anomalies. Opaques are ilmenite - Ti-magnetite solid solution and/or sulfides Clinopyroxene forming plagioclase-bearing rocks also has composition

  18. Rare earth element evidence for the petrogenesis of the banded series of the Stillwater Complex, Montana, and its anorthosites

    USGS Publications Warehouse

    Loferski, P.J.; Arculus, R.J.; Czamanske, G.K.

    1994-01-01

    A rare earth element (REE) study was made by isotope-dilution mass spectrometry of plagioclase separates from a variety of cumulates stratigraphically spanning the Banded series of the Stillwater Complex, Montana. Evaluation of parent liquid REE patterns, calculated on the basis of published plagioclase-liquid partition coefficients, shows that the range of REE ratios is too large to be attributable to fractionation of a single magma type. At least two different parental melts were present throughout the Banded series. This finding supports hypotheses of previous workers that the Stillwater Complex formed from two different parent magma types, designated the anorthosite- or A-type liquid and the ultramafic- or U-type liquid. -from Authors

  19. Origin of High-Alumina Basalt, Andesite, and Dacite Magmas.

    PubMed

    Hamilton, W

    1964-10-30

    The typical volcanic rocks of most island arcs and eugeosynclines, and of some continental environments, are basalt, andesite, and dacite, of high alumina content. The high-alumina basalt differs from tholeiitic basalt primarily in having a greater content of the components of calcic plagioclase. Laboratory data indicate that in the upper mantle, below the level at which the basaltic component of mantle rock is transformed by pressure to eclogite or pyroxenite, the entire basaltic portion probably is melted within a narrow temperature range, but that above the level of that transformation plagioclase is melted selectively before pyroxene over a wide temperature range. The broad spectrum of high-alumina magmas may represent widely varying degrees of partial melting above the transformation level, whereas narrow-spectrum tholeiite magma may represent more complete melting beneath it. PMID:17794034

  20. Direct measurement of the combined effects of lichen, rainfall, and temperature on silicate weathering

    SciTech Connect

    Brady, P.V.; Dorn, R.I.; Brazel, A.J.; Clark, J.; Moore, R.B.; Glidewell, T.

    1999-10-01

    A key uncertainty in models of the global carbonate-silicate cycle and long-term climate is the way that silicates weather under different climatologic conditions, and in the presence or absence of organic activity. Digital imaging of basalts in Hawaii resolves the coupling between temperature, rainfall, and weathering in the presence and absence of lichens. Activation energies for abiotic dissolution of plagioclase (23.1 {+-} 2.5 kcal/mol) and olivine (21.3 {+-} 2.7 kcal/mol) are similar to those measured in the laboratory, and are roughly double those measured from samples taken underneath lichen. Abiotic weathering rates appear to be proportional to rainfall. Dissolution of plagioclase and olivine underneath lichen is far more sensitive to rainfall.

  1. Mush!

    NASA Astrophysics Data System (ADS)

    Ashwal, L. D.

    2012-12-01

    Evidence for emplacement as crystal-laden mushes is abundant in mafic magma systems (i.e. products of broadly basaltic magmatism), including anorthosite complexes, layered mafic intrusions and a variety of sills and dikes. Some of the best examples involve the way feldspar becomes concentrated into anorthositic rocks. Proterozoic anorthosite massifs (e.g. Nain, Rogaland, Adirondacks), whose bulk compositions are characteristically hyperfeldspathic, are best interpreted as resulting from emplacement of plagioclase-rich mushes that ascended to shallow crustal emplacement sites from deep (~Moho) staging chambers in which ~An50 crystals floated due to density relations at high pressure. Supporting evidence includes large (up to ~1 m) grain size, compositional homogeneity of plagioclase with variable Mg# (caused by trapped liquid effects), and protoclastic textures. Isotopic disequilibrium between cumulus plagioclase and post-cumulus pyroxene result from progressive contamination with continental components. This is dramatically demonstrated at Nain (Labrador), where the anorthositic crystal mushes (~1.3 Ga) were emplaced into early Archean (~3.8 Ga) country rocks. High-Al, high-pressure orthopyroxene megacrysts are commonly dragged upward in feldspathic mushes to shallow emplacement sites, where they exsolved plagioclase lamellae (Bybee & Ashwal, this meeting). Archean calcic anorthosites (e.g. Fiskenaesset, W Greenland) and related sills, dikes and flows that contain homogeneous megacrysts up to 10s of cm across of ~An80 also must have formed by mush emplacement, although probably from shallower staging chambers in oceanic rather than continental crust. Many layered mafic intrusions (e.g. Bushveld, Stillwater, Dufek, Duluth) contain thick horizons of anorthosite in which plagioclase compositions are uniform, in some cases throughout >1000 m of stratigraphy. This is best interpreted as representing repeated emplacement of plagioclase-rich mushes from one or more deeper

  2. Rare earth elements in minerals of the ALHA77005 shergottite and implications for its parent magma and crystallization history

    NASA Technical Reports Server (NTRS)

    Lundberg, Laura L.; Crozaz, Ghislaine; Mcsween, Harry Y., Jr.

    1990-01-01

    Analyses of mineral REE and selected minor and trace elements were carried out on individual grains of pyroxenes, whitlockite, maskelynite, and olivine of the Antarctic shergottite ALHA77005, and the results are used to interpret its parent magma and crystallization history. The results of mineral compositions and textural observations suggest that ALHA77005 is a cumulate with about half cumulus material (olivine + chromite) and half postcumulus phases. Most of the REEs in ALHA77005 reside in whitlockite whose modal concentration is about 1 percent. Mineral REE data support previous suggestions that plagioclase and whitlockite crystallized late, and that low-Ca pyroxene initiated crystallization before high-Ca pyroxene. The REE patterns for the intercumulus liquid, calculated from distribution coefficients for ALHA77005 pyroxene, plagioclase, and whitlockite, are in very good agreement and are similar to that of Shergotty.

  3. AR-39-AR-40 "Age" of Basaltic Shergottite NWA-3171

    NASA Technical Reports Server (NTRS)

    Bogard, Donald D.; Park, Jisun

    2007-01-01

    North-West-Africa 3171 is a 506 g, relatively fresh appearing, basaltic shergottite with similarities to Zagami and Shergotty, but not obviously paired with any of the other known African basaltic shergottites. Its exposure age has the range of 2.5-3.1 Myr , similar to those of Zagami and Shergotty. We made AR-39-AR-40 analyses of a "plagioclase" (now shock-converted to maskelynite) separate and of a glass hand-picked from a vein connected to shock melt pockets.. Plagioclase was separated using its low magnetic susceptibility and then heavy liquid with density of <2.85 g/cm(exp 3). The AR-39-AR-40 age spectrum of NWA-317 1 plag displays a rise in age over 20-100% of the 39Ar release, from 0.24 Gyr to 0.27 Gy.

  4. Composition and maturity of the 60013/14 core

    NASA Technical Reports Server (NTRS)

    Korotev, Randy L.; Morris, Richard V.; Lauer, Howard V., Jr.

    1993-01-01

    The 60013/14 double drive tube (62 cm deep) is one of three regolith cores taken 35-40 m apart in a triangular array on the Cayley plains at station 10' (LM/ALSEP), Apollo 16. This trio, which includes double drive tube 60009/10 (59 cm deep) and deep drill core 60001-7 (220 cm), is the only such array of cores returned from the Moon. The top 45 cm of 60013/14 is mature, as is surface reference soil 60601 taken nearby. Maturity generally decreases with depth, with soil below 45 cm being submature. The zone of lowest maturity (34 is less than or equal to I(sub s)/FeO is less than 50) extends from 46 to 58 cm depth, and corresponds to the distinct region of light-colored soil observed during core processing. In the other two cores, most of the compositional variation results from mixing between fine-grained, mature soil with 10-11 micro-g/g Sc and coarse-grained ferroan anorthosite consisting of greater than 99% plagioclase with less than 0.5 micro-g/g Sc. This is most evident in 60009/10 which contains a high abundance of plagioclase at about 54 cm depth (minimum Sc: 3-4 micro-g/g); a similar zone occurs in 60001-7 at 17-22 cm (MPU-C), although it is not as rich in plagioclase (minimum Sc: 6-7 micro-g/g). Compositional variations are less in 60013/14 than in the other two cores (range: 7.9-10.0 micro-g/g Sc), but are generally consistent with the 'plagioclase dilution' effect seen in 60009/10, i.e., most 60013/14 samples plot along the mixing line of 60009/10. However, a plagioclase component is not the cause of the lower maturity and lighter color of the unit at 46-58 cm depth in 60013/14. Many of the samples in this zone have distinctly lower Sm/Sc ratios than typical LM-area soils and plot off the mixing trend defined by 60009/10. This requires a component with moderately high Sc, but low-Sm/Sc, such as feldspathic fragmental breccia (FFB) or granulitic breccia. A component of Descartes regolith, such as occurs at North Ray Crater (NRC) and which is rich in FFB

  5. Origin of Miocene andesite and dacite in the Goldfield-Superstition volcanic province, central Arizona: Hybrids of mafic and silicic magma mixing

    NASA Astrophysics Data System (ADS)

    Fodor, R. V.; Johnson, Kelly G.

    2016-07-01

    The Miocene Goldfield-Superstition volcanic province (G-SVP), ∼8000 km2 in central Arizona, is composed largely of silicic pyroclastic rocks and lavas, and smaller volumes of alkalic basalt and intermediate-composition lavas. Volcanism began ∼20.5 Ma as sparse rhyolitic and mainly basaltic lavas followed by intermediate lavas, lasting until ∼19 Ma. At that time, ∼1 m.y. of silicic eruptions began, creating most of the G-SVP. Petrologic studies are available for basalts and some for silicic rocks, but petrologic/geochemical information is sparse for intermediate-composition lavas. These latter, andesites and dacites, are the focus of this study, in which we present the processes and sources responsible for their origins. Goldfield-Superstition andesites and dacites have SiO2 ∼56-70 wt.% and Na2O + K2O that qualifies some as trachy-andesite and -dacite. A prominent petrographic feature is plagioclase-phyric texture (∼11-30 vol% plagioclase), where oligoclase-andesine phenocrysts have cores surrounded by corroded, or reacted, zones, mantled by higher An% plagioclase. Where corroded zones are absent, margins are etched, curved, or embayed. Groundmass plagioclase is labradorite, also more calcic than the phenocrysts. Other minerals are quartz (subrounded; embayed), clinopyroxene, amphibole, biotite, and rare titanite and zircon. A salient compositional characteristic that provides insight to andesite-dacite origins with respect to other G-SVP rocks is revealed when using SiO2 as an index. Namely, abundances of many incompatible elements, mainly HFSE and REE, decrease over the low to high SiO2 range (i.e., abundances are lower in dacites than in co-eruptive andesites and underlying alkalic basalts). As examples: G-SVP basalts have ∼50-70 ppm La, and andesites-dacites have ∼59-22 ppm La; for Zr, basalts have ∼225-170 ppm, but most andesites-dacites have ∼180-50; for Y, basalts >20 ppm, andesites-dacites ∼18-9 ppm. To understand these trends of lower

  6. Compositional and isotopic diversity in MORB crystal cargoes: the differing influence of crustal and mantle processes on separate phase populations

    NASA Astrophysics Data System (ADS)

    Winpenny, B.; Maclennan, J.

    2010-12-01

    The crystal cargo of a mid-ocean ridge basalt (MORB) may display significant heterogeneity in its isotopic and chemical compositions, both within populations of its individual crystal phases, and with respect to its carrier liquid. On one hand, such variability may reflect changes in melt composition during or after crystallisation of a particular phase, due to processes such as mixing of heterogeneous primary mantle melts or assimilation of altered crustal material. On the other hand, addition of crustal xenocrysts or hydrothermally altered crystals, or more complex processes, may affect the crystal populations. Crystal compositions from Borgarhraun, a primitive basaltic flow from the Theistareykir volcanic system, north Iceland, highlight the complex and contrasting histories recorded by different phenocryst populations from the same flow. Both olivine- and clinopyroxene-hosted melt inclusions and clinopyroxene crystal compositions adhere to a model in which these phases were entirely crystallised from heterogeneous primary mantle melts undergoing mixing in the lower Icelandic crust (albeit with the minor influence of resorption of plagioclase). Clinopyroxene and olivine phenocrysts from the most recent (September 1984) eruption of the adjacent Krafla volcanic system also appear to be related to their host flow by concurrent crystallisation and mixing of mantle melts. In contrast, the relationship between plagioclase phenocrysts and their flows appears to be complex in Borgarhraun and Krafla. These plagioclase crystals vary significantly in terms of textures, style of zoning and anorthite contents (80.8-89.4 mol% in Borgarhraun, 68.3-88.9 mol% in Krafla), indicating that the plagioclase phenocrysts are not simply recording evolution and mixing of parental melts more primitive than their carrier. In order to investigate the origins of plagioclase in Borgarhraun and Krafla, we undertook a detailed textural and micro-analytical study, including analyses of major and

  7. Lunar ferroan anorthosites and mare basalt sources - The mixed connection

    NASA Technical Reports Server (NTRS)

    Ryder, Graham

    1991-01-01

    Global overturn of a hot, gravitationally unstable lunar mantle immediately following the solidification of a magma ocean explains several characteristics of lunar petrology. Lunar mare basalt sources are inferred to be depleted in europium and alumina. These depletions are consensually attributed to complementary plagioclase floating from a magma ocean. However, in contrast to the mare basalt source parent magma, the ferroan anorthosite parent magma was more evolved by virtue of its lower Mg/Fe ratio and Ni abundances, although less evolved in its poverty of clinopyroxene constituents, flat rare earth pattern, and lower incompatible element abundances. The europium anomaly in mare sources is inferred to be present at 400 km depth, too deep to have been directly influenced by plagioclase crystallization. Massive overturning of the post-magma ocean mantle would have carried down clinopyroxene, ilmenite, and phases containing fractionated rare earths, europium anomalies, and some heat-producing radionuclides.

  8. Gabbro microstructure and crystallography from Pito Deep: Evidence for Gabbro Glacier Flow

    NASA Astrophysics Data System (ADS)

    Brown, T. C.; Cheadle, M. J.; John, B. E.; Coogan, L. A.; Gee, J. S.; Karson, J.; Swapp, S.

    2012-12-01

    The processes of gabbroic lower ocean crust accretion at fast spreading ridges remain enigmatic; a key constraint, however, is the orientation and fabric of the gabbros themselves. Here we present a study of the microstructure and crystallographic preferred orientation (CPO) of 23 gabbros from the upper 900m of fast-spread lower crust formed at the East Pacific Rise and exposed at the Pito Deep Rift. Samples include gabbros, olivine gabbros, troctolites, and one anorthosite; all with magmatic fabrics with varying strengths of mineral layering/foliation. Thin sections were cut parallel and perpendicular to observable mineral foliations in order to obtain accurate mineral shape preferred orientations (SPO) via hand tracing using an optical microscope. CPO was determined by Electron Backscatter Diffraction (EBSD). Eight oriented samples (3 using GeoCompass, and 5 from video footage) reveal a sub-vertical mineral foliation sub-parallel to the sheeted dikes/ridge axis from 335-863 meters below the gabbro-sheeted dike transition (mbsdt). Two GeoCompass-oriented samples were rotated to their original orientations using magnetic remanence vectors, and give CPO lineations dipping at 30° & 60° within the foliation plane. Petrographic inspection shows that crystal-plastic deformation in the form of deformation twins in plagioclase and undulose extinction /sub-grain development in olivine, is rare in the upper 72m, becomes noticeable at 177mbsdt, and is very common below 662mbsdt. Texturally equilibrated plagioclase with 120° triple junctions is common in the deepest samples. Mean 2D plagioclase axial ratios decrease with depth, indicating that plagioclase crystals become more equant, and likely equilibrated, deeper in the section. One sample at 72mbsdt shows relatively strong plagioclase alignment (Alignment Factor [AF] = 44), however, the deeper samples show a systematic increase in AF from a near random value of 6 at 248mbsdt, to an AF of 35 at 863mbsdt. The plagioclase

  9. On compositional variations among lunar anorthosites

    NASA Technical Reports Server (NTRS)

    Haskin, L. A.; Lindstrom, M. M.; Salpas, P. A.; Lindstrom, D. J.

    1982-01-01

    Ferroan anorthosite (FAN) is the most abundant 'pristine' highlands igneous rock in the Apollo sample collection. The presence of substantial FAN in the lunar crust is one argument used in favor of a global magma ocean on which crystallizing plagioclase could float. Information about the composition of the proposed magma ocean or whatever liquids might have been parental to FAN is sparse. As a first step toward learning about the nature of the FAN parent and the processes by which FAN attained its compositional characteristics, attention is given to the concentrations for a number of major and trace elements whose behavior during magmatic processes is somewhat understood. Serious difficulties are found with both FAN and the Marcy anorthosite in interpreting incompatible trace element concentrations in the plagioclases or the whole rocks in terms of residues from parent liquids. A description is presented of the nature of these difficulties.

  10. Ar-40/Ar-39 age spectra of Apollo 15 impact melt rocks by laser step-heating and their bearing on the history of lunar basin formation

    NASA Astrophysics Data System (ADS)

    Dalrymple, G. B.; Ryder, G.

    1993-07-01

    Results are reported on 26 high-resolution (16-51 steps) Ar-40/Ar-39 age spectra obtained on 12 Apollo-15 melt rocks of different composition using a continuous laser system on submg fragments of recrystallized melt and single-crystal plagioclase clasts from impact melt rocks collected at the Apennine Front where the Imbrium and Serenitatis basins intersect. A table is presented with the summary of the Ar-40/Ar-39 spectrum data, which represent 891 individual temperature step analyses. Also presented are 20 of the 26 age spectra along with their respective K/Ca plots. Melt rock fragments and plagioclase clasts from seven of the 12 samples analyzed yielded reproducible, intermediate-T Ar-40/Ar-39 age spectrum plateaus, which were interpreted as crystallization ages that represent the times of impact of bolides onto the lunar surface.

  11. Origin of high-alumina basalt, andesite, and dacite magmas

    USGS Publications Warehouse

    Hamilton, W.

    1964-01-01

    The typical volcanic rocks of most island arcs and eugeosynclines, and of some continental environments, are basalt, andesite, and dacite, of high alumina content. The high-alumina basalt differs from tholeiitic basalt primarily in having a greater content of the components of calcic plagioclase. Laboratory data indicate that in the upper mantle, below the level at which the basaltic component of mantle rock is transformed by pressure to eclogite or pyroxenite, the entire basaltic portion probably is melted within a narrow temperature range, but that above the level of that transformation plagioclase is melted selectively before pyroxene over a wide temperature range. The broad spectrum of high-alumina magmas may represent widely varying degrees of partial melting above the transformation level, whereas narrow-spectrum tholeiite magma may represent more complete melting beneath it.

  12. Volcanic rocks of the McDermitt Caldera, Nevada-Oregon

    USGS Publications Warehouse

    Greene, Robert C.

    1976-01-01

    The McDermitt caldera, a major Miocene eruptive center is locatedin the northernmost Great Basin directly west of McDermitt, Nev. The alkali rhyolite of Jordan Meadow was erupted from the caldera and covered an area of about 60,000 sq km; the volume of rhyolite is about 960 cubic km. Paleozoic and Mesozoic sedimentary rocks and Mesozoic granodiorite form the pre-Tertiary Basement in this area.. Overlying these is a series of volcanic rocks, probably all of Miocene age. The lowest is a dacite welded tuff, a reddish-brown rock featuring abundant phenocrysts of plagioclase, hornblende, and biotite; next is a heterogeneous unit consisting of mocks ranging from basalt to dacite. Overlying these is the basalt and andesite of Orevada View, over 700 m thick and consisting of a basal unit of cinder agglutinate overlain by basalt and andesite, much of which contains conspicuous large plagioclase phenocrysts. Near Disaster Peak and Orevada View, the basalt and andesite are overlain by additional units of silicic volcanic rocks. The lower alkali rhyolite welded tuff contains abundant phenocrysts of alkali feldspar and has a vitric phase with obvious pumice and shard texture. The rhyolite of Little Peak consists of a wide variety of banded flows or welded ruffs and breccias, mostly containing abundant alkali feldspar phenocrysts. It extends south from Disaster Peak and apparently underlies the alkali rhyolite of Jordan Meadow. The quartz latite of Sage Creek lies north of Disaster Peak and consists mostly of finely mottled quartz latite with sparse minute plagioclase phenocrysts. Volcanic rock units in the east part of the area near the Cordero mine include trachyandesite, quartz labile of McConnell Canyon, and rhyolite of McCormick Ranch. The trachyandesite is dark gray and contains less than 1 percent microphenocrysts plagioclase. It is the lowest unit exposed and may correlate with part of the basalt and andesite of Orevada View. The quartz latite of McConnell Canyon is

  13. Magnetic beneficiation of highland and hi-Ti mare soils - Rock, mineral, and glassy components

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence A.; Oder, Robin R.

    1990-01-01

    The exploitation of lunar soil can provide valuable raw materials for in situ resource utilization at a lunar base. A study of magnetic characterization was undertaken of three mare and two highland soils obtained from NASA. Beneficiation of mare and highland soils by sizing and magnetic separation can effectively concentrate the important components of the soils (e.g., ilmenite, native Fe, plagioclase, and aggluminates). As a soil matures and the impact melts consume additional minerals and rocks, the modal percentage of the minerals will decrease. The 'normative' percentage will become much greater than the modal percentage. Therefore, greater efficiency of separation can be realized with the proper selection of maturity of the soil, as well as by secondary grinding to further liberate specific minerals from lithic fragments (e.g., ilmenite and plagioclase).

  14. Flow vorticity in Zhangbaling transpressional attachment zone, SE China

    NASA Astrophysics Data System (ADS)

    Zhang, Qing; Teyssier, Christian

    2013-03-01

    Plagioclase porphyroclasts with well-preserved idiomorphic shapes and zoning, and showing limited clast interaction, are ubiquitous in the flat-lying Zhangbaling schist that is exposed east of the Tan-Lu fault in southeast China. Plagioclase porphyroclasts define rigid particles whose distribution be related to the kinematic vorticity of the schist using the methods of porphyroclast hyperbolic distribution (PHD) and modified Rf/ϕ (Passchier/Wallis plot). The kinematic vorticity numbers calculated from this approach range from Wk = 0.72 to 0.82, increasing progressively from south to north along the Zhangbaling belt. Such a Wk distribution indicates that the Zhangbaling schist was deformed uniformly under simple-shear dominated general shear, and that the Zhangbaling ductile crust experienced relatively even crustal thinning deformation. The subhorizontal Zhangbaling schist is considered a mid-crustal attachment zone that coupled the rigid upper crust to a subvertical, wrench shear zone in the lower crust.

  15. Geology, age, and tectonic setting of the Cretaceous Sliderock Mountain Volcano, Montana

    USGS Publications Warehouse

    Du Bray, E.A.; Harlan, Stephen S.

    1998-01-01

    The Sliderock Mountain stratovolcano, part of the Upper Cretaceous continental magmatic arc in southwestern Montana, consists of volcaniclastic strata and basaltic andesite lava flows. An intrusive complex represents the volcano's solidified magma chamber. Compositional diversity within components of the volcano appears to reflect evolution via about 50 percent fractional crystallization involving clinopyroxene and plagioclase. 40Ar/39Ar indicate that the volcano was active about 78?1 Ma.

  16. Origin of howardites, diogenites and eucrites - A mass balance constraint

    NASA Technical Reports Server (NTRS)

    Warren, P. H.

    1985-01-01

    Two petrogenetic models for the noncumulate-basaltic parts of howardite meteorites are discussed. A mass balance constraint is developed which indicates that more than half of the basaltic components in howardites formed as residual liquids from fractional crystallization of melts that had earlier produced diogentelike pyroxene cumulate components. Other model constriants involving scandium trends, clustering near olivine-pyroxene-plagioclase peritectic, and MgO/(MgO + FeO) ratios are discussed.

  17. Deciphering Multistage Crystal Histories in Arc Magmas

    NASA Astrophysics Data System (ADS)

    George, R.; Turner, S.; Berlo, K.; Pearson, N.

    2005-12-01

    Discrepancy between crystal ages derived by short-lived chronometers with vastly differing half-lives is one manifestation of the potential for complex, multistage evolution of phenocrysts in arc magmatic systems. Deciphering these processes is critical for estimating realistic crystal histories and, ultimately, the physical mechanisms of differentiation. Some of the biggest chronological discrepancies are evident in the andesitic compositional range, the most ubiquitous material erupted at arcs. In some systems, such as Sangeang Api in the Sunda arc, U-Th and Ra-Th systematics of bulk plagioclase separates are not in conflict and indicate that differentiation occurred over several 1000 years via crystallization due to cooling in the lower crust. Here, 210Pb data indicate significant degassing occurred in the decade prior to eruption but post-dated phenocryst growth and magma differentiation. Combined textural and U-Th-Ra isotope approaches often, however, provide compelling evidence that plagioclase phenocrysts contain old cores and thus are zoned in both age and composition. One of the best examples of apparently conflicting time-scale information comes from Soufriere volcano on St. Vincent in the Lesser Antilles. U-Th isotopes analyses of bulk plagioclase separates conflict with whole-rock and mineral Ra-Th disequilibria and attest to non-linear growth histories, and involvement of recycled cumulates upon which renewed crystal growth has taken place. We augment this well-constrained case study with new in situ Sr isotope analyses for one of the Soufriere lavas and a cumulate xenolith erupted in 1979. Significant isotope heterogeneity is observed, and complimentary isotope variations exist between cumulate xenolith and lava plagioclase phenocryst cores, lending further support to the model of heterogeneous core-rim evolution in the Soufriere system. We conclude that mineral time scales should always be cross-examined with other textural and/or isotope techniques

  18. Relation between ground-water quality and mineralogy in the coal- producing Norton Formation of Buchanan County, Virginia

    USGS Publications Warehouse

    Powell, John D.; Larson, Jerry D.

    1985-01-01

    The geochemical processes controlling ground-water chemistry in the coal-producing strata of southwestern Virginia include hydrolysis of silicates, dissolution of carbonates, oxidation of pyrite, cation exchange, and precipitation of secondary minerals, kaolinite and goethite. Core material from the Norton Formation of the Pennsylvania Period is composed of slightly more than one-half sandstone; siltstone and minor amounts of shale, clay, and coal account for the majority of the remainder. Petrographic analyses and x-ray diffraction studies indicate that the sandstone is about 75 percent quartz, 15 percent plagioclase feldspar, 2 percent potassium feldspar, 2 percent muscovite, 4 percent chlorite, and 1 percent siderite. Calcite is present in small amounts and in a few strata as clasts or cement. No limestone strata were identified. The siltstone is about 50 percent quartz, 10 percent plagioclase feldspar, 10 percent mica, 20 percent chlorite, and from 0 to 25 percent siderite. Pyrite is associated with some siltstone and, where present, generally accounts for less than 1 percent. Total sulfur generally constitutes less than 0.1 percent of core samples but about 4 percent in the more pyrite-rich layers. Three reaction models are used to account for the observed water chemistry. The models derive sulfate from pyrite, iron from pyrite and siderite, calcium from plagioclase and calcite, sodium from plagioclase and cation exchange, magnesium from chlorite, and carbon from carbon dioxide, calcite, and siderite. Kaolinite, chalcedony, and goethite are formed authigenically. Carbon-13 data define the relative contributions of carbon sources to models. Comparison of adjacent unmined and mined basins indicates that surface mining significantly increases the weathering reaction of pyrite in contrast to weathering reactions of other minerals. However, in the area studied, reactive pyrite does not appear to be present in sufficient quantities in strata associated with mined

  19. U-Th-Pb systematics on lunar rocks and inferences about lunar evolution and the age of the moon

    NASA Technical Reports Server (NTRS)

    Tera, F.; Wasserburg, G. J.

    1974-01-01

    The investigation reported continues a study conducted by Tera et al. (1974). An attempt is made to summarize all of the data currently available in the literature on terra materials and to discuss the implications of the upper intersection with the concordia curve. Data on total rocks and some plagioclase separates are presented in a graph. The data appear to give further support to a model of a terminal lunar cataclysm associated with intense global bombardment at about 3.9 aeons.

  20. Geochemical heterogeneities in magma beneath Mount Etna recorded by 2001-2006 melt inclusions

    NASA Astrophysics Data System (ADS)

    Schiavi, Federica; Rosciglione, Alberto; Kitagawa, Hiroshi; Kobayashi, Katsura; Nakamura, Eizo; Nuccio, Pasquale Mario; Ottolini, Luisa; Paonita, Antonio; Vannucci, Riccardo

    2015-07-01

    We present a geochemical study on olivine and clinopyroxene-hosted melt inclusions (MIs) from 2001 to 2006 Etna basaltic lavas and pyroclastites. Three MI suites are distinguished on the basis of trace element fingerprinting. Type-1 MIs (from 2001 Upper South and 2002 Northeast vents) share their trace element signature with low-K lavas erupted before 1971. Critical trace element ratios (e.g., K/La, Ba/Nb), along with Pb isotope data of Type-1 MIs provide evidence for a heterogeneous mantle source resulting from mixing of three end-members with geochemical and isotopic characteristics of EM2, DMM, and HIMU components. Type-1 MIs composition does not support involvement of subduction-related components. Type-2 (from 2001 Lower and 2002 South vents) and Type-3 (2004 eruption) MIs reveal "ghost plagioclase signatures," namely lower concentrations in strongly incompatible elements, and positive Sr, Ba, and Eu anomalies. Both Type-1 and Type-2 MIs occur in 2006 olivines, which highlight the occurrence of mixing between Type-1 and Type-2 end-members. Type-2/Type-3 MIs testify to en route processes (plagioclase assimilation and volatile fluxing) peculiar for "deep dike fed" eruptions. The latter are strongly controlled by tectonics or flank instability that occasionally promote upraise of undegassed, more radiogenic primitive magma, which may interact with plagioclase-rich crystal mush/cumulates before erupting. Type-2/Type-3 MIs approach the less radiogenic Pb isotopic composition of plagioclase from prehistoric lavas, thus suggesting geochemical overprinting of present-day melts by older products released from distinct mantle sources. Our study emphasizes that MIs microanalysis offers new insights on both source characteristics and en route processes, allowing to a link between melt composition and magma dynamics.

  1. Pre-eruptive conditions of dacitic magma erupted during the 21.7 ka Plinian event at Nevado de Toluca volcano, Central Mexico

    NASA Astrophysics Data System (ADS)

    Arce, J. L.; Gardner, J. E.; Macías, J. L.

    2013-01-01

    The Nevado de Toluca volcano in Central Mexico has been active over the last ca. 42 ka, during which tens of km3 of pyroclastic material were erupted and two important Plinian-type eruptions occurred at ca. 21.7 ka (Lower Toluca Pumice: LTP) and ca. 10.5 ka (Upper Toluca Pumice: UTP). Samples from both the LTP and UTP contain plagioclase, amphibole, iron-titanium oxides, and minor anhedral biotite, set in a vesicular, rhyolitic, glassy matrix. In addition, UTP dacites contain orthopyroxene. Analysis of melt inclusions in plagioclase phenocrysts yields H2O contents of 2-3.5 wt.% for LTP and 1.3-3.6 wt.% for UTP samples. Ilmenite-ulvospinel geothermometry yields an average temperature of ~ 868 °C for the LTP magma (hotter than the UTP magma, ~ 842 °C; Arce et al., 2006), whereas amphibole-plagioclase geothermometry yields a temperature of 825-859 °C for the LTP magma. Water-saturated experiments using LTP dacite suggest that: (i) amphibole is stable above 100 MPa and below 900 °C; (ii) plagioclase crystallizes below 250-100 MPa at temperatures of 850-900 °C; and (iii) pyroxene is stable only below pressures of 200-100 MPa and temperatures of 825-900 °C. Comparison of natural and experimental data suggests that the LTP dacitic magma was stored at 150-200 MPa (5.8-7.7 km below the volcano summit). No differences in pressure found between 21.7 ka and 10.5 ka suggest that these two magmas were stored at similar depths. Orthopyroxene produced in lower temperature LTP experiments is compositionally different to those found in UTP natural samples, suggesting that they originated in two different magma batches. Whole-rock chemistry, petrographic features, and mineral compositions suggest that magma mixing was responsible for the generation of the dacitic Plinian LTP eruption.

  2. Rb-Sr and Sm-Nd Isotope Systematics of Shergottite NWA 856: Crystallization Age and Implications for Alteration of Hot Desert SNC Meteorites

    NASA Technical Reports Server (NTRS)

    Brandon, A. D.; Nyquist, L. E.; Shih, C.-Y.; Wiesmann, H.

    2004-01-01

    Nakhlite NWA 998 was discovered in Algeria in 2001, and is unique among the six known members of this group of Martian meteorites in containing significant modal orthopyroxene. Initial petrologic and isotopic data were reported by Irving et al. This 456 gram stone consists mainly of sub-calcic augite with subordinate olivine and minor orthopyroxene, titanomagnetite, pyrrhotite, chlorapatite, and intercumulus An(sub 35) plagioclase. We report here preliminary results of radiogenic isotopic analyses conducted on fragmental material from the main mass.

  3. Mantle rock exposures at oceanic core complexes along mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Ciazela, Jakub; Koepke, Juergen; Dick, Henry J. B.; Muszynski, Andrzej

    2015-12-01

    The mantle is the most voluminous part of the Earth. However, mantle petrologists usually have to rely on indirect geophysical methods or on material found ex situ. In this review paper, we point out the in-situ existence of oceanic core complexes (OCCs), which provide large exposures of mantle and lower crustal rocks on the seafloor on detachment fault footwalls at slow-spreading ridges. OCCs are a common structure in oceanic crust architecture of slow-spreading ridges. At least 172 OCCs have been identified so far and we can expect to discover hundreds of new OCCs as more detailed mapping takes place. Thirty-two of the thirty-nine OCCs that have been sampled to date contain peridotites. Moreover, peridotites dominate in the plutonic footwall of 77% of OCCs. Massive OCC peridotites come from the very top of the melting column beneath ocean ridges. They are typically spinel harzburgites and show 11.3-18.3% partial melting, generally representing a maximum degree of melting along a segment. Another key feature is the lower frequency of plagioclase-bearing peridotites in the mantle rocks and the lower abundance of plagioclase in the plagioclase-bearing peridotites in comparison to transform peridotites. The presence of plagioclase is usually linked to impregnation with late-stage melt. Based on the above, OCC peridotites away from segment ends and transforms can be treated as a new class of abyssal peridotites that differ from transform peridotites by a higher degree of partial melting and lower interaction with subsequent transient melt.

  4. Genesis of highland basalt breccias - A view from 66095

    NASA Technical Reports Server (NTRS)

    Garrison, J. R., Jr.; Taylor, L. A.

    1980-01-01

    Electron microprobe and defocused beam analyses of the lunar highland breccia sample 66095 show it consists of a fine-grained subophitic matrix containing a variety of mineral and lithic clasts, such as intergranular and cataclastic ANT, shocked and unshocked plagioclase, and basalts. Consideration of the chemistries of both matrix and clasts provides a basis for a qualitative three-component mixing model consisting of an ANT plutonic complex, a Fra Mauro basalt, and minor meteoric material.

  5. Glass and ceramics. [lunar resources

    NASA Technical Reports Server (NTRS)

    Haskin, Larry A.

    1992-01-01

    A variety of glasses and ceramics can be produced from bulk lunar materials or from separated components. Glassy products include sintered regolith, quenched molten basalt, and transparent glass formed from fused plagioclase. No research has been carried out on lunar material or close simulants, so properties are not known in detail; however, common glass technologies such as molding and spinning seem feasible. Possible methods for producing glass and ceramic materials are discussed along with some potential uses of the resulting products.

  6. How do olivines record magmatic events? Insights from major and trace element zoning

    NASA Astrophysics Data System (ADS)

    de Maisonneuve, C. Bouvet; Costa, F.; Huber, C.; Vonlanthen, P.; Bachmann, O.; Dungan, M. A.

    2016-06-01

    Reconciling the diverse records of magmatic events preserved by multiple crystals and minerals in the same sample is often challenging. In the case of basaltic-andesites from Volcán Llaima (Chile), Mg zoning in olivine is always simpler than Ca zoning in plagioclase. A model that explains a number of chemical patterns is that Llaima magmas stall in the upper crust, where they undergo decompression crystallization and form crystal-mush bodies. Frequent magma inputs from deeper reservoirs provide the potential for remobilization and eruption. The records of multiple recharge events in Llaima plagioclase versus an apparent maximum of one such event in coexisting olivine are addressed by using trace element zoning in olivine phenocrysts. We have integrated elements that (1) respond to changes in magma composition due to recharge or mixing (Mg, Fe, Ni, Mn, ±Ca), with (2) elements that are incorporated during rapid, disequilibrium crystal growth (P, Ti, Sc, V, Al). A more complex history is obtained when these elements are evaluated considering their partition coefficients, diffusivities, and crystal growth rates. The olivine archive can then be reconciled with the plagioclase archive of magma reservoir processes. Olivine (and plagioclase) phenocrysts may experience up to three or more recharge events between nucleation and eruption. Diffusion modeling of major and trace element zoning in two dimensions using a new lattice Boltzmann model suggests that recharge events occur on the order of months to a couple of years prior to eruption, whereas crystal residence times are more likely to be on the order of a few years to decades.

  7. Recharge in Volcanic Systems: Evidence from Isotope Profiles of Phenocrysts

    PubMed

    Davidson; Tepley

    1997-02-01

    Strontium isotope ratios measured from core to rim across plagioclase feldspar crystals can be used to monitor changes in the isotope composition of the magma from which they grew. In samples from three magma systems from convergent margin volcanoes, sudden changes in major element composition, petrographic features, and strontium isotope composition were found to correspond to discrete magmatic events, most likely repeated recharge of more mafic magma with lower ratios of strontium-87 to strontium-86 into a crustally contaminated magma. PMID:9012348

  8. Geology of the Hog Mountain tonalite and associated lode gold deposits, Northern Alabama Piedmont: Final report for the 1986-1987 project year

    SciTech Connect

    Green, N.L.; Lesher, C.M.

    1988-02-01

    The Hog Mountain tonalite intrudes lower Paleozoic graphitic phyllites of the Wedowee formation and is transgressed by a series of planar, en echelon, bifurcating, auriferous quartz-sulfide veins with well-defined sericite-sulfide alteration envelopes. Least-altered tonalite is white, medium-grained, and weakly to non-foliated. It is characterized by moderately uniform distributions of quartz and oscillatory-normal zoned plagioclase (An/sub 7-41/), with minor amounts of biotite, muscovite, ilmenite, apatite, zircon and corroded garnet; K-feldspar is rare. Least-altered granitoids are peraluminous (A/CNK > 1.15), exhibit significant major- and trace-element variations, are characterized by relatively low REE contents, and have moderately high /delta//sup 18/O (+9.7 to +11.2 %) and uniform /delta/D (-82 to -78 %) values. Biotite log (X/sub Mg//X/sub Fe/)-log(X/sub F//X/sub OH/) relations suggest contamination of an I-type granitic melt by graphitic metapelites. Corroded garnets (Pyr/sub 3/Alm/sub 55/Spess/sub 17/Gross/sub 25/) within the granitoids are chemically-similar to euhedral garnets in adjacent schists and in fine-grained, foliated plagioclase-biotite-muscovite-ilmenite xenoliths, and were probably derived from the metasedimentary host rocks. Equilibration conditions of the xenolith mineral assemblages (465-510/degree/C at ca. 6 kb), calculated using garnet-biotite-muscovite-plagioclase thermobarometry, are similar to inferred metamorphic P-T conditions of underthrusting of Wedowee metasediments to mid-crustal levels during Paleozoic crustal thickening. Observed chemical variations may be modeled by plagioclase/biotite-controlled fractionation of a peraluminous tonalitic melt, accompanied by local cumulus mineral-intercumulus liquid segregation and graphitic metapelite contamination during emplacement. 70 refs., 20 figs.

  9. The Effects of Oxygen Fugacity on the Crystallization Sequence and Cr Partitioning of an Analog Y-98 Liquid

    NASA Technical Reports Server (NTRS)

    Bell, A. S.; Burger, P. V.; Le, Loan; Papike, J. J.; Jones, J.; Shearer, C. K.

    2013-01-01

    Interpreting the relationship between "enriched" olivine-phyric shergottites (e.g. NWA 1068/1110) and the "enriched" pyroxene-plagioclase shergottites (e.g. Shergotty, Los Angeles) is problematic. Symes et al. [1] and Shearer et al. [2]) proposed that the basaltic magma that crystallized to produce olivine-phyric shergottite NWA 1068/1110 could produce pyroxene-plagioclase shergottites with additional fractional crystallization. However, additional observations indicate that the relationship among the enriched shergottites may be more complex [1-3]. For example, Herd [3] concluded that some portion of the olivine megacrysts in this meteorite was xenocrystic in origin, seemingly derived from more reduced basaltic liquids. This conclusion may imply that a variety of complex processes such as magma mixing, entrainment, and assimilation may play important roles in the petrologic history of these meteorites. It is therefore possible that these processes have obscured the petrogenetic linkages between the enriched olivine-phyric shergottites and the pyroxene-plagioclase shergottites. As a first order step in attempting to unravel these petrologic complexities, this study focuses upon exploring the effect of fO2 on the crystallization history for an analog primitive shergottite liquid composition (Y98). Results from this work will provide a basis for reconstructing the record of fO2 in shergottites, its effect on both mineral chemistries and valence state partitioning, and a means for examining the role of crystallization on the petrologic linkages between olivine-phyric and pyroxene-plagioclase shergottites. A companion abstract [4] explores the behavior of V over this range of fO2.

  10. Partial eclogitization of the Ambolten gabbro-norite, north-east Greenland Caledonides

    USGS Publications Warehouse

    Gilotti, J.A.; Elvevold, S.

    1998-01-01

    Partially eclogitized igneous bodies composed of gabbro, leucogabbro, anorthosite and cross-cutting diabase dikes are well represented in the North-East Greenland Eclogite Province. A 200 x 100 meter intrusive body on Ambolten Island (78?? 20' N, 19?? 15' W) records a prograde transition from gabbro-norite to eclogite facies coronitic metagabro-norite surrounded by hydrated margins of undeformed to strongly foliated amphibolite. Igneous plagioclase + olivine + enstatite + augite + oxides convert to eclogite facies assemblages consisting of garnet, omphacite, diopside, enstatite, kyanite, zoisite, rutile and pargasitic amphibole through several coronitic reactions. Relict cumulus plagioclase laths are replaced by an outer corona of garnet, an inner corona of omphacite and an internal region of sodic plagioclase, garnet, kyanite, omphacite and zoisite. Olivine and intercumulus pyroxene are partly replaced by metamorphic pyroxenes and amphibole. The corona structures, zoning patterns, diversity of mineral compositions in a single thin section, and preservation of metastable asemblages are characteristic of diffusion-controlled metamorphism. The most extreme disequilibrium is found in static amphibolites, where igneous pyroxenes, plagioclase domains with eclogite facies, assemblages, and matrix amphibole coexist. Complete eclogitization was not attained at Ambolten due to a lack of fluids needed to drive diffusion during prograde and retrograde metamorphism. The P-T conditions of the high-pressure metamorphism are estimated at ??? 750??C and > 18 kbar. Well-equilibrated, foliated amphibolites from the margin of the gabbro-norite supports our contention that the entire North-East Greenland Eclogite Province experienced Caledonian high-pressure metamorphism, even though no eclogite facies assemblages have been found in the quartzofeldspathic host gneisses to date.

  11. Spade: An H Chondrite Impact-melt Breccia that Experienced Post-shock Annealing

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.; Jones, Rhian H.

    2006-01-01

    The low modal abundances of relict chondrules (1.8 Vol%) and of coarse (i.e. >= 2200 micron-size) isolated mafic silicate grains (1.8 Vol%) in Spade relative to mean H6 chondrites (11.4 and 9.8 vol%, respectively) show Spade to be a rock that has experienced a significant degree of melting. Various petrographic features (e.g., chromite-plagioclase assemblages, chromite veinlets, silicate darkening) indicate that melting was caused by shock. Plagioclase was melted during the shock event and flowed so that it partially to completely surrounded nearby mafic silicate grains. During crystallization, plagioclase developed igneous zoning. Low-Ca pyroxene that crystallized from the melt (or equilibrated with the melt at high temperatures) acquired relatively high amounts of CaO. Metallic Fe-Ni cooled rapidly below the Fe-Ni solws and transformed into martensite. Subsequent reheating of the rock caused transformation of martensite into abundant duplex plessite. Ambiguities exist in the shock stage assignment of Spade. The extensive silicate darkening, the occurrence of chromite-plagioclase assemblages, and the impact-melted characteristics of Spade are consistent with shock stage S6. Low shock (stage S2) is indicated by the undulose extinction and lack of planar fractures in olivine. This suggests that Spade reached a maximum prior shock level equivalent to stage S6 and then experienced post-shock annealing (probably to stage Sl). These events were followed by a less intense impact that produced the undulose extinction in the olivine, characteristic of shock stage S2. Annealing could have occurred if Spade were emplaced near impact melts beneath the crater floor or deposited in close proximity to hot debris within an ejecta blanket. Spade firmly establishes the case for post-shock annealing. This may have been a common process on ordinary chondrites (OC) asteroids.

  12. Minor and trace elements in some meteoritic minerals.

    NASA Technical Reports Server (NTRS)

    Allen, R. O., Jr.; Mason, B.

    1973-01-01

    Despite the information available (Mason, 1971) on trace elements in different types of meteorites, relatively little is known about the distribution of these elements among the individual mineral phases. The mineral phases including olivine, orthopyroxene, clinipyroxene, troilite, nickel-iron, plagioclase, chromite, and the phosphates were separated from several meteorites. The purified minerals were analyzed for trace and minor elements by spark source mass spectrometry and instrumental neutron activation analysis. The elements are classified as siderophile, lithophile, and chalcophile.

  13. Petrographic and crystallographic study of silicate minerals in lunar rocks

    NASA Technical Reports Server (NTRS)

    Carmichael, I. S. E.; Turner, F. J.; Wenk, H. R.

    1974-01-01

    Optical U-stage measurements, chemical microprobe data, and X-ray procession photographs of a bytownite twin group from rock 12032,44 are compared. Sharp but weak b and no c-reflections were observed for this An89 bytownite indicating a partly disordered structure. Euler angles, used to characterize the orientation of the optical indicatrix, compare better with values for plutonic than for volcanic plagioclase. This indicates that structural and optical properties cannot be directly correlated.

  14. Lead isotope systematics of three Apollo 17 mare basalts

    NASA Technical Reports Server (NTRS)

    Tilton, G. R.; Chen, J. H.

    1979-01-01

    The paper deals with new and more accurate determinations of uranium, thorium, and isotopic lead data for five bulk samples and separate pyroxene, ilmenite, and plagioclase from basalt 71055. In a concordia diagram, the samples suggest a postcrystallization disturbance of the U-Pb systems of the rock. There is no compelling reason, from U-Pb data, to believe that the moon is younger than 4.55 AE.

  15. Microelectrophoresis of selected mineral particles

    NASA Technical Reports Server (NTRS)

    Herren, B. J.; Tipps, R. W.; Alexander, K. D.

    1982-01-01

    Particle mobilities of ilmenite, labradorite plagioclase, enstatite pyroxene, and olivine were measured with a Rank microelectrophoresis system to evaluate indicated mineral separability. Sodium bicarbonate buffer suspension media with and without additives (0.0001 M DTAB and 5 percent v/v ethylene glycol) were used to determine differential adsorption by mineral particles and modification of relative mobilities. Good separability between some minerals was indicated; additives did not enhance separability.

  16. Mineralogy and petrology of basaltic fragments from the Luna 24 drill core

    NASA Technical Reports Server (NTRS)

    Coish, R. A.; Taylor, L. A.

    1978-01-01

    The petrology of rock fragments and monomineralic grains from Luna 24 samples is described, and a petrogenetic scheme for the derivation of Mare Crisium basalts is presented. Components of the rock fragments include subophitic basalts, metabasalts, late-stage fragments, olivine vitrophyres, and non-mare lithic fragments of possible cumulate origin. Among the monomineralic grains (which are much more abundant than the rock fragments) are pyroxene, plagioclase, olivine, ilmenite and native Fe.

  17. An achondrite clast in Parnallee with possible links to ureilites

    NASA Astrophysics Data System (ADS)

    Bridges, J. C.; Franchi, I. A.; Hutchison, R.; Alexander, C. M. O'd.; Pillinger, C. T.

    1994-07-01

    The presence of exotic xenoliths or clasts in ordinary chondrites is well documented on the basis of O isotopes. Here we report a feldspar-nepheline clast (FELINE) found in Parnallee, which may have a planetary origin. FELINE is a 3-mm subrounded clast containing 88 modal% plagioclase and 12 modal% nepheline. Prior to late parent-body fracturing the plagioclase appears to have consisted of a few large individual grains. FELINE has no chondrule-like fine-grained rim and may be a fragment of a larger body. Plagioclase is An 75-87, Ab 25-13. Nepheline contains 0.24-3.12 wt% Cl. The mildly alkaline bulk composition of FELINE is distinct from Al-rich chondrules, having lower MgO and FeO, and is too Na2O- and Cl-rich for Ca-Al rich inclusions (CAI)-like compositions. Plagioclase has negative Rare Earth Element (REE)/chondrite slopes with pronounced positive Eu anomalies. Such a REE signature is consistent with an igneous origin for FELINE. The O isotope signature of FELINE is delta O-17 4.5, delta O-18 8.9. FELINE lies apart from most oc chondrules on the three-isotope plot showing its exotic origin. It plots near the intersection of the carbonaceous chondrite anhydrous minerals line (CCAM) with the terrestrial fractionation line. Bulk ureilites also plot long CCAM, and FELINE plots on an extension of the currently known field. Ureilite genesis is still controversial with models requiring extensive planetary differentiation or relatively limited reworking and melting of primitive precursors. FELINE might also be a product of the missing Ca-, Al-rich melt. The mildly alkaline bulk composition and fractionated REE of FELINE suggest that it crystallized from a differentiated melt. Whether FELINE is related to ureilite genesis or not, it provides further evidence that achondritic planetary clasts are one of the components in ordinary chondrites.

  18. Kinetic and mineralogic controls on the evolution of groundwater chemistry and 87Sr/86Sr in a sandy silicate aquifer, northern Wisconsin, USA

    USGS Publications Warehouse

    Bullen, T.D.; Krabbenhoft, D.P.; Kendall, C.

    1996-01-01

    Substantial flowpath-related variability of 87Sr/86Sr is observed in groundwaters collected from the Trout Lake watershed of northern Wisconsin. In the extensive shallow aquifer composed of sandy glacial outwash, groundwater is recharged either by seepage from lakes or by precipitation that infiltrates the inter-lake uplands. 87Sr/86Sr of groundwater derived mainly as seepage from a precipitation-dominated lake near the head of the watershed decreases with progressive water chemical evolution along its flowpath due primarily to enhanced dissolution of relatively unradiogenic plagioclase. In contrast, 87Sr/86Sr of groundwater derived mainly from precipitation that infiltrates upland areas is substantially greater than that of precipitation collected from the watershed, due to suppression of plagioclase dissolution together with preferential leaching of Sr from radiogenic phases such as K-feldspar and biotite. The results of a column experiment that simulated the effects of changing residence time of water in the aquifer sand indicate that mobile waters obtain relatively unradiogenic Sr, whereas stagnant waters obtain relatively radiogenic Sr. Nearly the entire range of strontium-isotope composition observed in groundwaters from the watershed was measured in the experimental product waters. The constant mobility of water along groundwater recharge flowpaths emanating from the lakes promotes the dissolution of relatively unradiogenic plagioclase, perhaps due to effective dispersal of clay mineral nuclei resulting from dissolution reactions. In contrast, episodic stagnation in the unsaturated zone along the upland recharge flowpaths suppresses plagioclase dissolution, perhaps due to accumulation of clay mineral nuclei on its reactive surfaces. Differences in redox conditions along these contrasting flowpaths probably enhance the observed differences in strontium isotope behavior. This study demonstrates that factors other than the calculated state of mineral saturation

  19. Rare Earth Element Partitioning in Lunar Minerals: An Experimental Study

    NASA Technical Reports Server (NTRS)

    McIntosh, E. C.; Rapp, J. F.; Draper, D. S.

    2016-01-01

    The partitioning behavior of rare earth elements (REE) between minerals and melts is widely used to interpret the petrogenesis and geologic context of terrestrial and extra-terrestrial samples. REE are important tools for modelling the evolution of the lunar interior. The ubiquitous negative Eu anomaly in lunar basalts is one of the main lines of evidence to support the lunar magma ocean (LMO) hypothesis, by which the plagioclase-rich lunar highlands were formed as a flotation crust during differentiation of a global-scale magma ocean. The separation of plagioclase from the mafic cumulates is thought to be the source of the Eu depletion, as Eu is very compatible in plagioclase. Lunar basalts and volcanic glasses are commonly depleted in light REEs (LREE), and more enriched in heavy REEs (HREE). However, there is very little experimental data available on REE partitioning between lunar minerals and melts. In order to interpret the source of these distinctive REE patterns, and to model lunar petrogenetic processes, REE partition coefficients (D) between lunar minerals and melts are needed at conditions relevant to lunar processes. New data on D(sub REE) for plagioclase, and pyroxenes are now available, but there is limited available data for olivine/melt D(sub REE), particularly at pressures higher than 1 bar, and in Fe-rich and reduced compositions - all conditions relevant to the lunar mantle. Based on terrestrial data, REE are highly incompatible in olivine (i.e. D much less than 1), however olivine is the predominant mineral in the lunar interior, so it is important to understand whether it is capable of storing even small amounts of REE, and how the REEs might be fractionatied, in order to understand the trace element budget of the lunar interior. This abstract presents results from high-pressure and temperature experiments investigating REE partitioning between olivine and melt in a composition relevant to lunar magmatism.

  20. Brief review of thermoluminescence studies in lunar samples.

    NASA Technical Reports Server (NTRS)

    Hoyt, H. P., Jr.; Walker, R. M.; Miyajima, M.

    1971-01-01

    A weak thermoluminescence, due primarily to plagioclase feldspar, is found to exist in Apollo 11 and 12 lunar rock and topsoil samples. This effect increases with depth to about 10 cm below the surface and becomes relatively even in greater depth. The penetration of the diurnal temperature wave is traced to the rock thermoluminescence. Evidence is also found for the thermal draining of the surface rock.

  1. Luna 16 sample G36 - Another crystalline product of an extremely mafic magma.

    NASA Technical Reports Server (NTRS)

    Hollister, L. S.; Kulick, C. G.

    1972-01-01

    Luna 16 sample G36 is a microbasalt containing skeletal olivine, plagioclase, ilmenite, and interstitial pyroxene. It apparently resulted from very rapid crystallization of a highly fractionated, totally liquid mafic magma. Although different in many details, G36 is generally similar to the ferromagnesian-rich Apollo 11 and 12 basalts. In this respect, it emphasizes the continuing problem of identifying a process on the moon which generated highly mafic magmas.

  2. Coincidence of gabbro and granulite formation and their implication for Variscan HT metamorphism in the Moldanubian Zone (Bohemian Massif), example from the Kutná Hora Complex

    NASA Astrophysics Data System (ADS)

    Faryad, Shah Wali; Kachlík, Václav; Sláma, Jiří; Jedlicka, Radim

    2016-11-01

    Leucocratic metagabbro and amphibolite from a mafic-ultramafic body within migmatite and granulite in the Kutná Hora Complex were investigated. The mafic-ultramafic rocks show amphibolite facies metamorphism, but in the central part of the body some metagabbro preserves cumulus and intercumulus plagioclase, clinopyroxene and spinel. Spinel forms inclusions in both clinopyroxene and plagioclase and shows various degree of embayment structure, that was probably a result of reaction with melt during magmatic crystallization. In the metagabbro, garnet forms coronae around clinopyroxene at the contacts with plagioclase. Amphibolite contains garnet with prograde zoning and plagioclase. Phase relations of igneous and metamorphic minerals indicate that magmatic crystallization and subsequent metamorphism occurred as a result of isobaric cooling at a depth of 30-35 km. U-Pb dating on zircon from leucogabbro yielded a Variscan age (337.7 ± 2 Ma) that is similar or close to the age of granulite facies metamorphism (ca 340 Ma) in the Moldanubian Zone. Based on the calculated PT conditions and age data, both the mafic-ultramafic body and surrounding granulite shared the same exhumation path from their middle-lower crustal position at the end of Variscan orogeny. The coincidence of mafic-ultramafic intrusives and granulite-amphibolite facies metamorphism is explained by lithospheric upwelling beneath the Moldanubian Zone that occurred due to slab break-off during the final stages of subduction of the Moldanubian plate beneath the Teplá Barrandian Block. The model also addresses questions about the preservation of minerals and/or their compositions from the early metamorphic history of the rocks subjected to ultradeep subduction and subsequent granulite facies metamorphism.

  3. Toward an understanding of disequilibrium dihedral angles in mafic rocks

    USGS Publications Warehouse

    Holness, Marian B.; Humphreys, Madeleine C.S.; Sides, Rachel; Helz, Rosalind T.; Tegner, Christian

    2012-01-01

    The median dihedral angle at clinopyroxene-plagioclase-plagioclase junctions in mafic rocks, Θcpp, is generally lower than equilibrium (109˚ {plus minus} 2˚). Observation of a wide range of mafic bodies demonstrates that previous work on systematic variations of Θcpp is incorrect in several important respects. Firstly, the spatial distribution of plagioclase compositional zoning demonstrates that the final geometry of three-grain junctions, and hence Θcpp, is formed during solidification (the igneous process): sub-solidus textural modification in most dolerites and gabbros, previously thought to be the dominant control on Θcpp, is insignificant. Θcpp is governed by mass transport constraints, the inhibiting effects of small pore size on crystallization, and variation in relative growth rates of pyroxene and plagioclase. During rapid cooling, pyroxene preferentially fills wider pores while the narrower pores remain melt-filled, resulting in an initial value of Θcpp of 78˚, rather than 60˚ which would be expected if all melt-filled pores were filled with pyroxene. Lower cooling rates create a higher initial Θcpp due to changes in relative growth rates of the two minerals at the nascent three-grain junction. Low Θcpp (associated with cuspate clinopyroxene grains at triple junctions) can also be diagnostic of infiltration of previously melt-free rocks by late-stage evolved liquids (the metasomatic process). Modification of Θcpp by sub-solidus textural equilibration (the metamorphic process) is only important for fine-grained mafic rocks such as chilled margins and intra-plutonic chill zones. In coarse-grained gabbros from shallow crustal intrusions the metamorphic process occurs only in the centres of oikocrysts, associated with rounding of chadacrysts.

  4. Metamorphosed oceanic lithosphere from the Chunky Gal Mountain complex, Blue Ridge province, North Carolina

    SciTech Connect

    Ranson, W.A.; Garihan, J.M. . Dept. of Geology)

    1993-03-01

    Closely associated dunite and layered troctolite, gabbro, and anorthosite from the Chunky Gal Mountain mafic-ultramafic complex suggest a related ocean floor origin for these lithologies, with regional emplacement by the pre-metamorphic Hayesville-Fries thrust of Taconic age. Anhydrous mineral assemblages of dunitic and troctolitic rocks were more resistant to granulite and upper amphibolite metamorphic episodes, retaining much of their original mineralogy. Dunite consists of fresh polycrystalline olivine with local development of anthophyllite, serpentine, and talc along fractures. Dunite adjacent to mafic amphibolites of the complex contains distinctive cm-scale bands or layers of recrystallized plagioclase( ) of uncertain affinity, possibly veins or rhythmic layers. Troctolitic rocks display reaction textures around fresh olivine and plagioclase. Orthopyroxene growing normal to olivine grain boundaries forms an inner corona, in turn surrounded by a complex symplectite of Cpx + Plag [+-] Grt [+-] Spl. Gabbroic rocks show nearly complete replacement of original mafic minerals. Orthopyroxene survives in a few gabbros but mostly has been replaced by emerald green alumino-magnesio-hornblende. Calcic plagioclase is abundant as subhedral crystals or as oval, polycrystalline clots and pink corundum constitutes an accessory phase. A possible reaction resulting in the observed aluminous assemblage is: Na-Plag + Opx + Di + Spl + fluid = Mg-Hbl + Crn + Ca-Plag. Anorthosites occur as layers 10--50 cm in width within layered troctolites and consist of beautifully recrystallized plagioclase with seriate texture and minor amounts of alumino-magnesio hornblende occurring as fine-grained clots. Contacts between anorthosite and troctolite display the same sort of symplectite formed as an outer corona around olivine in the troctolite.

  5. Basaltic melt evolution of the Hengill volcanic system, SW Iceland, and evidence for clinopyroxene assimilation in primitive tholeiitic magmas

    SciTech Connect

    Troennes, R.G. )

    1990-09-10

    The thick oceanic crust of Iceland is formed by tholeiitic central volcanoes arranged in en echelon patterns along the 40-50 km wide rift zones. The Hengill central volcano in the southwestern rift zone has produced 25-30 km{sup 3} of hyaloclastites and lava during the last 0.11 m.y., with maximum productivity during the isostatic rebound following the degalciations 0.13 and 0.01 m.y. ago. The petrographic relations of pillow rim and hyaloclastite glass indicate that the basaltic melts were saturated with olivine and plagioclase, except for the most primitive ones that were undersaturated with plagioclase. Saturation with clinopyroxene was reached in some of the intermediate and evolved basaltic melts. Corroded and partly resorbed crystals of clinopyroxene and partly disintegrated gabbro nodules with resorbed clinopyroxene indicate that selective assimilation contributed to the evolution of the most primitive melts. The intermediate and evolved basaltic glass compositions fall along the low-pressure cotectic for mid-ocean ridge basalt (MORB) compositions saturated with olivine, plagioclase, and clinopyroxene, but the primitive glasses fall well inside the low-pressure olivine + plagioclase primary phase volume. The dense picritic magmas were driven to the surface by magmatic overpressure in the mantle at an early deglaciation stage characterized by the absence of large, trapping magma chambers in the lower crust. The assimilation of clinopyroxene in these melts could proceed by direct contact with the solidified cumulate sequences and gabbro intrusions. Clinopyroxene assimilation in combination with olivine fractionation may also contribute to the chemical evolution of some of the most primitive MORB magmas.

  6. Explosive volcanism and the graphite-oxygen fugacity buffer on the parent asteroid(s) of the ureilite meteorites

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.; Kallemeyn, Gregory W.

    1992-01-01

    A new model of the production of the uniformly low plagioclase and Al contents of ureilites is proposed. It is argued that those contents are consequences of widespread explosive volcanism during the evolution of the parent asteroid(s). It is noted that the great abundance of graphite on the ureilite asteroid(s) made them ideal sites for explosive volcanism driven by oxidation of graphite in partial melts ascending within the asteroid(s).

  7. Petrology and geochemistry of mantle xenoliths from the Kapsiki Plateau (Cameroon Volcanic Line): Implications for lithospheric upwelling

    NASA Astrophysics Data System (ADS)

    Tamen, Jules; Nkoumbou, Charles; Reusser, Eric; Tchoua, Felix

    2015-01-01

    Mantle xenoliths hosted by Oligocene alkaline basalts of the Kapsiki Plateau, northern end of the Cameroon Volcanic Line consist of group I spinel and plagioclase peridotites, mainly protogranular and accessorily porphyroclastic. The sub-continental lithospheric mantle here is heterogeneous and encloses both depleted and fertile components. Minerals exhibit wide range major element compositions compared to Nyos and Kumba grabens equivalent rocks. Spinel occurs as homogeneous brown crystals or as composite (brown-core-dark-rim) crystals when in contact with diopside or swatted in melt pools. Clinopyroxene crystals are either spinel exsolution-bearing or exsolution-free, the latter being often skeletal or frameworked and riddled with intracrystalline melt pools. Intraxenolith melt pockets and veinlets are always associated to plagioclase-bearing samples. Feldspars depict two distinctive compositions (An37-66Ab57-32Or6-2 and An3-7Ab52-62Or31-48) partly attributed to host xenolith type and to the involvement in the spinel and/or diopside melting reaction of an infiltrating alkali and carbonate-rich liquid. Petrographic and geochemical data discriminate melt pockets from their host basalts, excluding thus infiltration of basaltic melt as prospective origin. Thermo-barometric estimates reveal that prior to their entrainment the Kapsiki mantle xenoliths experienced two P-T equilibrium stages resulting in subsolidus re-equilibration from spinel- to plagioclase-facies conditions. Furthermore mineral textural relations show that the occurrence of plagioclase and melts inclusions is linked to spinel and/or diopside breakdown, likely subsequent to decompression and/or metasomatic induced melting events predating Oligo-Miocene volcanism.

  8. Aioun el Atrouss - Evidence for thermal recrystallization of a eurite breccia. [meteoritic mineralogy

    NASA Technical Reports Server (NTRS)

    Duke, M. B.

    1978-01-01

    The Aioun el Atrouss meteorite is a breccia consisting largely of angular fragments of green orthopyroxene and containing scattered clasts of basaltic composition (mostly pigeonite and calcic plagioclase). It appears to be a physical mixture of two meteorite types - diogenite (hypersthene achondrite) and eucrite (basaltic achondrite). The results of a mineral analysis are tabulated, and typical pyroxene compositions in orthopyroxene (diogenite), subophitic and granoblastic portions of the meteorite are presented.

  9. Chemical fractionation of the lunar regolith by impact melting

    NASA Technical Reports Server (NTRS)

    Adams, J. B.; Charette, M. P.; Rhodes, J. M.

    1975-01-01

    Impact-produced agglutinitic glass in both lunar highland and mare soils is enriched in mafic elements, in potassium, phosphorus, and sulfur, and in most lithophile elements, whereas it is depleted in plagioclase components including europium. It is proposed that the chemical fractionation is the result of a multistage partial-melting mechanism that accompanies micrometeoroid impacts into soils. The process would be expected to occur on solar system bodies that have an impact-produced regolith.

  10. Geochemical characteristics of fast-spreading lower oceanic crust: an example of troctolites at the Hess Deep Rift (IODP Expedition 345)

    NASA Astrophysics Data System (ADS)

    Akizawa, N.; Godard, M.; Ildefonse, B.; Arai, S.

    2014-12-01

    Troctolites were recovered during IODP Expedition 345 (Dec 2012 - Feb 2013), which targeted plutonic rocks from fast-spread lower oceanic crust at the Hess Deep Rift. The troctolites are divided into three groups based on textural diversity; "skeletal olivine-bearing", "fine-grained" and "coarse-grained" troctolites. For major- and trace-element compositions of olivine and plagioclase, the skeletal olivine-bearing and fine-grained troctolites are more evolved (olivine Fo and NiO contents, 83 to 86 and 0.08 to 0.2 wt.%, respectively, and plagioclase An content, 77 to 84) than coarse-grained ones (olivine Fo and NiO contents, 87to 89 and 0.2 to 0.3 wt.%, respectively, and plagioclase An content, 85 to 90). Clinopyroxenes show scattered chemical compositions in the skeletal olivine-bearing and fine-grained troctolites, down to the scale of a single thin section. Clinopyroxenes, some of which show no Eu anomaly, are clearly zoned in the coarse-grained troctolites: the rims are chemically more evolved than the cores. The skeletal olivine-bearing and fine-grained troctolites record signs of melt invasion, which caused the chemical heterogeneity of the clinopyroxenes. In contrast, the coarse-grained troctolites show no such sign, and contain the zoned clinopyroxenes, which were co-precipitated with plagioclases. MORB (mid-ocean ridge basalt) melts experience multi-stage evolution, including fractional crystallization and melt/troctolite interaction during migration. Such various melt migration processes in the lower oceanic crust possibly cause regional diversity of MORB chemistry.

  11. Unit-cell dimensions of natural and synthetic scapolites

    USGS Publications Warehouse

    Eugster, H.P.; Prostka, H.J.; Appleman, D.E.

    1962-01-01

    In natural scapolites the cell dimension a shows a regular increase from marialite to meionite composition, while c remains constant. Both a and c of synthetic meionite are larger than the corresponding dimensions of synthetic marialite. The cell volume of both natural and synthetic scapolites is a nearly linear function of composition. Variations in cell dimensions of scapolites may be caused by differences in structural state similar to those in plagioclase feldspars.

  12. The age and constitution of Cerro Campanario, a mafic stratovolcano in the Andes of central Chile

    USGS Publications Warehouse

    Hildreth, W.; Singer, B.; Godoy, E.; Munizaga, F.

    1998-01-01

    Cerro Campanario, a towering landmark on the continental divide near Paso Pehuenche, is a glacially eroded remnant of a mafic stratovolcano that is much younger than previously supposed. Consisting of fairly uniform basaltic andesite, rich in olivine and plagioclase, the 10-15 km3 edifice grew rapidly near the end of the middle Pleistocene, about 150-160 ka, as indicated by 40Ar/39Ar and unspiked K-Ar analyses of its lavas.

  13. Phase relations of a simulated lunar basalt as a function of oxygen fugacity, and their bearing on the petrogenesis of the Apollo 11 basalts

    USGS Publications Warehouse

    Tuthill, R.L.; Sato, M.

    1970-01-01

    A glass of Apollo 11 basalt composition crystallizing at 1 atm at low f{hook}02 showed the following crystallization sequence; ferropseudobrookite at 1210??C, olivine at 1200??C, ilmenite and plagioclase at 1140??C, clinopyroxene at 1113??C. Ferropseudobrookite and olivine have a reaction relation to the melt. This sequence agrees with that assumed on textural grounds for some Apollo 11 basalts. It also indicates that the Apollo 11 basalts cannot have been modified by low-pressure fractionation. ?? 1970.

  14. Phase equilibrium experiments at 0.5 GPa and 1100 1300 °C on a basaltic andesite from Arenal volcano, Costa Rica

    NASA Astrophysics Data System (ADS)

    Pertermann, Maik; Lundstrom, Craig C.

    2006-09-01

    We present results from piston-cylinder experiments on a synthetic composition of basaltic andesite that corresponds to lavas erupted from the ongoing eruption at Arenal volcano, Costa Rica, in order to shed light on magmatic processes at upper crustal depths beneath Arenal. The starting composition represents the least evolved basaltic andesite from the initiation of stage 2 of the current eruption. Anhydrous and hydrous experiments were conducted at 0.5 GPa and 1100-1300 °C: the principal phases encountered were melt, plagioclase, orthopyroxene and clinopyroxene of variable CaO content. Glass and plagioclase compositions change in a consistent manner with decreasing temperature for both hydrous and anhydrous experiments. The phase equilibria dictate that Arenal magmas must have contained > 2 wt.% H 2O in order for the erupted rocks to have once represented liquid compositions at a relatively high temperature (1200 °C) and > 4 wt.% H 2O if the melt was at the lower temperatures (≤ 1150 °C) that are more likely for the Arenal system. However, anorthite-rich plagioclase phenocrysts (> An 85) commonly found in Arenal lavas cannot be accounted for by any reasonable permutation of higher temperature and water content. The close correspondence of the phase compositions (rims of plagioclase, orthopyroxene) and crystallinity observed in stage 2 lavas from Arenal and a hydrous experiment with 2 wt.% water in the melt provides evidence for Arenal magmas ponding and equilibrating at 1150 °C and ˜ 12-14 km depth. The conclusion that Arenal lavas reflect equilibration between observed minerals and a melt with ˜ 2 wt.% H 2O at 0.5 GPa, ˜ 1150 °C, argues that these bulk compositions are unlikely to have ever reflected fully molten liquids.

  15. Reaction enhanced channelised fluid-flux along mid- crustal shear zone: An example from Mesoproterozoic Phulad Shear Zone, Rajasthan, India

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sadhana M.; Choudhury, Manideepa Roy; Das, Subhrajyoti

    2016-09-01

    Fluid infiltration at great depth during regional metamorphism plays a major role in mass transport and is responsible for significant rheological changes in the rock. Calc-silicate rocks of the Kajalbas area of Delhi Fold Belt, Rajasthan, are characterised by foliation parallel alternate bands of amphibole-rich and clinopyroxene-plagioclase feldspar-rich layers of varying thicknesses (mm to decimetre thick). Textural relation suggests that the amphibole grains formed from clinopyroxene and plagioclase in the late phase of regional deformation. Algebraic analysis of the reaction textures and mineral compositions was performed with the computer program C-Space to obtain the balanced chemical reactions that led to the formation of amphibole-rich bands. The computed balanced reaction is 70.74 Clinopyroxene + 27.23 Plagioclase + 22.018 H2O + 5.51 K++ 1.00 Mg2++ 27.15 Fe2+ = 22.02 Amphibole + 67.86 SiO2 aqueous + 36.42 Ca2++ 8.98 Na+. The constructed reaction suggests that aqueous fluid permeated the calc-silicate rock along mm to decimetre thick channels, metasomatized the clinopyroxene-plagioclase bearing rocks to form the amphibole-rich layers. The regional deformation presumably created the fluid channels thereby allowing the metasomatic fluid to enter the rock system. The above reaction has large negative volume change for solid phases indicating reaction-induced permeability. Thermodynamic calculations suggest that the fluid-rock interaction occurred at 665 ±05∘C and 6.6 ±0.25 kbar (corresponding to ˜20 km depth). Textural modeling integrating the textural features and balanced chemical reaction of the calc-silicate rocks of Mesoproterozoic Phulad Shear Zone thus indicate that extremely channelled fluid flow was reaction enhanced and caused major change in the rock rheology.

  16. Distribution of Water in Nominally Anhydrous Minerals during Metamorphic Reactions

    NASA Astrophysics Data System (ADS)

    Van Lankvelt, A.; Seaman, S. J.; Williams, M. L.

    2014-12-01

    Nominally anhydrous minerals are a reservoir for water in otherwise dry rocks. This water may play a role in facilitating metamorphic reactions and enhancing deformation. In this study, we examined orthopyroxene-bearing granites from the Athabasca Granulite terrane in northern Saskatchewan. These rocks intruded the lower crust (pressures of 1 GPa) at circa 2.6 Ga at temperatures of > 900 ºC and were subsequently metamorphosed at granulite facies conditions (700 ºC and 1 GPa) in the Paleoproterozoic (Williams et al., 2000). One of the primary reactions recorded by these rocks is locally known as the "Mary" reaction and involves the anhydrous reaction: orthopyroxene + Ca-plagioclase = clinopyroxene + garnet + Na-plagioclase. Measurements of water concentrations in both product and reactant assemblages were performed using a Bruker Vertex 70 Fourier transform infrared spectrometer and revealed that there is a slight excess of water in product minerals over reactant minerals. There are two possible explanations for this. The first is that water was derived from an external source, possibly hydrous, likely contemporaneous, mafic dikes. This interpretation is supported by higher concentrations of K, which is essentially absent from the reactant minerals, in the Na-rich rims of plagioclase. However, only modest amounts of external fluids could have been introduced, or amphiboles would have been stabilized at the expense of clinopyroxene (Moore & Carmichael, 1998). An alternative interpretation is that slightly more water-rich minerals reacted more readily, releasing water that was then incorporated into their products, whereas the water-poorer minerals failed to react. Support for this interpretation comes from very low water concentrations in orthopyroxene and plagioclase from an unreacted and undeformed sample. This interpretation suggests that water in anhydrous minerals may catalyze metamorphic reactions, and a lack of water may be critical for preserving metastable

  17. Pb isotopic heterogeneity in basaltic phenocrysts

    SciTech Connect

    Bryce, Julia G.; DePaolo, Donald J.

    2002-06-01

    The Pb isotopic compositions of phenocrystic phases in young basaltic lavas have been investigated using the Getty-DePaolo method (Getty S. J. and DePaolo D. J. [1995] Quaternary geochronology by the U-Th-Pb method. Geochim. Cosmochim. Acta 59, 3267 3272), which allows for the resolution of small isotopic differences. Phenocryst, matrix, and whole rock analyses were made on samples from the 17 Myr-old Imnaha basalts of the Columbia River Group, a zero-age MORB from the Mid-Atlantic Ridge, and a ca. 260 kyr-old tholeiite from Mount Etna. Plagioclase feldspar phenocrysts have low-(U, Th)/Pb, and in each sample the plagioclase has significantly lower 206Pb/207Pb and 208Pb/207Pb values than whole rock, matrix, and magnetite-rich separates. The Pb isotopic contrast between plagioclase and matrix/whole rock is found in three samples with varying grain sizes (0.5 2 cm for the Imnaha basalt and MORB and <1 mm for the Etna sample) from different tectonic settings, suggesting that these results are not unique. The isotopic contrasts are only slightly smaller in magnitude than the variations exhibited by whole rock samples from the region. The Imnaha basalts also have Sr isotopic heterogeneity evident only in plagioclase phenocrysts, but the MORB and Etna lavas do not. The isotopic heterogeneities reflect magma mixing, and indicate that isotopically diverse magmas were mixed together just prior to eruption. The results reinforce indications from melt inclusion studies that magma source region isotopic heterogeneities have large amplitudes at short length scales, and that the isotopic variations imparted to the magmas are not entirely homogenized during segregation and transport processes.

  18. Water content of primitive low-K tholeiitic basalt magma from Iwate Volcano, NE Japan arc: implications for differentiation mechanism of frontal-arc basalt magmas

    NASA Astrophysics Data System (ADS)

    Kuritani, Takeshi; Yoshida, Takeyoshi; Kimura, Jun-Ichi; Hirahara, Yuka; Takahashi, Toshiro

    2014-02-01

    The water content of low-K tholeiitic basalt magma from Iwate volcano, which is located on the volcanic front of the NE Japan arc, was estimated using multi-component thermodynamic models. The Iwate lavas are moderately porphyritic, consisting of ~8 vol.% olivine and ~20 vol.% plagioclase phenocrysts. The olivine and plagioclase phenocrysts show significant compositional variations, and the Mg# of olivine phenocrysts (Mg#78-85) correlates positively with the An content of coexisting plagioclase phenocrysts (An85-92). The olivine phenocrysts with Mg# > ~82 do not form crystal aggregates with plagioclase phenocrysts. It is inferred from these observations that the phenocrysts with variable compositions were primarily derived from mushy boundary layers along the walls of a magma chamber. By using thermodynamic calculations with the observed petrological features of the lavas, the water content of the Iwate magma was estimated to be 4-5 wt.%. The high water content of the magma supports the recent consensus that frontal-arc magmas are remarkably hydrous. Using the estimated water content of the Iwate magma, the water content and temperature of the source mantle were estimated. Given that the Iwate magma was derived from a primary magma solely by olivine fractionation, the water content and temperature were estimated to be ~0.7 wt.% and ~1,310 °C, respectively. Differentiation mechanisms of low-K frontal-arc basalt magmas were also examined by application of a thermodynamics-based mass balance model to the Iwate magma. It is suggested that magmatic differentiation proceeds primarily through fractionation of crystals from the main molten part of a magma chamber when it is located at <~200 MPa, whereas magma evolves through a convective melt exchange between the main magma and mushy boundary layers when the magma body is located at >~200 MPa.

  19. Water content of primitive low-K tholeiitic basalt magma from Iwate Volcano, NE Japan arc: implications for differentiation mechanism of frontal-arc basalt magmas

    NASA Astrophysics Data System (ADS)

    Kuritani, Takeshi; Yoshida, Takeyoshi; Kimura, Jun-Ichi; Hirahara, Yuka; Takahashi, Toshiro

    2013-03-01

    The water content of low-K tholeiitic basalt magma from Iwate volcano, which is located on the volcanic front of the NE Japan arc, was estimated using multi-component thermodynamic models. The Iwate lavas are moderately porphyritic, consisting of ~8 vol.% olivine and ~20 vol.% plagioclase phenocrysts. The olivine and plagioclase phenocrysts show significant compositional variations, and the Mg# of olivine phenocrysts (Mg#78-85) correlates positively with the An content of coexisting plagioclase phenocrysts (An85-92). The olivine phenocrysts with Mg# > ~82 do not form crystal aggregates with plagioclase phenocrysts. It is inferred from these observations that the phenocrysts with variable compositions were primarily derived from mushy boundary layers along the walls of a magma chamber. By using thermodynamic calculations with the observed petrological features of the lavas, the water content of the Iwate magma was estimated to be 4-5 wt.%. The high water content of the magma supports the recent consensus that frontal-arc magmas are remarkably hydrous. Using the estimated water content of the Iwate magma, the water content and temperature of the source mantle were estimated. Given that the Iwate magma was derived from a primary magma solely by olivine fractionation, the water content and temperature were estimated to be ~0.7 wt.% and ~1,310 °C, respectively. Differentiation mechanisms of low-K frontal-arc basalt magmas were also examined by application of a thermodynamics-based mass balance model to the Iwate magma. It is suggested that magmatic differentiation proceeds primarily through fractionation of crystals from the main molten part of a magma chamber when it is located at <~200 MPa, whereas magma evolves through a convective melt exchange between the main magma and mushy boundary layers when the magma body is located at >~200 MPa.

  20. Experimental constraints on the origin of pahoehoe "cicirara" lavas at Mt. Etna Volcano (Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Vetere, F.; Mollo, S.; Giacomoni, P. P.; Iezzi, G.; Coltorti, M.; Ferlito, C.; Holtz, F.; Perugini, D.; Scarlato, P.

    2015-05-01

    We present results from phase equilibria experiments conducted on the most primitive pahoehoe "cicirara" trachybasaltic lava flow ever erupted at Mt. Etna Volcano. This lava is characterized by a pahoehoe morphology in spite of its high content of phenocrysts and microphenocrysts (>40 vol%) with the occurrence of centimetre-sized plagioclases (locally named cicirara for their chick-pea-like appearance). Our experiments have been performed at 400 MPa, 1100-1150 °C and using H2O and CO2 concentrations corresponding to the water-undersaturated crystallization conditions of Etnean magmas. Results show that olivine does not crystallize from the melt, whereas titanomagnetite is the liquidus phase followed by clinopyroxene or plagioclase as a function of melt-water concentration. This mineralogical feature contrasts with the petrography of pahoehoe cicirara lavas suggesting early crystallization of olivine and late formation of titanomagnetite after plagioclase and/or in close association with clinopyroxene. The lack of olivine produces MgO-rich melt compositions that do not correspond to the evolutionary behaviour of cicirara magmas. Moreover, in a restricted thermal path of 50 °C and over the effect of decreasing water concentrations, we observe abundant plagioclase and clinopyroxene crystallization leading to trace element enrichments unlikely for natural products. At the same time, the equilibrium compositions of our mineral phases are rather different from those of natural cicirara phenocrysts and microphenocrysts. The comparison between our water-undersaturated data and those from previous degassing experiments conducted on a similar Etnean trachybasaltic composition demonstrates that pahoehoe cicirara lavas originate from crystal-poor, volatile-rich magmas undergoing abundant degassing and cooling in the uppermost part of the plumbing system and at subaerial conditions where most of the crystallization occurs after the development of pahoehoe surface crusts.

  1. Shocked basalt from Lonar Impact Crater, India, and experimental analogues

    NASA Technical Reports Server (NTRS)

    Kieffer, S. W.; Schaal, R. B.; Gibbons, R.; Horz, F.; Milton, D. J.; Dube, A.

    1976-01-01

    Samples of Lonar basalts were experimentally shocked in vacuum to pressures between 200 and 650 kbar by a 20 mm, high-velocity gun. Plagioclase and palagonite in experimentally shocked samples show deformation similar to that in the naturally shocked rocks, but pyroxene does not show optically resolvable edge melting. It is estimated that pressures in excess of 800-1000 kbar are required for the formation of totally shock-melted rocks from nonporous basalt.

  2. Fluorine in meteorites

    NASA Technical Reports Server (NTRS)

    Allen, R. O., Jr.; Clark, P. J.

    1977-01-01

    Microanalysis using a resonant nuclear reaction was used to measure F concentrations in USGS standard rocks and 21 meteorites. The F appears to be a moderately depleted element, but there were significant variations within each sample. Measurements on separated metal phases suggest that about 20% of meteoritic F is in the metal or in a phase closely associated with it. Simultaneous measurements of F, Mg, Na, Al and Si in the nonmagnetic fractions of meteorites suggest plagioclase as a F containing phase.

  3. Diagenesis Along Fractures in an Eolian Sandstone, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Yen, A. S.; Rampe, E. B.; Grotzinger, J. P.; Blake, D. F.; Bristow, T. F.; Chipera, S. J.; Downs, R.; Morris, R. V.; Morrison, S. M.; Vaniman, D. T.; Gellert, R.; Sutter, B.; Treiman, A. H.

    2016-01-01

    The Mars Science Laboratory rover Curiosity has been exploring sedimentary deposits in Gale crater since August 2012. The rover has traversed up section through approx.100 m of sedimentary rocks deposited in fluvial, deltaic, lacustrine, and eolian environments (Bradbury group and overlying Mount Sharp group). The Stimson formation lies unconformable over a lacustrine mudstone at the base of the Mount Sharp group and has been interpreted to be a cross-bedded sandstone of lithified eolian dunes. Mineralogy of the unaltered Stimson sandstone consists of plagioclase feldspar, pyroxenes, and magnetite with minor abundances of hematite, and Ca-sulfates (anhydrite, bassanite). Unaltered sandstone has a composition similar to the average Mars crustal composition. Alteration "halos" occur adjacent to fractures in the Stimson. Fluids passing through these fractures have altered the chemistry and mineralogy of the sandstone. Silicon and S enrichments and depletions in Al, Fe, Mg, Na, K, Ni and Mn suggest aqueous alteration in an open hydrologic system. Mineralogy of the altered Stimson is dominated by Ca-sulfates, Si-rich X-ray amorphous materials along with plagioclase feldspar, magnetite, and pyroxenes, but less abundant in the altered compared to the unaltered Stimson sandstone and lower pyroxene/plagioclase feldspar. The mineralogy and geochemistry of the altered sandstone suggest a complicated history with several (many?) episodes of aqueous alteration under a variety of environmental conditions (e.g., acidic, alkaline).

  4. Origin of minor and trace element compositional diversity in anorthitic feldspar phenocrysts and melt inclusions from the Juan de Fuca Ridge

    USGS Publications Warehouse

    Adams, David T.; Nielsen, Roger L.; Kent, Adam J.R.; Tepley, Frank J.

    2011-01-01

    Melt inclusions trapped in phenocryst phases are important primarily due to their potential of preserving a significant proportion of the diversity of magma composition prior to modification of the parent magma array during transport through the crust. The goal of this investigation was to evaluate the impact of formational and post-entrapment processes on the composition of melt inclusions hosted in high anorthite plagioclase in MORB. Our observations from three plagioclase ultra-phyric lavas from the Endeavor Segment of the Juan de Fuca Ridge document a narrow range of major elements and a dramatically greater range of minor and trace elements within most host plagioclase crystals. Observed host/inclusion partition coefficients for Ti are consistent with experimental determinations. In addition, observed values of DTi are independent of inclusion size and inclusion TiO2 content of the melt inclusion. These observations preclude significant effects from the re-homogenization process, entrapment of incompatible element boundary layers or dissolution/precipitation. The observed wide range of TiO2 contents in the host feldspar, and between bands of melt inclusions within individual crystals rule out modification of TiO contents by diffusion, either pre-eruption or due to re-homogenization. However, we do observe comparatively small ranges for values of K2O and Sr compared to P2O5 and TiO2 in both inclusions and crystals that can be attributed to diffusive processes that occurred prior to eruption.

  5. Instrumental neutron activation analyses of lunar specimens.

    PubMed

    Golescaron, G G; Osawa, M; Randle, K; Beyer, R L; Jerome, D Y; Lindstrom, D J; Martin, M R; McKay, S M; Steinborn, T L

    1970-01-30

    Ten Apollo 11 specimnens were divided into 24 samtples. Sodillim contents of 8 diverse specimens clluster tightly abolit 0.3 percent. Plagioclase separated from sample 10044 contains aboltt 1.09 percent Na; barium is not enriched in the plagioclase separate. Contents of the rare earths are strikingly high, and relative abtmndances resemble those of calcium-rich achondrites or abyssal basalts but are depleted in Eu by factors of 2 to 3 and in La by about 20 percent. The plagioclase separate is enriched in Eu and pyroxenes (and opaqtte minerals are Eu-depleted. Fine fractions of 10044 are abotit 20 to 40 percent richer in most rare earths (50 percent for Eu) than coarse fractions, probably becaitse of the presence of small grains in which rare earths are mnarkedly concentrated. "Microgabbro" 10045 is imnpoverished, relative to the soil, in rare eartlhs and Hf. Ratios by mass of Zr to Hf are comlparatively low. Abttndances of Mn, Co, Fe, Sc and Cr stiggest systematic differences between igneous rocks on one hanid and breccias and "soil" on the other. Fromn the Co abuindances, no more than about 3 percent of the present "soil" can consist of chondritic mleteorite conitamination.

  6. Grosnaja ABCs: Magnesium isotope compositions

    NASA Technical Reports Server (NTRS)

    Goswami, J. N.; Srinivasan, G.; Ulyanov, A. A.

    1993-01-01

    Three CAI's from the Grosnaja CV3 chondrite were analyzed for their magnesium isotopic compositions by the ion microprobe. The selected CAI's represent three distinct types: GR4(compact Type A), GR7(Type B) and GR2(Type C). Petrographic studies indicate that all three Grosnaja inclusions were subjected to secondary alterations. The Type A CAI GR4 is primarily composed of melilite with spinel and pyroxene occurring as minor phases. The rim of the inclusion does not exhibit distinct layered structure and secondary alteration products (garnet, Fe-rich olivine and Na-rich plagioclase) are present in some localized areas near the rim region. The average major element compositions of different mineral phases in GR4 are given. Preliminary REE data suggest a depletion of HREE relative to LREE by about a factor of 3 without any clear indication of interelement fractionation. The CAI GR7 has textural and minerological characteristics similar to Type B inclusions. The REE data show a pattern that is similar to Group 6 with enrichment in Eu and Yb. In addition, a depletion of HREE compared to LREE is also evident in this object. Melilite composition shows a broad range of akermanite content (Ak(sub 15-55)). Detailed petrographic study is in progress. GR2 is a anorthite-rich Type C inclusion with large plagioclase laths intergrown with Ti-rich pyroxene. The average plagioclase composition is close to pure anorthite (An99).

  7. La/Sm ratios in mare basalts as a consequence of mafic cumulate fractionation from an initial lunar magma

    NASA Technical Reports Server (NTRS)

    Shaffer, E. E.; Brophy, J. G.; Basu, A.

    1991-01-01

    A model is constructed for the La/Sm ratio and the abundance of chrondrite-normalized La in different proportions of partial melts of a mafic cumulate source that might have settled to the bottom of an initial lunar magma ocean prior to any plagioclase separation. It is proposed that La/Sm ratios and chrondrite-normalized La abundances of common mare basalts are found in partial melts only if: the mafic cumulate consists mostly of clinopyroxene, a very low fraction of the cumulate melts, and the cumulate represents a moderate to high proportion of the crystallization of the initial magma ocean. Only if the partitioning of clinopyroxene is forced to mimic plagioclase (DLa is greater than DSm) do the present modeling results become compatible with the scenario for producing appropriate parent melts of mare basalts from mafic cumulates. It is found unlikely that parent melts of mare basalts were produced from mafic cumulates of an initial lunar magma ocean that had not had any plagioclase crystallization.

  8. Abundance and distribution of boron in the Hauzenberg (Bavaria) granite complex

    SciTech Connect

    Sauerer, A.; Troll, G. )

    1990-01-01

    Hercynian S-type granites from the Hauzenberg igneous complex show a range of boron concentration from 1 to 12 ppm. The whole-rock boron data are not significantly correlated with concentrations of other trace elements (Zr, Rb, Ba, Sr, Ni, V, Co, Cu, Zn, F); neither is boron correlated with the major elements (except with sodium) or with the differentiation index (DI). The boron budget in the rock-forming minerals (plagioclase, alkali feldspar, quartz, biotite, muscovite) of the tourmaline-free granites reveals that the highest concentrations of boron occur in muscovite, whereas the greatest amount of boron is incorporated in plagioclase (57-69%) due to its high modal amount. Boron in plagioclase increases with the extent of of sericitization (obtained by X-ray diffractometry). Muscovite in a pegmatite contains more than 50% of the total boron. The areal distribution of boron within the complex is neither uniform nor random; an increase of boron concentrations from granodioritic to granitic rocks is indicated, whereas the late differentiates are depleted in boron.

  9. Adsorption of Eu(III) on a heterogeneous surface studied by time-resolved laser fluorescence microscopy (TRLFM).

    PubMed

    Ishida, Keisuke; Kimura, Takaumi; Saito, Takumi; Tanaka, Satoru

    2009-03-15

    Time-resolved laser fluorescence microscopy (TRLFM) is a useful tool to simultaneously investigate the intensity, location, type, and surrounding chemical environment of a fluorophore. In this study, we demonstrated the applicability of TRLFM for the adsorption of Eu(III) on a natural heterogeneous surface. Different adsorption species of Eu(III) were observed on the Makabe granite surface and its constituents (biotite, plagioclase, potassium feldspar, and quartz). Eu(III) heterogeneously adsorbed on biotite, plagioclase, and quartz and homogeneously on potassium feldspar. The histograms of the fluorescence decay rates of adsorbed Eu(III) indicated efficient quenching of Eu(III) fluorescence probably due to Eu(III)-surface interaction or the formation polynuclear hydoxo Eu(III) species on the surfaces. It was also revealed that single species of Eu(III) was observed on biotite and two species on plagioclase and potassium feldspar. The adsorption of Eu(III) on the granite surface was highly heterogeneous. The TRLFM measurements of different regions of the granite surface turned into the finding of Eu(III) with different fluorescence decay rates. Comparing with the fluorescence decay histograms of the mineral constituents, Eu(III) clearly adsorbed on the feldspar family. It was also found that Eu(III) adsorbed as an outer-sphere complex and on an altered mineral of the granite.

  10. Ar-40-Ar-39 microanalysis of single 74220 glass balls and 72435 breccia clasts

    NASA Technical Reports Server (NTRS)

    Huneke, J. C.

    1978-01-01

    Ar-40-Ar-39 age measurements on single orange glass balls from the Apollo 17 soil 74220 and individual clasts from the Apollo 17 highland breccia 72435 are reported. The measurements required the use of newly established microanalytical techniques to obtain high quality analyses on about 0.5 mg particles with only a few hundred ppm K. An age of 3.60 plus or minus 0.04 b.y. is determined for the orange glass. No corrections for a trapped Ar-40 component were required. The glass forming event occurred at the very end of or after the extrusion of the mare basalts at the Apollo 17 site. An extremely well defined age plateau at 3.86 plus or minus 0.04 b.y. was determined for a 72435 plagioclase clast with attached matrix. A second large plagioclase crystal yielded significantly older ages over the last 60% of Ar release at high temperatures and is a relict clast incompletely degassed at the time of breccia formation. 72435 also contains plagioclase clasts with primitive Sr and a 4.55 AE old dunite clast. The Ar results provide additional evidence for the association of chemically unequilibrated, relict clasts with both primitive Sr and older K/Ar ages.

  11. Grain-size reduction mechanisms and rheological consequences in high-temperature gabbro mylonites of Hidaka, Japan

    NASA Astrophysics Data System (ADS)

    Raimbourg, Hugues; Toyoshima, Tsuyoshi; Harima, Yuta; Kimura, Gaku

    2008-03-01

    The study of microstructures and crystallographic fabrics in a granulite-facies shear zone of the Hidaka Metamorphic Belt showed that the strong shearing localized within the mylonite resulted in the asymmetrical elongation of the inherited orthopyroxene porphyroclasts and the generation of fine-grained plagioclase and orthopyroxene layers as asymmetric tails of orthopyroxene porphyroclasts. The orthopyroxene porphyroclasts and the coarse plagioclase matrix surrounding them have a strong crystallographic preferred orientation acquired through deformation by dislocation creep. In contrast, the small orthopyroxene and plagioclase grains located in the tails have equant shapes and random fabric that are interpreted as the result of deformation by grain-boundary sliding. The small orthopyroxene grains are generated on the sheared rims of the orthopyroxene porphyroclasts by subgrain rotation, inheriting the orientation of the porphyroclasts before deforming by grain-boundary sliding (GBS) and losing this fabric. Additional mechanism of grain-size reduction is the disruption of orthopyroxene porphyroclasts by synthetic shear zones localized on clinopyroxene exsolutions. The switch in deformation mechanism from dislocation creep to GBS, associated with the grain-size reduction, yielded estimates of deviatoric stress one order smaller than lithostatic pressure. Besides, such rheological evolution attests of the mechanical softening during deformation, which contributed to the localization of the strain within the mylonite.

  12. Phase equilibria constraints on pre-eruptive magma storage conditions for the 1956 eruption of Bezymianny Volcano, Kamchatka, Russia

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Vasily D.; Neill, Owen K.; Izbekov, Pavel E.; Plechov, Pavel Yu.

    2013-08-01

    Phase equilibria experiments were performed on andesites from the catastrophic 1956 eruption of Bezymianny Volcano, Kamchatka, Russia, to determine pre-eruptive magma storage conditions. Fifteen experiments were conducted under water-saturated conditions, with oxygen fugacity equal to the Ni-NiO oxygen buffer, at temperatures between 775 and 1100 °C and pressures between 50 and 200 MPa. Simultaneous amphibole and plagioclase crystallization is reproduced at ≤ 850 °C and ≥ 200 MPa. The simultaneous crystallization temperature range of the plagioclase-clinopyroxene-orthopyroxene-Fe-Ti oxide assemblage increases with decreasing pressure, from 840 to 940 °C at 150 MPa to 940-1020 °C at 50 MPa. Melt inclusion compositions in plagioclase phenocrysts and matrix glass match experimental melt compositions reproduced at 50-100 MPa and ≤ 50 MPa, respectively. Presence of the silica phase in groundmass and mature amphibole breakdown rims suggests that magma has been stored at ca. 3 km depth prior to the final ascent for at least 40 days. Syn-eruptive ascent led to decompression-driven crystallization, which caused a temperature increase from 850-900 °C to 950-1000 °C.

  13. Latest quaternary volcanism in the St. George Basin, southwestern Utah

    SciTech Connect

    Millings, V.T. III; Green, J.D.; Nusbaum, R.L. . Dept. of Geology)

    1993-03-01

    The St. George Basin was the site of mafic volcanism from about 6 Ma to 1 ka. The nature of latest Quaternary volcanism is of interest because the Basin is recognized as a low temperature (< 90C) geothermal resource area and it is part of the transition zone between the Basin and Range Province and the Colorado Plateau. The authors have studied the geochemistry, mineralogy, and aerial distribution of two of the youngest eruptions centers: (1) Veyo Volcano; and (2) the Diamond Valley scoria cones (DVSC). Veyo Volcano erupted basaltic andesite, beginning with an explosive stage marked by a 0.5 m basal Plinian layer. Later eruptions alternated between quiescent and Strombolian-styles. Phenocrysts include clear plagioclase, sieve-texture plagioclase, olivine and rare augite. The DVSC and associated Santa Clara lava flow are tholeiitic basalt, consisting of olivine phenocrysts, and rare plagioclase phenocrysts. Based on preliminary geochemical data, Diamond Valley rocks exhibit lower incompatible element ratios compared to mafic rocks on the Markagunt Plateau and transition zone rocks. In contrast, Veyo Volcano rocks are similar to transition zone mafic rocks with regard to incompatible element abundances.

  14. Oxygen isotope constraints on the petrogenesis of Aleutian arc magmas

    SciTech Connect

    Singer, B.S.; O'Neil, J.R. ); Brophy, J.G. )

    1992-04-01

    The first measurement of {sup 18}O/{sup 16}O ratios of plagioclase, clinopyroxene, orthopyroxene, and titanomagnetite phenocrysts from modern Aleutian island-arc lavas provides new insight and independent constraints on magma sources and intracrustal processes. Basalts are heterogeneous on the scale of the entire arc and individual volcanic centers. Combined with Sr isotope and trace element data {delta}{sup 18}O{sub plag} values suggest a variable magma source characterized by differences in the mantle wedge or the subducted sediment component along the volcanic front. Seven tholeiitic basalt to rhyodacite lavas from the Seguam volcanic center have nearly identical {delta}{sup 18}O{sub plag} values of 6.0{per thousand} {plus minus} 0.2{per thousand}, reflecting extensive closed-system plagioclase-dominated crystal fractionation. Oxygen isotope thermometry and pyroxene and oxide equilibria indicate that differentiation occurred between 1,150 {plus minus} 100C (basalt) and 950 {plus minus} 100C (rhyodacite). In contrast, {delta}{sup 18}O{sub plag} values of 12 calc-alkalic basaltic andesites and andesites from the smaller Kanaga volcanic center span a broader range of 5.9{per thousand}-6.6{per thousand}, and consist of mostly higher values. Isotopic disequilibrium in the Kanaga system is manifest in two ways: two types of basaltic inclusions with contrasting {delta}{sup 18}O values occur in one andesite, and in two other andesites plagioclase-titanomagnetite and clinopyroxene-titanomagnetite oxygen isotope temperatures are inconsistent.

  15. Geochemical characteristics of hydrous basaltic magmas due to assimilation and fractional crystallization: the Ikoma gabbroic complex, southwest Japan

    NASA Astrophysics Data System (ADS)

    Koizumi, N.; Okudaira, T.; Ogawa, D.; Yamashita, K.; Suda, Y.

    2016-02-01

    To clarify the processes that occur in hydrous basaltic magma chambers, we have undertaken detailed petrological and geochemical analyses of mafic and intermediate rocks from the Ikoma gabbroic complex, southwest Japan. The complex consists mainly of hornblende gabbros, hornblende gabbronorites, and hornblende leucogabbros. The hornblende leucogabbros are characterized by low TiO2 and high CaO contents, whereas the hornblende gabbronorites have high TiO2 and low CaO contents. The initial 87Sr/86Sr ratios (SrI) of the hornblende gabbronorites and hornblende gabbros are higher than those of the hornblende leucogabbros and plagioclase, and they may have resulted from a higher degree of assimilation of metasediments. The geochemical features of the hornblende leucogabbros and hornblende gabbronorites can be explained by accumulation of plagioclase and ilmenite, respectively, in a hybrid magma that formed by chemical interaction between mafic magma and metasediment, whereas the hornblende gabbros were produced by a high degree of crustal assimilation and fractional crystallization of this hybrid magma. As a result of the density differences between crystals and melt, the Ikoma gabbroic rocks formed by the accumulation of plagioclase in the middle of the magma chamber and by the accumulation of ilmenite in the bottom of the chamber. Taking into account the subsequent assimilation and fractional crystallization, our observations suggest an enriched mantle (SrI = ~0.7071) as the source material for the Ikoma gabbros.

  16. Some textures in Apollo 12 lunar igneous rocks and in terrestrial analogs.

    NASA Technical Reports Server (NTRS)

    Drever, H. I.; Johnston, R.; Butler, P., Jr.; Gibb, F. G. F.

    1972-01-01

    The interpretation of immature crystallization and some lunar textures characterized by it are the principal objectives of this investigation. A comparative and selective approach is adopted, and particular reference is made to the form and textural relations of olivine in 12009 and of pyroxenes and plagioclase in 12021, and to terrestrial analogs. The optic orientation of the olivines in 12009 is determined, and their skeletal crystallization is illustrated and evaluated. Microprobe and optical data are associated in a textural analysis of an analog from the upper contact of a minor intrusion in Skye. The optic orientation of pyroxene enclosed in plagioclase cores is determined, and the results are plotted stereographically. The need for greater precision in the use of textural terms is stressed, and a new term - intrafasciculate - is introduced for textures in which pyroxene has crystallized within hollow, skeletal plagioclase. Apollo 12 pyroxene-phyric basalts are texturally reviewed, and the crystallization of the phenocrysts is discussed, emphasis being placed on size-independence of skeletal growth.

  17. Solute profiles in soils, weathering gradients and exchange equilibrium/disequilibrium

    USGS Publications Warehouse

    White, A.F.; Schulz, M.S.; Stonestrom, D.A.; Vivit, D.V.; Fitzpatrick, J.; Bullen, T.

    2008-01-01

    The spatial and temporal changes in hydrology and pore water elemental and 87/86Sr compositions were used to determine contemporary weathering rates in a 65 to 226 ky old soil chronosequence formed from granitic sediments deposited on marine terraces along coastal California. Cl-corrected Na, K and Si increased with depth denoting inputs from the weathering of plagioclase and K-feldspar. Solute 87/86Sr exhibited progressive mixing of sea water-dominated precipitation with inputs from less radiogenic plagioclase. Linear approximations to these weathering gradients were used to determine plagioclase weathering rates of between 0.38 and 8.9 ?? 10-15 moles m-2 s-1. The lack of corresponding weathering gradients for Ca and Sr indicated short-term equilibrium with the clay ion exchange pool which requires periodic resetting by natural perturbations to maintain continuity, in spite of soil composition changes reflecting the effects of long-term weathering. ?? 2008 The Mineralogical Society.

  18. Lunar anorthosite 60025, the petrogenesis of lunar anorthosites, and the composition of the moon

    NASA Technical Reports Server (NTRS)

    Ryder, G.

    1982-01-01

    The mineral chemistry of the lunar anorthosite 60025 is investigated, and a model for the differentiation of the moon is proposed based on these findings. Among other results, it is concluded that 60025 is a mixture of pieces from a related sequence of anorthosites, and that this sequence was generated by near-perfect accumulate growth during strong fractional crystallization. The parent liquid of the most primitive anorthosite was saturated with olivine, plagioclase, pigeonite, and chromite, and evolved to one saturated with plagioclase, pigeonite, high-Ca clinopyroxene, and ilmenite. The steep slope of anorthosites on an Mg (mafics) vs. Ab (plagioclase) diagram is a result of the very low alkali content of the magma and of the original magma ocean. The bulk moon had low Al2O3, a sub-chondritic Ca/Al ratio, and REE abundances and patterns which were probably close to chondritic. In addition, mare basalt sources were found to be too magnesian and some contain too much high Ca clinopyroxene to be directly or simply complementary to a floated anorthosite crust.

  19. Anorthosite assimilation and the origin of the Mg/Fe-related bimodality of pristine moon rocks - Support for the magmasphere hypothesis

    NASA Technical Reports Server (NTRS)

    Warren, P. H.

    1986-01-01

    The geochemical bimodality of pristine rocks led to proposals that a major fraction of the crust (the Mg rich suite) formed in cumulates in numerous intrusions slightly younger than the magmasphere. It is suggested that assimilation helped to engender the bimodal patterns. Mass/energy balance calculations indicate that large proportions of plagioclase were probably assimilated from the older (Magmasphere-generated) ferroan anorthosite crust by most of the Mg-rich intrusive melts. The magmasphere, in the absence of assimilation probably did not yield appreciable plagioclase until fractional crystallization of mafic silicates had diminished the melt mg ratio to about 0.42. However, assuming identical melt composition, an Mg-rich intrusion assimilating ferroan anorthosite would have reached plagioclase saturation at a much higher mg, about 0.66. It is suggested that the current version of the magmasphere hypothesis (ferroan anorthosites = magmasphere flotation cumulates; Mg-rich rocks = products of younger, localized intrusions) is the only plausable mechanism for engendering the Mg/Fe-relate bimodality.

  20. Effects of fractional crystallization and cumulus processes on mineral composition trends of some lunar and terrestrial rock series

    NASA Technical Reports Server (NTRS)

    Longhi, J.

    1982-01-01

    A plot of Mg of mafic minerals versus An of plagioclase in cumulate rocks from various lunar and terrestrial rock series shows each series to have a distinct curvilinear trend. The slopes of these trends vary from nearly vertical in the case of lunar anorthosites and Mg-norites to nearly horizontal in the case of gabbros from the mid-Atlantic ridge. Calculations based upon known major element partitioning between mafic minerals, plagioclase and subalkaline basaltic liquids indicate that fractional crystallization coupled with cotectic accumulation of mafic minerals and plagioclase will produce mineral composition trends on the Mg versus An diagram with slopes greater than 1 for cases where An is approximately greater than Mg. Furthermore, fractional crystallization of basaltic magmas with alkali concentrations approaching zero will produce near vertical Mg versus An trends. Therefore, the steep slopes of the lunar rock series are consistent with relatively simple fractionation processes. The relatively flat slope of mineral compositions from gabbros collected from the mid-Atlantic ridge at 26 deg N is inconsistent with simple fractionation processes, and calculations show that periodic refilling of a fractionating magma chamber with picritic magma cannot simply explain this flat slope either.

  1. Chemical trends in the Ice Springs basalt, Black Rock Desert, Utah

    SciTech Connect

    Lynch, W.C.; Nash, W.P.

    1980-06-01

    The Holocene Ice Springs volcanic field of west-central Utah consists of 0.53 km/sup 3/ of tholeiitic basalts erupted as a sequence of nested cinder cones and associated lava flows. Whole rock x-ray fluorescence and atomic absorption analysis of ninety-six samples of known relative age document statistically significant inter- and intra-eruption chemical variations. Elemental trends include increases in Ti, Fe, Ca, P, and Sr and decreases in Si, K, Rb, Ni, Cr, and Zr with decreasing age. Microprobe analyses of microphenocrysts of olivine, plagioclase, and Fe-Ti oxides and of groundmass olivine, plagioclase, and clinopyroxene indicate limited chemical variation between mineral assemblages of the eruptive events. Petrographic analyses have identified the presence of minor amounts of silicic xenoliths, orthopyroxene megacrysts, and plagioclase xenocrysts. Potassium-argon determinations establish the existence of excess argon in the basaltic cinder (30.05 x 10/sup -12/ moles/gm) and in distal lava flows (8.29 x 10/sup -12/ moles/gm) which suggest apparent ages of 16 and 4.3 million years respectively. Strontium isotopic data (Puskar and Condie, 1973) show systematic variations from oldest eruptions (87Sr/86Sr=0.7052) to youngest eruptions (87Sr/86Sr=0.7059).

  2. Cathodoluminescence Characterization of Maskelynite and Alkali Feldspar in Shergottite (Dhofar 019)

    SciTech Connect

    Kayama, M.; Nakazato, T.; Nishido, H.; Ninagawa, K.; Gucsik, A.

    2009-08-17

    Dhofar 019 is classified as an olivine-bearing basaltic shergottite and consists of subhedral grains of pyroxene, olivine, feldspar mostly converted to maskelynite and minor alkali feldspar. The CL spectrum of its maskelynite exhibits an emission band at around 380 nm. Similar UV-blue emission has been observed in the plagioclase experimentally shocked at 30 and 40 GPa, but not in terrestrial plagioclase. This UV-blue emission is a notable characteristic of maskelynite. CL spectrum of alkali feldspar in Dhofar 019 has an emission bands at around 420 nm with no red emission. Terrestrial alkali feldspar actually consists of blue and red emission at 420 and 710 nm assigned to Al-O{sup -}-Al and Fe{sup 3+} centers, respectively. Maskelynite shows weak and broad Raman spectral peaks at around 500 and 580 cm{sup -1}. The Raman spectrum of alkali feldspar has a weak peak at 520 cm{sup -1}, whereas terrestrial counterpart shows the emission bands at 280, 400, 470, 520 and 1120 cm{sup -1}. Shock pressure on this meteorite transformed plagioclase and alkali feldspar into maskelynite and almost glass phase, respectively. It eliminates their luminescence centers, responsible for disappearance of yellow and/or red emission in CL of maskelynite and alkali feldspar. The absence of the red emission band in alkali feldspar can also be due to the lack of Fe{sup 3+} in the feldspar as it was reported for some lunar feldspars.

  3. Magma mixing and mingling on Deer, Niblack, and Etolin Islands, southeastern Alaska

    SciTech Connect

    Lindline, J.; Crawford, W.A.; Crawford, M.L. . Geology Dept.)

    1993-03-01

    Intimately associated 20 m.a. hornblende-biotite granites and olivine gabbro norites occur on Etolin, Niblack and Deer Islands, southwest of Wrangell, Alaska. The field relationships suggest multiple injections of mafic and felsic phases within this igneous complex. Ellipsoidal to angular mafic magmatic enclaves occur in the granite, ranging in number from sparse to tightly packed swarms. Slightly curved decimeter sized rafts of fine grained mafic enclaves comprise a frozen fountain of mafic magma in the felsic host. Course-grained felsic dikes containing gabbroic zenoliths and ubiquitous fine-grained mafic pillows exhibiting sharp and sutured chilled borders intrude the layered gabbro. Synplutonic northeast trending fine-grained mafic and fine-grained felsic dikes mutually cross-cut the felsic pillow-bearing dikes. The granite consists of green hornblende, dark brown biotite, plagioclase and quartz. The mafic mineral assemblage changes from olivine, orthopyroxene, clinopyroxene, and plagioclase in the gabbro through intermediate-grained phases containing altered clinopyroxene, brown hornblende, red-brown biotite, plagioclase and quartz. The increase in proportion of hydrous mafic minerals from the gabbro to the fine-grained mafic enclaves and changes in pleochroic colors of biotite and hornblende from the intermediate-grained phases to the fine-grained mafic enclaves suggest chemical interaction between the mafic enclaves and their felsic host.

  4. Comparative petrogenesis of anorthositic and troctolitic series rocks of the Duluth Complex, Minnesota

    SciTech Connect

    Miller, J.D. Jr.; Weiblen, P.W.

    1985-01-01

    Results of new mapping in the NW part of the Middle Proterozoic Duluth Complex in NE Minnesota reinforces the view that the Complex consists dominantly of two major lithostratigraphic units: an Anorthositic Series (AS) and a Troctolitic Series (TS) dominated by troctolite and olivine gabbro. Consistent intrusive and inclusive relationships confirm that AS rocks are older than TS. Interpretations of field, petrographic, and petrochemical data imply that the petrogenesis of the two rock series differed in at least four significant ways: 1) While parent magmas to both rock series could have been derived from high-Al olivine tholeiite primary magmas by fractional crystallization of Pl+Ol+Cpx+Sp in lower to intermediate crustal (40-15 km) chambers, AS parent magmas were generally more evolved than TS magmas upon their introduction into the Duluth Complex. 2) As magmas were intruded as plagioclase crystal muses (less than or equal to50% crystals), whereas later TS intrusions contained rare or minor intratelluric plagioclase and olivine. Periodic intrusions of viscous AS mushes probably caused much of the structural complexity ubiquitous to these rocks. 3) Although parent magmas to both rock series were saturated in plagioclase upon intrusion, AS magmas were less often saturated in olivine than were TS magmas. 4) TS rocks record fractional crystallization within Duluth Complex chambers; however, the extent and pattern of differentiation often reflects repeated replenishment of more primitive magmas.

  5. Geochemical characteristics of hydrous basaltic magmas due to assimilation and fractional crystallization: the Ikoma gabbroic complex, southwest Japan

    NASA Astrophysics Data System (ADS)

    Koizumi, N.; Okudaira, T.; Ogawa, D.; Yamashita, K.; Suda, Y.

    2016-10-01

    To clarify the processes that occur in hydrous basaltic magma chambers, we have undertaken detailed petrological and geochemical analyses of mafic and intermediate rocks from the Ikoma gabbroic complex, southwest Japan. The complex consists mainly of hornblende gabbros, hornblende gabbronorites, and hornblende leucogabbros. The hornblende leucogabbros are characterized by low TiO2 and high CaO contents, whereas the hornblende gabbronorites have high TiO2 and low CaO contents. The initial 87Sr/86Sr ratios (SrI) of the hornblende gabbronorites and hornblende gabbros are higher than those of the hornblende leucogabbros and plagioclase, and they may have resulted from a higher degree of assimilation of metasediments. The geochemical features of the hornblende leucogabbros and hornblende gabbronorites can be explained by accumulation of plagioclase and ilmenite, respectively, in a hybrid magma that formed by chemical interaction between mafic magma and metasediment, whereas the hornblende gabbros were produced by a high degree of crustal assimilation and fractional crystallization of this hybrid magma. As a result of the density differences between crystals and melt, the Ikoma gabbroic rocks formed by the accumulation of plagioclase in the middle of the magma chamber and by the accumulation of ilmenite in the bottom of the chamber. Taking into account the subsequent assimilation and fractional crystallization, our observations suggest an enriched mantle (SrI = ~0.7071) as the source material for the Ikoma gabbros.

  6. Important role of magma mixing in generating the Mesozoic monzodioritic-granodioritic intrusions related to Cu mineralization, Tongling, East China: Evidence from petrological and in situ Sr-Hf isotopic data

    NASA Astrophysics Data System (ADS)

    Chen, C. J.; Chen, B.; Li, Z.; Wang, Z. Q.

    2016-04-01

    The Mesozoic ore-bearing high-Mg monzodioritic-granodioritic rocks in the Tongling mining district (East China) have been described as having adakitic affinities, and their origin has been attributed to partial melting of delaminated eclogite at depth in the mantle, followed by interaction of the resultant granitic magma with mantle peridotite. Here we present petrological data and in situ Sr isotopic data for zoned plagioclase that are inconsistent with the eclogite-derived model and instead propose a model that involves magma mixing of siliceous crustal melts and basaltic magma that was derived from metasomatized mantle in a back-arc extensional regime. The principal geochemical signatures of these Mesozoic rocks include a high-K calc-alkaline affinity, high values of Mg#, high Sr-Ba abundances, high Sr/Y and La/Yb ratios, εNd(t) = - 13.1 to - 9.0, and ISr = 0.70707-0.70824. The magma mixing model is supported by (1) the common existence of mafic microgranular enclaves (MMEs) and the disequilibrium textures of plagioclase and amphibole, (2) the 87Sr/86Sr ratios of embayed high-Ca cores of plagioclase that are distinctly lower than in the euhedral low-Ca overgrowth rims, (3) the negative correlations between whole-rock Nd and Sr isotopic ratios, and (4) the significant differences in the values of εHf(t) (- 9.5 to - 26) within different zircons from the same intrusion.

  7. The role of subgrain boundaries in partial melting

    NASA Astrophysics Data System (ADS)

    Levine, Jamie S. F.; Mosher, Sharon; Rahl, Jeffrey M.

    2016-08-01

    Evidence for partial melting along subgrain boundaries in quartz and plagioclase is documented for rocks from the Lost Creek Gneiss of the Llano Uplift, central Texas, the Wet Mountains of central Colorado, and the Albany-Fraser Orogen, southwestern Australia. Domains of quartz or plagioclase crystals along subgrain boundaries are preferentially involved in partial melting over unstrained domains of these minerals. Material along subgrain boundaries in quartz and plagioclase has the same morphology as melt pseudomorphs present along grain boundaries and is commonly laterally continuous with this former grain boundary melt, indicating the material along subgrain boundaries can also be categorized as a melt pseudomorph. Subgrain boundaries consist of arrays of dislocations within a crystal lattice, and unlike fractures would not act as conduits for melt migration. Instead, the presence of former melt along subgrain boundaries requires that partial melting occurred in these locations because it is kinetically more favorable for melting reactions to occur there. Preferential melting in high strain locations may be attributed to strain energy, which provides a minor energetic contribution to the reaction and leads to preferential melting in locations with weakened bonds, and/or the presence of small quantities of water associated with dislocations, which may enhance diffusion rates or locally lower the temperature needed for partial melting.

  8. Mineralogy and possible origin of an unusual Cr-rich inclusion in the Los Martinez (L6) chondrite

    NASA Technical Reports Server (NTRS)

    Brearley, Adrian J.; Casanova, Ignacio; Miller, Mark L.; Keil, Klaus

    1991-01-01

    During a petrological study of the previously unclassified ordinary chondrite Los Martinez a highly unusual Cr-rich inclusion is found which is unique in both extraterrestrial and terrestrial mineralogy. Detailed SEM and TEM studies show that the inclusion consists of a highly zoned single crystal of plagioclase intergrown with chromium-rich spinel which indicates that it is the product of exsolution. The Cr-rich precursors of the inclusion probably have close affinities to the chronite-plagioclase chrondrules observed by Ramdohr (1967) in several ordinary chondrites. Based on the zoning in the inclusion it is suggested that it is the product of fractional crystallization from a melt, which may have formed as a liquid condensate, or by melting of solid condensates, in the solar nebula. Subsequent cooling of this melt condensate resulted in crystallization of the unidentified phase. After crystallization, the inclusion was probably incorporated into a parent body where it underwent metamorphism and was probably shocked to some degree. During this period of parent body metamorphism, exsolution and decomposition of the unknown precursor occurred to produce the observed intergrowth of plagioclase and chromite. Los Martinez is classified as an L6 ordinary chondrite breccia.

  9. Texture and elastic anisotropy of a mylonitic anorthosite from the Morin Shear Zone (Quebec, Canada)

    NASA Astrophysics Data System (ADS)

    Gómez Barreiro, Juan; Wenk, Hans-Rudolf; Vogel, Sven

    2015-02-01

    A sample of anorthosite from the granulite facies Morin Shear Zone (Quebec, Canada) was investigated for crystal preferred orientation and elastic anisotropy. Time-of-flight neutron diffraction data obtained with the HIPPO diffractometer at LANSCE were analyzed with the Rietveld method to obtain orientation distribution functions of the principal phases (plagioclase, clinopyroxene and orthopyroxene). Texture and microstructures are compatible with the plastic deformation of the aggregate under high-T conditions. All mineral phases depict a significant preferred orientation that could be related to the general top-to-the north shearing history of the Morin Shear Zone. Texture patterns suggest that (010)[001] in plagioclase and (110)[001] in clinopyroxene are likely dominant slip systems. Using preferred orientation data P- and S-waves velocities and elastic anisotropy were calculated and compared with previous studies to explore elastic properties of rocks with different pyroxene-plagioclase mixtures. P-wave velocity, S-wave splitting and anisotropy increase with clinopyroxene content. Seismic anisotropy is linked to the texture symmetry which can lead to large deviations between actual anisotropy and that measured along Cartesian XYZ sample directions (lineation/foliation reference frame). This is significant for the prediction and interpretation of seismic data, particularly for monoclinic or triclinic texture symmetries.

  10. Petrogenesis of tholeiitic basalts from the Central Atlantic magmatic province as revealed by mineral major and trace elements and Sr isotopes

    NASA Astrophysics Data System (ADS)

    Marzoli, Andrea; Jourdan, Fred; Bussy, François; Chiaradia, Massimo; Costa, Fidel

    2014-02-01

    The petrogenesis of the Kerforne dyke tholeiitic basalts (Brittany, France), the northernmost outcrop of the 200 Ma Central Atlantic magmatic province (CAMP), is constrained by its zoned augite and plagioclase crystals. Augite cores with high Mg/Fe and Cr suggest crystallization from near-primary magmas, with slightly enriched Rare Earth element (REE) patterns. Plagioclase crystals with high-An (An85) rounded cores are MgO- and K-rich, REE-poor, and display 87Sr/86Sr200Ma (0.7058) significantly higher than those of the surrounding ground-mass (0.7052-0.7053) suggesting open-system evolution processes. We propose a differentiation process involving mixing of different mafic magmas which occurred in less than a few hundred years judging from the lack of diffusive re-equilibration of major and trace elements in augite and of 87Sr/86Sr200Ma in plagioclase cores. The relatively large range of incompatible element contents and ratios of observed and calculated magmas are possibly due to fractional crystallization and to moderate amounts of crustal contamination which affected the more primitive magmas in particular. The calculated magmas reach near-primitive compositions and suggest that they originated from melting of a spinel peridotite slightly enriched in LREE vs. HREE.

  11. An exsolution silica-pump model for the origin of myrmekite

    USGS Publications Warehouse

    Castle, R.O.; Lindsley, D.H.

    1993-01-01

    Myrmekite, as defined here, is the microscopic intergrowth between vermicular quartz and modestly anorthitic plagioclase (calcic albite-oligoclase), intimately associated with potassium feldspar in plutonic rocks of granitic composition. Hypotheses previously invoked in explanation of myrmekite include: (1) direct crystallization; (2) replacement; (3) exsolution. The occurrence of myrmekite in paragneisses and its absence in rocks devold of discrete grains of potassium feldspar challenge those hypotheses based on direct crystallization or replacement. However, several lines of evidence indicate that myrmekite may in fact originate in response to kinetic effects associated with the exsolution of calcic alkali feldspar into discrete potassium feldspar and plagioclase phases. Exsolution of potassium feldspar system projected from [AlSi2O8] involves the exchange CaAlK-1Si-1, in which the AlSi-1 tetrahedral couple is resistant to intracrystalline diffusion. By contrast, diffusion of octahedral K proceeds relatively easily where it remains uncoupled to the tetrahedral exchange. We suggest here that where the ternary feldspar system is open to excess silica, the exchange reaction that produces potassium feldspar in the ternary plane is aided by the net-transfer reaction K+Si=Orthoclase, leaving behind indigenous Si that reports as modal quartz in the evolving plagioclase as the CaAl component is concomitantly incorporated in this same phase. Thus silica is "pumped" into the reaction volume from a "silica reservoir", a process that enhances redistribution of both Si and Al through the exsolving ternary feldspar. ?? 1993 Springer-Verlag.

  12. On the origin of rhythmic layering in layered gabbros

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Zhang, J.

    2015-12-01

    Rhythmic layering of silicates (plagioclase, pyroxene and olivine), ilmenite and magnitite is a common feature in mafic-ultramafic intrusions. The origin of rhythmic layering has been hotly debated in the literatures. Proposed mechanisms include gravity differentiation, double-diffusive convection, oscillatory crystallization of magma, repeated injection and supplement of magma, etc. Here we provide detailed FTIR and EBSD studies on the water content and deformation microstructure of gabbros from the Panzhihua intrusion and experimentally deformed synthetic gabrros and magnetite aggregates with a volume ratio of 6:4. The FTIR analyses revealed a significant amount of hydroxyls in both clinopyroxene (411-775 ppm) and plagioclase (328-716 ppm), suggesting a high water content mantle plume source. The EBSD analyses show similar fabrics in constitutent minerals of natural and experimental specimens: a weak clinopyroxene fabric of (100) parallel to foliation and [001] parallel to lineation; a strong plagioclase fabric of (010) parallel to foliation and [100] parallel to lineation, a weak ilmenite fabric of (001) parallel to foliation and [hk0] parallel to lieantion; and a near random magnitite fabric. There is an obvious rhythmic layering in sheared gabrros and magnetite aggregates similar to natural observations. Our results revealed strong layer-parallel shearing deformation during the formation of the Panxi layered intructions. There is a significant strength contrast between gabbro and Fe-Ti oxides. We propose that the formation of the rhythmic layering in mafic-ultramafic intrusions is caused mainly by rheological stratification of Fe-Ti oxides and gabbros.

  13. Mercury's core fraction and ancient crustal composition: Predictions from planetary formation under extremely reducing conditions

    NASA Astrophysics Data System (ADS)

    Brown, S. M.; Elkins-Tanton, L.

    2007-12-01

    Several hypotheses have been suggested to explain the paradox of Mercury's large core, which is on the order of sixty percent of the mass of the planet and recently demonstrated to be at least partially molten. Here we suggest that extremely reducing conditions in the earliest stages of planetary accretion nearest to the Sun may have produced the unusual metallic iron fraction by reducing iron otherwise bound into silicates. We demonstrate the formation conditions necessary for various meteoritic bulk compositions to produce the core/mantle ratio of Mercury. During this hypothetical core formation, we assume the remaining silicate fraction of Mercury (now largely lacking iron) has been heated to produce a magma ocean. The resulting cumulate mantle composition is calculated in a Matlab simulation of magma ocean solidification using a CMAS system adapted for Mercury. Plagioclase flotation, frequently cited as the necessary signature of a magma ocean, is highly dependent upon initial bulk composition. We demonstrate the initial silicate iron content of the magma ocean necessary to make plagioclase buoyant and thus produce a plagioclase flotation crust as seen on the Moon. In addition, over a range of bulk compositions the solidified mantle cumulates are unstable to gravitational overturn. During overturn hot cumulates rise from depth and may cross their solidi and melt, producing an earliest planetary crust. This crust may still exist on Mercury. With the first flyby results of the MESSENGER mission coming this winter, predictions from these models can be compared with initial ground measurements.

  14. A Nd and Sr isotopic study of the Trinity peridotite Implications for mantle evolution

    NASA Technical Reports Server (NTRS)

    Jacobsen, S. B.; Quick, J. E.; Wasserburg, G. J.

    1984-01-01

    Field evidence is reported which indicates that the Trinity peridotite in Northern California was partially melted during its rise as part of the upwelling convecting mantle at a spreading center. A Sm-Nd mineral isochron for a plagioclase Iherzolite yielded an age of about 427 Ma which is significantly higher than that expected for depleted mantle during this period. The age is interpreted as the time of crystallization of trapped melt in the plagioclase Iherzolite P-T field, and probably represents the time when the massif was incorporated as a part of the oceanic lithosphere. The Sm-Nd model age of the plagioclase Iherzolite total rock is 3.4 AE. This suggests that the peridotite was derived from a mantle that was depleted early in earth history. Although most available data indicate that the depleted upper mantle has been relatively well stirred through time, the Trinity data suggest that very ancient Nd isotropic values are preserved and chemical and physical heterogeneities are sometimes preserved in the depleted source of midocean ridge basalts as well as the oceanic lithosphere which they intrude.

  15. Formation of a Martian Pyroxenite: A Comparative Study of the Nakhlite Meteorites and Theo's Flow

    NASA Technical Reports Server (NTRS)

    Friedman, R. C.; Taylor, G. J.; Treiman, A. H.

    1999-01-01

    The unusual composition of the nakhlites, a group of pyroxenitic martian meteorites with young ages, presents an opportunity to learn about nonbasaltic magmatic activity on another planet. However, the limited number of these meteorites makes unraveling their history difficult. A promising terrestrial analog for the formation of the nakhlites is Theo's Flow in Ontario, Canada. This atypical, 120 m-thick flow differentiated in place, forming distinct layered lithologies of peridotite, pyroxenite, and gabbro. Theo's pyroxenite and the nakhlites share strikingly similar petrographies, with concentrated euhedral to subhedral augite grains set in a plagioclase-rich matrix. These two suites of rocks also share specific petrologic features, mineral and whole-rock compositional features, and size and spatial distributions of cumulus grains. The numerous similarities suggest that the nakhlites formed by a similar mechanism in a surface lava flow or shallow intrusion. Their formation could have involved settling of crystals in a phenocryst-laden flow or in situ nucleation and growth of pyroxenes in an ultramafic lava flow. The latter case is more likely and requires steady-state nucleation and growth of clusters of pyroxene grains (and olivine in the nakhlites), circulating in a strongly convecting melt pool, followed by settling and continued growth in a thickening cumulate pile. Trapped pockets of intercumulus liquid in the pile gradually evolved, finally growing Fe-enriched rims on cumulus grains. With sufficient evolution, the melt reached plagioclase supersaturation, causing rapid growth of plagioclase sprays and late-stage mesostasis growth.

  16. Mare basalt magma source region and mare basalt magma genesis

    SciTech Connect

    Binder, A.B.

    1982-11-15

    Given the available data, we find that the wide range of mare basaltic material characteristics can be explained by a model in which: (1) The mare basalt magma source region lies between the crust-mantle boundary and a maximum depth of 200 km and consists of a relatively uniform peridotite containing 73--80% olivine, 11--14% pyroxene, 4--8% plagioclase, 0.2--9% ilmenite and 1--1.5% chromite. (2) The source region consists of two or more density-graded rhythmic bands, whose compositions grade from that of the very low TiO/sub 2/ magma source regions (0.2% ilmenite) to that of the very high TiO/sub 2/ magma source regions (9% ilmenite). These density-graded bands are proposed to have formed as co-crystallizing olivine, pyroxene, plagioclase, ilmenite, and chromite settled out of a convecting magma (which was also parental to the crust) in which these crystals were suspended. Since the settling rates of the different minerals were governed by Stoke's law, the heavier minerals settled out more rapidly and therefore earlier than the lighter minerals. Thus the crystal assemblages deposited nearest the descending side of each convection cell were enriched in heavy ilmenite and chromite with respect to lighter olivine and pyroxene and very much lighter plagioclase. The reverse being the case for those units deposited near the ascending sides of the convection cells.

  17. An exsolution silica-pump model for the origin of myrmekite

    NASA Astrophysics Data System (ADS)

    Castle, Robert O.; Lindsley, Donald H.

    1993-03-01

    Myrmekite, as defined here, is the microscopic intergrowth between vermicular quartz and modestly anorthitic plagioclase (calcic albite-oligoclase), intimately associated with potassium feldspar in plutonic rocks of granitic composition. Hypotheses previously invoked in explanation of myrmekite include: (1) direct crystallization; (2) replacement; (3) exsolution. The occurrence of myrmekite in paragneisses and its absence in rocks devold of discrete grains of potassium feldspar challenge those hypotheses based on direct crystallization or replacement. However, several lines of evidence indicate that myrmekite may in fact originate in response to kinetic effects associated with the exsolution of calcic alkali feldspar into discrete potassium feldspar and plagioclase phases. Exsolution of potassium feldspar system projected from [AlSi2O8] involves the exchange CaAlK-1Si-1, in which the AlSi-1 tetrahedral couple is resistant to intracrystalline diffusion. By contrast, diffusion of octahedral K proceeds relatively easily where it remains uncoupled to the tetrahedral exchange. We suggest here that where the ternary feldspar system is open to excess silica, the exchange reaction that produces potassium feldspar in the ternary plane is aided by the net-transfer reaction K+Si=Orthoclase, leaving behind indigenous Si that reports as modal quartz in the evolving plagioclase as the CaAl component is concomitantly incorporated in this same phase. Thus silica is “pumped” into the reaction volume from a “silica reservoir”, a process that enhances redistribution of both Si and Al through the exsolving ternary feldspar.

  18. Magmatic controls on eruption dynamics of the 1950 yr B.P. eruption of San Antonio Volcano, Tacaná Volcanic Complex, Mexico-Guatemala

    NASA Astrophysics Data System (ADS)

    Mora, Juan Carlos; Gardner, James Edward; Macías, José Luis; Meriggi, Lorenzo; Santo, Alba Patrizia

    2013-07-01

    San Antonio Volcano, in the Tacaná Volcanic Complex, erupted ~ 1950 yr. B.P., with a Pelean type eruption that produced andesitic pyroclastic surges and block-and-ash flows destroying part of the volcano summit and producing a horse-shoe shaped crater open to the SW. Between 1950 and 800 yr B.P. the eruption continued with effusive andesites followed by a dacite lava flow and a summit dome, all from a single magma batch. All products consist of phenocrysts and microphenocrysts of zoned plagioclase, amphibole, pyroxene, magnetite ± ilmenite, set in partially crystallized groundmass of glass and microlites of the same mineral phases, except for the lack of amphibole. Included in the andesitic blocks of the block-and-ash flow deposit are basaltic andesite enclaves with elongated and ellipsoidal forms and chilled margins. The enclaves have intersertal textures with brown glass between microphenocrysts of plagioclase, hornblende, pyroxene, and olivine, and minor proportions of phenocrysts of plagioclase, hornblende, and pyroxene. A compositional range obtained of blocks and enclaves resulted from mixing between andesite (866 °C ± 22) and basaltic andesite (enclaves, 932 °C ± 22), which may have triggered the explosive Pelean eruption. Vestiges of that mixing are preserved as complex compositional zones in plagioclase and clinopyroxene-rich reaction rims in amphibole in the andesite. Whole-rock chemistry, geothermometry, experimental petrology and modeling results suggest that after the mixing event the eruption tapped hybrid andesitic magma (≤ 900 °C) and ended with effusive dacitic magma (~ 825 °C), all of which were stored at ~ 200 MPa water pressure. A complex open-system evolution that involved crustal end-members best explains the generation of effusive dacite from the hybrid andesite. Amphibole in the dacite is rimmed by reaction products of plagioclase, orthopyroxene, and Fe-Ti oxides produced by decompression during ascent. Amphibole in the andesite

  19. Metamorphic reactions, grain size reduction and deformation of mafic lower crustal rocks

    NASA Astrophysics Data System (ADS)

    Degli Alessandrini, Giulia; Menegon, Luca; Beltrando, Marco; Dijkstra, Arjan; Anderson, Mark

    2016-04-01

    This study investigates grain-scale deformation mechanisms associated with strain localization in the mafic continental lower crust, with particular focus on the role of syn-kinematic metamorphic reactions and their product - symplectites - in promoting grain size reduction and phase mixing. The investigated shear zone is hosted in the Finero mafic-ultramafic complex in the Italian Southern Alps. Shearing occurred at T ≥ 650° C and P ≥ 0.4-0.6 GPa. The shear zone reworks both mafic and ultramafic lithologies and displays anastomosing patterns of (ultra)mylonitic high strain zones wrapping less foliated, weakly deformed low strain domains. Field and microstructural observations indicate that different compositional layers of the shear zone responded differently to deformation, resulting in strain partitioning. Four distinct microstructural domains have been identified: (1) an ultramylonitic domain characterized by an amph + pl matrix (grain size < 30μm) with large amphibole porphyroclasts (grain size between 200μm and 5000μm) and rare garnets; (2) a domain rich in garnet porphyroclasts embedded in a matrix of monomineralic plagioclase displaying a core and mantle structure (average grain size 45μm) (3) a metagabbroic domain with porphyroclasts of clinopyroxene, orthopyroxene and garnets (200μm average grain size) wrapped by monomineralic ribbons of recrystallized plagioclase and (4) a garnet-free ultramylonitic domain composed of an intermixed amph + cpx + opx + pl matrix (6μm average grain size). In these domains, each porphyroclastic mineral responds differently to deformation: amphibole readily breaks down to symplectitic intergrowths of amph + pl or opx + pl. Garnet undergoes fracturing (in domain 2) or reacts to give symplectites of pl + opx (in domain 3). Plagioclase dynamically recrystallizes in mono-phase aggregates, whereas clinopyroxene undergoes fracturing and orthopyroxene undergoes plastic deformation. The behaviour of the different phases

  20. Cumulate xenoliths from St. Vincent, Lesser Antilles Island Arc: a window into upper crustal differentiation of mantle-derived basalts

    NASA Astrophysics Data System (ADS)

    Tollan, P. M. E.; Bindeman, I.; Blundy, J. D.

    2012-02-01

    In order to shed light on upper crustal differentiation of mantle-derived basaltic magmas in a subduction zone setting, we have determined the mineral chemistry and oxygen and hydrogen isotope composition of individual cumulus minerals in plutonic blocks from St. Vincent, Lesser Antilles. Plutonic rock types display great variation in mineralogy, from olivine-gabbros to troctolites and hornblendites, with a corresponding variety of cumulate textures. Mineral compositions differ from those in erupted basaltic lavas from St. Vincent and in published high-pressure (4-10 kb) experimental run products of a St. Vincent high-Mg basalt in having higher An plagioclase coexisting with lower Fo olivine. The oxygen isotope compositions (δ18O) of cumulus olivine (4.89-5.18‰), plagioclase (5.84-6.28‰), clinopyroxene (5.17-5.47‰) and hornblende (5.48-5.61‰) and hydrogen isotope composition of hornblende (δD = -35.5 to -49.9‰) are all consistent with closed system magmatic differentiation of a mantle-derived basaltic melt. We employed a number of modelling exercises to constrain the origin of the chemical and isotopic compositions reported. δ18OOlivine is up to 0.2‰ higher than modelled values for closed system fractional crystallisation of a primary melt. We attribute this to isotopic disequilibria between cumulus minerals crystallising at different temperatures, with equilibration retarded by slow oxygen diffusion in olivine during prolonged crustal storage. We used melt inclusion and plagioclase compositions to determine parental magmatic water contents (water saturated, 4.6 ± 0.5 wt% H2O) and crystallisation pressures (173 ± 50 MPa). Applying these values to previously reported basaltic and basaltic andesite lava compositions, we can reproduce the cumulus plagioclase and olivine compositions and their associated trend. We conclude that differentiation of primitive hydrous basalts on St. Vincent involves crystallisation of olivine and Cr-rich spinel at depth

  1. Melt segregation evidence from a young pluton, Takidani Granodiorite (Japan)

    NASA Astrophysics Data System (ADS)

    Hartung, Eva; Caricchi, Luca; Floess, David; Wallis, Simon; Harayama, Satoru; Chiaradia, Massimo; Kouzmanov, Kalin

    2016-04-01

    We are presenting new petrological data from one of the youngest exposed plutons in the world, the Takidani Granodiorite (Japan), which has been suggested as a source for large volume ignimbrites (> 300km3). Takidani Granodiorite (1.54 Ma ± 0.23 Ma) is located within the active Norikura Volcanic Chain in the Northen Japan Alps and has been previously linked to large andesitic (1.76 Ma ± 0.17 Ma) and rhyolitic eruptions (1.75 Ma ± 0.17 Ma). The pluton is vertically zoned and consists of granites (67 to 68 wt.% SiO2) in the lower section, granodiorites (65 to 66 wt.% SiO2) in the middle section, a chemically more evolved fine-grained porphyritic unit (67 to 71 wt.% SiO2) near the roof and a marginal granodiorite at the roof (67 to 68 wt.% SiO2). The porphyritic texture of the more evolved unit near the roof indicates rapid crystallisation, which could be the result of the late intrusion of this unit at the roof of the magmatic system. However, no sharp contact is found between the underlying granodiorite and the porphyritic unit. Instead, a gradual change in rock fabric, whole-rock chemistry and mineralogy is observed suggesting that melt was extracted from the granodiorite. Electron microprobe analyses of plagioclases show three main crystal populations (Type I, II and III) with distinct anorthite and Fe contents. Type I plagioclase (An30‑40) occurs dominantly within the marginal granodiorite at the roof. Type II plagioclase (An40‑45) are common in the granodiorite and porphyritic unit. Type III plagioclase (An45‑50) is predominantly present in the granite. All plagioclase populations share a common sodic rim (An22) across the different units. Takidani Granodiorite rocks are compared to crystallisation experiments from similar magmatic suites. Emplacement conditions of the Takidani Granodiorite are obtained from the latter as well as barometry, thermometry and hygrometry indicating that magmas were ultimately emplaced at around 200 MPa, 850° C to 875° C

  2. Water-saturated phase-equilibrium experiments on rhyolite and dacite obsidians: the effect of variable melt water concentration on the composition of phenocrysts

    NASA Astrophysics Data System (ADS)

    Waters, L.; Lange, R. A.; Andrews, B. J.

    2012-12-01

    Results of water-saturated phase equilibrium experiments on three obsidians ranging in composition from dacite to rhyolite (67-74 wt% SiO2) are presented and demonstrate the effect of changing melt water concentrations on the composition of plagioclase and orthopyroxene phenocrysts. Experiments were conducted in a cold-seal Ni-rich pressure vessel (Waspaloy) with Ni filler rod, so that experiments were buffered at ΔNNO +1 (± 0.5) (Gershwind & Rutherford, 1992) and pressurized with H2O (where Ptotal= PH2O). Temperatures ranged from 750-900°C and pressures ranged from 100-300 MPa. Prior to the experiments, detailed petrologic studies were first conducted on the three obsidian samples, which are from Cascade and Mexican arcs. Overall phenocryst abundances in all three samples are low (<2.3%), with little to no microlite crystallization. Despite low phenocryst abundances, the obsidians are saturated in five to seven mineral phases: plagioclase + orthopyroxene + ilmenite + magnetite + apatite ± clinopyroxene ± biotite. Eruptive temperatures (±1σ), on the basis of Fe-Ti two oxide thermometry (Ghiorso & Evans, 2008), range from 760 ± 18°C to 943 ± 20°C; corresponding ΔNNO values (±1σ) range from -0.9 ± 0.1 and 0.7 ± 0.1. Plagioclase compositions span a wide range in each sample (e.g., 9-40 and 30-54 mol% An), despite low phenocryst abundances. Orthopyroxene compositions also span a wide range (≤ 15 mol% En), which correspond to Fe-MgKD(opx-liq) values that range from 0.18-0.46. Given the low crystallinity, absence of evidence for mixing of magmas, and no apparent change in oxygen fugacity recorded by iron oxides, the progressive loss of water from a melt, through degassing during rapid magma ascent, is a plausible hypothesis to explain the observed variation in phenocryst compositions. This hypothesis is evaluated with the run products from the water-saturated phase equilibrium experiments on the three obsidian samples. The experimental results indicate

  3. The Geology and Petrography of Yücebelen and Surrounding Area, Torul-Gümüşhane

    NASA Astrophysics Data System (ADS)

    Doǧacan, Özcan; Özpınar, Yahya

    2013-04-01

    The study area is located in the tectono-stratigraphic zone named "Eastern Pontide Zone" from the northeastern part of Turkey. Eastern Pontides were formed by the subduction of Tethys Ocean under the Eurasian plate, during the Early Cretaceous - Late Eocene. Eastern Pontide orogenic zone can be divided in two tectono-stratigraphic subgroups as the northern and southern zones. The study area is located very close to border of these two subgroups but located in northern zone. In this project, the first geological map of the study area at the scale 1:5000 was made. Subsequently, detailed geological maps at the scale 1:2000 were made for the areas rich in ores. In the study area, Upper Cretaceous volcanic rocks consisting of basalts and basaltic andesites take place at the bottom of the rock sequence. Basalts and basaltic andesites with hyaloophitic, vitrophiric and microporphyric texture comprise plagioclase +pyroxene +chlorite +calcite ±epidote ±chalcedony ±opaque minerals. They are overlain by concordant pyroclastic and dacitic-rhyodacitic rocks. Quarts + K-feldispar ±plagioclase? ±biotite ±chlorite ±calcite ±chalcedony minerals are determined as a result of microscope investigation on samples taken from these rocks. These rocks are overlain by sedimentary rocks intercalated with pyroclastic rocks. All those units mentioned above, were intruded by granitoids of supposed Upper Cretaceous-Eocene age. Granitoids that crop out in the area were classified in terms of Q-ANOR parameters as granodiorites (Adile Hamlet occurrence - investigated in detail), diorites (Tuzlak Hill occurrence- eastern-part of study area) and quartz monzodiorites (İstavroma Hill occurrence- northern part of study area). Adile Hamlet granodiorites comprise plagioclase +pyroxene +chlorite +calcite ±quarts ±epidote +opaque minerals. A sequence of quarts +orthoclase +plagioclase ±chlorite ±epidote ±calcite ±opaque minerals have been determined after investigation of the rock samples

  4. Brittle-viscous transition in granulite-facies perthites: implications for lower crustal strength

    NASA Astrophysics Data System (ADS)

    Menegon, L.; Stünitz, H.; Nasipuri, P.; Heilbronner, R.; Svahnberg, H.

    2012-04-01

    Deformation in granulite facies rocks of the mangerite-charnockites in Lofoten (Norway) is localized in shear zones, which have formed at P=0.65-0.8 GPa, T=710-725° C. In the shear zones, recrystallization of perthites is localized along intracrystalline bands. The bands are parallel to shear microcracks and to trails of amphibole and biotite, interpreted as healed microcracks. Fracturing preferentially occurred (but non necessarily) along the excellent cleavage planes (010) and (001). EBSD analysis of perthite porphyroclasts indicates a very low degree of internal misorientation (within 5°) and the lack of recovery features. Recrystallized grains show coarsening with increasing width of the bands, and chemical changes with respect to the host grains (e.g. An14 in the recrystallized grains vs. An22 in the hosting perthites). Crystallographic orientation of the new grains does not show a host-control relation to the parent perthite grains. In summary, there is no evidence for dominant dislocation creep deformation, and the microstructure and CPO data consistently indicate an intragranular recrystallization of perthite by nucleation and growth processes along microcracks. Perthite porphyroclasts are surrounded by a matrix of recrystallized plagioclase + K-feldspar (average grain size of 25 μm) ± amphibole. Amphibole and K-feldspar commonly occur at triple and quadruple junctions between plagioclase grains. There is extensive evidence of phase boundary migration in the matrix, with plagioclase grains forming bulges and protrusions towards K-feldspar. The phase boundaries between K-feldspar and plagioclase are more frequent than grain boundaries, indicating that feldspars are well intermixed in the matrix. Phase boundaries occur with a high density in a C'-type shear band orientation. These observations are consistent with diffusion creep as the dominant deformation mechanism in the matrix, associated with grain boundary sliding and syndeformational nucleation of

  5. The axial melt lens as a processor of evolved melts at fast-spreading mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Loocke, M. P.; Lissenberg, J. C. J.; MacLeod, C. J.

    2015-12-01

    The axial melt lens is a steady-state, generally magma-rich body located at the dyke-gabbro transition at mid-crustal levels beneath intermediate- and fast-spreading ridges. It is widely believed to be the reservoir from which mid-ocean ridge basalt (MORB) erupts. Using a remotely-operated vehicle, cruise JC21 to the Hess Deep Rift recovered the first comprehensive sample suite of the uppermost plutonics from a fast-spreading ridge. We present the results of a detailed microanalytical investigation of 23 samples (8 dolerites, 14 gabbronorites, and 1 gabbro) recovered by ROV dive 78 from a section traversing the transition from the uppermost gabbros into the sheeted dykes. With the exception of a single olivine-bearing sample (78R-6), dive 78 is dominated by evolved, varitextured (both in hand sample and thin section) oxide gabbronorites. Full thin section quantitative element maps were acquired on serial thin sections from each sample using the analytical scanning electron microscope in the at Cardiff University. The resulting maps were post-processed in MatlabTM to determine the full distribution of plagioclase compositions across entire thin sections (typically 500,000 analyses per sample); an approach we term 'quantitative assessment of compositional distribution' (QACD). By so doing we are able to conduct the first fully rigorous assessment of gabbro compositions, and, by extension, melt compositions present at this level beneath the ridge axis. Critically, we only found 2 grains of high-An plagioclase (An>80) in all of the samples (N = 51). These occur as cores within a sample dominated by lower-An plagioclase. Instead, the vast majority (75%) of plagioclase within the samples have compositions of An65 or lower; compositions too evolved to be in equilibrium with MORB. The most primitive sample, 78R-6, is an olivine-bearing gabbronorite with Fo67 olivine, and plagioclase ranging from An52-77 (median An = 65). These data are difficult to reconcile with models in

  6. Melt segregation evidence from a young pluton, Takidani Granodiorite (Japan)

    NASA Astrophysics Data System (ADS)

    Hartung, Eva; Caricchi, Luca; Floess, David; Wallis, Simon; Harayama, Satoru; Chiaradia, Massimo; Kouzmanov, Kalin

    2016-04-01

    We are presenting new petrological data from one of the youngest exposed plutons in the world, the Takidani Granodiorite (Japan), which has been suggested as a source for large volume ignimbrites (> 300km3). Takidani Granodiorite (1.54 Ma ± 0.23 Ma) is located within the active Norikura Volcanic Chain in the Northen Japan Alps and has been previously linked to large andesitic (1.76 Ma ± 0.17 Ma) and rhyolitic eruptions (1.75 Ma ± 0.17 Ma). The pluton is vertically zoned and consists of granites (67 to 68 wt.% SiO2) in the lower section, granodiorites (65 to 66 wt.% SiO2) in the middle section, a chemically more evolved fine-grained porphyritic unit (67 to 71 wt.% SiO2) near the roof and a marginal granodiorite at the roof (67 to 68 wt.% SiO2). The porphyritic texture of the more evolved unit near the roof indicates rapid crystallisation, which could be the result of the late intrusion of this unit at the roof of the magmatic system. However, no sharp contact is found between the underlying granodiorite and the porphyritic unit. Instead, a gradual change in rock fabric, whole-rock chemistry and mineralogy is observed suggesting that melt was extracted from the granodiorite. Electron microprobe analyses of plagioclases show three main crystal populations (Type I, II and III) with distinct anorthite and Fe contents. Type I plagioclase (An30-40) occurs dominantly within the marginal granodiorite at the roof. Type II plagioclase (An40-45) are common in the granodiorite and porphyritic unit. Type III plagioclase (An45-50) is predominantly present in the granite. All plagioclase populations share a common sodic rim (An22) across the different units. Takidani Granodiorite rocks are compared to crystallisation experiments from similar magmatic suites. Emplacement conditions of the Takidani Granodiorite are obtained from the latter as well as barometry, thermometry and hygrometry indicating that magmas were ultimately emplaced at around 200 MPa, 850° C to 875° C and

  7. Quantifying elemental compositions of primary minerals from granitic rocks and saprolite within the Santa Catalina Mountain Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Lybrand, R. A.; Rasmussen, C.

    2011-12-01

    Granitic terrain comprises a significant area of the earth's land surface (>15%). Quantifying weathering processes involved in the transformation of granitic rock to saprolite and soil is central to understanding landscape evolution in these systems. The quantification of primary mineral composition is important for assessing subsequent mineral transformations and soil production. This study focuses on coupling detailed analysis of primary mineral composition to soil development across an array of field sites sampled from the Santa Catalina Mountain Critical Zone observatory (SCM-CZO) environmental gradient. The gradient spans substantial climate-driven shifts in vegetation, ranging from desert scrub to mixed conifer forests. The parent material is a combination of Precambrian and Tertiary aged granites and quartz diorite. Primary mineral type and composition are known to vary among the various aged granitic materials and this variability is hypothesized to manifest as significant variation in regolith forming processes across the SCM-CZO. To address this variability, the mineral composition and mineral formulae of rock and saprolite samples were determined by electron microprobe chemical analyses. The rocks were pre-dominantly quartz, biotite, muscovite, orthoclase and calcium/sodium-rich plagioclase feldspars. Trace minerals observed in the samples included sphene, rutile, zircon, garnet, ilmenite, and apatite. Mineral formulae from electron microprobe analyses were combined with quantitative x-ray diffraction (QXRD) and x-ray fluorescence (XRF) data to quantify both primary and secondary mineralogical components in soil profiles from each of the field sites. Further, electron microprobe analyses of <2mm mixed conifer saprolite revealed weathered plagioclase grains coated with clay-sized particles enriched in silica and aluminum (~25% and 15%, respectively), suggesting kaolin as the secondary phase. The coatings were interspersed within each plagioclase grain, a

  8. Disaggregation of primitive cumulates in the Skuggafjöll eruption, Iceland

    NASA Astrophysics Data System (ADS)

    Neave, D.; Maclennan, J.; Edmonds, M.; Thordarson, T.

    2013-12-01

    There are significant limitations in using genetic terms, such as phenocryst and xenocryst, when describing macrocrysts carried by magmas. Despite being largely out of equilibrium with their carrier melt, zoned macrocrysts bring with them a record of their past crystallisation. Furthermore, macrocrysts may have resided in crystal mushes or cumulates prior to being entrained into melts and carried to the surface during eruptions. These entrained macrocrysts can therefore provide insights into the development of plutonic rocks within magmatic plumbing systems paused at the moment of disaggregation. Diverse petrologic observations are therefore required to disentangle the volcanic and plutonic processes operating during the assembly of phyric magmas. Here we present the results of an integrated study performed on glassy pillow basalts from the subglacial Skuggafjöll eruption in the Eastern Volcanic Zone (EVZ) of Iceland. Olivine and plagioclase compositions are strongly bimodal with peaks at Fo86 and Fo80 and An88 and An75 respectively. Both QEMSCAN* and SEM imaging indicate that the most forsteritic and anorthitic compositions are found in the cores of large macrocrysts and are texturally associated with one another, forming a primitive macrocryst population. The lowest forsterite and anorthite contents are present in rims of large macrocrysts and in smaller macrocrysts, which are associated clinopyroxene, forming an evolved macrocryst population. Calculations using published mineral-melt equilibrium models indicate that the evolved population is in equilibrium with the groundmass glass composition. The relationship between the primitive population and the evolved, equilibrium population was investigated using combined whole rock geochemistry and point counting systematics for samples with 5-46 modal % macrocryst contents. Highly incompatible trace element concentrations (e.g. Ce, Zr) correlate negatively with the mass fraction of macrocrysts. Regression lines

  9. Differentiation mechanism of frontal-arc basalt magmas

    NASA Astrophysics Data System (ADS)

    Kuritani, T.; Yoshida, T.; Kimura, J.; Hirahara, Y.; Takahashi, T.

    2012-04-01

    In a cooling magma chamber, magmatic differentiation can proceed both by fractionation of crystals from the main molten part of the magma body (homogeneous fractionation) and by mixing of the main magma with fractionated melt derived from low-temperature mush zones (boundary layer fractionation) (Jaupart and Tait, 1995, and references therein). The geochemical path caused by boundary layer fractionation can be fairly different from a path resulting from homogeneous fractionation (e.g., Langmuir, 1989). Therefore, it is important to understand the relative contributions of these fractionation mechanisms in magma chambers. Kuritani (2009) examined the relative roles of the two fractionation mechanisms in cooling basaltic magma chambers using a thermodynamics-based mass balance model. However, the basaltic magmas examined in the work were alkali-rich (Na2O+K2O > 4 wt.%). In this study, to explore differentiation mechanisms of frontal-arc basalt magmas that are volumetrically much more important than rear-arc alkali basalt magmas, the relative roles of the two fractionation mechanisms are examined for low-K tholetiitic basalt magma from Iwate Volcano, NE Japan arc, using the same mass balance model. First, the water content and the temperature of the Iwate magma were estimated. The Iwate lavas are moderately porphyritic, consisting of ~8 vol.% olivine and ~20 vol.% plagioclase phenocrysts. The olivine and plagioclase phenocrysts show significant compositional variations, and the Mg# of olivine phenocrysts (Mg#78-81) correlates positively with the An content of coexisting plagioclase phenocrysts (An85-92). The olivine phenocrysts with Mg# > ~82 do not form crystal aggregates with plagioclase. It is inferred from these observations that the phenocrysts with variable compositions were derived from a common magma with variable temperature in a magma chamber, and the plagioclase phenocrysts were all derived from mushy boundary layers along the walls of the magma chamber. By

  10. The role of disseminated calcite in the chemical weathering of granitoid rocks

    USGS Publications Warehouse

    White, A.F.; Bullen, T.D.; Vivit, D.V.; Schulz, M.S.; Clow, D.W.

    1999-01-01

    Accessory calcite, present at concentrations between 300 and 3000 mg kg-1, occurs in fresh granitoid rocks sampled from the Merced watershed in Yosemite National Park, CA, USA; Loch Vale in Rocky Mountain National Park CO USA; the Panola watershed, GA USA; and the Rio Icacos, Puerto Rico. Calcite occurs as fillings in microfractures, as disseminated grains within the silicate matrix, and as replacement of calcic cores in plagioclase. Flow-through column experiments, using de-ionized water saturated with 0.05 atm. CO2, produced effluents from the fresh granitoid rocks that were dominated by Ca and bicarbonate and thermodynamically saturated with calcite. During reactions up to 1.7 yr, calcite dissolution progressively decreased and was superceded by steady state dissolution of silicates, principally biotite. Mass balance calculations indicate that most calcite had been removed during this time and accounted for 57-98% of the total Ca released from these rocks. Experimental effluents from surfically weathered granitoids from the same watersheds were consistently dominated by silicate dissolution. The lack of excess Ca and alkalinity indicated that calcite had been previously removed by natural weathering. The extent of Ca enrichment in watershed discharge fluxes corresponds to the amounts of calcite exposed in granitoid rocks. High Ca/Na ratios relative to plagioclase stoichiometries indicate excess Ca in the Yosemite, Loch Vale, and other alpine watersheds in the Sierra Nevada and Rocky Mountains of the western United States. This Ca enrichment correlates with strong preferential weathering of calcite relative to plagioclase in exfoliated granitoids in glaciated terrains. In contrast, Ca/Na flux ratios are comparable to or less than the Ca/Na ratios for plagioclase in the subtropical Panola and tropical Rio Icacos watersheds, in which deeply weathered regoliths exhibit concurrent losses of calcite and much larger masses of plagioclase during transport

  11. Pre-eruptive and syn-eruptive conditions in the Black Butte, California dacite: Insight into crystallization kinetics in a silicic magma system

    NASA Astrophysics Data System (ADS)

    McCanta, Molly C.; Rutherford, Malcolm J.; Hammer, Julia E.

    2007-02-01

    A series of experiments and petrographic analyses have been run to determine the pre-eruption phase equilibria and ascent dynamics of dacitic lavas composing Black Butte, a dome complex on the flank of Mount Shasta, California. Major and trace element analyses indicate that the Black Butte magma shared a common parent with contemporaneously erupted magmas at the Shasta summit. The Black Butte lava phenocryst phase assemblage (20 v.%) consists of amphibole, plagioclase (core An 77.5), and Fe-Ti oxides in a fine-grained (< 0.5 mm) groundmass of plagioclase, pyroxene, Fe-Ti oxides, amphibole, and cristobalite. The phenocryst assemblage and crystal compositions are reproduced experimentally between 890 °C and 910 °C, ≥ 300 MPa, XH2O = 1, and oxygen fugacity = NNO + 1. This study has quantified the extent of three crystallization processes occurring in the Black Butte dacite that can be used to discern ascent processes. Magma ascent rate was quantified using the widths of amphibole breakdown rims in natural samples, using an experimental calibration of rim development in a similar magma at relevant conditions. The majority of rims are 34 ± 10 μm thick, suggesting a time-integrated magma ascent rate of 0.004-0.006 m/s among all four dome lobes. This is comparable to values for effusive samples from the 1980 Mount St. Helens eruption and slightly faster than those estimated at Montserrat. A gap between the compositions of plagioclase phenocryst cores and microlites suggests that while phenocryst growth was continuous throughout ascent, microlite formation did not occur until significantly into ascent. The duration of crystallization is estimated using the magma reservoir depth and ascent rate, as determined from phase equilibria and amphibole rim widths, respectively. Textural analysis of the natural plagioclase crystals yields maximum growth rates of plagioclase phenocryst rims and groundmass microlites of 8.7 × 10 - 8 and 2.5 × 10 - 8 mm/s, respectively. These

  12. Melt inclusions are not reliable proxies for magmatic liquid composition: evidence from crystal-poor andesites and dacites in the Tequila volcanic field, Mexico

    NASA Astrophysics Data System (ADS)

    Frey, H. M.; Lange, R. A.

    2009-12-01

    A compositional study of >200 melt inclusions in plagioclase and orthopyroxene phenocrysts from six crystal-poor (2-5 vol%) andesite and dacite lavas (60-68 wt% SiO2) from the Tequila volcanic field in the Mexico arc is used to evaluate whether melt inclusions in phenocrysts accurately record magmatic liquid compositions. The crystal-poor andesites and dacites were erupted contemporaneously with crystal-poor rhyolites, and there is a continuum in the SiO2 concentration of the erupted magmas. The liquid line of descent defined by the whole-rock compositions ranges from andesite to rhyolite (60-77 wt% SiO2), as illustrated on Harker diagrams. The crystal-poor andesites and dacites are multiply saturated with five to seven mineral phases (plagioclase + orthopyroxene + titanomagnetite + ilmenite + apatite ± augite ± hornblende), most of which crystallized via degassing during magma ascent (Frey and Lange, 2009). By comparison with phase equilibrium experiments from the literature, it is shown that the vast majority of crystals are phenocrysts and not xenocrysts. Textural evidence of rapid crystal growth includes skeletal, hopper, and swallow-tail morphologies and abundant melt inclusions. The inclusions range in size from a few microns to > 50 μm and occur as isolated pockets and extensive channels that mimic the crystal morphology. Inclusions are typically brown glass, with occasional microphenocrysts of titanomagnetite and/or apatite within or adjacent to the melt inclusions. The compositions of the melt inclusions in the plagioclase and orthopyroxene phenocrysts, when plotted on Harker diagrams, vary systematically from one another and from the liquid line of descent defined by the whole rock compositions of erupted magmas. For example, melt inclusions in plagioclase are systematically depleted in Al2O3 relative to the whole rock samples, whereas those in coexisting orthopyroxenes are systematically enriched in Al2O3. The opposite trend is found for FeO, where it

  13. Polarization of mafic and felsic rocks In the Skaergaard Layered Series (Invited)

    NASA Astrophysics Data System (ADS)

    McBirney, A. R.; Johnston, A.; Webster, J. D.

    2009-12-01

    When it became apparent that plagioclase could never sink in a magma as iron rich and dense as that of the Skaergaard Intrusion, we were faced with the problem of explaining the formation of anorthositic layers, foundered blocks, and schlieren that consist almost entirely of plagioclase but were obviously stable on the floor of the intrusion. Sonnenthal (Jour. Pet., 1998, 39: 633-661) found that gabbroic blocks that fell from the roof series were originally more gabbroic and were altered metasomatically to anorthosites after they reached the floor were buried it the advancing front of crystallization. Their mafic components were expelled into the surrounding gabbro and replaced by plagioclase. Similar processes appear to have transformed parts of the Layered and Marginal Border Series into strongly polarized anorthosites and olivine pyroxenites. The studies of Filiberto and Treiman (Chem. Geol. 2009, 263: 50-68) of the effect of chlorine on the liquidus of basalts, together with our on-going experimental investigation of its effect on the system plagioclase-pyroxene, has opened new possibilities that may enable us to explain these enigmatic rocks. When Webster and his co-workers (Geoch Cosmoch. Acta, 2009, 73: 559-581) showed that, unlike water, chlorine is much more soluble in mafic silicate melts than felsic ones, these contrasting properties suggested that the effect of chlorine on the cotectic relations of plagioclase and pyroxene might be the opposite of that of water: it could depress the melting temperature of pyroxene just as water depressed that of plagioclase. Experiments currently underway at the American Museum of Natural History and University of Oregon are showing that this is indeed the case. Consider what might happen if a crystallizing gabbro were infiltrated by a chlorine-rich aqueous fluid of the kind that Larsen and Brooks (Jour. Pet., 1997, 35: 1651-79) have shown permeated the rocks while they were still at a high temperature. Flux melting

  14. Hydrothermal alteration and mass exchange in the hornblende latite porphyry, Rico, Colorado

    USGS Publications Warehouse

    Larson, P.B.; Cunningham, C.G.; Naeser, C.W.

    1994-01-01

    The Rico paleothermal anomaly, southwestern Colorado, records the effects of a large hydrothermal system that was active at 4 Ma. This hydrothermal system produced the deep Silver Creek stockwork Mo deposit, which formed above the anomaly's heat source, and shallower base and precious-metal vein and replacement deposits. A 65 Ma hornblende latite porphyry is present as widespread sills throughout the area and provided a homogenous material that recorded the effects of the hydrothermal system up to 8 km from the center. Hydrothermal alteration in the latite can be divided into a proximal facies which consists of two assemblages, quartz-illite-calcite and chlorite-epidote, and a distal facies which consists of a distinct propylitic assemblage. Temperatures were gradational vertically and laterally in the anomaly, and decreased away from the centra heat source. A convective hydrothermal plume, 3 km wide and at least 2 km high, was present above the stock-work molybdenum deposit and consisted of upwelling, high-temperature fluids that produced the proximal alteration facies. Distal facies alteration was produced by shallower cooler fluids. The most important shallow base and precious-metal vein deposits in the Rico district are at or close to the boundary of the thermal plume. Latite within the plume had a large loss of Na2O, large addition of CaO, and variable SiO2 exchante. Distal propylitized latite samples lost small amounts of Na2O and CaO and exchanged minor variable amounts of SiO2. The edge of the plume is marked by steep Na2O exchange gradients. Na2O exchange throughout the paleothermal anomaly was controlled by the reaction of the albite components in primary plagioclase and alkali feldspars. Initial feldspar alteration in the distal facies was dominated by reaction of the plagioclase, and the initial molar ratio of reactants (alkali feldspar albite component to plagioclase albite component) was 0.35. This ratio of the moles of plagioclase to alkali feldspar

  15. Open magma chamber processes in the formation of the Permian Baima mafic-ultramafic layered intrusion, SW China

    NASA Astrophysics Data System (ADS)

    Liu, Ping-Ping; Zhou, Mei-Fu; Wang, Christina Yan; Xing, Chang-Ming; Gao, Jian-Feng

    2014-01-01

    The Baima mafic-ultramafic layered intrusion of the 260-Ma Emeishan Large Igneous Province (ELIP) hosts the second largest Fe-Ti-(V) oxide deposit in the Panxi region, SW China. It is a ~ 1600-m-thick layered body intruded by slightly younger syenitic and granitic plutons. The intrusion includes the Lower and Upper Zones. Troctolite and olivine pyroxenite of the Lower Zone contains conformable oxide ore layers, whereas the Upper Zone consists of olivine gabbro and gabbro with abundant apatite in the higher level. The crystallization order of the silicates in the Baima intrusion is olivine → plagioclase → clinopyroxene. Fe-Ti oxides (titanomagnetite and ilmenite) crystallized after olivine, and possibly plagioclase. The oxide ores in the Lower Zone show slightly LREE enriched patterns with (La/Yb)N values between 2.0 and 6.4, and positive Eu anomalies (Eu/Eu*) of 1.0 to 2.7. In contrast, olivine gabbros in the Lower Zone display stronger LREE enrichments (La/YbN = 7.7-14.0) and positive Eu anomalies (Eu/Eu* = 2.8-3.3). Gabbros in the Upper Zone have REE profiles characterized by intermediate LREE enrichments with (La/Yb)N values of 3.2 to 11.2 and positive Eu anomalies of 2.1 to 3.0. Primitive mantle-normalized trace element patterns are characterized by negative La-Ce, Th, Sm and positive Nb-Ta, Ba and Ti anomalies in oxide ores and negative Th-U, Zr-Hf and positive Ba, Sr and Ti anomalies in olivine gabbro and gabbro. Fo of olivine and An of plagioclase remain roughly constant from 0 to ~ 90 m in the Lower Zone, indicating that the magma chamber was continuously filled by compositionally similar magmas during the initial stage. Three magma replenishments occurred afterwards in the upper part of the Lower Zone and the Upper Zone based on compositional reversals of plagioclase, olivine and Sr isotope. Mass balance calculations show that the Baima parental magma can produce all oxide ores under closed system conditions. A wide range of An values of plagioclase

  16. Mineralogical indicators of intrachamber magma degassing and oxidation in Shiveluch (Kamchatka)

    NASA Astrophysics Data System (ADS)

    Salova, T.; Simakin, A.

    2009-04-01

    Processes of the intrachamber magma degassing precede degassing in the conduit on the final stages of eruption and may be of no less importance. Appearance of the free fluid phase at the depth can be responsible for intrachamber elements transport, pressure buildup and local magma oxidation. We interpret phenocrysts zonality in Shiveluch andesites in terms of such degassing based on our experimental data. High magnesium andesite of Shiveluch volcano (Kamchatka) was studied at PH2O=2 kbar. Bulk hydrous glass was prepared in the series of operations including hydrothermal reducing of the initially melted oxidized rock powder under hydrothermal conditions and remelting. The Fe2+/Fe3+ ratio in the final hydrous glass was estimated with Mossbauer spectroscopy. It corresponds to fO2 = NNO - NNO+2 in the andesite melt at the experimental PT parameters. Short experiments yield crystals grown from the melt with Fe2+/Fe3+ ratio close to the initial value. Liquidus temperature of amphibole was found to be 970oC. The analysis of composition of amphiboles grown at T=950oC demonstrates that the sum Fe3+ +Ti (in M1+M2) is inversely correlated with alumina content in the octahedral coordination: Al_VI= 0.601-0.330(Fe3+ + Ti). The Al_VI content rises with melt reduction (Simakin et al., 2009). Liquidus temperatures of plagioclase have been found at PH2O=1 kbar (1000оС) and 2 kbar (960оС). They are in excellent correspondence with values predicted with model by Putirka (2005): 1006оС and 956оС correspondingly. While using this model we analyse composition of plagioclase at the variation of the water content in the wide range (1-6 wt.%) while changing melt temperature to keep plagioclase on the liquidus. It appears that dependence of the anorthite content in plagioclase on the water content has minimum. It means that degassing coupled with magma heating may result in both direct and inverse zonality in plagioclase. The examples of zonality pattern of magmatic minerals that

  17. Ultra Sodic gedrite and micro-scale metasomatic processes in granulitised kyanite eclogites from the Rhodope UHPM Province, Greece

    NASA Astrophysics Data System (ADS)

    Moulas, Evangelos; Kostopoulos, Dimitrios K.; Connolly, James A. D.; Burg, Jean-Pierre

    2010-05-01

    The Rhodope Massif occupies most of northeastern Greece and southern Bulgaria and comprises high-grade metamorphic rocks such as metapelites with microdiamond inclusions. The (U)HP mineral paragenesis underwent extensive metamorphic overprint at granulite-facies followed by amphibolite-facies retrograde metamorphism. A kyanite-eclogite that occurs as lenses in orthogneisses from Thermes village was used to unravel the pressure-temperature-time path of the (U)HP rocks from the Rhodope. The peak-pressure mineral assemblage is omphacite, garnet, kyanite, phengite, rutile, apatite and zircon. Quartz is absent from the matrix and it can be found either as inclusions in garnet or as post-peak veins. This late quartz contains primary and secondary fluid inclusions implying the presence of a fluid phase during post high-pressure metamorphism. Kyanite is never observed in direct contact with quartz being armoured by an intervening stripe of plagioclase which itself shows zoning, becoming increasingly albitic towards quartz. Plagioclase formation at the Ky-Qtz interface requires certain Na and Ca influx that was provided by matrix omphacite. Two types of symplectites were formed by reaction between omphacite and kyanite. Firstly, corundum+plagioclase symplectites were formed at the expense of the jadeitic component of omphacite during decompression. Subsequently, the residual diopsidic component of omphacite reacted with the already formed corundum to give rise to spinel+plagioclase symplectites. The previous mechanisms demonstrate metasomatism in the micro-scale by diffusion controlled processes. During decompression matrix omphacite was decomposed to amphibole+plagioclase symplectites which reacted with garnet to form coronas consisting of two amphiboles (ortho- and clino-), plagioclase, ilmenite and magnetite. Biotite and plagioclase are also found as symplectites replacing phengite during decompression. Thermodynamic modelling of the symplectitic domains that replace

  18. Are Acapulcoites and Lodranites Genetically Related?

    NASA Astrophysics Data System (ADS)

    Zipfel, J.; Palme, H.

    1993-07-01

    Petrological and oxygen isotopic studies suggest that acapulcoites and lodranites are closely related. Meteorites of both groups have essentially achondritic equilibrated textures and are similar in mineralogy except that lodranites are coarser grained and have lower plagioclase abundances. The Acapulco meteorite and other acapulcoites have bulk chemical compositions close to those of ordinary chondrites. Compositions of lodranites are different from acapulcoites, primarily reflecting plagioclase fractionation. We performed bulk chemical analyses by instrumental neutron activation analyses of the acapulcoites Monument Draw (M), ALHA 81261 (81), and Acapulco (A) and the lodranites Gibson (G), MAC 88177 (88), and FRO 90011 (F). Data for ALHA 81261, Monument Draw, Mac88177 and FRO 90011 are given in [1]. Additional analyses were done on a new sample of Acapulco. Published data for Lodran (L; [2]), Y-791493 (Y; [3]), ALHA 77081 (77; [4,5]), and Acapulco [5] were considered. Acapulcoites have a very narrow compositional range. Larger variations are only found for the compatible element Cr and the volatile Zn. Both elements are largely hosted in chromite. Similar variations are observed within a single meteorite. Cr in Acapulco bulk samples ranges from 3500 ppm up to 7420 ppm, reflecting inhomogeneous local distribution of chromite. High and variable U abundances and enhanced LREE contents in Acapulco indicate high and variable modal abundances of phosphates since apatite is the main U and LREE carrier. Lodranites are depleted in all plagioclase elements (K, Na, Eu, Ca) and this readily distinguishes them from Acapulcoites (see Fig. 1). Abundances for the compatible Mn are similar in both groups. Se, representing modal sulfide content, is only slightly depleted in lodranites. Similar Cr and Zn variations as in acapulcoites are observed in lodranites. Refractory elements such as Sc and V are lower in lodranites than in acapulcoites (Sc/Mg ratio is about 30% lower). The

  19. Crystal accumulation in a 4.2 Ga lunar impact melt

    NASA Astrophysics Data System (ADS)

    Norman, M. D.; Taylor, L. A.; Shih, C.-Y.; Nyquist, L. E.

    2016-01-01

    The ages of lunar impact basins and the role of fractional crystallization in producing compositional heterogeneity of lunar melt sheets are long-standing problems with significant implications for solar system dynamics and the petrologic evolution of the lunar crust. Here we document the formation of a basin-scale impact on the Moon at 4.20 ± 0.07 Ga based on the 147Sm-143Nd isochron age of a magnesian, noritic anorthosite melt rock from lunar breccia 67955. Major element compositions of plagioclase and mafic silicates in the melt rock imply a substantial component of primary Mg-suite cumulates or related lithologies in the pre-impact crustal stratigraphy. Trace element compositions of the plagioclase, including diagnostic ratios such as Sr/Ba, are also mostly similar to those in plagioclase from Mg-suite cumulates, with a small number of grains trending toward compositions observed in ferroan anorthosites. Mineral-melt distribution coefficients applied to trace element compositions of the 67955 plagioclase and pyroxene predict parental melt compositions that contrast strongly with the bulk rock. Compared to the whole rock, parental melts calculated from the plagioclase are enriched in REE (ΣREELa-Yb = 131-885, average 619 ppm vs. 39.8 ppm) and they have more fractionated REE patterns (La/Ybn = 1.2-9.8, average 4.9 vs. 1.5) with deep negative Eu anomalies (Eu/Eu∗ = 0.09-0.40 vs. 1.36). Trace element data for the pyroxenes also imply incompatible-element enriched parental melts. Subsolidus equilibration between the plagioclase and the pyroxene apparently rotated the REE patterns, but the conclusion that the parental melt was highly enriched in REE relative to the whole rock appears robust. Quantitative modeling shows that fractional crystallization of the 67955 whole rock composition cannot reproduce the range of Ba, Sr, Ti, and La concentrations measured in the 67955 plagioclase. Rather, the models require an initial melt composition that was strongly enriched

  20. The mineral dissolution rate conundrum: Insights from reactivetransport modeling of U isotopes and pore fluid chemistry in marinesediments

    SciTech Connect

    Maher, Kate; Steefel, Carl I.; DePaolo, Donald J.; Viani, Brian E.

    2005-08-25

    Pore water chemistry and 234U/238U activity ratios from fine-grained sediment cored by the Ocean Drilling Project at Site 984 in the North Atlantic were used as constraints in modeling in situ rates of plagioclase dissolution with the multicomponent reactive transport code Crunch. The reactive transport model includes a solid-solution formulation to enable the use of the 234U/238U activity ratios in the solid and fluid as a tracer of mineral dissolution. The isotopic profiles are combined with profiles of the major element chemistry (especially alkalinity and calcium) to determine whether the apparent discrepancy between laboratory and field dissolution rates still exists when a mechanistic reactive transport model is used to interpret rates in a natural system. A suite of reactions, including sulfate reduction and methane production, anaerobic methane oxidation, CaCO3 precipitation, dissolution of plagioclase, and precipitation of secondary clay minerals, along with diffusive transport and fluid and solid burial, control the pore fluid chemistry in Site 984 sediments. The surface area of plagioclase in intimate contact with the pore fluid is estimated to be 6.9 m2/g based on both grain geometry and on the depletion of 234U/238U in the sediment via a-recoil loss. Various rate laws for plagioclase dissolution are considered in the modeling, including those based on (1) a linear transition state theory (TST) model, (2) a nonlinear dependence on the undersaturation of the pore water with respect to plagioclase, and (3) the effect of inhibition by dissolved aluminum. The major element and isotopic methods predict similar dissolution rate constants if additional lowering of the pore water 234U/238U activity ratio is attributed to isotopic exchange via recrystallization of marine calcite, which makes up about 10-20 percent of the Site 984 sediment. The calculated dissolution rate for plagioclase corresponds to a rate constant that is about 102 to 105 times smaller than

  1. Using crystal ages and compositions to evaluate the generation of rhyolite at Tarawera, New Zealand

    NASA Astrophysics Data System (ADS)

    Klemetti, E.; Cooper, K.

    2008-12-01

    One of the key issues in the study of silicic melts in the upper crust is exactly how rhyolite is generated, either through melting of a silicic protolith, direct fractionation of a mafic parent liquid or the filter-pressing of a rhyolitic liquid from a crystal mush. Direct evidence of the process that generates rhyolite is difficult to find as historical rhyolites are rare, with only two major rhyolite eruptions in the last 100 years (Katmai, Alaska, 1912 and Chaiten, Chile, 2008). We present a detailed study of crystal ages in rhyolite young enough (< a few thousand years) to allow use of 226Ra-230Th-238U disequilibria to construct detailed chronologies of major- and trace-phase crystallization, which provides new constraints on the mechanisms for rhyolite generation. The Kaharoa Rhyolite from Tarawera, New Zealand is a small volume rhyolite (~7 km3) that erupted from a linear set of domes in the Haroharo Caldera at ~1305 A.D. Although this volume pales in comparison to large volume rhyolite eruptions such as Yellowstone or Katmai, the mechanisms that produced this caldera-related magma can offer clues into the primary means of rhyolite generation in larger systems. We have measured bulk plagioclase feldspar ages and in-situ zircon ages in the Kaharoa Rhyolite using 230Th-238U and 226Ra-230Th-238U disequilibria. These data demonstrate that plagioclase in the Kaharoa Rhyolite crystallized within a maximum of a few thousand years before the eruption of the rhyolite, and likely within a few hundred years. In contrast, zircon spot ages span a range from within error of the eruption age to hundreds of thousands of years prior to eruption. This age distribution requires a mechanism to produce rhyolitic melts that preserve only young major phases (like plagioclase) while simultaneously incorporating trace phases (like zircon) that have a much longer crystallization history. There are two main ways to develop this type of phase/age distribution in a magma: (1) bulk

  2. TP and depth conditions of the basalt suites from the Crescent Formation on the Olympic Peninsula

    NASA Astrophysics Data System (ADS)

    Chu, J.; Haileab, B.; Denny, A. C.; Harrison, B. K.

    2012-12-01

    The Crescent Formation on the Olympic Peninsula, Washington, has two main volcanic members: the submarine Lower Crescent member (LCr) and the subaerial Upper Crescent member (UCr). Despite numerous studies linking these basalt suites to a slab-window, hotspot, or a rifted margin origin, no clear verdict has been reached in regarding to the petrogenesis of these basalts. Insights into plausible magmatic sources of the Crescent Formation and the differentiation of the LCr and UCr units can be gained by determining pressure and temperature conditions of the rising magma. To estimate T-P conditions within 1σ error, phenocrysts collected from flows were analyzed using clinopyroxene-melt and plagioclase-melt geothermobarometry, with whole-rock compositions representing the host melt. Tests were done on 19 LCr clinopyroxene phenocrysts, 11 UCr clinopyroxenes phenocrysts, 22 LCr plagioclase phenocrysts, and 26 UCr plagioclase phenocrysts. The analysis was based on pyroxene cores and rim given the absence of significant zonation differences in the petrographic or chemical analyses. Using a set of clinopyroxene-melt geothermobarometers summarized in Putirka (2008), the last equilibrium crystallization of the LCr clinopyroxenes occurred at temperature ranging from 1091.4 - 1187.9 ± 21.46 °C and pressure ranging from 1.98- 7.04 ± 1.39 kbar. However, when testing for plagioclase-melt equilibrium of the LCr basalts, the results indicated that the plagioclase had undergone fractional crystallization. For the UCr basalts, the temperature range using clinopyroxene-melt thermometry is 1025.9 - 1186.2 ± 51.58 °C and using plagioclase-melt thermometry is 1118.6 - 1251.3 ± 40.2 °C. The pressure range using clinopyroxene-melt barometry is 1.1 - 7.2 ± 2.12 kbar and using plagioclase-melt-thermometry is 0.1 - 6.4 ± 2.4 kbar. Both members show similar clinopyroxene crystallization depths between 6.15 - 21.76 km for the Lower Crescent basalts and 3.40 - 22.26 km for the Upper

  3. Unraveling eclogite-facies fluid-rock interaction using thermodynamic modelling and whole-rock experiments: the in-situ eclogitization of metapelites from Val Savenca (Sesia Zone, Western Alps)

    NASA Astrophysics Data System (ADS)

    Jentsch, Marie; Tropper, Peter

    2015-04-01

    A common feature of HP and UHP terranes is the subduction of crustal rocks to great depths. Previous investigations have shown that this process is triggered by fluids present during an eclogite-facies metamorphic overprint. An examples is exposed in the metapelites at Val Savenca in the Sesia-Lanzo Zone, Italy where Alpine eclogite-facies metamorphism and fluid flow led to partial transformation of Variscan amphibolite-eclogite facies metapelites (garnet + biotite + sillimanite + K-feldspar + plagioclase + quartz) to zoisite ± jadeite + kyanite + phengite + quartz. This transformation took place under P-T conditions of 1.7 - 2.1 GPa at 600°C and low a(H2O) of 0.3-0.6. The replacement of plagioclase by jadeite + zoisite + kyanite + quartz takes place also along former fractures. Biotite is replaced by the assemblage phengite + omphacite ± kyanite adjacent to former plagioclase, otherwise by phengite + rutile/titanite. Garnet and clinopyroxene show variable compositions depending in which micro-domain (plagioclase or biotite) they grew. The extreme development of microdomains can best be studied by thermodynamic pseudosection modelling of individual microdomains using stoichiometric mixtures of protolith minerals from this domain and the program DOMINO (De Capitani & Petrakakis, 2010). The aim of these calculations was: 1.) to reproduce the observed mineral assemblage and 2.) to provide constraints on the amount of fluid present in the transformation. The results so far indicate that the amount of fluid was very low, otherwise paragonite would have formed instead of jadeite and reproduction of the observed mineral assemblage has only been partly successful so far since biotite is still stable in the calculations. In addition to understand the role of fluids in the mineralogical and textural transformation piston-cylinder experiments with a fresh, natural orthogneiss granulite from the Moldanubic Unit in upper Austria with the assemblage garnet + biotite + K

  4. Petrological cannibalism: the chemical and textural consequences of incremental magma body growth

    NASA Astrophysics Data System (ADS)

    Cashman, Kathy; Blundy, Jon

    2013-09-01

    The textures of minerals in volcanic and plutonic rocks testify to a complexity of processes in their formation that is at odds with simple geochemical models of igneous differentiation. Zoning in plagioclase feldspar is a case in point. Very slow diffusion of the major components in plagioclase means that textural evidence for complex magmatic evolution is preserved, almost without modification. Consequently, plagioclase affords considerable insight into the processes by which magmas accumulate in the crust prior to their eventual eruption or solidification. Here, we use the example of the 1980-1986 eruptions of Mount St. Helens to explore the causes of textural complexity in plagioclase and associated trapped melt inclusions. Textures of individual crystals are consistent with multiple heating and cooling events; changes in total pressure ( P) or volatile pressure () are less easy to assess from textures alone. We show that by allying textural and chemical analyses of plagioclase and melt inclusions, including volatiles (H2O, CO2) and slow-diffusing trace elements (Sr, Ba), to published experimental studies of Mount St. Helens magmas, it is possible to disambiguate the roles of pressure and temperature to reconstruct magmatic evolutionary pathways through temperature-pressure-melt fraction ( T-- F) space. Our modeled crystals indicate that (1) crystallization starts at > 300 MPa, consistent with prior estimates from melt inclusion volatile contents, (2) crystal cores grow at = 200-280 MPa at F = 0.65-0.7, (3) crystals are transferred to = 100-130 MPa (often accompanied by 10-20 °C of heating), where they grow albitic rims of varying thicknesses, and (4) the last stage of crystallization occurs after minor heating at ~ 100 MPa to produce characteristic rim compositions of An50. We hypothesize that modeled decreases in excess of ~50 MPa most likely represent upward transport through the magmatic system. Small variations in modeled , in contrast, can be effected by

  5. A tale of two magmas: Petrological insights into mafic and intermediate Plinian volcanism at Volcán de Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Crummy, J. M.; Savov, I. P.; Morgan, D. J.; Wilson, M.; Loughlin, S.; Navarro-Ochoa, C.

    2012-12-01

    Volcán de Colima in western Mexico explosively erupts basaltic to high-silica andesitic magmas. Detailed petrological and geochemical analyses of Holocene tephra fallout deposits reveal two distinct magma types: I. typical calc-alkaline series magmas; and II. mixed calc-alkaline - alkaline magmas. Group I magmas comprise basalt to high-silica andesite (50.7 to 60.4 wt.% SiO2) and typically contain phenocrysts of plagioclase + clinopyroxene + orthopyroxene + Fe-Ti oxides ± hornblende ± olivine. Crystallinity varies from 10-25 vol.% dominated by plagioclase in a groundmass comprising highly vesiculated glass with abundant microlites. Back-scatter electron (BSE) microscope images together with electron microprobe analyses (EPMA) reveal complex zoning patterns and compositional variations in plagioclase and pyroxene phenocrysts. Large scale resorption events with dissolution surfaces cross-cutting multiple growth zones, combined with large steps in An content of up to 20 mol.% in plagioclase, and Mg# varying from 0.74 to 0.86 in clinopyroxene and orthopyroxene, indicates destabilisation and recrystallisation in a more mafic melt: increases in Cr coincident with step increases in Mg# reveal mafic magma recharge. Many plagioclase and pyroxene phenocrysts record multiple magma recharge events; while small-scale oscillations reveal compositional fluctuations as a result of decompression and degassing. Group II magmas comprise basalt to basaltic-andesite (48.3 to 57.5 wt.% SiO2) and contain 10-15 vol.% crystals comprising clinopyroxene + olivine + phlogopite + plagioclase + Fe-Ti oxides ± hornblende ± orthopyroxene. The groundmass comprises highly vesiculated glass with abundant microlites of the same mineral phases. Clinopyroxene phenocrysts have magnesian cores (Mg# 0.88-0.89) that display strong dissolution with clear resorption and recrystallisation. EPMA analyses reveal large compositional differences with the surrounding growth zone (Mg# 0.80) indicating

  6. Mineralogical composition of lunar central crater peaks inferred from NIR observations by the SIR-2 reflectance spectrometer on Chandrayaan-1

    NASA Astrophysics Data System (ADS)

    Mall, Urs; Combe, Jean-Philippe; Bugiolacchi, Roberto; Bhatt, Megha; Bhattacharya, Satadru; McKenna-Lawlor, Susan; SIR-2 Collaboration

    Since the return of lunar samples by the Apollo missions the lunar crust, which is believed to have been formed by differentiation of a global magma ocean, is known to be mostly made up of anorthosite (a plagioclase-rich rock). Denser, iron-rich and magnesium-rich minerals such as pyroxenes and olivines are sunk deeper into the interior. The mineralogy of the crust provides key information for refining chemical and thermodynamical models of lunar formation and evolution. Remote observations of the lunar crust and its quantitative compositional identification were partly hampered in the past from the experimental side by the fact that a combination of good spectral and spatial resolution of an imaged surface area is difficult to achieve. Also the mineralogical spectral deconvolution process of such observations is in itself quite complex. The identification of plagioclase has proved to pose a particular challenge. This challenge originates not only from the fact that the plagioclase characterizing absorption feature, which is located at around 1.3 m, is only detectable if trace amounts of Fe2+ are present in the mineral's structure, but also due to the fact that olivine and pyroxene have strong absorption bands around 1 m which dominate nearinfrared spectra. In addition, any analysis is complicated by the fact that experimental laboratory work has clearly demonstrated that changes in reflectance with increasing peak shock pressures in experimentally shocked plagioclase feldspar-rich rocks can occur and that these changes are nonlinear [1]. Despite these difficulties, new near-infrared spectrometers recently flown around the Moon have led to the identification of plagioclase on the lunar surface [2,3]. Among this new generation of spectrometers is the SIR-2 instrument, [4] flown on Chandrayaan-1. This instrument is a grating-based, compact, high-resolution pointing spectrometer operating in the spectral range 0.9-2.4 m. SIR-2 combines high spectral resolution ( 0

  7. Petrology of arkosic sandstones, Pennsylvanian Minturn Formation and Pennsylvanian and Permian Sangre de Cristo Formation, Sangre de Cristo Range, Colorado - data and preliminary interpretations

    USGS Publications Warehouse

    Lindsey, D.A.

    2000-01-01

    This report describes the mineral and chemical composition of immature, arkosic sandstones of the Pennsylvanian Minturn and Pennsylvanian and Permian Sangre de Cristo Formations, which were derived from the Ancestral Rocky Mountains. Located in the Sangre de Cristo Range of southern Colorado, the Minturn and Sangre de Cristo Formations contain some of the most immature, sodic arkoses shed from the Ancestral Rocky Mountains. The Minturn Formation was deposited as fan deltas in marine and alluvial environments; the Sangre de Cristo Formation was deposited as alluvial fans. Arkoses of the Minturn and Sangre de Cristo Formations are matrix-rich and thus may be properly considered arkosic wackes in the terminology of Gilbert (Williams and others, 1954). In general, potassium feldspar and plagioclase are subequal in abundance. Arkose of the Sangre de Cristo Formation is consistently plagioclase-rich; arkose from the Minturn Formation is more variable. Quartz and feldspar grains are accompanied by a few percent rock fragments, consisting mostly of intermediate to granitic plutonic rocks, gneiss, and schist. All of the rock fragments seen in sandstone are present in interbedded conglomerate, consistent with derivation from a Precambrian terrane of gneiss and plutonic rocks much like that exposed in the present Sangre de Cristo Range. Comparison of mineral and major oxide abundances reveals a strong association of detrital quartz with SiO2, all other detrital minerals (totaled) with Al2O3, potassium feldspar plus mica with K2O, and plagioclase with Na2O. Thus, major oxide content is a good predictor of detrital mineralogy, although contributions from matrix and cement make these relationships less than perfect. Detrital minerals and major oxides tend to form inverse relationships that reflect mixtures of varying quantities of minerals; when one mineral is abundant, the abundance of others declines by dilution. In arkose of the Minturn and Sangre de Cristo Formations, the

  8. Migmatites formed by water-fluxed partial melting of a leucogranodiorite protolith: Microstructures in the residual rocks and source of the fluid

    NASA Astrophysics Data System (ADS)

    Sawyer, E. W.

    2010-05-01

    The Opatica Subprovince in the Canadian Shield is a late Archaean (2761-2702 Ma) plutonic arc formed above a north-dipping subduction zone. Anatexis (2690-2677 Ma) of leucogranodiorite and leucotonalite orthogneisses in the Opatica generated migmatites in an area of north-vergent back thrusts visible at the surface and in L ITHOPROBE seismic profile 48. Schollen diatexite migmatites occur in the thrusts and metatexite migmatites between them. The modal mineralogy, microstructure, and whole rock major, trace and oxygen isotope compositions of the protolith and migmatites were investigated to; 1) determine the melting reaction, 2) find microstructural criteria for identifying residual rocks in leucocratic systems where there is no melanosome, and 3) to determine the source of the fluid involved in anatexis. Partial melting of the protolith did not change the mineral assemblage, but the abundance of quartz and microcline both declined and plagioclase and biotite increased in the residual rocks. Quartz, plagioclase and microcline show evidence for dissolution and biotite does not. Thus, water-fluxed melting of quartz + plagioclase + microcline occurred. A mass balance indicates 25-30% partial melting. The melting reaction consumed the microcline and created essentially monomineralic domains of plagioclase. Extraction of 80-90% of the melt left a thin film of melt on the grain boundaries, and crystallization of these in the plagioclase domains created diagnostic microstructures. Microcline fills the last remaining pore space and forms high-aspect ratio crystals between plagioclases or triangular crystals at grain junctions. Quartz shows a range of morphologies, from high-aspect ratio films through the "string of beads" to isolated rounded grains, as the microstructure progressively equilibrated after crystallisation. Most accessory phases, including zircon, remained in the residuum. However, almost all the schollen migmatites have high contents of Th, U, Nb, Ta and REE

  9. The pre-eruptive magma plumbing system of the 2007-2008 dome-forming eruption of Kelut volcano, East Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Jeffery, A. J.; Gertisser, R.; Troll, V. R.; Jolis, E. M.; Dahren, B.; Harris, C.; Tindle, A. G.; Preece, K.; O'Driscoll, B.; Humaida, H.; Chadwick, J. P.

    2013-07-01

    Kelut volcano, East Java, is an active volcanic complex hosting a summit crater lake that has been the source of some of Indonesia's most destructive lahars. In November 2007, an effusive eruption lasting approximately 7 months led to the formation of a 260-m-high and 400-m-wide lava dome that displaced most of the crater lake. The 2007-2008 Kelut dome comprises crystal-rich basaltic andesite with a texturally complex crystal cargo of strongly zoned and in part resorbed plagioclase (An47-94), orthopyroxene (En64-72, Fs24-32, Wo2-4), clinopyroxene (En40-48, Fs14-19, Wo34-46), Ti-magnetite (Usp16-34) and trace amounts of apatite, as well as ubiquitous glomerocrysts of varying magmatic mineral assemblages. In addition, the notable occurrence of magmatic and crustal xenoliths (meta-basalts, amphibole-bearing cumulates, and skarn-type calc-silicates and meta-volcaniclastic rocks) is a distinct feature of the dome. New petrographical, whole rock major and trace element data, mineral chemistry as well as oxygen isotope data for both whole rocks and minerals indicate a complex regime of magma-mixing, decompression-driven resorption, degassing and crystallisation and crustal assimilation within the Kelut plumbing system prior to extrusion of the dome. Detailed investigation of plagioclase textures alongside crystal size distribution analyses provide evidence for magma mixing as a major pre-eruptive process that blends multiple crystal cargoes together. Distinct magma storage zones are postulated, with a deeper zone at lower crustal levels or near the crust-mantle boundary (>15 km depth), a second zone at mid-crustal levels (~10 km depth) and several magma storage zones distributed throughout the uppermost crust (<10 km depth). Plagioclase-melt and amphibole hygrometry indicate magmatic H2O contents ranging from ~8.1 to 8.6 wt.% in the lower crustal system to ~1.5 to 3.3 wt.% in the mid to upper crust. Pyroxene and plagioclase δ18O values range from 5.4 to 6.7 ‰, and 6

  10. Geochemistry, geochronolgy and tectonic significance of high-temperature meta-ophiolitic rocks: possible relation to Eocene South-Neotethyan arc magmatism (Malatya area, SE Anatolia)

    NASA Astrophysics Data System (ADS)

    Parlak, O.; Karaoǧlan, F.; Thöni, M.; Robertson, A.; Okay, A.; Koller, F.

    2012-04-01

    A meta-ophiolitic body ("Berit meta-ophiolite") is exposed within a belt of regional-scale thrusts that make up the southeast Anatolian orogenic belt. To the south (southeast of Doğanşehir town) the outcrop is tectonically bounded by the Eocene Maden complex or the Pütürge metamorphic massif, whereas the Malatya metamorphic unit is exposed to the north. The meta-ophiolitic rocks exhibit polyphase deformation including folding and thrust imbrication. Both the meta-ophiolitic rocks and the Malatya metamorphic unit are intruded by an Eocene (48-43 My) granitoid body. The metaophiolite body is characterized by pyroxene-granulite, garnet-amphibolite, amphibolite, amphibole-metagabbro, pyroxene-hornblendite, epidote-amphibole schist, plagioclase-amphibole schist, quartz-plagioclase-amphibole schist, muscovite-epidote-plagioclase-amphibole schist and epidote-plagioclase-amphibole schist. The major and trace element chemistry are consistent with an ophiolitic origin. The highest metamorphic grade is represented by pyroxene-granulite facies rocks that are enveloped by amphibolitic facies rocks, probably as a result of exhumation-related retrograde metamorphism. The pyroxene-granulite facies mineral paragenesis is characterized by garnet+pyroxene+amhibole+ plagioclase+kyanite±corundum±zoisite. In contrast, the garnet amphibolite facies paragenesis is: garnet+pyroxene+amphibole+plagioclase+quartz+rutile±zoisite. The main mineral phases in both facies lack compositional zoning. A Sm-Nd (pyroxene-garnet-whole rock) isochron age of 50.6±3.1 Ma was obtained from the granulite facies rock, which is interpreted as the time of peak granulite facies metamorphism. Pressure-temperature of the granulite facies rocks is estimated as 13.2-17.5 kbar and 690°C-941°C, equivalent to granulite-eclogite facies boundary metamorphic conditions. In addition, two sub-parallel, NE-SW-trending belts of unmetamorphosed Upper Cretaceous ophiolitic rocks are present within the SE Anatolian

  11. Tissintite, (Ca, Na, □)AlSi2O6, a highly-defective, shock-induced, high-pressure clinopyroxene in the Tissint martian meteorite

    NASA Astrophysics Data System (ADS)

    Ma, Chi; Tschauner, Oliver; Beckett, John R.; Liu, Yang; Rossman, George R.; Zhuravlev, Kirill; Prakapenka, Vitali; Dera, Przemyslaw; Taylor, Lawrence A.

    2015-07-01

    Tissintite is a new vacancy-rich, high-pressure clinopyroxene, with a composition essentially equivalent to plagioclase. It was discovered in maskelynite (shocked plagioclase) and is commonly observed included within, or in contact with, shock-melt pockets in the Tissint meteorite, a depleted olivine-phyric shergottite fall from Mars. The simple composition of tissintite (An58-69) and its precursor plagioclase (An59-69) together with the limited occurrence, both spatially (only in maskelynite less than ˜25 μm of a shock melt pocket) and in terms of bulk composition, make tissintite a "goldilocks" phase. It formed during a shock event severe enough to allow nucleation and growth of vacancy-rich clinopyroxene from a melt of not too calcic and not too sodic plagioclase composition that was neither too hot nor too cold. With experimental calibration, these limitations on occurrence can be used to place strong constraints on the thermal history of a shock event. The kinetics for nucleation and growth of tissintite are probably slower for more-sodic plagioclase precursors, so tissintite is most likely to occur in depleted olivine-phyric shergottites like Tissint and other highly shocked meteorites and lunar and terrestrial rocks that consistently contained calcic plagioclase precursors in the appropriate compositional range for a shock of given intensity. Tissintite, (Ca0.45Na0.31□0.24) (Al0.97Fe0.03Mg0.01) (Si1.80Al0.20)O6, is a C 2 / c clinopyroxene, containing 42-60 mol% of the Ca-Eskola component, by far the highest known. The cell parameters are a = 9.21 (17) Å, b = 9.09 (4) Å, c = 5.20 (2) Å, β = 109.6 (9)°, V = 410 (8) Å3, Z = 4. The density is 3.32 g/cm3 and we estimate a cell volume for the Ca-Eskola end-member pyroxene of 411 ± 13 Å3, which is consistent with a previous estimate and, therefore, supports the importance of this component in clinopyroxenes from ultra-high pressure metamorphic rocks from the Earth's upper mantle. At least in C 2 / c

  12. Low magnification EBSD mapping of texture distribution in a fine-grained matrix

    NASA Astrophysics Data System (ADS)

    Gardner, Joseph; Mariani, Elisabetta; Wheeler, John

    2016-04-01

    The study of texture (CPO) in rocks is often restricted to individual phases within a given sample or specific area of said sample. Large scale EBSD mapping of the matrix of a greenschist facies albite mylonite has shown that an overall significant CPO within albite grains is strongly domainal, and each domain has a unique CPO that is independent of both common slip systems in plagioclase and the specimen geometry (i.e. foliation and lineation). Observational evidence suggests the metamorphic breakdown of plagioclase to albite (Ab) plus a Ca-bearing phase (clinozoisite, Cz) has produced a two phase mixture in which each phase has a contrasting solubility. New grains of albite are thought to nucleate epitaxially from original plagioclase as a reaction front passes through parent grains. A pseudomorphic region of Ab plus Cz after an original plagioclase crystal, protected from intense deformation by enclosure in a cm-scale augite clast, gives insight into pre-deformation daughter grain distributions. The albite in the region inherits a strong CPO and 180° misorientation peak from a relict twin pattern due to epitaxial growth while clinozoisite is randomly distributed and oriented (despite some grains nucleating from the plagioclase parent twin boundary). In the deformed matrix, daughter Ab is seen to be the more mobile phase, having undergone obvious dissolution, transport and reprecipitation into fractures and pressure shadows, whereas Cz grains are relatively insoluble and rotate into parallelism with the foliation, forming bands that anastamose around Cpx porphyroclasts. Despite this modification, albite in the matrix retains significant CPOs that comprise distinct domains with sharp boundaries. A 180° misorientation peak thought to be a signature of twinning inherited from parent plagioclase is also observed in each domain. Why a CPO should be preserved under these conditions (contrary to our traditional understanding that CPOs are a signature of dislocation

  13. Behaviour of Sr, Ca, Nd and Li Isotopes During Granite Weathering: the Margeride Massif, France

    NASA Astrophysics Data System (ADS)

    Negrel, P.; Bullen, T. D.; Millot, R.

    2008-12-01

    The Massif Central region of France contains numerous mineral water springs with salinities up to 6 g/L. These high salinities develop due to water-rock interaction processes accompanying weathering of granitic rocks such as the Margeride massif, a 5 km-deep laccolith having an age of 323 ± 12 Ma and consisting mainly of granitoid and gneiss. In order to better constrain weathering processes, we have determined the Sr, Nd, Ca and Li-isotope compositions of the Margeride granite, weathered granite (arene) and saprolite, sediment and soil overlying the granite, and groundwater samples (e.g., mineral water springs) associated with the massif. 87Sr/86Sr ratios increase in the order apatite-plagioclase-K-feldspar-arene- sediments and soils-biotite, and are well correlated with Rb/Sr ratios. Mineral waters have 87Sr/86Sr ratios similar to that of plagioclase, but have higher Rb/Sr ratios. 44Ca/40Ca ratios of plagioclase and apatite are similar to that of the whole rock, while those of K-feldspar and biotite are significantly less. 44Ca/40Ca ratios of arene, soil and sediment are similar to or less than that of K- feldspar, reflecting complete loss of Ca from plagioclase and apatite during weathering. In contrast, 44Ca/40Ca ratios for the mineral waters are similar to or substantially greater than that of plagioclase, reflecting extensive calcium carbonate precipitation during ascent of the waters along the rock fracture network. 44Ca/40Ca ratios of the waters are as much as 3.5 per mil greater than that of seawater, and thus contain the heaviest Ca yet reported for terrestrial materials. 7Li/6Li ratios differ by a few per mil among the granite minerals; of the weathering products, arene and soils have the least 7Li/6Li ratios, while river bank sediment and arene surface sediment have progressively greater ratios. 7Li/6Li ratios of the mineral waters have the greatest values, reflecting preferential retention of 6Li in the weathering products. 143Nd/144Nd ratios are

  14. Laboratory Simulated Acid-Sulfate Weathering of Basaltic Materials: Implications for Formation of Sulfates at Meridiani Planum and Gusev Crater, Mars

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Ming, Douglas W.; Morris, Richard V.; Mertzman, A.

    2006-01-01

    Acid-sulfate weathering of basaltic materials is a candidate formation process for the sulfate-rich outcrops and rocks at the MER rover Opportunity and Spirit landing sites. To determine the style of acid-sulfate weathering on Mars, we weathered basaltic materials (olivine-rich glassy basaltic sand and plagioclase feldspar-rich basaltic tephra) in the laboratory under different oxidative, acid-sulfate conditions and characterized the alteration products. We investigated alteration by (1) sulfuric-acid vapor (acid fog), (2) three-step hydrothermal leaching treatment approximating an open system and (3) single-step hydrothermal batch treatment approximating a "closed system." In acid fog experiments, Al, Fe, and Ca sulfates and amorphous silica formed from plagioclase-rich tephra, and Mg and Ca sulfates and amorphous silica formed from the olivine-rich sands. In three-step leaching experiments, only amorphous Si formed from the plagioclase-rich basaltic tephra, and jarosite, Mg and Ca sulfates and amorphous silica formed from olivine-rich basaltic sand. Amorphous silica formed under single-step experiments for both starting materials. Based upon our experiments, jarosite formation in Meridiani outcrop is potential evidence for an open system acid-sulfate weathering regime. Waters rich in sulfuric acid percolated through basaltic sediment, dissolving basaltic phases (e.g., olivine) and forming jarosite, other sulfates, and iron oxides. Aqueous alteration of outcrops and rocks on the West Spur of the Columbia Hills may have occurred when vapors rich in SO2 from volcanic sources reacted with basaltic materials. Soluble ions from the host rock (e.g., olivine) reacted with S to form Ca-, Mg-, and other sulfates along with iron oxides and oxyhydroxides.

  15. Phase relations in the greenschist-blueschist-amphibolite-eclogite facies in the system Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O (NCFMASH), with application to metamorphic rocks from Samos, Greece

    NASA Astrophysics Data System (ADS)

    Will, Thomas; Okrusch, Martin; Schmädicke, Esther; Chen, Guoli

    Calculated phase equilibria among the minerals sodic amphibole, calcic amphibole, garnet, chloritoid, talc, chlorite, paragonite, margarite, omphacite, plagioclase, carpholite, zoisite/clinozoisite, lawsonite, pyrophyllite, kyanite, sillimanite, quartz and H2O are presented for the model system Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O (NCFMASH), which is relevant for many greenschist, blueschist, amphibolite and eclogite facies rocks. Using the activity-composition relationships for multicomponent amphiboles constrained by Will and Powell (1992), equilibria containing coexisting calcic and sodic amphiboles could be determined. The blueschist-greenschist transition reaction in the NCFMASH system, for example, is defined by the univariant reaction sodic amphibole + zoisite=calcic amphibole + chlorite + paragonite + plagioclase (+ quartz + H2O) occurring between approximately 420 and 450°C at 9.5 to 10kbar. The calculated petrogenetic grid is a valuable tool for reconstructing the PT-evolution of metabasic rocks. This is shown for rocks from the island of Samos, Greece. On the basis of mineral and whole rock analyses, PT-pseudosections were calculated and, together with the observed mineral assemblages and reaction textures, are used to reconstruct PT-paths. For rocks from northern Samos, pseudomorphs after lawsonite preserved in garnet, the assemblage sodic amphibole-garnet-paragonite-chlorite-zoisite-quartz and the retrograde appearance of albitic plagioclase and the formation of calcic amphibole around sodic amphibole constrain a clockwise PT-path that reaches its thermal maximum at some 520°C and 19kbar. The derived PT-trajectory indicates cooling during exhumation of the rocks and is similar to paths for rocks from the western part of the Attic-Cycladic crystalline complex. Rocks from eastern Samos indicate lower pressures and are probably related to high-pressure rocks from the Menderes Massif in western Turkey.

  16. Late Neoproterozoic Nuqara Dokhan Volcanics, Central Eastern Desert, Egypt: Geochemistery and petrogenesis

    NASA Astrophysics Data System (ADS)

    Hassan, Tharwat; Asran, Asran; Amron, Taha; Natflos, Theo

    2014-05-01

    The Nuqara volcanic is one of the northernmost outcrops of the Arabian-Nubian Shield Dokhan volcanics. The origin and tectonic setting of the late Neoproterozoic Dokhan volcanics (ca. 610-560 Ma) in the Egyptian Eastern Desert is highly debated. The debate concerns the tectonic setting where they formed during transition between convergent to extensional regime or after the East- and the West-Gondwana collision (~600Ma). In order to solve this problem, lavas from Nuqara area were studied geologically and geochemically. Nuqara Dokhan volcanics comprises two main rock suites: (a) an intermediate volcanic suite, consisting of basaltic andesite, andesite and their associated pyroclastics rocks; and (b) a felsic volcanic suite composed of dacite, rhyolite and ignimbrites. The two suites display well-defined major and trace element trends and continuum in composition with wide ranges in SiO2 (52-75.73%), CaO (9.19-0.22%), MgO (5.29-0.05%), Sr (1367-7.4 ppm), Zr (688.5-172.7 ppm), Cr (207-0.4 ppm), and Ni (94.3-0.2 ppm). The Nuqara Dokhan volcanics are characterized by strong enrichment in LILE relative to HFSE and affiliated to the calc-alkaline subducted - related magmatism. Geochemical Modeling displays that the evolution of these rocks was governed by fractional crystallization of plagioclase, amphiboles, pyroxene, magnetite and apatite in the intermediate varieties and plagioclase, amphibole, magnetite, apatite and zircon in the felsic varieties. The obtained mineral chemistry of these volcanics reveals: (a) Plagioclase range in composition from An55 to An40 in basaltic andesite and from An39 to An24 in andesite. (b) Alkali feldspars have sanidine composition. (c) Clinopyroxenes have augite composition. The low Al2O3 contents (1.94-5.588 wt %) indicate that clinopyroxene crystallized at low - pressure conditions. (d) Amphiboles have magnesio- hornblende composition.

  17. Low-(18)O Silicic Magmas: Why Are They So Rare?

    SciTech Connect

    Balsley, S.D.; Gregory, R.T.

    1998-10-15

    LOW-180 silicic magmas are reported from only a small number of localities (e.g., Yellowstone and Iceland), yet petrologic evidence points to upper crustal assimilation coupled with fractional crystallization (AFC) during magma genesis for nearly all silicic magmas. The rarity of 10W-l `O magmas in intracontinental caldera settings is remarkable given the evidence of intense 10W-l*O meteoric hydrothermal alteration in the subvolcanic remnants of larger caldera systems. In the Platoro caldera complex, regional ignimbrites (150-1000 km3) have plagioclase 6180 values of 6.8 + 0.1%., whereas the Middle Tuff, a small-volume (est. 50-100 km3) post-caldera collapse pyroclastic sequence, has plagioclase 8]80 values between 5.5 and 6.8%o. On average, the plagioclase phenocrysts from the Middle Tuff are depleted by only 0.3%0 relative to those in the regional tuffs. At Yellowstone, small-volume post-caldera collapse intracaldera rhyolites are up to 5.5%o depleted relative to the regional ignimbrites. Two important differences between the Middle Tuff and the Yellowstone 10W-180 rhyolites elucidate the problem. Middle Tuff magmas reached water saturation and erupted explosively, whereas most of the 10W-l 80 Yellowstone rhyolites erupted effusively as domes or flows, and are nearly devoid of hydrous phenocrysts. Comparing the two eruptive types indicates that assimilation of 10W-180 material, combined with fractional crystallization, drives silicic melts to water oversaturation. Water saturated magmas either erupt explosively or quench as subsurface porphyrins bejiire the magmatic 180 can be dramatically lowered. Partial melting of low- 180 subvolcanic rocks by near-anhydrous magmas at Yellowstone produced small- volume, 10W-180 magmas directly, thereby circumventing the water saturation barrier encountered through normal AFC processes.

  18. Plutonic xenoliths from Martinique, Lesser Antilles: evidence for open system processes and reactive melt flow in island arc crust

    NASA Astrophysics Data System (ADS)

    Cooper, George F.; Davidson, Jon P.; Blundy, Jon D.

    2016-10-01

    The Lesser Antilles Volcanic Arc is remarkable for the abundance and variety of erupted plutonic xenoliths. These samples provide a window into the deeper crust and record a more protracted crystallisation history than is observed from lavas alone. We present a detailed petrological and in situ geochemical study of xenoliths from Martinique in order to establish their petrogenesis, pre-eruptive storage conditions and their contribution to construction of the sub-volcanic arc crust. The lavas from Martinique are controlled by crystal-liquid differentiation. Amphibole is rarely present in the erupted lavas, but it is a very common component in plutonic xenoliths, allowing us to directly test the involvement of amphibole in the petrogenesis of arc magmas. The plutonic xenoliths provide both textural and geochemical evidence of open system processes and crystal `cargos'. All xenoliths are plagioclase-bearing, with variable proportions of olivine, spinel, clinopyroxene, orthopyroxene and amphibole, commonly with interstitial melt. In Martinique, the sequence of crystallisation varies in sample type and differs from other islands of the Lesser Antilles arc. The compositional offset between plagioclase (~An90) and olivine (~Fo75), suggests crystallisation under high water contents and low pressures from an already fractionated liquid. Texturally, amphibole is either equant (crystallising early in the sequence) or interstitial (crystallising late). Interstitial amphibole is enriched in Ba and LREE compared with early crystallised amphibole and does not follow typical fractionation trends. Modelling of melt compositions indicates that a water-rich, plagioclase-undersaturated reactive melt or fluid percolated through a crystal mush, accompanied by the breakdown of clinopyroxene, and the crystallisation of amphibole. Geothermobarometry estimates and comparisons with experimental studies imply the majority of xenoliths formed in the mid-crust. Martinique cumulate xenoliths are

  19. Ultramafic inclusions and host alkali olivine basalts of the southern coastal plain of the Red Sea, Kingdom of Saudi Arabia

    USGS Publications Warehouse

    Ghent, Edward D.; Coleman, Robert Griffin; Hadley, Donald G.

    1979-01-01

    A variety of mafic and ultramafic inclusions occur within the pyroclastic components of the Al Birk basalt, erupted on the southern Red Sea coastal plain of Saudi Arabia from Pleistocene time to the present. Depleted harzburgites are the only inclusions contained within the basalts that were erupted through Miocene oceanic crust (15 km thick) in the vicinity of Jizan, whereas to the north in the vicinity of Al Birk, alkali basalts that were erupted through a thicker Precambrian crust (48 km thick) contain mixtures of harzburgites, cumulate gabbro, and websterite inclusions accompanied by large (> 2 cm) megacrysts of glassy alumina-rich clinopyroxene, plagioclase, and spinel. Microprobe analyses of individual minerals from the harzburgites, websterites, and cumulate gabbros reveal variations in composition that can be related to a complex mantle history during the evolution of the alkali basalts. Clinopyroxene and plagioclase megacrysts may represent early phases that crystallized from the alkali olivine basalt magma at depths less than 35 km. Layered websterites and gabbros with cumulate plagioclase and clinopyroxene may represent continuing crystallization of the alkali olivine basalt magma in the lower crust when basaltic magma was not rapidly ascending. It is significant that the megacrysts and cumulate inclusions apparently form only where the magmas have traversed the Precambrian crust, whereas the harzburgite-bearing basalts that penetrated a much thinner Miocene oceanic crust reveal no evidence of mantle fractionation. These alkali olivine basalts and their contained inclusions are related in time to present-day rifting in the Red Sea axial trough. The onshore, deep-seated, undersaturated magmas are separated from the shallow Red Sea rift subalkaline basalts by only 170 km. The contemporaneity of alkaline olivine and subalkaline basalts requires that they must relate directly to the separation of the Arabian plate from the African plate.

  20. Ar-Ar Dating of Martian Meteorite, Dhofar 378: An Early Shock Event?

    NASA Technical Reports Server (NTRS)

    Park, J.; Bogard, D. D.

    2006-01-01

    Martian meteorite, Dhofar 378 (Dho378) is a basaltic shergottite from Oman, weighing 15 g, and possessing a black fusion crust. Chemical similarities between Dho378 and the Los Angeles 001 shergottite suggests that they might have derived from the same Mars locale. The plagioclase in other shergottites has been converted to maskelenite by shock, but Dho378 apparently experienced even more intense shock heating, estimated at 55-75 GPa. Dho378 feldspar (approximately 43 modal %) melted, partially flowed and vesiculated, and then partially recrystallized. Areas of feldspathic glass are appreciably enriched in K, whereas individual plagioclases show a range in the Or/An ratio of approximately 0.18-0.017. Radiometric dating of martian shergottites indicate variable formation times of 160-475 Myr, whereas cosmic ray exposure (CRE) ages of shergottites indicate most were ejected from Mars within the past few Myr. Most determined Ar-39-Ar-40 ages of shergottites appear older than other radiometric ages because of the presence of large amounts of martian atmosphere or interior Ar-40. Among all types of meteorites and returned lunar rocks, the impact event that initiated the CRE age very rarely reset the Ar-Ar age. This is because a minimum time and temperature is required to facilitate Ar diffusion loss. It is generally assumed that the shock-texture characteristics in martian meteorites were produced by the impact events that ejected the rocks from Mars, although the time of these shock events (as opposed to CRE ages) are not directly dated. Here we report Ar-39-Ar-40 dating of Dho378 plagioclase. We suggest that the determined age dates the intense shock heating event this meteorite experienced, but that it was not the impact that initiated the CRE age.

  1. Petrography and diagenesis of Lower Cretaceous Travis Peak (Hosston) Formation, east Texas

    SciTech Connect

    Dutton, S.P.

    1986-09-01

    Travis Peak sandstones in east Texas are fine to very fine-grained quartzarenites and subarkoses with an average composition of Q/sub 95/F/sub 4/R/sub 1/. Plagioclase feldspar is more abundant than orthoclase, and chert and low-rank metamorphic rock fragments are the most common lithic components. The first authigenic cements were clays, primarily illite, that coated detrital grains with tangentially oriented crystals. Next, extensive quartz cement (average 15.5% of the rock volume) occluded much of the primary porosity. Relatively late-stage cements include ankerite, which commonly has a dolomitic nucleus, a second-generation illite, and chlorite. Ankerite and dolomite are most abundant in marginal marine deposits near the top of the Travis Peak and are less abundant in the deeper, fluvial part of the formation. Feldspar dissolution and albitization of plagioclase were also relatively late diagenetic reactions. Plagioclase composition determined by microprobe ranges from An/sub 24/ to An/sub 0.1, but 83% of the analyses indicated a composition of less than An/sub 5/. Reservoir bitumen - a solid, immobile hydrocarbon accumulation - fills pores in sandstones in the upper 300 ft (90 m) of the Travis Peak. The volume of reservoir bitumen is as much as 19%. It has an H/C ratio of 0.79 to 0.90, suggesting that the bitumen formed by deasphalting of oil, which caused heavy molecules to precipitate. Permeability decreases with depth below the top of the Travis Peak. Porosimeter-measured porosity is the best predictor of permeability, and there is a low but statistically significant inverse correlation between total volume of cement and permeability.

  2. The production of intermediate magmas through magma mixing and commingling: Evidence from the Hoover Dam Volcanics, Mohave County, Arizona and Clark County, Nevada

    SciTech Connect

    Mills, J.G. Jr. . Dept. of Geoscience)

    1993-04-01

    The Hoover Dam Volcanic section ([approximately]14 Ma) is composed of the reversely-zoned dacitic tuff of Hoover Dam, Switchyard basaltic andesite, Sugarloaf dacite, Black Canyon dacite and Kingman Wash basaltic andesite (Mills, 1985). The origin of this suite is best explained by the commingling and mixing of end-member mafic and felsic magmas. These end-member magmas were most likely formed by partial melting of the mantle and subsequent advective heating and melting of the crust respectively. Textural evidence for these processes is observed in the Black Canyon dacite which contains enclaves of basaltic andesite, and, in the Paint Pots pluton which contains commingled basaltic andesite and monzonite. The Black Canyon dacite is a biotite (4%), homblende (1%) and plagioclase 10% phyric dacite flow which contains up to 5% enclaves of basaltic andesite. The enclaves contain 54 wt% SiO[sub 2], 7.22 ppm Tl, 65 ppm Rb, 1,274 ppm Sr and 1,810 ppm Ba. The gray to purplish-red enclaves have crenulate margins, are commonly vesiculated and contain phenocrysts of biotite (< 1%), hornblende ([much lt]1%), plagioclase (1%) and clinopyroxene( ) (2%). Chemically, the enclaves are distinct from the Switchyard and Kingman Wash basaltic andesites. The enclaves most likely represent a more primitive magma from which the Switchyard and Kingman Wash basaltic andesites were derived. These two units were subsequently chemically modified by mixing with crustal melt and/or crystal fractionation. The presence of a small, clinopyroxenite xenolith (clinopyroxene 90%, garnet 5%, plagioclase 4%) within one of the enclaves indicates an upper mantle source for the enclave magma.

  3. Interpretation of the provenance of small-scale heterogeneity as documented in a single eruptive unit from Mt. Jefferson, Central Oregon Cascades

    NASA Astrophysics Data System (ADS)

    Ustunisik, Gokce; Loewen, Matthew W.; Nielsen, Roger L.; Tepley, Frank J.

    2016-08-01

    Mt. Jefferson is a large composite volcano located in the central Oregon Cascades that has erupted a diverse compositional suite of lavas from basalt to rhyodacite (50-72 wt. % SiO2). Individual eruptive units contain multiple populations of plagioclase, and a variety of mafic textural/mineralogical components often preserved as large centimeter to millimeter-sized enclaves. Understanding the processes active in any volcanic center requires that we document the products of those processes. In this contribution, we documented the small-scale compositional diversity within a single eruptive unit at Mt. Jefferson, the Whitewater Creek andesite, in order to answer three questions: (1) what are the characteristics and scale of diversity in a single eruptive unit, (2) what is the provenance of the observed components, and (3) how does that observed small-scale diversity relate to the larger-scale diversity observed between other flows at Mt. Jefferson. Our analyses are based on major, trace element concentrations for phenocrysts, and melt inclusions from a single eruptive unit, the Whitewater Creek andesite which is one of the most heterogeneous units erupted at Mt. Jefferson. We have identified at least four distinct components present at the centimeter scale. These components, identified on the basis of their mineralogy and composition, include three mafic (two pyroxene + plagioclase; plagioclase-hornblende, and olivine-orthopyroxene) and one silicic component (dacitic groundmass). To understand the relationship between the observed textural components and the magma types erupted at Mt Jefferson, equilibrium liquid compositions were calculated from the phenocryst compositions. The range exhibited by those calculated liquids covers much of the entire range represented by the lavas at Mt. Jefferson. However, it is difficult to directly connect them to specific magma types observed at Mt. Jefferson. We attribute our inability to directly link the textural components to

  4. Sr and O Isotope Geochemistry of Volcán Uturuncu, Andean Central Volcanic Zone, Bolivia: Resolving Crustal and Mantle Contributions to Continental Arc Magmatism

    NASA Astrophysics Data System (ADS)

    Michelfelder, G.; Feeley, T.

    2015-12-01

    This study reports oxygen isotope ratios determined by laser fluorination of mineral separates and in situ Sr isotope ratios (mainly plagioclase) from andesitic to dacitic composition lava flows erupted from Volcán Uturuncu in the Andean Central Volcanic Zone (CVZ). Variation in δ18O values (6.6-11.8‰ relative to SMOW) for the lava suite is large and the data as a whole exhibit no simple correlation with any parameter of compositional evolution. Plagioclase separates from nearly all rocks have δ18O values (6.6-11.8‰) higher than expected for production of the magmas by partial melting of little evolved basaltic lavas erupted in the back arc regions of the CVZ. Most Uturuncu magmas must therefore contain high 18O crustal material. This hypothesis is further supported by textures and isotopic variation (87Sr/86Sr= 0.7098-0.7165) within single plagioclase phenocrysts suggesting repeated mixing followed by crustal contamination events occurring in the shallow crustal reservoir. The dacite composition rocks show more variable and extend to higher δ18O ratios than andesite composition rocks. These features are interpreted to reflect assimilation of heterogeneous upper continental crust by low 18O andesitic magmas followed by mixing or mingling with similar composition hybrid magmas with high 18O. Conversely, the δ18O values of the andesites suggest contamination of the magmas by continental crust modified by intrusion of mantle derived basaltic magmas. These results demonstrate on a relatively small scale the strong influence that intrusion of mantle-derived mafic magmas can have on modifying the composition of pre-existing continental crust in regions of melt production. Given this result, similar, but larger-scale, regional trends in magma compositions may reflect an analogous but more extensive process wherein the continental crust becomes progressively hybridized beneath frontal arc localities as a result of protracted intrusion of subduction

  5. Experimental and theoretical constraints on the origin of mid-ocean ridge geothermal fluids

    SciTech Connect

    Berndt, M.E.

    1987-01-01

    Hydrothermal experiments were performed using basalt, diabase, and two synthetic plagioclase bearing assemblages and Na-Ca-K-Cl fluids of seawater chlorinity at conditions from 350 to 425/sup 0/C and 250 to 400 bars. Dissolved Ca, Na, SiO/sub 2/, and pH appear to be controlled by equilibrium with plagioclase and epidote. Fluids reacting with diabase at low fluid/rock ratios (0.5-1) remain undersaturated with respect to quartz due to formation of olivine hydration products, whereas fluids reacting with basalt become supersaturated with respect to quartz due to breakdown of fractionated glass and formation of amphibole. High SiO/sub 2/ activities during basalt alteration, leads to high Ca and base metal concentrations and low pH compared to diabase alteration at the same conditions. Dissolved Li, K, Rb, and Ba concentrations reach higher levels during basalt alteration than during diabase alteration. Since these elements avoid incorporation into crystalline phases during solidification of magmas they are concentrated in the glass which is easily altered by fluids and explains their increased mobility during basalt alteration. Na-Ca-pH-SiO/sub 2/ relationships in vent fluids can be used to constrain reaction zone conditions assuming the fluids are equilibrated with plagioclase and epidote. The temperatures predicted by such models are higher than measured vent fluid temperatures. Dissolved Sr/Ca ratios for ridge crest fluids are similar to those produced during diabase alteration and higher than those produced during basalt alteration. This observation supports deep-seated reaction of the hydrothermal fluids with diabase dikes and/or gabbro for vent fluid origin. Only 4% of the Sr initially present in basalt is mobilized during hydrothermal alteration even after 800 hours of reaction.

  6. Terminal particle from Stardust track 130: Probable Al-rich chondrule fragment from comet Wild 2

    NASA Astrophysics Data System (ADS)

    Joswiak, D. J.; Nakashima, D.; Brownlee, D. E.; Matrajt, G.; Ushikubo, T.; Kita, N. T.; Messenger, S.; Ito, M.

    2014-11-01

    A 4 × 6 μm terminal particle from Stardust track 130, named Bidi, is composed of a refractory assemblage of Fo97 olivine, Al- and Ti-bearing clinopyroxene and anorthite feldspar (An97). Mineralogically, Bidi resembles a number of components found in primitive chondritic meteorites including Al-rich chondrules, plagioclase-bearing type I ferromagnesian chondrules and amoeboid olivine aggregates (AOAs). Measured widths of augite/pigeonite lamellae in the clinopyroxene indicate fast cooling rates suggesting that Bidi is more likely to be a chondrule fragment than an AOA. Bulk element concentrations, including an Al2O3 content of 10.2 wt%, further suggests that Bidi is more akin to Al-rich rather than ferromagnesian chondrules. This is supported by high anorthite content of the plagioclase feldspar, overall bulk composition and petrogenetic analysis using a cosmochemical Al2O3-Ca2SiO4-Mg2SiO4 phase diagram. Measured minor element abundances of individual minerals in Bidi generally support an Al-rich chondrule origin but are not definitive between any of the object types. Oxygen isotope ratios obtained from olivine (+minor high-Ca pyroxene)fall between the TF and CCAM lines and overlap similar minerals from chondrules in primitive chondrites but are generally distinct from pristine AOA minerals. Oxygen isotope ratios are similar to some minerals from both Al-rich and type I ferromagnesian chondrules in unequilibrated carbonaceous, enstatite and ordinary chondrites. Although no single piece of evidence uniquely identifies Bidi as a particular object type, the preponderance of data, including mineral assemblage, bulk composition, mineral chemistry, inferred cooling rates and oxygen isotope ratios, suggest that Bidi is more closely matched to Al-rich chondrules than AOAs or plagioclase-bearing type I ferromagnesian chondrules and likely originated in a chondrule-forming region in the inner solar system.

  7. The 12.4 ka Upper Apoyeque Tephra, Nicaragua: stratigraphy, dispersal, composition, magma reservoir conditions and trigger of the plinian eruption

    NASA Astrophysics Data System (ADS)

    Wehrmann, Heidi; Freundt, Armin; Kutterolf, Steffen

    2016-06-01

    Upper Apoyeque Tephra (UAq) was formed by a rhyodacitic plinian eruption in west-central Nicaragua at 12.4 ka BP. The fallout tephra was dispersed from a progressively rising plinian eruption column that became exposed to different wind speeds and directions at different heights in the stratosphere, leading to an asymmetric tephra fan with different facies in the western and southern sector. Tephra dispersal data integrated with geochemical compositions of lava flows in the area facilitate delimitation of the source vent to the south of Chiltepe Peninsula. UAq, Lower Apoyeque Tephra, Apoyeque Ignimbrite, and two lava lithic clasts in San Isidro Tephra together form a differentiation trend distinct from that of the younger tephras and lavas at Chiltepe Volcanic Complex in a TiO2 versus K2O diagram, compositionally precluding a genetic relationship of UAq with the present-day Apoyeque stratovolcano. Apoyeque Volcano in its present shape did not exist at the time of the UAq eruption. The surface expression of the UAq vent is now obscured by younger eruption products and lake water. Pressure-temperature constraints based on mineral-melt equilibria and fluid inclusions in plagioclase indicate at least two magma storage levels. Clinopyroxenes crystallised in a deep crustal reservoir at ˜24 km depth as inferred from clinopyroxene-melt inclusion pairs. Chemical disequilibrium between clinopyroxenes and matrix glasses indicates rapid magma ascent to the shallower reservoir at ˜5.4 km depth, where magnesiohornblendes and plagioclase fractionated at a temperature of ˜830 °C. Water concentrations were ˜5.5 wt.% as derived from congruent results of amphibole and plagioclase-melt hygrometry. The eruption was triggered by injection of a hotter, more primitive melt into a water-supersaturated reservoir.

  8. Chemical constraints on the petrogenesis of mildly alkaline lavas from Vestmannaeyjar, Iceland: the Eldfell (1973) and Surtsey (1963 1967) eruptions

    NASA Astrophysics Data System (ADS)

    Furman, Tanya; Frey, Fred A.; Park, Kye-Hun

    1991-03-01

    The Vestmannaeyjar archipelago is composed of alkalic lavas erupted at the southern end of the active, southward propagating, Eastern Volcanic Zone. Recent eruptions include the most primitive (Surtsey) and most evolved (Eldfell) compositions found in this area. We studied time-stratigraphic sample suites from both eruptions to characterize the magmatic environment of Vestmannacyjar. All samples are nearly homogeneous in radiogenic isotopic ratios (87Sr/86Sr 0.70304 to 0.70327;143Nd/144Nd 0.51301 to 0.50307;206Pb/204Pb 18.96 to 19.18;207Pb/204Pb 15.50 to 15.53;208Pb/204Pb 38.47 to 38.76; KH Park and A Zindler, in preparation). Compositional trends of lavas from the two eruptions are not consistent with fractionation in a near-surface environment, but indicate rather moderate pressure evolution of small magma batches. At Eldfell, mugearite lavas can be modeled by 30% closed-system fractional crystallization of olivine+plagioclase+clinopyroxene+Fe-Ti oxides from parental hawaiite. The phase proportions are consistent with an experimentally determined moderate pressure (8 kbar) cotectic in mildly alkaline systems (Mahood and Baker 1986). Compositional variations of Surtsey lavas can be modeled by crystallization of clinopyroxene+olivine+plagioclase+minor Fe-Ti oxides. The presence of sodic plagioclase megacrysts and clinopyroxene with ˜8 wt% Al2O3 in xenoliths from Surtsey lavas are consistent with a moderate pressure fractionation event. Based on major-element and REE data the most primitive Surtsey lavas formed by small degrees of melting of a lherzolite source. The alkaline nature of Vestmannaeyjar lavas is not the result of assimilation of lower crustal melts (cf. Oskarsson et al. 1985; Steinthorsson et al. 1985).

  9. Geochemistry of the 1989-1990 eruption of redoubt volcano: Part II. Evidence from mineral and glass chemistry

    USGS Publications Warehouse

    Swanson, S.E.; Nye, C.J.; Miller, T.P.; Avery, V.F.

    1994-01-01

    Early stages (December 1989) of the 1989-1990 eruption of Redoubt Volcano produced two distinct lavas. Both lavas are high-silica andesites with a narrow range of bulk composition (58-64 wt.%) and similar mineralogies (phenocrysts of plagioclase, hornblende, augite, hypersthene and FeTi oxides in a groundmass of the same phases plus glass). The two lavas are distinguished by groundmass glass compositions, one is dacitic and the other rhyolitic. Sharp boundaries between the two glasses in compositionally banded pumices, lack of extensive coronas on hornblende phenocrysts, and seismic data suggest that a magma-mixing event immediately preceeded the eruption in December 1989. Textural disequilibrium in the phenocrysts suggests both magmas (dacitic and rhyolitic glasses) had a mixing history prior to their interaction and eruption in 1989. Sievey plagioclase and overgrowths of magnetite on ilmenite are textures that are at least consistent with magma mixing. The presence of two hornblende compositions (one a high-Al pargasitic hornblende and one a low-Al magnesiohornblende) in both the dacitic and rhyolitic groundmasses indicates a mixing event to yield these two amphibole populations prior to the magma mixing in December 1989. The pargasitic hornblende and the presence of Ca-rich overgrowths in the sievey zones of the plagioclase together indicate at least one component of this earlier mixing event was a mafic magma, either