Sample records for plain geomorphologic sedimentologic

  1. Geomorphologic, stratigraphic and sedimentologic evidences of tectonic activity in Sone-Ganga alluvial tract in Middle Ganga Plain, India

    NASA Astrophysics Data System (ADS)

    Sahu, Sudarsan; Saha, Dipankar

    2014-08-01

    The basement of the Ganga basin in the Himalayan foreland is criss-crossed by several faults, dividing the basin into several sub-blocks forming horsts, grabens, or half-grabens. Tectonic perturbations along basement faults have affected the fluvial regime and extent of sediment fill in different parts of the basin during Late Quaternary. The East Patna Fault (EPF) and the West Patna Fault (WPF), located in Sone-Ganga alluvial tract in the southern marginal parts of Middle Ganga Plain (MGP), have remained tectonically active. The EPF particularly has acted significantly and influenced in evolving the geomorphological landscape and the stratigraphic architecture of the area. The block bounded by the two faults has earlier been considered as a single entity, constituting a half-graben. The present investigation (by morpho-stratigraphic and sedimentologic means) has revealed the existence of yet another fault within the half-graben, referred to as Bishunpur-Khagaul Fault (BKF). Many of the long profile morphological characters (e.g., knick-zone, low width-depth ratio) of the Sone River at its lower reaches can be ascribed to local structural deformation along BKF. These basement faults in MGP lie parallel to each other in NE-SW direction.

  2. Geophysical and geomorphological investigations of a Quaternary karstic paleolake and its underground marine connection in Cassis (Bestouan, Cassis, SE France)

    NASA Astrophysics Data System (ADS)

    Romey, Carole; Rochette, Pierre; Vella, Claude; Arfib, Bruno; Andrieu-Ponel, Valérie; Braucher, Régis; Champollion, Cédric; Douchet, Marc; Dussouillez, Philippe; Hermitte, Daniel; Mattioli, Emanuela; Parisot, Jean-Claude; Schwenninger, Jean-Luc

    2014-06-01

    An original karstic system in a coastal alluvial plain located in a carbonate environment (Cassis, Provence - SE France) was studied using a multi-method approach (electrical resistivity tomography, gravimetric, passive seismic survey), combined with geomorphologic methods, surface observations and drilling. Limestone dissolution and/or cavity collapse led to the development of a polje, which was filled rapidly by erosion of Aptian marls. The combination of several dating and paleoenvironmental proxies indicates that the polje was filled during a glacial period (MIS 6, 8 or 10, i.e. in the 130-360 ka age range). This discovery has implications for the understanding of karst processes. The connection between the polje and the three km-long Bestouan underwater karstic conduit with submarine outlet is strongly suggested by sedimentological studies and geophysical prospections.

  3. Beach ridge sedimentology: field observation and palaeoenvironmental interpretation for Anegada Island, British Virgin Islands.

    NASA Astrophysics Data System (ADS)

    Cescon, Anna Lisa; Cooper, J. Andrew G.; Jackson, Derek W. T.

    2014-05-01

    Beach ridge landforms have been observed in different environments and in settings that range from polar to tropical. Their stratigraphy and sedimentology has received a limited amount of discussion in the literature (Tamura, 2012). In coastal geomorphology a beach ridge can be seen as a transitional deposit between onshore and offshore environments. They are regarded as representing high level wave action along a coastline. In the Caribbean the origin of beach ridges has been variously attributed to one of three extreme wave events: extreme swell, extreme storm or tsunami waves. Beach ridges are arranged in beach ridge plains where there is succession of the landforms and can be several kilometres long. Beach ridge accumulation is not continuous and the coast shows alternating accretion and erosion periods. The use of beach ridges as palaeostorm archives is therefore not straightforward. The temporal continuity of beach ridge formation is being assessed on the beach ridge plains of Anegada, British Virgin Islands (Lesser Antilles). This carbonate platform surrounded by a fringing reef contains two beach ridge plains. There are more than 30 ridges in the Atlantic facing- coast and around 10 in the south, Caribbean- facing coast. The sediments of the modern beaches are dominated by the sand fraction and are 100% biogenic origin due to the isolation of Anegada from terrestrial sediment sources. The beach ridge sections have been studied in different area of Anegada beach ridge plains and present low angle seaward-dipping bedding. The sand fraction is dominant in the stratigraphy with a few intact shells. At only one site were coral pebbles deposited in association with the sand fraction. Aeolian deposits represent the upper part of the beach ridges and reflect the stabilization of the beach ridges with ongoing accretion. The sedimentology of the contemporary beach and dunes will be discussed in terms of their implications for understanding beach ridge genesis and its relationship to extreme wave events. Tamura, T., 2012. Beach ridges and prograded beach deposits as palaeoenvironment records. Earth-Science Reviews, 114, pp. 279-297.

  4. Hydrological and Climatic Significance of Martian Deltas

    NASA Astrophysics Data System (ADS)

    Di Achille, G.; Vaz, D. A.

    2017-10-01

    We a) review the geomorphology, sedimentology, and mineralogy of the martian deltas record and b) present the results of a quantitative study of the hydrology and sedimentology of martian deltas using modified version of terrestrial model Sedflux.

  5. Workshop on the Martian Northern Plains: Sedimentological, Periglacial, and Paleoclimatic Evolution

    NASA Technical Reports Server (NTRS)

    Kargel, Jeffrey S. (Editor); Moore, Jeffrey (Editor); Parker, Timothy (Editor)

    1993-01-01

    Papers that have been accepted for presentation at the Workshop on the Martian Northern Plains: Sedimentological, Periglacial, and Paleoclimatic Evolution, on 12-14 Aug. 1993 in Fairbanks, Alaska are included. Topics covered include: hydrological consequences of ponded water on Mars; morphological and morphometric studies of impact craters in the Northern Plains of Mars; a wet-geology and cold-climate Mars model: punctuation of a slow dynamics approach to equilibrium; the distribution of ground ice on Mars; and stratigraphy of the Martian Northern Plains.

  6. Morphodynamics of an Anthropogenically Altered Dual-Inlet System: John’s Pass and Blind Pass, West-Central Florida, USA

    DTIC Science & Technology

    2012-01-01

    and Estuarine Environments: Sedimentology , Geomorphology and Geoarchaeology, 175. Geological Society London Special Publication, pp. 293–303. Davis Jr...1996. Geomorphic variability and morphologic and sedimentologic controls on tidal inlets. Journal of Coastal Research 23, 47–71. FitzGerald, D.M., 2011...Morphodynamics and facies architecture of tidal inlets and tidal deltas. In: Davis, R.A., Dalrymple, R.W. (Eds.), Principles of Tidal Sedimentology

  7. Landscape trajectories during the Lateglacial and the Holocene in the Loir River Valley (France) : the contribution of Geoarchaeology

    NASA Astrophysics Data System (ADS)

    Piana, Juliene

    2015-04-01

    A multidisciplinary research has been initiated in the Loir River valley where investigations revealed high-potential fluvial records and landforms for environmental and socio-environmental reconstructions. Investigations provide the opportunity to reconstruct landscape trajectories between climate, environmental and societal changes during the last 16000 years, using geoarchaeological and archaeogeographical approaches: sedimentology, soil micromorphology, geochemistry, archaeology, geomatics, geochronology (AGES Program: Ancient Geomorphological EvolutionS of Loire Basin hydrosystem). In the sector of Vaas (Sarthe, France) the research on the Lateglacial and the Holocene sedimentary sequences from the alluvial plain leads to a general overview of the valley evolution from the end of the Weichselian Upper Pleniglacial to the Present. Joined to archaeological (Protohistoric and Antic sites) and historical data (engineering archives, 18th century cadastral registers) this research highlights the importance of anthropogenic and geomorphological heritages in the current fluvial landscape (microtopography, wetlands, archaeological remains, land use). This knowledge constitutes a basis for skills transfer to planners and managers, in sustainable management of hydrological resources (reducing the vulnerability to flooding and low flows), preservation of biodiversity (wetlands protection) and valorization of landscapes (cultural tourism development).

  8. Geomorphic and sedimentary responses of the Bull Creek Valley (Southern High Plains, USA) to Pleistocene and Holocene environmental change

    NASA Astrophysics Data System (ADS)

    Arauza, Hanna M.; Simms, Alexander R.; Bement, Leland C.; Carter, Brian J.; Conley, Travis; Woldergauy, Ammanuel; Johnson, William C.; Jaiswal, Priyank

    2016-01-01

    Fluvial geomorphology and stratigraphy often reflect past environmental and climate conditions. This study examines the response of Bull Creek, a small ephemeral creek in the Oklahoma panhandle, to environmental conditions through the late Pleistocene and Holocene. Fluvial terraces were mapped and their stratigraphy and sedimentology documented throughout the course of the main valley. Based on their elevations, terraces were broadly grouped into a late-Pleistocene fill terrace (T3) and two Holocene fill-cut terrace sets (T2 and T1). Terrace systems are marked by similar stratigraphies recording the general environmental conditions of the time. Sedimentary sequences preserved in terrace fills record the transition from a perennial fluvial system during the late glacial period and the Younger Dryas to a semiarid environment dominated by loess accumulation and punctuated by flood events during the middle to late Holocene. The highest rates of aeolian accumulation within the valley occurred during the early to middle Holocene. Our data provide significant new information regarding the late-Pleistocene and Holocene environmental history for this region, located between the well-studied Southern and Central High Plains of North America.

  9. Earth Surface Processes, Landforms and Sediment Deposits

    NASA Astrophysics Data System (ADS)

    Bridge, John; Demicco, Robert

    Earth surface processes, landforms and sediment deposits are intimately related - involving erosion of rocks, generation of sediment, and transport and deposition of sediment through various Earth surface environments. These processes, and the landforms and deposits that they generate, have a fundamental bearing on engineering, environmental and public safety issues; on recovery of economic resources; and on our understanding of Earth history. This unique textbook brings together the traditional disciplines of sedimentology and geomorphology to explain Earth surface processes, landforms and sediment deposits in a comprehensive and integrated way. It is the ideal resource for a two-semester course in sedimentology, stratigraphy, geomorphology, and Earth surface processes from the intermediate undergraduate to beginning graduate level. The book is also accompanied by a website hosting illustrations and material on field and laboratory methods for measuring, describing and analyzing Earth surface processes, landforms and sediments.

  10. Spectral Remote Sensing of Dust Sources on the U.S. Great Plains from 1930s Panchromatic Aerial Phtography

    NASA Astrophysics Data System (ADS)

    Bolles, K.; Forman, S. L.

    2017-12-01

    Understanding the spatiotemporal dynamics of dust sources is essential to accurately quantify the various impacts of dust on the Earth system; however, a persistent deficiency in modeling dust emission is detailed knowledge of surface texture, geomorphology, and location of dust emissive surfaces, which strongly influence the effects of wind erosion. Particle emission is closely linked to both climatic and physical surface factors - interdependent variables that respond to climate nonlinearly and are mitigated by variability in land use or management practice. Recent efforts have focused on development of a preferential dust source (PDS) identification scheme to improve global dust-cycle models, which posits certain surfaces are more likely to emit dust than others, dependent upon associated sediment texture and geomorphological limitations which constrain sediment supply and availability. In this study, we outline an approach to identify and verify the physical properties and distribution of dust emissive surfaces in the U.S. Great Plains from historical aerial imagery in order to establish baseline records of dust sources, associated erodibility, and spatiotemporal variability, prior to the satellite era. We employ a multi-criteria, spatially-explicit model to identify counties that are "representative" of the broader landscape on the Great Plains during the 1930s. Parameters include: percentage of county cultivated and uncultivated per the 1935 Agricultural Census, average soil sand content, mean annual Palmer Drought Severity Index (PDSI), maximum annual temperature and percent difference to the 30-year normal maximum temperature, and annual precipitation and percent difference to the 30-year normal precipitation level. Within these areas we generate random points to select areas for photo reproduction. Selected frames are photogrammetrically scanned at 1200 dpi, radiometrically corrected, mosaicked and georectified to create an IKONOS-equivalent image. Gray-level co-occurrence matrices are calculated in a 3x3 moving window to determine textural properties of the mosaic and delineate bare surfaces of different sedimentological properties. Field stratigraphic assessments and spatially-referenced historical data are integrated within ArcGIS to ground-truth imagery.

  11. Channel Processes and Sedimentology of a Boulder-Bed Ephemeral Stream

    NASA Astrophysics Data System (ADS)

    Billi, Paolo

    2014-05-01

    Very few papers report about the geomorphology and sedimentology of modern very coarse-grained, ephemeral streams. Other than the relevance of shedding some light on fluvial processes in dryland, boulder-bed rivers, this paper aims to provide some insight on their sedimentological characteristics as a diagnostic tool in the interpretation of old deposits. A field study on such topics is carried out on the Golina River, a sandy boulder-bed ephemeral stream of the Kobo basin in northern Ethiopia, subjected to intermittent flow generated by isolated, high intensity rainfall. Though the main gemorphological characteristics of the braid bars and channels are apparently similar to those of perennial counterparts, field investigations show the general physiographic setting and the sedimentology of the study reach result from very different depositional/erosion processes. A model based on the superimposition of coarse-grained bedload sheets, with the characteristics described by Whiting et la. (1988), and subsequent dissection during the receding flood flow is considered. This model was found to well explain the morphological and sedimentological features of the study river reach.

  12. Quaternary base-level drops and trigger mechanisms in a closed basin: Geomorphic and sedimentological studies of the Gastre Basin, Argentina

    NASA Astrophysics Data System (ADS)

    Bilmes, Andrés; Veiga, Gonzalo D.; Ariztegui, Daniel; Castelltort, Sébastien; D'Elia, Leandro; Franzese, Juan R.

    2017-04-01

    Evaluating the role of tectonics and climate as possible triggering mechanisms of landscape reconfigurations is essential for paleoenvironmental and paleoclimatic reconstructions. In this study an exceptional receptive closed Quaternary system of Patagonia (the Gastre Basin) is described, and examined in order to analyze factors triggering base-level drops. Based on a geomorphological approach, which includes new tectonic geomorphology investigations combined with sedimentological and stratigraphic analysis, three large-scale geomorphological systems were identified, described and linked to two major lake-level highstands preserved in the basin. The results indicate magnitudes of base-level drops that are several orders of magnitude greater than present-day water-level fluctuations, suggesting a triggering mechanism not observed in recent times. Direct observations indicating the occurrence of Quaternary faults were not recorded in the region. In addition, morphometric analyses that included mountain front sinuosity, valley width-height ratio, and fan apex position dismiss tectonic fault activity in the Gastre Basin during the middle Pleistocene-Holocene. Therefore, we suggest here that upper Pleistocene climate changes may have been the main triggering mechanism of base-level falls in the Gastre Basin as it is observed in other closed basins of central Patagonia (i.e., Carri Laufquen Basin).

  13. Hydrology and Geomorphology of Tallgrass Prairie Intermittent Headwater Streams

    NASA Astrophysics Data System (ADS)

    Daniels, M. D.; Grudzinski, B.

    2011-12-01

    The arid to semi-arid Great Plains region of the United States covers more than 1 million km2, yet virtually nothing is known about the geomorphology of its intermittent headwater streams. These streams and the perennial rivers they feed support a unique and increasingly endangered assemblage of endemic fish species. While human impacts in the region are not at first glace significant, the reality is that the Great Plains are an intensively managed landscape, with pervasive cattle grazing, channelization, and groundwater over-pumping affecting these systems. These stresses will only increase with potential climate and related land use changes. Few natural remnants of native grassland remain today, limiting opportunities to study the natural dynamics of these systems in contrast to the anthropogenically modified systems. This paper presents a review of the existing geomorphological and hydrological knowledge of Great Plains headwater streams and presents the initial analysis of an 18 year intermittent headwater stream record from the tallgrass Konza Prairie LTER, Kansas. Results suggest that fire frequency and grazing and the resultant riparian vegetation composition strongly influence stream flow dynamics as well as stream geomorphology.

  14. Application of Basin Morphometry Laws in catchments of the south-western quadrangle of south-eastern Nigeria

    NASA Astrophysics Data System (ADS)

    Aisuebeogun, A. O.; Ezekwe, I. C.

    2013-09-01

    The relationship between process and form has been at the core of research in fluvial geomorphology. Form-process relationships of a natural river basin are strongly influenced by its hydrologic and sedimentologic processes as basin morphometric properties of length, shape, and relief, change in response to various hydrologic stimuli from the environment, but usually in line with well established laws. In the four river basins (Orashi, Otamiri, Sombreiro, New Calabar) examined in this study, however, empirical evidence does not conform neatly with theoretical postulates. Remarkable variations are noted in the morphometric properties of the catchments, when compared with established morphometric laws. The most varied in conformity are the Orashi and New Calabar basins, although the Sombreiro and Otamiri catchments also show some level of variation. Prime explanation for the morphometric and topographic non-conformity is caused by the nature of surficial material and the profoundly shallow relief of much of the study area, especially the alluvial flood and deltaic plains to the south and south-west of the study area.

  15. A Detailed Geomorphological Sketch Map of Titan's Afekan Crater Region

    NASA Astrophysics Data System (ADS)

    Schoenfeld, A.; Malaska, M. J.; Lopes, R. M. C.; Le Gall, A. A.; Birch, S. P.; Hayes, A.

    2014-12-01

    Due to Titan's uniquely thick atmosphere and organic haze layers, the most detailed images (with resolution of 300 meters per pixel) of the Saturnian moon's surface exist as Synthetic Aperture Radar (SAR) images taken by Cassini's RADAR instrument. Using the SAR data, we have been putting together detailed geomorphological sketch maps of various Titan regions in an effort to piece together its geologic history. We initially examined the Afekan region of Titan due to extensive SAR coverage. Features described on Afekan fall under the categories (in order of geologic age, extrapolated from their relative emplacement) of hummocky, labyrinthic, plains, and dunes. During our mapping effort, we also divided each terrain category into several different subclasses on a local level. Our map offers a chance to present and analyze the distribution, relationship, and potential formation hypotheses of the different terrains. In bulk, we find evidence for both Aeolian and fluvial processes. A particularly important unit found in the Afekan region is the unit designated "undifferentiated plains", or the "Blandlands" of Titan, a mid-latitude terrain unit comprising 25% of the moon's surface. Undifferentiated plains are notable for its relative featurelessness in radar and infrared. Our interpretation is that it is a fill unit in and around Afekan crater and other hummocky/mountainous units. The plains suggest that the nature of Titan's geomorphology seems to be tied to ongoing erosional forces and sediment deposition. Other datasets used in characterizing Titan's various geomorphological units include information obtained from radiometry, infrared (ISS), and spectrometry (VIMS). We will present the detailed geomorphological sketch map with all the terrain units assigned and labeled.

  16. Hydrodynamic and sedimentological controls governing formation of fluvial levees

    NASA Astrophysics Data System (ADS)

    Johnston, G. H.; Edmonds, D. A.; David, S. R.; Czuba, J. A.

    2017-12-01

    Fluvial levees are familiar features found on the margins of river channels, yet we know little about what controls their presence, height, and shape. These attributes of levees are important because they control sediment transfer from channel to floodplain and flooding patterns along a river system. Despite the familiarity and importance of levees, there is a surprising lack of basic geomorphic data on fluvial levees. Because of this we seek to understand: 1) where along rivers do levees tend to occur?; 2) what geomorphic and hydrodynamic variables control cross-sectional shape of levees? We address these questions by extracting levee shape from LiDAR data and by collecting hydrodynamic and sedimentological data from reaches of the Tippecanoe River, the White River, and the Muscatatuck River, Indiana, USA. Fluvial levees are extracted from a 1.5-m resolution LiDAR bare surface model and compared to hydrological, sedimentological, and geomorphological data from USGS stream gages. We digitized banklines and extracted levee cross-sections to calculate levee slope, taper, height, e-folding length, and e-folding width. To answer the research questions, we performed a multivariable regression between the independent variables—channel geometry, sediment grain size and concentration, flooding conditions, and slope—and the dependent levee variables. We find considerable variation in levee presence and shape in our field data. On the Muscatatuck River levees occur on 30% of the banks compared to 10% on the White River. Moreover, levees on the Muscatatuck are on average 3 times wider than the White River. This is consistent with the observation that the Muscatatuck is finer-grained compared to the White River and points to sedimentology being an important control on levee geomorphology. Future work includes building a morphodynamic model to understand how different hydrodynamic and geomorphic conditions control levee geometry.

  17. Geomorphology and bank erosion of the Matanuska River, southcentral Alaska

    USGS Publications Warehouse

    Curran, Janet H.; McTeague, Monica L.

    2011-01-01

    Bank erosion along the Matanuska River, a braided, glacial river in southcentral Alaska, has damaged or threatened houses, roadways, and public facilities for decades. Mapping of river geomorphology and bank characteristics for a 65-mile study area from the Matanuska Glacier to the river mouth provided erodibility information that was assessed along with 1949-2006 erosion to establish erosion hazard data. Braid plain margins were delineated from 1949, 1962, and 2006 orthophotographs to provide detailed measurements of erosion. Bank material and height and geomorphic features within the Matanuska River valley (primarily terraces and tributary fans) were mapped in a Geographic Information System (GIS) from orthophotographs and field observations to provide categories of erodibility and extent of the erodible corridor. The braid plain expanded 861 acres between 1949 and 2006. Erosion in the highest category ranged from 225 to 1,043 feet at reaches of bank an average of 0.5 mile long, affecting 8 percent of the banks but accounting for 64 percent of the erosion. Correlation of erosion to measurable predictor variables was limited to bank height and material. Streamflow statistics, such as peak streamflow or mean annual streamflow, were not clearly linked to erosion, which can occur during the prolonged period of summer high flows where channels are adjacent to an erodible braid plain margin. The historical braid plain, which includes vegetated braid plain bars and islands and active channels, was identified as the greatest riverine hazard area on the basis of its historical occupation. In 2006, the historical braid plain was an average of 15 years old, as determined from the estimated age of vegetation visible in orthophotographs. Bank erosion hazards at the braid plain margins can be mapped by combining bank material, bank height, and geomorphology data. Bedrock bluffs at least 10 feet high (31 percent of the braid plain margins) present no erosion hazard. At unconsolidated banks (63 percent of the braid plain margins), erosion hazards are great and the distinction in hazards between banks of varying height or geomorphology is slight.

  18. Soil-geomorphology relationships and landscape evolution in a southwestern Atlantic tidal salt marsh in Patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Ríos, Ileana; Bouza, Pablo José; Bortolus, Alejandro; Alvarez, María del Pilar

    2018-07-01

    Salt marshes in Patagonia ecosystem are nowadays fully recognized by ecological, pollution and phytoremediation studies but a soil genesis and geomorphology approach is currently unknown. The aim of this study was to establish the soil-geomorphology relationship in Fracasso salt marsh and to determine the successional vegetation dynamics associated with the landscape evolution. This work was carried out in Fracasso salt marsh sited in Península Valdés, Argentina, where an integrated study on soil-geomorphology relationship and landscape evolution was performed along with sedimentological analysis and vegetation changes (C3 photosynthesis pathway vs. C4 photosynthesis pathway plants). This last was determined through the δ13C composition from soil organic matter (SOM). Soil descriptions and laboratory analysis of soil samples were performed. A marked relationship between the vegetation unit, the dominant landform and the type of associated soil was found. Limonium brasiliense (Lb) and Sarcocornia perennis (Sp), both C3 plants, are dominant in levees associated with tidal creeks, and soils were classified as Typic Fluvaquents, while Spartina alterniflora (Sa) soils were classified as Sodic Endoaquents and Sodic Psammaquents. Although no sulfidic materials were identified by incubation test, they were identified by hydrogen peroxide treatment in Sa soils, and now are considered potential acid sulfate soils (PASS). Sedimentological analysis from deepest sandy C horizons indicates a beach depositional environment. On the other hand, the δ13C stable isotope composition of SOM preserved into these buried soil acting as parent materials shows the dominance of C4 plants presumably belonging to Spartina species, suggesting a possible colonization and stabilization as the pioneer salt marsh.

  19. The Role of Rapid Glacier Retreat and Paraglacial Landscape Transformation in Controlling the Evolution of High Arctic Coastal Systems

    NASA Astrophysics Data System (ADS)

    Strzelecki, M. C.; Long, A. J.; Zagorski, P.

    2017-12-01

    The rapid retreat of glaciers observed since the end of the Little Ice Age (LIA) led to a dramatic transformation of High Arctic landscape. This change is apparent in slope, valley and glacier foreland systems, where glacigenic landforms are being denudated by fluvial, aeolian or mass-wasting processes that are being accelerated by permafrost degradation. However, the impact of these changes on the coastal zone is uncertain because of few studies of pre- and post-LIA coastal change. This paper addresses this deficiency by detailing the patterns and processes of post-LIA coastal zone changes in Svalbard - key area for observation of recent paraglacial landscape change in the High Arctic. By application of a mosaic of geomorphological, sedimentological and remote sensing techniques we proved that studied coastal systems (i.e. Billefjorden, Bellsund, Hornsund) abruptly responded to post-LIA deglaciation, permafrost thaw, extreme slope processes and shifts in glaciated catchments. Most of studied coastal systems were characterised by more rapid morphodynamic adjustments than previously thought. Under intervals characterized by a warming climate, retreating local ice masses and shortened sea-ice seasons most of studied coastal systems rapidly responded to an excess of freshly released sediments and experienced significant geomorphological changes (Figure 1). The increased supply of sediments led to the accumulation of new coastal landforms such as extensive gravel-dominated barriers, spits and tidal flats, which are highly sensitive recorders of recent environmental change. We also proved that the development of the post-LIA Svalbard coast is closely linked to the rate of sediment excavation from relict sediment storage systems, such as alluvial fans and outwash plains, that developed across a wide coast plains between the glacier valleys and the fjord during the Holocene. The results are synthesised to propose a new conceptual model of High Arctic paraglacial coastal system, with the aim of contributing towards a unifying concept of cold region landscape evolution and providing direction for future research regarding the state of High Arctic coastal evolution.This paper is a contribution to the NCN projects UMO2013/11/B/ST10/00283 and UMO2013/08/S/ST10/00585.

  20. Reconstructing the Holocene depositional environments along the northern coast of Sfax (Tunisia): Mineralogical and sedimentological approaches

    NASA Astrophysics Data System (ADS)

    Lamourou, Ali; Touir, Jamel; Fagel, Nathalie

    2017-05-01

    A sedimentological and mineralogical study of sedimentary cores allowed reconstructing the evolution of depositional environments along the Northern coast of Sfax (Tunisia). The aim of this research work is to identify the factors controlling the sedimentation from the Holocene to the Present time. Three 30-m sediment cores collected by drilling at 30 m water depth were analyzed for their color, magnetic susceptibility signal, grain size by laser diffraction, organic matter content by loss of ignition, carbonate content by calcimetry and mineralogy by X-ray diffraction on bulk powder and clay <2 μm. They broadly present the same sedimentological and mineralogical features. Microscopical observations of petrographic slides allowed identifying six main sedimentary facies. Bulk mineralogical assemblages comprised clay minerals, quartz, calcite, gypsum and K-feldspars were examined. Considerable change was observed in the carbonate content that mimicked the bioclaste abundance and diluted the detrital minerals (clay minerals, quartz and feldspars). The gypsum mainly occurred in the lower sedimentary columns (SC12 and SC9) and in the upper/middle of core SC6. The clay fraction was made of a mixture of kaolinite, illite, smectite and palygorskite with no clear variation through core depth. Both grain-size parameters and magnetic susceptibility profile showed a sharp transition in the upper 2-5 m of the sedimentological columns. Coarse, sandy to gravely sediments characterized by a low magnetic susceptibility signal were replaced by fine bioclastic-rich clayey sediments. The analysis of vertical succession of depositional facies revealed a fluvial depositional environment (coastal plain) basically marked by fluvial channels and inundation plains at the bottom of all cores. However, core-top sediments recorded a littoral marine environment with sand depositions rich in gastropods, lamellibranches and algæ. Depositional facies, sedimentological and mineralogical parameters were consistent with a transition from a fluviatile depositional environment with some emersion phases marked by the gypsum precipitation, to a marine littoral environment. Such evolution was accompanied with a relative sea-level rise which flooded the fluvial system at the coastal plain during the Holocene, in agreement with sea-level fluctuations in southeast Tunisia during the Holocene.

  1. Detailed sedimentology and geomorphology elucidate mechanisms of formation of modern and historical sequences of minor moraines in the European Alps

    NASA Astrophysics Data System (ADS)

    Wyshnytzky, Cianna; Lukas, Sven

    2016-04-01

    Suites of closely-spaced minor moraines may help further understanding of glacier retreat and predict its geomorphological effects through the observations of moraine formation on short timescales. This research is common in lowland, maritime settings (Sharp, 1984; Boulton, 1986; Krüger, 1995; Reinardy et al., 2013), but remains sparse in high-mountain settings (Hewitt, 1967; Ono, 1985; Beedle et al., 2009; Lukas, 2012). This research presents detailed sedimentological and geomorphological research on minor moraines at two high-mountain settings in the Alps: Silvrettagletscher, Switzerland, as a modern setting and Schwarzensteinkees, Austria, as a historical setting. Geomorphological investigations included mapping and measurements through field observations and assessing aerial imagery. Additionally, terrestrial laser scanning and ground-penetrating radar data were collected in the Schwarzensteinkees foreland. Detailed sedimentological investigations followed excavation of seven moraines at Silvrettagletscher and five moraines at Schwarzensteinkees and include multiple scales of observation and measurements to support interpretations of sediment transport and deposition (e.g. Evans and Benn, 2004). The modern moraines at Silvrettagletscher, in the immediately proglacial foreland, have been forming since before 2003. Four mechanisms of formation show distinct sedimentological signatures: formerly ice-cored moraines (e.g. Kjær & Krüger, 2001; Lukas, 2012; Reinardy et al., 2013) , push moraine formation on a reverse bedrock slope (e.g. Lukas, 2012), push moraine formation incorporating sediments deposited in a former proglacial basin, and basal freeze-on (e.g. Andersen & Sollid, 1971; Krüger, 1995; Reinardy et al., 2013). Schwarzensteinkees still exists but is currently restricted to steeply-dipping bedrock slabs above the main valley. This study therefore investigates the moraines in the foreland that formed between approximately 1850 and 1930. The minor moraines here formed as push moraines in two groups separated by a former proglacial basin and are composed dominantly of pre-existing proglacial outwash gravel through efficient bulldozing of the glacier front (Lukas, 2012). These findings show a range of mechanisms responsible for moraine formation. Furthermore, basal freeze-on processes incorporating subglacial sediment (till) have not been recorded in high-mountain moraine formation, suggesting a commonality of seasonal climatic controls between the glacier dynamics of high-mountain glaciers and those in more lowland, maritime settings. References Andersen, J.L., and Sollid, J.L., 1971, Glacial Chronology and Glacial Geomorphology in the Marginal Zones of the Glaciers, Midtdalsbreen and Nigardsbreen, South Norway: Norsk Geografisk Tidsskrift - Norwegian Journal of Geography, v. 25, no. 1, p. 1-38, doi: 10.1080/00291957108551908. Beedle, M.J., Menounos, B., Luckman, B.H., and Wheate, R., 2009, Annual push moraines as climate proxy: Geophysical Research Letters, v. 36, no. 20, p. L20501, doi: 10.1029/2009GL039533. Boulton, G.S., 1986, Push-moraines and glacier-contact fans in marine and terrestrial environments: Sedimentology, v. 33, p. 677-698. Evans, D.J.A., and Benn, D.I., 2004, A Practical Guide to the Study of Glacial Sediments: Hodder Education, London, United Kingdom. Hewitt, K., 1967, Ice-Front Deposition and the Seasonal Effect: A Himalayan Example: Transactions of the Institute of British Geographers, v. 42, p. 93-106. Kjær, K.H., and Krüger, J., 2001, The final phase of dead-ice moraine development: processes and sediment architecture, Kötlujökull, Iceland: Sedimentology, v. 48, p. 935-952. Krüger, J., 1995, Origin, chronology and climatological significance of annual-moraine ridges at Myrdalsjökull, Iceland: The Holocene, v. 5, no. 4, p. 420-427. Lukas, S., 2012, Processes of annual moraine formation at a temperate alpine valley glacier: insights into glacier dynamics and climatic controls: Boreas, v. 41, no. 3, p. 463-480, doi: 10.1111/j.1502-3885.2011.00241.x. Ono, Y., 1985, Recent Fluctuations of the Yala (Dakpatsen) Glacier, Langtang Himal, Reconstructed From Annual Moraine Ridges: Zeitschrift für Gletscherkunde und Glazialgeologie, v. 21, p. 251-258. Reinardy, B.T.I., Leighton, I., and Marx, P.J., 2013, Glacier thermal regime linked to processes of annual moraine formation at Midtdalsbreen, southern Norway: Boreas, v. 42, no. 4, p. 896-911, doi: 10.1111/bor.12008. Sharp, M., 1984, Annual moraine ridges at Skálafellsjökull, south-east Iceland: Journal of Glaciology, v. 30, no. 104, p. 82-93.

  2. Role of ground water in geomorphology, geology, and paleoclimate of the Southern High Plains, USA.

    PubMed

    Wood, Warren W

    2002-01-01

    Study of ground water in the Southern High Plains is central to an understanding of the geomorphology, deposition of economic minerals, and climate change record in the area. Ground water has controlled the course of the Canadian and Pecos rivers that isolated the Southern High Plains from the Great Plains and has contributed significantly to the continuing retreat of the westward escarpment. Evaporative and dissolution processes are responsible for current plateau topography and the development of the signature 20,000 small playa basins and 40 to 50 large saline lake basins in the area. In conjunction with eolian processes, ground water transport controls the mineralogy of commercially valuable mineral deposits and sets up the distribution of fine efflorescent salts that adversely affect water quality. As the water table rises and retreats, lunette and tufa formation provides valuable paleoclimate data for the Southern High Plains. In all these cases, an understanding of ground water processes contributes valuable information to a broad range of geological topics, well beyond traditional interest in water supply and environmental issues.

  3. Geochronological (OSL) and geomorphological investigations at the presumed Frankfurt ice marginal position in northeast Germany

    NASA Astrophysics Data System (ADS)

    Hardt, Jacob; Lüthgens, Christopher; Hebenstreit, Robert; Böse, Margot

    2016-12-01

    The Weichselian Frankfurt ice marginal position in northeast Germany has been critically discussed in the past owing to weak morphological evidence and a lack of clear sedimentological records. This study aims to contribute to this discussion with new geochronological and geomorphological results. Apart from very few cosmogenic exposure ages, the time frame is to date still based on long distance correlation with radiocarbon chronologies. We selected a study site in a key position regarding the classic location of the Frankfurt ice marginal position and the recently described arcuate ridge structures on the Barnim plateau. For the first time we present Optically Stimulated Luminescence (OSL) ages of quartz from glaciofluvial deposits for this Weichselian phase. Our results indicate an advance of the Scandinavian Ice Sheet (SIS) at around 34.1 ± 4.6 ka. This is in agreement with OSL ages from sandur deposits at the Brandenburg ice marginal position located farther south and could also be correlated with the Klintholm advance in Denmark. The subsequent meltdown phase lasted until around 26.3 ± 3.7 ka. During the meltdown phase a minor oscillation of the SIS caused the formation of the recently described arcuate ridges on the Barnim till plain. Recalculated surface exposure ages of glacigenic boulders with an updated global production rate indicate a landscape stabilization phase at around 22.7 ± 1.6 ka, which is in agreement with our ages. A phase of strong aeolian activity has been dated with OSL to 1 ± 0.1 ka; this may have been triggered by human activities that are documented in this region for the medieval period.

  4. Soil sedimentology at Gusev Crater from Columbia Memorial Station to Winter Haven

    USGS Publications Warehouse

    Cabrol, N.A.; Herkenhoff, K. E.; Greeley, R.; Grin, E.A.; Schroder, C.; d'Uston, C.; Weitz, C.; Yingst, R.A.; Cohen, B. A.; Moore, J.; Knudson, A.; Franklin, B.; Anderson, R.C.; Li, R.

    2008-01-01

    A total of 3140 individual particles were examined in 31 soils along Spirit's traverse. Their size, shape, and texture were quantified and classified. They represent a unique record of 3 years of sedimentologic exploration from landing to sol 1085 covering the Plains Unit to Winter Haven where Spirit spent the Martian winter of 2006. Samples in the Plains Unit and Columbia Hills appear as reflecting contrasting textural domains. One is heterogeneous, with a continuum of angular-to-round particles of fine sand to pebble sizes that are generally dust covered and locally cemented in place. The second shows the effect of a dominant and ongoing dynamic aeolian process that redistributes a uniform population of medium-size sand. The texture of particles observed in the samples at Gusev Crater results from volcanic, aeolian, impact, and water-related processes. Copyright 2008 by the American Geophysical Union.

  5. Complex patterns of glacier advances during the Lateglacial in the Chagan-Uzun Valley, Russian Altai

    NASA Astrophysics Data System (ADS)

    Gribenski, Natacha; Lukas, Sven; Jansson, Krister N.; Stroeven, Arjen P.; Preusser, Frank; Harbor, Jonathan M.; Blomdin, Robin; Ivanov, Mikhail N.; Heyman, Jakob; Petrakov, Dmitry; Rudoy, Alexei; Clifton, Tom; Lifton, Nathaniel A.; Caffee, Marc W.

    2016-04-01

    Over the last decades, numerous paleoglacial reconstructions have been carried out in Central Asian mountain ranges because glaciers in this region are sensitive to climate change, and thus their associated glacial deposits can be used as proxies for paleoclimate inference. However, non-climatic factors can complicate the relationship between glacier fluctuation and climate change. Careful investigations of the geomorphological and sedimentological context are therefore required to understand the mechanisms behind glacier retreat and expansion. In this study we present the first detailed paleoglacial reconstruction of the Chagan Uzun valley, located in the Russian Altai. This reconstruction is based on detailed geomorphological mapping, sedimentological logging, in situ cosmogenic 10Be and 26Al surface exposure dating of glacially transported boulders, and Optically Stimulated Luminescence (OSL) dating. The Chagan Uzun valley includes extensive lobate moraine belts (>100 km2) deposited in the intramontane Chuja basin, reflecting a series of pronounced former glacial advances. Observation of "hillside-scale" folding and extensive faulting of pre-existing soft sediments within the outer moraine belts, together with the geomorphology, indicate that these moraine belts were formed during glacier-surge like events. In contrast, the inner (up-valley) glacial landforms of the Chagan Uzun valley indicate that they were deposited by retreat of temperate valley glaciers and do not include features indicative of surging. Cosmogenic ages associated with the outermost, innermost and intermediary stages, all indicate deposition times clustered around 19.5 ka, although the 10Be ages of the outermost margin are likely slightly underestimated due to brief episode of glacial lake water coverage. Such close deposition timings are consistent with periods of fast or surge advances, followed by active glacier retreat. OSL dating yields significantly older ages of thick lacustrine accumulation along the Chagan Uzun River, which confirms the presence of lacustrine sediments in the Chagan Uzun glacier foreland before the glacier advances. Such sediments could have acted as a soft bed over which fast or unstable glacier flow occurred. This is the first study reporting surge-like behaviour of former glaciers in the Altai mountain range, supported by detailed geomorphological and sedimentological evidences. Such findings are crucial for paleoclimate inference, as the surge-related features cannot be attributed to a glacier system in equilibrium with the contemporary climate, and cannot be interpreted with traditional ELA reconstructions. This study also highlights the complexity of establishing robust paleoglacial chronologies in highly dynamic environments, with interactions between glacial events and the formation and drainage of lakes.

  6. Hydrology, geomorphology, and vegetation of Coastal Plain rivers in the southeastern United States

    Treesearch

    Cliff R. Hupp

    2000-01-01

    Rivers of the Coastal Plain of the southeastern United States are characteristically low-gradient meandering systems that develop broad floodplains subjected to frequent and prolonged flooding. These floodplains support a relatively unique forested wetland (Bottomland Hardwoods), which have received considerable ecological study, but distinctly less hydrogeomorphic...

  7. Sedimentology and geomorphology analysis of coastal area along pantai penarik, terengganu before and during northeast monsoon season

    NASA Astrophysics Data System (ADS)

    Yusoff, Tengku Ahmad Imran Ku; Shaufi Sokiman, Mohamad

    2017-10-01

    This research is conducted to understand the sedimentology and morphological change before and during the northeast monsoon at the east coast of peninsular Malaysia. The increase in wind speed, wave energy and rainfall during the northeast monsoon are believed to causes the coastal erosion to increase during the season. Rapid development along the east coast area might disrupt the sediments distribution which can increase the coastal erosion rate every year. The understanding on the sediments distribution, erosion and deposition as well as the morphological change can help to figure out if the coastal erosion can affect the infrastructure in the future. The result of the study can show the necessity to perform mitigation or any required action toward the problem that might happen

  8. Morphological analysis of hummocks in debris avalanche deposits using UAS-derived high-definition topographic data

    NASA Astrophysics Data System (ADS)

    Hayakawa, Yuichi S.; Obanawa, Hiroyuki; Yoshida, Hidetsugu; Naruhashi, Ryutaro; Okumura, Koji; Zaiki, Masumi

    2016-04-01

    Debris avalanche caused by sector collapse of a volcanic mountain often forms depositional landforms with characteristic surface morphology comprising hummocks. Geomorphological and sedimentological analyses of debris avalanche deposits (DAD) at the northeastern face of Mt. Erciyes in central Turkey have been performed to investigate the mechanisms and processes of the debris avalanche. The morphometry of hummocks provides an opportunity to examine the volumetric and kinematic characteristics of the DAD. Although the exact age has been unknown, the sector collapse of this DAD was supposed to have occurred in the late Pleistocene (sometime during 90-20 ka), and subsequent sediment supply from the DAD could have affected ancient human activities in the downstream basin areas. In order to measure detailed surface morphology and depositional structures of the DAD, we apply structure-from-motion multi-view stereo (SfM-MVS) photogrammetry using unmanned aerial system (UAS) and a handheld camera. The UAS, including small unmanned aerial vehicle (sUAV) and a digital camera, provides low-altitude aerial photographs to capture surface morphology for an area of several square kilometers. A high-resolution topographic data, as well as an orthorectified image, of the hummocks were then obtained from the digital elevation model (DEM), and the geometric features of the hummocks were examined. A handheld camera is also used to obtain photographs of outcrop face of the DAD along a road to support the seimentological investigation. The three-dimensional topographic models of the outcrop, with a panoramic orthorectified image projected on a vertical plane, were obtained. This data enables to effectively describe sedimentological structure of the hummock in DAD. The detailed map of the DAD is also further examined with a regional geomorphological map to be compared with other geomorphological features including fluvial valleys, terraces, lakes and active faults.

  9. The Aysen Glacier Trail (AGT): Fostering leadership and personal growth towards understanding our place in the environment through experiential learning and scientific inquiry in northern Patagonia, Chile

    NASA Astrophysics Data System (ADS)

    Sincavage, R.; Chambers, F. B.; Leidich, J.

    2017-12-01

    The Colonia Glacier, a low elevation mid-latitude glacier, drains the lee side of the central division of the Northern Patagonian Ice Field (NPI). As such, it serves as a microcosm of conditions on the NPI as a whole. Glaciers of this type have experienced extreme variability in Holocene thickness and extent, making them excellent indicators of local and regional climate conditions. Glacial lake outburst floods (GLOFs) originating in the remote Cachet Basin, dammed by the Colonia Glacier, have increased in frequency from once every 10 years to 3 times annually since 2008. These flood events are important in that they 1.) directly impact the livelihoods of downstream residents, 2.) may be linked to the overall health of the Colonia Glacier and, to a larger extent, the NPI, 3.) provide a natural laboratory for studying the dynamics of large flood events, and 4.) have downcut the sediments sequestered in the upper basin, revealing a rich Holocene sedimentologic and climate record. With improved access to this remote region through local partners in recent years, outstanding opportunities for scientific discovery, education, and outreach exist in one of the most beautiful and least-studied glacial regions on Earth. We propose establishing an NSF REU site here to further develop the abundant educational and research opportunities in this spectacular locale. We envision students participating under the REU will receive a broad-based background in glaciology and sedimentology prior to the field experience, and then participate in basic field research led by the PIs into understanding recent and Holocene linkages between climate change and the glacio-fluvio geomorphology of the NPI. A pilot program of 13 U.S. and Chilean students with wide-ranging backgrounds and degree levels was conducted in the winter of 2015-16. A two week backcountry trek across rocky terrain, mountain streams, active glaciers, and proglacial lakes in this seldom-visited region immersed the students in the glacial geomorphology of the region. All students identified the course as a life-changing experience, both in their increase in knowledge of the subject matters of glacial geomorphology, climate, and sedimentology/stratigraphy, as well as leadership skills, wilderness travel, and local culture.

  10. Coastal plain soils and geomorphology: a key to understanding forest hydrology

    Treesearch

    Thomas M. Williams; Devendra M. Amatya

    2016-01-01

    In the 1950s, Coile published a simple classification of southeastern coastal soils using three characteristics: drainage class, sub-soil depth, and sub-soil texture. These ideas were used by Warren Stuck and Bill Smith to produce a matrix of soils with drainage class as one ordinate and subsoil texture as the second for the South Carolina coastal plain. Soils...

  11. The geomorphology of wetlands in drylands: Resilience, nonresilience, or …?

    NASA Astrophysics Data System (ADS)

    Tooth, Stephen

    2018-03-01

    Over the last decade, much attention has focused on wetland resilience to disturbances such as extreme weather events, longer climate change, and human activities. In geomorphology and cognate disciplines, resilience is defined in various ways and has physical and socioeconomic dimensions but commonly is taken to mean the ability of a system to (A) withstand disturbance, (B) recover from disturbance, or (C) adapt and evolve in response to disturbance to a more desirable (e.g., stable) configuration. Most studies of wetland resilience have tended to focus on the more-or-less permanently saturated humid region wetlands, but whether the findings can be readily transferred to wetlands in drylands remains unclear. Given the natural climatic variability and overall strong moisture deficit characteristic of drylands, are such wetlands likely to be more resilient or less resilient? Focusing on wetlands in the South African drylands, this paper uses existing geomorphological, sedimentological, and geochronological data sets to provide the spatial (up to 50 km2) and temporal (late Quaternary) framework for an assessment of geomorphological resilience. Some wetlands have been highly resilient to environmental (especially climate) change, but others have been nonresilient with marked transformations in channel-floodplain structure and process connectivity having been driven by natural factors (e.g., local base-level fall, drought) or human activities (e.g., channel excavation, floodplain drainage). Key issues related to the assessment of wetland resilience include channel-floodplain dynamics in relation to geomorphological thresholds, wetland geomorphological 'life cycles', and the relative roles of natural and human activities. These issues raise challenges for the involvement of geomorphologists in the practical application of the resilience concept in wetland management. A key consideration is how geomorphological resilience interfaces with other dimensions of resilience, especially ecological resilience and socioeconomic resilience, the latter commonly being defined in terms of ecosystem service delivery.

  12. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska

    NASA Astrophysics Data System (ADS)

    Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; McGuire, A. David

    2018-04-01

    Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10-100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km2) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999-2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.

  13. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska.

    PubMed

    Lara, Mark J; Nitze, Ingmar; Grosse, Guido; McGuire, A David

    2018-04-10

    Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10-100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km 2 ) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999-2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.

  14. Geomorphology and Geology of the Southwestern Margaritifer Sinus and Argyre Regions of Mars. Part 1: Geological and Geomorphological Overview

    NASA Technical Reports Server (NTRS)

    Parker, T. J.; Pieri, D. C.

    1985-01-01

    Based upon Viking Orbiter 1 images of the southwestern portion of the Margaritifer Sinus Quadrangle, the northwestern portion of the Argyre Quadrangle, and a small portion of the southeastern Coprates Quadrangle, three major mountainous of plateau units, seven plains units, and six units related to valley forming processes were identified. The photomosaic is oriented such that it provides good areal coverage of the upper Chryse Trough from Argyre Planitia to just above Margaritifer Chaos as well as of plains units on either side of the Trough. The photomosaic was compiled from Viking Orbiter 1 images ranging in resolution from approximately 150 to 300 meters per pixel printed at a scale of about 1:2,000,000. The characteristics of each geomorphic unit are outlined.

  15. A geomorphological approach to sustainable planning and management of the coastal zone of Kuwait

    NASA Astrophysics Data System (ADS)

    Al Bakri, Dhia

    1996-10-01

    The coastal zone in Kuwait has been under a considerable pressure from conflicting land uses since the early 1960s, as well as from the destruction and oil pollution caused by the Gulf War. To avoid further damage and to protect the coastal heritage it is essential to adopt an environmentally sustainable management process. This paper shows how the study of coastal geomorphology can provide a sound basis for sustainable planning and management. Based on coastal landforms, sediments and processes, the coastline of Kuwait was divided into nine geomorphic zones. These zones were grouped into two main geomorphic provinces. The northern province is marked by extensive muddy intertidal flats and dominated by a depositional and low-energy environment. The southern geomorphic province is characterised by relatively steep beach profiles, rocky/sandy tidal flats and a moderate to high-energy environment. The study has demonstrated that pollution, benthic ecology and other environmental conditions of the coast are a function of coastline geomorphology, sedimentology and related processes. The geomorphological information was used to determine the coastal vulnerability and to assess the environmental impacts of development projects and other human activities. Several strategies were outlined to integrate the geomorphic approach into the management of the coastal resources.

  16. The Cultural Resources and Geomorphology of Coralville Lake, Johnson County, Iowa. Volume 1. Technical Report.

    DTIC Science & Technology

    1984-04-01

    PERIOD COVERED THE CULTURAL RESOURCES AND GEOMORPHOLOGY OF FINAL 1984 CORALVILLE LAKE, JOHNSON COUNTY. IOWA 6 PERORMINGORG.REPORTNMBER 7. AUTHOR() 0...County, Iowa (see Figure 1). Coralville Dam Is located on the Iowa River approximately 7 miles above Iowa City, and inundates an area, at maximum flood...landform regions in Iowa . Two of these regions, namely, the Iowan Surface and the Southern Iowa Drift Plain, are in the Coralville Lake area. The

  17. Workshop on the Martian Northern Plains: Sedimentological, periglacial, and paleoclimatic evolution

    NASA Technical Reports Server (NTRS)

    Kargel, J. S. (Editor); Parker, T. J. (Editor); Moore, J. M. (Editor)

    1993-01-01

    The penultimate meeting in the Mars Surface and Atmosphere Through Time (MSATT) series of workshops was held on the campus of the University of Alaska in Fairbanks, Alaska, 12-13 Aug. 1993. This meeting, entitled 'The Martian Northern Plains: Sedimentological, Periglacial, and Paleoclimatic Evolution,' hosted by the Geophysical Institute at the University of Alaska, was designed to help foster an exchange of ideas among researchers of the Mars science community and the terrestrial glacial and periglacial science community. The technical sessions of the workshop were complemented by field trips to the Alaska Range and to the Fairbanks area and a low-altitude chartered overflight to the Arctic Costal Plain, so that, including these trips, the meeting lasted from 9-14 Aug. 1993. The meeting, field trips, and overflight were organized and partially funded by the Lunar and Planetary Institute and the MSATT Study Group. The major share of logistical support was provided by the Publications and Program Services Department of the Lunar and Planetary Institute. The workshop site was selected to allow easy access to field exposures of active glaciers and glacial and periglacial landforms. In all, 25 scientists attended the workshop, 24 scientists (plus 4 guests and the meeting coordinator) participated in the field trips, and 18 took part in the overflight. This meeting reaffirmed the value of expertly led geologic field trips conducted in association with topical workshops.

  18. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska

    PubMed Central

    Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; McGuire, A. David

    2018-01-01

    Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10–100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km2) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999–2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling. PMID:29633984

  19. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska

    USGS Publications Warehouse

    Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; McGuire, A. David

    2018-01-01

    Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10–100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km2) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999–2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.

  20. Applications of Skylab EREP photographs to mapping landforms and environmental geomorphology in the Great Plains and Midwest

    NASA Technical Reports Server (NTRS)

    Morrison, R. B.; Lineback, J. A.; Fuller, H. K.; Rinkenberger, R. K.

    1975-01-01

    The following evaluations of Skylab photographs were undertaken: (1) the 1290 Skylab S190A and S190B photographs of Illinois, Iowa, Kansas, Missouri, Nebraska, and South Dakota were evaluated in detail in terms of coverage, cloud cover, photographic quality, endlap, detectability of roads and stereorelief, and utility for geomorphologic mapping, and (2) the utility of the Skylab photos were tested for interpretive analytic mapping of geomorphologic features over large areas representative of different parts of this region. Photointerpretative maps of analytic geomorphology were obtained for various test areas representative of the varied landscapes in the region. These maps are useful for regional land-use planning, ground-water exploration, and other environmental geomorphologic-geologic applications. Compared with LANDSAT-1 MSS images, Skylab photos afford almost as extensive overviews of large areas but in considerably greater detail, and for many SL photos, moderate stereorelief. However, repetitive multiseasonal, cloud-free coverage by high-quality photos is very limited and many areas have no coverage at all.

  1. Coastal geomorphology of the Martian northern plains

    NASA Technical Reports Server (NTRS)

    Parker, Timothy J.; Gorsline, Donn S.; Saunders, Stephen R.; Pieri, David C.; Schneeberger, Dale M.

    1993-01-01

    The paper considers the question of the formation of the outflow channels and valley networks discovered on the Martian northern plains during the Mariner 9 mission. Parker and Saunders (1987) and Parker et al. (1987, 1989) data are used to describe key features common both in the lower reaches of the outflow channels and within and along the margins of the entire northern plains. It is suggested, that of the geological processes capable of producing similar morphologies on earth, lacustrine or marine deposition and subsequent periglacial modification offer the simplest and most consistent explanation for the suit of features found on Mars.

  2. Geomorphology of the Iberian Continental Margin

    NASA Astrophysics Data System (ADS)

    Maestro, Adolfo; López-Martínez, Jerónimo; Llave, Estefanía; Bohoyo, Fernando; Acosta, Juan; Hernández-Molina, F. Javier; Muñoz, Araceli; Jané, Gloria

    2013-08-01

    The submarine features and processes around the Iberian Peninsula are the result of a complex and diverse geological and oceanographical setting. This paper presents an overview of the seafloor geomorphology of the Iberian Continental Margin and the adjacent abyssal plains. The study covers an area of approximately 2.3 million km2, including a 50 to 400 km wide band adjacent to the coastline. The main morphological characteristics of the seafloor features on the Iberian continental shelf, continental slope, continental rise and the surrounding abyssal plains are described. Individual seafloor features existing on the Iberian Margin have been classified into three main groups according to their origin: tectonic and/or volcanic, depositional and erosional. Major depositional and erosional features around the Iberian Margin developed in late Pleistocene-Holocene times and have been controlled by tectonic movements and eustatic fluctuations. The distribution of the geomorphological features is discussed in relation to their genetic processes and the evolution of the margin. The prevalence of one or several specific processes in certain areas reflects the dominant morphotectonic and oceanographic controlling factors. Sedimentary processes and the resulting depositional products are dominant on the Valencia-Catalán Margin and in the northern part of the Balearic Promontory. Strong tectonic control is observed in the geomorphology of the Betic and the Gulf of Cádiz margins. The role of bottom currents is especially evident throughout the Iberian Margin. The Galicia, Portuguese and Cantabrian margins show a predominance of erosional features and tectonically-controlled linear features related to faults.

  3. Field and laboratory data describing physical and chemical characteristics of metal-contaminated flood-plain deposits downstream from Lead, west-central South Dakota

    USGS Publications Warehouse

    Marron, D.C.

    1988-01-01

    Samples from metal-contaminated flood-plain sediments at 9 sites downstream from Lead, in west-central South Dakota, were collected during the summers of 1985-87 to characterize aspects of the sedimentology, chemistry, and geometry of a deposit that resulted from the discharge of a large volume of mining wastes into a river system. Field and laboratory data include stratigraphic descriptions, chemical contents and grain-size distributions of samples, and surveyed flood-plain positions of samples. This report describes sampling-site locations, and methods of sample collection and preservation, and subsequent laboratory analysis. Field and laboratory data are presented in 4 figures and 11 tables in the ' Supplemental Data ' section at the back of the report. (USGS)

  4. Some examples of geomorphodiversity in Italy

    NASA Astrophysics Data System (ADS)

    Panizza, Mario

    2014-05-01

    The concept of geomorphodiversity (Panizza, 2009) is presented: "the critical and specific assessment of the geomorphological features of a territory, by comparing them in a way both extrinsic (comparison of the geomorphological characteristics with those from other territories) and intrinsic (comparison of the geomorphological characteristics with other areas within the territory itself) and taking into account the level of their scientific quality, the scale of investigation and the purpose of the research". A first example concerns the Dolomites: they have been included in the UNESCO World Heritage List because of their exceptional beauty and unique landscape, together with their scientific importance from the geological and geomorphological point of view. They are of international significance for geomorphodiversity, as the classic site for the development of mountains in dolomite limestone and present a wide range of landforms related to erosion, tectonics and glaciation. They represent a kind of high altitude, open air laboratory of geomorphological heritage of exceptional global value, among the most extraordinary and accessible in the world and ideal for researching, teaching, understanding and developing Earth Science theories. The second example concerns the Emilia-Romagna Apennines, candidate for enrolment in the List of European Geoparks: they show a multifaceted and complex image from the international and regional geomorphological (extrinsic and intrinsic geomorphodiversity) point of view and are an educational example for illustrating morphotectonic evolution, stratigraphic and sedimentological sequences and morpholithological peculiarities connected with gypsum karst and clay mass wasting phenomena. The third example concerns the Vesuvius, one of the National Italian Parks: it shows an extrinsic geomorphodiversity mainly referred to the type of eruptions, with some exemplary processes inserted in international volcanic nomenclature; it makes up an important geoheritage that can be considered a field laboratory for research on volcanic geomorphology. At a regional level, intrinsic geomorphodiversity includes typical examples ascribable to lahars, relief inversion and pseudo-karst morphology.

  5. The Usumacinta-Grijalva beach-ridge plain in southern Mexico: a high-resolution archive of river discharge and precipitation

    NASA Astrophysics Data System (ADS)

    Nooren, Kees; Hoek, Wim Z.; Winkels, Tim; Huizinga, Annika; Van der Plicht, Hans; Van Dam, Remke L.; Van Heteren, Sytze; Van Bergen, Manfred J.; Prins, Maarten A.; Reimann, Tony; Wallinga, Jakob; Cohen, Kim M.; Minderhoud, Philip; Middelkoop, Hans

    2017-09-01

    The beach-ridge sequence of the Usumacinta-Grijalva delta borders a 300 km long section of the southern Gulf of Mexico coast. With around 500 beach ridges formed in the last 6500 years, the sequence is unsurpassed in the world in terms of numbers of individual ridges preserved, continuity of the record, and temporal resolution. We mapped and dated the most extensively accreted part of the sequence, linking six phases of accretion to river mouth reconfigurations and constraining their ages with 14C and OSL dating. The geomorphological and sedimentological reconstruction relied on lidar data, coring transects, GPR measurements, grain-size analyses, and chemical fingerprinting of volcanic glass and pumice encountered within the beach and dune deposits. We demonstrate that the beach-ridge complex was formed under ample long-term fluvial sediment supply and shorter-term wave- and aeolian-modulated sediment reworking. The abundance of fluvially supplied sand is explained by the presence of easily weatherable Los Chocoyos ignimbrites from the ca. 84 ka eruption of the Atitlán volcano (Guatemala) in the catchment of the Usumacinta River. Autocyclic processes seem responsible for the formation of ridge-swale couplets. Fluctuations in their periodicity (ranging from 6-19 years) are governed by progradation rate, and are therefore not indicative of sea level fluctuations or variability in storm activity. The fine sandy beach ridges are mainly swash built. Ridge elevation, however, is strongly influenced by aeolian accretion during the time the ridge is located next to the beach. Beach-ridge elevation is negatively correlated with progradation rate, which we relate to the variability in sediment supply to the coastal zone, reflecting decadal-scale precipitation changes within the river catchment. In the southern Mexican delta plain, the coastal beach ridges therefore appear to be excellent recorders of hinterland precipitation.

  6. Modern sediments and Pleistocene reefs from isolated carbonate platforms (Iles Eparses, SW Indian Ocean): A preliminary study

    NASA Astrophysics Data System (ADS)

    Jorry, Stéphan J.; Camoin, Gilbert F.; Jouet, Gwénaël; Roy, Pascal Le; Vella, Claude; Courgeon, Simon; Prat, Sophie; Fontanier, Christophe; Paumard, Victorien; Boulle, Julien; Caline, Bruno; Borgomano, Jean

    2016-04-01

    Isolated carbonate platforms occur throughout the geologic record, from Archean to present. Although the respective roles of tectonics, sediment supply and sea-level changes in the stratigraphical architecture of these systems are relatively well constrained, the details of the nature and controls on the variability of sedimentological patterns between and within individual geomorphologic units on platforms have been barely investigated. This study aims at describing and comparing geomorphological and sedimentological features of surficial sediments and fossil reefs from three isolated carbonate platforms located in the SW Indian Ocean (Glorieuses, Juan de Nova and Europa). These carbonate platforms are relatively small and lack continuous reef margins, which have developed only on windward sides. Field observations, petrographic characterization and grain-size analyses are used to illustrate the spatial patterns of sediment accumulation on these platforms. The internal parts of both Glorieuses and Juan de Nova platforms are blanketed by sand dunes with medium to coarse sands with numerous reef pinnacles. Skeletal components including coral, green algae, and benthic foraminifera fragments prevail in these sediments. Europa platform exhibits a similar skeletal assemblage dominated by coral fragments, with the absence of wave-driven sedimentary bodies. Fossil reefs from the Last interglacial (125,000 years BP) occur on the three platforms. At Glorieuses, a succession of drowned terraces detected on seismic lines is interpreted as reflecting the last deglacial sea-level rise initiated 20,000 years ago. These findings highlight the high potential of these platforms to study past sea-level changes and the related reef response, which remain poorly documented in the SW Indian Ocean.

  7. Sand fairway mapping as a tool for tectonic restoration in orogenic belts

    NASA Astrophysics Data System (ADS)

    Butler, Rob

    2016-04-01

    The interplay between regional subsidence mechanisms and local deformation associated with individual fold-thrust structures is commonly investigated in neotectonic subaerial systems using tectonic geomorphology. Taking these approaches back into the early evolution of mountain belts is difficult as much of the key evidence is lost through erosion. The challenge is to develop appropriate tools for investigating these early stages of orogenesis. However, many such systems developed under water. In these settings the connections between regional and local tectonics are manifest in complex bathymetry. Turbidity currents flowing between and across these structures will interact with their substrate and thus their deposits, tied to stratigraphic ages, can chart tectonic evolution. Understanding the depositional processes of the turbidity currents provides substantial further insight on confining seabed geometry and thus can establish significant control on the evolution of bathymetric gradients and continuity through basins. However, reading these records commonly demands working in structurally deformed terrains that hitherto have discouraged sedimentological study. This is now changing. Sand fairway mapping provides a key approach. Fairway maps chart connectivity between basins and hence their relative elevation through time. Larger-scale tectonic reconstructions may be tested by linking fairway maps to sand composition and other provenance data. More detailed turbidite sedimentology provides substantial further insight. In confined turbidite systems, it is the coarser sand component that accumulates in the deeper basin with fines fractionated onto the flanks. Flow bypass, evidenced by abrupt breaks in grading within individual event beds, can be used to predict sand fraction distribution down fairways. Integrating sedimentology into fairway maps can chart syntectonic slope evolution and thus provide high resolution tools equivalent to those in subaerial tectonic geomorphology. The stratigraphic records are preserved in many parts of the Alpine-Mediterranean region. Examples are drawn from the Eo-Oligocene of the western Alps and the early Miocene of the Maghreb-Apennine system to illustrate how turbidite sedimentology, linked to studies of basin structure, can inform understanding of tectonic processes on regional and local scales. In both examples, sediment was delivered across deforming basin arrays containing contractional structures, sourced from beyond the immediate orogenic segments. The depositional systems show that multiple structures were active in parallel, rather than develop in any particular sequence. Both systems show that significant deformation occurs, emerging to the syn-orogenic surface ahead of the main orogenic wedge. The cycling of uplift and subsidence of "massifs" can be significantly more complex that the histories resolved from thermochronological data alone.

  8. The geomorphological evidences of subsidence in the Nile Delta: Analysis of high resolution topographic DEM and multi-temporal satellite images

    NASA Astrophysics Data System (ADS)

    El Bastawesy, M.; Cherif, O. H.; Sultan, M.

    2017-12-01

    This paper investigates the relevance of landforms to the subsidence of the Nile Delta using a high resolution topographic digital elevation model (DEM) and sets of multi-temporal Landsat satellite images. 195 topographic map sheets produced in 1946 at 1:25,000 scale were digitized, and the DEM was interpolated. The undertaken processing techniques have distinguished all the natural low-lying closed depressions from the artificial errors induced by the interpolation of the DEM. The local subsidence of these depressions from their surroundings reaches a maximum depth of 2.5 m. The regional subsidence of the Nile Delta has developed inverted topography, where the tracts occupied by the contemporary distributary channels are standing at higher elevations than the areas in between. This inversion could be related to the differences in the hydrological and sedimentological properties of underlying sediments, as the channels are underlain by water-saturated sands while the successions of clay and silt on flood plains are prone to compaction. Furthermore, the analysis of remote sensing and topographic data clearly show significant changes in the land cover and land use, particularly in the northern lagoons and adjacent sabkhas, which are dominated by numerous low subsiding depressions. The areas covered by water logging and ponds are increasing on the expense of agricultural areas, and aquaculture have been practiced instead. The precise estimation of subsidence rates and distribution should be worked out to evaluate probable changes in land cover and land use.

  9. Sedimentology: general introduction and definitions : fluvial sediment and channel morphology

    USGS Publications Warehouse

    Wolff, Roger G.; Benedict, Paul C.

    1964-01-01

    Sedimentology, the study of sedimentary rocks and the processes by which they are formed, includes and is related to a large number of phenomena. Sedimentology includes the five fundamental processes defined by the term sediaentation --weathering, erosion, transportation, deposition and diagenesis. Sedimentology shares with geomorphology the study of the surface features of the earth. Sedimentology also shares with hydrology the study of river.--channels. River channels are formed in part or in total as a result of flowing water and sediment transport, commonly called the "work of the rivers." This survey of published literature was made to aid in arriving at definitions which would be acceptable to, and representative of, a majority of professional personnel actively engaged in laboratory and field investigations related to the "work of the river." The definitions in this list are intended to explain the terms used in studies of fluvial sediment and channel morphology. No set of definitions can expect universal acceptance, however, i t is hoped that this compilation will be considered a summary and synthesis of present and past usage and that it will serve as a starting point for future usage. Multiple references are cited from textbooks, glossaries and dictionaries, scientific journals and u.s. Government publications. To obtain a mutual understanding and enhance precision, many of the proposed definitions are a composite of those selected from papers or reports covering research studies and field investigations. A draft of this glossary has been reviewed by a group of interested personnel. The results of this review have been carefully considered and the originally-suggested definitions have been revised accordingly, resulting in the present compilation. R. G. Wolff, with the help of Mrs. v. Blatcher, carried out the literature search and compilation of terms and the review results. Paul c. Benedict approved or composed the definitions as presented in this report.

  10. Analysis of spatial-temporal patterns of water table change as a tool for conjunctive water management in the Upper Central Plain of the Chao Phraya River Basin, Thailand

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Vitor Vieira; Koontanakulvong, Sucharit; Suthidhummajit, Chokchai; Junior, Paulo Pereira Martins; Hadad, Renato Moreira

    2017-03-01

    A sustainable strategy for conjunctive water management must include information on the temporal and spatial availability of this natural resource. Because of water shortages in the dry seasons, farmers on the Upper Plain of the Chao Phraya River basin, Thailand, are increasingly using groundwater to meet their irrigation needs. To evaluate the possibilities of conjunctive water management in the area, the spatial-temporal changes in the water table of the Younger Terrace Aquifer were investigated. First, a regional geomorphological map based on field surveys, remote sensing and previous environmental studies was developed. Then, the well data were analyzed in relation to rainfall, streamflow, yield and pumpage, and the data were interpolated using geostatistical techniques. The results were analyzed via integrated zoning based on color theory as applied to multivariate visualization. The analysis results indicate areas that would be more suitable for groundwater extraction in a conjunctive management framework with regard to the natural hydrogeological processes and the effects of human interaction. The kriging results were compared with the geomorphological map, and the geomorphological areas exhibit distinct hydrogeological patterns. The western fans exhibit the best potential for the expansion of conjunctive use, whereas the borders of the northern fans exhibit the lowest potential.

  11. Recent sediment studies refute Glen Canyon Dam hypothesis

    USGS Publications Warehouse

    Rubin, David M.; Topping, David J.; Schmidt, John C.; Hazel, Joe; Kaplinski, Matt; Melis, Theodore S.

    2002-01-01

    Recent studies of sedimentology hydrology, and geomorphology indicate that releases from Glen Canyon Dam are continuing to erode sandbars and beaches in the Colorado River in Grand Canyon National Park, despite attempts to restore these resources. The current strategy for dam operations is based on the hypothesis that sand supplied by tributaries of the Colorado River downstream from the dam will accumulate in the channel during normal dam operations and remain available for restoration floods. Recent work has shown that this hypothesis is false, and that tributary sand inputs are exported downstream rapidly typically within weeks or months under the current flow regime.

  12. Yangon River Geomorphology Identification and its Enviromental Imapacts Analsysi by Optical and Radar Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Lwin, A.; Khaing, M. M.

    2012-07-01

    The Yangon river, also known as the Rangoon river, is about 40 km long (25miles), and flows from southern Myanmar as an outlet of the Irrawaddy (Ayeyarwady) river into the Ayeyarwady delta. The Yangon river drains the Pegu Mountains; both the Yangon and the Pathein rivers enter the Ayeyarwady at the delta. Fluvial geomorphology is based primarily on rivers of manageable dimensions. The emphasis is on geomorphology, sedimentology of Yangon river and techniques for their identification and management. Present techniques such as remote sensing have made it easier to investigate and interpret in details analysis of river geomorphology. In this paper, attempt has been made the complicated issues of geomorphology, sedimentation patterns and management of river system and evolution studied. The analysis was carried out for the impact of land use/ land cover (LULC) changes on stream flow patterns. The hydrologic response to intense, flood producing rainfall events bears the signatures of the geomorphic structure of the channel network and of the characteristic slope lengths defining the drainage density of the basin. The interpretation of the hydrologic response as the travel time distribution of a water particle randomly injected in a distributed manner across the landscape inspired many geomorphic insights. In 2008, Cyclone Nargis was seriously damaged to mangrove area and its biodiversity system in and around of Yangon river terraces. A combination of digital image processing techniques was employed for enhancement and classification process. It is observed from the study that middle infra red band (0.77mm - 0.86mm) is highly suitable for mapping mangroves. Two major classes of mangroves, dense and open mangroves were delineated from the digital data.

  13. Using geomorphological variables to predict the spatial distribution of plant species in agricultural drainage networks

    PubMed Central

    Bailly, Jean-Stéphane; Vinatier, Fabrice

    2018-01-01

    To optimize ecosystem services provided by agricultural drainage networks (ditches) in headwater catchments, we need to manage the spatial distribution of plant species living in these networks. Geomorphological variables have been shown to be important predictors of plant distribution in other ecosystems because they control the water regime, the sediment deposition rates and the sun exposure in the ditches. Whether such variables may be used to predict plant distribution in agricultural drainage networks is unknown. We collected presence and absence data for 10 herbaceous plant species in a subset of a network of drainage ditches (35 km long) within a Mediterranean agricultural catchment. We simulated their spatial distribution with GLM and Maxent model using geomorphological variables and distance to natural lands and roads. Models were validated using k-fold cross-validation. We then compared the mean Area Under the Curve (AUC) values obtained for each model and other metrics issued from the confusion matrices between observed and predicted variables. Based on the results of all metrics, the models were efficient at predicting the distribution of seven species out of ten, confirming the relevance of geomorphological variables and distance to natural lands and roads to explain the occurrence of plant species in this Mediterranean catchment. In particular, the importance of the landscape geomorphological variables, ie the importance of the geomorphological features encompassing a broad environment around the ditch, has been highlighted. This suggests that agro-ecological measures for managing ecosystem services provided by ditch plants should focus on the control of the hydrological and sedimentological connectivity at the catchment scale. For example, the density of the ditch network could be modified or the spatial distribution of vegetative filter strips used for sediment trapping could be optimized. In addition, the vegetative filter strips could constitute new seed bank sources for species that are affected by the distance to natural lands and roads. PMID:29360857

  14. Using geomorphological variables to predict the spatial distribution of plant species in agricultural drainage networks.

    PubMed

    Rudi, Gabrielle; Bailly, Jean-Stéphane; Vinatier, Fabrice

    2018-01-01

    To optimize ecosystem services provided by agricultural drainage networks (ditches) in headwater catchments, we need to manage the spatial distribution of plant species living in these networks. Geomorphological variables have been shown to be important predictors of plant distribution in other ecosystems because they control the water regime, the sediment deposition rates and the sun exposure in the ditches. Whether such variables may be used to predict plant distribution in agricultural drainage networks is unknown. We collected presence and absence data for 10 herbaceous plant species in a subset of a network of drainage ditches (35 km long) within a Mediterranean agricultural catchment. We simulated their spatial distribution with GLM and Maxent model using geomorphological variables and distance to natural lands and roads. Models were validated using k-fold cross-validation. We then compared the mean Area Under the Curve (AUC) values obtained for each model and other metrics issued from the confusion matrices between observed and predicted variables. Based on the results of all metrics, the models were efficient at predicting the distribution of seven species out of ten, confirming the relevance of geomorphological variables and distance to natural lands and roads to explain the occurrence of plant species in this Mediterranean catchment. In particular, the importance of the landscape geomorphological variables, ie the importance of the geomorphological features encompassing a broad environment around the ditch, has been highlighted. This suggests that agro-ecological measures for managing ecosystem services provided by ditch plants should focus on the control of the hydrological and sedimentological connectivity at the catchment scale. For example, the density of the ditch network could be modified or the spatial distribution of vegetative filter strips used for sediment trapping could be optimized. In addition, the vegetative filter strips could constitute new seed bank sources for species that are affected by the distance to natural lands and roads.

  15. Geomorphology, active tectonics, and landscape evolution in the Mid-Atlantic region: Chapter

    USGS Publications Warehouse

    Pazzaglia, Frank J.; Carter, Mark W.; Berti, Claudio; Counts, Ronald C.; Hancock, Gregory S.; Harbor, David; Harrison, Richard W.; Heller, Matthew J.; Mahan, Shannon; Malenda, Helen; McKeon, Ryan; Nelson, Michelle S.; Prince, Phillip; Rittenour, Tammy M.; Spotilla, James; Whittecar, G. Richard

    2015-01-01

    In 2014, the geomorphology community marked the 125th birthday of one of its most influential papers, “The Rivers and Valleys of Pennsylvania” by William Morris Davis. Inspired by Davis’s work, the Appalachian landscape rapidly became fertile ground for the development and testing of several grand landscape evolution paradigms, culminating with John Hack’s dynamic equilibrium in 1960. As part of the 2015 GSA Annual Meeting, the Geomorphology, Active Tectonics, and Landscape Evolution field trip offers an excellent venue for exploring Appalachian geomorphology through the lens of the Appalachian landscape, leveraging exciting research by a new generation of process-oriented geomorphologists and geologic field mapping. Important geomorphologic scholarship has recently used the Appalachian landscape as the testing ground for ideas on long- and short-term erosion, dynamic topography, glacial-isostatic adjustments, active tectonics in an intraplate setting, river incision, periglacial processes, and soil-saprolite formation. This field trip explores a geologic and geomorphic transect of the mid-Atlantic margin, starting in the Blue Ridge of Virginia and proceeding to the east across the Piedmont to the Coastal Plain. The emphasis here will not only be on the geomorphology, but also the underlying geology that establishes the template and foundation upon which surface processes have etched out the familiar Appalachian landscape. The first day focuses on new and published work that highlights Cenozoic sedimentary deposits, soils, paleosols, and geomorphic markers (terraces and knickpoints) that are being used to reconstruct a late Cenozoic history of erosion, deposition, climate change, and active tectonics. The second day is similarly devoted to new and published work documenting the fluvial geomorphic response to active tectonics in the Central Virginia seismic zone (CVSZ), site of the 2011 M 5.8 Mineral earthquake and the integrated record of Appalachian erosion preserved on the Coastal Plain. The trip concludes on Day 3, joining the Kirk Bryan Field Trip at Great Falls, Virginia/ Maryland, to explore and discuss the dramatic processes of base-level fall, fluvial incision, and knickpoint retreat.

  16. Complex geomorphologic assemblage of terrains in association with the banded terrain in Hellas basin, Mars

    NASA Astrophysics Data System (ADS)

    Diot, X.; El-Maarry, M. R.; Schlunegger, F.; Norton, K. P.; Thomas, N.; Grindrod, P. M.; Chojnacki, M.

    2016-02-01

    Hellas basin acts as a major sink for the southern highlands of Mars and is likely to have recorded several episodes of sedimentation and erosion. The north-western part of the basin displays a potentially unique Amazonian landscape domain in the deepest part of Hellas, called ;banded terrain;, which is a deposit characterized by an alternation of narrow band shapes and inter-bands displaying a sinuous and relatively smooth surface texture suggesting a viscous flow origin. Here we use high-resolution (HiRISE and CTX) images to assess the geomorphological interaction of the banded terrain with the surrounding geomorphologic domains in the NW interior of Hellas to gain a better understanding of the geological evolution of the region as a whole. Our analysis reveals that the banded terrain is associated with six geomorphologic domains: a central plateau named Alpheus Colles, plain deposits (P1 and P2), reticulate (RT1 and RT2) and honeycomb terrains. Based on the analysis of the geomorphology of these domains and their cross-cutting relationships, we show that no widespread deposition post-dates the formation of the banded terrain, which implies that this domain is the youngest and latest deposit of the interior of Hellas. Therefore, the level of geologic activity in the NW Hellas during the Amazonian appears to have been relatively low and restricted to modification of the landscape through mechanical weathering, aeolian and periglacial processes. Thermophysical data and cross-cutting relationships support hypotheses of modification of the honeycomb terrain via vertical rise of diapirs such as ice diapirism, and the formation of the plain deposits through deposition and remobilization of an ice-rich mantle deposit. Finally, the observed gradual transition between honeycomb and banded terrain suggests that the banded terrain may have covered a larger area of the NW interior of Hellas in the past than previously thought. This has implications on the understanding of the evolution of the deepest part of Hellas.

  17. Two centuries of coastal change at Caesarea, Israel: natural processes vs. human intervention

    NASA Astrophysics Data System (ADS)

    Shtienberg, Gilad; Zviely, Dov; Sivan, Dorit; Lazar, Michael

    2014-08-01

    The coast at Caesarea, Israel, has been inhabited almost continuously for the last 2,400 years, and the archeological sites are today a major international tourist attraction. Because the sites straddle the shoreline, they are subject to constant damage by wave action, and must therefore be frequently restored. In this paper, local shoreline migrations over the last 200 years are investigated with the aim of distinguishing between natural and man-made coastal changes. In order to assess these changes accurately, geomorphological and sedimentological data were examined based on detailed beach profile measurements, bathymetric surveys, and grain-size analyses. In addition, series of old aerial photographs, as well as historical topographic maps and nautical charts were consulted. The results show that shoreline changes can be grouped into two main time periods. During the first period from 1862 to 1949 before the expansion of modern settlements, the position of the shoreline changed irregularly by up to 30 m. In the second period from 1949 onward, numerous coastal structures have been erected, and various coastal modifications have been carried out. The evaluation of the data suggests that human interventions have had relatively little effect on the overall position of the shoreline, as displacements ranged only from 5 to 18 m. Thus, coastal changes at Caesarea are predominantly due to natural wave action reflected in the heterogeneous geomorphological and sedimentological characteristics of the shore. This contradicts the common assumption that human activities are always mainly responsible for large-scale shoreline modifications in the region. It is concluded that, in order to implement meaningful mitigating countermeasures, coastal archeological sites need to be individually assessed with respect to the dominant factors causing local coastal change.

  18. Role of neotectonics and climate in development of the Holocene geomorphology and soils of the Gangetic Plains between the Ramganga and Rapti rivers

    NASA Astrophysics Data System (ADS)

    Srivastava, Pankaj; Parkash, B.; Sehgal, J. L.; Kumar, Sudhir

    1994-12-01

    Fifteen soil-geomorphic units have been delineated from the Gangetic Plains between the Ramganga and Rapti rivers. They were identified by remote sensing and field checks. On the basis of degree of profile development, their soils are grouped into five members (QGH1 to QGH5, QGH5 being the oldest) of a soil chrono-association. Tentative ages assigned to QGH1 to QGH5 are <500, > 500, > 2500, 8000 and 13,5000 yr B.P., respectively. From the early Holocene to about 6500 yr. B.P. a cold, arid to semi-arid climate prevailed and pedogenic calcrete developed over large areas in the Gangetic Plains. Later, a warm and humid climate and improved drainage resulted in complete removal of calcrete from soil profiles in some areas or its dissolution and re-precipitation in lower horizons in other areas. Neotectonics seems to have played a significant role in the evolution of the geomorphology and soils of the area. It determined areas of active sedimentation, pedogenesis and erosion (in upland regions). It led to tilting and sagging of large blocks resulting in shifting and increase in sinuosity of the rivers. Tectonic slopes/faults determined the courses of large rivers.

  19. Fuzzy logic-based assessment for mapping potential infiltration areas in low-gradient watersheds.

    PubMed

    Quiroz Londoño, Orlando Mauricio; Romanelli, Asunción; Lima, María Lourdes; Massone, Héctor Enrique; Martínez, Daniel Emilio

    2016-07-01

    This paper gives an account of the design a logic-based approach for identifying potential infiltration areas in low-gradient watersheds based on remote sensing data. This methodological framework is applied in a sector of the Pampa Plain, Argentina, which has high level of agricultural activities and large demands for groundwater supplies. Potential infiltration sites are assessed as a function of two primary topics: hydrologic and soil conditions. This model shows the state of each evaluated subwatershed respecting to its potential contribution to infiltration mainly based on easily measurable and commonly used parameters: drainage density, geomorphologic units, soil media, land-cover, slope and aspect (slope orientation). Mapped outputs from the logic model displayed 42% very low-low, 16% moderate, 41% high-very high contribution to potential infiltration in the whole watershed. Subwatersheds in the upper and lower section were identified as areas with high to very high potential infiltration according to the following media features: low drainage density (<1.5 km/km(2)), arable land and pastures as the main land-cover categories, sandy clay loam to loam - clay loam soils and with the geomorphological units named poorly drained plain, channelized drainage plain and, dunes and beaches. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Geomorphological Map of the South Belet Region of Titan: An Exploration of Mid-Latitude-to-Pole Transition Zones

    NASA Astrophysics Data System (ADS)

    Schoenfeld, A.; Lopes, R.; Malaska, M.; Solomonidou, A.

    2017-12-01

    We carried out detailed geomorphological mapping of Titan's mid-latitude region south of the Belet Sand Sea. We used radar data collected by Cassini's Synthetic Aperture Radar (SAR) as our basemap, supplemented by images from VIMS, ISS, SARtopo, and microwave emissivity datasets. We mapped at a scale of 1:800,000 in all areas of the South Belet region covered by SAR swaths, taking into consideration the 300 m/pixel resolution of the swaths. For the mid-latitudes, we have defined five broad classes of terrains following Malaska et al. (2015). These terrain classes are craters, hummocky/mountainous, labyrinth, plains, and dunes. We have found that the hummocky/mountainous terrains are the oldest, with a radiometric signature consistent with icy materials. Dunes are the youngest units and return a radiometric signature consistent with organic sediments. We find that the South Belet region is covered primarily by the dune and plain units typical of Titan's mid-latitudes (Malaska et al. 2015). Previous mapping efforts of the mid-latitude regions of Titan (Lopes et al. 2016; Malaska et al. 2015) have indicated that these regions are predominately modified and influenced by aeolian activities. A plains unit designated "scalloped plains" is prominently featured between the 50°S and 60°S latitudes of this region. In this area we also find a terrain unit designated "dark irregular plains" that has been interpreted as damp materials saturated with liquid hydrocarbons (Malaska et al 2015; Hayes et al. 2008). We also note a higher occurrence of fluvial channels starting at this latitude zone and extending poleward. We suggest that these features demark the transition zone between mid-latitude/equatorial aeolian-dominated processes and fluvial-dominated processes prevailing at the poles.

  1. Taphonomy and paleoecology of nonmarine mollusca: indicators of alluvial plain lacustrine sedimentation, upper part of the Tongue River Member, Fort Union Formation ( Paleocene), Northern Powder River Basin, Wyoming and Montana ( USA).

    USGS Publications Warehouse

    Hanley, J.H.; Flores, R.M.

    1987-01-01

    The composition, species abundances, and spatial and temporal distributions of mollusc assemblages were controlled by the environments in which they lived and the depositional processes that affected the molluscs after death and before final burial. Post-mortem transport, reworking and concentration of shells, and mixing of faunal elements from discrete habitats produced a taphonomic 'overprint' on assemblage characteristics that directly reflects the processes of alluvial plain and floodbasin lacustrine sedimentation. The 'overprint' can be interpreted from outcrop analysis of molluscan biofabric, which consists of: 1) orientation, fragmentation, size-sorting, abrasion, density, and dispersion of shells, 2) the nature and extent of shell-infilling, and 3) ratio of articulated to disarticulated bivalves. Taphonomic characteristics were used with sedimentological properties to differentiate in-place, reworked, transported, and ecologically mixed mollusc assemblages. This study also defines the paleoecology of habitat preferences of mollusc species as a basis for recognition of the environments in which these assemblages were deposited: 1) large floodbasin lakes, 2) small floodbasin lakes, and 3) crevasse deltas and splays. Integration of sedimentology and paleoecology provides an interdisciplinary approach to the interpretation of alluvial environments through time in the Tongue River Member. -Authors

  2. Origin and development of plains-type folds in the mid-continent (United States) during the late Paleozoic

    USGS Publications Warehouse

    Merriam, D.F.

    2005-01-01

    Plains-type folds are local, subtle anticlines formed in the thin sedimentary package overlying a shallow, crystalline basement on the craton. They are small in areal extent (usually less than 1-3 km 2 [0.4-1.2 mi2]), and their amplitude increases with depth (usually tens of meters), which is mainly the result of differential compaction of sediments (usually clastic units) over tilted, rigid, basement fault blocks. The development of these structural features by continuous but intermittent movement of the basement fault blocks in the late Paleozoic in the United States mid-continent is substantiated by a record of stratigraphic and sedimentological evidence. The recurrent structural movement, which reflects adjustment to external stresses, is expressed by the change in thickness of stratigraphic units over the crest of the fold compared to the flanks. By plotting the change in thickness for different stratigraphic units of anticlines on different fault blocks, it is possible to determine the timing of movement of the blocks that reflect structural adjustment. These readjustments are confirmed by sedimentological evidence, such as convolute, soft-sediment deformation features and small intraformational faults. The stratigraphic interval change in thickness for numerous structures in the Cherokee, Forest City, and Salina basins and on the Nemaha anticline of the mid-continent United States was determined and compared for location and timing of the adjustments. Most of the adjustment occurred during and after time of deposition of the Permian-Pennsylvanian clastic units, which, in turn, reflect tectonic disturbance in adjacent areas, and the largest amount of movement on the plains-type structures occurred on those nearest and semiparallel to major positive features, such as the Nemaha anticline. Depending on the time of origin and development of plains-type folds, they may control the entrapment and occurrence of oil and gas. Copyright ??2005. The American Association of Petroleum Geologists. All rights reserved.

  3. A lithofacies terrain model for the Blantyre Region: Implications for the interpretation of palaeosavanna depositional systems and for environmental geology and economic geology in southern Malawi

    NASA Astrophysics Data System (ADS)

    Dill, H. G.; Ludwig, R.-R.; Kathewera, A.; Mwenelupembe, J.

    2005-06-01

    The Blantyre City Area is part of the African savanna in southern Malawi. Sedimentological, geomorphological, chemical and mineralogical studies were conducted to create a lithofacies terrain model. The project involves mapping, cross-sectioning, grain size, heavy mineral analysis, XRD and the study of sedimentary textures under the petrographic microscope. These classical techniques were combined with GIS-based field and office works. The combined efforts led to 2-D maps and 3-D block diagrams that illustrate the geomorphological and sedimentological evolution of the landscape in southern Malawi during the late Mesozoic and Cenozoic. The results obtained through integrated geomorphological-sedimentological studies form the basis for land management (planning of residential areas, waste disposal sites, assessment of bearing capacity of rocks), geohazard prediction (delineation of high risk zones in terms of mass flow and inundation) and the evaluation of high-place (ceramic raw materials) and high-unit value (placers of precious metals and gemstones) mineral commodities in the study area. The study addresses regional and general aspects alike. In regional terms, the study aimed at unraveling the evolution of landforms at the southern end of the East African Rift System during the most recent parts of the geological past. Four stages of peneplanation were established in the working area. Planation was active from the Cretaceous to the Quaternary (stage I: early to mid-Cretaceous, stage II: early Tertiary, stage III: early to mid-Tertiary, stage IV: mid- to late Tertiary). During the most recent parts of the Quaternary, strong fluvial incision was triggered by the base-level lowering of the Shire River. Geomorphological alteration of the landscape goes along with a phyllosilicate-sesquioxide transformation from minerals indicative of more acidic meteoric fluids (e.g., gibbsite, kaolinite) to those typical of more alkaline conditions (e.g. smectite, vermiculite, hydrobiotite). In addition, the investigation is to provide some characteristic features suitable for the recognition and interpretation of terrestrial environments resembling the present-day savanna in the ancient sedimentary record: Conspicuous bimodality in the grain-size distribution. High degree of gravel roundness. Boulder fields (basal conglomerates) with fitting breccias and no rotation of structural elements. Poor to very poor sorting of siliciclastics. Stratification is rare; if present only in sandy beds with antidune and tabular cross-bedding at low angle prevailing over cross-bedding at high angle. Grading rare; in arenaceous deposits poorly developed FU sequences, in rudites poorly developed CU sequences, locally with surface armoring. Directional sedimentary structures in coarse-grained deposits are unimodal. Fabric types: a(t)b(i) and a(p)b(i); shear planes indicative of slide may be present. Ribbon-shaped architectural elements prevail over channel-like types. Bounding surfaces/unconformities are uneven to wavy and more widespread than scour-and-pool structures. Fine-grained carbonaceous interbeds are restricted to shallow depressions. Etch marks such as tafonis, flutes, honeycomb textures are common. Placer deposits of metallic and non-metallic mineral commodities are abundant. Alucretes and ferricretes of bog iron (ferrihydrite > goethite) and lateritic (goethite > ferrihydrite) types are common, calcitic freshwater limestones and gypcretes are scarce. Kandite-group minerals "in" (relic), smectite-group minerals "in", vermiculite "in" (recent), mica-group minerals "out".

  4. Geomorphology and soil survey

    Treesearch

    Laura A. Murray; Bob Eppinette; John H. Thorp

    2000-01-01

    The Coosawhatchie River, through erosion and downcutting, carved a fluvial valley through the Wicomico and Pamlico marine terraces during the late Pleistocene-Holocene period. The floodplain is relatively small and immature compared to the major river systems of the South Carolina Lower Coastal Plain. Consequently, the classic geomorphic features of a larger fluvial...

  5. Canada: A Regionally Diverse and Northern Environment. Understanding the Canadian Environment.

    ERIC Educational Resources Information Center

    Brown, Rex B.; And Others

    One of a series of student booklets on the Canadian environment, this unit presents Canada from a geomorphological perspective of the six major regions: the Western Cordillera, the Interior Plains, the Canadian Shield, the Far North, the Great Lakes-St. Lawrence Lowlands, and Appalachian Canada. Intended to help secondary students understand the…

  6. Forensic geoscience: applications of geology, geomorphology and geophysics to criminal investigations

    NASA Astrophysics Data System (ADS)

    Ruffell, Alastair; McKinley, Jennifer

    2005-03-01

    One hundred years ago Georg Popp became the first scientist to present in court a case where the geological makeup of soils was used to secure a criminal conviction. Subsequently there have been significant advances in the theory and practice of forensic geoscience: many of them subsequent to the seminal publication of "Forensic Geology" by Murray and Tedrow [Murray, R., Tedrow, J.C.F. 1975 (republished 1986). Forensic Geology: Earth Sciences and Criminal Investigation. Rutgers University Press, New York, 240 pp.]. Our review places historical development in the modern context of how the allied disciplines of geology (mineralogy, sedimentology, microscopy), geophysics, soil science, microbiology, anthropology and geomorphology have been used as tool to aid forensic (domestic, serious, terrorist and international) crime investigations. The latter half of this paper uses the concept of scales of investigation, from large-scale landforms through to microscopic particles as a method of categorising the large number of geoscience applications to criminal investigation. Forensic geoscience has traditionally used established non-forensic techniques: 100 years after Popp's seminal work, research into forensic geoscience is beginning to lead, as opposed to follow other scientific disciplines.

  7. Review of the origin of the Braid Scarp near the Pebble prospect, southwestern Alaska

    USGS Publications Warehouse

    Haeussler, Peter J.; Waythomas, Christopher F.

    2011-01-01

    A linear geomorphic scarp, referred to as the 'Braid Scarp,' lies about 5 kilometers north of Iliamna Lake, Alaska, and has been identified as a possible seismically active fault. We examined the geomorphology of the area and an 8.5-meter-long excavation across the scarp. We conclude that the scarp was formed by incision of a glacial outwash braid plain into a slightly older outwash plain as ice stagnated in the region during deglaciation 11-15 thousand years ago. We found no evidence for active faulting along the scarp.

  8. Coastal Geomorphology, Growth Patterns and Stratigraphy of Uplifted Coral-Reef Terraces of Sumba Island, Indonesia: Towards a Re-Evaluation of Quaternary Sea-Level Highstands

    NASA Astrophysics Data System (ADS)

    Rigaud, S.; Leclerc, F.; Abidin, H. Z.; Bijaksana, S.; Chiang, H. W.; Ginting Munthe, F. A.; Liu, X.; Meilano, I.; Pradipta, G. C.; Ramdhani, B. D.; Tapponnier, P.; Wang, X.

    2016-12-01

    The island of Sumba (Indonesia) is uniquely located within the Sunda-Banda forearc, at the transition between oceanic subduction and arc-continent collision, and has experienced vertical movements for the last 7 Myrs (Fortuin et al., 1997). The spectacular flights of coral-reef terraces exposed on the northern coast have served as benchmarks to reconstruct Quaternary sea-level highstands (stages 5 to 23). Sea-level paleo-elevations were established using reef crests and marine notches as geomorphological markers, assuming a constant uplift rate of 0.49 mm/yr and neglecting erosion and weathering processes (Pirazzoli et al., 1991, 1993). Recent and fossil coral reefs of the northern coast of Sumba Island are fringing, leeward reefs. A new examination of the morphology and stratigraphy of fossil terraces shows that they are primarily built by prograding complexes formed during forced regressions. The current geomorphological expression of reef crests, therefore, does not correspond to the highest position of past sea-levels. The same is true for marine notches, which may only indicate intermediary still-stand phases and are barely distinguishable from weathering surfaces in terraces older than stages 5-7. In our study, we use the elevation of the inner edges of coral terraces as indicators of the highest position of the sea-level during Quaternary highstands. At the island scale, our geomorphological investigations, U/Th dating and high-resolution correlations point to high discrepancies in the deformation patterns, especially at Cape Laundi where the position of past sea-level highstands was established. Through a multi-disciplinary study involving geomorphology, stratigraphy, tectonic, sedimentology, paleontology and geochronology, we offer new estimates for uplift rates at the island scale and re-evaluate the elevation of past sea-level highstands. References : Fortuin et al. 1997. Journal of Asian Earth Sciences 15, p. 61-88. Pirazzoli et al. 1991. Science 252, p. 1834-1836. Pirazzoli et al. 1993. Marine Geology 109, p. 221-236.

  9. Role of sediment transport model to improve the tsunami numerical simulation

    NASA Astrophysics Data System (ADS)

    Sugawara, D.; Yamashita, K.; Takahashi, T.; Imamura, F.

    2015-12-01

    Are we overlooking an important factor for improved numerical prediction of tsunamis in shallow sea to onshore? In this presentation, several case studies on numerical modeling of tsunami-induced sediment transport are reviewed, and the role of sediment transport models for tsunami inundation simulation is discussed. Large-scale sediment transport and resulting geomorphological change occurred in the coastal areas of Tohoku, Japan, due to the 2011 Tohoku Earthquake Tsunami. Datasets obtained after the tsunami, including geomorphological and sedimentological data as well as hydrodynamic records, allows us to validate the numerical model in detail. The numerical modeling of the sediment transport by the 2011 tsunami depicted the severest erosion of sandy beach, as well as characteristic spatial patterns of erosion and deposition on the seafloor, which have taken place in Hirota Bay, Sanriku Coast. Quantitative comparisons of observation and simulation of the geomorphological changes in Sanriku Coast and Sendai Bay showed that the numerical model can predict the volumes of erosion and deposition with a right order. In addition, comparison of the simulation with aerial video footages demonstrated the numerical model is capable of tracking the overall processes of tsunami sediment transport. Although tsunami-induced sediment erosion and deposition sometimes cause significant geomorphological change, and may enhance tsunami hydrodynamic impact to the coastal zones, most tsunami simulations do not include sediment transport modeling. A coupled modeling of tsunami hydrodynamics and sediment transport draws a different picture of tsunami hazard, comparing with simple hydrodynamic modeling of tsunami inundation. Since tsunami-induced erosion, deposition and geomorphological change sometimes extend more than several kilometers across the coastline, two-dimensional horizontal model are typically used for the computation of tsunami hydrodynamics and sediment transport. Limitations of the conventional model and future challenges are discussed regarding further improvement of numerical modeling of tsunami and sediment transport. Improved numerical modeling may provide useful information for assessing sediment-related damages and planning post-disaster recovery.

  10. Late-Quaternary glaciation and postglacial emergence, southern Eureka Sound, high-Arctic Canada

    NASA Astrophysics Data System (ADS)

    O Cofaigh, Colm Seamus

    Eureka Sound is the inter-island channel separating Ellesmere and Axel Heiberg islands, High Arctic Canada. This thesis reconstructs the glacial and sea level history of southern Eureka Sound through surficial geological mapping, studies of glacial sedimentology and geomorphology, surveying of raised marine shorelines, radiocarbon dating of marine shells and driftwood and surface exposure dating of erratics and bedrock. Granite dispersal trains, shelly till and ice-moulded bedrock record westerly-flow of warm-based, regional ice into Eureka Sound from a source on southeastern Ellesmere Island during the late Wisconsinan. Regional ice was coalescent with local ice domes over Raanes and northern Svendsen peninsulas. Marine limit (dating <=9.2 ka BP; <=9.9 ka cal BP) is inset into the dispersal trains and records early Holocene deglaciation of regional ice. Collectively these data indicate an extensive ice-cover in southern Eureka Sound during the Last Glacial Maximum. Ice-divides were located along the highlands of central Ellesmere and Axel Heiberg islands, from which ice converged on Eureka Sound, and subsequently flowed north and south along the channel. Deglaciation was characterised by a two-step retreat pattern, likely triggered by eustatic sea level rise and abrupt early Holocene warming. Initial break-up and radial retreat of ice in Eureka Sound and the larger fiords, preceded terrestrial stabilisation along coastlines and inner fiords. Location of deglacial depocentres was predominantly controlled by fiord bathymetry. Regionally, two-step deglaciation is reflected by prominent contrasts in glacial geomorphology between the inner and outer parts of many fiords. Glacial sedimentological and geomorphological evidence indicates spatial variation in basal thermal regime between retreating trunk glaciers. Holocene emergence of up to 150 m asl along southern Eureka Sound is recorded by raised marine deltas, beaches and washing limits. Emergence curves exhibit marked contrasts in the form and rate of initial unloading. Isobases drawn on the 8.5 ka shoreline for greater Eureka Sound demonstrate that a cell of highest emergence extends along the length of the channel, and closes in the vicinity of the entrance to Norwegian Bay. The isobase pattern indicates a distinct loading centre over the sound, and in conjunction with glacial geological evidence, suggests that the thickest late Wisconsinan ice lay over the channel.

  11. Beach-ridge sedimentology as an archive of terrestrial climate change: Insights from a geochemical and stratigraphic study of the Tijucas Strandplain, southern Brazil

    NASA Astrophysics Data System (ADS)

    Krask, J. L.; Hein, C. J.; Galy, V.; FitzGerald, D.; Henrique de Fontoura Klein, A.

    2017-12-01

    Whereas millennial-scale variations in climate forcing drives changes in terrestrial processes, which are in turn directly linked to fluvial sediment loads (e.g., weathering and erosion), the impact of decadal- to centennial- scale climate fluctuations on downstream coastal sedimentation patterns and landscape evolution remains unclear. Specifically, the connection between long-term (decades or more) precipitation seasonality and sediment export from river systems has not been established. This study examines the manner in which sub-millennial-scale fluctuations in precipitation over river catchments may be recorded in coastal progradational sedimentary archives. The 5-km wide Tijucas Strandplain (southern Brazil) formed over the last 5800 years through the rapid reworking of sediment discharged from the Tijucas River in a regime of falling sea level. In an overall regime shift from sand- to mud- dominance (linked to a long-term reduction in wave energy caused by bay shoaling) are nearly 70 distinct transitions between shore-parallel sand- and mud- dominated facies. Bulk organic carbon and terrestrial plant-wax fatty acid stable hydrogen (δD) and carbon (δ13C) isotopic measurements from sediments from select sandy and muddy ridges across the plain reveal that these two sedimentological regimes are geochemically distinct. Specifically, waxes from sediments deposited during periods of sandy progradation had δD values, on average, >10 ‰ higher than those from mud-dominated periods, indicating that these sedimentary units reflect different hydroclimatic conditions within the river drainage basin at the time of deposition. Comparison of plant wax isotopic signatures of river, bay, and beach sediments during the current period of mud-dominated progradation reveals a close correlation with earlier periods of mud deposition within the Tijucas Strandplain. Thus, decadal- to centennial- scale sedimentologic transitions within the plain are interpreted to reflect climate-driven changes in mud export rates, as product of modifications in river basin vegetation and soil formation and erosional processes.

  12. Geomorphology of ice stream beds: recent progress and future challenges

    NASA Astrophysics Data System (ADS)

    Stokes, Chris R.

    2016-04-01

    Ice sheets lose mass primarily by melting and discharge via rapidly-flowing ice streams. Surface and basal melting (e.g. of ice shelves) are closely linked to atmospheric and oceanic conditions, but the mechanisms that drive changes in ice stream discharge are more complex; and are influenced by conditions at their bed which can sustain, enhance or inhibit their motion. Although explicit comparisons are rare, the ice-bed interface is similar to the 'boundary layer' in fluvial and aeolian environments, where shear stresses (both basal and lateral in the case of ice streams) oppose the flow of the overlying medium. The analogy extends further because processes within the boundary layer create a distinctive geomorphology (and roughness) that is characterised by subglacial bedforms that resemble features in fluvial and aeolian environments. Their creation results from erosion, transport and deposition of sediment which is poorly constrained, but which is intimately linked to the mechanisms through which ice streams are able to flow rapidly. The study of ice stream geomorphology is, therefore, critical to our understanding of their dynamics. Despite difficulty in observing the subglacial environment of active ice streams, our understanding of their geomorphology has grown rapidly in the last three decades, from almost complete ignorance to a detailed knowledge of their geomorphological products. This has been brought about by two main approaches: (i) geophysical investigation of modern (active) ice streams, and (ii) sedimentological and geomorphological investigation of palaeo-ice stream beds. The aim of this paper is to review progress in these two areas, highlight the key questions that remain, and discuss the opportunities that are likely to arise that will enable them to be addressed. It is clear that whilst these two main approaches have led to important advances, they have often been viewed as separate sub-disciplines, with minimal cross-pollination of ideas and concepts, particularly with respect to how landforms can be securely linked to subglacial processes and ice dynamics. However, recent developments in numerical modelling of the subglacial environment are beginning to offer new opportunities to tackle this issue and observations from both modern and palaeo-ice streams will be critical to constrain and validate such modelling.

  13. Reconstruction of Late Quaternary climate and landscape changes in Southern Africa based on integrative analyses of geoarchives

    NASA Astrophysics Data System (ADS)

    Hürkamp, Kerstin; Völkel, Jörg; Winkelbauer, Jennifer; Leopold, Matthias; Bens, Oliver; Heine, Klaus

    2010-05-01

    Many studies deal with geoarchives such as dunes, fluvial and slope sediments, pans, speleothems and paleosoils, but often investigations are spatially limited or carried out on isolated landforms. Large-scaled, geochronologic and geomorphologic stratigraphies as well as generally accepted reconstructions of the paleoclimate are still missing for the southern African subcontinent. Only combining records of all geoarchives, and particularly the analysis of sediment interstratifications, would promise good results. For several relief generations of southern Africa, lots of sediment dating already exists, even if methodological and environmental problems delimit the radiocarbon (14C), optic stimulated or thermic luminescence (OSL/TL) chronologies. They illustrate fluctuating climates with a general trend to increasing aridity throughout the Quaternary. Periods of less precipitation led to the development of eolian sediments, while moister periods led to the development of lacustrine-fluvial sediments. Other investigations indicate both processes coexisted, as they did in the SW-Kalahari during the last glacial maximum (LGM). The study areas will be selected according to results of the authors' former field trips and using remote sensing methods. The Molopo River catchment in the south Kalahari is already selected as one major study site. It is highly applicable for paleoclimate research because of its location within the semi-arid to semi-humid Kalahari, which is a region with enormous climatic fluctuations due to recent and former shifts of tropical and subtropical circulation patterns and changing climatic factors. During the Last Glacial Maximum at approximately 24°S, a transition zone existed that was characterized by the overlap of alternating dry and cool climates in the north (summer rains), and cold and moist winters in the south. In the Late Glacial and Holocene period this boundary was shifted southwards. Here dunes and pans coexist as major Kalahari geomorphological types in an ideal way, with the Molopo River valley, including different fluvial sediment facies, interbedded with slope and eolian sediments, as well as the confluence of the Molopo and Orange River systems. Regarding the methods, a combination of sedimentologic, pedologic and geomorphologic field and laboratory work, as well as geophysical prospection of the shallow subsurface and remote sensing will be carried out. Chronological records of erosion and accumulation processes will be obtained by 14C- and OSL sediment datings. The combination of remote sensing methods by the means of aerial photographs (hyperspectral data of HyMAP and CHRIS-Proba) and geomorphological/sedimentological field and laboratory work (ground truth) provides diagnostic parameters of the sediments which will help to differentiate the geoarchives to improve the paleoenvironmental interpretation. The results of two first field campaigns in 2009 are presented including sediment descriptions, laboratory analyses and 14C-ages. The results of OSL dating are not yet available.

  14. Sedimentological and GPR studies of subglacial deposits in the Joux Valley (Vaud, Switzerland): backset accretion in an esker followed by an erosive jokulhlaup

    USGS Publications Warehouse

    Fiore, J.; Pugin, A.; Beres, N.

    2002-01-01

    During the Wu??rmian glaciation, the Jura ice sheet covered the Joux Valley (Vaud, Switzerland). A geomorphological study reveals many drumlins in this valley. Some are composed of gravels and sand, others of till. Outcrops show that the surface of the sandy-gravel drumlins is a major and sharp erosion surface. Given the lack of shearing structures in sediments below this erosion level, its origin cannot be linked to ice action of the glacier. Very high-energy subglacial meltwater floods (jo??kulhlaups), probably due to the drainage of subglacial or supraglacial lakes, are the more likely cause of the erosion. Results of a ground penetrating radar (GPR) survey show the internal structure of one of these sandy-gravel drumlins to depth of 15 m. These GPR data, together with sedimentological observations, indicate that prior to erosion, subglacial sedimentation occurred in closed conduits (eskers) with strong and rapid flow variations. The sediments contain large chute-and-pool structures (high flow energy backset accretion) with dimensions comparable to the conduit width. Therefore, we interpret these sandy-gravel drumlins as portions of eskers, their present drumlin shape being the result of erosion by one or many jo??kulhlaups. The good preservation of the subglacial meltwater deposits is the result of the closed-basin geometry of the Joux Valley, which limited movement at the base of the glacier. This new contribution to the interpretation of the Joux Valley glacial features underlines the importance of meltwater in sedimentological processes under the Jura ice sheet.

  15. Latest Pannonian and Quaternary evolution at the transition between Eastern Alps and Pannonian Basin: new insights from geophysical, sedimentological and geochronological data

    NASA Astrophysics Data System (ADS)

    Zámolyi, A.; Salcher, B.; Draganits, E.; Exner, U.; Wagreich, M.; Gier, S.; Fiebig, M.; Lomax, J.; Surányi, G.; Diel, M.; Zámolyi, F.

    2017-07-01

    The transition zone between Eastern Alps and Pannonian Basin is a key area for the investigation of the interplay between regional uplift, local tectonic subsidence and depositional environment. Our study area, the western margin of the Little Hungarian Plain, is characterized by gentle hills, plateaus and depressions, of which several are filled by lakes—including one of Austria's largest and shallowest lakes, Lake Neusiedl. Geological investigation is hampered by the scarcity of outcrops, and thus direct observation of sedimentological or structural features is difficult. Despite a long research history in the area, a consistent landscape evolution model considering all relevant constraints is lacking so far. In this study, we apply multidisciplinary methods to decipher the complex tectonic and fluvial depositional evolution of the region. Local data from shallow-lake drilling and seismic investigation are combined with regional data from industrial seismics and core data to gain new insights into the latest Pannonian (Late Miocene) and Quaternary evolution. Shallow-lake seismic data show the erosionally truncated Pannonian sediments dipping and thickening toward southeast, toward the modern depocenter of the Little Hungarian Plain. Overlying Quaternary fluvial sediments show a very similar thickening trend except for the area on the plateau north of the lake indicating ongoing subsidence in major parts of the basin. Drill cores from locations along the lake seismic lines were analyzed concerning their age, mineralogy and heavy minerals and compared with outcrop samples from the surrounding plains and the plateau to derive indications on sediment provenance. A key observation is the apparent lack of a significant gravel layer on top of the tilted Pannonian sediments beneath Lake Neusiedl. Small-scale faults can be observed in the lake seismic sections along with key sedimentary features. Significant differences of the current elevation of the top Pannonian between the surrounding plains and the plateau indicate post-Pannonian normal faulting, which is a key process in shaping the present-day morphology of the region. Luminescence ages of samples from the Quaternary fluvial gravels on top of the Pannonian sediments are a significantly higher (>300 ka) compared to the gravels in the plain (102 ± 11 and 76 ± 8 ka), suggesting ongoing tectonic subsidence.

  16. Environmental changes in the central Po Plain (northern Italy) due to fluvial modifications and anthropogenic activities

    NASA Astrophysics Data System (ADS)

    Marchetti, Mauro

    2002-05-01

    The fluvial environment of the central Po Plain, the largest plain in Italy, is discussed in this paper. Bounded by the mountain chains of the Alps and the Apennines, this plain is a link between the Mediterranean environment and the cultural and continental influences of both western and eastern Europe. In the past decades, economic development has been responsible for many changes in the fluvial environment of the area. This paper discusses the changes in fluvial dynamics that started from Late Pleistocene and Early Holocene due to distinct climatic changes. The discussion is based on geomorphological, pedological, and archaeological evidences and radiocarbon dating. In the northern foothills, Late Pleistocene palaeochannels indicate several cases of underfit streams among the northern tributaries of the River Po. On the other hand, on the southern side of the Po Plain, no geomorphological evidence of similar discharge reduction has been found. Here, stratigraphic sections, together with archaeological remains buried under the fluvial deposits, show a reduction in the size of fluvial sediments after the 10th millennium BC. During the Holocene, fluvial sedimentation became finer, and was characterised by minor fluctuations in the rate of deposition, probably related to short and less intense climatic fluctuations. Given the high rate of population growth and the development of human activities since the Neolithic Age, human influence on fluvial dynamics, especially since the Roman Age, prevailed over other factors (i.e., climate, tectonics, vegetation, etc.). During the Holocene, the most important changes in the Po Plain were not modifications in water discharge but in sediment. From the 1st to 3rd Century AD, land grants to war veterans caused almost complete deforestation, generalised soil erosion, and maximum progradation of the River Po delta. At present, land abandonment in the mountainous region has led to reafforestation. Artificial channel control in the mountain sector of the basins and in-channel gravel extraction (now illegal but very intense in the 1960s and 1970s) are causing erosion along the rivers and along large sectors of the Adriatic coast. These changes are comparable with those occurring in basins of other Mediterranean rivers.

  17. Morphodynamics of a mesotidal rocky beach: Palmeras beach, Gorgona Island National Natural Park, Colombia

    NASA Astrophysics Data System (ADS)

    Gómez-García, A. M.; Bernal, G. R.; Osorio, A. F.; Botero, V.

    2014-10-01

    The response of a rocky beach to different possible combinations of hydrodynamic conditions (tides, waves, oceanic currents) has been little studied. In this work, the morphodynamic response to different hydrodynamic forcing is evaluated from sedimentological and geomorphological analysis in seasonal and medium term (19 years) scale in Palmeras beach, located in the southwest of Gorgona Island National Natural Park (NNP), a mesotidal rocky island on the Colombian Pacific continental shelf. Palmeras is an important nesting area of two types of marine turtles, with no anthropogenic stress. In the last years, coastal erosion has reduced the beach width, restricting the safe areas for nesting and conservation of these species. Until now, the sinks, sources, reservoirs, rates, and paths of sediments were unknown, as well as their hydrodynamic forcing. The beach seasonal variability, from October 2010 to August 2012, was analyzed based on biweekly or monthly measurements of five beach profiles distributed every 200 m along the 1.2 km of beach length. The main paths for sediment transport were defined from the modeling of wave currents with the SMC model (Coastal Modeling System), as well as the oceanic currents, simulated for the dry and wet seasons of 2011 using the ELCOM model (Estuary and Lake COmputer Model). Extreme morphologic variations over a time span of 19 years were analyzed with the Hsu and Evans beach static equilibrium parabolic model, from one wave diffraction point which dominates the general beach plan shape. The beach lost 672 m3/m during the measuring period, and erosional processes were intensified during the wet season. The beach trends responded directly to a wave mean energy flux change, resulting in an increase of up to 14 m in the width northward and loss of sediments in the beach southward. This study showed that to obtain the integral morphodynamic behavior of a rocky beach it is necessary to combine information of hydrodynamic, sedimentology and geomorphology in different time scales.

  18. Geomorphological and sedimentological evidences in the Western Massif of Picos de Europa since the Last Glaciation

    NASA Astrophysics Data System (ADS)

    Ruiz-Fernández, Jesus; Oliva, Marc; Cruces, Anabela; Lopes, Vera; Conceição Freitas, Maria; García-Hernández, Cristina; Nieuwendam, Alexandre; López-Sáez, José Antonio; Gallinar, David; Geraldes, Miguel

    2015-04-01

    The Western Massif of Picos de Europa includes some of the highest peaks of the Cantabrian Mountains. However, the environmental evolution in this massif since the Last Glaciation is still poorly understood. This research provides a new geochronological approach to the sequence of environmental events occurred here since the maximum expansion of glaciers during the last Pleistocene glaciation. The distribution of the glacial landforms suggests four main stages regarding the environmental evolution in the massif: maximum glacial advance, phase of second maximum glacial expansion, Late Glacial and Little Ice Age. A 5.4-m long sedimentological section retrieved from the kame terrace of Belbín, in a mid-height area of the massif, complements the geomorphological interpretation and provides a continuous paleoenvironmental sequence from this area since the Last Glaciation until nowadays. This section suggests that the maximum glacial expansion occurred at a minimum age of 37.2 ka cal BP, significantly prior to the global Last Glacial Maximum. Subsequently, a new glacial expansion occurred around 18.7-22.5 ka cal BP. The melting of the glaciers after this phase generated a shallow lake in the Belbín depression. Lake sediments do not reveal the occurrence of a cold stage during the Late Glacial, whilst, at higher locations, moraine complexes were formed suggesting a glacier readvance. The terrestrification of this lake started at 8 ka cal BP, when Belbín changed to a peaty environment. At 5 ka cal BP human occupation started at the high lands of the massif according to the existence of charcoal particles in the section. The presence of moraines in the highest northern cirques evidences the last phase with formation of small glaciers in the Western Massif of Picos de Europa, corresponding to the Little Ice Age cold event. Since then, the warming climate has led to the melting of these glaciers.

  19. Coastal deformation and sea-level changes in the northern Chile subduction area (23$deg;S) during the last 330 ky

    NASA Astrophysics Data System (ADS)

    Ortlieb, Luc; Zazo, Cari; Goy, JoséLuis; Hillaire-Marcel, Claude; Ghaleb, Bassam; Cournoyer, Louise

    The Nazca-South American plate boundary is a subduction zone where a relatively complex pattern of vertical deformation can be inferred from the study of emerged marine terraces. Along the coasts of southern Peru and northern Chile, the vertical distribution of remnants of Pleistocene terraces suggests that a crustal, large scale uplift motion is combined with more regional/local tectonic processes. In northern Chile, the area of Hornitos (23°S) offers a remarkable sequence of well-defined marine terraces that may be dated through U-series and aminostratigraphic studies on mollusc shells. The unusual preservation of the landforms and of the shell material, which enabled the age determination of the deposits, is largely due to the lengthy history of extreme aridity in this area. The exceptional record of late Middle Pleistocene to Late Pleistocene high seastands is also favoured by the slight warping of two distinct fault blocks that have enhanced the morphostratigraphic relationships between the distinct coastal units. Detailed geomorphological, sedimentological and chronostratigraphic studies of the Hornitos area led to the identification, with reasonable confidence, of the depositional remnants of sea-level maxima coeval with the Oxygen Isotope Substages 5c, 5e, 7 (probably two episodes) and the isotope stage 9 (series of beach ridges). The coastal plain, at the foot of the major Coastal Escarpment of northern Chile, appears to have been uplifted at a mean rate of 240 mm/ky in the course of the last 330 ky. From the elevation of the older terraces and late Pliocene shorelines, it can be inferred that these steady vertical motions were much more rapid than during the Early Pleistocene.

  20. Towards sustainable management of Louisiana's coastal wetland forests: problems, constraints, and a new beginning

    Treesearch

    J.L. Chambers; W.H. Conner; R.F. Keim; S.P. Faulkner; J.W. Day; E.S. Gardiner; M.S. Hughes; S.L. King; K.W. McLeod; C.A. Miller; J.A. Nyman; G.P. Shaffer

    2006-01-01

    Over 345,000 ha of forested swamps occur throughout the Mississippi River Deltaic Plain. Natural and anthropogenic changes in hydrology and geomorphology at local and landscape levels have reduced the productivity in many of these coastal wetland forests areas and have caused the complete loss of forest cover in some places. A summary and interpretation of the...

  1. THE EFFECTS OF LAND-USE/LAND-COVER, GEOMORPHOLOGY AND CLIMATE ON MAGNITUDE AND TIMING OF NUTRIENT EXPORT AND LOADING RATES IN THREE COASTAL PLAIN WATERSHEDS

    EPA Science Inventory

    Watershed nitrogen (N), phosphorus (P), organic carbon (OC), and total suspended sediment (TSS) export rates were determined in 18 sub-basins of three watershed-estuarine systems over two annual cycles (2000 and 2001). The three watersheds all drain to the Mobile Bay estuary and ...

  2. Development of a distributed biosphere hydrological model and its evaluation with the Southern Great Plains Experiments (SGP97 and SGP99)

    USDA-ARS?s Scientific Manuscript database

    A distributed biosphere hydrological model, the so called water and energy budget-based distributed hydrological model (WEB-DHM), has been developed by fully coupling a biosphere scheme (SiB2) with a geomorphology-based hydrological model (GBHM). SiB2 describes the transfer of turbulent fluxes (ener...

  3. Biotic association and palaeoenvironmental reconstruction of the "Loma del Pterodaustro" fossil site (Early Cretaceous, Argentina)

    USGS Publications Warehouse

    Chiappe, L.; Rivarola, D.; Cione, A.; Fregenal-Martinez, M.; Sozzi, H.; Buatois, L.; Gallego, O.; Laza, J.; Romero, E.; Lopez-Arbarello, A.; Buscalioni, A.; Marsicano, C.; Adamonis, S.; Ortega, F.; McGehee, S.; Di, Iorio O.

    1998-01-01

    A sedimentological analysis of the basal section of the Early Cretaceous, lacustrine Lagarcito Formation at "Loma del Pterodaustro" (San Luis, Argentina) and a summary of its biological components are presented. Three sedimentological facies can be recognized in the basal sequence of the Lagarcito Formation. Fossil remains are particularly abundant in laminated claystones of a facies interpreted as deposits formed in offshore areas of the lake. The preservation of delicate structures allows recognition of these deposits as a Konservat Lagersta??tte. Up to now, rocks at "Loma del Pterodaustro" have yielded plants, conchostracans, semionotid and pleuropholid fishes, pterodactyloid pterosaurs, and a variety of invertebrate traces. The chronology of the Lagarcito Formation is discussed and it is concluded that this unit is of Albian age. The palaeoenvironment of deposition of the basal sequence of the Lagarcito Formation at "Loma del Pterodaustro" is interpreted as a perennial, shallow lake developed within an alluvial plain, under semiarid climatic conditions.

  4. Flood management on the lower Yellow River: hydrological and geomorphological perspectives

    NASA Astrophysics Data System (ADS)

    Shu, Li; Finlayson, Brian

    1993-05-01

    The Yellow River, known also as "China's Sorrow", has a long history of channel changes and disastrous floods in its lower reaches. Past channel positions can be identified from historical documentary records and geomorphological and sedimentological evidence. Since 1947, government policy has been aimed at containing the floods within artificial levees and preventing the river from changing its course. Flood control is based on flood-retarding dams and off-stream retention basins as well as artificial levees lining the channel. The design flood for the system has a recurrence interval of only around 60 years and floods of this and larger magnitudes can be generated downstream of the main flood control dams at Sanmenxia and Xiaolangdi. Rapid sedimentation along the river causes problems for storage and has raised the bed of the river some 10 m above the surrounding floodplain. The present management strategy is probably not viable in the long term and to avoid a major disaster a new management approach is required. The most viable option would appear to be to breach the levees at predetermined points coupled with advanced warning and evacuation of the population thus put at risk.

  5. Humans as major geological and geomorphological agents in the Anthropocene: the significance of artificial ground in Great Britain.

    PubMed

    Price, Simon J; Ford, Jonathan R; Cooper, Anthony H; Neal, Catherine

    2011-03-13

    Since the first prehistoric people started to dig for stone to make implements, rather than pick up loose material, humans have modified the landscape through excavation of rock and soil, generation of waste and creation of artificial ground. In Great Britain over the past 200 years, people have excavated, moved and built up the equivalent of at least six times the volume of Ben Nevis. It is estimated that the worldwide deliberate annual shift of sediment by human activity is 57,000 Mt (million tonnes) and exceeds that of transport by rivers to the oceans (22,000 Mt) almost by a factor of three. Humans sculpt and transform the landscape through the physical modification of the shape and properties of the ground. As such, humans are geological and geomorphological agents and the dominant factor in landscape evolution through settlement and widespread industrialization and urbanization. The most significant impact of this has been since the onset of the Industrial Revolution in the eighteenth century, coincident with increased release of greenhouse gases to the atmosphere. The anthropogenic sedimentological record, therefore, provides a marker on which to characterize the Anthropocene.

  6. Detailed Analysis of the Intra-Ejecta Dark Plains of Caloris Basin, Mercury

    NASA Astrophysics Data System (ADS)

    Buczkowski, D.; Seelos, K. D.

    2010-12-01

    The Caloris basin on Mercury is floored by light-toned plains and surrounded by an annulus of dark-toned material interpreted to be ejecta blocks and smooth, dark, ridged plains. Strangely, preliminary crater-counts indicate that these intra-ejecta dark plains are younger than the light-toned plains within the Caloris basin. This would imply a second, younger plains emplacement event, possibly involving lower albedo material volcanics, which resurfaced the original ejecta deposit. On the other hand, the dark plains may be pre-Caloris light plains covered by a thin layer of dark ejecta. Another alternative to the hypothesis of young, dark volcanism is the possibility that previous crater-counts have not thoroughly distinguished between superposed craters (fresh) and partly-buried craters (old) and therefore have not accurately determined the ages of the Caloris units. We here outline the tasks associated with a new mapping project of the Caloris basin, intended to improve our knowledge of the geology and geologic history of the basin, and thus facilitate an understanding of the thermal evolution of this region of Mercury. We will 1) classify craters based on geomorphology and infilling, 2) create a high-resolution map of the intra-ejecta dark plains, 3) perform crater counts of the intra-ejecta dark plains, the ejecta, and the Caloris floor light plains and 4) refine the stratigraphy of Caloris basin units. We will use new high resolution (200-300 m/p) imaging data from the MDIS instrument to create a new geomorphic map of the dark annulus around the Caloris basin. Known Caloris group formations will be mapped where identified and any new units will be defined and mapped as necessary. Specifically, we will delineate hummocks and smooth plains within the Odin formation and map them separately. We will look for unequivocal evidence of volcanic activity within the dark annulus and the Odin Formation, such as vents and flow lobes. The location of any filled craters will be especially noted, to be incorporated into a new crater classification scheme that includes both degradation state and level and type of infilling. We will also distinguish between craters infilled with 1) lava, 2) impact melt and 3) ejecta, based on our interpretation of the MDIS images. We will then determine the crater size-frequency distribution of each geomorphic unit. We will analyze the crater density of the Caloris floor plains unit, the Odin Formation ejecta and the Odin Formation intra-ejecta dark plains. We will do a second count of Caloris floor craters that includes filled craters, to attempt to get a minimum age for the underlying dark basement. Crater counting on any additional geologic units will depend upon results of the geomorphic mapping. Finally, we will refine the stratigraphy of the Caloris basin units. We start in the region where MESSENGER data over-laps Mariner 10 images. By comparing the Caloris group formations mapped in the Tolstoj and Shakespeare quadrangles to the overlapping MDIS images, we determine the distinctive geomorphology of each of these units in the high resolution MESSENGER data. We will then use this as diagnostic criteria as we map the rest of the basin.

  7. Coal depositional models in some Tertiary and Cretaceous coal fields in the U.S. Western Interior

    USGS Publications Warehouse

    Flores, R.M.

    1979-01-01

    Detailed stratigraphic and sedimentological studies of the Tertiary Tongue River Member of the Fort Union Formation in the Powder River Basin, Wyoming, and the Cretaceous Blackhawk Formation and Star Point Sandstone in the Wasatch Plateau, Utah, indicate that the depositional environments of coal played a major role in controlling coal thickness, lateral continuity, potential minability, and type of floor and roof rocks. The potentially minable, thick coal beds of the Tongue River Member were primarily formed in long-lived floodbasin backswamps of upper alluvial plain environment. Avulsion of meandering fluvial channels contributed to the erratic lateral extent of coals in this environment. Laterally extensive coals formed in floodbasin backswamps of a lower alluvial plain environment; however, interruption by overbank and crevasse-splay sedimentation produced highly split and merging coal beds. Lacustrine sedimentation common to the lower alluvial plain, similar to the lake-covered lower alluvial valley of the Atchafalaya River Basin, is related to a high-constructive delta. In contrast to these alluvial coals are the deltaic coal deposits of the Blackhawk Formation. The formation consists of three coal populations: upper delta plain, lower delta plain, and 'back-barrier'. Coals of the lower delta plain are thick and laterally extensive, in contrast to those of the upper delta plain and 'back-barrier', which contain abundant, very thin and laterally discontinuous carbonaceous shale partings. The reworking of the delta-front sediments of the Star Point Sandstone suggests that the Blackhawk-Star Point delta was a high-destructive system. ?? 1979.

  8. Reservoir and aquifer characterization of fluvial architectural elements: Stubensandstein, Upper Triassic, southwest Germany

    NASA Astrophysics Data System (ADS)

    Hornung, Jens; Aigner, Thomas

    1999-12-01

    This paper aims at a quantitative sedimentological and petrophysical characterization of a terminal alluvial plain system exemplified by the Stubensandstein, South German Keuper Basin. The study follows the outcrop-analogue approach, where information derived from outcrops is collected in order to enhance interpretation of comparable subsurface successions. Quantitative data on sandbody geometries, porosities and permeabilities are presented in order to constrain modelling of subsurface sandbodies and permeability barriers. For sedimentological characterization the method of architectural element analysis (Miall, A.D., 1996. The Geology of Fluvial Deposits. Springer, Berlin) was used, and modified to include poroperm facies. A special photo-technique with a precise theodolite survey was developed to create optically corrected photomosaics for outcrop wall maps from up to 20,000 m 2 large outcrops. Nine architectural elements have been classified and quantified. Bedload, mixed-load and suspended-load channel fills are separated. The petrophysical characterization of the architectural elements integrated porosity and permeability measurements of core-plugs with gamma-ray measurements along representative sections. It could be demonstrated, that certain architectural elements show a characteristic poroperm facies. Four scales of sedimentary cycles have been recognized in the Stubensandstein. Cyclic sedimentation causes changing lithofacies patterns within the architectural elements, depending on their position in the sedimentary cycle. Stratigraphic position exerts only some, paleogeographic position exerts significant influence on porosity and permeability of the sandbodies. The highest poroperm values were found in proximal areas of the alluvial plain and in middle parts within sedimentary macrocycles. The strong internal heterogeneity on the alluvial plain system is important for its reservoir and aquifer characteristics. Compartments of bedload channel sandstones in medial positions of a stratigraphic cycle represent very good reservoirs or aquifers. The seals or aquicludes are formed by extensive floodplain claystones, lacustrine sediments, paleosols, and suspended-load deposits. Strongly cemented zones of sandstones represent aquitards.

  9. Geomorphic variation in riparian tree mortality and stream coarse woody debris recruitment from record flooding in a coastal plain stream

    Treesearch

    Brian J. Palik; Stephen W. Golladay; P. Charles Goebel; Brad W. Taylor

    1998-01-01

    Large floods are an important process controlling the structure and function of stream ecosystems. One of the ways floods affect streams is through the recruitment of coarse woody debris from stream-side forests. Stream valley geomorphology may mediate this interaction by altering flood velocity, depth, and duration. Little research has examined how floods and...

  10. Lacustrine-fluvial interactions in Australia's Riverine Plains

    NASA Astrophysics Data System (ADS)

    Kemp, Justine; Pietsch, Timothy; Gontz, Allen; Olley, Jon

    2017-06-01

    Climatic forcing of fluvial systems has been a pre-occupation of geomorphological studies in Australia since the 1940s. In the Riverine Plain, southeastern Australia, the stable tectonic setting and absence of glaciation have combined to produce sediment loads that are amongst the lowest in the world. Surficial sediments and landforms exceed 140,000 yr in age, and geomorphological change recorded in the fluvial, fluvio-lacustrine and aeolian features have provided a well-studied record of Quaternary environmental change over the last glacial cycle. The region includes the Willandra Lakes, whose distinctive lunette lakes preserve a history of water-level variations and ecological change that is the cornerstone of Australian Quaternary chronostratigraphy. The lunette sediments also contain an ancient record of human occupation that includes the earliest human fossils yet found on the Australian continent. To date, the lake-level and palaeochannel records in the Lachlan-Willandra system have not been fully integrated, making it difficult to establish the regional significance of hydrological change. Here, we compare the Willandra Lakes environmental record with the morphology and location of fluvial systems in the lower Lachlan. An ancient channel belt of the Lachlan, Willandra Creek, acted as the main feeder channel to Willandra Lakes before channel avulsion caused the lakes to dry out in the late Pleistocene. Electromagnetic surveys, geomorphological and sedimentary evidence are used to reconstruct the evolution of the first new channel belt following the avulsion. Single grain optical dating of floodplain sediments indicates that sedimentation in the new Middle Billabong Palaeochannel had commenced before 18.4 ± 1.1 ka. A second avulsion shifted its upper reaches to the location of the present Lachlan River by 16.2 ± 0.9 ka. The timing of these events is consistent with palaeohydrological records reconstructed from Willandra Lakes and with the record of palaeochannels on the Lachlan River upstream. Willandra Lakes shows high inflows during the Last Glacial Maximum (∼22 ka), but their subsequent drying between 20.5 ka and 19 ka was caused by river avulsion rather than regional aridity. This case study highlights the benefits of combining fluvial with lacustrine archives to build complementary records of hydrological change in lowland riverine plains.

  11. Geomorphology and flood-plain vegetation of the Sprague and lower Sycan Rivers, Klamath Basin, Oregon

    USGS Publications Warehouse

    O'Connor, James E.; McDowell, Patricia F.; Lind, Pollyanna; Rasmussen, Christine G.; Keith, Mackenzie K.

    2015-01-01

    Despite these effects of human disturbances, many of the fundamental physical processes forming the Sprague River fluvial systems over the last several thousand years still function. In particular, flows are unregulated, sediment transport processes are active, and overbank flooding allows for floodplain deposition and erosion. Therefore, restoration of many of the native physical conditions and processes is possible without substantial physical manipulation of current conditions for much of the Sprague River study area. An exception is the South Fork Sprague River, where historical trends are not likely to reverse until it attains a more natural channel and flood-plain geometry and the channel aggrades to the extent that overbank flow becomes common.

  12. How did the AD 1755 tsunami impact on sand barriers across the southern coast of Portugal?

    NASA Astrophysics Data System (ADS)

    Costa, Pedro J. M.; Costas, Susana; González-Villanueva, R.; Oliveira, M. A.; Roelvink, D.; Andrade, C.; Freitas, M. C.; Cunha, P. P.; Martins, A.; Buylaert, J.-P.; Murray, A.

    2016-09-01

    Tsunamis are highly energetic events that may destructively impact the coast. Resolving the degree of coastal resilience to tsunamis is extremely difficult and sometimes impossible. In part, our understanding is constrained by the limited number of contemporaneous examples and by the high dynamism of coastal systems. In fact, long-term changes of coastal systems can mask the evidence of past tsunamis, leaving us a short or incomplete sedimentary archive. Here, we present a multidisciplinary approach involving sedimentological, geomorphological and geophysical analyses and numerical modelling of the AD 1755 tsunami flood on a coastal segment located within the southern coast of Portugal. In particular, the work focuses on deciphering the impact of the tsunami waves over a coastal sand barrier enclosing two lowlands largely inundated by the tsunami flood. Erosional features documented by geophysical data were assigned to the AD 1755 event with support of sedimentological and age estimation results. Furthermore, these features allowed the calibration of the simulation settings to reconstruct the local conditions and establish the run-up range of the AD 1755 tsunami when it hit this coast (6-8 m above mean sea level). Our work highlights the usefulness of erosional imprints preserved in the sediment record to interpret the impact of the extreme events on sand barriers.

  13. The deglaciation in Picos de Europa (area of Enol Glacier) based on geomorphological and sedimentological studies

    NASA Astrophysics Data System (ADS)

    Ruiz-Fernández, Jesus; Oliva, Marc; García, Cristina

    2013-04-01

    The chronology for the deglaciation in the Cantabrian Range is still poorly understood. Several papers have proposed a maximum advance well before the LGM (Jiménez and Farias, 2002; Moreno et al. 2010; Serrano et al. 2012). The Western massif of Picos de Europa held a ice field of 50 km2. In this communication we present two cores collected in two glacial depressions in the frontal area of Enol Glacier that allow reconstructing the environment since the deglaciation of the massif. The first core (5.6 m long) was collected in the kame terrace of Belbin. This terrace was dammed by a lateral moraine corresponding to the phase of maximum expansion of Enol Glacier. Three clear layers are observed: the basal 2.5 m consists of grey clay with small gravel limestones; the second is 2 m thick and is composed of grey clays; the upper 1.1 m shows several paleosoils with abundant organic matter and charcoals. The based was dated at 14,810 ± 70 yr BP. This age represents a minimum age for the maximum expansion of Enol Glacier. The second core was collected in the glaciokarst depression of Vega del Bricial, located within a moraine complex corresponding to LGM. The core is 8 m long and looks very homogeneous. It consists of a succession of organic layers and slope deposits. Two radiocarbon dates were performed on the sediments at 8 and 2.8 m depth, resulting in 9,690 ± 260 and 3,420 ± 95 yr BP, respectively. Based on sedimentological and geomorphological evidences, we propose a chronology for the environmental changes occurred in this massif since the last glacial period. References Jiménez, M. and Farias, P., 2002. New radiometric and geomorphologic evidences of a Last Glacial Maximum older than 18 ka in SW European mountains: the example of Redes Natural Park (Cantabrian Mountains, NW Spain). Geodinamica Acta, 15, 93-101. Moreno, A., Valero, B. L., Jiménez, M., Domínguez, M. J., Mata, M. P., Navas, A., González, P., Stoll, H., Farias, P., Morellón, M., Corella, J. P. and Rico, M., 2010. The last deglaciation in the Picos de Europa National Park (Cantabrian Mountains, Northern Spain). Journal of Quaternary Science, 25 (7), 1076-1091. Serrano, E., González-Trueba, J. J. and González-García, M., 2012. Mountain glaciation and paleoclimate reconstruction in the Picos de Europa (Iberian Peninsula, SW Europe). Quaternary Research, 78, 303-314.

  14. Regional controls on geomorphology, hydrology, and ecosystem integrity in the Orinoco Delta, Venezuela

    USGS Publications Warehouse

    Warne, A.G.; Meade, R.H.; White, W.A.; Guevara, E.H.; Gibeaut, J.; Smyth, R.C.; Aslan, A.; Tremblay, T.

    2002-01-01

    Interacting river discharge, tidal oscillation, and tropical rainfall across the 22,000 km2 Orinoco delta plain support diverse fresh and brackish water ecosystems. To develop environmental baseline information for this largely unpopulated region, we evaluate major coastal plain, shallow marine, and river systems of northeastern South America, which serves to identify principal sources and controls of water and sediment flow into, through, and out of the Orinoco Delta. The regional analysis includes a summary of the geology, hydrodynamics, sediment dynamics, and geomorphic characteristics of the Orinoco drainage basin, river, and delta system. Because the Amazon River is a major source of sediment deposited along the Orinoco coast, we summarize Amazon water and sediment input to the northeastern South American littoral zone. We investigate sediment dynamics and geomorphology of the Guiana coast, where marine processes and Holocene history are similar to the Orinoco coast. Major factors controlling Orinoco Delta water and sediment dynamics include the pronounced annual flood discharge; the uneven distribution of water and sediment discharge across the delta plain; discharge of large volumes of water with low sediment concentrations through the Rio Grande and Araguao distributaries; water and sediment dynamics associated with the Guayana littoral current along the northeastern South American coast; inflow of large volumes of Amazon sediment to the Orinoco coast; development of a fresh water plume seaward of Boca Grande; disruption of the Guayana Current by Trinidad, Boca de Serpientes, and Gulf of Paria; and the constriction at Boca de Serpientes. ?? 2002 Elsevier Science B.V. All rights reserved.

  15. Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: Project Introduction and First Year Work Plan

    NASA Technical Reports Server (NTRS)

    Skiner, J. A., Jr.; Rogers, A. D.; Seelos, K. D.

    2009-01-01

    The highland-lowland boundary (HLB) of Mars is interpreted to be a complex tectonic and erosional transition that may hold evidence for past geologic processes and environments. The HLB-abutting margin of the Libya Montes and the interbasin plains of northern Tyrrhena Terra display an exceptional view of the earliest to middle history of Mars that has yet to be fully characterized. This region contains some of the oldest exposed materials on the Martian surface as well as aqueous mineral signatures that may be potential chemical artifacts of early highland formational processes. However, a full understanding of the regions geologic and stratigraphic evolution is remarkably lacking. Some outstanding questions regarding the geologic evolution of Libya Montes and northern Tyrrhena Terra in-clude: Does combining geomorphology and composition advance our understanding of the region s evolution? Can highland materials be subdivided into stratigraphically discrete rock and sediment sequences? What do major physiographic transitions imply about the balanced tectonism, climate change, and erosion? Where is the erosional origin and what is the post-depositional history of channel and plains units? When and in what types of environments did aqueous mineral signatures arise? This abstract introduces the geologic setting, science rationale, and first year work plan of a recently-funded 4-year geologic mapping proposal (project year = calendar year). The objective is to delineate the geologic evolution of Libya Montes and northern Tyrrhena Terra at 1:1M scale using both classical geomorphological and compositional mapping techniques. The funded quadrangles are MTMs 00282, -05282, -10282, 00277, -05277, and -10277.

  16. Identification of possible recent water/lava source vents in the Cerberus plains: Stratigraphic andcrater count age constraints

    NASA Astrophysics Data System (ADS)

    Thomas, Rebecca J.

    2013-04-01

    In order to investigate sources of lava and water to the Cerberus plains of Mars, geomorphological mapping on High Resolution Imaging Science Experiment (HiRISE) images was carried out to reveal the history of activity of fissures and pits which lie upstream of channels and deposits associated with a wrinkle ridge near Cerberus Fossae. The fissures and pits are superbly exposed and imaged, and flows and channels emanate directly from them, interpreted as clear evidence that these are vents. The mapping establishes stratigraphic relationships between the plains and the channels and deposits originating from the vents, establishing the vent history. For example, to the south of the wrinkle ridge, both incised channels and leveed flows extend onto the southern plain and are clearly the final phase of plains-forming activity. Conversely, to the north, vent-sourced channels only incise the plain close to the ridge—beyond that, they are overlain by large-scale regional flows that appear to have originated from the direction of Athabasca Valles. In the southeast, there is evidence of contemporaneity between vent-sourced activity and large-scale plains-forming flow that was not sourced from the vents, indicating that activity here was part of a broader process of Cerberus plains formation from multiple sources. Crater counts show all the activity to be Late Amazonian, with the latest activity tentatively dating to circa 11 Ma. Thus, this study implies that very recent outflows from these vents contributed to the formation of the Cerberus plains and constrains the timing and local flow direction of plains-forming deposits from other sources.

  17. Geomorphology and habitat diversity in the Pantanal.

    PubMed

    Mercante, M A; Rodrigues, S C; Ross, J L S

    2011-04-01

    The present study deals with the inter-relations in the relief which forms the Bacia do Alto Rio Paraguay (BAP) in mid-west Brazil. The overall aim is to discuss the relationship between relief forms and the biodiversity of the Pantanal. The BAP is a natural environmental system with contrasts in two of the compartments on which it is formed: the plateau, the most elevated compartment, highly transformed by human activities, and the plain which forms the Pantanal, which is more preserved and less transformed in relation to productive activities. The analysis was performed based on publications with a geomorphologic focus, examining the different relief units of the BAP and the dynamics of the revealing processes of landscape change which the Pantanal has undergone since the end of the Pleistocene.

  18. Paleoseismic and geomorphologic evidence of recent tectonic activity of the Pozohondo Fault (Betic Cordillera, SE Spain)

    USGS Publications Warehouse

    Rodríguez-Pascua, M.A.; Pérez-López, R.; Garduño-Monroy, V.H.; Giner-Robles, J.L.; Silva, P.G.; Perucha-Atienza, M.A.; Hernández-Madrigal, V.M.; Bischoff, J.

    2012-01-01

    Instrumental and historical seismicity in the Albacete province (External Prebetic Zone) has been scarcely recorded. However, major strike-slip faults showing NW-SE trending provide geomorphologic and paleoseismic evidence of recent tectonic activity (Late Pleistocene to Present). Moreover, these faults are consistently well oriented under the present stress tensor and therefore, they can trigger earthquakes of magnitude greater than M6, according to the lengths of surface ruptures and active segments recognized in fieldwork. Present landscape nearby the village of Hellin (SE of Albacete) is determined by the recent activity of the Pozohondo Fault (FPH), a NW-SE right-lateral fault with 90 km in length. In this study, we have calculated the Late Quaternary tectonic sliprate of the FPH from geomorphological, sedimentological, archaeoseimological, and paleoseismological approaches. All of these data suggest that the FPH runs with a minimum slip-rate of 0.1 mm/yr during the last 100 kyrs (Upper Pleistocene-Holocene). In addition, we have recognized the last two major paleoearthquakes associated to this fault. Magnitudes of these paleoearthquakes were gretarer than M6 and their recurrence intervals ranged from 6600 to 8600 yrs for the seismic cycle of FPH. The last earthquake was dated between the 1st and 6th centuries, though two earthquakes could be interpreted in this wide time interval, one at the FPH and other from a far field source. Results obtained here, suggest an increasing of the tectonic activity of the Pozohondo Fault during the last 10,000 yrs.

  19. Mapping the northern plains of Mars: origins, evolution and response to climate change

    NASA Astrophysics Data System (ADS)

    Balme, Matthew; Conway, Susan; Costard, François; Gallagher, Colman; van Gasselt, Stephan; Hauber, Ernst; Johnsson, Andreas; Kereszturi, Akos; Platz, Thomas; Ramsdale, Jason; Reiss, Dennis; Séjourné, Antoine; Skinner, James; Swirad, Zuzanna

    2014-05-01

    An ISSI (International Space Science Institute) international team has been convened to study the Northern Plain of Mars. The northern plains are extensive, geologically young, low-lying areas that contrast in age and relief to Mars' older, heavily cratered, southern highlands. Mars' northern plains are characterised by a wealth of landforms and landscapes that have been inferred to be related to the presence of ice or ice-rich material near, beneath, or at the surface. Such landforms include 'scalloped' pits and depressions, polygonally-patterned grounds, and viscous flow features similar in form to terrestrial glacial or ice-sheet landforms. Furthermore, new (within the last few years) impact craters have exposed ice in the northern plains, and spectral data from orbiting instruments have revealed the presence of tens of percent by weight of water within the upper most ~50 cm of the martian surface at high latitudes. The northern plains comprise three linked zones: Acidalia Planitia, Utopia Planitia and Arcadia Planitia. Each region consists of a shallow basin, with the three areas are separated by low topographic divides. Our aim is to study the ice-related geomorphology of each region in order to understand the origins, evolution and response to climate change of ice on Mars. In particular, by comparing and contrasting the three separate basins we hope to determine if the processes that created the ice-related terrains are regional (perhaps basin limited) or global in scope, and whether the differing geology of each basin has an effect on the ice-related features observed there. The ISSI team is using planetary geomorphological mapping to meet this aim. Three long strips, each about 250 km wide and spanning the ~30N to ~80N latitude range have been defined and sub-teams are each mapping a single area. The group contains experts in mapping, GIS and crater counting (details in the size-frequency distribution of impact craters on a planetary surface can reveal information about when terrains were emplaced, modified, eroded or exhumed). The first meeting of this group was held in December 2013. Here, we give an overview of the science aims of the project, describe the main difference between the three strips and report on mapping work done so far.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, R.T.; Strand, J.R.; Reid, B.E.

    Uranium favorability of the Sangre de Cristo Formation (Pennsylvanian-Permian) in the Las Vegas basin has been evaluated. The Las Vegas basin project area, located in Colfax, Mora, and San Miguel Counties, New Mexico, comprises about 3,489 sq mi. The formation contains sedimentologic and stratigraphic characteristics that are considered favorable for uranium deposition. Field investigations consisted of section measuring, rock sampling, and ground radiometric reconnaissance. North-south and east-west cross sections of the basin were prepared from well logs and measured sections. Petrographic, chemical, and spectrographic analyses were conducted on selected samples. Stratigraphic and sedimentologic information were used to determine depositional environments.more » The most favorable potential host rocks include red to pink, coarse-grained, poorly sorted, feldspathic to arkosic lenticular sandstones with stacked sandstone thicknesses of more than 20 ft and sandstone-to-shale ratios between 1:1 and 2:1. The sandstone is interbedded with mudstone and contains carbonaceous debris and anomalous concentrations of uranium locally. Areas of maximum favorability are found in a braided-stream, alluvial-plain depositional environment in the north-central part of the Las Vegas basin. There, carbonaceous material is well preserved, probably due to rapid subsidence and burial. Furthermore, uranium favorability is highest in the lower half of the formation because carbonaceous wood and plant fragments, as well as known uranium deposits, are concentrated in this zone. Piedmont deposits in the north and east, and meander-belt, alluvial-plain deposits in the south, are not considered favorable because of the paucity of uranium deposits and a minimum of carbonaceous material.« less

  1. The MeTIBas project: an example of settlement continuity in a coastal changing landscape of southern Italy

    NASA Astrophysics Data System (ADS)

    Bavusi, Massimo; Di Leo, Paola; Giammatteo, Tonia; Gioia, Dario; Schiattarella, Marcello

    2016-04-01

    The MeTIBas (Italian acronym for Innovative Methods and Technologies for the Cultural Heritage in the Basilicata region) project aims to develop an innovative geoarchaeological investigation approach for large areas. Analyses of environmental dynamics, palaeoclimatic proxies, spatial and temporal evolution of settlements and, more in general, of the relationships between man and landscape have been carried also through the implementation of a Territorial Information System, drawing-up of an experimental digital geoarchaeological map, and creation of an open geoarchaeological database. The project methods have been applied in the coastal area of Metaponto, which roughly coincides with the ancient territory of the Greek settlement of Metapontum and its chora and includes a region of about 400 sq. km in the Ionian sector of the Basilicata region, southern Italy. The backshore area of the Metaponto coastal plain was characterized by the presence of wide limno-palustrine environments, reclaimed during the first decades of the last century. Geomorphological mapping, GIS-supported statistics, and analysis of the topographic features of the landforms represent the key to extract the settlement rules and the site dynamics of the study area. Site distribution and relationships with landscape elements allow us to investigate the settlement patterns and human activities and choices. A wide archive of archaeological data on the whole study area - from Prehistoric times to Roman age - has been therefore used to connect the wandering or persistence of the ancient sites in relation with different landforms and their changes during the last 5000 years. The layout of the site arrangement clearly traces the main geomorphological features of the area (i.e. settlements along fluvial scarps, sites on the flat surfaces of marine and fluvial terraces, main villages in the coastal plain). From a chronological viewpoint, after a progressive increase of the settlements and other archaeological elements - sometimes with changes in their function - the human presence becomes dramatically strong during the Greek colonization and the Roman period. Only few archaeological typologies remain the same through time, as for example the farms and their associated features, whilst several sites assume different intended use. From classical to Hellenistic time span, a significant increase of sites can be observed in both the coastal plain and in the intermediate orders of marine terraces, whose top surfaces range from 45 m to 110 m a.s.l.: this could mean that the pre-existing environmental setting of the coastal plain was preserved (i.e. no diffused presence of marshes and swamps) and the plain was not abandoned, but at the same time the terraced surfaces offered similar or better conditions for agricultural practices. From Hellenistic to Roman times, a dramatic collapse of the stable human presence occurred, probably due to historical causes coupled with a landscape deterioration (maybe linked to an increase in flooding occurrence in the coastal plain and in the floodplains of the lower reaches of the main rivers). Results indicate that an intrinsic geomorphological fragility of the territory has accompanied the strong agricultural vocation of the study area, persisting until now.

  2. Sediment lithology and radiochemistry from the back-barrier environments along the northern Chandeleur Islands, Louisiana—March 2012

    USGS Publications Warehouse

    Marot, Marci E.; Smith, Christopher G.; Adams, C. Scott; Richwine, Kathryn A.

    2017-04-11

    Scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center collected a set of 8 sediment cores from the back-barrier environments along the northern Chandeleur Islands, Louisiana, in March 2012. The sampling efforts were part of a larger USGS study to evaluate effects on the geomorphology of the Chandeleur Islands following the construction of an artificial sand berm to reduce oil transport onto federally managed lands. The objective of this study was to evaluate the response of the back-barrier tidal and wetland environments to the berm. This report serves as an archive for sedimentological and radiochemical data derived from the sediment cores. The data described in this report are available for download on the data downloads page.

  3. The FRALIT teledetection program, using the ERTS-A satellite, for the oceanic littoral of France

    NASA Technical Reports Server (NTRS)

    Verger, F. (Principal Investigator); Cazabat, C.; Demathieu, P.; Dupuis, J.

    1972-01-01

    There are no author-identified significant results in this report. The French Atlantic Littoral program, utilizing data from the ERTS-1 satellite, is considered. It involves teledetection of the French shoreline along the Atlantic Ocean and English Channel. A description is given of the ERTS-1 orbit and the satellite itself, including the attitude control system, and the data acquisition and transmission equipment. The geographic extent of the area covered by the program is delineated and the subjects studied are enumerated. These include the geomorphology, pedology, hydrology, and vegetation of the maritime marshes; sedimentology, morphology, and hydrology of the intertidal zones; and transport of material in suspension to the mouths of the Seine, the Loire, and the Gironde as a part of the coastal waters study.

  4. Bottom-up control of macrobenthic communities in a guanotrophic coastal system.

    PubMed

    Signa, Geraldina; Mazzola, Antonio; Costa, Valentina; Vizzini, Salvatrice

    2015-01-01

    Soft bottom macrobenthic communities were studied seasonally in three coastal ponds (Marinello ponds, Italy) at increasing distances from a gull (Larus michahellis) colony to investigate the effect of seabird-induced eutrophication (i.e. guanotrophication) on macrobenthic fauna. We hypothesized that enhanced nutrient concentration and organic load caused by guano input significantly alter the trophic and sedimentological condition of ponds, affecting benthic fauna through a bottom-up control. The influence of a set of environmental features on macrobenthic assemblages was also tested. Overall, the lowest macrobenthic abundances and functional group diversity were found in deeper sites, especially in the pond characterised by severe guanotrophication, where the higher disturbance resulted in a decline in suspension feeders and carnivores in favour of deposit feeders. An increase in opportunistic/tolerant taxa (e.g. chironomid larvae and paraonids) and totally azoic sediments were also found as an effect of the harshest environmental conditions, resulting in a very poor ecological status. We conclude that macrobenthic assemblages of the Marinello coastal system display high spatial variability due to a synergistic effect of trophic status and the geomorphological features of the ponds. The macrobenthic response to guanotrophication, which was a clear decrease in abundance, diversity and trophic functional groups, was associated with the typical response to severe eutrophication, magnified by the geomorphological features.

  5. Bottom-Up Control of Macrobenthic Communities in a Guanotrophic Coastal System

    PubMed Central

    Signa, Geraldina; Mazzola, Antonio; Costa, Valentina; Vizzini, Salvatrice

    2015-01-01

    Soft bottom macrobenthic communities were studied seasonally in three coastal ponds (Marinello ponds, Italy) at increasing distances from a gull (Larus michahellis) colony to investigate the effect of seabird-induced eutrophication (i.e. guanotrophication) on macrobenthic fauna. We hypothesized that enhanced nutrient concentration and organic load caused by guano input significantly alter the trophic and sedimentological condition of ponds, affecting benthic fauna through a bottom-up control. The influence of a set of environmental features on macrobenthic assemblages was also tested. Overall, the lowest macrobenthic abundances and functional group diversity were found in deeper sites, especially in the pond characterised by severe guanotrophication, where the higher disturbance resulted in a decline in suspension feeders and carnivores in favour of deposit feeders. An increase in opportunistic/tolerant taxa (e.g. chironomid larvae and paraonids) and totally azoic sediments were also found as an effect of the harshest environmental conditions, resulting in a very poor ecological status. We conclude that macrobenthic assemblages of the Marinello coastal system display high spatial variability due to a synergistic effect of trophic status and the geomorphological features of the ponds. The macrobenthic response to guanotrophication, which was a clear decrease in abundance, diversity and trophic functional groups, was associated with the typical response to severe eutrophication, magnified by the geomorphological features. PMID:25679400

  6. Geomorphology of Titan's polar terrains: Using the landscape's topographic form to constrain surface processes

    NASA Astrophysics Data System (ADS)

    Birch, S. P.; Hayes, A. G., Jr.; Dietrich, W. E.; Howard, A. D.; Malaska, M. J.; Moore, J. M.; Mastrogiuseppe, M.; White, O. L.; Hofgartner, J. D.; Soderblom, J. M.; Barnes, J. W.; Bristow, C.; Kirk, R. L.; Turtle, E. P.; Wood, C. A.; Stofan, E. R.

    2015-12-01

    Driven by an expansive atmosphere, Titan's lakes, seas and accompanied hydrological cycle hold vast amounts of information regarding the history and evolution of Titan. To understand these features, we constructed a geomorphologic map of Titan's polar terrains using a combination of the Cassini SAR, ISS, VIMS, and topographic datasets. In combining SAR, ISS, and VIMS imagery with topographic data, our geomorphic map reveals a stratigraphic sequence from which we infer formation processes. In mapping both the South and North poles with the same morphologic units, we conclude that processes that dominated the North Pole also operated in the South. Large seas, which are currently methane/ethane filled in the North and dry in the South, characterize both poles. The current day dichotomy may result only from differing initial conditions. Regions removed from the mare are dominated by smooth, undulating plains, bounded by moderately dissected uplands that are discretized into observable drainage basins. These plains contain the highest density of filled and empty lake depressions, which appear morphologically distinct from the larger mare. The thicknesses of these undulating plains are retrieved from the depths of the embedded empty depressions that are up to 800 m deep. The development of such large deposits and the surrounding hillslopes can be explained by the presence of previously vast polar oceans. Larger liquid bodies would have allowed for a sustained accumulation of soluble and insoluble sediments from Titan's lower latitudes. Two plausible evolutionary scenarios include seas that were slightly larger, followed by tectonic uplift, or oceans that were much larger, that have since lost most of their volume over time to methane photolysis. In either scenario, thick sedimentary deposits of soluble materials are required to have been emplaced prior to the formation of the small lake depressions.

  7. Using Braid Plain Ecology and Geomorphology to Inform Bank Erosion Management along a Braided River, Matanuska River, Alaska

    NASA Astrophysics Data System (ADS)

    Curran, J. H.; McTeague, M. L.

    2010-12-01

    Braided rivers are inherently dynamic but quantifying the nature and implications of this dynamism can contribute to more comprehensive understanding of these systems and management of the river corridor. Bank erosion along the glacial, braided Matanuska River in southcentral Alaska has challenged generations of officials and generated a host of proposed solutions such as riprapped banks, dikes, gravel mining, and trenching. Increasingly, assessment of the technical feasibility of these methods has been accompanied by consideration of ecological factors and nonstructural solutions. The Matanuska River is braided over 85 percent of its course and clearwater side channels in abandoned braid plain areas provide as much as 90 percent of the spawning habitat in the basin for chum and sockeye salmon (Oncorhynchus keta and O. nerka). An assessment of braid plain vegetation, bank erosion rates, effects of a large flood, and distribution of clearwater side channels establishes a scientific basis for ecological and geomorphological considerations and recently helped guide development of a management plan for the river corridor. A historical analysis of braid plain features, marginal positions, and vegetation patterns from 1949, 1962, and 2006 orthophotographs showed that the 2006 braid plain was 43 percent vegetated and had an average age of 16 years. Only about 4 percent of the braid plain contained vegetated islands and over 60 percent of these were young and sparsely vegetated, implying that a suite of active channels migrated frequently across the braid plain and that vegetation did not appreciably limit channel movement. Rates of erosion to the braid plain margins averaged 0.3 m/yr from 1949 to 2006 but erosion was localized, with 64 percent of the erosion at only 8 percent of the banks. Cumulative bank change was twice as great along banks consisting of Holocene fluvial deposits (fans and terraces) identified during Geographic Information System (GIS) mapping than on other features. River-long erosion rates were twice as great for 1949-62 than for 1962-2006, despite a flood with a less than 0.002 percent exceedance probability in 1971 and slightly higher average peak flood magnitudes in the latter period. Of the 20 areas with erosion greater than 70 m from 1949-2006, only 9 were eroded in both periods and only one had detectable erosion in the sub-period from 2004 to 2006. This disconnect of erosion with flooding and the variable timing of historical erosion suggests that erosion was sporadic and more related to the presence of the river against the bank and bank erodibility than to more readily monitored variables. Clearwater side channels were frequently reworked in the braid plain but the cumulative length of channels appeared to be stable within the historical time period. This dynamic nature implies that the aquatic ecosystems have evolved within a high disturbance regime.

  8. Should precise numerical dating overrule glacial geomorphology?

    NASA Astrophysics Data System (ADS)

    Winkler, Stefan

    2016-04-01

    Numerical age dating techniques, namely different types of terrestrial cosmogenic nuclide dating (TCND), have achieved an impressive progress in both laboratory precision and regional calibration models during the past few decades. It is now possible to apply precise TCND even to young landforms like Late Holocene moraines, a task seemed hardly achievable just about 15 years ago. An increasing number of studies provide very precise TCND ages for boulders from Late Holocene moraines enabling related reconstruction of glacier chronologies and the interpretation of these glacial landforms in a palaeoclimatological context. These studies may also solve previous controversies about different ages assigned to moraines obtained by different dating techniques, for example relative-age dating techniques or techniques combining relative-age dating with few fixed points derived from numerical age dating. There are a few cases, for example Mueller Glacier and nearby long debris-covered valley glacier in Aoraki/Mt.Cook National Park (Southern Alps, New Zealand), where the apparent "supremacy" of TCND-ages seem to overrule glacial geomorphological principles. Enabled by a comparatively high number of individual boulders precisely dated by TCND, moraine ridges on those glacier forelands have been primarily clustered on basis of these boulder ages rather than on their corresponding morphological position. To the extreme, segments of a particular moraine complex morphologically and sedimentologically proven to be formed during one event have become split and classified as two separate "moraines" on different parts of the glacier foreland. One ledge of another moraine complex contains 2 TCND-sampled boulders apparently representing two separate "moraines"-clusters of an age difference in the order of 1,500 years. Although recently criticism has been raised regarding the non-contested application of the arithmetic mean for calculation of TCND-ages for individual moraines, this problem is still not properly addressed in every case and significant age differences of individual boulders on moraine ridges create uncertainties with their palaeoclimatic interpretation. Referring to the exemplary case of the glacier forelands mentioned above it is argued that prior to any chronological interpretation the geomorphological correlation of individual moraine ridges and complexes need to be established and potential uncertainties clearly addressed. After the TCND-ages have been obtained from sampled boulders and assigned to the moraines any discrepancy needs to be carefully investigated to ensure that misleading ages don't effect subsequent chronological reconstructions and palaeoclimatic interpretations. Even if dating precision has recently considerably increased, moraines should not be clustered into synchronous moraine-groups based on TCND-ages if their morphological position or sedimentology contradicts such classification. Furthermore, the high precision of TCND-ages do often not consider the concept of 'LIA'-type events and different response times of nearby glaciers to the same mass balance/climate signal, therefore potentially overestimating the true number of glacier advances during a specific period. An alternative interpretation of existing TCND-ages reveals fewer advances during the Late Holocene. Summarising, modern TCND-ages are possibly "too precise" in some aspects and wrongly judged as superior to geomorphological evidence. A more critical evaluation would be beneficial to any subsequent attempts of intra-hemispheric and global correlation of glacier chronologies.

  9. Historical and contemporary imagery to assess ecosystem change on the Arctic coastal plain of northern Alaska

    USGS Publications Warehouse

    Tape, Ken D.; Pearce, John M.; Walworth, Dennis; Meixell, Brandt W.; Fondell, Tom F.; Gustine, David D.; Flint, Paul L.; Hupp, Jerry W.; Schmutz, Joel A.; Ward, David H.

    2014-01-01

    In this report, we describe and make available a set of 61 georectified aerial images of the Arctic Coastal Plain (taken from 1948 to 2010) that were obtained by the USGS to inform research objectives of the USGS CAE Initiative. Here, we describe the origins, metadata, and public availability of these images that were obtained within four main study areas on the Arctic Coastal Plain: Teshekpuk Lake Special Area, Chipp River, the Colville River Delta, and locations along the Dalton Highway Corridor between the Brooks Range and Deadhorse. We also provide general descriptions of observable changes to the geomorphology of landscapes that are apparent by comparing historical and contemporary images. These landscape changes include altered river corridors, lake drying, coastal erosion, and new vegetation communities. All original and georectified images and metadata are available through the USGS Alaska Science Center Portal (search under ‘Project Name’ using title of this report) or by contacting ascweb@usgs.gov.

  10. Interdisciplinary approach to the ecological status assessment of Rio Quequén Grande watershed in Argentina

    NASA Astrophysics Data System (ADS)

    Teruggi, L. B.; Caporali, E.; Sala, S.; Kristensen, M. J.

    2010-12-01

    The Río Quequén Grande (RQG) watershed is located in the southeast section of Buenos Aires province, in Argentina, and it has an area of about 9.940 km2. The RQG outflows into the Atlantic Ocean, near the city of Necochea and it is a representative example of Argentinean River that drains the flat pampas of the region. The region is very important from a social and economical point of view, it is in fact characterized by intense agricultural activity and it is part of one of the most productive plain in the world. In spite of all that, the related environmental impacts, in this part of the world, are habitually faced studying specific aspects and using local measures, which often lead to the collapse of the living riverine systems. In this frame, the integration of all the available data, coupled with specific data from appropriate monitoring campaigns is proposed. Particularly geological, hydrological and geomorphological data are integrated with biological monitoring data for surface water quality assessment. Concepts like biotic integrity or ecological status are introduced to effectively protect and enhance water resources. The aim of the research is to recognize natural and anthropogenic spatial heterogeneity and to test methodologies for ecological status assessment of RQG watershed, integrating abiotic and biotic data together with all the available information. A dedicated Geographic Information System (GIS) is developed and an interdisciplinary approach is implemented. The watershed is characterized, using an integrated informative system of geological, geomorphological, sedimentological, hydrological, geochemical, land uses and biological information. Textural and geochemical river bed sediments data and water chemical parameters of the main tributaries and the main course were also monitored. Bankfull channel and caliche outcrops crossing the RQG channel were mapped and the fluvial cross sections were surveyed. The hydrological and hydraulic analyses have been carried out. All the data and analysis results are recorded in the dedicated GIS. As a preliminary approach, a biological monitoring campaign was defined and samples of principal nutrients analyses were collected. General habitat quality was also evaluated and benthic algal communities, aquatic and riparian vegetation were sampled. The results indicate that the monitored rivers have an insufficient water quality possibly related to the diffused pollution due to intensive agricultural activities. Even if the bio-monitoring activities need to be continued, and the number of monitoring sites need to be increased, the preliminary obtained results by the monitoring campaign and the modelling, integrating with the GIS, are giving encouraging response.

  11. Influence of the post-Miocene tectonic activity on the geomorphology between Andes and Pampa Deprimida in the area of Provincia de La Pampa, Argentina

    NASA Astrophysics Data System (ADS)

    Vogt, Henri; Vogt, Thea; Calmels, Augusto P.

    2010-09-01

    The genesis of the relief between the Andes and the Pampa Deprimida plain between 36° and 39°S has never been considered. The region is intermediate between two contrasting geomorphic styles, the meridian-oriented highs and depressions of the Sierras Pampeanas to the north and the eastwards sloping northern Patagonian mesetas to the south. From geophysical data, it coincides with an intermediate zone between a flat-slab subduction zone to the north and a normal subduction zone to the south. From west to east (68° to 64°W), four units follow each other: the easternmost portion of the Sub-Andean piedmont, the depression of the Río Chadileuvú, a Plateau, and a high scarp separating it from the Pampa Deprimida lowland. The Plateau is the southernmost portion of the Brazilian shield. Geomorphological and sedimentological analyses led us to the following conclusions: 1. the Andes uplift created a large piedmont reaching the Pampa Deprimida and including the Plateau which between the Pliocene and the Middle Pleistocene was shaped in a series of stepped levels covered by Andean fluvial sediments; 2. the meridian-oriented Rio Chadileuvú depression is of tectonic origin, younger than the Middle Pleistocene, and breaks the continuity between the piedmont and the Plateau: this depression could be an incipient foreland basin; 3. the eastern scarp is a fault scarp, probably Upper Pleistocene in age, due to a faster activity of the fault zone between the craton and the Macachín Trough. This young morphotectonic activity coincides with the change from a west-east Patagonian pattern to a north-south orientation of the relief typical of the Sierras Pampeanas, but younger than them. The river network was affected by this evolution. During the Upper Miocene, a palaeo-Río Negro flowed to the north-east, then shifted southwards. The Río Colorado entered the Pampa region during the Upper Pliocene creating a set of stepped fluvial accumulation terraces, while the piedmont was drained by eastward streams. Following the formation of the Chadileuvú depression, a north-south drainage, largely endoreic, replaced the Sub-Andean flows. A capture of the Río Chadileuvú by the Río Colorado is going on due to the incision of the Río Colorado in the south. The regional landscape is therefore directly related to Late Pleistocene tectonic activity, whereas climate changes explain the different sedimentary characteristics of the surficial deposits.

  12. Geomorphological Investigation of the Atchafalaya Basin, Area West, Atchafalaya Delta, and Terrebonne Marsh. Volume 1.

    DTIC Science & Technology

    1986-04-01

    creating the recent alluvial valley and deltaic plain of southeastern Louisiana . Each time the Mississippi River has built a major delta lobe seaward...exposure during lowered sea level, relatively high bulk density , and low water content. Entrenchment of the ancestral Mississippi River into the...down to Houma, Louisiana . The exact time interval of Teche occupation by the Red River is not known, but it ended sometime between early and middle

  13. Geochronology and Geomorphology of the Pioneer Archaeological Site (10BT676), Upper Snake River Plain, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keene, Joshua L.

    2015-04-01

    The Pioneer site in southeastern Idaho, an open-air, stratified, multi-component archaeological locality on the upper Snake River Plain, provides an ideal situation for understanding the geomorphic history of the Big Lost River drainage system. We conducted a block excavation with the goal of understanding the geochronological context of both cultural and geomorphological components at the site. The results of this study show a sequence of five soil formation episodes forming three terraces beginning prior to 7200 cal yr BP and lasting until the historic period, preserving one cultural component dated to ~3800 cal yr BP and multiple components dating tomore » the last 800 cal yr BP. In addition, periods of deposition and stability at Pioneer indicate climate fluctuation during the middle Holocene (~7200-3800 cal yr BP), minimal deposition during the late Holocene, and a period of increased deposition potentially linked to the Little Ice Age. In addition, evidence for a high-energy erosion event dated to ~3800 cal yr BP suggest a catastrophic flood event during the middle Holocene that may correlate with volcanic activity at the Craters of the Moon lava fields to the northwest. This study provides a model for the study of alluvial terrace formations in arid environments and their potential to preserve stratified archaeological deposits.« less

  14. Reconstruction of Mid-Holocene sedimentary environments in the central part of the Thessaloniki Plain (Greece), based on microfaunal identification, magnetic susceptibility and grain-size analyses

    NASA Astrophysics Data System (ADS)

    Ghilardi, Matthieu; Kunesch, Stéphane; Styllas, Mixalis; Fouache, Eric

    2008-05-01

    The study aims to estimate the relative contributions of the two drainage basins of the Aliakmon and Axios rivers which, since the Mid-Holocene, have been responsible for building the largest deltaic area in Greece. Sediments from five cores located in the central part of the Thessaloniki Plain have been studied for their environmental changes using paleontological and sedimentological methods. Chronostratigraphical evidence was obtained from 14C AMS dating of marine shells, peat and organic sediment samples. During the Holocene marine transgression, this large coastal plain was a shallow marine bay reaching approx. 35 km inland circa the 4th millennium BC, from which the sea subsequently regressed to the east. Around the middle of the 3rd millennium BC, strong fluvial deposition of Aliakmon, to the east, and of Axios, to the north, occurred and was responsible of a gradual change to lagoonal and limnic environmental conditions. Around the 5th Century BC, a freshwater lake occupied the westernmost part of the plain. Microfaunal identification, together with magnetic susceptibility measurements, and grain-size analysis reveal three main environments of sediment deposition that reflect combinations of both concentrated and dispersed sources of magnetic/source minerals. Using remote sensing and a combination of spectral bands (LANDSAT TM imagery), we identify former fluvial levees and a freshwater lake, and give a spatial interpretation of the rivers' influences in building this deltaic complex. The mechanisms of edification of the plain as well as the roles played by Aliakmon and Axios sedimentation are described.

  15. An anthropogenic origin of the "Sirente crater," Abruzzi, Italy

    NASA Astrophysics Data System (ADS)

    Speranza, Fabio; Sagnotti, Leonardo; Rochette, Pierre

    2004-04-01

    In this paper, we review the recent hypothesis, based mostly on geomorphological features, that a ~130 m-wide sag pond, surrounded by a saddle-shaped rim from the Sirente plain (Abruzzi, Italy), is the first-discovered meteoritic crater of Italy. Sub-circular depressions (hosting ponds), with geomorphological features and size very similar to those exhibited by the main Sirente sag, are exposed in other neighboring intermountain karstic plains from Abruzzi. We have sampled present day soils from these sag ponds and from the Sirente sags (both the main "crater" and some smaller ones, recently interpreted as a crater field) and various Abruzzi paleosols from excavated trenches with an age range encompassing the estimated age of the "Sirente crater." For all samples, we measured the magnetic susceptibility and determined the Ni and Cr contents of selected specimens. The results show that the magnetic susceptibility values and the geochemical composition are similar for all samples (from Sirente and other Abruzzi sags) and are both significantly different from the values reported for soils contaminated by meteoritic dust. No solid evidence pointing at an impact origin exists, besides the circular shape and rim of the main sag. The available observations and data suggest that the "Sirente crater," together with analogous large sags in the Abruzzi intermountain plains, have to be attributed to the historical phenomenon of "transumanza" (seasonal migration of sheep and shepherds), a custom that for centuries characterized the basic social-economical system of the Abruzzi region. Such sags were excavated to provide water for millions of sheep, which spent summers in the Abruzzi karstic high pasture lands, on carbonatic massifs deprived of natural superficial fresh water. Conversely, the distribution of the smaller sags from the Sirente plain correlates with the local pattern of the calcareous bedrock and, together with the characteristics of their internal structure, are best interpreted as natural dolines. In fact, reported radiocarbon ages for the formation of the main sag pond and of the smaller sags differ (significantly) by more than two millennia, thus excluding that they were all contemporaneously formed by a meteoritic impact.

  16. Sandstone dykes in siwalik sandstone-sedimentology and basin analysis-subansiri district (NEFA), Eastern Himalaya

    NASA Astrophysics Data System (ADS)

    Kumar, Surendar; Singh, Trilochan

    1982-11-01

    Sandstone dykes (including sills) of varied thickness and with tapering ends are present either transecting or (sills) parallel to bedding in the Siwalik sandstone of Arunachal Pradesh (NEFA), Eastern Himalaya. The different sedimentary and microstructural analyses show varied conditions of deposition with changing facies from fluvial channel, to alluvial fan, to coastal plain-fan delta. The non-marine and shallow marine environments are indicated by the presence of organised and disorganised gradation and the presence of sandstone dykes in the interface regions. The orientations of the longer axes of the conglomerate along with the sand bedding indicate palaeoflow.

  17. Geomorphological control of gold distribution and gold particle evolution in glacial and fluvioglacial placers of the Ancocala-Ananea basin - Southeastern Andes of Peru

    NASA Astrophysics Data System (ADS)

    Hérail, Gérard; Fornari, Michel; Rouhier, Michel

    1989-10-01

    Gold placers are formed as a result of surficial processes but glacial and fluvioglacial systems are generally considered to be unfavourable for placer genesis. Nevertheless, some important glacial and fluvioglacial placers have been discovered and are currently being exploited in the Andes of Peru and Bolivia. In the Plio-Pleistocene Ananea-Ancocala basin (4300-4900 m above sea-level), the gold content of the various formations indicates that only glacial and fluvioglacial sediments related to the Ancocala and Chaquiminas Glaciations (middle and upper Pleistocene) contain gold in any notable quantity. Local concentrations of economic interest occur only where a glacier has cut through a primary mineralized zone. Glacial erosion of dispersed primary mineralizations does not produce high-content placers of the kind found in fluviatile environments. Gold distribution in tills is more irregular than in fluviatile sediments and no marked enrichment at bedrock occurs. The transition from a glacial to a fluvioglacial environment is characterized by an increase in gold content due to a relative concentration of the biggest gold flakes and by the appearance of a gold distribution pattern similar to that found in a fluviatile environment. During their transport by glacial and fluvioglacial processes, gold particles acquire specific features; the size and morphology of a gold flake population are determined by the sedimentological and geomorphological environment in which the flakes are carried.

  18. The February 27, 2010 Chile Tsunami - Sedimentology of runup and backflow deposits at Isla Mocha

    NASA Astrophysics Data System (ADS)

    Bahlburg, H.; Spiske, M.

    2010-12-01

    On February 27, 2010, at 3:34 am local time, an earthquake with Mw 8.8 occurred off the town of Constitución in Central Chile and caused a major tsunami beween Valaparaiso (c. 33°S) and Tirua (c. 38°S). Maximum runup heights of up to 10 m were measured on coastal plains. The cliff coast at Tirua recorded a runup height between 30 m and 40 m. Considering past tsunami events, respective deposits may be the only observable evidence, even though their preservation potential is limited. To understand how tsunami deposits form and how they can be identified in the geological record, it is of paramount importance to undertake detailed studies in the wake of such events. Here we report initial field data of a sedimentological post-tsunami field survey undertaken in Central Chile between March 31 and April 18, 2010. At selected localities we measured detailed topographic profiles including runup heights and inundation distances, and recorded the thickness, distribution and sedimentological features of the respective tsunami deposits, as well as erosional features caused by the tsunami. We found the most instructive and complete sedimentological record of the February 27, 2010 tsunami at the northern tip of Isla Mocha, a small island off the Chilean coast at c. 28.15°S. Runup distances vary between 400 m and 600 m, the flow depth exceeded 3 m at ca. 100 m from the coast. Runup heights reached up to 21 m above sea level. In a rare sedimentological case, deposits of tsunami runup and backwash could be distinguished. The runup phase was mainly documented by fields of boulders extending c. 360 m inland. Boulders had maximum weights of 12 t. They were oriented with their long axis parallel to the coast and the wave front. Algal veneers and barnacles on the boulder faces give evidence of entrainment in intertidal water depths. The boulders are now embedded in mostly structureless coarse shelly sand. These sands were originally entrained during near shore supratidal erosion of coastal plain terraces by the tsunami and transported inland during runup. Flow structures indicate that the sands were then re-deposited during backwash. Downcurrent of terrace steps the tsunami backwash produced large erosional gullies. The backwash deposits occur either as widespread covers blanketing microtopography consisting of dark pre-tsunami soils, or as depositional fans which prograde seaward over soils free of a sediment cover. The coarse to very coarse shell debris is comprised of fragmented or entire mollusk and crab cascs. Some coarser deposits also contain significant amounts of Tertiary sandstone bedrock gravels in parts freshly eroded by the tsunami. The deposits are either massive or imbricated, the imbrication identifying them as a product of backflow currents. The deposit thickness is commonly c. 10 to 15 cm. Around large boulders backflow partitioning and associated erosion and deposition permitted the generation of 0.8 m deep scours and accumulation of up to 80 cm thick backflow sands. The depositional angles at the fan fronts vary between 27° and 36°. Backflow fan surfaces are characterized by channel and overbank regions and flow structures like current ripples. Clusters of bedrock pebbles and mollusk cascs are distributed irregularly over the fan surfaces.

  19. Saline systems of the Great Plains of western Canada: an overview of the limnogeology and paleolimnology

    PubMed Central

    Last, William M; Ginn, Fawn M

    2005-01-01

    In much of the northern Great Plains, saline and hypersaline lacustrine brines are the only surface waters present. As a group, the lakes of this region are unique: there is no other area in the world that can match the concentration and diversity of saline lake environments exhibited in the prairie region of Canada and northern United States. The immense number of individual salt lakes and saline wetlands in this region of North America is staggering. Estimates vary from about one million to greater than 10 million, with densities in some areas being as high as 120 lakes/km2. Despite over a century of scientific investigation of these salt lakes, we have only in the last twenty years advanced far enough to appreciate the wide spectrum of lake types, water chemistries, and limnological processes that are operating in the modern settings. Hydrochemical data are available for about 800 of the lake brines in the region. Composition, textural, and geochemical information on the modern bottom sediments has been collected for just over 150 of these lakes. Characterization of the biological and ecological features of these lakes is based on even fewer investigations, and the stratigraphic records of only twenty basins have been examined. The lake waters show a considerable range in ionic composition and concentration. Early investigators, concentrating on the most saline brines, emphasized a strong predominance of Na+ and SO4-2 in the lakes. It is now realized, however, that not only is there a complete spectrum of salinities from less than 1 ppt TDS to nearly 400 ppt, but also virtually every water chemistry type is represented in lakes of the region. With such a vast array of compositions, it is difficult to generalize. Nonetheless, the paucity of Cl-rich lakes makes the northern Great Plains basins somewhat unusual compared with salt lakes in many other areas of the world (e.g., Australia, western United States). Compilations of the lake water chemistries show distinct spatial trends and regional variations controlled by groundwater input, climate, and geomorphology. Short-term temporal variations in the brine composition, which can have significant effects on the composition of the modern sediments, have also been well documented in several individual basins. From a sedimentological and mineralogical perspective, the wide range of water chemistries exhibited by the lakes leads to an unusually large diversity of modern sediment composition. Over 40 species of endogenic precipitates and authigenic minerals have been identified in the lacustrine sediments. The most common non-detrital components of the modern sediments include: calcium and calcium-magnesium carbonates (magnesian calcite, aragonite, dolomite), and sodium, magnesium, and sodium-magnesium sulfates (mirabilite, thenardite, bloedite, epsomite). Many of the basins whose brines have very high Mg/Ca ratios also have hydromagnesite, magnesite, and nesquehonite. Unlike salt lakes in many other areas of the world, halite, gypsum, and calcite are relatively rare endogenic precipitates in the Great Plains lakes. The detrital fraction of the lacustrine sediments is normally dominated by clay minerals, carbonate minerals, quartz, and feldspars. Sediment accumulation in these salt lakes is controlled and modified by a wide variety of physical, chemical, and biological processes. Although the details of these modern sedimentary processes can be exceedingly complex and difficult to discuss in isolation, in broad terms, the processes operating in the salt lakes of the Great Plains are ultimately controlled by three basic factors or conditions of the basin: (a) basin morphology; (b) basin hydrology; and (c) water salinity and composition. Combinations of these parameters interact to control nearly all aspects of modern sedimentation in these salt lakes and give rise to four 'end member' types of modern saline lacustrine settings in the Great Plains: (a) clastics-dominated playas; (b) salt-dominated playas; (c) deep water, non-stratified lakes; and (d) deep water, "permanently" stratified lakes. PMID:16297237

  20. Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: First Year Results and Second Year Work Plan

    NASA Technical Reports Server (NTRS)

    Skinner, J. A., Jr.; Rogers, A. D.; Seelos, K. D.

    2010-01-01

    The Libya Montes-Tyrrhena Terra highland-lowland transitional zone of Mars is a complex tectonic and erosional region that contains some of the oldest exposed materials on the Martian surface as well as aqueous mineral signatures that may be potential chemical artifacts of early highland formational processes. Our 1:1M scale mapping project includes the geologic materials and landforms contained within MTMs 00282, -05282, -10282, 00277, - 05277, and -10277, which cover the highland portion of the transitional zone. The map region extends from the Libya Montes southward into Tyrrhena Terra and to the northern rim of Hellas basin and includes volcanic rocks of Syrtis Major Planum and a broad lowlying plain (palus) that forms a topographic divide between Isidis and Hellas basins. The objective of this project is to describe the geologic history of regional massif and plains materials by combining geomorphological and compositional mapping observations. This abstract summarizes the technical approaches and interim scientific results of Year 1 efforts and the expected work plan for Year 2 efforts.

  1. Tharsis-triggered Flood Inundations of the Lowlands of Mars

    NASA Technical Reports Server (NTRS)

    Fairen, Alberto G.; Dohm, James M.; Baker, Victor R.; dePablo, Miguel A.

    2003-01-01

    Throughout the recorded history of Mars, liquid water has distinctly shaped its landscape, including the prominent circum-Chryse and the northwestern slope valleys outflow channel systems [1], and the extremely flat northern plains topography at the distal reaches of these outflow channel systems.Basing on the ideas of episodic greenhouse atmosphere and water stability on the lowlands of Mars [3], a conceptual scheme for water evolution and associated geomorphologic features on the northern plains can be proposed. This model highlights Tharsis-triggered flood inundations and their direct impact on shaping the northern plains, as well as making possible the existence of fossil and/or extant life.Possible biologic evolution throughout the resulting different climatic and hydrologic conditions would account for very distinct metabolic pathways for hypothesized organisms capable of surviving and perhaps evolving in each aqueous environment, those that existed in the dry and cold periods between the flood inundations, and those organisms that could survive both extremes. Terrestrial microbiota, chemolithotrophic and heterotrophic bacteria, provide exciting analogues for such potential extremophile existence in Mars, especially where long-lived, magmatic-driven hydrothermal activity is indicated [14].

  2. Mississippi River delta plain, Louisiana coast, and inner shelf Holocene geologic framework, processes, and resources

    USGS Publications Warehouse

    Williams, S. Jeffress; Kulp, Mark; Penland, Shea; Kindinger, Jack L.; Flocks, James G.; Buster, Noreen A.; Holmes, Charles W.

    2009-01-01

    Extending nearly 400 km from Sabine Pass on the Texas-Louisiana border east to the Chandeleur Islands, the Louisiana coastal zone (Fig. 11.1) along the north-central Gulf of Mexico is the southern terminus of the largest drainage basin in North America (>3.3 million km2), which includes the Mississippi River delta plain where approximately 6.2 million kilograms per year of sediment is delivered to the Gulf of Mexico (Coleman 1988). The Mississippi River, active since at least Late Jurassic time (Mann and Thomas 1968), is the main distributary channel of this drainage system and during the Holocene has constructed one of the largest delta plains in the world, larger than 30,000 km2 (Coleman and Prior 1980; Coleman 1981; Coleman et al. 1998). The subsurface geology and geomorphology of the Louisiana coastal zone reffects a complex history of regional tectonic events and fluvial, deltaic, and marine sedimentary processes affected by large sea-level fluctuations. Despite the complex geology of the north-central Gulf basin, a long history of engineering studies and Scientific research investigations (see table 11.1) has led to substantial knowledge of the geologic framework and evolution of the delta plain region (see also Bird et al., chapter 1 in this volume). Mississippi River delta plain, Louisiana coast, and inner shelf Holocene geologic framework, processes, and resources. Available from: https://www.researchgate.net/publication/262802561_Mississippi_River_delta_plain_Louisiana_coast_and_inner_shelf_Holocene_geologic_framework_processes_and_resources [accessed Sep 13, 2017].

  3. Ice-walled-lake plains: Implications for the origin of hummocky glacial topography in middle North America

    USGS Publications Warehouse

    Clayton, L.; Attig, J.W.; Ham, N.R.; Johnson, M.D.; Jennings, C.E.; Syverson, K.M.

    2008-01-01

    Ice-walled-lake plains are prominent in many areas of hummocky-till topography left behind as the Laurentide Ice Sheet melted from middle North America. The formation of the hummocky-till topography has been explained by: (1) erosion by subglacial floods; (2) squeezing of subglacial till up into holes in stagnant glacial ice; or (3) slumping of supraglacial till. The geomorphology and stratigraphy of ice-walled-lake plains provide evidence that neither the lake plains nor the adjacent hummocks are of subglacial origin. These flat lake plains, up to a few kilometers in diameter, are perched as much as a few tens of meters above surrounding depressions. They typically are underlain by laminated, fine-grained suspended-load lake sediment. Many ice-walled-lake plains are surrounded by a low rim ridge of coarser-grained shore sediment or by a steeper rim ridge of debris that slumped off the surrounding ice slopes. The ice-walled lakes persisted for hundreds to thousands of years following glacial stagnation. Shells of aquatic molluscs from several deposits of ice-walled-lake sediment in south-central North Dakota have been dated from about 13 500 to 10 500??B.P. (calibrated radiocarbon ages), indicating a climate only slightly cooler than present. This is confirmed by recent palaeoecological studies in nearby non-glacial sites. To survive so long, the stagnant glacial ice had to be well-insulated by a thick cover of supraglacial sediment, and the associated till hummocks must be composed primarily of collapsed supraglacial till. ?? 2007 Elsevier B.V. All rights reserved.

  4. Geomorphological Mapping of Sputnik Planum on Pluto

    NASA Astrophysics Data System (ADS)

    White, Oliver; Moore, Jeffrey M.; Stern, S. Alan; Weaver, Harold A.; Olkin, Catherine B.; Ennico, Kimberly; Young, Leslie; Cheng, Andrew F.; New Horizons Geology, Geophysics and Imaging Theme Team, New Horizons Composition Theme Team

    2016-10-01

    The New Horizons flyby of Pluto in July 2015 provided extensive high-resolution coverage of its encounter hemisphere. The most prominent surface feature in this hemisphere is the high albedo region informally named Tombaugh Regio, the western portion of which is represented by the expansive nitrogen ice plains informally named Sputnik Planum. A large fraction of Sputnik Planum displays a distinct cellular pattern, with individual cells typically displaying ovoid planforms and shallow pitting on a scale of a few hundred meters. Troughs with medial ridges define the boundaries between cells. Prior studies have argued that this pattern is indicative of solid-state convection occurring within the nitrogen ice. The southern non-cellular plains are either featureless or display dense fields of often elongate and aligned pits typically reaching a few km across, which are interpreted to have formed via sublimation.The mapping that will be presented at DPS focuses on identifying the different plains units that compose Sputnik Planum and defining the boundaries between them, which aids in assessing their time sequencing and correlation to one another. The cellular plains are divided into bright and dark units; the nature of the contact between the two indicates that ice of the bright plains, interpreted to have been recently emplaced via glacial flow from the highlands to the east of Sputnik Planum, is overlying ice of the dark plains, interpreted to be an older ice mass with a higher abundance of entrained dark material. Reconciling the seemingly contradictory models of a layered and also convecting Sputnik Planum requires consideration of the timescale of lateral flow of the bright plains ice relative to the timescale of convective overturn. The non-cellular plains are universally bright and display evidence for southwards flow of the ice, based on the orientations of elongate sublimation pits as well as the presence of 'extinct cells' that appear to have migrated away from the zone of active convection. The larger pits that occur within the non-cellular plains imply that these plains are older than the cellular plains, where resurfacing via convection limits the maximum size attainable by sublimation pits.

  5. Vegetation survey in Amazonia using LANDSAT data. [Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Shimabukuro, Y. E.; Dossantos, J. R.; Deaquino, L. C. S.

    1982-01-01

    Automatic Image-100 analysis of LANDSAT data was performed using the MAXVER classification algorithm. In the pilot area, four vegetation units were mapped automatically in addition to the areas occupied for agricultural activities. The Image-100 classified results together with a soil map and information from RADAR images, permitted the establishment of the final legend with six classes: semi-deciduous tropical forest; low land evergreen tropical forest; secondary vegetation; tropical forest of humid areas, predominant pastureland and flood plains. Two water types were identified based on their sediments indicating different geological and geomorphological aspects.

  6. Object-based classification of global undersea topography and geomorphological features from the SRTM30_PLUS data

    NASA Astrophysics Data System (ADS)

    Dekavalla, Maria; Argialas, Demetre

    2017-07-01

    The analysis of undersea topography and geomorphological features provides necessary information to related disciplines and many applications. The development of an automated knowledge-based classification approach of undersea topography and geomorphological features is challenging due to their multi-scale nature. The aim of the study is to develop and evaluate an automated knowledge-based OBIA approach to: i) decompose the global undersea topography to multi-scale regions of distinct morphometric properties, and ii) assign the derived regions to characteristic geomorphological features. First, the global undersea topography was decomposed through the SRTM30_PLUS bathymetry data to the so-called morphometric objects of discrete morphometric properties and spatial scales defined by data-driven methods (local variance graphs and nested means) and multi-scale analysis. The derived morphometric objects were combined with additional relative topographic position information computed with a self-adaptive pattern recognition method (geomorphons), and auxiliary data and were assigned to characteristic undersea geomorphological feature classes through a knowledge base, developed from standard definitions. The decomposition of the SRTM30_PLUS data to morphometric objects was considered successful for the requirements of maximizing intra-object and inter-object heterogeneity, based on the near zero values of the Moran's I and the low values of the weighted variance index. The knowledge-based classification approach was tested for its transferability in six case studies of various tectonic settings and achieved the efficient extraction of 11 undersea geomorphological feature classes. The classification results for the six case studies were compared with the digital global seafloor geomorphic features map (GSFM). The 11 undersea feature classes and their producer's accuracies in respect to the GSFM relevant areas were Basin (95%), Continental Shelf (94.9%), Trough (88.4%), Plateau (78.9%), Continental Slope (76.4%), Trench (71.2%), Abyssal Hill (62.9%), Abyssal Plain (62.4%), Ridge (49.8%), Seamount (48.8%) and Continental Rise (25.4%). The knowledge-based OBIA classification approach was considered transferable since the percentages of spatial and thematic agreement between the most of the classified undersea feature classes and the GSFM exhibited low deviations across the six case studies.

  7. Landscape-scale spatial heterogeneity in phytodetrital cover and megafauna biomass in the abyss links to modest topographic variation

    PubMed Central

    Morris, Kirsty J.; Bett, Brian J.; Durden, Jennifer M.; Benoist, Noelie M. A.; Huvenne, Veerle A. I.; Jones, Daniel O. B.; Robert, Katleen; Ichino, Matteo C.; Wolff, George A.; Ruhl, Henry A.

    2016-01-01

    Sinking particulate organic matter (POM, phytodetritus) is the principal limiting resource for deep-sea life. However, little is known about spatial variation in POM supply to the abyssal seafloor, which is frequently assumed to be homogenous. In reality, the abyss has a highly complex landscape with millions of hills and mountains. Here, we show a significant increase in seabed POM % cover (by ~1.05 times), and a large significant increase in megafauna biomass (by ~2.5 times), on abyssal hill terrain in comparison to the surrounding plain. These differences are substantially greater than predicted by current models linking water depth to POM supply or benthic biomass. Our observed variations in POM % cover (phytodetritus), megafauna biomass, sediment total organic carbon and total nitrogen, sedimentology, and benthic boundary layer turbidity, all appear to be consistent with topographically enhanced current speeds driving these enhancements. The effects are detectable with bathymetric elevations of only 10 s of metres above the surrounding plain. These results imply considerable unquantified heterogeneity in global ecology. PMID:27681937

  8. Long-term interactions between man and the fluvial environment - case of the Diyala alluvial fan, Iraq

    NASA Astrophysics Data System (ADS)

    Heyvaert, Vanessa M. A.; Walstra, Jan; Mortier, Clément

    2014-05-01

    The Mesopotamian alluvial plain is dominated by large aggradading river systems (the Euphrates, Tigris and their tributaries), which are prone to avulsions. An avulsion can be defined as the diversion of flow from an existing channel onto the floodplain, eventually resulting in a new channel belt. Early civilizations depended on the position of rivers for their economic survival and hence the impact of channel shifts could be devastating (Wilkinson 2003; Morozova 2005; Heyvaert & Baeteman 2008). Research in the Iranian deltaic part of the Mesopotamian plain has demonstrated that deliberate human action (such as the construction of irrigation canals and dams) triggered or obstructed the alluvial processes leading to an avulsion on fluvial megafans (during preconditioning, triggering and post-triggering stages) (Walstra et al. 2010; Heyvaert et al. 2012, Heyvaert et al.2013). Thus, there is ample evidence that the present-day alluvial landscapes in the region are the result of complex interactions between natural and anthropogenic processes. Here we present a reconstruction of the Late Holocene evolution of the Diyala alluvial fan (one of the main tributaries of the Tigris in Iraq), with particular attention to the relations between alluvial fan development, changes in channel pattern, the construction of irrigation networks and the rise and collapse of societies through historic times. The work largely draws on the use of remote sensing and GIS techniques for geomorphological mapping, and previously published archaeological field data (Adams 1965). By linking archaeological sites of known age with traces of ancient irrigation networks we were able to establish a chronological framework of alluvial activity of the Diyala alluvial fan. Our results demonstrate that centralized and technologically advanced societies were able to maintain a rapidly aggradading distibutary channel system, supplying water and sediment across the entire alluvial fan. As a consequence, during these periods (Parthian, Sasanian and again in modern times), significant human modification of the landscape took place. Periods of societal decline are associated with reduced human impact and the development of a single-threaded incising river system. Adams, R.M. (1965). Land behind Baghdad: A history of settlement on the Diyala plains. University of Chicago Press, Chicago, Illinois. Heyvaert, V.M.A. & Baeteman, C. (2008). A Middle to Late Holocene avulsion history of the Euphrates river: a case study from Tell ed-D-er, Iraq, Lower Mesopotamia. Quaternary Science Reviews, 27, 2401-2410. Heyvaert, V. M. A., Walstra, J., Verkinderen, P., Weerts, H. J. T. & Ooghe, B. (2012). The role of human interference on the channel shifting of the river Karkheh in the Lower Khuzestan plain (Mesopotamia, SW Iran). Quaternary International, 251, 52-63. Heyvaert, V.M.A., Walstra, J., Weerts, H.J.T. (2013). Human impact on avulsion and fan development in a semi-arid region: examples from SW Iran. Abstractbook of the 10th International Fluvial Sedimentology Conference, July 2013,Leeds, United Kingdom. Morozova, G.S. (2005). A review of Holocene avulsions of the Tigris and Euphrates rivers and possible effects on the evolution of civilizations in lower Mesopotamia. Geoarchaeology, 20, 401-423. Walstra, J., Heyvaert, V. M. A. & Verkinderen, P. (2010). Assessing human impact on alluvial fan development: a multidisciplinary case-study from Lower Khuzestan (SW Iran). Geodinamica Acta, 23, 267-285. Wilkinson, T.J. (2003). Archaeological Landscapes of the Near East. The University of Arizona Press, Tucson, Arizona.

  9. Database of Alluvial Radiocarbon Dates in European Russia and Siberia and its Palaeohydrological Interpretation

    NASA Astrophysics Data System (ADS)

    Matlakhova, Ekaterina; Panin, Andrei

    2017-04-01

    We collected and analyzed published radiocarbon dates from East European Plain (EEP) and Siberia to pick absolute dates on alluvial and associated deposits. After filtering unreliable dates, 1000 radiocarbon dates from EEP and 500 from Siberia were included into the database. Each date was supplied with information on geographic location and coordinates, catchment area, geomorphological position, characteristics of geological section and dated materials. Also the information about published sources was given. Documented sections refer to fluvial forms in a wide range of catchment sizes. To extract palaeohydrological signal we used two kinds of proxies: sedimentological and geomorphological. We used the following indicators of low activity: organic horizons (soil, peat) in overbank alluvium, balka bottoms and gully fans, small river palaeochannels; and the following indicators of high activity: active sedimentation on river floodplains (burial of organic horizons), balka bottoms and gully fans, erosion by flood flows on floodplains, in bottoms of balkas and gullies, river incision, big palaeochannels, channel avulsions and chute cutoffs. 
 Each date that received palaeohydrological interpretation was regarded as the indicator of a particular Local Palaeohydrological Event. Combined probability density functions of high- and low-activity dates were used to detect time intervals of different palaeohydrological status. For EEP after low fluvial activity during LGM two palaeohydrological epochs were designated: extremely high activity in the end of MIS 2 (ca. 18-11.7 ka b2k), and much lower activity in the Holocene. Within the Holocene two hierarchical levels of hydroclimatic variability were designated according to their duration and magnitude - regional palaeohydrological phases (centuries to few millennia) and regional palaeofluvial episodes (decades to few centuries). Tendency is rather clear of activity lowering in the first half and rise in the second half of the Holocene. In most cases changes of fluvial activity were most likely induced by changing amounts of spring snowmelt runoff. Most distinct correlation of temperature and hydrological regimes was found in the Late Holocene: high fluvial activity corresponded to cold climatic phases (Little Ice Age), low activity, to warm phases (Medieval Climatic Optimum, current climate warming). Correlation of changes in fluvial activity within a west-east transect over Europe revealed relatively poor correlation in the Early and Mid Holocene and much higher synchronism since 3.0 ka b2k, which may indicate increasing role of westerlies in controlling European climates in the Late Holocene. Throughout the whole Holocene, changes of fluvial activity were governed by natural climate forcing until the last few centuries when land use changes induced accelerated hillslope and gully erosion. Comparison of results over Siberia with previously published Holocene flood chronologies in Europe revealed high concordance in the last millennium (the hydrological response to the MWP and LIA climate oscillations) and less similarity in earlier time.

  10. An outer ramp to basin plain transect: Interacting pelagic and calciturbidite deposition in the Eocene-Oligocene of the Tuscan Domain, Adria Microplate (Italy)

    NASA Astrophysics Data System (ADS)

    Ielpi, Alessandro; Cornamusini, Gianluca

    2013-08-01

    The interaction of ramps, basin plains and turbidite systems on the scale of tens of km has been rarely observed in fossil examples. Deep marine Eocene-Oligocene beds are exposed in the axial zone of the Chianti Mountains, Italy, and compose a regionally continue stratigraphic succession known as the Scaglia Toscana Formation. The formation was deposited in the Tuscan Domain of the Adria Microplate. This research aims at depicting its depositional architecture and evolution in the type area. Stratigraphic and sedimentologic analyses were performed on a ca. 25 km-long transect that includes depositional systems sectioned both in the down- and along-dip directions. Shaly-carbonate deposits compose a complex of interacting ramps, basin plains and turbidite floor fan systems. Ramp deposits accumulated above the lysocline and in oxic conditions. Basin plain beds were deposited below the lysocline and were subject to episodes of oxygen depletion. Turbidity flows fed elongate fan lobes characterized by poor channelisation. The basin palaeogeography hampered the development of slope apron turbidite systems. The Eocene-Oligocene geodynamic setting of the Tuscan Domain was characterized by the evolution of a peripheral bulge and by the early structuring of a foredeep basin. Syn-sedimentary tectonism acted a primary role in the basin-scale arrangement. However other mechanisms also contributed to the local facies distribution, including the disposition of sediment-source areas and intrabasinal confinement morphologies, as well as relative oscillations of the depositional surface with respect to the lysocline and oxycline.

  11. Late Quaternary stratigraphy, sedimentology, and geochemistry of an underfilled lake basin in the Puna (north-west Argentina)

    USGS Publications Warehouse

    McGlue, Michael M.; Cohen, Andrew S.; Ellis, Geoffrey S.; Kowler, Andrew L.

    2013-01-01

    Depositional models of ancient lakes in thin-skinned retroarc foreland basins rarely benefit from appropriate Quaternary analogues. To address this, we present new stratigraphic, sedimentological and geochemical analyses of four radiocarbon-dated sediment cores from the Pozuelos Basin (PB; northwest Argentina) that capture the evolution of this low-accommodation Puna basin over the past ca. 43 cal kyr. Strata from the PB are interpreted as accumulations of a highly variable, underfilled lake system represented by lake-plain/littoral, profundal, palustrine, saline lake and playa facies associations. The vertical stacking of facies is asymmetric, with transgressive and thin organic-rich highstand deposits underlying thicker, organic-poor regressive deposits. The major controls on depositional architecture and basin palaeogeography are tectonics and climate. Accommodation space was derived from piggyback basin-forming flexural subsidence and Miocene-Quaternary normal faulting associated with incorporation of the basin into the Andean hinterland. Sediment and water supply was modulated by variability in the South American summer monsoon, and perennial lake deposits correlate in time with several well-known late Pleistocene wet periods on the Altiplano/Puna plateau. Our results shed new light on lake expansion–contraction dynamics in the PB in particular and provide a deeper understanding of Puna basin lakes in general.

  12. Estuarine abandoned channel sedimentation rates record peak fluvial discharge magnitudes

    NASA Astrophysics Data System (ADS)

    Gray, A. B.; Pasternack, G. B.; Watson, E. B.

    2018-04-01

    Fluvial sediment deposits can provide useful records of integrated watershed expressions including flood event magnitudes. However, floodplain and estuarine sediment deposits evolve through the interaction of watershed/marine sediment supply and transport characteristics with the local depositional environment. Thus extraction of watershed scale signals depends upon accounting for local scale effects on sediment deposition rates and character. This study presents an examination of the balance of fluvial sediment dynamics and local scale hydro-geomorphic controls on alluviation of an abandoned channel in the Salinas River Lagoon, CA. A set of three sediment cores contained discrete flood deposits that corresponded to the largest flood events over the period of accretion from 1969 to 2007. Sedimentation rates scaled with peak flood discharge and event scale sediment flux, but were not influenced by longer scale hydro-meteorological activities such as annual precipitation and water yield. Furthermore, the particle size distributions of flood deposits showed no relationship to event magnitudes. Both the responsiveness of sedimentation and unresponsiveness of particle size distributions to hydro-sedimentological event magnitudes appear to be controlled by aspects of local geomorphology that influence the connectivity of the abandoned channel to the Salinas River mainstem. Well-developed upstream plug bar formation precluded the entrainment of coarser bedload into the abandoned channel, while Salinas River mouth conditions (open/closed) in conjunction with tidal and storm surge conditions may play a role in influencing the delivery of coarser suspended load fractions. Channel adjacent sediment deposition can be valuable records of hydro-meteorological and sedimentological regimes, but local depositional settings may dominate the character of short term (interdecadal) signatures.

  13. Glacial origin for cave rhythmite during MIS 5d-c in a glaciokarst landscape, Picos de Europa (Spain)

    NASA Astrophysics Data System (ADS)

    Ballesteros, Daniel; Jiménez-Sánchez, Montserrat; Giralt, Santiago; DeFelipe, Irene; García-Sansegundo, Joaquín

    2017-06-01

    Laminated slackwater deposits have been identified in many karst caves related to fluvial and lacustrine sedimentation. However, sedimentological evidence rarely supports a glacial origin for these deposits, which was proposed by previous studies. The Torca La Texa shaft is located in a glaciokarst area that comprises numerous slackwater-type deposits, piled up in fining-upward sequences. A basal sandy erosive layer and millimeter-sized laminated rhythmite with interbedded flowstone characterize these sequences. Fining-upward layers of carbonate silt, clay, and minor quartz sand deposited in flooded conduits define the rhythmite lamination. The presence of allochthonous minerals indicates that the rhythmite sediment comes from the glacial erosion of nearby carbonate mountains. Two 234U/230Th radiometric ages dated the rhythmite deposits around 109 and 95 ka, coinciding with relative cold periods included in the MIS 5d-c. These cold periods were marked by a high annual seasonality, immediately after the glacial local maximum extension, in agreement with a varve-type deposit. The combination of these sedimentological mineralogical, geomorphological and paleoclimate information indicates that the rhythmite should be introduced into the studied cave during the summer melting of the glaciers, which produced the recharge of the karst aquifer, triggering cave floods. In addition, punctual glacier collapses would also have their imprint in the slackwater sequences with thicker, coarser and erosive sand deposits and the spring blocking by glaciers may have promoted floods inside the cave. Therefore, the studied rhythmite can be interpreted as glacial varves decanted during the relatively cold climate conditions.

  14. Lunar and Planetary Science XXXV: Mars Volcanology and Tectonics

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Reports from the session, "Mars Volcanology and Tectonics" include:Martian Shield Volcanoes; Estimating the Rheology of Basaltic Lava Flows; A Model for Variable Levee Formation Rates in an Active Lava Flow; Deflections in Lava Flow Directions Relative to Topography in the Tharsis Region: Indicators of Post-Flow Tectonic Motion; Fractal Variation with Changing Line Length: A Potential Problem for Planetary Lava Flow Identification; Burfellshraun:A Terrestrial Analogue to Recent Volcanism on Mars; Lava Domes of the Arcadia Region of Mars; Comparison of Plains Volcanism in the Tempe Terra Region of Mars to the Eastern Snake River Plains, Idaho with Implications for Geochemical Constraints; Vent Geology of Low-Shield Volcanoes from the Central Snake River Plain, Idaho: Lessons for Mars and the Moon; Field and Geochemical Study of Table Legs Butte and Quaking Aspen Butte, Eastern Snake River Plain, Idaho: An Analog to the Morphology of Small Shield Volcanoes on Mars; Variability in Morphology and Thermophysical Properties of Pitted Cones in Acidalia Planitia and Cydonia Mensae; A Volcano Composed of Light-colored Layered Deposits on the Floor of Valles Marineris; Analysis of Alba Patera Flows: A Comparison of Similarities and Differences Geomorphologic Studies of a Very Long Lava Flow in Tharsis, Mars; Radar Backscatter Characteristics of Basaltic Flow Fields: Results for Mauna Ulu, Kilauea Volcano, Hawaii;and Preliminary Lava Tube-fed Flow Abundance Mapping on Olympus Mons.

  15. Geomorphology and Geology of the Southwestern Margaritifer Sinus and Argyre Regions of Mars. Part 3: Valley Types and Distribution

    NASA Technical Reports Server (NTRS)

    Parker, T. J.; Pieri, D. C.

    1985-01-01

    Three major valley tapes were identified in the SW Margaritefer Sinus and Argyre regions. Two are restricted to specific geologic units while the third is independent of the geology. The first type (the small valley networks) are found within the channeled and subdued plains unit in the eastern half of the map, in the grooved and channeled plains unit north of Nirgal Vallis, and in scattered instances in the cratered plateau unit north of Argyre. The even smaller valleys just inside Argyre's rim and on the inner slopes of many large craters are not directly related to the processes which formed the small valleys but are a result, instead, of post-impact modification of the crater walls. The second type of valley network is represented by Nirgal Vallis and the similar, shorter continuation of it to the west. This type is found only in the smooth plains material west of Uzboi Vallis in the map area. The third type of valley network is that of the Uzbol-Holden-Ladon valles system. This system is related to catastrophic outflow from Argyre Basin and is topographically rather than geologically controlled.

  16. Geomorphological Mapping of Sputnik Planum on Pluto: Convection, Glacial Flow, Sublimation and Re-deposition of Nitrogen Ice

    NASA Astrophysics Data System (ADS)

    White, O. L.; Moore, J. M.; Stern, S. A.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.; Young, L. A.; Cheng, A. F.

    2016-12-01

    The New Horizons flyby of Pluto provided extensive high-resolution coverage of its encounter hemisphere. The most prominent surface feature in this hemisphere is the high albedo region informally named Tombaugh Regio, the western portion of which is represented by the expansive nitrogen ice plains informally named Sputnik Planum. A large fraction of Sputnik Planum displays a distinct cellular pattern, with individual cells typically displaying ovoid planforms and shallow pitting on a scale of a few hundred meters. Troughs with medial ridges define the boundaries between cells. Prior studies have argued that this pattern is indicative of solid-state convection occurring within the nitrogen ice. The southern non-cellular plains are either featureless or display dense fields of often elongate and aligned pits typically reaching a few km across, interpreted to have formed via sublimation. The mapping that will be presented at AGU focuses on identifying the different plains units that compose Sputnik Planum and defining the boundaries between them, which aids in assessing their time sequencing and correlation to one another. The cellular plains are divided into bright and dark units, with the bright unit forming a continuous high albedo zone with the bright uplands of east Tombaugh Regio. We interpret the dark plains to represent the main body of convecting N2 ice that forms the cellular plains of Sputnik Planum, with the low albedo caused by a high concentration of entrained dark material (likely tholins). Preferential sublimation of N2 ice from these plains would leave the dark ice exposed, and re-deposition of the N2 ice on the eastern cellular plains and uplands of east Tombaugh Regio would create a thin veneer of pure, bright N2 ice covering these landscapes. The non-cellular plains are universally bright and display evidence for southwards flow of the N2 ice, based on the orientations of fields of elongate sublimation pits as well as the presence of `extinct cells' that appear to have migrated away from the zone of active convection. The larger pits that occur within the non-cellular plains imply that these plains are older than the cellular plains, where resurfacing via convection limits the maximum size attainable by sublimation pits.

  17. Response of megabenthic assemblages to different scales of habitat heterogeneity on the Mauritanian slope

    NASA Astrophysics Data System (ADS)

    Jones, Daniel O. B.; Brewer, Michael E.

    2012-09-01

    The topographically complex deep seabed on the Mauritanian slope, from 990 to 1460 m water depth, was imaged with video in an extensive quantitative survey of 17,199 m2 of seafloor using a Remote Operated Vehicle (ROV). This study investigated the influence of habitat heterogeneity at two scales on the megafaunal assemblages observed by ROV. Changes in megafaunal assemblages on the Mauritanian slope were assessed at a broad scale, within depth zones, and at a finer scale, in response to changes in local geomorphology associated with submarine landslides. Geomorphology was determined by classification of habitat parameters (slope, aspect, bathymetric position, curvature, fractal dimension and ruggedness) derived from an autonomous underwater vehicle-based multibeam bathymetry survey. Habitat parameters were classified by Iterative Self Organizing Clustering into six major geomorphological groups, four of which were assessed in the ROV video survey. A total of 29 megafaunal taxa were observed along the entire survey, with an overall average faunal density of 0.344 ind m-2. Megafaunal assemblage density, species richness and evenness varied significantly across the depth range of the survey in the most common geomorphological zone (sedimentary plains of low slope and complexity). Characteristic species inhabited the shallow areas (asteroid, ophiuroid, anemone, small macrourid), intermediate areas (Benthothuria funabris, black cerianthid, squat lobster) and deeper areas (the holothurians Enypniastes eximia and Elipidia echinata). Megafaunal density, species richness and evenness were not significantly different between geomorphogical groups within one depth zone (1300-1400 m). However, the steepest zone, on the edge of a major headwall feature, had four unique taxa (Parapagurus pilosimanus, a comatulid crinoid, a gorgonian and its associated ophiuroid).

  18. Enhancing rescue-archaeology using geomorphological approaches: Archaeological sites in Paredes (Asturias, NW Spain)

    NASA Astrophysics Data System (ADS)

    Jiménez-Sánchez, M.; González-Álvarez, I.; Requejo-Pagés, O.; Domínguez-Cuesta, M. J.

    2011-09-01

    Palaeolithic remnants, a Necropolis (Roman villa), and another minor archaeological site were discovered in Paredes (Spain). These sites were the focus of multidisciplinary research during the construction of a large shopping centre in Asturias (NW Spain). The aims of this study are (1) to contribute to archaeological prospection in the sites and (2) to develop evolutionary models of the sites based on geomorphological inferences. Detailed archaeological prospection (103 trenches), geomorphologic mapping, stratigraphic studies (36 logs) and ground penetration radar (GPR) surveys on five profiles indicate that the location of the settlement source of the Necropolis is outside the construction perimeter, farther to the southeast. The Pre-Holocene evolution of the fluvial landscape is marked by the development of two terraces (T1 and T2) that host the Early Palaeolithic remains in the area (ca 128-71 ka). The Holocene evolution of the landscape was marked by the emplacement of the Nora River flood plain, covered by alluvial fans after ca. 9 ka BP (cal BC 8252-7787). Subsequently, Neolithic pebble pits dated ca. 5.3 ka BP (cal BC 4261-3963 and 4372-4051) were constructed on T2, at the area reoccupied as a Necropolis during the Late Roman period, 1590 ± 45 years BP (cal AD 382-576). Coeval human activity during the Late Roman period at 1670 ± 60 years BP (cal AD 320-430) is also recorded by channel infill sediments in a minor site at the margin of an alluvial fan located to the southeast. This work shows that a rescue-archaeological study can be significantly enhanced by the implementation of multidisciplinary scientific studies, in which the holistic view of geomorphologic settings provide key insights into the geometry and evolution of archaeological sites.

  19. Intensification of North American Megadroughts through Surface and Dust Aerosol Forcing

    NASA Technical Reports Server (NTRS)

    Cook, Benjamin I.; Seager, Richard; Miller, Ron L.; Mason, Joseph A

    2013-01-01

    Tree-ring-based reconstructions of the Palmer drought severity index (PDSI) indicate that, during the Medieval Climate Anomaly (MCA), the central plains of North America experienced recurrent periods of drought spanning decades or longer. These megadroughts had exceptional persistence compared to more recent events, but the causes remain uncertain. The authors conducted a suite of general circulation model experiments to test the impact of sea surface temperature (SST) and land surface forcing on the MCA megadroughts over the central plains. The land surface forcing is represented as a set of dune mobilization boundary conditions, derived from available geomorphological evidence and modeled as increased bare soil area and a dust aerosol source (32deg-44degN, 105deg-95degW). In the experiments, cold tropical Pacific SST forcing suppresses precipitation over the central plains but cannot reproduce the overall drying or persistence seen in the PDSI reconstruction. Droughts in the scenario with dust aerosols, however, are amplified and have significantly longer persistence than in other model experiments, more closely matching the reconstructed PDSI. This additional drying occurs because the dust increases the shortwave planetary albedo, reducing energy inputs to the surface and boundary layer. The energy deficit increases atmospheric stability, inhibiting convection and reducing cloud cover and precipitation over the central plains. Results from this study provide the first model-based evidence that dust aerosol forcing and land surface changes could have contributed to the intensity and persistence of the central plains megadroughts, although uncertainties remain in the formulation of the boundary conditions and the future importance of these feedbacks.

  20. Mapping Mars' northern plains: origins, evolution and response to climate change - an overview of the grid mapping method.

    NASA Astrophysics Data System (ADS)

    Ramsdale, Jason; Balme, Matthew; Conway, Susan

    2015-04-01

    An International Space Science Institute (ISSI) team project has been convened to study the northern plains of Mars. The northern plains are younger and at lower elevation than the majority of the martian surface and are thought to be the remnants of an ancient ocean. Understanding the surface geology and geomorphology of the Northern Plains is complex, because the surface has been subtly modified many times, making traditional unit-boundaries hard to define. Our ISSI team project aims to answer the following questions: 1) "What is the distribution of ice-related landforms in the northern plains, and can it be related to distinct latitude bands or different geological or geomorphological units?" 2) "What is the relationship between the latitude dependent mantle (LDM; a draping unit believed to comprise of ice and dust thought to be deposited under periods of high axial obliquity) and (i) landforms indicative of ground ice, and (ii) other geological units in the northern plains?" 3) "What are the distributions and associations of recent landforms indicative of thaw of ice or snow?" With increasing coverage of high-resolution images of the surface of we are able to identify increasing numbers and varieties of small-scale landforms on Mars. Many such landforms are too small to represent on regional maps, yet determining their presence or absence across large areas can form the observational basis for developing hypotheses on the nature and history of an area. The combination of improved spatial resolution with near-continuous coverage increases the time required to analyse the data. This becomes problematic when attempting regional or global-scale studies of metre-scale landforms. Here, we describe an approach to mapping small features across large areas. Rather than traditional mapping with points, lines and polygons, we used a grid "tick box" approach to locate specific landforms. The mapping strips were divided into 15×150 grid of squares, each approximately 20×20 km, for each study area. Orbital images at 6-15m/pix were then viewed systematically for each grid square and the presence or absence of each of the basic suite of landforms recorded. The landforms were recorded as being either "present", "dominant", "possible", or "absent" in each grid square. The result is a series of coarse-resolution "rasters" showing the distribution of the different types of landforms across the strip. We have found this approach to be efficient, scalable and appropriate for teams of people mapping remotely. It is easily scalable because, carrying the "absent" values forward to finer grids from the larger grids would mean only areas with positive values for that landform would need to be examined to increase the resolution for the whole strip. As each sub-grid only requires the presence or absence of a landform ascertaining, it therefore removes an individual's decision as to where to draw boundaries, making the method efficient and repeatable.

  1. Quaternary geology and sapphire deposits from the BO PHLOI gem field, Kanchanaburi Province, Western Thailand

    NASA Astrophysics Data System (ADS)

    Choowong, Montri

    2002-01-01

    One of the most famous blue sapphire deposits in Thailand and SE Asia is from the Bo Phloi District, Kanchanaburi Province, Western Thailand. This paper presents the results of our gemstone investigation as well as establishing the Bo Phloi depositional sequence as one of the Quaternary Type Sections in the region. Relationships among the sedimentology, depositional sequences and geomorphology were investigated in order to understand the gemstone depositional features. Sedimentary structures and textures of the sequences show that the deposition of gemstones is related genetically to fluvial processes. Gemstones are recognized in floodplain and low terrace deposits where gemstone paystreaks concentrate mostly inside layers of gravel beds and foreset-bedded gravels lithofacies. C-14 dating of wood and peat within gemstone-bearing layers indicated that the deposit formed during the middle to late Pleistocene. The gemstone-bearing gravel bed defines a north-south trend along the incised palaeo-channel of an ancient braided river system in the middle part of the basin.

  2. The geomorphology of the Mississippi River chenier plain

    USGS Publications Warehouse

    Penland, S.; Suter, J.R.

    1989-01-01

    The chenier plain of the Mississippi River is a shore-parallel zone of alternating transgressive clastic ridges separated by progradational mudflats. The term chenier is derived from the cajun term chene for oak, the tree species that colonizes the crests of the higher ridges. The Mississippi River chenier plain stretches 200 km from Sabine Pass, Texas, to Southwest Point, Louisiana and ranges between 20 and 30 km wide, with elevations of 2-6 m. The timing and the process of formation could be re-evaluated in the light of new chronostratigraphic findings in the Mississippi River delta plain. The stratigraphic relationship between the Teche and Lafourche delta complexes and Ship Shoal offshore indicates that these delta complexes belong to different delta plains that developed at different sealevels. It appears that the Teche delta complex is associated with the late Holocene delta plain which developed 7000 to 3000 yrs B.P. when sealevel stood 5-6 m lower than present. A regional transgression occurred between approximately 3000 BP and 2500 yrs B.P., leading to the transgressive submergence of the late Holocene delta plain, producing the regional Teche shoreline. The timing of this transgression conforms to the age of the most landward ridge in the chenier plain, the Little Chenier-Little Pecan Island trend, which dates at about 2500 yrs B.P. This ridge trend was originally interpreted as representing the Teche delta complex switching event with the landward Holocene/Pleistocene contact representing the high stand shoreline. The implication of this new interpretation is that the Little Chenier-Little Pecan Island trend represents the high stand shoreline, a continuation of the Teche shoreline separating the late Holocene and Recent delta plains, and that the Holocene/Pleistocene contact represents the leading edge of the marshes transgressing onto the Prairie Terrace. Significant mudflat progradation seems to require a westerly position of the Mississippi River, but the numerous different forms and ages of cheniers do not correspond well to the timing of major delta complex switching. Progradation of the chenier plain appears to be associated with building of the Recent delta plain and not the Teche complex of the late Holocene delta plain. The occurrence of individual ridges appears to be primarily tied to delta lobe switching within the Lafourche complex and variations in sediment supply from local rivers. The recent development of the Atchafalaya delta complex to the west is the closest position of an active distributary to the chenier plain since sealevel stabilization; a new episode of rapid mudflat progradation is thus taking place. ?? 1989.

  3. Geomorphology of the Eastern North American Continental Margin: the role of deep sea sedimentation processes

    NASA Astrophysics Data System (ADS)

    Mosher, D. C.; Campbell, C.; Piper, D.; Chaytor, J. D.; Gardner, J. V.; Rebesco, M.

    2016-12-01

    Deep-sea sedimentation processes impart a fundamental control on the morphology of the western North Atlantic continental margin from Blake Spur to Hudson Strait. This fact is illustrated by the variable patterns of cross-margin gradients that are based on extensive new multibeam echo-sounder data in concert with subbottom profiler and seismic reflection data. Most of the continental margin has a steep (>3o) upper slope down to 1500 to 2500 m and then a gradual middle and lower slope with a general concave upward shape There is a constant interplay of deep sea sedimentation processes, but the general morphology is dictated by the dominant one. Erosion by off-shelf sediment transport in turbidity currents creating channels, gullies and canyons creates the steep upper slope. These gullies and canyons amalgamate to form singular channels that are conduits to the abyssal plain. This process results in a general seaward flattening of gradients, producing an exponentially decaying slope profile. Comparatively, sediment mass failure produces steeper upper slopes due to head scarp development and a wedging architecture to the lower slope as deposits thin in the downslope direction. This process results in either a two-segment slope, and/or a significant downslope gradient change where MTDs pinch out. Large sediment bodies deposited by contour-following currents are developed all along the margin. Blake Ridge, Sackville Spur, and Hamilton Spur are large detached drifts on disparate parts of the margin. Along their crests, they form a linear profile from the shelf to abyssal plain. Deeper portions of the US continental margin are dominated by the Chesapeake Drift and Hatteras Outer Ridge; both plastered elongate mounded drifts. Farther north, particularly on the Grand Banks margin, are plastered and separated drifts. These drifts tend to form bathymetric steps in profile, where they onlap the margin. Stacked drifts create several steps. Turbidites of the abyssal plain onlap the lowermost drift creating a significant gradient change at this juncture. Understanding the geomorphological consequences of deep sea sedimentation processes is important to extended continental shelf mapping, for example, in which gradient change is a critical metric.

  4. Formation of minor moraines in high-mountain environments independent of a primary climatic driver

    NASA Astrophysics Data System (ADS)

    Wyshnytzky, Cianna; Lukas, Sven

    2016-04-01

    Closely-spaced minor moraines allow observations of moraine formation and ice-marginal fluctuations on short timescales, helping to better understand glacier retreat and predict its geomorphological effects (e.g. Sharp, 1984; Boulton, 1986; Bradwell, 2004; Lukas, 2012). Some minor moraines can be classified as annual moraines given sufficient chronological control, which implies a seasonal climatic driver of minor ice-front fluctuations. This leads to annual moraines being utilised as very specific and short-term records of glacier fluctuations and climate change. However, such research is sparse in high-mountain settings (Hewitt, 1967; Ono, 1985; Beedle et al., 2009; Lukas, 2012). This study presents the detailed sedimentological results of minor moraines at two high-mountain settings in the Alps. Minor moraines at Schwarzensteinkees, Austria, formed as push moraines in two groups, separated by a flat area and sloping zone with scattered boulders and flutings. The existence of a former proglacial lake, evident from ground-penetrating radar surveys and geomorphological relationships, appears to have exerted the primary control on minor moraine formation. Minor moraines at Silvrettagletscher, Switzerland, exist primarily on reverse bedrock slopes. The presence of these bedrock slopes, and in some areas medial moraines emerging beyond the ice front, appear to exert the primary controls on minor moraine formation. These findings show that climate may only play a small role in minor moraine formation at these study sites, echoing similar findings from another glacier in the Alps (Lukas, 2012). These two glaciers and valleys are differentiated primarily by geometry, sedimentation, and mechanisms of minor moraine formation. Despite these crucial differences, valley geometry and pre-existing geomorphology play a large, if not dominant, role in minor moraine formation and are at odds with a primarily-climatic control of minor moraine formation in lowland settings. This compelling discrepancy requires further investigation. References Beedle, M.J., Menounos, B., Luckman, B.H., and Wheate, R., 2009, Annual push moraines as climate proxy: Geophysical Research Letters, v. 36, no. 20, p. L20501, doi: 10.1029/2009GL039533. Boulton, G.S., 1986, Push-moraines and glacier-contact fans in marine and terrestrial environments: Sedimentology, v. 33, p. 677-698. Bradwell, T., 2004, Annual Moraines and Summer Temperatures at Lambatungnajökull, Iceland: Arctice, Antarctic, and Alpine Research, v. 36, no. 4, p. 502-508. Hewitt, K., 1967, Ice-Front Deposition and the Seasonal Effect: A Himalayan Example: Transactions of the Institute of British Geographers, v. 42, p. 93-106. Lukas, S., 2012, Processes of annual moraine formation at a temperate alpine valley glacier: insights into glacier dynamics and climatic controls: Boreas, v. 41, no. 3, p. 463-480, doi: 10.1111/j.1502-3885.2011.00241.x. Ono, Y., 1985, Recent Fluctuations of the Yala (Dakpatsen) Glacier, Langtang Himal, Reconstructed From Annual Moraine Ridges: Zeitschrift für Gletscherkunde und Glazialgeologie, v. 21, p. 251-258. Sharp, M., 1984, Annual moraine ridges at Skálafellsjökull, south-east Iceland: Journal of Glaciology, v. 30, no. 104, p. 82-93.

  5. Arsenic in groundwaters of rural India: its geochemistry and mitigation approaches

    NASA Astrophysics Data System (ADS)

    Chatterjee, Debashis; Majumder, Santanu; Kundu, Amit; Barman, Sandipan; Chatterjee, Debankur; Bhattacharya, Prosun

    2016-04-01

    During the last few decades, arsenic (As) has been recognized as the most threatening contaminant in natural waters (especially groundwater). It has become a menace to the health of millions of people worldwide. Many large and small communities experience As contamination in groundwater and/or drinking water supplies in south-east Asia and the problem is grave in West Bengal and Bangladesh (Bengal Delta Plain, BDP) both in terms of human exposure as well as spatial coverage. It is frequently observed that As concentration in contaminated wells exceeds both WHO guideline value (10 mg/l) and stipulated National standard (50 mg/l) for both Bangladesh and India. Dissolved forms of As in the BDP water include arsenite (~50-70%), arsenate (~30-50%) and ultra-trace amount of monomethylarsonic acid and dimethylarsinic acid. Arsenite and arsenate species can interchange depending on redox potential (Eh), pH and biological processes. The prevailing local geomorphological features (surface water, sanitation, agricultural activity) can also influence the mobilization of As in addition to the dominant geological factors. Therefore, the local sedimentology and hydrogeology should also be given importance prior to implement or consider any policy to mitigate the As contamination of groundwater. Conventional treatment techniques to remove As from groundwater are costly and difficult to practice in rural areas of the BDP. There are several techniques available for groundwater As removal. Iron and Alum coagulation, softening [mediated by calcite or Mg(OH)2 formation], by reverse osmosis, using zero-valent iron and nanoparticulate zero-valent iron, several natural/synthetic metal oxides, naturally found minerals like siderite, hematite, using iron doped activated carbons, development of bio-physicochemical techniques, using granular TiO2 adsorbent are some of the many proposed removal techniques investigated by various researchers. Instead of using hazardous chemicals (e.g. chlorine, ozone in conventional method) As from groundwater can also be removed by exposure to sunlight (solar oxidation) in presence of dissolved iron (Fe) and a chelating agent (citrate, naturally available) followed by filtration with cloth or simple decantation. The technique is user friendly, low cost and easy to perform by the rural mass of the BDP.

  6. Alluvial lithofacies recognition in a humid-tropical setting

    NASA Astrophysics Data System (ADS)

    Darby, Dennis A.; Whittecar, G. Richard; Barringer, Richard A.; Garrett, Jim R.

    1990-05-01

    Cobble gravel deposits in the Antigua Formation accumulated on a large alluvial fan or braid-plain west of the Cordillera Occidental in southwest Colombia. This formation was probably deposited during the Pleistocene in a very wet tropical climate (> 500 cm/yr rainfall). Fining-upwards sequences of clast-supported, imbricated boulders and cobbles dominate with maximum clast sizes between 30 and 300 cm. The sand matrix in the Antigua gravels and the minor (⩽ 10%) sand facies are weathered to clay at depths of up to 20 m. The sand facies contains abundant drift logs and leaf mats. Except for the absence of debris flows and the very coarse nature of the gravel, the Antigua gravels have lithofacies similar to the glacial outwash braid-plain in the proximal area of the Scott type model. Gravels and sands of the younger Panambi Formation were deposited by a braided stream that was smaller, confined by valley walls, and flowing at a lower gradient than the river that deposited the Antigua gravels. We recognize no sedimentologic characteristics of these deposits as diagnostic of a humid-tropical environment except for textural and compositional changes in matrix sediments caused by deep and rapid chemical weathering.

  7. Middle Holocene marine flooding and human response in the south Yangtze coastal plain, East China

    NASA Astrophysics Data System (ADS)

    Wang, Zhanghua; Ryves, David B.; Lei, Shao; Nian, Xiaomei; Lv, Ye; Tang, Liang; Wang, Long; Wang, Jiehua; Chen, Jie

    2018-05-01

    Coastal flooding catastrophes have affected human societies on coastal plains around the world on several occasions in the past, and are threatening 21st century societies under global warming and sea-level rise. However, the role of coastal flooding in the interruption of the Neolithic Liangzhu culture in the lower Yangtze valley, East China coast has been long contested. In this study, we used a well-dated Neolithic site (the Yushan site) close to the present coastline to demonstrate a marine drowning event at the terminal stage of the Liangzhu culture and discuss its linkage to relative sea-level rise. We analysed sedimentology, chronology, organic elemental composition, diatoms and dinoflagellate cysts for several typical profiles at the Yushan site. The field and sedimentary data provided clear evidence of a palaeo-typhoon event that overwhelmed the Yushan site at ∼2560 BCE, which heralded a period of marine inundation and ecological deterioration at the site. We also infer an acceleration in sea-level rise at 2560-2440 BCE from the sedimentary records at Yushan, which explains the widespread signatures of coastal flooding across the south Yangtze coastal plain at that time. The timing of this mid-Holocene coastal flooding coincided with the sudden disappearance of the advanced and widespread Liangzhu culture along the lower Yangtze valley. We infer that extreme events and flooding accompanying accelerated sea-level rise were major causes of vulnerability for prehistoric coastal societies.

  8. Multidisciplinary approach for fault detection: Integration of PS-InSAR, geomorphological, stratigraphic and structural data in the Venafro intermontane basin (Central-Southern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Amato, Vincenzo; Aucelli, Pietro P. C.; Bellucci Sessa, Eliana; Cesarano, Massimo; Incontri, Pietro; Pappone, Gerardo; Valente, Ettore; Vilardo, Giuseppe

    2017-04-01

    A multidisciplinary methodology, integrating stratigraphic, geomorphological and structural data, combined with GIS-aided analysis and PS-InSAR interferometric data, was applied to characterize the relationships between ground deformations and the stratigraphic and the morphostructural setting of the Venafro intermontane basin. This basin is a morphostructural depression related to NW-SE and NE-SW oriented high angle normal faults bordering and crossing it. In particular, a well-known active fault crossing the plain is the Aquae Juliae Fault, whose recent activity is evidenced by archeoseismological data. The approach applied here reveals new evidence of possible faulting, acting during the Lower to Upper Pleistocene, which has driven the morphotectonic and the environmental evolution of the basin. In particular, the tectonic setting emerging from this study highlights the influence of the NW-SE oriented extensional phase during the late Lower Pleistocene - early Middle Pleistocene, in the generation of NE-SW trending, SE dipping, high-angle faults and NW-SE trending, high-angle transtensive faults. This phase has been followed by a NE-SW extensional one, responsible for the formation of NW-SE trending, both NW and SE dipping, high-angle normal faults, and the reactivation of the oldest NE-SW oriented structures. These NW-SE trending normal faults include the Aquae Juliae Fault and a new one, unknown until now, crossing the plain between the Venafro village and the Colle Cupone Mt. (hereinafter named the Venafro-Colle Cupone Fault, VCCF). This fault has controlled deposition of the youngest sedimentary units (late Middle Pleistocene to late Upper Pleistocene) suggesting its recent activity and it is well constrained by PS-InSAR data, as testified by the increase of the subsidence rate in the hanging wall block.

  9. Gigantic landslides versus glacial deposits: on origin of large hummock deposits in Alai Valley, Northern Pamir

    NASA Astrophysics Data System (ADS)

    Reznichenko, Natalya

    2015-04-01

    As glaciers are sensitive to local climate, their moraines position and ages are used to infer past climates and glacier dynamics. These chronologies are only valid if all dated moraines are formed as the result of climatically driven advance and subsequent retreat. Hence, any accurate palaeoenvironmental reconstruction requires thorough identification of the landform genesis by complex approach including geomorphological, sedimentological and structural landform investigation. Here are presented the implication of such approach for the reconstruction of the mega-hummocky deposits formation both of glacial and landslide origin in the glaciated Alai Valley of the Northern Pamir with further discussion on these and similar deposits validity for palaeoclimatic reconstructions. The Tibetan Plateau valleys are the largest glaciated regions beyond the ice sheets with high potential to provide the best geological record of glacial chronologies and, however, with higher probabilities of the numerous rock avalanche deposits including those that were initially considered of glacial origin (Hewitt, 1999). The Alai Valley is the largest intermountain depression in the upper reaches of the Amudarja River basin that has captured numerous unidentified extensive hummocky deposits descending from the Zaalai Range of Northern Pamir, covering area in more than 800 km2. Such vast hummocky deposits are usually could be formed either: 1) glacially by rapid glacial retreat due to the climate signal or triggered a-climatically glacial changes, such as glacial surge or landslide impact, or 2) during the landslide emplacement. Combination of sediment tests on agglomerates forming only in rock avalanche material (Reznichenko et al., 2012) and detailed geomorphological and sedimentological descriptions of these deposits allowed reconstructing the glacial deposition in the Koman and Lenin glacial catchments with identification of two gigantic rock avalanches and their relation to this glacial deposits. Here are presented a new data on: parameters, extent and probable source for Lenin rock avalanche, travelled 24 km from the back wall of the Lenin Glacier over the glacial Achiktash hummock deposit covering more than 35 km2; updated data on Koman rock avalanche deposit, such as its extend and source; the first reconstruction of the Achiktash glacial material deposition with proposed landscape evolution during recent Quaternary in respect to the large landslide in the catchment. Hewitt, K., 1999. Quaternary moraines vs. catastrophic rock avalanches in the Karakoram Himalaya, Northern Pakistan. Quaternary Research, v. 51, p. 220-237. Reznichenko, N.V., Davies, T.R.H., Shulmeister, J. and Larsen S.H, 2012. A new technique for identifying rock-avalanche-sourced sediment in moraines and some paleoclimatic implications. Geology, v. 40, p. 319-322.

  10. Missing evidence for the LGM-asynchronity in the Central Spanish Pyrenees in geomorphological, sedimentological and pedological archives

    NASA Astrophysics Data System (ADS)

    Hirsch, Florian; Raab, Thomas

    2016-04-01

    According to the state of knowledge, the glacial advances in the Eastern Pyrenees were synchronous with the global LGM during the Late Pleistocene (MIS 2), but the glacial advances in the Central Spanish Pyrenees at MIS 3 were asynchron with the global LGM. Whereas in the Eastern Pyrenees the glacial advances are dated in several well agreeing studies by surface exposure dating of boulders from lateral or terminal moraines, the asynchronity of the Central Spanish Pyrenees was postulated mainly by OSL dating on glacial and fluvial sediments and on radiocarbon dating of pollen from lacustrine deposits. The time difference of about 15 ka raises the question if this is a result of (local) climate factors or owed to failures caused by using several dating techniques on different archives. Anyway, if this time lag is correct, post-LGM formation of soils and sediments from the Late Pleistocene should be different between the Eastern Pyrenees and the Central Spanish Pyrenees. We therefore applied a combined approach of geomorphological, sedimentological and pedological investigations to reconstruct the Late Quaternary landscape development in the Aragon- and Gallego Valley of the Central Spanish Pyrenees. Our study reveals that in both valleys the Pre-Holocene geomorphodynamics on the lateglacial deposits show clear analogies with findings from Pleistocene periglacial landscapes in Central Europe. For MIS 4 and early MIS 3 periglacial processes are proven by loess deposition and formation of solifluction sediments. The glacial sediments, which were dated in earlier studies into mid MIS 3 and counted so far as prove for the asynchronous LGM of the Central Spanish Pyrenees, are covered by periglacial deposits of lateglacial age (14 ka to 11 ka). Surprisingly neither the glacial sediments have pedogenic features that indicate lateglacial soil development, nor do the periglacial deposits show indications for lateglacial soil erosion. Therefore we conclude that soil formation began after the sedimentation of the periglacial deposits, either implying a striking timeframe of more than 15 ka with a stable landscape without any pedogenesis, or the untenability of the MIS 3 age of the glacial sediments. Because we can clearly differentiate further phases of geomorphodynamics during the Holocene with truncated soil profiles and the correlate sediments of soil erosion next to undisturbed soils in periglacial sediments with a lateglacial age, we challenge the thesis of an asynchronous LGM in the Central Spanish Pyrenees and advocate a synchronous LGM in the Gallego- and Aragon valley analog to the Eastern Pyrenees.

  11. Cryostratigraphy, sedimentology, and the late Quaternary evolution of the Zackenberg River delta, northeast Greenland

    NASA Astrophysics Data System (ADS)

    Gilbert, Graham L.; Cable, Stefanie; Thiel, Christine; Christiansen, Hanne H.; Elberling, Bo

    2017-05-01

    The Zackenberg River delta is located in northeast Greenland (74°30' N, 20°30' E) at the outlet of the Zackenberg fjord valley. The fjord-valley fill consists of a series of terraced deltaic deposits (ca. 2 km2) formed during relative sea-level (RSL) fall. We investigated the deposits using sedimentological and cryostratigraphic techniques together with optically stimulated luminescence (OSL) dating. We identify four facies associations in sections (4 to 22 m in height) exposed along the modern Zackenberg River and coast. Facies associations relate to (I) overriding glaciers, (II) retreating glaciers and quiescent glaciomarine conditions, (III) delta progradation in a fjord valley, and (IV) fluvial activity and niveo-aeolian processes. Pore, layered, and suspended cryofacies are identified in two 20 m deep ice-bonded sediment cores. The cryofacies distribution, together with low overall ground-ice content, indicates that permafrost is predominately epigenetic in these deposits. Fourteen OSL ages constrain the deposition of the cored deposits to between approximately 13 and 11 ka, immediately following deglaciation. The timing of permafrost aggradation was closely related to delta progradation and began following the subaerial exposure of the delta plain (ca. 11 ka). Our results reveal information concerning the interplay between deglaciation, RSL change, sedimentation, permafrost aggradation, and the timing of these events. These findings have implications for the timing and mode of permafrost aggradation in other fjord valleys in northeast Greenland.

  12. Characterization of geomorphic units in the alluvial valleys and channels of Gulf Coastal Plain rivers in Texas, with examples from the Brazos, Sabine, and Trinity Rivers, 2010

    USGS Publications Warehouse

    Coffman, David K.; Malstaff, Greg; Heitmuller, Franklin T.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the Texas Water Development Board, described and characterized examples of geomorphic units within the channels and alluvial valleys of Texas Gulf Coastal Plain rivers using a geomorphic unit classification scale that differentiates geomorphic units on the basis of their location either outside or inside the river channel. The geomorphic properties of a river system determine the distribution and type of potential habitat both within and adjacent to the channel. This report characterizes the geomorphic units contained in the river channels and alluvial valleys of Texas Gulf Coastal Plain rivers in the context of the River Styles framework. This report is intended to help Texas Instream Flow Program practitioners, river managers, ecologists and biologists, and others interested in the geomorphology and the physical processes of the rivers of the Texas Gulf Coastal Plain (1) gain insights into how geomorphic units develop and adjust spatially and temporally, and (2) be able to recognize common geomorphic units from the examples cataloged in this report. Recent aerial imagery (high-resolution digital orthoimagery) collected in 2008 and 2009 were inspected by using geographic information system software to identify representative examples of the types of geomorphic units that occurred in the study area. Geomorphic units outside the channels of Texas Gulf Coastal Plain rivers are called \\"valley geomorphic units\\" in this report. Valley geomorphic units for the Texas Gulf Coastal Plain rivers described in this report are terraces, flood plains, crevasses and crevasse splays, flood-plain depressions, tie channels, tributaries, paleochannels, anabranches, distributaries, natural levees, neck cutoffs, oxbow lakes, and constructed channels. Channel geomorphic units occur in the river channel and are subject to frequent stresses associated with flowing water and sediment transport; they adjust (change) relatively quickly in response to short-term variations in flow. Channel geomorphic units described in this report are channel banks, benches and ledges, bank failures, point bars, cross-bar channels, channel bars, exposed bedrock, pools, runs, and crossovers.

  13. Geology and geomorphology of the Carolina Sandhills, Chesterfield County, South Carolina

    USGS Publications Warehouse

    Swezey, Christopher; Fitzwater, Bradley A.; Whittecar, G. Richard

    2016-01-01

    This two-day field trip focuses on the geology and geomorphology of the Carolina Sandhills in Chesterfield County, South Carolina. This area is located in the updip portion of the U.S. Atlantic Coastal Plain province, supports an ecosystem of longleaf pine (Pinus palustris) and wiregrass (Aristida stricta), and contains three major geologic map units: (1) An ~60–120-m-thick unit of weakly consolidated sand, sandstone, mud, and gravel is mapped as the Upper Cretaceous Middendorf Formation and is interpreted as a fluvial deposit. This unit is capped by an unconformity, and displays reticulate mottling, plinthite, and other paleosol features at the unconformity. The Middendorf Formation is the largest aquifer in South Carolina. (2) A 0.3–10-m-thick unit of unconsolidated sand is mapped as the Quaternary Pinehurst Formation and is interpreted as deposits of eolian sand sheets and dunes derived via remobilization of sand from the underlying Cretaceous strata. This unit displays argillic horizons and abundant evidence of bioturbation by vegetation. (3) A <3-m-thick unit of sand, pebbly sand, sandy mud, and mud is mapped as Quaternary terrace deposits adjacent to modern drainages. In addition to the geologic units listed above, a prominent geomorphologic feature in the study area is a north-trending escarpment (incised by headwater streams) that forms a markedly asymmetric drainage divide. This drainage divide, as well as the Quaternary terraces deposits, are interpreted as evidence of landscape disequilibrium (possibly geomorphic responses to Quaternary climate changes).

  14. Sedimentology and preservation of aeolian sediments on steep terrains: Incipient sand ramps on the Atacama coast (northern Chile)

    NASA Astrophysics Data System (ADS)

    Ventra, Dario; Rodríguez-López, Juan Pedro; de Boer, Poppe L.

    2017-05-01

    The origin of topographically controlled aeolian landforms in high-relief settings is difficult to synthesize under general models, given the dependence of such accumulations on local morphology. Quaternary sand ramps have been linked to palaeoclimate, regional geomorphology and wind patterns; however, controls on the early development and preservation of such landforms are poorly known. This study describes the morphology and sedimentology of complex sedimentary aprons along steep coastal slopes in the Atacama Desert (Chile). Direct slope accessibility and continuous stratigraphic exposures enable comparisons between active processes and stratigraphic signatures. Stratigraphic facies distribution and its links with patterns of aeolian deposition show that the preservation of wind-laid sediments depends on the morphology and processes of specific slope sectors. The spatial organization of runoff depends on bedrock configuration and directly controls the permanence or erosion of aeolian sediment. The occurrence of either water or mass flows depends on the role of aeolian fines in the rheology of flash floods. In turn, the establishment of a rugged surface topography controlled by patterns of mass-flow deposition creates local accommodation for aeolian fines, sustaining the initial aggradation of a colluvial-aeolian system. By contrast, slopes subject to runoff develop a thin, extensive aeolian mantle whose featureless surface is subject mostly to sediment bypass down- and across-slope; the corresponding stratigraphic record comprises almost exclusively thin debris-flow and sheetflood deposits. Slope morphology and processes are fundamental in promoting or inhibiting aeolian aggradation in mountain settings. Long-term sand-ramp construction depends on climate and regional topography, but the initial development is probably controlled by local geomorphic factors. The observed interactions between wind and topography in the study area may also represent a process analogue for the interpretation of similar geomorphic features on Mars.

  15. [Sedimentological Implications of the change in the coverage of mangrove forest in Boca Zacate, Térraba-Sierpa National Wetlands, Costa Rica].

    PubMed

    Silva Benavides, Ana Margarita; Picado Barboza, Jorge; Mora Rodríguez, Fernando; González Gairaud, Carmen

    2015-09-01

    In the last sixty years many geomorphological changes have occurred in Costa Rica's Térraba-Sierpe National Wetlands. Changes in coastal geomorphology are generally associated with erosion or accretion of sediment, which has led to the removal of sections of mangrove forests or sediment banks colonized by mangroves. The aim of this study was to analyze sedimentation as a leading process in the dynamics of coastal morphology and its implications for mangrove forest cover in the Boca Zacate area of Térraba-Sierpe wetlands. The study was conducted in the sectors of Bocón, Brujo and Coco Island in Boca Zacate, from 2008 to 2013. The research was based on a multi-temporal analysis of coastal morphology using aerial photographs from the years 1948, 1960, 1974, 1978, 1984, 1992 and 2011. The following measurements were also performed: monthly sedimentation rate (g/cm2/day), and granulometric composition and content of chemical elements in the sediments of the study area. These last two measurements were performed once each in the dry and rainy seasons during the years of study. The results indicated that over the past 60 years, Boca Zacate has witnessed a process of sustained erosion; from 1948 through 2001, losing 10.6 % of its land and approximately 8.9 % of its forest cover. It has also experienced accretion in the area of Coco Island. The Brujo sector showed the highest sedimentation rate and the Camibar estuary, the lowest. The dominant type of sediment in all study sites was sand, followed by clay and silt. The most widespread chemical elements (mg/L) included magnesium, calcium and potassium; others, such as manganese, iron, aluminum, phosphorus, zinc and copper, were measured in smaller amounts. Transport, composition and quantity of sediment in Boca Zacate are crucial to the changes that have occurred on the coastal area of La Boca, where the presence of dead trees was evident. This geomorphological analysis holds great importance for future guidelines and actions for the conservation and integrated management of the mangrove in Térraba-Sierpe National Wetlands.

  16. Dilution correction equation revisited: The impact of stream slope, relief ratio and area size of basin on geochemical anomalies

    NASA Astrophysics Data System (ADS)

    Shahrestani, Shahed; Mokhtari, Ahmad Reza

    2017-04-01

    Stream sediment sampling is a well-known technique used to discover the geochemical anomalies in regional exploration activities. In an upstream catchment basin of stream sediment sample, the geochemical signals originating from probable mineralization could be diluted due to mixing with the weathering material coming from the non-anomalous sources. Hawkes's equation (1976) was an attempt to overcome the problem in which the area size of catchment basin was used to remove dilution from geochemical anomalies. However, the metal content of a stream sediment sample could be linked to several geomorphological, sedimentological, climatic and geological factors. The area size is not itself a comprehensive representative of dilution taking place in a catchment basin. The aim of the present study was to consider a number of geomorphological factors affecting the sediment supply, transportation processes, storage and in general, the geochemistry of stream sediments and their incorporation in the dilution correction procedure. This was organized through employing the concept of sediment yield and sediment delivery ratio and linking such characteristics to the dilution phenomenon in a catchment basin. Main stream slope (MSS), relief ratio (RR) and area size (Aa) of catchment basin were selected as the important proxies (PSDRa) for sediment delivery ratio and then entered to the Hawkes's equation. Then, Hawkes's and new equations were applied on the stream sediment dataset collected from Takhte-Soleyman district, west of Iran for Au, As and Sb values. A number of large and small gold, antimony and arsenic mineral occurrences were used to evaluate the results. Anomaly maps based on the new equations displayed improvement in anomaly delineation taking the spatial distribution of mineral deposits into account and could present new catchment basins containing known mineralization as the anomaly class, especially in the case of Au and As. Four catchment basins having Au and As mineralization were added to anomaly class and also one catchment basin with known As occurrence was highlighted as anomalous using new approach. The results demonstrated the usefulness of considering geomorphological parameters in dealing with dilution phenomenon in a catchment basin.

  17. Unravelling recent environmental change in a lowland river valley, eastern Ireland: geoarchaeological applications

    NASA Astrophysics Data System (ADS)

    Foster, Gez; Turner, Jonathan

    2010-05-01

    This paper reports the preliminary findings of an Irish Heritage Council INSTAR funded research project on the geoarchaeology and fluvial geomorphology of the lower River Boyne valley, eastern Ireland. The nature and evolution of the contemporary Boyne floodplain at Dunmoe, Co. Meath (53° 40' 22.8" N, 6° 37' 54.7" W) has been investigated using a multi-technique approach combining field and terrestrial LiDAR-based geomorphological mapping, radiocarbon dating of channel migration activity, electrical resistivity tomography surveys of sub-surface topography and high-resolution X-ray and XRF geochemical characterisation of fine-grained sediment fill sequences. All of these lines of evidence support a tripartite sub-division of the floodplain. Valley marginal floodplain Zone 1 is characterised by a colluvial sediment fill which has buried an irregular ditch-basin-platform surface containing recent archaeological material. Subtle variations in mapped elevation suggest that the buried surface may represent the site of an abandoned river-side complex, possibly a small docking area or port. Geomorphological field relationships suggest that the possible archaeological site was connected to a former bank line position of the main River Boyne (floodplain Zone 2) via a small canal. Radiocarbon dating of Zone 2 channel gravels suggests that the channel associated with this bank position was abandoned some time before 1490-1610 AD. Subsequent vertical and lateral channel migration, the onset of which has been radiocarbon dated to the 17th or 18th century AD, led to the development of the lowest and most recent floodplain surface (Zone 3). The sedimentology and geochemistry of the Zone 2 and 3 fluvial sediment sequences suggests that recent centuries have involved an increase in fluvial flood risk, evidenced by the burial of alluvial soils by bedded, shell-rich sands. A more complete understanding of the timing and environmental drivers of increasing flood risk is anticipated from ongoing radionuclide (Pb-210 and Cs-137) and pollen analysis of the fluvial sediment sequences. However, based on the established chronology and geomorphic field relationships, it is plausible that the archaeological complex represents a late medieval site linked to Dunmoe Castle (14th to 17th century AD), which overlooks the floodplain.

  18. Late Quaternary landscape development at the margin of the Pomeranian phase (MIS 2) near Lake Wygonin (Northern Poland)

    NASA Astrophysics Data System (ADS)

    Hirsch, Florian; Schneider, Anna; Nicolay, Alexander; Błaszkiewicz, Mirosław; Kordowski, Jarosław; Noryskiewicz, Agnieszka M.; Tyszkowski, Sebastian; Raab, Alexandra; Raab, Thomas

    2015-04-01

    In Central Europe, Late Quaternary landscapes experienced multiple phases of geomorphologic activity. In this study,we used a combined geomorphological, pedological, sedimentological and palynological approach to characterize landscape development after the Last Glacial Maximum (LGM) near Lake Wygonin in Northern Poland. The pedostratigraphical findings from soil pits and drillings were extrapolated using ground-penetrating radar (GPR) and electric resistivity tomography (ERT). During the Pomeranian phase, glacial and fluvioglacial processes dominated the landscape near Lake Wygonin. At the end of the glacial period, periglacial processes became relevant and caused the formation of ventifacts and coversands containing coated sand grains. At approximately 15,290-14,800 cal yr BP, a small pond formed in a kettle hole (profile BWI2). The lacustrine sediments lack eolian sand components and therefore indicate the decline of eolian processes during that time. The increase of Juniperus and rock-rose (Helianthemum) in the pollen diagram is a prominent marker of the Younger Dryas. At the end of the Younger Dryas, a partial reshaping of the landscape is indicated by abundant charcoal fragments in disturbed lake sediments. No geomorphologic activity since the beginning of the Holocene is documented in the terrestrial and wetland archives. The anthropogenic impact is reflected in the pollen diagram by the occurrence of rye pollen grains (Cerealia type, Secale cereale) and translocated soil sediments dated to 1560-1410 cal yr BP, proving agricultural use of the immediate vicinity. With the onset of land use, gully incision and the accumulation of colluvial fans reshaped the landscape locally. Since 540-460 cal yr BP, further gully incision in the steep forest tracks has been associated with the intensification of forestry. Outside of the gully catchments, the weakly podzolized Rubic Brunic Arenosols show no features of Holocene soil erosion. Reprinted from CATENA, Volume 124, Florian Hirsch, Anna Schneider, Alexander Nicolay, Mirosław Błaszkiewicz, Jarosław Kordowski, Agnieszka M. Noryskiewicz, Sebastian Tyszkowski, Alexandra Raab, Thomas Raab, Late Quaternary landscape development at the margin of the Pomeranian phase (MIS 2) near Lake Wygonin (Northern Poland), Pages 28-44, 2015, with permission from Elsevier.

  19. Identification of possible recent water/lava source fissures in the Cerberus Plains: stratigraphic and crater count age constraints

    NASA Astrophysics Data System (ADS)

    Thomas, Rebecca J.

    2013-04-01

    The Cerberus plains are one of the youngest surfaces on Mars. They are thought to have been formed by lava and/or water flows, but there is considerable debate regarding the source of this material. Much of the material forming the western plains, including the Athabasca Valles outflow channels, appears to have flowed from the region of the Cerberus Fossae graben system [1,2,3] and limited areas forming the eastern plains may have been erupted by low shield volcanoes [4,5]. However, flow of material from west to east is obstructed by a ridge centred on 157°E, 7°N and, prior to this study, vents which might be the source of fluid of a low enough viscosity to form the majority of the flat eastern plains had not been identified. We studied new HiRISE (25cm/px, High Resolution Science Imaging Experiment) images of the ridge between the east and west plains and observed possible source vents for this material: the ridge is cut by a series of pits and fissures which lie at the heads of flows and channels extending towards the surrounding plains. In order to establish the stratigraphic relationships between the vents and plains, this study produced large scale geomorphological maps based on the HiRISE images. The mapping showed that both incised channels and leveed flows extend onto the plain to the south of the ridge and that these were the final phase of plains-forming activity in that region. Conversely, to the north, ridge-sourced deposits only form the plains surface close to the ridge - beyond that, they are overlain by large-scale regional flows that appear to have originated from the direction of Athabasca Valles. In the southeast, a large-scale flow which does not emanate from this ridge forms the plains surface, but there is evidence that the youngest outflow activity from the ridge was contemporaneous with emplacement of this unit. We also performed crater counts to age-date the surfaces and these indicate that plains-forming and ridge-sourced units are of a similar Late Amazonian age (<100Ma), with the latest activity tentatively dating to 10Ma. Thus, this study implies that very recent outflows from these vents contributed to the formation of the Cerberus Plains. It also constrains the timing of other large-scale plains-forming flows in the region and suggests that outflows from this ridge were part of a broader process of Cerberus plains formation from multiple sources [6]. References: [1] Plescia, J. B. (1990) Icarus, 88 (2), 465-490. [2] Burr et al. (2002) Geophysical Research Letters, 29, 1013. [3] Berman & Hartmann (2002) Icarus 159, 1-7. [4] Plescia et al. (2003) Icarus, 164, 79-95. [5] Vaucher et al. (2009) Icarus, 204, 418-442. [6] Thomas, R. (2012) JGR Planets (submitted).

  20. Superstorm Sandy-related Morphologic and Sedimentologic Changes in an Estuarine System: Barnegat Bay-Little Egg Harbor Estuary, New Jersey

    NASA Astrophysics Data System (ADS)

    Miselis, J. L.; Ganju, N. K.; Navoy, A.; Nicholson, R.; Andrews, B.

    2013-12-01

    Despite the well-recognized ecological importance of back-barrier estuaries, the role of storms in their geomorphic evolution is poorly understood. Moreover, the focus of storm impact assessments is often the ocean shorelines of barrier islands rather than the exchange of sediment from barrier to estuary. In order to better understand and ultimately predict short-term morphologic and sedimentologic changes in coastal systems, a comprehensive research approach is required but is often difficult to achieve given the diversity of data required. An opportunity to use such an approach in assessing the storm-response of a barrier-estuary system occurred when Superstorm Sandy made landfall near Atlantic City, New Jersey on 29 October 2012. Since 2011, the US Geological Survey has been investigating water circulation and water-quality degradation in Barnegat Bay-Little Egg Harbor (BBLEH) Estuary, the southern end of which is approximately 25 kilometers north of the landfall location. This effort includes shallow-water geophysical surveys to map the bathymetry and sediment distribution within BBLEH, airborne topo-bathymetric lidar surveys for mapping the shallow shoals that border the estuary, and sediment sampling, all of which have provided a recent picture of the pre-storm estuarine geomorphology. We combined these pre-storm data with similar post-storm data from the estuary and pre- and post-storm topographic data from the ocean shoreline of the barrier island to begin to understand the response of the barrier-estuary system. Breaches in the barrier island resulted in water exchange between the estuary and the ocean, briefly reducing residence times in the northern part of the estuary until the breaches were closed. Few morphologic changes in water depths greater than 1.5 m were noted. However, morphologic changes observed in shallower depths along the eastern shoreline of the estuary are likely related to overwash processes. In general, surficial estuarine sediments were coarser post-Sandy, but, especially where observed along the western shoreline, it is unclear if the change is related to deposition of new sediment or winnowing of fine sediment. Further analysis will provide insight into whether the geometry of the barrier island and estuary influenced the morphologic and sedimentologic system response in BBLEH.

  1. Geodiversity of the Umbria region (central Italy): a GIS-based quantitative index

    NASA Astrophysics Data System (ADS)

    Melelli, Laura; Pica, Alessia; Del Monte, Maurizio

    2014-05-01

    The measure of natural range related to geological bedrock, landforms and geomorphological processes is the necessary starting point to geodiversity evaluation. Geodiversity plays a strategic role in landscape management. Whereas geotourism and geosites are identified as a driving power for the scientific and economic promotion of an area, the geodiversity knowledge is required for a complete and accurate research. For example, high values of this abiotic parameter identify and support the foundation of geoparks. According to this perspective, the geodiversity is the unifying factor for these areas of interest. While a subjective and qualitative approach may be adequate for geosites definition, identification and cultural promotion, the geodiversity concept needs a different evaluation method. A quantitative procedure allows achieving an objective and repeatable process exportable in different geographic units. Geographical Information Systems and spatial analysis techniques are the base to quantitative evaluation involving topographic, geological and geomorphological data. Therefore, the assessment of a numerical index derived from the overlay of spatial parameters can be conveniently computed in GIS environment. In this study, a geodiversity index is proposed where geological, geomorphological and landcover factors deriving mainly from maps and field survey; topographic ones are employed from DEM and remote sensed data. Each abiotic parameter is modelled in a grid format; focal functions do provide neighbourhood analysis and computing variety statistics. A particular extent is dedicated to topographic information and terrain roughness, that are strictly related to efficiency of geomorphological processes and generally corresponding to the abiotic components variability. The study area is located in central Italy and is characterized by a well known natural heritage. Thirty-seven geosites are detected in the Umbria region, where seven regional and one natural parks are present. All the area shows a strong correlation between the geological setting and the relief energy associated to topography assessment. Three main outcrop complexes are present: a fluvial lacustrine, where the lowest slope values and plain area are widespread; a terrigenous one, with a medium slope value; and a calcareous complex corresponding to the mountain areas and the highest amplitude of relief. This partition matches different geomorphological processes and landforms, ensuring a widespread distribution of geodiversity. The final map is a digital data that localizes areas with, respectively, null or minimum, medium, and high geodiversity values. The highest class overlaps to geosites areas, to high values of amplitude of relief and where the geomorphological processes are more effective and various. This confirms the method accuracy. The results obtained represent an important advancement in geodiversity research and a significant instrument for economic development and conservation management.

  2. Sedimentary depositional environments in the Gulf of Alaska from GLORIA Imagery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, P.R.; Bruns, T.R.; Stevenson, A.J.

    1990-05-01

    GLORIA side-scan images provide new insight to the morphology and sedimentology of the Gulf of Alaska and show that tectonism strongly influences downslope and abyssal plain sediment transport. Along the Fairweather-Queen Charlotte transform margin south of Cross Sound short, chute-like canyons cross the slope to submarine-fan channels. At least one canyon is offset by strike-slip motion along the fault Fan channels coalesce to form two deep-sea turbidite channels (Mukluk and Horizon) that extend 1,000 km southward to the Tufts Abyssal Plain. From Cross Sound to Pamplona Spur, dendritic gulley systems and short chutes cross the slope into tributary channels thatmore » merge into major channels. Tributary channels from Cross Sound to Alsek Valley form the Chirikov channel system which bends westward and ends in turbidite fans south of the Kodiak-Bowie Seamount chain. A probable ancestral Chirikov channel carried sediment westward to the Aleutian Trench, Channels from Alsek Valley to Pamplona Spur coalesce 280 km seaward of the slope to form the Surveyor Channel which meanders across the abyssal plain 500 km to the Aleutian trench. Between Pamplona Spur and Middleton Island, dendritic slope canyons reach the eastern end of the Aleutian Trench sediment moves southwestward along the trench. Southwest of Middleton Island, discontinuous trench-parallel subduction ridges change slope drainage from a dendritic to trellised pattern as sediment is forced to flow around the ridges to the Aleutian Trench. At least two small fans have been constructed on the trench floor. Southwest of Kodiak Island, subduction ridges create mid-slope basins that trap modern sediment.« less

  3. Microbial mats in playa lakes and other saline habitats: Early Mars analog?

    NASA Technical Reports Server (NTRS)

    Bauld, John

    1989-01-01

    Microbial mats are cohesive benthic microbial communities which inhabit various Terra (Earth-based) environments including the marine littoral and both permanent and ephemeral (playa) saline lakes. Certain geomorphological features of Mars, such as the Margaritifer Sinus, were interpreted as ancient, dried playa lakes, presumably formed before or during the transition to the present Mars climate. Studies of modern Terran examples suggest that microbial mats on early Mars would have had the capacity to survive and propagate under environmental constraints that would have included irregularly fluctuating regimes of water activity and high ultraviolet flux. Assuming that such microbial communities did indeed inhabit early Mars, their detection during the Mars Rover Sample Return (MRSR) mission depends upon the presence of features diagnostic of the prior existence of these communities or their component microbes or, as an aid to choosing suitable landing, local exploration or sampling sites, geomorphological, sedimentological or chemical features characteristic of their playa lake habitats. Examination of modern Terran playas (e.g., the Lake Eyre basin) shows that these features span several orders of magnitude in size. While stromatolites are commonly centimeter-meter scale features, bioherms or fields of individuals may extend to larger scales. Preservation of organic matter (mats and microbes) would be favored in topographic lows such as channels or ponds of high salinity, particularly those receiving silica-rich groundwaters. These areas are likely to be located near former zones of groundwater emergence and/or where flood channels entered the paleo-playa. Fossil playa systems which may aid in assessing the applicability of this particular Mars analog include the Cambrian Observatory Hill Beds of the Officer Basin and the Eocene Wilkins Peak Member of the Green River Formation.

  4. Sedimentary facies, geomorphic features and habitat distribution at the Hudson Canyon head from AUV multibeam data

    NASA Astrophysics Data System (ADS)

    Pierdomenico, Martina; Guida, Vincent G.; Macelloni, Leonardo; Chiocci, Francesco L.; Rona, Peter A.; Scranton, Mary I.; Asper, Vernon; Diercks, Arne

    2015-11-01

    Mapping of physical benthic habitats at the head of Hudson Canyon was performed by means of integrated analysis of acoustic data, video surveys and seafloor sampling. Acoustic mapping, performed using AUV-mounted multibeam sonar, provided ultra-high resolution bathymetric and backscatter imagery for the identification of geomorphological features and the characterization of surficial sediments. Habitat characterization in terms of seafloor texture and identification of benthic and demersal communities was accomplished by visual analysis of still photographs from underwater vehicles. Habitat classes were defined on the basis of the seafloor texture observed on photos and then compared with the geophysical data in order to associate habitats to acoustic classes and/or geomorphological features. This enabled us to infer habitat distribution on the basis of morpho-acoustic classes and extrapolate results over larger areas. Results from bottom trawling were used to determine the overall biodiversity within the identified habitats. Our analysis revealed a variety of topographic and sedimentological structures that provide a wide range of physical habitats. A variety of sandy and muddy substrates, gravel patches and mudstone outcrops host rich and varied faunal assemblages, including cold-water corals and sponge communities. Pockmark fields below 300 m depth suggest that methane-based chemosynthetic carbonate deposition may contributes to creation of specific benthic habitats. Hummocky terrain has been delineated along the canyon rims and associated with extensive, long-term burrowing activity by golden tilefish (Lopholatilus chamaeleonticeps). These results show the relationships of physical features to benthic habitat variation, support the notion of the area as a biodiversity hotspot and define essential habitats for planning of sustainable regional fisheries.

  5. Geodiversity of a large meander bend in the Little Belt strait in the inner Danish waters

    NASA Astrophysics Data System (ADS)

    Brandbyge Ernstsen, Verner; Øbro Hansen, Lars; Becker, Marius; Brivio, Lara; Vang, Torben; Lynnerup Trinhammer, Per; Andresen, Katrine Juul; Seidenkrantz, Marit-Solveig; Boldreel, Lars Ole; Bartholdy, Jesper

    2017-04-01

    The Little Belt strait in the inner Danish waters is characterised by a high biodiversity, and continuous monitoring of flora and fauna and the water quality is undertaken by the authorities. However, the surface sedimentology and geomorphology, i.e. elements of the geodiversity, are less well-constrained. The aim of this study is to investigate the surface sediment and morphology of a large meander bend (with a channel width of 1 km) located between the two bridges crossing the strait (a channel reach of 4 km) in order to assess a potential coupling between geodiversity and biodiversity. More specifically, the objectives are 1) to identify and classify morphological units for creating a geomorphological map, 2) to quantify surface material characteristics for creating a surface material map, and 3) to develop a conceptual model of the substrate and the morphology and morphodynamics in the meander bend between the two bridges in the strait. Preliminary results reveal a diverse morphology in the meander bend; and the annual morphological changes reveal complex sediment transport patterns along and across the bend. Likewise significant sediment sorting trends exist along and across the meander bend. Hence, the preliminary results indicate a high geodiversity in the strait. Acknowledgements The data were collected as part of the MSc course Marine Geoscience, a joint MSc course between the Department of Geosciences and Natural Resource Management at the University of Copenhagen and the Department of Geoscience at Aarhus University. Additional data were included from the research project Control in the Danish Straits 1 (CiDS-1) funded by the Danish Centre for Marine Research (PI Morten Holtegaard). Thanks to the crew on board RV Aurora.

  6. Ice streaming in western Scotland and the deglaciation of the Hebrides Shelf and Firth of Lorn

    NASA Astrophysics Data System (ADS)

    Arosio, Riccardo; Howe, John; O'Cofaigh, Colm; Crocket, Kirsty

    2014-05-01

    Previously, numerous studies have been undertaken both onshore and offshore to decipher the morphological and sedimentological record in order to better constrain the limits and duration of the British-Irish Ice Sheet (BIIS) (Ballantyne et al. 2009, Bradwell et al. 2008b, Clark et al. 2011, Dunlop et al. 2010, Howe et al. 2012, O'Cofaigh et al., 2012). Late glacial ice sheet dynamics have been revealed to be far more rapid and responsive to climatic amelioration than had previously been considered. Notable in this debate has been the evidence that has been obtained in the inshore and, to a lesser extent, offshore on the UK continental shelf. Here new geomorphological data, principally multibeam echo sounder (MBES) data has provided imagery of previously unseen features interpreted as being glacial in origin. In the wake of these new discoveries this projects aims to investigate the extent, timing, growth and final disintegration of the BIIS across Western Scotland. This area of particular interest for the development of the glaciated North Atlantic margin has been generally neglected in past studies, especially across the mid-outer shelf, which constitutes a missing part in the jigsaw of the reconstructed BIIS during the last ~20.000yrs. We aim to mainly focus on geomorphological analyses of MBES data collected in the Firth of Lorn and Sea of Hebrides; a study of features as moraines, glacial lineations and drumlins will provide important clues on the dynamics and maximum extension of the sheet. Subsequently we will examine the geometry and composition of the shelf sediment infill, aiming to constrain the influence of ice retreat on depositional environments using multi-element geochemical (Pb-isotopes ratios, 14C and OSL dating) and sedimentological techniques. Such an investigation will also give retrospective information on the sources for these sediments, hence more indications on ice configuration. Ultimately we aim to provide a model of deglaciation for the western sector of the BIIS. Keywords: British-Irish Ice Sheet, NW Scotland, glacial bedforms, geochronology References Ballantyne, C.K., Schnabel, C. & Xu, S. 2009. Readvance of the last British Ice Sheet during Greenland Interstade (GI-1): the Wester Ross Readvance, NW Scotland. Quaternary Science Reviews, 28, 783-789 Bradwell, T., Fabel, D., Stoker, M., Mathers, H., McHargue, L., Howe, J., 2008b. Ice caps existed throughout the Late glacial interstadial in northern Scotland. Journal of Quaternary Science 23, 401-407. Clark, C.D., Hughes, A.L.C., Greenwood, S.L., Jordan, C., Sejrup, H.P. 2012. Pattern and timing of retreat of the last British-Irish Ice Sheet. Quaternary Science Reviews. Dunlop, P., Shannon, R., McCabe, M., Quinn, R., Doyle, E. 2010. Marine geophysical evidence for ice sheet extension and recession on the Malin Shelf: New evidence for the western limits of the British-Irish Ice Sheet. Marine Geology, 276: 86-99. Howe, J. A., Dove, D., Bradwell, T. & Gaferia, J. 2012. Submarine geomorphology and glacial history of the Sea of the Hebrides, UK. Marine Geology 315-318, 64-78 O' Cofaigh, C., Dunlop, P. Benetti, S., 2012. Marine geophysical evidence for Late Pleistocene ice sheet extent and recession off northwest Ireland, Quaternary Science Reviews. In press.

  7. Paleogeographic evolution of the western Maghreb (Berberids) during the Jurassic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elmi, S.

    1988-08-01

    Several basins of the western Maghreb (northwest Africa) have been studied, taking into account their sedimentological and structural evolutions. Special attention is given to paleontological data (biostratigraphy, paleobiology, paleobiogeography). The paleogeographic pattern was the result of the differentiation in four stable blocks (Moroccan Meseta, Oran High Plains, Constantine block, Tunisian north-south ridge) which were developed between the Sahara craton and median strike-slips of the Tethys. This area, called the Berberids, was split by basins and furrows evolving during the Jurassic. Large, shallow, heterochronous initial carbonate platforms (Early Jurassic) were broken by local tectonic movements (tilting and rifting). A mature progradationmore » resulted from a rupture in the balance between carbonate production and subsidence. The result was the growth of more-or-less extended carbonate platforms along the basins margins during the Aalenian and Bajocia. From the late Bajocian, a large deltaic system prograded from the southwest and the west. Terrigenous input and large-scale tectonics provoked the filling of many basins. The southern and western areas became continental. In the north, carbonate series prograded on deltaic formations. A large, shallow platform developed on the southern rim of the Alpine Tethys. The tectonics of the basement on the southern rim of the Alpine Tethys. The tectonics of the basement became less important and sea level changes controlled the sedimentologic evolution. Bio- and chronostratigraphic correlations allow us to chart the main tectonic and eustatic events which occurred in the western Maghreb during the Jurassic.« less

  8. Changes in ice-margin processes and sediment routing during ice-sheet advance across a marginal moraine

    USGS Publications Warehouse

    Knight, P.G.; Jennings, C.E.; Waller, R.I.; Robinson, Z.P.

    2007-01-01

    Advance of part of the margin of the Greenland ice sheet across a proglacial moraine ridge between 1968 and 2002 caused progressive changes in moraine morphology, basal ice formation, debris release, ice-marginal sediment storage, and sediment transfer to the distal proglacial zone. When the ice margin is behind the moraine, most of the sediment released from the glacier is stored close to the ice margin. As the margin advances across the moraine the potential for ice-proximal sediment storage decreases and distal sediment flux is augmented by reactivation of moraine sediment. For six stages of advance associated with distinctive glacial and sedimentary processes we describe the ice margin, the debris-rich basal ice, debris release from the glacier, sediment routing into the proglacial zone, and geomorphic processes on the moraine. The overtopping of a moraine ridge is a significant glaciological, geomorphological and sedimentological threshold in glacier advance, likely to cause a distinctive pulse in distal sediment accumulation rates that should be taken into account when glacial sediments are interpreted to reconstruct glacier fluctuations. ?? 2007 Swedish Society for Anthropology and Geography.

  9. Temporal changes in lithology and radiochemistry from the back-barrier environments along the Chandeleur Islands, Louisiana: March 2012-July 2013

    USGS Publications Warehouse

    Marot, Marci E.; Adams, C. Scott; Richwine, Kathryn A.; Smith, Christopher G.; Osterman, Lisa E.; Bernier, Julie C.

    2014-01-01

    Scientists from the U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center conducted a time-series collection of shallow sediment cores from the back-barrier environments along the Chandeleur Islands, Louisiana from March 2012 through July 2013. The sampling efforts were part of a larger USGS study to evaluate effects on the geomorphology of the Chandeleur Islands following the construction of an artificial sand berm to reduce oil transport onto federally managed lands. The objective of this study was to evaluate the response of the back-barrier tidal and wetland environments to the berm. This report serves as an archive for sedimentological, radiochemical, and microbiological data derived from the sediment cores. Data are available for a time-series of four sampling periods: March 2012; July 2012; September 2012; and July 2013. Downloadable data are available as Excel spreadsheets and as JPEG files. Additional files include: ArcGIS shapefiles of the sampling sites, detailed results of sediment grain size analyses, and formal Federal Geographic Data Committee metadata.

  10. Geomorphology Classification of Shandong Province Based on Digital Elevation Model in the 1 Arc-second Format of Shuttle Radar Topography Mission Data

    NASA Astrophysics Data System (ADS)

    Fu, Jundong; Zhang, Guangcheng; Wang, Lei; Xia, Nuan

    2018-01-01

    Based on gigital elevation model in the 1 arc-second format of shuttle radar topography mission data, using the window analysis and mean change point analysis of geographic information system (GIS) technology, programmed with python modules this, automatically extracted and calculated geomorphic elements of Shandong province. The best access to quantitatively study area relief amplitude of statistical area. According to Chinese landscape classification standard, the landscape type in Shandong province was divided into 8 types: low altitude plain, medium altitude plain, low altitude platform, medium altitude platform, low altitude hills, medium altitude hills, low relief mountain, medium relief mountain and the percentages of Shandong province’s total area are as follows: 12.72%, 0.01%, 36.38%, 0.24%, 17.26%, 15.64%, 11.1%, 6.65%. The results of landforms are basically the same as the overall terrain of Shandong Province, Shandong province’s total area, and the study can quantitatively and scientifically provide reference for the classification of landforms in Shandong province.

  11. Depositional evolution of the Lower Khuzestan plain (SW Iran) since the end of the Late Pleistocene

    NASA Astrophysics Data System (ADS)

    Bogemans, Frieda; Janssens, Rindert; Baeteman, Cecile

    2017-09-01

    A detailed sedimentological investigation of sixty-six cores supported by radiocarbon age determination enabled the reconstruction of the depositional environmental evolution since the end of the Late Pleistocene in the Iranian part of the Mesopotamian plain. Both fluvial and estuarine environments have been identified on the basis of the sediment characteristics and their between-core stratigraphic correlations. At the end of the Late Pleistocene the fluvial behaviour allowed only the deposition of sand. Prior to 12400-12040 yr cal BP the palaeohydraulics changed by which heterolithic fluvial facies were deposited. Shortly after 12400 - 12040 yr cal BP an erosional phase caused the incision of depressions most probably because of a climate change to further arid conditions. In the early Holocene, mud-dominated river systems filled the depressions; a situation that lasted at least until 7900 - 7700 yr cal BP. After this period tides invaded via the active channels in the downstream part of the area, which turned into an estuarine environment for a period of about 2000-2500 years. Tidal influence diminished and stopped around 5000 yr cal BP because of progradation. Fluvial processes dominated again the sedimentary environment in the study area, except at the southern margin of it where tides controlled, although very locally, the environment.

  12. Pliocene and early Pleistocene environments and climates of the western Snake River Plain, Idaho

    USGS Publications Warehouse

    Thompson, R.S.

    1996-01-01

    Sedimentological, palynological, and magnetic susceptibility data provide paleoenvironmental and paleoclimatic information from a 989 ft (301 m) core of sediments from the upper Glenns Ferry and Bruneau Formations from near the town of Bruneau, Idaho. Chronology is based on stratigraphic position, paleomagnetism, and biostratigraphic data. Palynological data from the Glenns Ferry sediments reveal a pollen flora similar to the modern regional pollen flora, with very rare occurrences of now-extirpated taxa common earlier in the Tertiary. Palynological data from the Pliocene portion of this core indicate conditions more moist than today, with cooler summers and perhaps warmer winters. The pollen spectra from the Bruneau Formation sediments resemble those of the Wisconsinan glacial period on the Snake River Plain, and hence indicate cold and dry conditions during some portion of the early Pleistocene. The deep-water Glenns Ferry lacustrine episode appears to date between approximately 3.5 to 3.3 and 2.5 Ma, and thus occurred during the middle Pliocene period of warmer-than-modern global temperatures. Similar sustained wetter-than-present conditions occurred in the same age range at sites across the western USA. This moist period was apparently followed by an interval of regional arid conditions that persisted for several hundred thousand years. -from Author

  13. Recent Trends and Advances in Sedimentology.

    ERIC Educational Resources Information Center

    Suttner, Lee J.

    1979-01-01

    Briefly surveys recent trends and developments in sedimentology. Includes Clastic sedimentary petrology, petrology of argillaceous rocks, terrigenous depositional environments, and chemical sedimentology. (MA)

  14. Submarine landslides in Arctic sedimentation: Canada Basin

    USGS Publications Warehouse

    Mosher, David C.; Shimeld, John; Hutchinson, Deborah R.; Lebedova-Ivanova, N; Chapman, C.

    2016-01-01

    Canada Basin of the Arctic Ocean is the least studied ocean basin in the World. Marine seismic field programs were conducted over the past 6 years using Canadian and American icebreakers. These expeditions acquired more than 14,000 line-km of multibeam bathymetric and multi-channel seismic reflection data over abyssal plain, continental rise and slope regions of Canada Basin; areas where little or no seismic reflection data existed previously. Canada Basin is a turbidite-filled basin with flat-lying reflections correlateable over 100s of km. For the upper half of the sedimentary succession, evidence of sedimentary processes other than turbidity current deposition is rare. The Canadian Archipelago and Beaufort Sea margins host stacked mass transport deposits from which many of these turbidites appear to derive. The stratigraphic succession of the MacKenzie River fan is dominated by mass transport deposits; one such complex is in excess of 132,000 km2 in area and underlies much of the southern abyssal plain. The modern seafloor is also scarred with escarpments and mass failure deposits; evidence that submarine landsliding is an ongoing process. In its latest phase of development, Canada Basin is geomorphologically confined with stable oceanographic structure, resulting in restricted depositional/reworking processes. The sedimentary record, therefore, underscores the significance of mass-transport processes in providing sediments to oceanic abyssal plains as few other basins are able to do.

  15. Corona Associations and Their Implications for Venus

    USGS Publications Warehouse

    Chapman, M.G.; Zimbelman, J.R.

    1998-01-01

    Geologic mapping principles were applied to determine genetic relations between coronae and surrounding geomorphologic features within two study areas in order to better understand venusian coronae. The study areas contain coronae in a cluster versus a contrasting chain and are (1) directly west of Phoebe Regio (quadrangle V-40; centered at latitude 15??S, longitude 250??) and (2) west of Asteria and Beta Regiones (between latitude 23??N, longitude 239?? and latitude 43??N, longitude 275??). Results of this research indicate two groups of coronae on Venus: (1) those that are older and nearly coeval with regional plains, and occur globally; and (2) those that are younger and occur between Beta, Atla, and Themis Regiones or along extensional rifts elsewhere, sometimes showing systematic age progressions. Mapping relations and Earth analogs suggest that older plains coronae may be related to a near-global resurfacing event perhaps initiated by a mantle superplume or plumes. Younger coronae of this study that show age progression may be related to (1) a tectonic junction of connecting rifts resulting from local mantle upwelling and spread of a quasi-stationary hotspot plume, and (2) localized spread of post-plains volcanism. We postulate that on Venus most of the young, post-resurfacing coronal plumes may be concentrated within an area defined by the bounds of Beta, Atla, and Themis Regiones. ?? 1998 Academic Press.

  16. The river Ganga of northern India: an appraisal of its geomorphic and ecological changes.

    PubMed

    Sarkar, S K; Bhattacharya, A; Bhattacharya, B

    2003-01-01

    The Ganga is the most important perennial river originating from Gangotri in the snow-bound Himalayas about 3,900 m above mean sea level. Gorging a distance of about 220 km in the Himalayas, it enters the plain at Hardwar and after meandering and braiding over a distance of about 2,525 km through the Indo-Gangetic plains, ultimately joins the Bay of Bengal. The course of this river has been changed due to: (i) subsurface geotectonic movement leading to change in slope of the deltaic plain and subsidence of the Bengal basin; (ii) changing pattern of water discharge with time; (iii) variations in sediment load. The environment of Ganga basin is also deteriorating with time due to severe natural episodes of periodic floods and storms as well as anthropogenic factors such as population growth, deforestation, agricultural activities, urbanisation, fertiliser and fossil fuel consumption and construction activities such as dams and bridges. All these have inconceivable adverse impacts on the health and natural regeneration capacity of the river basin. The presence of micropollutants in water and sediments of this river turns the system into being unsustainable to the biota. The present study synthesises the available information on the changes of its geological, geomorphological and ecological aspects and suggests some remedial measures to be adopted now and in future.

  17. Quantifying geological structures of the Nigde province in central Anatolia, Turkey using SRTM DEM data

    NASA Astrophysics Data System (ADS)

    Demirkesen, A. C.

    2009-01-01

    A digital terrain model and a 3D fly-through model of the Nigde province in central Anatolia, Turkey were generated and quantitatively analyzed employing the shuttle radar topographic mission (SRTM) digital elevation model (DEM). Besides, stream drainage patterns, lineaments and structural-geological features were extracted and analyzed. In the process of analyzing and interpreting the DEM for landforms, criteria such as color and color tones (attributes of heights), topography (shaded DEM and 3D fly-through model) and stream drainage patterns were employed to acquire geo-information about the land, such as hydrologic, geomorphologic, topographic and tectonic structures. In this study, the SRTM DEM data of the study region were experimentally used for both DEM classification and quantitative analysis of the digital terrain model. The results of the DEM classification are: (1) low plain including the plains of Bor and Altunhisar (20.7%); (2) high plain including the Misli (Konakli) plain (28.8%); (3) plateau plain including the Melendiz (Ciftlik) plateau plain (1.0%); (4) mountain including the Nigde massif (33.3%); and (5) high mountain (16.2%). High mountain areas include a caldera complex of Mt Melendiz, Mt Hasan and Mt Pozanti apart from the Ala mountains called Aladaglar and the Bolkar mountains called Bolkarlar in the study region (7,312 km2). Analysis of both the stream drainage patterns and the lineaments revealed that the Nigde province has a valley zone called Karasu valley zone (KVZ) or Nigde valley zone (NVZ), where settlements and agricultural plains, particularly the Bor plain in addition to settlements of the Bor town and the central city of Nigde have the most flooding risk when a heavy raining occurs. The study revealed that the NVZ diagonally divides the study region roughly into two equal parts, heading from northeast to southwest. According to the map created in this study, the right side of the NVZ has more mountainous area, where the Aladaglar is a wildlife national park consisting of many species of fauna and flora whereas the left side of the NVZ has more agricultural plain, with exception of a caldera complex of Mt Melendiz and volcanic Mt Hasan. The south of the study region includes the Bolkarlar. In addition, the Ecemis fault zone (EFZ) lying along the Ecemis rivulet, running from north to south at the west side of the Aladaglar, forms the most important and sensitive location in the region in terms of the tectonics.

  18. Mapping the northern plains of Mars: origins, evolution and response to climate change - a new overview of the recent ice-related landforms in Utopia Planitia

    NASA Astrophysics Data System (ADS)

    Costard, Francois; Sejourne, Antoine; Losiak, Ania; Swirad, Zusanna; Balm, Matthew; Conway, Susan; Gallagher, Colman; van-Gassel, Stephan; Hauber, Ernst; Johnsson, Andreas; Kereszturi, Akos; Platz, Thomas; Ramsdale, Jason; Reiss, Dennis; Skinner, James

    2015-04-01

    An ISSI (International Space Science Institute) international team has been convened to study the Northern Plain of Mars. The northern plains of Mars are extensive, geologically young, low-lying areas that contrast in age and relief to Mars' older, heavily cratered, southern highlands. Mars' northern plains are characterised by a wealth of landforms and landscapes that have been inferred to be related to the presence of ice or ice-rich material. Such landforms include 'scalloped' pits and depressions, polygonally-patterned grounds, and viscous flow features similar in form to terrestrial glacial or ice-sheet landforms. Furthermore, new (within the last few years) impact craters have exposed ice in the northern plains, and spectral data from orbiting instruments have revealed the presence of tens of percent by weight of water within the upper most ~50 cm of the martian surface at high latitudes. The western Utopia Planitia contains numerous relatively young ice-related landforms (< 10 Ma). Among them, there are scalloped depressions, spatially-associated polygons and polygon-junction pits. There is an agreement within the community that they are periglacial in origin and, derivatively, indicate the presence of an ice-rich permafrost. However, these landforms were studied individually and, many questions remain about their formation-evolution and climatic significance. In contrast, we conducted a geomorphological study of all landforms in Utopia Planitia along a long strip from ~30N to ~80N latitude and about 250km wide. The goals are to: (i) map the geographical distribution of the ice-related landforms; (ii) identify their association with subtly-expressed geological units and; (iii) discuss the climatic modifications of the ice-rich permafrost in UP. Our work combines a study with CTX (5-6 m/pixel) and HRSC (~12.5-50 m/pixel) images, supported by higher resolution HiRISE (25 cm/pixel) and MOC (~2 m/pixel) and a comparison with analogous landforms on Earth.

  19. Topography and geomorphology of the Huygens landing site on Titan

    USGS Publications Warehouse

    Soderblom, L.A.; Tomasko, M.G.; Archinal, B.A.; Becker, T.L.; Bushroe, M.W.; Cook, D.A.; Doose, L.R.; Galuszka, D.M.; Hare, T.M.; Howington-Kraus, E.; Karkoschka, E.; Kirk, R.L.; Lunine, J.I.; McFarlane, E.A.; Redding, B.L.; Rizk, B.; Rosiek, M.R.; See, C.; Smith, P.H.

    2007-01-01

    The Descent Imager/Spectral Radiometer (DISR) aboard the Huygens Probe took several hundred visible-light images with its three cameras on approach to the surface of Titan. Several sets of stereo image pairs were collected during the descent. The digital terrain models constructed from those images show rugged topography, in places approaching the angle of repose, adjacent to flatter darker plains. Brighter regions north of the landing site display two styles of drainage patterns: (1) bright highlands with rough topography and deeply incised branching dendritic drainage networks (up to fourth order) with dark-floored valleys that are suggestive of erosion by methane rainfall and (2) short, stubby low-order drainages that follow linear fault patterns forming canyon-like features suggestive of methane spring-sapping. The topographic data show that the bright highland terrains are extremely rugged; slopes of order of 30?? appear common. These systems drain into adjacent relatively flat, dark lowland terrains. A stereo model for part of the dark plains region to the east of the landing site suggests surface scour across this plain flowing from west to east leaving ???100-m-high bright ridges. Tectonic patterns are evident in (1) controlling the rectilinear, low-order, stubby drainages and (2) the "coastline" at the highland-lowland boundary with numerous straight and angular margins. In addition to flow from the highlands drainages, the lowland area shows evidence for more prolific flow parallel to the highland-lowland boundary leaving bright outliers resembling terrestrial sandbars. This implies major west to east floods across the plains where the probe landed with flow parallel to the highland-lowland boundary; the primary source of these flows is evidently not the dendritic channels in the bright highlands to the north. ?? 2007 Elsevier Ltd. All rights reserved.

  20. Geomorphological Mapping of Sputnik Planum and Surrounding Terrain on Pluto

    NASA Astrophysics Data System (ADS)

    White, O. L.; Stern, S. A.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.; Young, L. A.; Moore, J. M.; Cheng, A. F.

    2015-12-01

    The New Horizons flyby of Pluto in July 2015 has provided the first few close-up images of the Kuiper belt object, which reveal it to have a highly diverse range of terrains, implying a complex geological history. The highest resolution images that have yet been returned are seven lossy 400 m/pixel frames that cover the majority of the prominent Plutonian feature informally named Sputnik Planum (all feature names are currently informal), and its surroundings. This resolution is sufficient to allow detailed geomorphological mapping of this area to commence. Lossless versions of all 15 frames that make up the mosaic will be returned in September 2015, and the map presented at AGU will incorporate the total area covered by these frames. Sputnik Planum, with an area of ~650,000 km2, is notable for its smooth appearance and apparent total lack of impact craters at 400 m/pixel resolution. The Planum actually displays a wide variety of textures across its expanse, which includes smooth and pitted plains to the south, polygonal terrain at its center (the polygons can reach tens of kilometers in size and are bounded by troughs that sometimes feature central ridges), and, to the north, darker polygonal terrain displaying patterns indicative of glacial flow. Within these plains there exist several well-defined outcrops of a mottled, light/dark unit that reach from several to tens of kilometers across. Separating Sputnik Planum from the dark, cratered equatorial terrain of Cthulhu Regio on its south-western margin is a unit of chaotically arranged mountains; similar mountainous units exist on the south and western margins. The northern margin is bounded by rugged, hilly, cratered terrain into which ice of Sputnik Planum appears to be intruding in places. Terrain of similar relief exists to the east, but is much brighter than that to the north. The southernmost extent of the mosaic features a unit of rough, undulating terrain that displays very few impact craters at 400 m/pixel resolution.

  1. Understanding Geomorphological Processes on the Earth's Surface from Laboratory Experiments and the Role of Communities of Practice in Generating Reusable Data

    NASA Astrophysics Data System (ADS)

    Hsu, L.

    2016-12-01

    Geomorphological processes move masses of sediment across the face of the Earth, from mountain tops to hillslopes, rivers, flood plains, and coastlines, on a range of temporal and spatial scales that span many orders of magnitude. These processes, sometimes spanning millennia and sometimes occurring catastrophically, affect human communities that live on and near these surface landforms. Experiments conveniently scale these processes to time and space that can be observed and measured in the laboratory. As a result, the research community has produced remarkable experimental datasets for processes such as particle transport, hillslope erosion, channel migration, and coastline evolution. These datasets build a collection that quantifies a wide range of environmental processes and contributes to hazards mitigation and the understanding of long-term effects of climate and tectonics on landscape evolution. However, technology and data acquisition rates are outgrowing capabilities for storing, maintaining, and serving the data. Solutions that improve preservation, reuse, and attribution of geomorphological data from unique experimental set-ups are germinating at different research centers. These solutions allow the cross-disciplinary data integration that is often necessary to achieving a mechanistic and holistic understanding of the processes that shape the Earth's surface. Communities of practice such as the Sediment Experimentalist Network (SEN) and the U.S. Geological Survey's Community for Data Integration (USGS CDI) play a critical role in effectively facilitating information exchange about tools, methods, and results that accelerate experimental success. Through community interactions and a culture change to generate data more fit for reuse, broad challenges in reproducibility, scaling, and integration may be addressed, leading to more rapid progress in Earth surface process research.

  2. Vegetation Response and Landscape Dynamics of Indian Summer Monsoon Variations during Holocene: An Eco-Geomorphological Appraisal of Tropical Evergreen Forest Subfossil Logs

    PubMed Central

    Kumaran, Navnith K. P.; Padmalal, Damodaran; Nair, Madhavan K.; Limaye, Ruta B.; Guleria, Jaswant S.; Srivastava, Rashmi; Shukla, Anumeha

    2014-01-01

    The high rainfall and low sea level during Early Holocene had a significant impact on the development and sustenance of dense forest and swamp-marsh cover along the southwest coast of India. This heavy rainfall flooded the coastal plains, forest flourishing in the abandoned river channels and other low-lying areas in midland.The coastline and other areas in lowland of southwestern India supply sufficient evidence of tree trunks of wet evergreen forests getting buried during the Holocene period under varying thickness of clay, silty-clay and even in sand sequences. This preserved subfossil log assemblage forms an excellent proxy for eco-geomorphological and palaeoclimate appraisal reported hitherto from Indian subcontinent, and complements the available palynological data. The bulk of the subfossil logs and partially carbonized wood remains have yielded age prior to the Holocene transgression of 6.5 k yrs BP, suggesting therein that flooding due to heavy rainfall drowned the forest cover, even extending to parts of the present shelf. These preserved logs represent a unique palaeoenvironmental database as they contain observable cellular structure. Some of them can even be compared to modern analogues. As these woods belong to the Late Pleistocene and Holocene, they form a valuable source of climate data that alleviates the lack of contemporaneous meteorological records. These palaeoforests along with pollen proxies depict the warmer environment in this region, which is consistent with a Mid Holocene Thermal Maximum often referred to as Holocene Climate Optimum. Thus, the subfossil logs of tropical evergreen forests constitute new indices of Asian palaeomonsoon, while their occurrence and preservation are attributed to eco-geomorphology and hydrological regimes associated with the intensified Asian Summer Monsoon, as recorded elsewhere. PMID:24727672

  3. Geomorphology-based interpretation of sedimentation rates from radiodating, lower Passaic River, New Jersey, USA.

    PubMed

    Erickson, Michael J; Barnes, Charles R; Henderson, Matthew R; Romagnoli, Robert; Firstenberg, Clifford E

    2007-04-01

    Analysis of site geomorphology and sedimentation rates as an indicator of long-term bed stability is central to the evaluation of remedial alternatives for depositional aquatic environments. In conjunction with various investigations of contaminant distribution, sediment dynamics, and bed stability in the Passaic River Estuary, 121 sediment cores were collected in the early 1990s from the lower 9.7 km of the Passaic River and analyzed for lead-210 (210Pb), cesium-137 (137Cs), and other analytes. This paper opportunistically uses the extensive radiochemical dataset to examine the spatial patterns of long-term sedimentation rates in, and associated geomorphic aspects of, this area of the river. For the purposes of computing sedimentation rates, the utility of the 210Pb and 137Cs depositional profiles was assessed to inform appropriate interpretation. Sedimentation rates were computed for 90 datable cores by 3 different methods, depending on profile utility. A sedimentation rate of 0 was assigned to 17 additional cores that were not datable and for which evidence of no deposition exists. Sedimentation patterns were assessed by grouping results within similar geomorphic areas, delineated through inspection of bathymetric data. On the basis of channel morphology, results reflect expected patterns, with the highest sedimentation rates observed along point bars and channel margins. The lowest rates of sedimentation (and the largest percentage of undatable cores) were observed in the areas along the outer banks of channel bends. Increasing sedimentation rates from upstream to downstream were noted. Average and median sedimentation rates were estimated to be 3.8 and 3.7 cm/y, respectively, reflecting the highly depositional nature of the Passaic River estuary. This finding is consistent with published descriptions of long-term geomorphology for Atlantic Coastal Plain estuaries.

  4. The role of deep-water sedimentary processes in shaping a continental margin: The Northwest Atlantic

    USGS Publications Warehouse

    Mosher, David C.; Campbell, D.C.; Gardner, J.V.; Piper, D.J.W.; Chaytor, Jason; Rebesco, M.

    2017-01-01

    The tectonic history of a margin dictates its general shape; however, its geomorphology is generally transformed by deep-sea sedimentary processes. The objective of this study is to show the influences of turbidity currents, contour currents and sediment mass failures on the geomorphology of the deep-water northwestern Atlantic margin (NWAM) between Blake Ridge and Hudson Trough, spanning about 32° of latitude and the shelf edge to the abyssal plain. This assessment is based on new multibeam echosounder data, global bathymetric models and sub-surface geophysical information.The deep-water NWAM is divided into four broad geomorphologic classifications based on their bathymetric shape: graded, above-grade, stepped and out-of-grade. These shapes were created as a function of the balance between sediment accumulation and removal that in turn were related to sedimentary processes and slope-accommodation. This descriptive method of classifying continental margins, while being non-interpretative, is more informative than the conventional continental shelf, slope and rise classification, and better facilitates interpretation concerning dominant sedimentary processes.Areas of the margin dominated by turbidity currents and slope by-pass developed graded slopes. If sediments did not by-pass the slope due to accommodation then an above grade or stepped slope resulted. Geostrophic currents created sedimentary bodies of a variety of forms and positions along the NWAM. Detached drifts form linear, above-grade slopes along their crests from the shelf edge to the deep basin. Plastered drifts formed stepped slope profiles. Sediment mass failure has had a variety of consequences on the margin morphology; large mass-failures created out-of-grade profiles, whereas smaller mass failures tended to remain on the slope and formed above-grade profiles at trough-mouth fans, or nearly graded profiles, such as offshore Cape Fear.

  5. Relief inversion in the geomorphological evolution of sub-Saharan West Africa

    NASA Astrophysics Data System (ADS)

    Butt, C. R. M.; Bristow, A. P. J.

    2013-03-01

    The geomorphology of much of sub-Saharan West Africa is dominated by the presence of plateaux and plains with ferruginous and, locally, aluminous (bauxitic) duricrusts. The plateaux occur at different elevations and have been correlated as two or more palaeosurfaces across much of the region. The duricrusts have generally been considered to be residual, formed by conformable erosion and chemical wasting of immediately underlying bedrock. This concept has been central to interpretations as diverse as the formation and evolution of the landscape and the development of geochemical exploration models. Recent regolith landform mapping, field observations and experience from mineral exploration in southern Mali and Burkina Faso, however, demonstrate that the duricrusts are mainly ferricretes, i.e., Fe oxide-cemented sediments. These observations require a re-interpretation of the geomorphological evolution of the region during the Cenozoic. The landscape has evolved by several cycles of weathering and erosion-deposition, triggered by climatic, tectonic or other environmental changes. It is proposed that an initial bauxitic/lateritic regolith was partly eroded following uplift and/or a change to a more arid climate, and that the detritus, rather than being removed, was deposited on slopes and valleys. During a subsequent humid period of lateritic weathering, Fe oxide cementation of this detritus formed ferricrete. Dehydration and hardening of the ferricrete after further uplift or aridity increased its resistance to erosion, resulting in relief inversion, with the detritus, in turn, being deposited downslope. This too has been weathered and cemented, to form a younger ferricrete. The occurrence of ferricrete landforms in adjacent countries, noted by field observation and inferred from satellite imagery, demonstrates that relief inversion is a very widespread and important phenomenon in southern Mali, Burkina Faso and adjacent countries in semi-arid West Africa.

  6. Holocene glacier chronology of the Southern Alps/New Zealand - a critical re-assessment based on geomorphological and glaciological principles

    NASA Astrophysics Data System (ADS)

    Winkler, Stefan

    2017-04-01

    The Southern Alps of New Zealand is one of few suitable study sites for the investigation of Holocene glacier chronologies in the mid-latitudinal Southern Hemisphere. As a result, several studies have been carried out during the past decades applying diverse approaches and using different numerical dating methods (Radiocarbon dating, terrestrial cosmogenic nuclide dating - TCND) or combined methods like Schmidt-hammer exposure-age dating (SHD) or weathering-rind thickness. The availability of a regional 10Be production curve has improved the calibration of TCND-ages and modern calibration programmes allow re-calculation of old, non-calibrated radiocarbon ages. Despite this progress and an increasing number of studies, there still remains considerable discrepancy if these studies are analysed in detail. And although the Southern Alps of New Zealand are included in more recent global reviews, the corresponding paragraphs are somehow biased towards few selected chronologies and an ostensible 'supremacy' of age information obtained by TCND. Reason for this practise is most likely a comparably high number of individual boulders precisely dated, but moraine ridges on those glacier forelands investigated have been primarily clustered on basis of boulder ages rather than on their geomorphological, sedimentological, and lithological properties. Detailed geomorphological investigation has, however, revealed that disregarding the latter mentioned creates artefacts in form of wrongly introduced advances within existing glacier chronologies alongside uncertainties caused by not paying attention to the concept of 'Little Ice Age'-type events (neoglacial events) and diverse glacier response times. In an attempt to resolve or at least reduce existing uncertainties and contribute towards a future representative regional Holocene glacier chronology for the Southern Alps, the most prominent existing chronologies have be re-assessed. Although the raw data of some studies needed at first to be calibrated to modern standards (non-calibrated radiocarbon ages), these raw data has in general not been put into question and taken as presented. The geomorphological interpretation has, however, been carefully reviewed alongside all potential consequences for the subsequent relation to the underlying glacier dynamics. Different glacier response times have been considered as well as a more conservative approach to the precision and accuracy of certain dating methods. The latter was seen as more appropriate due to the highly dynamic geomorphological process-systems, strong neotectonic activity, and specific regional glaciological properties like for example frequent extensive supraglacial debris-covers complicating every chronological approach in the Southern Alps. The preliminary results of this critical re-assessment presented here reveal that too optimistic judgement of achieved accuracy lead to an overestimation of the true number of regional glacier advances during the Late Holocene. More conservative error margins and application of the neoglacial event concept instead of displaying 'glacier pulses' in form of advances at individual glaciers would create a better albeit less accurate correspondence between chronologies developed at different localities. This more critical evaluation would in the end be beneficial to any subsequent attempts of intra-hemispheric and global correlation of glacier chronologies.

  7. Knowledge-based modelling of historical surfaces using lidar data

    NASA Astrophysics Data System (ADS)

    Höfler, Veit; Wessollek, Christine; Karrasch, Pierre

    2016-10-01

    Currently in archaeological studies digital elevation models are mainly used especially in terms of shaded reliefs for the prospection of archaeological sites. Hesse (2010) provides a supporting software tool for the determination of local relief models during the prospection using LiDAR scans. Furthermore the search for relicts from WW2 is also in the focus of his research. In James et al. (2006) the determined contour lines were used to reconstruct locations of archaeological artefacts such as buildings. This study is much more and presents an innovative workflow of determining historical high resolution terrain surfaces using recent high resolution terrain models and sedimentological expert knowledge. Based on archaeological field studies (Franconian Saale near Bad Neustadt in Germany) the sedimentological analyses shows that archaeological interesting horizon and geomorphological expert knowledge in combination with particle size analyses (Koehn, DIN ISO 11277) are useful components for reconstructing surfaces of the early Middle Ages. Furthermore the paper traces how it is possible to use additional information (extracted from a recent digital terrain model) to support the process of determination historical surfaces. Conceptual this research is based on methodology of geomorphometry and geo-statistics. The basic idea is that the working procedure is based on the different input data. One aims at tracking the quantitative data and the other aims at processing the qualitative data. Thus, the first quantitative data were available for further processing, which were later processed with the qualitative data to convert them to historical heights. In the final stage of the workflow all gathered information are stored in a large data matrix for spatial interpolation using the geostatistical method of Kriging. Besides the historical surface, the algorithm also provides a first estimation of accuracy of the modelling. The presented workflow is characterized by a high flexibility and the opportunity to include new available data in the process at any time.

  8. Sedimentological downstream effects of dam failure and the role of sediment connectivity: a case study from the Bohemian Massif, Austria

    NASA Astrophysics Data System (ADS)

    Wurster, Maria-Theresia; Weigelhofer, Gabriele; Pichler-Scheder, Christian; Hein, Thomas; Pöppl, Ronald

    2017-04-01

    Sediment connectivity describes the potential for sediment transport through catchment systems, further defining locality and characteristics of sedimentation in river channels. Dams generally decrease sediment connectivity and act as temporary sediment sinks. When dams are removed these sediments are being reworked and released downstream. During dam restoration works along a small-sized stream in the Bohemian Massif of Austria in December 2015 a dam failure occurred which led to the entrainment of several tons of fine-grained reservoir sediments further entering and depositing in the downstream channel reaches, located in the Thayatal National Park. Aiming to remove these fine sediment deposits the National Park Authority decided to initiate a flushing event in April 2016. The main aim of the present study was to investigate the effects of dam failure-induced fine sediment release and reservoir flushing on downstream bed sediment characteristics by applying geomorphological mapping (incl. volumetric surveys) and sedimentological analyses (freeze-core sampling and granulometry), further discussing the role of in-channel sediment connectivity. The obtained results have shown that immediately after the dam failure event a total of ca. 18 m3 of fine-grained sediments have accumulated as in-channel sediment bars which were primarily formed in zones of low longitudinal connectivity (e.g. in the backwater areas of woody debris jams, or at slip-off bank locations). The flushing event has been shown to have caused remobilization and downstream translocation of these deposits, further reducing their total volume by approx. 60%. The results of the granulometric analyses of the freeze-core samples have revealed fine sediment accumulation and storage in the upper parts of the channel bed, having further increased after the flushing event. Additionally, effects on chemical conditions and invertebrate community have been observed. These observations clearly indicate a significant influence of vertical connectivity conditions on in-channel fine sediment storage.

  9. Geo-hydrological risk management for civil protection purposes in the urban area of Genoa (Liguria, NW Italy)

    NASA Astrophysics Data System (ADS)

    Brandolini, P.; Cevasco, A.; Firpo, M.; Robbiano, A.; Sacchini, A.

    2012-04-01

    Over the past century the municipal area of Genoa has been affected by recurring flood events and several landslides that have caused severe damage to urbanized areas on both the coastal-fluvial plains and surrounding slopes, sometimes involving human casualties. The analysis of past events' annual distribution indicates that these phenomena have occurred with rising frequency in the last seventy years, following the main land use change due to the development of harbour, industrial, and residential areas, which has strongly impacted geomorphological processes. Consequently, in Genoa, civil protection activities are taking on an increasing importance for geo-hydrological risk mitigation. The current legislative framework assigns a key role in disaster prevention to municipalities, emergency plan development, as well as response action coordination in disaster situations. In view of the geomorphological and environmental complexity of the study area and referring to environmental laws, geo-hydrological risk mitigation strategies adopted by local administrators for civil protection purposes are presented as examples of current land/urban management related to geo-hydrological hazards. Adopted measures have proven to be effective on several levels (planning, management, structure, understanding, and publication) in different cases. Nevertheless, the last flooding event (4 November 2011) has shown that communication and public information concerning the perception of geo-hydrological hazard can be improved.

  10. Late Paleogene terrestrial fauna and paleoenvironments in Eastern Anatolia: New insights from the Kağızman-Tuzluca Basin

    NASA Astrophysics Data System (ADS)

    Métais, Grégoire; Sen, Sevket; Sözeri, Koray; Peigné, Stéphane; Varol, Baki

    2015-08-01

    In Eastern Turkey, relatively little work has been undertaken to characterize the sedimentologic and stratigraphical context of the Kağızman-Tuzluca Basin until now. Extending across the Turkey-Armenian border, this basin documents the syn- and post-collisional evolution of Eastern Anatolia, resulting from the closure of the Neotethyan Seaways and the final collision of the Afro-Arabian and Eurasian plates. From detailed sedimentological and paleontological studies, we propose an interpretation of the lithology and depositional environment of the Late Paleogene Alhan Formation located on the western bank of the Aras River. This sequence of terrestrial clastics rests directly and unconformably onto the ophiolitic mélange, and it documents several depositional sequences deposited in alluvial plain and lacustrine environments. At this stage, the age of the Alhan Formation can only be calibrated by fossil evidence. Several stratigraphic levels yielding fossil data along the section have been identified, but these poor assemblages of fauna and flora hamper extensive comparisons with roughly contemporaneous localities of Central and Southern Asia. Carnivorous and ruminant mammal remains are reported for the first time from the supposed Late Oligocene Güngörmez Formation. The identified fossil mammal taxa reveal biogeographic affinities between Central Anatolia and southern Asia, thus suggesting dispersal between these areas during the Oligocene or earlier. Further studies of the fossil assemblages from the Kağızman-Tuzluca Basin and other basins of Eastern Anatolia and lesser Caucasus regions are needed to better constrain the paleobiogeographic models.

  11. Mesures in situ par infiltrométrie des propriétés hydrodynamiques des sols de Mnasra (Maroc)

    NASA Astrophysics Data System (ADS)

    Tamoh, Karim; Maslouhi, Abdellatif

    2004-04-01

    The aim of this work is the field hydraulic characterisation of Mnasra soils in northern Morocco, which represents an essential step to study the hydraulic and chemical transports through the vadose zone. We have used a tension infiltrometer associated with a transient axisymmetric infiltration method to determine the hydraulic conductivity, which reduces the duration of measurements. This allows us to characterise a large area with many measurements. Parameters of the characteristic functions K( h) and θ( h) are estimated for six different soils belonging to two geomorphologically different domains: a sandy zone and an alluvial plain. To cite this article: K. Tamoh, A. Maslouhi, C. R. Geoscience 336 (2004).

  12. Sedimentology of the Argo and Gascoyne abyssal plains, NW Australia: Report on Ocean Drilling Program Leg 123 (Sept. 1–Nov. 1, 1988)

    USGS Publications Warehouse

    Thurow, Jürgen

    1988-01-01

    Ocean Drilling Program Leg 123 drilled two sites in the Indian Ocean in order to study the rifting and early spreading of one of the world’s oldest ocean basins.Site 765 was drilled in 5714 meters of water on the Argo Abyssal Plain northwest of Australia. The sedimentary succession records the opening of an ocean basin, from the first sediments deposited atop young oceanic crust, to the present day. The oldest sediments are microlaminated brown silty claystones, locally rich in calcareous bioclasts. Most of the sequence is dominated by turbidites (primarily calcareous) which probably originated within canyons cut into the margin of the drowned platform of the North West Shelf of Australia.Site 766 is located in 3998 meters of water, at the base of the steep western margin of the Exmouth Plateau. The oldest sediments penetrated are glauconitic, volcaniclastic, and bioclastic sandstones and siltstones, which are interbedded with inclined basaltic sills. These sediments were deposited by a prograding submarine fan system which shed shallow marine sediments westward or northwestward off of the western rim of the Exmouth Plateau. Sandstones are succeeded by silty claystones, recording gradual abandonment or redirection of the fan system. An overlying sequence of pelagic and hemipelagic clayey and zeolitic calcareous oozes and chalks is succeeded by featureless and homogeneous pelagic nannofossil oozes.

  13. Last Glacial mammals in South America: a new scenario from the Tarija Basin (Bolivia)

    NASA Astrophysics Data System (ADS)

    Coltorti, M.; Abbazzi, L.; Ferretti, M. P.; Iacumin, P.; Rios, F. Paredes; Pellegrini, M.; Pieruccini, P.; Rustioni, M.; Tito, G.; Rook, L.

    2007-04-01

    The chronology, sedimentary history, and paleoecology of the Tarija Basin (Bolivia), one of the richest Pleistocene mammalian sites in South America, are revised here based on a multidisciplinary study, including stratigraphy, sedimentology, geomorphology, paleontology, isotope geochemistry, and 14C geochronology. Previous studies have indicated a Middle Pleistocene age for this classic locality. We have been able to obtain a series of 14C dates encompassing all the fossil-bearing sequences previously studied in the Tarija Basin. The dated layers range in age from about 44,000 to 21,000 radiocarbon years before present (BP), indicating that the Tarija fauna is much younger than previously thought. Glacial advances correlated to marine isotopic stages (MIS) 4 and 2 (ca. 62 and 20 ka BP, respectively) are also documented at the base and at the very top of the Tarija Padcaya succession, respectively, indicating that the Bolivian Altiplano was not dry but sustained an ice cap during the Last Glacial Maximum. The results of this multidisciplinary study enable us to redefine the chronological limits of the Tarija sequence and of its faunal assemblage and to shift this paleontological, paleoclimatological, and paleoecological framework to the time interval from MIS 4 to MIS 2.

  14. Surface texture analysis of southern Tuli Basin sediments: Implications for Limpopo Valley geoarchaeological contexts

    NASA Astrophysics Data System (ADS)

    Le Baron, Joel C.; Grab, Stefan W.; Kuman, Kathleen

    2011-03-01

    The Hackthorne 1 site (southern Tuli Basin, South Africa) is situated on a sand-covered plateau adjacent to the Limpopo River Valley. Although the site is well known for its Stone Age archaeology, the past environmental contexts (particularly sedimentological/geomorphological) are not well known. We examine the Hackthorne sand grain surface textures, so as to provide some insight on the site specific and regional depositional history. Quartz sands at Hackthorne were collected from surface sands and from underlying weathered calcrete. SEM analysis was performed on sand grains, through which several mechanical and chemical microtextures were identified. Microtextures typical of fluvial environments were found only on grains derived from the plateau calcrete host sediment, whilst the surface sands exhibited only textures associated with aeolian environments. The results indicate that the calcrete host sediment is composed of alluvium, and that the surface sands mantling the Hackthorne Plateau are not deflated from the alluvial deposits in the Limpopo Valley, but may rather be derived from distant aeolian sources. The deposition of aeolian sands is consistent with OSL dates which place sand deposition, or remobilization, at 23 and 15 kya, periods in southern Africa associated with increased aridity.

  15. Reconstructing the Geomorphological Evolution of the Plain of Xanthos (SW Turkey) during the Holocene : a Geoarchaeological Approach

    NASA Astrophysics Data System (ADS)

    Ecochard, E.; Fouache, E.; Kuzucuoǧlu, C.; Carcaud, N.; Ekmekçi, M.; Ulusoy, I.; Robert, V.; Çiner, A.; Des Courtils, J.

    2009-04-01

    In the Hellenistic period, according to Strabo, Xanthos and Letoon were very important cities and major holy places in Lycia, a peninsula in southwestern contemporary Turkey. An archaeological study of the sites of Xanthos and Letoon cannot assume that the environment in which they are located did not change since the arrival of the first settlers in the seventh century BC. The rise of the sea level in the last 15,000 years and the subsequent Holocene alluviation has a strong impact on the landscape. The river Esen Çayı meandered in the valley leaving alluvial deposits, and the slopes were eroded. The geography of the valley of the river Esen Çayı during the Lycian and Hellenistic periods, i.e. during the 1st millennium BC, yet remains significantly unknown. What was the landscape around the Letoon shrine like? Where were the river channels? What was the progradation stage of the deltaic plain? To what extent did the slope mobility determine the location of settlements and ancient roads? To answer these questions, geomorphological dynamics at work throughout the Holocene must be reconstructed. In this communication, preliminary results from the analysis of cores and geophysical profiles, both performed during and after four field work seasons in the plain, are compared with the historical, archaeological and literary data, and a first reconstruction of the changing landscape is proposed. The sedimentary records indicate that a marine bay was gradually closed by the development of coastal sand deposits, prompting the development of a lagoonal system. As lagoons and wetlands have long been dominant in the plain, both sites probably developed in this type of landscape. In front of the Letoon site, a channel of the river Esen Çayı has been identified. It probably allowed for a direct connection by boat between the holy place and the sea downstream, and with the city of Xanthos upstream. This channel was probably responsible of the gradual sinking of the sanctuary below the alluvial deposits. The study of the morphology of the valley reveals the high mobility of landscapes in time and space. The mobility of slopes and rivers forced men to carefully choose the location of their settlements, which they often settled on rocky promontories isolated from slopes. The roads were probably established on the right bank of the river, where the slopes are less steep. The mobility of the landscape was also exploited with a symbolic aim: the Letoon shrine was installed in a hostile environment of wetlands in the middle of the floodplain, as a challenge to the laws of nature. Not only did the ancient societies adapt themselves to environmental constraints, but they also participated in the production of landscapes, with pragmatic and symbolic aims.

  16. Major water-related episodes on the lowlands of Mars

    NASA Astrophysics Data System (ADS)

    Fairén, A. G.; Dohm, J. M.; Baker, V. R.

    2003-04-01

    Throughout the recorded history of Mars, liquid water has distinctly shaped its landscape, including the prominent circum-Chryse and the northwestern slope valleys outflow channel systems (Dohm et al., 2001), and the extremely flat northern plains topography at the distal reaches of these outflow channel systems. Paleotopographic reconstructions of the Tharsis magmatic complex reveal the existence of an Europe-sized Noachian drainage basin and subsequent aquifer system in eastern Tharsis. This basin is proposed to source the magmatic-triggered outburst floods that sculpted the circum-Chryse and NSVs outflow channel systems (Dohm, et al., 2001), entrained boulders, rock, and sediment during passage, and ponded to form sequentially through time various hypothesized oceans, seas, and lakes in the northern plains (Parker et al., 1993; Baker et al., 1991; Scott et al., 1995; Head et al., 1999) and glaciers and rock glaciers and lacustrine environments such as in the southern hemisphere (Baker, 2001). The floodwaters decreased in volume with time due to inadequate groundwater recharge of the Tharsis aquifer system. Basing on the ideas of episodic greenhouse atmosphere and water stability on the lowlands of Mars (Baker et al., 1991), a conceptual scheme for water evolution and associated geomorphologic features on the northern plains can be proposed. This model highlights Tharsis-triggered flood inundations and their direct impact on shaping the northern plains, as well as making possible the existence of fossil and/or extant life. Martian topography, as observed from the Mars Orbiter Laser Altimeter, corresponds well to these ancient flood inundations, including the approximated shorelines that have been proposed for the northern plains (Parker et al., 1993). Stratigraphy, geomorphology, and topography record at least one great Noachian/early Hesperian northern plains ocean (Fairén and De Pablo, 2002), best portrayed by the martian dichotomy boundary or Contact 1, but in Arabia Terra, where the initial shoreline might have been as far south as Sinus Meridani (Edgett and Parker, 1997), forming an almost equipotential line (total elevation differences are ˜2 km) that we name Contact 0, which is also consistent with the location of the boundary in crustal thickness dichotomy, as deduced from topography and gravity data (Zuber et al., 2000), and with the locus of debouch of almost every valley network in Arabia (Edgett and Parker, 1997; Carr, 2002); a Late Hesperian sea, which would have extended over the deeper areas in the lowlands inset within the boundary of the first great ocean, and so portrayed by Contact 2; and a number of widely distributed minor lakes that may represent a reduced Late Hesperian sea, or ponded waters in the deepest reaches of the northern plains related to minor Tharsis (e.g., Anderson et al., 2001) and Elysium (Skinner and Tanaka, 2001) induced Amazonian flooding. Possible biologic evolution throughout the resulting different climatic and hydrologic conditions would account for very distinct metabolic pathways for hypothesized organisms capable of surviving and perhaps evolving in each aqueous environment, those that existed in the dry and cold periods between the flood inundations, and those organisms that could survive both extremes. Terrestrial microbiota, chemolithotrophic and heterotrophic bacteria, provide exciting analogues for such potential extremophile existence in Mars, especially where long-lived, magmatic-driven hydrothermal activity is indicated (Farmer and Des Marais, 1999). Such Martian environments and related materials and life forms may have been excavated to the surface by catastrophic outflows making targets readily available for sampling and in-deep analyses. References Anderson, R. C. et al.: Primary centers and secondary concentrations of tectonic activity through time in western hemisphere of Mars. J. Geophys. Res. 106, 20 563--20 585, 2001. Baker, V.R., et al.: Ancient oceans, ice sheets and the hydrological cycle on Mars. Nature, 352, 589--594, 1991. Baker, V. R.: Water and the martian landscape. Nature, 412, 228--236, 2001. Carr, M. H.: Elevations of water-worn features on Mars: Implications for circulation of groundwater, J. Geophys. Res., 107, 5131, doi:10.1029/2002JE001845, 2002. Dohm, J.M., et al.: Ancient drainage basin of the Tharsis region, Mars: Potential source for outflow channel systems and putative oceans or paleolakes. J. Geophys. Res., 106, 32 943--32 958, 2001. Edgett, K.S. and Parker, T.J.: Water on early Mars: Possible subaqueous sedimentary deposits covering ancient cratered terrain in western Arabia and Sinus Meridani. Geophys. Res. Lett., 24, 2897--2900, 1997. Farmer, J.D. and Des Marais, D.J.: Exploring for a record of ancient martian life. J. Geophys. Res., 104, 26 977--26 995, 1999. Fairén, A.G. and de Pablo, M.A.: An evolutionary timescale for the water on Mars. Lunar Planet. Sci. Conf., XXXIII, #1013 (abstract) [CD-ROM], 2002. Head, J.W., et al.: Possible ancient oceans on Mars: Evidence from Mars Orbiter laser altimeter data. Science, 286, 2134--2137, 1999. Parker, T.J., et al.: Coastal geomorphology of the Martian northern plains. J. Geophys. Res., 98, 11 061--11 078, 1993. Scott, D.H., et al.: Map of Mars showing channels and possible paleolake basins. U.S. Geol. Surv. Misc. Invest. Ser. MAP I-2461, 1995. Skinner, J.A. and Tanaka, K.L.: Long-lived hydrovolcanism of Elysium. Eos. Trans. AGU 82(47), Fall Meet. Suppl., Abstract P31B-07, 2001. Zuber, M. T., et al.: Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. Science, 287, 1788--1793, 2000.

  17. Across the Gap: Geochronological and Sedimentological Analyses from the Late Pleistocene-Holocene Sequence of Goda Buticha, Southeastern Ethiopia

    PubMed Central

    Asrat, Asfawossen; Bahain, Jean-Jacques; Chapon, Cécile; Douville, Eric; Fragnol, Carole; Hernandez, Marion; Hovers, Erella; Leplongeon, Alice; Martin, Loïc; Pleurdeau, David; Pearson, Osbjorn; Puaud, Simon; Assefa, Zelalem

    2017-01-01

    Goda Buticha is a cave site near Dire Dawa in southeastern Ethiopia that contains an archaeological sequence sampling the late Pleistocene and Holocene of the region. The sedimentary sequence displays complex cultural, chronological and sedimentological histories that seem incongruent with one another. A first set of radiocarbon ages suggested a long sedimentological gap from the end of Marine Isotopic Stage (MIS) 3 to the mid-Holocene. Macroscopic observations suggest that the main sedimentological change does not coincide with the chronostratigraphic hiatus. The cultural sequence shows technological continuity with a late persistence of artifacts that are usually attributed to the Middle Stone Age into the younger parts of the stratigraphic sequence, yet become increasingly associated with lithic artifacts typically related to the Later Stone Age. While not a unique case, this combination of features is unusual in the Horn of Africa. In order to evaluate the possible implications of these observations, sedimentological analyses combined with optically stimulated luminescence (OSL) were conducted. The OSL data now extend the radiocarbon chronology up to 63 ± 7 ka; they also confirm the existence of the chronological gap between 24.8 ± 2.6 ka and 7.5 ± 0.3 ka. The sedimentological analyses suggest that the origin and mode of deposition were largely similar throughout the whole sequence, although the anthropic and faunal activities increased in the younger levels. Regional climatic records are used to support the sedimentological observations and interpretations. We discuss the implications of the sedimentological and dating analyses for understanding cultural processes in the region. PMID:28125597

  18. Across the Gap: Geochronological and Sedimentological Analyses from the Late Pleistocene-Holocene Sequence of Goda Buticha, Southeastern Ethiopia.

    PubMed

    Tribolo, Chantal; Asrat, Asfawossen; Bahain, Jean-Jacques; Chapon, Cécile; Douville, Eric; Fragnol, Carole; Hernandez, Marion; Hovers, Erella; Leplongeon, Alice; Martin, Loïc; Pleurdeau, David; Pearson, Osbjorn; Puaud, Simon; Assefa, Zelalem

    2017-01-01

    Goda Buticha is a cave site near Dire Dawa in southeastern Ethiopia that contains an archaeological sequence sampling the late Pleistocene and Holocene of the region. The sedimentary sequence displays complex cultural, chronological and sedimentological histories that seem incongruent with one another. A first set of radiocarbon ages suggested a long sedimentological gap from the end of Marine Isotopic Stage (MIS) 3 to the mid-Holocene. Macroscopic observations suggest that the main sedimentological change does not coincide with the chronostratigraphic hiatus. The cultural sequence shows technological continuity with a late persistence of artifacts that are usually attributed to the Middle Stone Age into the younger parts of the stratigraphic sequence, yet become increasingly associated with lithic artifacts typically related to the Later Stone Age. While not a unique case, this combination of features is unusual in the Horn of Africa. In order to evaluate the possible implications of these observations, sedimentological analyses combined with optically stimulated luminescence (OSL) were conducted. The OSL data now extend the radiocarbon chronology up to 63 ± 7 ka; they also confirm the existence of the chronological gap between 24.8 ± 2.6 ka and 7.5 ± 0.3 ka. The sedimentological analyses suggest that the origin and mode of deposition were largely similar throughout the whole sequence, although the anthropic and faunal activities increased in the younger levels. Regional climatic records are used to support the sedimentological observations and interpretations. We discuss the implications of the sedimentological and dating analyses for understanding cultural processes in the region.

  19. PaleoGeo: a Web based GIS database for paleoenvironmental studies

    NASA Astrophysics Data System (ADS)

    Song, Wonsuh; Kondo, Yasuhisa; Oguchi, Takashi

    2014-05-01

    Paleoenvironmental studies cover various fields such as paleohydrology, geomorphology, paleooceanology, paleobiology, paleoclimatology, and chronology. It is difficult for an individual researcher to collect and compile enormous data regarding these fields. We have been compiling portal data and presenting them using a web-based geographical information system (Web-GIS) called PaleoGeo for the multidisciplinary project 'Replacement of Neanderthals by Modern Humans'. The aim of the project is to reconstruct the distribution of Neanderthals and modern humans in time and space in relation to past climate change. We have been collecting information from almost three thousand articles of 13 journals regarding paleoenvironmental research (i.e., Boreas, Catena, Climatic Change, Earth Surface Processes and Landforms, Geomorphology, Journal of Quaternary Science, Palaeogeography, Palaeoclimatology, and Palaeoecology, Quaternary International, Quaternary Research, Quaternary Science Reviews, The Holocene, and The Journal of Geology). The topics of the articles were classified into six themes (paleohydrology, earth surface processes and materials, paleooceanology, paleobiology, palaeoclimatology, and chronology) and 19 subthemes (hydrology, flood, fluvial, glacier, fluvial/glacier, sedimentology, soil, slope process, periglacial, peat land, eolian, sea-level, biology, vegetation, zoology, vegetation/zoology, archaeology, climate, atmosphere, and chronology). The collected data consist of the journal name, information about each paper (authors, title, volume, year, and page numbers), site location (country name, longitude, and latitude), theme, subtheme, keywords, DOI (Digital Object Identifier), and period (era). Location data are indispensable for paleoenvironmental studies. The PaleoGeo shows information with a map, which is an advantage of this database system. However, the number of the paleoenvironmental studies is growing rapidly and we have to effectively cover them as many as possible. We plan to simplify the input data (latitude, longitude, title and DOI only) to include more publications. So far information about >7500 sites has been collected and the number is increasing. The collected data are accessible via the internet (http://neangis.csis.u-tokyo.ac.jp/paleogeo/).

  20. When was irrigation first used in Bat (Wadi Sharsah, northwestern Oman)?

    NASA Astrophysics Data System (ADS)

    Fouache, E.; Desruelles, S.; Eddargach, W.; Cammas, C.; Wattez, J.; Martin, C.; Tengberg, M.; Cable, C.; Thornton, C.

    2012-04-01

    The extensive archaeological site of Bat, registered as a World Heritage Site by UNESCO in 1989, is situated within the Wadi Sharsah and around the modern village and palm grove of Bat, approximately 24 km from the modern city of Ibri in northwestern Oman. The archaeological remains from the Bronze Age excavated by the Bat Archaeological Project are located in two main areas. The northern area consists of a chain of low limestone hills cut by wadi tributaries leading to the main Wadi Sharsah. It is characterised by an exceptionally high density of graves from two successive Bronze Age periods: Hafit (ca. 3100-2700 BCE) and Umm an-Nar (ca. 2700-2000 BCE). South of the Bat cemetery, in the flat part of the valley, there are several large circular structures (known historically as "towers") and remains from both Hafit and Umm an-Nar periods, as well as later periods. Geomorphological mapping of the floodplain, associated with archaeological survey, have identified walls suggesting that during the Umm an-Nar period there was a system of irrigation which controlled flood water. Sedimentological, malacological, C14 dating and micromorphological studies of a 10 m long and 2.5 m high section located 143 m northeast of the Tower 1146 on the left bank of a small tributary of the Wadi Sharsah provide strong arguments for the presence of an irrigation system that began before the Hafit period. Botanical macro-remains collected during the excavation of early Bronze Age structures at Bat further indicate the presence of date palm gardens since the early 3rd millennium BCE allowing the cultivation of several crop species, in particular cereals. Most generally, the global palaeoenvironmental reconstruction from our data supports a model of a general trend of aridification from Bronze to Iron Ages. Key words : Bronze Age, Holocene, Geomorphology, Micromorphology, Irrigation, Oman

  1. Late Quaternary dynamics of a South African floodplain wetland and the implications for assessing recent human impacts

    NASA Astrophysics Data System (ADS)

    Tooth, S.; Rodnight, H.; McCarthy, T. S.; Duller, G. A. T.; Grundling, A. T.

    2009-05-01

    Knowledge of the long-term geomorphological dynamics of wetlands is limited, so currently there is an inadequate scientific basis for assessing anthropogenically induced changes and for developing conservation, remediation, and/or sustainable management guidelines for these fragile ecosystems. Along the upper Klip River, eastern South Africa, geomorphological and sedimentological investigations, geochronology, and remote sensing have been used to establish the late Quaternary dynamics of some internationally important floodplain wetlands, thus providing a reference condition against which to assess the extent of recent human impacts. Optically stimulated luminescence dating reveals that the wetlands have developed over at least the last 30 ky as a result of slow meander migration (< 0.2 m y - 1 ), irregular cutoff events, and infrequent avulsions (approximately one every 3-6 ky) that have occurred autogenically as a natural part of meander-belt development. Following European settlement in the Klip valley (late nineteenth century), however, modifications to local flora and fauna, as well as the initiation of local wetland drainage schemes, have had major impacts. In particular, proliferation of exotic willows and associated debris jams, and the artificial excavation of a 1.2-km-long channel section across the wetlands have initiated an ongoing avulsion that is characterised by failure (gradual abandonment) of the main channel and rapid incision of a headcutting channel. Compared to the pre-settlement condition, little change in lateral migration activity has occurred, but this avulsion provides a clear example of anthropogenically accelerated change, occurring only ~ 1 ky after the last natural avulsion and in a part of the wetlands where avulsions have not occurred previously. Subsequent human interventions have included installing weirs in an attempt to control the resulting erosion and promote reflooding, but ongoing maintenance has been required. In areas that were not glaciated during the Quaternary, many other floodplain wetlands may be of similar antiquity, but the Klip River illustrates their sensitivity to direct and indirect human impacts.

  2. The inner structure of landslides and landslide-prone slopes in south German cuesta landscapes assessed by geophysical, geomorphological and sedimentological approaches

    NASA Astrophysics Data System (ADS)

    Schwindt, Daniel; Sandmeier, Christine; Büdel, Christian; Jäger, Daniel; Wilde, Martina; Terhorst, Birgit

    2016-04-01

    Investigations on landslide activity in the cuesta landscape of Germany, usually characterized by an interbedding of morphologically hard (e.g. sand-/limestones) and soft (clay) sedimentary rocks are relatively sparse. However, spring 2013 has once again revealed a high susceptibility of the slopes in the Franconian and Swabian Alb to mass movements, when enduring rainfalls initiated numerous landslides causing considerable damage to settlements and infrastructure. Many aspects like the spatial distribution of landslides, triggering factors, and process dynamics - especially with view on the reactivation of landslides - require intensive investigations to allow for assessment of the landslide vulnerability and the development of reliable early-warning systems. Aim of the study is to achieve a deeper insight into the triggering factors and the process dynamics of landslides in the cuesta landscape with special regard on landslide proneness of slopes and the potential reactivation of old landslides. A multi-methodological approach was conducted based on geophysical investigations (seismic refraction tomography - SRT, electrical resistivity tomography - ERT), geomorphological mapping, morphometric GIS-based analysis, core soundings and substrate mapping. Study sites are located in the Swabian Alb (southwestern Germany) in the Jurassic escarpment where where Oxfordian marls and limestones superimpose Callovian clays, as well as in the northeastern Franconian Alb, within the escarpment of the so called Rhätolias with with red claystones of the late Norian (Feuerletten formation) below interbedding layers of sand- and claystones of the Rhaetian (Upper Triassic) and Hettangian ( Lower Jurassic). The investigated landslides strongly differ with respect to their age, from young landslides originated in spring 2013 to ancient landslides. Investigations reveal a distinct diversity of landslide types composed of a complex combination of processes. The applied methods allow for a sophisticated characterization of the landslides and the deduction of process complexes with phases of reactivations. The combination of ERT and SRT enables the delineation of the inner structure of the slide masses including rupture surfaces, landslide blocks and material inhomogeneities.

  3. Environmental evolution in the Picos de Europa (Cantabrian Mountains, SW Europe) since the Last Glaciation

    NASA Astrophysics Data System (ADS)

    Ruiz-Fernández, Jesús; Oliva, Marc; Cruces, Anabela; Lopes, Vera; Freitas, Maria da Conceição; Andrade, César; García-Hernández, Cristina; López-Sáez, José Antonio; Geraldes, Miguel

    2016-04-01

    The Western Massif of the Picos de Europa (latitude 43° N, longitude 4-5° W) includes some of the highest peaks in the Cantabrian Mountains. This massif was heavily glaciated during the Last Glaciation, though the post-glacial environmental evolution is still poorly understood. Using a complementary geomorphological and sedimentological approach, we have reconstructed the environmental events occurred in this massif since the last Pleistocene glaciation. The geomorphological distribution of glacial landforms suggests the occurrence of four main glacial stages: maximum glacial advance, glacial expansion after the maximum advance, Late Glacial and Little Ice Age. Moreover, a 5.4-m long sedimentary sequence was retrieved from the karstic depression of Belbín providing a continuous record of the paleoenvironmental conditions in this area since the Last Glaciation until nowadays. This section suggests that the maximum glacial expansion occurred at a minimum age of 37.2 ka cal BP, significantly prior to the global Last Glacial Maximum. Subsequently, periglacial processes prevailed in the mid lands of the massif until glaciers expanded between 22.5 and 18.7 ka cal BP. Following the melting of the glaciers, a shallow lake appeared in the Belbín depression. Lake sediments do not show evidence of a cold stage during the Late Glacial, when moraine systems formed at higher locations. The terrestrification of this lake started at 8 ka cal BP and the area turned into grassland. At 4.9 ka cal BP the existence of charcoal particles in the sediments of Belbín sequence reveals the onset of human occupation in the massif through the use of fire activity for grazing purposes. Finally, the presence of moraines inside the highest northern cirques shows evidence of the last glacial phase that occurred during the Little Ice Age cold event. Since then, the warming climate has led to the melting of these glaciers and periglacial processes prevail in the high lands of the massif.

  4. Remote sensing, planform, and facies analysis of the Plain of Tineh, Egypt for the remains of the defunct Pelusiac River

    NASA Astrophysics Data System (ADS)

    Quintanar, Jessica; Khan, Shuhab D.; Fathy, Mohamed S.; Zalat, Abdel-Fattah A.

    2013-11-01

    The Pelusiac Branch was a distributary river in the Nile Delta that splits off from the main trunk of the Nile River as it flowed toward the Mediterranean. At approximately 25 A.D., it was chocked by sand and silt deposits from prograding beach accretion processes. The lower course of the river and its bifurcation point from the trunk of the Nile have been hypothesized based on ancient texts and maps, as well as previous research, but results have been inconsistent. Previous studies partly mapped the lower course of the Pelusiac River in the Plain of Tineh, east of the Suez Canal, but rapid urbanization related to the inauguration of the Peace Canal mega-irrigation project has covered any trace of the linear feature reported by these previous studies. The present study used multispectral remote sensing data of GeoEYE-1 and Landsat-TM to locate and accurately map the course of the defunct Pelusiac River within the Plain of Tineh. Remote sensing analysis identified a linear feature that is 135 m wide at its maximum and approximately 13 km long. It extends from the Pelusium ruins to the Suez Canal, just north of the Peace Canal. This remotely located linear feature corresponds to the path of the Pelusiac River during Roman times. Planform geomorphology was applied to determine the hydrological regime and paleodischarge of the river prior to becoming defunct. Planform analysis derived a bankfull paleodischarge value of ~ 5700 m3 s- 1 and an average discharge of 650 m3 s- 1, using the reach average for the interpreted Pelusiac River. The derived values show a river distributary similar in discharge to the modern dammed Damietta river. Field work completed in April of 2012 derived four sedimentary lithofacies of the upper formation on the plain that included pro-delta, delta-front and delta-plain depositional environments. Diatom and fossil mollusk samples were also identified that support coastal beach and lagoonal environments of deposition. Measured section columns and a shoreline parallel transect were also constructed to portray the paleogeography of the Mediterranean coastline in the Plain of Tineh at ~ 25 A.D. and indicate that the sampled study area is the downdrift margin of an asymmetric delta with barrier lagoon systems.

  5. Evidence for and implications of sedimentary diapirism and mud volcanism in the southern Utopia highland-lowland boundary plain, Mars

    USGS Publications Warehouse

    Skinner, J.A.; Tanaka, K.L.

    2007-01-01

    Several types of spatially associated landforms in the southern Utopia Planitia highland-lowland boundary (HLB) plain appear to have resulted from localized geologic activity, including (1) fractured rises, (2) elliptical mounds, (3) pitted cones with emanating lobate materials, and (4) isolated and coalesced cavi (depressions). Stratigraphic analysis indicates these features are Hesperian or younger and may be associated with resurfacing that preferentially destroyed smaller (< 8 ?? km diameter) impact craters. Based on landform geomorphologies and spatial distributions, the documented features do not appear to be specifically related to igneous or periglacial processes or the back-wasting and erosion of the HLB scarp. We propose that these features are genetically related to and formed by sedimentary (mud) diapirs that ascended from zones of regionally confined, poorly consolidated, and mechanically weak material. We note morphologic similarities between the mounds and pitted cones of the southern Utopia boundary plain and terrestrial mud volcanoes in the Absheron Peninsula, Azerbaijan. These analogs provide a context for understanding the geological environments and processes that supported mud diapir-related modification of the HLB. In southern Utopia, mud diapirs near the Elysium volcanic edifice may have resulted in laccolith-like intrusions that produced the fractured rises, while in the central boundary plain mud diapirs could have extruded to form pitted cones, mounds, and lobate flows, perhaps related to compressional stresses that account for wrinkle ridges. The removal of material a few kilometers deep by diapiric processes may have resulted in subsidence and deformation of surface materials to form widespread cavi. Collectively, these inferences suggest that sedimentary diapirism and mud volcanism as well as related surface deformations could have been the dominant Hesperian mechanisms that altered the regional boundary plain. We discuss a model in which detritus would have accumulated thickly in the annular spaces between impact-generated structural rings of Utopia basin. We envision that these materials, and perhaps buried ejecta of Utopia basin, contained volatile-rich, low-density material that could provide the source material for the postulated sedimentary diapirs. Thick, water-rich, low-density sediments buried elsewhere along the HLB and within the lowland plains may account for similar landforms and resurfacing histories. ?? 2006 Elsevier Inc. All rights reserved.

  6. Mineralogy and geochemistry of the sediments of the Etosha Pan Region in northern Namibia: a reconstruction of the depositional environment

    NASA Astrophysics Data System (ADS)

    Buch, M. W.; Rose, D.

    1996-04-01

    The paper presents the results of mineralogical and chemical analyses of the clay fraction (<2 μm) of samples from boreholes in the Etosha Pan and smaller pans of the Owambo-Pans-Plain in the Etosha National Park, northern Namibia. Four mineral associations can be differentiated within the vertical succession of the profiles in the Etosha Pan: I) analcime/K-feldspar and mica association; II) analcime/K-feldspar and sepiolite (loughlinite) association; III) expandable sheet silicate (saponite/stevensite) association; and IV) calcite and dolomite association. These mineral associations are the expression of the seasonal saline-alkaline to calciferous, saline-alkaline environment of the present Etosha Pan. The sedimentological and pedological descriptions, combined with the results of the mineralogical and chemical analyses, show a clear differentiation of the profiles of the Etosha Pan in: i) disintegrated sedimentary rocks of the Andoni Formation (mineral association I); ii) par-autochthonous sediments (mineral associations I and II); and iii) allochthonous sediments (mineral associations III and IV). Based on this vertical mineralogical differentiation, four sedimentological-mineralogical/ chemical zones are defined for the actual floor of the Etosha Pan. The zonation shows that a thin cover of allochthonous sediments is only present along the southern margin of the Etosha Pan, including Fisher's Pan. The results support the hypothesis that the Etosha Pan is an erosional form rather than a palaeolake. In principle, the zonal configuration of the recent allochthonous and parautochthonous sediments identified on the Etosha Pan provides a small-scale depositional environment model for the formation of the Etosha limestone and sediments of the Andoni Formation during the Oligocene and Miocene. Thus, the findings help to reconstruct the depositional environment of the evolution of the extensive depocentre of the Etosha basin during the Late Tertiary.

  7. Can we follow the neotectonic activity of the Hluboká-fault by reconstructing the evolution of the Vltava river course? - Mapping of fluvial terraces around the Budejovice-basin using historic maps

    NASA Astrophysics Data System (ADS)

    Homolova, Dana; Lomax, Johanna; Prachar, Ivan; Spacek, Petr; Zamolyi, Andras; Decker, Kurt

    2010-05-01

    The Budějovice Basin in the Bohemian Massif (Czech Republic) is a fault-bounded sedimentary basin with a multiple subsidence history overlying Variscan crystalline basement. Permian, Cretaceous and Miocene sediments record repeated reactivations of faults at or close to the basin margin, which may have continued into the Quaternary. The latter is indicated by geomorphological features such as linear topographic scarps, which characterize part of the faults within and at the border of the Budějovice Basin. In a current study we assess possible Quaternary displacements along the faults delimiting the basin using geomorphological data, analyses of river planform patterns and correlations of Quaternary terraces of the Vltava River, which crosses the basin and its boundary faults. The regionally most important tectonic feature - the Hluboká fault -forms the northeastern margin of the Budějovice basin. The fault crosses the course of the river Vltava, a fact that guided our research to take a more precise look at the character and distribution of fluvial sediments in this area. Our main focus is on dating of terrace bodies around the Hluboká fault. According to the scheme used in most European regions, influences by the Pleistocene glacial cycles, the Vltava river terraces were assigned by most scientists to the 4(5) main alpine glacial periods. This dating is not straightforward as terraces are not connected to moraine bodies like in the Alps. The terraces were basically correlated by their altitude above the river and by their lithology (clastic content and grain size composition), but mostly without any numerical age determination. Our studies include several field and laboratory methods, supported by computer analyses of various types of spatial data. Data sources include: (i) modern topographic maps, (ii) geological maps, (iii) georeferenced historic map sheets of the Austrian Second Military Survey (provided by the Geoinformatics Laboratory of the University J. E. Purkyně, 2005). The georeferenced map sheets of the Second Military Survey provide a very exact base map (Timár et al., 2006) for investigating the location of possible terrace bases. Since the georeferencing accuracy is < 10 m, data from these map sheets can be integrated into the geomorphologic studies providing information about the geomorphologic situation in the study area of the years 1836-1842, i.e., with less anthropogenic impact on geomorphological features than today. These data sources are combined with data from boreholes and thus help us identifying potential terrace bodies and choosing appropriate investigation sites. In the field, morphological, sedimentological and pedological methods are used to obtain relevant data about the sediment stratigraphy. Several laboratory analyses were carried out to gain information on the age of the terraces. We use OSL-dating in combination with the analysis of heavy minerals and clay minerals, as well as grain size analysis. After gathering information about the absolute ages of the terrace bodies upstream and downstream the Hluboká fault, we may be able to declare if the building of terrace staircases was influenced by tectonic activity of the fault or not. Timár, G., Molnár, G., Székely, B., Biszak, S., Varga, J., Jankó, A. (2006): Digitized maps of the Habsburg Empire - The map sheets of the second military survey and their georeferenced version. Arcanum, Budapest, 59 p. ISBN 963-7374-33-7

  8. Tectonic constraints on the development and individualization of the intermontane Ronda basin (external Betics, southern Spain): a structural and geomorphologic approach.

    NASA Astrophysics Data System (ADS)

    Jiménez-Bonilla, Alejandro; Balanyá, Juan Carlos; Expósito, Inmaculada; Díaz-Azpiroz, Manuel; Barcos, Leticia

    2014-05-01

    As a result of progressive shortening and orogenic wedge thickening, marine foreland basins tend to emerge and divide. We have analyzed possible recent tectonic activity within the late evolution stage of the Ronda basin, an intermontane basin located in the external wedge of the Gibraltar Arc, formerly connected with the Betic foreland basin and infilled by marine Upper-Miocene sediments. We analyze (1) the structures responsible for the basinward relief drop along the arc strike and the different topography of their boundaries; (2) qualitative and quantitative geomorphologic indices to asses which structures could present recent activity; and 3) the structures causing the division of the former Betic foreland basin and the isolation of the Ronda basin. Within the deformational history of the Ronda basin, late structures that control high topographic gradients and generate remarkable fault scarps group into three main types: (a) Extensional structures represented by NW-SE striking normal faults, clustered close to the current SW and NE boundaries of the basin. They usually dip towards the basin and their vertical displacement is maximum up to 1,5 km. These structures partially affect the basal unconformity of the Upper Miocene basin infill and are scarcely developed inside the basin infill. (b) Shortening structures developed both in the basin infill and in the outcropping basement near the Northeastern and Southwestern basin boundaries. They are represented by NE-SW directed plurikilometric box-folds and reverse faults, responsible for the alternation of sierras (altitudes 1000-1500 m) and valleys. (c) Strike-slip dominated structural associations where WSW-ENE lateral faults combined with folds and normal and reverse faults defined a NE-SW directed deformation band constituting the NW basin boundary. This band includes some sierras up to 1.100 m. Regarding the relief of the Ronda basin area, the abrupt slopes of the outcropping basement (heights between 500-1500 m) contrast with the relief inside the basin, a relative low-lying relief varying between 400 and 700 m. The drainage network is dendritic, although some 2nd-3rd order streams show a significant deviation to NW-SE , probably controlled by normal faults. The calculated geomorphologic indices (SLk, Vf, Smf) show anomaly zones in the footwall of normal faults, reaching their highest values in the Northeastern basin boundary (SlK > 6, Vf = 0-0.5, Smf = 1-1.15), where, additionally, the hypsometric curves display convex trajectories with HI > 0.5. Anomalous values of geomorphologic indices (SlK > 10, Vf 0-0.75, Smf 1-1.25) together with convex hypsometric curves with HI > 0.5 have also been obtained for shortening structures, such as hanging wall of reverse faults and folds. Structural criteria show that extensional and shortening structures in the Ronda basin are coetaneous and active since the Upper Miocene. Geomorphologic analyses suggest that some of these structures could continue active up to the Quaternary with low-to-medium deformation rates. Our results, together with previous sedimentological data suggest that, from the Messinian on, the Ronda basin became disconnected from the Betic foreland basin as the result of the tectonic uplift of its NW boundary.

  9. Stratigraphy, sedimentology and tectonic evolution of the Upper Cretaceous/Paleogene succession in north Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    El Ayyat, Abdalla M.; Obaidalla, Nageh A.

    2013-05-01

    The stratigraphy, sedimentology and syn-depositional tectonic events (SdTEs) of the Upper Cretaceous/Paleogene (K-P) succession at four localities in north Eastern Desert (NED) of Egypt have been studied. These localities are distributed from south-southwest to north-northeast at Gebel Millaha, at North Wadi Qena, at Wadi El Dakhal, and at Saint Paul Monastery. Lithostratigraphically, four rock units have been recorded: Sudr Formation (Campanian-Maastrichtian); Dakhla Formation (Danian-Selandian); Tarawan Formation (Selandian-Thanetian) and Esna Formation (Thanetian-Ypresian). These rock units are not completely represented all over the study area because some of them are absent at certain sites and others have variable thicknesses. Biostratigrapgically, 18 planktonic foraminiferal zones have been recorded. These are in stratigraphic order: Globotruncana ventricosa Zone (Campanian); Gansserina gansseri, Contusotruncana contusa, Recimguembelina fructicosa, Pseudohastigerina hariaensis, Pseudohastigerina palpebra and Plummerita hantkenenoides zones (Maastrichtian); Praemurica incostans, Praemurica uncinata, Morozovella angulata and Praemurica carinata/Igorina albeari zones (Danian); Igorina albeari, Globanomanlina pseudomenradii/Parasubbotina variospira, Acarinina subsphaerica, Acarinina soldadoensis/Globanomanlina pseudomenardii and Morozovella velascoensis zones (Selandian/Thantian); and Acarinina sibaiyaensis, Pseudohastigerina wilcoxensis/Morozovella velascoensis zones (earliest Ypresian). Sedimentologically, four sedimentary facies belts forming southwest gently-dipping slope to basin transect have been detected. They include tidal flats, outer shelf, slumped continental slope and open marine hemipelagic facies. This transect can be subdivided into a stable basin plain plus outer shelf in the extreme southwestern parts; and an unstable slope shelf platform in the northeastern parts. The unstable slope shelf platform is characterized by open marine hemipelagic, fine-grained limestones and fine siliciclastic shales (Sudr, Dakhla, Tarawan and Esna formations). The northeastern parts are marked by little contents of planktonic foraminifera and dolomitized, slumped carbonates, intercalated with basinal facies. Tectonically, four remarkable syn-depositional tectonic events (SdTEs) controlled the evolution of the studied succession. These events took place strongly within the Campanian-Ypresian time interval and were still active till Late Eocene. These events took place at: the Santonian/Campanian (S/C) boundary; the Campanian/Maastrichtian (C/M) boundary; the Cretaceous/Paleogene (K/P) boundary; and the Middle Paleocene-Early Eocene interval. These tectonic events are four pronounced phases in the tectonic history of the Syrian Arc System (SAS), the collision of the Afro-Arabian and Eurasian plates as well as the closure of the Tethys Sea.

  10. Multi-proxy Characterization of Two Recent Storm Deposits Attributed to Hurricanes Rita and Ike in the Chenier Plain of Southwestern Louisiana

    NASA Astrophysics Data System (ADS)

    Yao, Q.; Liu, K. B.; Ryu, J.

    2017-12-01

    The Chenier Plain in southwestern Louisiana owes its origin to dynamic depositional processes that are dominated by delta-switching of the Mississippi River to the east, while frequent hurricane activities also play an important role in its geomorphology and sedimentary history. However, despite several studies in the literature, the sediment-stratigraphic characteristics of recent or historic hurricane deposits are still not well documented from the Chenier Plain. In 2005 and 2008, Hurricane Rita (category 3) and Ike (category 2) made landfall on the coasts of Louisiana and Texas. Remote sensing images confirm that the Rockefeller Wildlife Refuge, located at the east end of the Louisiana Chenier Plain, was heavily impacted by both hurricanes. We analyzed the lithology and chemical stratigraphy of three 30 cm sediment monoliths (ROC-1, ROC-2, and ROC-3) recovered from a coastal saltmarsh in the Rockefeller Wildlife Refuge to identify the event deposits attributed to these two storms. Each monolith contains 2 distinct light-colored clastic sediment layers imbedded in brown organic clay. The loss-on-ignition and X-ray fluorescence results show that the hurricane layers have increased contents of Ca, Sr, Zr, and carbonates and decreased contents of water and organics. Surprisingly, despite its greater intensity and more severe impacts, Hurricane Rita left a much thinner storm deposit than did Hurricane Ike in all monoliths. Satellite data reveal that Hurricane Rita caused significant coastal erosion and shoreline recession, rendering the sampling sites much closer to the beach and ocean and therefore more prone to storm surges and overwash deposition than when Hurricane Ike struck three years later. Our results suggest that site-to-sea distance, which affects a study site's paleotempestological sensitivity, can play a bigger role in affecting the thicknesses of storm deposits than the intensity of the hurricane.

  11. A Unified Sediment Transport Model for Inlet Application

    DTIC Science & Technology

    2011-01-01

    of the development was to arrive at general sediment transport formulas suitable for a wide range of hydrodynamic, sedimentologic , and morphologic...wide range of hydrodynamic, sedimentologic , and morphologic conditions that yield reliable and robust predictions. In this paper such formulas are...hydrodynamic, sedimentologic , and morphologic conditions that prevail around coastal inlets. Thus, the formulas yield transport rates under waves and currents

  12. International Field School on Permafrost, Polar Urals, 2012

    NASA Astrophysics Data System (ADS)

    Streletskiy, D. A.; Grebenets, V.; Ivanov, M.; Sheinkman, V.; Shiklomanov, N. I.; Shmelev, D.

    2012-12-01

    The international field school on permafrost was held in the Polar Urals region from June, 30 to July 9, 2012 right after the Tenth International Conference on Permafrost which was held in Salekhard, Russia. The travel and accommodation support generously provided by government of Yamal-Nenets Autonomous Region allowed participation of 150 permafrost young research scientists, out of which 35 students from seven countries participated in the field school. The field school was organized under umbrella of International Permafrost Association and Permafrost Young Research Network. The students represented diverse educational backgrounds including hydrologists, engineers, geologists, soil scientists, geocryologists, glaciologists and geomorphologists. The base school camp was located near the Harp settlement in the vicinity of Polar Urals foothills. This unique location presented an opportunity to study a diversity of cryogenic processes and permafrost conditions characteristic for mountain and plain regions as well as transition between glacial and periglacial environments. A series of excursions was organized according to the following topics: structural geology of the Polar Urals and West Siberian Plain (Chromite mine "Centralnaya" and Core Storage in Labitnangy city); quaternary geomorphology (investigation of moraine complexes and glacial conditions of Ronamantikov and Topographov glaciers); principles of construction and maintains of structures built on permafrost (Labitnangy city and Obskaya-Bovanenkovo Railroad); methods of temperature and active-layer monitoring in tundra and forest-tundra; cryosols and soil formation in diverse landscape condition; periglacial geomorphology; types of ground ice, etc. Every evening students and professors gave a series of presentations on climate, vegetation, hydrology, soil conditions, permafrost and cryogenic processes of the region as well as on history, economic development, endogenous population of the Siberia and the Russian Arctic in general. Series of discussions were focused on methodological aspects of permafrost research, data mining techniques, international projects, job opportunities etc. The experience gained by students during the field school, new networking opportunities and good spirit of polar research cannot be adequately replaced by any classroom demonstrations. That is why it is critically important to conduct such filed schools in the future. We are grateful to administration of Yamal-Nenets Autonomous region for providing financial support and to Yamal Tour for the organization and logistics in the field.

  13. Geomorphological Mapping of Sputnik Planum and Surrounding Terrain on Pluto

    NASA Astrophysics Data System (ADS)

    White, Oliver; Stern, Alan; Weaver, Hal; Olkin, Cathy; Ennico, Kimberly; Young, Leslie; Moore, Jeff

    2015-11-01

    The New Horizons flyby of Pluto in July 2015 has provided the first few close-up images of the Kuiper belt object, which reveal it to have a highly diverse range of terrains, implying a complex geological history. The highest resolution images that have yet been returned are seven lossy 400 m/pixel frames that cover the majority of the prominent Plutonian feature informally named Sputnik Planum (all feature names are currently informal), and its surroundings. This resolution is sufficient to allow detailed geomorphological mapping of this area to commence. Lossless versions of all 15 frames that make up the mosaic will be returned in September 2015, and the map presented at DPS will incorporate the total area covered by these frames.Sputnik Planum, with an area of ~650,000 km2, is notable for its smooth appearance and apparent total lack of impact craters at 400 m/pixel resolution. The Planum actually displays a wide variety of textures across its expanse, which includes smooth and pitted plains to the south, polygonal terrain at its center (the polygons can reach tens of kilometers in size and are bounded by troughs that sometimes feature central ridges), and, to the north, darker polygonal terrain displaying patterns indicative of glacial flow. Within these plains there exist several well-defined outcrops of a mottled, light/dark unit that reach from several to tens of kilometers across. Separating Sputnik Planum from the dark, cratered equatorial terrain of Cthulhu Regio on its south-western margin is a unit of chaotically arranged mountains (Hillary Montes); similar mountainous units exist on the south and western margins. The northern margin is bounded by rugged, hilly, cratered terrain (Cousteau Rupes) into which ice of Sputnik Planum appears to be intruding in places. Terrain of similar relief exists to the east, but is much brighter than that to the north. The southernmost extent of the mosaic features a unit of rough, undulating terrain (Pandemonium Dorsa) that displays very few impact craters at 400 m/pixel resolution.This work was supported by the NASA New Horizons project.

  14. Early Cretaceous stratigraphy, paleontology, and sedimentary tectonics in Paris overthrust foredeep (western Wyoming and southeastern Idaho) compared with Quaternary features of indo-gangetic plain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorr, J.A. Jr.

    1983-08-01

    Fluviatile clastics of the nonmarine, early Cretaceous Gannett and Wayan groups were deposited on wet alluvial megafans and on intervening interfan piedmont slopes which declined eastward into more poorly drained lowlands from a western highland source area uplifted episodically by movements of the Paris overthrust. Lacustrine episodes of deposition intercalated Peterson and Draney limestones with Gannett fluvial clastics. Westward marine transgressions (Skull Creek, Mowry) intercalated mixed lacustrine and brackish facies (Smiths and Cokedale formations) into Wayan fluviatile clastics. Newly discovered fossil vertebrate and invertebrate materials (all fragmentary but identifiable) include: Gannett Group - large reptiles including turtles; Thomas Fork Formationmore » - freshwater gastropods and unionid pelecypods, gastroliths, two types of turtles, large reptilian fragments (dinosaur), and abundant dinosaur eggshell fragments; Wayan Formation - perennially aquatic snails, turtles, unidentifiable large reptiles, two types of crocodilians, an iguanodontid dinosaur (Tenontosaurus), an ankylosaurian dinosaur, a large ornithopod dinosaur, gastroliths, abundant and ubiquitous dinosaur eggshell fragments (numerous types and sizes), and miscellaneous unidentifiable small vertebrate bone fragments. A census of analogous modern reptile reproductive behaviors supports the conclusion that the Wayan, and probably also the Gannett, alluvial fan environments were used as upland breeding grounds by dinosaurs and perhaps other reptiles. Comparison of these Early Cretaceous data with observations on the tectonic setting, sedimentology, and biology of the Quaternary indo-gangetic plain suggests many close analogies between the two sedimentary tectonic settings.« less

  15. Cold-climate slope deposits and landscape modifications of the Mid-Atlantic Coastal Plain, Eastern USA

    USGS Publications Warehouse

    Newell, Wayne L.; Dejong, B.D.

    2011-01-01

    The effects of Pleistocene cold-climate geomorphology are distributed across the weathered and eroded Mid-Atlantic Coastal Plain uplands from the Wisconsinan terminal moraine south to Tidewater Virginia. Cold-climate deposits and landscape modifications are superimposed on antecedent landscapes of old, weathered Neogene upland gravels and Pleistocene marine terraces that had been built during warm periods and sea-level highstands. In New Jersey, sequences of surficial deposits define a long history of repeating climate change events. To the south across the Delmarva Peninsula and southern Maryland, most antecedent topography has been obscured by Late Pleistocene surficial deposits. These are spatially variable and are collectively described as a cold-climate alloformation. The cold-climate alloformation includes time-transgressive details of climate deterioration from at least marine isotope stage (MIS) 4 through the end of MIS 2. Some deposits and landforms within the alloformation may be as young as the Younger Dryas. Southwards along the trend of the Potomac River, these deposits and their climatic affinities become diffused. In Virginia, a continuum of erosion and surficial deposits appears to be the product of ‘normal’ temperate, climate-forced processes. The cold-climate alloformation and more temperate deposits in Virginia are being partly covered by Holocene alluvium and bay mud.

  16. Source inversion of the 1570 Ferrara earthquake and definitive diversion of the Po River (Italy)

    NASA Astrophysics Data System (ADS)

    Sirovich, L.; Pettenati, F.

    2015-08-01

    An 11-parameter, kinematic-function (KF) model was used to retrieve the approximate geometrical and kinematic characteristics of the fault source of the 1570 Mw 5.8 Ferrara earthquake in the Po Plain, including the double-couple orientation (strike angle 127 ± 16°, dip 28 ± 7°, and rake 77 ± 16°). These results are compatible with either the outermost thrust fronts of the northern Apennines, which are buried beneath the Po Plain's alluvial deposits, or the blind crustal-scale thrust. The 1570 event developed to the ENE of the two main shocks on 20 May 2012 (M 6.1) and 29 May 2012 (M 5.9). The three earthquakes had similar kinematics and are found 20-30 km from each other en echelon in the buried chain. Geomorphological and historical evidence exist which suggest the following: (i) the long-lasting uplift of the buried Apenninic front shifted the central part of the course of the Po River approximately 20 km northward in historical times and (ii) the 1570 earthquake marked the definitive diversion of the final part of the Po River away from Ferrara and the closure of the Po delta 40 km south of its present position.

  17. Capturing total chronological and spatial uncertainties in palaeo-ice sheet reconstructions: the DATED example

    NASA Astrophysics Data System (ADS)

    Hughes, Anna; Gyllencreutz, Richard; Mangerud, Jan; Svendsen, John Inge

    2017-04-01

    Glacial geologists generate empirical reconstructions of former ice-sheet dynamics by combining evidence from the preserved record of glacial landforms (e.g. end moraines, lineations) and sediments with chronological evidence (mainly numerical dates derived predominantly from radiocarbon, exposure and luminescence techniques). However the geomorphological and sedimentological footprints and chronological data are both incomplete records in both space and time, and all have multiple types of uncertainty associated with them. To understand ice sheets' response to climate we need numerical models of ice-sheet dynamics based on physical principles. To test and/or constrain such models, empirical reconstructions of past ice sheets that capture and acknowledge all uncertainties are required. In 2005 we started a project (Database of the Eurasian Deglaciation, DATED) to produce an empirical reconstruction of the evolution of the last Eurasian ice sheets, (including the British-Irish, Scandinavian and Svalbard-Barents-Kara Seas ice sheets) that is fully documented, specified in time, and includes uncertainty estimates. Over 5000 dates relevant to constraining ice build-up and retreat were assessed for reliability and used together with published ice-sheet margin positions based on glacial geomorphology to reconstruct time-slice maps of the ice sheets' extent. The DATED maps show synchronous ice margins with maximum-minimum uncertainty bounds for every 1000 years between 25-10 kyr ago. In the first version of results (DATED-1; Hughes et al. 2016) all uncertainties (both quantitative and qualitative, e.g. precision and accuracy of numerical dates, correlation of moraines, stratigraphic interpretations) were combined based on our best glaciological-geological assessment and expressed in terms of distance as a 'fuzzy' margin. Large uncertainties (>100 km) exist; predominantly across marine sectors and other locations where there are spatial gaps in the dating record (e.g. the timing of coalescence and separation of the Scandinavian and Svalbard-Barents-Kara ice sheets) but also in well-studied areas due to conflicting yet apparently equally robust data. In the four years since the DATED-1 census (1 January 2013), the volume of new information (from both dates and mapped glacial geomorphology) has grown significantly ( 1000 new dates). Here, we present work towards the updated version of results, DATED-2, that attempts to further reduce and explicitly report all uncertainties inherent in ice sheet reconstructions. Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J., Svendsen, J. I. 2016: The last Eurasian ice sheets - a chronological database and time-slice reconstruction, DATED-1. Boreas, 45, 1-45. 10.1111/bor.12142

  18. Land use history, floodplain development, and soil erosion in the vicinity of a millstone production center since the Iron Age in the Segbachtal near Mayen (eastern Eifel, Germany)

    NASA Astrophysics Data System (ADS)

    Dotterweich, Markus; Wenzel, Stefan; Schreg, Rainer; Fülling, Alexander; Engel, Max

    2015-04-01

    In Roman times, the stone and pottery production near Mayen in western Germany reached a very high intensity which would have satisfied the needs of a much wider area. The rate and volume of production was unprecedented and never reached the same level thereafter. The Segbach valley study site with an area of only a few square kilometres offers a very special geoarchaeological archive. The Roman land use structures were completely preserved under a 2 meter thick layer of sediment and are now partially exposed in a gully due to erosion. Pedological, sedimentological and geophysical studies at the colluvium and floodplain sediments as well as relict field structures showed that in the last 2500 years there has been a considerable human impact on both water and sediment budgets. This also had various implications on the further development of water courses, soils and relief. Evidence for the development of flood plain sediments can be traced as far back as the late La Tène period, the Roman Iron Age, and since the Middle Ages. On one particular south-facing slope we found evidence of recultivation measures on a former quarry tailing heap dating from the Middle Ages. This and other human construction activities and land uses lead to a significant change in erosion and sedimentation patterns. It is surprising that sedimentation in flood plains was largely absent during the Roman Iron Age despite intensive land use. Evidence shows that flash flood events with intensive accumulation of soil matter in flood plains only occurred during the High Middle Ages. Sediments from the late Middle ages and the Modern Times are largely missing. The research undertaken in Segbach valley not only offers new insights into specific local historical land uses and land use changes but also fundamental knowledge about the principles and impacts of long-term human-environment interactions.

  19. Global Stratigraphy of Venus: Analysis of a Random Sample of Thirty-Six Test Areas

    NASA Technical Reports Server (NTRS)

    Basilevsky, Alexander T.; Head, James W., III

    1995-01-01

    The age relations between 36 impact craters with dark paraboloids and other geologic units and structures at these localities have been studied through photogeologic analysis of Magellan SAR images of the surface of Venus. Geologic settings in all 36 sites, about 1000 x 1000 km each, could be characterized using only 10 different terrain units and six types of structures. These units and structures form a major stratigraphic and geologic sequence (from oldest to youngest): (1) tessera terrain; (2) densely fractured terrains associated with coronae and in the form of remnants among plains; (3) fractured and ridged plains and ridge belts; (4) plains with wrinkle ridges; (5) ridges associated with coronae annulae and ridges of arachnoid annulae which are contemporary with wrinkle ridges of the ridged plains; (6) smooth and lobate plains; (7) fractures of coronae annulae, and fractures not related to coronae annulae, which disrupt ridged and smooth plains; (8) rift-associated fractures; and (9) craters with associated dark paraboloids, which represent the youngest 1O% of the Venus impact crater population (Campbell et al.), and are on top of all volcanic and tectonic units except the youngest episodes of rift-associated fracturing and volcanism; surficial streaks and patches are approximately contemporary with dark-paraboloid craters. Mapping of such units and structures in 36 randomly distributed large regions (each approximately 10(exp 6) sq km) shows evidence for a distinctive regional and global stratigraphic and geologic sequence. On the basis of this sequence we have developed a model that illustrates several major themes in the history of Venus. Most of the history of Venus (that of its first 80% or so) is not preserved in the surface geomorphological record. The major deformation associated with tessera formation in the period sometime between 0.5-1.0 b.y. ago (Ivanov and Basilevsky) is the earliest event detected. In the terminal stages of tessera fon-nation, extensive parallel linear graben swarms representing a change in the style of deformation from shortening to extension were formed on the tessera and on some volcanic plains that were emplaced just after, and perhaps also during the latter stages of the major compressional phase of tessera emplacement. Our stratigraphic analyses suggest that following tessera formation, extensive volcanic flooding resurfaced at least 85% of the planet in the form of the presently-ridged and fractured plains. Several lines of evidence favor a high flux in the post-tessera period but we have no independent evidence for the absolute duration of ridged plains emplacement. During this time, the net state of stress in the lithosphere apparently changed from extensional to compressional, first in the form of extensive ridge belt development, followed by the formation of extensive wrinkle ridges on the flow units. Subsequently, there occurred local emplacement of smooth and lobate plains units which are presently essentially undefortned. The major events in the latest 10% of the presently preserved history of Venus (less than 50 m.y. ago) are continued rifting and some associated volcanism, and the redistribution of eolian material largely derived from impact crater deposits.

  20. Major hydrological regime change along the semiarid western coast of South America during the early Holocene

    NASA Astrophysics Data System (ADS)

    Ortega, Cristina; Vargas, Gabriel; Rutllant, José A.; Jackson, Donald; Méndez, César

    2012-11-01

    Water availability in the semiarid western coast of Chile (30-32°S) is conditioned by high interannual precipitation variability, reflecting the transition between arid subtropical and moist mid-latitude climates in the Southeastern Pacific Ocean. A paleoclimate reconstruction based on the latest Pleistocene-Holocene geological record from the Quebrada Santa Julia archeological site in Chile (31°50'S) and on modern meteorological mechanisms producing alluvial episodes in this region indicates a major change in the rainfall regime shortly after 8600 cal yr BP. This, together with other paleoclimate proxies along the west coast of South America (34°-14°S), suggests La Niña-like conditions 13,000-8600 cal yr BP. Based on sedimentological and geomorphologic evidence, we hypothesized that the absence of heavy rainfall events in northern Chile and the new hydrological regime that prevailed ca. 8600-5700 cal yr BP in north-central Chile resulted from an increase in the large-scale westerly flow over central Chile, as expected in near-neutral ENSO conditions. This atmospheric circulation anomaly is compatible with an equatorward shift of the influence of the Southeast Pacific Subtropical Anticyclone relative to the early Holocene, prior to the onset of modern ENSO variability.

  1. Solving the puzzle of an isolated high-Alpine drumlin: Hornkees, Austria

    NASA Astrophysics Data System (ADS)

    Lukas, Sven; Busfield, Marie

    2017-04-01

    Larger streamlined landforms, in particular drumlins, are frequently found in lowland environments where they attest to fast ice flow; they are comparatively rare in upland environments where smaller streamlined landforms (i.e. flutes) and erosional landforms (e.g. ice-moulded bedrock) are found much more prominent. We here report geomorphological and sedimentological field observations from a small drumlin formed during the last c. 200 years in the foreland of Hornkees, a small valley glacier in the Eastern Alps. This drumlin is located in the middle of the valley floor, upvalley of a bedrock obstacle, and consists of overridden and glaciotectonised outwash overlain by subglacial traction till of varying consistency. Using lithofacies analysis, clast fabric and clast shape data as well as structural measurements (e.g. of shear planes and fold axes) and in-situ soil penetrometer measurements we demonstrate that this drumlin is likely to represent one of the rare cases in upland environments where the primary mechanisms of fast flow and subglacial sediment deformation have been preserved and can thus be studied in detail. We present our dataset with the aim of generating discussion of these mechanisms and outline the significance of such rare cases as modern analogues not just for palaeo-studies, but also for our understanding of material properties from an engineering-geological standpoint.

  2. Lake evolution of the terminal area of Shiyang River drainage in arid China since the last glaciation

    USGS Publications Warehouse

    Shi, Q.; Chen, F.-H.; Zhu, Y.; Madsen, D.

    2002-01-01

    Investigations of geomorphology and sedimentology, and analyses of radiocarbon dates, grain size and carbonate of the sediment at the present-dry closed basin in the terminal area of Shiyang River in arid China were conducted to recover the history of palaeolake change since the last glacial. The terminal area was covered by eolian sand before 13,000 14C BP. Lacustrine deposits covered the eolian sand after 13,000 14C BP, but were succeeded rapidly by eolian or fluvial deposits ca. 11,200-10,000 BP. This fact plus the grain-size distribution and CaCO3 content showed that climate was extremely dry during the last glacial, but wet-dry oscillations characterized the late glacial. A single coalescent lake, over 45 m deep and 2130 km2, formed between 10,000-6400 14C BP in the basin. The lake disintegrated into several shallow carbonate lakes or swamps gradually after 6400 14C BP. Eolian sand reached into the most part of the basin during the period. The lake evolution in the area generally reflects the East Asian summer monsoon history forced by Northern hemisphere insolation. Short time-scale lake fluctuations also existed in the area since the last glacial. ?? 2002 Elsevier Science Ltd and INQUA. All rights reserved.

  3. Distribution, provenance, and onset of the Xiashu Loess in Southeast China with paleoclimatic implications

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyong; Lu, Huayu; Zhang, Hanzhi; Wu, Jiang; Hou, Xiaoxue; Fu, Yu; Geng, Junyan

    2018-04-01

    Loess deposits are important archives of past climate change in subtropical China, where long-term terrestrial records are scarce. However, only a few long-term records with reliable dating were reported in Jiangsu Province, where loess deposits in southeastern China were first discovered and designated as the Xiashu Loess. Moreover, the provenance of the Xiashu Loess is still controversial. This study presents the magnetostratigraphy and detrital zircon U-Pb age results of loess deposits at Zhoujiashan in Nanjing, Jiangsu Province. To date, this section (with basal age of approximately 0.88 Ma) may be the oldest loess deposits discovered in southeastern China. Based on the detrital zircon U-Pb ages of the Zhoujiashan section, together with published results of geochemistry, geomorphology, sedimentology, and meteorology, we propose that the Xiashu Loess has two mixed sources. Local materials derived from the Yangtze River Basin (including exposed river/lake beds, floodplains, and mountains) served as a major contributor. The distal eolian dust that originated from the arid areas of North China (including deserts, piedmont alluvial fans, and drylands) played a minor role in the formation process of the Xiashu Loess. The nearly synchronous onset age (approximately 0.88-0.85 Ma) of the Xiashu Loess was attributed to a regional environmental event during the middle Pleistocene transition.

  4. Reply to comment received from J. Herget et al. regarding ;Complex patterns of glacier advances during the late glacial in the Chagan Uzun Valley, Russian Altai; by Gribenski et al. (2016), Quaternary Science Reviews 149, 288-305

    NASA Astrophysics Data System (ADS)

    Gribenski, Natacha; Lukas, Sven; Stroeven, Arjen P.; Jansson, Krister N.; Harbor, Jonathan M.; Blomdin, Robin; Ivanov, Mikhail N.; Heyman, Jakob; Petrakov, Dmitry A.; Rudoy, Alexei; Clifton, Tom; Lifton, Nathaniel A.; Caffee, Marc W.

    2017-07-01

    We thank Herget et al. (2017) for their keen interest in our study about the paleoglacial history of the Chagan Uzun Valley, in the Russian Altai (Gribenski et al., 2016). In our study, we proposed a detailed chronological and glaciodynamic reconstruction of a succession of glacial events represented by prominent moraine complexes, based on remotely-sensed data and field-geomorphological mapping, sedimentological logging, and cosmogenic 10Be and 26Al surface exposure dating of glacially-transported boulders. Herget et al. (2017) express skepticism about the outermost moraine complex dated in our study (CUMC 1; Gribenski et al., 2016), which slightly predates 19 thousand years (ka), during marine isotope stage (MIS) 2. To quote: "we suspect that their claim of regional climatic significance-that the ∼19 ka Chagan-Uzun moraine they dated can be used to show that the local LGM and regional LGM were the same, and occurred during MIS 2-may be premature" (Herget et al., 2017: p. 1). Their comment appears to relate to an ongoing debate regarding the timing of maximum glaciation in Central Asia during the last glacial cycle, however it is based on misinterpretations of our paper.

  5. Observations at the Mars Pathfinder site: Do they provide "unequivocal" evidence of catastrophic flooding?

    USGS Publications Warehouse

    Chapman, M.G.; Kargel, J.S.

    1999-01-01

    After Mars Pathfinder landed at the mouth of Ares Vallis, a large channel that drains into the Chryse Planitia basin, the mission reports unanimously supported the interpretation that the lander site is the locus of catastrophic flooding by noting that all aspects of the scene are consistent with this interpretation. However, alternatives cannot be ruled out by any site observations, as all aspects of the scene are equally consistent with other interpretations of origin, namely, ice and mass-flow processes subsequently modified by wind erosion. The authors discuss alternative explanations for the geologic history of the channel based on a regional view of the circum-Chryse channels from Viking images (our best broad-scale information to date) and the local view from the recent Pathfinder landing site. Mega-indicators of channel origin, the regional geomorphology, geology, and planetary climatic conditions, taken together suggest some combination of flood, mass flow, glacial, and eolian processes. The macro-indicators of channel origin (sedimentologic) are also not indicative of one process of emplacement, either as single criteria or taken cumulatively. Finally, the micro-indicators of channel origin (geochemical and mineralogic composition) do not provide very tight constraints on the deposits' possible origins other than that water was in some way involved.

  6. Geomorphological and sedimentological analysis of flash-flood deposits: The case of the 1997 Rivillas flood (Spain)

    NASA Astrophysics Data System (ADS)

    Ortega, Jose A.; Garzón Heydt, Guillermina

    2009-11-01

    On the basis of the description of the 1997 Rivillas flood deposits, a morphosedimentary feature classification is proposed. Mapping of the main morphosedimentary deposits in seven reaches along the basin has provided abundant data for each defined typology and for a better adjustment of their stability fields. Because of their unstable preservation environment, immediate post-flood field surveys with descriptions of erosive and depositional features were undertaken. Up to 18 features were classified as either sedimentary or erosive and mapped according to their genetic environments. Anthropic interference such as land use changes produce modification of sediment supply and in channel and floodplain erosive processes causing flash-floods to be more catastrophic. Erosive features are dominant over sedimentary ones, as the sedimentary budget in the river is negative. By means of HEC-RAS (Hydrologic Engineering Center) modelling, we were able to obtain mean values of the main variables limiting feature stability (velocity, depth, stream powers and shear stress). These provide information regarding maximum stability threshold and peak flood discharge. The ephemeral nature of riverine flash-flood deposits in this type of setting does not mean that they are not significant, and their interpretation after recent floods can significantly improve interpretation of the event dynamics and its flood hydrology and also be useful for flood risk mapping.

  7. Geomorphologic and sedimentologic controls on records of flood-induced alluviation in Las Cajas National Park, Ecuador

    NASA Astrophysics Data System (ADS)

    Rodbell, D. T.; Bustamante, M. G.; Marks, S.; Abbott, M. B.; Moy, C. M.

    2017-12-01

    The sediment record from Laguna Pallcacocha in Las Cajas National Park, southern Ecuador (4060 masl; 2°46'S; 79°14'W) has been interpreted to record El Niño floods spanning the Holocene (Rodbell et al., 1999; Moy et al., 2002). The sediment record is unusual for the nearly continuous dark- and light-colored laminations (0.1-2.0 cm thick) that comprise the Holocene. Light laminae typically have erosive basal contacts and fine-upwards, whereas dark laminae possess abrupt or gradational lower contacts and reveal no grain size trends. Light laminae contain <2% organic carbon, <2.5% biogenic silica and are well sorted whereas dark laminae are poorly sorted, organic rich (>7%), and contain 3-10% biogenic silica. Light laminae represent deposition during periods of increased precipitation, mobilization of unvegetated sediment above the lake, and increased stream discharge, all of which generate density-driven undercurrents. Conversely, dark laminae are deposited relatively slowly by sedimentation of organic matter, some derived from surface soil horizons. Time series analysis of light laminae reveal the ENSO spectral signature (2-8 yr) that evolves through the Holocene. However, none of the sediment cores taken from many nearby lakes reveal an alluvial record comparable in terms of frequency and magnitude to that preserved in Pallcacocha thus raising questions as to the factors responsible for the rich stratigraphy preserved in Pallcacocha, and, moreover, the regional paleoclimatic significance of the Pallcacocha record. A review of lacustrine sediment cores obtained from Las Cajas National Park suggests that drainage basin factors are the primary control on the sedimentologic signal recorded. These factors include bedrock geology, presence of unvegetated sediment exposed on slopes, connectivity of exposed sediment to primary inflow streams, drainage basin slope, drainage basin:lake surface area ratio, and position of lake in paternoster sequence of lakes. Bedrock is comprised of Quaternary silicic ignimbrite, rhyolite, and andesite of the Tarqui Formation. Ignimibrite provides the greatest extent of unvegetated sediment available for transport. Careful selection of lakes is essential in order to rigorously compare records preserved and evaluate the regional significance of these records.

  8. Morpho-stratigraphic characterization of a tufa mound complex in the Spanish Pyrenees using ground penetrating radar and trenching, implications for studies in Mars

    NASA Astrophysics Data System (ADS)

    Pellicer, X. M.; Linares, R.; Gutiérrez, F.; Comas, X.; Roqué, C.; Carbonel, D.; Zarroca, M.; Rodríguez, J. A. P.

    2014-02-01

    The Isona tufa mound complex (ITMC), associated with artesian springs of the Areny-Montsec aquifer, Spanish Pyrenees, is a potential analog for water constructed landforms on Mars. We used Ground Penetrating Radar (GPR), trenching, sedimentological description of exposures, and radiocarbon and U-series dating methods for the geological characterization of the ITMC. Preliminary geomorphological mapping combined with sedimentological analyses permitted the recognition of the different facies and their spatial distribution. GPR surveys conducted next to an outcrop and a trench provided electromagnetic wave velocity in tufas (0.09 and 0.11 m ns-1) and determined the correspondence of the radar signatures with facies types. This was used to reconstruct the tufas internal structure and the depositional stages for two different contexts: (1) an upper unit representing the morpho-stratigraphic record of paleosprings - Tufa 1 - composed of relict tufa mounds older than 350 ka BP; and (2) a lower unit - Tufa 3 - associated with groundwater aquifer outlets (Basturs Lakes). The GPR data allowed depicting the signatures for the vent, pool, rimstone, palustrine, dam, cascade and slope facies. A relationship was inferred between the age of the tufas and the radar signature, in terms of relative amplitude and signal attenuation. Older dry tufas with advanced diagenesis and karstification are characterized by well-defined GPR reflectors and lower attenuation than younger tufas, associated with aquifer discharge and shallower water tables. U-series and radiocarbon ages obtained from the Basturs Lakes tufas indicate that these have been active since 106 ka BP during both cold and mild Marine Isotopic Stages (MIS). We hypothesize that tufas related to the deep-seated Areny-Montsec confined karst aquifer were insensitive to climate variations. Landforms reminiscent of the ITMC have been detected during the last decade on Mars. Since GPR will be part of the ExoMars Rover of the European Space Agency (ESA) mission projected for 2018, we anticipate that our results may be able to constrain the interpretation of landforms possibly related to water on Mars.

  9. The depositional setting of the Late Quaternary sedimentary fill in southern Bannu basin, Northwest Himalayan fold and thrust belt, Pakistan.

    PubMed

    Farid, Asam; Khalid, Perveiz; Jadoon, Khan Zaib; Jouini, Mohammed Soufiane

    2014-10-01

    Geostatistical variogram and inversion techniques combined with modern visualization tools have made it possible to re-model one-dimensional electrical resistivity data into two-dimensional (2D) models of the near subsurface. The resultant models are capable of extending the original interpretation of the data to depict alluvium layers as individual lithological units within the 2D space. By tuning the variogram parameters used in this approach, it is then possible to visualize individual lithofacies and geomorphological features for these lithologic units. The study re-examines an electrical resistivity dataset collected as part of a groundwater study in an area of the Bannu basin in Pakistan. Additional lithological logs from boreholes throughout the area have been combined with the existing resistivity data for calibration. Tectonic activity during the Himalayan orogeny uplifted and generated significant faulting in the rocks resulting in the formation of a depression which subsequently has been filled with clay-silt and dirty sand facies typical of lacustrine and flood plain environments. Streams arising from adjacent mountains have reworked these facies which have been eroded and replaced by gravel-sand facies along channels. It is concluded that the sediments have been deposited as prograding fan shaped bodies, flood plain, and lacustrine deposits. Clay-silt facies mark the locations of paleo depressions or lake environments, which have changed position over time due to local tectonic activity and sedimentation. The Lakki plain alluvial system has thus formed as a result of local tectonic activity with fluvial erosion and deposition characterized by coarse sediments with high electrical resistivities near the mountain ranges and fine sediments with medium to low electrical resistivities towards the basin center.

  10. The complex Chukchi Borderland region as part of the Arctic Alaska extended margin

    NASA Astrophysics Data System (ADS)

    Saltus, R.; Hutchinson, D. R.; Miller, E. L.

    2017-12-01

    The Chukchi Borderland region (CBR; includes the Chukchi Plateau and its surrounding component elevations) is a physiographically complex and somewhat enigmatic seafloor high adjacent to the broad Chukchi Shelf in the Alaska/Chukotka quadrant of the Amerasian Basin beneath the Arctic Ocean. The CBR includes several physiographic sub-components including the relatively high-standing Northwind Ridge and Northwind Plain as well as a lower-standing northern region (here called the North Chukchi Component Elevation or NCCE) that consists of several un-named knolls, ramps, and benches. The CBR shows numerous N-S physiographic features including ridges and escarpments related to extension. The CBR adjoins the Chukchi Shelf to the south, abuts the Canada Basin to the east, and is separated on the west and north from the Mendeleev and Alpha Ridges by the Chukchi Plain, the Mendeleev Plain, and the Nautilus Basin. Available geophysical data, comparative physiography/geomorphology, and geologic analysis show that the CBR is continuous with Arctic Alaska and the adjoining Chukchi Shelf. CBR, Arctic Alaska, and the Chukchi Shelf share common early Paleozoic basement elements as well as Ellesmerian and younger cover sequences. The CBR owes its complex physiographic and structural character to its central location relative to the multiple extensional domains associated with the multi-stage rift formation of the Amerasian Basin, large igneous province-influenced volcanism associated with the Alpha and Mendeleev regions on the north and west, and hyper-extension of continental crust to the east in the deep Canada Basin. The CBR is often portrayed as an independent tectonic element within Arctic tectonic reconstructions, but we argue that models for the formation of the Amerasian Basin should include the CBR as an integral component of the Arctic Alaska microplate.

  11. Preliminary geoarchaeological data from a Senegambian megalithic world heritage site (Wanar, Senegal).

    NASA Astrophysics Data System (ADS)

    Stern, Mathilde; Rigaud, Antoine; Landry, David; Ballouche, Aziz

    2017-04-01

    The Senegambian megalithic complex spread over a territory of 250 km from east to west and 120 to 150 km from north to south. It consists of various monumental forms, especially erected stones circles. At the regional Senegambian scale the excavated sites suggest dates between 7th and 16th century AD, maby older. The exceptional concentration of the alignments and the originality of the forms ("lyre" stones, bifid stones, disc decorations, associated with other monuments, e.g. burial mounds) motivated the inscription of four sites of Senegal and Gambia as World Heritage by UNESCO, like the site of Wanar in Senegal, in the watershed of the Bao Bolon, a tributary of the Gambia River (whc.unesco.org/en/list/1226). However, very little is known about the natural environment of these spectacular monumental manifestations, nor about the socio-economic context of their edification and the surrounding landscapes. Since 2005, archaeological excavations are carried out every year on the necropolis of Wanar. Such research contributes to enrich the socio-cultural knowledge of the Senegambian megalithism, phenomenon associated with the Protohistory (wanar-excavations.jimdo.com). Geoarchaeological studies (geomorphological and palaeo-biogeographical) currently in progress at Wanar aim to reconstruct palaeoenvironments and landscapes contemporary of the monument construction, in order to answer a series of questions: In which landscape context have these populations developed? What were their relations with their environment? How did they fit into their territory, and how did they adapt to environmental changes? The dated material from two cores shows that the sedimentary records cover an extended timespan which include the Senegalese protohistory and previous periods (up to 5000 cal. BP). First sedimentological results describe the hydrosedimentary functioning of the Wanar watershed during the period contemporary with the megalithic phenomenon. Palaeoclimatic signals and anthropogenic impacts must be deciphered in order to better understand the fluctuating environmental dynamics of this era. The processing of grain size parameters, CM patterns (one-percentile/median) according to the method of Passega (1964), makes possible to well characterize the fluvial functioning and the depositional environments (ponds/stagnant water, flood plain or channel with low and intermittent current). These wetlands are very good recorders of palaeoenvironmental dynamics. Paleobiological multiproxies analysis (pollens, diatoms, dendrology, palynofacies and fire signal) are currently in progress and should allow the reconstruction of the history of vegetal landscapes and natural environments. Particular attention will be given to the dynamic factors linked to human activities (fires, vegetation clearing, agro-pastoral practices) and their imprint on the landscape.

  12. Geomorphic effects and sedimentological record of flash floods in the Copiapó River salt marsh (Atacama coast, Northern Chile)

    NASA Astrophysics Data System (ADS)

    Abad, Manuel; Fernández, Rolando; Izquierdo, Tatiana

    2017-04-01

    The Copiapó River is located South of the Atacama Desert (northern Chile) that is considered one of the most arid areas of the planet. On March 25 2015 this fluvial valley experienced one the largest hydrometeorological events recorded in historical times. The rain, unusually high, favored the run off in fluvial channels and alluvial fans that were dry for decades and triggered the rise and overflow of the Copiapó River at different points along the valley causing severe damages. In this work, we realize a characterization of the geomorphic configuration of the Copiapó River before and after this event with the aim of analyzing the main changes produced in the river mouth, where and extent coastal wetland of high ecological value is developed. The geomorphological mapping show a drastic change in the river mouth with the development of forms related with the river overflow and the flooding of the coastal plain such as levees, activation of abandoned channels, flooding lagoons, widening and deepening of the main channel, foredune rupture and, more importantly, a large mud sheet that covers almost the 80% of the study area, including the wetland and the main coastal dune systems. Just a small area of the wetland, far from the main channel, was not affected by this process as it was protected by the levees formed during the first stages of the overflow. The mud flow facies are homogeneous and consist of a layer of massive silty sands with a maximum thickness of 10-75 cm overlied by 5-20 cm of clay with wavy top and carbonaceous rest. It also presents a wide development of mud cracks and salt crusts. At the same time, 4 stages have been differentiated along the event: 1) arrival to the wetland of the first surge that flows in the channel and flooding of the southern sector of the wetland; 2) flooding of the complete mouth area because of the peak discharge arrival and generalize overflow with and associate muddy facies deposition; 3) erosional stage of the channel due to the formation of confined and turbulent flows in the channel; and 4) water logging of the wetland and adjacent areas that lasted several weeks. Using geostatistic technics, we have estimated a minimum volume of mud of 48,892 m3 (37,600 m3/km2) that accumulated during this event in the river mouth.

  13. Blueprint for a coupled model of sedimentology, hydrology, and hydrogeology in streambeds

    NASA Astrophysics Data System (ADS)

    Partington, Daniel; Therrien, Rene; Simmons, Craig T.; Brunner, Philip

    2017-06-01

    The streambed constitutes the physical interface between the surface and the subsurface of a stream. Across all spatial scales, the physical properties of the streambed control surface water-groundwater interactions. Continuous alteration of streambed properties such as topography or hydraulic conductivity occurs through erosion and sedimentation processes. Recent studies from the fields of ecology, hydrogeology, and sedimentology provide field evidence that sedimentological processes themselves can be heavily influenced by surface water-groundwater interactions, giving rise to complex feedback mechanisms between sedimentology, hydrology, and hydrogeology. More explicitly, surface water-groundwater exchanges play a significant role in the deposition of fine sediments, which in turn modify the hydraulic properties of the streambed. We explore these feedback mechanisms and critically review the extent of current interaction between the different disciplines. We identify opportunities to improve current modeling practices. For example, hydrogeological models treat the streambed as a static rather than a dynamic entity, while sedimentological models do not account for critical catchment processes such as surface water-groundwater exchange. We propose a blueprint for a new modeling framework that bridges the conceptual gaps between sedimentology, hydrogeology, and hydrology. Specifically, this blueprint (1) fully integrates surface-subsurface flows with erosion, transport, and deposition of sediments and (2) accounts for the dynamic changes in surface elevation and hydraulic conductivity of the streambed. Finally, we discuss the opportunities for new research within the coupled framework.

  14. Regional mid-Pleistocene glaciation in central Patagonia

    NASA Astrophysics Data System (ADS)

    Hein, Andrew S.; Cogez, Antoine; Darvill, Christopher M.; Mendelova, Monika; Kaplan, Michael R.; Herman, Frédéric; Dunai, Tibor J.; Norton, Kevin; Xu, Sheng; Christl, Marcus; Rodés, Ángel

    2017-05-01

    Southern South America contains a glacial geomorphological record that spans the past million years and has the potential to provide palaeoclimate information for several glacial periods in Earth's history. In central Patagonia, two major outlet glaciers of the former Patagonian Ice Sheet carved deep basins ∼50 km wide and extending over 100 km into the Andean plain east of the mountain front. A succession of nested glacial moraines offers the possibility of determining when the ice lobes advanced and whether such advances occurred synchronously. The existing chronology, which was obtained using different methods in each valley, indicates the penultimate moraines differ in age by a full glacial cycle. Here, we test this hypothesis further using a uniform methodology that combines cosmogenic nuclide ages from moraine boulders, moraine cobbles and outwash cobbles. 10Be concentrations in eighteen outwash cobbles from the Moreno outwash terrace in the Lago Buenos Aires valley yield surface exposure ages of 169-269 ka. We find 10Be inheritance is low and therefore use the oldest surface cobbles to date the deposit at 260-270 ka, which is indistinguishable from the age obtained in the neighbouring Lago Pueyrredón valley. This suggests a regionally significant glaciation during Marine Isotope Stage 8, and broad interhemispheric synchrony of glacial maxima during the mid to late Pleistocene. Finally, we find the dated outwash terrace is 70-100 ka older than the associated moraines. On the basis of geomorphological observations, we suggest this difference can be explained by exhumation of moraine boulders.

  15. Application of Remote Sensing for Generation of Groundwater Prospect Map

    NASA Astrophysics Data System (ADS)

    Inayathulla, Masool

    2016-07-01

    In developing accurate hydrogeomorphological analysis, monitoring, ability to generate information in spatial and temporal domain and delineation of land features are crucial for successful analysis and prediction of groundwater resources. However, the use of RS and GIS in handling large amount of spatial data provides to gain accurate information for delineating the geological and geomorphological characteristics and allied significance, which are considered as a controlling factor for the occurrence and movement of groundwater used IRS LISS II data on 1: 50000 scale along with topographic maps in various parts of India to develop integrated groundwater potential zones. The present work is an attempt to integrate RS and GIS based analysis and methodology in groundwater potential zone identification in the Arkavathi Basin, Bangalore, study area. The information on geology, geomorphology, soil, slope, rainfall, water level and land use/land cover was gathered, in addition, GIS platform was used for the integration of various themes. The composite map generated was further classified according to the spatial variation of the groundwater potential. Five categories of groundwater potential zones namely poor, moderate to poor, moderate, good and very good were identified and delineated. The hydrogeomorphological units like valley fills and alluvial plain and are potential zones for groundwater exploration and development and valley fills associated with lineaments is highly promising area for ground water recharging. The spatial variation of the potential indicates that groundwater occurrence is controlled by geology, land use / land cover, slope and landforms.

  16. Geomorphology, facies architecture, and high-resolution, non-marine sequence stratigraphy in avulsion deposits, Cumberland Marshes, Saskatchewan

    USGS Publications Warehouse

    Farrell, K.M.

    2001-01-01

    This paper demonstrates field relationships between landforms, facies, and high-resolution sequences in avulsion deposits. It defines the building blocks of a prograding avulsion sequence from a high-resolution sequence stratigraphy perspective, proposes concepts in non-marine sequence stratigraphy and flood basin evolution, and defines the continental equivalent to a parasequence. The geomorphic features investigated include a distributary channel and its levee, the Stage I crevasse splay of Smith et al. (Sedimentology, vol. 36 (1989) 1), and the local backswamp. Levees and splays have been poorly studied in the past, and three-dimensional (3D) studies are rare. In this study, stratigraphy is defined from the finest scale upward and facies are mapped in 3D. Genetically related successions are identified by defining a hierarchy of bounding surfaces. The genesis, architecture, geometry, and connectivity of facies are explored in 3D. The approach used here reveals that avulsion deposits are comparable in process, landform, facies, bounding surfaces, and scale to interdistributary bayfill, i.e. delta lobe deposits. Even a simple Stage I splay is a complex landform, composed of several geomorphic components, several facies and many depositional events. As in bayfill, an alluvial ridge forms as the feeder crevasse and its levees advance basinward through their own distributary mouth bar deposits to form a Stage I splay. This produces a shoestring-shaped concentration of disconnected sandbodies that is flanked by wings of heterolithic strata, that join beneath the terminal mouth bar. The proposed results challenge current paradigms. Defining a crevasse splay as a discrete sandbody potentially ignores 70% of the landform's volume. An individual sandbody is likely only a small part of a crevasse splay complex. The thickest sandbody is a terminal, channel associated feature, not a sheet that thins in the direction of propagation. The three stage model of splay evolution proposed by Smith et al. (Sedimentology, vol. 36 (1989) 1) is revised to include facies and geometries consistent with a bayfill model. By analogy with delta lobes, the avulsion sequence is a parasequence, provided that its definition is modified to be independent from sea level. In non-marine settings, facies contacts at the tops of regional peats, coals, and paleosols are analogous to marine flooding surfaces. A parasequence is redefined here as a relatively conformable succession of genetically related strata or landforms that is bounded by regional flooding surfaces or their correlative surfaces. This broader definition incorporates the concept of landscape evolution between regional flooding surfaces in a variety of depositional settings. With respect to landscape evolution, accommodation space has three spatial dimensions - vertical (x), lateral (y), and down-the-basin (z). A flood basin fills in as landforms vertically (x) and laterally accrete (y), and prograde down-the-basin (z). Vertical aggradation is limited by the elevation of maximum flood stage (local base level). Differential tectonism and geomorphology control the slope of the flood basin floor and the direction of landscape evolution. These processes produce parasequences that include inclined stratal surfaces and oriented, stacked macroforms (clinoforms) that show the magnitude and direction of landscape evolution. ?? 2001 Elsevier Science B.V. All rights reserved.

  17. Geomorphology, facies architecture, and high-resolution, non-marine sequence stratigraphy in avulsion deposits, Cumberland Marshes, Saskatchewan

    NASA Astrophysics Data System (ADS)

    Farrell, K. M.

    2001-02-01

    This paper demonstrates field relationships between landforms, facies, and high-resolution sequences in avulsion deposits. It defines the building blocks of a prograding avulsion sequence from a high-resolution sequence stratigraphy perspective, proposes concepts in non-marine sequence stratigraphy and flood basin evolution, and defines the continental equivalent to a parasequence. The geomorphic features investigated include a distributary channel and its levee, the Stage I crevasse splay of Smith et al. (Sedimentology, vol. 36 (1989) 1), and the local backswamp. Levees and splays have been poorly studied in the past, and three-dimensional (3D) studies are rare. In this study, stratigraphy is defined from the finest scale upward and facies are mapped in 3D. Genetically related successions are identified by defining a hierarchy of bounding surfaces. The genesis, architecture, geometry, and connectivity of facies are explored in 3D. The approach used here reveals that avulsion deposits are comparable in process, landform, facies, bounding surfaces, and scale to interdistributary bayfill, i.e. delta lobe deposits. Even a simple Stage I splay is a complex landform, composed of several geomorphic components, several facies and many depositional events. As in bayfill, an alluvial ridge forms as the feeder crevasse and its levees advance basinward through their own distributary mouth bar deposits to form a Stage I splay. This produces a shoestring-shaped concentration of disconnected sandbodies that is flanked by wings of heterolithic strata, that join beneath the terminal mouth bar. The proposed results challenge current paradigms. Defining a crevasse splay as a discrete sandbody potentially ignores 70% of the landform's volume. An individual sandbody is likely only a small part of a crevasse splay complex. The thickest sandbody is a terminal, channel associated feature, not a sheet that thins in the direction of propagation. The three stage model of splay evolution proposed by Smith et al. (Sedimentology, vol. 36 (1989) 1) is revised to include facies and geometries consistent with a bayfill model. By analogy with delta lobes, the avulsion sequence is a parasequence, provided that its definition is modified to be independent from sea level. In non-marine settings, facies contacts at the tops of regional peats, coals, and paleosols are analogous to marine flooding surfaces. A parasequence is redefined here as a relatively conformable succession of genetically related strata or landforms that is bounded by regional flooding surfaces or their correlative surfaces. This broader definition incorporates the concept of landscape evolution between regional flooding surfaces in a variety of depositional settings. With respect to landscape evolution, accommodation space has three spatial dimensions — vertical ( x), lateral ( y), and down-the-basin ( z). A flood basin fills in as landforms vertically ( x) and laterally accrete ( y), and prograde down-the-basin ( z). Vertical aggradation is limited by the elevation of maximum flood stage (local base level). Differential tectonism and geomorphology control the slope of the flood basin floor and the direction of landscape evolution. These processes produce parasequences that include inclined stratal surfaces and oriented, stacked macroforms (clinoforms) that show the magnitude and direction of landscape evolution.

  18. Geomorphological hazards and environmental impact: Assessment and mapping

    NASA Astrophysics Data System (ADS)

    Panizza, Mario

    In five sections the author develops the methods for the integration of geomorphological concepts into Environmental Impact and Mapping. The first section introduces the concepts of Impact and Risk through the relationships between Geomorphological Environment and Anthropical Element. The second section proposes a methodology for the determination of Geomorphological Hazard and the identification of Geomorphological Risk. The third section synthesizes the procedure for the compilation of a Geomorphological Hazards Map. The fourth section outlines the concepts of Geomorphological Resource Assessment for the analysis of the Environmental Impact. The fifth section considers the contribution of geomorphological studies and mapping in the procedure for Environmental Impact Assessment.

  19. On the issue of equifinality in glacial geomorphology

    NASA Astrophysics Data System (ADS)

    Möller, Per; Dowling, Thomas; Cleland, Carol; Johnson, Mark

    2016-04-01

    A contemporary trend in glacial geomorphology is the quest for some form of unifying theory for drumlin and/or ribbed moraine formation: there MUST be ONE explanation. The result of this is attempts to apply 'instability theory' to the formation of all drumlinoid and ribbed moraine formation or, as an alternative to this, the 'erodent layer hypothesis' for single processes driven formation. However, based on field geology evidence on internal composition and architecture and the internals relation to the exterior, i.e. the shape of drumlins or ribbed moraine, many glacial sedimentologists would argue that it is instead different processes in their own or in combination that lead to similar form, i.e. look-alike geomorphologic expression or equifinality in spite of different process background for their formation. As expressed by Cleland (2013) from a philosophical point of view of a 'common cause explanation', as exemplified with mass extinctions through geologic time, there is probably a 'common cause explanation' for the K/T boundary extinction (massive meteorite impact on Earth), but this is not a common explanation for every other mass extinction. The parallel to our Quaternary enigma is that there can of course be a single common cause for explaining a specific drumlinoid flow set (a particular case), but that does not have to be the explanation of another flow set showing other sedimentological/structural attributes, in turn suggesting that the particular case cause cannot be used for explaining the general case, i.e. all drumlins over glaciated terrain on the globe. We argue in the case of streamlined terrain, which often have considerable morphologic difference between features at local landscape scale whilst still remaining part of the drumlinoid continuum on regional scale, is a product of different processes or process combinations (erosion/deformation/accumulation) in the subglacial system, tending towards the most efficient obstacle shape and thus bedform for sliding to take place on. The logic for this in the first order is that obstacles enhance sliding speed by increasing melting and plastic flow. However, if an obstacle is too 'rough' the increase in basal drag counteracts this. Therefore the subglacial system finds an efficiency equilibrium whereby an obstacle is shaped so that it enhances flow with a minimum of drag, i.e. the typical streamlined form is the result of a positive feedback cycle that tends towards efficiency. From Swedish geomorphologic data sets we find the dominating rock-cored drumlins to be formed by accumulation around rock obstacles, in some areas with deep drift the streamlined surface expression is due to combinations of excavational and constructive deformation without any 'seed cores', and in some areas with pre-LGM deglacial sediment successions there is erosional carving into drumlinoid forms. In the case of ribbed moraine it is evident from field geology that such are not single-process bedforms but form in a number of ways (i.e. equifinality); examples from the Swedish Quaternary landscape are ribbed moraine formed (i) from melt-out of stagnant ice, (ii) from remoulding of pre-existing landforms and (iii) from subglacial stacking/folding of sediment and lee-side cavity infill.

  20. The structural hinge of a chain-foreland basin: Quaternary activity of the Pede-Apennine Thrust front (Northern Italy)

    NASA Astrophysics Data System (ADS)

    Maestrelli, Daniele; Benvenuti, Marco; Bonini, Marco; Carnicelli, Stefano; Piccardi, Luigi; Sani, Federico

    2018-01-01

    The Pede-Apennine margin (Northern Italy) is a major WNW-ESE-trending morpho-structural element that delimits the Po Plain to the southwest and consists of a system of southwest dipping thrusts, generally referred to as Pede-Apennine Thrust (PAT). The leading edge of the chain lies further north-east and is buried beneath the Plio-Quaternary marine and fluvial deposits of the Po Plain. Whereas the buried external thrust fronts are obvious active structures (as demonstrated by the 2012 Emilia earthquakes; e.g. Burrato et al., 2012), ongoing activity of the PAT is debated. Using a multidisciplinary approach that integrates structural, seismic, sedimentological and pedological field data, we describe the recent activity of the PAT structures in a sector of the Pede-Apennine margin between the Panaro and the Enza Rivers (Emilia-Romagna). We found that the PAT is emergent or sub-emergent and deforms Middle Pleistocene deposits. We also infer a more recent tectonic phase ( 60-80 ka) by Optically Stimulated Luminescence (OSL) dating of soil profiles that have been deformed by a recent reactivation of the PAT. Furthermore, we show evidence that the PAT and its external splay thrusts strongly influenced the drainage pattern, causing fluvial diversions and forcing paleo-rivers to develop roughly parallel to the margin. Finally, numerical Trishear modelling has been used to calculate deformation rates for the PAT along two transects. Extrapolated slip rates vary between 0.68 and 0.79 mm·yr- 1 for about the last 1.2-0.8 million years.

  1. Sedimentology of paleochannels on foreland coastal plain, Judith River Formation (upper Cretaceous), southeast Alberta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koster, E.H.

    1984-04-01

    The upper 90 m (295 ft) of the sub-Bearpaw Judith River Formation, continuously exposed in the badlands along the Red Deer River 185 km (115 mi) east of Calgary, is famous for the unrivaled assemblage of dinosaur fossils. Dinosaur Provincial Park presents are a rare opportunity to view the architecture of a foreland coastal-plain sequence as well as to clarify the origin and distribution of subbituminous coal zones and gas reservoirs associated with this formation across southeast Alberta. The distal reaches of paleodrainage from the developing Cordillera to the Western Interior seaway are being examined by north-south traversed across themore » badlands. Sharp-based paleochannel units, enclosed by rooted, olive-gray mudstone sequences that are commonly 4-6 m (13-20 ft) thick, vary between 2 end members. The first contains laterally accreted sand-mud couplets with abundant macrofloral debris, and represents cyclical, low-energy growth of point bars, possible with an estuarine influence. The second, mainly comprising cosets of large trough cross-beds with mudstone intraclasts, was formed by episodic aggradation of high-energy systems. An intermediate composite type displays evidence for an energy increase as channel sinuosity decreased. This variation in paleochannel type is attributed to alternating alluviation/rejuvenation associated with an unstable base level. Coal zones and potential reservoirs appear to be associated with the transgressive and regressive phases, respectively, of the Bearpaw coast. Amalgamation of paleochannels - marked by laterally extensive horizons of bone fragments, lithic and intraclastic gravel - is more common seaward over the axial region of the Sweetgrass arch.« less

  2. Facies transition and depositional architecture of the Late Eocene tide-dominated delta in northern coast of Birket Qarun, Fayum, Egypt

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, Zaki A.

    2016-07-01

    Late Eocene successions in the Fayum Depression display notable facies transition from open-marine to brackish-marine realms. Stratigraphic and sedimentologic characteristics of the depositional facies are integrated with ichnological data for the recognition of four facies associations (FA1 to FA4). The transition from open-marine sandstones (FA1) to the brackish-marine deposits (FA2) heralds a transgressive - regressive dislocation. The shallowing- and coarsening-upward progradation from the basal prodelta mudstone-dominated facies (FA2a) to deltafront heterolithics (FA2b) and sandstone facies (FA2c) are overlain by finning-upward delta plain deposits which are expressed by the delta plain mudstone (FA2d) and erosive-based distributary channel fills (FA4). Prodelta/deltfront deposits of FA2 are arranged in thinning- and coarsening-upward parasequences which are stacked in a shallowing-upward progressive cycle. Shallow-marine fossiliferous sandstones (FA3) mark the basal part of each parasequence. Stratigraphic and depositional architectures reflect a tide-dominated delta rather than an estuarine and incised valley (IV) model. This can be evinced by the progressive facies architecture, absence of basal regional incision or a subaerial unconformity and the stratigraphic position above a maximum flooding surface (MFS), in addition to the presence of multiple tidally-influenced distributary channels. Stratigraphic and depositional characteristics of the suggested model resemble those of modern tide-dominated deltaic systems. Accordingly, this model contributes to our understanding of the depositional models for analogous brackish-marine environments, particularly tide-dominated deltas in the rock record.

  3. Kasei Vallis of Mars: Dating the Interplay of Tectonics and Geomorphology

    NASA Technical Reports Server (NTRS)

    Wise, D. U.

    1985-01-01

    Crater density age dates on more than 250 small geomorphic surfaces in the Kasei Region of Mars show clusterings indicative of times of peak geomorphic and tectonic activity. Kasei Vallis is part of a 300 km wide channel system breaching a N-S trending ancient basement high (+50,000 crater age) separating the Chryse Basin from the Tharsis Volcanic Province of Mars. The basement high was covered by a least 3 groups of probable volcanic deposits. Major regional fracturing took place at age 4,000 to 5,000 and was immediately followed by deposition of regional volcanics of the Fesenkov Plains (age 3,000 to 4,200). Younger clusterings of dates in the 900 to 1,500 and 500 to 700 range represent only minor modification of the basic tectonic geomorphic landform. The data suggest that Kasei gap is a structurally controlled breach of a buried ridge by a rather brief episode of fluvial activity.

  4. Arsenic mobilization in the aquifers of three physiographic settings of West Bengal, India: understanding geogenic and anthropogenic influences.

    PubMed

    Bhowmick, Subhamoy; Nath, Bibhash; Halder, Dipti; Biswas, Ashis; Majumder, Santanu; Mondal, Priyanka; Chakraborty, Sudipta; Nriagu, Jerome; Bhattacharya, Prosun; Iglesias, Monica; Roman-Ross, Gabriela; Guha Mazumder, Debendranath; Bundschuh, Jochen; Chatterjee, Debashis

    2013-11-15

    A comparative hydrogeochemical study was carried out in West Bengal, India covering three physiographic regions, Debagram and Chakdaha located in the Bhagirathi-Hooghly alluvial plain and Baruipur in the delta front, to demonstrate the control of geogenic and anthropogenic influences on groundwater arsenic (As) mobilization. Groundwater samples (n = 90) from tube wells were analyzed for different physico-chemical parameters. The low redox potential (Eh = -185 to -86 mV) and dominant As(III) and Fe(II) concentrations are indicative of anoxic nature of the aquifer. The shallow (<100 m) and deeper (>100 m) aquifers of Bhagirathi-Hooghly alluvial plains as well as shallow aquifers of delta front are characterized by Ca(2+)HCO3(-) type water, whereas Na(+) and Cl(-) enrichment is found in the deeper aquifer of delta front. The equilibrium of groundwater with respect to carbonate minerals and their precipitation/dissolution seems to be controlling the overall groundwater chemistry. The low SO4(2-) and high DOC, PO4(3-) and HCO3(-) concentrations in groundwater signify ongoing microbial mediated redox processes favoring As mobilization in the aquifer. The As release is influenced by both geogenic (i.e. geomorphology) and anthropogenic (i.e. unsewered sanitation) processes. Multiple geochemical processes, e.g., Fe-oxyhydroxides reduction and carbonate dissolution, are responsible for high As occurrence in groundwaters. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Ancient Giant Basin/Aquifer System in the Arabia Region, Mars

    NASA Technical Reports Server (NTRS)

    Dohm, James M.; Barlow, Nadine; Williams, Jean-Pierre; Baker, Victor R.; Anderson, Robert C.; Boynton, William V.; Fairen, Alberto G.; Hare, Trent M.

    2004-01-01

    Ancient geologic/hydrologic phenomena on Mars observed through the magnetic data [1,2] provide windows to the ancient past through the younger Argyre and Hellas impacts [e.g., 3,4], the northern plains basement [5], and the Tharsis and Elysium magmatic complexes (recently referred to as superplumes [6,7]). These signatures, coupled with highly degraded macrostructures (tectonic features that are tens to thousands of km-long [8]), reflect an energetic planet during its embryonic development (.5 Ga or so of activity) with an active dynamo and magnetosphere [1,2,6]. One such window into the ancient past occurs northwest of the Hellas impact basin in Arabia Terra. Arabia Terra is one of the few water-rich equatorial regions of Mars, as indicated through impact crater [9] and elemental [10,11] information. This region records many unique traits, including stratigraphy, topography, cratering record, structural character, geomorphology, and geophysical, elemental, albedo, and thermal inertia signatures. We interpret these to collectively indicate a possible ancient giant impact basin that later became an important aquifer, as it provided yet another source of water for the formation of putative water bodies that occupied the northern plains [12,13] and addresses possible water-related characteristics that may be observed at the Opportunity landing site. This basin is antipodal to Tharsis and estimated to be at least 3,000 km in diameter.

  6. Applications of Skylab EREP photographs to mapping of landforms and environmental geology in the Great Plains and Midwest. [Illinois, Iowa, Kansas, Missouri, Nebraska, and South Dakota

    NASA Technical Reports Server (NTRS)

    Morrison, R. B. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. The utility of Skylab 2 and 3 S-190A multispectral photos for environmental-geologic/geomorphic applications is being tested by using them to prepare 1:250,000-scale maps of geomorphic features, surficial geology, geologic linear features, and soil associations of large, representative parts of the Great Plains and Midwest. Parts of Nebraska, Iowa, Missouri, and South Dakota were mapped. The maps were prepared primarily by interpretation of the S-190A photos, supplemented by information from topographic, geologic, and soil maps and reports. The color band provides the greatest information on geology, soils, and geomorphology; its resolution also is the best of all the multispectral bands and permits maximum detail of mapping. The color-IR band shows well the differences in soil drainage and moisture, and vegetative types, but has only moderate resolution. The B/W-red band is superior for topographic detail and stream alinements. The B/W-infrared bands best show differences in soil moisture and drainage but have poor resolution, especially those from SL 2. The B/W-green band generally is so low contrast and degraded by haze as to be nearly useless. Where stereoscopic coverage is provided, interpretation and mapping are done most efficiently using a Kern PG-2 stereoplotter.

  7. Pollen, sediment and diatom response to past climate and environmental change in the Balkan region: the Holocene record of Lake Dojran (Greece/FYROM)

    NASA Astrophysics Data System (ADS)

    Masi, Alessia; Sadori, Laura; Francke, Alexander; Pepe, Caterina; Wagner, Bernd

    2015-04-01

    Lake Dojran (41° 12'N, 22° 44'E, 144 m a.s.l.) is located at the border between the F.Y.R. of Macedonia and Greece in a karstic basin formed by a combination of Tertiary volcanic and tectonic activities. The lake is fed by small rivers, creeks and springs, with most of the run off originating from the near Belasica and Kroussia Mountains. The area of Lake Dojran is influenced by the mountain climate of the central and northern Balkans. In addition, it is tempered by the influence of the Mediterranean Sea, to which it is exposed via the Thessaloniki Plain. The marine influence provides mild winters with high precipitation and long, hot, dry summers. The diverse natural vegetation has been heavily influenced by human activities, particularly during the historical era. Remnants of natural vegetation which survive are dominated by mesophilous plants, in particular deciduous oaks and ashes together with riparian elements such as alders and planes. A 717 cm core was collected from the deepest part of the lake (ca. 6.6 m depth), in Macedonian waters. Thirteen radiocarbon dates carried out on terrestrial plant remains, charcoal, carbonate shell fragments, and bulk organic matter, established that the core covers the last ca. 12500 years, spanning the Younger Dryas to the present (1). Here, we build on previous sedimentological and diatom-based palaeolimnological research, strengthening the multi-proxy dataset by addition of palynological evidence for vegetation catchment change. The Late Glacial was characterized first by an Artemisia steppe, followed by expansion of chenopods and then grasses, confirming the arid climate inferred from sedimentology and diatom data. The subsequent expansion of grasses matches with an increase in lake level inferred from changes in the diatom assemblages. Forest expansion at the onset of the Holocene is characterized by deciduous, semideciduous and evergreen oaks, with pine and fir, during an initial deepwater phase followed by shallowing towards the mid Holocene. Intensification of erosion after 2800 cal yr BP inferred from sedimentology (1) correlates clearly with palynological evidence for deforestation and the intensification of cultivation of cereals and fruit trees such as Olea, Juglans and Castanea. The palynological data also support diatom-based inferences that Late Holocene environmental change also incorporates a climatic shift towards aridification. (1) Francke A., Wagner B., Leng M. J., Rethemeyer J., 2013. Clim Past 9: 481-498. (2) Zhang X., Reed J., Wagner B., Francke A., Levkov Z., 2014. Quat Sci Rev 103: 51-66.

  8. Present vertical movements in Central and Northern Italy from GPS data: Possible role of natural and anthropogenic causes

    NASA Astrophysics Data System (ADS)

    Cenni, N.; Viti, M.; Baldi, P.; Mantovani, E.; Bacchetti, M.; Vannucchi, A.

    2013-11-01

    Insights into the present vertical kinematic pattern in Central and Northern Italy are gained by the analysis of GPS data acquired by a network of 262 permanent stations, working over various time intervals since 2001. Uplift is observed in the Alps (up to 5 mm/yr) and Apennines (1-2 mm/yr), whereas subsidence is recognized in the southern Venetian Plain (2-4 mm/yr) and the eastern Po Valley, where the highest rates are observed (up to 9 mm/yr between Reggio Emilia and Rimini). On the other hand, the western part of the Po Valley presents very low vertical rates. The boundary between subsiding and not subsiding Po Valley nearly corresponds to the Giudicarie tectonic discontinuity. It is argued that the different kinematic patterns of the eastern and western Padanian sectors may also be related to the underthrusting of the eastern domain beneath the western one. Some considerations are then reported on how the various causes of vertical movements (tectonic and sedimentological processes) may contribute to the observed kinematics.

  9. Drought variability over Thessaly plain, Greece. Present and future changes

    NASA Astrophysics Data System (ADS)

    Nastos, Panagiotis T.; Kapsomenakis, John; Dalezios, Nicolas R.; Kotsopoulos, Spyridon; Poulos, Serafim

    2015-04-01

    The diachronic variability of precipitation is of major scientific concern, because it is linked to water availability or deficiency on regional scale. The latter, resulted from a prolonged period of abnormally low precipitation or permanent absence of precipitation, is associated with dryness, having on one hand, a substantial impact on agricultural production and thus the society itself, and on the other hand, the redistribution of flora and fauna. In some cases, dryness drive climate refugees, and this is a great challenge - threat - that must be faced - mitigated - by stake holders in international organizations and fora. The Aridity Index (AI) measures the degree of dryness of the climate at a given region, and according to the United Nations Environmental Programme (UNEP) it is defined as the ratio of precipitation to the potential evapotranspiration. In this study, we investigate the climate change impacts on AI over Thessaly plain, Greece. Thessaly, the largest plain and granary of Greece, includes a total area of 14,036 km2, which represents almost 11% of the Greek territory. Regarding the geomorphology, the ground is 50% mountainous-hilly and 50% flat, irrigated by Peneus, the third largest river in the country, which flows through the axis east-west. The assessment of AI was conducted utilizing daily evapotranspiration losses, based on the modified FAO-56 Penman-Monteith formula, and daily precipitation totals from a number of Regional Climate Models (RCMs), within the ENSEMBLE European Project. Further, the projected changes of AI between the period 1961-1990 (reference period) and the periods 2021-2050 (near future) and 2071-2100 (far future) along with the inter-model standard deviations are presented, under SRES A1B. The findings of the analysis revealed significant spatiotemporal changes of AI over Thessaly plain, focusing on their societal aspects. Acknowlegdements. This work is supported by the project AGROCLIMA (11SYN_3_1913), which is funded by the Action "Cooperation 2011-2015" of the Operational Program "Competitiveness and Entrepreneurship" co-funded by the European Regional Development Fund (ERDF) and the General Secretariat for Research and Technology (Hellenic Ministry of Education).

  10. Recent coastal evolution in a carbonate sandy environments and relation to beach ridge formation: the case of Anegada, British Virgin Islands

    NASA Astrophysics Data System (ADS)

    Cescon, Anna Lisa; Cooper, J. Andrew G.; Jackson, Derek W. T.

    2014-05-01

    In a changing climate context coastal areas will be affected by more frequent extreme events. Understanding the relationship between extreme events and coastal geomorphic response is critical to future adaptation plans. Beach ridge landforms commonly identified as hurricane deposits along tropical coasts in Australia and in the Caribbean Sea. However their formative processes in such environments are still not well understood. In particular, the role of different extreme wave events (storm waves, tsunami waves and extreme swell), in generating beach ridges is critical to their use as palaeotempestology archives. Anegada Island is a carbonate platform situated in the British Virgin Island between the Atlantic Ocean and the Caribbean Sea. Pleistocene in age, Anegada is surrounded by the Horseshoe fringing coral reef. Two Holocene sandy beach ridge plains are present on the western part of the island. The north beach ridge plain is Atlantic facing and has at least 30 ridges; the south beach ridge plain is Caribbean Sea facing and contains 10 ridges. Historical aerial photos enabled the shoreline evolution from 1953 to 2012 to be studied. Three different coastal domains are associate with the beach ridge plains: strong east-west longshore transport affects the north coastline, the south-west coastline from West End to Pomato Point represents an export corridor for these sediments and finally, along the southern coastline, from Pomato Point to Settling Point the area presents a depositional zone with little to no change in the last 70 years. The link between the extreme wave events that have affected Anegada Island in the last 70 years and beach ridge creation is discussed. Hurricane Donna crossed over Anegada Island in 1960: its geomorphological signature is tracked in the shoreline change analysis and its implication in beach ridge formation is discussed. Anegada Island has also been impacted by tsunami waves (Atwater et al., 2012) and a comparative discussion of the effects of hurricane and tsunami on the island will be presented. Atwater, B. et al., 2012. Geomorphic and stratigraphic evidence for an unusual tsunami or storm a few centuries ago at Anegada, British Virgin Islands. Natural Hazards, 63, pp. 51-84.

  11. Mid Pliocene sea levels along the southeast US coastal plain

    NASA Astrophysics Data System (ADS)

    Rovere, A.; Hearty, P. J.; Raymo, M. E.; Mitrovica, J. X.; Inglis, J.

    2012-12-01

    Proxy data suggest that during the Mid-Pliocene Warm Period (MPWP) atmospheric CO2 levels were roughly similar to today (between 350 and 450 ppmv) and that global average temperature was elevated by as much as 3°C with respect to preindustrial values. Estimates of sea level (SL) during the MPWP range from +10 m to >+40 m relative to present, reflecting uncertainties in our knowledge of the sensitivity to modest climate warming of the East Antarctic, West Antarctic and Greenland Ice Sheets. A primary objective of the PLIOMAX project (www.pliomax.org) is to combine models of paleosea-level signals with geological observations to significantly improve constraints on eustatic sea level during the MPWP. In this regard, the southeast US coastal plain is of strategic importance in MPWP sea level studies (Dowsett and Cronin, Geology, 1990). In fact, it is one of the few places where predicted glacio-isostatic effects are expected to exhibit a significant geographic variation (in this case, north-to-south). The coastal plain may also be influenced by dynamic topography driven by mantle convective flow. In this area, two factors drive the up-to-the-west dynamic tilting of the coast. The first is the descent of the Farallon slab, now located under the mid-part of the North American continent. The other is upwelling return flow under the east coast (Moucha et al., Earth Planet. Sci. Lett., 2008). That is, over the last few million years, dynamic topography is responsible for potentially tens of meters of uplift (sea-level fall) of the Pliocene shoreline along the southeast US coastal plain. We have mapped an almost continuous MPWP shoreline cut into Miocene and older formations. However, as a result of multiple inter-state investigations extending over the last century, both the geomorphic escarpment and the associated deposits have been named differently across the region. In Virginia, the Chippenham Thornburg scarp is associated with the Moore House formation; in North and South Carolina, the Orangeburg Scarp can be regarded as the shoreline of the Duplin formation. Southwards, in Georgia and north Florida, the Trail Ridge is associated with the Wicomico Formation, and continues in South Florida with the Haines City Ridge. All these morphological features, associated with formations composed by marine shells and gravels, have been attributed Plio-Pleistocene ages. Though their geological characteristics have been described in detail by several authors (e.g. Winker and Howard, Geology, 1977), their elevation, age and lateral continuity have been poorly constrained. Using LIDAR data and Digital Elevation Models from different state and federal sources we defined the main geomorphological features of MPWP shorelines from Virginia to Florida. Combining the information obtained by literature, elevation datasets, and aerial imagery we identified sites where field surveys have been carried out. During the field surveys, both the elevation and geomorphological features associated to sea level have been mapped and sampled. This combination of GIS methods and field techniques allowed us to map the extent, constrain the elevation, and correlate marine deposits related to MPWP shorelines along the east coast of the US. We will discuss these results, as well as the new insights they provide on glacial isostasy, dynamic topography and tectonic processes occurring within this region.

  12. Sedimentological Investigations of the Martian Surface using the Mars 2001 Robotic Arm Camera and MECA Optical Microscope

    NASA Technical Reports Server (NTRS)

    Rice, J. W., Jr.; Smith, P. H.; Marshall, J. R.

    1999-01-01

    The first microscopic sedimentological studies of the Martian surface will commence with the landing of the Mars Polar Lander (MPL) December 3, 1999. The Robotic Arm Camera (RAC) has a resolution of 25 um/p which will permit detailed micromorphological analysis of surface and subsurface materials. The Robotic Ann will be able to dig up to 50 cm below the surface. The walls of the trench will also be inspected by RAC to look for evidence of stratigraphic and / or sedimentological relationships. The 2001 Mars Lander will build upon and expand the sedimentological research begun by the RAC on MPL. This will be accomplished by: (1) Macroscopic (dm to cm): Descent Imager, Pancam, RAC; (2) Microscopic (mm to um RAC, MECA Optical Microscope (Figure 2), AFM This paper will focus on investigations that can be conducted by the RAC and MECA Optical Microscope.

  13. Recent transformations in the high-Arctic glacier landsystem Hørbyebreen, Svalbard.

    NASA Astrophysics Data System (ADS)

    Ewertowski, Marek; Evans, David; Roberts, David; Tomczyk, Aleksandra

    2016-04-01

    The Hørbyebreen is a polythermal valley glacier in the Petuniabukta area, central part of Spitsbergen. Since the end of the Little Ice Age, a debris-free glacier margin retreated by more than 3 km exposing complex landform assemblages including ice-cored moraines, flutes, eskers and geometric ridge networks. Glacier recession and landforms' development in the terrestrial parts of the foreland were quantified using time-series of orthophotos and digital elevation models (generated based on 1961, 1990, 2009 aerial photographs) and high resolution satellite images from 2013. Additionally, detailed analyses of a case study area were performed based on unmanned aerial vehicle (UAV) imagery (3 cm resolution) captured in 2014. A time-series of 1:5,000 geomorphological maps of the whole foreland, together with 1:300 map of a sample area of complex geometric ridge networks and results of sedimentological analysis, enable us to assess the evolution of glacial landform assemblages. The two main areas of the Hørbyebreen foreland were identified as: (1) the outer moraine ridge and (2) the inner zone between the contemporary ice edge and the outer moraine ridge. The outer moraine ridge was relatively stable and subject to mainly vertical transformation between 1960 and 2009. The most prominent changes were observed within the inner zone. In 1960 it was covered by glacier ice, whereas in 2009 this area exhibited a wide range of subglacial and englacial landforms, including a network of rectilinear ridges which we interpret as crevasse infills created by the injection of pressurized englacial meltwater. Other prominent features in this zone include controlled moraine, indicative of sub-marginal debris entrainment by the polythermal snout, and complex esker network. This landform assemblage is diagnostic of a variable process-form regime in which the glacial geomorphology of polythermal conditions is supplemented with surge signatures and therefore is likely to be the most representative landsystem model for terrestrial-terminating Svalbard glaciers. The research was founded by Polish National Science Centre (project granted by decision number DEC-2011/01/D/ST10/06494).

  14. Geoarchaeology of the karstic area of Mirambello, North-East Crete (Greece): palaeoenvironmental investigations and human settlement implications

    NASA Astrophysics Data System (ADS)

    Ghilardi, M.; Kunesch, S.; Robert, V.; Farnoux, A.; Wurmser, H.

    2009-04-01

    The present work aims to detail the preliminary researches dealing with the geomorphologic, topographic and archaeological setting from two major settlements located in north east Crete. The project undertook by the French school of Archaeology in Athens aims to reconstruct the palaeoenvironmental evolution of the whole area during the last millennia. Fieldworks, including coring, had already been done in August 2006, April 2007 and September 2008; we propose to present the main results. The settlements of Latô and Dreros belong to the area of Mirambello characterized by its spectacular karstic processes and landforms, different karstic depressions with different size can be identified and classified into Dolines and Poljés. As far as the archaeological interest is concerned, villages and cities were occupied during the hellenestic period; several remains are still present around and inside these depressions. Using a G.I.S., the first step consisted in establishing a local geomorphological mapping, taking into account the geological background and the historical occupation of the area. The second step consisted in establishing topographic cross sections of the doline, where the ancient settlement of Latô is located, based on various DGPS surveys. Several questions concerning the occupation of this depression arose : how and for which reasons people decided to leave close to this specific landform ? Which type of activities (farming, grazing, cultivation…) existed and did they were related with natural resources exploitation ? A project associating the local greek archaeological services (Ephoria of Aghios Nikolaos, Director Ms. Apostolakou), the mayor of Nea Polis, the University of Paris 12 (GEONAT EA 435) and the French School of Athens tries to depict the historical evolution of the landscape. Four boreholes (up to a maximum depth of 5 meters) had been drilled in the poljé of Dreros and in a doline situated 1 km away from the ancient settlement of Latô. Sedimentological analyses based on grain-size distribution, magnetic parameters (magnetic susceptibility at low and high frequency) and geochemistry have been realised at 5 cm interval and allow us to reconstruct the infilling of the depressions.

  15. Feedback of Erosional-Depositional Processes Generating Anabranching Patterns in a Mega-River the Case of the PARANÁ River, Argentina

    NASA Astrophysics Data System (ADS)

    Latrubesse, E. M.; Pereira, M.; Ramonell, C. G.; Szupiany, R. N.

    2011-12-01

    A new category of "very large" rivers was recently proposed and defined as mega-rivers, which are those rivers with a Qmean of more than ~17,000m3/s. This category includes the nine largest rivers on Earth and the Parana River is one of the selected members of that peculiar group. The planform adjustment of mega-rivers is a variety of anabranching patterns characterized by the existence of alluvial islands. The processes and mechanisms involved in the generation of the different anabranching styles, however, are not well understood. The Paraná channel pattern has been classified as a low to moderate anabranching, low sinuosity with tendency to braided and having a meandering thalweg. We analyzed a reach of the middle Paraná in Argentina applying a combined multitemporal, hydraulic, sedimentologic and geomorphologic approach. Multitemporal geomorphologic maps, sedimentary descriptions of bars, islands and banks, volumetric calculations using multitemporal bathymetric charts, measurements with ADCP and bathymetric surveys with echosound, sediment transport estimations and the hydrological analysis of available data from gauge stations were some of the tools used in our research. The evolution of the reach was studied from 1908 to present. The reach is subdivided in two sub-reaches (named Chapeton and Curtiembre) which are comprised between nodal points. Chapeton has been in a more mature quasi-equilibrium state through the XX Century but the main channel in Curtiembre evolved from a single pattern to anabranching pattern since 1950s. We conclude that the generation of the anabranching pattern in the studied reach depends of a combination of factors such as the architecture of the floodplain and islands, the main role played by the morphodynamics and shifting of the thalweg, the availability and path of sandy sediments bedforms architecture and the temporal variability of the effective discharge among other secondary factors. A feedback system coupling erosional/depositional processes at the decadal scale seems to be the main responsible for the generation of the complex anabranching pattern in such subreaches.

  16. Micro-geomorphology Surveying and Analysis of Xiadian Fault Scarp, China

    NASA Astrophysics Data System (ADS)

    Ding, R.

    2014-12-01

    Historic records and field investigations reveal that the Mw 8.0 Sanhe-Pinggu (China) earthquake of 1679 produced a 10 to 18 km-long surface rupture zone, with dominantly dip-slip accompanied by a right-lateral component along the Xiadian fault, resulting in extensive damage throughout north China. The fault scarp that was coursed by the co-seismic ruptures from Dongliuhetun to Pangezhang is about 1 to 3 meters high, and the biggest vertical displacement locates in Pangezhuang, it is easily to be seen in the flat alluvial plain. But the 10 to 18 km-long surface rupture couldn't match the Mw 8.0 earthquake scale. After more than 300 years land leveling, the fault scarps in the meizoseismal zone which is farmland are retreat at different degree, some small scarps are becoming disappeared, so it is hard to identify by visual observation in the field investigations. The meizoseismal zone is located in the alluvial plain of the Chaobai river and Jiyun river, and the fault is perpendicular to the river. It is easy to distinguish fault scarps from erosion scarps. Land leveling just changes the slope of the fault scarp, but it can't eliminate the height difference between two side of the fault. So it is possible to recover the location and height of the fault scarp by using Digital Elevation Model (DEM) analysis and landform surveying which is constrained by 3D centimeter-precision RTK GPS surveying method in large scale crossing the fault zone. On the base of the high-precision DEM landform analysis, we carried out 15 GPS surveying lines which extends at least 10km for each crossing the meizoseismal zone. Our findings demonstrate that 1) we recover the complete rupture zone of the Sanhe-Pinggu earthquake in 1679, and survey the co-seismic displacement at 15 sites; 2) we conform that the Xiadian fault scarp is consist of three branches with left stepping. Height of the scarp is from 0.5 to 4.0 meters, and the total length of the scarp is at least 50km; 3) Combined with the analysis of offset strata of the trench, we conform that the middle segment of the fault scarp is made by 1679 earthquake; 4) The fault scarp strikes along with the Ju river at the northeast segment of the Xiadian fault which course the asymmetrical valley geomorphology.

  17. Geomorphological and sedimentary processes of the glacially influenced northwestern Iberian continental margin and abyssal plains

    NASA Astrophysics Data System (ADS)

    Llave, Estefanía; Jané, Gloria; Maestro, Adolfo; López-Martínez, Jerónimo; Hernández-Molina, F. Javier; Mink, Sandra

    2018-07-01

    The offshore region of northwestern Iberia offers an opportunity to study the impacts of along-slope processes on the morphology of a glacially influenced continental margin, which has traditionally been conceptually characterised by predominant down-slope sedimentary processes. High-resolution multibeam bathymetry, acoustic backscatter and ultrahigh-resolution seismic reflection profile data are integrated and analysed to describe the present-day and recent geomorphological features and to interpret their associated sedimentary processes. Seventeen large-scale seafloor morphologies and sixteen individual echo types, interpreted as structural features (escarpments, marginal platforms and related fluid escape structures) and depositional and erosional bedforms developed either by the influence of bottom currents (moats, abraded surfaces, sediment waves, contourite drifts and ridges) or by gravitational features (gullies, canyons, slides, channel-levee complexes and submarine fans), are identified for the first time in the study area (spanning 90,000 km2 and water depths of 300 m to 5 km). Different types of slope failures and turbidity currents are mainly observed on the upper and lower slopes and along submarine canyons and deep-sea channels. The middle slope morphologies are mostly determined by the actions of bottom currents (North Atlantic Central Water, Mediterranean Outflow Water, Labrador Sea Water and North Atlantic Deep Water), which thereby define the margin morphologies and favour the reworking and deposition of sediments. The abyssal plains (Biscay and Iberian) are characterised by pelagic deposits and channel-lobe systems (the Cantabrian and Charcot), although several contourite features are also observed at the foot of the slope due to the influence of the deepest water masses (i.e., the North Atlantic Deep Water and Lower Deep Water). This work shows that the study area is the result of Mesozoic to present-day tectonics (e.g. the marginal platforms and structural highs). Therefore, tectonism constitutes a long-term controlling factor, whereas the climate, sediment supply and bottom currents play key roles in the recent short-term architecture and dynamics. Moreover, the recent predominant along-slope sedimentary processes observed in the studied northwestern Iberian Margin represent snapshots of the progressive stages and mixed deep-water system developments of the marginal platforms on passive margins and may provide information for a predictive model of the evolution of other similar margins.

  18. Plio-Quaternary sedimentation in the Mozambique Channel and in the Zambezi Fan

    NASA Astrophysics Data System (ADS)

    Fierens, Ruth; Droz, Laurence; Toucanne, Samuel; Jorry, Stephan; Raisson, François

    2017-04-01

    The classical stratigraphic framework stating minimum land-to-sea transfers during periods of high relative sea-level is challenged by marine sedimentary systems in regions where climate (low latitude, monsoon-type) is dominated by the 23-ky cyclicity. Known turbidite systems at the lowest latitudes, like the Nile and Bengal systems (Ducassou et al., 2009; Weber et al., 1997) show that the supply of sediments to the deep oceanic domain could persist during relative high sea-level periods. But turbidite systems at low-latitudes still remain poorly understood. In this work, we use the Zambezi turbidite system as a case study to develop our understanding of the reactivity of deep marine sedimentary systems and land-sea transfers to low-latitude climate variability. The Zambezi Plio-Quaternary turbidite system ( 2000 km long x 500 km wide) is located within the Mozambique Channel (Indian Ocean; 11°-30°S), separating Madagascar from the African continent, in a context of high hydronamic conditions. An extensive dataset acquired strategically along the turbidite system was obtained within the scope of the PAMELA project (scientific project leaded by Ifremer and TOTAL in collaboration with Université de Bretagne Occidentale, Université Rennes 1, Université Pierre and Marie Curie, CNRS et IFPEN) and includes multibeam bathymetry, seismic reflection data and sediment cores. Preliminary results of morphological, seismic and sedimentological study suggest that this turbidite system in the Mozambique Channel is particular: i) The Zambezi Valley currently appears to be dominated by erosional or vacuity process over its entire length, which is observed within the valley as well as on the flanks; ii) Only two restricted zones of tubiditic deposition are identified; iii) The sedimentary record of the last 375 ky shows few turbidites that occurs both during glacial and interglacial periods, with a rate of recurrence of several tens of thousands of years. Additional sedimentological results demonstrate a high diversity in turbidite facies depending on the location in the Zambezi system and the pelagic sediments between these turbidites are carbon-rich and have a low sedimentation rate (average of 2.7 cm/ka). These results imply that multiple controlling factors (sediment supplies, geomorphology, along slope bottom currents inducing possible selective transport of fine particles and impact of climatic and eustatic cycles) impacted the sedimentation and led to the atypical architecture of the Zambezi turbidity system. The PhD thesis of Ruth Fierens is co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories) scientific project. Cited references Ducassou et al., 2009. Evolution of the Nile deep-sea turbidite system during the Late Quaternary: influence of climate change on fan sedimentation. Sedimentology 56(7), 2061-2090. Weber et al., 1997. Active growth of the Bengal Fan during sea-level rise and highstand. Geology, 25(4), 315-318.

  19. Reassessing Catastrophic Infill of the Pokhara Valley, Nepal Himalaya

    NASA Astrophysics Data System (ADS)

    Schwanghart, Wolfgang; Bernhardt, Anne; Stolle, Amelie; Adhikari, Basantha; Korup, Oliver

    2014-05-01

    The Pokhara valley, home to Nepal's second largest city and a major tourist attraction (28°15'N, 83°58'E), is covered by 4-5 km3 and 50-100 m thick intramontane fan deposits that resulted from massive aggradation of the Seti Khola, a river draining the Annapurna Massif of the Greater Himalaya. Poorly sorted, gravelly fluvial facies intercalated with debris-flow and mud-flow facies known as the Pokhara Gravels attest to highly energetic transport conditions during one or several catastrophic flow events. In May 2012, a devastative flash flood/debris flow in the Seti Khola rekindled interest in the formation processes and timing of the Pokhara Gravels as they may provide constraints on the magnitudes and frequencies of similar past events. Interpretations of previous sedimentological work and radiocarbon dating (Yamanaka, 1982; Fort, 1987) culminated in the belief that the Pokhara Gravels were catastrophically emplaced only 500 to 1000 years ago, although the exact nature, timing, and triggers of the purported event(s) remain obscure. Specifically, it remains debated whether the Pokhara Gravels were deposited instantaneously, possibly within less than a year, or whether sedimentation was more protracted over perhaps decades to millennia. We present new geomorphological, sedimentological, geochemical, and radiocarbon data and re-assess a potential catastrophic infill of the Pokhara Valley during one or several high-magnitude events. Support for this scenario is given by laterally continuous long-runout (~40 km) debris-flow deposits topped by large (i.e. up to >11-m) boulders, a distinctly calcareous lithology diagnostic of a small Greater Himalayan source area tens of kilometres upstream, and by historical anecdotes of a large flood that destroyed an earlier settlement in the area. However, we show that dated outcrops of fine-grained sediments in tributaries blocked by the Pokhara Gravels yield asynchronous ages. Although our radiocarbon dates are consistent with previously reported ones, pooled ages may equally well reflect more than one depositional event. We infer that massive aggradation must have been ongoing after rivers began incising into the Pokhara Gravels. Yet, geochemical fingerprinting of stillwater sediments located several kilometers upstream in these and other tributary valleys suggests a common and strikingly dominant sediment source limited to the Seti Khola's glaciated headwaters. These findings are at odds with the sedimentology of the Pokhara Gravels that point at one or more phases of deposition, most likely by high-magnitude events, possibly even by different transport processes. In summary, our results call for a much more detailed enquiry into the timing and mode of emplacement of the Pokhara Gravels in order to avoid gross misestimates of the hazard portfolio of the Pokhara valley. References: A. Yamanaka. The Science Reports of Tohoku University, 7th Series (Geography), 32, 46-60 (1982). M. Fort. Zeitsch. f. Geom. N.F., Suppl., 63, 9-36 (1987).

  20. Nitrous oxide emission from cropland and adjacent riparian buffers in contrasting hydrogeomorphic settings.

    PubMed

    Fisher, K; Jacinthe, P A; Vidon, P; Liu, X; Baker, M E

    2014-01-01

    Riparian buffers are important nitrate (NO) sinks in agricultural watersheds, but limited information is available regarding the intensity and control of nitrous oxide (NO) emission from these buffers. This study monitored (December 2009-May 2011) NO fluxes at two agricultural riparian buffers in the White River watershed in Indiana to assess the impact of land use and hydrogeomorphologic (HGM) attributes on emission. The study sites included a riparian forest in a glacial outwash/alluvium setting (White River [WR]) and a grassed riparian buffer in tile-drained till plains (Leary Weber Ditch [LWD]). Adjacent corn ( L.) fields were monitored for land use assessment. Analysis of variance identified season, land use (riparian buffer vs. crop field), and site geomorphology as major drivers of NO fluxes. Strong relationships between N mineralization and NO fluxes were found at both sites, but relationships with other nutrient cycling indicators (C/N ratio, dissolved organic C, microbial biomass C) were detected only at LWD. Nitrous oxide emission showed strong seasonal variability; the largest NO peaks occurred in late spring/early summer as a result of flooding at the WR riparian buffer (up to 27.8 mg NO-N m d) and N fertilizer application to crop fields. Annual NO emission (kg NO-N ha) was higher in the crop fields (WR: 7.82; LWD: 6.37) than in the riparian areas. A significant difference ( < 0.02) in annual NO emission between the riparian buffers was detected (4.32 vs. 1.03 kg NO-N ha at WR and LWD, respectively), and this difference was attributed to site geomorphology and flooding (WR is flood prone; no flooding occurred at tile-drained LWD). The study results demonstrate the significance of landscape geomorphology and land-stream connection (i.e., flood potential) as drivers of NO emission in riparian buffers and therefore argue that an HGM-based approach should be especially suitable for determination of regional NO budget in riparian ecosystems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Geomorphic Effects of Gravel Augmentation and Bank Re-erosion on the Old Rhine River Downstream From The Kembs Dam (France, Germany)

    NASA Astrophysics Data System (ADS)

    Chardon, V.; Laurent, S.; Piegay, H.; Arnaud, F.; Houssier, J.; Serouilou, J.; Clutier, A.

    2017-12-01

    The Old Rhine is a 50 km by-passed reach downstream from the Kembs diversion dam in the Alsacian plain (France/Germany). It has been impacted by engineering works since the 19th century. This reach exhibits poor ecological functionalities due to severe geomorphological alterations (e.g., channel bed stabilization, narrowing, degradation and armoring, sediment deficit). In the frame of the Kembs power plant relicensing (2010), Électricité de France has undertaken two gravel augmentations (18 000 and 30 000 m3) and three controlled bank erosions following riprap protection removal over 300 m bank length to enhance bedload transport and habitat diversification. A first pilot gravel augmentation was also implemented in 2010 (23 000 m3). A geomorphological monitoring based on bedload tracking, grain size analyses and topo-bathymetric surveys has been performed on the three gravel augmentation reaches and one of the controlled bank erosion sites to assess the efficiency and sustainability of these actions (2010-2017). Results show that augmented gravels are entrained for a Q2 flood. Gravels moved several hundred meters for moderate floods and up to one kilometer for more intense floods (Q15), while sediment deposition mainly diffused within the channel. Morphological and grain size diversification, including sediment refinement, are still relatively limited following gravel augmentation. Furthermore, sediment armoring reestablished once the sediment wave moved more downstream, after only four to six years, due to the stability and the narrowness of the channel but also by the absence of upstream bedload supply. Habitat diversification was higher on the controlled bank erosion site thanks to the presence of two artificial groynes, even though eroded sediment volumes were lower than expected (less than 1500m3 for a Q15 flood). This monitoring demonstrates gravel augmentations are not sufficient to really diversify geomorphological conditions of the Old Rhine. Channel enlargements by controlled bank erosion and other actions should be carried out downstream from gravel augmentations to create channel geometry conditions promoting bar development and habitat diversification.

  2. High-Resolution Subsurface Imaging and Stratigraphy of Quaternary Deposits, Marapanim Estuary, Northern Brazil

    NASA Astrophysics Data System (ADS)

    Silva, C. A.; Souza Filho, P. M.; Gouvea Luiz, J.

    2007-05-01

    The Marapanim estuary is situated in the Para Coastal Plain, North Brazil. It is characterized by an embayed coastline developed on Neogene and Quaternary sediments of the Barreiras and Pos-Barreiras Group. This system is strongly influenced by macrotidal regimes with semidiurnal tides and by humid tropical climate conditions. The interpretation of GPR-reflections presented in this paper is based on correlation of the GPR signal with stratigraphic data acquired on the coastal plain through five cores that were taken along GPR survey lines from the recent deposits and outcrops observed along to the coastal area. The profiles were obtained using a Geophysical Survey Systems Inc., Model YR-2 GPR, with monostatic 700 MHz antenna that permitted to get records of subsurface deposits at 20m depth. Were collected 54 radar sections completing a total of 4.360m. The field data were analyzed using a RADAN software and applying different filters. The interpretation of radar facies following the principles of seismic stratigraphy that permitted analyze the sedimentary facies and facies architecture in order to understand the lithology, depositional environments and stratigraphic evolution of this sedimentary succession as well as to leading to a more precise stratigraphic framework for the Neogene to Quaternary deposits at Marapanim coastal plain. Facies characteristics and sedimentologic analysis (i.e., texture, composition and structure aspects) were investigated from five cores collected through a Rammkernsonde system. The locations were determined using a Global Positioning System. Remote sensing images (Landsat-7 ETM+ and RADARSAT-1 Wide) and SRTM elevation data were used to identify and define the distribution of the different morphologic units. The Coastal Plain extends west-east of the mouth of the Marapanim River, where were identified six morphologic units: paleodune, strand plain, recent coastal dune, macrotidal sandy beach, mangrove and salt marsh. The integration of GPR profiles and stratigraphy data allowed for the recognition of paleochannel geometry, with width of 150m and depth of 20m, developed on Barreiras Group, two discontinuity surfaces and three facies associations organized into sedimentary facies: (i) Tidal channel with mottled sand, Conglomerate with clay pebble and Ophiomorpha/linear Skolithos, channel-fill and tabular cross-bedding sand and sand/mud interlayer facies. (ii) Dune/interdune with wavy bedding and cross-bedding sand and planar bedding and tabular cross-bedding sand facies. (iii) infilled tidal channel with mottled sand, planar/flaser bedding sand, lenticular bedding clay and sand/mud interlayer facies. The present study demonstrates that some facies associations occur restricts to tidal paleochannels and shows features well preserved that are very important to reconstruction of the relative sea-level history in the Marapanim Estuary.

  3. Late Pliocene establishment of exorheic drainage in the northeastern Tibetan Plateau as evidenced by the Wuquan Formation in the Lanzhou Basin

    NASA Astrophysics Data System (ADS)

    Guo, Benhong; Liu, Shanpin; Peng, Tingjiang; Ma, Zhenhua; Feng, Zhantao; Li, Meng; Li, Xiaomiao; Li, Jijun; Song, Chunhui; Zhao, Zhijun; Pan, Baotian; Stockli, Daniel F.; Nie, Junsheng

    2018-02-01

    The fluvial archives in the upper-reach Yellow River basins provide important information about drainage history of the northeastern Tibetan Plateau (TP) associated with geomorphologic evolution and climate change. However, the Pliocene fluvial strata within this region have not been studied in detail, hence limiting the understanding of the late Cenozoic development of regional fluvial systems. In this paper, we present the results of a study of the geochronology, sedimentology, and provenance of the fluvial sequence of the Wuquan Formation in the Lanzhou Basin in the northeastern TP. Magnetostratigraphic and cosmogenic nuclide burial ages indicate that the Wuquan Formation was deposited during 3.6-2.2 Ma. Furthermore, sedimentary facies, gravel composition, paleocurrent data, and detrital zircon Usbnd Pb age spectra reveal that the fluvial sequence resembles the terraces of the Yellow River in terms of source area, flow direction, and depositional environment. Our results indicate that a paleo-drainage system flowing out of the northeastern TP was established by ca. 3.6 Ma and that the upstream parts of the Yellow River must have developed subsequently from this paleo-drainage system. The late Pliocene drainage system fits well with the dramatic uplift of the northeastern TP, an intensified Asian summer monsoon, and global increase in erosion rates, which may reflect interactions between geomorphic evolution, tectonic deformation, and climate change.

  4. Is “morphodynamic equilibrium” an oxymoron?

    USGS Publications Warehouse

    Zhou, Zeng; Coco, Giovanni; Townend, Ian; Olabarrieta, Maitane; van der Wegen, Mick; Gong, Zheng; D'Alpaos, Andrea; Gao, Shu; Jaffe, Bruce E.; Gelfenbaum, Guy R.; He, Qing; Wang, Yaping; Lanzoni, Stefano; Wang, Zhengbing; Winterwerp, Han; Zhang, Changkuan

    2017-01-01

    Morphodynamic equilibrium is a widely adopted yet elusive concept in the field of geomorphology of coasts, rivers and estuaries. Based on the Exner equation, an expression of mass conservation of sediment, we distinguish three types of equilibrium defined as static and dynamic, of which two different types exist. Other expressions such as statistical and quasi-equilibrium which do not strictly satisfy the Exner conditions are also acknowledged for their practical use. The choice of a temporal scale is imperative to analyse the type of equilibrium. We discuss the difference between morphodynamic equilibrium in the “real world” (nature) and the “virtual world” (model). Modelling studies rely on simplifications of the real world and lead to understanding of process interactions. A variety of factors affect the use of virtual-world predictions in the real world (e.g., variability in environmental drivers and variability in the setting) so that the concept of morphodynamic equilibrium should be mathematically unequivocal in the virtual world and interpreted over the appropriate spatial and temporal scale in the real world. We draw examples from estuarine settings which are subject to various governing factors which broadly include hydrodynamics, sedimentology and landscape setting. Following the traditional “tide-wave-river” ternary diagram, we summarize studies to date that explore the “virtual world”, discuss the type of equilibrium reached and how it relates to the real world.

  5. Evolution of mid-Atlantic coastal and back-barrier estuary environments in response to a hurricane: Implications for barrier-estuary connectivity

    USGS Publications Warehouse

    Miselis, Jennifer L.; Andrews, Brian D.; Nicholson, Robert S.; Defne, Zafer; Ganju, Neil K.; Navoy, Anthony S.

    2016-01-01

    Assessments of coupled barrier island-estuary storm response are rare. Hurricane Sandy made landfall during an investigation in Barnegat Bay-Little Egg Harbor estuary that included water quality monitoring, geomorphologic characterization, and numerical modeling; this provided an opportunity to characterize the storm response of the barrier island-estuary system. Barrier island morphologic response was characterized by significant changes in shoreline position, dune elevation, and beach volume; morphologic changes within the estuary were less dramatic with a net gain of only 200,000 m3 of sediment. When observed, estuarine deposition was adjacent to the back-barrier shoreline or collocated with maximum estuary depths. Estuarine sedimentologic changes correlated well with bed shear stresses derived from numerically simulated storm conditions, suggesting that change is linked to winnowing from elevated storm-related wave-current interactions rather than deposition. Rapid storm-related changes in estuarine water level, turbidity, and salinity were coincident with minima in island and estuarine widths, which may have influenced the location of two barrier island breaches. Barrier-estuary connectivity, or the transport of sediment from barrier island to estuary, was influenced by barrier island land use and width. Coupled assessments like this one provide critical information about storm-related coastal and estuarine sediment transport that may not be evident from investigations that consider only one component of the coastal system.

  6. Large dams and alluvial rivers in the Anthropocene: The impacts of the Garrison and Oahe Dams on the Upper Missouri River

    USGS Publications Warehouse

    Skalak, Katherine; Benthem, Adam J.; Schenk, Edward R.; Hupp, Cliff R.; Galloway, Joel M.; Nustad, Rochelle A.; Wiche, Gregg J.

    2013-01-01

    The Missouri River has had a long history of anthropogenic modification with considerable impacts on river and riparian ecology, form, and function. During the 20th century, several large dam-building efforts in the basin served the needs for irrigation, flood control, navigation, and the generation of hydroelectric power. The managed flow provided a range of uses, including recreation, fisheries, and habitat. Fifteen dams impound the main stem of the river, with hundreds more on tributaries. Though the effects of dams and reservoirs are well-documented, their impacts have been studied individually, with relatively little attention paid to their interaction along a river corridor. We examine the morphological and sedimentological changes in the Upper Missouri River between the Garrison Dam in ND (operational in 1953) and Oahe Dam in SD (operational in 1959). Through historical aerial photography, stream gage data, and cross sectional surveys, we demonstrate that the influence of the upstream dam is still a major control of river dynamics when the backwater effects of the downstream reservoir begin. In the “Anthropocene”, dams are ubiquitous on large rivers and often occur in series, similar to the Garrison Dam Segment. We propose a conceptual model of how interacting dams might affect river geomorphology, resulting in distinct and recognizable morphologic sequences that we term “Inter-Dam sequence” characteristic of major rivers in the US.

  7. Triangular-shaped landforms reveal subglacial drainage routes in SW Finland

    NASA Astrophysics Data System (ADS)

    Mäkinen, J.; Kajuutti, K.; Palmu, J.-P.; Ojala, A.; Ahokangas, E.

    2017-05-01

    The aim of this study is to present the first evidence of triangular-shaped till landforms and related erosional features indicative of subglacial drainage within the ice stream bed of the Scandinavian ice sheet in Finland. Previously unidentified grouped patterns of Quaternary deposits with triangular landforms can be recognized from LiDAR-based DEMs. The triangular landforms occur as segments within geomorphologically distinguishable routes that are associated with eskers. The morphological and sedimentological characteristics as well as the distribution of the triangular landforms are interpreted to involve the creep of saturated deforming till, flow and pressure fluctuations of subglacial meltwater associated with meltwater erosion. There are no existing models for the formation of this kind of large-scale drainage systems, but we claim that they represent an efficient drainage system for subglacial meltwater transfer under high pressure conditions. Our hypothesis is that the routed, large-scale subglacial drainage systems described herein form a continuum between channelized (eskers) and more widely spread small-scale distributed subglacial drainage. Moreover, the transition from the conduit dominated drainage to triangular-shaped subglacial landforms takes place about 50-60 km from the ice margin. We provide an important contribution towards a more realistic representation of ice sheet hydrological drainage systems that could be used to improve paleoglaciological models and to simulate likely responses of ice sheets to increased meltwater production.

  8. Topography and Geomorphology of the Interior of Occator Crater on Ceres

    NASA Astrophysics Data System (ADS)

    Jaumann, Ralf

    2017-04-01

    With a diameter of 92km, Occator is one of the most prominent craters on Ceres. Its depth ranges from 4.8km along the crater rim to -1.1km at the crater floor with respect to a reference ellipsoid. Occator shows a set of specific features such as post impact formation crater filling including multiple flow features, a central pit with a dome in its center, extensional tectonics expressed as linear radial and concentric graben, and spectral variations indicating a complex formation process. We processed 550 LAMO stereo images from Cycle01-Cycle11 with a resolution of 35m/pixel to generate a high-resolution digital terrain model (DTM) of the Occator impact structure. Occator crater has mass wasting deposits originating from the crater rims and walls, which extend into the crater for 10 to 20km. However, in the southeast and northeast these mass wasting deposits are completely covered by crater floor plains material that extends from the crater center to the rim, ponding against the crater walls. The flows also superimpose the mass wasting deposits from the rims [1]. Furthermore, crater densities on Occator's interior deposits are slightly lower than on its ejecta blanket, indicating post-impact formation or target parameter variation between consolidated melt and unconsolidated ejecta deposits [2,3,4]. The terrain northwest of the central area is very rough, shows mass wasting deposits and is about 2km thick w.r.t the rim of the central pit. The plains to the southeast are smooth, pond against the crater wall, and are less than 500m thick w.r.t. the rim of the central pit The central pit is about 3.5km wide and 600m deep while the dome rises 250m within the pit [5]. In the northeast, multiple flows approaching the crater rim very closely. These flow plains are also less than 500m thick w.r.t. the rim of the central pit. Some of the flows seem to have been superposed on the lower parts of the crater wall and then flowed back into depressions of the plains. The flows to the northeast appear to originate from the central region and move slightly uphill. This indicates either a feeding zone that pushes the flows forward by supplying low-viscosity material or an extended subsidence of the crater center, possibly after discharging a subsurface reservoir [1,2], or lateral oscillations of an impact melt sheet during emplacement. The plains material covers an area of about 4750km2 with an average depth of about 250m resulting in a body of plains material of about 1200km3. The plains material is slightly younger than the impact event and the bright deposits are even younger than the plains material. Post impact processes might be due to impact melt, hydrothermal alteration, or cryovolcanic crater filling [1] K. Krohn et al, GRL43, 11994, (2016). [2] R. Jaumann et al., LPSC47, 1455 (2016). [3] N. Schmedemann et al, GRL43, 11987. (2016) [4] A. Neesemann, et al., Icarus, in prep. [5] P. Schenk, et al., LPSC47 (2016).

  9. Active Faulting, Earthquakes and Geomorphological Changes from Archaeoseismic Data and High-Resolution Topography: Effects on the Urban Evolution of the Roman Town of Sybaris, Ionian Sea (Southern Italy).

    NASA Astrophysics Data System (ADS)

    Alfonsi, L.; Brunori, C. A.; Cinti, F. R.

    2014-12-01

    The Sybaris town was founded by the Greeks in 720 B.C and its life went on up to the late Roman time (VI-VII century A.D.). The town was located within the Sibari Plain near the Crati River mouth (Ionian northern Calabria, southern Italy). Sybaris occurs in area repeatedly affected by natural damaging phenomena, as frequent flooding, high local subsidence, marine storms, and earthquakes. The 2700 year long record of history of Sybaris stores the traces of these natural events and their influence on the human ancient environment through time. Among the natural disasters, we recognize two Roman age earthquakes striking the town. We isolate the damaging of these seismic events, set their time of occurrence, and map a shear zone crossing the site. These results were obtained through i) survey of coseismic features on the ruins, ii) geoarchaeological stratigraphy analysis, and TL and C14 dating, iii) analysis of high-resolution topographic data (1m pixel LiDAR DEM). The Sybaris town showed a persistent resilience to the earthquakes, and following their occurrences the site was not abandoned but underwent remodeling of the urban topography. The interaction of the different approaches reveals the presence of a previously unknown fault crossing the archeological site, the Sybaris fault. The high-resolution topography allows the characterization of subtle geomorphological features and hydrological anomalies, tracing the fault extension, whose Holocene activity is controlling the local morphology and the present Crati river course.

  10. A critical review of seismotectonic setting of the Campanian Plain (Southern Italy) in GIS environment.

    NASA Astrophysics Data System (ADS)

    Gaudiosi, Germana; Alessio, Giuliana; Luiso, Paola; Nappi, Rosa; Ricciolino, Patrizia

    2010-05-01

    The Plio-Pleistocene Campanian Plain is a structural depression of the Southern Italy located between the eastern side of the Tyrrhenian Sea and the Southern Apennine chain. It is surrounded to the North, East and South by the Mesozoic carbonate massifs of the Apennine chain and, to the West, by the Tyrrhenian Sea. The graben origin is similar to other peri-Tyrrhenian regions and is related to a stretching and thinning of the continental crust by the counterclockwise rotation of the Italian peninsula and the contemporaneous opening of the Tyrrhenian sea. The consequent subsidence of the Campanian carbonate platform took place along the Tyrrhenian coast during the Plio-Pleistocene with a maximum vertical extent of 5 km. The plain is filled by volcanic and clastic, continental and marine deposits. Voluminous volcanic activity of Roccamonfina, Campi Flegrei, Ischia, Procida and Vesuvio occurred in the Plain during the Quaternary. In the middle of the plain lies the city of Naples, bordered by the two active volcanoes of Campi Flegrei and Vesuvio. It is a very densely inhabited area that is exposed to high potential volcanic risk. The stress field acting in the Campanian area is poorly known. Structural observations on the Pleistocene faults suggest normal to sinistral movements for the NW- SE-trending faults and normal to dextral for the NE-SW-trending structures. These movements are consistent with those of the structures affecting the inner margin of the Southern Apennines. The Campanian Plain is characterized by seismicity of energy lower than the seismic activity of the Southern Apennine chain. The earthquakes mainly occur along the margin of the plain, in the volcanic areas and a minor seismicity spreads out inside the Plain. The aim of this paper is an attempt to identify active, outcropping and buried fault systems of the Campanian plain through the correlation between seismicity and tectonic structures. Seismic, geologic and geomorphologic data have been analysed in GIS environment. In particular, the seismological data used in this study are relative both to the historical and recent seismic activity, collected by the following Catalogues: CPTI04 Catalogue of Parametric Italian Earthquakes, 2004 (217 b.C to 2002); CSI Catalogue of Instrumental Italian Earthquakes (1981-2002); CNT Seismic Bulletin of Istituto Nazionale di Geofisica e Vulcanologia (2003-2008); Data Base of Seismic Laboratory of Osservatorio Vesuviano (Istituto Nazionale di Geofisica e Vulcanologia) (2000-2009); SisCam Catalogue (Seismotectonic Information System of the Campanian Region) (1980-2000). Seismic data were homogenized in an only one Catalogue. The seismicity of Campi Flegrei and Vesuvio volcanoes have not been studied. The Geological Dataset consists of a merge of all outcropping and buried faults extracted from the available geological and structural maps: Geological map of Italy 1:100.000; Geological map of Southern Italy 1:250.000; Neotectonic Map of Italy 1:500.000; Structural Map of Italy 1:500.000. Two main NW-SE and NE-SW active fault systems have been identified from the joined analysis of seismic epicentres and faults. Moreover, tectonic structure without correlated seismic activity and a spread seismicity, apparently not linked with already known structures (buried faults?), have been identified.

  11. Discovering buried channels of the Yamuna in alluvial plains of NW India using geophysical investigations: implications for major drainage reorganization during Late Quaternary

    NASA Astrophysics Data System (ADS)

    Paul, D.; Khan, I.; Sinha, R.

    2016-12-01

    Climatic changes and active tectonic movements in the northwestern plains of India during the Late Quaternary have led to the migration and abandonment of drainage systems and formation of a large number of palaeochannels. It has been postulated by previous workers that the Yamuna was flowing along the present-day dry palaeochannels of Ghaggar-Hakra riverbed >120 Ka ago and was relocated to its current position only during the Late Quaternary. However, till date, no conclusive evidence has been provided as to when and why the Yamuna avulsion occurred. This study aims to establish sub-surface existence of buried channels of paleo-Yamuna as possible courses of the paleo-Ghaggar river. Geo-electric studies using vertical electrical resistivity soundings (1D-VES), multi electrode electrical resistivity tomography (2D-ERT) and multi probe well log surveys have been carried out in one of the paleochannels of the Yamuna to map the large-scale geometry and architecture of the palaeochannel system in the subsurface. The main objective is to reconstruct the shallow subsurface stratigraphy and alluvial architecture of the interfluve between the modern Yamuna and Sutlej Rivers, in particular the linkage of the paleocourses of the Yamuna River to the drainage network of the northwestern alluvial plains. The geophysical signatures recorded as VES on two transects trending NW-SE in Karnal and Kaithal districts of Haryana at 9 and 13 locations respectively along with continuous ERT reveals the presence of subsurface fine to coarse sand bodies (20 to 30m thick) interbedded with silty clay layers that are laterally stacked. The occurrence of thick and wide subsurface sand bodies in the subsurface implies that these are the deposits of a large river system and suggests that the Yamuna was connected to the paleo-Ghaggar River as hypothesized by earlier workers based on remote sensing techniques. However, detailed sedimentological and chronological constraints are required to establish such links to unravel the stratigraphic manifestation of the buried channels, their sediment provenance and paleoclimatic conditions during the period when these river systems were active.

  12. Geochemical signatures up to the maximum inundation of the 2011 Tohoku-oki tsunami — Implications for the 869 AD Jogan and other palaeotsunamis

    NASA Astrophysics Data System (ADS)

    Chagué-Goff, Catherine; Andrew, Anita; Szczuciński, Witold; Goff, James; Nishimura, Yuichi

    2012-12-01

    The geochemical signature of the Tohoku-oki tsunami deposit and underlying soil was assessed two months, five months and seven months after the 11 March 2011 tsunami inundated the Sendai Plain. The extent of the recognisable sand deposit was traced up to 2.9 km inland while a mud deposit was found up to 4.65 km inland, representing 60% and nearly 95% of the maximum tsunami inundation, respectively. The limit of tsunami inundation was identified 4.85 km from the shore using geochemical marine markers (S and Cl) two months after the tsunami, in the absence of any sedimentological evidence. Concentrations of other geochemical markers (K, Ca, Sr) indicative of the marine incursion and associated minerals were found to decrease landward. δ13C and δ15N and C/N ratios suggested a mixture of terrestrial and marine organic sources in the sediment, while δ34S of sulphate reflected the marine source of water soluble salts. The chemical composition of the 869 AD Jogan tsunami sand deposit was characterised by high Sr and Rb concentrations and was comparable to that of the Tohoku-oki tsunami deposit, suggesting that the sources of sediment may be similar. Marked decreases in S and Cl with time indicated that rainfall resulted in the leaching of salts from the sandy sediments. However, both S and Cl markers as well as Sr were still well preserved in the muddy sediments and underlying soil beyond the limit of the recognisable sand deposit seven months after the tsunami. This suggests that geochemical indicators may well be useful in identifying the extent of historical and palaeotsunamis by determining the marine origin of fine grained sediments beyond the limit of recognisable sand deposition, in particular when marine microfossils are sparse or lacking as is the case on the Sendai Plain. This would allow researchers to redraw palaeotsunami inundation maps and re-assess the magnitude of events such as the Jogan tsunami and other palaeotsunamis, not only on the Sendai Plain but also elsewhere around the world. This has important implications for tsunami risk assessment, hazard mitigation and preparedness.

  13. An Assessment of the Suitability of Cone Penetration Testing in Identifying the Late Quaternary Successions Formed in Tide-dominated Tnvironments: A Case Study from the Eastern China Coastal Plain

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Lin, C. M., Sr.; Dalrymple, R. W.; Gao, S., Sr.

    2017-12-01

    Cone penetration testing (CPT) has proved to be as an effective method for sedimentological purposes in wave-dominated coastal environments. This study, based upon interpretation of 500 CPTs, carried out in the late Quaternary Qiantang River incised-valley fill over the eastern China coastal plain, shows how CPTs can also be used for detailed facies characterization and identification of the key surfaces for sequence-stratigraphic interpretation in tide-dominated systems based upon estimation of three major parameters: cone-tip resistance (qc), sleeve friction (fs), and the ratio of fs and qc (FR). Plotting of qc versus FR, in combination with the CPT curve shape and the relative depth in profile, is adopted as the major tool. The lithologic character which is controlled mainly by sediment supply and dynamics, and post-depositional diagenesis is respected as the main factor affecting how well the CPT technique works. Within this particular tide-dominated environment, dominated by non-cohesive sand and silt, the accumulation of the materials from fluid muds is rare. As a result, the tidal-channel deposits exhibit the nature of coarse-grained deposits, different from that of the other mud-dominated facies associations. On the other hand, a distinct layer of fine-grained deposit at the base of the Holocene sequences was subjected to early diagenesis during the last glacial maximum and early transgression, to become uniformly hard and over-consolidated, geotechnically distinct from the overlying softer sediments. Besides, due to the different sediment dynamics, the tidal-flat and salt-marsh deposits exhibit a distinct geotechnical behavior with the offshore shallow marine muddy deposits. All the above mentioned situations provide the basis for the recognition of facies association and the correlated key surfaces, even for the mapping of the incised-valley boundary. As a consequence, the CPT method has a potential to be a very attractive alternative to economically less convenient methods for the geological mapping in the tide-dominated coastal plain areas.

  14. Reading and Abstracting Journal Articles in Sedimentology and Stratigraphy.

    ERIC Educational Resources Information Center

    Conrad, Susan Howes

    1991-01-01

    An assignment centered on reading journal articles and writing abstracts is an effective way to improve student reading and writing skills in sedimentology and stratigraphy laboratories. Each student reads two articles and writes informative abstracts from the author's point of view. (PR)

  15. Use of the Cone Penetration Testing (CPT) method to interpret late Quaternary tide-dominated successions: A case study from the eastern China coastal plain

    NASA Astrophysics Data System (ADS)

    Zhang, Xia; Lin, Chun-Ming; Dalrymple, Robert W.; Gao, Shu; Canas, Daniel T.

    2018-06-01

    We evaluate the applicability of cone penetration testing (CPT), calibrated using adjacent cores, as a tool for the sedimentological and stratigraphic examination of late Quaternary tide-dominated successions in the eastern China coastal plain. The results indicate that the sedimentary facies and sequence-stratigraphic surfaces can be readily distinguished using CPT profiles in the Qiantang River incised-valley system because of their distinctive mechanical behavior. The lithologic character of the various facies, which is controlled mainly by sediment supply, dynamic processes and post-depositional diagenesis, is the key factor affecting how well the CPT technique works. Within this particular macrotidal environment, which is dominated by non-cohesive sand and silt in the tidal channels, the accumulation of fluid mud is rare. Consequently, the tidal-channel deposits exhibit the geotechnical properties of coarse-grained sediments, and can be easily distinguished from the mud-dominated facies. However, in the nearby Changjiang delta system which is characterized by very high suspended-sediment concentrations and an abundance of fine-grained cohesive sediments, the presence of channel-bottom fluid muds makes it difficult to recognize channel deposits, because of the lack of a sharp lithologic contrast at their base. Consequently, the CPT method might not be as universally effective in tide-dominated systems as it appears to be in wave-dominated settings. Care is needed in the interpretation of the results from tide-dominated successions because of the widespread presence of fluid muds, the heterolithic nature of tidal deposits, the rheological similarity between adjacent facies, and the averaging of geotechnical properties between the alternating finer and coarser layers.

  16. Sedimentology, geochemistry and OSL dating of the alluvial succession in the northern Gujarat alluvial plain (western India) - A record to evaluate the sensitivity of a semiarid fluvial system to the climatic and tectonic forcing since the late Marine Isotopic Stage 3

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Falguni; Shukla, Anil D.; Patel, R. C.; Rastogi, B. K.; Juyal, Navin

    2017-11-01

    The alluvial successions in the northern Gujarat alluvial plain (western India) have been investigated for reconstructing the climatic fluctuations during the last 40 ka. Alluvial architecture and geochemical proxies indicate prevalence of a strengthened Indian Summer Monsoon (ISM) with fluctuations between the late Marine Isotopic Stage 3 (MIS 3; 37 ka) to the early MIS 2 (27 ka). A gradual onset of aridity (declining ISM) after 27 ka with peak aridity at 22 ka is observed. A gradual strengthening of ISM at around 18 and > 12 ka followed by a short reversal in ISM intensity between 12 and 11 ka, is attributed to the Younger-Dryas (YD) cooling event. The aeolian sand sheet dated to 6 and 3.5 ka represents the onset of regional aridity. Following this, a short-lived humid phase was observed after 2 ka, which includes the Medieval Warm Period (MWP). The study suggests that the variability in the ISM to the latitudinal migration of the Inter Tropical Convergence Zone was caused by insolation-driven cooling and warming events in the North Atlantic. The incision of the valley fill alluvium occurred in two distinct phases. The older incision phase occurred after 11 ka and before 6 ka, whereas the younger incision phase that led to the development of present day topography is bracketed between 3.5 ka and before 1 ka. The older incision phase is ascribed to the early to mid-Holocene enhanced ISM (climatically driven), whereas the younger incision seems to be modulated by the activation of basement faults (tectonically driven).

  17. Overview of the sedimentological processes in the western North Atlantic

    NASA Astrophysics Data System (ADS)

    Benetti, S.; Weaver, P.; Wilson, P.

    2003-04-01

    The sedimentary processes operating within the western North Atlantic continental margin include both along-slope sediment transport, which builds sediment drifts and waves, and down-slope processes involving mass wasting. Sedimentation along a large stretch of the margin (north of 32°N) has been heavily influenced by processes that occurred during glacial times (e.g. cutting of canyons and infilling of abyssal plains) when large volumes of sediment were supplied to the shelf edge either by ice grounded on continental shelves or river discharge. The large area of sea floor occupied by depositional basins and abyssal plains testifies to the dominance of turbidity currents. The widespread presence of slide complexes in this region has been related to earthquakes and melting of gas hydrates. South of 32°N, because of the low sediment supply from rivers even during glacial times and the reduced sedimentation due to the erosive effects of the Gulf Stream, few canyon systems and slides are observed and Tertiary sediment cover is thin and irregular. Turbidity currents filled re-entrant basins in the Florida-Bahama platform. Tectonic activity is primarily responsible for the overall morphology and sedimentation pattern along the Caribbean active margin. Along the whole margin, the reworking of bottom sediments by deep-flowing currents seems to be particularly active during interglacials. To some extent this observation must reflect the diminished effect of downslope transport during interglacials, but our data also contribute to the debate over changes in deep water circulation strength on glacial-interglacial timescales. Strong bottom circulation, an open basin system and high sediment supply have led to the construction of large elongate contourite drifts, mantled by smaller scale bedforms. These drifts are mostly seen in regions protected or distant from the masking influence of turbidity currents and sediment mass movements.

  18. Impacts of shore expansion and catchment characteristics on lacustrine thermokarst records in permafrost lowlands, Alaska Arctic Coastal Plain

    USGS Publications Warehouse

    Lenz, Josefine; Jones, Benjamin M.; Wetterich, Sebastian; Tjallingii, Rik; Fritz, Michael; Arp, Christopher D.; Rudaya, Natalia; Grosse, Guido

    2016-01-01

    Arctic lowland landscapes have been modified by thermokarst lake processes throughout the Holocene. Thermokarst lakes form as a result of ice-rich permafrost degradation, and they may expand over time through thermal and mechanical shoreline erosion. We studied proximal and distal sedimentary records from a thermokarst lake located on the Arctic Coastal Plain of northern Alaska to reconstruct the impact of catchment dynamics and morphology on the lacustrine depositional environment and to quantify carbon accumulation in thermokarst lake sediments. Short cores were collected for analysis of pollen, sedimentological, and geochemical proxies. Radiocarbon and 210Pb/137Cs dating, as well as extrapolation of measured historic lake expansion rates, were applied to estimate a minimum lake age of ~1400 calendar years BP. The pollen record is in agreement with the young lake age as it does not include evidence of the “alder high” that occurred in the region ~4000 cal yr BP. The lake most likely initiated from a remnant pond in a drained thermokarst lake basin (DTLB) and deepened rapidly as evidenced by accumulation of laminated sediments. Increasing oxygenation of the water column as shown by higher Fe/Ti and Fe/S ratios in the sediment indicate shifts in ice regime with increasing water depth. More recently, the sediment source changed as the thermokarst lake expanded through lateral permafrost degradation, alternating from redeposited DTLB sediments, to increased amounts of sediment from eroding, older upland deposits, followed by a more balanced combination of both DTLB and upland sources. The characterizing shifts in sediment sources and depositional regimes in expanding thermokarst lakes were, therefore, archived in the thermokarst lake sedimentary record. This study also highlights the potential for Arctic lakes to recycle old carbon from thawing permafrost and thermokarst processes.

  19. Palaeoenvironments during a terminal Oligocene or early Miocene transgression in a fluvial system at the southwestern tip of Africa

    NASA Astrophysics Data System (ADS)

    Roberts, D. L.; Neumann, F. H.; Cawthra, H. C.; Carr, A. S.; Scott, L.; Durugbo, E. U.; Humphries, M. S.; Cowling, R. M.; Bamford, M. K.; Musekiwa, C.; MacHutchon, M.

    2017-03-01

    A multi-proxy study of an offshore core in Saldanha Bay (South Africa) provides new insights into fluvial deposition, ecosystems, phytogeography and sea-level history during the late Paleogene-early Neogene. Offshore seismic data reveal bedrock topography, and provide evidence of relative sea levels as low as - 100 m during the Oligocene. 3D landscape reconstruction reveals hills, plains and an anastomosing river system. A Chattian or early Miocene age for the sediments is inferred from dinoflagellate taxa Distatodinium craterum, Chiropteridium lobospinosum, Homotryblium plectilum and Impagidinium paradoxum. The subtropical forest revealed by palynology includes lianas and vines, evergreen trees, palms and ferns, implying higher water availability than today, probably reduced seasonal drought and stronger summer rainfall. From topography, sedimentology and palynology we reconstruct Podocarpaceae-dominated forests, Proto-Fynbos, and swamp/riparian forests with palms and other angiosperms. Rhizophoraceae present the first South African evidence of Palaeogene/Neogene mangroves. Subtropical woodland-thicket with Combretaceae and Brachystegia (Peregrinipollis nigericus) probably developed on coastal plains. Some of the last remaining Gondwana elements on the sub-continent, e.g., Araucariaceae, are recorded. Charred particles signal fires prior to the onset of summer dry climate at the Cape. Marine and terrestrial palynomorphs, together with organic and inorganic geochemical proxy data, suggest a gradual glacio-eustatic transgression. The data shed light on Southern Hemisphere biogeography and regional climatic conditions at the Palaeogene-Neogene transition. The proliferation of the vegetation is partly ascribed to changes in South Atlantic oceanographic circulation, linked to the closure of the Central American Seaway and the onset of the Benguela Current 14 Ma.

  20. Geomorphological Fieldwork

    USGS Publications Warehouse

    Thornbush, Mary J; Allen, Casey D; Fitzpatrick, Faith A.

    2014-01-01

    Geomorphological Fieldwork addresses a topic that always remains popular within the geosciences and environmental science. More specifically, the volume conveys a growing legacy of field-based learning for young geomorphologists that can be used as a student book for field-based university courses and postgraduate research requiring fieldwork or field schools. The editors have much experience of field-based learning within geomorphology and extend this to physical geography. The topics covered are relevant to basic geomorphology as well as applied approaches in environmental and cultural geomorphology. The book integrates a physical-human approach to geography, but focuses on physical geography and geomorphology from an integrated field-based geoscience perspective.

  1. Preliminary geologic map of the Santa Barbara coastal plain area, Santa Barbara County, California

    USGS Publications Warehouse

    Minor, Scott A.; Kellogg, Karl S.; Stanley, Richard G.; Stone, Paul; Powell, Charles L.; Gurrola, Larry D.; Selting, Amy J.; Brandt, Theodore R.

    2002-01-01

    This report presents a new geologic digital map of the Santa Barbara coastal plain area at a compilation scale of 1:24,000 (one inch on the map = 2,000 feet on the ground) and with a horizontal positional accuracy of at least 20 m. This preliminary map depicts the distribution of bedrock units and surficial deposits and associated deformation underlying and adjacent to the coastal plain within the contiguous Santa Barbara and Goleta 7.5' quadrangles. A planned second version will extend the mapping westward into the adjoining Dos Pueblos Canyon quadrangle and eastward into the Carpinteria quadrangle. The mapping presented here results from the collaborative efforts of geologists with the U.S. Geological Survey Southern California Areal Mapping Project (SCAMP) (Minor, Kellogg, Stanley, Stone, and Powell) and the tectonic geomorphology research group at the University of California at Santa Barbara (Gurrola and Selting). C.L. Powell, II, performed all new fossil identifications and interpretations reported herein. T.R. Brandt designed and edited the GIS database,performed GIS database integration and created the digital cartography for the map layout. The Santa Barbara coastal plain is located in the western Transverse Ranges physiographic province along a west-trending segment of the southern California coastline about 100 km (62 mi) northwest of Los Angeles. The coastal plain region, which extends from the Santa Ynez Mountains on the north to the Santa Barbara Channel on the south, is underlain by numerous active and potentially active folds and partly buried thrust faults of the Santa Barbara fold and fault belt. Strong earthquakes that occurred in the region in 1925 (6.8 magnitude) and 1978 (5.1 magnitude) are evidence that such structures pose a significant earthquake hazard to the approximately 200,000 people living within the major coastal population centers of Santa Barbara and Goleta. Also, young landslide deposits along the steep lower flank of the Santa Ynez Mountains indicate the potential for continued slope failures and mass movements that may threaten urbanized parts of the coastal plain. Deformed sedimentary rocks in the subsurface of the coastal plain and the adjacent Santa Barbara Channel contain deposits of oil and gas, some of which are currently being extracted. Shallow, localized sedimentary aquifers underlying the coastal plain provide limited amounts of water for the urban areas, but the quality of some of this groundwater is compromised by coastal salt-water contamination. The present map compilation provides a set of uniform geologic digital coverages that can be used for analysis and prediction of these and other geologic hazards and resources in the coastal plain region. In the map area the oldest stratigraphic units consist of resistant Eocene to Oligocene marine and terrestrial sedimentary rocks that form a mostly southward-dipping and laterally continuous sequence along the south flank of the Santa Ynez Mountains. Less resistant, but more variably deformed, Miocene, Pliocene, and Pleistocene marine sedimentary rocks and deposits are exposed in the lower Santa Ynez foothills and in the coastal hills and sea cliffs farther south. Pleistocene and Holocene surficial alluvial, colluvial, estuarine, and marine-terrace deposits directly underlie much of the low-lying coastal plain area, and similar-aged alluvial and landslide deposits locally mantle the lower flanks of the Santa Ynez Mountains. Structurally, the Santa Barbara coastal plain area is dominated by the Santa Barbara fold and fault belt, an east-west-trending zone of Quaternary, partly active folds and blind and exposed reverse and thrust faults. The dominant trend of individual structures within the belt is west-northwest -- slightly oblique to the overall trend of the fold and fault belt. A conspicuous exception, however, is the More Ranch fault system, which strikes east-northeast across the fold and f

  2. The Hei River Basin in northwestern China - tectonics, sedimentary processes and pathways

    NASA Astrophysics Data System (ADS)

    Rudersdorf, Andreas; Nottebaum, Veit; Schimpf, Stefan; Yu, Kaifeng; Hartmann, Kai; Stauch, Georg; Wünnemann, Bernd; Reicherter, Klaus; Diekmann, Bernhard; Lehmkuhl, Frank

    2014-05-01

    The Hei River Basin (catchment area of c. 130,000 km²) is situated at the transition between the northern margin of the Tibetan Plateau and the southern slopes of Gobi-Tien-Shan. As part of the northwestern Chinese deserts, the Ejina Basin (Gaxun Nur Basin) constitutes the endorheic erosion base of the drainage system. The basin - hosting the second largest continental alluvial fans in the world, is tectonically strongly shaped by the Gobi belt of left-lateral transpression. The tectonic setting in combination with competing climatic driving forces (Westerlies and summer/winter monsoon currents) has supported the formation of a valuable long-time sediment archive comprises at least the last 250,000 yrs. of deposition. It is composed by the interplay of eolian, fluvial and lacustrine sedimentation cycles and today is dominated by widespread (gravel) gobi surfaces, insular dune fields and shallow evaporitic playa areas. Thus, it provides excellent conditions to investigate tectonic evolution and Quaternary environmental changes. Recently, geomorphological, geophysical, neotectonic and mineralogical studies have enhanced the understanding of the environmental history and the modern depositional environment. Moreover, the role of the Hei River Basin as an important source area of silt particles which were later deposited on the Chinese Loess Plateau is evaluated. Therefore, a 230 m long drill core, sediment sections and ca. 700 surface samples throughout the whole catchment and basin were analyzed. Instrumental and historical seismicity are very low, but the proximity to active fault zones and dating irregularities in earlier publications indicate evidence for deformation in the study area. Despite flat topography, indications of active tectonics such as fault-related large-scale lineations can be observed. Seismically deformed unconsolidated lacustrine deposits (seismites), presumably of Holocene age, are evident and must be related to the nearby faults. The upper catchment is represented by the Qilian Shan mountain range and its immediate foreland. Here, a tripartite altitudinal distribution of terrestrial sediment archives is evident, which is representative of catchment-wide sedimentological processes. Insights into their formation mechanisms, therefore, add valuable perspective regarding the reconstruction of sedimentological and paleoenvironmental conditions in the depositional area of the Hei River Basin. For the characterization of provenance and dispersal of Quaternary sediments in relation to the modern depositional environment, over 200 surface samples from the whole catchment were analyzed using XRD and XRF measurements on the clay fractions, heavy minerals and bulk sediments. The clay mineral results in-particular show that it is possible to discriminate between the chlorite rich metamorphic sediments originating from greenschist bearing rocks in the Qilian Shan Mountain Range in the south, and the more intrusive rocks from the Bei Shan Mountain Range west of the Hei River Basin. Additionally, these two main sources reflect different transportation processes; the Qilian Shan sediments are mainly transported by the rivers Heihe and Beida He, and the deposition of the Bei Shan sediments is mainly driven by wind or local runoff. Grain size results of primary loess deposits indicate different eolian transport pathways, i.e., far-travelled dust input (medium silty) vs. local deflation from active fluvial channels (fine sandy). Along the altitudinal transect, the varying geomorphological settings exert a significant influence on the grain size composition showing an increased contribution of far-travelled dust at higher altitudes.

  3. Recent Geomorphological Evolution in the Southern Part of the Middle Russian Upland (Russia)

    NASA Astrophysics Data System (ADS)

    Romanovskaya, Maria; Sukhanova, Tatyana; Krilkov, Nikita

    2017-04-01

    The Middle Russian Upland occupies the central part of the East European Plain. Our structural and geomorphological study of the Upland's southern segment (mostly of the Ostrogozhsk Uplift) exposed the presence of differently aged erosion-shaped denudational, erosion-shaped accumulational and purely accumulational surfaces, each with its own complex of recent deposits. The entire landscape is a system of altitudinal 'steps', or 'levels', which we believe were formed by uneven neotectonic movements and also influenced by climate fluctuations. The highest (220 - 230 m above sea level) and the oldest day light surface of the Ostrogozhsk Uplift lies on Poltava- and Shapkino-type deposit suites and dates from the Late Miocene. A surface at about 200 m dates from the Late Miocene and the Pliocene. Surfaces at 180 m and 150 m date from the Eopleistocene and the Early Pleistocene, respectively. The former lies on Kiev-type deposits, and the latter - on fluvioglacial deposits from the time of the maximum Dnepr (or Don) Glaciations. The valleys of the rivers Don and Tikhaya Sosna have fluvial terraces above their floodplains all formed under the influence of the Don, Dnepr, Moscow and, Valdai Glaciations. Terrace IV (at about 60 m above river level) formed in the opening half of the Middle Neopleistocene. Terrace III (40 m), formed in the closing half of the Middle Neopleistocene. Terrace II (30 m), formed in the opening half of the Late Neopleistocene. Terrace II (at 10 to 12 m), formed in the closing half of the Late Neopleistocene. The floodplain (at 2 to 4 m), formed in the Holocene. There is ample evidence of neotectonic activity in the surveyed area, namely: changes in the flow direction of the rivers Don and Tikhaya Sosna, forced to bypass the growing upland forming tectonic meanders; instances of damming up, which have led to waterlogging in floodplains; increase in the density of the erosion grid; fall of the groundwater table; intensification of erosion and slope wash processes, forming numerous canyon-shaped ravines, very steep slopes, bastion-like relief forms and a very peculiar relief type - chalk outliers (Romanovskaya et al, 2015; 2016). Thus the beginning of the modern topography of the study area falls in the Late Miocene, after the end of the Late Oligocene-Early Miocene sea regressed, and marine sediments were covered by continental sediments of Poltava type deposit. During the recent phase of lifting the area developed unevenly, as evidenced by the steplike on the slopes of the watershed. Neotectonic movements, are the major cause of the lifting of the study area and its modern geomorphological features. Romanovskaya M.A., Bessudnov A.N., Kuznetsova T.V. The Role of Neotectonics in Landscape Formation in What Is Now the Divnogorie Nature Park (Southern East European Plain). AGU Fall Meeting, 14-18 December, 2015, San Francisco, USA. Romanovskaya M.A., Kosevich N.I. Geomorphic Response to Neotectonic Rise of the Middle Russian Upland: the case of the Ostrogozhsk Uplift (European Russia). EGU General Assembly 2016, 17-22 April, 2016, Vienna, Austria.

  4. Inlet Geomorphology Evolution

    DTIC Science & Technology

    2015-04-01

    APR 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Inlet Geomorphology Evolution 5a. CONTRACT NUMBER 5b...Std Z39-18 Coastal Inlets Research Program Inlet Geomorphology Evolution The Inlet Geomorphology Evolution work unit of the CIRP evaluates

  5. The role of rivers in ancient societies, or how man transformed the alluvial landscapes of Khuzestan (SW Iran)

    NASA Astrophysics Data System (ADS)

    Walstra, J.; Heyvaert, V.; Verkinderen, P.

    2012-04-01

    For many thousands of years the alluvial plains of Khuzestan (SW Iran) have been subject to intensive settlement and agriculture. Ancient societies depended on the position of major rivers for their economic survival and hence, there is ample evidence of human activities trying to control the distribution of water. Throughout the plains ancient irrigation and settlement patterns are visible, although traces are rapidly disappearing due to expanding modern land use. Aim of this study is to unlock and integrate the rich information on landscape and archaeology, which only survives through the available historical imagery and some limited archaeological surveys. A GIS-based geomorphological mapping procedure was developed, using a variety of imagery, including historical aerial photographs, CORONA, Landsat and SPOT images. In addition, supported by the evidence from previous geological field surveys, archaeological elements were identified, mapped and included in a GIS database. The resulting map layers display the positions of successive palaeochannel belts and extensive irrigation networks, together indicating a complex alluvial history characterized by avulsions and significant human impact. As shown in several case-studies, integrating information from multiple disciplines provides valuable insights in the complex landscape evolution of this region, both from geological and historical perspectives. Remote sensing and GIS are essential tools in such a research context. The presented work was undertaken within the framework of the Interuniversity Attraction Pole "Greater Mesopotamia: Reconstruction of its Environment and History" (IAP 6/34), funded by the Belgian Science Policy.

  6. First 2 years of Atmospheric CO2 measurements in the Estany Llong plain (2100 masl, Parc Nacional d'Aigüestortes i Estany de Sant Maurici, Pyrenees, Catalonia, Spain).

    NASA Astrophysics Data System (ADS)

    Curcoll, Roger; Recolons, Montserrat; Font, Anna; Agraz, Laura; Parga, Elena; Bacardit, Montse; Camarero, Lluís.; Pueyo, Salva; Rodó, Xavier; Morguí, Josep Anton

    2010-05-01

    Since April 2009, air samples are being taken bi-weekly at 10 GMT in the plain of the Estany Llong at 2100 masl. Estany Llong air sampling site (ELL, 42°34'29''N 0°57'17''E) is a remote site situated in the SW principal valley of the Parc Nacional d'Aigüestortes i Estany de Sant Maurici. New Flask-sampling equipment for Remote Mountain Sites was developed by the Institut Català de Ciències del Clima (IC3) to allow flask sampling in extreme weather conditions and carrying the sampling equipment for more than 10 km without damaging flasks. Dry Air analysis for CO2 are done at the Laboratory of IC3 using two coupled modified IRGA Licor-7000, where both pressure and flow are externally controlled. Far away from populated areas, ELL site acts as a remote site, but it is also responding to discrete events as snow melting, summer cattle breeding on pastures and trekking frequentation. Series of CO2 obtained are included as part of Long Term Ecological Research (LTER) at the Parc Nacional d'Aigüestortes i Estany de Sant Maurici. In the long term, these measurements show the mountain ecosystems contribution and geomorphologic influence on the CO2 budget of the air masses crossing a mountain range.

  7. Formation of outflow channels on Mars: Testing the origin of Reull Vallis in Hesperia Planum by large-scale lava-ice interactions and top-down melting

    NASA Astrophysics Data System (ADS)

    Cassanelli, James P.; Head, James W.

    2018-05-01

    The Reull Vallis outflow channel is a segmented system of fluvial valleys which originates from the volcanic plains of the Hesperia Planum region of Mars. Explanation of the formation of the Reull Vallis outflow channel by canonical catastrophic groundwater release models faces difficulties with generating sufficient hydraulic head, requiring unreasonably high aquifer permeability, and from limited recharge sources. Recent work has proposed that large-scale lava-ice interactions could serve as an alternative mechanism for outflow channel formation on the basis of predictions of regional ice sheet formation in areas that also underwent extensive contemporaneous volcanic resurfacing. Here we assess in detail the potential formation of outflow channels by large-scale lava-ice interactions through an applied case study of the Reull Vallis outflow channel system, selected for its close association with the effusive volcanic plains of the Hesperia Planum region. We first review the geomorphology of the Reull Vallis system to outline criteria that must be met by the proposed formation mechanism. We then assess local and regional lava heating and loading conditions and generate model predictions for the formation of Reull Vallis to test against the outlined geomorphic criteria. We find that successive events of large-scale lava-ice interactions that melt ice deposits, which then undergo re-deposition due to climatic mechanisms, best explains the observed geomorphic criteria, offering improvements over previously proposed formation models, particularly in the ability to supply adequate volumes of water.

  8. Influence of catchment-scale military land use on stream physical and organic matter variables in small Southeaster Plains Catchments (USA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloney, Kelly

    2005-01-01

    We conducted a 3-year study designed to examine the relationship between disturbance from military land use and stream physical and organic matter variables within 12 small (<5.5 km2) Southeastern Plains catchments at the Fort Benning Military Installation, Georgia, USA. Primary land-use categories were based on percentages of bare ground and road cover and nonforested land (grasslands, sparse vegetation, shrublands, fields) in catchments and natural catchments features, including soils (% sandy soils) and catchment size (area). We quantified stream flashiness (determined by slope of recession limbs of storm hydrographs), streambed instability (measured by relative changes in bed height over time), organicmore » matter storage [coarse wood debris (CWD) relative abundance, benthic particulate organic matter (BPOM)] and stream-water dissolved organic carbon concentration (DOC). Stream flashiness was positively correlated with average storm magnitude and percent of the catchment with sandy soil, whereas streambed instability was related to percent of the catchment containing nonforested (disturbed) land. The proportions of in-stream CWD and sediment BPOM, and stream-water DOC were negatively related to the percent of bare ground and road cover in catchments. Collectively, our results suggest that the amount of catchment disturbance causing denuded vegetation and exposed, mobile soil is (1) a key terrestrial influence on stream geomorphology and hydrology and (2) a greater determinant of in-stream organic matter conditions than is natural geomorphic or topographic variation (catchment size, soil type) in these systems.« less

  9. [Wetlands of priority restoration in Northeast China based on spatial analysis].

    PubMed

    Dong, Zhang-Yu; Liu, Dian-Wei; Wang, Zong-Ming; Ren, Chun-Ying; Tang, Xu-Guang; Jia, Ming-Ming; Wang, Yan

    2013-01-01

    By using GIS/RS technology, and from the aspects of landscape structure, river- and road densities, wetness index, geomorphology, and cultivated land productivity, a spatial analysis was made on the potentiality of wetland restoration in Northeast China, with the regions of priority and secondary priority restoration wetlands determined. Then, by using the coordinated development index of crop production and wetland as well as the landscape indices, the wetland restoration effect was verified. In Northeast China, the wetland area of priority restoration was 1.78 x 10(6) hm2, among which, farmland and grassland were the main types for restoration, accounting for 96.7% of the total, and mainly located in the Sanjiang Plain in the northeastern part and the Songnen Plain in the central part of Northeast China. The wetland area of secondary priority restoration was 1.03 x 10(6) hm2. After the restoration of the wetlands, the wetland area in Northeast China would be increased by 37.4%, compared with the present wetland area, and the value of the coordinated development index of crop production and wetland would increase from 0.539 before restoration to 0.733 after restoration. The landscape pattern would be more benefit to the performance of the ecological functions of the wetlands. This study revealed that the restoration scheme of the wetlands in Northeast China based on spatial analysis was practicable, which could provide data support for the implement of wetland restoration and the improvement of ecological environment in Northeast China.

  10. Implications of sedimentological studies for environmental pollution assessment and management: Examples from fluvial systems in North Queensland and Western Australia

    NASA Astrophysics Data System (ADS)

    Eyre, Bradley; McConchie, David

    1993-05-01

    Sedimentology is of increasing importance in environmental research, particularly environmental pollution studies, where past trends in environmental processes need to be combined with data on present conditions to predict likely future changes—the past and present as a key to the future. Two examples are used to illustrate the role of sedimentology in assessing the influence of major processes on the transport, accumulation, deposition and modification of contaminants in fluvial/estuarine systems and in developing environmental management plans. Example 1 shows that when assessing nutrient behaviour in fluvial/estuarine depositional settings, it is important to examine the partitioning of phosphorus between grain size fractions to evaluate the sedimentological processes which control the dispersion and trapping of these contaminants. Example 2 shows that in studies of anthropogenic metal inputs to modern depositional settings, lateral and stratigraphic trends in sediment texture and mineralogy should be examined, in addition to trends in metal loads and evaluation of the prevailing physical, chemical and biological processes that may influence metal mobility and dispersion. Clearly, basic sedimentological data should form part of any assessment of potentially contaminated sites and part of investigations into the dispersion and trapping of contaminants in fluvial systems. These data are also required for rational environmental management to ensure that planning decisions are compatible with natural environmental constraints.

  11. Evidence of the coupled geology system and its impact on the evolution of South China during the transformation from Sinian to Cambrian

    NASA Astrophysics Data System (ADS)

    Yang, C.; Wang, T.; Chen, Z.

    2016-12-01

    Separate interpretation of the evidence on tectonic, sedimentology or climate is insufficient to reappear the dynamic process of the evolution of the Earth surface, thus, tectonic, sedimentology and climate should be considered as a coupled system. Thick carbonate succession is overlaying on the paleo-uplift which is divided into two parts by a fluted belt in the center of Sichuan Basin. Sinian carbonate rocks is commonly composed by algae dolomite, while at the top of the Sinian succession the rocks had experienced meteoric karstification. Grain dolostones, fine-grained siliciclastic sandstones with mudstone appeare as the regional sediment of Cambrian. However, extraordinary thick mudstone had settled in the fluted belt, and the succession could be divided in to siliciclastic mud of the lower and clay-carbonate mud of the upper. The geochemistry and well log synthesized profile of Z4 well indicate that the chemical condition of siliciclastic mud and clay-carbonate mud had changed from oxidation to reduction, however the siliciclastic mud only appeared within the fluted belt. The fluted belt does not exist on the map of the gravity anomaly, but it had been convinced by the seismic data. The precursor of the fluted belt might be a sag within the platform basement, while with the sea level gradually raising up, the growth of algal mound exacerbated the geomorphology difference. Then a regression had happened at the end of the Sinian, starved all the algae and caused weather crust. Meanwhile, the fluted belt became a closed lagoon, received the sediment including algal mound fragment and biosilic crystals. Afterwards, rapidly increasing of the sea level deposited thick cay-carbonate mud that could be recognized as the sediment of maximum flooding surface. Then with the sea level decreasing, siliciclastic sandstones and inorganic grain carbonate became the main petrology of the Cambrian strata. Fine-grained eolian siliciclastic sandstones within the Cambrian carbonate indicate the influence of the continent, but this terrigenous clastics not exist in Sinian carbonate because the location of the platform moved closer to the continent in Cambrian. Meanwhile, there is no algal within Cambrian carbonate, it means the platform might drift to inhospitable place for the algal during the period.

  12. A geological-acoustical framework for an integrated environmental evaluation in Mediterranean marine protected areas. Marettimo Island, a case study

    NASA Astrophysics Data System (ADS)

    Agate, M.; Catalano, R.; Chemello, R.; Lo Iacono, C.; Riggio, S.

    2003-04-01

    A GEOLOGICAL-ACOUSTICAL FRAMEWORK FOR AN INTEGRATED ENVIRONMENTAL EVALUATION IN MEDITERRANEAN MARINE PROTECTED AREAS. MARETTIMO ISLAND, A CASE STUDY. M. Agate (1), R. Catalano (1), R. Chemello (2), C. Lo Iacono (1) &S. Riggio (2) (1)Dipartimento di Geologia e Geodesia dell'Università di Palermo, via Archirafi 26, 90123 Palermo, clageo@katamail.com, rcatal@unipa.it (2)Dipartimento di Biologia animale dell'Università di Palermo, via Archirafi 18, 90123 Palermo,rchemello@unipa.it New analytical methods have been designed to support an objective quantitative evaluation of geological components whose results dictate the lines for a sustainable use of the natural resources. We tried to adopt the fundaments of the seascape concept, based on the thematic elements of landscape ecology and translated into terms fitting with the principles of coastal ecology. The seascape concept is central to our view of the environment and is referred to as an integrated unit (Environmental Unit) resulting from a long multidisciplinary approach, carried out in both the field and the laboratory by an interdisciplinary team of experts. Side Scan Sonar and Multi Beam acoustical data collected in the Marettimo and Ustica Islands (south-western Tyrrhenian Sea))inner shelves, make possible to sketch geomorphological and sedimentological maps, whose details have been tested as deep as 45 m in diving surveys. On the basis of the collected data sets, the inner shelf (0-60 m) has been subdivided into different portions, following the concept of the Environmental Unit (E.U). Every E.U. presents constant morphological and sedimentological features that, probably, can be associated to specified biological communities. In order to find the relationships between physical settings and communities, geological thematic maps are eventually overlaid and fitted to macrobenthic and fishery spatial distribution maps. The result, based on the rule of the Environmental Impact Assessment, puts into evidence the major environmental features and territorial links, useful for correct evaluation and management of a Marine Protected Area. This strategy has informed the GEBEC project, designed to sketch an overall picture of some coastal areas in Southern and Central Mediterranean (Egadi Islands, S. Maria di Castellabate coast, Ustica Island) needing protection and sustainable development.

  13. Late Pleistocene-Holocene alluvial stratigraphy of southern Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Antinao, José Luis; McDonald, Eric; Rhodes, Edward J.; Brown, Nathan; Barrera, Wendy; Gosse, John C.; Zimmermann, Susan

    2016-08-01

    A late Pleistocene to Holocene alluvial stratigraphy has been established for the basins of La Paz and San José del Cabo, in the southern tip of the Baja California peninsula, Mexico. Six discrete alluvial units (Qt1 through Qt6) were differentiated across the region using a combination of geomorphologic mapping, sedimentological analysis, and soil development. These criteria were supported using radiocarbon, optically stimulated luminescence and cosmogenic depth-profile geochronology. Major aggradation started shortly after ∼70 ka (Qt2), and buildup of the main depositional units ended at ∼10 ka (Qt4). After deposition of Qt4, increasing regional incision of older units and the progressive development of a channelized alluvial landscape coincide with deposition of Qt5 and Qt6 units in a second, incisional phase. All units consist of multiple 1-3 m thick alluvial packages deposited as upper-flow stage beds that represent individual storms. Main aggradational units (Qt2-Qt4) occurred across broad (>2 km) channels in the form of sheetflood deposition while incisional stage deposits are confined to channels of ∼0.5-2 km width. Continuous deposition inside the thicker (>10 m) pre-Qt5 units is demonstrated by closely spaced dates in vertical profiles. In a few places, disconformities between these major units are nevertheless evident and indicated by partly eroded buried soils. The described units feature sedimentological traits similar to historical deposits formed by large tropical cyclone events, but also include characteristics of upper-regime flow sedimentation not shown by historical sediments, like long (>10 m) wavelength antidunes and transverse ribs. We interpret the whole sequence as indicating discrete periods during the late Pleistocene and Holocene when climatic conditions allowed larger and more frequent tropical cyclone events than those observed historically. These discrete periods are associated with times when insolation at the tropics was higher than the present-day conditions, determined by precessional cycles, and modulated by the presence of El Niño-like conditions along the tropical and northeastern Pacific. The southern Baja California alluvial record is the first to document a precession-driven alluvial chronology for the region, and it constitutes a strong benchmark for discrimination of direct tropical influence on any other alluvial record in southwestern North America.

  14. Studies of contemporary glacier basal ice cryostructures to identify buried basal ice in the permafrost: an example from the Matanuska Glacier, Alaska.

    NASA Astrophysics Data System (ADS)

    Stephani, E.; Fortier, D.; Kanevskiy, M.; Dillon, M.; Shur, Y.

    2007-12-01

    In the permafrost, massive ice bodies occur as buried glacier ice, aufeis ice, recrystalized snow, massive segregated ice, injection ice, ice wedges or ice formed in underground cavities ("pool ice", "thermokarst-cave ice"). The origin of massive ice bodies in the permafrost bears considerable implications for the reconstructions of paleoenvironments and paleoclimates. Our work aims to help the permafrost scientists working on massive icy sediments to distinguish buried basal glacier ice from other types of buried ice. To do so, the properties and structure of contemporary basal ice must be well known. Field investigations at the Matanuska Glacier (Chugach range, South-central Alaska), consisted in descriptions and sampling of natural basal ice exposures. We have used the basal ice facies classification of Lawson (1979) which is simple, easy to use in the field and provides a good framework for the description of basal ice exposures. Cores were extracted and brought back to the laboratory for water and grain-size analyses. The sediments forming the cryostructure were mostly polymodal, poorly sorted gravelly silt to gravelly fine sand, with mud contents generally over 50%. These data will be used to calibrate three-dimensional (3D) models produced from micro-tomographic scans of basal ice which will produce quantitative estimates of volumetric ice and sediments contents of basal ice cryostructures. Ultimately, visual qualitative and quantitative characterization of the basal ice components of 3D models together with field observations and laboratory analysis will allow for a new micro-facies and cryostructures classification of the basal ice. Our work will also have applications in glaciology, glacial geology, geomorphology, Quaternary and paleo-climatological studies based on inferences made from the structure of basal glacier ice. This paper presents the internal composition of the basal ice facies in terms of cryostructures assemblages (Fortier et al.: 2007) and sedimentological properties. Fortier, D., Kanevskiy, M, Stephani, E., Dillon, M., Shur, Y. 2007. Facies and cryostructures of glacier basal ice as an object of permafrost study, an example from the Matanuska Glacier, Alaska. Canadian Quaternary Association Conference, Ottawa, June 2007: 75. Lawson, D.E. 1979. Sedimentological analysis of the western terminus region of the Matanuska Glacier, Alaska. Cold Regions Engineering and Research Laboratory, Hanover, N.H., Report 79-9.

  15. Sedimentary Characteristics of Marine Events from se Coast of India: Case Studies of 2004 Tsunami and 2013 Phailin Cyclone

    NASA Astrophysics Data System (ADS)

    Karthikeyan, A.

    2015-12-01

    The 2004 Indian Tsunami has deposited a varied layer of sand sheets along the coast which depends upon on the coastal topography. Recognition Tsunami deposits were clearly observed as the sand sheets were laid over the soil which is distinctly different due to differences in the weathering and presence of organic material of vegetation. To understand the preservation potential of 2004 tsunami deposits we were studied a transect profile with seven pits sediments along Thiruvengadu coast , Nagapattinam. The study reveals that presence of sand sheets preserved a mínimum of 10 cm thickness to máximum of 22 cm and the distance is 300 from HTL. From the present study six sedimentary layers were identfied which are (a) Top sediments deposited after IOT, (b). Tsunami sand sheets (c) Silty sand (d). Erosional base and top (e) Silty sand (d) Lagoonal sediments. The 2013 Phailin cyclon with wind speed of 220 kmph which was remnant cyclonic circulation from south china; it had major impact on geomorphology and sedimentology of odisha coast. At rushikulya river mouth, Ganjam district, cyclone had produced washover sand sheets as described in eyewitness along the river mouth of both north and south bar. The study reveals that the washover sand sheets provides the inundation of the water level, and characteristics of sediments where storm deposit has a highly variable grain-size distribution with a marked coarsening at its landward extent, is better sorted, coarser, and has a sharp, non-erosional lower contact associated with buried vegetation and soil. Also, the thickness of cyclone deposits are about 5 cm with the distance from coast 80 m, heavy mineral percentage ranges between 9 % to 75% for entire pit and sandsheets lateral extent are about 45 m. The presence of the laminations and alternate layers of heavy minerals are indicative of the complexity of sedimentation on the coast. The recent marine event Phailin cylcone deposits and 2004 tsunami deposits characteristic and its preservations potential are helpful to identify the paleo tsunami sediment characteristics the along east coast of India. The present study can be used as the background for distinguishing the tsunami and cyclone sediments. Keywords: 2004 Tsunami preservation, 2013 phailin cylcone, sedimentology, Topography.

  16. Improving age-depth models using sedimentary proxies for accumulation rates in fluvio-lacustrine deposits

    NASA Astrophysics Data System (ADS)

    Minderhoud, Philip S. J.; Cohen, Kim M.; Toonen, Willem. H. J.; Erkens, Gilles; Hoek, Wim Z.

    2017-04-01

    Lacustrine fills, including those of oxbow lakes in river floodplains, often hold valuable sedimentary and biological proxy records of palaeo-environmental change. Precise dating of accumulated sediments at levels throughout these records is crucial for interpretation and correlation of (proxy) data existing within the fills. Typically, dates are gathered from multiple sampled levels and their results are combined in age-depth models to estimate the ages of events identified between the datings. In this paper, a method of age-depth modelling is presented that varies the vertical accumulation rate of the lake fill based on continuous sedimentary data. In between Bayesian calibrated radiocarbon dates, this produces a modified non-linear age-depth relation based on sedimentology rather than linear or spline interpolation. The method is showcased on a core of an infilled palaeomeander at the floodplain edge of the river Rhine near Rheinberg (Germany). The sequence spans from 4.7 to 2.9 ka cal BP and consists of 5.5 meters of laminated lacustrine, organo-clastic mud, covered by 1 meter of peaty clay. Four radiocarbon dates provide direct dating control, mapping and dating in the wider surroundings provide additional control. The laminated, organo-clastic facies of the oxbow fill contains a record of nearby fluvial-geomorphological activity, including meander reconfiguration events and passage of rare large floods, recognized as fluctuations in coarseness and amount of allochthonous clastic sediment input. Continuous along-core sampling and measurement of loss-on-ignition (LOI) provided a fast way of expressing the variation in clastic sedimentation influx from the nearby river versus autochthonous organic deposition derived from biogenic production in the lake itself. This low-cost sedimentary proxy data feeds into the age-depth modelling. The sedimentology-modelled age-depth relation (re)produces the distinct lithological boundaries in the fill as marked changes in sedimentation rate. Especially the organo-clastic muddy facies subdivides in centennial intervals of relative faster and slower accumulation. For such intervals, sedimentation rates are produced that deviate 10 to 20% from that in simpler stepped linear age-models. For irregularly laminated muddy intervals of the oxbow fill - from which meaningful sampling for radiocarbon dating is more difficult than from peaty or slowly accumulating organic lake sediments - supplementing spotty radiocarbon sampling with continuous sedimentary proxy data creates more realistic age-depth modelling results.

  17. Global stratigraphy of Venus: Analysis of a random sample of thirty-six test areas

    NASA Technical Reports Server (NTRS)

    Basilevsky, Alexander T.; Head, James W., III

    1995-01-01

    The age relations between 36 impact craters with dark paraboloids and other geologic units and structures at these localities have been studied through photogeologic analysis of Magellan SAR images of the surface of Venus. Geologic settings in all 36 sites, about 1000 x 1000 km each, could be characterized using only 10 different terrain units and six types of structures. Mapping of such units and structures in 36 randomly distributed large regions shows evidence for a distinctive regional and global stratigraphic and geologic sequence. On the basis of this sequence we have developed a model that illustrates several major themes in the history of Venus. Most of the history of Venus (that of its first 80% or so) is not preserved in the surface geomorphological record. The major deformation associated with tessera formation in the period sometime between 0.5-1.0 b.y. ago (Ivanov and Basilevsky, 1993) is the earliest event detected. Our stratigraphic analyses suggest that following tessera formation, extensive volcanic flooding resurfaced at least 85% of the planet in the form of the presently-ridged and fractured plains. Several lines of evidence favor a high flux in the post-tessera period but we have no independent evidence for the absolute duration of ridged plains emplacement. During this time, the net state of stress in the lithosphere apparently changed from extensional to compressional, first in the form of extensive ridge belt development, followed by the formation of extensive wrinkle ridges on the flow units. Subsequently, there occurred local emplacement of smooth and lobate plains units which are presently essentially undeformed. The major events in the latest 10% of the presently preserved history of Venus are continued rifting and some associated volcanism, and the redistribution of eolian material largely derived from impact crater deposits. Detailed geologic mapping and stratigraphic synthesis are necessary to test this sequence and to address many of the outstanding problems raised by this analysis.

  18. Glacially-megalineated limestone terrain of Anticosti Island, Gulf of St. Lawrence, Canada; onset zone of the Laurentian Channel Ice Stream

    NASA Astrophysics Data System (ADS)

    Eyles, Nick; Putkinen, Niko

    2014-03-01

    Anticosti is a large elongate island (240 km long, 60 km wide) in eastern Canada within the northern part of a deep water trough (Gulf of St. Lawrence) that terminates at the Atlantic continental shelf edge. The island's Pleistocene glaciological significance is that its long axis lay transverse to ice from the Quebec and Labrador sectors of the Laurentide Ice Sheet moving south from the relatively high-standing Canadian Shield. Recent glaciological reconstructions place a fast-flowing ice stream along the axis of the Gulf of St. Lawrence but supporting geologic evidence in terms of recognizing its hard-bedded onset zone and downstream streamlined soft bed is limited. Anticosti Island consists of gently southward-dipping limestone plains composed of Ordovician and Silurian limestones (Vaureal, Becscie and Jupiter formations) with north-facing escarpments transverse to regional ice flow. Glacial deposits are largely absent and limestone plains in the higher central plateau of the island retain a relict apparently ‘preglacial’ drainage system consisting of deeply-incised dendritic bedrock valleys. In contrast, the bedrock geomorphology of the lower lying western and eastern limestone plains of the island is strikingly different having been extensively modified by glacial erosion. Escarpments are glacially megalineated with a distinct ‘zig-zag’ planform reflecting northward-projecting bullet-shaped ‘noses’ (identified as rock drumlins) up to 2 km wide at their base and 4 km in length with rare megagrooved upper surfaces. Drumlins are separated by southward-closing, funnel-shaped ‘through valleys’ where former dendritic valleys have been extensively altered by the streaming of basal ice through gaps in the escarpments. Glacially-megalineated bedrock terrain such as on the western and eastern flanks of Anticosti Island is elsewhere associated with the hard-bedded onset zones of fast flowing ice streams and provides important ground truth for the postulated Laurentian Channel Ice Stream (LCIS) within the Gulf of St. Lawrence sector of the Laurentide Ice Sheet.

  19. Publications - RI 2014-2 | Alaska Division of Geological & Geophysical

    Science.gov Websites

    content DGGS RI 2014-2 Publication Details Title: Geologic context, age constraints, and sedimentology of Gillis, R.J., 2014, Geologic context, age constraints, and sedimentology of a Pleistocene volcaniclastic 362.0 K Metadata - Read me Keywords Age Dates; Alluvial; Alluvial Deposits; Bedrock; Bedrock Geology

  20. New insights on water level variability for Lake Turkana for the past 15 ka and at 150 ka from relict beaches

    NASA Astrophysics Data System (ADS)

    Forman, S. L.; Wright, D.

    2015-12-01

    Relict beaches adjacent to Lake Turkana provide a record of water level variability for the Late Quaternary. This study focused on deciphering the geomorphology, sedimentology, stratigraphy and 14C chronology of strand plain sequences in the Kalokol and Lothagam areas. Nine >30 m oscillations in water level were documented between ca. 15 and 4 ka. The earliest oscillation between ca. 14.5 and 13 ka is not well constrained with water level to at least 70 m above the present surface and subsequently fell to at least 50 m. Lake level increased to ~ 90 m between ca. 11.2 and 10.4 ka, post Younger Dryas cooling. Water level fell by >30 m by 10.2 ka, with another potential rise at ca. 8.5 ka to >70 m above current level. Lake level regressed by > 40 m at 8.2 ka coincident with cooling in the equatorial Eastern Atlantic Ocean. Two major >70 m lake level oscillations centered at 6.6 and 5.2 ka may reflect enhanced convection with warmer sea surface temperatures in the Western Indian Ocean. The end of the African Humid Period occurred from ca. 8.0 to 4.5 ka and was characterized by variable lake level (± > 40 m), rather than one monotonic fall in water level. This lake level variability reflects a complex response to variations in the extent and intensity of the East and West African Monsoons near geographic and topographic limits within the catchment of Lake Turkana. Also, for this closed lake basin excess and deficits in water input are amplified with a cascading lake effect in the East Rift Valley and through the Chew Bahir Basin. The final regression from a high stand of > 90 m began at. 5.2 ka and water level was below 20 m by 4.5 ka; and for the remainder of the Holocene. This sustained low stand is associated with weakening of the West African Monsoon, a shift of the mean position of Congo Air Boundary west of the Lake Turkana catchment and with meter-scale variability in lake level linked to Walker circulation across the Indian Ocean. A surprising observation is the presence of older, heavily dissected relict beaches up to 175 m above current lake level, which host beach rock and well developed carbonate rich soils. A preliminary OSL age of 145 ka, indicates that these surface are associated with MOI stage 6 and 5. The higher elevation of these beach either reflect tectonic up-warping, a change in elevation of the outlet to the Blue Nile or combination of these processes.

  1. The role of geomorphology in environmental impact assessment

    NASA Astrophysics Data System (ADS)

    Cavallin, A.; Marchetti, M.; Panizza, M.; Soldati, M.

    1994-04-01

    This paper aims to define the role of Geomorphology in the assessment of the impact of human activities on the environment. Environmental impact assessment (EIA) should be carried out for specific projects, in order to evaluate their suitability for the quality of the environment. In fact, each planned activity may have an impact on various environmental components. Among these, the natural component must be examined in terms of geomorphological hazards, which may endanger a project, and of geomorphological assets (elements forming the educational and cultural heritage of the landscape), which may be damaged to various extents by human activities. The relationships between humans and environment are taken into account, with particular attention to the effects of a project on the geomorphological environment. From a geomorphological point of view, after having assessed the suitability of a certain location, mainly with respect to its morphography and morphometry, the geomorphological hazards of the area which may threaten the project (risk) must be considered; then the geomorphological assets, which may be damaged by the same project (direct impact) have to be individuated. Human activities may produce two other kinds of effect: the first refers to the consequences of the geomorphological hazards induced by a project on the project itself (direct risk) and on the surronding areas (indirect risk); the second takes into account the potential deterioration of a geomorphological asset due to hazards induced by the project (indirect impact). Examples of these different cases are presented.

  2. Hydrogeochemical and isotopic characterisation of groundwater in a sand-dune phreatic aquifer on the northeastern coast of the province of Buenos Aires, Argentina.

    PubMed

    Carretero, Silvina C; Dapeña, Cristina; Kruse, Eduardo E

    2013-01-01

    This contribution presents the hydrochemical and isotopic characterisation of the phreatic aquifer located in the Partido de la Costa, province of Buenos Aires, Argentina. In the sand-dune barrier geomorphological environment, groundwater is mainly a low-salinity Ca-HCO3 and Na-HCO3-type, being in general suitable for drinking, whereas in the continental plain (silty clay sediments), groundwater is a Na-Cl type with high salinity and unsuitable for human consumption. The general isotopic composition of the area ranges from-6.8 to-4.3 ‰ for δ(18)O and from-39 to-21 ‰ for δ(2)H, showing that rainwater rapidly infiltrates into the sandy substrate and reaches the water table almost without significant modification in its isotopic composition. These analyses, combined with other chemical parameters, made it possible to corroborate that in the eastern area of the phreatic aquifer, there is no contamination from marine salt water.

  3. Towards sustainable management of louisiana's coastal wetland forests: Problems, constraints, and a new beginning

    USGS Publications Warehouse

    Chambers, J.L.; Conner, W.H.; Keim, R.F.; Faulkner, S.P.; Day, J.W.; Gardiner, E.S.; Hughes, M.S.; King, S.L.; McLeod, K.W.; Miller, C.A.; Nyman, J.A.; Shaffer, G.P.

    2006-01-01

    Over 345,000 ha of forested swamps occur throughout the Mississippi River Deltaic Plain. Natural and anthropogenic changes in hydrology and geomorphology at local and landscape levels have reduced the productivity in many of these coastal wetland forests areas and have caused the complete loss of forest cover in some places. A summary and interpretation of the available science, suggestions for policy change, and a multidisciplinary (multi-responsibility) approach were needed to address these issues [in the context of private land]. In response, the Louisiana Governor's office formed a Coastal Wetland Forest Conservation and Use Science Working Group (SWG) and an associated Advisory Panel to provide the Governor with information and suggestions of strategies for environmental and economic utilization, conservation, and protection of Louisiana's coastal wetland forest ecosystem in the long-term. The process of engaging scientists, resource managers, and other stakeholders in this effort is described, and the recommendations of the SWG are presented relative to forestry practices and the potential for sustainable management of coastal wetland forests.

  4. Pliocene shorelines and the deformation of passive margins.

    NASA Astrophysics Data System (ADS)

    Rovere, Alessio; Raymo, Maureen; Austermann, Jacqueline; Mitrovica, Jerry; Janßen, Alexander

    2016-04-01

    Characteristic geomorphology described from three Pliocene scarps in Rovere et al. [2014] was used to guide a global search for additional Pliocene age scarps that could be used to document former Pliocene shoreline locations. Each of the Rovere et al. [2014] paleo-shorelines was measured at the scarp toe abutting a flat coastal plain. In this study, nine additional such scarp-toe paleo-shorelines were identified. Each of these scarps has been independently dated to the Plio-Pleistocene; however, they were never unified by a single formation mechanism. Even when corrected for Glacial Isostatic Adjustment post-depositional effects, Post-Pliocene deformation of the inferred shorelines precludes a direct assessment of maximum Pliocene sea level height at the scarp toes. However, careful interpretation of the processes at the inferred paleo-shoreline suggests specific amplitudes of dynamic topography at each location, which could lead to a corrected maximum sea level height and provide a target dataset with which to compare dynamic topography model output.

  5. The problem of scale in planetary geomorphology

    NASA Technical Reports Server (NTRS)

    Rossbacher, L. A.

    1985-01-01

    Recent planetary exploration has shown that specific landforms exhibit a significant range in size between planets. Similar features on Earth and Mars offer some of the best examples of this scale difference. The difference in heights of volcanic features between the two planets has been cited often; the Martian volcano Olympus Mons stands approximately 26 km high, but Mauna Loa rises only 11 km above the Pacific Ocean floor. Polygonally fractured ground in the northern plains of Mars has diameters up to 20 km across; the largest terrestrial polygons are only 500 m in diameter. Mars also has landslides, aeolian features, and apparent rift valleys larger than any known on Earth. No single factor can explain the variations in landform size between planets. Controls on variation on Earth, related to climate, lithology, or elevation, have seldom been considered in detail. The size differences between features on Earth and other planets seem to be caused by a complex group of interacting relationships. The major planetary parameters that may affect landform size are discussed.

  6. Sedimentology of gas-bearing Devonian shales of the Appalachian Basin

    NASA Astrophysics Data System (ADS)

    Potter, P. E.; Maynard, J. B.; Pryor, W. A.

    1981-01-01

    Sedimentology of the Devonian shales and its relationship to gas, oil, and uranium are reported. Information about the gas bearing Devonian shales of the Appalachian Basin is organized in the following sections: paleogeography and basin analysis; lithology and internal stratigraphy; paleontology; mineralogy, petrology, and chemistry; and gas oil, and uranium.

  7. Dynamique sédimentaire comparative dans les bassins stéphano-permiens des Ida Ou Zal et Ida Ou Ziki, haut Atlas Occidental, MarocDynamic sedimentology of two Upper Stephano-Lower Permian basins: Ida Ou Zal and Ida Ou Ziki, western High Atlas, Morocco

    NASA Astrophysics Data System (ADS)

    Saber, H.; El-Wartiti, M.; Broutin, J.

    2001-05-01

    The intra-mountainous Ida Ou Zal Basin developed as a graben during the Stephanian (Carboniferous) and Lower Permian. Along its borders from east to west are the remnants of basal conglomerates. Passing laterally towards the centre of the basin are fine-grained fluvial-lacustrine sediments or flood-plain deposits. The important accumulation (1800 m) of sediments, associated with climatic and tectonic changes, caused substantial subsidence in a late orogenic setting. The remnants of sporadic volcanic products (shards) found in the Ida Ou Zal and the Ida Ou Zika Basins suggest nearby simultaneous magmatic activity. A comparison between the basins of Ida Ou Zal and Ida Ou Ziki suggest that the two basins formed a single unit, called the Souss Basin, ultimately terminated between the Lower Permian and Upper Permian times by a sinistral movement of the N70-80° Agadir Ou Anzizen Fault (west branch of the Tizi N'Test Fault) at the very end of the Hercynian Orogeny in Morocco.

  8. Middle Miocene environmental and climatic evolution at the Wilkes Land margin, East Antarctica

    NASA Astrophysics Data System (ADS)

    Sangiorgi, Francesca; Bijl, Peter; Passchier, Sandra; Salzmann, Ulrich; Schouten, Stefan; Pross, Jörg; Escutia, Carlota; Brinkhuis, Henk

    2015-04-01

    Integrated Ocean Drilling Program (IODP) Expedition 318 successfully drilled a Middle Miocene (~ 17 - 12.5 Ma) record from the Wilkes Land Margin at Site U1356A (63°18.6138'S, 135°59.9376'E), located at the transition between the continental rise and the abyssal plain at 4003 mbsl. We present a multiproxy palynological (dinoflagellate cyst, pollen and spores), sedimentological and organic geochemical (TEX86, MBT/CBT) study, which unravels the environmental and climate variability across the Miocene Climatic Optimum (MCO, ~17-15 Ma) and the Mid Miocene Climate Transition (MMCT). Several independent lines of evidence suggest a relatively warm climate during the MCO. Dinocyst and pollen assemblage diversity at the MCO is unprecedented for a Neogene Antarctic record and indicates a temperate, sea ice-free marine environment, with woody sub-antarctic vegetation with elements of forest/shrub tundra and peat lands along the coast. These results are further confirmed by relatively warm TEX86-derived Sea Surface Temperatures and mild MBT-derived continental temperatures, and by the absence of glacially derived deposits and very few ice-rafted clasts. A generally colder but highly dynamic environment is suggested for the interval 15-12.5 Ma.

  9. Holocene delta evolution and sediment discharge of the Mekong River, southern Vietnam

    NASA Astrophysics Data System (ADS)

    Ta, Thi Kim Oanh; Nguyen, Van Lap; Tateishi, Masaaki; Kobayashi, Iwao; Tanabe, Susumu; Saito, Yoshiki

    2002-09-01

    Evolutionary changes, delta progradation, and sediment discharge of the Mekong River Delta, southern Vietnam, during the late Holocene are presented based on detailed analyses of samples from six boreholes on the lower delta plain. Sedimentological and chronostratigraphic analyses indicate clearly that the last 3 kyr were characterized by delta progradation under increasing wave influence, southeastward sediment dispersal, decreasing progradation rates, beach-ridge formation, and steepening of the face of the delta front. Estimated sediment discharge of the Mekong River for the last 3 kyr, based on sediment-volume analysis, was 144±36 million t yr -1 on average, or almost the same as the present level. The constant rate of delta front migration and stable sediment discharge during the last 3 kyr indicate that a dramatic increase in sediment discharge owing to human activities, as has been suggested for the Yellow River watershed, did not occur. Although Southeast Asian rivers have been considered candidates for such dramatic increases in discharge during the last 2 kyr, the Mekong River example, although it is a typical, large river of this region, does not support this hypothesis. Therefore, estimates of the millennial-scale global pristine sediment flux to the oceans must be revised.

  10. Contamination history of lead and other trace metals reconstructed from an urban winter pond in the Eastern Mediterranean coast (Israel).

    PubMed

    Zohar, I; Bookman, R; Levin, N; de Stigter, H; Teutsch, N

    2014-12-02

    Pollution history of Pb and other trace metals was reconstructed for the first time for the Eastern Mediterranean, from a small urban winter pond (Dora, Netanya), located at the densely populated coastal plain of Israel. An integrated approach including geochemical, sedimentological, and historical analyses was employed to study sediments from the center of the pond. Profiles of metal concentrations (Pb, Zn, V, Ni, Cu, Cr, Co, Cd, and Hg) and Pb isotopic composition denote two main eras of pre- and post-19th century. The deeper sediment is characterized by low concentrations and relatively constant 206Pb/207Pb (around 1.20), similar to natural Pb sources, with slight indications of ancient anthropogenic activity. The upper sediment displays an upward increase in trace metal concentrations, with the highest enrichment factor for Pb (18.4). Lead fluxes and isotopic composition point to national/regional petrol-Pb emissions as the major contributor to Pb contamination, overwhelming other potential local and transboundary sources. Traffic-related metals are correlated with Pb, emphasizing the polluting inputs of traffic. The Hg profile, however, implies global pollution rather than local sources.

  11. Comparison of Cottonwood Dendrochronology and Optically Stimulated Luminescence Geochronometers Along a High Plains Meandering River, Powder River, Montana, USA

    NASA Astrophysics Data System (ADS)

    Hasse, T. R.; Schook, D. M.

    2017-12-01

    Geochronometers at centennial scales can aid our understanding of process rates in fluvial geomorphology. Plains cottonwood trees (Populus deltoides ssp. Monilifera) in the high plains of the United States are known to germinate on freshly created deposits such as point bars adjacent to rivers. As the trees mature they may be partially buried (up to a few meters) by additional flood deposits. Cottonwood age gives a minimum age estimate of the stratigraphic surface where the tree germinated and a maximum age estimate for overlying sediments, providing quantitative data on rates of river migration and sediment accumulation. Optically Stimulated Luminescence (OSL) of sand grains can be used to estimate the time since the sand grains were last exposed to sunlight, also giving a minimum age estimate of sediment burial. Both methods have disadvantages: Browsing, partial burial, and other damage to young cottonwoods can increase the time required for the tree to reach a height where it can be sampled with a tree corer, making the germination point a few years to a few decades older than the measured tree age; fluvial OSL samples can have inherited age (when the OSL age is older than the burial age) if the sediment was not completely bleached prior to burial. We collected OSL samples at 8 eroding banks of the Powder River Montana, and tree cores at breast height (±1.2 m) from cottonwood trees growing on the floodplain adjacent to the OSL sample locations. Using the Minimum Age Model (MAM) we found that OSL ages appear to be 500 to 1,000 years older than the adjacent cottonwood trees which range in age (at breast height) from 60 to 185 years. Three explanations for this apparent anomaly in ages are explored. Samples for OSL could be below a stratigraphic unconformity relative to the cottonwood germination elevation. Shallow samples for OSL could be affected by anthropogenic mixing of sediments due to plowing and leveling of hay fields. The OSL samples could have significant inherited ages due to partial bleaching during sediment transport in this high plains river with high suspended sediment loads. The dendrochronology of the adjacent cottonwood trees then offers an independent measurement of the inherited age of the OSL samples.

  12. The pattern of spatial flood disaster region in DKI Jakarta

    NASA Astrophysics Data System (ADS)

    Tambunan, M. P.

    2017-02-01

    The study of disaster flood area was conducted in DKI Jakarta Province, Indonesia. The aim of this research is: to study the spatial distribution of potential and actual of flood area The flood was studied from the geographic point of view using spatial approach, while the study of the location, the distribution, the depth and the duration of flooding was conducted using geomorphologic approach and emphasize on the detailed landform unit as analysis unit. In this study the landforms in DKI Jakarta have been a diversity, as well as spatial and temporal pattern of the actual and potential flood area. Landform at DKI Jakarta has been largely used as built up area for settlement and it facilities, thus affecting the distribution pattern of flooding area. The collection of the physical condition of landform in DKI Jakarta data prone were conducted through interpretation of the topographic map / RBI map and geological map. The flood data were obtained by survey and secondary data from Kimpraswil (Public Work) of DKI Jakarta Province for 3 years (1996, 2002, and 2007). Data of rainfall were obtained from BMKG and land use data were obtained from BPN DKI Jakarta. The analysis of the causal factors and distribution of flooding was made spatially and temporally using geographic information system. This study used survey method with a pragmatic approach. In this study landform as result from the analytical survey was settlement land use as result the synthetic survey. The primary data consist of landform, and the flood characteristic obtained by survey. The samples were using purposive sampling. Landform map was composed by relief, structure and material stone, and process data Landform map was overlay with flood map the flood prone area in DKI Jakarta Province in scale 1:50,000 to show. Descriptive analysis was used the spatial distribute of the flood prone area. The result of the study show that actual of flood prone area in the north, west and east of Jakarta lowland both in beach ridge, coastal alluvial plain, and alluvial plain; while the flood potential area on the slope is found flat and steep at alluvial fan, alluvial plain, beach ridge, and coastal alluvial plain in DKI Jakarta. Based on the result can be concluded that actual flood prone is not distributed on potential flood prone

  13. Discovery of a Plains Caldera Complex and Extinct Lava Lake in Arabia Terra, Mars: Implications for the Discovery of Additional Highland Volcanic Source Regions

    NASA Technical Reports Server (NTRS)

    Bleacher, Jacob; Michalski, Joseph

    2012-01-01

    Several irregularly shaped topographic depressions occur near the dichotomy boundary in northern Arabia Terra, Mars. The geomorphology of these features suggests that they formed by collapse, opposed to meteor impact. At least one depression (approx.55 by 85 km) displays geologic features indicating a complex, multi-stage collapse history. Features within and around the collapse structure indicate volcanic processes. The complex occurs within Hesperian ridged plains of likely volcanic origin and displays no crater rim or evidence for ejecta. Instead the depression consists of a series of circumferential graben and down-dropped blocks which also display upper surfaces similar to ridged plain lavas. Large blocks within the depression are tilted towards the crater center, and display graben that appear to have originally been linked with circumferential graben outside of the complex related to earlier collapse events. A nearly 700 m high mound exists along a graben within the complex that might be a vent. The deepest depression displays two sets of nearly continuous terraces, which we interpret as high-stands of a drained lava lake. These features appear similar to the black ledge described during the Kilauea Iki eruption in 1959. A lacustrine origin for the terraces seems unlikely because of the paucity of channels found in or around the depression that could be linked to aqueous surface processes. In addition, there is no obvious evidence for lacustrine sediments within the basin. Together with the presence of significant faulting that is indicative of collapse we conclude that this crater complex represents a large caldera formed in the Late Noachian to Early Hesperian. Other linear and irregular depressions in the region also might be linked to ancient volcanism. If that hypothesis is correct, it suggests that northern Arabia Terra could contain a large, previously unrecognized highland igneous province. Evacuation of magma via explosive and effusive activity produced localized collapse, might have contributed to nearby ridged plains, and pyroclastic materials erupted from these vents might have supplied sediments in fretted terrain and other deposits. The recognition of volcanoes within Arabia Terra expands the known extent of Noachian-Hesperian volcanism to cover much of the preserved martian highland crust.

  14. Reconstructing past environments and societies - interdisciplinary research in the open cast mine Jänschwalde, Germany

    NASA Astrophysics Data System (ADS)

    Raab, A.; Raab, T.; Takla, M.; Nicolay, A.; Müller, F.; Rösler, H.; Bönisch, E.

    2012-04-01

    Active lignite mines in Lower Lusatia (Brandenburg, Germany) are a controversial discussed issue. Though lignite mining destroys whole landscapes, it offers the opportunity to investigate prehistory and landscape development on a landscape scale. Since 2010 scientists from Brandenburgische Technische Universität (BTU) Cottbus and archaeologists from Brandenburgisches Landesamt für Denkmalpflege und Archäologisches Landesmuseum (BLDAM) collaborate to study human-environment interactions. Our study area is the open cast mine Jänschwalde, one out of four active lignite mines in Lower Lusatia. The mine is situated c. 150 km southeast of Berlin. Archaeological excavations have been carried out in the prefield over many years and the outcome is manifold. Different approaches are combined for a comprehensive reconstruction: archaeological investigations, geomorphological/pedological studies and historical research. The archaeological fieldwork includes prospection, the opening of test trenches and area excavations. These outcrop situations provide a view into the stratigraphy and are to some extent commonly used for archaeological and sedimentological/pedological studies. In addition, chronological information is obtained by different methods of relative and absolute (14C, OSL, dendrochronological) age determination. To build up a model for the landscape development, data (topographical maps, historical maps, physiogeographical information, etc.) is gathered and processed. The initial situation for our research is the historic charcoal burning in the former "königliche Taubendorfer Forst" and its impact on the environment. In the study area, this trade was carried out from the c. 17th to the 19th century and is very well documented by about 700 excavated ground plans of circular upright kilns and another c. 300 prospected kilns. It is assumed that charcoal was produced for the smelter at Peitz nearby, where bog iron ore was processed since 1567. There is sedimentological proof of the relationship of logging for wood/deforestation and the formation of wind-blown deposits. In addition, sedimentological/pedological studies of several test trenches (up to 150 m long and up to 150 cm deep) show that buried plough horizons are widespread. First results of radiocarbon dating of charcoal fragments from buried Ap horizons date to the Slavic middle ages (600-1200 AD). It is assumed that the eolian activity was triggered by deforestation and agricultural use. In conclusion, our results suggest that there are two major periods with eolian activity induced by human impact: the first period was caused by the extending agriculture during the Slavic middle ages (600-1200 AD) and the second period was induced by deforestation for charcoal burning between the 17th and 19th century. Future research concentrates on unanswered questions like to what extent the landscape was changed by human impact and the consequences for the environment (soil loss, water balance, vegetation) and for the population. Furthermore, absolute and relative age determinations are needed to supplement the chronology information. For a comprehensive understanding, especially concerning the charcoal burning in the study area, archival studies are carried out. The obtained data will be used to build up a GIS-based model of the paleoenvironment and it is intended to extend the model spatially and temporally.

  15. Geomorphology of the Elwha River and its Delta: Chapter 3 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    USGS Publications Warehouse

    Warrick, Jonathan A.; Draut, Amy E.; McHenry, Michael L.; Miller, Ian M.; Magirl, Christopher S.; Beirne, Matthew M.; Stevens, Andrew Stevens; Logan, Joshua B.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    The removal of two dams on the Elwha River will introduce massive volumes of sediment to the river, and this increase in sediment supply in the river will likely modify the shapes and forms of the river and coastal landscape downstream of the dams. This chapter provides the geologic and geomorphologic background of the Olympic Peninsula and the Elwha River with emphasis on the present river and shoreline. The Elwha River watershed was formed through the uplift of the Olympic Mountains, erosion and movement of sediment throughout the watershed from glaciers, and downslope movement of sediment from gravitational and hydrologic forces. Recent alterations to the river morphology and sediment movement through the river include the two large dams slated to be removed in 2011, but also include repeated bulldozing of channel boundaries, construction and maintenance of flood plain levees, a weir and diversion channel for water supply purposes, and engineered log jams to help enhance river habitat for salmon. The shoreline of the Elwha River delta has changed in location by several kilometers during the past 14,000 years, in response to variations in the local sea-level of approximately 150 meters. Erosion of the shoreline has accelerated during the past 80 years, resulting in landward movement of the beach by more than 200 meters near the river mouth, net reduction in the area of coastal wetlands, and the development of an armored low-tide terrace of the beach consisting primarily of cobble. Changes to the river and coastal morphology during and following dam removal may be substantial, and consistent, long-term monitoring of these systems will be needed to characterize the effects of the dam removal project.

  16. [Agro-household livelihood vulnerability and influence factors of ethnic villages under different geomorphology backgrounds.

    PubMed

    Han, Wen Wen; Liu, Xiao Peng; Pei, Yin Bao; An, Qiong; Li, Yong Hong

    2016-04-22

    The vulnerability and influence factors of agro-household livelihood in Haiyuan County, Ningxia were empirically analyzed utilizing set pair analysis and obstacle degree model, based on field survey data of impoverished agro-households in 2014. Results showed that vulnerability of agro-household livelihood in Haiyuan County was high in general while it exhibited geomorphological and ethnical differences. Vulnerability of agro-households livelihood in plain areas, valleys and intermountain depression areas were lower than that in earth-rock areas, loess ridge areas and moderately high mountain landform areas. Moreover, vulnerability of agro-household livelihood was higher in mixed Hui and Han ethnic villages than in mono Hui or Han ethnic villages. The villagers' lacking of necessities and the stress of sensitive external geographical environment were considered to be the fundamental reasons of vulnerability of agro-household livelihood. The unreasonable livelihood structure and the unvariant livelihood strategy caused the long-term accumulation of livelihood vulnerabi-lity. The nature of the local environment, which was not easy to change, decreased the accessibility of poverty alleviation resources. Building a clear village water rights allocation system, the implementation of counterpart-assistance to educate impoverished families, increasing investment in improving the diversities of means of living, developing the chains of comprehensive commodity market among villages, were necessary to improve the response capability of agro-household livelihood. The management of vulnerability of agro-household livelihood should put the 'Extending Roads to Every Village Project' on a more prominent position in the 'Extending Radio and TV Broadcasting Coverage to Every Village Project'. Furthermore, the combination of meteorological disaster prevention and insurance enterprise disaster reduction should be sought, and the agricultural production insurance system should be developed.

  17. Environmental impact of melting buried ice blocks (North Poland)

    NASA Astrophysics Data System (ADS)

    Ott, F.; Slowinski, M. M.; Blaszkiewicz, M.; Brauer, A.; Noryskiewicz, B.; Tyszkowski, S.

    2013-12-01

    The aim of the research was to decipher the impacts of the role of dead ice melting on landscape evolution in the Lateglacial and early Holocene Central Europe. Here, we present the paleoecological results from the middle section of the Wda river which is located in northern Poland (Central Europe), on the outwash plain formed during the Pomeranian phase of the last (Vistulian) glacial period ca 16,000 14C yrs BP. The Wda river has a typical polygenetic valley in young glacial areas of the northern central European lowlands. We reconstructed environmental changes using biotic proxies (plant macrofossil and pollen analyses) and geomorphological investigations. In this study we focused on a short terrestrial sediment core (48 cm) representing four phases of landscape evolution: telmatic, lacustrine, lacustrine-fluvial and alluvial. Abrupt changes in lithology and sediment structures show rapid changes and threshold processes in environmental conditions. The AMS 14C dating of terrestrial plant remains reveals an age for the basal sediments of 11 223 × 23 cal yr BP and thus falls within the Preboreal biozone. Our results showed that existence of buried ice blocks in northern Poland even at the beginning of the Holocene is clear evidence that locally discontinuous permafrost still was present at that time. The results of our study prove a strong influence of melting buried ice blocks on the geomorphological development, hydrological changes in the catchment, and the biotic environment even in the early Holocene. The research was supported by the National Science Centre Poland (grants No. NN 306085037 and NCN 2011/01/B/ST10/07367). This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution (ICLEA) of the Helmholtz Association. Financial support by the COST Action ES0907 INTIMATE is gratefully acknowledged.

  18. Geologic Mapping of the Chaac-Camaxtli Region of Io from Galileo Imaging Data

    NASA Technical Reports Server (NTRS)

    Williams, David A.; Radebaugh, Jani; Keszthelyi, Laszlo P.; McEwen, Alfred S.; Lopes, Rosaly M. C.; Doute, Sylvain; Greekely, Ronald

    2003-01-01

    We produced a geologic/geomorphologic map of the Chaac-Camaxtli region of Io's leading anti-Jovian hemisphere using regional resolution ( 186 m/pixel) Galileo imaging data collected during orbit I27 (February 2000) integrated with lower resolution (1.4 km/pixel) color data, along with other Galileo imaging and spectral data. This is the first regional map of Io made from Galileo data. Nine color and geomorphologic units have been mapped, and the close proximity of dark and various colored bright materials suggests that there is an intimate interaction between (presumably) silicate magmas and sulfur-bearing volatile materials that produced a variety of explosive and effusive deposits in the recent geologic past. This region of Io is dominated by 11 volcanic centers, most of which are paterae that are analogous in morphology to terrestrial calderas but larger in size. Mapping of structural features indicates that most of the active regions occur in topographic lows, and less active or inactive paterae are associated with topographic highs. This indicates that crustal thickness variations influence magma access to the surface. Surface changes in this region since the Voyager flybys are relatively minor (additional bright and dark flows, color changes), although several active vents have migrated within paterae. This observation, along with the identification of the relatively regular spacing of paterae (approx. 100 - 150 km) along a line, may indicate there are multiple interlacing fractures in the crust that serve as magma conduits from the interior. This connection between volcanism and tectonism may have implications for tidal heating mechanisms and their effect on Io's lithosphere. Some inactive patera floors may be evolving into bright plains material, which, if composed of silicates, might explain the strength of Io's crust to support steep patera walls and tall mountains.

  19. Deep sea sedimentation processes and geomorphology: Northwest Atlantic continental margin

    NASA Astrophysics Data System (ADS)

    Mosher, David; Campbell, Calvin; Gardner, Jim; Chaytor, Jason; Piper, David; Rebesco, Michele

    2017-04-01

    Deep-sea sedimentation processes impart a fundamental control on the morphology of the western North Atlantic continental margin from Blake Spur to Hudson Strait. This fact is illustrated by the variable patterns of cross-margin gradients that are based on extensive new multibeam echo-sounder data informed by subbottom profiler and seismic reflection data. Erosion by off-shelf sediment transport in turbidity currents creates gullies, canyons and channels and a steep upper slope. Amalgamation of these conduits produces singular channels and turbidite fan complexes on the lower slope, flattening slope-profile gradients. The effect is an exponentially decaying "graded" slope profile. Comparatively, sediment mass failure produces steeper upper slopes due to head scarp development and a wedging architecture to the lower slope as deposits thin in the downslope direction. This process results in either a "stepped" slope, and/or a significant downslope gradient change where MTDs pinch out. Large drift deposits created by geostrophic currents are developed all along the margin. Blake Ridge, Sackville Spur, and Hamilton Spur are large detached drifts on disparate parts of the margin. They form a linear "above grade" profile along their crests from the shelf to abyssal plain. Deeper portions of the US continental margin are dominated by the Chesapeake Drift and Hatteras Outer Ridge; both plastered elongate mounded drifts. Farther north, particularly on the Grand Banks margin, are plastered and separated drifts. These drifts form "stepped" slope profiles, where they onlap the margin. Trough-mouth fan complexes become more common along the margin with increasing latitude. Sediment deposition and retention, particularly those dominated by glacigenic debris flows, characterize these segments producing an "above grade" slope profile. Understanding these geomorphological consequences of deep sea sedimentation processes is important to extended continental shelf mapping in which gradients and gradient change is a critical metric.

  20. Geologic Mapping of the Chaac-Camaxtli Region of Io from Galileo Imaging Data

    NASA Technical Reports Server (NTRS)

    Williams, David A.; Radebaugh, Jani; Keszthelyi, Laszlo P.; McEwen, Alfred S.; Lopes, Rosaly M. C.; Doute, Sylvain; Greeley, Ronald

    2002-01-01

    We produced a geologic/geomorphologic map of the Chaac-Camaxtli region of Io's leading anti-Jovian hemisphere using regional resolution (186 m/pixel) Galileo imaging data collected during orbit I27 (February 2000) integrated with lower resolution (1.4 km/pixel) color data, along with other Galileo imaging and spectral data. This is the first regional map of Io made from Galileo data. Nine color and geomorphologic units have been mapped, and the close proximity of dark and various colored bright materials suggests that there is an intimate interaction between (presumably) silicate magmas and sulfur-bearing volatile materials that produced a variety of explosive and effusive deposits in the recent geologic past. This region of Io is dominated by 11 volcanic centers, most of which are paterae that are analogous in morphology to terrestrial calderas but larger in size. Mapping of structural features indicates that most of the active regions occur in topographic lows, and less active or inactive paterae are associated with topographic highs. This indicates that crustal thickness variations influence magma access to the surface. Surface changes in this region since the Voyager flybys (1979) are relatively minor (additional bright and dark flows, color changes), although several active vents have migrated within paterae. This observation, along with the identification of the relatively regular spacing of paterae (approx. 100- 150 km) along a line, may indicate there are multiple interlacing fractures in the crust that serve as magma conduits from the interior. This connection between volcanism and tectonism may have implications for tidal heating mechanisms and their effect on Io's lithosphere. Some inactive patera floors may be evolving into bright plains material, which, if composed of silicates, might explain the strength of Io's crust to support steep patera walls and tall mountains.

  1. Glacial vs. Interglacial Period Contrasts in Midlatitude Fluvial Systems, with Examples from Western Europe and the Texas Coastal Plain

    NASA Astrophysics Data System (ADS)

    Blum, M.

    2001-12-01

    Mixed bedrock-alluvial valleys are the conveyor belts for sediment delivery to passive continental margins. Mapping, stratigraphic and sedimentologic investigations, and development of geochronological frameworks for large midlatitude rivers of this type, in Western Europe and the Texas Coastal Plain, provide for evaluation of fluvial responses to climate change over the last glacial-interglacial period, and the foundations for future quantitative evaluation of long profile evolution, changes through time in flood magnitude, and changes in storage and flux of sediments. This paper focuses on two issues. First, glacial vs. interglacial period fluvial systems are fundamentally different in terms of channel geometry, depositional style, and patterns of sediment storage. Glacial-period systems were dominated by coarse-grained channel belts (braided channels in Europe, large-wavelength meandering in Texas), and lacked fine-grained flood-plain deposits, whereas Holocene units, especially those of late Holocene age, contain appreciable thicknesses of flood-plain facies. Hence, extreme overbank flooding was not significant during the long glacial period, most flood events were contained within bankfull channel perimeters, and fine sediments were bypassed through the system to marine basins. By contrast, extreme overbank floods have been increasingly important during the relatively short Holocene, and a significant volume of fine sediment is sequestered in flood-plain settings. Second, glacial vs. interglacial systems exhibit different amplitudes and frequencies of fluvial adjustment to climate change. High-amplitude but low-frequency adjustments characterized the long glacial period, with 2-3 extended periods of lateral migration and sediment storage puncuated by episodes of valley incision. Low-amplitude but high-frequency adjustments have been more typical of the short Holocene, when there has been little net valley incision or net changes in sediment storage, but frequent changes in the magnitude and frequency of floods and periods of overbank flooding. This high-frequency signal is absent in landforms and deposits from the glacial period. Glacial vs. interglacial contrasts in process and stratigraphic results are the rule in most large unglaciated fluvial systems. 70-80 percent or more of any 100 kyr glacial-interglacial cycle is characterized by significant ice volume, cooler temperatures, mid-shelf or lower sea-level positions, and cooler-smaller ocean basins. A glacial-period process regime is therefore the norm, and an interglacial regime like that of the late Holocene is relatively unique and non-representative. Large unglaciated midlatitude fluvial systems may be in long-term equilibrium with a glacial-period environment, with long profiles graded to glacial-period sea-level positions, so fluvial systems respond to major changes in climate, discharge regimes, and sediment loads, but they appear to have been relatively insensitive to higher-frequency changes. Short interglacials like the Holocene are, by comparison, periods of abnormally high sea levels and relatively low-amplitude climate changes, but fluvial systems appear to exhibit a greatly increased sensitivity to subtle changes in discharge regimes that produce frequent periods of disequilibrium.

  2. Quantitative palaeodrainage analysis in the Pleistocene of the Po Plain (Italy)

    NASA Astrophysics Data System (ADS)

    Vezzoli, G.; Garzanti, E.; Sciunnach, D.

    2009-04-01

    During the Pleistocene, Po Plain deposits recorded repeated waxing and waning of Alpine ice caps, and thus provide an excellent opportunity to investigate the interactions between pronounced climatic fluctuations and background tectonic activity (Scardia et al., 2006), resulting in frequent changes of drainage patterns. A high-resolution Pleistocene stratigraphy, with a complete sedimentological, paleontological, petrographic-mineralogical, magneto-stratigraphic, and seismic data base, was recently obtained from eleven continuous cores drilled in the Lombardy Po Plain north of the Po River (ENI and Regione Lombardia, 2002). In the present study we focus on two cores in the proximal (Cilavegna) and distal plain (Pianengo), which best exemplify the drastic change in sedimentary systems and drainage patterns associated with the onset of major Pleistocene glaciations in the Alps (˜870ky; Muttoni et al., 2003). This climatic event is recorded by a regional unconformity (named R-unconformity by Muttoni et al., 2003), traced all across the Po Basin and encountered at -81 m depth in the Pianengo Core and at -98 m depth in the Cilavegna Core. The Cilavegna Core consists of metamorphiclastic floodplain sediments, capped by the R-unconformity and overlain by quartzofeldspathic braidplain deposits. The Pianengo Core consists of metamorphiclastic deltaic to floodpain sediments, capped by the R-unconformity and overlain by alluvial-fan gravels rich in carbonate pebbles; another unconformity at -39 m depth is overlain by metamorphiclastic braidplain deposits. Our quantitative approach to paleodrainage analysis is based on comprehensive information obtained from modern settings (Garzanti et al., 2004; 2006). End-member modelling and similarity analysis allows us to objectively compare detrital modes from modern and ancient deposits, and to reconstruct the evolution of sediment pathways through geologic time (Vezzoli and Garzanti 2009). The Cilavegna Core documents stepwise south-westward shifts of major tributaries draining the axial belt. The Pianengo Core records the rapid southward progradation of transverse alluvial fans fed locally from the Southern Alps, followed by progressive establishment of the modern Adda river system. Evolving drainage patterns and river avulsions represent a major cause of compositional change in foreland-basin deposits. Lateral shifts of river courses, commonly associated with unconformities and favoured by an increase in the ratio between sediment fluxes and subsidence, provide crucial information on tectonic or climatic events, and should be given full consideration in provenance studies. ENI and Regione Lombardia. 2002. Geologia degli acquiferi padani della Regione Lombardia. Firenze, Società Elaborazioni Cartografiche s.r.l., 130 p. Muttoni G., Carcano C., Garzanti E., Ghielmi M., Piccin A., Pini R., Rogledi S., and Sciunnach D. 2003. Onset of major Pleistocene glaciations in the Alps. Geology, 31, 989-992. Scardia G., Muttoni G., and Sciunnach D. 2006. Subsurface magnetostratigraphy of Pleistocene sediments from the Po Plain (Italy): constraints on rates of sedimentation and rock uplift. Geological Society of America Bulletin, 118, 1299-1312. Vezzoli G. and Garzanti E. 2009. Tracking paleodrainage in foreland-basin sequences. Journal of Geology, In press.

  3. Current trends in geomorphological mapping

    NASA Astrophysics Data System (ADS)

    Seijmonsbergen, A. C.

    2012-04-01

    Geomorphological mapping is a world currently in motion, driven by technological advances and the availability of new high resolution data. As a consequence, classic (paper) geomorphological maps which were the standard for more than 50 years are rapidly being replaced by digital geomorphological information layers. This is witnessed by the following developments: 1. the conversion of classic paper maps into digital information layers, mainly performed in a digital mapping environment such as a Geographical Information System, 2. updating the location precision and the content of the converted maps, by adding more geomorphological details, taken from high resolution elevation data and/or high resolution image data, 3. (semi) automated extraction and classification of geomorphological features from digital elevation models, broadly separated into unsupervised and supervised classification techniques and 4. New digital visualization / cartographic techniques and reading interfaces. Newly digital geomorphological information layers can be based on manual digitization of polygons using DEMs and/or aerial photographs, or prepared through (semi) automated extraction and delineation of geomorphological features. DEMs are often used as basis to derive Land Surface Parameter information which is used as input for (un) supervised classification techniques. Especially when using high-res data, object-based classification is used as an alternative to traditional pixel-based classifications, to cluster grid cells into homogeneous objects, which can be classified as geomorphological features. Classic map content can also be used as training material for the supervised classification of geomorphological features. In the classification process, rule-based protocols, including expert-knowledge input, are used to map specific geomorphological features or entire landscapes. Current (semi) automated classification techniques are increasingly able to extract morphometric, hydrological, and in the near future also morphogenetic information. As a result, these new opportunities have changed the workflows for geomorphological mapmaking, and their focus have shifted from field-based techniques to using more computer-based techniques: for example, traditional pre-field air-photo based maps are now replaced by maps prepared in a digital mapping environment, and designated field visits using mobile GIS / digital mapping devices now focus on gathering location information and attribute inventories and are strongly time efficient. The resulting 'modern geomorphological maps' are digital collections of geomorphological information layers consisting of georeferenced vector, raster and tabular data which are stored in a digital environment such as a GIS geodatabase, and are easily visualized as e.g. 'birds' eye' views, as animated 3D displays, on virtual globes, or stored as GeoPDF maps in which georeferenced attribute information can be easily exchanged over the internet. Digital geomorphological information layers are increasingly accessed via web-based services distributed through remote servers. Information can be consulted - or even build using remote geoprocessing servers - by the end user. Therefore, it will not only be the geomorphologist anymore, but also the professional end user that dictates the applied use of digital geomorphological information layers.

  4. Stochastic Geomorphology: A Framework for Creating General Principles on Erosion and Sedimentation in River Basins (Invited)

    NASA Astrophysics Data System (ADS)

    Benda, L. E.

    2009-12-01

    Stochastic geomorphology refers to the interaction of the stochastic field of sediment supply with hierarchically branching river networks where erosion, sediment flux and sediment storage are described by their probability densities. There are a number of general principles (hypotheses) that stem from this conceptual and numerical framework that may inform the science of erosion and sedimentation in river basins. Rainstorms and other perturbations, characterized by probability distributions of event frequency and magnitude, stochastically drive sediment influx to channel networks. The frequency-magnitude distribution of sediment supply that is typically skewed reflects strong interactions among climate, topography, vegetation, and geotechnical controls that vary between regions; the distribution varies systematically with basin area and the spatial pattern of erosion sources. Probability densities of sediment flux and storage evolve from more to less skewed forms downstream in river networks due to the convolution of the population of sediment sources in a watershed that should vary with climate, network patterns, topography, spatial scale, and degree of erosion asynchrony. The sediment flux and storage distributions are also transformed downstream due to diffusion, storage, interference, and attrition. In stochastic systems, the characteristically pulsed sediment supply and transport can create translational or stationary-diffusive valley and channel depositional landforms, the geometries of which are governed by sediment flux-network interactions. Episodic releases of sediment to the network can also drive a system memory reflected in a Hurst Effect in sediment yields and thus in sedimentological records. Similarly, discreet events of punctuated erosion on hillslopes can lead to altered surface and subsurface properties of a population of erosion source areas that can echo through time and affect subsequent erosion and sediment flux rates. Spatial patterns of probability densities have implications for the frequency and magnitude of sediment transport and storage and thus for the formation of alluvial and colluvial landforms throughout watersheds. For instance, the combination and interference of probability densities of sediment flux at confluences creates patterns of riverine heterogeneity, including standing waves of sediment with associated age distributions of deposits that can vary from younger to older depending on network geometry and position. Although the watershed world of probability densities is rarified and typically confined to research endeavors, it has real world implications for the day-to-day work on hillslopes and in fluvial systems, including measuring erosion, sediment transport, mapping channel morphology and aquatic habitats, interpreting deposit stratigraphy, conducting channel restoration, and applying environmental regulations. A question for the geomorphology community is whether the stochastic framework is useful for advancing our understanding of erosion and sedimentation and whether it should stimulate research to further develop, refine and test these and other principles. For example, a changing climate should lead to shifts in probability densities of erosion, sediment flux, storage, and associated habitats and thus provide a useful index of climate change in earth science forecast models.

  5. Turin before the city: Earth Science and Audiovisual Art for scientific storytelling and communication

    NASA Astrophysics Data System (ADS)

    Lombardo, Vincenzo; Giardino, Marco

    2017-04-01

    The multimedia product "Turin before the city" is an audiovisual reconstruction of the geomorphologic, climatic and environmental setting of the pre-urban settlement area on which the town of Turin stands today. Through geological and geomorphologic evidences in the Piemonte region, we describe the evolution of plains and reliefs from 2 million years ago until the birth of Augusta Taurinorum (now Turin), about 2000 years ago. From its initial configuration within a local sea (Padan gulf) to the recent continental areas, which form the western end of the Po plain. This history leads to the formation of the main elements that characterize the history of the settlement: the hill, which determines the settlement, the mountains, with their defensive climate, the plains and rivers, which accept the settlement and provide energy, irrigation, and transportation, respectively. Data collected during previous geological and climatic studies allow summarize the history of the area in four main chapters, numbered from the ancient one: (1) from 5 to 2.5 million years ago; (2) from 2.5-million to 700.000 years ago; (3) from 700.000 to 10.000 years ago; (4) from 10.000 to 4.000 years ago. The representation of paleogeographic and paleoenvironmental contexts was achieved through a computer graphics movie displayed on twelve screens all around an inner court of a middle age palace. The movie is an expression of Disney's Fantasia version of Wagners Gesamtkunstwerk ("total work of art"), in which the computer animation and the original music were both integral in conveying the artistic installation. 3D Digital Elevation Models and elaboration from aerial views were integrated with originally conceived CGI (Computer Generated Imagery) scenes. The 5-minute movie shows the setting of the Turin Hill from the sea, the evolution of the Quaternary glaciers, and fluvial processes where will arise Turin. The four chapters above were set in a 24-hour duration and several climatic conditions to achieve a dramatic sense of the settlement evolution, through a careful design of light-conditions, colors, music, and sound effects. Subtitles helped the tracking of the scientific explanation of the animated scenes. The immersive setting was achieved through 12 virtual cameras that explored the computer graphics environment, full of details for grasping the visitors. The storytelling proceeds as follows. 1) The marine environment is illustrated through an exploration of the deep inland sea, characterized by the presence of cetaceans, and introductory music. 2) Within a subtropical coastal environment, we illustrate the Turin hill in the full light of the afternoon, with a fresh music overture. 3) There comes the alluvial fans modelled by river carving the Alps at sunset. 4) Climatic change around 1.8 million years ago allows onset of the Susa Valley glaciers, during a nocturne visual environment and music, soon followed by the dawn of damp and temperate periods, with a fresh celebration music comment. 5) The "Villafranchian" continental environment and River Po migration in the mist and dramatic music just preceded the great ending, with an overview of the Alpine chain that dominated the Turin settlement in the pre-urban era.

  6. Submarine landslides on the north continental slope of the South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Wang, Dawei; Wu, Shiguo; Völker, David; Zeng, Hongliu; Cai, Guanqiang; Li, Qingping

    2018-02-01

    Recent and paleo-submarine landslides are widely distributed within strata in deep-water areas along continental slopes, uplifts, and carbonate platforms on the north continental margin of the South China Sea (SCS). In this paper, high-resolution 3D seismic data and multibeam data based on seismic sedimentology and geomorphology are employed to assist in identifying submarine landslides. In addition, deposition models are proposed that are based on specific geological structures and features, and which illustrate the local stress field over entire submarine landslides in deep-water areas of the SCS. The SCS is one of the largest fluvial sediment sinks in enclosed or semi-enclosed marginal seas worldwide. It therefore provides a set of preconditions for the formation of submarine landslides, including rapid sediment accumulation, formation of gas hydrates, and fluid overpressure. A new concept involving temporal and spatial analyses is tested to construct a relationship between submarine landslides and different time scale trigger mechanisms, and three mechanisms are discussed in the context of spatial scale and temporal frequency: evolution of slope gradient and overpressure, global environmental changes, and tectonic events. Submarine landslides that are triggered by tectonic events are the largest but occur less frequently, while submarine landslides triggered by the combination of slope gradient and over-pressure evolution are the smallest but most frequently occurring events. In summary, analysis shows that the formation of submarine landslides is a complex process involving the operation of different factors on various time scales.

  7. Holocene evolution of Dahab coastline - Gulf of Aqaba, Sinai Peninsula, Egypt

    NASA Astrophysics Data System (ADS)

    Magdy, Torab

    2016-04-01

    Dahab was a little Bedouin-village in Sinai Peninsula at the mid-western coast of Gulf of Aqaba approx. 90 km north of Sharm-el-Sheikh City and it means "gold" in Arabic language. But in the past 20 years ago it becomes one of the most tourist sites in Egypt. The basement complex is composed mostly of biotiteaplite-granite, mica-aplitegranite, granodiorite, quartzdiorite, alaskite, and diorite. Based on correlation with similar igneous in the most southern part of Sinai and the Red Sea area. Wadi Dahab composed of igneous and metamorphic rocks and the coastline is formed of the fragments of its rocks, mixed with fragments of coral reef and fluvial deposits of Wadi Dahab. The morphology of Dahab coastline is characterized by hooked marine spit, which composed of fluvial sediments carried by marine current from wadi Dahab mouth, this spit encloses shallow lagoon, but the active deposition on the lagoon bottom will evaluate it into saline marsh. This paper dealing with the evolution of Dahab spit and lagoon during the Holocene in addition to the recent time for last 100 years, and it impacts of the future management of the coast area. The coastline mapping during the period of study depends upon GIS technique for data were collected during field measuring by using total station, aerial photo and satellite image interpretation as well as soil sample dating. Suggested geomorphological evolution of Dahab area during the Holocene depending upon geomorphic investigation of the sedimentological process into 6 stages.

  8. A multidisciplinary approach to understand landsliding at catchment scale: a case study for landsliding at Pinka flat, Western Pannonian Alpine Foothill, Hungary

    NASA Astrophysics Data System (ADS)

    Kovács, Gábor; Raveloson, Andrea; Székely, Balázs; Timár, Gábor

    2013-04-01

    The northern scarp of the Pinka flat - situated in the western part of the Pannonian Basin - is largely characterized by landslides and gullies. This area is a transition zone between the uplifting Eastern Alps and the subsiding Little Hungarian Plain. The interaction of the juxtaposed units results in neotectonically induced features, such as unstable slopes, gullies and landslides. These mass movements represented economical and social hazard in the 20th century. Earlier studies of this area (eg. Kecskés, 1968; Szilágyi, 1989) concentrated on regional scale, but the real nature of mass movements is still unclear. Therefore our goal was to study the landslides on smaller scales. This contribution presents an individual landslide (in the vicinity of Olad, outskirt of Szombathely) that has been examined in detail, using different geophysical and geomorphological methods. Field surveys and geomorphological measurements have been achieved several times (from 2006) to have a better view on the role of geomorphology in the formation of the landslide. Fixed points were deployed inside the landslide as well as near to it to quantify movements of surface over time. The structure of the slope was studied using shallow boreholes and vertical electrical sounding (VES) measurements. Furthermore Electrical Resistivity Tomography (ERT) was used along several transverse and longitudinal profiles to complement these studies with two dimensional electrical resistivity sections. Results from the last 6 years show that the evolution of the landslide seems to be triggered by the weather conditions of the Alpine foothills and the northern scarp of Pinka flat, though the origin of the landslide is neotectonic. Geophysical results show that the sliding mass is situated on a clayey layer. The main cause of mass movement seems to be the slope-parallel layering of the clayey and sandy sediment, though recent time human influence played an important role as well. This research was financed by the Hungarian National Scientific Fund (OTKA NK83400). KECSKÉS T. 1968. A szombathelyi dombcsúszás. Vasi Szemle 22. 4. pp. 557-566 SZILÁGYI E. 1980. Vas megye felszínmozgásainak katasztere. Földr. Ért. 38 1-2. pp. 33-54

  9. Remote sensing studies of the geomorphology of Surtsey, 1987-1991

    USGS Publications Warehouse

    Garvin, James B.; Williams, R. S.

    1992-01-01

    The volcanic island of Surtsey, formed by explosive submarine and effusive subaerial eruptions between November 1963 and June 1967, consists of a complex combination of primary and redeposited tephra and alkaline olivine basalt lava flows in a 2.5 km2 area (Thorarinsson, 1967; Thorarinsson et al., 1964; Fridriksson, 1975). During the past 24 years, wave and wind erosion of this subaerial mid-ocean ridge (MOR) vent complex have modified Surtsey's coastal morphology, including the deposition of a 0.5 km-long northern peninsula (ness) composed of tephra and rounded lava fragments derived from the southern half of the island. Detailed geomorphologic and sedimentologic mapping of the various surface units now present on Surtsey has been accomplished throughout the history of the evolving island, most recently by Calles et al. (1980) and Ingolfsson (1980). On the basis of these studies, an effort to quantify the topographic characteristics of the primary geomorphic units on the island was initiated by the National Aeronautics and Space Administration (NASA) and the United States Geological Survey (USGS) in 1987. The objective has been to directly measure the microtopographic properties of the widest range of surface types possible, with special emphasis on the pristine or dynamic types. While large-scale topographic maps of Surtsey were prepared in 1968 and 1975 (Norrman, 1980; Norrman and Erlingsson, 1991; Calles et al, 1980), and geodetic leveling surveys have been carried out (Moore, 1980), there have been no recent attempts to geodetically determine the local topography of the island. Because of the rapid rates of geomorphic processes, such as erosion and deposition, on a small, geologically isolated volcanic island such as Surtsey, it is desirable to determine the meter-scale topographic character of its surface units and landforms, and later a remeasurement of the same surfaces to further quantify volumetric change, subsidence, and process rates. In addition, precise measurements of sub-meter-scale topography of pristine geologic surfaces provides necessary data for the investigation of whether various geologic processes demonstrate fractal or self-affine behavior at a range of length-scales within the interval 0.1 in to 1 km. Thus Surtsey offers a unique opportunity to apply new remote sensing techniques to the measurement of the evolving surface "roughness" characteristics of pristine geologic surfaces within an historically well-monitored environment.

  10. Diatom-inferred hydrological changes and Holocene geomorphic transitioning of Africa's largest estuarine system, Lake St Lucia

    NASA Astrophysics Data System (ADS)

    Gomes, M.; Humphries, M. S.; Kirsten, K. L.; Green, A. N.; Finch, J. M.; de Lecea, A. M.

    2017-06-01

    The diverse lagoons and coastal lakes along the east coast of South Africa occupy incised valleys that were flooded during the rise and subsequent stabilisation of relative sea-level during the Holocene. Sedimentary deposits contained within these waterbodies provide an opportunity to investigate complex hydrological and sedimentological processes, and examine sea-level controls governing system geomorphic evolution. In this paper, we combine diatom and sulfur isotope analyses from two sediment cores extracted from the northern sub-basins of Lake St Lucia, a large shallow estuarine lake that is today largely isolated from direct ocean influence behind a Holocene-Pleistocene barrier complex. Analyses allow the reconstruction of hydrological changes associated with the geomorphic development of the system over the mid-to late Holocene. The sedimentary sequences indicate that St Lucia was a shallow, partially enclosed estuary/embayment dominated by strong tidal flows prior to ∼6200 cal. BP. Infilling was initiated when sea-level rise slowed and stabilised around present day levels, resulting in the accumulation of fine-grained sediment behind an emergent proto-barrier. Diatom assemblages, dominated by marine benthic and epiphytic species, reveal a system structured by marine water influx and characterised by marsh and tidal flat habitats until ∼4550 cal. BP. A shift in the biological community at ∼4550 cal. BP is linked to the development of a back-barrier water body that supported a brackish community. Marine planktonics and enrichments in δ34S suggest recurrent, large-scale barrier inundation events during this time, coincident with a mid-Holocene sea-level highstand. Periodic marine incursions associated with episodes of enhanced storminess and overwash remained prevalent until ∼1200 cal. BP, when further barrier construction ultimately isolated the northern basins from the ocean. This study provides the first reconstruction of the palaeohydrological environment at Lake St Lucia and highlights the long-term geomorphic controls that have shaped the recent evolution and natural dynamics of the system. Unlike most coastal lake systems, this system is particularly effective as an archive of geomorphological change. Systems driven by back-barrier modifications, such as Lake St Lucia, highlight how geomorphological changes driven by sediment-supply, climate and sea level can be distributed unevenly over several isolated back-barrier basins.

  11. The siting and environmental change of a high medieval monastery in central German highlands

    NASA Astrophysics Data System (ADS)

    Büdel, Christian; Tintrup, Angela; Baumhauer, Roland

    2017-04-01

    The geology of central German highlands is dominated by Triassic sandstones of the Bunter sandstone unit (German: Buntsandstein). These rocks commonly lack of minerals and they are unsuitable for beneficial agriculture. Early settlers in the Spessart highlands in central Germany therefore preferred patches of Pleistocene loess accumulation for the siting of their residences. The occurrence and distribution of this preferred loess-sites at high medieval times is of high interest and still under discussion. The investigated monastery site of Elisabethenzell was founded, developed and abandoned during a short medieval period and in an exposed and delimited area. The investigation of its environmental history and landscape offers insights to the careful decision of the former settlers. Both, historical maps and the data from laser altimetry were assessed in order to compile a comprehensive overview of the monasteries situation. In addition, pedologic, sedimentologic and geomorphologic prospections were conducted and all data was assessed using a geographic information system (GIS). At selected sites ramming core probes, and sections helped to determine specific soil and sediment characteristics. The results show subsoils of mineral-poor sandstones and Pleistocene periglacial layers with a thickness of up to 4-6 meters. The constructional elements of the monastery take advantage of the shape of the Pleistocene landforms, which was observed together with a local melioration of the mostly acidic Cambisols. This is provided by the delimited occurrence of loamy loesses in relictic Luvisols. The meliorated soils coincide with a better availability of water, which is due to the local geomorphology and higher clay contents in underlying Miocene and Pliocene sediments. As a consequence, medieval agriculture and gardening is likely and the landforms reveal preferable areas offering a confined gradation as well as evidence for the prevention of soil erosion. A prospection of soil phosphates also revealed key areas of the former land use. The interpretation of the findings supports the thesis of a carefully selected site, which was situated at a medieval trading route close to the ancestral castle of the Counts of Rieneck, and therefore far from productive soils and water resources. Although, small-scale advantages were optimally occupied in regards of the shape of the monastery site, its soil quality and water supply.

  12. Geomorphology subprogram: Geomorphological map of Occidental region of Bolivia, utilizing ERTS imagery

    NASA Technical Reports Server (NTRS)

    Brockmann, C. E. (Principal Investigator); Suarez, M. M.

    1973-01-01

    The author has identified the following significant results. Due to the receipt of ERTS-1 imagery, Bolivia will have for the first time a geomorphological map at a scale of 1:100,000. Now the researcher and the student will be able to compare the distribution of the existing shapes of the country, which have been modelled by diverse processes, factors, and agents. This geomorphological information will be very useful in its application to mining, especially alluvial beds, engineering work, and other geological studies. This map is divided into ten geomorphological units which coincide with the geostructural units of the western region of the country.

  13. Morphological and sedimentological responses of streams to human impact in the southern Blue Ridge Mountains, USA

    Treesearch

    Katie Price; David S. Leigh

    2006-01-01

    Morphological and sedimentological responses of streams to basin-scale impact have been well documented for intensively agricultural or urban areas. Sensitivity thresholds of streams to modest levels of disturbance, however, are not well understood. This study addresses the influence of forest conversion on streams of the southern Blue Ridge Mountains, a region that...

  14. Offshore Evidence for an Undocumented Tsunami Event in the ‘Low Risk’ Gulf of Aqaba-Eilat, Northern Red Sea

    PubMed Central

    Goodman Tchernov, Beverly; Katz, Timor; Shaked, Yonathan; Qupty, Nairooz; Kanari, Mor; Niemi, Tina; Agnon, Amotz

    2016-01-01

    Although the Gulf of Aqaba-Eilat is located in the tectonically active northern Red Sea, it has been described as low-risk with regard to tsunami activity because there are no modern records of damaging tsunami events and only one tsunami (1068 AD) referred to in historical records. However, this assessment may be poorly informed given that the area was formed by and is located along the seismically active Dead Sea Fault, its population is known to fluctuate in size and literacy in part due to its harsh hyper-arid climate, and there is a dearth of field studies addressing the presence or absence of tsunamigenic deposits. Here we show evidence from two offshore cores for a major paleotsunami that occurred ~2300 years ago with a sedimentological footprint that far exceeds the scarce markers of the historically mentioned 1068 AD event. The interpretation is based on the presence of a laterally continuous and synchronous, anomalous sedimentological deposit that includes allochtonous inclusions and unique structural characteristics. Based on sedimentological parameters, these deposits could not be accounted for by other transport events, or other known background sedimentological processes. PMID:26815553

  15. Offshore Evidence for an Undocumented Tsunami Event in the 'Low Risk' Gulf of Aqaba-Eilat, Northern Red Sea.

    PubMed

    Goodman Tchernov, Beverly; Katz, Timor; Shaked, Yonathan; Qupty, Nairooz; Kanari, Mor; Niemi, Tina; Agnon, Amotz

    2016-01-01

    Although the Gulf of Aqaba-Eilat is located in the tectonically active northern Red Sea, it has been described as low-risk with regard to tsunami activity because there are no modern records of damaging tsunami events and only one tsunami (1068 AD) referred to in historical records. However, this assessment may be poorly informed given that the area was formed by and is located along the seismically active Dead Sea Fault, its population is known to fluctuate in size and literacy in part due to its harsh hyper-arid climate, and there is a dearth of field studies addressing the presence or absence of tsunamigenic deposits. Here we show evidence from two offshore cores for a major paleotsunami that occurred ~2300 years ago with a sedimentological footprint that far exceeds the scarce markers of the historically mentioned 1068 AD event. The interpretation is based on the presence of a laterally continuous and synchronous, anomalous sedimentological deposit that includes allochtonous inclusions and unique structural characteristics. Based on sedimentological parameters, these deposits could not be accounted for by other transport events, or other known background sedimentological processes.

  16. Artificial groundwater recharge zones mapping using remote sensing and GIS: a case study in Indian Punjab.

    PubMed

    Singh, Amanpreet; Panda, S N; Kumar, K S; Sharma, Chandra Shekhar

    2013-07-01

    Artificial groundwater recharge plays a vital role in sustainable management of groundwater resources. The present study was carried out to identify the artificial groundwater recharge zones in Bist Doab basin of Indian Punjab using remote sensing and geographical information system (GIS) for augmenting groundwater resources. The study area has been facing severe water scarcity due to intensive agriculture for the past few years. The thematic layers considered in the present study are: geomorphology (2004), geology (2004), land use/land cover (2008), drainage density, slope, soil texture (2000), aquifer transmissivity, and specific yield. Different themes and related features were assigned proper weights based on their relative contribution to groundwater recharge. Normalized weights were computed using the Saaty's analytic hierarchy process. Thematic layers were integrated in ArcGIS for delineation of artificial groundwater recharge zones. The recharge map thus obtained was divided into four zones (poor, moderate, good, and very good) based on their influence to groundwater recharge. Results indicate that 15, 18, 37, and 30 % of the study area falls under "poor," "moderate," "good," and "very good" groundwater recharge zones, respectively. The highest recharge potential area is located towards western and parts of middle region because of high infiltration rates caused due to the distribution of flood plains, alluvial plain, and agricultural land. The least effective recharge potential is in the eastern and middle parts of the study area due to low infiltration rate. The results of the study can be used to formulate an efficient groundwater management plan for sustainable utilization of limited groundwater resources.

  17. Drainage-basis-scale geomorphic analysis to determine refernce conditions for ecologic restoration-Kissimmee River, Florida

    USGS Publications Warehouse

    Warne, A.G.; Toth, L.A.; White, W.A.

    2000-01-01

    Major controls on the retention, distribution, and discharge of surface water in the historic (precanal) Kissimmee drainage basin and river were investigated to determine reference conditions for ecosystem restoration. Precanal Kissimmee drainage-basin hydrology was largely controlled by landforms derived from relict, coastal ridge, lagoon, and shallow-shelf features; widespread carbonate solution depressions; and a poorly developed fluvial drainage network. Prior to channelization for flood control, the Kissimmee River was a very low gradient, moderately meandering river that flowed from Lake Kissimmee to Lake Okeechobee through the lower drainage basin. We infer that during normal wet seasons, river discharge rapidly exceeded Lake Okeechobee outflow capacity, and excess surface water backed up into the low-gradient Kissimmee River. This backwater effect induced bankfull and peak discharge early in the flood cycle and transformed the flood plain into a shallow aquatic system with both lacustrine and riverine characteristics. The large volumes of surface water retained in the lakes and wetlands of the upper basin maintained overbank flow conditions for several months after peak discharge. Analysis indicates that most of the geomorphic work on the channel and flood plain occurred during the frequently recurring extended periods of overbank discharge and that discharge volume may have been significant in determining channel dimensions. Comparison of hydrogeomorphic relationships with other river systems identified links between geomorphology and hydrology of the precanal Kissimmee River. However, drainage-basin and hydraulic geometry models derived solely from general populations of river systems may produce spurious reference conditions for restoration design criteria.

  18. Anthropogenic disruption to the seismic driving of beach ridge formation: The Sendai coast, Japan.

    PubMed

    Goff, James; Knight, Jasper; Sugawara, Daisuke; Terry, James P

    2016-02-15

    The expected geomorphic after-effects of the Mw 9.0 Tōhoku-oki earthquake of 11 March 2011 (eastern Japan) are summarized by a schematic model of seismic driving, which details seismogenic disturbances to sediment systems that affect the rate or timing of sediment delivery to coastlines over timescales of 10(2)-10(4)years. The immediate physical environmental responses to this high-magnitude earthquake included a large tsunami and extensive region-wide slope failures. Normally, slope failures within mountain catchments would have significant impacts on Japan's river and coastal geomorphology in the coming decades with, for example, a new beach ridge expected to form within 20-100 years on the Sendai Plain. However, human activity has significantly modified the rate and timing of geomorphic processes of the region, which will have impacts on likely geomorphic responses to seismic driving. For example, the rivers draining into Sendai Bay have been dammed, providing sediment traps that will efficiently capture bedload and much suspended sediment in transit through the river system. Instead of the expected ~1 km of coastal progradation and formation of a ~3m high beach ridge prior to the next large tsunami, it is likely that progradation of the Sendai Plain will continue to slow or even cease as a result of damming of river systems and capture of river sediments behind dams. The resulting reduction of fluvial sediment delivery to the coast due to modification of rivers inadvertently makes seawalls and other engineered coastal structures even more necessary than they would be otherwise. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. The Neoglacial landscape and human history of Glacier Bay, Glacier Bay National Park and Preserve, southeast Alaska, USA

    USGS Publications Warehouse

    Connor, C.; Streveler, G.; Post, A.; Monteith, D.; Howell, W.

    2009-01-01

    The Neoglacial landscape of the Huna Tlingit homeland in Glacier Bay is recreated through new interpretations of the lower Bay's fjordal geomorphology, late Quaternary geology and its ethnographic landscape. Geological interpretation is enhanced by 38 radiocarbon dates compiled from published and unpublished sources, as well as 15 newly dated samples. Neoglacial changes in ice positions, outwash and lake extents are reconstructed for c. 5500?????"200 cal. yr ago, and portrayed as a set of three landscapes at 1600?????"1000, 500?????"300 and 300?????"200 cal. yr ago. This history reveals episodic ice advance towards the Bay mouth, transforming it from a fjordal seascape into a terrestrial environment dominated by glacier outwash sediments and ice-marginal lake features. This extensive outwash plain was building in lower Glacier Bay by at least 1600 cal. yr ago, and had filled the lower bay by 500 cal. yr ago. The geologic landscape evokes the human-described landscape found in the ethnographic literature. Neoglacial climate and landscape dynamism created difficult but endurable environmental conditions for the Huna Tlingit people living there. Choosing to cope with environmental hardship was perhaps preferable to the more severely deteriorating conditions outside of the Bay as well as conflicts with competing groups. The central portion of the outwash plain persisted until it was overridden by ice moving into Icy Strait between AD 1724?????"1794. This final ice advance was very abrupt after a prolonged still-stand, evicting the Huna Tlingit from their Glacier Bay homeland. ?? 2009 SAGE Publications.

  20. Inference of Stream Network Fragmentation Patterns from Ground Water - Surface Water Interactions on the High Plains Aquifer

    NASA Astrophysics Data System (ADS)

    Chandler, D. G.; Yang, X.; Steward, D. R.; Gido, K.

    2007-12-01

    Stream networks in the Great Plains integrate fluxes from precipitation as surface runoff in discrete events and groundwater as base flow. Changes in land cover and agronomic practices and development of ground water resources to support irrigated agriculture have resulted in profound changes in the occurrence and magnitude of stream flows, especially near the Ogallala aquifer, where precipitation is low. These changes have demonstrably altered the aquatic habitat of western Kansas, with documented changes in fish populations, riparian communities and groundwater quality due to stream transmission losses. Forecasting future changes in aquatic and riparian ecology and groundwater quality requires a large scale spatially explicit model of groundwater- surface water interaction. In this study, we combine historical data on land use, stream flow, production well development and groundwater level observations with groundwater elevation modeling to support a geospatial framework for assessing changes in refugia for aquatic species in four rivers in western Kansas between 1965 and 2005. Decreased frequency and duration of streamflow occurred in all rivers, but the extent of change depended on the geomorphology of the river basin and the extent of groundwater development. In the absence of streamflow, refugia for aquatic species were defined as the stream reaches below the phreatic surface of the regional aquifer. Changes in extent, location and degree of fragmentation of gaining reaches was found to be a strong predictor of surface water occurrence during drought and a robust hydrological template for the analysis of changes in recharge to alluvial and regional aquifers and riparian and aquatic habitat.

  1. Inundation, sedimentation, and subsidence creates goose habitat along the Arctic coast of Alaska

    USGS Publications Warehouse

    Tape, Ken D.; Flint, Paul L.; Meixell, Brandt W.; Gaglioti, Benjamin V.

    2013-01-01

    The Arctic Coastal Plain of Alaska is characterized by thermokarst lakes and drained lake basins, and the rate of coastal erosion has increased during the last half-century. Portions of the coast are <1 m above sea level for kilometers inland, and are underlain by ice-rich permafrost. Increased storm surges or terrestrial subsidence would therefore expand the area subject to marine inundation. Since 1976, the distribution of molting Black Brant (Branta bernicla nigricans) on the Arctic Coastal Plain has shifted from inland freshwater lakes to coastal marshes, such as those occupying the Smith River and Garry Creek estuaries. We hypothesized that the movement of geese from inland lakes was caused by an expansion of high quality goose forage in coastal areas. We examined the recent history of vegetation and geomorphological changes in coastal goose habitat by combining analysis of time series imagery between 1948 and 2010 with soil stratigraphy dated using bomb-curve radiocarbon. Time series of vertical imagery and in situ verification showed permafrost thaw and subsidence of polygonal tundra. Soil stratigraphy and dating within coastal estuaries showed that non-saline vegetation communities were buried by multiple sedimentation episodes between 1948 and 1995, accompanying a shift toward salt-tolerant vegetation. This sedimentation allowed high quality goose forage plants to expand, thus facilitating the shift in goose distribution. Declining sea ice and the increasing rate of terrestrial inundation, sedimentation, and subsidence in coastal estuaries of Alaska may portend a 'tipping point' whereby inland areas would be transformed into salt marshes.

  2. Modern shelf ice, equatorial Aeolis Quadrangle, Mars

    NASA Technical Reports Server (NTRS)

    Brakenridge, G. R.

    1993-01-01

    As part of a detailed study of the geological and geomorphological evolution of Aeolis Quadrangle, I have encountered evidence suggesting that near surface ice exists at low latitudes and was formed by partial or complete freezing of an inland sea. The area of interest is centered at approximately -2 deg, 196 deg. As seen in a suite of Viking Orbiter frames obtained at a range of approximately 600 km, the plains surface at this location is very lightly cratered or uncratered, and it is thus of late Amazonian age. Extant topographic data indicate that the Amazonian plains at this location occupy a trough whose surface lies at least 1000 m below the Mars datum. A reasonable hypothesis is that quite recent surface water releases, perhaps associated with final evolution of large 'outflow chasms' to the south, but possibly from other source areas, filled this trough, that ice floes formed almost immediately, and that either grounded ice or an ice-covered sea still persists. A reasonable hypothesis is that quite recent surface water releases, perhaps associated with final evolution of large 'outflow chasms' to the south, but possibly from other source areas, filled this trough, that ice floes formed almost immediately, and that either grounded ice or an ice-covered sea still persists. In either case, the thin (a few meters at most) high albedo, low thermal inertia cover of aeolian materials was instrumental in allowing ice preservation, and at least the lower portions of this dust cover may be cemented by water ice. Detailed mapping using Viking stereopairs and quantitative comparisons to terrestrial shelf ice geometries are underway.

  3. Late Cenozoic Uplift of the Chinese South Tian Shan: Insight from Magnetostratigraphy and Sedimentology

    NASA Astrophysics Data System (ADS)

    Chen, X.; Chen, H.; Cheng, X. G.; Zhongyue, S.; Lin, X.

    2016-12-01

    The South Tian Shan in the Central Asia is an intracontinental orogeny reactivated in the late Cenozoic by far-field effect of continuous India-Aisa convergence. However, its uplift time and process remains controversial. Here, Magnetostratigraphic and Sedimentological work in the Cenozoic Tierekesazi Profile in the South Tian Shan foreland was taken to figure out these problems. The Cenozoic sediment reveals a section of generally upwardly increasing particle sizes triggered by uplift of Tian Shan. Based on increasing particle size and water power, the Cenozoic succession could be divided into four lithofacies: (i) Paleogene marine lithofacies from the Paleogene Aertashi to Eocene-Oligocene Bashibulake Formation, (ii) lacustrine to fluvial (plain) lithofacies from the early Miocene Keziluoyi Formation to the middle of middle Miocene Pakabulake Formations, (iii) alluvial sand-gravel sheet lithofacies in the upperpart of middle Miocene Pakabulake Formation, and (iv) conglomerate lithofacies from the Neogene Atushi to Quaternary Xiyu Formation. Our magnetostratigraphic results, combined with biostratigraphic correlations, provide the chronologic constraints for each lithofacies and also the sediment accumulation rates (SAR). These results indicate lithofacies (i) aged ca. 65-34 Ma, lithofacies (ii) aged ca. 22.1-12 Ma, lithofacies (iii) aged ca. 12-5.2 Ma, and lithofacies (iv) aged ca. 5.2 Ma-present (?), with SARs increasing from lithofacies (i) to (iv). Regional correlation of SAR from foreland of South Tian Shan has suggested a linkage of the sedimentary event to the tectonic activity along South Tian Shan. We propose that the earliest Miocene event may represent the initial response of the far-field effect of Indian-Eurasian convergence, but more directly and likely marks the initial underthrusting of the Tarim block beneath the South Tian Shan. The mid-Miocene and Mio-Pliocene boundary events have different structural expression in the opposite regions east and west to the Talas-Fergana fault (TFF), which is caused by the dextral slipping of the TFF, with its dextral slipping amount at least 60-70 km. More fundamentally, such structural contrast and the activity of the TFF are likely driven by the northward indentation of the Pamir at this time.

  4. Sedimentology of rift climax deep water systems; Lower Rudeis Formation, Hammam Faraun Fault Block, Suez Rift, Egypt

    NASA Astrophysics Data System (ADS)

    Leppard, Christopher W.; Gawthorpe, Rob L.

    2006-09-01

    In most marine rift basins, subsidence outpaces sedimentation during rift climax times. Typically this results in sediment-starved hangingwall depocentres dominated by deep-marine mudstones, with subordinate local development of coarser clastics in the immediate hangingwall derived from restricted catchments on the immediate footwall scarp. To highlight the spatial variability of rift climax facies and the controls upon them, we have investigated the detailed three-dimensional geometry and facies relationships of the extremely well exposed Miocene, rift climax Lower Rudeis Formation in the immediate hangingwall to the Thal Fault Zone, Suez Rift, Egypt. Detailed sedimentological analyses allows the Lower Rudeis Formation to be divided into two contemporaneous depositional systems, (1) a laterally continuous slope system comprising, hangingwall restricted (< 250 m wide) slope apron, slope slumps, fault scarp degradation complex and laterally extensive lower slope-to-basinal siltstones, and (2) a localized submarine fan complex up to 1 km wide and extending at least 2 km basinward of the fault zone. Interpretation of individual facies, facies relationships and their spatial variability indicate that deposition in the immediate hangingwall to the Thal Fault occurred via a range of submarine concentrated density flows, surge-like turbidity flows, mass wasting and hemipelagic processes. Major controls on the spatial variability and stratigraphic architecture of the depositional systems identified reflect the influence of the steep footwall physiography, accommodation and drainage evolution associated with the growth of the Thal Fault. The under-filled nature of the hangingwall depocentre combined with the steep footwall gradient result in a steep fault-controlled basin margin characterised by either slope bypass or erosion, with limited coastal plain or shelf area. Sediment supply to the slope apron deposits is controlled in part by the evolution and size of small footwall drainage catchments. In contrast, the localized submarine fan is interpreted to have been fed by a larger, antecedent drainage network. The structural style of the immediate footwall is also believed to exert a control on facies development and stratigraphic evolution. In particular, fault scarp degradation is enhanced by fault propagation folding which creates basinward-dipping bedding planes in the pre-rift footwall strata that large pre-rift blocks slide on.

  5. Tectonic Geomorphology.

    ERIC Educational Resources Information Center

    Bull, William B.

    1984-01-01

    Summarizes representative quantitative tectonic-geomorphology studies made during the last century, focusing on fault-bounded mountain-front escarpments, marine terraces, and alluvial geomorphic surfaces (considering stream terraces, piedmont fault scarps, and soils chronosequences). Also suggests where tectonic-geomorphology courses may best fit…

  6. The late Quaternary evolution of the Arno Coastal plain (northern Tuscany, Italy): unravelling the interplay between glacio-eustatic and tectonic signals.

    NASA Astrophysics Data System (ADS)

    Sarti, G.; Rossi, V.; Amorosi, A.; Ciampalini, A.; Molli, G.; Moretti, S.; Solari, L.

    2016-12-01

    Through the integration of sedimentological, radar interferometry and structural studies, a complex mid-late Quaternary coastal evolution related to Milankovitch-scale glacio-eustatic oscillations and local tectonics was reconstructed for the southern margin of the Arno coastal plain (APC, Tuscany, Italy). A set of 14C and ESR ages combined with SAR data, paleontological and archaeological proxy support the chronological framework. At a regional scale, the ACP straddles at the SW termination of a regional-scale fault, a crustal expression of lithospheric-scale tear segmenting the deep structure of the northern Apennines. GPS data, historical and present-day seismicity testify the activity of the fault zone. The thickness (up to 3000 m) and the age (Upper Miocene-Holocene) of the APC fill deposits reflect the accommodation space through time north of the Livorno-Sillaro line (LSL), in contrast to the recent uplifting documented south of the it. The uppermost 100 m of subsurface in the APC shows a Pleistocene incised-valley system (IVS), ca. 4 km wide and 45 m deep. The IVS fill is composed of floodplain clays passing upwards to estuarine deposits, dated to MIS 7. Above, a succession of amalgamated fluvial-channel sands record both depositional and erosional events of post-MIS 7 age. Upwards, a Holocene alluvial-deltaic succession overlies an indurated horizon related to a younger IVS system that formed at MIS 3/MIS 2 transition. The Holocene succession becomes thin in proximity of an isolated relief, Upper Pleistocene in age, rising up to 15 m above the present-day plain, ca. 6 km south of the Arno River. ERS and Envisat SAR data were acquired between the 1992 and the 2010 and processed by using the PSInSAR technique. The subsidence rates along the southern boundary of the ACP, reach 28 mm/y even if this data may be partially enhanced by water exploitation. Our results document that the transition between the subsiding and uplifting areas does not coincide with the traditionally defined surface trace of LSL, but is located ca. 20 km northward, close to the present day Arno river course. The complex interplay between sediment accumulation and erosional processes documented in the subsurface of ACP reflect changes in the eustatic rate, connected to the Milankovitch cyclicity, and local activity of the surface splay of LSL.

  7. Geomorphology and seismic risk

    NASA Astrophysics Data System (ADS)

    Panizza, Mario

    1991-07-01

    The author analyses the contributions provided by geomorphology in studies suited to the assessment of seismic risk: this is defined as function of the seismic hazard, of the seismic susceptibility, and of the vulnerability. The geomorphological studies applicable to seismic risk assessment can be divided into two sectors: (a) morpho-neotectonic investigations conducted to identify active tectonic structures; (b) geomorphological and morphometric analyses aimed at identifying the particular situations that amplify or reduce seismic susceptibility. The morpho-neotectonic studies lead to the identification, selection and classification of the lineaments that can be linked with active tectonic structures. The most important geomorphological situations that can condition seismic susceptibility are: slope angle, debris, morphology, degradational slopes, paleo-landslides and underground cavities.

  8. The Relationship Between Sediment Properties and Sedimentation Patterns on a Macrotidal Gravel Beach over a Semi-lunar Tidal Cycle.

    NASA Astrophysics Data System (ADS)

    Buscombe, D.; Masselink, G.

    2007-12-01

    Detailed measurements of profile and sediment dynamics have been obtained from a macrotidal gravel barrier beach in southern England. Surface and sub-surface sediment samples, beach profiles, and disturbance depths were taken from the intertidal zone on consecutive low tides over semi-lunar tidal cycles, along with continuous wave and tide measurements. Results from two separate field surveys are presented, representing 26 and 24 consecutive low tides, respectively. A combination of Canonical Correlation Analysis (CCA) and Empirical Orthogonal Function (EOF) analysis was used to identify a number of consistent relationships in morphological and sedimentological variables not readily apparent using ordinary correlations. The disadvantage of such statistical models is that the relationships obtained cannot be expressed in physically meaningful units, which does limit its utility in physical-numerical modelling. However, the results reveal some interesting relationships between gravel beachface sedimentology and morphological change. For example, beachface morphology and sedimentology are more similar at a given spatial location over time than over space (cross-shore) at any individual time. Subsurface sedimentology over the depth of disturbance indicates that the beach step can be traced through the sediment characteristics. Indeed, the study suggests that gravel beachface sedimentology is 'slaved' to morphological change rather than vice-versa; and that the relationship becomes more evident as secondary morphological features develop on the beachface. The results imply that median sediment size and geometric sorting are suitable parameters for detecting such relationships. Strong hysteresis over space was present in the EOF modes associated with the most variance in the data sets, for both sediment size and sorting. Statistically significant relationships were found between the temporal modes of (absolute) size/sorting and net sedimentation associated with the largest variance in the non-decomposed respective data sets. Finally, significant relationships were found between a suite of measured hydrodynamic time-series and pairs of significantly correlated morpho-sedimentary eigenmodes. The techniques used were thus able to objectively demonstrate linear association between morphological and sedimentological change on a gravel beachface over a semi-lunar tidal cycle; and also that simultaneous changes in each could be linearly correlated to hydrodynamic forcing.

  9. Geotourist itineraries along the Italian territory: examples of mapping the geoheritage in different geomorphological and historical contexts

    NASA Astrophysics Data System (ADS)

    Panizza, Valeria; Brandolini, Pierluigi; Laureti, Lamberto; Nesci, Olivia; Russo, Filippo; Savelli, Daniele

    2016-04-01

    In the framework of the studies dealing with geomorphosites mapping, many researches were carried out in the last years presenting both applied examples and proposals for tourist fruition. Researchers had to face many different challenges in transferring the knowledge about the geomorphological heritage on maps. The most relevant are those concerning the use of maps for tourist promotion, taking into account the requirements of clearness of representation of landforms and also the need of pointing out possible geomorphological hazards along tourist paths. Within the activity of the Working Group "Geomorphosites and Cultural Landscape" of AIGeo (Italian Association of Physical Geography and Geomorphology), some Italian itineraries, focused on the promotion of the geomorphological heritage by means of geotourist maps, are presented. They have the goal of: promoting landscape through its geomorphological and geological heritage; disseminating geoheritage knowledge focusing its relationships with cultural landscape and human history; assessing geomorphological hazards and possible risk situations The proposed itineraries are localised in different Italian regions and they concern: - the area around the remains of the Roman town of Ostra. The town is placed on the left side of the Misa River (Marche region, Italy), atop a stream terrace dating back to the uppermost Pleistocene-early Holocene. Detailed geomorphological field and remote-sensing mapping started in 2015. The surveying is aimed at focusing the geomorphological evolution as well as at assessing possible geomorphological hazard for both conservation and exploitation scopes. A geotourist trail is proposed with the aim of highlighting and integrating geomorphological and archaeological elements and information. - a geotourist trail along the coastal terraced slopes of Cinque Terre (Liguria, NW Italy): worldwide considered as one of the most outstanding examples of human integration with the natural landscape within the Mediterranean region. The Cinque Terre are has been recognized since 1997 as a World Heritage Site by UNESCO and are currently affected by high geomorphological risk. - the territory of the town of Bosa, north-western Sardinia (Italy). From a geological point of view the area is characterized by the outcropping of the Oligo-Miocene volcanic sequence related to the rotational tectonic. The geomorphological survey allowed the reconstruction of the Quaternary evolution and the assessment of the geomorphological heritage. The itinerary proposed wants to promote, by means of a geo-tourist map, the geomorphological heritage in its relationship with the rich cultural context and give all information for a correct and conscious fruition of the landscape. - the vacant railway tract Avellino-Rocchetta S. Antonio (Campania region, Italy): an inland area of the southern Italian Apennine. Here the great diversity of landforms give rise to a rich variety of landscapes, strictly linked with the long archaeological and cultural history, protected, in part, by the institution of regional Parks and other kind of protected areas. - abandoned or deactivated old mines in the Eastern Italian Alps, in order to promote their recovery for tourist or didactic purposes. The aim of the proposed itinerary is to organize its specific fruition as well as the preservation of their environmental and historic heritage.

  10. The Teaching of Geomorphology and the Geography/Geology Debate.

    ERIC Educational Resources Information Center

    Petch, Jim; Reid, Ian

    1988-01-01

    Examines the place of geomorphology in undergraduate programs in the United Kingdom. A questionnaire survey reveals that geomorphology is widely taught in all geo- and environmental sciences, but that teaching methods and the size of the curriculum vary significantly between disciplines. (LS)

  11. Curriculum Development in Geomorphology.

    ERIC Educational Resources Information Center

    Gregory, Kenneth J.

    1988-01-01

    Examines the context of present curriculum development in geomorphology and the way in which it has developed in recent years. Discusses the content of the geomorphology curriculum in higher education and the consequences of curriculum development together with a consideration of future trends and their implications. (GEA)

  12. Techniques, problems and uses of mega-geomorphological mapping

    NASA Technical Reports Server (NTRS)

    Embleton, C.

    1985-01-01

    A plea for a program of global geomorphological mapping based on remote sensing data is presented. It is argued that the program is a necessary step in bringing together the rapidly evolving concepts of plate tectonics with the science of geomorphology. Geomorphologists are urged to bring temporal scales into their subject and to abandon their recent isolation from tectonics and geological history. It is suggested that a start be made with a new geomorphological map of Europe, utilizing the latest space technology.

  13. Ecological-geomorphological assessment of the suburban area of Astana

    NASA Astrophysics Data System (ADS)

    Akiyanova, F. Zh; Zinabdin, N. B.; Kenzhebayeva, A. Zh; Adilbekova, F. G.; Ilyassova, A. T.; Karakulov, E. M.

    2018-01-01

    The results of ecological-geomorphological assessment of the suburban zone of Astana is presented in the paper. Climatic and hydrological factors, which are the agents of pollutants’ transport and caused the development of exogenous processes in the suburban area of Astana were studied and mapped. On the base of the geoinformation technologies and field studies the geomorphologic structure and morphogenetic processes were studied. The analysis of the data complex led to assess ecological-geomorphological conditions of the suburban area of Astana.

  14. Geomorphology Drives Amphibian Beta Diversity in Atlantic Forest Lowlands of Southeastern Brazil

    PubMed Central

    Luiz, Amom Mendes; Leão-Pires, Thiago Augusto; Sawaya, Ricardo J.

    2016-01-01

    Beta diversity patterns are the outcome of multiple processes operating at different scales. Amphibian assemblages seem to be affected by contemporary climate and dispersal-based processes. However, historical processes involved in present patterns of beta diversity remain poorly understood. We assess and disentangle geomorphological, climatic and spatial drivers of amphibian beta diversity in coastal lowlands of the Atlantic Forest, southeastern Brazil. We tested the hypothesis that geomorphological factors are more important in structuring anuran beta diversity than climatic and spatial factors. We obtained species composition via field survey (N = 766 individuals), museum specimens (N = 9,730) and literature records (N = 4,763). Sampling area was divided in four spatially explicit geomorphological units, representing historical predictors. Climatic descriptors were represented by the first two axis of a Principal Component Analysis. Spatial predictors in different spatial scales were described by Moran Eigenvector Maps. Redundancy Analysis was implemented to partition the explained variation of species composition by geomorphological, climatic and spatial predictors. Moreover, spatial autocorrelation analyses were used to test neutral theory predictions. Beta diversity was spatially structured in broader scales. Shared fraction between climatic and geomorphological variables was an important predictor of species composition (13%), as well as broad scale spatial predictors (13%). However, geomorphological variables alone were the most important predictor of beta diversity (42%). Historical factors related to geomorphology must have played a crucial role in structuring amphibian beta diversity. The complex relationships between geomorphological history and climatic gradients generated by the Serra do Mar Precambrian basements were also important. We highlight the importance of combining spatially explicit historical and contemporary predictors for understanding and disentangling major drivers of beta diversity patterns. PMID:27171522

  15. Geomorphology Drives Amphibian Beta Diversity in Atlantic Forest Lowlands of Southeastern Brazil.

    PubMed

    Luiz, Amom Mendes; Leão-Pires, Thiago Augusto; Sawaya, Ricardo J

    2016-01-01

    Beta diversity patterns are the outcome of multiple processes operating at different scales. Amphibian assemblages seem to be affected by contemporary climate and dispersal-based processes. However, historical processes involved in present patterns of beta diversity remain poorly understood. We assess and disentangle geomorphological, climatic and spatial drivers of amphibian beta diversity in coastal lowlands of the Atlantic Forest, southeastern Brazil. We tested the hypothesis that geomorphological factors are more important in structuring anuran beta diversity than climatic and spatial factors. We obtained species composition via field survey (N = 766 individuals), museum specimens (N = 9,730) and literature records (N = 4,763). Sampling area was divided in four spatially explicit geomorphological units, representing historical predictors. Climatic descriptors were represented by the first two axis of a Principal Component Analysis. Spatial predictors in different spatial scales were described by Moran Eigenvector Maps. Redundancy Analysis was implemented to partition the explained variation of species composition by geomorphological, climatic and spatial predictors. Moreover, spatial autocorrelation analyses were used to test neutral theory predictions. Beta diversity was spatially structured in broader scales. Shared fraction between climatic and geomorphological variables was an important predictor of species composition (13%), as well as broad scale spatial predictors (13%). However, geomorphological variables alone were the most important predictor of beta diversity (42%). Historical factors related to geomorphology must have played a crucial role in structuring amphibian beta diversity. The complex relationships between geomorphological history and climatic gradients generated by the Serra do Mar Precambrian basements were also important. We highlight the importance of combining spatially explicit historical and contemporary predictors for understanding and disentangling major drivers of beta diversity patterns.

  16. Geodiversity, geoheritage and cultural landscape: an example from the Messinian geosites of the Piemonte region (NW-Italy)

    NASA Astrophysics Data System (ADS)

    Giordano, Enrico; Natalicchio, Marcello; Ghiraldi, Luca; Lozar, Francesca; Dela Pierre, Francesco; Giardino, Marco

    2015-04-01

    The Piemonte region (NW-Italy) contains a remarkable diversity of landscapes, some of them included in and protected by the World Heritage list, as well as some recently proposed geosites which testify the dramatic paleoevironmental, paleobiological and paleoclimatic event that occurred in the Mediterranean area around 6 Ma ago during the so-called Messinian Salinity Crisis (MSC). However the link between landform, geodiversity, geoheritage, and cultural landscape has not yet fully explored. The aims of this study, promoted by the multidisciplinary research project 'PROGEO-Piemonte' (PROactive management of GEOlogical heritage in the Piemonte region), are: 1) to analyse the link between geosites and recent landscape modification, 2) to reconstruct the landscape evolution and, through geotourism, 3) to promote geological knowledge in an area with great potential for tourism. The study area is located in the SE part of the Cuneo plain, at the foot of the Langhe hills, where heterogeneous landforms, mainly related to the Tanaro river piracy, are observed. The sediments recording the MSC event, mostly consisting of thick gypsum layers, have been recently studied by a multidisciplinary approach and the results allowed the detailed reconstruction of the MSC evolution in this region. Two maps have been produced to disseminate the geodiversity knowledge (the geological - landscape map) and to promote geotourism fruition (the geotouristic map). The geological - landscape map deals with different geological and geomorphologic issues thanks to illustrations of the main features of the Messinian deposits, their depositional environments and the exposed landforms. To underline the high geodiversity of the area, it has been divided into several geomorphologic sectors based of their characteristic landforms and evolution. In each of these sectors, geosites have been identified to clarify the comprehension of the related topics at the widest public: particularly, the geosites help to reconstruct the stages of the MSC and to understand the implication of fast environmental changes on the living beings. The geotouristic map describes the geological and geomorphologic features with a simpler language and shorter form than the previous one. Trails, viewpoints and museums are reported on the map to facilitate the comprehension of the landscape and to create a link between scientific issues and human activities (i.e. use of gypsum in the building industry). Moreover the geomorphologic analysis of the present landscape allows to decipher its recent evolution and to evaluate the risks connected with the tourist fruition, thus improving the potential safe use of anthropogenic landforms for geo-environmental education. Here the MSC is dealt with through the stages of scientific discoveries that led to the formulation of the current theories. In conclusion, the produced maps may help both to improve people knowledge and awareness on environmental modification and past climate variability and to address the crucial question whether they could happen again in the future.

  17. Soil and geomorphological parameters to characterize natural environmental and human induced changes within the Guadarrama Range (Central Spain)

    NASA Astrophysics Data System (ADS)

    Schmid, Thomas; Inclán-Cuartas, Rosa M.; Santolaria-Canales, Edmundo; Saa, Antonio; Rodríguez-Rastrero, Manuel; Tanarro-Garcia, Luis M.; Luque, Esperanza; Pelayo, Marta; Ubeda, Jose; Tarquis, Ana; Diaz-Puente, Javier; De Marcos, Javier; Rodriguez-Alonso, Javier; Hernandez, Carlos; Palacios, David; Gallardo-Díaz, Juan; Fidel González-Rouco, J.

    2016-04-01

    Mediterranean mountain ecosystems are often complex and remarkably diverse and are seen as important sources of biological diversity. They play a key role in the water and sediment cycle for lowland regions as well as preventing and mitigating natural hazards especially those related to drought such as fire risk. However, these ecosystems are fragile and vulnerable to changes due to their particular and extreme climatic and biogeographic conditions. Some of the main pressures on mountain biodiversity are caused by changes in land use practices, infrastructure and urban development, unsustainable tourism, overexploitation of natural resources, fragmentation of habitats, particularly when located close to large population centers, as well as by pressures related toclimate change. The objective of this work is to select soil and geomorphological parameters in order to characterize natural environmental and human induced changes within the newly created National Park of the Sierra de Guadarrama in Central Spain, where the presence of the Madrid metropolitan area is the main factor of impact. This is carried out within the framework of the Guadarrama Monitoring Network (GuMNet) of the Campus de ExcelenciaInternacionalMoncloa, where long-term monitoring of the atmosphere, soil and bedrock are priority. This network has a total of ten stations located to the NW of Madrid and in this case, three stations have been selected to represent different ecosystems that include: 1) an alluvial plain in a lowland pasture area (La Herreria at 920 m a.s.l.), 2) mid mountain pine-forested and pasture area (Raso del Pino at 1801 m a.s.l.) and 3) high mountain grassland and rock area (Dos Hermanas at 2225 m a.s.l.). At each station a site geomorphological description, soil profile description and sampling was carried out. In the high mountain area information was obtained for monitoring frost heave activity and downslope soil movement. Basic soil laboratory analyses have been carried out to determine the physical and chemical soil properties. The parent material is gneiss andassociated deposits and, as a result, soils are acid. The soils have a low to medium organic matter content and are non-saline. They are moderately to well drained soils and have no or slight evidence of erosion. The soil within the high mountain area has clear evidence of frost heave that has a vertical displacement of the surface in the centimeter range. The stations within the lowland and mid mountain areas represent the most degraded sites as a result of the livestock keeping, whereas the high mountain area is mainly influenced by natural environmental conditions. These soil and geomorphological parameters will constitute a basis for site characterization in future studies regarding soil degradation; determining the interaction between soil, vegetation and atmosphere with respect to human induced activities (e.g. atmospheric contamination and effects of fires); determining the nitrogen and carbon cycles; and the influence of heavy metal contaminants in the soils.

  18. ERTS: A multispectral image analysis contribution for the geomorphological evaluation of southern Maracaibo Lake Basin. [geological survey and drainage patterns

    NASA Technical Reports Server (NTRS)

    Salas, F.; Cabello, O.; Alarcon, F.; Ferrer, C.

    1974-01-01

    Multispectral analysis of ERTS-A images at scales of 1:1,000,000 and 1:500,000 has been conducted with conventional photointerpretation methods. Specific methods have been developed for the geomorphological analysis of southern Maracaibo Lake Basin which comprises part of the Venezuelan Andean Range, Perija Range, the Tachira gap and the Southern part of the Maracaibo Lake depression. A steplike analysis was conducted to separate macroforms, landscapes and relief units as well as drainage patterns and tectonic features, which permitted the delineation of tectonic provinces, stratigraphic units, geomorphologic units and geomorphologic positions. The geomorphologic synthesis obtained compares favorably with conventional analysis made on this area for accuracy of 1:100,000 scale, and in some features with details obtained through conventional analysis for accuracy of 1:15,000 and field work. Geomorphological units in the mountains were identified according to changes in tone, texture, forms orientation of interfluves and tectonic characteristics which control interfluvial disimetrics.

  19. Forensic geomorphology

    NASA Astrophysics Data System (ADS)

    Ruffell, Alastair; McKinley, Jennifer

    2014-02-01

    Geomorphology plays a critical role in two areas of geoforensics: searching the land for surface or buried objects and sampling scenes of crime and control locations as evidence. Associated geoscience disciplines have substantial bodies of work dedicated to their relevance in forensic investigations, yet geomorphology (specifically landforms, their mapping and evolution, soils and relationship to geology and biogeography) have not had similar public exposure. This is strange considering how fundamental to legal enquiries the location of a crime and its evolution are, as this article will demonstrate. This work aims to redress the balance by showing how geomorphology featured in one of the earliest works on forensic science methods, and has continued to play a role in the sociology, archaeology, criminalistics and geoforensics of crime. Traditional landscape interpretation from aerial photography is used to demonstrate how a geomorphological approach saved police time in the search for a clandestine grave. The application geomorphology has in military/humanitarian geography and environmental/engineering forensics is briefly discussed as these are also regularly reviewed in courts of law.

  20. Time and the rivers flowing: Fluvial geomorphology since 1960

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2014-07-01

    Fluvial geomorphology has been the largest single subdiscipline within geomorphology for many decades. Fluvial geomorphic expertise is integral to understanding and managing rivers and to developing strategies for sustainable development. This paper provides an overview of some of the significant advances in fluvial geomorphology between 1960 and 2010 with respect to: conceptual models; fluvial features and environments being studied; tools used by fluvial geomorphologists; geomorphic specialty groups within professional societies; journals in which fluvial geomorphic research is published; and textbooks of fluvial geomorphology. During this half century, fluvial geomorphology broadened considerably in scope, from a focus primarily on physical principles underlying process and form in lower gradient channels with limited grain size range, to a more integrative view of rivers as ecosystems with nonlinear behavior and great diversity of gradient, substrate composition, and grain size. The array of tools for making basic observations, analyzing data, and disseminating research results also expanded considerably during this period, as did the diversity of the fluvial geomorphic community.

  1. Sedimentological and Stratigraphic Associations of Earlandia Foraminifera; in the Early Triassic Succession of Khuff Carbonates; Central Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Adam, Ammar; Kaminski, Michael; Abdullatif, Osman

    2017-04-01

    This work reports the first discovery Earlandia foraminifera in the Triassic succession of the Middle East, within the Upper Khartam Member of the Khuff Formation. The study area is located in central Saudi Arabia where four outcrop localities were logged in detail for sedimentology and micropaleontology. More than 300 samples were collected for detailed sedimentological and micropaleontological analysis. Of these, only six samples recovered fossil Earlandia; these are dominantly observed in the interlaminated quartz-bearing recrystallized limestone lithofacies type. The Earlandia occur in associations with quartz grains, peloids, ooids, ostracods, bivalves, bryozoans, cephalopods, and stromatolites. The defined fossils of Earlandia are restricted to the lower fourth-order sequence of the Upper Khartam member; where non-skeletal grains (mostly oolitic grainstones) prevail. The skeletal grains along with the Earlandia occur as a thin (20 cm) transgressive lag. Furthermore, the regional occurrences of the Earlandia are consistent with the previously established high-frequency sequence stratigraphic scheme, therefore, the Earlandia could be used as a biomarker for regional biostratigraphic correlation and enhance the high-resolution sequence stratigraphic correlations of the Upper Khartam Member. Essentially, the detailed sedimentological and micropaleontological analysis (Earlandia foraminifera) indicates a plate-wide extensive shallow epeiric sea. The latter is gently dipping and sporadically connected to the open marine system.

  2. What do you mean, 'resilient geomorphic systems'?

    NASA Astrophysics Data System (ADS)

    Thoms, M. C.; Piégay, H.; Parsons, M.

    2018-03-01

    Resilience thinking has many parallels in the study of geomorphology. Similarities and intersections exist between the scientific discipline of geomorphology and the scientific concept of resilience. Many of the core themes fundamental to geomorphology are closely related to the key themes of resilience. Applications of resilience thinking in the study of natural and human systems have expanded, based on the fundamental premise that ecosystems, economies, and societies must be managed as linked social-ecological systems. Despite geomorphology and resilience sharing core themes, appreciation is limited of the history and development of geomorphology as a field of scientific endeavor by many in the field of resilience, as well as a limited awareness of the foundations of the former in the more recent emergence of resilience. This potentially limits applications of resilience concepts to the study of geomorphology. In this manuscript we provide a collective examination of geomorphology and resilience as a means to conceptually advance both areas of study, as well as to further cement the relevance and importance of not only understanding the complexities of geomorphic systems in an emerging world of interdisciplinary challenges but also the importance of viewing humans as an intrinsic component of geomorphic systems rather than just an external driver. The application of the concepts of hierarchy and scale, fundamental tenets of the study of geomorphic systems, provide a means to overcome contemporary scale-limited approaches within resilience studies. Resilience offers a framework for geomorphology to expand its application into the broader social-ecological domain.

  3. Geologic Mapping of Ascraeus Mons, Mars

    NASA Astrophysics Data System (ADS)

    Mohr, Kyle James

    Ascraeus Mons (AM) is the northeastern most large shield volcano residing in the Tharsis province on Mars. AM has a diameter of 350 km and reaches a height of 16 km above Mars datum, making AM the third largest volcano on Mars. Previous mapping of a limited area of these volcanoes using HRSC images (13-25 m/pixel) revealed a diverse distribution of volcanic landforms within the calderas, along the flanks, rift aprons, and surrounding plains. The general scientific objective for which mapping was based was to show the different lava flow morphologies across AM to better understand the evolution and geologic history. A 1: 1,000,000 scale geologic map of Ascraeus Mons was produced using ArcGIS and will be submitted to the USGS for review and publication. Mapping revealed 26 units total, broken into three separate categories: Flank units, Apron and Scarp units, and Plains units. Units were defined by geomorphological characteristics such as: surface texture, albedo, size, location, and source. Defining units in this manner allowed for contact relationships to be observed, creating a relative age date for each unit to understand the evolution and history of this large shield volcano. Ascraeus Mons began with effusive, less viscous style of eruptions and transitioned to less effusive, more viscous eruptions building up the main shield. This was followed by eruptions onto the plains from the two main rift aprons on AM. Apron eruptions continued, while flank eruptions ceased, surrounding and embaying the flanks of AM. Eruptions from the rifts wane and build up the large aprons and low shield fields. Glaciers modified the base of the west flank and deposited the Aureole material. Followed by localized recent eruptions on the flanks, in the calderas, and small vent fields. Currently AM is modified by aeolian and tectonic processes. While the overall story of Ascraeus Mons does not change significantly, higher resolution imagery allowed for a better understanding of magma evolution and lava characteristics across the main shield. This study helps identify martian magma production rates and how not only Ascraeus Mons evolved, but also the Tharsis province and other volcanic regions of Mars.

  4. Geologic Map of Ascraeus Mons, Mars

    NASA Astrophysics Data System (ADS)

    Mohr, K. J.; Williams, D. A.

    2017-12-01

    Ascraeus Mons (AM) is the northeastern most large shield volcano residing in the Tharsis province on Mars. AM has a diameter of 350 km and reaches a height of 16 km above Mars datum, making AM the third largest volcano on Mars. Previous mapping of a limited area of these volcanoes using HRSC images (13-25 m/pixel) revealed a diverse distribution of volcanic landforms within the calderas, along the flanks, rift aprons, and surrounding plains. The general scientific objective for which mapping was based was to show the different lava flow morphologies across AM to better understand the evolution and geologic history. A 1: 1,000,000 scale geologic map of Ascraeus Mons was produced using ArcGIS and will be submitted to the USGS for review and publication. Mapping revealed 26 units total, broken into three separate categories: Flank units, Apron and Scarp units, and Plains units. Units were defined by geomorphological characteristics such as: surface texture, albedo, size, location, and source. Defining units in this manner allowed for contact relationships to be observed, creating a relative age date for each unit to understand the evolution and history of this large shield volcano. Ascraeus Mons began with effusive, less viscous style of eruptions and transitioned to less effusive, more viscous eruptions building up the main shield. This was followed by eruptions onto the plains from the two main rift aprons on AM. Apron eruptions continued, while flank eruptions ceased, surrounding and embaying the flanks of AM. Eruptions from the rifts wane and build up the large aprons and low shield fields. Glaciers modified the base of the west flank and deposited the Aureole material. Followed by localized recent eruptions on the flanks, in the calderas, and small vent fields. Currently AM is modified by aeolian and tectonic processes. While the overall story of Ascraeus Mons does not change significantly, higher resolution imagery allowed for a better understanding of magma evolution and lava characteristics across the main shield. This study helps identify martian magma production rates and how not only Ascraeus Mons evolved, but also the Tharsis province and other volcanic regions of Mars.

  5. The Mw 5.4 Reggio Emilia 1996 earthquake: active compressional tectonics in the Po Plain, Italy

    NASA Astrophysics Data System (ADS)

    Selvaggi, G.; Ferulano, F.; Di Bona, M.; Frepoli, A.; Azzara, R.; Basili, A.; Chiarabba, C.; Ciaccio, M. G.; Di Luccio, F.; Lucente, F. P.; Margheriti, L.; Nostro, C.

    2001-01-01

    We have analysed the seismic sequence that occurred in October 1996 near the town of Reggio Emilia on the southern edge of the Po Plain. The onset of the sequence was marked by a 5.4 moment magnitude main shock, located at 15km depth. The main-shock focal mechanism is a reverse solution with a strike-slip component and the scalar moment is 1.46×1017Nm. We used broad-band digital recordings from a borehole station, located at about 70km from the epicentre, for a spectral analysis in order to estimate attenuation and source parameters for the main shock. In addition, the empirical Green's function method has been applied to evaluate the source time function in terms of both moment rate and stress rate. We infer an asperity-like rupture process for the main shock, as suggested by the short duration of the stress release with respect to the overall duration of the moment rate function. This analysis also allows us to estimate the average dynamic stress drop of the main shock (600bar). We analysed the digital recordings of the temporary local seismic network deployed after the main shock and of a permanent local network maintained by the Italian Petroleum Agency (AGIP). During 15days of field experiments, we recorded more than 800 aftershocks, which delineate a 9km long, NE-elongated distribution, confined between 12 and 15km depth, suggesting that the basement is involved in the deformation processes. 102 focal mechanism of aftershocks have been computed from P-wave polarities, showing mainly pure reverse solutions. We calculate the principal stress axes from a selected population of earthquakes providing a constraint on the stress regime of this part of the Po Plain. The focal mechanisms are consistent with a N-S subhorizontal σ1. All the seismological data we have analysed confirm that this region is undergoing active compressional tectonics, as already inferred from recent earthquakes, geomorphological data and other stress indicators. Moreover, the elongation of the Reggio Emilia aftershock sequence is consistent with the regional direction of the thrust fronts cropping out in the area, suggesting that they are still active.

  6. Rock magnetic properties of sediments from Lake Sanabria and its catchment (NW Spain): paleoenvironmental implications

    NASA Astrophysics Data System (ADS)

    Larrasoaña, J. C.; Borruel, V.; Gómez-Paccard, M.; Rico, M.; Valero-Garces, B.; Moreno-Caballud, A.; Soto, R.

    2013-12-01

    Lake Sanabria is located in the NW Spanish mountains at 1000 m a.s.l., and constitutes the largest lake of glacial origin in the Iberian Peninsula. Here we present an environmental magnetic study of a Late Pleistocene-Holocene sediment core from Lake Sanabria and from different lithologies that crop out in its catchment, which includes Paleozoic plutonic, metamorphic and vulcanosedimentary rocks, and Quaternary deposits of glacial origin. This study was designed to complement sedimentologic and geochemical studies aimed at unraveling the climatic evolution of the NW Iberian Peninsula during the last deglaciation. Our results indicate that magnetite and pyrrhotite dominate the magnetic assemblage of both the sediments from the lower half of the studied sequence (25.6 - 13 cal kyr BP) deposited in a proglacial environment, and the Paleozoic rocks that make up most of the catchment of the lake. The occurrence of these minerals both in the catchment rocks and in the lake sediments indicates that sedimentation was then driven by the erosion of a glacial flour, which suffered minimal chemical transformation in response to a rapid and short routing to the lake. Sediments from the upper half of the studied sequence, accumulated after 12.4 cal kyr BP in a fluviolacustrine environment, contain magnetite and greigite. This points to a prominent role of post-depositional reductive dissolution, driven by a sharp increase in the accumulation of organic matter into the lake and the creation of anoxic conditions in the sediments, in shaping the magnetic assemblage of Holocene sediments. Pyrrhotite is stable under reducing conditions as opposed to magnetite, which is unstable. We therefore interpret that previous pedogenic processes occurred in the then deglaciated catchment of the lake were responsible for the oxidation of pyrrhotite and authigenic formation of magnetite, which survived subsequent reductive diagenesis given its initial larger concentrations. This interpretation is supported by the magnetic properties of Quaternary till sediments, which in some cases retain their original magnetic assemblage (magnetite and pyrrhotite) and in other cases include larger concentrations of magnetite. The Holocene sequence includes some discrete layers with a magnetic signature identical to that of the glacial flour. These layers are interpreted as being deposited during extreme runoff events that eroded Quaternary tills. The sharp change in magnetic properties observed in the lake sediments between 13 and 12.4 kyr BP supports the rapid deglaciation of the catchment of Lake Sanabria inferred in previous studies on the basis of sedimentological, geochemical and geomorphological data.

  7. Early human occupation of a maritime desert, Barrow Island, North-West Australia

    NASA Astrophysics Data System (ADS)

    Veth, Peter; Ward, Ingrid; Manne, Tiina; Ulm, Sean; Ditchfield, Kane; Dortch, Joe; Hook, Fiona; Petchey, Fiona; Hogg, Alan; Questiaux, Daniele; Demuro, Martina; Arnold, Lee; Spooner, Nigel; Levchenko, Vladimir; Skippington, Jane; Byrne, Chae; Basgall, Mark; Zeanah, David; Belton, David; Helmholz, Petra; Bajkan, Szilvia; Bailey, Richard; Placzek, Christa; Kendrick, Peter

    2017-07-01

    Archaeological deposits from Boodie Cave on Barrow Island, northwest Australia, reveal some of the oldest evidence for Aboriginal occupation of Australia, as well as illustrating the early use of marine resources by modern peoples outside of Africa. Barrow Island is a large (202 km2) limestone continental island located on the North-West Shelf of Australia, optimally located to sample past use of both the Pleistocene coastline and extensive arid coastal plains. An interdisciplinary team forming the Barrow Island Archaeology Project (BIAP) has addressed questions focusing on the antiquity of occupation of coastal deserts by hunter-gatherers; the use and distribution of marine resources from the coast to the interior; and the productivity of the marine zone with changing sea levels. Boodie Cave is the largest of 20 stratified deposits identified on Barrow Island with 20 m3 of cultural deposits excavated between 2013 and 2015. In this first major synthesis we focus on the dating and sedimentology of Boodie Cave to establish the framework for ongoing analysis of cultural materials. We present new data on these cultural assemblages - including charcoal, faunal remains and lithics - integrated with micromorphology, sedimentary history and dating by four independent laboratories. First occupation occurs between 51.1 and 46.2 ka, overlapping with the earliest dates for occupation of Australia. Marine resources are incorporated into dietary assemblages by 42.5 ka and continue to be transported to the cave through all periods of occupation, despite fluctuating sea levels and dramatic extensions of the coastal plain. The changing quantities of marine fauna through time reflect the varying distance of the cave from the contemporaneous shoreline. The dietary breadth of both arid zone terrestrial fauna and marine species increases after the Last Glacial Maximum and significantly so by the mid-Holocene. The cave is abandoned by 6.8 ka when the island becomes increasingly distant from the mainland coast.

  8. The influence of sea-level changes on tropical coastal lowlands; the Pleistocene Coropina Formation, Suriname

    NASA Astrophysics Data System (ADS)

    Wong, Th. E.; de Kramer, R.; de Boer, P. L.; Langereis, C.; Sew-A-Tjon, J.

    2009-04-01

    The Pleistocene Coropina Formation largely constitutes the Old Coastal Plain of Suriname. It is exposed fully only in open-pit bauxite mines in the central coastal plain as part of the unconsolidated overburden of Paleocene-Eocene bauxites. This study deals with the stratigraphy, sedimentology and chronology of this formation, and is based on a study in the recently closed Lelydorp-III bauxite mine operated by N.V. BHP Billiton Maatschappij Suriname. The Coropina Formation consists of the Para and Lelydorp Members. We present a detailed lithological subdivision of these members. In the Para Member, four units are discerned which are grouped in two transgressive cycles, both ranging upward from terrestrial towards chenier and coastal mudflat deposits reflecting glacio-eustatic sea-level changes. The sandy sediments represent fluviatile and beach-bar (chenier) deposits, and were supplied by rivers from the Precambrian basement and to a lesser extent by westward longshore coastal drift. Clays, largely derived from the Amazon River and transported alongshore over the shelf, were deposited in extensive coastal mudflats. The Lelydorp Member, also comprising four units, represents a depositional system that is closely comparable to the recent Suriname coastal setting, i.e., a lateral and vertical alternation of mudflat and chenier deposits formed over a period characterised by more or less constant sea level. Palaeomagnetic data indicate a dominantly reversed magnetic polarity in the Para Member, whereas the Lelydorp Member shows a normal magnetic polarity with a minor reversed polarity overprint. The reversed polarities of the Para Member exclude a Brunhes Chron (0.78-0.0 Ma) age, and thus assign it to the Matuyama Chron (2.58-0.78 Ma). This implies that the Coropina Formation is much older than hitherto assumed, and that one or more (long-term) hiatuses are not recognizable in the lithological succession.

  9. Sediment deposition and sources into a Mississippi River floodplain lake; Catahoula Lake, Louisiana

    USGS Publications Warehouse

    Latuso, Karen D.; Keim, Richard F.; King, Sammy L.; Weindorf, David C.; DeLaune, Ronald D.

    2017-01-01

    Floodplain lakes are important wetlands on many lowland floodplains of the world but depressional floodplain lakes are rare in the Mississippi River Alluvial Valley. One of the largest is Catahoula Lake, which has existed with seasonally fluctuating water levels for several thousand years but is now in an increasingly hydrologically altered floodplain. Woody vegetation has been encroaching into the lake bed and the rate of this expansion has increased since major human hydrologic modifications, such as channelization, levee construction, and dredging for improvement of navigation, but it remains unknown what role those modifications may have played in altering lake sedimentation processes. Profiles of thirteen 137Cs sediment cores indicate sedimentation has been about 0.26 cm y− 1 over the past 60 years and has been near this rate since land use changes began about 200 years ago (210Pb, and 14C in Tedford, 2009). Carbon sequestration was low (10.4 g m− 2 y− 1), likely because annual drying promotes mineralization and export. Elemental composition (high Zr and Ti and low Ca and K) and low pH of recent (<~60 y) or surface sediments suggest Gulf Coastal Plain origin, but below the recent sediment deposits, 51% of sediment profiles showed influence of Mississippi River alluvium, rich in base cations such as K+, Ca2 +, and Mg2 +. The recent shift to dominance of Coastal Plain sediments on the lake-bed surface suggests hydrologic modification has disconnected the lake from sediment-bearing flows from the Mississippi River. Compared to its condition prior to hydrologic alterations that intensified in the 1930s, Catahoula Lake is about 15 cm shallower and surficial sediments are more acidic. Although these results are not sufficient to attribute ecological changes directly to sedimentological changes, it is likely the altered sedimentary and hydrologic environment is contributing to the increased dominance of woody vegetation.

  10. Disentangling natural and anthropogenic signals in lacustrine records: An example from the Ilan Plain, NE Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, Jyh-Jaan; Huh, Chih-An; Wei, Kuo-Yen; Löwemark, Ludvig; Lin, Shu-Fen; Liao, Wen-Hsuan; Yang, Tien-Nan; Song, Sheng-Rong; Lee, Meng-Yang; Su, Chih-Chieh; Lee, Teh-Quei

    2016-11-01

    The impact of human activities has been increasing to a degree where humans now outcompete many natural processes. When interpreting environmental and climatic changes recorded in natural archives on historical time scales, it is therefore important to be able to disentangle the relative contribution of natural and anthropogenic processes. Lake Meihua on the Ilan Plain in northeastern Taiwan offers a particularly suitable opportunity to test how human activities known from historical records can be recorded in lacustrine sediment. For this purpose, three cores from Lake Meihua have been studied by a multiproxy approach, providing the first decadal-resolution lacustrine records covering the past 150 years in Taiwan. Profiles of excess 210Pb, 137Cs and 239,240Pu from two short cores (MHL-09-01 and MHL-11-02) allowed a precise chronology to be established. The presence of a yellow, earthy layer with lower levels of organic material coincide with the record of land development associated with the construction of the San-Chin-Gong Temple during AD 1970-1982. Furthermore, in the lower part of the cores, the upwards increasing trend of inc/coh, TOC, TOC/TN, and grain size, coupled with the palynological data (increase of Alnus, Mallotus, Trema and herbs) from the nearby core MHL-5A with radiocarbon chronology, suggest that the area surrounding the lake has been significantly affected by agricultural activities since the arrival of Chinese settlers around AD 1874. In sum, this study demonstrates that this suite of lacustrine sediments in northeastern Taiwan has recorded human activities in agreement with historical documents, and that different human activities will leave distinct sedimentological, geochemical, and palynological signatures in the sedimentary archives. Therefore, multiproxy reconstructions are important to capture the complex nature of human-environmental interactions. A better understanding of the weathering and erosion response to human activities can also provide useful information for sustainable land-use management.

  11. Middle-Upper Triassic and Middle Jurassic tetrapod track assemblages of southern Tunisia, Sahara Platform

    NASA Astrophysics Data System (ADS)

    Niedźwiedzki, Grzegorz; Soussi, Mohamed; Boukhalfa, Kamel; Gierliński, Gerard D.

    2017-05-01

    Three tetrapod track assemblages from the early-middle Mesozoic of southern Tunisia are reported. The strata exposed at the Tejra 2 clay-pit near the Medenine and Rehach site, located in the vicinity of Kirchaou, contain the first tetrapod tracks found in the Triassic of Tunisia. The Middle Jurassic (early Aalenian) dinosaur tracks are reported from the Mestaoua plain near Tataouine. In the Middle Triassic outcrop of the Tejra 2 clay-pit, tridactyl tracks of small and medium-sized dinosauromorphs, were discovered. These tracks represent the oldest evidence of dinosaur-lineage elements in the Triassic deposits of Tunisia. Similar tracks have been described from the Middle Triassic of Argentina, France and Morocco. An isolated set of the manus and pes of a quadrupedal tetrapod discovered in Late Triassic Rehach tracksite is referred to a therapsid tracemaker. The Middle Jurassic deposits of the Mestaoua plain reveal small and large tridactyl theropod dinosaur tracks (Theropoda track indet. A-C). Based on comparison with the abundant record of Triassic tetrapod ichnofossils from Europe and North America, the ichnofauna described here indicates the presence of a therapsid-dinosauromorph ichnoassociation (without typical Chirotheriidae tracks) in the Middle and Late Triassic, which sheds light on the dispersal of the Middle-Upper Triassic tetrapod ichnofaunas in this part of Gondwana. The reported Middle Jurassic ichnofauna show close similarities to dinosaur track assemblages from the Lower and Middle Jurassic of northwestern Africa, North America, Europe and also southeastern Asia. Sedimentological and lithostratigraphic data of each new tracksite have been defined on published data and new observations. Taken together, these discoveries present a tantalizing window into the evolutionary history of tetrapods from the Triassic and Jurassic of southern Tunisia. Given the limited early Mesozoic tetrapod record from the region, these discoveries are of both temporal and geographic significance.

  12. Learning to Observe in a Geomorphological Context

    ERIC Educational Resources Information Center

    Martinez, Patricia; Bannan-Ritland, Brenda; Peters, Erin E.; Baek, John

    2011-01-01

    This three-lesson sequence, addressing the topic of slow geomorphological change caused by water movement, integrates a Web-based system called Goinquire into a series of activities aimed to help upper-elementary, diverse students improve their observation skills and content knowledge in geomorphology. During the inquiry-based lessons, students…

  13. Assessing the geomorphological vulnerability of arid beach-dune systems.

    PubMed

    Peña-Alonso, Carolina; Gallego-Fernández, Juan B; Hernández-Calvento, Luis; Hernández-Cordero, Antonio I; Ariza, Eduard

    2018-09-01

    In this study, an arid dune vulnerability index (ADVI) is developed using a system of indicators to evaluate the geomorphological vulnerability of beach-dune systems of arid regions. The indicators are comprised of three analytical dimensions (susceptibility, exposure and resilience) and their corresponding sub-indices and variables and were assessed for eleven sites located in four aeolian sedimentary systems of the Canary archipelago (Spain). The selected sites have varying geomorphological characteristics, vegetation types, marine and wind conditions and human pressure degrees, and have seen different trends in their geomorphological evolution since 1960. The eleven sites were separated into three groups according to their different conservation status and different management needs, and the results of the ADVI dimensions and variables were compared and analyzed for these three groups. In general, the results obtained in the analyzed sites reveal that susceptibility and exposure dimensions are related to low-moderate values, while resilience was high. Only one site presented a state of critical vulnerability, due to the loss of its capacity to maintain its geomorphological function in recent decades. Given the lack of knowledge about geomorphological vulnerability processes in foredunes of arid regions, ADVI is the first approximation to geomorphological diagnostic in these environments and can be useful for managers. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Towards sustainable management of Louisiana’s coastal wetland forests: problems, constraints, and a new beginning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chambers, J. L.; Keim, R. F.; Faulkner, S. P.

    2006-01-01

    Over 345,000 ha of forested swamps occur throughout the Mississippi River Deltaic Plain. Natural and anthropogenic changes in hydrology and geomorphology at local and landscape levels have reduced the productivity in many of these coastal wetland forests areas and have caused the complete loss of forest cover in some places. A summary and interpretation of the available science, suggestions for policy change, and a multidisciplinary (multi-responsibility) approach were needed to address these issues [in the context of private land]. In response, the Louisiana Governor's office formed a Coastal Wetland Forest Conservation and Use Science Working Group (SWG) and an associatedmore » Advisory Panel to provide the Governor with information and suggestions of strategies for environmental and economic utilization, conservation, and protection of Louisiana's coastal wetland forest ecosystem in the long-term. The process of engaging scientists, resource managers, and other stakeholders in this effort is described, and the recommendations of the SWG are presented relative to forestry practices and the potential for sustainable management of coastal wetland forests.« less

  15. Integration of LiDAR and cropmark remote sensing for the study of fluvial and anthropogenic landforms in the Brenta-Bacchiglione alluvial plain (NE Italy)

    NASA Astrophysics Data System (ADS)

    Ninfo, Andrea; Mozzi, Paolo; Abbà, Tiziano

    2016-05-01

    The geomorphological study of alluvial plains takes great advantage from the integration of detailed altimetry with high-resolution images, especially in the lower-relief sectors, like those in the distal plain of the Brenta and Bacchiglione rivers near the city of Padua (mean slope 1-0.8‰). The LiDAR data which were specifically acquired for this research (Riegl LMS-Q560, mean density 7 points/m2, overall area 123 km2), were classified and interpolated in order to map fluvial and anthropogenic landforms. The acquisition was carried out in a moment of minimal vegetation luxuriance (March 2011), in order to minimize ground cover. The DEM (z accuracy < 5-10 cm) was processed and analyzed in integration with high resolution oblique and vertical, multispectral (VIS + IR) and panchromatic aerial images. These latter were acquired during the summer crop season, with the aim of maximizing the detection of vegetation response to different soils, sediments and landforms (cropmarks). A detailed field survey was conducted with soil observation, hand augerings and description of stratigraphic sections in pits, in order to validate the remote sensing interpretations. The detailed topography allowed the identification and mapping of low rise interfluves and scarps (< 1-2 m), paleochannels, scroll bars and crevasse splays. The reconstruction of a precise "ground" surface in the narrow medieval streets detailed the morphology of the multi-stratified archeological mound in the historical center of Padua. The remote sensing of cropmarks is the most appropriate method to complete the mapping of the numerous fluvial forms that have little or no topographic expression being too small (i.e. minor crevasse channels and splays) and/or flattened by anthropogenic activity (mainly plowing). LiDAR intensity permitted a precise mapping of LGM deposits that have shown peculiar reflectivity related to specific soil characteristics (i.e., presence of calcic horizons in well-drained, elevated position). High resolution images and LiDAR DEM allow the analysis of this largely anthropized low-plain environment at cell-size scale of 0.5-1 m, i.e. approximating the original complexity of the alluvial sedimentary environment. The results bring advances in the comprehension of the Last Glacial Maximum and Holocene evolution of the Brenta-Bacchiglione plain. The large-scale mapping of paleohydrographic features led to the recognition of different fluvial styles adopted by the Brenta River: i) braided to wandering paleochannels, 100-300 m wide, in fine-sediment dominated fluvioglacial LGM distal alluvial plain, ii) meandering (up to ~ 3.5) single channels, 50-100 m wide, with evidence of lateral migration in early and middle Holocene channel belts, and iii) low to medium sinuosity (~ 1.15-1.5) single channels with vertical aggradation, associated with ridges and widespread crevasse channels and splays during the middle Holocene. The derived maps provide significant support to land and urban planning, e.g., in the definition of appropriate geotechnical analysis, the estimation of buried archeological deposits in the city center, and the assessment of flooding hazard.

  16. Late Quaternary paleoenvironments and paleoclimatic conditions in the distal Andean piedmont, southern Mendoza, Argentina

    NASA Astrophysics Data System (ADS)

    Tripaldi, Alfonsina; Zárate, Marcelo A.; Brook, George A.; Li, Guo-Qiang

    2011-09-01

    The Andean piedmont of Mendoza is a semiarid region covered by extensive and partially vegetated dune fields consisting of mostly inactive aeolian landforms of diverse size and morphology. This paper is focused on the San Rafael plain (SRP) environment, situated in the distal Andean piedmont of Mendoza (34° 30'S), and reports the sedimentology and OSL chronology of two representative exposures of late Quaternary deposits, including their paleoenvironmental and paleoclimatic significance. Eleven facies, including channel, floodplain, fluvio-aeolian interaction, and reworked pyroclastic and aeolian deposits, were described and grouped into two facies associations (FA1 and FA2). FA1 was formed by unconfined sheet flows, minor channelized streams and fluvial-aeolian interaction processes. FA2 was interpreted as aeolian dune and sand-sheet deposits. OSL chronology from the SRP sedimentary record indicates that between ca. 58-39 ka and ca. 36-24 ka (MIS 3), aggradation was governed by ephemeral fluvial processes (FA1) under generally semiarid conditions. During MIS 2, the last glacial maximum (ca. 24-12 ka), a major climatic shift to more arid conditions is documented by significant aeolian activity (FA2) that became the dominant sedimentation process north of the Diamante-Atuel fluvial system. The inferred paleoenvironmental conditions from the SRP sections are in broad agreement with regional evidence.

  17. The origin and disappearance of the late Pleistocene-early Holocene short-lived coastal wetlands along the Carmel coast, Israel

    NASA Astrophysics Data System (ADS)

    Sivan, Dorit; Greenbaum, Noam; Cohen-Seffer, Ronit; Sisma-Ventura, Guy; Almogi-Labin, Ahuva

    The formation of short-lived backswamps along the Carmel coast of Israel coincides with the rapid global sea-level rise during the late Pleistocene-early Holocene transition. The current study shows that the wetland phenomena originated around 10,000 yr ago and dried up shortly before the local Pre-Pottery Neolithic humans settled on the wetland dark clay sediments 9430 cal yr BP. Palaeontological and stable-isotope data were used in this study to elucidate previously published sedimentological reconstruction obtained from a core drilled into the western trough of the Carmel coastal plain. The water body contained typical brackish calcareous fauna, with variable numerical abundance and low species richness of ostracods and foraminifera. The δ 18O and δ 13C of the ostracod Cyprideis torosa show close similarity to the present Pleistocene coastal aquifer isotopic values. This study therefore concludes that the wetlands were shallow-water bodies fed by groundwater, with no evidence of sea-water mixing. It seems that they developed as the result of high groundwater levels, transportation of sediments landward, and deposition of sand bars at the paleo-river mouths. It is still not fully understood why these wetlands deteriorated abruptly and disappeared within less than 1000 yr.

  18. Middle to late Holocene coastal evolution along the south coast of Upolu Island, Samoa

    USGS Publications Warehouse

    Goodwin, I.D.; Grossman, E.E.

    2003-01-01

    Stratigraphic surveys and sedimentological analyses of coastal sediments and reef cores along the south coast of Upolu Island, Samoa, reveal that during the middle Holocene this coast was characterised by barrier spits, open lagoons, and estuaries. These estuarine systems matured during the late Holocene, with progressive sedimentation and inlet closure, leading to the dominance of mangrove swamps in the past 1000 years. Contemporaneous with the transition of open estuaries to mangrove swamps was the aggradation and progradation of coastal plains. The coastal progradation since 700-1000 years BP is best explained by increased sediment availability and reduced incident wave energy at the shore resulting from the shallowing and subsequent cessation of reef crest accretion following the mid-Holocene sea-level highstand ca. ???4500 yr BP. A small relative sea-level (RSL) lowering since 700-1000 years may have contributed to the positive sediment budget. This study highlights the need for island-wide coastal surveys to assess the relative roles of RSL, sediment budgets, and hydrodynamics on coastal evolution and stability. Differences in coastal evolution around Upolu Island may also be influenced by differential tectonic movements associated with late Holocene volcanism, coseismicity, and/ or submarine landslides. ?? 2003 Elsevier B.V. All rights reserved.

  19. Loess in Armenia - Stratigraphic findings and palaeoenvironmental indications

    NASA Astrophysics Data System (ADS)

    Faust, Dominik; Baumgart, Philipp; Meszner, Sascha; Fülling, Alexander; Haubold, Fritz; Sahakyan, Lilit; Meliksetian, Khachatur; Wolf, Daniel

    2016-04-01

    Current loess research enables us to better understand factors that determine the ways that loess (dust) accumulation and soil formation has responded to the rapid and variable Late Quaternary climatic changes. With the recent discovery of loess-palaeosol sequences in Armenia by our research group we may close a gap between loess records of the Russian Plain and the Caspian Lowlands in northern Iran. Preliminary investigations present encouraging results. Loess-palaeosol sequences of Armenia proved to be especially rewarding due to their thickness (up to 45 m) and the presence of diagnostic tephra layers. The current composite profile is based on 2 individual profile sections and can be considered representative for north-eastern Armenia. Different kinds of pedogenesis have been identified that led to the formation of black chernozemic soils and brownish soils, respectively. Furthermore, polygenetic soil formations as well as characteristic layers of relocated soil material appear. Three well-developed pedocomplexes can be distinguished. First results of environmental magnetic analyses show that an individual magnetic fingerprint could be traced for each sedimentological unit. Considering magnetic properties of the loess, mainly regional Caucasian components could be identified. Furthermore, we realized first luminescence dating pointing to a sedimentation of the upper part of the sequences between 39 ka and 150 ka.

  20. Site 766: Sedimentology

    USGS Publications Warehouse

    ,

    1990-01-01

    Site 766 is located at the base of the steep western margin of the Exmouth Plateau. The oldest sediment penetrated at Site 766, in Section 123-766A-49R-4 at 66 cm (466.7 mbsf), is uppermost Valanginian sandstone and siltstone, alternating with inclined basaltic intrusions (see "Igneous Rock Lithostratigraphy" section, this chapter). The uppermost sediment/basalt interface occurs in Section 123-766A-48R-6 at 129 cm (460.6 mbsf) At least 300 m (approximately 65%) of the sediments penetrated accumulated during the Lower Cretaceous, compared with less than 150 m thereafter. At Site 765, on the Argo Abyssal Plain, the Lower Cretaceous also is slightly more than 300 m thick. However, approximately 65% of the total sediment column at this site accumulated after the Lower Cretaceous, primarily during the Neogene. The sedimentation history, based on the age and present depth of basement(?) and time-depth relationship for oceanic crust, suggests that Site 766 began at a depth of about 800 m. However, the presence of shallow marine components in the oldest lithologic unit, if not redeposited, suggests that initial depths were shallower. Site 766 appears to have remained above or near the carbonate compensation depth (CCD) throughout its history, whereas Site 765 may have started near the CCD, but remained below it throughout most of its history.

  1. Morpho-structure and sedimentology of the Holocene Ebro prodelta mud belt (northwestern Mediterranean Sea)

    USGS Publications Warehouse

    Diaz, J.I.; Palanques, A.; Nelson, C.H.; Guillen, J.

    1996-01-01

    The Ebro "mud belt" is a Holocene prodeltaic deposit which has developed around, and southwestward from, the present Ebro Delta plain, covering most of the inner and middle Ebro continental shelf. Seismic-reflection profiles of this mud belt exhibit a complex sigmoid-oblique configuration. Top-set strata dip gently seaward to the 20 m isobath, and overly the fore-set beds which are exposed in up to 40-60 m water depth. Top-set and fore-set beds have mostly parallel and high continuity reflectors. Thin, acoustically transparent bottom-set beds are present at the base of the fore-set beds and extend to the distal edge of the prodelta (60-80 m water depth), where they overly relict transgressive sand deposits. There is no evidence of mass movement. The suspended load discharged by the river is mainly transported alongshelf by advective processes. This dynamics produces thin clinoform deposits that extend alongshelf for tens of kilometres. Mud belt deposition began about 10,000-11,000 years BP. Accumulation rate ranges from less than 0.5 mm y-1 on the seaward and southern edges of the deposit to about 2.5 mm y-1 near the present river mouth. Copyright ?? 1995 Elsevier Science Ltd. All rights reserved.

  2. Sedimentological, archeological and historical evidences of paleoclimatic changes during the holocene in the lagoon of Venice (Italy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonardi, M.; Canal, E.; Cavazzoni, S.

    1997-12-31

    Sedimentological investigations and archeological and historical information have allowed to correlate paleoenvironmental and coastline variations, in the Lagoon of Venice, to climatic changes during the Holocene. In particular, we report the results of a detailed study of Holocene sediments, from salt marshes and small islands, taken above and below a level with well dated archeological findings that gave a good indication of the mean sea level.

  3. Urban geomorphological heritage - A new field of research

    NASA Astrophysics Data System (ADS)

    Reynard, Emmanuel; Pica, Alessia; Coratza, Paola

    2017-04-01

    Urbanization is one of the major challenges that the world faces. In 2015, 54% of the world population was living in urban areas and in some countries this percentage is close to 100% (Singapore 100%; Qatar 99%; Belgium 98%). In several parts of the world annual urbanization rates exceed 5% (e.g. Oman 8.54%; Rwanda 6.43%; Burkina Faso 5.87%), which means that urban sprawl is a widespread phenomenon. Urbanization and correlated infrastructure building highly impact and sometimes completely destroy natural landforms. Geomorphological heritage research has traditionally focused on rural or natural regions, in particular protected areas (nature parks, geoparks). We consider that urban areas, which have been poorly investigated until now, are particularly interesting in a geomorphological heritage point of view for almost three reasons: (i) The geomorphological context (site) of some cities is part of their "image" and their fame (e.g. the sugarloaf of Rio de Janeiro); (ii) Urban sprawl often interacts with landforms, which addresses the challenge of geoheritage protection in fast urbanizing areas; (iii) Cities are often tourist destinations, which creates a potential for a geotourist promotion of their geomorphological heritage. This study addresses the main challenges research on geomorphological heritage is facing in urban contexts: (i) the complex interrelationships between natural landforms and urban forms; (ii) the partial or total invisibility of landforms and sediments that are covered or destroyed by urban infrastructures; (iii) man-made landforms as part of urban geomorphological heritage; (iv) the suitability of some landforms (valleys, gullies, mounts) for specific urban uses; (v) the geomorphic constraints of landforms on urban development; and (vi) the importance of some landforms for the urban landscape and the image of the cities. To address these challenges a methodological framework is proposed, which combines: (i) the geomorphological analysis of the urban landscape through geomorphological mapping (with use of a specific legend for man-made landforms) and geohistorical analysis of landscape evolution (historical maps processing); (ii) the selection, characterization and assessment of urban geomorphosites; (iii) proposals for the conservation and promotion (geotourism) of the urban geomorphological heritage.

  4. Student-Produced Podcasts as an Assessment Tool: An Example from Geomorphology

    ERIC Educational Resources Information Center

    Kemp, Justine; Mellor, Antony; Kotter, Richard; Oosthoek, Jan W.

    2012-01-01

    The emergence of user-friendly technologies has made podcasting an accessible learning tool in undergraduate teaching. In a geomorphology course, student-produced podcasts were used as part of the assessment in 2008-2010. Student groups constructed radio shows aimed at a general audience to interpret and communicate geomorphological data within…

  5. Psychometric and Edumetric Validity of Dimensions of Geomorphological Knowledge Which Are Tapped by Concept Mapping.

    ERIC Educational Resources Information Center

    Hoz, Ron; Bowman, Dan; Chacham, Tova

    1997-01-01

    Students (N=14) in a geomorphology course took an objective geomorphology test, the tree construction task, and the Standardized Concept Structuring Analysis Technique (SConSAT) version of concept mapping. Results suggest that the SConSAT knowledge structure dimensions have moderate to good construct validity. Contains 82 references. (DDR)

  6. Teaching Topographic Map Skills and Geomorphology Concepts with Google Earth in a One-Computer Classroom

    ERIC Educational Resources Information Center

    Hsu, Hsiao-Ping; Tsai, Bor-Wen; Chen, Che-Ming

    2018-01-01

    Teaching high-school geomorphological concepts and topographic map reading entails many challenges. This research reports the applicability and effectiveness of Google Earth in teaching topographic map skills and geomorphological concepts, by a single teacher, in a one-computer classroom. Compared to learning via a conventional instructional…

  7. Environmental conditions and geomorphologic changes during the Middle-Upper Paleolithic in the southern Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Jiménez-Espejo, Francisco J.; Rodríguez-Vidal, Joaquín; Finlayson, Clive; Martínez-Ruiz, Francisca; Carrión, José S.; García-Alix, Antonio; Paytan, Adina; Giles Pacheco, Francisco; Fa, Darren A.; Finlayson, Geraldine; Cortés-Sánchez, Miguel; Rodrigo Gámiz, Marta; González-Donoso, José M.; Linares, M. Dolores; Cáceres, Luis M.; Fernández, Santiago; Iijima, Koichi; Martínez Aguirre, Aranzazu

    2013-01-01

    This study utilizes geomorphology, marine sediment data, environmental reconstructions and the Gorham's Cave occupational record during the Middle to Upper Paleolithic transition to illustrate the impacts of climate changes on human population dynamics in the Western Mediterranean. Geomorphologic evolution has been dated and appears to be driven primarily by coastal dune systems, sea-level changes and seismo-tectonic evolution. Continental and marine records are well correlated and used to interpret the Gorham's Cave sequence. Specific focus is given to the three hiatus sections found in Gorham's Cave during Heinrich periods 4, 3 and 2. These time intervals are compared with a wide range of regional geomorphologic, climatic, paleoseismic, faunal and archeological records. Our data compilations indicate that climatic and local geomorphologic changes explain the Homo sapiens spp. occupational hiatuses during Heinrich periods 4 and 3. The last hiatus corresponds to the replacement of Homo neanderthalensis by H. sapiens. Records of dated cave openings, slope breccias and stalactite falls suggest that marked geomorphologic changes, seismic activity and ecological perturbations occurred during the period when Homo replacement took place.

  8. Digital geomorphological landslide hazard mapping of the Alpago area, Italy

    NASA Astrophysics Data System (ADS)

    van Westen, Cees J.; Soeters, Rob; Sijmons, Koert

    Large-scale geomorphological maps of mountainous areas are traditionally made using complex symbol-based legends. They can serve as excellent "geomorphological databases", from which an experienced geomorphologist can extract a large amount of information for hazard mapping. However, these maps are not designed to be used in combination with a GIS, due to their complex cartographic structure. In this paper, two methods are presented for digital geomorphological mapping at large scales using GIS and digital cartographic software. The methods are applied to an area with a complex geomorphological setting on the Borsoia catchment, located in the Alpago region, near Belluno in the Italian Alps. The GIS database set-up is presented with an overview of the data layers that have been generated and how they are interrelated. The GIS database was also converted into a paper map, using a digital cartographic package. The resulting largescale geomorphological hazard map is attached. The resulting GIS database and cartographic product can be used to analyse the hazard type and hazard degree for each polygon, and to find the reasons for the hazard classification.

  9. Environmental change and human occupation in the floodplain area of Balta Ialomiţei. The case study of Bordusani Popinǎ Chalcolithic tell settlement

    NASA Astrophysics Data System (ADS)

    Haita, Constantin; Nicolae Popovici, Dragomir; Panaiotu, Cristian

    2016-04-01

    The floodplain area of Balta Ialomiței, between Cǎl\\varasi and Giurgeni, delimited by Borcea River and Danube is formed by an anostomosing system, up to 13 km wide and 70 km long; this zone has a particular important evolution in Holocene for the alluvial system and associated environment. The Chalcolithic occupation in southern and eastern Romania is marked by the development of tell type settlements along the Danube and its main tributaries, chronologically attributed to Gumelnița culture, Vth millenium BC, one of the most important civilisation in the Lower Danube zone. In this area, the most representative settlements are: Borduşani Popinǎ, Hârşova tell and Popina Blagodeasca, situated either on erosional remnants from terraces ("popine") or on the edge of the lower terrace. Bordusani Popinǎ is located inside the floodplain zone, on a remnant separated from the lower terrace of Borcea River, in Romanian Plain. On this site, a pluridisciplinary research program allowed the investigation of Chalcolithic occupation in terms of archaeological, geomorphological, archaeozoological, archaeobotanical and petrographical point of view. The Chalcolithic occupation is represented by successive levels of dwellings, destroyed by fire and also unburned; their stratigraphic relationships, together with the presence of passageways and domestic waste areas, revealed an organised internal space. In Balta Ialomiței meadow area, a paleoenvironmental research was iniatiated with a Cobra TT percussion corer in five important locations, on a West-East alignament. The bulk samples were investigated for grainsize, clay mineralogy and magnetic susceptibility. This study was completed with the micromorphology analysis on undisturbed samples of the sedimentary succession from a tubed core located in the eastern vecinity of the tell. Our results show important environmental changes in the period from Chalcolithic to Iron Age and Middle Ages. The analysed sequence, from the Chalcolithic period to the present, reach up to 10 m of alluvial deposits, as reflected by 14C dating on wood samples from core sediments, corresponds to episodes with frequent and repeated floods, and documents different sedimentary ambiances. Regarding the influence of anthropogenic occupation, the two important moments of living in this area, corresponding to the Chalcolithic and Iron Age, are marked by the presence of anthropogenic inclusions, reworked in natural sediments. This information is correlated very well with the values of the magnetic susceptibility curve which major changes marks these two periods. In the case of Chalcolithic habitation, it was identified a millimeter thick lamina of ash with burned clay grains, associated with frequent fine charcoal and phytolites very likely of Graminee type. This may correspond to a secondary accumulation in relation with a structure for the preparation of cereals. Our study emphasized that the correlation of archeological, sedimentological and micromorphological data allow the reconstruction of the main stratigraphic sequences, sedimentary and anthropogenic, in this significant area for Danube upper Holocene development.

  10. Giant landslide deposits and the modalities of their removal by fluvial sediment export in the central Himalayas

    NASA Astrophysics Data System (ADS)

    Lave, Jerome; Lénard, Sébastien; Lanord, Christian France

    2017-04-01

    Slope failures and deep seated landslides are usually considered as the most efficient processes for hillslope erosion in active orogens. Erosion in the Narayani basin in central Himalaya (Nepal) confirms such assertion, with in addition the probable predominance of the very large landslides in the erosive budget of the range. In the High Himalayan part of this basin, a number of pluri-kilometric giant landslides have been described and involve up to ten cubic kilometres mass wasting (e.g. Weidinger et al., 2002). In this contribution, we discuss how the fluvial network do respond to such massive and sudden supply of debris, basing our analysis on several cases, documented by sedimentologic and geomorphologic observations, lithologic counting, geochemical tracing (down to the Ganga plain), and 14C or CRN dating. We first demonstrate that several massive fill terraces preserved along the Lesser Himalayan intramontane reaches are not climatically induced, but rather represent transient storage following giant landslide material export. Two types of deposits and therefore of sediment export modalities have been identified: either (1), as observed along a 100km long stretch of the Marsyandi river, through massive debris flow(s) runout following the break of a landslide-induced dam on main rivers, or (2) by the more gradual but efficient fluvial removal of the giant landslide deposits. In the second case, in particular when bedrock fracturing and crushing during landslide fall has strongly reduced the average debris size, because the steep Himalayan rivers are usually in strong over capacity or largely underloaded with fine to medium-size sediment, their can carry up to several cubic kilometres of sediments in one or two centuries. The coarsest part of the exported material is temporarily stored through aggradation in the massive Lesser Himalayan fill terraces because river gradient drops suddenly when river exits the High Himalaya, whereas the finest fraction is exported very rapidly further downstream, outside of the range. Once a large portion of the landslide debris has been eroded in the source deposit, river quickly returns to over-capacity conditions and to its long term or background conditions, and fill terraces are rapidly re-incised (re-erosion of the fill terrace occurs at rates incommensurate with long term bedrock downcutting rate). The documented Himalayan examples illustrate that erosion of giant landslides deposits can overwhelm the sediment export of a river as large as the Narayani (A=30000km2; average sediment export=150Mt/yr) during several centuries, but that the landscape quickly (i.e. in a similar amount of time) recovers and returns to some long-term average state. The long term influence of these events on the morphology of the fluvial network remains therefore moderate, if we except the persistence of fill terraces remnants in the Lesser Himalaya for several tens of kyr.

  11. Performance of CMORPH, TMPA, and PERSIANN rainfall datasets over plain, mountainous, and glacial regions of Pakistan

    NASA Astrophysics Data System (ADS)

    Hussain, Yawar; Satgé, Frédéric; Hussain, Muhammad Babar; Martinez-Carvajal, Hernan; Bonnet, Marie-Paule; Cárdenas-Soto, Martin; Roig, Henrique Llacer; Akhter, Gulraiz

    2018-02-01

    The present study aims at the assessment of six satellite rainfall estimates (SREs) in Pakistan. For each assessed products, both real-time (RT) and post adjusted (Adj) versions are considered to highlight their potential benefits in the rainfall estimation at annual, monthly, and daily temporal scales. Three geomorphological climatic zones, i.e., plain, mountainous, and glacial are taken under considerations for the determination of relative potentials of these SREs over Pakistan at global and regional scales. All SREs, in general, have well captured the annual north-south rainfall decreasing patterns and rainfall amounts over the typical arid regions of the country. Regarding the zonal approach, the performance of all SREs has remained good over mountainous region comparative to arid regions. This poor performance in accurate rainfall estimation of all the six SREs over arid regions has made their use questionable in these regions. Over glacier region, all SREs have highly overestimated the rainfall. One possible cause of this overestimation may be due to the low surface temperature and radiation absorption over snow and ice cover, resulting in their misidentification with rainy clouds as daily false alarm ratio has increased from mountainous to glacial regions. Among RT products, CMORPH-RT is the most biased product. The Bias was almost removed on CMORPH-Adj thanks to the gauge adjustment. On a general way, all Adj versions outperformed their respective RT versions at all considered temporal scales and have confirmed the positive effects of gauge adjustment. CMORPH-Adj and TMPA-Adj have shown the best agreement with in situ data in terms of Bias, RMSE, and CC over the entire study area.

  12. Petrogenesis and depositional history of felsic pyroclastic rocks from the Melka Wakena archaeological site-complex in South central Ethiopia

    NASA Astrophysics Data System (ADS)

    Resom, Angesom; Asrat, Asfawossen; Gossa, Tegenu; Hovers, Erella

    2018-06-01

    The Melka Wakena archaeological site-complex is located at the eastern rift margin of the central sector of the Main Ethiopian Rift (MER), in south central Ethiopia. This wide, gently sloping rift shoulder, locally called the "Gadeb plain" is underlain by a succession of primary pyroclastic deposits and intercalated fluvial sediments as well as reworked volcaniclastic rocks, the top part of which is exposed by the Wabe River in the Melka Wakena area. Recent archaeological survey and excavations at this site revealed important paleoanthropological records. An integrated stratigraphic, petrological, and major and trace element geochemical study has been conducted to constrain the petrogenesis of the primary pyroclastic deposits and the depositional history of the sequence. The results revealed that the Melka Wakena pyroclastic deposits are a suite of mildly alkaline, rhyolitic pantellerites (ash falls, pumiceous ash falls and ignimbrites) and slightly dacitic ash flows. These rocks were deposited by episodic volcanic eruptions during early to middle Pleistocene from large calderas along the Wonji Fault Belt (WFB) in the central sector of the MER and from large silicic volcanic centers at the eastern rift shoulder. The rhyolitic ash falls, pumiceous ash falls and ignimbrites have been generated by fractional crystallization of a differentiating basaltic magma while the petrogenesis of the slightly dacitic ash flows involved some crustal contamination and assimilation during fractionation. Contemporaneous fluvial activities in the geomorphologically active Gadeb plain deposited overbank sedimentary sequences (archaeology bearing conglomerates and sands) along meandering river courses while a dense network of channels and streams have subsequently down-cut through the older volcanic and sedimentary sequences, redepositing the reworked volcaniclastic sediments further downstream.

  13. Nitrogen transport and transformations in a coastal plain watershed: Influence of geomorphology on flow paths and residence times

    USGS Publications Warehouse

    Tesoriero, Anthony J.; Spruill, Timothy B.; Mew, H.E.; Farrell, Kathleen M.; Harden, Stephen L.

    2005-01-01

    Nitrogen transport and groundwater-surface water interactions were examined in a coastal plain watershed in the southeastern United States. Groundwater age dates, calculated using chlorofluorocarbon and tritium concentrations, along with concentrations of nitrogen species and other redox-active constituents, were used to evaluate the fate and transport of nitrate. Nitrate is stable only in recently recharged (<10 years) water found in the upper few meters of saturated thickness in the upland portion of a surficial aquifer. Groundwater with a residence time between 10 and 30 years typically has low nitrate and elevated excess N2 concentrations, indications that denitrification has reduced nitrate concentrations. Groundwater older than 30 years also has low nitrate concentrations but contains little or no excess N2, suggesting that this water did not contain elevated concentrations of nitrate along its flow path. Nitrate transport to streams varies between first- and third-order streams. Hydrologic, lithologic, and chemical data suggest that the surficial aquifer is the dominant source of flow and nitrate to a first-order stream. Iron-reducing conditions occur in groundwater samples from the bed and banks of the first-order stream, suggesting that direct groundwater discharge is denitrified prior to entering the stream. However, nitrogen from the surficial aquifer is transported directly to the stream via a tile drain that bypasses these reduced zones. In the alluvial valley of a third-order stream the erosion of a confining layer creates a much thicker unconfined alluvial aquifer with larger zones of nitrate stability. Age dating and chemical information (SiO 2, Na/K ratios) suggest that water in the alluvial aquifer is derived from short flow paths through the riparian zone and/or from adjacent streams during high-discharge periods. Copyright 2005 by the American Geophysical Union.

  14. Swiss Re Global Flood Hazard Zones: Know your flood risk

    NASA Astrophysics Data System (ADS)

    Vinukollu, R. K.; Castaldi, A.; Mehlhorn, J.

    2012-12-01

    Floods, among all natural disasters, have a great damage potential. On a global basis, there is strong evidence of increase in the number of people affected and economic losses due to floods. For example, global insured flood losses have increased by 12% every year since 1970 and this is expected to further increase with growing exposure in the high risk areas close to rivers and coastlines. Recently, the insurance industry has been surprised by the large extent of losses, because most countries lack reliable hazard information. One example has been the 2011 Thailand floods where millions of people were affected and the total economic losses were 30 billion USD. In order to assess the flood risk across different regions and countries, the flood team at Swiss Re based on a Geomorphologic Regression approach, developed in house and patented, produced global maps of flood zones. Input data for the study was obtained from NASA's Shuttle Radar Topographic Mission (SRTM) elevation data, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) and HydroSHEDS. The underlying assumptions of the approach are that naturally flowing rivers shape their channel and flood plain according to basin inherent forces and characteristics and that the flood water extent strongly depends on the shape of the flood plain. On the basis of the catchment characteristics, the model finally calculates the probability of a location to be flooded or not for a defined return period, which in the current study was set to 100 years. The data is produced at a 90-m resolution for latitudes 60S to 60N. This global product is now used in the insurance industry to inspect, inform and/or insure the flood risk across the world.

  15. The bumblebees of North China (Apidae, Bombus Latreille).

    PubMed

    An, Jiandong; Huang, Jiaxing; Shao, Youquan; Zhang, Shiwen; Wang, Biao; Liu, Xinyu; Wu, Jie; Williams, Paul H

    2014-07-08

    Bumblebees are important pollinators for wild flowers and agricultural crops. North China is a region of varied geomorphology and vegetation, with plateaus, plains, mountains and deserts, and is part of the greatest hotspot of bumblebee diversity worldwide. We report on a field survey of the bumblebees of North China made between 2005-2012. A sample of 21,636 bumblebee specimens are assigned to 76 species. One older specimen held in London added one more species to this list. Together, these 77 species represent 10 subgenera of the genus Bombus. Seven species are recorded from North China for the first time: B. (St.) distinguendus, B. (Th.) anachoreta, B. (Th.) pseudobaicalensis, B. (Th.) exil, B. (Ps.) campestris, B. (Pr.) infirmus and B. (Ag.) validus. We provide identification keys for both males and females, photographs of the common colour patterns, and distribution maps for all species. We describe variation in local species richness and abundance, and list the food plants used by bumblebees in North China. The most abundant 10 bumblebee species are: B. (Ml.) pyrosoma, B. (Bo.) lantschouensis, B. (Bo.) patagiatus, B. (St.) melanurus, B. (Sb.) sibiricus, B. (Bo.) ignitus, B. (Th.) hedini, B. (Pr.) picipes, B. (Mg.) trifasciatus and B. (Mg.) longipes. Bumblebees are distributed widely within North China, from low elevations near the edge of the North-China plain to high elevations at the edge of the east Qinghai-Tibetan plateau (65-4011 m). The highest species richness is found in meadows of the high elevation east Qinghai-Tibetan plateau and in forests of the Qilianshan mountains in southwestern Gansu. The 337 food plant species recorded here belong to 49 families, showing that bumblebees play an important role in interconnecting agricultural and natural ecosystems in North China. 

  16. Quaternary fans and terraces in the Khumbu Himal south of Mount Everest: their characteristics, age and formation

    USGS Publications Warehouse

    Barnard, P.L.; Owen, L.A.; Finkel, R.C.

    2006-01-01

    Large fans and terraces are frequent in the Khumbu Himal within the high Himalayan valleys south of Mt. Everest. These features are composed of massive matrix- and clast-supported diamicts that were formed from both hyperconcentrated flows and coarse-grained debris flows. Cosmogenic radionuclide (CRN) exposure ages for boulders on fans and terraces indicate that periods of fan and terrace formation occurred at c. 16, c. 12, c. 8, c. 4 and c. 1.5 ka, and are broadly coincident with the timing of glaciation in the region. The dating precision is insufficient to resolve whether the surfaces formed before, during or after the correlated glacial advance. However, the sedimentology, and morphostratigraphic and geomorphological relationships suggest that fan and terrace sedimentation in this part of the Himalaya primarily occurs during glacier retreat and is thus paraglacial in origin. Furthermore, modern glacial-lake outburst floods and their associated deposits are common in the Khumbu Himal as the result of glacial retreat during historical times. We therefore suggest that Late Quaternary and Holocene fan and terrace formation and sediment transfer are probably linked to temporal changes in discharge and sediment load caused by glacier oscillations responding to climate change. The timing of major sedimentation events in this region can be correlated with fans and terraces in other parts of the Himalaya, suggesting that major sedimentation throughout the Himalaya is synchronous and tied to regional climatic oscillations. Bedrock incision rates calculated from strath terrace ages average c. 3.9 mm a−1, suggesting that the overall rate of incision is set by regional uplift.

  17. A geomorphological seabed classification for the Weddell Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Jerosch, Kerstin; Kuhn, Gerhard; Krajnik, Ingo; Scharf, Frauke Katharina; Dorschel, Boris

    2016-06-01

    Sea floor morphology plays an important role in many scientific disciplines such as ecology, hydrology and sedimentology since geomorphic features can act as physical controls for e.g. species distribution, oceanographically flow-path estimations or sedimentation processes. In this study, we provide a terrain analysis of the Weddell Sea based on the 500 m × 500 m resolution bathymetry data provided by the mapping project IBCSO. Seventeen seabed classes are recognized at the sea floor based on a fine and broad scale Benthic Positioning Index calculation highlighting the diversity of the glacially carved shelf. Beside the morphology, slope, aspect, terrain rugosity and hillshade were calculated and supplied to the data archive PANGAEA. Applying zonal statistics to the geomorphic features identified unambiguously the shelf edge of the Weddell Sea with a width of 45-70 km and a mean depth of about 1200 m ranging from 270 m to 4300 m. A complex morphology of troughs, flat ridges, pinnacles, steep slopes, seamounts, outcrops, and narrow ridges, structures with approx. 5-7 km width, build an approx. 40-70 km long swath along the shelf edge. The study shows where scarps and depressions control the connection between shelf and abyssal and where high and low declination within the scarps e.g. occur. For evaluation purpose, 428 grain size samples were added to the seabed class map. The mean values of mud, sand and gravel of those samples falling into a single seabed class was calculated, respectively, and assigned to a sediment texture class according to a common sediment classification scheme.

  18. Identification and characterization of tsunami deposits off southeast coast of India from the 2004 Indian Ocean tsunami: Rock magnetic and geochemical approach

    NASA Astrophysics Data System (ADS)

    Veerasingam, S.; Venkatachalapathy, R.; Basavaiah, N.; Ramkumar, T.; Venkatramanan, S.; Deenadayalan, K.

    2014-06-01

    The December 2004 Indian Ocean Tsunami (IOT) had a major impact on the geomorphology and sedimentology of the east coast of India. Estimation of the magnitude of the tsunami from its deposits is a challenging topic to be developed in studies on tsunami hazard assessment. Two core sediments (C1 and C2) from Nagapattinam, southeast coast of India were subjected to textural, mineral, geochemical and rock-magnetic measurements. In both cores, three zones (zone I, II and III) have been distinguished based on mineralogical, geochemical and magnetic data. Zone II is featured by peculiar rock-magnetic, textural, mineralogical and geochemical signatures in both sediment cores that we interpret to correspond to the 2004 IOT deposit. Textural, mineralogical, geochemical and rock-magnetic investigations showed that the tsunami deposit is featured by relative enrichment in sand, quartz, feldspar, carbonate, SiO 2, TiO 2, K 2O and CaO and by a depletion in clay and iron oxides. These results point to a dilution of reworked ferromagnetic particles into a huge volume of paramagnetic materials, similar to what has been described in other nearshore tsunami deposits (Font et al. 2010). Correlation analysis elucidated the relationships among the textural, mineral, geochemical and magnetic parameters, and suggests that most of the quartz-rich coarse sediments have been transported offshore by the tsunami wave. These results agreed well with the previously published numerical model of tsunami induced sediment transport off southeast coast of India and can be used for future comparative studies on tsunami deposits.

  19. Sedimentology and geomorphology of a large tsunamigenic landslide, Taan Fiord, Alaska

    NASA Astrophysics Data System (ADS)

    Dufresne, A.; Geertsema, M.; Shugar, D. H.; Koppes, M.; Higman, B.; Haeussler, P. J.; Stark, C.; Venditti, J. G.; Bonno, D.; Larsen, C.; Gulick, S. P. S.; McCall, N.; Walton, M.; Loso, M. G.; Willis, M. J.

    2018-02-01

    On 17 October 2015, a landslide of roughly 60 × 106 m3 occurred at the terminus of Tyndall Glacier in Taan Fiord, southeastern Alaska. It caused a tsunami that inundated an area over 20 km2, whereas the landslide debris itself deposited within a much smaller area of approximately 2 km2. It is a unique event in that the landslide debris was deposited into three very different environments: on the glacier surface, on land, and in the marine waters of the fjord. Part of the debris traversed the width of the fjord and re-emerged onto land, depositing coherent hummocks with preserved source stratigraphy on an alluvial fan and adjacent moraines on the far side of the fjord. Imagery from before the landslide shows that the catastrophic slope failure was preceded by deformation and sliding for at least the two decades since the glacier retreated to its current terminus location, exposing steep and extensively faulted slopes. A small volume of the total slide mass remains within the source area and is topped by striated blocks (> 10 m across) and standing trees that were transported down the slope in intact positions during the landslide. Field work was carried out in the summer of 2016, and by the time this paper was written, almost all of the supraglacial debris was advected into the fjord and half the subaerial hummocks were buried by glacial advance; this rapid change illustrates how highly active sedimentary processes in high-altitude glacial settings can skew any landslide-frequency analyses, and emphasizes the need for timely field investigations of these natural hazards.

  20. Neogene palaeochannel deposits in Sudan - Remnants of a trans-Saharan river system?

    NASA Astrophysics Data System (ADS)

    Bussert, Robert; Eisawi, Ali A. M.; Hamed, Basher; Babikir, Ibrahim A. A.

    2018-05-01

    The start of Nile-type trans-Saharan drainage systems in NE Africa during the Cenozoic is disputed. Stratigraphical and sedimentological data in Egypt are partly in conflict with the uplift history of potential source areas of water and sediment in East Africa. Here, we investigate outcrops of the Wadi Awatib Conglomerate in Sudan that provide the first evidence of northerly flowing Neogene rivers in the region. Dimension and relief of basal erosion surfaces, overall geometry of deposits and palaeocurrent indicators demonstrate that the deposits represent the fill of northward-oriented incised valleys. The conglomerates were deposited in deep gravel-bed rivers, by hyperconcentrated flows, tractions carpets and gravel bars, primarily during heavily sediment-laden floods of probably monsoonal origin. Stratigraphical and geomorphological relationships show that the deposits are between Eocene and Pliocene in age. Considering the structural history of the region and periods in the Cenozoic with palaeoclimatic conditions suitable for the production and transport of gravels, we hypothesize that the dramatic base-level fall during the Late Miocene Messinian salinity crisis in combination with a favorable palaeoclimate caused the incision of valleys and their subsequent filling with conglomerates. Sea-level change in the Mediterranean Sea and headward erosion of streams that were connected to the Egyptian Nile might have been the primary cause of valley incision and deposition of conglomerates, despite a location far inland from the coastline. We suggest that the deposits document a relatively young Neogene (Messinian to early Pliocene) trans-Saharan river system unrelated to uplift of the Ethiopian Plateau.

  1. Geomorphology of coal seam fires

    NASA Astrophysics Data System (ADS)

    Kuenzer, Claudia; Stracher, Glenn B.

    2012-02-01

    Coal fires occur in underground natural coal seams, in exposed surface seams, and in coal storage or waste piles. The fires ignite through spontaneous combustion or natural or anthropogenic causes. They are reported from China, India, USA, South Africa, Australia, and Russia, as well as many other countries. Coal fires lead to loss of a valuable resource (coal), the emission of greenhouse-relevant and toxic gases, and vegetation deterioration. A dangerous aspect of the fires is the threat to local mines, industries, and settlements through the volume loss underground. Surface collapse in coal fire areas is common. Thus, coal fires are significantly affecting the evolution of the landscape. Based on more than a decade of experience with in situ mapping of coal fire areas worldwide, a general classification system for coal fires is presented. Furthermore, coal seam fire geomorphology is explained in detail. The major landforms associated with, and induced by, these fires are presented. The landforms include manifestations resulting from bedrock surface fracturing, such as fissures, cracks, funnels, vents, and sponges. Further manifestations resulting from surface bedrock subsidence include sinkholes, trenches, depressions, partial surface subsidence, large surface subsidence, and slides. Additional geomorphologic coal fire manifestations include exposed ash layers, pyrometamorphic rocks, and fumarolic minerals. The origin, evolution, and possible future development of these features are explained, and examples from in situ surveys, as well as from high-resolution satellite data analyses, are presented. The geomorphology of coal fires has not been presented in a systematic manner. Knowledge of coal fire geomorphology enables the detection of underground coal fires based on distinct surface manifestations. Furthermore, it allows judgments about the safety of coal fire-affected terrain. Additionally, geomorphologic features are indicators of the burning stage of fires. Finally, coal fire geomorphology helps to explain landscape features whose occurrence would otherwise not be understood. Although coal fire-induced thermal anomalies and gas release are also indications of coal fire activity, as addressed by many investigators, no assessment is complete without sound geomorphologic mapping of the fire-induced geomorphologic features.

  2. National Seabed Mapping Programmes Collaborate to Advance Marine Geomorphological Mapping in Adjoining European Seas

    NASA Astrophysics Data System (ADS)

    Monteys, X.; Guinan, J.; Green, S.; Gafeira, J.; Dove, D.; Baeten, N. J.; Thorsnes, T.

    2017-12-01

    Marine geomorphological mapping is an effective means of characterising and understanding the seabed and its features with direct relevance to; offshore infrastructure placement, benthic habitat mapping, conservation & policy, marine spatial planning, fisheries management and pure research. Advancements in acoustic survey techniques and data processing methods resulting in the availability of high-resolution marine datasets e.g. multibeam echosounder bathymetry and shallow seismic mean that geological interpretations can be greatly improved by combining with geomorphological maps. Since December 2015, representatives from the national seabed mapping programmes of Norway (MAREANO), Ireland (INFOMAR) and the United Kingdom (MAREMAP) have collaborated and established the MIM geomorphology working group) with the common aim of advancing best practice for geological mapping in their adjoining sea areas in north-west Europe. A recently developed two-part classification system for Seabed Geomorphology (`Morphology' and Geomorphology') has been established as a result of an initiative led by the British Geological Survey (BGS) with contributions from the MIM group (Dove et al. 2016). To support the scheme, existing BGS GIS tools (SIGMA) have been adapted to apply this two-part classification system and here we present on the tools effectiveness in mapping geomorphological features, along with progress in harmonising the classification and feature nomenclature. Recognising that manual mapping of seabed features can be time-consuming and subjective, semi-automated approaches for mapping seabed features and improving mapping efficiency is being developed using Arc-GIS based tools. These methods recognise, spatially delineate and morphologically describe seabed features such as pockmarks (Gafeira et al., 2012) and cold-water coral mounds. Such tools utilise multibeam echosounder data or any other bathymetric dataset (e.g. 3D seismic, Geldof et al., 2014) that can produce a depth digital model. The tools have the capability to capture an extensive list of morphological attributes. The MIM geomorphology working group's strategy to develop methods for more efficient marine geomorphological mapping is presented with data examples and case studies showing the latest results.

  3. Hurricane effects on the coastline from Cabo San Lucas Bay, Baja California Peninsula, Mexico

    NASA Astrophysics Data System (ADS)

    Nava-Sanchez, Enrique; Navarro-Lozano, Octavio; Murillo-Jimenez, Janette; Godinez-Orta, Lucio

    2010-05-01

    Cabo San Lucas, located on the southern tip of the Baja California Peninsula, is on the track of two to five hurricanes per year. Thus the purpose of this work was to evaluate the effects of hurricanes on the stability of the coastline of San Lucas Bay. We apply GIS for determining inland geomorphology and conducted bathymetric surveys for the marine area. Results from previous sedimentological researches of fluvial, littoral and shallow marine environments were reanalyzed to determine the sedimentary processes responsible for the stability of the coastline. Also, we were monitoring beach profiles in the bay and also other beaches from the tip of the peninsula from 1997 to 2004 and recorded the effects of Hurricane Juliette in 2001 (category 3 in the Saffir-Simpson scale), which left an accumulative precipitation of 850 mm and formed waves of 8 m in height during the four days of maximum impact. We found out that inland and marine geomorphology, as well as littoral and alluvial sediment transport play a major role to keep the coastline relatively stable for at least the last 3,000 years. Geomorphology of the drainage basin is steep favoring the formation of flash floods that feed an alluvial fan to finally discharge sediments to the San Lucas Bay where a temporal fan-delta is developed during catastrophic rains. Marine morphology is dominated by the San Lucas submarine canyon, located on the southern half of the bay, whose canyon head is just at the foot of the beach (4 to 6 m in depth). On the northern half, there is a narrow submarine terrace with a break 40 m deep, covered mostly by fluvial sediments. At the littoral, there is only one dune ridge which is almost continuous and only cut by the arroyo. The dune ridge was dated at two levels; at the bottom, just above Pleistocene fluvial sediments and at the top, giving dates of 3200 and 800 years respectively. These dates are interpreted as an evidence for the stability of the dune ridge. The sand from the beach, responsible for the coastline stability, is sourced by two processes: (1) the littoral drift bringing sand from the Pacific coast, which turns around San Lucas Cape and enters the bay, process that is continuous, with stronger events every 3 to 7 years (matching ENSO cycles) following seasonal periods of heavy cyclonic rains that favor important fluvial sediment discharges; and (2) direct input of fluvial sediments, discharged by the El Salto arroyo during catastrophic hurricane rains with returning periods of 50 years. The canyon head traps most of the sediment "excess" of the beach system. Winter waves erode the beach and generate a weak littoral transport to the south where sediments are trapped by the canyon head. Also, because the mouth of the El Salto arroyo is just in front of the canyon head, the debris flows during catastrophic rains are dumped on the canyon and a small portion remains to form a fan delta whose sediments are later removed by waves to feed the eroded beach in both direccions, as we observed during the path of Hurricane Juliette.

  4. The role of vigorous current systems in the Southeast Indian Ocean in redistributing deep-sea sediments

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, Adriana; Müller, Dietmar; Hogg, Andrew; Spence, Paul

    2017-04-01

    Understanding the transport of modern deep-sea sediment is critical for accurate models of climate-ocean history and the widespread use of the sedimentological record as a proxy for productivity where the connection between biogenic seafloor lithologies and sea-surface is tenuous. The Southern Ocean, where diatoms contribute the bulk of pelagic material to the seafloor forming an extensive belt of diatom ooze, is an exemplar. However, most of the key studies on large-scale sediment reworking in the Southern Ocean were conducted in the 1970s when relatively little was known about the oceanography of this region. At this time even our knowledge of the bathymetry and tectonic fabric, which underpin the distribution of deep-sea currents, were fairly general. The record of widespread regional disconformities in the abyssal plains of the Southern Ocean is well-established and indicates extensive erosion of deep-sea sediments throughout the Quaternary. Here we combine a high-resolution numerical model of bottom currents with sedimentological data to constrain the redistribution of sediment across the abyssal plains and adjacent mid-ocean ridges in the Southern Ocean. We use the global ocean-sea ice model (GFDL-MOM01) to simulate ocean circulation at a resolution that results in realistic velocities throughout the water column, and is ideal for estimating interaction between time-dependent bottom currents and ocean bathymetry. 230Th-normalized vertical sediment rain rates for 63 sites in the Southeast Indian Ocean, combined with satellite data-derived surface productivity, demonstrate that a wide belt of fast sedimentation rates (> 5.5 cm/kyr) along the Southeast Indian Ridge (SEIR) occurs in a region of low surface productivity bounded by two major disconformity fields associated with the Kerguelen Plateau to the east and the Macquarie Ridge to the west. Our ocean circulation model illustrates that the disconformity fields occur in regions of intense bottom current activity where current speeds reach 0.2 m/s and are favorable for generating intense nepheloid layers. These currents transport sediment towards and along the SEIR and through leaky fracture zones to regions where bottom currents speeds drop to < 0.03 m/s and fine particles settle out of suspension. We suggest that the anomalously high sedimentation rates along an 8,000 km-long segment of the SEIR represent a giant Pliocene-Holocene succession of contourite drifts. It is a major extension of the much smaller contourite east of Kerguelen and has accumulated since 3-5 Ma based on the age of the oldest crust underlying the deposit. These inferred contourite drifts provide exceptionally valuable drilling targets for high-resolution climatic investigations of the Southern Ocean. Understanding and quantifying the link between bottom current activity and sediment transport is critical for paleooceanographic and palaeoclimatic reconstructions and for understanding the history of current flow. Dutkiewicz, A., Müller, R.D., Hogg, A. McC., and Spence, P., 2016, Vigorous deep-sea currents cause global anomaly in sediment accumulation in the Southern Ocean, Geology, 44, 663-666, DOI: 10.1130/G38143.1

  5. Carbonate microfacies analysis of penecontemporaneous dolomites of the Carnian Travenanzes Formation (Southern Alps, Italy)

    NASA Astrophysics Data System (ADS)

    Niebergall, Simon Michael; Breda, Anna; Preto, Nereo; Habler, Gerlinde; Peckmann, Jörn; Meister, Patrick

    2016-04-01

    Abundant dolomite (MgCa(CO3)2) occurs in the Middle and Late Triassic carbonate record of the Tethys realm. Whereas dolomite formation is largely related to late diagenesis and/or hydrothermal activity, Preto et al. (2015) suggested a primary origin of dolomite beds and nodules intercalated in clay rich deposits of the Carnian Travenanzes Formation (Fm.; Dolomites, Venetian Alps) based on a transmission electron microscopy study. Thus, dolomites of the Travenanzes Fm. are supposed to have formed during or soon after deposition and its petrographic features may still be indicative of the geochemical conditions prevalent in the depositional setting. The Travenanzes Fm. records both carbonate and siliciclastic input, reflecting a transitional continental to shallow marine environment (Breda and Preto, 2011) with alternations of alluvial plains, sabkhas and/or ephemeral lakes. The goal of this study is to determine the microfacies of the dolomites of the Travenanzes Fm. and to discuss possible depositional environments and scenarios of penecontemporaneous dolomite formation. The samples were taken from the Dibona section described by Breda and Preto (2011). Optical microscopy documented three different types of dolomite: (1) Microcrystalline nodular dolomite shows abundant clay interlayers and fenestral pores filled with coelestine and barite. The homogenous microcrystalline dolomite was further investigated by electron backscatter diffraction (EBSD) mapping, revealing an anhedral to subhedral microstructure of grains ranging from 2 to 10 micrometers in diameter. Some dolomite grew as spherules within the clay matrix. (2) Dolomite pebbles show semi-rounded edges in a dolosparitic matrix. (3) Dolomite with mm- to cm-scale lamination shows regularly spaced undulation with the cuspate side directed upwards. The laminae are also commonly affected by brittle or plastic deformation. Based on the petrographic observations, the following conclusions can be drawn: (1) While the clay abundance reflects a high siliciclastic input in an alluvial plain to marginal marine setting, the nodular dolomite is consistent with growth under vadose conditions, where solutes are transported by capillary flow. (2) Reworking and synsedimentary deformation indicate a depositional environment with temporarily high water energy, either due to tidal currents or storm events. Nevertheless, the lack of fossils precludes common marine conditions. The presence of evaporite minerals, even though they may have formed as secondary phases, suggests hypersaline conditions during deposition. (3) Laminated dolomites agree with formation in a hypersaline coastal ephemeral lake or sabkha environment. The lamination has been interpreted as a result of layered microbial mats, but could be alternatively explained by periodically alternating sediment input. Diverse facies distribution reflects alternating ephermal lake/peritidal and subaerial vadose conditions in a transitional marine to terrestrial environment. Accordingly, the mode of dolomite formation is expected to have varied along with the environmental conditions. Breda, A., Preto, N. (2011) Anatomy of an Upper Triassic continental to marginal-marine system: the mixed siliciclastic-carbonate Travenanzes Formation (Dolomites, Northern Italy). Sedimentology 58, 1613-1647. Preto et al. (2015) Primary dolomite in the Late Triassic Travenanzes Formation Dolomites, Northern Italy: Facies control and possible bacterial influence. Sedimentology 62, 697-716.

  6. Student Involvement with the Regionally Important Geomorphological Site (RIGS) Scheme: An Opportunity to Learn Geomorphology and Gain Transferable Skills.

    ERIC Educational Resources Information Center

    McEwen, Lindsey

    1996-01-01

    Outlines student involvement with a conservation project that aims to develop a Regionally Important Geological/Geomorphological Site network (RIGS) at a county level in the United Kingdom. Emphasis is placed on identifying, describing, evaluating, and documenting land forms of educational, research, historical, and/or aesthetic value. (MJP)

  7. Advances in global mountain geomorphology

    NASA Astrophysics Data System (ADS)

    Slaymaker, Olav; Embleton-Hamann, Christine

    2018-05-01

    Three themes in global mountain geomorphology have been defined and reinforced over the past decade: (a) new ways of measuring, sensing, and analyzing mountain morphology; (b) a new emphasis on disconnectivity in mountain geomorphology; and (c) the emergence of concerns about the increasing influence of anthropogenic disturbance of the mountain geomorphic environment, especially in intertropical mountains where population densities are higher than in any other mountain region. Anthropogenically induced hydroclimate change increases geomorphic hazards and risks but also provides new opportunities for mountain landscape enhancement. Each theme is considered with respect to the distinctiveness of mountain geomorphology and in relation to important advances in research over the past decade. The traditional reliance on the high energy condition to define mountain geomorphology seems less important than the presence of unique mountain landforms and landscapes and the distinctive ways in which human activity and anthropogenically induced hydroclimate change are transforming mountain landscapes.

  8. Mapping Mars' northern plains: origins, evolution and response to climate change - a new overview of recent ice-related landforms in Acidalia Planitia.

    NASA Astrophysics Data System (ADS)

    Hauber, Ernst; Orgel, Csilla; van Gasselt, Stephan; Reiss, Dennis; Johnsson, Andreas; Ramsdale, Jason; Balme, Matthew; Conway, Susan; Costard, Francois; Gallagher, Colman; Kereszturi, Akos; Platz, Thomas; Séjourné, Antoine; Skinner, James; Swirad, Zuzanna; Łosiak, Anna

    2015-04-01

    An International Space Science Institute (ISSI) team project has been convened to study the northern plains of Mars. It uses a geomorphological grid-mapping approach to compare ice-related landforms across N-S traverses in the three main basins of the northern plains: Acidalia, Arcadia, and Utopia Planitiae. The main science questions are (i) the distribution of ice-related landforms in the northern plains and their relation to distinct latitude bands or different geological units, (ii) the relationship between the latitude dependent mantle (LDM) and landforms indicative of ground ice, and (iii) the distributions and associations of recent landforms indicative of thaw of ice or snow. We mapped individual landforms across the Acidalia Planitia that may have been formed in association with ice or water in an attempt to determine their extent and identify possible spatial relationships and genetic links between them. Our list includes mantling deposits, small-scale polygons, gullies, viscous flow features, thumbprint terrain (TPT), giant polygons and large pitted mounds (LPM). Our resulting maps show the distribution of specific landforms (no data - absence - presence - dominance) in grid cells with a size of ~20 × 20 km, but allows also for some ambiguity (possible). Preliminary results show that the mantling deposits are ubiquitous and occur basically everywhere between ~43°N and almost the margin of the north polar cap. As their surface may appear smooth if intact, their texture can be difficult to detect at CTX scale. Gullies were observed within a limited latitude range between ~32°N and ~54°N. They predominantly occur in Acidalia and Acidalia Colles, although gullies were found in several impact craters. Small-scale polygons occur between ~60°N to ~70°N in agreement with previous studies. They are predominantly oriented in orthogonal networks in crater interiors, depressions and on plains. Viscous flow features are present only in higher-relief areas of the Acidalia Mensae and Colles. Their morphology is not well pronounced, partially subdued and covered, and most features are restricted to debris aprons distributed circumferentially around small knobs. TPT appears north of about 30°N in the most distal parts of the Chryse outflow channels and shows a transition zone with LPM at around 36°N and it is not observed north of ~39N°. The giant polygons with the LPM have been considered analogous to fluid expulsion features in terrestrial sedimentary basins. They characterize the study area from to 35 N° until 61 N° and completely disappear in the Acidalia Colles region. Grid mapping proved to be an efficient way to map small-scale landforms over wide areas. The distribution of possible ice- and water-related features in Acidalia is clearly latitude- and topography-dependent

  9. Recent advances in research on the aeolian geomorphology of China's Kumtagh Sand Sea

    NASA Astrophysics Data System (ADS)

    Dong, Z.; Lv, P.

    2014-02-01

    The Kumtagh Sand Sea in the hyper-arid region of northwestern China remained largely unexplored until the last decade. It deserves study due to its significance in understanding the evolution of the arid environments in northwestern China, and even central Asia. Aeolian geomorphology in the sand sea has received unprecedented study in the last decade. Encouraging advances have been made in types of aeolian landforms, geological outlines, wind systems, the formation of aeolian landforms, several unique aeolian landforms, aeolian geomorphic regionalization, aeolian geomorphological heritages and tourism development, and aeolian sand hazards and their control. These advances expand our knowledge of aeolian geomorphology.

  10. Urbanization reduces and homogenizes trait diversity in stream macroinvertebrate communities.

    PubMed

    Barnum, Thomas R; Weller, Donald E; Williams, Meghan

    2017-12-01

    More than one-half of the world's population lives in urban areas, so quantifying the effects of urbanization on ecological communities is important for understanding whether anthropogenic stressors homogenize communities across environmental and climatic gradients. We examined the relationship of impervious surface coverage (a marker of urbanization) and the structure of stream macroinvertebrate communities across the state of Maryland and within each of Maryland's three ecoregions: Coastal Plain, Piedmont, and Appalachian, which differ in stream geomorphology and community composition. We considered three levels of trait organization: individual traits, unique combinations of traits, and community metrics (functional richness, functional evenness, and functional divergence) and three levels of impervious surface coverage (low [<2.5%], medium [2.5% to 10%], and high [>10%]). The prevalence of an individual trait differed very little between low impervious surface and high impervious surface sites. The arrangement of trait combinations in community trait space for each ecoregion differed when impervious surface coverage was low, but the arrangement became more similar among ecoregions as impervious surface coverage increased. Furthermore, trait combinations that occurred only at low or medium impervious surface coverage were clustered in a subset of the community trait space, indicating that impervious surface affected the presence of only a subset of trait combinations. Functional richness declined with increasing impervious surface, providing evidence for environmental filtering. Community metrics that include abundance were also sensitive to increasing impervious surface coverage: functional divergence decreased while functional evenness increased. These changes demonstrate that increasing impervious surface coverage homogenizes the trait diversity of macroinvertebrate communities in streams, despite differences in initial community composition and stream geomorphology among ecoregions. Community metrics were also more sensitive to changes in the abundance rather than the gain or loss of trait combinations, showing the potential for trait-based approaches to serve as early warning indicators of environmental stress for monitoring and biological assessment programs. © 2017 by the Ecological Society of America.

  11. Genetic and palaeo-climatic evidence for widespread persistence of the coastal tree species Eucalyptus gomphocephala (Myrtaceae) during the Last Glacial Maximum.

    PubMed

    Nevill, Paul G; Bradbury, Donna; Williams, Anna; Tomlinson, Sean; Krauss, Siegfried L

    2014-01-01

    Few phylogeographic studies have been undertaken of species confined to narrow, linear coastal systems where past sea level and geomorphological changes may have had a profound effect on species population sizes and distributions. In this study, a phylogeographic analysis was conducted of Eucalyptus gomphocephala (tuart), a tree species restricted to a 400 × 10 km band of coastal sand-plain in south west Australia. Here, there is little known about the response of coastal vegetation to glacial/interglacial climate change, and a test was made as to whether this species was likely to have persisted widely through the Last Glacial Maximum (LGM), or conforms to a post-LGM dispersal model of recovery from few refugia. The genetic structure over the entire range of tuart was assessed using seven nuclear (21 populations; n = 595) and four chloroplast (24 populations; n = 238) microsatellite markers designed for eucalypt species. Correlative palaeodistribution modelling was also conducted based on five climatic variables, within two LGM models. The chloroplast markers generated six haplotypes, which were strongly geographically structured (GST = 0·86 and RST = 0·75). Nuclear microsatellite diversity was high (overall mean HE 0·75) and uniformly distributed (FST = 0·05), with a strong pattern of isolation by distance (r(2) = 0·362, P = 0·001). Distribution models of E. gomphocephala during the LGM showed a wide distribution that extended at least 30 km westward from the current distribution to the palaeo-coastline. The chloroplast and nuclear data suggest wide persistence of E. gomphocephala during the LGM. Palaeodistribution modelling supports the conclusions drawn from genetic data and indicates a widespread westward shift of E. gomphocephala onto the exposed continental shelf during the LGM. This study highlights the importance of the inclusion of complementary, non-genetic data (information on geomorphology and palaeoclimate) to interpret phylogeographic patterns.

  12. Genetic and palaeo-climatic evidence for widespread persistence of the coastal tree species Eucalyptus gomphocephala (Myrtaceae) during the Last Glacial Maximum

    PubMed Central

    Nevill, Paul G.; Bradbury, Donna; Williams, Anna; Tomlinson, Sean; Krauss, Siegfried L.

    2014-01-01

    Background and Aims Few phylogeographic studies have been undertaken of species confined to narrow, linear coastal systems where past sea level and geomorphological changes may have had a profound effect on species population sizes and distributions. In this study, a phylogeographic analysis was conducted of Eucalyptus gomphocephala (tuart), a tree species restricted to a 400 × 10 km band of coastal sand-plain in south west Australia. Here, there is little known about the response of coastal vegetation to glacial/interglacial climate change, and a test was made as to whether this species was likely to have persisted widely through the Last Glacial Maximum (LGM), or conforms to a post-LGM dispersal model of recovery from few refugia. Methods The genetic structure over the entire range of tuart was assessed using seven nuclear (21 populations; n = 595) and four chloroplast (24 populations; n = 238) microsatellite markers designed for eucalypt species. Correlative palaeodistribution modelling was also conducted based on five climatic variables, within two LGM models. Key Results The chloroplast markers generated six haplotypes, which were strongly geographically structured (GST = 0·86 and RST = 0·75). Nuclear microsatellite diversity was high (overall mean HE 0·75) and uniformly distributed (FST = 0·05), with a strong pattern of isolation by distance (r2 = 0·362, P = 0·001). Distribution models of E. gomphocephala during the LGM showed a wide distribution that extended at least 30 km westward from the current distribution to the palaeo-coastline. Conclusions The chloroplast and nuclear data suggest wide persistence of E. gomphocephala during the LGM. Palaeodistribution modelling supports the conclusions drawn from genetic data and indicates a widespread westward shift of E. gomphocephala onto the exposed continental shelf during the LGM. This study highlights the importance of the inclusion of complementary, non-genetic data (information on geomorphology and palaeoclimate) to interpret phylogeographic patterns. PMID:24284819

  13. A Mid-Latitude Geomorphologic Map of Titan

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly M. C.; Malaska, Michael; Schoenfeld, Ashley; Solomonidou, Anezina; Birch, Samuel; Hayes, Alexander; Williams, David A.; Janssen, Michael A.; Le Gall, Alice; Turtle, Elizabeth P.; Radebaugh, Jani; Cassini RADAR Team

    2016-10-01

    We investigated the geologic history of Titan through mapping and analyzing the distribution of observed geomorphic features using a combination of Cassini data collected by RADAR, VIMS, and ISS. Determining the spatial and superposition relationships between geomorphologic units on Titan leads to an understanding of the likely time evolution of the landscape and gives insight into the process interactions that drive its evolution. We have used all available datasets to extend the mapping initially done by Lopes et al. [1]. We now have the mid-latitudes (60N to 60S) of Titan mapped at 1:800,000 scale in all areas covered by Synthetic Aperture Radar (SAR). A map of the polar regions has been done by Birch et al. [2]. For the mid-latitudes, we have defined five broad classes of terrains following Malaska et al. [3], largely based on prior mapping [1]. These broad classes are: craters, hummocky/mountainous, labyrinth, plains, and dunes. We have found that the hummocky/mountainous terrains are the oldest units on the surface and appear radiometrically cold, indicating icy materials [5]. Dunes are the youngest units and appear radiometrically warm, indicating organic sediments. VIMS analysis shows that compositional variations can also exist within the same class of unit [6, 7]. Future work aims to combine the polar maps of Birch et al. [2] with the mid-latitude maps presented here and harmonize the units at the 60 degrees boundaries. We also plan to extend the map in regions not covered by SAR to produce a 1:1,500,000 scale map compatible with USGS standards.References: [1] Lopes, R.M.C., et al.: Icarus, 205, 540-588, 2010; [2] Birch et al., submitted to Icarus. [3] Malaska, M., et al.: Icarus, 270, 130-161, 2016; [4] Barnes, J., et al.: Pl. Scie., 2:1, 2013; [5] Janssen et al., 2016 Icarus 270, 443-459, 2016. [6] Solomonidou, A., et al. : DPS abstract, 2016. [7] Lopes, R.M.C., et al, Icarus, 270, 162-182, 2016.

  14. Geomorphology and American dams: The scientific, social, and economic context

    NASA Astrophysics Data System (ADS)

    Graf, William L.

    2005-10-01

    American geomorphologic research related to dams is embedded in a complicated context of science, policy, economics, and culture. Research into the downstream effects of large dams has progressed to the point of theory-building, but generalization and theory-building are from this research because (1) it is highly focused on a few locations, (2) it concerns mostly very large dams rather than a representative sample of sizes, (3) the available record of effects is too short to inform us on long-term changes, (4) the reversibility of changes imposed by dam installation and operation is unknown, and (5) coordinated funding for the needed research is scarce. In the scientific context, present research is embedded in a history of geomorphology in government service, with indistinct boundaries between "basic and applied" research. The federal policy that most strongly influences present geomorphological investigations connected with dams is related to habitat for endangered species, because the biological aspects of ecosystems are directly dependent on the substrate formed by the sediments and landforms that are influenced by dams. The economic context for research includes large amounts of public funds for river restoration, along with substantial private investments in dams; and geomorphology is central to these expensive issues. The cultural context for research is highly contentious and dominated by advocacy procedures that include intense scrutiny of any geomorphologic research related to dams. Advocates are likely to use the products of geomorphological research to make cases for their own positions.

  15. Smart "geomorphological" map browsing - a tale about geomorphological maps and the internet

    NASA Astrophysics Data System (ADS)

    Geilhausen, M.; Otto, J.-C.

    2012-04-01

    With the digital production of geomorphological maps, the dissemination of research outputs now extends beyond simple paper products. Internet technologies can contribute to both, the dissemination of geomorphological maps and access to geomorphologic data and help to make geomorphological knowledge available to a greater public. Indeed, many national geological surveys employ end-to-end digital workflows from data capture in the field to final map production and dissemination. This paper deals with the potential of web mapping applications and interactive, portable georeferenced PDF maps for the distribution of geomorphological information. Web mapping applications such as Google Maps have become very popular and widespread and increased the interest and access to mapping. They link the Internet with GIS technology and are a common way of presenting dynamic maps online. The GIS processing is performed online and maps are visualised in interactive web viewers characterised by different capabilities such as zooming, panning or adding further thematic layers, with the map refreshed after each task. Depending on the system architecture and the components used, advanced symbology, map overlays from different applications and sources and their integration into a Desktop GIS are possible. This interoperability is achieved through the use of international open standards that include mechanisms for the integration and visualisation of information from multiple sources. The portable document format (PDF) is commonly used for printing and is a standard format that can be processed by many graphic software and printers without loss of information. A GeoPDF enables the sharing of geospatial maps and data in PDF documents. Multiple, independent map frames with individual spatial reference systems are possible within a GeoPDF, for example, for map overlays or insets. Geospatial functionality of a GeoPDF includes scalable map display, layer visibility control, access to attribute data, coordinate queries and spatial measurements. The full functionality of GeoPDFs requires free and user-friendly plug-ins for PDF readers and GIS software. A GeoPDF enables fundamental GIS functionality turning the formerly static PDF map into an interactive, portable georeferenced PDF map. GeoPDFs are easy to create and provide an interesting and valuable way to disseminate geomorphological maps. Our motivation to engage with the online distribution of geomorphological maps originates in the increasing number of web mapping applications available today indicating that the Internet has become a medium for displaying geographical information in rich forms and user-friendly interfaces. So, why not use the Internet to distribute geomorphological maps and enhance their practical application? Web mapping and dynamic PDF maps can play a key role in the movement towards a global dissemination of geomorphological information. This will be exemplified by live demonstrations of i.) existing geomorphological WebGIS applications, ii.) data merging from various sources using web map services, and iii.) free to download GeoPDF maps during the presentations.

  16. Interactions between geomorphology and vegetation in the Western Swiss Alps: first investigations

    NASA Astrophysics Data System (ADS)

    Giaccone, Elisa; Mariéthoz, Grégoire; Lambiel, Christophe

    2017-04-01

    The influence of earth surface processes can modify the microhabitat conditions and the species richness, composition and distribution patterns of plant communities. It is therefore important to understand how geomorphology affects the distribution of plant species to predict future vegetation evolution in a context of climate change. To better analyse the influence of geomorphology on vegetation growth in the alpine periglacial belt, we are studying various geomorphological processes (e.g. cryoturbation and solifluction), permafrost, nivation and ground surface characteristics at three focus sites of the Vaud Alps (Western Swiss Alps). The sites are located at an altitude range comprised between 2000 and 2600 m a.s.l. The geomorphology is characterized mainly by the presence of small glaciers, large moraine deposits, rock glaciers and debris slopes. Monitoring of the ground surface temperatures, permafrost mapping, vegetation survey and drone flights have been carried out to investigate in detail the environmental variables. Initial results show a heterogeneous vegetation cover depending on time since deglaciation, debris size, ground stability and soil age. Debris pioneer species are present on moraines, rock glaciers and debris slope; grassland are developed in zones not affected by LIA glacier advances or other interfering processes such as avalanches. The high-resolution images obtained from drone flights (5 cm/pixel) allow a detailed study of the granulometry. In order to use such geomorphological information on a wider area of interest, the local data acquired on focus sites have to be spatialized to a regional scale. This is accomplished by developing an approach based on remote sensing and multiple-point geostatistics that performs a semi-automated geomorphological mapping (SAGM). The SAGM is based on a training image composed by a geomorphological map yet existent, an orthophoto, the slope, the aspect, the curvature, the granulometry classification and the NDVI. The SAGM will be first elaborated for the focus sites and will then be extended to the entire Vaud Alps above 2000 m a.s.l. This information will be used to better understand the geomorphology-vegetation interactions and their spatialization.

  17. Application of field geophysics in geomorphology: Advances and limitations exemplified by case studies

    NASA Astrophysics Data System (ADS)

    Schrott, Lothar; Sass, Oliver

    2008-01-01

    During the last decade, the use of geophysical techniques has become popular in many geomorphological studies. However, the correct handling of geophysical instruments and the subsequent processing of the data they yield are difficult tasks. Furthermore, the description and interpretation of geomorphological settings to which they apply can significantly influence the data gathering and subsequent modelling procedure ( e.g. achieving a maximum depth of 30 m requires a certain profile length and geophone spacing or a particular frequency of antenna). For more than three decades geophysical techniques have been successfully applied, for example, in permafrost studies. However, in many cases complex or more heterogeneous subsurface structures could not be adequately interpreted due to limited computer facilities and time consuming calculations. As a result of recent technical improvements, geophysical techniques have been applied to a wider spectrum of geomorphological and geological settings. This paper aims to present some examples of geomorphological studies that demonstrate the powerful integration of geophysical techniques and highlight some of the limitations of these techniques. A focus has been given to the three most frequently used techniques in geomorphology to date, namely ground-penetrating radar, seismic refraction and DC resistivity. Promising applications are reported for a broad range of landforms and environments, such as talus slopes, block fields, landslides, complex valley fill deposits, karst and loess covered landforms. A qualitative assessment highlights suitable landforms and environments. The techniques can help to answer yet unsolved questions in geomorphological research regarding for example sediment thickness and internal structures. However, based on case studies it can be shown that the use of a single geophysical technique or a single interpretation tool is not recommended for many geomorphological surface and subsurface conditions as this may lead to significant errors in interpretation. Because of changing physical properties of the subsurface material ( e.g. sediment, water content) in many cases only a combination of two or sometimes even three geophysical methods gives sufficient insight to avoid serious misinterpretation. A "good practice guide" has been framed that provides recommendations to enable the successful application of three important geophysical methods in geomorphology and to help users avoid making serious mistakes.

  18. The geomorphology and ground penetrating radar survey results of the Múlajökull and Þjórsárjökull surge-type glaciers, central Iceland

    NASA Astrophysics Data System (ADS)

    Karušs, Jānis; Lamsters, Kristaps; Běrziņš, Dāvids

    2015-04-01

    Múlajökull and Þjórsárjökull are surge-type outlet glaciers of the Hofsjökull ice cap, central Iceland (Björnsson et al., 2003). The forefield of Múlajökull comprises the active drumlin field of more than 110 drumlins (Johnson et al., 2010; Jónsson et al., 2014) and therefore is an excellent area for studies of glacial geomorphology, subglacial topography and ice structures. This work describes preliminary results obtained during the expedition to Múlajökull and Þjórsárjökull glaciers in August, 2014. In the research ground penetrating radar (GPR) Zond 12-e was used. GPR measurements were performed on both outlet glaciers using 38 MHz and 75 MHz antenna systems. During data acquisition 2000 ns time window was used, while length of profiles was determined using GPS device Garmin GPS-76. In total approximately 3 km of GPR profiles were recorded. GPR signals propagation speed in glacier ice was determined using reflections from internal meltwater channels of glacier. In obtained radarogramms it was possible to trace reflections from the glacier bed till depth of approximately 144 m as well as numerous prominent reflections from internal meltwater channels of glacier. In one of the obtained radarogramms possible subglacial channel below Múlajökull glacier was identified. Also feature of subglacial topography that resembles drumlin was identified. The area of abundant infiltrated water was distinguished close to the ice margin in the radarogramm obtained on Þjórsárjökull suggesting successive supraglacial meltwater infiltration towards glacier margin. During the field work numerous radial crevasses, supraglacial channels and moulins were observed in the marginal zone of Múlajökull. The forefield of Múlajökull mainly consist of subglacial landforms (drumlins, flutes and crevasse-fill ridges), end moraines and sandur plains. Flutes and crevasse-fill ridges were found superimposed on drumlins in places. Till macrofabric was measured close to the surface of two drumlins and at one section on the slope of drumlin. The fabrics possess strong orientations parallel to the axis of drumlins, as well as glacial striations on the boulders exposed at the drumlin surface. These striations indicate glacier sliding over its bed during the termination of the last surge. References Björnsson, H., Pálsson, F., Sigurđsson, O., Flowers, G.E. 2003. Surges of glaciers in Iceland. Annals of Glaciology, 36, 82-90. Johnson, M.D., Schomacker, A., Benediktsson, Í.Ö., Geiger, A.J., Ferguson, A. 2010. Active drumlin field revealed at the margin of Múlajökull, Iceland: a surge-type glacier. Geology, 38, 943-946. Jónsson, S.A., Schomacker, A., Benediktsson, I.Ó., Ingólfsson, Ó., Johnson, M.D. 2014. The drumlin field and the geomorphology of the Múlajökull surge-type glacier, central Iceland. Geomorphology, 207, 213-220.

  19. Mesoscale barrier estuary behaviour in response to sea-level rise, storms and sediment supply.

    NASA Astrophysics Data System (ADS)

    Hamilton, Christine; Kirby, Jason; Plater, Andrew; Lane, Timothy

    2017-04-01

    Future vulnerability and resilience of coastal landscapes, and their associated communities, infrastructure and nature conservation interests, is of increasing concern due to the combined effects of climate change and sea-level rise. The Suffolk coast, UK, characterised by gravel barrier beaches and a spit feature of international geomorphological interest, has changed dramatically. However, existing Holocene research in this respect is limited. Sediments preserved within the enclosed valleys and back-barrier wetlands of Suffolk provide an opportunity to improve understanding of the complex mesoscale (years-decades-centuries) behaviour of coastlines and their geomorphological response to changes in natural forcing. This research aims to reconstruct Holocene changes in coastline behaviour to develop reconstructions of coastal evolution relating to changes in relative sea level, sediment supply and storm incidence. Litho- and bio-stratigraphic analysis (sedimentology, particle size, and diatom analysis) has been undertaken on three marsh and wetland sites in a 5 km section between Walberswick and Dunwich. Though intra-site sediment variability is high, a consistent pattern of interbedded intertidal and freshwater units separated by transitional marsh deposits is seen at all sites. Diatom analysis from two sites (Westwood Marsh and Oldtown Marsh) indicates increased marine and brackish conditions across the organic-minerogenic transitions. The diatom assemblage from Great Dingle Hill, a more seaward site, is dominated by brackish species, with an increase in marine conditions across the main organic-minerogenic stratigraphic transition. Freshwater and salt tolerant species are minimal in this assemblage, indicating a constant saltwater input. The onset of peat deposition has been dated to 6950-6790 cal. BP at the base of the Westwood Marsh sequence. These results contrast with existing research from the Blyth estuary (5 km north) where peat deposition was dated to 7714-7479 cal. BP. Submitted radiocarbon analysis will provide further chronological constraint for the timing of the major coastal behavioural changes identified from the analysis. Combined, these results indicate that this section of the Suffolk coast has been subject to periodic opening and closing during the Holocene. Though currently unresolved, longshore sediment supply, high magnitude-low frequency storm events, sea-level change, and the position of offshore banks are likely causal mechanisms for these changes. These results will improve understanding of the long term (Holocene) natural signal of coastal change and are significant given that the regional Shoreline Management Plan has recommended managed realignment for this section of the Suffolk coast.

  20. Holocene climatic change, aeolian sedimentation and the nomadic Anthropocene in Eastern Tibet

    NASA Astrophysics Data System (ADS)

    Lehmkuhl, F.; Schlütz, F.

    2009-04-01

    Geomorphological and palynological studies from the Nianbaoyeze Shan in Eastern Tibet provides detailed information on the Holocene landscape and vegetation development of a mountain system located on the westernmost boundary of the modern forest belt. In addition, detailed sedimentological work was done on a section south of the Anyemachin Shan further west. Our study provides detailed information on the late glacial landscape and vegetation development of eastern Tibet. Based on a suite of geomorphological and palynological proxy data from the Nianbaoyeze Shan on the eastern margin of the Tibetan Plateau (33°N/101°E, 3300-4500 m asl) we reconstruct recent landscape dynamics as a function of climate change and the longevity of human influence. Study results constrain several major phases of aeolian sedimentation between 50 - 15 ka and various glacier advances during the Late Pleistocene, the Holocene and the Little Ice Age (LIA). Increased aeolian deposition was primarily associated with periods of more extensive glacial ice extent. Fluvial and alluvial sediment pulses also document an increase of erosion starting at about 4000 cal yr B.P. coinciding with cooling (Neoglacial) and a growing anthropo-zoogenic influence. Evidence for periglacial mass movements indicate that the late Holocene cooling started at around 2000 cal yr B.P. demonstrating increased surface activity under the combined effects of human influence and climate deterioration (LIA). In a section south of the Anyemachin about 150 km further west Holocene silt and paleosols development match to these results but showing higher Holocene aeolian activity. The Holocene vegetation history started with an open landscape dominated by pioneer shrubs along braided rivers (<10,600 - 9800 cal yr B.P.), followed by the spreading of conifers (Picea, Juniperus, Abies) and Betula-trees accompanied by a successive closing of the vegetation cover by Poaceae, Cyperaceae and herbs (9800 - 8300 cal yr B.P.). First signs of nomadic influences appear as early as 7200 cal yr B.P., when temperatures were up to 2°C warmer than today. Forest remained very patchy with strong local contrasts. During the following cooling phase (5900 - 2750 yr cal B.P.) the natural Kobresia-mats were transformed by nomadic grazing to Bistorta-rich Kobresia pygmaea-pastures. Modern nomadic migration routes were established at least 2200 years ago. Overgrazing and trampling led to the shrinking of Bistorta and the spreading of annual weeds. Our data point to an early start of the nomadic Anthropocene at about 6000 years ago. Against this background of a very long grazing history, modern Tibet must be seen as a cultural landscape.

  1. Rapid ice-rock avalanches versus gradual glacial processes? Implications for the natural hazard potential in the Karakoram Mountains (Pakistan)

    NASA Astrophysics Data System (ADS)

    Iturrizaga, Lasafam

    2016-04-01

    There is a growing concern about extreme mass movements from combined ice-rock avalanches in glaciated environments areas in the light of increasing settlement activities in mountains and their forelands. Recent devastating events, such as those from Huascaran (Peru) in 1970 or Kolka (Caucasus) in 2002, have been an eye-opener in terms of the large run-out-distances and their hazard potential. At the same time there is a variety of topographic settings and distinct triggers of ice and rock failures, which leads in turn to a broad spectrum of multi-phase processes, such as the possible propagation of rock-ice-masses onto glacial surfaces with subsequent debris flows. These events are often not directly observable, and a sound interpretation of the sedimentary record is needed. However, the origin and process dynamics of giant debris accumulations in different mountain regions of the world is discussed increasingly controversially. In the last decade a lot of debris accumulations, which were classified formerly as moraines, were reinterpreted as products of mass movements. In this context, the study presented here, focuses on a case example from the upper Chapursan Valley at the Afghan-Pakistan border (Karakoram Range, Pakistan). The Chapursan Valley floor and the adjacent sediment cones are covered with an outstanding hummocky debris landscape over a length of about 10 km and a width of up to 1 km with individual hummocks reaching about 10 m in height. These landforms overlap with the zone of permanent settlement. According to local legends and reports of early travelers in this region, one of the largest settlement concentrations formerly occurred in the upper Chapursan Valley and was destroyed by a natural disaster. Geomorphological field investigations, sedimentological studies, a comparison of satellite images, an analysis of historical data and interviews with the local inhabitants were carried out to unravel the origin of the hummocky terrain. The results show that complex geomorphological processes, consisting of a glacier advance and followed by glacier lake outbursts and ice avalanches, contributed to the formation of the hummocky debris landforms. The Kit-ke-Jerav and Yishkuk Glaciers in the upper Chapursan Valley seem to have experienced extraordinary fluctuations in historical and recent times. The new findings on past processes forming large-scaled debris accumulations have wider implications for the recent hazard potential of settlements located in glaciated high mountain regions, especially in seismic active regions.

  2. Early irrigation systems in southeastern Arizona: the ostracode perspective

    NASA Astrophysics Data System (ADS)

    Palacios-Fest, Manuel R.; Mabry, Jonathan B.; Nials, Fred; Holmlund, James P.; Miksa, Elizabeth; Davis, Owen K.

    2001-10-01

    For the first time, the Early Agricultural Period (1200 BC-150 AD) canal irrigation in the Santa Cruz River Valley, southeastern Arizona, is documented through ostracode paleoecology. Interpretations based on ostracode paleoecology and taphonomy are supported by anthropological, sedimentological, geomorphological, and palynological information, and were used to determine the environmental history of the northern Tucson Basin during the time span represented by the sequence of canals at Las Capas (site AZ AA:12:753 ASM). We also attempt to elucidate based on archaeological artifacts if the Hohokam or a previous civilization built the canals. Between 3000 and 2400 radiocarbon years BP, at least three episodes of canal operation are defined by ostracode assemblages and pollen records. Modern (mid-late 20th century) canals supported no ostracodes, probably because of temporally brief canal operation from local wells. Three stages of water management are well defined during prehistoric canal operation. Ostracode faunal associations indicate that prehistoric peoples first operated their irrigation systems in a simple, 'opportunistic' mode (diversion of ephemeral flows following storms), and later in a complex, 'functional' mode (carefully timed diversions of perennial flows). The geomorphological reconstruction indicates that these canals had a minimum length of 1.1 km, and were possibly twice as long. The hydraulic reconstruction of these canals suggests that they had similar gradients (0.05-0.1%) to later prehistoric canals in the same valley. Discharges were also respectable. When flowing at bank-full, the largest canal provided an acre-foot of water in about 2.3 h; when flowing half-full (probably a more realistic assumption), it produced an acre-foot of water in about 8.6 h. Palynological records of the oldest canals (here identified as Features 3 and 4; 3000-2500 years BP) indicate they were used temporarily, since riparian vegetation did not grow consistently in the area. The presence of maize (Zea sp.) pollen in the canals confirms agricultural use of the canal water. However, a low percentage of maize and weed pollen suggests limited agricultural activity in this location, consistent with the lithostratigraphy, granulometry, and ostracode paleoecology. Agricultural fields were probably located downstream of this site. Ostracode assemblages show patterns consistent with the opportunistic or functional water control method, hence proving their value as indicators of human activity and environmental change. The transition from opportunistic to functional modes of canal operation indicates the increasing complexity of the social structure in the Santa Cruz Valley during the San Pedro Phase (1200-800 BC) of the Early Agricultural Period.

  3. Hybrid geomorphological maps as the basis for assessing geoconservation potential in Lech, Vorarlberg (Austria)

    NASA Astrophysics Data System (ADS)

    Seijmonsbergen, Harry; de Jong, Mat; Anders, Niels; de Graaff, Leo; Cammeraat, Erik

    2013-04-01

    Geoconservation potential is, in our approach, closely linked to the spatial distribution of geomorphological sites and thus, geomorphological inventories. Detailed geomorphological maps are translated, using a standardized workflow, into polygonal maps showing the potential geoconservation value of landforms. A new development is to semi-automatically extract in a GIS geomorphological information from high resolution topographical data, such as LiDAR, and combine this with conventional data types (e.g. airphotos, geological maps) into geomorphological maps. Such hybrid digital geomorphological maps are also easily translated into digital information layers which show the geoconservation potential in an area. We present a protocol for digital geomorphological mapping illustrated with an example for the municipality of Lech in Vorarlberg (Austria). The protocol consists of 5 steps: 1. data preparation, 2. generating training and validation samples, 3. parameterization, 4. feature extraction, and 5. assessing classification accuracy. The resulting semi-automated digital geomorphological map is then further validated, in two ways. Firstly, the map is manually checked with the help of a series of digital datasets (e.g. airphotos) in a digital 3D environment, such as ArcScene. The second validation is field visit, which preferably occurs in parallel to the digital evaluation, so that updates are quickly achieved. The final digital and coded geomorphological information layer is converted into a potential geoconservation map by weighting and ranking the landforms based on four criteria: scientific relevance, frequency of occurrence, disturbance, and environmental vulnerability. The criteria with predefined scores for the various landform types are stored in a separate GIS attribute table, which is joined to the attribute table of the hybrid geomorphological information layer in an automated procedure. The results of the assessment can be displayed as the potential geoconservation map or as GeoPDF in a separate information layer. The Lech example highlights the problems ski resorts in a fragile high-alpine mountain environment are facing. The ongoing development poses a challenge to the communities. Which place do the high-ranking potential geoconservation sites get in the landscape planning and management? Must they be sacrificed to the economic benefits of winter tourism or, conversely, can their value be exploited in summer tourism - or is their intrinsic value enough to justify protection? Our method is transparent, takes into account the total landscape, and allows for rapid updating of the geodatabase. Evaluating the change in geoconservation potential over time, as a consequence of expansion of infrastructure or change in intensity of natural processes, is possible. In addition, model scenarios can be run to assess the impact of man-induced change on the potential geoconservation value of landforms.

  4. Vegetation dynamics during the Last Interglacial-Glacial cycle in the Arno coastal plain (Tuscany, western Italy): location of a new tree refuge

    NASA Astrophysics Data System (ADS)

    Lucchi, M. Ricci

    2008-12-01

    Pollen analysis of the pre-Last Glacial Maximum succession of a 105 m-long continuous core from Tirrenia (Tuscany) provides evidence for the existence of an area of relatively high ecological stability where the effects of climate change were mitigated. The chronological framework of the vegetation record, spanning the Last Interglacial-Glacial cycle, was established by (i) AMS 14C dating, (ii) correlation with well-dated pollen sequences, and (iii) local stratigraphical constraints. A high lithological and sedimentological variability, with facies associations changing from fluvial to alluvial and coastal plain, enhances the palaeoenvironmental control on pollen distribution, thus helping to discriminate the impact of local factors on vegetation history. The most remarkable evidence, however, is represented by the continuous record of temperate trees throughout the whole glacial period, which provides useful indications on the location and nature of cold stage refugia. Most of the vegetation changes recorded in the core can be compared to the vegetation history of the Last Interglacial-Glacial cycle from southern Europe as a whole. In addition, local geographic and environmental features account for a more complex and varied floristic composition. Only the last phase of the Penultimate Glacial (MIS6), which was characterized by the diffusion of an arid steppe tundra, is recorded at the base of the core. The subsequent Last Interglacial (MIS5e) interval shows a poor and scattered pollen content due to the instability of the sedimentary environment. Nevertheless, it provides evidence of both global and local controls on vegetation dynamics, as indicated by the initial expansion of thermophilous forests and the remarkably late diffusion of conifers ( Pinus-Abies-Picea forests), respectively. Similarly, the transition to the Last Glacial (MIS5b and 5a in the core) is characterized by a reduced vegetation response to the typical stadial/interstadial climate variability. This is because the diffusion of a characteristic pioneer vegetation (mainly represented by Hippophae cf. rhamnoides) helped to confer to the local environment a high ecological stability, buffering vegetation changes. Finally, during the Last Glacial, mixed broad-leaved deciduous and Pinus forests widely occupied the Arno coastal plain, demonstrating that this area acted as an important tree refuge. Local ecological conditions favourable to tree survival were determined mainly by (i) high precipitation, as a function of orographic uplift of air charged with moisture from the nearby Tyrrhenian Sea, (ii) mild temperatures, which were also influenced by proximity to the sea, and (iii) high topographic variability, providing a series of suitable microenvironments.

  5. The Archeological Record at Bull Shoals Lake and Norfork Lake Arkansas and Missouri

    DTIC Science & Technology

    1993-06-01

    geomorphological analysis of the landscape within the project areas, a review of previously gathered data about the nature and distribution of the...effort. These included a reconnaissance level geomorphological analysis of the landscape within the project areas, a review of previously gathered data...1989) which sought to integrate the description of the archeological record with a geomorphological analysis of the landscape within the areas directly

  6. Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: A review of foundation concepts and current understandings

    NASA Astrophysics Data System (ADS)

    Corenblit, Dov; Baas, Andreas C. W.; Bornette, Gudrun; Darrozes, José; Delmotte, Sébastien; Francis, Robert A.; Gurnell, Angela M.; Julien, Frédéric; Naiman, Robert J.; Steiger, Johannes

    2011-06-01

    This review article presents recent advances in the field of biogeomorphology related to the reciprocal coupling between Earth surface processes and landforms, and ecological and evolutionary processes. The aim is to present to the Earth Science community ecological and evolutionary concepts and associated recent conceptual developments for linking geomorphology and biota. The novelty of the proposed perspective is that (1) in the presence of geomorphologic-engineer species, which modify sediment and landform dynamics, natural selection operating at the scale of organisms may have consequences for the physical components of ecosystems, and particularly Earth surface processes and landforms; and (2) in return, these modifications of geomorphologic processes and landforms often feed back to the ecological characteristics of the ecosystem (structure and function) and thus to biological characteristics of engineer species and/or other species (adaptation and speciation). The main foundation concepts from ecology and evolutionary biology which have led only recently to an improved conception of landform dynamics in geomorphology are reviewed and discussed. The biogeomorphologic macroevolutionary insights proposed explicitly integrate geomorphologic niche-dimensions and processes within an ecosystem framework and reflect current theories of eco-evolutionary and ecological processes. Collectively, these lead to the definition of an integrated model describing the overall functioning of biogeomorphologic systems over ecological and evolutionary timescales.

  7. Hydrological and geomorphological controls of malaria transmission

    NASA Astrophysics Data System (ADS)

    Smith, M. W.; Macklin, M. G.; Thomas, C. J.

    2013-01-01

    Malaria risk is linked inextricably to the hydrological and geomorphological processes that form vector breeding sites. Yet environmental controls of malaria transmission are often represented by temperature and rainfall amounts, ignoring hydrological and geomorphological influences altogether. Continental-scale studies incorporate hydrology implicitly through simple minimum rainfall thresholds, while community-scale coupled hydrological and entomological models do not represent the actual diversity of the mosquito vector breeding sites. The greatest range of malaria transmission responses to environmental factors is observed at the catchment scale where seemingly contradictory associations between rainfall and malaria risk can be explained by hydrological and geomorphological processes that govern surface water body formation and persistence. This paper extends recent efforts to incorporate ecological factors into malaria-risk models, proposing that the same detailed representation be afforded to hydrological and, at longer timescales relevant for predictions of climate change impacts, geomorphological processes. We review existing representations of environmental controls of malaria and identify a range of hydrologically distinct vector breeding sites from existing literature. We illustrate the potential complexity of interactions among hydrology, geomorphology and vector breeding sites by classifying a range of water bodies observed in a catchment in East Africa. Crucially, the mechanisms driving surface water body formation and destruction must be considered explicitly if we are to produce dynamic spatial models of malaria risk at catchment scales.

  8. Geomorphology and the World Wide Web

    NASA Astrophysics Data System (ADS)

    Shroder, John F.; Bishop, Michael P.; Olsenholler, Jeffrey; Craiger, J. Philip

    2002-10-01

    The Internet and the World Wide Web have brought many dimensions of new technology to education and research in geomorphology. As with other disciplines on the Web, Web-based geomorphology has become an eclectic mix of whatever material an individual deems worthy of presentation, and in many cases is without quality control. Nevertheless, new electronic media can facilitate education and research in geomorphology. For example, virtual field trips can be developed and accessed to reinforce concepts in class. Techniques for evaluating Internet references helps students to write traditional term papers, but professional presentations can also involve student papers that are published on the Web. Faculty can also address plagiarism issues by using search engines. Because of the lack of peer review of much of the content on the Web, care must be exercised in using it for reference searches. Today, however, refereed journals are going online and can be accessed through subscription or payment per article viewed. Library reference desks regularly use the Web for searches of refereed articles. Research on the Web ranges from communication between investigators, data acquisition, scientific visualization, or comprehensive searches of refereed sources, to interactive analyses of remote data sets. The Nanga Parbat and the Global Land Ice Measurements from Space (GLIMS) Projects are two examples of geomorphologic research that are achieving full potential through use of the Web. Teaching and research in geomorphology are undergoing a beneficial, but sometimes problematic, transition with the new technology. The learning curve is steep for some users but the view from the top is bright. Geomorphology can only prosper from the benefits offered by computer technologies.

  9. An approach for quantifying geomorphological impacts for EIA of transportation infrastructures: a case study in northern Spain

    NASA Astrophysics Data System (ADS)

    Bonachea, Jaime; Bruschi, Viola Maria; Remondo, Juan; González-Díez, Alberto; Salas, Luis; Bertens, Jurjen; Cendrero, Antonio; Otero, César; Giusti, Cecilia; Fabbri, Andrea; González-Lastra, José Ramón; Aramburu, José María

    2005-03-01

    A methodological proposal for the assessment of impacts due to linear infrastructures such as motorways, railways, etc. is presented. The approach proposed includes a series of specific issues to be addressed for each geomorphological feature analysed—both 'static' and 'dynamic'—as well as a series of steps to be followed in the process. Geomorphic characteristics potentially affected were initially identified on the basis of a conceptual activities/impacts model that helps to single out geomorphic impacts related to environmental concerns for the area. The following issues were addressed for each individual impact: nature of potential effects; indicators that can be used to measure impacts; criteria of 'geomorphologic performance'; procedure for measurement/prediction of changes; translation of geomorphologic impacts into significant terms from the viewpoint of human concerns; possible mitigation and/or compensation measures. The procedure has been applied to a case study corresponding to a new motorway in the Basque Country, northern Spain. Geomorphological impacts considered in this analysis included: (1) consumable resources; (2) sites of geomorphological interest; (3) land units with high potential for use, high productivity or value for conservation; (4) visual landscape; (5) slope instability processes. The procedure has been designed for implementation in a Geographic Information System (GIS) environment. Details are given on the application of the method to each individual impact analysed and results are presented in both numerical and map form. Impacts assessed were initially expressed by means of heterogeneous magnitudes, depending on the geomorphological feature considered. Those geomorphological impacts were then translated into significant terms and homogeneous magnitudes. Integration was carried out on the basis of impact values thus obtained. Final integrated results were also expressed in numerical and map form. The method proposed enables comparison of alternatives as well as 'prediction' and assessment of impacts in terms directly related to geomorphic characteristics. It also facilitates the expression of those impacts in terms that allow integration with other types of environmental impacts.

  10. The problem of genesis and systematic of sedimentary units of hydrocarbon reservoirs

    NASA Astrophysics Data System (ADS)

    Zhilina, E. N.; Chernova, O. S.

    2017-12-01

    The problem of identifying and ranking sedimentation, facies associations and their constituent parts - lithogenetic types of sedimentary rocks was considered. As a basis for paleo-sedimentary modelling, the author has developed a classification for terrigenous natural reservoirs,that for the first time links separate sedimentological units into a single hierarchical system. Hierarchy ranking levels are based on a compilation of global knowledge and experience in sediment geology, sedimentological study and systematization, and data from deep-well coresrepresentingJurassichydrocarbon-bearing formationsof the southeastern margin of the Western Siberian sedimentary basin.

  11. Sedimentological and radiochemical characteristics of marsh deposits from Assateague Island and the adjacent vicinity, Maryland and Virginia, following Hurricane Sandy

    USGS Publications Warehouse

    Smith, Christopher G.; Marot, Marci E.; Ellis, Alisha M.; Wheaton, Cathryn J.; Bernier, Julie C.; Adams, C. Scott

    2015-09-15

    This report serves as an archive for sedimentological and radiochemical data derived from the surface sediments and marsh cores collected March 26–April 4, 2014. Select surficial data are available for the additional sampling periods October 21–30, 2014. Downloadable data are available as Excel spreadsheets and as JPEG files. Additional files include: Field documentation, x-radiographs, photographs, detailed results of sediment grain size analyses, and formal Federal Geographic Data Committee metadata (data downloads).

  12. Paleographic and sedimentologic significance of Mississippian sequence at Mt. Darby, Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dejarnett, J.

    1985-05-01

    Mississippian strata at Mt. Darby comprise the Madison Group and the overlying Humbug Formation. This sequence, although initially transgressive, exhibits an overall regressive character produced by progradation of platform carbonates in response to sea level fluctuations related to Antler orogenic events. The Paine Member of the Lodgepole Limestone, the basal formation of the Madison Group, consists of relatively deep-water carbonates including a possible Waulsortian-type carbonate bank that accumulated on a Kinderhookian foreslope. At least five shoaling-upward grainstone cycles are recognizable in the Woodhurst Member of the Lodgepole Limestone. These cycles record Osagean deposition in shallow agitated environments that developed highmore » on a clinoform ramp. Shelf-margin and platform carbonates dominate the Mission Canyon Limestone, the upper formation of the Madison Group. this unit consists of two asymmetric deposition cycles, each with a thick regressive phase, capped by an evaporite solution breccia and an overlying thin transgressive phase. The Humbug Formation, a sequence of fine-grained carbonates and sandstones, represents part of a deltaic complex that developed offshore from the Meramecian karst plain. Humbug sediments were transported northward to the Mt. Darby area from the area of the present Uinta Mountains, or another deltaic system formed there. Deposition in the study area was apparently continuous upward from the Madison carbonates into the Humbug. The middle Meramecian shoreline trended northwest between the present locations of Mt. Darby and Haystack Peak.« less

  13. Paleosoils in the loess deposits of eastern Uzbekistan

    NASA Astrophysics Data System (ADS)

    Abdunazarov, U. K.; Stelmakh, A. G.

    2010-12-01

    Loess deposits of the eastern Uzbekistan are difficult to study the stratigraphy of the object. Clarification of the relationship of age and genetic features of the considered entities by traditional methods is difficult due to scarcity of remnants of the fauna and flora, the active Quaternary tectonics, the homogeneity of the rocks, especially the formation of loess sequences, specific conditions of geological and tectonic development, etc. In this regard, particularly relevant is the study of loess deposits by paleosoils subdivision and correlation. Paleosoils, which are present in the sections of loess sequences, distinct from loess-like loams, dividing them among themselves. Color these paleosoils noticeable brownish or brown, while the loess is a powdery mildew gray rock. Typically, the general scheme of occurrence of loess cover is linked with levels of relief mountainous areas. Recent studies show that the loess in the piedmont plains overlie a complex manner and include uneven paleosoils. Therefore, loess sequences of different geomorphological levels from the lower parts of slopes to the watershed have been studied in research paleosoils. The scheme was drawn up as a result of the studies. This scheme shows the main horizons paleosoils in loess deposits. Even-aged paleosoils and share their loess were identified in this scheme.

  14. Quaternary fluvial terraces of the Tiber Valley: geochronologic and geometric constraints on the back-arc magmatism-related uplift in central Italy.

    PubMed

    Marra, Fabrizio; Florindo, Fabio; Petronio, Carmelo

    2017-05-31

    Through a geomorphological study relying on statistically assessed classes of hilltop elevations, we reconstruct a suite of paleo-surfaces along the Tiber River Valley north of Rome that we identify as fluvial terraces formed by interplay between global sea-level fluctuations and regional upift. Using biostratigraphic constraints provided by marine through continental deposits of Santernian age, we recognize the oldest terrace in this area, corresponding to an early coastal plain of late Santernian-Emilian age. By assuming the simple chronological principle of a staircase geometry we correlate the sea-level highstands of MIS 21 through MIS 5 with the lowest eight paleo-surfaces. By plotting against time the cumulated terrace elevations and the average elevation of the Santernian coastline in the investigated area, we detect rates of uplift during the last 1.8 Ma. Two major pulses of uplift are recognized 0.86 through 0.5 Ma, and 0.25 Ma through the Present, which are interpreted as driven by the subduction process and uprising of metasomatized magma bodies on the Tyrrhenian Sea Margin of central Italy, superimposied on a smaller isostatic component of uplift.

  15. Identification of areas of recharge and discharge using Landsat-TM satellite imagery and aerial photography mapping techniques

    NASA Astrophysics Data System (ADS)

    Salama, R. B.; Tapley, I.; Ishii, T.; Hawkes, G.

    1994-10-01

    Aerial photographs (AP) and Landsat (TM) colour composites were used to map the geomorphology, geology and structures of the Salt River System of Western Australia. Geomorphic features identified are sand plains, dissected etchplain, colluvium, lateritic duricrust and rock outcrops. The hydrogeomorphic units include streams, lakes and playas, palaeochannels and palaeodeltas. The structural features are linear and curvilinear lineaments, ring structures and dolerite dykes. Suture lines control the course of the main river channel. Permeable areas around the circular granitic plutons were found to be the main areas of recharge in the uplands. Recharge was also found to occur in the highly permeable areas of the sandplains. Discharge was shown to be primarily along the main drainage lines, on the edge of the circular sandplains, in depressions and in lakes. The groundwater occurrence and hydrogeological classification of the recharge potential of the different units were used to classify the mapped areas into recharge and discharge zones. The results also show that TM colour composites provide a viable source of data comparable with AP for mapping and delineating areas of recharge and discharge on a regional scale.

  16. Geomorphology and Landscape Evolution Model for the natural and human-impacted regions of the Ganges-Brahmaputra-Meghna Delta

    NASA Astrophysics Data System (ADS)

    Wilson, C.; Goodbred, S. L.; Wallace Auerbach, L.; Ahmed, K.; Paola, C.; Reitz, M. D.; Pickering, J.

    2013-12-01

    The Ganges-Brahmaputra-Meghna delta (GBMD) in south Asia is generally considered a tide-dominated system, but much of the subaerial delta plain is geomorphically similar to river-dominated systems such as the Mississippi River delta, with a well-developed distributary network separated by low-lying, organic-rich interdistributary basins. By contrast, the lower GBMD is dominated by tidal processes and comprises a 100-km wide coastal plain with dense, interconnected tidal channels that are amalgamated to the seaward edge of the river-dominated portion of the delta. These distinct river- and tide-dominated geomorphic regions are simultaneously sustained by the enormous sediment load of the GBM rivers and its efficient dispersal via the distributary channel network and onshore advection by tides. Together these processes have resulted in the ability of the GBMD to keep pace with sea-level rise throughout the Holocene, with comparatively little shoreline transgression. However, topographic data from the Shuttle Radar Topography Mission (SRTM) highlight low-lying regions of the delta that are located at the interface of the river- and tide-dominated portions of the delta, where the transport energy of small distributaries and the upper tidal zone go to zero. As a result, these are the most sediment-starved regions of the delta and those most at risk to flooding by the summer monsoon and storm surges. Compounding the slow rates of sedimentation and high local organic content, these regions have been strongly affected by the construction of embankments (polders) that artificially de-water the soils and accelerate organic decomposition during the dry season, and further starve the land surface of sediment. Here, we present an integrated conceptual model for the geomorphic evolution of the GBMD that incorporates river- and tide-dominated regions in conjunction with channel-avulsion processes and delta-lobe construction. Each of these is also overprinted by tectonic deformation and human-landscape modifications. A key goal of this model is to explain the wide-scale distribution of coarse-grained river-borne sediment (predominantly sand) that forms the underlying architecture of the GBMD, with only localized preservation of fine-grained (silt and clay) deposits. Finally, analysis of the channel networks in the tidal delta plain reveal that constructed embankments have significantly decreased the density of naturally functioning tidal channels, inducing locally rapid bank migration and affiliated changes in sinuosity. These rapid landscape changes suggest that there has been a resultant change in hydrodynamics of the tidal delta plain following widespread construction of the embankments. With concern to assess landscape vulnerabilities to environmental change and renewed efforts to rehabilitate and stabilize the embankments, this information is needed to support the successful outcome of coastal defense initiatives.

  17. Interactions between soil consumption and archaeological heritage: spatial analysis for hydrogeological risk evaluation and urban sprawl in the Tavoliere di Puglia (southern Italy)

    NASA Astrophysics Data System (ADS)

    Danese, Maria; Gioia, Dario; Masini, Nicola

    2015-04-01

    The soil consumption is a complex phenomenon because it is due to different causes and it also produces many consequences on landscape and related human activities. In low-relief areas of the Mediterranean regions such as the foredeep of the southern Italian chain, alluvional processes and flooding can play an important role on the amount of available soil, especially if one consider the recent climate changes and the recurrence of extreme events. Moreover the uncontrolled growth of the cities is a cause of soil consumption too. Consequently occurrence of flood events in low-relief areas, erosion processes and urban sprawl have a strong impact on agricultural activities and real estate market, but also in research activities about archaeological heritage, with the risk to loose signs of the past. To consider this phenomenon from a spatial point of view is essential to determine protection policies, but it is nowadays still a problem. In this contribution, we performed a detailed study of the geological and geomorphological features of the drainage network of the Tavoliere di Puglia plain in order to investigate erosional and depositional processes. GIS-supported statistical analysis of the drainage network features allow us to compile a map of the hydrogeological hazard [1]. The map has been used as a basic tool useful to consider areal distribution in soil consumption coming from alluvional processes, erosional phenomena and the urban sprawl of the Tavoliere di Puglia plain (Southern Italy). Moreover, we investigated the relationships between sectors of the Tavoliere di Puglia plain featured by higher hydrogeological risk and archaeological sensibility areas, such as places with existing or with not yet discovered archaeological sites or areas characterized by crop marks [2]. [1] Danese M., Gioia D., Biscione M., Masini N. 2014. Spatial Methods for Archaeological Flood Risk: The Case Study of the Neolithic Sites in the Apulia Region (Southern Italy). Computational Science and Its Applications - ICCSA 2014 Lecture Notes in Computer Science, Volume 579, 2014, pp 423-439, doi: 10.1007/978-3-319-09144-0_29. [2] Danese M., Masini N., Biscione M., Lasaponara R. 2014. Predictive modeling for preventive Archaeology: Overview and case study. Central European Journal of Geosciences. March 2014,Volume 6, Issue 1, 42-55, doi: 10.2478/s13533-012-0160-5

  18. Age and Construction of Little Ambergris Cay Bedrock Rim, Southeastern Caicos Platform, British West Indies

    NASA Astrophysics Data System (ADS)

    Orzechowski, E. A.; Strauss, J. V.; Knoll, A. H.; Fischer, W. W.; Cantine, M.; Metcalfe, K.; Quinn, D. P.; Stein, N.; Gomes, M. L.; Grotzinger, H. M.; Lingappa, U.; O'Reilly, S. S.; Riedman, L. A.; Trower, L.; Grotzinger, J. P.

    2016-12-01

    The Caicos Platform's interior-platform ooid shoals and patch reef environments are unique modern examples of grain-rich carbonate settings. In July 2016, the Agouron Institute's Advanced Geobiology field course conducted a detailed study of Little Ambergris Cay, in the southeastern sector of the platform. The cay is fringed by a topographically high rim formed of amalgamated ridges of partially lithified fossiliferous grainstone and rudstone (i.e. beachrock conglomerate), that protects an interior basin dominated by microbial mats and mangroves. Tidal channels exchanging open platform waters with the interior basin breach the rim locally. We sampled and mapped the rim (using differential GPS) in order to examine its age, sedimentological characteristics, and faunal composition. Strata up to 2 meters above the present-day high tide mark form the rim, characterized by several carbonate lithofacies, including oolites with keystone vugs, high-angle trough cross bedding, seaward-dipping low angle stratification, bioturbation and fossiliferous lags, and rudstones composed of imbricated beachrock boulders. We interpret these facies as an upper shoreface to foreshore depositional setting dominated by local storm and eolian deposits. A distinct fossiliferous rudstone facies is dominated by mytilid bivalves, as well as Eustrombus, Conus, Oliva, and vermetid gastropods. X-ray powder diffraction analyses on fossil shells reveal both shells with pristine aragonite and shells with evidence of secondary calcite. Radiometric analyses of pristine aragonite material provide additional age constraints on these deposits. Understanding the formation of Little Ambergris Cay's bedrock deposits will provide important context for the island's geological history and geomorphology, aiding in our understanding of modern analogues for ancient interior platform depositional environments.

  19. Landform Evolution of the Zanskar Valley, Ladakh Himalaya.

    NASA Astrophysics Data System (ADS)

    Chahal, P.; Kumar, A.; Sharma, P.; Sundriyal, Y.; Srivastava, P.

    2017-12-01

    Zanskar River flow from south-west to north-east, perpendicularly through Higher Himalayan crystalline sequences, Tethyan sedimentary sequences, and Indus Molasses; and finally merge with the Indus River at Nimu. Geologically, the Indus valley is bounded by Ladakh Batholith in the north and highly folded and thrusted Zanskar mountain ranges in the south. Sedimentary sequences of Zanskar ranges are largely of continental origin, which were uplifted and deformed via several north verging thrusts, where Zanskar counter thrust, Choksti and Indus-Bazgo thrusts are important thrust zone, and there is atleast 36 km of crustal shortening in the Zanskar section which continued from middle Miocene to the late Pleistocene. This shortening is accommodated mainly by north or north-east directed Zanskar backthrusts. Two major tributaries of Zanskar: Tsrapchu and Doda, flow in the headwaters, along the strike of South Tibetan Detachment System (STDs), an east-west trending regional fault. The present study incorporate field sedimentology, geomorphology and chronology of landform associated with Zanskar valley. In the upper Zanskar, alluvial fan, valley fill and strath terraces configured the major landforms with paleo-lake deposits­­­ in the area between the fans. The lower catchment, at the confluence of Zanskar and Indus rivers, exhibit mainly valley fill terraces and strath terraces. Chronology suggests diachronous aggradation in the upper and lower Zanskar catchments. In the upper Zanskar large scale valley aggradation took place with simultaneously fan progradation and flooding events from 45-15 ka. Luminescence chronology of the lower Zanskar indicates aggradation from 145-55 ka and 18-12 ka. The two aggradation basins are separated by a deep V-shaped gorge which is approximately 60 km long. The longitudinal profile of the Zanskar River shows several local convexities marking knick point zone, which suggests tectonically controlled topography.

  20. Assessment of submarine landslides hazard through geotechnical and rheological analysis of sediments on the French Atlantic continental slope

    NASA Astrophysics Data System (ADS)

    Toucanne, S.; Howlett, S.; Garziglia, S.; Silva Jacinto, R.; Courgeon, S.; Sabine, M.; Riboulot, V.; Marsset, B.

    2016-12-01

    In the aftermath of the devastating tsunami on the Japanese coast in 2011, a French multi-partnership project called TANDEM has been launched to assess the impact of tsunamis generated or propagated in the vicinity of French Channel and Atlantic coastlines. Tsunami are usually generated by earthquakes, but can also be triggered by submarine landslides. This study focuses on submarine landslides along the French Atlantic continental slope using data that were mainly collected in August 2015 during the GITAN cruise (R/V Pourquoi Pas?). Following geomorphological, geophysical and sedimentological analysis of the Bay of Biscay, efforts were oriented towards the determination of the sediment properties controlling landslide dynamics from in situ and laboratory measurements. Preliminary results show over 700 landslide scars on the French Atlantic continental slope, with most of them occurring between 400 and 1000m water depth and in canyon environments. The Plio-Quaternary sediments draping the majority of the Bay of Biscay are generally normally consolidated and composed of high plasticity clays. They show similar geomechanical properties throughout the area studied, with linear evolutions with depth and good reproducibility for rheological parameters such as Storage and Loss modulus. These similarities allow to extend geotechnical and rheological models to a regional scale in the Bay of Biscay. Our multi-disciplinary approach will provide the tools to assess continental slope failures and submarine landslides generation. Finally, we will aim to qualify and quantify the volumes and flow properties of sediment transported obtained through slope-stability modeling on SAMU-3D and rheology modelling on Nixes-SPH. These results will provide the TANDEM actors with the information necessary to simulate tsunami wave generation.

  1. Variability Matters: New Insights into Mechanics of River Avulsions on Deltas and Their Deposits

    NASA Astrophysics Data System (ADS)

    Ganti, V.

    2015-12-01

    River deltas are highly dynamic, often fan-shaped depositional systems that form when rivers drain into a standing body of water. They host over a half billion people and are currently under threat of drowning and destruction by relative sea-level rise, subsidence, and anthropogenic interference. Deltas often develop planform fan shapes through avulsions, whereby major river channel shifts occur via "channel jumping" about a spatial node, thus determining their fundamental length scale. Emerging theories suggest that the size of delta lobes is set by backwater hydrodynamics; however, these ideas are difficult to test on natural deltas, which evolve on centennial to millennial timescales. In this presentation, I will show results from the first laboratory delta built through successive deposition of lobes that maintain a constant size that scales with backwater hydrodynamics. The characteristic size of deltas emerges because of a preferential avulsion node that remains fixed spatially relative to the prograding shoreline, and is a consequence of multiple river floods that produce persistent morphodynamic river-bed adjustment within the backwater zone. Moreover, river floods cause erosion in the lowermost reaches of the alluvial river near their coastline, which may leave erosional boundaries in the sedimentary record that may appear similar to those previously interpreted to be a result of relative sea-level fall. I will discuss the implications of these findings in the context of sustainability management of deltas, decoding their stratigraphic record, and identifying ancient standing bodies of water on other planets such as Mars. Finally, I will place this delta study in a broader context of recent work that highlights the importance of understanding and quantifying variability in sedimentology and geomorphology.

  2. Geochemical signatures of tsunami deposits - what do they tell us?

    NASA Astrophysics Data System (ADS)

    Chague-Goff, Catherine; Goff, James R.

    2010-05-01

    In the last two and half decades, but even more since the 2004 Indian Ocean Tsunami (IOT), there has been a significant increase in the amount of literature dealing with recent, historical and palaeotsunamis. Much has been written and debated about the diagnostic criteria of historical and palaeotsunami deposits. Most of the diagnostic criteria or proxies used reflect the expertise of the researchers involved and thus tend to be biased towards sedimentology, stratigraphy and micropalaeontology, with some reference to geomorphology, archaeology, anthropology and palynology. It should however be noted that all criteria have never been reported from one site, and neither are they all found in one single deposit. Thus, the lack of one or more proxies should not be taken as unique evidence to refute the tsunamigenic origin of a specific deposit. Although geochemical signatures have long been used as indicators for palaeosalinity in sedimentary sequences, there appears to have been some reluctance to use them to help in the identification of historical and palaeotsunami deposits. Like other proxies, geochemistry alone may not provide a definite answer to the origin of a deposit. Furthermore, poor preservation due to environmental conditions or as a result of post-diagenetic processes, might complicate the interpretation of geochemical signatures left by tsunami inundation. Similar taphonomic problems are also faced for microfossil proxies. However, geochemistry provides another piece to the puzzle, and together with other proxies, it can help identify palaeotsunami deposits. Geochemical signatures can also provide clues about the landward limit of runup of a tsunami, beyond the area of sediment deposition. This was recently documented following the 2004 IOT and the 2009 South Pacific tsunami. A summary of examples of geochemical signatures recorded in interstitial water and sediment of recent, historical and palaeotsunami deposits is presented.

  3. Rapid advance and retreat over centennial/millennial timescales at Kangiata Nunaata Sermia, SW Greenland - implications for modelling, and behaviour of tidewater glaciers

    NASA Astrophysics Data System (ADS)

    Lea, J.; Mair, D. W.; Rea, B. R.; Schofield, J.; Kamenos, N.; Pearce, D.; Schoenrock, K. M.

    2017-12-01

    While the Greenland Ice Sheet has undergone significant retreat over the last 80 years, our understanding of the ice sheet's response to climate forcing over centennial to millennial timescales is poorly constrained. Knowledge of marine glacier outlets over these timescales would provide crucial information regarding longer term ice sheet dynamics, beyond instrumental and historical records. It is notably difficult to constrain such histories for these glaciers due to: (i) a highly dynamic ice front environment in combination with the Little Ice Age advance(s) destroying much of the preceding evidence for glacier change; (ii) often poor landform/sediment preservation due to steep sided fjords; (iii) the areas with greatest preservation potential, the fjords bottoms, being submarine and often ice choked, and therefore non-trivial to survey, and sample. The tidewater glacier Kangiata Nunaata Sermia (KNS), SW Greenland provides an exception to this. Here we present a record of >22km of terminus advance and retreat spanning the last 1000 years using a combination of geomorphological, sedimentological and archaeological evidence. This timescale includes periods of substantial warming and cooling of air temperatures that appear to correspond to periods of advance and retreat. Results also suggest that the average advance rates in the early part of the millennium (110 m a-1) are of a similar magnitude to contemporary retreat rates observed around Greenland. The results generated here provide an ideal opportunity to validate the performance of numerical models (notably those that include calving) over centennial timescales. Evaluating model performance against the past behaviour of KNS could therefore lead to significant improvements in the confidence of ice sheet change projections up to 2100 and beyond.

  4. Upstream effects of dams on alluvial channels: state-of-the-art and future challenges

    NASA Astrophysics Data System (ADS)

    Liro, Maciej

    2017-04-01

    More than 50,000 large dams (with the height above 15 m) operate all over the world and, thus, they significantly disturb water and sediment transport in river systems. These disturbances are recognized as one of the most important factors shaping river morphology in the Anthropocene. Downstream effects of dams have been well documented in numerous case studies and supported by predictions from existing models. In contrast, little is known on the upstream effects of dams on alluvial channels. This review highlights the lack of studies on sedimentological, hydromorphological and biogeomorphological adjustments of alluvial rivers in the base-level raised zones of backwater upstream of dam reservoirs where water level fluctuations occur. Up to date, it has been documented that backwater effects may facilitate fine and coarse sediment deposition, increase groundwater level, provide higher and more frequent channel and floodplain inundation and lead to significant morphological changes. But there have been no studies quantifying short- and long-term consequences of these disturbances for the hydromorphological and biogeomorphological feedbacks that control development of alluvial channels. Some recent studies carried out on gravel-bed and fine-grained bed rivers show that the above mentioned disturbances facilitate vegetation expansion on exposed channel sediments and floodplain influencing river morphology, which suggests that backwater area of alluvial rivers may be treated as the hotspot of bio-geomorphological changes in a fluvial system. To set the stage for future research on upstream effects of dams, this work presents the existing state-of-art and proposes some hypotheses which may be tested in future studies. This study was carried out within the scope of the Research Project 2015/19/N/ST10/01526 financed by the National Science Centre of Poland

  5. Aeolian stratigraphy describes ice-age paleoenvironments in unglaciated Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Gaglioti, Benjamin V.; Mann, Daniel H.; Groves, Pamela; Kunz, Michael L.; Farquharson, Louise M.; Reanier, Richard E.; Jones, Benjamin M.; Wooller, Matthew J.

    2018-02-01

    Terrestrial paleoenvironmental records with high dating resolution extending into the last ice age are rare from the western Arctic. Such records can test the synchronicity and extent of ice-age climatic events and define how Arctic landscapes respond to rapid climate changes. Here we describe the stratigraphy and sedimentology of a yedoma deposit in Arctic Alaska (the Carter Section) dating to between 37,000 and 9000 calibrated radiocarbon years BP (37-9 ka) and containing detailed records of loess and sand-sheet sedimentation, soil development, carbon storage, and permafrost dynamics. Alternation between sand-sheet and loess deposition provides a proxy for the extent and activity of the Ikpikpuk Sand Sea (ISS), a large dune field located immediately upwind. Warm, moist interstadial times (ca. 37, 36.3-32.5, and 15-13 ka) triggered floodplain aggradation, permafrost thaw, reduced loess deposition, increased vegetation cover, and rapid soil development accompanied by enhanced carbon storage. During the Last Glacial Maximum (LGM, ca. 28-18 ka), rapid loess deposition took place on a landscape where vegetation was sparse and non-woody. The most intense aeolian activity occurred after the LGM between ca. 18 and 15 ka when sand sheets fringing the ISS expanded over the site, possibly in response to increasingly droughty conditions as summers warmed and active layers deepened. With the exception of this lagged LGM response, the record of aeolian activity at the Carter Section correlates with other paleoenvironmental records from unglaciated Siberia and Alaska. Overall, rapid shifts in geomorphology, soils, vegetation, and permafrost portray an ice-age landscape where, in contrast to the Holocene, environmental change was chronic and dominated by aeolian processes.

  6. Stream-power model of meander cutoff in gravel beds

    NASA Astrophysics Data System (ADS)

    Pannone, M.; De Vincenzo, A.

    2016-12-01

    In the present study we propose a one-dimensional model for the prediction of the large-time evolution of river meanders (pre-cutoff conditions) characterized by gravel bed and negligible suspended load. Due to its relatively simple structure, it may be a fast and easy tool to forecast the time evolution of a bend when the symptoms of an incipient instability suggest quantifying the time left for river exploitation as a naturalistic or a commercial resource and timely planning, if needed, the site management and restoration. Most of the previous research on meandering rivers focused on linearized theories that apply to very small bend amplitudes and very large radii of curvature. The dynamics of meander growth and cutoff was typically afforded by case-sensitive numerical simulations or by descriptive methods aimed at deriving purely empirical laws relating the hydraulics to some geomorphological parameters. The present approach combines the immediacy of a general analytical model with the accuracy of a fluid-mechanical background. The model focuses on energetic principles and interprets the mechanism of meander cutoff as the achievement of limit conditions in terms of river stream power. The corresponding analytical solution, which consists in a 1-D deterministic integro-differential equation governing the meander pre-cutoff phase, accounts for the influence of the morphological and sedimentological parameters by the downstream migration rate and the radius of the meander osculating circle. The results, expressed in terms of instable meander lifetime, are in good agreement with the data obtained from a number of field surveys documented in literature. Additionally, the proposed fluid-mechanical model allows identifying the physical mechanisms responsible for some peculiarities of large-time meander evolution like the decreasing skewness and asymmetry.

  7. Palaeoenvironment and fluvial history of river Danube between the Neolithic settlement sites of Vinca and Starcevo, Serbia

    NASA Astrophysics Data System (ADS)

    Penezic, Kristina; Kadereit, Annette; Thiemeyer, Heinrich

    2013-04-01

    The Neolithic site of Vinca - Belo brdo (ca. 5600 - 4200 BC) is located on the right bank of the Danube River, some 14 km downstream of the city of Belgrade in Serbia. The significance of the Vinca settlement is in its long occupational history, which produced more than 9 meters of settlement layers that provided archaeologists with an understanding of the chronological sequencing and development from the Middle to Late Neolithic in central Serbia. Vinca - Belo brdo was designated as the locus typicus for the Vinca Culture and is considered by many archaeologists as one of the most important sites of the European Neolithic. On the opposite, left side of the river Danube, the early Neolithic site of Starcevo is situated. It spans through the early Neolithic period dated to the seventh and the sixth millennium BC and it is the locus typicus for the Starcevo culture that on the territory of modern-day Serbia precedes the Vinca culture. The vicinity of the Danube influenced the development of these settlements and the relationship between them. Serving as a landmark, border, source of food, but also endangering the sites by a shifting stream course, the Danube is essential. Therefore it is important to define the position of the river during the occupational span of the Neolithic settlements and later. In our study, the early to mid-Holocene environmental changes of the fluvial landscape between the two Neolithic settlement sites are explored. We present preliminary results of recent geomorphological, sedimentological and archaeological investigations, as well as OSL dating, which were combined with relevant information from historical maps and satellite imagery in order to reconstruct the fluvial palaeolandscape.

  8. Land Use and Climate Impacts on Fluvial Systems (LUCIFS): A PAGES - Focus 4 (PHAROS) research activity

    NASA Astrophysics Data System (ADS)

    Dearing, John; Hoffmann, Thomas

    2010-05-01

    LUCIFS is a global research program which is concerned with understanding past interactions between climate, human activity and fluvial systems. Its focus is on evaluating the geomorphic impact of humans on landscapes, with a strong emphasis on geomorphological and sedimentological perspectives on mid- to long-term man-landscape interactions. Of particular relevance are aspects of sediment redistribution systems such as non-linear behaviour, the role of system configuration, scale effects, and emergent properties Over the last decade the LUCIFS program has been investigating both contemporary and long-term river response to global change with the principal aims of i)quantifying land use and climate change impacts of river-borne fluxes of water, sediment, C, N and P; ii) identification of key controls on these fluxes at the catchment scale; and iii) identification of the feedback on both human society and biogeochemical cycles of long-term changes in the fluxes of these materials The major scientific tasks of the LUCIFS-program are: • synthesising results of regional case studies • identify regional gaps and encouraging new case studies • addressing research gaps and formulating new research questions • organising workshops and conferences In this paper we present the LUCIFS program within the new PAGES structure. LUCIFS is located in the Focus 4 (PHAROS) dealing with how a knowledge of human-climate-ecosystem interactions in the past can help inform understanding and management today. In conjunction with the other working groups HITE (Human Impacts on Terrestrial Ecosystems), LIMPACS (Human Impacts on Lake Ecosystems) and IHOPE (Integrated History of People on Earth) PHAROS aims to compare regional-scale reconstructions of environmental and climatic processes using natural archives, documentary and instrumental data, with evidence of past human activity obtained from historical, paleoecological and archaeological records.

  9. Fluvial landscapes - human societies interactions during the last 2000 years: the Middle Loire River and its embanking since the Middle Ages (France)

    NASA Astrophysics Data System (ADS)

    Castanet, Cyril; Carcaud, Nathalie

    2015-04-01

    This research deals with the study of fluvial landscapes, heavily and precociously transformed by societies (fluvial anthroposystems). It aims to characterize i), fluvial responses to climate, environmental and anthropogenic changes ii), history of hydraulical constructions relative to rivers iii), history of fluvial origin risks and their management - (Program: AGES Ancient Geomorphological EvolutionS of the Loire River hydrosystem). The Middle Loire River valley in the Val d'Orléans was strongly and precociously occupied, particularly during historical periods. Hydrosedimentary flows are there irregular. The river dykes were built during the Middle Ages (dykes named turcies) and the Modern Period, but ages and localizations of the oldest dykes were not precisely known. A systemic and multi-scaled approach aimed to characterize i), palaeo-hydrographical, -hydrological and -hydraulical evolutions of the Loire River, fluvial risks (palaeo-hazards and -vulnerabilities) and their management. It is based on an integrated approach, in and out archaeological sites: morpho-stratigraphy, sedimentology, geophysics, geochemistry, geomatics, geochronology, archaeology. Spatio-temporal variability of fluvial hazards is characterized. A model of the Loire River fluvial activity is developed: multicentennial scale variability, with higher fluvial activity episodes during the Gallo-Roman period, IX-XIth centuries and LIA. Fluvial patterns changes are indentified. Settlement dynamics and hydraulical constructions of the valley are specified. We establish the ages and localizations of the oldest discovered dikes of the Middle Loire River: after the Late Antiquity and before the end of the Early Middle Ages (2 dated dykes), between Bou and Orléans cities. During historical periods, we suggest 2 main thresholds concerning socio-environmental interactions: the first one during the Early Middle Ages (turcies: small scattered dykes), the second during the Modern Period (levees: high quasi-continuous dykes).

  10. Geomorphology, tectonics, and exploration

    NASA Technical Reports Server (NTRS)

    Sabins, F. F., Jr.

    1985-01-01

    Explorationists interpret satellite images for tectonic features and patterns that may be clues to mineral and energy deposits. The tectonic features of interest range in scale from regional (sedimentary basins, fold belts) to local (faults, fractures) and are generally expressed as geomorphic features in remote sensing images. Explorationists typically employ classic concepts of geomorphology and landform analysis for their interpretations, which leads to the question - Are there new and evolving concepts in geomorphology that may be applicable to tectonic analyses of images?

  11. Geomorphological diversity of Dong-Sha Atoll based on spectrum and texture analysis in high resolution remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Chen, Jianyu; Mao, Zhihua; He, Xianqiang

    2009-01-01

    Coral reefs are complex marine ecosystems that are constructed and maintained by biological communities that thrive in tropical oceans. The Dong-Sha Atoll is located at the northern continental margin of the South China Sea. It has being abused by destructive activity of human being and natural event during recent decades. Remote sensing offers a powerful tool for studying coral reef geomorphology and is the most cost-effective approach for large-scale reef survey. In this paper, the high-resolution Quickbird2 imageries which covered the full atoll are used to categorize the current distribution of coral reefs geomorphological structure therein with the auxiliary SPOT5 and ASTER imageries. Spectral and texture analysis are used to distinguish the geomorphological diversity during data processing. The Gray Level Co-occurrence Matrices is adopted for texture feature extraction and atoll geomorphology mapping in the high-resolution pan-color image of Quickbird2. Quickbird2 is considered as the most appropriate image source for coral reefs studies. In the Dong-Sha Atoll, various dynamical geomorphologic units are developed according to wave energy zones. There the reef frame types are classified to 3 different types according as its diversity at the image. The radial structure system is the most characteristic and from high resolution imagery we can distinguish the discrepancy between them.

  12. Geomorphologic flood-hazard assessment of alluvial fans and piedmonts

    USGS Publications Warehouse

    Field, J.J.; Pearthree, P.A.

    1997-01-01

    Geomorphologic studies are an excellent means of flood-hazard assessment on alluvial fans and piedmonts in the southwestern United States. Inactive, flood-free, alluvial fans display well developed soils, desert pavement, rock varnish, and tributary drainage networks. These areas are easily distinguished from flood-prone active alluvial fans on aerial photographs and in the field. The distribution of flood-prone areas associated with alluvial fans is strongly controlled by fanhead trenches dissecting the surface. Where fanhead trenches are permanent features cut in response to long-term conditions such as tectonic quiescence, flood-prone surfaces are situated down-slope from the mountain front and their positions are stable for thousands of years. Since the length and permanency of fanhead trenches can vary greatly between adjacent drainages, it is not appropriate to use regional generalizations to evaluate the distribution and stability of flood-hazard zones. Site-specific geomorphologic studies must be carried out if piedmont areas with a high risk of flooding are to be correctly identified and losses due to alluvial-fan flooding minimized. To meet the growing demand for trained professionals to complete geomorphologic maps of desert piedmonts, undergraduate and graduate geomorphology courses should adopt an instructional unit on alluvial-fan flood hazards that includes: 1) a review of geomorphologic characteristics that vary with surface age; 2) a basic mapping exercise; and 3) a discussion of the causes of fanhead trenching.

  13. Cambrian to Devonian evolution of alluvial systems: The sedimentological impact of the earliest land plants

    NASA Astrophysics Data System (ADS)

    Davies, Neil S.; Gibling, Martin R.

    2010-02-01

    In present-day alluvial environments, the impact of vegetation on sedimentological processes and deposits is well known. A vegetated catchment may decrease sediment yield, sediment erodibility, Hortonian overland flow, aeolian winnowing of fines, the proportion of sediment transported as bedload, and may increase bank stability, infiltration into substrates, and bed roughness. Vegetation also promotes the production of chemically-weathered clays and soils and the adoption of a meandering style. It is generally understood that, prior to the evolution of terrestrial vegetation during the Early Palaeozoic, ancient alluvial systems were markedly different from modern systems, with many systems adopting a "sheet-braided" style. This understanding has previously informed the interpretations of many Precambrian pre-vegetation alluvial successions, but there has been relatively little work regarding Early Palaeozoic alluvial successions laid down prior to and during the initial colonization of the Earth's surface by plants. A comprehensive review of 144 Cambrian to Devonian alluvial successions documented in published literature was combined with original field data from 34 alluvial successions across Europe and North America. The study was designed to identify changes in alluvial style during the period that vegetation was evolving and first colonizing alluvial environments. An increase in mudrock proportion and sandstone maturity is apparent, along with a decrease in overall sand grain size through the Early Palaeozoic. These trends suggest that primitive vegetation cover promoted the production and preservation of muds from the mid Ordovician onwards and increased the residence time of sand-grade sediment in alluvial systems. The compilation also enables the first stratigraphic occurrence of certain vegetation-dependent sedimentary features to be pinpointed and related to the evolution of specific palaeobotanical adaptations. The first markedly heterolithic alluvial sequences appeared at about the same time as the most primitive terrestrial vegetation in the Ordovician, and prolific pedogenic calcite, charcoal and bioturbated floodplain fines first appeared in the rock record at about the same time as vascular-plant macrofossils became abundant in the late Silurian. Lateral accretion sets in channel deposits appeared near the Silurian-Devonian boundary, at or shortly before the appearance of underground rooting systems, and become progressively more abundant in the record during the Devonian, implying a major expansion of meandering rivers as rooted plants stabilized river banks. Coals become abundant after the development of plant arborescence. The analysis suggests that the evolution of embryophytes had a profound effect on fluvial processes and deposits, and this period of landscape evolution must be considered amongst the most significant environmental and geomorphological changes in Earth history, with profound consequences for all aspects of the Earth system.

  14. Sedimentology and chronology of the advance and retreat of the last British-Irish Ice Sheet on the continental shelf west of Ireland

    NASA Astrophysics Data System (ADS)

    Peters, Jared L.; Benetti, Sara; Dunlop, Paul; Ó Cofaigh, Colm; Moreton, Steven G.; Wheeler, Andrew J.; Clark, Christopher D.

    2016-05-01

    The last British-Irish Ice Sheet (BIIS) had extensive marine-terminating margins and was drained by multiple large ice streams and is thus a useful analogue for marine-based areas of modern ice sheets. However, despite recent advances from investigating the offshore record of the BIIS, the dynamic history of its marine margins, which would have been sensitive to external forcing(s), remain inadequately understood. This study is the first reconstruction of the retreat dynamics and chronology of the western, marine-terminating, margin of the last (Late Midlandian) BIIS. Analyses of shelf geomorphology and core sedimentology and chronology enable a reconstruction of the Late Midlandian history of the BIIS west of Ireland, from initial advance to final retreat onshore. Five AMS radiocarbon dates from marine cores constrain the timing of retreat and associated readvances during deglaciation. The BIIS advanced without streaming or surging, depositing a bed of highly consolidated subglacial traction till, and reached to within ∼20 km of the shelf break by ∼24,000 Cal BP. Ice margin retreat was likely preceded by thinning, grounding zone retreat and ice shelf formation on the outer shelf by ∼22,000 Cal BP. This ice shelf persisted for ≤2500 years, while retreating at a minimum rate of ∼24 m/yr and buttressing a >150-km long, 20-km wide, bathymetrically-controlled grounding zone. A large (∼150 km long), arcuate, flat-topped grounding-zone wedge, termed here the Galway Lobe Grounding-Zone Wedge (GLGZW), was deposited below this ice shelf and records a significant stillstand in BIIS retreat. Geomorphic relationships indicate that the BIIS experienced continued thinning during its retreat across the shelf, which led to increased topographic influence on its flow dynamics following ice shelf break up and grounding zone retreat past the GLGZW. At this stage of retreat the western BIIS was comprised of several discrete, asynchronous lobes that underwent several readvances. Sedimentary evidence of dilatant till deposition suggests that the readvances may have been rapid and possibly associated with ice streaming or surging. The largest lobe extended offshore from Galway Bay and deposited the Galway Lobe Readvance Moraine by <18,500 Cal BP. Further to the north, an ice lobe readvanced at least 50 km offshore from Killary Harbour, possibly by ≤15,100 Cal BP. The existing chronology currently does not allow us to determine conclusively whether these readvances were a glaciodynamic (internally-driven) response of the ice sheet during deglaciation or were climatically-driven. Following the <18,500 Cal BP readvance, the Galway Lobe experienced accelerated eastward retreat at an estimated rate of ∼113 m/yr.

  15. Using Miniature Landforms in Teaching Geomorphology.

    ERIC Educational Resources Information Center

    Petersen, James F.

    1986-01-01

    This paper explores the uses of true landform miniatures and small-scale analogues and suggests ways to teach geomorphological concepts using small-scale relief features as illustrative examples. (JDH)

  16. Late Quaternary high resolution micropaleontological and sedimentological records in the Gulf of Cadiz.

    NASA Astrophysics Data System (ADS)

    Balestra, B.; Ducassou, E.; Zarikian, C.; Bout-Roumazeilles, V.; Flores, J. A.; Paytan, A.

    2017-12-01

    We present preliminary micropaleontological and sedimentological data from IODP Site U1390 (Expedition 339), located in the central middle slope of the Gulf of Cadiz, since the last glaciation. This site has been targeted for reconstruction of regional paleo-circulation as it shows particularly high sedimentation rates, throughout the Holocene and the Last Glacial Maximum (LGM). We use micropaleontological and sedimentological proxies to understand the bottom current variations through time and the ecological conditions at the sea surface (planktonic foraminifer, pteropod and nannofossil assemblages), and the sea bottom (ostracod assemblages). Eleven samples, chosen at transitions of planktonic foraminifer assemblages, have been dated by AMS radiocarbon analyses. Preliminary results from benthic ostracod assemblages show variations in bottom water ventilation and food supply. Planktonic foraminifer assemblages clearly show the well-known cold events of this period such as the Younger Dryas and Heinrich stadial associated to coarser sediment, and warmer phases such as the Bölling-Allerød associated to muddy sediment. Other bio-events within the Holocene period are also recorded. The preservation of the coccolithophore assemblages is good to moderate. Coccolith abundances (expressed in coccoliths/gr of sediment) show higher values during the Holocene and generally are like assemblages previously reported for the same area. Implications for characterization of the Holocene, the last termination and LGM ecological conditions at high resolution and their potential fluctuations (i.e. amplitude and magnitude) under the influence of the lower core of the Mediterranean Outflow Water (MOW), with this multi proxy approach based on sedimentological, and paleontological data will be discussed.

  17. Habitat Hydrology and Geomorphology Control the Distribution of Malaria Vector Larvae in Rural Africa

    PubMed Central

    Hardy, Andrew J.; Gamarra, Javier G. P.; Cross, Dónall E.; Macklin, Mark G.; Smith, Mark W.; Kihonda, Japhet; Killeen, Gerry F.; Ling’ala, George N.; Thomas, Chris J.

    2013-01-01

    Background Larval source management is a promising component of integrated malaria control and elimination. This requires development of a framework to target productive locations through process-based understanding of habitat hydrology and geomorphology. Methods We conducted the first catchment scale study of fine resolution spatial and temporal variation in Anopheles habitat and productivity in relation to rainfall, hydrology and geomorphology for a high malaria transmission area of Tanzania. Results Monthly aggregates of rainfall, river stage and water table were not significantly related to the abundance of vector larvae. However, these metrics showed strong explanatory power to predict mosquito larval abundances after stratification by water body type, with a clear seasonal trend for each, defined on the basis of its geomorphological setting and origin. Conclusion Hydrological and geomorphological processes governing the availability and productivity of Anopheles breeding habitat need to be understood at the local scale for which larval source management is implemented in order to effectively target larval source interventions. Mapping and monitoring these processes is a well-established practice providing a tractable way forward for developing important malaria management tools. PMID:24312606

  18. Habitat hydrology and geomorphology control the distribution of malaria vector larvae in rural Africa.

    PubMed

    Hardy, Andrew J; Gamarra, Javier G P; Cross, Dónall E; Macklin, Mark G; Smith, Mark W; Kihonda, Japhet; Killeen, Gerry F; Ling'ala, George N; Thomas, Chris J

    2013-01-01

    Larval source management is a promising component of integrated malaria control and elimination. This requires development of a framework to target productive locations through process-based understanding of habitat hydrology and geomorphology. We conducted the first catchment scale study of fine resolution spatial and temporal variation in Anopheles habitat and productivity in relation to rainfall, hydrology and geomorphology for a high malaria transmission area of Tanzania. Monthly aggregates of rainfall, river stage and water table were not significantly related to the abundance of vector larvae. However, these metrics showed strong explanatory power to predict mosquito larval abundances after stratification by water body type, with a clear seasonal trend for each, defined on the basis of its geomorphological setting and origin. Hydrological and geomorphological processes governing the availability and productivity of Anopheles breeding habitat need to be understood at the local scale for which larval source management is implemented in order to effectively target larval source interventions. Mapping and monitoring these processes is a well-established practice providing a tractable way forward for developing important malaria management tools.

  19. Geomorphology and reflectance patterns of vegetation-covered dunes at the Tsodilo Hills, north-west Botswana

    NASA Technical Reports Server (NTRS)

    Jacobberger, P. A.; Hooper, D. M.

    1991-01-01

    Seasonal reflectance variations in semigrid environments provide a means of assessing vegetation health and density as well as monitoring landform processes. Multitemporal Landsat Thematic Mapper scenes with field measurements are used to map geomorphology and vegetation density in a stabilized dune environment and to measure seasonal reflectance changes for a series of ten geomorphological and vegetation units on the Kalahari-age linear dunes. Units were chosen based on differences in landform and proportion of trees, forbs and bare soil. Reflectance curves and normalized-difference vegetation indices (NDVI) show that dune crests have the strongest seasonal variability in color and brightness. The geomorphological link with reflectance and NDVI values are linked to biomass production and zoning of vegetation with slope, drainage and subtle soil differences.

  20. The elevation and its distribution in geomorphological regions of the European Russia

    NASA Astrophysics Data System (ADS)

    Kharchenko, S. V.; Ermolaev, O. P.; Mukharamova, S. S.

    2018-01-01

    Spatial differences of elevation were analysed by side of view of geomorphological boundaries on the European Russia territory. Geomorphological pattern of the studied territory was taken from Geomorphological Map of the USSR at scale of 1: 2 500 000. There 2401 fragments for combinations of 58 types of structural landforms and 22 types of sculptural landforms were allocated. The elevation values computed by digital elevation model (cell size - 200 m, number of cells - 322M) based on SRTM (south of 60 nl.) and GDEM 2010 (north of 60 nl.) resampled data. It was founded that some types of structural (16 types) and sculptural (6 types) landforms located in the relatively thin intervals of elevation. Using of elevation above sea level is needed for effective automatic recognizing these landform regions.

  1. Study on the application of seismic sedimentology in a stratigraphic-lithologic reservoir in central Junggar Basin

    NASA Astrophysics Data System (ADS)

    Yu, Yixin; Xia, Zhongmou

    2017-06-01

    This paper discusses the research idea of description for stratigraphic-lithologic reservoir based on seismic sedimentology methods. The sandstone reservoir of Jurrassic XiShanyao Formation in Junggar Basin is studied according to the theory and approaches of seismic sedimentology. By making full use of borehole data, the technologies of layer correlation based on the stratigraphic sequence framework, the forward seismic modeling, the stratal slicing and lithologic inversion are applied. It describes the range of denudation line, the distribution characteristics of sedimentary facies of the strata, the vertical and horizontal distribution of sand bodies and the favourable oil-gas bearing prospective area. The results shows that study area are dominated braided delta deposition including underwater distributary channel and distributary bay microfacies, the nip-out lines of the formation are northeast to southwest from north to south, the second Middle Jurassic sand body is the most widely distributed one among three sand bodies, the prospective oil-gas bearing area located in the south part and around the YG2 well area. The study result is effective on the practice of exploration in study area.

  2. Sedimentology and paleoecology of an Eocene Oligocene alluvial lacustrine arid system, Southern Mexico

    NASA Astrophysics Data System (ADS)

    Beraldi-Campesi, Hugo; Cevallos-Ferriz, Sergio R. S.; Centeno-García, Elena; Arenas-Abad, Concepción; Fernández, Luis Pedro

    2006-10-01

    A depositional model of the Eocene-Oligocene Coatzingo Formation in Tepexi de Rodríguez (Puebla, Mexico) is proposed, based on facies analysis of one of the best-preserved sections, the Axamilpa Section. The sedimentary evolution is interpreted as the retrogradation of an alluvial system, followed by the progressive expansion of an alkaline lake system, with deltaic, palustrine, and evaporitic environments. The analysis suggests a change towards more arid conditions with time. Fossils from this region, such as fossil tracks of artiodactyls, aquatic birds and cat-like mammals, suggest that these animals traversed the area, ostracods populated the lake waters, and plants grew on incipient soils and riparian environments many times throughout the history of the basin. The inferred habitat for some fossil plants coincides with the sedimentological interpretation of an arid to semiarid climate for that epoch. This combined sedimentological-paleontological study of the Axamilpa Section provides an environmental context in which fossils can be placed and brings into attention important biotic episodes, like bird and camelid migrations or the origin of endemic but extinct plants in this area.

  3. Selected contributions from the 9th International Conference on Tidal Sedimentology, November 2015, Puerto Madryn, Patagonia, Argentina: an introduction

    NASA Astrophysics Data System (ADS)

    Scasso, Roberto A.; Cuitiño, José I.

    2017-08-01

    This special issue of Geo-Marine Letters presents selected contributions from the 9th International Conference on Tidal Sedimentology held on 17-19 November 2015 in Puerto Madryn, Chubut Province, Patagonia, Argentina. The guest editors are the conference organizers Roberto A. Scasso and José I. Cuitiño. Gerardo M. Perillo was the head of the Scientific Committee. The conferences on tidal sedimentology have been traditionally held every 4 years. However, only 3 years separated the last conference held in Caen (France, 2012) from this conference. Increasing numbers of contributions and the growing interest in tidal sedimentation have been the reasons for shortening the inter-conference period. The 2015 conference served as a discussion forum focusing on advances in modern and ancient tidal sedimentation at different locations worldwide. The papers presented in this Special Issue provide a selective view of the latest research results, the main topics dealing with tidal hydrodynamics and sediment transport, tidal coastal morphodynamics, modern and ancient tidal sedimentation, geotechnical processes in tidal environments, and tidal basins, facies and reservoirs.

  4. Stream Tables and Watershed Geomorphology Education.

    ERIC Educational Resources Information Center

    Lillquist, Karl D.; Kinner, Patricia W.

    2002-01-01

    Reviews copious stream tables and provides a watershed approach to stream table exercises. Results suggest that this approach to learning the concepts of fluvial geomorphology is effective. (Contains 39 references.) (DDR)

  5. Integrating soils and geomorphology in mountains - An example from the Front Range of Colorado

    USGS Publications Warehouse

    Birkeland, P.W.; Shroba, R.R.; Burns, S.F.; Price, A.B.; Tonkin, P.J.

    2003-01-01

    Soil distribution in high mountains reflects the impact of several soil-forming factors. Soil geomorphologists use key pedological properties to estimate ages of Quaternary deposits of various depositional environments, estimate long-term stability and instability of landscapes, and make inferences on past climatic change. Once the influence of the soil-forming factors is known, soils can be used to help interpret some aspects of landscape evolution that otherwise might go undetected. The Front Range of Colorado rises from the plains of the Colorado Piedmont at about 1700 m past a widespread, dissected Tertiary erosion surface between 2300 and 2800 m up to an alpine Continental Divide at 3600 to over 4000 m. Pleistocene valley glaciers reached the western edge of the erosion surface. Parent rocks are broadly uniform (granitic and gneissic). Climate varies from 46 cm mean annual precipitation (MAP) and 11 ??C mean annual temperature (MAT) in the plains to 102 cm and -4 ??C, respectively, near the range crest. Vegetation follows climate with grassland in the plains, forest in the mountains, and tundra above 3450 m. Soils reflect the bioclimatic transect from plains to divide: A/Bw or Bt/Bk or K (grassland) to A/E/Bw or Bt/C (forest) to A/Bw/C (tundra). Corresponding soil pH values decrease from 8 to less than 5 with increasing elevation. The pedogenic clay minerals dominant in each major vegetation zone are: smectite (grassland), vermiculite (forest), and 1.0-1.8 nm mixed-layer clays (tundra). Within the lower forested zone, the topographic factor (aspect) results in more leached, colder soils, with relatively thin O horizons, well-expressed E horizons and Bt horizons (Alfisols) on N-facing slopes, whereas soils with thicker A horizons, less developed or no E horizons, and Bw or Bt horizons (Mollisols) are more common on S-facing slopes. The topographic factor in the tundra results in soil patterns as a consequence of wind-redistributed snow and the amount of time it lingers on the landscape. An important parent material factor is airborne dust, which results in fine-grained surface horizons and, if infiltrated, contributes to clay accumulation in some Bt horizons. The time factor is evaluated by soil chronosequence studies of Quaternary deposits in tundra, upper forest, and plains grassland. Few soils in the study area are >10,000 years old in the tundra, >100,000 years old in the forest, and >2 million years old in the grassland. Stages of granite weathering vary with distance from the Continental Divide and the best developed is grus near the sedimentary/granitic rock contact just west of the mountain front. Grus takes a minimum of 100,000 years to form. Some of the relations indicated by the soil map patterns are: (1) parts of the erosion surface have been stable for 100,000 years or more; (2) development of grus near the mountain front could be due in part to pre-Pennsylvanian weathering; (3) a few soil properties reflect Quaternary paleoclimate; and (4) a correlation between soil development in the canyons and stream incision rates. ?? 2003 Elsevier Science B.V. All rights reserved.

  6. Development of a transient, lumped hydrologic model for geomorphologic units in a geomorphology based rainfall-runoff modelling framework

    NASA Astrophysics Data System (ADS)

    Vannametee, E.; Karssenberg, D.; Hendriks, M. R.; de Jong, S. M.; Bierkens, M. F. P.

    2010-05-01

    We propose a modelling framework for distributed hydrological modelling of 103-105 km2 catchments by discretizing the catchment in geomorphologic units. Each of these units is modelled using a lumped model representative for the processes in the unit. Here, we focus on the development and parameterization of this lumped model as a component of our framework. The development of the lumped model requires rainfall-runoff data for an extensive set of geomorphological units. Because such large observational data sets do not exist, we create artificial data. With a high-resolution, physically-based, rainfall-runoff model, we create artificial rainfall events and resulting hydrographs for an extensive set of different geomorphological units. This data set is used to identify the lumped model of geomorphologic units. The advantage of this approach is that it results in a lumped model with a physical basis, with representative parameters that can be derived from point-scale measurable physical parameters. The approach starts with the development of the high-resolution rainfall-runoff model that generates an artificial discharge dataset from rainfall inputs as a surrogate of a real-world dataset. The model is run for approximately 105 scenarios that describe different characteristics of rainfall, properties of the geomorphologic units (i.e. slope gradient, unit length and regolith properties), antecedent moisture conditions and flow patterns. For each scenario-run, the results of the high-resolution model (i.e. runoff and state variables) at selected simulation time steps are stored in a database. The second step is to develop the lumped model of a geomorphological unit. This forward model consists of a set of simple equations that calculate Hortonian runoff and state variables of the geomorphologic unit over time. The lumped model contains only three parameters: a ponding factor, a linear reservoir parameter, and a lag time. The model is capable of giving an appropriate representation of the transient rainfall-runoff relations that exist in the artificial data set generated with the high-resolution model. The third step is to find the values of empirical parameters in the lumped forward model using the artificial dataset. For each scenario of the high-resolution model run, a set of lumped model parameters is determined with a fitting method using the corresponding time series of state variables and outputs retrieved from the database. Thus, the parameters in the lumped model can be estimated by using the artificial data set. The fourth step is to develop an approach to assign lumped model parameters based upon the properties of the geomorphological unit. This is done by finding relationships between the measurable physical properties of geomorphologic units (i.e. slope gradient, unit length, and regolith properties) and the lumped forward model parameters using multiple regression techniques. In this way, a set of lumped forward model parameters can be estimated as a function of morphology and physical properties of the geomorphologic units. The lumped forward model can then be applied to different geomorphologic units. Finally, the performance of the lumped forward model is evaluated; the outputs of the lumped forward model are compared with the results of the high-resolution model. Our results show that the lumped forward model gives the best estimates of total discharge volumes and peak discharges when rain intensities are not significantly larger than the infiltration capacities of the units and when the units are small with a flat gradient. Hydrograph shapes are fairly well reproduced for most cases except for flat and elongated units with large runoff volumes. The results of this study provide a first step towards developing low-dimensional models for large ungauged basins.

  7. The geology, botany and chemistry of selected peat-forming environments from temperate and tropical latitudes

    USGS Publications Warehouse

    Cameron, C.C.; Esterle, J.S.; Palmer, C.A.

    1989-01-01

    Peat has been studied in several geologic settings: (1) glaciated terrain in cold temperate Maine and Minnesota, U.S.A.; (2) an island in the Atlantic Ocean off the coast of Maine, where sea level is rising; (3) the warm temperate U.S. Atlantic and Gulf Coastal Plains, where sea level has changed often; and (4) the tropical coast of Sarawak, Malaysia, and the tropical delta of the Batang Hari River, Sumatra, Indonesia. Most of these deposits are domed (ombrotrophic or partly ombrotrophic) bogs in which peat accumulation continued above the surface of the surrounding soil. However, the bogs of the U.S. Atlantic and Gulf Coastal Plains are comparatively not as domed, and many have almost level surfaces. In some bogs, aquatic or semi-aquatic plant materials accumulated, replaced water in the depressions, and formed a surface on which marsh or swamp vegetation could subsequently live, die, and accumulate. In others, the plant materials accumulated initially on level silt or sand surfaces supporting marshes or swamps. As the peat dome formed, plants growing on it changed from luxuriant ones near the base of the dome, where nutrients were brought into the bog by surface and ground water, to stunted ones at the top of the dome, where the raised bogs are fed by nutrient-poor precipitation. The physical and chemical changes that take place in the sequence of environments from the pond stage of deposit development, through the grassy marsh stage, through the forested swamp stage, and finally through the heath dome stage can be measured in terms of acidity and ash, volatile matter, carbon, hydrogen, nitrogen, sulfur and oxygen contents, as well as in the kind and distribution of trace elements. The organic and inorganic contents of the deposits relate to geomorphology, and geomorphology relates to their settings. As models of coal formation, some domed peat deposits may help in solving problems of distribution and character of ancient coal beds. But clearly not all peat deposits are precursors of coal. Most Holocene peat deposits are subject to destruction by erosion, fire and decomposition through microbial and chemical oxidation before burial. The best environments for coal precursors have biomass accumulation, a continuously rising water table within the mass, and minimum influx of clay and silt until preservation by burial. The most suitable settings for future economic coal deposits are domed bogs that accumulate thick, widespread peat having low ash and low sulfur contents. The ombrotrophic peat deposits of tropical Sarawak and Sumatra are thick and extensive, contain low-ash and low-sulfur peat, and have high heating values. They are considered to be the best tropical coal analogs because of their extent and chances of preservation; the base of the peat is below adjacent river levels, and chemical and structural conditions are favorable for accumulation. ?? 1989.

  8. The Pinjaur dun (intermontane longitudinal valley) and associated active mountain fronts, NW Himalaya: Tectonic geomorphology and morphotectonic evolution

    NASA Astrophysics Data System (ADS)

    Singh, Vimal; Tandon, S. K.

    2008-12-01

    The Himalayan orogenic belt, formed as a result of collision tectonic processes, shows abundant evidence of neotectonic activity, active tectonics, and the occurrence of historical earthquakes. Its frontal deformation zone is characterized, in some segments, by intermontane longitudinal valleys (duns). Such frontal segments of the Himalaya are marked by the occurrence of multiple mountain fronts. In one such segment of the foothills of the NW Himalaya, the Pinjaur dun is developed and marked by three mountain fronts: MF1A and MF1B associated with the southernmost Himalayan Frontal Thrust (HFT), MF2 associated with the Sirsa fault, and MF3 associated with the Barsar thrust along the southern margin of the relatively higher main part of the sub-Himalaya. Geomorphic responses to the tectonic activity of these and related structural features have been analyzed through the use of geomorphic indices, drainage density, stream longitudinal profiles, drainage anomalies, and hypsometric analysis. Also, fault and fold growth and their expression on landform development was studied using a combination of surface profiles and field observations. The values of valley floor width to height ratio ( Vf) for valleys associated with MF1 ranged between 0.07 and 0.74, and for valleys associated with MF2 ranged from 1.02-5.12. Vf for the four major valleys associated with MF1B ranged from 1.1-1.7. The asymmetry factor for 26 drainage basins related to MF1A indicate these have developed under the influence of a transverse structure. These results taken together with those obtained from the Hack profiles and SL index values, hypsometry, drainage density, and drainage anomalies suggest that the faults associated with the mountain fronts and related structures are active. Active tectonics and neotectonic activity have led to the formation of four surfaces in the Pinjaur dun. In addition, an important drainage divide separating the Sirsa and Jhajara drainage networks also developed in the intermontane valley. Surface profile analysis helped in deciphering the growth history of the fault bend fold structures of the outermost Siwalik hills. The effects of tectonic activity on the proximal part of the Indo-Gangetic plains are interpreted from the remarkable river deflections that are aligned linearly over tens of kilometers in a zone about 10 km south of the HFT. Based on these integrated structural and tectonic geomorphological approaches, a morphotectonic evolutionary model of the dun has been proposed. This model highlights the role of uplift and growth history of the fault bend fold structures of the outermost Siwalik hills on (i) the depositional landforms and drainage development of the Pinjaur dun, and (ii) valley development of the outermost Siwalik hills. Importantly, this study postulates the formation of an incipient mountain front that is evolving ahead of the HFT and the outermost Siwalik hills in the Indo-Gangetic plains.

  9. Intrusive origin of the Sudbury Igneous Complex: Structural and sedimentological evidence

    NASA Technical Reports Server (NTRS)

    Cowan, E. J.; Schwerdtner, W. M.

    1992-01-01

    In recent years, many geoscientists have come to believe that the Sudbury event was exogenic rather than endogenic. Critical to a recent exogenic hypothesis is the impact melt origin of the Sudbury Igneous Complex (SIC). Such origin implies that the SIC was emplaced before deposition of the Whitewater Group, in contrast to origins in which the SIC postdates the lithification of the Onaping Formation. Structural and sedimentological evidence is summarized herein that supports an intrusion of the SIC after lithification of all Whitewater Group strata, and conflicts with the hypothesis advanced by other researchers.

  10. Intensity of geomorphological processes in NW sector of Pacific rim marginal mountain belts

    NASA Astrophysics Data System (ADS)

    Lebedeva, Ekaterina; Shvarev, Sergey; Gotvansky, Veniamin

    2014-05-01

    Continental marginal mountains, including the mountain belts of Russian Far East, are characterized by supreme terrain contrast, mosaic structure of surface and crust, and rich complex of modern endogenous processes - volcanism, seismicity, and vertical movements. Unstable state of geomorphological systems and activity of relief forming processes here is caused also by deep dissected topography and the type and amount of precipitation. Human activities further stimulate natural processes and increase the risk of local disasters. So these territories have high intensity (or tension) of geomorphological processes. Intensity in the authors' understanding is willingness of geomorphological system to be out of balance, risk of disaster under external and internal agent, both natural and human. Mapping with quantitative accounting of intensity of natural and human potential impact is necessary for indication the areal distribution trends of geomorphological processes intensity and zones of potential risk of disasters. Methods of map drowning up are based on several criteria analyzing: 1) total terrain-form processes and their willingness to be a hazard-like, 2) existence, peculiarity and zoning of external agents which could cause extreme character of base processes within the territory, 3) peculiarity of terrain morphology which could cause hazard way of terrain-form processes. Seismic activity is one of the most important factors causing activation of geomorphological processes and contributing to the risk of dangerous situations. Earthquake even small force can provoke many catastrophic processes: landslides, mudslides, avalanches and mudflows, tsunami and others. Seismic gravitational phenomenons of different scale accompany almost all earthquakes of intensity 7-8 points and above, and some processes, such as avalanches, activated by seismic shocks intensity about 1-3 points. In this regard, we consider it important selection of high intensity seismic zones in marginal-continental mountain systems and also offer to give them extra points of tension, the number of which increases depending on the strength of the shock. Such approach allows to identify clearly the most potentially hazardous areas where there may be various, sometimes unpredictable scale catastrophic processes, provoked intense underground tremors. We also consider the impact of the depth of topography dissection and the total amount of precipitation. The marginal-continental mountain systems have often radically different moistening of coastal and inland slopes. And this difference can be 500, 1000 mm and more, that, undoubtedly, affects the course and intensity of geomorphological processes on slopes of different exposures. The total evaluation of intensity of geomorphologic processes exceeding 15 points is considered to be potentially catastrophic. At 10-15 points tension geomorphologic processes is extremely high, and at 5-10 points - high, less than 5 points - low. The maps of the key areas of the Russian Far East - Kamchatka and the north of Kuril Islands, Sakhalin and the Western Okhotsk region were compiled. These areas have differences in geodynamic regimes, landscape-climatic and anthropogenic conditions and highly significant in relation to the differentiated estimation of geomorphologic tension. The growth of intensity of geomorphological processes toward the Pacific Ocean was recorded: from 7-10 points in Western Okhotsk region to 10-13 at Sakhalin and to 13-15 points for Kamchatka.

  11. Mineralogy of Mudstone at Gale Crater, Mars: Evidence for Dynamic Lacustrine Environments

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Ming, D. W.; Grotzinger, J. P.; Morris, R. V.; Blake, D. F.; Vaniman, D. T.; Bristow, T. F.; Yen, A. S.; Chipera, S. J.; Morrison, S. M.; hide

    2016-01-01

    The Mars Science Laboratory Curiosity rover landed in Gale crater in August 2012 to assess the habitability of sedimentary deposits that show orbital evidence for diverse ancient aqueous environments. Gale crater contains a 5 km high mound of layered sedimentary rocks in its center, informally named Mount Sharp. The lowermost rocks of Mount Sharp contain minerals that are consistent with a dramatic climate change during Mars' early history. During the rover's traverse across the Gale crater plains to the base of Mount Sharp, Curiosity discovered sedimentary rocks consistent with a fluviolacustrine sequence. Curiosity studied ancient lacustrine deposits at Yellowknife Bay on the plains of Gale crater and continues to study ancient lacustrine deposits in the Murray formation, the lowermost unit of Mount Sharp. These investigations include drilling into the mudstone and delivering the sieved less than 150 micrometers fraction to the CheMin XRD/XRF instrument inside the rover. Rietveld refinement of XRD patterns measured by CheMin generates mineral abundances with a detection limit of 1-2 wt.% and refined unit-cell parameters of minerals present in abundances greater than approximately 5 wt.%. FULLPAT analyses of CheMin XRD patterns provide the abundance of X-ray amorphous materials and constrain the identity of these phases (e.g., opal-A vs. opal-CT). At the time of writing, CheMin has analyzed 14 samples, seven of which were drilled from lacustrine deposits. The mineralogy from CheMin, combined with in-situ geochemical measurements and sedimentological observations, suggest an evolution in the lake waters through time, including changes in pH and salinity and transitions between oxic and anoxic conditions. In addition to a geochemically dynamic lake environment, the igneous minerals discovered in the lake sediments indicate changes in source region through time, with input from mafic and silicic igneous sources. The Murray formation is predominantly comprised of lacustrine mudstone and is 150-200 m thick, suggesting long history of lake environments in Gale crater. Curiosity has traversed through the lowermost approximately 30 m of the Murray formation, and each additional sample provides clues about the climate on early Mars.

  12. Geomorphology

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The study of geomorphology and terrain analysis using TM and MSS data are discussed. The spatial and spectral characteristics of a variety of landforms are also investigated. An outline of possible experiments and a summary of data requirements are included.

  13. Geomorphology in North American Geology Departments, 1971

    ERIC Educational Resources Information Center

    White, Sidney E.; Malcolm, Marshall D.

    1972-01-01

    Presents results of a 1970-71 survey of 350 geomorphologists and geology departments to determine what sort of geomorphology is being taught in the colleges and universities of the United States and Canada. (PR)

  14. Bio-geomorphology and resilience thinking: Common ground and challenges

    NASA Astrophysics Data System (ADS)

    Thoms, Martin C.; Meitzen, Kimberly M.; Julian, Jason P.; Butler, David R.

    2018-03-01

    Geomorphology plays a fundamental role in shaping and maintaining landscapes, as well as influencing the social and ecological systems that occupy and utilize these landscapes. In turn, social-ecological systems can have a profound influence on geomorphic forms and processes. These interactions highlight the tightly coupled nature of geomorphic systems. Over the past decade, there has been a proliferation of research at the interface of geomorphology and resilience thinking, and the 2017 Binghamton Symposium brought together leading researchers from both communities to address mutual concerns and challenges of these two disciplines. This paper reviews some of the key intersections between the disciplines of bio-geomorphology and resilience thinking, and the papers presented at the symposium. The papers in this volume illustrate the current status of the disciplines, the difficulties in bridging the disciplines, and the issues that are emerging as research priorities.

  15. Introduction to the special issue: permafrost and periglacial research from coasts to mountains

    NASA Astrophysics Data System (ADS)

    Schrott, Lothar; Humlum, Ole

    2017-09-01

    This special issue of Geomorphology includes eleven papers dealing with permafrost and periglacial research from coasts to mountains. The compilation represents a selection from 47 presentations (oral and posters) given at the 4th European Conference on Permafrost - IPA Regional Conference (EUCOP4, June 2014) in the session ;Periglacial Geomorphology;. Geomorphology as a leading journal for our discipline is particularly suitable to publish advances in permafrost and periglacial research with a focus on geomorphic processes. Since 1989 Geomorphology has published 121 special issues and two special issues are explicitly dedicated to permafrost and periglacial research, however, only with a focus on research in Antarctica. In this special issue we present papers from the Canadian Beaufort Sea, Alaska, Spitzbergen, central western Poland, the European Alps, the eastern Sudetes, the southern Carpathians, Nepal, and Antarctica.

  16. Geological and seismological survey for new design-basis earthquake ground motion of Kashiwazaki-Kariwa NPS

    NASA Astrophysics Data System (ADS)

    Takao, M.; Mizutani, H.

    2009-05-01

    At about 10:13 on July 16, 2007, a strong earthquake named 'Niigata-ken Chuetsu-oki Earthquake' of Mj6.8 on Japan Meteorological Agencyfs scale occurred offshore Niigata prefecture in Japan. However, all of the nuclear reactors at Kashiwazaki-Kariwa Nuclear Power Station (KKNPS) in Niigata prefecture operated by Tokyo Electric Power Company shut down safely. In other words, automatic safety function composed of shutdown, cooling and containment worked as designed immediately after the earthquake. During the earthquake, the peak acceleration of the ground motion exceeded the design-basis ground motion (DBGM), but the force due to the earthquake applied to safety-significant facilities was about the same as or less than the design basis taken into account as static seismic force. In order to assess anew the safety of nuclear power plants, we have evaluated a new DBGM after conducting geomorphological, geological, geophysical, seismological survey and analyses. [Geomorphological, Geological and Geophysical survey] In the land area, aerial photograph interpretation was performed at least within the 30km radius to extract geographies that could possibly be tectonic reliefs as a geomorphological survey. After that, geological reconnaissance was conducted to confirm whether the extracted landforms are tectonic reliefs or not. Especially we carefully investigated Nagaoka Plain Western Boundary Fault Zone (NPWBFZ), which consists of Kakuda-Yahiko fault, Kihinomiya fault and Katakai fault, because NPWBFZ is the one of the active faults which have potential of Mj8 class in Japan. In addition to the geological survey, seismic reflection prospecting of approximate 120km in total length was completed to evaluate the geological structure of the faults and to assess the consecutiveness of the component faults of NPWBFZ. As a result of geomorphological, geological and geophysical surveys, we evaluated that the three component faults of NPWBFZ are independent to each other from the viewpoint of geological structure, however we have decided to take into consideration simultaneous movement of the three faults which is 91km long in seismic design as a case of uncertainty. In the sea area, we conducted seismic reflection prospecting with sonic wave in the area stretching for about 140km along the coastline and 50km in the direction of perpendicular to the coastline. When we analyze the seismic profiles, we evaluated the activities of faults and foldings carefully on the basis of the way of thinking of 'fault-related-fault' because the sedimentary layers in the offing of Niigata prefecture are very thick and the geological structures are characterized by foldings. As a result of the seismic reflection survey and analyses, we assess that five active faults (foldings) to be taken into consideration to seismic design in the sea area and we evaluated that the F-B fault of 36km will have the largest impact on the KKNPS. [Seismological survey] As a result of analyses of the geological survey, data from NCOE and data from 2004 Chuetsu Earthquake, it became clear that there are factors that intensifies seismic motions in this area. For each of the two selected earthquake sources, namely NPWBFZ and F-B fault, we calculated seismic ground motions on the free surface of the base stratum as the design-basis ground motion (DBGM) Ss, using both empirical and numerical ground motion evaluation method. PGA value of DBGM is 2,300Gal for unit 1 to 4 located in the southern part of the KKNPS and 1,050Gal for unit 5 to 7 in the northern part of the site.

  17. Spectral Clustering and Geomorphological Analysis on Mercury Hollows

    NASA Astrophysics Data System (ADS)

    Lucchetti, A.; Pajola, M.; Galluzzi, V.; Giacomini, L.; Carli, C.; Cremonese, G.; Marzo, G. A.; Massironi, M.; Roush, T.

    2018-05-01

    Characterization of hollows located in different craters to understand whether there is a similar trend from a compositional point of view, and whether a possible correlation exists between spectral behavior of hollows and geomorphological units.

  18. WATERSHED (SOUTHWESTERN OHIO)

    EPA Science Inventory

    We are evaluating the use of stream geomorphology and related measurements in the assessment and management of channel risks associated with stream impairment associated with clean sediments. The relationships between various geomorphological variables have been used by Rosgen a...

  19. Geomorphologic Map of Titan's Polar Terrains

    NASA Astrophysics Data System (ADS)

    Birch, S. P. D.; Hayes, A. G.; Malaska, M. J.; Lopes, R. M. C.; Schoenfeld, A.; Williams, D. A.

    2016-06-01

    Titan's lakes and seas contain vast amounts of information regarding the history and evolution of Saturn's largest moon. To understand this landscape, we created a geomorphologic map, and then used our map to develop an evolutionary model.

  20. Sedimentological and geophysical studies of clastic reservoir analogs: Methods, applications and developments of ground-penetrating radar for determination of reservoir geometries in near-surface settings. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMechan, G.A.; Soegaard, K.

    1998-05-25

    An integrated sedimentologic and GPR investigation has been carried out on a fluvial channel sandstone in the mid-Cretaceous Ferron Sandstone at Coyote Basin along the southwestern flank of the San Rafael Uplift in east-central Utah. This near-surface study, which covers a area of 40 {times} 16.5 meters to a depth of 15 meters, integrates detailed stratigraphic data from outcrop sections and facies maps with multi-frequency 3-D GPR surveys. The objectives of this investigation are two-fold: (1) to develop new ground-penetrating radar (GPR) technology for imaging shallow subsurface sandstone bodies, and (2) to construct an empirical three-dimensional sandstone reservoir model suitablemore » for hydrocarbon flow-simulation by imaging near-surface sandstone reservoir analogs with the use of GPR. The sedimentological data base consists of a geologic map of the survey area and a detailed facies map of the cliff face immediately adjacent to the survey area. Five vertical sections were measured along the cliff face adjacent to the survey area. In addition, four wells were cored within the survey area from which logs were recorded. In the sections and well logs primary sedimentary structures were documented along with textural information and permeability data. Gamma-ray profiles were also obtained for all sections and core logs. The sedimentologic and stratigraphic information serves as the basis from which much of the processing and interpretation of the GPR data was made. Three 3-D GPR data sets were collected over the survey area at frequencies of 50 MHZ, 100 MHZ, and 200 MHZ.« less

  1. Sedimentological Signatures of Transient Depositional Events in the Cariaco Basin, Venezuela

    NASA Astrophysics Data System (ADS)

    Elmore, A. C.; Thunell, R. C.; Black, D. E.; Murray, R. W.; Martinez, N. C.

    2004-12-01

    The varved sediments that have accumulated in the Cariaco Basin throughout the Holocene provide a detailed archive of the region's climatic history, and act as a historical record for the occurrence of phenomena such as earthquakes and coastal flooding. In this study we compare the sedimentological characteristics of lithogenic material collected from the water column during transient depositional events to those of normal hemipelagic sedimentation in the basin. Specifically, we have examined the clay mineralogy and grain size distribution of detrital material delivered to the basin by the July 9, 1997 earthquake near Cumana, Venezuela and the coastal flooding of Venezuela in late 1999. The sample material used in our study was collected as part of an ongoing sediment trap time series in the Cariaco Basin. The sedimentological signatures associated with these two events are distinctive from the typical lithogenic input to the basin. Preliminary data for biweekly samples collected from 1997-1999 shows a tri-modal particle size distribution, with peaks at 3, 22, and 80 im. However, material collected from the deep basin immediately following the 1997 earthquake is characterized by a particle diameter distribution at 6 and 22 im with a smaller than normal peak at 80 im; this variance suggests an alternate source of material was delivered to the basin via a turbidity flow induced by the earthquake. Supporting this theory, the clay mineralogy of the same sediment trap samples shows a higher than average ratio of kaolinite to quartz for sediments delivered to the basin following both the earthquake and flooding. We hope to extend the use of these sedimentological methods to identify past transient depositional events in Cariaco Basin cores.

  2. A 3D object-based model to simulate highly-heterogeneous, coarse, braided river deposits

    NASA Astrophysics Data System (ADS)

    Huber, E.; Huggenberger, P.; Caers, J.

    2016-12-01

    There is a critical need in hydrogeological modeling for geologically more realistic representation of the subsurface. Indeed, widely-used representations of the subsurface heterogeneity based on smooth basis functions such as cokriging or the pilot-point approach fail at reproducing the connectivity of high permeable geological structures that control subsurface solute transport. To realistically model the connectivity of high permeable structures of coarse, braided river deposits, multiple-point statistics and object-based models are promising alternatives. We therefore propose a new object-based model that, according to a sedimentological model, mimics the dominant processes of floodplain dynamics. Contrarily to existing models, this object-based model possesses the following properties: (1) it is consistent with field observations (outcrops, ground-penetrating radar data, etc.), (2) it allows different sedimentological dynamics to be modeled that result in different subsurface heterogeneity patterns, (3) it is light in memory and computationally fast, and (4) it can be conditioned to geophysical data. In this model, the main sedimentological elements (scour fills with open-framework-bimodal gravel cross-beds, gravel sheet deposits, open-framework and sand lenses) and their internal structures are described by geometrical objects. Several spatial distributions are proposed that allow to simulate the horizontal position of the objects on the floodplain as well as the net rate of sediment deposition. The model is grid-independent and any vertical section can be computed algebraically. Furthermore, model realizations can serve as training images for multiple-point statistics. The significance of this model is shown by its impact on the subsurface flow distribution that strongly depends on the sedimentological dynamics modeled. The code will be provided as a free and open-source R-package.

  3. Reconstructing conditions during dolomite formation on a Carnian coastal sabkha/alluvial plain using 87Sr/86Sr isotopes - Travenanzes Formation, northern Italy

    NASA Astrophysics Data System (ADS)

    Rieder, Maximilian; Wegner, Wencke; Horschinegg, Monika; Preto, Nereo; Breda, Anna; Klötzli, Urs; Peckmann, Jörn; Meister, Patrick

    2016-04-01

    The study of large amounts of dolomite that formed in the Triassic Tethyan realm is hampered by late diagenetic or hydrothermal overprint. These dolomites are difficult to link to past environmental and early diagenetic conditions, and their correlation to models for dolomite formation in modern environments is problematic. Preto et al. (2015) suggested, based on evidence from nano-scale structure analysis by transmission electron microscopy and petrographic observations, that dolomites in the Carnian Travenanzes Formation of the Southern Alps (Dolomites area) represent a preserved primary phase. The Travenanzes Formation was deposited in an extended alluvial plain or coastal sabkha environment subject to a semi-arid climate. Beds and nodules of nearly stoichiometric dolomite are embedded in large amounts of clay, which shielded early formed dolomite from diagenetic fluids. This finding of penecontemporaneous dolomite provides an ideal model case for reconstructing past environmental conditions at the time of dolomite precipitation. While Preto et al. (2015) argued that dolomite formation was mediated by extracellular polymeric substances produced by sulphate-reducing bacteria, it remains unclear whether precipitation occurred from evaporating seawater or mainly from brine derived from evaporating continental groundwater. Both cases exist in modern environments of dolomite formation. In the coastal sabkhas of Abu Dhabi and Qatar, dolomite precipitates from concentrated brine derived from seawater, either through seepage and reflux or through evaporative pumping (the sabkha model). In the coastal ephemeral lakes of the Coorong Lagoon system (South Australia) dolomite precipitation occurs from evaporating groundwater. The goal of this study is to distinguish marine from continental influence during formation of Carnian dolomite using 87Sr/86Sr isotope ratios. Sr isotopes could reveal different origins of ionic solutions for dolomite precipitation, which is not indicated by oxygen isotopes. The marine 87Sr/86Sr values have been reconstructed for most of the Phanerozoic and are nearly constant in the Carnian (McArthur et al., 2012), while the age of the dolomite beds of the Travenanzes Formation is constrained by their stratigraphic position in the measured section (Dibona Section; Preto et al., 2015). The continental Sr isotope signal is governed by weathering rates, especially during silicate weathering of the source rock in the catchment area (McArthur et al., 2012). Through 87Sr/86Sr isotope investigation of primary dolomite in beds and nodules of the coastal sabkha or alluvial plain environment, the influence of marine or continental conditions can be determined. The finding of celestine SrSO4 and Sr-rich barite BaSO4 within the cemented dolomite by SEM indicates enrichment of Sr, possibly during strong evaporative conditions. Hence, the generation of phase-specific Sr-isotope data will allow for a more precise reconstruction of the conditions that led to dolomite formation in the Triassic shallow coastal sabkha/alluvial plain environment. McArthur et al. (2012) Strontium isotope stratigraphy. In: "The geologic time scale" (F.M Gradstein et al., eds.), Elsevier, p. 127-144. Preto et al. (2015) Primary dolomite in the Late Triassic Travenanzes Formation Dolomites, Northern Italy: Facies control and possible bacterial influence. Sedimentology 62, p. 697-716.

  4. Ozymandias in the Anthropocene: A conceptual framework for the city as an emerging landform

    NASA Astrophysics Data System (ADS)

    Dixon, Simon; Viles, Heather; Garrett, Bradley

    2017-04-01

    The Anthropocene is a topic receiving much attention in the geomorphological community, as well as in wider scientific and public spheres. The application of the Anthropocene as a theoretical framework within geomorphology has so far had a clear anthropogenic focus; considering how human activities are affecting geomorphological processes and shaping the natural environment. An area which has so far not received attention is how fundamental geomorphological processes interact to alter, shape and potentially destroy anthropogenic infrastructure and urban landscapes. In some cases these processes can lead to emergent urban geohazards (e.g. "sinkholes"), and damage to urban infrastructure; additionally, they may also lead to the development of unique Anthropocene geomorphological forms. There is therefore a need to develop a conceptual framework for how earth science principles can be integrated with a broad spectrum of research areas, including archaeology, social science and geology, to underpin future field studies. The number of people living in cities already outnumbers those who do not and the urban population and urban extent is expected to continue to grow. Within this landscape there is a theoretical justification for identifying the formation of pseudokarst within the urban fabric, including the formation of urban stalactites and urban sinkholes. Additionally, both the chronic and acute degradation of urban buildings can form rubble and dust which if left in situ will be shaped by fluvial and aeolian processes. For many of these urban geomorphological processes the neglect or abandonment of parts of the urban network will facilitate or accelerate their influence. If there are economic, climatic or social reasons for abandonment or neglect these processes are likely to reshape parts of the urban fabric into unique landforms at a range of scales. We consider examples of; urban stalactite formation on bridges and within subterranean tunnels, the formation of urban regolith deposits as a result of building collapse, and the formation of sinkholes in made-earth underlying asphalt as potential case studies of unique Anthropocene urban geomorphologies. We make links with previous abandoned structures and civilisations and suggest that by understanding how geomorphological processes act upon the built environment in the present day important insights can be gained for archaeological studies. We suggest abandoned or neglected areas which may be ripe for case study work such as Chernobyl, the tunnels beneath London, and the US "rust belt". To fully investigate Anthropocene urban geomorphologies will require a flexible and broad conceptual framework encompassing true interdisciplinary work including: geomorphologists, geologists, karst scientists, civil engineers, archaeologists and social scientists. We suggest that without explicitly considering these phenomena in the urban environment there is a risk of making the mistakes of Shelley's "Ozymandias", in which the eponymous king failed to account for the impact of geomorphology on the fabric of his (now long fallen) empire.

  5. Present morphoclimate and morphodynamics in the boreal Homla drainage basin system (Trøndelag, middle Norway)

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.

    2017-04-01

    It is generally accepted that ongoing and future climate change will cause major changes in Earth surface systems and environments. From a geomorphological point of view, it is accordingly of increasing importance to obtain a better understanding of the relationships between contemporary geomorphological processes and present-day climatic conditions to come to more reliable assessments of the possible geomorphological effects of climate change. Until recently, the present-day climate has often only been characterized by monthly and annual means or sum values of wind speed, air temperature and precipitation. As most geomorphological surface processes consist of discrete events which are only partly correlated to these meteorological means or sum values, there is an obvious need for an additional approach of statistical analysis of meteorological data. In this study the "morphoclimate" of the Homla drainage basin situated in a boreal environment in Trøndelag in middle Norway is analyzed. "Morphoclimate" according to Ahnert (e.g., 1982) is specially related to geomorphological needs and, in this sense, is defined as the totality of those climatic characteristics of an area that influence the type, frequency, duration and intensity of the exogenic geomorphologic processes in this area. The statistical method primarily used in this context is the magnitude-frequency analysis. Particular emphasis is on (i) the frequencies or recurrence intervals of meteorological events of given magnitudes, and (ii) the frequencies of geomorphologically important thresholds. Aspects of the current wind, temperature and precipitation regimes which control the type, frequency, duration and intensity of the contemporary denudational surface processes as well as the sedimentary budget in the selected study area are presented. Runoff in the boreal Homla drainage basin is occurring year-round and the contemporary morphodynamics are altogether characterized by a clear dominance of chemical denudation over mechanical fluvial denudation. The general intensity of the denudational surface processes operating under the present-day morphoclimate is low.

  6. Detailed geomorphological mapping from high resolution DEM data (LiDAR, TanDEM-X): two case studies from Germany and SE Tibet

    NASA Astrophysics Data System (ADS)

    Loibl, D.

    2012-04-01

    Two major obstacles are hampering the production of high resolution geomorphological maps: the complexity of the subject that should be depicted and the enormous efforts necessary to obtain data by field work. The first factor prevented the establishment of a generally accepted map legend; the second hampered efforts to collect comprehensive sets of geomorphological data. This left geomorphologists to produce applied maps, focusing on very few layers of information and often not sticking to any of the numerous standards proposed in the second half of the 20th century. Technological progress of the recent years, especially in the fields of digital elevation models, GIS environments, and computational hardware, today offers promising opportunities to overcome the obstacles and to produce detailed geomorphological maps even for remote or inhospitable regions. The feasibility of detailed geomorphological mapping from two new sets of digital elevation data, the 1 m LiDAR DTM provided by Germany's State Surveying Authority and the upcoming TanDEM-X DEM, has been evaluated in two case studies from a low mountain range in Germany and a high mountain range in SE Tibet. The results indicate that most layers of information of classical geomorphological maps (e.g. the German GMK) can be extracted from this data at appropriate scales but that significant differences occur concerning the quality and the grades of certainty of key contents. Generally, an enhancement of the geomorphographical, especially the geomorphometrical, and a weakening of geomorphogenetical contents was observed. From these findings, theoretical, methodological, and cartographical remarks on detailed geomorphological mapping from DEM data in GIS environments were educed. As GIS environments decouple data and design and enable the geomorphologist to choose information layer combinations freely to fit research topics, a general purpose legend becomes obsolete. Yet, a unified data structure is demanded to ensure that data collected by different scientists or in different studies can be exchanged and reused.

  7. Integrating Spatial Multi Criteria Decision Making (SMCDM) with Geographic Information Systems (GIS) for delineation of the most suitable areas for aquifer storage and recovery (ASR)

    NASA Astrophysics Data System (ADS)

    Ahani Amineh, Zainab Banoo; Hashemian, Seyyed Jamal Al-Din; Magholi, Alireza

    2017-08-01

    Hamoon-Jazmoorian plain is located in southeast of Iran. Overexploitation of groundwater in this plain has led to water level decline and caused serious problems such as land subsidence, aquifer destruction and water quality degradation. The increasing population and agricultural development along with drought and climate change, have further increased the pressure on water resources in this region over the last years. In order to overcome such crisis, introduction of surface water into an aquifer at particular locations can be a suitable solution. A wide variety of methods have been developed to recharge groundwater, one of which is aquifer storage and recovery (ASR). One of the fundamental principles of making such systems is delineation of suitable areas based on scientific and natural facts in order to achieve relevant objectives. To that end, the Multi Criteria Decision Making (MCDM) in conjunction with the Geographic Information Systems (GIS) was applied in this study. More specifically, nine main parameters including depth of runoff as the considered source of water, morphology of the earth surface features such as geology, geomorphology, land use and land cover, drainage and aquifer characteristics along with quality of water in the aquifer were considered as the main layers in GIS. The runoff water available for artificial recharge in the basin was estimated through Soil Conservation Service (SCS) curve number method. The weighted curve number for each watershed was derived through spatial intersection of land use and hydrological soil group layers. Other thematic layers were extracted from satellite images, topographical map, and other collateral data sources, then weighed according to their influence in locating process. The Analytical Hierarchy Process (AHP) method was then used to calculate weights of individual parameters. The normalized weighted layers were then overlaid to build up the recharge potential map. The results revealed that 34% of the total area is suitable and very suitable for groundwater recharge.

  8. Application of indexes of underground structure using land gravity data to the Eastern Boundary Fault zone of the Shonai Plain, northeastern Japan.

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Hiramatsu, Y.; Matsumoto, N.; Honda, R.; Wada, S.; Sawada, A.; Okada, S.

    2016-12-01

    Gravity gradients, which are directly measured and are also derived by differentiating land gravity anomaly data, are sensitive to the density structure of shallow subsurfaces and therefore can be used to formulate ratings for Indexes of Underground Structure (IUS) [e.g., Kusumoto,2015,2016]. Recently, dense land gravity data measurements for almost entire Japan have been available [Honda et al., 2012]. In this study, we use gravity gradient tensors from the data to apply IUS to the Eastern Boundary Fault zone of the Shonai Plain (EBFSP), which spans 40 km in length and caused the historical Mjma 7.0 earthquake in 1894. The IUS we adopt here comprises the dip angle of the structural boundary (Beta) [Beiki, 2013], the dimensionality index (I) [Pedersen and Rasmussen, 1990], the structural boundary (Horizontal First Derivation(HFD) and TDX [Cooper and Cowan, 2006]), and density anomaly cylinder bodies in the depth direction (TD) [Copper, 2011]. The IUS show that the northern part of the EBFSP is characterized by high-Beta, low-I (dyke-like), intense-(HFD and TDX), and many short TD. Contrary to this, the southern part exhibits low-Beta, high-I, mild-(HFD and TDX), and few long TD. Previous geological/geomorphological surveys of the EBFSP [Ikeda et al., 2002] distinguish between the northern part comprising parallel/echelon short faults and the southern part comprising a single long fault. These findings are consistent with the gravimetrical IUS. However, the IUS more emphasizes the Aosawa Fault zone, which is geologically old and runs nearly parallel to the EBFSP at about 5-10 km distance on the eastern side of the EBFSP. Because gravity anomalies are a time-integrated representation of crustal activity, it is difficult to identify the relative timing of faulting events in an analysis range. However, the IUS can objectively contribute to producing comprehensive characterizations of target faults. This study is supported by JSPS KAKENHI Grant Number 26400450.

  9. Distribution and interplay of geologic processes on Titan from Cassini radar data

    USGS Publications Warehouse

    Lopes, R.M.C.; Stofan, E.R.; Peckyno, R.; Radebaugh, J.; Mitchell, K.L.; Mitri, Giuseppe; Wood, C.A.; Kirk, R.L.; Wall, S.D.; Lunine, J.I.; Hayes, A.; Lorenz, R.; Farr, Tom; Wye, L.; Craig, J.; Ollerenshaw, R.J.; Janssen, M.; LeGall, A.; Paganelli, F.; West, R.; Stiles, B.; Callahan, P.; Anderson, Y.; Valora, P.; Soderblom, L.

    2010-01-01

    The Cassini Titan Radar Mapper is providing an unprecedented view of Titan's surface geology. Here we use Synthetic Aperture Radar (SAR) image swaths (Ta-T30) obtained from October 2004 to December 2007 to infer the geologic processes that have shaped Titan's surface. These SAR swaths cover about 20% of the surface, at a spatial resolution ranging from ???350 m to ???2 km. The SAR data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth - volcanism, tectonism, impact cratering, and erosion and deposition by fluvial and aeolian activity. In this paper, we map geomorphological units from SAR data and analyze their areal distribution and relative ages of modification in order to infer the geologic evolution of Titan's surface. We find that dunes and hummocky and mountainous terrains are more widespread than lakes, putative cryovolcanic features, mottled plains, and craters and crateriform structures that may be due to impact. Undifferentiated plains are the largest areal unit; their origin is uncertain. In terms of latitudinal distribution, dunes and hummocky and mountainous terrains are located mostly at low latitudes (less than 30??), with no dunes being present above 60??. Channels formed by fluvial activity are present at all latitudes, but lakes are at high latitudes only. Crateriform structures that may have been formed by impact appear to be uniformly distributed with latitude, but the well-preserved impact craters are all located at low latitudes, possibly indicating that more resurfacing has occurred at higher latitudes. Cryovolcanic features are not ubiquitous, and are mostly located between 30?? and 60?? north. We examine temporal relationships between units wherever possible, and conclude that aeolian and fluvial/pluvial/lacustrine processes are the most recent, while tectonic processes that led to the formation of mountains and Xanadu are likely the most ancient. ?? 2009 Elsevier Inc.

  10. Disribution and interplay of geologic processes on Titan from Cassini radar data

    USGS Publications Warehouse

    Lopes, R.M.C.; Stofan, E.R.; Peckyno, R.; Radebaugh, J.; Mitchell, K.L.; Mitri, Giuseppe; Wood, C.A.; Kirk, R.L.; Wall, S.D.; Lunine, J.I.; Hayes, A.; Lorenz, R.; Farr, Tom; Wye, L.; Craig, J.; Ollerenshaw, R.J.; Janssen, M.; LeGall, A.; Paganelli, F.; West, R.; Stiles, B.; Callahan, P.; Anderson, Y.; Valora, P.; Soderblom, L.

    2010-01-01

    The Cassini Titan Radar Mapper is providing an unprecedented view of Titan's surface geology. Here we use Synthetic Aperture Radar (SAR) image swaths (Ta-T30) obtained from October 2004 to December 2007 to infer the geologic processes that have shaped Titan's surface. These SAR swaths cover about 20% of the surface, at a spatial resolution ranging from ~350 m to ~2 km. The SAR data are distributed over a wide latitudinal and longitudinal range, enabling some conclusions to be drawn about the global distribution of processes. They reveal a geologically complex surface that has been modified by all the major geologic processes seen on Earth - volcanism, tectonism, impact cratering, and erosion and deposition by fluvial and aeolian activity. In this paper, we map geomorphological units from SAR data and analyze their areal distribution and relative ages of modification in order to infer the geologic evolution of Titan's surface. We find that dunes and hummocky and mountainous terrains are more widespread than lakes, putative cryovolcanic features, mottled plains, and craters and crateriform structures that may be due to impact. Undifferentiated plains are the largest areal unit; their origin is uncertain. In terms of latitudinal distribution, dunes and hummocky and mountainous terrains are located mostly at low latitudes (less than 30 degrees), with no dunes being present above 60 degrees. Channels formed by fluvial activity are present at all latitudes, but lakes are at high latitudes only. Crateriform structures that may have been formed by impact appear to be uniformly distributed with latitude, but the well-preserved impact craters are all located at low latitudes, possibly indicating that more resurfacing has occurred at higher latitudes. Cryovolcanic features are not ubiquitous, and are mostly located between 30 degrees and 60 degrees north. We examine temporal relationships between units wherever possible, and conclude that aeolian and fluvial/pluvial/lacustrine processes are the most recent, while tectonic processes that led to the formation of mountains and Xanadu are likely the most ancient.

  11. Seafloor geomorphology and geology of the Kingman Reef-Palmyra Atoll region, Central Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Eakins, Barry; Barth, Ginger; Scheirer, Dan; Mosher, Dave; Armstrong, Andy

    2017-04-01

    Kingman Reef and Palmyra Atoll are the exposed summits of two seamounts within the Line Islands Volcanic Chain in the Central Pacific Ocean. Both are U.S. Territories, and the Exclusive Economic Zone around the islands was partially surveyed in 1991 with GLORIA sidescan sonar and seismic reflection profiling. New multibeam swath sonar surveys were conducted in 2010, 2015, and 2016 around the islands, in support of U.S. Extended Continental Shelf investigations. Numerous transits through the region by research vessels have collected additional multibeam swath sonar data. We present new, detailed maps of bathymetry, sidescan sonar imagery, geology, and sediment isopachs of the seafloor surrounding the islands, and how these have informed our understanding of the islands' margins. The islands are the last subaerial remnants of a complex, horse-shoe-shaped volcanic platform spanning roughly 200 km in diameter. The elevated platform from which the seamounts arise comprises at least 10 individual volcanic centers that have heights exceeding 3000m above the nearby abyssal plains. Gravity modeling suggests that the elevated platform is compensated by thickened crust. Strong carbonate caps and voluminous sediment accumulations flanking the platform indicate that the volcanoes were once shallow-water or emergent systems. These systems produced vast quantities of carbonate sediment that were shed to a deep interior basin to the east of Palmyra Atoll, and to nearby abyssal plains. The identification of mass failures, sediment reworking and bedforms, and channel networks provide evidence for extensive sedimentary processes around these volcanic centers. Analysis of the seamounts atop the elevated platform and in the seamount province to the northwest shows that flat-topped seamounts ("guyots") are principally found at depths shallower than 1300 meters, while peaked seamounts are almost exclusively found at greater depths. This constrains the amount of regional subsidence that has occurred since guyot formation.

  12. Geomorphic Units on Titan

    NASA Astrophysics Data System (ADS)

    Lopes, R. M. C.; Malaska, M. J.; Schoenfeld, A.; Birch, S. P.; Hayes, A. G., Jr.

    2014-12-01

    The Cassini-Huygens mission has revealed the surface of Titan in unprecedented detail. The Synthetic Aperture Radar (SAR) mode on the Cassini Titan Radar Mapper is able to penetrate clouds and haze to provide high resolution (~350 m spatial resolution at best) views of the surface geology. The instrument's other modes (altimetry, scatterometry, radiometry) also provide valuable data for interpreting the geology, as do other instruments on Cassini, in particular, the Imaging Science Subsystem (ISS) and the Visual and Infrared Mapping Spectrometer (VIMS). Continuing the initial work described in Lopes et al. (2010, Icarus, 212, 744-750), we have established the major geomorphologic unit classes on Titan using data from flybys Ta through T92 (October 2004-July 2013). We will present the global distribution of the major classes of units and, where there are direct morphological contacts, describe how these classes of units relate to each other in terms of setting and emplacement history. The classes of units are mountainous/hummocky terrains, plains, dunes, labyrinthic terrains and lakes. The oldest classes of units are the mountainous/hummocky and the labyrinthic terrains. The mountainous/hummocky terrains consist of mountain chains and isolated radar-bright terrains. The labyrinthic terrains consist of highly incised dissected plateaux with medium radar backscatter. The plains are younger than both mountainous/hummocky and labyrinthic unit classes. Dunes and lakes are the youngest unit classes on Titan; no contact is observed between the dunes and lakes but it is likely that both processes are still active. We have identified individual features such as craters, channels, and candidate cryovolcanic features. Characterization and comparison of the properties of the unit classes and the individual features with data from radiometry, ISS, and VIMS provides information on their composition and possible provenance. We can use these correlations to also infer global distribution on regions not covered by SAR. This is particularly important as SAR data will not provide complete coverage of Titan by the end of the Cassini mission.

  13. The Geology of Titan as Revealed by Cassini

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly M.; Malaska, Michael; Solomonidou, Anezina; Cassini RADAR Team

    2015-08-01

    The Cassini-Huygens mission has revealed the surface of Titan in unprecedented detail, enabling us to discern the different geomorphic units on the surface and constrain the relative times of emplacement. We used a combined dataset of Cassini’s multiple instruments and instrument modes: Synthetic Aperture Radar (SAR-RADAR), altimetry, scatterometry, imaging (ISS) and hyperspectral imaging (VIMS) to provide information on Titan’s surface geology. Continuing the initial work described in Lopes et al. [1], we established the major geomorphologic unit classes on Titan using data from flybys Ta through T92 (October 2004-July 2013). We will present the global distribution of the major classes of units and, where there are direct morphological contacts, describe how these classes of units relate to each other in terms of setting and emplacement history. The classes of units are mountainous/hummocky terrains, plains, dunes, labyrinthic terrains and lakes. The oldest classes of units are the mountainous/hummocky and the labyrinthic terrains. The mountainous/hummocky terrains consist of mountain chains and isolated radar-bright terrains. The labyrinthic terrains consist of highly incised dissected plateaus with medium radar backscatter. The plains are younger than both mountainous/hummocky and labyrinthic unit classes. Dunes and lakes are the youngest unit classes on Titan; no contact is observed between them but it is likely that both processes are still active. We have identified individual features such as craters, channels, and candidate cryovolcanic features. Characterization and comparison of the properties of the unit classes and the individual features with data from radiometry, ISS, and VIMS provides information on their composition and possible provenance. We can use these correlations to also infer global distribution on regions not covered by SAR. This is particularly important, as SAR data will not provide complete coverage of Titan by the end of the Cassini mission.References: [1] Lopes, R.M.C., et al. Icarus, 212, 744-750, 2010.

  14. Geomorphic Units on Titan

    NASA Astrophysics Data System (ADS)

    Lopes, Rosaly; Malaska, Michael; Schoenfeld, Ashley; Birch, Samuel; Hayes, Alexander; Solomonidou, Anezina; Radebaugh, Jani

    2015-04-01

    The Cassini-Huygens mission has revealed the surface of Titan in unprecedented detail. The Synthetic Aperture Radar (SAR) mode on the Cassini Titan Radar Mapper is able to penetrate clouds and haze to provide high resolution (~350 m spatial resolution at best) views of the surface geology. The instrument's other modes (altimetry, scatterometry, radiometry) also provide valuable data for interpreting the geology, as do other instruments on Cassini, in particular, the Imaging Science Subsystem (ISS) and the Visual and Infrared Mapping Spectrometer (VIMS). Continuing the initial work described in Lopes et al. (2010, Icarus, 212, 744-750), we have established the major geomorphologic unit classes on Titan using data from flybys Ta through T92 (October 2004-July 2013). We will present the global distribution of the major classes of units and, where there are direct morphological contacts, describe how these classes of units relate to each other in terms of setting and emplacement history. The classes of units are mountainous/hummocky terrains, plains, dunes, labyrinthic terrains and lakes. The oldest classes of units are the mountainous/hummocky and the labyrinthic terrains. The mountainous/hummocky terrains consist of mountain chains and isolated radar-bright terrains. The labyrinthic terrains consist of highly incised dissected plateaux with medium radar backscatter. The plains are younger than both mountainous/hummocky and labyrinthic unit classes. Dunes and lakes are the youngest unit classes on Titan; no contact is observed between the dunes and lakes but it is likely that both processes are still active. We have identified individual features such as craters, channels, and candidate cryovolcanic features. Characterization and comparison of the properties of the unit classes and the individual features with data from radiometry, ISS, and VIMS provides information on their composition and possible provenance. We can use these correlations to also infer global distribution on regions not covered by SAR. This is particularly important as SAR data will not provide complete coverage of Titan by the end of the Cassini mission.

  15. Significance of beach geomorphology on fecal indicator bacteria levels.

    PubMed

    Donahue, Allison; Feng, Zhixuan; Kelly, Elizabeth; Reniers, Ad; Solo-Gabriele, Helena M

    2017-08-15

    Large databases of fecal indicator bacteria (FIB) measurements are available for coastal waters. With the assistance of satellite imagery, we illustrated the power of assessing data for many sites by evaluating beach features such as geomorphology, distance from rivers and canals, presence of piers and causeways, and degree of urbanization coupled with the enterococci FIB database for the state of Florida. We found that beach geomorphology was the primary characteristic associated with enterococci levels that exceeded regulatory guidelines. Beaches in close proximity to marshes or within bays had higher enterococci exceedances in comparison to open coast beaches. For open coast beaches, greater enterococci exceedances were associated with nearby rivers and higher levels of urbanization. Piers and causeways had a minimal contribution, as their effect was often overwhelmed by beach geomorphology. Results can be used to understand the potential causes of elevated enterococci levels and to promote public health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. An historical look at the Binghamton Geomorphology Symposium

    NASA Astrophysics Data System (ADS)

    Sawyer, Carol F.; Butler, David R.; O'Rourke, Tela

    2014-10-01

    The Binghamton Geomorphology Symposium (BGS) is an annual meeting held since 1970, usually in the U.S.A., on timely topics in the field of geomorphology. A special issue of this journal presents the papers from each meeting and provides an opportunity to disseminate to the international community research relevant to that year's theme written by key people in that field. In this paper, we review the history of the BGS, examine the academic disciplines of each year's organizers, compile a list of the researchers who have made multiple contributions to BGS, note the citation impact of papers published in the annual proceedings, map the spatial distribution of the meeting locations, and categorize the gender distribution of the contributors to the symposium. Contributions from female authors to the BGS have steadily increased since the 1970s; however, from 2003 to 2013, females still only accounted for 23.6% of the proceeding's papers, an increase of 16.4% from the 1970s. These numbers are not surprising when compared to the gender distribution of the top positions in specialty groups in the U.S. Between 1989 and 2010, over 7000 citations were from articles published in BGS special issues, indicating their contributions to the geomorphology field. When normalized by the number of years the articles have been available, papers from BGS whose themes combined geomorphology with other fields (i.e., natural hazards and geomorphology), rated higher numbers of citations. The dispersion of the location of BGS meetings illustrates how the series is maturing by moving away from its origin in the U.S. northeast.

  17. Sedimentology of the Early Jurassic terrestrial Steierdorf Formation in Anina, Colonia Cehă Quarry, South Carpathians, Romania

    NASA Astrophysics Data System (ADS)

    Kędzior, Artur; Popa, Mihai E.

    2013-06-01

    Kędzior, A. and Popa, E.M. 2013. Sedimentology of the Early Jurassic terrestrial Steierdorf Formation in Anina, Colonia Cehă Quarry, South Carpathians, Romania. Acta Geologica Polonica, 63 (2), 175-199. Warszawa. The continental, coal bearing Steierdorf Formation, Hettangian - Sinemurian in age, is included in the Mesozoic cover of the Reşiţa Basin, Getic Nappe, South Carpathians, Romania. The Steierdorf Formation can be studied in Anina, a coal mining center and an exceptional locality for Early Jurassic flora and fauna, occurring in the middle of the Reşiţa Basin. This paper presents the results of sedimentological, stratigraphical and paleobotanical researches undertaken in Colonia Cehă open cast mine in Anina, where the Steierdorf Formation outcrops widely. Several sedimentary facies associations have been described, these associations permitting the reconstruction of various depositional systems such as alluvial fans, braided and meandering river systems, as well as lacustrine and coal generating marsh systems of the Steierdorf Formation. The sedimentary associations recorded within the Steierdorf Formation show a gradual fining upward trend, pointing to a rising marine water table and a decreasing relief within the source area.

  18. Sedimentological constraints on the initial uplift of the West Bogda Mountains in Mid-Permian.

    PubMed

    Wang, Jian; Cao, Ying-Chang; Wang, Xin-Tong; Liu, Ke-Yu; Wang, Zhu-Kun; Xu, Qi-Song

    2018-01-23

    The Late Paleozoic is considered to be an important stage in the evolution of the Central Asian Orogenic Belt (CAOB). The Bogda Mountains, a northeastern branch of the Tianshan Mountains, record the complete Paleozoic history of the Tianshan orogenic belt. The tectonic and sedimentary evolution of the west Bogda area and the timing of initial uplift of the West Bogda Mountains were investigated based on detailed sedimentological study of outcrops, including lithology, sedimentary structures, rock and isotopic compositions and paleocurrent directions. At the end of the Early Permian, the West Bogda Trough was closed and an island arc was formed. The sedimentary and subsidence center of the Middle Permian inherited that of the Early Permian. The west Bogda area became an inherited catchment area, and developed a widespread shallow, deep and then shallow lacustrine succession during the Mid-Permian. At the end of the Mid-Permian, strong intracontinental collision caused the initial uplift of the West Bogda Mountains. Sedimentological evidence further confirmed that the West Bogda Mountains was a rift basin in the Carboniferous-Early Permian, and subsequently entered the Late Paleozoic large-scale intracontinental orogeny in the region.

  19. Sedimentology of the upper Karoo fluvial strata in the Tuli Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Bordy, Emese M.; Catuneanu, Octavian

    2001-08-01

    The sedimentary rocks of the Karoo Supergroup in the Tuli Basin (South Africa) may be grouped in four stratigraphic units: the basal, middle and upper units, and the Clarens Formation. This paper presents the findings of the sedimentological investigation of the fluvial terrigenous clastic and chemical deposits of the upper unit. Evidence provided by primary sedimentary structures, palaeontological record, borehole data, palaeo-flow measurements and stratigraphic relations resulted in the palaeo-environmental reconstruction of the upper unit. The dominant facies assemblages are represented by sandstones and finer-grained sediments, which both can be interbedded with subordinate intraformational coarser facies. The facies assemblages of the upper unit are interpreted as deposits of a low-sinuosity, ephemeral stream system with calcretes and silcretes in the dinosaur-inhabited overbank area. During the deposition of the upper unit, the climate was semi-arid with sparse precipitation resulting in high-magnitude, low-frequency devastating flash floods. The current indicators of the palaeo-drainage system suggest flow direction from northwest to southeast, in a dominantly extensional tectonic setting. Based on sedimentologic and biostratigraphic evidence, the upper unit of the Tuli Basin correlates to the Elliot Formation in the main Karoo Basin to the south.

  20. Planetary Geomorphology.

    ERIC Educational Resources Information Center

    Baker, Victor R.

    1984-01-01

    Discusses various topics related to planetary geomorphology, including: research techniques; such geomorphic processes as impact, volcanic, degradational, eolian, and hillslope/mass movement processes; and channels and valleys. Indicates that the subject should be taught as a series of scientific questions rather than scientific results of…

Top