NASA Astrophysics Data System (ADS)
Selim, El Sayed; Abdel-Raouf, Osama; Mesalam, Mohamed
2016-10-01
El Qaa plain is one of the areas that have been proved to be promising as to its soil and groundwater resources in the southwestern part of Sinai. This study was carried out to study the lateral and vertical variations in the subsurface lithologic properties in El Qaa plain area and delineating the subsurface structure that affecting El Qaa plain depression. Gravity, magnetic data, fifty-one (51) vertical electrical sounding (Ves's) and Digital Elevation Model (DEM) map were used. Two-dimensional density modeling, analytical signal, tilt derivatives, Euler deconvolution techniques and interpretation of the resistivity data were applied on potential data. This study concluded that, El Qaa plain is a NE-SW depression confined by two normal faults and subdivided into five sedimentary units. Rock fragments and boulders derived to the plain from the surrounding highlands are the main components of the first surface unit that characterized by high resistivity values. This layer is overly another unit composed of gravelly sand with thickness ranging between 10 and 140 m. The third unit is composed mainly of sand with intercalations of clay with thickness ranging from 2 to 152 m. A Reefal limestone unit is a fourth unit interpreted from this study. The fifth unit is composed of clay. The water bearing formations in El Qaa Plain area are located principally in the second and the third layers. Finally, the depth to the basement surface ranges from 400 m to more than 1.5 km below sea level. Also, there are many minor structural trends interpreted from this study and affecting the El Qaa plain are striking in N-S, E-W and NE-SW directions.
Geologic Mapping of the V-36 Thetis Regio Quadrangle: 2008 Progress Report
NASA Technical Reports Server (NTRS)
Basilevsky, A. T.; Head, James W.
2008-01-01
As a result of mapping, eleven material stratigraphic units and three structural units have been identified and mapped. The material units include (from older to younger): tessera terrain material (tt), material of densely fractured plains (pdf), material of fractured and ridged plains (pfr), material of shield plains (psh), material of plains with wrinkle ridges (pwr), material of smooth plains of intermediate brightness (psi), material of radardark smooth plains (psd), material of lineated plains (pli) material of lobate plains (plo), material of craters having no radar-dark haloes (c1), and material of craters having clear dark haloes (c2). The morphologies and probably the nature of the material units in the study area are generally similar to those observed in other regions of Venus [2]. The youngest units are lobate plains (plo) which here typically look less lobate than in other areas of the planet. Close to them in age are smooth plains which are indeed smooth and represented by two varieties mentioned above. Lineated plains (pli) are densely fractured in a geometrically regular way. Plains with wrinkle ridges, being morphologically similar to those observed in other regions, here occupy unusually small areas. Shield (psh) plains here are also not abundant. Locally they show wrinkle ridging. Fractured and ridged plains (pfr), which form in other regions, the so called ridge belts, are observed as isolated areas of clusters of ridged plains surrounded by other units. Densely fractured plains (pdf) are present in relatively small areas in association with coronae and corona-like features. Tessera terrain (tt) is dissected by structures oriented in two or more directions. Structures are so densely packed that the morphology (and thus nature) of the precursor terrain is not known. Structural units include tessera transitional terrain (ttt), fracture belts (fb) and rifted terrain (rt). Tessera transitional terrain was first identified and mapped by [4] as areas of fractured and ridged plains (pfr) and densely fractured plains (pdf) deformed by transverse faults that made it formally resemble tessera terrain (tt). The obvious difference between units tt and ttt is the recognizable morphology of precursor terrain of unit ttt. Fracture belts are probably ancient rift zones [3]. Rifted terrain (rt), as in other regions of Venus, is so saturated with faults that according to the recommendation of [1, 5] it should be mapped as a structural unit.
NASA Astrophysics Data System (ADS)
Baker, David M. H.; Head, James W.
2015-11-01
The mid-latitudes of Mars are host to a record of recent episodes of accumulations of ice-rich materials. The record includes debris aprons, interpreted to be debris-covered glaciers, that may represent the preserved remnants of a much more extensive ice sheet. We assessed the possibility of former glacial extents by examining debris aprons and the surrounding plains in Deuteronilus Mensae. Geomorphic units and stratigraphic relationships were mapped and documented from Mars Reconnaissance Orbiter (MRO) Context (CTX) and High Resolution Imaging Science Experiment (HiRISE) camera images, and crater retention ages were estimated from crater size-frequency distributions. Three major units are observed within the study area: debris aprons, lower plains, and upper plains. Debris aprons exhibit characteristics typical for these features documented elsewhere and in previous studies, including integrated flow lineations and patterns, convex-upward profiles, and knobby and brain terrain surface textures. A lower bound on the age for debris aprons is estimated to be 0.9 Ga. Debris aprons are superposed on a lower plains unit having a lower bound age of 3.3-3.5 Ga. A 50-100 m thick upper plains unit superposes both debris apron landforms and lower plains units and has a best-fit minimum age of 0.6 Ga. The upper plains unit exhibits characteristics of atmospherically-emplaced mantle material, including fine-grained nature, sublimation textures, cyclic layering, draping character, and widespread spatial distribution. Fracturing and subsequent sublimation/erosion of upper plains on debris aprons has contributed to many of the surface textures on debris aprons. The upper plains unit has also been eroded from the lower plains and plateaus, evidenced by isolated blocks of upper plains in the interiors of craters and on the walls and tops of plateaus. While no conclusive evidence diagnostic of former cold-based ice sheets are observed in the plains within the study region, such landforms and units may have been poorly developed or absent, as is often the case on Earth, and would have been covered and reworked by later mantling episodes. These observations suggest that emplacement of thick ice-rich mantle deposits extended at least to near the Early/Middle Amazonian boundary and overlapped with the waning stages of glaciation in Deuteronilus Mensae.
Stratigraphic and hydrogeologic framework of the Alabama Coastal Plain
Davis, M.E.
1988-01-01
Tertiary and Cretaceous sand aquifers of the Southeastern United States Coastal Plain comprise a major multlstate aquifer system informally defined as the Southeastern Coastal Plain aquifer system, which is being studied as part of the U.S. Geological Survey's Regional Aquifer System Analysis (RASA) program. The major objectives of each RASA study are to identify, delineate, and map the distribution of permeable clastlc rock, to examine the pattern of ground-water flow within the regional aquifers, and to develop digital computer simulations to understand the flow system. The Coastal Plain aquifers in Alabama are being studied as a part of this system. This report describes the stratlgraphlc framework of the Cretaceous, Tertiary, and Quaternary Systems in Alabama to aid in delineating aquifers and confining units within the thick sequence of sediments that comprises the Southeastern Coastal Plain aquifer system in the State. Stratigraphlc units of Cretaceous and Tertiary age that make up most of the aquifer system in the Coastal Plain of Alabama consist of clastlc deposits of Early Cretaceous age; the Coker and Gordo Formations of the Tuscaloosa Group, Eutaw Formation, and Selma Group of Late Cretaceous age; and the Midway, Wilcox, and Clalborne Groups of Tertiary age. However, stratigraphlc units of late Eocene to Holocene age partially overlie and are hydraulically connected to clastic deposits in southern Alabama. These upper carbonate and clastlc stratlgraphic units also are part of the adjoining Florldan and Gulf Coastal Lowlands aquifer systems. The Coastal Plain aquifer system is underlain by pre-Cretaceous rocks consisting of low-permeabillty sedimentary rocks of Paleozolc, Triassic, and Jurassic age, and a complex of metamorphic and igneous rocks of Precambrian and Paleozolc age similar to those found near the surface in the Piedmont physiographic province. Twelve hydrogeologlc units in the Alabama Coastal Plain are defined--slx aquifers and six confining units. Aquifers of the Coastal Plain aquifer system are composed of fine to coarse sand, gravel, and limestone; confining beds are composed of clay, shale, chalk, marl, and metamorphic and igneous rocks.
Geology of the Lachesis Tessera Quadrangle (V-18), Venus
NASA Technical Reports Server (NTRS)
McGill, George E.
2008-01-01
The Lachesis Tessera Quadrangle (V-18) lies between 25deg and 50deg north, 300deg and 330deg east. Most of the quadrangle consists of "regional plains" (1) of Sedna and Guinevere Planitiae. A first draft of the geology has been completed, and the tentative number of mapped units by terrain type is: Tesserae - 2; plains - 4; ridge belts - 1; fracture belts - 1 (plus embayed fragments of possible additional belts); coronae - 3; central volcanoes - 1; shield flows - 2; paterae - 1; impact craters - 1; undifferentiated flows - 1; bright materials - 1. By far the areally most extensive materials are regional plains. These are mapped as two units, based on radar backscatter ("radar brightness"). The brighter unit appears to be younger than the darker unit. This inference is based on the common presence within the lighter unit of circular or nearly circular inliers of material with radar backscatter characteristic of the darker unit. The circular inliers are most likely low shield volcanoes, which are commonly present on the darker unit, that were only partially covered by the brighter unit. Clear cut examples of wrinkle ridges and fractures superposed on the darker unit but truncated by the brighter unit have not been found to date. These relationships indicate that the brighter unit is superposed on the darker unit, but that the difference in age between them is very small. Because they are so widespread, the regional plains are a convenient relative age time "marker." The number of impact craters superposed on these plains is too small to measure age differences (2), and thus we cannot estimate how much time elapsed between the emplacement of the darker and brighter regional plains units. More local plains units are defined by significantly lower radar backscatter or by a texture that is mottled at scores to hundreds of kilometers scale. A plains-like unit with a homogenous, bright diffuse backscatter is present as scattered exposures in the eastern part of the quadrangle. These exposures have been mapped as "bright material," but it is not clear at present if this is a valid unit or if it is part of the brighter regional plains unit. Tessera terrain is primarily found along the western border of the quadrangle, where Lachesis Tessera refers to the southern exposures, and Zirka Tessera refers to northern exposures. A second tessera unit has been mapped with the symbol "t?." This unit appears to be deformed by the requisite 2 sets of closely spaced structures, but it is so extensively flooded by regional plains materials that the structural fabric is partially obscured. Tessera terrain is present in the adjacent V-17 quadrangle, where both Lachesis Tessera and Zirka Tessera are areally more extensive than in V-18. Ridge and fracture belts are both present, but not as extensive as is the case in, for example, the Pandrosos Dorsa (3) and Lavinia Planitia (4) quadrangles. As is commonly the case, it is difficult to determine if the materials of these belts are older or younger than regional plains. A recent study using radar properties (5) demonstrated that at least most ridge belts appear to be older than regional plains. The materials of fracture belts probably are also older than regional plains, but the fractures themselves can be both older and younger than regional plains (e.g., 3).
Coffman, David K.; Malstaff, Greg; Heitmuller, Franklin T.
2011-01-01
The U.S. Geological Survey, in cooperation with the Texas Water Development Board, described and characterized examples of geomorphic units within the channels and alluvial valleys of Texas Gulf Coastal Plain rivers using a geomorphic unit classification scale that differentiates geomorphic units on the basis of their location either outside or inside the river channel. The geomorphic properties of a river system determine the distribution and type of potential habitat both within and adjacent to the channel. This report characterizes the geomorphic units contained in the river channels and alluvial valleys of Texas Gulf Coastal Plain rivers in the context of the River Styles framework. This report is intended to help Texas Instream Flow Program practitioners, river managers, ecologists and biologists, and others interested in the geomorphology and the physical processes of the rivers of the Texas Gulf Coastal Plain (1) gain insights into how geomorphic units develop and adjust spatially and temporally, and (2) be able to recognize common geomorphic units from the examples cataloged in this report. Recent aerial imagery (high-resolution digital orthoimagery) collected in 2008 and 2009 were inspected by using geographic information system software to identify representative examples of the types of geomorphic units that occurred in the study area. Geomorphic units outside the channels of Texas Gulf Coastal Plain rivers are called \\"valley geomorphic units\\" in this report. Valley geomorphic units for the Texas Gulf Coastal Plain rivers described in this report are terraces, flood plains, crevasses and crevasse splays, flood-plain depressions, tie channels, tributaries, paleochannels, anabranches, distributaries, natural levees, neck cutoffs, oxbow lakes, and constructed channels. Channel geomorphic units occur in the river channel and are subject to frequent stresses associated with flowing water and sediment transport; they adjust (change) relatively quickly in response to short-term variations in flow. Channel geomorphic units described in this report are channel banks, benches and ledges, bank failures, point bars, cross-bar channels, channel bars, exposed bedrock, pools, runs, and crossovers.
Pope, Jason P.; Andreasen, David C.; Mcfarland, E. Randolph; Watt, Martha K.
2016-08-31
Digital geospatial datasets of the extents and top elevations of the regional hydrogeologic units of the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to northeastern North Carolina were developed to provide an updated hydrogeologic framework to support analysis of groundwater resources. The 19 regional hydrogeologic units were delineated by elevation grids and extent polygons for 20 layers: the land and bathymetric surface at the top of the unconfined surficial aquifer, the upper surfaces of 9 confined aquifers and 9 confining units, and the bedrock surface that defines the base of all Northern Atlantic Coastal Plain sediments. The delineation of the regional hydrogeologic units relied on the interpretive work from source reports for New York, New Jersey, Delaware and Maryland, Virginia, and North Carolina rather than from re-analysis of fundamental hydrogeologic data. This model of regional hydrogeologic unit geometries represents interpolation, extrapolation, and generalization of the earlier interpretive work. Regional units were constructed from available digital data layers from the source studies in order to extend units consistently across political boundaries and approximate units in offshore areas.Though many of the Northern Atlantic Coastal Plain hydrogeologic units may extend eastward as far as the edge of the Atlantic Continental Shelf, the modeled boundaries of all regional hydrogeologic units in this study were clipped to an area approximately defined by the furthest offshore extent of fresh to brackish water in any part of the aquifer system, as indicated by chloride concentrations of 10,000 milligrams per liter. Elevations and extents of units that do not exist onshore in Long Island, New York, were not included north of New Jersey. Hydrogeologic units in North Carolina were included primarily to provide continuity across the Virginia-North Carolina State boundary, which was important for defining the southern edge of the Northern Atlantic Coastal Plain study area.
Hydrology, geomorphology, and vegetation of Coastal Plain rivers in the southeastern United States
Cliff R. Hupp
2000-01-01
Rivers of the Coastal Plain of the southeastern United States are characteristically low-gradient meandering systems that develop broad floodplains subjected to frequent and prolonged flooding. These floodplains support a relatively unique forested wetland (Bottomland Hardwoods), which have received considerable ecological study, but distinctly less hydrogeomorphic...
Van Gosen, Bradley S.; Ellefsen, Karl J.
2018-04-16
This study examined titanium distribution in the Atlantic Coastal Plain of the southeastern United States; the titanium is found in heavy-mineral sands that include the minerals ilmenite (Fe2+TiO3), rutile (TiO2), or leucoxene (an alteration product of ilmenite). Deposits of heavy-mineral sands in ancient and modern coastal plains are a significant feedstock source for the titanium dioxide pigments industry. Currently, two heavy-mineral sands mining and processing operations are active in the southeast United States producing concentrates of ilmenite-leucoxene, rutile, and zircon. The results of this study indicate the potential for similar deposits in many areas of the Atlantic Coastal Plain.This study used the titanium analyses of 3,457 stream sediment samples that were analyzed as part of the U.S. Geological Survey’s National Geochemical Survey program. This data set was analyzed by an integrated spatial modeling technique known as Bayesian hierarchical modeling to map the regional-scale, spatial distribution of titanium concentrations. In particular, clusters of anomalous concentrations of titanium occur: (1) along the Fall Zone, from Virginia to Alabama, where metamorphic and igneous rocks of the Piedmont region contact younger sediments of the Coastal Plain; (2) a paleovalley near the South Carolina and North Carolina border; (3) the upper and middle Atlantic Coastal Plain of North Carolina; (4) the majority of the Atlantic Coastal Plain of Virginia; and (5) barrier islands and stretches of the modern shoreline from South Carolina to northeast Florida. The areas mapped by this study could help mining companies delimit areas for exploration.
Adamski, James C.; Petersen, James C.; Freiwald, David A.; Davis, Jerri V.
1995-01-01
The environmental and hydrologic setting of the Ozark Plateaus National Water-Quality Assessment (NAWQA) study unit and the factors that affect water quality are described in this report. The primary natural and cultural features that affect water- quality characteristics and the potential for future water-quality problems are described. These environmental features include climate, physio- graphy, geology, soils, population, land use, water use, and surface- and ground-water flow systems. The study-unit area is approximately 47,600 square miles and includes most of the Ozark Plateaus Province and parts of the adjacent Osage Plains and Mississippi Alluvial Plain in parts of Arkansas, Kansas, Missouri, and Oklahoma. The geology is characterized by basement igneous rocks overlain by a thick sequence of dolomites, limestones, sandstones, and shales of Paleozoic age. Land use in the study unit is predominantly pasture and forest in the southeastern part, and pasture and cropland in the northwestern part. All or part of the White, Neosho-lllinois, Osage, Gasconade, Meramec, St. Francis, and Black River Basins are within the study unit. Streams in the Boston Mountains contain the least mineralized water, and those in the Osage Plains contain the most mineralized water. The study unit contains eight hydrogeologic units including three major aquifers--the Springfield Plateau, Ozark, and St. Francois aquifers. Streams and aquifers in the study unit generally contain calcium or calcium-magnesium bicarbonate waters. Ground- and surface-water interactions are greatest in the Salem and Springfield Plateaus and least in the Boston Mountains and Osage Plains. Geology, land use, and population probably are the most important environmental factors that affect water quality.
REGIONALIZATION OF THE WESTERN CORN BELT PLAINS ECOREGION
As part of a larger effort to study the fate and transport of agrichemicals in the midwestern United States, the U.S. Environmental Protection Agency commissioned a study of spatial variability within the Western Corn Belt Plains ecoregion. he objective of this study was to syste...
High Plains regional ground-water study
Dennehy, Kevin F.
2000-01-01
Over the last 25 years, industry and government have made large financial investments aimed at improving water quality across the Nation. Significant progress has been made; however, many water-quality concerns remain. In 1991, the U.S. Geological Survey (USGS) began implementing a full-scale National Water-Quality Assessment Program to provide consistent and scientifically sound information for managing the Nation's water resources. The goals of the NAWQA Program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams and aquifers, (2) describe how water quality is changing over time, and (3) improve our understanding of the primary natural and human factors affecting water quality. Assessing the quality of water in every location in the Nation would not be practical; therefore, NAWQA Program studies are conducted within a set of areas called study units (fig. 1). These study units are composed of more than 50 important river and aquifer systems that represent the diverse geography, water resources, and land and water uses of the Nation. The High Plains Regional Ground-Water Study is one such study area, designed to address issues relevant to the High Plains Aquifer system while supplementing water-quality information collected in other study units across the Nation. Implementation of the NAWQA Program for the High Plains Regional Ground-Water Study area began in 1998.
Greeley, R.; Figueredo, P.H.; Williams, D.A.; Chuang, F.C.; Klemaszewski, J.E.; Kadel, S.D.; Prockter, L.M.; Pappalardo, R.T.; Head, J. W.; Collins, G.C.; Spaun, N.A.; Sullivan, R.J.; Moore, Johnnie N.; Senske, D.A.; Tufts, B.R.; Johnson, T.V.; Belton, M.J.S.; Tanaka, K.L.
2000-01-01
Galileo data enable the major geological units, structures, and surface features to be identified on Europa. These include five primary units (plains, chaos, band, ridge, and crater materials) and their subunits, along with various tectonic structures such as faults. Plains units are the most widespread. Ridged plains material spans a wide range of geological ages, including the oldest recognizable features on Europa, and appears to represent a style of tectonic resurfacing, rather than cryovolcanism. Smooth plains material typically embays other terrains and units, possibly as a type of fluid emplacement, and is among the youngest material units observed. At global scales, plains are typically mapped as undifferentiated plains material, although in some areas differences can be discerned in the near infrared which might be related to differences in ice grain size. Chaos material is composed of plains and other preexisting materials that have been severely disrupted by inferred internal activity; chaos is characterized by blocks of icy material set in a hummocky matrix. Band material is arrayed in linear, curvilinear, wedge-shaped, or cuspate zones with contrasting albedo and surface textures with respect to the surrounding terrain. Bilateral symmetry observed in some bands and the relationships with the surrounding units suggest that band material forms by the lithosphere fracturing, spreading apart, and infilling with material derived from the subsurface. Ridge material is mapped as a unit on local and some regional maps but shown with symbols at global scales. Ridge material includes single ridges, doublet ridges, and ridge complexes. Ridge materials are considered to represent tectonic processes, possibly accompanied by the extrusion or intrusion of subsurface materials, such as diapirs. The tectonic processes might be related to tidal flexing of the icy lithosphere on diurnal or longer timescales. Crater materials include various interior (smooth central, rough inner, and annular massif) and exterior (continuous ejecta) subunits. Structural features and landforms are shown with conventional symbols. Type localities for the units are identified, along with suggestions for portraying the features on geological maps, including colors and letter abbreviations for material units. Implementing these suggestions by the planetary mapping community would facilitate comparisons of maps for different parts of Europa and contribute to an eventual global synthesis of its complex geology. On the basis of initial mapping results, a stratigraphic sequence is suggested in which ridged plains form the oldest unit on Europa, followed by development of band material and individual ridges. Band materials tend to be somewhat older than ridges, but in many areas the two units formed simultaneously. Similarly, the formation of most chaos follows the development of ridged plains; although chaos is among the youngest materials on Europa, some chaos units might have formed contemporaneously with ridged plains. Smooth plains generally embay all other units and are late-stage in the evolution of the surface. C1 craters are superposed on ridged plains but are crosscut by other materials, including bands and ridges. Most c2 craters postdate all other units, but a few c2 craters are cut by ridge material. C3 craters constitute the youngest recognizable material on Europa. Copyright 2000 by the American Geophysical Union.
Mars, highlands-lowlands: Viking contributions to mariner relative age studies
Scott, D.H.
1978-01-01
Stratigraphic relations between lowland plains and highlands, two major types of Martian geologic-terrain units, were not directly distinguishable on Mariner-9 images. Morphologic characteristics and crater densities suggested that the lava plains beneath their eolian cover were younger than adjacent highland rocks, which form a plateau bounded in many places by highly dissected escarpments. Alternatively, the lowland plains could be the older unit and represent a broad erosional surface exhumed by southward retreat of the highlands along their frontal scarp. Viking photos across five areas of the highland-lowland boundary, however, tend to confirm the younger age of the plains-forming lava flows. A time interval of several hundred million years probably occurred between the retreat of the highland scarp and its latest embayment by lava extrusions in the lowlands. ?? 1978.
NASA Technical Reports Server (NTRS)
Leake, M. A.
1982-01-01
The Post Caoris surface was derived from the geologic map by plotting all Class 1 and 2 features. To construct the Caloris surface, Class 3 craters were plotted onto the map, as well as all Class 3 plains. However, if P3 plains were adjacent to P2 units, and appeared continuous with other exposures of P3 material, the P2 unit was assumed to overlie the C3 and P3 material. The younger superposed craters were ignored with respect to the Class 3 surface. The boundaries of P3 materials were then continued under the superposed units, using a minimum of reasonable assumptions. For instance, if P2 and P4 plains were adjacent units, no P3 plains were presumed to lie under the P2 material. Similarly, all C3 craters were considered to have some deposits of impact melt after formation, even if they are mapped containing younger units. C3 craters which were superposed with younger units, C1 or C2 craters, and perhaps P2 plains, were redrawn as if later materials had not been emplaced, i.e., in their post impact, pre-degradation states.
Great Plains Drought in Simulations of Twentieth Century
NASA Astrophysics Data System (ADS)
McCrary, R. R.; Randall, D. A.
2008-12-01
The Great Plains region of the United States was influenced by a number of multi-year droughts during the twentieth century. Most notable were the "Dust Bowl" drought of the 1930s and the 1950s Great Plains drought. In this study we evaluate the ability of three of the Coupled Global Climate Models (CGCMs) used in the Fourth Assessment Report (AR4) of the IPCC to simulate Great Plains drought with the same frequency and intensity as was observed during the twentieth century. The models chosen for this study are: GFDL CM 2.0, NCAR CCSM3, and UKMO HadCM3. We find that the models accurately capture the climatology of the hydrologic cycle of the Great Plains, but that they tend to overestimate the variability in Great Plains precipitation. We also find that in each model simulation at least one long-term drought occurs over the Great Plains region during their representations 20th Century Climate. The multi-year droughts produced by the models exhibit similar magnitudes and spatial scales as was observed during the twentieth century. This study also investigates the relative roles that external forcing from the tropical Pacific and local feedbacks between the land surface and the atmosphere have in the initiation and perpetuation of Great Plains drought in each model. We find that cool, La Nina-like conditions in the tropical pacific are often associated with long-term drought conditions over the Great Plains in GFDL CM 2.0 and UKMO HadCM3, but there appears to be no systematic relationship between tropical Pacific SST variability and Great Plains drought in CCSM3. It is possible the strong coupling between the land surface and the atmosphere in the NCAR model causes precipitation anomalies to lock into phase over the Great Plains thereby perpetuating drought conditions. Results from this study are intended to help assess whether or not these climate models are credible for use in the assessment of future drought over the Great Plains region of the United States.
Geologic Evolution of Saturn's Icy Moon Tethys
NASA Astrophysics Data System (ADS)
Wagner, Roland; Stephan, K.; Schmedemann, N.; Roatsch, T.; Kersten, E.; Neukum, G.; Porco, C. C.
2013-10-01
Tethys, 1072 km in diameter, is a mid-sized icy moon of Saturn imaged for the first time in two Voyager flybys [1][2][3]. Since July 2004, its surface has been imaged by the Cassini ISS cameras at resolutions between 200 and 500 m/pxl. We present results from our ongoing work to define and map geologic units in camera images obtained preferentially during Cassini’s Equinox and Solstice mission phases. In the majority of Tethys’ surface area a densely cratered plains unit [1][2][3][this work] is abundant. The prominent graben system of Ithaca Chasma is mapped as fractured cratered plains. Impact crater and basin materials can be subdivided into three degradational classes. Odysseus is a fresh large impact basin younger than Ithaca Chasma according to crater counts [4]. Heavily degraded craters and basins occur in the densely cratered plains unit. A smooth, less densely cratered plains unit in the trailing hemisphere was previously identified by [2] but mapping of its boundaries is difficult due to varying viewing geometries of ISS images. To the south of Odysseus, we identified a cratered plains unit not seen in Voyager data, characterized by remnants of highly degraded large craters superimposed by younger fresher craters with a lower crater density compared to the densely cratered plains unit. Its distinct linear northern contact with the densely cratered plains suggests a tectonic origin. Sets of minor fractures can be distinguished in the densely cratered plains, and locally, features of mass wasting can be observed. References: [1] Smith B. A. et al. (1981), Science 212, 163-191. [2] Smith B. A. et al. (1982), Science 215, 504-537. [3] Moore J. M. and Ahern J. L. (1983), JGR 88 (suppl.), A577-A584. [4] Giese B. et al. (2007), GRL 34, doi:10.1029/2007GL031467.
Impact of female-oriented cigarette packaging in the United States.
Hammond, David; Doxey, Juliana; Daniel, Samantha; Bansal-Travers, Maansi
2011-07-01
Cigarette packaging is among the most prominent forms of tobacco marketing. This study examined the impact of cigarette pack design among young women in the United States. A national sample of 18- to 19-year-old females in the United States completed an online survey in February 2010. Participants were randomized to view eight cigarette packs designed according to one of four experimental conditions: fully branded female packs, same packs without descriptors (e.g., "slims"), same packs without brand imagery or descriptors ("plain" packs), and branded non-female brands. Participants rated packs on measures of appeal and health risk and completed a behavioral pack selection task. Fully branded female packs were rated significantly more appealing than the same packs without descriptors, "plain" packs, and non-female-branded packs. Female-branded packs were associated with a greater number of positive attributes including glamour, slimness, and attractiveness and were more likely to be perceived as less harmful. Approximately 40% of smokers and nonsmokers requested a pack at the end of the study; female-branded packs were 3 times more likely to be selected than plain packs. Plain packaging and removing descriptors such as "slims" from cigarette packs may reduce smoking susceptibility among young women.
The effect of cigarette branding and plain packaging on female youth in the United Kingdom.
Hammond, David; Daniel, Samantha; White, Christine M
2013-02-01
Cigarette packaging is the most prominent form of tobacco marketing remaining in countries such as the United Kingdom. The current study examined perceptions of cigarette packaging among female youth and the potential impact of "plain" cigarette packaging regulations. A national sample of 947 16- to 19-year-old female subjects in the United Kingdom completed an online survey. Participants were randomized to view 10 cigarette packs designed according to one of four experimental conditions: fully branded female packs, the same packs without descriptor words, the same packs without brand imagery or descriptors ("plain" packs), and branded non-female brands. Participants rated packs on measures of appeal and health risk, positive smoker image, and completed a behavioral pack selection task. Plain packs were rated as the least appealing and worse tasting compared with all other conditions. Plain packs were also associated with fewer false beliefs about health risks compared with branded packs. Removing brand descriptors from packs significantly reduced measures of appeal and taste, particularly for brands with flavor descriptors, such as cherry and vanilla. Plain packs were significantly less likely to be associated with positive images, such as glamour, sophistication, and slimness. Most importantly, respondents were significantly less likely to accept a pack of cigarettes when offered only plain versus branded packs (p = .026). Marketing in the form of pack branding remains a potent tool for increasing the appeal of tobacco products to young women. The findings provide empirical support for plain cigarette packaging regulations in Australia to be implemented in 2012. Copyright © 2013 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Detailed Analysis of the Intra-Ejecta Dark Plains of Caloris Basin, Mercury
NASA Astrophysics Data System (ADS)
Buczkowski, D.; Seelos, K. D.
2010-12-01
The Caloris basin on Mercury is floored by light-toned plains and surrounded by an annulus of dark-toned material interpreted to be ejecta blocks and smooth, dark, ridged plains. Strangely, preliminary crater-counts indicate that these intra-ejecta dark plains are younger than the light-toned plains within the Caloris basin. This would imply a second, younger plains emplacement event, possibly involving lower albedo material volcanics, which resurfaced the original ejecta deposit. On the other hand, the dark plains may be pre-Caloris light plains covered by a thin layer of dark ejecta. Another alternative to the hypothesis of young, dark volcanism is the possibility that previous crater-counts have not thoroughly distinguished between superposed craters (fresh) and partly-buried craters (old) and therefore have not accurately determined the ages of the Caloris units. We here outline the tasks associated with a new mapping project of the Caloris basin, intended to improve our knowledge of the geology and geologic history of the basin, and thus facilitate an understanding of the thermal evolution of this region of Mercury. We will 1) classify craters based on geomorphology and infilling, 2) create a high-resolution map of the intra-ejecta dark plains, 3) perform crater counts of the intra-ejecta dark plains, the ejecta, and the Caloris floor light plains and 4) refine the stratigraphy of Caloris basin units. We will use new high resolution (200-300 m/p) imaging data from the MDIS instrument to create a new geomorphic map of the dark annulus around the Caloris basin. Known Caloris group formations will be mapped where identified and any new units will be defined and mapped as necessary. Specifically, we will delineate hummocks and smooth plains within the Odin formation and map them separately. We will look for unequivocal evidence of volcanic activity within the dark annulus and the Odin Formation, such as vents and flow lobes. The location of any filled craters will be especially noted, to be incorporated into a new crater classification scheme that includes both degradation state and level and type of infilling. We will also distinguish between craters infilled with 1) lava, 2) impact melt and 3) ejecta, based on our interpretation of the MDIS images. We will then determine the crater size-frequency distribution of each geomorphic unit. We will analyze the crater density of the Caloris floor plains unit, the Odin Formation ejecta and the Odin Formation intra-ejecta dark plains. We will do a second count of Caloris floor craters that includes filled craters, to attempt to get a minimum age for the underlying dark basement. Crater counting on any additional geologic units will depend upon results of the geomorphic mapping. Finally, we will refine the stratigraphy of the Caloris basin units. We start in the region where MESSENGER data over-laps Mariner 10 images. By comparing the Caloris group formations mapped in the Tolstoj and Shakespeare quadrangles to the overlapping MDIS images, we determine the distinctive geomorphology of each of these units in the high resolution MESSENGER data. We will then use this as diagnostic criteria as we map the rest of the basin.
Silviculture is the primary land use within many Coastal Plain watersheds of the southeastern United States, where most forested wetlands are found along headwater intermittent streams. Our study compared invertebrate assemblages and breakdown of buried detritus (leaves, wood, a...
NASA Technical Reports Server (NTRS)
Detroye, Jeff E.; Williams, Steven H.
1994-01-01
Geologic mapping of the fretted terrain of the Nilosyrtis Mensae region of Mars has revealed geomorphic evidence that the breakup of the plateau units to the south of Nilosyrtis occurred well before the plains units to the north were emplaced in the late Hesperian time. The plains units were deposited against the fretted terrain which has undergone some modification by mass wasting but not significant backwasting. The morphology observed at the contact between plains and the fretted terrain is consistent with that expected where the edge of a pile of sedimentary debris has undergone mass wasting and other erosion.
Wheat rusts in the United States in 2015
USDA-ARS?s Scientific Manuscript database
In 2015 wheat stripe rust caused by Puccinia striiformis f. sp. graminis was widespread throughout the United States. Cool temperatures and abundant rainfall in the southern Great Plains allowed stripe rust to become widely established and spread throughout the Great Plains and eastern United States...
Wheat rusts in the United States in 2016
USDA-ARS?s Scientific Manuscript database
In 2016, wheat stripe rust caused by Puccinia striiformis f. sp. graminis was widespread throughout the United States. Cool temperatures and abundant rainfall in the southern Great Plains allowed stripe rust to become widely established and spread throughout the Great Plains and eastern United State...
Marella, R.L.; Fanning, J.L.
1996-01-01
The Georgia-Florida Coastal Plain study unit covers nearly 62,600 square miles along the southeastern United States coast in Georgia and Florida. In 1990, the estimated population of the study unit was 9.3 million, and included all or part of the cities of Atlanta, Jacksonville, Orlando, Tampa, and St. Petersburg. Estimated freshwater withdrawn in the study unit in 1990 was nearly 5,075 million gallons per day. Ground-water accounted for more than 57 percent of the water withdrawn during 1990 and the Floridan aquifer system provided nearly 91 percent of the total ground-water withdrawn. Surface-water accounted for nearly 43 percent of the water withdrawn in the study unit in 1990 with large amounts of withdrawals from the Altamaha River, Hillsborough River, the Ocmulgee River, the Oconee River, the St. Johns River, and the Suwannee River. Water withdrawn for public supply in the Georgia-Florida Coastal Plain study unit in 1990 totaled 1,139 million gallons per day, of which 83 percent was ground water and 17 percent was surface water. Self-supplied domestic withdrawals in the Georgia-Florida Coastal Plain study unit in 1990 totaled nearly 230 million gallons per day. Ground water supplied over 80 percent of the study units population for drining water purposes; nearly 5.8 million people were served by public supply and 1.8 million people were served by self-supplied systems. Water withdrawn for self-supplied domestic use in Georgia and Florida is derived almost exclusively from ground water, primarily because this source can provide the quantity and quality of water needed for drinking purposes. Nearly 1.7 million people served by public supply utilized surface water for their drinking water needs. Water withdrawn for self-supplied commercial-industrial uses in the study unit in 1990 totaled 862 million gallons per day, of which 93 percent was ground water and 7 percent was surface water. Water withdrawn for agriculture purposes in the study unit in 1990 totaled 1,293 million gallons per day, of which 69 percent was ground water and 31 percent was surface water. An estimated 1.254 millon acres were irrigated within the study unit during 1990. Water withdrawn for thermoelectric power generation in the study unit in 1990 totaled 1,552 million gallons per day, of which 99 percent was surface water and 1 percent was ground water. An additional 6,919 million gallons per day of saline surface water were withdrawn for thermoelectric power generation in 1990, solely for cooling purposes. Treated wastewater discharged within the Georgia-Florida Coastal Plain study unit totaled nearly 1,187 million gallons per day in 1990. Of the total water discharged, 58 percent was discharged directly into surface water and the remaining 42 percent was discharged to ground water (through drain fields, injection wells, percolation ponds or spray fields). Domestic wastewater facilities discharged in the study unit totaled nearly 789 million gallons per day, industrial wastewater facilities discharged 213 million gallons per day, and releases from septic tanks was estimated at 185 million gallons per day. More than 1.3 million septic tanks were estimated in use within the study unit in 1990.
Magellan: Preliminary description of Venus surface geologic units
NASA Technical Reports Server (NTRS)
Saunders, R. S.; Arvidson, R.; Head, J. W., III; Schaber, G. G.; Solomon, S. C.; Stofan, E. R.; Basilevsky, Alexander T.; Guest, J. E.; Mcgill, G. E.; Moore, H. J.
1991-01-01
Observations from approximately one-half of the Magellan nominal eight-month mission to map Venus are summarized. Preliminary compilation of initial geologic observations of the planet reveals a surface dominated by plains that are characterized by extensive and intensive volcanism and tectonic deformation. Four broad categories of units have been identified: plains units, linear belts, surficial units, and terrain units.
Detailed Sections from Auger Holes in the Roanoke Rapids 1:100,000 Map Sheet, North Carolina
Weems, Robert E.; Lewis, William C.
2007-01-01
Introduction The Roanoke Rapids 1:100,000 map sheet straddles the Coastal Plain / Piedmont boundary in northernmost North Carolina (Figure 1). Sediments of the Coastal Plain underlie the eastern three-fourths of this area, and patchy outliers of Coastal Plain units cap many of the higher hills in the western one-fourth of the area. Sediments dip gently to the east and reach a maximum known thickness in the extreme southeast part of the map area (Figure 2). The gentle eastward dip is disrupted in several areas due to faulting. The U.S. Geological Survey recovered one core and augered 97 research test holes within the Roanoke Rapids 1:100,000 map sheet to supplement sparse outcrop data available from the Coastal Plain portion of the map area. The recovered sediments were studied and data from them recorded to determine the lithologic characteristics, spatial distribution, and temporal framework of the represented Coastal Plain stratigraphic units. These test holes were critical for accurately determining the distribution of major geologic units and the position of unit boundaries that will be shown on the forthcoming Roanoke Rapids geologic map, but much of the detailed subsurface data cannot be shown readily through this map product. Therefore, detailed descriptions have been collected in this open-file report for geologists, hydrologists, engineers, and community planners to provide a detailed shallow-subsurface stratigraphic framework for much of the Roanoke Rapids map region.
USDA-ARS?s Scientific Manuscript database
The diversity of geo-climatic land bases and potential feedstocks within the United States Central Great Plains (CGP) requires sustainable production that provides optimal resource utilization while maintaining or enhancing localized soil and environmental quality as much as possible. This study exa...
USDA-ARS?s Scientific Manuscript database
The diversity of geo-climatic land bases and potential feedstocks within the United States Central Great Plains (CGP) requires sustainable production that provides optimal resource utilization while maintaining or enhancing localized soil and environmental quality as much as possible. This study exa...
Optimizing preplant irrigation for maize under limited water in the high plains
USDA-ARS?s Scientific Manuscript database
Due to inadequate irrigation capacity, some farmers in the United States High Plains apply preplant irrigation to buffer the crop between irrigation events during the cropping season. The purpose of the study was to determine preplant irrigation amount and irrigation capacity combinations that optim...
Nomenclature of regional hydrogeologic units of the Southeastern Coastal Plain aquifer system
Miller, J.A.; Renken, R.A.
1988-01-01
Clastic sediments of the Southeastern Coastal Plain aquifer system can be divided into four regional aquifers separated by three regional confining units. The four regional aquifers have been named for major rivers that cut across their outcrop areas and expose the aquifer materials. From youngest to oldest, the aquifers are called the Chickasawhay River, Pearl River, Chattahoochee River, and Black Warrior River aquifers, and the regional confining units separating them are given the same name as the aquifer they overlie. Most of the regional hydrogeologic units are subdivided within each of the four States that comprise the study area. Correlation of regional units is good with hydrogeologic units delineated by a similar regional study to the west and southwest. Because of complexity created by a major geologic structure to the northeast of the study area and dramatic facies change from clastic to carbonate strata to the southeast, correlation of regional hydrogeologic units is poor in these directions. (Author 's abstract)
NASA Astrophysics Data System (ADS)
White, O. L.; Moore, J. M.; Stern, S. A.; Weaver, H. A., Jr.; Olkin, C.; Ennico Smith, K.; Young, L. A.; Cheng, A. F.
2016-12-01
The New Horizons flyby of Pluto provided extensive high-resolution coverage of its encounter hemisphere. The most prominent surface feature in this hemisphere is the high albedo region informally named Tombaugh Regio, the western portion of which is represented by the expansive nitrogen ice plains informally named Sputnik Planum. A large fraction of Sputnik Planum displays a distinct cellular pattern, with individual cells typically displaying ovoid planforms and shallow pitting on a scale of a few hundred meters. Troughs with medial ridges define the boundaries between cells. Prior studies have argued that this pattern is indicative of solid-state convection occurring within the nitrogen ice. The southern non-cellular plains are either featureless or display dense fields of often elongate and aligned pits typically reaching a few km across, interpreted to have formed via sublimation. The mapping that will be presented at AGU focuses on identifying the different plains units that compose Sputnik Planum and defining the boundaries between them, which aids in assessing their time sequencing and correlation to one another. The cellular plains are divided into bright and dark units, with the bright unit forming a continuous high albedo zone with the bright uplands of east Tombaugh Regio. We interpret the dark plains to represent the main body of convecting N2 ice that forms the cellular plains of Sputnik Planum, with the low albedo caused by a high concentration of entrained dark material (likely tholins). Preferential sublimation of N2 ice from these plains would leave the dark ice exposed, and re-deposition of the N2 ice on the eastern cellular plains and uplands of east Tombaugh Regio would create a thin veneer of pure, bright N2 ice covering these landscapes. The non-cellular plains are universally bright and display evidence for southwards flow of the N2 ice, based on the orientations of fields of elongate sublimation pits as well as the presence of `extinct cells' that appear to have migrated away from the zone of active convection. The larger pits that occur within the non-cellular plains imply that these plains are older than the cellular plains, where resurfacing via convection limits the maximum size attainable by sublimation pits.
NASA Astrophysics Data System (ADS)
Sharpton, V. L.
2013-12-01
Volcanic plains units of various types comprise at least 80% of the surface of Venus. Though devoid of topographic splendor and, therefore often overlooked, these plains units house a spectacular array of volcanic, tectonic, and impact features. Here I propose that the plains hold the keys to understanding the resurfacing history of Venus and resolving the global stratigraphy debate. The quasi-random distribution of impact craters and the small number that have been conspicuously modified from the outside by plains-forming volcanism have led some to propose that Venus was catastrophically resurfaced around 725×375 Ma with little volcanism since. Challenges, however, hinge on interpretations of certain morphological characteristics of impact craters: For instance, Venusian impact craters exhibit either radar dark (smooth) floor deposits or bright, blocky floors. Bright floor craters (BFC) are typically 100-400 m deeper than dark floor craters (DFC). Furthermore, all 58 impact craters with ephemeral bright ejecta rays and/or distal parabolic ejecta patterns have bright floor deposits. This suggests that BFCs are younger, on average, than DFCs. These observations suggest that DFCs could be partially filled with lava during plains emplacement and, therefore, are not strictly younger than the plains units as widely held. Because the DFC group comprises ~80% of the total crater population on Venus the recalculated emplacement age of the plains would be ~145 Ma if DFCs are indeed volcanically modified during plains formation. Improved image and topographic data are required to measure stratigraphic and morphometric relationships and resolve this issue. Plains units are also home to an abundant and diverse set of volcanic features including steep-sided domes, shield fields, isolated volcanoes, collapse features and lava channels, some of which extend for 1000s of kilometers. The inferred viscosity range of plains-forming lavas, therefore, is immense, ranging from the extremely fluid flows (i.e., channel formers), to viscous, possibly felsic lavas of steep-sided domes. Wrinkle ridges deform many plains units and this has been taken to indicate that these ridges essentially form an early stratigraphic marker that limits subsequent volcanism to a minimum. However, subtle backscatter variations within many ridged plains units suggest (but do not prove) that some plains volcanism continued well after local ridge deformation ended. Furthermore, many of volcanic sources show little, if any, indications of tectonic modification and detailed analyses have concluded that resurfacing rates could be similar to those on Earth. Improving constraints on the rates and styles of volcanism within the plains could lend valuable insights into the evolution of Venus's internal heat budget and the transition from thin-lid to thick-lid tectonic regimes. Improved spatial and radiometric resolution of radar images would greatly improve abilities to construct the complex local stratigraphy of ridged plains. Constraining the resurfacing history of Venus is central to understanding how Earth-sized planets evolve and whether or not their evolutionary pathways lead to habitability. This goal can only be adequately addressed if broad coverage is added to the implementation strategies of any future mapping missions to Venus.
Radial growth trends of loblolly pine in the Virginia Coastal Plain
Gregory A. Reams
1996-01-01
A number of recent studies have shown reduced individual-treerowth throughout the 1970s and early 1980s in natural loblolly pine (Pinus taeda L.) stands in the southeastern United States. This study updates radial growth trends of loblolly pine in the Virginia Coastal Plain through1989.Ring-width series were initially grouped into two age-classes (=150...
Preliminary Stratigraphic Basis for Geologic Mapping of Venus
NASA Technical Reports Server (NTRS)
Basilevsky, A. T.; Head, J. W.
1993-01-01
The age relations between geologic formations have been studied at 36 1000x1000 km areas centered at the dark paraboloid craters. The geologic setting in all these sites could be characterized using only 16 types of features and terrains (units). These units form a basic stratigraphic sequence (from older to younger: (1) Tessera (Tt); (2-3) Densely fractured terrains associated with coronae (COdf) and in the form of remnants among plains (Pdf); (4) Fractured and ridged plains (Pfr); (5) Plains with wrinkle ridges (Pwr); (6-7) Smooth and lobate plains (Ps/Pl); and (8) Rift-associated fractures (Fra). The stratigraphic position of the other units is determined by their relation with the units of the basic sequence: (9) Ridge bells (RB), contemporary with Pfr; (10-11) Ridges of coronae and arachnoids annuli (COar/Aar), contemporary with wrinkle ridges of Pwr; (12) Fractures of coronae annuli (COaf) disrupt Pwr and Ps/Pl; (13) Fractures (F) disrupt Pwr or younger units; (14) Craters with associated dark paraboloids (Cdp), which are on top of all volcanic and tectonic units except the youngest episodes of rift-associated fracturing and volcanism; (15-16) Surficial streaks (Ss) and surficial patches (Sp) are approximately contemporary with Cdp. These units may be used as a tentative basis for the geologic mapping of Venus including VMAP. This mapping should test the stratigraphy and answer the question of whether this stratigraphic sequence corresponds to geologic events which were generally synchronous all around the planet or whether the sequence is simply a typical sequence of events which occurred in different places at diffferent times.
Global Stratigraphy of Venus: Analysis of a Random Sample of Thirty-Six Test Areas
NASA Technical Reports Server (NTRS)
Basilevsky, Alexander T.; Head, James W., III
1995-01-01
The age relations between 36 impact craters with dark paraboloids and other geologic units and structures at these localities have been studied through photogeologic analysis of Magellan SAR images of the surface of Venus. Geologic settings in all 36 sites, about 1000 x 1000 km each, could be characterized using only 10 different terrain units and six types of structures. These units and structures form a major stratigraphic and geologic sequence (from oldest to youngest): (1) tessera terrain; (2) densely fractured terrains associated with coronae and in the form of remnants among plains; (3) fractured and ridged plains and ridge belts; (4) plains with wrinkle ridges; (5) ridges associated with coronae annulae and ridges of arachnoid annulae which are contemporary with wrinkle ridges of the ridged plains; (6) smooth and lobate plains; (7) fractures of coronae annulae, and fractures not related to coronae annulae, which disrupt ridged and smooth plains; (8) rift-associated fractures; and (9) craters with associated dark paraboloids, which represent the youngest 1O% of the Venus impact crater population (Campbell et al.), and are on top of all volcanic and tectonic units except the youngest episodes of rift-associated fracturing and volcanism; surficial streaks and patches are approximately contemporary with dark-paraboloid craters. Mapping of such units and structures in 36 randomly distributed large regions (each approximately 10(exp 6) sq km) shows evidence for a distinctive regional and global stratigraphic and geologic sequence. On the basis of this sequence we have developed a model that illustrates several major themes in the history of Venus. Most of the history of Venus (that of its first 80% or so) is not preserved in the surface geomorphological record. The major deformation associated with tessera formation in the period sometime between 0.5-1.0 b.y. ago (Ivanov and Basilevsky) is the earliest event detected. In the terminal stages of tessera fon-nation, extensive parallel linear graben swarms representing a change in the style of deformation from shortening to extension were formed on the tessera and on some volcanic plains that were emplaced just after, and perhaps also during the latter stages of the major compressional phase of tessera emplacement. Our stratigraphic analyses suggest that following tessera formation, extensive volcanic flooding resurfaced at least 85% of the planet in the form of the presently-ridged and fractured plains. Several lines of evidence favor a high flux in the post-tessera period but we have no independent evidence for the absolute duration of ridged plains emplacement. During this time, the net state of stress in the lithosphere apparently changed from extensional to compressional, first in the form of extensive ridge belt development, followed by the formation of extensive wrinkle ridges on the flow units. Subsequently, there occurred local emplacement of smooth and lobate plains units which are presently essentially undefortned. The major events in the latest 10% of the presently preserved history of Venus (less than 50 m.y. ago) are continued rifting and some associated volcanism, and the redistribution of eolian material largely derived from impact crater deposits.
ERIC Educational Resources Information Center
Bale, Richard L.; Sprague, C. Fremont
The Mountain-Plains Education & Economic Development Program, which exemplifies the comprehensive, residential family-centered approach to serving the economically disadvantaged, was compared to four similar programs in the United States: Arizona Job Colleges (AJC) in Arizona; Madera Employment Training Center (METC) in California; Manpower,…
NASA Astrophysics Data System (ADS)
Thomas, Rebecca J.
2013-04-01
The Cerberus plains are one of the youngest surfaces on Mars. They are thought to have been formed by lava and/or water flows, but there is considerable debate regarding the source of this material. Much of the material forming the western plains, including the Athabasca Valles outflow channels, appears to have flowed from the region of the Cerberus Fossae graben system [1,2,3] and limited areas forming the eastern plains may have been erupted by low shield volcanoes [4,5]. However, flow of material from west to east is obstructed by a ridge centred on 157°E, 7°N and, prior to this study, vents which might be the source of fluid of a low enough viscosity to form the majority of the flat eastern plains had not been identified. We studied new HiRISE (25cm/px, High Resolution Science Imaging Experiment) images of the ridge between the east and west plains and observed possible source vents for this material: the ridge is cut by a series of pits and fissures which lie at the heads of flows and channels extending towards the surrounding plains. In order to establish the stratigraphic relationships between the vents and plains, this study produced large scale geomorphological maps based on the HiRISE images. The mapping showed that both incised channels and leveed flows extend onto the plain to the south of the ridge and that these were the final phase of plains-forming activity in that region. Conversely, to the north, ridge-sourced deposits only form the plains surface close to the ridge - beyond that, they are overlain by large-scale regional flows that appear to have originated from the direction of Athabasca Valles. In the southeast, a large-scale flow which does not emanate from this ridge forms the plains surface, but there is evidence that the youngest outflow activity from the ridge was contemporaneous with emplacement of this unit. We also performed crater counts to age-date the surfaces and these indicate that plains-forming and ridge-sourced units are of a similar Late Amazonian age (<100Ma), with the latest activity tentatively dating to 10Ma. Thus, this study implies that very recent outflows from these vents contributed to the formation of the Cerberus Plains. It also constrains the timing of other large-scale plains-forming flows in the region and suggests that outflows from this ridge were part of a broader process of Cerberus plains formation from multiple sources [6]. References: [1] Plescia, J. B. (1990) Icarus, 88 (2), 465-490. [2] Burr et al. (2002) Geophysical Research Letters, 29, 1013. [3] Berman & Hartmann (2002) Icarus 159, 1-7. [4] Plescia et al. (2003) Icarus, 164, 79-95. [5] Vaucher et al. (2009) Icarus, 204, 418-442. [6] Thomas, R. (2012) JGR Planets (submitted).
Maynard, Olivia M; Leonards, Ute; Attwood, Angela S; Bauld, Linda; Hogarth, Lee; Munafò, Marcus R
2014-06-25
Previous research on the effects of plain packaging has largely relied on self-report measures. Here we describe the protocol of a randomized controlled trial investigating the effect of the plain packaging of cigarettes on smoking behavior in a real-world setting. In a parallel group randomization design, 128 daily cigarette smokers (50% male, 50% female) will attend an initial screening session and be assigned plain or branded packs of cigarettes to smoke for a full day. Plain packs will be those currently used in Australia where plain packaging has been introduced, while branded packs will be those currently used in the United Kingdom. Our primary study outcomes will be smoking behavior (self-reported number of cigarettes smoked and volume of smoke inhaled per cigarette as measured using a smoking topography device). Secondary outcomes measured pre- and post-intervention will be smoking urges, motivation to quit smoking, and perceived taste of the cigarettes. Secondary outcomes measured post-intervention only will be experience of smoking from the cigarette pack, overall experience of smoking, attributes of the cigarette pack, perceptions of the on-packet health warnings, behavior changes, views on plain packaging, and the rewarding value of smoking. Sex differences will be explored for all analyses. This study is novel in its approach to assessing the impact of plain packaging on actual smoking behavior. This research will help inform policymakers about the effectiveness of plain packaging as a tobacco control measure. Current Controlled Trials ISRCTN52982308 (registered 27 June 2013).
NASA Astrophysics Data System (ADS)
Tang, Yongjie; Zheng, Zhuo; Chen, Cong; Wang, Mengyuan; Chen, Bishan
2018-04-01
The coastal basin deposit in the Lian River plain is among the thickest Quaternary sequences along the southeastern coast of China. The clastic sediment accumulated in a variety of environmental settings including fluvial, channel, estuary/coastal and marine conditions. Detailed investigation of lithofacies, grain-size distributions, magnetic susceptibility, microfossils and chronology of marine core CN01, compared with regional cores, and combined with offshore seismic reflection profiles, has allowed us to correlate the spatial stratigraphy in the inner and outer plain and the seismic units. Grain size distribution analysis of core CN-01 through compositional data analysis and multivariate statistics were applied to clastic sedimentary facies and sedimentary cycles. Results show that these methods are able to derive a robust proxy information for the depositional environment of the Lian River plain. We have also been able to reconstruct deltaic evolution in response to marine transgressions. On the basis of dating results and chronostratigraphy, the estimated age of the onset of deposition in the Lian River coastal plain was more than 260 kyr BP. Three transgressive sedimentary cycles revealed in many regional cores support this age model. Detailed lithological and microfossil studies confirm that three marine (M3, M2 and M1) and three terrestrial (T3, T2 and T1) units can be distinguished. Spatial correlation between the inner plain, outer plain (typical cores characterized by marine transgression cycles) and offshore seismic reflectors reveals coherent sedimentary sequences. Two major boundaries (unconformity and erosion surfaces) can be recognized in the seismic profiles, and these correspond to weathered reddish and/or variegated clay in the study core, suggesting that Quaternary sediment changes on the Lian River plain were largely controlled by sea-level variations and coastline shift during glacial/interglacial cycles.
Geologic Mapping of Isabella Quadrangle (V-50) and Helen Planitia, Venus
NASA Technical Reports Server (NTRS)
Bleamaster, Leslie F., III
2008-01-01
(25-50 S, 180-210 E) is host to numerous coronae and small volcanic centers (paterae and shield fields), focused (Aditi and Sirona Dorsa) and distributed (penetrative north-south trending wrinkle ridges) contractional deformation, and radial and linear extensional structures, all of which contribute materials to and/or deform the expansive surrounding plains (Nsomeka and Wawalag Planitiae). Regional plains, which are a northern extension of regional plains mapped in the Barrymore Quadrangle V-59 [1], dominate the V-50 quadrangle. Previous mapping divided the regional plains into two members: regional plains, members a and b [2]. A re-evaluation of these members has determined that a continuous and consistent unit contact does not exist; however, the majority of this radar unit or surficial unit will still be displayed on the final map as a stipple pattern as it is a prevalent feature of the quadrangle. With minimal tessera or highland material, much of the quadrangle s oldest materials are plains units (the regional plains). Much of these plains are covered with small shield edifices that exhibit a variety of material contributions (or flows). In the northwest, several flows emerge and flow to the southeast from Diana-Dali Chasmata. Local corona- and mons-fed flows superpose the regional plains; however, earlier stages of volcano-tectonic centers marked by arcuate and radial structural elements, including terrain so heavily deformed that it takes on a new appearance, may have developed prior to or concurrently with the region plains. Northtrending deformation belts disrupt the central portion of the map area and wrinkle ridges parallel these larger belts. Isabella crater, in the northeastern quadrant, is highly asymmetric and displays two prominent ejecta blanket morphologies, which generally correlate with distance from the impact structure suggesting that ejecta block size or ejecta blanket thickness may be the cause. The crater floor is very dark and shows no direct connection with the large outflow to the south, which emphasizes the asymmetry observed. Isabella crater ejecta and outflow materials clearly postdate several small craters in the vicinity.
Global Volcanism on Mercury at About 3.8 Ga
NASA Astrophysics Data System (ADS)
Byrne, P. K.; Ostrach, L. R.; Denevi, B. W.; Head, J. W., III; Hauck, S. A., II; Murchie, S. L.; Solomon, S. C.
2014-12-01
Smooth plains occupy c. 27% of the surface of Mercury. Embayment relations, spectral contrast with surroundings, and morphologic characteristics indicate that the majority of these plains are volcanic. The largest deposits are located in Mercury's northern hemisphere and include the extensive northern plains (NP) and the Caloris interior and exterior plains (with the latter likely including basin material). Both the NP and Caloris deposits are, within statistical error, the same age (~3.8-3.9 Ga). To test whether this age reflects a period of global volcanism on Mercury, we determined crater size-frequency distributions for four smooth plains units in the planet's southern hemisphere interpreted to be volcanic. Two deposits are situated within the Beethoven and Tolstoj impact basins; two are located close to the Debussy and the Alver and Disney basins, respectively. Each deposit hosts two populations of craters, one that postdates plains emplacement and one that consists of partially to nearly filled craters that predate the plains. This latter population indicates that some time elapsed between formation of the underlying basement and plains volcanism, though we cannot statistically resolve this interval at any of the four sites. Nonetheless, we find that the age given by the superposed crater population in each case is ~3.8 Ga, and crater density values are consistent with those for the NP and Caloris plains. This finding supports a global phase of volcanism near the end of the late heavy bombardment of Mercury and may indicate a period of widespread partial melting of Mercury's mantle. Notably, superposition relations between smooth plains, degraded impact structures, and contractional landforms suggest that by this time interior cooling had already placed Mercury's lithosphere in horizontal compression, tending to inhibit voluminous dike-fed volcanism such as that inferred responsible for the NP. Most smooth plains units, including the Caloris plains and our four study sites, are spatially associated with impact structures; even the NP lie in a regional depression that may be impact-related. Because impacts remove overburden, deposit subsurface heat, and relax pre-existing stress, basins and craters may represent preferential sites for volcanic resurfacing on a globally contracting planet.
Study on ecological regulation of coastal plain sluice
NASA Astrophysics Data System (ADS)
Yu, Wengong; Geng, Bing; Yu, Huanfei; Yu, Hongbo
2018-02-01
Coastal plains are densely populated and economically developed, therefore their importance is self-evident. However, there are some problems related with water in coastal plains, such as low flood control capacity and severe water pollution. Due to complicated river network hydrodynamic force, changeable flow direction and uncertain flood concentration and propagation mechanism, it is rather difficult to use sluice scheduling to realize flood control and tackle water pollution. On the base of the measured hydrological data during once-in-a-century Fitow typhoon in 2013 in Yuyao city, by typical analysis, theoretical analysis and process simulation, some key technologies were researched systematically including plain river network sluice ecological scheduling, “one tide” flood control and drainage scheduling and ecological running water scheduling. In the end, single factor health diagnostic evaluation, unit hydrograph of plain water level and evening tide scheduling were put forward.
Ocean-Bottom Topography: The Divide between the Sohm and Hatteras Abyssal Plains.
Pratt, R M
1965-06-18
A compilation of precision echo soundings has delineated the complex topography between the Sohm and Hatteras abyssal plains off the Atlantic coast of the United States. At present the divide between the two plains is a broad, flat area about 4950 meters deep; however, the configuration of channels and depressions suggests spillage of turbidity currents from the Sohm Plain into the Hatteras Plain and a shifting of the divide toward the northeast. Hudson Canyon terminates in the divide area and has probably fed sediment into both plains.
Rogers, A.D.; Fergason, R.L.
2011-01-01
The compositional, thermophysical and geologic characteristics of surface units in Iapygia and Tyrrhena Terra (60??E-100??E, 0??-30??S) provide new insights into the compositional stratigraphy of the region. Intercrater plains are dominated by two surface units. The older unit (unit 1) is deficient in olivine and more degraded and likely consists of a mixture of impact, volcanic and sedimentary materials. The younger unit (unit 2) is enriched in olivine, exhibits a resistant morphology and higher thermal inertia, and likely represents volcanic infilling of plains. Units 1 and 2 bear a strong resemblance to those previously mapped in Mare Serpentis, a section of highlands crust located northwest of Hellas Basin. Thus, the two major intercrater plains units are even more widespread than previously thought and therefore likely constitute important components of Mars' highland stratigraphy. Many craters in the region contain high thermal inertia deposits (unit 3) that are compositionally identical to unit 2. These may have formed via volcanic infilling or may represent sedimentary materials that have been eroded from crater walls and lithified. Less common units include olivine and/or pyroxene-rich massifs and crater central peaks. These are primarily found within Hellas Basin rim units and may represent mantle materials brought toward the surface during the Hellas impact. Putative chloride deposits are primarily associated with olivine-deficient surfaces (unit 1) that may be heavily degraded occurrences of unit 2. The observations raise a variety of questions related to Martian crustal evolution and alteration that may have more widespread implications outside the study region. Copyright ?? 2011 by the American Geophysical Union.
Rogers, A. Deanne; Fergason, Robin L.
2011-01-01
The compositional, thermophysical and geologic characteristics of surface units in Iapygia and Tyrrhena Terra (60°E-100°E, 0°-30°S) provide new insights into the compositional stratigraphy of the region. Intercrater plains are dominated by two surface units. The older unit (unit 1) is deficient in olivine and more degraded and likely consists of a mixture of impact, volcanic and sedimentary materials. The younger unit (unit 2) is enriched in olivine, exhibits a resistant morphology and higher thermal inertia, and likely represents volcanic infilling of plains. Units 1 and 2 bear a strong resemblance to those previously mapped in Mare Serpentis, a section of highlands crust located northwest of Hellas Basin. Thus, the two major intercrater plains units are even more widespread than previously thought and therefore likely constitute important components of Mars' highland stratigraphy. Many craters in the region contain high thermal inertia deposits (unit 3) that are compositionally identical to unit 2. These may have formed via volcanic infilling or may represent sedimentary materials that have been eroded from crater walls and lithified. Less common units include olivine and/or pyroxene-rich massifs and crater central peaks. These are primarily found within Hellas Basin rim units and may represent mantle materials brought toward the surface during the Hellas impact. Putative chloride deposits are primarily associated with olivine-deficient surfaces (unit 1) that may be heavily degraded occurrences of unit 2. The observations raise a variety of questions related to Martian crustal evolution and alteration that may have more widespread implications outside the study region.
Young flood lavas in the Elysium Region, Mars
NASA Technical Reports Server (NTRS)
Plescia, J. B.
1990-01-01
The nature and origin of a smooth plains unit (the Cerberus Plains) in southeastern Elysium and western Amazonis are reported. The interpretation that the Cerberus Plains resulted from flood plains style volcanism late in martian history is presented which carries implications for martian thermal history and volcanic evolution of a global scale. Although central construct volcanism (e.g., Olympus Mons) has long been recognized as occurring late in time, flood volcanism has not. Flood volcanism has been suggested as the origin of the ridged plains units (e.g., Lunae Planum, Solis, and Sinai Planum). This type of volcanic activity generally occurred early, and in Tharsis, the style of volcanism evolved from flood eruptions into centralized eruptions which built the large Tharsis Montes and Olympus Mons shields. Volcanism in the Elysium region seems to have followed a similar trend from flood eruptions to central construct building. But, the Cerberus Plains indicate that the volcanic style returned to flood eruption again after central constructional volcanism had ended.
Groundwater quality in the Santa Barbara Coastal Plain, California
Davis, Tracy A.; Belitz, Kenneth
2016-10-03
Groundwater provides more than 40 percent of California’s drinking water. To protect this vital resource, the State of California established the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The Priority Basin Project of the GAMA Program provides a comprehensive assessment of the State’s groundwater quality and increases public access to groundwater-quality information. The Santa Barbara Coastal Plain is one of the study units.
Alexander Clark; James W. McMinn
1999-01-01
National Forests in the United States are under sustainable ecosystem management to conserve biodiversity, achieve sustainable conditions and improve the balance among forest values. This paper reports on a study established to identify the implications of ecosystem management strategies on natural stands in the Piedmont and Coastal Plain. The impact of partial...
Geomorphological Mapping of Sputnik Planum on Pluto
NASA Astrophysics Data System (ADS)
White, Oliver; Moore, Jeffrey M.; Stern, S. Alan; Weaver, Harold A.; Olkin, Catherine B.; Ennico, Kimberly; Young, Leslie; Cheng, Andrew F.; New Horizons Geology, Geophysics and Imaging Theme Team, New Horizons Composition Theme Team
2016-10-01
The New Horizons flyby of Pluto in July 2015 provided extensive high-resolution coverage of its encounter hemisphere. The most prominent surface feature in this hemisphere is the high albedo region informally named Tombaugh Regio, the western portion of which is represented by the expansive nitrogen ice plains informally named Sputnik Planum. A large fraction of Sputnik Planum displays a distinct cellular pattern, with individual cells typically displaying ovoid planforms and shallow pitting on a scale of a few hundred meters. Troughs with medial ridges define the boundaries between cells. Prior studies have argued that this pattern is indicative of solid-state convection occurring within the nitrogen ice. The southern non-cellular plains are either featureless or display dense fields of often elongate and aligned pits typically reaching a few km across, which are interpreted to have formed via sublimation.The mapping that will be presented at DPS focuses on identifying the different plains units that compose Sputnik Planum and defining the boundaries between them, which aids in assessing their time sequencing and correlation to one another. The cellular plains are divided into bright and dark units; the nature of the contact between the two indicates that ice of the bright plains, interpreted to have been recently emplaced via glacial flow from the highlands to the east of Sputnik Planum, is overlying ice of the dark plains, interpreted to be an older ice mass with a higher abundance of entrained dark material. Reconciling the seemingly contradictory models of a layered and also convecting Sputnik Planum requires consideration of the timescale of lateral flow of the bright plains ice relative to the timescale of convective overturn. The non-cellular plains are universally bright and display evidence for southwards flow of the ice, based on the orientations of elongate sublimation pits as well as the presence of 'extinct cells' that appear to have migrated away from the zone of active convection. The larger pits that occur within the non-cellular plains imply that these plains are older than the cellular plains, where resurfacing via convection limits the maximum size attainable by sublimation pits.
John T. Perren; Michael Kane; Dehai Zhao; Richard Daniels
2016-01-01
Thinning is a well understood concept used to manage density dependent factors at the stand level. This study evaluates the effect of planting density, cultural intensity, and thinning treatment on loblolly pine post-thinning individual tree development. The Lower Coastal Plain Culture/Density Study, has four initial densities, in combination with two cultural...
Means, D Bruce; Lamb, Jennifer Y; Bernardo, Joseph
2017-05-10
The Coastal Plain of the southeastern U. S. is one of the planet's top biodiversity hotspots and yet many taxa have not been adequately studied. The plethodontid salamander, Desmognathus auriculatus, was originally thought to occur from east Texas to Virginia, a range spanning dozens of interfluves and large river systems. Beamer and Lamb (2008) found five independent mitochondrial lineages of what has been called D. auriculatus in the Atlantic Coastal Plain, but did not examine the extensive distribution of D. auriculatus in the Gulf Coastal Plain. We present morphological and molecular genetic data distinguishing two evolutionarily independent and distantly related lineages that are currently subsumed under the taxon D. auriculatus in the eastern Gulf Coastal Plain. We describe one of these as a new species, Desmognathus valentinei sp. nov., and assign the second one to D. auriculatus which we formally redescribe.
NASA Astrophysics Data System (ADS)
Bleacher, Jacob E.; Orr, Tim R.; de Wet, Andrew P.; Zimbelman, James R.; Hamilton, Christopher W.; Brent Garry, W.; Crumpler, Larry S.; Williams, David A.
2017-08-01
The Tharsis Montes rift aprons are composed of outpourings of lava from chaotic terrains to the northeast and southwest flank of each volcano. Sinuous and branching channel networks that are present on the rift aprons suggest the possibility of fluvial processes in their development, or erosion by rapidly emplaced lavas, but the style of lava flow emplacement throughout rift apron development is not clearly understood. To better characterize the style of lava emplacement and role of fluvial processes in rift apron development, we conducted morphological mapping of the Pavonis Mons southwest rift apron and the eastern Tharsis plains using images from the High Resolution Imaging Science Experiment (HiRISE), Mars Orbiter Camera (MOC), Context Camera (CTX), Thermal Emission Imaging System (THEMIS), and High Resolution Stereo Camera (HRSC) along with the Mars Orbiter Laser Altimeter (MOLA) Precision Experiment Data Records (PEDRs) and gridded data. Our approach was to: (1) search for depositional fans at the slope break between the rift apron and adjacent low slope plains; (2) determine if there is evidence that previously formed deposits might have been buried by plains units; (3) characterize the Tharsis plains morphologies east of Pavonis Mons; and (4) assess their relationship to the rift apron units. We have not identified topographically significant depositional fans, nor did we observe evidence to suggest that plains units have buried older rift apron units. Flow features associated with the rift apron are observed to continue across the slope break onto the plains. In this area, the plains are composed of a variety of small fissures and low shield vents around which broad channel-fed and tube-fed flows have been identified. We also find broad, flat-topped plateaus and sinuous ridges mixed among the channels, tubes and vents. Flat-topped plateaus and sinuous ridges are morphologies that are analogous to those observed on the coastal plain of Hawai'i, where lava flows have advanced from the volcano's several degree flank onto the nearly zero degree coastal plain. When local volumetric flow rates are low, flow fronts tend to spread laterally and often thicken via endogenous growth, or inflation, of the sheet-like flow units. If flow advance is restricted by existing topography into narrow pathways, inflation can be focused into sinuous, elongate ridges. The presence of plateaus and ridges-emplaced from the rift zones, across the plains to the east of Pavonis Mons-and a lack of fan-like features, or evidence for their burial, are consistent with rift apron lavas crossing a slope break with low local volumetric flow rates that led to inflation of sheet-like and tube-fed lava flows.
NASA Technical Reports Server (NTRS)
Bleacher, Jacob E.; Orr, Tim R.; de Wet, Andrew P.; Zimbelman, James R.; Hamilton, Christopher W.; Garry, W. Brent; Crumpler, Larry S.; Williams, David A.
2017-01-01
The Tharsis Montes rift aprons are composed of outpourings of lava from chaotic terrains to the northeast and southwest flank of each volcano. Sinuous and branching channel networks that are present on the rift aprons suggest the possibility of fluvial processes in their development, or erosion by rapidly emplaced lavas, but the style of lava flow emplacement throughout rift apron development is not clearly understood. To better characterize the style of lava emplacement and role of fluvial processes in rift apron development, we conducted morphological mapping of the Pavonis Mons southwest rift apron and the eastern Tharsis plains using images from the High Resolution Imaging Science Experiment (HiRISE), Mars Orbiter Camera (MOC), Context Camera (CTX), Thermal Emission Imaging System (THEMIS), and High Resolution Stereo Camera (HRSC) along with the Mars Orbiter Laser Altimeter (MOLA) Precision Experiment Data Records (PEDRs) and gridded data. Our approach was to: (1) search for depositional fans at the slope break between the rift apron and adjacent low slope plains; (2) determine if there is evidence that previously formed deposits might have been buried by plains units; (3) characterize the Tharsis plains morphologies east of Pavonis Mons; and (4) assess their relationship to the rift apron units. We have not identified topographically significant depositional fans, nor did we observe evidence to suggest that plains units have buried older rift apron units. Flow features associated with the rift apron are observed to continue across the slope break onto the plains. In this area, the plains are composed of a variety of small fissures and low shield vents around which broad channel-fed and tube-fed flows have been identified. We also find broad, flat-topped plateaus and sinuous ridges mixed among the channels, tubes and vents. Flat-topped plateaus and sinuous ridges are morphologies that are analogous to those observed on the coastal plain of Hawai'i, where lava flows have advanced from the volcano's several degree flank onto the nearly zero degree coastal plain. When local volumetric flow rates are low, flow fronts tend to spread laterally and often thicken via endogenous growth, or inflation, of the sheet-like flow units. If flow advance is restricted by existing topography into narrow pathways, inflation can be focused into sinuous, elongate ridges. The presence of plateaus and ridges-emplaced from the rift zones, across the plains to the east of Pavonis Mons-and a lack of fan-like features, or evidence for their burial, are consistent with rift apron lavas crossing a slope break with low local volumetric flow rates that led to inflation of sheet-like and tube-fed lava flows.
Bleacher, Jacob E.; Orr, Tim R.; de Wet, Andrew P.; Zimbelman, James R.; Hamilton, Christopher W.; Garry, W. Brent; Crumpler, Larry S.; Williams, David A.
2017-01-01
The Tharsis Montes rift aprons are composed of outpourings of lava from chaotic terrains to the northeast and southwest flank of each volcano. Sinuous and branching channel networks that are present on the rift aprons suggest the possibility of fluvial processes in their development, or erosion by rapidly emplaced lavas, but the style of lava flow emplacement throughout rift apron development is not clearly understood. To better characterize the style of lava emplacement and role of fluvial processes in rift apron development, we conducted morphological mapping of the Pavonis Mons southwest rift apron and the eastern Tharsis plains using images from the High Resolution Imaging Science Experiment (HiRISE), Mars Orbiter Camera (MOC), Context Camera (CTX), Thermal Emission Imaging System (THEMIS), and High Resolution Stereo Camera (HRSC) along with the Mars Orbiter Laser Altimeter (MOLA) Precision Experiment Data Records (PEDRs) and gridded data. Our approach was to: (1) search for depositional fans at the slope break between the rift apron and adjacent low slope plains; (2) determine if there is evidence that previously formed deposits might have been buried by plains units; (3) characterize the Tharsis plains morphologies east of Pavonis Mons; and (4) assess their relationship to the rift apron units. We have not identified topographically significant depositional fans, nor did we observe evidence to suggest that plains units have buried older rift apron units. Flow features associated with the rift apron are observed to continue across the slope break onto the plains. In this area, the plains are composed of a variety of small fissures and low shield vents around which broad channel-fed and tube-fed flows have been identified. We also find broad, flat-topped plateaus and sinuous ridges mixed among the channels, tubes and vents. Flat-topped plateaus and sinuous ridges are morphologies that are analogous to those observed on the coastal plain of Hawai‘i, where lava flows have advanced from the volcano's several degree flank onto the nearly zero degree coastal plain. When local volumetric flow rates are low, flow fronts tend to spread laterally and often thicken via endogenous growth, or inflation, of the sheet-like flow units. If flow advance is restricted by existing topography into narrow pathways, inflation can be focused into sinuous, elongate ridges. The presence of plateaus and ridges—emplaced from the rift zones, across the plains to the east of Pavonis Mons—and a lack of fan-like features, or evidence for their burial, are consistent with rift apron lavas crossing a slope break with low local volumetric flow rates that led to inflation of sheet-like and tube-fed lava flows.
Structural Maps of the V-17 Beta Regio Quadrangle, Venus
NASA Technical Reports Server (NTRS)
Basilevsky, A. t.; Head, James W.
2008-01-01
These represent slices of the geologic map into 7 time-stratigraphic levels whose descriptions are found in [3-6]. From older to younger they are: 1) Tessera material unit (t), 2) Densely fractured plains material unit (pdf), 3) Fractured and ridged plains material unit (pfr), 4) Tessera transitional terrain structural unit (tt), 5) Fracture belts structural unit (fb), 6) Shield plains (psh) and plains with wrinkle ridges (pwr) material units combined, and 7) Lobate (pl) and smooth (ps) plains material units combined and, approximately contemporaneous with them, the structural unit of rifted terrain (rt). Each slice shows the generalized pattern of structures typical of these units. Figures 1-7 show the seven maps and Figure 8 shows the combined map illustrating what is shown in the seven maps. To visualize the Beta Regio uplift outlines, the major structure of this area, we show the +0.5 km and +2.5 km contour lines, corresponding respectively to the base and the mid-height of the uplift. It is seen in Figures 1-2 and 4 the trends of t, pdf and tt occupy relatively small areas and their structures seen in these small windows appear rather variable and with almost no orientation heritage with time. Figure 3 shows that swarms of ridge belts trend mostly NW and go through the Beta structure with no alignment with it, suggesting that this structure did not yet exist at this time. Figure 5 shows that fracture belts align along the northern base of the Beta uplift suggesting onset of the formation of this structure. Figure 6 shows that wrinkle ridges do not show alignment with the Beta uplift suggesting that this already forming structure was not high enough to exert topographic stress in its vicinity. Figure 7 shows that the Beta uplift has Devana Chasma as an axial rift zone, suggesting a genetic link between the uplift and rifting. Figure 8 shows that structural trends in this area significantly changed with time.
Detailed sections from auger holes in the Elizabethtown 1:100,000-scale map sheet, North Carolina
Weems, Robert E.; Lewis, William C.; Murray, Joseph H.; Queen, David B.; Grey, Jeffrey B.; DeJong, Benjamin D.
2011-01-01
The Elizabethtown 1:100,000 quadrangle is in the west-central part of the Coastal Plain of southeastern North Carolina. The Coastal Plain, in this region, consists mostly of unlithified sediments that range in age from Late Cretaceous to Holocene. These sediments lie with profound unconformity on complexly deformed metamorphic and igneous rocks similar to rocks found immediately to the west in the Piedmont province. Coastal Plain sediments generally dip gently to the southeast or south and reach a maximum thickness of about 850 feet (ft) in the extreme southeast part of the map area. The gentle southerly and southeasterly dip is disrupted in several areas by faulting. The U.S. Geological Survey recovered one core and augered 196 research test holes in the Elizabethtown 1:100,000 quadrangle to supplement sparse outcrop data in the map area. The recovered sediments were studied and data from these sediments recorded to determine the lithologic characteristics, spatial distribution, and temporal framework of the represented Coastal Plain stratigraphic units. These test holes were critical for accurately determining the distribution of major geologic units and the position of unit boundaries. The detailed descriptions of the subsurface data can be used by geologists, hydrologists, engineers, and community planners to provide a detailed shallow-subsurface stratigraphic framework for the Elizabethtown map region.
ERIC Educational Resources Information Center
Mountain-Plains Education and Economic Development Program, Inc., Glasgow AFB, MT.
The document contains a master listing of all Mountain-Plains curriculum, compiled by job title, course, unit and LAP (Learning Activity Package), and arranged in numerical order by curriculum area. Preceding each curriculum area is a page of explanatory notes describing the curriculum area and including relevant job descriptions. Where a job…
Wrinkle ridges in the floor material of Kasei Valles, Mars: Nature and origin
NASA Technical Reports Server (NTRS)
Watters, Thomas R.; Craddock, Robert A.
1991-01-01
Wrinkle ridges on Mars occur almost exclusively in smooth plains material referred to as ridged plains. One of the largest contiguous units of ridged plains occurs on Lunae Planum on the eastern flank of the Tharsis rise. The eastern, western, and northern margins of the ridged plains of Lunae Planum suffered extensive erosion in early Amazonian channel-forming events. The most dramatic example of erosion in early Amazonian plains is in Kasei Valles. The nature an origin of the wrinkle ridges in the floor material of Kasei Valles are discussed.
C.M. Clark
2011-01-01
The North American Great Plains are the largest contiguous ecoregion in North America, covering 3.5 million square km2, or 16 percent of the continental area (CEC 1997). In the United States, the Great Plains ecoregion encompasses a roughly triangular region (Figure 2.2), bordered on the west by the Rocky Mountains and the southwestern deserts in...
NASA Astrophysics Data System (ADS)
Ivanov, M. A.; Zasova, L. V.; Gerasimov, M. V.; Korablev, O. I.; Marov, M. Ya.; Zelenyi, L. M.; Ignat'ev, N. I.; Tuchin, A. G.
2017-01-01
We discuss a change in the resurfacing regimes of Venus and probable ways of forming the terrain types that make up the surface of the planet. The interpretation of the nature of the terrain types and their morphologic features allows us to characterize their scientific priority and the risk of landing on their surface to be estimated. From the scientific point of view, two terrain types are of special interest and represent easily achievable targets: the lower unit of regional plains and the smooth plains associated with impact craters. Regional plains are probably a melting from the upper fertile mantle. The material of smooth plains of impact origin is a well-mixed and representative sample of the Venusian crust. The lower unit of regional plains is the most widespread one on the surface of Venus, and it occurs within the boundaries of all of the precalculated approach trajectories of the lander. Smooth plains of impact origin are crossed by the approach trajectories precalculated for 2018 and 2026.
Surface-compositional Properties of Lava Plains in Syria-Thaumasia Block, Mars
NASA Astrophysics Data System (ADS)
Huang, J.; Xiao, L.; Kraft, M. D.; Christensen, P. R.; Edwards, C. S.; Ruff, S. W.; Dohm, J.
2012-12-01
Mars has a long and complex volcanic history (Greeley and Spudis, 1981; Carr, 2006). Among abundant plain-style volcanism and various edifices, Tharsis bulge is a prominent and long-lasting (Werner, 2009) volcanic province. However, there is little report about compositional variations before and after Tharsis uplift. The Syria- Thaumasia block (STB) is a complex tectono-volcanic province related to the Tharsis bulge. Understanding its formation is critical to characterizing the early history and planetary evolution of Mars. The STB lies at the southern edge of Tharsis bulge. It consists of lava plains (Syria, Solis, Sinai and Thaumasia Plana) bounded by an arcuate region of higher topography (Thaumasia Highlands, Melas Dorsa and Coprates Rise) and Valles Marineris to the north. Previous work on surface thermophysical properties (Christensen, 1988; Jakosky et al., 2000; Putzig and Mellon, 2007) and visible/near infrared and thermal infrared remote sensing spectroscopic compositional analysis (Bandfield, 2000; Bibring et al., 2006; Rogers and Christensen, 2007) had been done only in a global scale, but regional study of both surface thermophysical properties and compositions for each of the distinct lava plains in STB is lacking. In this study, we characterize a variety of volcanic features, including lava tubes, channels and their relationships with wrinkle ridges within lava plains using THEMIS infrared data (100 m/pixel: Christensen et al., 2004), CTX data (6 m/pixel: Malin et al., 2007) and HiRISE data (25 cm/pixel: McEwen et al., 2007). We assessed the surface thermophysical properties and compositions of lava plains using TES data (Christensen et al., 2001). The geomorphic features imply the lava emplacement mechanisms, while their relationships indicate the chronologic relationships between Tharsis uplift and lava emplacement. The compositional results show variations within the lava plains (Table 1), while the thermophysical results show the compositional variations are due to different compositions of in place materials. The modeled high-calcium pyroxene and high-silica phases within Hsl unit are different from those of other units. The compositional variations may imply changes in magmatism (source and/or mechanism) before and after the uplift of Tharsis.Table 1. TES Derived modal mineralogy; a. Values are percent. b. Results of Hsl unit from Rogers and Christensen (2007)
NASA Technical Reports Server (NTRS)
Leake, M. A.
1982-01-01
The relative ages of various geologic units and structures place tight constraints on the origin of the Moon and the planet Mercury, and thus provide a better understanding of the geologic histories of these bodies. Crater statistics, a reexamination of lunar geologic maps, and the compilation of a geologic map of a quarter of Mercury's surface based on plains units dated relative to crater degradation classes were used to determine relative ages. This provided the basis for deducing the origin of intercrater plains and their role in terrestrial planet evolution.
NASA Technical Reports Server (NTRS)
Doggett, T.; Figueredo, P.; Greeley, R.; Hare, T.; Kolb, E.; Mullins, K.; Senske, D.; Tanaka, K.; Weiser, S.
2008-01-01
Europa, with its indications of a sub-ice ocean, is of keen interest to astrobiology and planetary geology. Knowledge of the global distribution and timing of Europan geologic units is a key step for the synthesis of data from the Galileo mission, and for the planning of future missions to the satellite. The first geologic map of Europa was produced at a hemisphere scale with low resolution Voyager data. Following the acquisition of higher resolution data by the Galileo mission, researchers have identified surface units and determined sequences of events in relatively small areas of Europa through geologic mapping using images at various resolutions acquired by Galileo's Solid State Imaging camera. These works provided a local to subregional perspective and employed different criteria for the determination and naming of units. Unified guidelines for the identification, mapping and naming of Europan geologic units were put forth by and employed in regional-to-hemispheric scale mapping which is now being expanded into a global geologic map. A global photomosaic of Galileo and Voyager data was used as a basemap for mapping in ArcGIS, following suggested methodology of all-stratigraphy for planetary mapping. The following units have been defined in global mapping and are listed in stratigraphic order from oldest to youngest: ridged plains material, Argadnel Regio unit, dark plains material, lineaments, disrupted plains material, lenticulated plains material and Chaos material.
Cariogenicity and acidogenicity of human milk, plain and sweetened bovine milk: an in vitro study.
Prabhakar, A R; Kurthukoti, Ameet J; Gupta, Pranjali
2010-01-01
The objective of the present study was to determine the acidogenicity and cariogenicity of human breast milk and plain and sweetened packaged bovine milk. First all milk specimens were inoculated with a cariogenic strain of Streptococcus mutans (SM). The culture pH and number of colony forming units (cfus) was assessed. Second, the buffer capacity of all milk specimens was evaluated by mixing with acid. Finally, enamel windows were created on extracted primary maxillary incisors and colonized with SM. Enamel demineralization and caries progression were assessed visually, histologically, and radiographically at the end of twelve weeks. Plain and sweetened packaged bovine milk (BM) supported greater bacterial growth and caused more fermentation than human breast milk (HBM). The buffer capacity values for plain and sweetened bovine milk were highest; HBM, however had poor buffering capacity. The progression of the carious lesions into the dentin was most severe for the sweetened bovine milk. HBM and plain bovine milk are relatively cariogenic in an in vitro caries model in the absence of saliva. However, supplementation with sugar exponentially enhances the cariogenic potential of the natural milk.
Landscape-scale patterns of fire and drought on the high plains, USA
Paulette Ford; Charles Jackson; Matthew Reeves; Benjamin Bird; Dave Turner
2015-01-01
We examine 31 years (1982-2012) of temperature, precipitation and natural wildfire occurrence data for Federal and Tribal lands to determine landscape-scale patterns of drought and fire on the southern and central High Plains of the western United States. The High Plains states of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas and...
Anna, Lawrence O.
2011-01-01
Parts of the northern Great Plains in eastern Montana and western North Dakota and southeastern Alberta and southwestern Saskatchewan, Canada, were studied as part of an assessment of shallow biogenic gas in Upper Cretaceous rocks.Parts of the northern Great Plains in eastern Montana and western North Dakota and southeastern Alberta and southwestern Saskatchewan, Canada, were studied as part of an assessment of shallow biogenic gas in Upper Cretaceous rocks. Large quantities of shallow biogenic gas are produced from low-permeability, Upper Cretaceous reservoirs in southeastern Alberta and southwestern Saskatchewan, Canada. Rocks of similar types and age produce sparingly in the United States except on large structures, such as Bowdoin dome and Cedar Creek anticline. Significant production also occurs in the Tiger Ridge area, where uplift of the Bearpaw Mountains created stratigraphic traps. The resource in Canada is thought to be a continuous, biogenic-gas-type accumulation with economic production in a variety of subtle structures and stratigraphic settings. The United States northern Great Plains area has similar conditions but only broad structural closures or stratigraphic traps associated with local structure have produced economically to date. Numerical flow modeling was used to help determine that biogenic gas in low-permeability reservoirs is held in place by high hydraulic head that overrides buoyancy forces of the gas. Modeling also showed where hydraulic head is greater under Tertiary capped topographic remnants rather than near adjacent topographic lows. The high head can override the capillary pressure of the rock and force gas to migrate to low head in topographically low areas. Most current biogenic gas production is confined to areas between mapped lineaments in the northern Great Plains. The lineaments may reflect structural zones in the Upper Cretaceous that help compartmentalize reservoirs and confine gas accumulations.
Litke, David W.
2001-01-01
The High Plains aquifer underlies 174,000 square miles in parts of eight States and includes eight primary hydrogeologic units, including the well-known Ogallala Formation. The High Plains aquifer is an important resource, providing water for 27 percent of the Nation?s irrigated agricultural lands in an otherwise dry landscape. Since the 1980?s there has been concern over the sustainability of the aquifer due to water-level declines caused by substantial pumping. Water quality of the aquifer is a more recent concern. As part of the U.S. Geological Survey?s National Water-Quality Assessment Program, historical water-quality data have been gathered for the High Plains Regional Ground-Water Study Area into a retrospective data base, which can be used to evaluate the occurrence and distribution of water-quality constituents of concern.Data from the retrospective data base verify that nitrate, pesticides, and dissolved solids (salinity) are important water-quality concerns in the High Plains study area. Sixteen percent of all measured nitrate concentrations were larger than the U.S. Environmental Protection Agency drinking-water standard of 10 milligrams per liter. In about 70 percent of the counties within the High Plains study area, nitrate concentrations for 1980-98 were significantly larger than for 1930-69. While nitrate concentrations are largest where depth to water is shallow, concentrations also have increased in the Ogallala Formation where depth to water is large. Pesticide data primarily are available only in the northern half of the study area. About 50 pesticides were detected in the High Plains study area, but only four pesticides (atrazine, alachlor, cyanazine, and simazine) had concentrations exceeding a drinking-water standard. The occasional detection of pesticides in deeper parts of the Ogallala Formation indicates that contamination pathways exist. Dissolved solids, which are a direct measure of salinity, had 29 percent of measured concentrations in excess of the secondary drinking-water standard of 500 milligrams per liter. Comparison of dissolved-solids concentrations prior to 1980 to concentrations after 1980 indicates dissolved-solids concentrations have increased in the alluvial valleys of the Platte, the Republican, and the Arkansas Rivers, as well as in the Ogallala Formation?South hydrogeologic unit.Water-quality results indicate that human activities are affecting the water of the High Plains aquifer. Because there is a potential for water quality to become impaired relative to the historical uses of the aquifer, water quality needs to be considered when evaluating the sustainability of the High Plains aquifer. Data collected as part of the High Plains Regional Ground-Water Study will help to fill in gaps in water-quality information and provide additional information for understanding the factors that govern ambient water quality.
Are Droughts in the United States Great Plains Predictable on Seasonal and Longer Time Scales?
NASA Technical Reports Server (NTRS)
Schubert, Siegfried D.; Suarez, M.; Pegion, P.; Kistler, M.; Einaudi, Franco (Technical Monitor)
2001-01-01
The United States Great Plains has experienced numerous episodes of unusually dry conditions lasting anywhere from months to several years, In this presentation, we will examine the predictability of such episodes and the physical mechanisms controlling the variability of the summer climate of the continental United States. The analysis is based on ensembles of multi-year simulations and seasonal hindcasts generated with the NASA Seasonal to-Interannual Prediction Project (NSIPP-1) General Circulation Model.
Bell, Richard W.; Joseph, Robert L.; Freiwald, David A.
1996-01-01
Historical pesticide data from 1970-90 were compiled for 140 surface-water, 92 ground-water, 55 streambed-sediment, and 120 biological-tissue sampling sites within the Ozark Plateaus National Water-Quality Assessment Program study unit. Surface-water, bed-sediment, and biological-tissue sites have drainage basins predominantly in the Springfield and Salem Plateaus; ground-water sites are predominantly located in the Osage Plains and Mississippi Alluvial Plain. Many sites were sampled only once or twice during this period. A large percentage of the samples were collected in the mid-1970's and early 1980's for surface water, 1990 for ground water, the late 1980's for surface water, 1990 for ground water, the late 1980's for bed sediment, and the early 1980's for biological tissue. Pesticide use was approximately 4.2 million pounds per year of active ingredients from 1982-85 in the study unit and was generally greatest in the Springfield and Salem Plateaus pasturelands and in the Osage Plains and Mississippi Alluvial Plain cropland areas. The most frequently applied pesticide in the study unit was 2,4-D. Alachlor was the second most applied pesticide. Corn, pasture, rice, sorghum, and soybeans received approximately 90 percent of the pesticides applied within the study unit. The highest pesticide application rate per acre occurred on these crops in the Osage Plains and Mississippi Alluvial Plain. Pastureland was the predominant crop type in 50 of the 94 counties in the study unit. Toxaphene, the pesticide having the most number of detections in surface water, was found in 17 of 866 samples from 5 of 112 sites. Concentrations ranged from 0.1 to 6.0 micrograms per liter. Six other pesticides or pesticide metabolites were detected in 12 or more surface-water samples: DDE, dieldrin, DDT, aldrin, 2,4-D, and lindane. The maximum concentration for these pesticides was less than 1.0 micrograms per liter. Atrazine, the pesticide having the most number of detections in ground water, was found in 15 of 95 samples from 15 of 79 wells with concentrations ranging from 0.1 to 8.2 micrograms per liter. Metolachlor, alachlor, and prometon were detected more than once with maximum concentrations less than 1.0 micrograms per liter, except for prometon (2.4 micrograms per liter). Chlordane was the pesticide having the most number of detections in bed sediment and biological tissue. Chlordane was detected in 12 of 73 samples from 10 of 45 bed-sediment sites with concentrations ranging from 2.0 to 240 micrograms per kilogram. In biological tissue, chlordane was found in 93 of 151 samples from 39 of 53 sites with concentrations ranging from 0.009 to 8.6 milligrams per kilogram. Other pesticides or pesticide metabolites detected more than once in bed sediment include DDT, DDD, p,p'-DDE, DDE, and hexachlorobenzene and in biological tissue include DDT, p,p'-DDE, and hexachlorobenzene. Quality criteria or standards have been established for 15 of the pesticides detected in the study unit. For surface-water samples, the drinking water maximum contaminant level for alachlor was exceeded in one sample from one site in 1982. For ground-water samples, the drinking water maximum contaminant level for atrazine was exceeded in four samples from four wells in 1990. For biological-tissue samples collected during the years 1982-89, the fish tissue action levels for chlordane (19 sites; 26 samples), heptachlor epoxide (3 sites; 3 samples), p,p'-DDE (2 sites; 2 samples), dieldrin (2 sites, 2 samples), and mirex (1 site; 1 sample) were exceeded. For bed-sediment samples, quality criteria or standards were not exceeded for any pesticide. Pesticides do not pose any widespread or persistent problems in the study unit, based on the limited number of samples that exceeded quality criteria and standards.
Water quality of surficial aquifers in the Georgia-Florida Coastal Plain
Crandall, C.A.; Berndt, M.P.
1996-01-01
The National Water Quality Assessment Program of the U.S. Geological Survey established the Georgia-Florida Coastal Plain study unit in 1991. The ground-water study-unit survey was conducted in 1993 to provide a broad over-view of water quality in surficial aquifers. Three land resource provinces were included in the Georgia-Florida Coastal Plain study-unit survey: the Central Florida Ridge, the Coastal Flatwoods, and the Southern Coastal Plain. The U.S. Geological Survey sampled 37 wells in surficial aquifers, 18 in the Coastal Flatwoods and 19 in the Southern Coastal Plain. The Florida Department of Environmental Protection sampled 27 wells tapping surficial aquifers in the Central Florida Ridge as part of the background ground-water quality monitoring network from 1985 through 1989. The data were used to characterize water quality in surficial aquifers of the Central Florida Ridge. Results of the study-unit survey indicated that dissolved solids concentrations in ground water were mostly less than 100 mg/L (milligrams per liter). Higher medians of pH, specific conductance, and concentrations of calcium, bicarbonate, and dissolved solids were measured in samples from the Central Florida Ridge compared to the Southern Coastal Plain and Coastal Flatwoods, probably because of a greater percentage of carbonate minerals in aquifer materials. The U.S. Environmental Protection Agency secondary maximum contaminant level for iron of 300 ug/L (micrograms per liter) in drinking water was exceeded in 15 of 45 samples. Concentrations of nitrate as nitrogen were less than 3.0 mg/L in most samples (74 percent), indicating little or no influence from human activity. Only five samples (9 percent) had concentrations above 10 mg/L, the U.S. Environmental Protection Agency maximum contaminant level for nitrate concentration in drinking water. Significantly lower median concentrations of nitrate were measured in samples from polyvinyl chloride monitoring wells with diameters less than 6 inches than in large diameter, uncased, or iron-cased wells. The median nitrate concentration was 0.05 mg/L in water from monitoring wells, 1.0 mg/L in samples from iron cased wells, and 2.0 mg/L in samples from uncased wells. Concentrations of volatile organic compounds were mostly less than the detection levels and exceeded 1 ug/L in only four samples. Compounds detected at concentrations greater than 1 ug/L were: tetrachloroethane (8.77 ug/L), toluene (23 ug/L) and chloromethane (21 ug/L). Atrazine, desethyl-atrazine, and metolachlor were the only pesticides detected; concentrations were less than 0.02 ug/L, except for metolachlor (2.5 ug/L). Detection of organic compounds in surficial aquifer may be associated with specific activities or sources near the well. Concentrations of radon exceeded the U.S. Environmental Protection Agency proposed maximum contaminant level of 300 picocuries per liter (pCi/L) in 33 samples from wells on the Coastal Flatwoods and the Southern Coastal Plain. Concentrations as high as 13,000 pCi/L were detected in northern Florida. Although uranium concentrations were less than 1 ug/L in all but one sample (1.3 ug/L) from the Southern Coastal Plain, elevated radon concentrations indicate that uranium is present in aquifer material. Uranium is most likely sorbed to iron oxides and clays in subsurface materials. Tritium concentrations indicated that ground water was recharged by precipitation during the past 40 years. Higher concentrations of tritium in ground water were found in the northern part of the study area and may be related to Savannah River Nuclear Facility.
Gibson, Thomas G.
1994-01-01
The only semipermanent surface water available on the Southern High Plains plateau of Texas and New Mexico is contained in saline lakes and in the playa lakes that form in shallow depressions, called playa basins, following heavy rainfall. The playas generally are accepted as the main source of recharge to the underlying High Plains (Ogallala) aquifer of the region, and they constitute the major wildlife habitat on the Southern High Plains. Their use as water sources, holding ponds, and waste-disposal sites by agricultural and industrial operations may potentially lead to ground-water contamination and habitat degradation. Therefore, playa lakes will play an essential role in the collection of surface-water quality and ecological data for the Southern High Plains study unit of the National Water-Quality Assessment program of the U.S. Geological Survey.
Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus
NASA Technical Reports Server (NTRS)
Kumar, P. Senthil; Head, James W., III
2009-01-01
Geological mapping of the V-56 quadrangle (Fig. 1) reveals various tectonic and volcanic features and processes in Lada Terra that consist of tesserae, regional extensional belts, coronae, volcanic plains and impact craters. This study aims to map the spatial distribution of different material units, deformational features or lineament patterns and impact crater materials. In addition, we also establish the relative age relationships (e.g., overlapping or cross-cutting relationship) between them, in order to reconstruct the geologic history. Basically, this quadrangle addresses how coronae evolved in association with regional extensional belts, in addition to evolution of tesserae, regional plains and impact craters, which are also significant geological units of Lada Terra.
Geological Mapping of the Lada Terra (V-56) Quadrangle, Venus: A Progress Report
NASA Technical Reports Server (NTRS)
Kumar, P. Senthil; Head, James W., III
2008-01-01
Geological mapping of the V-56 quadrangle (Fig. 1) reveals various tectonic and volcanic features and processes in Lada Terra that consist of tesserae, regional extensional belts, coronae, volcanic plains and impact craters. This study aims to map the spatial distribution of different material units, deformational features or lineament patterns and impact crater materials. In addition, we also establish the relative age relationships (e.g., overlapping or cross-cutting relationships) between them, in order to reconstruct the geologic history. Basically, this quadrangle addresses how coronae evolved in association with regional extensional belts, in addition to evolution of tesserae, regional plains and impact craters, which are also significant geological units of Lada Terra.
A Weekend Drive: Source for an Interdisciplinary Teaching Unit.
ERIC Educational Resources Information Center
Wheeler, George
Ideas for an elementary level interdisciplinary teaching unit which were generated from a drive taken in the plains country of eastern New Mexico are presented. The purpose is to show what could be included in a unit on the immediate environment. In social studies classes, students can read a map of the area of the drive. An interest in history…
High-resolution hydro- and geo-stratigraphy at Atlantic Coastal Plain drillhole CR-622 (Strat 8)
Wrege, B.M.; Isely, J.J.
2009-01-01
We interpret borehole geophysical logs in conjunction with lithology developed from continuous core to produce high-resolution hydro- and geo-stratigraphic profiles for the drillhole CR-622 (Strat 8) in the Atlantic Coastal Plain of North Carolina. The resulting hydrologic and stratigraphic columns show a generalized relation between hydrologic and geologic units. Fresh-water aquifers encountered are the surficial, Yorktown, Pungo River and Castle Hayne. Geologic units present are of the middle and upper Tertiary and Quaternary periods, these are the Castle Hayne (Eocene), Pungo River (Miocene), Yorktown (Pliocene), James City and Flanner Beach (Pleistocene), and the topsoil (Holocene). The River Bend Formation (Oligocene) is missing as a distinct unit between the Pungo River Formation and the Castle Hayne Formation. The confining unit underlying the Yorktown Aquifer corresponds to the Yorktown Geologic Unit. The remaining hydrologic units and geologic units are hydrologically transitional and non-coincident. The lower Pungo River Formation serves as the confining unit for the Castle Hayne Aquifer, rather than the River Bend Aquifer, and separates the Pungo River Aquifer from the upper Castle Hayne Aquifer. All geologic formations were bound by unconformities. All aquifers were confined by the anticipated hydrologic units. We conclude that CR-622 (Strat 8) represents a normal sequence in the Atlantic Coastal Plain.
A Detailed Geomorphological Sketch Map of Titan's Afekan Crater Region
NASA Astrophysics Data System (ADS)
Schoenfeld, A.; Malaska, M. J.; Lopes, R. M. C.; Le Gall, A. A.; Birch, S. P.; Hayes, A.
2014-12-01
Due to Titan's uniquely thick atmosphere and organic haze layers, the most detailed images (with resolution of 300 meters per pixel) of the Saturnian moon's surface exist as Synthetic Aperture Radar (SAR) images taken by Cassini's RADAR instrument. Using the SAR data, we have been putting together detailed geomorphological sketch maps of various Titan regions in an effort to piece together its geologic history. We initially examined the Afekan region of Titan due to extensive SAR coverage. Features described on Afekan fall under the categories (in order of geologic age, extrapolated from their relative emplacement) of hummocky, labyrinthic, plains, and dunes. During our mapping effort, we also divided each terrain category into several different subclasses on a local level. Our map offers a chance to present and analyze the distribution, relationship, and potential formation hypotheses of the different terrains. In bulk, we find evidence for both Aeolian and fluvial processes. A particularly important unit found in the Afekan region is the unit designated "undifferentiated plains", or the "Blandlands" of Titan, a mid-latitude terrain unit comprising 25% of the moon's surface. Undifferentiated plains are notable for its relative featurelessness in radar and infrared. Our interpretation is that it is a fill unit in and around Afekan crater and other hummocky/mountainous units. The plains suggest that the nature of Titan's geomorphology seems to be tied to ongoing erosional forces and sediment deposition. Other datasets used in characterizing Titan's various geomorphological units include information obtained from radiometry, infrared (ISS), and spectrometry (VIMS). We will present the detailed geomorphological sketch map with all the terrain units assigned and labeled.
Martian crater counts on Elysium Mons
NASA Technical Reports Server (NTRS)
Mcbride, Kathleen; Barlow, Nadine G.
1990-01-01
Without returned samples from the Martian surface, relative age chronologies and stratigraphic relationships provide the best information for determining the ages of geomorphic features and surface regions. Crater-size frequency distributions of six recently mapped geological units of Elysium Mons were measured to establish their relative ages. Most of the craters on Elysium Mons and the adjacent plains units are between 500 and 1000 meters in diameter. However, only craters 1 km in diameter or larger were used because of inadequate spatial resolution of some of the Viking images and to reduce probability of counting secondary craters. The six geologic units include all of the Elysium Mons construct and a portion of the plains units west of the volcano. The surface area of the units studied is approximately 128,000 sq km. Four of the geologic units were used to create crater distribution curves. There are no craters larger than 1 km within the Elysium Mons caldera. Craters that lacked raised rims, were irregularly shaped, or were arranged in a linear pattern were assumed to be endogenic in origin and not counted. A crater frequency distribution analysis is presented.
McMahon, Peter B.
2000-01-01
In 1998, the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program began a regional study of water quality in the High Plains aquifer. The High Plains aquifer underlies an area of about 174,000 square miles in parts of eight States. Because of its large size, the High Plains aquifer has been divided into three regions: the Southern High Plains, Central High Plains, and Northern High Plains. Although an assessment of water quality in each of the three regions is planned, the initial focus will be the Central High Plains aquifer. Anyone who has flown over the Central High Plains in the summer and has seen the large green circles associated with center pivot sprinklers knows that irrigated agriculture is a widespread land use. Pesticides and fertilizers applied on those irrigated fields will not degrade ground-water quality if they remain in or above the root zone. However, if those chemicals move downward through the unsaturated zone to the water table, they may degrade the quality of the ground water. Water is the principal agent for transporting chemicals from land surface to the water table, and in the semiarid Central High Plains, irrigation often represents the most abundant source of water during the growing season. One objective of NAWQA's High Plains Regional Ground-Water study is to evaluate the effect of irrigated agriculture on the quality of recently recharged water in the Ogallala Formation of the Central High Plains aquifer. The Ogallala Formation is the principal geologic unit in the Central High Plains aquifer, and it consists of poorly sorted clay, silt, sand, and gravel that generally is unconsolidated (Gutentag and others, 1984). Approximately 23 percent of the cropland overlying the Ogallala Formation is irrigated (U.S. Department of Agriculture, 1999). The NAWQA Program generally defines recently recharged ground water to be water recharged in the last 50 years. The water table in the Ogallala Formation is separated from overlying land-use practices by as much as 400 feet of unsaturated sediments. Consequently, one may hypothesize that recently recharged water is not present in the formation. The U.S. Geological Survey conducted a reconnaissance study in 1999 to establish (a) if recently recharged water was present in the Ogallala Formation underlying irrigated cropland and (b) if agricultural land-use practices affect water quality. Results from the reconnaissance study will be used to determine whether a full-scale land-use study is warranted.
NASA Astrophysics Data System (ADS)
Higgins, R. W.; Yao, Y.; Yarosh, E. S.; Janowiak, J. E.; Mo, K. C.
1997-03-01
The influence of the Great Plains low-level jet (LLJ) on summertime precipitation and moisture transport over the central United States is examined in observations and in assimilated datasets recently produced by the NCEP/NCAR and the NASA/DAO. Intercomparisons between the assimilated datasets and comparisons with station observations of precipitation, winds, and specific humidity are used to evaluate the limitations of the assimilated products for studying the diurnal cycle of rainfall and the Great Plains LLJ. The winds from the reanalyses are used to diagnose the impact of the LLJ on observed nocturnal precipitation and moisture transport over a multisummer (JJA 1985-89) period. The impact of the LLJ on the overall moisture budget of the central United States is also examined.An inspection of the diurnal cycle of precipitation in gridded hourly station observations for 1963-93 reveals a well-defined nocturnal maximum over the Great Plains region during the spring and summer months consistent with earlier observational studies. During summer in excess of 25% more precipitation falls during the nighttime hours than during the daytime hours over a large portion of the Great Plains, with a commensurate decrease in the percentage amount of nocturnal precipitation along the Gulf Coast. Inspection of the nighttime precipitation by month shows that the maximum in precipitation along the Gulf Coast slowly shifts northward from the lower Mississippi Valley to the upper Midwest during the late spring and summer months and then back again during the fall.Both reanalyses produce a Great Plains LLJ with a structure, diurnal cycle, and frequency of occurrence that compares favorably to hourly wind profiler data. Composites of observed nighttime rainfall during LLJ events show a fundamentally different pattern in the distribution of precipitation compared to nonjet events. Overall, LLJ events are associated with enhanced precipitation over the north central United States and Great Plains and decreased precipitation along the Gulf Coast and East Coast; nonjet events are associated with much weaker anomalies that are generally in the opposite sense. Inspection of the LLJ composites for each month shows a gradual shift of the region of enhanced precipitation from the northern tier of states toward the south and east in a manner consistent with the anomalous moisture transport. LLJ-related precipitation is found to be associated most closely with the strongest, least frequent LLJ events.The moisture transport in the reanalyses compares favorably to radiosonde data, although significant regional differences exist, particularly along the Gulf Coast during summer. The diurnal cycle of the low-level moisture transport is well resolved in the reanalyses with the largest and most extensive anomalies being those associated with the nocturnal inland flow of the Great Plains LLJ. Examination of the impact of the LLJ on the nighttime moisture transport shows a coherent evolution from May to August with a gradual increase in the anomalous westerly transport over the southeastern United States, consistent with the evolution of the precipitation patterns. The impact of the LLJ on the overall moisture budget during summer is considerable with low-level inflow from the Gulf of Mexico increasing by more than 45%, on average, over nocturnal mean values.
Trask, N.J.; McCauley, J.F.
1972-01-01
Materials of possible volcanic origin in the lunar highlands include (1) highland plains materials, (2) materials forming closely spaced hills in which summit furrows and chains of craters are common and (3) materials forming closely spaced hills (some of which parallel the lunar grid) on which summit furrows and chain craters are rare. The highland plains materials probably are basaltic lavas with less Fe and Ti than the mare plains materials. The two hilly units appear to consist of materials that, if volcanic, were more viscous in the molten state than any of the lunar plains units; thus these materials may be significantly enriched in felsic components. Most of the highland materials of possible volcanic origin formed after the Imbrium multi-ring basin but before mare material completed flooding parts of the moon; they therefore postdate accretion of the moon and may represent several episodes of premare volcanism. ?? 1972.
Geology of the Bellona Fossae (V15) Region of Venus
NASA Astrophysics Data System (ADS)
Zimbelman, J. R.
2002-05-01
A preliminary geologic map of the the Bellona Fossae (V15) quadrangle on Venus was produced as part of the NASA-funded planetary mapping program. Geologic interpretations are based primarily on the basis of morphology, texture, radar reflectance, and relative stratigraphy derived from Magellan Synthetic Aperture Radar (SAR) images, based on FMAP mosaics showing SAR data at 75 m/pixel resolution, and compiled on a digital base map at 1:5M scale produced by the U.S. Geological Survey. This quadrangle covers approximately 5 million square kilometers of the northern lowlands of Venus, and it includes the Bellona Fossae and Fee Fossae fracture systems of western Kawelu Planitia and northern Ulfrun Regio, along with an arcuate chain of volcano-tectonic centers called coronae (e.g., Ki and Tituba Coronae). Exposed materials are dominated by relatively featureless regional plains and several centers of lobate plains (e.g., Uzume Fluctus) interpreted to be lava flow fields emplaced by effusion from separate vents. Based on stratigraphic relationships at unit contacts, the oldest exposed material units are isolated patches of complex-faulted tessera terrain, restricted to the eastern and southwestern margins of the quadrangle. Relatively small exposures of lineated plains, mountain belt, ridged plains, and dark plains materials are scattered throughout the quadrangle, with only a few impact craters and their associated ejecta and impact-induced flows (e.g., Mumtaz-Mahal crater) representing the latest materials. The tectonism associated with the coronae appears to predate the regional plains for the most part, but individual coronae are the source for lobate plains volcanism which implies that activity at these structural features encompasses much of the time span portrayed in the regional stratigraphy. Northeast-southwest-oriented lineaments exposed in Bellona Fossae not only are generally coincident with the coronae structures, but also cut patches of the stratigraphically late lobate plains units. Extensional tectonism evident in the north-south-oriented graben and lineaments of Fea Fossae cut both regional and lobate plains, and is associated with some of the greatest relief in the quadrangle. The general history portrayed in this quadrangle is consistent with published maps and reports of adjacent portions of the northern lowlands of Venus.
Aragón-Sánchez, J; Lipsky, Benjamin A; Lázaro-Martínez, J L
2011-02-01
To investigate the accuracy of the sequential combination of the probe-to-bone test and plain X-rays for diagnosing osteomyelitis in the foot of patients with diabetes. We prospectively compiled data on a series of 338 patients with diabetes with 356 episodes of foot infection who were hospitalized in the Diabetic Foot Unit of La Paloma Hospital from 1 October 2002 to 31 April 2010. For each patient we did a probe-to-bone test at the time of the initial evaluation and then obtained plain X-rays of the involved foot. All patients with positive results on either the probe-to-bone test or plain X-ray underwent an appropriate surgical procedure, which included obtaining a bone specimen that was processed for histology and culture. We calculated the sensitivity, specificity, predictive values and likelihood ratios of the procedures, using the histopathological diagnosis of osteomyelitis as the criterion standard. Overall, 72.4% of patients had histologically proven osteomyelitis, 85.2% of whom had positive bone culture. The performance characteristics of both the probe-to-bone test and plain X-rays were excellent. The sequential diagnostic approach had a sensitivity of 0.97, specificity of 0.92, positive predictive value of 0.97, negative predictive value of 0.93, positive likelihood ratio of 12.8 and negative likelihood ratio of 0.02. Only 6.6% of patients with negative results on both diagnostic studies had osteomyelitis. Clinicians seeing patients in a setting similar to ours (specialized diabetic foot unit with a high prevalence of osteomyelitis) can confidently diagnose diabetic foot osteomyelitis when either the probe-to-bone test or a plain X-ray, or especially both, are positive. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.
1999-01-01
plains. The Atlantic Coastal Pine Barrens ecoregion is represented in the southeastern part of the study unit and includes Cape Cod and the islands...Providence, Washington 1The area of the NECB study unit within the Atlantic Coastal Pine Barrens ecoregion had previously been part of the Northeastern...Unit are the Northeastern Highlands, Northeastern Coastal Zone, and Atlantic Coastal Pine Barrens1 (U.S. Environ- mental Protection Agency-National
Houston, Natalie A.; Gonzales-Bradford, Sophia L.; Flynn, Amanda T.; Qi, Sharon L.; Peterson, Steven M.; Stanton, Jennifer S.; Ryter, Derek W.; Sohl, Terry L.; Senay, Gabriel B.
2013-01-01
The High Plains aquifer underlies almost 112 million acres in the central United States. It is one of the largest aquifers in the Nation in terms of annual groundwater withdrawals and provides drinking water for 2.3 million people. The High Plains aquifer has gained national and international attention as a highly stressed groundwater supply primarily because it has been appreciably depleted in some areas. The U.S. Geological Survey has an active program to monitor the changes in groundwater levels for the High Plains aquifer and has documented substantial water-level changes since predevelopment: the High Plains Groundwater Availability Study is part of a series of regional groundwater availability studies conducted to evaluate the availability and sustainability of major aquifers across the Nation. The goals of the regional groundwater studies are to quantify current groundwater resources in an aquifer system, evaluate how these resources have changed over time, and provide tools to better understand a systems response to future demands and environmental stresses. The purpose of this report is to present selected data developed and synthesized for the High Plains aquifer as part of the High Plains Groundwater Availability Study. The High Plains Groundwater Availability Study includes the development of a water-budget-component analysis for the High Plains completed in 2011 and development of a groundwater-flow model for the northern High Plains aquifer. Both of these tasks require large amounts of data about the High Plains aquifer. Data pertaining to the High Plains aquifer were collected, synthesized, and then organized into digital data containers called geodatabases. There are 8 geodatabases, 1 file geodatabase and 7 personal geodatabases, that have been grouped in three categories: hydrogeologic data, remote sensing data, and water-budget-component data. The hydrogeologic data pertaining to the northern High Plains aquifer is included in three separate geodatabases: (1) base data from a groundwater-flow model; (2) hydrogeology and hydraulic properties data; and (3) groundwater-flow model data to be used as calibration targets. The remote sensing data for this study were developed by the U. S. Geological Survey Earth Resources Observation and Science Center and include historical and predicted land-use/land-cover data and actual evapotranspiration data by using remotely sensed temperature data. The water-budget-component data contains selected raster data from maps in the “Selected Approaches to Estimate Water-Budget Components of the High Plains, 1940 Through 1949 and 2000 Through 2009” report completed in 2011 (http://pubs.usgs.gov/sir/2011/5183/). Federal Geographic Data Committee compliant metadata were created for each spatial and tabular data layer in the geodatabases.
Lisi Pei; Nathan Moore; Shiyuan Zhong; Lifeng Luo; David W. Hyndman; Warren E. Heilman; Zhiqiu Gao
2014-01-01
Extreme weather and climate events, especially short-term excessive drought and wet periods over agricultural areas, have received increased attention. The Southern Great Plains (SGP) is one of the largest agricultural regions in North America and features the underlying Ogallala-High Plains Aquifer system worth great economic value in large part due to production...
ERIC Educational Resources Information Center
Coyle, David A.; And Others
One of five supplements which accompany chapter 3 of "Mountain-Plains Handbook: The Design and Operation of a Residential, Family Oriented Career Education Model" (CE 014 630), this document contains a master listing of all Mountain-Plains curriculum, compiled by job title, course, unit, and Learning activity package (LAPS) and arranged…
The First Global Geological Map of Mercury
NASA Astrophysics Data System (ADS)
Prockter, L. M.; Head, J. W., III; Byrne, P. K.; Denevi, B. W.; Kinczyk, M. J.; Fassett, C.; Whitten, J. L.; Thomas, R.; Ernst, C. M.
2015-12-01
Geological maps are tools with which to understand the distribution and age relationships of surface geological units and structural features on planetary surfaces. Regional and limited global mapping of Mercury has already yielded valuable science results, elucidating the history and distribution of several types of units and features, such as regional plains, tectonic structures, and pyroclastic deposits. To date, however, no global geological map of Mercury exists, and there is currently no commonly accepted set of standardized unit descriptions and nomenclature. With MESSENGER monochrome image data, we are undertaking the global geological mapping of Mercury at the 1:15M scale applying standard U.S. Geological Survey mapping guidelines. This map will enable the development of the first global stratigraphic column of Mercury, will facilitate comparisons among surface units distributed discontinuously across the planet, and will provide guidelines for mappers so that future mapping efforts will be consistent and broadly interpretable by the scientific community. To date we have incorporated three major datasets into the global geological map: smooth plains units, tectonic structures, and impact craters and basins >20 km in diameter. We have classified most of these craters by relative age on the basis of the state of preservation of morphological features and standard classification schemes first applied to Mercury by the Mariner 10 imaging team. Additional datasets to be incorporated include intercrater plains units and crater ejecta deposits. In some regions MESSENGER color data is used to supplement the monochrome data, to help elucidate different plains units. The final map will be published online, together with a peer-reviewed publication. Further, a digital version of the map, containing individual map layers, will be made publicly available for use within geographic information systems (GISs).
Plains and Transitional Textures Adjacent to Lobate Debris Aprons in Deuteronilus Mensae, Mars
NASA Astrophysics Data System (ADS)
Baker, D. M. H.; Head, J. W.; Marchant, D. R.
2010-03-01
Analyses suggest that glacial ice in the northern mid-latitudes of Mars was more extensive in the recent past. Plains units and textures surrounding lobate debris aprons in Deuteronilus Mensae are examined in search of former glacial maxima.
Ground-water flow in the New Jersey Coastal Plain
Martin, Mary
1998-01-01
Ground-water flow in 10 aquifers and 9 intervening confining units of the New Jersey Coastal Plain was simulated as part of the Regional Aquifer System Analysis. Data on aquifer and confining unit characteristics and on pumpage and water levels from 1918 through 1980 were incorporated into a multilayer finite-difference model. The report describes the conceptual hydrogeologic model of the unstressed flow systems, the methods and approach used in simulating flow, and the results of the simulations.
Geologic Map of the Santa Barbara Coastal Plain Area, Santa Barbara County, California
Minor, Scott A.; Kellogg, Karl S.; Stanley, Richard G.; Gurrola, Larry D.; Keller, Edward A.; Brandt, Theodore R.
2009-01-01
This report presents a newly revised and expanded digital geologic map of the Santa Barbara coastal plain area at a compilation scale of 1:24,000 (one inch on the map to 2,000 feet on the ground)1 and with a horizontal positional accuracy of at least 20 m. The map depicts the distribution of bedrock units and surficial deposits and associated deformation underlying and adjacent to the coastal plain within the contiguous Dos Pueblos Canyon, Goleta, Santa Barbara, and Carpinteria 7.5' quadrangles. The new map supersedes an earlier preliminary geologic map of the central part of the coastal plain (Minor and others, 2002; revised 2006) that provided coastal coverage only within the Goleta and Santa Barbara quadrangles. In addition to new mapping to the west and east, geologic mapping in parts of the central map area has been significantly revised from the preliminary map compilation - especially north of downtown Santa Barbara in the Mission Ridge area - based on new structural interpretations supplemented by new biostratigraphic data. All surficial and bedrock map units, including several new units recognized in the areas of expanded mapping, are described in detail in the accompanying pamphlet. Abundant new biostratigraphic and biochronologic data based on microfossil identifications are presented in expanded unit descriptions of the marine Neogene Monterey and Sisquoc Formations. Site-specific fault kinematic observations embedded in the digital map database are more complete owing to the addition of slip-sense determinations. Finally, the pamphlet accompanying the present report includes an expanded and refined summary of stratigraphic and structural observations and interpretations that are based on the composite geologic data contained in the new map compilation. The Santa Barbara coastal plain is located in the western Transverse Ranges physiographic province along an east-west-trending segment of the southern California coastline about 100 km (62 mi) northwest of Los Angeles. The coastal plain surface includes several mesas and hills that are geomorphic expressions of potentially active folds and partly buried oblique and reverse faults of the Santa Barbara fold and fault belt (SBFFB) that transects the coastal plain. Strong earthquakes have occurred offshore within 10 km of the Santa Barbara coastal plain in 1925 (6.3 magnitude), 1941 (5.5 magnitude), and 1978 (5.1 magnitude). These and numerous smaller seismic events located beneath and offshore of the coastal plain, likely occurred on reverse-oblique-slip faults that are similar to, or continuous with, Quaternary reverse faults crossing the coastal plain. Thus, faults of the SBFFB pose a significant earthquake hazard to the approximately 200,000 people living within the major coastal population centers of Santa Barbara, Goleta, and Carpinteria. In addition, numerous Quaternary landslide deposits along the steep southern flank of the Santa Ynez Mountains indicate the potential for continued slope failures and mass movements in developed areas. Folded, faulted, and fractured sedimentary rocks in the subsurface of the coastal plain and adjacent Santa Barbara Channel are sources and form reservoirs for economic deposits of oil and gas, some of which are currently being extracted offshore. Shallow, localized sedimentary aquifers underlying the coastal plain provide limited amounts of water for the urban areas, but the quality of some of this groundwater is compromised by coastal salt-water contamination. The present map compilation provides a set of uniform geologic digital coverages that can be used for analysis and interpretation of these and other geologic hazards and resources in the coastal plain region.
NASA Technical Reports Server (NTRS)
Leake, M. A.
1982-01-01
The nature and origin of the intercrater plains of Mercury and the Moon as determined through geologic mapping, crater statistics, and remotely sensed data are summarized. Implications of these results regarding scarp formation, absolute ages, and terrestrial planet surfaces are included. The role of the intercrater plains is defined and future work which might lead to a better understanding of these units and terrestrial planet evolution is outlined.
NASA Astrophysics Data System (ADS)
Schoenfeld, A.; Lopes, R.; Malaska, M.; Solomonidou, A.
2017-12-01
We carried out detailed geomorphological mapping of Titan's mid-latitude region south of the Belet Sand Sea. We used radar data collected by Cassini's Synthetic Aperture Radar (SAR) as our basemap, supplemented by images from VIMS, ISS, SARtopo, and microwave emissivity datasets. We mapped at a scale of 1:800,000 in all areas of the South Belet region covered by SAR swaths, taking into consideration the 300 m/pixel resolution of the swaths. For the mid-latitudes, we have defined five broad classes of terrains following Malaska et al. (2015). These terrain classes are craters, hummocky/mountainous, labyrinth, plains, and dunes. We have found that the hummocky/mountainous terrains are the oldest, with a radiometric signature consistent with icy materials. Dunes are the youngest units and return a radiometric signature consistent with organic sediments. We find that the South Belet region is covered primarily by the dune and plain units typical of Titan's mid-latitudes (Malaska et al. 2015). Previous mapping efforts of the mid-latitude regions of Titan (Lopes et al. 2016; Malaska et al. 2015) have indicated that these regions are predominately modified and influenced by aeolian activities. A plains unit designated "scalloped plains" is prominently featured between the 50°S and 60°S latitudes of this region. In this area we also find a terrain unit designated "dark irregular plains" that has been interpreted as damp materials saturated with liquid hydrocarbons (Malaska et al 2015; Hayes et al. 2008). We also note a higher occurrence of fluvial channels starting at this latitude zone and extending poleward. We suggest that these features demark the transition zone between mid-latitude/equatorial aeolian-dominated processes and fluvial-dominated processes prevailing at the poles.
Viganò, G; Garagiola, U; Gaspari, F
1991-01-01
A single-blind, randomized, crossover pharmacokinetic study was carried out to investigate the bioavailability of a new oral buffered 325 mg acetylsalicylic acid (ASA) formulation (ASPIRINA 03) in comparison with a 325 mg plain tablet. Twelve healthy volunteers of both sexes, aged between 20 and 37 years, received buffered or plain ASA on two separate occasions with a wash-out interval of at least two weeks. ASA and salicylic acid (SA) plasma levels were determined by a chromatographic method. The results showed no difference between the area under concentration time curve (AUC0-infinity) ASA values of both formulations (p = 0.19), and buffered ASA relative bioavailability was 102.49% (= bioequivalence). A significant difference was found between the AUC0-30 min ASA values: 90.5 micrograms. min/ml with buffered and 67.7 micrograms. min/ml with the plain tablet (p less than 0.05). The buffered ASA time of maximum concentration was shorter (28 +/- 8 min) than the plain one (38 +/- 19 min, p less than 0.05). The plasma concentrations and pharmacokinetic parameters of SA were not significantly different after the administration of the two ASA formulations. The plain ASA tablet had a significantly lower (p less than 0.05) dissolution rate than buffered ASA tablet. Moreover, the buffered ASA tablet significantly (p less than 0.01) increased the pH by 0.5 units. In conclusion, the bioavailability of the new oral buffered ASA was equivalent to that of plain ASA, but the plasma concentration peak was reached in a shorter time.
Towards the Redefinition of the Global Stratigraphy of Mercury: The Case of Intermediate Plains
NASA Astrophysics Data System (ADS)
Galluzzi, V.; Rothery, D. A.; Massironi, M.; Ferranti, L.; Mercury Mapping Team
2018-05-01
Observations based on an average mapping scale of 1:400k provide context for the redefinition of the global stratigraphy of Mercury. Results show that the Intermediate Plains unit should be re-introduced as an official mappable terrain.
Great plains regional climate assessment technical report
USDA-ARS?s Scientific Manuscript database
The Great Plains region (GP) plays important role in providing food and energy to the economy of the United States. Multiple climatic and non-climatic stressors put multiple sectors, livelihoods and communities at risk, including agriculture, water, ecosystems and rural and tribal communities. The G...
Mercury dynamics in a coastal plain watershed: insights from multiple models and empirical data
Interactions among atmospherically deposited mercury, abundant wetlands, and surface waters with elevated acidity and dissolved organic carbon (DOC) often lead to widespread mercury-related fish consumption advisories in the Coastal Plain of the southeastern United States (US). H...
Evan Johnson; Michael Kane; Dehai Zhao; Robert Teskey
2015-01-01
Three existing loblolly pine (Pinus taeda L.) installations in the Plantation Management Research Cooperative's Upper Coastal Plain/Piedmont Culture Density Study were used to examine the effects of two cultural intensities, four initial planting densities, and their interactions on stem growth at the individual tree level from age 12 to 15 years and at the stand...
Lakshmi Planum, Venus: Assessment of models using observations from geological mapping
NASA Astrophysics Data System (ADS)
Ivanov, M. A.; Head, J. W.
2008-09-01
Introduction: Lakshmi Planum is a highstanding plateau (3.5-4.5 km above MPR) surrounded by the highest mountain ranges on Venus [1-6]. Lakshmi represents a unique type of elevated region different from dome-shaped and rifted rises and tessera-bearing plateaus. The unique characteristics of Lakshmi suggest that it formed by an unusual combination of processes. Lakshmi was studied with Venera-15/16 [7-10, 5,11] and Magellan data [12-14], resulting in two classes of models, divergent and convergent, to explain its unusual characteristics. Divergent models explain Lakshmi as a site of mantle upwelling [10,15-18] due to rising and subsequent collapse of a mantle diapir; such models explain emplacement of a lava plateau inside Lakshmi and, in some circumstances, formation of the mountain ranges. The convergent models consider Lakshmi as a locus of mantle downwelling, convergence, underthrusting, and possible subduction [19,11,20-29]. Key features in these models are the mountain ranges, high topography of Lakshmi interior, and the large volcanic centers in the plateau center. These divergent and convergent models entail principally different mechanisms of formation and suggest different geodynamic regimes on Venus. Almost all models make either explicit or implicit predictions about the type and sequence of major events during formation and evolution of Lakshmi and thus detailed geological mapping can be used to test them. Here we present the results of such geological mapping (the V-7 quadrangle, 50- 75N, 300-360E; scale 1:5M) that allows testing the proposed models for Lakshmi. Material units: Eleven material units make up the V-7 quadrangle. (1) Tessera (t), exposed inside and outside Lakshmi appears to be the oldest material. (2) Densely lineated plains (pdl) postdate tessera and form one of the oldest units; patches occur outside Lakshmi Planum. (3) Ridged plains (pr) postdate pdl and occur outside Lakshmi. (4) Shield plains (psh) display abundant small shields (small volcanoes), embay the previous units and occur outside Lakshmi. (5) Pitted and grooved material (pgm) displays small pits and is cut by broad and shallow groove; it occurs inside Lakshmi in association with mountain ranges. (6) Lower unit of regional plains (rp1) has a smooth surface, is cut by wrinkle ridges; this most widespread unit occurs inside and outside of Lakshmi Planum. (7) Upper unit of regional plains (rp2) is also deformed by wrinkle ridges but has lobate boundaries and higher radar albedo than rp1; occurs both inside and outside Lakshmi. (8) Lobate plains (pl) is characterized by lobate flows that embay the most tectonic structures including wrinkle ridges; form fluctuses outside Lakshmi and surround Colette and Sacajawea Paterae inside the plateau. (9) Smooth plains (ps) have uniform and low radar albedo, embay wrinkle ridges; largest occurrence in southern portion of Lakshmi. (10) Impact craters (c) and (11) crater outflow deposits (cf); peppered throughout without preferential concentrations. Structures: Extensional structures. In places, fractures and graben form belts (groove belts, gb) that extend for hundreds of kilometers mostly within the southern regional slope of Lakshmi where they cut pdl and pr and are embayed by psh and rp1. Contractional structures. Wrinkle ridges mildly deform psh and regional plains; broader and more linear ridges dominate ridged plains (pr). The most important occurrences of contractional structures are mountain belts (unit mt) that surround the interior of Lakshmi and consist of densely spaced ridges 5-15 km wide, tens of km long. Regional plains usually embay the ridges. Sequence of major events during evolution of Lakshmi Planum: Various plains units heavily embay fragments of tessera in all localities inside and outside Lakshmi. The consistent relationships of embayment and the complex and unique surface deformational pattern suggest that tessera represents the oldest material. Tessera distribution patterns suggest more extensive presence under younger plains units, forming basement. Densely fractured plains (pdl) appear younger than tessera; the largest massifs of pdl occur in Atropos and Itzpapalotl where plains are further deformed by broad ridges and to some degree resemble the tessera deformation patterns. The ridges are generally conformal to the strike of Akna/Freyja Montes, occur within large areas of pdl adjacent to the mountain ranges, and clearly relate to the orogenic phase of formation of mountain belts [10,16-19,11,20- 23,25,26,29]. Shield plains and regional plains embay mountainous ridges both outside and inside Lakshmi Planum, which implies that the orogenic phase was toward earlier stages of the observable geological history. Shield plains were emplaced after the main phase of mountain belt formation and before regional plains, but exclusively outside of the plateau. The lower unit of regional plains (rp1) postdates shield plains; occurrences are concentrated S of Lakshmi Planum and in the interior of Lakshmi. The thickness of unit rp1 is small because outliers of older units occur within the broad regional plains. Youngest units, smooth/lobate plains, are superposed on regional plains and undeformed by tectonic structures; they were emplaced after cessation of major tectonic activity. Smooth/lobate plains form extensive lava aprons around Colette and Sacajawea Paterae, representing the latest volcanic activity inside Lakshmi Planum. Testing models of Lakshmi Planum formation: Detailed geological analysis thus allows definition of map units, establishing the sequence of major events during formation of Lakshmi, and testing the suite of models proposed to explain the mechanisms of formation of this structure. The interpreted nature of units and the sequence of events strongly contradict the predictions of divergent models: 1) The very likely presence of an ancient (craton-like) tessera massif in the core of Lakshmi; such a core is inconsistent with the rise and collapse of a mantle diapir [10,15,16]. 2) The absence of a rift zone in the interior of Lakshmi; these zones appear to be a natural consequence of growth of surface topography due to diapiric rise [e.g. 30]. 3) The apparent migration of volcanic activity toward the center of Lakshmi; divergent models are consistent with the opposite trend. 4) The abrupt cessation of mountain range ridges at the edge and propagation over hundreds of kilometers outside Lakshmi in Atropos and Itzpapalotl Tesserae. Divergent models predict the opposite progression. Convergent models of formation and evolution of Lakshmi appear to be more consistent with the observations. The pure downwelling models [e.g. 23], however, faces three important difficulties. 1) The possibly unrealistically long time span that seems required to produce the major features of Lakshmi [31]. 2) The strongly asymmetrical N-S topographic profile of Lakshmi and striking difference in the height and thickness of the mountain belts to the NW and N (Akna and Freyja) and to the S of Lakshmi (Danu). The pure downwelling models would require formation of more symmetrical structure. 3) The absence of radial contractional structures (arches and ridges) in the interior of Lakshmi. These structures represent the predicted result of the downwelling models. Convergence models are most consistent with observations and explain the structure by collision and underthrusting/subduction of lower-lying plains with the elevated and rigid block of tessera [20-22]. These models are capable of explaining formation of the major features (e.g., mountain belts), the sequences of events, and principal volcanic and tectonic trends. To explain the N-S asymmetry of Lakshmi, however, these models have to consider major axes of collision to be N and NW of the plateau in Atropos and Itzpapalotl Tesserae. A plausible scenario for formation/evolution of Lakshmi Planum consists of the following stages (Fig. 1). (1) Pre-deformational configuration of western Ishtar; a layered suite of low-lying plains surrounded a tessera craton. (2) Compression from the N led to deformation of plains against the craton foreland and formation of higher mountain ranges; displacement of the craton may have caused formation of Danu Montes. (3) Continued underthrusting finally caused limited uplift of N mountain ranges and the N portion of Lakshmi, creating the plateau asymmetry; two different events may have followed, with or without delamination [33]. (4a) In the beginning of delamination, fertile mantle flowed toward the base of the massif, melted, and led to emplacement of rp1 in the Lakshmi interior. (5a) During mature stages of delamination, the deepest portion of the slab would start to melt to form the youngest lava plains at Colette and Sacajawea Paterae. (4b) If no delamination occurs then formation of unit rp1 could be due to broad melting of the underthrust slab as it crosses the melting isotherm. (5b) As underthrusting proceeded, the relatively colder slab deflected the isotherm downward and new deeper portions of the slab melted, producing the younger lavas near Lakshmi center. When either delamination or continued underthrusting waned, the thicker crust of the northern mountain ranges rose epeirogenically, which led to additional elevation of the ranges and the northern portion of Lakshmi. References: 1) Masursky, H., et al., 1980, JGR, 85, 8232; 2) Pettengill, G.H., et al., 1980, JGR, 85, 8261; 3) Campbell, D.B., et al., 1983, Science, 221 644; 4) Barsukov, V.L., et al., 1986, JGR, 91, D399; 5) Pronin, A.A., et al, 1986, AV, 20, 83 (in Russian); 6) Stofan, E. R., et al, 1987, EMP, 38, 183; 7) Solomon, S.C. and J.W. Head, 1984, JGR, 89, 6885; 8) Solomon, S.C. and J.W. Head, 1990, GRL, 17, 1393; 9) Sjogren W. L., et al., 1997, In: Venus II, 1125; 10) Pronin, A.A., 1986, Geotectonika, 20, 271 (in Russian); 11) Head, J.W. 1990, Geology, 18, 99; 12) Kaula, W.M., et al., 1992, JGR, 97, 16085; 13) Solomon, S.C., et al., 1992, JGR, 97, 13199; 14) Basilevsky, A.T. and J.W. Head, 1995, SSR, 29, 335; 15) Pronin, A.A., 1990, LPSC 21, 987; 16) Pronin, A.A., 1992, In: Venus Geology Geochemistry, and Geophysics, 68; 17) Grimm, R.E. and R.J. Phillips, 1990, GRL, 17, 1349; 18) Grimm, R.E., and R.J. Phillips, 1991, JGR, 96, 8305; 19) Head, J.W., 1986, LPSC 17, 323; 20) Head, J.W., et al., 1990, GRL, 17, 1337; 21) Roberts, K.M. and J.W. Head, 1990a, GRL, 17, 1341; 22) Roberts, K.M. and J.W. Head, 1990b, EMP, 50/51, 193; 23) Bindschadler, D.L., et al, 1990, GRL, 17, 1345; 24) Lenardic, A., et al, 1991, GRL, 18, 2209; 25) Hansen, V.L. and R.J. Phillips, 1993, LPSC 24, 603; 26) Hansen, V.L. and R.J. Phillips, 1995, Geology, 23, 292; 27) Keep, M. and V.L. Hansen, 1994, JGR, 99, 26015; 28) Ansan, V., et al., 1996, PSS, 44, 817; 29) Marinangeli, L., and M.S. Gilmore, 2000, JGR 105, 12053; 30) Condie, K.C., 2001, Mantle plumes and their record in Earth history, p. 306; 31) Kidder, J.G. and R.J. Phillips, 1996, JGR, 101, 23181; 33) Hess, P.C. and J.W. Head, 1990, EMP, 50/51, 57.
NASA Technical Reports Server (NTRS)
Martinko, E. A. (Principal Investigator); Poracsky, J.; Kipp, E. R.; Krieger, H.
1980-01-01
The activity concentrated on identifying crop and irrigation data sources for the eight states within the High Plains Aquifer and making contacts concerning the nature of these data. A mail questionnaire was developed to gather specific data not routinely reported through standard data collection channels. Input/output routines were designed for High Plains crop and irrigation data and initial statistical data on crops were input to computer files.
NASA Astrophysics Data System (ADS)
Ramsdale, Jason; Balme, Matthew; Conway, Susan
2015-04-01
An International Space Science Institute (ISSI) team project has been convened to study the northern plains of Mars. The northern plains are younger and at lower elevation than the majority of the martian surface and are thought to be the remnants of an ancient ocean. Understanding the surface geology and geomorphology of the Northern Plains is complex, because the surface has been subtly modified many times, making traditional unit-boundaries hard to define. Our ISSI team project aims to answer the following questions: 1) "What is the distribution of ice-related landforms in the northern plains, and can it be related to distinct latitude bands or different geological or geomorphological units?" 2) "What is the relationship between the latitude dependent mantle (LDM; a draping unit believed to comprise of ice and dust thought to be deposited under periods of high axial obliquity) and (i) landforms indicative of ground ice, and (ii) other geological units in the northern plains?" 3) "What are the distributions and associations of recent landforms indicative of thaw of ice or snow?" With increasing coverage of high-resolution images of the surface of we are able to identify increasing numbers and varieties of small-scale landforms on Mars. Many such landforms are too small to represent on regional maps, yet determining their presence or absence across large areas can form the observational basis for developing hypotheses on the nature and history of an area. The combination of improved spatial resolution with near-continuous coverage increases the time required to analyse the data. This becomes problematic when attempting regional or global-scale studies of metre-scale landforms. Here, we describe an approach to mapping small features across large areas. Rather than traditional mapping with points, lines and polygons, we used a grid "tick box" approach to locate specific landforms. The mapping strips were divided into 15×150 grid of squares, each approximately 20×20 km, for each study area. Orbital images at 6-15m/pix were then viewed systematically for each grid square and the presence or absence of each of the basic suite of landforms recorded. The landforms were recorded as being either "present", "dominant", "possible", or "absent" in each grid square. The result is a series of coarse-resolution "rasters" showing the distribution of the different types of landforms across the strip. We have found this approach to be efficient, scalable and appropriate for teams of people mapping remotely. It is easily scalable because, carrying the "absent" values forward to finer grids from the larger grids would mean only areas with positive values for that landform would need to be examined to increase the resolution for the whole strip. As each sub-grid only requires the presence or absence of a landform ascertaining, it therefore removes an individual's decision as to where to draw boundaries, making the method efficient and repeatable.
NASA Technical Reports Server (NTRS)
Parker, T. J.; Pieri, D. C.
1985-01-01
Based upon Viking Orbiter 1 images of the southwestern portion of the Margaritifer Sinus Quadrangle, the northwestern portion of the Argyre Quadrangle, and a small portion of the southeastern Coprates Quadrangle, three major mountainous of plateau units, seven plains units, and six units related to valley forming processes were identified. The photomosaic is oriented such that it provides good areal coverage of the upper Chryse Trough from Argyre Planitia to just above Margaritifer Chaos as well as of plains units on either side of the Trough. The photomosaic was compiled from Viking Orbiter 1 images ranging in resolution from approximately 150 to 300 meters per pixel printed at a scale of about 1:2,000,000. The characteristics of each geomorphic unit are outlined.
The hydrogeologic framework for the southeastern Coastal Plain aquifer system of the United States
Renken, R.A.
1984-01-01
Tertiary and Cretaceous age sand aquifers of the southeastern United States Coastal Plain constitute a distinct multistate hydrogeologic regime informally defined as the southeastern sand aquifer. Seven regional hydrogeologic units are defined; four regional aquifer units and three regional confining beds. Sand aquifers of this system consist of quartzose, feldspathic, and coarse to fine sand and sandstone and minor limestone; confining beds are composed of clay, shale, chalk, and marl. Three hydrogeologic units of Cretaceous to Holocene age overlie the sand system: the surficial aquifer, upper confining unit, and Floridan aquifer system. These three units are not part of the southeastern sand aquifer, but are an integral element of the total hydrogeologic system, and some act as a source of recharge to, or discharge from the underlying clastic sediments. Low-permeability strata of Paleozoic to early Mesozoic age form the base off the total system. (USGS)
NASA Astrophysics Data System (ADS)
Cao, R.; Knapp, J. H.
2016-12-01
Integration of new 2-D seismic reflection profile with existing wells and potential field data from southeastern Georgia, USA provide exciting discovery of a new stratigraphic unit associated with the post-rift phase of the South Georgia Rift (SGR) basins. These data document an apparent reversal of rift basin asymmetry across the Warner Robins Transfer Zone, and the apparent presence of a new sub-horizontal stratigraphic unit (informally named the Hazlehurst Formation) which overlies with angular unconformity an inferred Triassic rift basin (Valdosta Basin), and sits below the regional Coastal Plain unconformity. Triassic rifting of the supercontinent Pangea left behind numerous extensional basins on what is now the eastern North American margin. The SGR is thought to be the most regionally extensive and best preserved of these basins, which were capped by thick basalt -flows of the Central Atlantic Magmatic Province (CAMP) and later buried beneath the Cretaceous and younger Coastal Plain section. Because it is buried beneath the Coastal Plain, the SGR is only known through relatively sparse drilling and geophysical methods. With these new seismic data acquired in 2013 near Hazlehurst, Georgia, we are able to put more constraints into the tectonic history of the basin. We test several hypotheses related to the SGR: (1) the "Transfer Zone" had to exist to transmit extensional strain between rift sub-basins with reverse polarities; (2) the newly identified sub-horizontal stratigraphic interval ("Hazlehurst Formation"), with a possible Jurassic age may represent a post-rift phase of regional subsidence; (3) the extent of this new unit appears to cover most of the coastal plain from eastern Mississippi to South Carolina. The result of this study suggests the previous inferred extent of the might need revision.
Geology of the Venus equatorial region from Pioneer Venus radar imaging
NASA Technical Reports Server (NTRS)
Senske, D. A.; Head, James W.
1989-01-01
The surface characteristics and morphology of the equatorial region of Venus were first described by Masursky et al. who showed this part of the planet to be characterized by two topographic provinces, rolling plains and highlands, and more recently by Schaber who described and interpreted tectonic zones in the highlands. Using Pioneer Venus (PV) radar image data (15 deg S to 45 deg N), Senske and Head examined the distribution, characteristics, and deposits of individual volcanic features in the equatorial region, and in addition classified major equatorial physiographic and tectonic units on the basis of morphology, topographic signature, and radar properties derived from the PV data. Included in this classification are: plains (undivided), inter-highland tectonic zones, tectonically segmented linear highlands, upland rises, tectonic junctions, dark halo plains, and upland plateaus. In addition to the physiographic units, features interpreted as coronae and volcanic mountains have also been mapped. The latter four of the physiographic units along with features interpreted to be coronae.
Detailed Analysis of the Intra-Ejecta Dark Plains of Caloris Basin, Mercury
NASA Technical Reports Server (NTRS)
Buczkowski, Debra L.; Seelos, K. S.
2010-01-01
The Caloris basin on Mercury is floored by light-toned plains and surrounded by an annulus of dark-toned material interpreted to be ejecta blocks and smooth, dark, ridged plains. Strangely, preliminary crater counts indicate that these intra-ejecta dark plains are younger than the light-toned plains within the Caloris basin. This would imply a second, younger plains emplacement event, possibly involving lower albedo material volcanics, which resurfaced the original ejecta deposit. On the other hand, the dark plains may be pre-Caloris light plains covered by a thin layer of dark ejecta. Another alternative to the hypothesis of young, dark volcanism is the possibility that previous crater counts have not thoroughly distinguished between superposed craters (fresh) and partly-buried craters (old) and therefore have not accurately determined the ages of the Caloris units. This abstract outlines the tasks associated with a new mapping project of the Caloris basin, intended to improve our knowledge of the geology and geologic history of the basin, and thus facilitate an understanding of the thermal evolution of this region of Mercury.
Groundwater quality in the Northern Atlantic Coastal Plain aquifer system, eastern United States
Lindsey, Bruce; Belitz, Kenneth
2017-01-19
Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Northern Atlantic Coastal Plain aquifer system constitutes one of the important areas being evaluated. One or more inorganic constituents with human-health benchmarks were detected at high concentrations in about 15 percent of the study area and at moderate concentrations in about 17 percent. Organic constituents were not detected at high concentrations in the study area.
Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley
Scanlon, Bridget R.; Faunt, Claudia; Longuevergne, Laurent; Reedy, Robert C.; Alley, William M.; McGuire, Virginia L.; McMahon, Peter B.
2012-01-01
Aquifer overexploitation could significantly impact crop production in the United States because 60% of irrigation relies on groundwater. Groundwater depletion in the irrigated High Plains and California Central Valley accounts for ∼50% of groundwater depletion in the United States since 1900. A newly developed High Plains recharge map shows that high recharge in the northern High Plains results in sustainable pumpage, whereas lower recharge in the central and southern High Plains has resulted in focused depletion of 330 km3 of fossil groundwater, mostly recharged during the past 13,000 y. Depletion is highly localized with about a third of depletion occurring in 4% of the High Plains land area. Extrapolation of the current depletion rate suggests that 35% of the southern High Plains will be unable to support irrigation within the next 30 y. Reducing irrigation withdrawals could extend the lifespan of the aquifer but would not result in sustainable management of this fossil groundwater. The Central Valley is a more dynamic, engineered system, with north/south diversions of surface water since the 1950s contributing to ∼7× higher recharge. However, these diversions are regulated because of impacts on endangered species. A newly developed Central Valley Hydrologic Model shows that groundwater depletion since the 1960s, totaling 80 km3, occurs mostly in the south (Tulare Basin) and primarily during droughts. Increasing water storage through artificial recharge of excess surface water in aquifers by up to 3 km3 shows promise for coping with droughts and improving sustainability of groundwater resources in the Central Valley.
Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley
Scanlon, Bridget R.; Faunt, Claudia C.; Longuevergne, Laurent; Reedy, Robert C.; Alley, William M.; McGuire, Virginia L.; McMahon, Peter B.
2012-01-01
Aquifer overexploitation could significantly impact crop production in the United States because 60% of irrigation relies on groundwater. Groundwater depletion in the irrigated High Plains and California Central Valley accounts for ~50% of groundwater depletion in the United States since 1900. A newly developed High Plains recharge map shows that high recharge in the northern High Plains results in sustainable pumpage, whereas lower recharge in the central and southern High Plains has resulted in focused depletion of 330 km3 of fossil groundwater, mostly recharged during the past 13,000 y. Depletion is highly localized with about a third of depletion occurring in 4% of the High Plains land area. Extrapolation of the current depletion rate suggests that 35% of the southern High Plains will be unable to support irrigation within the next 30 y. Reducing irrigation withdrawals could extend the lifespan of the aquifer but would not result in sustainable management of this fossil groundwater. The Central Valley is a more dynamic, engineered system, with north/south diversions of surface water since the 1950s contributing to ~7× higher recharge. However, these diversions are regulated because of impacts on endangered species. A newly developed Central Valley Hydrologic Model shows that groundwater depletion since the 1960s, totaling 80 km3, occurs mostly in the south (Tulare Basin) and primarily during droughts. Increasing water storage through artificial recharge of excess surface water in aquifers by up to 3 km3 shows promise for coping with droughts and improving sustainability of groundwater resources in the Central Valley.
Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley
Scanlon, Bridget R.; Faunt, Claudia C.; Longuevergne, Laurent; Reedy, Robert C.; Alley, William M.; McGuire, Virginia L.; McMahon, Peter B.
2012-01-01
Aquifer overexploitation could significantly impact crop production in the United States because 60% of irrigation relies on groundwater. Groundwater depletion in the irrigated High Plains and California Central Valley accounts for ∼50% of groundwater depletion in the United States since 1900. A newly developed High Plains recharge map shows that high recharge in the northern High Plains results in sustainable pumpage, whereas lower recharge in the central and southern High Plains has resulted in focused depletion of 330 km3 of fossil groundwater, mostly recharged during the past 13,000 y. Depletion is highly localized with about a third of depletion occurring in 4% of the High Plains land area. Extrapolation of the current depletion rate suggests that 35% of the southern High Plains will be unable to support irrigation within the next 30 y. Reducing irrigation withdrawals could extend the lifespan of the aquifer but would not result in sustainable management of this fossil groundwater. The Central Valley is a more dynamic, engineered system, with north/south diversions of surface water since the 1950s contributing to ∼7× higher recharge. However, these diversions are regulated because of impacts on endangered species. A newly developed Central Valley Hydrologic Model shows that groundwater depletion since the 1960s, totaling 80 km3, occurs mostly in the south (Tulare Basin) and primarily during droughts. Increasing water storage through artificial recharge of excess surface water in aquifers by up to 3 km3 shows promise for coping with droughts and improving sustainability of groundwater resources in the Central Valley. PMID:22645352
Tesoriero, A.J.; Spruill, T.B.; Eimers, J.L.
2004-01-01
Ground-water chemistry data from coastal plain environments have been examined to determine the geochemical conditions and processes that occur in these areas and assess their implications for aquifer susceptibility. Two distinct geochemical environments were studied to represent a range of conditions: an inner coastal plain setting having more well-drained soils and lower organic carbon (C) content and an outer coastal plain environment that has more poorly drained soils and high organic C content. Higher concentrations of most major ions and dissolved inorganic and organic C in the outer coastal plain setting indicate a greater degree of mineral dissolution and organic matter oxidation. Accordingly, outer coastal plain waters are more reducing than inner coastal plain waters. Low dissolved oxygen (O2) and nitrate (NO 3-) concentrations and high iron (Fe) concentrations indicate that ferric iron (Fe (III)) is an important electron acceptor in this setting, while dissolved O2 is the most common terminal electron acceptor in the inner coastal plain setting. The presence of a wide range of redox conditions in the shallow aquifer system examined here underscores the importance of providing a detailed geochemical characterization of ground water when assessing the intrinsic susceptibility of coastal plain settings. The greater prevalence of aerobic conditions in the inner coastal plain setting makes this region more susceptible to contamination by constituents that are more stable under these conditions and is consistent with the significantly (p<0.05) higher concentrations of NO3- found in this setting. Herbicides and their transformation products were frequently detected (36% of wells sampled), however concentrations were typically low (<0.1 ??g/L). Shallow water table depths often found in coastal plain settings may result in an increased risk of the detection of pesticides (e.g., alachlor) that degrade rapidly in the unsaturated zone.
Longleaf Pine Ecosystem Restoration: The Role of Fire
James P. Barnett
1999-01-01
Longleaf pine (Pinus pulustris Mill.) ecosystems once occupied over 36 million hectares in the southeastern United States lower coastal plain. These fire-dependent ecosystems dominated a wide range of coastal plain sites, including dry uplands and low, wet flatlands. Today, less than 1.3 million hectares remain, but these ecosystems represent...
NASA Astrophysics Data System (ADS)
Whitten, J. L.; Fassett, C. I.; Ostrach, L. R.
2018-06-01
We present the initial mapping of the H-10 quadrangle on Mercury, a region that was imaged for the first time by MESSENGER. Geologic map with assist with further characterization of the intercrater plains and their possible formation mechanism(s).
Vulnerability of crops and croplands in the U.S. Northern Plains to predicted climate change
USDA-ARS?s Scientific Manuscript database
The states of Colorado, Montana, Nebraska, North Dakota, South Dakota, and Wyoming comprise the Northern Great Plains region of the United States. The soil and water resources contained in this region have historically supported a highly diverse and productive agriculture that provides a significant...
Justus, B.G.
2003-01-01
Macroinvertebrate community, fish community, water-quality, and habitat data collected from 36 sites in the Mississippi Alluvial Plain Ecoregion during 1996-98 by the U.S. Geological Survey were considered for a multimetric test of ecological integrity. Test metrics were correlated to site scores of a Detrended Correspondence Analysis of the fish community (the biological community that was the most statistically significant for indicating ecological conditions in the ecoregion) and six metrics--four fish metrics, one chemical metric (total ammonia plus organic nitrogen) and one physical metric (turbidity)--having the highest correlations were selected for the index. Index results indicate that sites in the northern half of the study unit (in Arkansas and Missouri) were less degraded than sites in the southern half of the study unit (in Louisiana and Mississippi). Of 148 landscape variables evaluated, the percentage of Holocene deposits and cotton insecticide rates had the highest correlations to index of ecological integrity results. sites having the highest (best) index scores had the lowest percentages of Holocene deposits and the lowest cotton insecticide use rates, indicating that factors relating to the amount of Holocene deposits and cotton insecticide use rates partially explain differences in ecological conditions throughout the Mississippi Alluvial Plain Ecoregion.
Biogeography of Anurans from the Poorly Known and Threatened Coastal Sandplains of Eastern Brazil.
Xavier, Ariane Lima; Guedes, Thaís Barreto; Napoli, Marcelo Felgueiras
2015-01-01
The east coast of Brazil comprises an extensive area inserted in the Tropical Atlantic Domain and is represented by sandy plains of beach ridges commonly known as Restingas. The coastal environments are unique and house a rich amphibian fauna, the geographical distribution patterns of which are incipient. Biogeographical studies can explain the current distributional patterns and provide the identification of natural biogeographical units. These areas are important in elucidating the evolutionary history of the taxa and the areas where they occur. The aim of this study was to seek natural biogeographical units in the Brazilian sandy plains of beach ridges by means of distribution data of amphibians and to test the main predictions of the vicariance model to explain the patterns found. We revised and georeferenced data on the geographical distribution of 63 anuran species. We performed a search for latitudinal distribution patterns along the sandy coastal plains of Brazil using the non-metric multidimensional scaling method (NMDS) and the biotic element analysis to identify natural biogeographical units. The results showed a monotonic variation in anuran species composition along the latitudinal gradient with a break in the clinal pattern from 23°S to 25°S latitude (states of Rio de Janeiro to São Paulo). The major predictions of the vicariance model were corroborated by the detection of four biotic elements with significantly clustered distribution and by the presence of congeneric species distributed in distinct biotic elements. The results support the hypothesis that vicariance could be one of the factors responsible for the distribution patterns of the anuran communities along the sandy coastal plains of eastern Brazil. The results of the clusters are also congruent with the predictions of paleoclimatic models made for the Last Glacial Maximum of the Pleistocene, such as the presence of historical forest refugia and biogeographical patterns already detected for amphibians in the Atlantic Rainforest.
Biogeography of Anurans from the Poorly Known and Threatened Coastal Sandplains of Eastern Brazil
Xavier, Ariane Lima; Guedes, Thaís Barreto; Napoli, Marcelo Felgueiras
2015-01-01
The east coast of Brazil comprises an extensive area inserted in the Tropical Atlantic Domain and is represented by sandy plains of beach ridges commonly known as Restingas. The coastal environments are unique and house a rich amphibian fauna, the geographical distribution patterns of which are incipient. Biogeographical studies can explain the current distributional patterns and provide the identification of natural biogeographical units. These areas are important in elucidating the evolutionary history of the taxa and the areas where they occur. The aim of this study was to seek natural biogeographical units in the Brazilian sandy plains of beach ridges by means of distribution data of amphibians and to test the main predictions of the vicariance model to explain the patterns found. We revised and georeferenced data on the geographical distribution of 63 anuran species. We performed a search for latitudinal distribution patterns along the sandy coastal plains of Brazil using the non-metric multidimensional scaling method (NMDS) and the biotic element analysis to identify natural biogeographical units. The results showed a monotonic variation in anuran species composition along the latitudinal gradient with a break in the clinal pattern from 23°S to 25°S latitude (states of Rio de Janeiro to São Paulo). The major predictions of the vicariance model were corroborated by the detection of four biotic elements with significantly clustered distribution and by the presence of congeneric species distributed in distinct biotic elements. The results support the hypothesis that vicariance could be one of the factors responsible for the distribution patterns of the anuran communities along the sandy coastal plains of eastern Brazil. The results of the clusters are also congruent with the predictions of paleoclimatic models made for the Last Glacial Maximum of the Pleistocene, such as the presence of historical forest refugia and biogeographical patterns already detected for amphibians in the Atlantic Rainforest. PMID:26047484
Onufrak, Stephen J; Park, Sohyun; Sharkey, Joseph R; Sherry, Bettylou
2015-01-01
Objective Research is limited on whether mistrust of tap water discourages plain water intake and leads to greater intake of sugar-sweetened beverages (SSB). The objective of this study is to examine demographic differences in perceptions of tap water safety and determine if these perceptions are associated with intake of SSB and plain water Design The study examined perceptions of tap water safety and their cross-sectional association with intake of SSB and plain water. Racial/ethnic differences in the associations of tap water perceptions with SSB and plain water intake were also examined. Setting Nationally weighted data from 2010 HealthStyles Survey (n=4184) Subjects United States adults ≥18 years Results Overall, 13.0% of participants disagreed that their local tap water was safe to drink and 26.4% of participants agreed that bottled water was safer than tap water. Both mistrust of tap water safety and favoring bottled water differed by region, age, race/ethnicity, income, and education. The associations of tap water mistrust on intake of SSB and plain water were modified by race/ethnicity (p<0.05). Non-white racial/ethnic groups who disagreed that their local tap water was safe to drink were more likely to report low intake of plain water. The odds of consuming ≥1 SSB/day among Hispanics who mistrusted their local tap water was twice that of Hispanics who did not (OR = 2.0; 95% CI: 1.2, 3.3). Conclusions Public health efforts to promote healthy beverages should recognize the potential impact of tap water perceptions on water and SSB intake among minority populations. PMID:23098620
Merriam, D.F.
2005-01-01
Plains-type folds are local, subtle anticlines formed in the thin sedimentary package overlying a shallow, crystalline basement on the craton. They are small in areal extent (usually less than 1-3 km 2 [0.4-1.2 mi2]), and their amplitude increases with depth (usually tens of meters), which is mainly the result of differential compaction of sediments (usually clastic units) over tilted, rigid, basement fault blocks. The development of these structural features by continuous but intermittent movement of the basement fault blocks in the late Paleozoic in the United States mid-continent is substantiated by a record of stratigraphic and sedimentological evidence. The recurrent structural movement, which reflects adjustment to external stresses, is expressed by the change in thickness of stratigraphic units over the crest of the fold compared to the flanks. By plotting the change in thickness for different stratigraphic units of anticlines on different fault blocks, it is possible to determine the timing of movement of the blocks that reflect structural adjustment. These readjustments are confirmed by sedimentological evidence, such as convolute, soft-sediment deformation features and small intraformational faults. The stratigraphic interval change in thickness for numerous structures in the Cherokee, Forest City, and Salina basins and on the Nemaha anticline of the mid-continent United States was determined and compared for location and timing of the adjustments. Most of the adjustment occurred during and after time of deposition of the Permian-Pennsylvanian clastic units, which, in turn, reflect tectonic disturbance in adjacent areas, and the largest amount of movement on the plains-type structures occurred on those nearest and semiparallel to major positive features, such as the Nemaha anticline. Depending on the time of origin and development of plains-type folds, they may control the entrapment and occurrence of oil and gas. Copyright ??2005. The American Association of Petroleum Geologists. All rights reserved.
NASA Astrophysics Data System (ADS)
Basilevsky, A. T.; Burba, G. A.; Ivanov, M. A.; Bobina, N. N.; Shashkina, V. P.; Head, J. W.
Based on an analysis of the images of the Venusian surface obtained by the side-looking radar of the Magellan orbiter, a geologic map of the northern part of Venus (the region extending to the north of the 35°N latitude) at 1 : 10 000 000 scale is compiled. The map of this vast territory, comprising one-fifth of the planet surface, was compiled using only 12 geologic units, which implies a uniform character of terrains and land- forms on the investigated territory and, therefore, the uniformity of geologic processes that occurred on this planet. These units are the products of four main groups of geologic processes that occurred on Venus during the last 0.51 Myr: (1) basaltic volcanism; (2) tectonic compression and tensile deformation; (3) impact crater- ing; and (4) wind-related mobilization, transportation, and deposition of loose fine-grained materials. Basaltic volcanism is the main process that supplies new material on the surface of Venus. Tectonic deformation struc- tures, superposed on the material of different geologic units, determined the morphology of the units and formed the surfaces of unconformity between neighboring units. Ten of 12 geologic units form an age sequence that is virtually identical over the entire mapped territory of the planet. The possible incon- sistency of this sequence caused by anomalous relations existing between smooth plains (Ps) in the southeastern part of Lakshmi Planum and wrinkle ridged plains (Pwr) in the northern part of Sedna Planitia does not destroy this sequence as a whole. The results of our mapping support the model of global stratigraphy of Venus proposed by Basilevsky and Head (19951998) and provide evidence of the quasi-synchronous character of single-type geologic units on different areas of Venus rather than of the absence of synchronism. An analysis of the distribution of impact craters on different geologic units has shown the proximity of mean absolute ages of the material of the surface of Pwr plains, of the entire studied territory, and of the entire Venusian surface. The results of our analysis suggest that, within the area under study, the intensity of the leading geologic processes at the beginning of the studied segment of the geologic history was relatively high but decreased dramatically later.
Long-term Agroecosystem Research in the Northern Great Plains.
NASA Astrophysics Data System (ADS)
Schmer, M.; Sanderson, M.; Liebig, M. A.; Wienhold, B.; Awada, T.; Papiernik, S.; Osborne, S.; Kemp, W.; Okalebo, J. A.; Riedall, W.
2015-12-01
The Northern Great Plains is the bread basket of the United States, accounting for a substantial portion of U.S. agricultural production. This region faces critical challenges regarding balancing food needs, resource conservation (e.g Ogallala aquifer), environmental concerns, and rural economy development. Developing transformative, multifunctional systems will require equally imaginative and efficient tools to help farmers manage complex agroecosystems in a rapidly changing climate. The Northern Plains long-term agroecosystem research (LTAR) site at Mandan, ND and the Platte River High Plains LTAR (ARS/University of Nebraska-Lincoln) at Lincoln, NE in collaboration with USDA-ARS research units in Brookings, SD and Fargo, ND are collaborating to address the grand challenge of providing and sustaining multiple service provisions from Northern Great Plains agroecosystems. We propose to attain these goals through sustainable intensification based on the adoption of conservation agriculture principles including reduced soil disturbance, livestock integration, and greater complexity and diversity in the cropping system. Here, we summarize new concepts these locations have pioneered in dynamic cropping systems, resource use efficiency, and agricultural management technologies. As part of the LTAR network, we will conduct long-term cross-site research to design and assess new agricultural practices and systems aimed at improving our understanding of decision making processes and outcomes across an array of agricultural systems.
Geologic map of the northern plains of Mars
Tanaka, Kenneth L.; Skinner, James A.; Hare, Trent M.
2005-01-01
The northern plains of Mars cover nearly a third of the planet and constitute the planet's broadest region of lowlands. Apparently formed early in Mars' history, the northern lowlands served as a repository both for sediments shed from the adjacent ancient highlands and for volcanic flows and deposits from sources within and near the lowlands. Geomorphic evidence for extensive tectonic deformation and reworking of surface materials through release of volatiles occurs throughout the northern plains. In the polar region, Planum Boreum contains evidence for the accumulation of ice and dust, and surrounding dune fields suggest widespread aeolian transport and erosion. The most recent regional- and global-scale maps describing the geology of the northern plains are largely based on Viking Orbiter image data (Dial, 1984; Witbeck and Underwood, 1984; Scott and Tanaka, 1986; Greeley and Guest, 1987; Tanaka and Scott, 1987; Tanaka and others, 1992a; Rotto and Tanaka, 1995; Crumpler and others, 2001; McGill, 2002). These maps reveal highland, plains, volcanic, and polar units based on morphologic character, albedo, and relative ages using local stratigraphic relations and crater counts. This geologic map of the northern plains is the first published map that covers a significant part of Mars using topography and image data from both the Mars Global Surveyor and Mars Odyssey missions. The new data provide a fresh perspective on the geology of the region that reveals many previously unrecognizable units, features, and temporal relations. In addition, we adapted and instituted terrestrial mapping methods and stratigraphic conventions that we think result in a clearer and more objective map. We focus on mapping with the intent of reconstructing the history of geologic activity within the northern plains, including deposition, volcanism, erosion, tectonism, impact cratering, and other processes with the aid of comprehensive crater-density determinations. Mapped areas include all plains regions within the northern hemisphere of Mars, as well as an approximately 300-km-wide strip of cratered highland and volcanic regions, which border the plains. Note that not all of the contiguous northern plains are mapped, because some minor parts of Elysium and Amazonis Planitiae lie south of the equator.
NASA Technical Reports Server (NTRS)
Parker, T. J.; Pieri, D. C.
1985-01-01
Three major valley tapes were identified in the SW Margaritefer Sinus and Argyre regions. Two are restricted to specific geologic units while the third is independent of the geology. The first type (the small valley networks) are found within the channeled and subdued plains unit in the eastern half of the map, in the grooved and channeled plains unit north of Nirgal Vallis, and in scattered instances in the cratered plateau unit north of Argyre. The even smaller valleys just inside Argyre's rim and on the inner slopes of many large craters are not directly related to the processes which formed the small valleys but are a result, instead, of post-impact modification of the crater walls. The second type of valley network is represented by Nirgal Vallis and the similar, shorter continuation of it to the west. This type is found only in the smooth plains material west of Uzboi Vallis in the map area. The third type of valley network is that of the Uzbol-Holden-Ladon valles system. This system is related to catastrophic outflow from Argyre Basin and is topographically rather than geologically controlled.
An analysis of the link between strokes and soils in the South Carolina coastal plains
USDA-ARS?s Scientific Manuscript database
The Stroke Belt is a geographical region of the southeastern United States where resident individuals suffer a disproportionately higher rate of strokes than the rest of the population. While the “buckle” of this Stroke Belt coincides with the southeastern Coastal Plain region of North and South Car...
Mitigation bank promotes research on restoring coastal plain depression wetlands (South Carolina)
Christopher D. Barton; Diane De Steven; John C. Kilgo
2004-01-01
Carolina bays and smaller depression wetlands support diverse plant communities and provide critical habitat for semi-aquatic fauna throughout the Coastal Plain region of the southeastern United States. Historically, many depression wetlands were altered or destroyed by surface ditching, drainage, and agricultural or silviculture uses. These important habitats are now...
Testing a passive revegetation approach for restoring coastal plain depression wetlands
Diane De Steven; Rebecca R. Sharitz; Julian H. Singer; Christopher D. Barton
2006-01-01
Restoration of coastal plain depressions, a biologically significant and threatened wetland type of the southeastern United States, has received little systematic research. Within the context of an experimental project designed to evaluate several restoration approaches, we tested whether successful revegetation can be achieved by passive methods (recruitment from seed...
Measuring and mitigating agricultural greenhouse gas production in the U.S. Great Plains 1870-2000
USDA-ARS?s Scientific Manuscript database
In the last 150 years the Great Plains region of the United States has become a major center of agricultural production for the global market. The initial agricultural settlement of this area and subsequent changes in production content and farming techniques have resulted in significant greenhouse ...
NASA Technical Reports Server (NTRS)
Tanaka, K. L.; Banerdt, W. B.
2000-01-01
We conclude from MOC and MOLA data that the northern plains of Mars were infilled by a sediment-rich, mud ocean. Evidence for subsidence within the north polar basin and reversed channel-floor gradients are consistent with tectonic deformation due to the sediment load.
USDA-ARS?s Scientific Manuscript database
Current concerns about rising global population growth combined with global food security necessitate major optimization in agricultural management. The fertility of highly weathered Ultisols in the southeastern Coastal Plains region of United States is considerably low. In this region, intensive cr...
Particulate matter concentrations for mono-slope beef cattle facilities in the Northern Great Plains
USDA-ARS?s Scientific Manuscript database
Confined cattle facilities are an increasingly common housing system in the Northern Great Plains region of the United States. Producers may maintain a deep-bedded manure pack (Pack), they may remove all bedding/manure material from the pens weekly (Scrape), or use a combination of management styles...
Diane De Steven; Rebecca R. Sharitz
2007-01-01
Drained depressional wetlands are typically restored by plugging ditches or breaking drainage tiles to allow recovery of natural ponding regimes, while relying on passive recolonization from seed banks and dispersal to establish emergent vegetation. However, in restored depressions of the southeastern United States Coastal Plain, certain characteristic rhizomatous...
Restoring the longleaf pine ecosystem: The role of fire
James P. Barnett
2002-01-01
Longleaf pine (Pinus palustris Mill.) ecosystems once occupied 90 million acres in the southern United States coastal plain. These firedependent ecosystems dominated a wide range of coastal plain sites, including dry uplands and low, wet flatlands. Today, less than 4 million acres remain, but these ecosystems represent significant components of the...
Land and Land-use Change in the Climate Sensitive High Plains: An Automated Approach with Landsat
NASA Technical Reports Server (NTRS)
Goetz, Alexander F.; Williams, D. L. (Technical Monitor)
2002-01-01
The High Plains is an economically important and climatologically sensitive region of the United States and Canada. The High Plains contain 100,000 sq km of Holocene sand dunes and sand sheets that are currently stabilized by natural vegetation. Droughts and the larger threat of global warming are climate phenomena that could cause depletion of natural vegetation and make this region susceptible to sand dune reactivation. The original proposal was directed toward the use of Landsat TM data to establish the state and ongoing changes of the surface in the 1.2 million sq. km, semi-arid High Plains region of the central US, A key objective was to develop a model to predict the reactivation of the 100,000 sq. km of Holocene dunes found on the High Plains during an extended drought. At least one Landsat 5 image per year for 1985, 1988 and 1996 was obtained for 32 scenes on the High Plains to coincide with wet and dry years. Additional Landsat 7 data were acquired for 1999 and 2000 primarily for Colorado and Nebraska. As luck would have it, there was no severe drought during the study period 1985-2000. Attention was focused on developing methods for mapping dry vs. green vegetation on sparsely vegetated rangelands in sandy soils, since these were the areas most susceptible to surface reactivation during a drought.
Tobacco plain packaging: Evidence based policy or public health advocacy?
McKeganey, Neil; Russell, Christopher
2015-06-01
In December 2012, Australia became the first country to require all tobacco products be sold solely in standardised or 'plain' packaging, bereft of the manufacturers' trademarked branding and colours, although retaining large graphic and text health warnings. Following the publication of Sir Cyril Chantler's review of the evidence on the effects of plain tobacco packaging, the Ministers of the United Kingdom Parliament voted in March 2015 to implement similar legislation. Support for plain packaging derives from the belief that tobacco products sold in plain packs have reduced appeal and so are more likely to deter young people and non-smokers from starting tobacco use, and more likely to motivate smokers to quit and stay quit. This article considers why support for the plain packaging policy has grown among tobacco control researchers, public health advocates and government ministers, and reviews Australian survey data that speak to the possible introductory effect of plain packaging on smoking prevalence within Australia. The article concludes by emphasising the need for more detailed research to be undertaken before judging the capacity of the plain packaging policy to deliver the multitude of positive effects that have been claimed by its most ardent supporters. Copyright © 2015 Elsevier B.V. All rights reserved.
Bennett, George L.
2017-07-20
Groundwater quality in the North San Francisco Bay Shallow Aquifer study unit (NSF-SA) was investigated as part of the Priority Basin Project of the California Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is in Marin, Mendocino, Napa, Solano, and Sonoma Counties and included two physiographic study areas: the Valleys and Plains area and the surrounding Highlands area. The NSF-SA focused on groundwater resources used for domestic drinking water supply, which generally correspond to shallower parts of aquifer systems than that of groundwater resources used for public drinking water supply in the same area. The assessments characterized the quality of untreated groundwater, not the quality of drinking water.This study included three components: (1) a status assessment, which characterized the status of the quality of the groundwater resources used for domestic supply for 2012; (2) an understanding assessment, which evaluated the natural and human factors potentially affecting water quality in those resources; and (3) a comparison between the groundwater resources used for domestic supply and those used for public supply.The status assessment was based on data collected from 71 sites sampled by the U.S. Geological Survey for the GAMA Priority Basin Project in 2012. To provide context, concentrations of constituents measured in groundwater were compared to U.S. Environmental Protection Agency (EPA) and California State Water Resources Control Board Division of Drinking Water regulatory and non-regulatory benchmarks for drinking-water quality. The status assessment used a grid-based method to estimate the proportion of the groundwater resources that has concentrations of water-quality constituents approaching or above benchmark concentrations. This method provides statistically unbiased results at the study-area scale and permits comparisons to other GAMA Priority Basin Project study areas.In the NSF-SA study unit as a whole, inorganic constituents with human-health benchmarks were detected at high relative concentrations (RCs) in 27 percent of the shallow aquifer system, and inorganic constituents with secondary maximum contaminant levels (SMCL) were detected at high RCs in 24 percent of the system. The inorganic constituents detected at high RCs were arsenic, boron, fluoride, manganese, nitrate, iron, sulfate, and total dissolved solids (TDS). Organic constituents with human-health benchmarks were detected at high RCs in 1 percent of the shallow aquifer system. Of the 148 organic constituents analyzed, 30 constituents were detected, although only 1, chloroform, had a detection frequency greater than 10 percent.Natural and anthropogenic factors that could affect the groundwater quality were evaluated by using results from statistical testing of associations between constituent concentrations and values of potential explanatory factors. Groundwater age class (modern, mixed, or pre-modern), redox class (oxic or anoxic), aquifer lithology class (metamorphic, sedimentary, or volcanic), and dissolved oxygen concentrations were the explanatory factors that explained distribution patterns of most of the inorganic constituents best. Groundwater classified primarily as pre-modern or mixed in age was associated with higher concentrations of arsenic and fluoride than waters classified as modern. Anoxic or mixed redox conditions were associated with higher concentrations of boron, fluoride, and manganese. Similar patterns of association with explanatory variables were seen for inorganic constituents with aesthetic-based benchmarks detected at high concentrations. Nitrate and perchlorate had higher concentrations in oxic than in the anoxic redox class and were positively correlated with urban land use.The NSF-SA water-quality results were compared to those of the GAMA North San Francisco Bay Public-Supply Aquifer study unit (NSF-PA). The NSF-PA was sampled in 2004 and covers much of the same area as the NSF-SA, but focused on the deeper public-supply aquifer system. The comparison of the NSF-PA to the NSF-SA showed that there were more differences between the Valleys and Plains study areas of the two study units than between the Highlands study areas of the two study units. As expected from the shallower depth of wells, the NSF-SA Valleys and Plains study area had a lesser proportion of pre-modern age groundwater and greater proportion of modern age groundwater than the NSF-PA Valleys and Plains study area. In contrast, well depths and groundwater ages were not significantly different between the two Highlands study areas. Arsenic, manganese, and nitrate were present at high RCs, and perchlorate was detected in greater proportions of the NSF-SA Valleys and Plains study area than the NSF-PA Valleys and Plains study area.
The value of plain abdominal radiographs in management of abdominal emergencies in Luth.
Ashindoitiang, J A; Atoyebi, A O; Arogundade, R A
2008-01-01
The plain abdominal x-ray is still the first imaging modality in diagnosis of acute abdomen. The aim of this study was to find the value of plain abdominal x-ray in the management of abdominal emergencies seen in Lagos university teaching hospital. The accurate diagnosis of the cause of acute abdominal pain is one of the most challenging undertakings in emergency medicine. This is due to overlapping of clinical presentation and non-specific findings of physical and even laboratory data of the multifarious causes. Plain abdominal radiography is one investigation that can be obtained readily and within a short period of time to help the physician arrive at a correct diagnosis The relevance of plain abdominal radiography was therefore evaluated in the management of abdominal emergencies seen in Lagos over a 12 month period (April 2002 to March 2003). A prospective study of 100 consecutively presenting patients with acute abdominal conditions treated by the general surgical unit of Lagos University Teaching Hospital was undertaken. All patients had supine and erect abdominal x-ray before any therapeutic intervention was undertaken. The diagnostic features of the plain films were compared with final diagnosis to determine the usefulness of the plain x-ray There were 54 males and 46 females (M:F 1.2:1). Twenty-four percent of the patients had intestinal obstruction, 20% perforated typhoid enteritis; gunshot injuries and generalized peritonitis each occurred in 13%, blunt abdominal trauma in 12%, while 8% and 10% had acute appendicitis and perforated peptic ulcer disease respectively. Of 100 patients studied, 54% had plain abdominal radiographs that showed positive diagnostic features. Plain abdominal radiograph showed high sensitivity in patients with intestinal obstruction 100% and perforated peptic ulcer 90% but was less sensitive in patients with perforated typhoid, acute appendicitis, and blunt abdominal trauma and generalized peritonitis. In conclusion, this study shows that abdominal radiographs are useful when appropriate criteria are followed in requesting for the investigation. The investigation should be requested for all patients with moderate to severe abdominal tenderness, those with gunshot injuries, blunt abdominal trauma and generalized peritonitis. It should be an integral part of management of patients with clinical suspicion of bowel obstruction and gastrointestinal perforation.
Groundwater quality in the Southeastern Coastal Plain aquifer system, southeastern United States
Barlow, Jeannie; Lindsey, Bruce; Belitz, Kenneth
2017-01-19
Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Southeastern Coastal Plain aquifer system constitutes one of the important areas being evaluated. One or more inorganic constituents with human-health benchmarks were detected at high concentrations in about 6 percent of the study area and at moderate concentrations in about 13 percent. One or more organic constituents with human-health benchmarks were detected at moderate concentrations in about 3 percent of the study area.
National Agricultural Library | United States Department of Agriculture
Skip to main content Home National Agricultural Library United States Department of Agriculture Ag | USDA.gov | Agricultural Research Service | Plain Language | FOIA | Accessibility Statement | Information
Hansen, Cristi V.; Spinazola, Joseph M.; Underwood, E.J.; Wolf, R.J.
1992-01-01
The purpose of this Hydrologic Investigations Atlas is to provide a description of the principal geohydrologic systems in Upper Cambrian through Lower Cretaceous rocks in Kansas. This investigation was made as part of the Central Midwest Regional Aquifer-System Analysis (CMRASA). The CMRASA is one of several major investigations by the U.S. Geological Survey of regional aquifer systems in the United States. These regional investigations are designed to increase knowledge of the flow regime and hydrologic properties of major aquifer systems and to provide quantitative information for the assessment, development, and management water supplies. The CMRASA study area includes all or parts of 10 Central Midwestern States (Jorgensen and Signor, 1981), as shown on the envelope cover.This Hydrologic Investigations Atlas, which consists of a series of nine chapters, presents a description of the physical framework and the geohydrology of principal aquifers and confining systems in Kansas. Chapter D presents maps that show the areal extent, altitude and configuration of the top, and thickness of Mississippian rocks that compose the upper aquifer unit of the Western Interior Plains aquifer system in Kansas, The chapter is limited to the presentation of the physical framework of the upper aquifer unit. The interpretation of the physical framework of the upper aquifer unit is based on selected geophysical and lithologic logs and published maps of stratigraphically equivalent units. Maps indicating the thickness and the altitude and configuration of the top of the upper aquifer unit in the Western Interior Plains aquifer system have been prepared as part of a series of interrelated maps that describe the stratigraphic interval from the Precambrian basement through Lower Cretaceous rocks. A concerted effort was made to ensure that maps of each geohydrologic unit are consistent with the maps of underlying and overlying units. Chapter A of this atlas series (Wolf and others, 1990) describes the relation of principal geohydrologic systems in Kansas and presents a more detailed discussion of the methods and data used to prepare and ensure consistency among the sets of maps.
Antifriction coating of Cu-Fe-Al-Pb system for plain bearings
NASA Astrophysics Data System (ADS)
Kotenkov, Pavel; Kontsevoi, Yurii; Mejlakh, Anna; Pastukhov, Eduard; Shubin, Alexey; Goyda, Eduard; Sipatov, Ivan
2017-09-01
Aluminium, copper and their compounds are used in common as basis for antifriction coatings of plain bearings. Antifriction testing of plain bearings (based on Al and Cu) made by leading automotive manufacturers from Germany, Japan, USA, United Kingdom and Russia were carried out to make judicious selection of basis for development of new antifriction material. Testing was carried out using friction machine. It was defined that materials based on Cu provide better durability and robustness of plain bearings in comparison with Al based ones. The new antifriction composite coatings based on copper were developed taking into account the requirements specified for plain bearings of internal-combustion engine. Pilot samples of plain bearings with antifriction coatings of Cu-Fe-Al-Pb system were produced. The antifriction composite having Cu-5Fe-5Al5Fe2-10Pb (mass %) composition has demonstrated low friction factor and high wear-resistance. Metallographic analysis of pilot samples was carried out by means of optical and scanning electron microscopy.
NASA Astrophysics Data System (ADS)
Ivanov, M. A.; Erkeling, G.; Hiesinger, H.; Bernhardt, H.; Reiss, D.
2017-09-01
In this paper, we present the results of our detailed study of morphology, topography, and age of the Deuteronilus contact that outlines Vastitas Borealis Formation (VBF) in the northern plains and the Isidis Planitia unit. The Deuteronilus contact represents a sharp and distinct geological boundary that can be traced continuously for many hundreds to thousands of kilometers. In the northern plains, segments of the Deuteronilus contact occur at two distinct topographic levels. In the northern plains, the long-wavelength topography of the Deuteronilus contact occur at two distinct topographic levels. In the Tempe, Chryse, Acidalia, and Cydonia-Deuteronilus regions (the total length is ∼14,000 km), the contact is at the mean elevation of about -3.92 km (the decile range is 180 m, from -4.01 km to -3.83 km). In the Pyramus-Astapus, Utopia, and Western Elysium regions (the total length is ∼7700 km), the mean elevation of the contact is about -3.58 km (the decile range is 270 m, from -3.73 km to -3.46 km). These levels to large extent (but not completely) correspond to the model geoids that may have been characterized the shape of Mars at the time of the VBF emplacement. Largest deviations of the actual topographic position of the contact from the model geoids occur in the Tantalus and Phlegra regions where the deviations are due to the post-VBF changes of the regional topography. The fact that the model geoids satisfactory describe the shape of the largest portion of the contact provides additional evidence for both the emplacement of the VBF edges near an equipotential surface and for relative stability of the shape of Mars during a long time interval of about 3.6 Ga. Within the northern plains in the Tempe Terra, Acidalia Planitia, Cydonia-Deuteronilus, Pyramus-Astapus, and the southern Utopia regions, the absolute model ages of the VBF surface near the Deuteronilus contact are tightly clustered around the age of ∼3.6 Ga, which we interpret as the age of the VBF emplacement. The surface of the VBF-like Isidis Planitia unit is distinctly younger, ∼3.50 ± 0.01 Ga, which suggests that this unit formed independently. Neither volcanic nor glacial modes of emplacement are consistent with the topographic configuration and the shape of the Deuteronilus contact within both the northern plains and in Isidis Planitia. The broad flooding and formation of extensive water/mud reservoirs remains to be the most plausible mode of formation of the VBF in the northern plains and the VBF-like unit on the floor of the Isidis basin.
USDA-ARS?s Scientific Manuscript database
The Northern Great Plains (NGP) region of the United States – which comprises Montana, Wyoming, Colorado, North Dakota, South Dakota and Nebraska – is a largely rural area that provides important agricultural and ecological services, including biological diversity. The region contains 25% of the Nat...
Research achievements and adoption of no-till, dryland cropping in the semi-arid US Great Plains
USDA-ARS?s Scientific Manuscript database
The Great Plains region of the United States and Canada is an area of widespread dryland crop production, with wheat being the dominant crop. Precipitation in the region ranges from 300 to 500 mm annually, with the majority of precipitatioCPRLn falling during hot summer months. The prevailing croppi...
USDA-ARS?s Scientific Manuscript database
In the Southern Great Plains of the United States, extremes of weather and climate are the norm. Farmers, ranchers, and foresters rely upon timely and authoritative data and information when making management decisions that are weather- and climate-dependent. In response to the needs of these agricu...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Legal Description of the Coastal Plain, Arctic National Wildlife Refuge, Alaska I Appendix I to Part 37 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Legal Description of the Coastal Plain, Arctic National Wildlife Refuge, Alaska I Appendix I to Part 37 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Legal Description of the Coastal Plain, Arctic National Wildlife Refuge, Alaska I Appendix I to Part 37 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Legal Description of the Coastal Plain, Arctic National Wildlife Refuge, Alaska I Appendix I to Part 37 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Legal Description of the Coastal Plain, Arctic National Wildlife Refuge, Alaska I Appendix I to Part 37 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM...
E. David Dickens; Coleman W. Dangerfield; David J. Moorhead
2006-01-01
Nonindustrial private forest (NIPF) landowners have perceived reduced product market availability and increased price uncertainty since late 1997 in the southeastern United States. Lower Atlantic and Gulf Coastal Plain NIPF landowners seek management options utilizing two commonly available pine species, loblolly (Pinus taeda L.) and slash (...
Effect of harvesting methods on fiber and yarn quality from irrigated cotton on the High Plains
USDA-ARS?s Scientific Manuscript database
Over a fourth of the cotton bales produced in the United States since 2002 have been produced in Texas, with most of that cotton coming from the stripper harvested High Plains region, and in recent years, Texas cotton production has represented almost half of all the US cotton production. As irrigat...
McCartan, L.; Owens, J.P.; Blackwelder, B. W.; Szabo, B. J.; Belknap, D.F.; Kriausakul, N.; Mitterer, R.M.; Wehmiller, J.F.
1982-01-01
The results of an integrated study comprising litho- and biostratigraphic investigations, uranium-series coral dating, amino acid racemization in molluscs, and paleomagnetic measurements are compared to ascertain relative and absolute ages of Pleistocene deposits of the Atlantic Coastal Plain in North and South Carolina. Four depositional events are inferred for South Carolina and two for North Carolina by all methods. The data suggest that there are four Pleistocene units containing corals that have been dated at about 100,000 yr, 200,000 yr, 450,000 yr, and over 1,000,000 yr. Some conflicts exist between the different methods regarding the correlation of the younger of these depositional events between Charleston and Myrtle Beach. Lack of good uranium-series dates for the younger material at Myrtle Beach makes the correlation with the deposits at Charleston more difficult. ?? 1982.
Quantifying Groundwater Fluctuations in the Southern High Plains with GIS and Geostatistics
NASA Astrophysics Data System (ADS)
Whitehead, B.
2008-12-01
Groundwater as a dwindling non-renewable natural resource has been an important research theme in agricultural studies coupled with human-environment interaction. This research incorporated contemporary Geographic Information System (GIS) methodologies and a universal kriging interpolator (geostatistics) to develop depth to groundwater surfaces for the southern portion of the High Plains, or Ogallala, aquifer. The variations in the interpolated surfaces were used to calculate the volume of water mined from the aquifer from 1980 to 2005. The findings suggest a nearly inverse relationship to the water withdrawal scenarios derived by the United States Geological Survey (USGS) during the Regional Aquifer System Analysis (RASA) performed in the early 1980's. These results advocate further research into regional climate change, groundwater-surface water interaction, and recharge mechanisms in the region, and provide a substantial contribution to the continuing and contentious issue concerning the environmental sustainability of the High Plains.
National Water-Quality Assessment Program--Southern High Plains, Texas and New Mexico
Woodward, Dennis G.; Diniz, Cecilia G.
1994-01-01
BACKGROUND In 1991, the U.S. Geological Survey (USGS) began a National Water-Quality Assessment (NAWQA) program. The long-term goals of the NAWQA program are to describe the status of, and trends in, the quality of a large, representative part of the Nation's surface- and ground-water resources and to identify the major natural and human factors that affect the quality of these resources. In addressing these goals, the program will produce a wealth of water-quality information that will be useful to policy makers and managers at the National, State, and local levels. The NAWQA program emphasis is on regional water-quality problems. The program will not diminish the need for smaller studies and monitoring designed and currently being conducted by Federal, State, and local agencies to meet their individual needs. The NAWQA program, however, will provide a large-scale framework for conducting many of these activities and an understanding about National and regional water-quality conditions that cannot be acquired from individual, small-scale programs and studies. Studies of 60 hydrologic systems that include parts of most major river basins and aquifer systems (study-unit investigations) are the building blocks of the National assessment. The 60 study units range in size from 1,000 mi 2 (square miles) to more than 60,000 mi 2 and represent 60 to 70 percent of the Nation's water use and population served by public water supplies. Twenty study-unit investigations were started in 1991, 20 additional are starting in 1994, and 20 more are planned to start in 1997. The Southern High Plains study unit was selected as one of 20 study units to begin assessment activities in 1994. This study will be run from the New Mexico District office of the USGS in Albuquerque, New Mexico.
Sharma, Manoj; Catalano, Hannah Priest; Nahar, Vinayak K; Lingam, Vimala C; Johnson, Paul; Ford, M Allison
2017-02-25
A substantial proportion of college students to not drink enough water and consume sugar-sweetened beverages (SSBs). Consumption of SSBs is associated with weight gain, obesity, type 2 diabetes mellitus, dental carries, and increased risk for cardiovascular disease. Hence, the purpose of this study was to use the multi-theory model (MTM) in predicting initiation and sustenance of plain water consumption instead of sugar-sweetened beverages among college students. A cross-sectional study. In this cross-sectional study, a 37-item valid and reliable MTM-based survey was administered to college students in 2016 via Qualtrics at a large public university in the Southeastern United States. Overall, 410 students responded to the survey; of those, 174 were eligible for the study and completed it. Stepwise multiple regression analysis revealed that 61.8% of the variance in the initiation of drinking plain water instead of SSBs was explained by behavioral confidence (P<0.001) and changes in the physical environment (P<0.001). Further, 58.3% of the variance in the sustenance of drinking plain water instead of SSBs was explained by emotional transformation (P<0.001) and practice for change (P=0.001). Multi-theory model of health behavior change is a robust theory for predicting plain water consumption instead of SSBs in college students. Interventions should be developed based on this theory for this target population.
Geomorphic Units on Titan: constraints on the origin of Undifferentiated Plains
NASA Astrophysics Data System (ADS)
Lopes, R. M. C.; Malaska, M. J.; Solomonidou, A.; LeGall, A.; Janssen, M. A.; Neish, C.; Turtle, E. P.; Birch, S. P. D.; Hayes, A. G.; Radebaugh, J.; Coustenis, A.
2015-10-01
We present the global distribution of the major classes of units and, where there are direct morphological contacts, describe how these classes of units relate to each other in terms of setting and emplacement history (Fig. 1). In particular, we focus on constraining the origin of the Undifferentiated Plains, which cover large expanses of Titan's surface (Fig. 2). We examined and evaluated different formation mechanisms, including (i) cryovolcanic origin, consisting of overlapping flows of low relief or (ii) sedimentary origins, resulting from fluvial/lacustrine or aeolian deposition, or accumulation of photolysis products created in the atmosphere. The results from our analysis suggest that a sedimentary origin is the most likely, with all the aforementioned processes possibly contributing.
NASA Astrophysics Data System (ADS)
Wendt, L.; Bishop, J. L.; Neukum, G.
2012-04-01
The region between Terra Cimmeria and Terra Sirenum contains several fields of enigmatic knobs, in-cluding Ariadnes Colles, Atlantis Chaos and Gorgo-num Chaos. They have been mapped as Hesperian or Amazonian units [1,2] and are located within the shoreline of the Eridania Lake, which might have formed Ma'adim Vallis [3]. The knob fields contain Mg/Fe-rich and locally Al-rich phyllosilicates [5,6, this study]. Following the stratigraphic placement by [1,2], the knobs are younger than the Noachian, in a possible disagreement to [4]. The region also features chloride deposits [7] and valley networks younger than the Hesperian ridged plains (Hr unit [1,2]), named Mid-Latitude Valleys (MLV) by [8], and has been proposed as an MSL landing site by [9]. The knob fields have been mapped by [10] as "surface type 4" of a possible airfall deposit informally named "Electris deposit", which covers the Hesperian ridged plains and cratered uplands. A recent study by [6], suggested that the knob fields are not part of, but postdate the "Electris deposit", yet possibly contain reworked "Electris" material. Our geological mapping shows that the knob fields are indeed one morphological expression consistent with the "Electris deposit" model [10]. However, the "Electris" deposit does not stratigraphically overlay the Hesperian ridged plains (Hr unit) and is eroded back to the level of the ridged plains, as proposed by [6,10]. Instead, the "Electris" deposit, including the knob fields, is covered or embayed by the ridged plains, and thus is older. This results in a late Noachian age for the "Electris deposit", in agreement with [11]. This also reconciles the apparent contradiction of the stratigraphy suggested by [1,2,6,10] to [4], as the clays would then indeed have formed in the "phyllosian" period, as "sedimentary clays" of [12]. Wide valley networks cut into the "Electris" deposit and may have filled the Eridania lake. The knob fields and clays within are observed at varying total eleva-tions, suggesting separated local basins rather than a single large lake at the time of their formation. A second generation of valley networks crosscut the light-toned mounds, knobs and patches as well as the ridged plains. They correspond to the MLV described in the Gorgonum and nearby Newton basins [8]. The water locally ponded and formed chlorides. In all knob fields except Gorgonum, the aqueous activities predate the formation of Sirenum Fossae. In the Gorgonum basin, valleys fed a lake [8], which post-dates Sirenum Fossae. Acknowledgment: This work has been supported by the German Space Agency (DLR Bonn) grant 50QM1001 HRSC on Mars Express on behalf of the German Federal Ministry of Economics and Technology.
The Pliocene Citronelle Formation of the Gulf Coastal Plain
Matson, George Charlton
1916-01-01
In the spring of 1910 the writer, working under the direction of T. Wayland Vaughan, geologist in charge of Coastal Plain investigations, undertook a study of the later Tertiary formations of the Gulf Coastal Plain. According to the plans outlined before the work was begun, the beds that had formerly been grouped under the names Lafayette formation and Grand Gulf formation were to be studied with a view to their possible separation into more satisfactory stratigraphic units that might be correlated with other formations which, on the basis of their fossils, had been assigned to their proper positions in the geologic time scale. The original plan included a study of the post-Vicksburgian Tertiary deposits from western Florida to Mississippi River and correlations with formations previously recognized in Florida, southern Alabama, and Louisiana. This plan was subsequently modified to extend the investigation as far west as Sabine River. The field work was interrupted and the office work was delayed by calls for geologic work in other areas, so that the preparation of the reports could not be begun until the spring of 1914.
Long-term groundwater depletion in the United States
Konikow, Leonard F.
2015-01-01
The volume of groundwater stored in the subsurface in the United States decreased by almost 1000 km3 during 1900–2008. The aquifer systems with the three largest volumes of storage depletion include the High Plains aquifer, the Mississippi Embayment section of the Gulf Coastal Plain aquifer system, and the Central Valley of California. Depletion rates accelerated during 1945–1960, averaging 13.6 km3/year during the last half of the century, and after 2000 increased again to about 24 km3/year. Depletion intensity is a new parameter, introduced here, to provide a more consistent basis for comparing storage depletion problems among various aquifers by factoring in time and areal extent of the aquifer. During 2001–2008, the Central Valley of California had the largest depletion intensity. Groundwater depletion in the United States can explain 1.4% of observed sea-level rise during the 108-year study period and 2.1% during 2001–2008. Groundwater depletion must be confronted on local and regional scales to help reduce demand (primarily in irrigated agriculture) and/or increase supply.
USDA-ARS?s Scientific Manuscript database
Beauveria bassiana is naturally present in grasshopper populations of the U.S. Northern Plains. It is often rare in a population, but at times can reach a prevalence of 10-15%. One strain, GHA, is registered in the U.S. for use against grasshoppers as well as other insects. We explored the genotypic...
Don C. Bragg
2005-01-01
Loblolly pine (Pinus taeda) is the most dominant conifer in the southeastern United States (Baker and Langdon, 1990). However, loblolly pine was conspicuously absent from virtually the entire Mississippi Valley Alluvial Plain during presettlement times. A map (Fig. 1) of the native distribution of loblolly from Baker and Langdon (1990) identifies 2 exceptions to this...
Ken A. Sterling; Melvin L. Warren
2017-01-01
Headwater fishes in the southeastern United States make up much of the fish biodiversity of the region yet many are imperiled. Despite this, the specific habitat requirements of imperiled headwater fishes in lowland Coastal Plain streams have rarely been quantified. Using data collected over three years of seasonal sampling we provide estimates of the microhabitat...
Presettlement fire regime and vegetation mapping in Southeastern Coastal Plain forest ecosystems
Andrew D. Bailey; Robert Mickler; Cecil Frost
2007-01-01
Fire-adapted forest ecosystems make up 95 percent of the historic Coastal Plain vegetation types in the Southeastern United States. Fire suppression over the last century has altered the species composition of these ecosystems, increased fuel loads, and increased wildfire risk. Prescribed fire is one management tool used to reduce fuel loading and restore fire-adapted...
Thomas H. Epps; Daniel R. Hitchcock; Anand D. Jayakaran; Drake R. Loflin; Thomas M. Williams; Devendra M. Amatya
2013-01-01
Hydrologic monitoring was conducted in two first-order lower coastal plain watersheds in South Carolina, United States, a region with increasing growth and land use change. Storm events over a three-year period were analyzed for direct runoff coefficients (ROC) and the total storm response (TSR) as percent rainfall. ROC calculations utilized an empirical hydrograph...
Mountain Plains Learning Experience Guide: Automotive Repair. Course: Emission Systems.
ERIC Educational Resources Information Center
Schramm, C.; Osland, Walt
One of twelve individualized courses included in an automotive repair curriculum, this course covers the theory, testing, and servicing of automotive emission control systems. The course is comprised of one unit, Fundamentals of Emission Systems. The unit begins with a Unit Learning Experience Guide that gives directions for unit completion. The…
NASA Technical Reports Server (NTRS)
Zuber, M. T.
1993-01-01
Tectonic features on a planetary surface are commonly used as constraints on models to determine the state of stress at the time the features formed. Quantitative global stress models applied to understand the formation of the Tharsis province on Mars constrained by observed tectonics have calculated stresses at the surface of a thin elastic shell and have neglected the role of vertical structure in influencing the predicted pattern of surface deformation. Wrinkle ridges in the Lunae Planum region of Mars form a conentric pattern of regularly spaced features in the eastern and southeastern part of Tharsis; they are formed due to compressional stresses related to the response of the Martian lithosphere to the Tharsis bulge. As observed in the exposures of valley walls in areas such as the Kasei Valles, the surface plains unit is underlain by an unconsolidated impact-generated megaregolith that grades with depth into structurally competent lithospheric basement. The ridges have alternatively been hypothesized to reflect deformation restricted to the surface plains unit ('thin skinned deformation') and deformation that includes the surface unit, megaregolith and basement lithosphere ('thick skinned deformation'). We have adopted a finite element approach to quantify the nature of deformation associated with the development of wrinkle ridges in a vertically stratified elastic lithosphere. We used the program TECTON, which contains a slippery node capability that allowed us to explicitly take into account the presence of reverse faults believed to be associated with the ridges. In this study we focused on the strain field in the vicinity of a single ridge when slip occurs along the fault. We considered two initial model geometries. In the first, the reverse fault was assumed to be in the surface plains unit, and in the second the initial fault was located in lithospheric basement, immediately beneath the weak megaregolith. We are interested in the conditions underwhich strain in the surface layer and basement either penetrates or fails to penetrate through the megaregolith. We thus address the conditions required for an initial basement fault to propagate through the megaregolith to the surface, as well as the effect of the megareolith on the strain tensor in the vicinity of a fault that nucleates in the surface plains unit.
NASA Astrophysics Data System (ADS)
Zuber, M. T.
1993-03-01
Tectonic features on a planetary surface are commonly used as constraints on models to determine the state of stress at the time the features formed. Quantitative global stress models applied to understand the formation of the Tharsis province on Mars constrained by observed tectonics have calculated stresses at the surface of a thin elastic shell and have neglected the role of vertical structure in influencing the predicted pattern of surface deformation. Wrinkle ridges in the Lunae Planum region of Mars form a conentric pattern of regularly spaced features in the eastern and southeastern part of Tharsis; they are formed due to compressional stresses related to the response of the Martian lithosphere to the Tharsis bulge. As observed in the exposures of valley walls in areas such as the Kasei Valles, the surface plains unit is underlain by an unconsolidated impact-generated megaregolith that grades with depth into structurally competent lithospheric basement. The ridges have alternatively been hypothesized to reflect deformation restricted to the surface plains unit ('thin skinned deformation') and deformation that includes the surface unit, megaregolith and basement lithosphere ('thick skinned deformation'). We have adopted a finite element approach to quantify the nature of deformation associated with the development of wrinkle ridges in a vertically stratified elastic lithosphere. We used the program TECTON, which contains a slippery node capability that allowed us to explicitly take into account the presence of reverse faults believed to be associated with the ridges. In this study we focused on the strain field in the vicinity of a single ridge when slip occurs along the fault. We considered two initial model geometries. In the first, the reverse fault was assumed to be in the surface plains unit, and in the second the initial fault was located in lithospheric basement, immediately beneath the weak megaregolith. We are interested in the conditions under which strain in the surface layer and basement either penetrates or fails to penetrate through the megaregolith. We thus address the conditions required for an initial basement fault to propagate through the megaregolith to the surface, as well as the effect of the megareolith on the strain tensor in the vicinity of a fault that nucleates in the surface plains unit.
Carbon dioxide and water vapor fluxes of winter wheat and tallgrass prairie ecosystems
USDA-ARS?s Scientific Manuscript database
Winter wheat (Triticum aestivum L.) and tallgrass prairie are common land cover types in the Southern Plains of the United States. In recent years, agricultural expansion into native grasslands has been extensive, particularly either managed pasture or dryland crops such as wheat. In this study, we ...
A Preschool Adventure: We're Going to Africa.
ERIC Educational Resources Information Center
Bartel, Virginia; Hart, Jane
2000-01-01
Discusses an interdisciplinary unit on Africa that was used with four-year-old students, mostly African Americans. Students studied African plains animals, built African round and square houses, experienced African music and stories, made African costumes, and took an imaginary trip to Africa. Includes an annotated bibliography. (CMK)
USDA-ARS?s Scientific Manuscript database
Advanced Land Surface Models (LSM) offer a powerful tool for studying hydrological variability. Highly managed systems, however, present a challenge for these models, which typically have simplified or incomplete representations of human water use. Here we examine recent groundwater declines in the ...
Simulating landscape catena effects in no-till dryland agroecosystems using GPFARM
USDA-ARS?s Scientific Manuscript database
Alternative agricultural management systems in the semi-arid Great Plains are receiving increasing attention. GPFARM is a farm/ranch decision support system (DSS) designed to assist in strategic management planning for land units from the field to the whole-farm level. This study evaluated the site...
A review of the lignite resources of Arkansas
Willett, Jason C.; Hackley, Paul C.; Warwick, Peter D.; S.J. Law,; Nichols, Douglas J.; Warwick, Peter D.; Karlsen, Alexander K.; Merrill, Matthew D.; Valentine, Brett J.
2011-01-01
This review of the lignite resources of Arkansas is a part of the U.S. Geological Survey’s (USGS) National Coal Resource Assessment (NCRA) of the Gulf Coastal Plain Coal Province, which also includes coal-bearing areas in the states of Texas, Louisiana, Alabama, Mississippi, Tennessee, and Kentucky (see Ruppert et al., 2002; Dennen, 2009; and other chapters of this publication). Lignite mining is not planned in Arkansas in the immediate future, and the lignite resources of the state were not assessed in detail as part of the NCRA. This chapter includes reviews of the geology of the lignite-bearing units, historical mining, previous investigations of lignite resources, and coal quality. Palynological data for lignite samples collected in Arkansas as part of this work are presented in Table 1.The lignite-bearing stratigraphic units of Arkansas are part of the Mississippi Embayment of the Gulf Coastal Plain, a trough of Cretaceous through Quaternary sedimentary strata that plunge gently southward along an axis that generally is coincident with the course of the Mississippi River (Figure 1) (Cushing et al., 1964). The sedimentary strata of the Gulf Coastal Plain of Arkansas are, in general, flat-lying or gently dipping southeastward to eastward toward the embayment axis. Coal and lignite occur in Cretaceous through Tertiary strata of Arkansas and previously have been investigated in two principal regions within the State where units of these ages crop out: south-central Arkansas (West Gulf Coastal Plain) and Crowley’s Ridge in the northeastern part of the State (Figure 2).
NASA Astrophysics Data System (ADS)
Torres, A. D.; Rasmussen, K. L.; Bodine, D. J.; Dougherty, E.
2015-12-01
Plains Elevated Convection At Night (PECAN) was a large field campaign that studied nocturnal mesoscale convective systems (MCSs), convective initiation, bores, and low-level jets across the central plains in the United States. MCSs are responsible for over half of the warm-season precipitation across the central U.S. plains. The rainfall from deep convection of these systems over land have been observed to be underestimated by satellite radar rainfall-retrieval algorithms by as much as 40 percent. These algorithms have a strong dependence on the generally unmeasured rain drop-size distribution (DSD). During the campaign, our group measured rainfall DSDs, precipitation fall velocities, and total precipitation in the convective and stratiform regions of MCSs using Ott Parsivel optical laser disdrometers. The disdrometers were co-located with mobile pod units that measured temperature, wind, and relative humidity for quality control purposes. Data from the operational NEXRAD radar in LaCrosse, Wisconsin and space-based radar measurements from a Global Precipitation Measurement satellite overpass on July 13, 2015 were used for the analysis. The focus of this study is to compare DSD measurements from the disdrometers to radars in an effort to reduce errors in existing rainfall-retrieval algorithms. The error analysis consists of substituting measured DSDs into existing quantitative precipitation estimation techniques (e.g. Z-R relationships and dual-polarization rain estimates) and comparing these estimates to ground measurements of total precipitation. The results from this study will improve climatological estimates of total precipitation in continental convection that are used in hydrological studies, climate models, and other applications.
Geologic Mapping of Ascraeus Mons, Mars
NASA Astrophysics Data System (ADS)
Mohr, Kyle James
Ascraeus Mons (AM) is the northeastern most large shield volcano residing in the Tharsis province on Mars. AM has a diameter of 350 km and reaches a height of 16 km above Mars datum, making AM the third largest volcano on Mars. Previous mapping of a limited area of these volcanoes using HRSC images (13-25 m/pixel) revealed a diverse distribution of volcanic landforms within the calderas, along the flanks, rift aprons, and surrounding plains. The general scientific objective for which mapping was based was to show the different lava flow morphologies across AM to better understand the evolution and geologic history. A 1: 1,000,000 scale geologic map of Ascraeus Mons was produced using ArcGIS and will be submitted to the USGS for review and publication. Mapping revealed 26 units total, broken into three separate categories: Flank units, Apron and Scarp units, and Plains units. Units were defined by geomorphological characteristics such as: surface texture, albedo, size, location, and source. Defining units in this manner allowed for contact relationships to be observed, creating a relative age date for each unit to understand the evolution and history of this large shield volcano. Ascraeus Mons began with effusive, less viscous style of eruptions and transitioned to less effusive, more viscous eruptions building up the main shield. This was followed by eruptions onto the plains from the two main rift aprons on AM. Apron eruptions continued, while flank eruptions ceased, surrounding and embaying the flanks of AM. Eruptions from the rifts wane and build up the large aprons and low shield fields. Glaciers modified the base of the west flank and deposited the Aureole material. Followed by localized recent eruptions on the flanks, in the calderas, and small vent fields. Currently AM is modified by aeolian and tectonic processes. While the overall story of Ascraeus Mons does not change significantly, higher resolution imagery allowed for a better understanding of magma evolution and lava characteristics across the main shield. This study helps identify martian magma production rates and how not only Ascraeus Mons evolved, but also the Tharsis province and other volcanic regions of Mars.
Geologic Map of Ascraeus Mons, Mars
NASA Astrophysics Data System (ADS)
Mohr, K. J.; Williams, D. A.
2017-12-01
Ascraeus Mons (AM) is the northeastern most large shield volcano residing in the Tharsis province on Mars. AM has a diameter of 350 km and reaches a height of 16 km above Mars datum, making AM the third largest volcano on Mars. Previous mapping of a limited area of these volcanoes using HRSC images (13-25 m/pixel) revealed a diverse distribution of volcanic landforms within the calderas, along the flanks, rift aprons, and surrounding plains. The general scientific objective for which mapping was based was to show the different lava flow morphologies across AM to better understand the evolution and geologic history. A 1: 1,000,000 scale geologic map of Ascraeus Mons was produced using ArcGIS and will be submitted to the USGS for review and publication. Mapping revealed 26 units total, broken into three separate categories: Flank units, Apron and Scarp units, and Plains units. Units were defined by geomorphological characteristics such as: surface texture, albedo, size, location, and source. Defining units in this manner allowed for contact relationships to be observed, creating a relative age date for each unit to understand the evolution and history of this large shield volcano. Ascraeus Mons began with effusive, less viscous style of eruptions and transitioned to less effusive, more viscous eruptions building up the main shield. This was followed by eruptions onto the plains from the two main rift aprons on AM. Apron eruptions continued, while flank eruptions ceased, surrounding and embaying the flanks of AM. Eruptions from the rifts wane and build up the large aprons and low shield fields. Glaciers modified the base of the west flank and deposited the Aureole material. Followed by localized recent eruptions on the flanks, in the calderas, and small vent fields. Currently AM is modified by aeolian and tectonic processes. While the overall story of Ascraeus Mons does not change significantly, higher resolution imagery allowed for a better understanding of magma evolution and lava characteristics across the main shield. This study helps identify martian magma production rates and how not only Ascraeus Mons evolved, but also the Tharsis province and other volcanic regions of Mars.
Mountain Plains Learning Experience Guide: Marketing. Course: Visual Merchandising.
ERIC Educational Resources Information Center
Preston, T.; Egan, B.
One of thirteen individualized courses included in a marketing curriculum, this course covers the steps to be followed in planning, constructing, and evaluating the effectiveness of merchandise displays. The course is comprised of one unit, General Merchandise Displays. The unit begins with a Unit Learning Experience Guide that gives directions…
Justin C. Davis; Steven B. Castleberry; John C. Kilgo
2010-01-01
Coarse woody debris (CWD) is thought to benefit herpetofauna in a variety of ways including serving as feeding sites, providing a moist environment, and providing protection from temperature extremes. We investigated the importance of CWD to amphibian and reptile communities in managed upland pine stands in the southeastern United States Coastal Plain during years 6...
Eric R. Scholl; Thomas A. Waldrop
1999-01-01
Although prescribed burning is common in the Southeastern United States, most fuel models apply to only western forests. This paper documents a fuel classification system that was developed for plantations of loblolly and longleaf pines for the Upper Coastal Plain region. Multivariate analysis of variance and discriminant function analysis were used to confirm eight...
David J. Nowak; Robert E. III Hoehn; Daniel E. Crane; Allison R. Bodine
2012-01-01
This report details the evaluation of the urban tree resources of the north-central Great Plains region of the United States. Specifically this report provides a more comprehensive understanding of the species composition and structural and functional benefits of the urban forests in the states of Kansas (33.1 million urban trees), Nebraska (13.3 million urban trees),...
Child Labor in the Early Sugar Beet Industry in the Great Plains, 1890-1920
ERIC Educational Resources Information Center
Lyons-Barrett, Mary
2005-01-01
Children working in agriculture have always been a part of the rural culture and work ethos of the United States, especially on the Great Plains. Many teenagers still detassel corn or walk the beans in the summer months to earn spending money or money for college. But what about the children who work as migrant laborers in commercialized…
Frans, Lonna M.; Rupert, Michael G.; Hunt, Charles D.; Skinner, Kenneth D.
2012-01-01
Oahu and the Columbia Plateau had some of the highest percentages of soil fumigant detections in groundwater in the United States. Soil fumigants are volatile organic compounds (VOCs) used as pesticides, which are applied to soils to reduce populations of plant parasitic nematodes (harmful rootworms), weeds, fungal pathogens, and other soil-borne microorganisms. They are used in Oahu and the Columbia Plateau on crops such as pineapple and potatoes. All three areas (Columbia Plateau, Snake River Plain, and Oahu) had fumigant concentrations exceeding human-health benchmarks for drinking water.
Global stratigraphy of Venus: Analysis of a random sample of thirty-six test areas
NASA Technical Reports Server (NTRS)
Basilevsky, Alexander T.; Head, James W., III
1995-01-01
The age relations between 36 impact craters with dark paraboloids and other geologic units and structures at these localities have been studied through photogeologic analysis of Magellan SAR images of the surface of Venus. Geologic settings in all 36 sites, about 1000 x 1000 km each, could be characterized using only 10 different terrain units and six types of structures. Mapping of such units and structures in 36 randomly distributed large regions shows evidence for a distinctive regional and global stratigraphic and geologic sequence. On the basis of this sequence we have developed a model that illustrates several major themes in the history of Venus. Most of the history of Venus (that of its first 80% or so) is not preserved in the surface geomorphological record. The major deformation associated with tessera formation in the period sometime between 0.5-1.0 b.y. ago (Ivanov and Basilevsky, 1993) is the earliest event detected. Our stratigraphic analyses suggest that following tessera formation, extensive volcanic flooding resurfaced at least 85% of the planet in the form of the presently-ridged and fractured plains. Several lines of evidence favor a high flux in the post-tessera period but we have no independent evidence for the absolute duration of ridged plains emplacement. During this time, the net state of stress in the lithosphere apparently changed from extensional to compressional, first in the form of extensive ridge belt development, followed by the formation of extensive wrinkle ridges on the flow units. Subsequently, there occurred local emplacement of smooth and lobate plains units which are presently essentially undeformed. The major events in the latest 10% of the presently preserved history of Venus are continued rifting and some associated volcanism, and the redistribution of eolian material largely derived from impact crater deposits. Detailed geologic mapping and stratigraphic synthesis are necessary to test this sequence and to address many of the outstanding problems raised by this analysis.
The Balmer basin - Regional geology and geochemistry of an ancient lunar impact basin
NASA Technical Reports Server (NTRS)
Maxwell, T. A.; Andre, C. G.
1982-01-01
Photogeologic, geochemical and geophysical information is cited to support the contention that an ancient multi-ringed basin exists in the east limb region of the moon, centered at 15 deg S and 70 deg E. The inner ring of the basin, with a diameter of 225 km, is composed of isolated rugged mountains of pre-Nectarian terra; the less distinct outer ring, whose diameter is approximately 450 km, is made up of irregular segments of surrounding large craters. It is noted that two units of light plains material occur in this area and that they are confined for the most part to the region within the proposed outer basin ring. According to orbital geochemical data, the younger unit (Imbrian age plains) consists of a mare basalt not unlike others of the nearside. This unit possesses high Mg/Al concentration ratios as determined from X-ray fluorescence data; it is also relatively high in Th and Fe when compared with the surrounding highlands. It is thought that the relatively high albedo of the Balmer plains may derive from either a reworking by numerous secondary craters from the surrounding impacts or a basaltic composition with higher albedo and lower Fe than the nearside maria.
Composition and Maturity of Apollo 16 Regolith Core 60013/14
NASA Technical Reports Server (NTRS)
Korotev, Randy T.; Morris, Richard V.
1993-01-01
Samples from every half-centimeter dissection interval of double drive tube 60013/14 (sections 60013 and 60014) were analyzed by magnetic techniques for Fe concentration and surface maturity parameter I(sub s)/ Fe(O), and by neutron activation for concentrations of 25 lithophile and siderophile elements. Core 60013/14 is one of three regolith cores taken in a triangular array 40-50 m apart on the Cayley plains during Apollo 16 mission to the Moon. The core can be divided into three zones based both on I(sub s)/FeO and composition. Unit A (0-44 cm depth) is compositionally similar to other soils from the surface of the central region of the site and is mature throughout, although maturity decreases with depth. Unit B (44-59 cm) is submature and compositionally more feldspathic than Unit A. Regions of lowest maturity in Unit B are characterized by lower Sm/Sc ratios than any soil obtained from the Cayley plains as a result of some unidentified lithologic component with low surface maturity. The component is probably some type of mafic anorthosite that does not occur in such high abundance in any of the other returned soils. Unit C (59-62 cm) is more mature than Unit B and compositionally equivalent to an 87: 13 mixture of soil such as that from Unit A and plagioclase such as found in ferroan anorthosite. Similar soils, but containing greater abundances of anorthosite (plagioclase), are found at depth in the other two cores of the array. These units of immature to submature soil enriched to varying degrees (compared to the mature surface soil) in ferroan anorthosite consisting of approx. 99% plagioclase are the only compositionally distinct subsurface similarities among the three cores. Each of the cores contains other units that are compositionally dissimilar to any soil unit in the other two cores. These compositionally distinct units probably derive from local subsurface blocks deposited by the event(s) that formed the Cayley plains. The ferroan anorthosite with approx. 99% plagioclase, however, must represent some subsurface lithology that is significant on the scale of tens of meters. The compositional uniformity of the surface soil (0-10 cm depth) over distances of kilometers reflects the large-scale uniformity of the plains deposits; the fine- structure reflects small-scale nonuniformity and the inefficiency of the impact-mixing process at depths as shallow as even one meter.
Dilli, Dilek; Suna Oğuz, S; Erol, Reyhan; Ozkan-Ulu, Hülya; Dumanlı, Hüseyin; Dilmen, Uğur
2011-03-01
To explore whether addition of abdominal sonography (AUS) to plain radiography is helpful in the management of premature newborns with necrotizing enterocolitis (NEC). This study is a prospective analysis of 93 premature neonates with NEC who were followed-up in our neonatal intensive care unit between October 2007 and April 2009. Patients were classified into two groups; group I with suspected NEC (stage I) (n = 54) and group II with definite NEC (stage ≥II) (n = 39). Pneumatosis intestinalis (PI) (n = 29), free air (n = 9), and portal venous gas (PVG) (n = 1) were observed in group II on plain radiography. In the same group, echoic free fluid (EFF) (n = 9), PVG (n = 6), PI (n = 5), and focal fluid collection (n = 3) were the most prominent sonographic findings. In patients with intestinal perforation, whereas EFF and bowel wall thinning were observed on AUS, free air was not detected on plain radiography as a sign of intestinal perforation. Our results suggest AUS to be superior to plain radiography on early detection of intestinal perforation by demonstrating PVG and EFF collection. Therefore, it may be life-saving by directing the surgeon to perform surgical intervention in the case of clinical deterioration in the course of NEC.
Plains tectonism on Venus: The deformation belts of Lavinia Planitia
NASA Technical Reports Server (NTRS)
Squyres, Steven W.; Jankowski, David G.; Simons, Mark; Solomon, Sean C.; Hager, Bradford H.; Mcgill, George E.
1993-01-01
High-resolution radar images from the Magellan spacecraft have revealed the first details of the morphology of the Lavinia Planitia region of Venus. A number of geologic units can be distinguished, including volcanic plains units with a range of ages. Transecting these plains over much of the Lavinia region are two types of generally orthogonal features that we interpret to be compressional wrinkle ridges and extensional grooves. The dominant tectonic features of Lavinia are broad elevated belts of intense deformation that transect the plains with complex geometry. They are many tens to a few hundred kilometers wide, as much as 1000 km long, and elevated hundreds of meters above the surrounding plains. Two classes of deformation belts are seen in the Lavinia region. 'Ridge belts' are composed of parallel ridges, each a few hundred meters in elevation, that we interpret to be folds. Typical fold spacings are 5-10 km. 'Fracture belts' are dominated instead by intense faulting, with faults in some instances paired to form narrow grabens. There is also some evidence for modest amounts of horizontal shear distributed across both ridge and fracture belts. Crosscutting relationships among the belts show there to be a range in belt ages. In western Lavinia, in particular, many ridge and fracture belts appear to bear a relationship to the much smaller wrinkle ridges and grooves on the surrounding plains: ridge morphology tends to dominate belts that lie more nearly parallel to local plains wrinkle ridges, and fracture morphology tends to dominate belts that lie more nearly parallel to local plains grooves. We use simple models to explore the formation of ridge and fracture belts. We show that convective motions in the mantle can couple to the crust to cause horizontal stresses of a magnitude sufficient to induce the formation of deformation belts like those observed in Lavinia. We also use the small-scale wavelengths of deformation observed within individual ridge belts to place an approximate lower limit on the venusian thermal gradient in the Lavinia region at the time of deformation.
Regional implications of heat flow of the Snake River Plain, Northwestern United States
NASA Astrophysics Data System (ADS)
Blackwell, D. D.
1989-08-01
The Snake River Plain is a major topographic feature of the Northwestern United States. It marks the track of an upper mantle and crustal melting event that propagated across the area from southwest to northeast at a velocity of about 3.5 cm/yr. The melting event has the same energetics as a large oceanic hotspot or plume and so the area is the continental analog of an oceanic hotspot track such as the Hawaiian Island-Emperor Seamount chain. Thus, the unique features of the area reflect the response of a continental lithosphere to a very energetic hotspot. The crust is extensively modified by basalt magma emplacement into the crust and by the resulting massive rhyolite volcanism from melted crustal material, presently occurring at Yellowstone National Park. The volcanism is associated with little crustal extension. Heat flow values are high along the margins of the Eastern and Western Snake River Plains and there is abundant evidence for low-grade geothermal resources associated with regional groundwater systems. The regional heat flow pattern in the Western Snake River Plains reflects the influence of crustal-scale thermal refraction associated with the large sedimentary basin that has formed there. Heat flow values in shallow holes in the Eastern Snake River Plains are low due to the Snake River Plains aquifer, an extensive basalt aquifer where water flow rates approach 1 km/yr. Below the aquifer, conductive heat flow values are about 100 mW m -2. Deep holes in the region suggest a systematic eastward increase in heat flow in the Snake River Plains from about 75-90 mW m -2 to 90-110 mW m -2. Temperatures in the upper crust do not behave similarly because the thermal conductivity of the Plio-Pleistocene sedimentary rocks in the west is lower than that in the volcanic rocks characteristic of the Eastern Snake River Plains. Extremely high heat loss values (averaging 2500 mW m -2) and upper crustal temperatures are characteristic of the Yellowstone caldera.
Technical efficiency in milk production in underdeveloped production environment of India*.
Bardhan, Dwaipayan; Sharma, Murari Lal
2013-12-01
The study was undertaken in Kumaon division of Uttarakhand state of India with the objective of estimating technical efficiency in milk production across different herd-size category households and factors influencing it. Total of 60 farm households having representation from different herd-size categories drawn from six randomly selected villages of plain and hilly regions of the division constituted the ultimate sampling units of the study. Stochastic frontier production function analysis was used to estimate the technical efficiency in milk production. Multivariate regression equations were fitted taking technical efficiency index as the regressand to identify the factors significantly influencing technical efficiency in milk production. The study revealed that variation in output across farms in the study area was due to difference in their technical efficiency levels. However, it was interesting to note that smallholder producers were more technically efficient in milk production than their larger counterparts, especially in the plains. Apart from herd size, intensity of market participation had significant and positive impact on technical efficiency in the plains. This provides definite indication that increasing the level of commercialization of dairy farms would have beneficial impact on their production efficiency.
Weems, Robert E.; Schindler, J. Stephen; Lewis, William C.
2010-01-01
The Emporia 1:100,000-scale quadrangle straddles the Tidewater Fall Line in southern Virginia and includes a small part of northernmost North Carolina. Sediments of the coastal plain underlie the eastern three-fifths of this area. These sediments onlap crystalline basement rocks toward the west and dip gently to the east, reaching a maximum known thickness of 821 feet in the extreme southeastern part of the map area. The gentle eastward dip is disrupted in several areas due to faulting delineated during the course of mapping. In order to produce a new geologic map of the Emporia 1:100,000-scale quadrangle, the U.S. Geological Survey drilled one corehole to a depth of 223 feet and augered 192 shallow research test holes (maximum depth 135 feet) to supplement sparse outcrop data available from the coastal plain part of the map area. The recovered sediments were studied and data from them recorded to determine the lithologic characteristics, spatial distribution, and temporal framework of the represented coastal plain stratigraphic units. These test holes were critical for accurately determining the distribution of major geologic units and the position of unit boundaries that will be shown on the forthcoming Emporia geologic map, but much of the detailed subsurface data cannot be shown readily through this map product. Therefore, the locations and detailed descriptions of the auger test holes and one corehole are provided in this open-file report for geologists, hydrologists, engineers, and community planners in need of a detailed shallow-subsurface stratigraphic framework for much of the Emporia map region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehmiller, J.F.; York, L.L.; Krantz, D.E.
1992-01-01
The interpretation of the regional aminostratigraphy of Coastal Plain Quaternary units from North and South Carolina is potentially affected by sampling biases, variable preservation of coastal records, reoccupation of coastal environments by multiple transgressions, geochemical alteration of samples, variable thermal histories of specific samples, and intergeneric and interlaboratory differences in analytical results.Two primary models for the correlation of emergent Coastal Plain units diverge significantly in southeastern North Carolina. New data from fresh exposure (1990--1991) at emergent sites between Wilmington, NC and Charleston, SC, from previous onshore collections in this region, and from submergent samples between Cape Lookout, NC and Capemore » Romain, SC provide insight into the nature of these correlation issues. Although sampling of the area is not uniform, these results fill a major gap between regions of previous aminostratigraphy study. Inferred early-to-middle Pleistocene aminozones dominate the emergent coastal region between Cape Lookout and Romain, and late Pleistocene aminozones in this area are represented by subsurface samples beneath barrier islands or in shallow inner shelf cores, but have not been found onshore. A map view of the distribution of aminozones along the coast between northeastern NC and central SC mimics that of pre-Quaternary units that thin or disappear over the axis of the Cape Fear Arch, suggesting that the sampled Quaternary record reflects the combination of processes responsible for the preservation of the pre-Quaternary record. This perspective should provide a model for resolution of various geochronological controversies that have arisen because of limited stratigraphic or geochemical data.« less
The cigarette box as an advertising vehicle in the United Kingdom: A case for plain packaging.
Dewe, Michaela; Ogden, Jane; Coyle, Adrian
2015-07-01
This research aimed to study tobacco advertising between 1950-2003 and to evaluate the role of the cigarette box in advertising. Tobacco company advertisements (n = 204) were coded for content and meanings used to promote their product. There was a significant shift from cigarettes being displayed to the cigarette box only. Changes in advertising and the meanings evoked were unrelated to changes in smoking behaviour. It is argued that the cigarette box has absorbed the meanings associated with smoking and has become an effective vehicle for advertising. It is also argued that this can only be minimised with plain packaging. © The Author(s) 2013.
USDA-ARS?s Scientific Manuscript database
Comprehensive region-specific data that accurately characterize cattle production practices are being collected to support a national life cycle assessment (LCA) of U.S. beef. The present study reports production information obtained via voluntary surveys and visits in two of seven demarcated region...
A Lesson in Vectors "Plain" and Simple
ERIC Educational Resources Information Center
Bradshaw, David M.
2004-01-01
The United States Military Academy (USMA) has a four course core mathematics curriculum that is studied by all students. The third course is MA205, Calculus II; a multivariate calculus course filled with practical applications. During a Problem Solving Lab (PSL), students participated in a hands-on exercise with multiple vector operations,…
USDA-ARS?s Scientific Manuscript database
Greenbug infestations to sorghum can cause severe and above economic threshold damage in the Great Plains of the United States. This study was to identify quantitative trait loci (QTL) and potential candidate genes residing within the QTL region responsible for greenbug resistance in an advanced ma...
Impact of Female-Oriented Cigarette Packaging in the United States
Doxey, Juliana; Daniel, Samantha; Bansal-Travers, Maansi
2011-01-01
Introduction: Cigarette packaging is among the most prominent forms of tobacco marketing. This study examined the impact of cigarette pack design among young women in the United States. Method: A national sample of 18- to 19-year-old females in the United States completed an online survey in February 2010. Participants were randomized to view eight cigarette packs designed according to one of four experimental conditions: fully branded female packs, same packs without descriptors (e.g., “slims”), same packs without brand imagery or descriptors (“plain” packs), and branded non-female brands. Participants rated packs on measures of appeal and health risk and completed a behavioral pack selection task. Results: Fully branded female packs were rated significantly more appealing than the same packs without descriptors, “plain” packs, and non–female-branded packs. Female-branded packs were associated with a greater number of positive attributes including glamour, slimness, and attractiveness and were more likely to be perceived as less harmful. Approximately 40% of smokers and nonsmokers requested a pack at the end of the study; female-branded packs were 3 times more likely to be selected than plain packs. Conclusion: Plain packaging and removing descriptors such as “slims” from cigarette packs may reduce smoking susceptibility among young women. PMID:21486994
Son, Young K; Lee, Su M; Kim, Seong E; Kim, Ki H; Lee, Seon Y; Bae, Hae R; Han, Jin Y; Park, Yongsoon; An, Won S
2012-01-01
Vascular calcification (VC) scores determined by using simple plain radiographic films are known to be associated with coronary artery disease and mortality in patients undergoing hemodialysis (HD). Omega-3 fatty acid (FA) has been shown to reduce ectopic calcifications in an animal model, and it has also been shown that erythrocyte membrane omega-3 FA content is an independent discriminator of coronary artery disease. The present study was designed to demonstrate relations between VC scores and erythrocyte membrane FA contents in patients undergoing HD. A cross-sectional study was carried out. The study was carried out at an outpatient hemodialysis unit at Dong-A University Hospital, Busan, Republic of Korea. A total of 31 patients undergoing HD were recruited. Patients with significant malnutrition, a short duration of dialysis (<12 months), a history of recent infection, malignancy, or liver disease were excluded. Plain radiographic films of the feet, hands, pelvis, and lateral lumbar spine were examined and VC scores were determined using previously reported methods. Erythrocyte membrane FA contents were analyzed by gas chromatography. The erythrocyte membrane contents of eicosapentaenoic acid and docosahexaenoic acid were not found to be related with VC on simple plain radiographic films. However, erythrocyte membrane contents of oleic acid and total monounsaturated FA (MUFA) were significantly higher in patients with significant VC scores. Furthermore, erythrocyte membrane contents of MUFA and oleic acid were found to be negatively associated with high-density lipoprotein cholesterol level and positively associated with triglyceride level. Erythrocyte membrane contents of MUFA and oleic acid were found to be associated with VC scores determined using plain radiographs and with dyslipidemia in patients undergoing HD. Copyright © 2012 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Jeffery B. Cannon; J. Stephen Brewer
2013-01-01
Due in large part to fire exclusion, many oak-dominated (Quercus spp.) forests, woodlands, and savannas throughout eastern North America are being replaced by less diverse forest ecosystems. In the interior coastal plain of the southern United States, these forests are dominated in the mid- and understory by mesophytic species such as Acer...
Kurdistan: Impact on United States Foreign Policy for the Middle East
2011-04-06
The land consists of a combination of aggressive, steep mountains and valleys transitioning into the Anatolian plain in Turkey, the Mesopotamian plain...tribes and the precarious mountains became home to their large villages and cities as the population grew over time. The rugged conditions of the ...Iran’s multi- cultural society. In Iraq, the Kurds are one of the three major groups (along with Sunni and
Bob McCready; David Mehlman; Danny Kwan; Becky Abel
2005-01-01
In the second half of the nineteenth century, driven by the cultural mandate of manifest destiny and economic expansion, the North American west was rapidly settled and permanently altered by hundreds of thousands of residents from the eastern United States, Canada, Central Mexico and Europe. The first region to fill up with new arrivals was the Great Plains, a &...
Chad M. Lincoln; Rodney E. Will; Lawrence A. Morris; Emily A. Carter; Daniel Markewtiz; John R. Britt; Ben Cazell; Vic Ford
2007-01-01
To determine the relationship between changes in soil physical properties due to tillage and growth of loblolly pine (Pinus taeda L.) seedlings, we measured soil moisture and penetration resistance for a range of tillage treatments on two Upper Coastal Plain sites in Georgia and correlated these measurements to the growth of individual seedlings. The...
Mountain Plains Learning Experience Guide: Marketing. Course: Customer Service.
ERIC Educational Resources Information Center
Preston, T.; Egan, B.
One of thirteen individualized courses included in a marketing curriculum, this course covers the various credit plans, shopping conveniences, and advisory services provided by wholesale and retail businesses to their customers. The course is comprised of two units: (1) Credit and (2) Shopping Services. Each unit begins with a Unit Learning…
Mountain Plains Learning Experience Guide: Electrical Wiring. Course: Electrical Wiring Trim-Out.
ERIC Educational Resources Information Center
Arneson, R.; And Others
One of two individualized courses included in an electrical wiring curriculum, this course covers electrical materials installation for the trim-out stage. The course is comprised of five units: (1) Outlets, (2) Fixtures, (3) Switches, (4) Appliances, and (5) Miscellaneous. Each unit begins with a Unit Learning Experience Guide that gives…
Mountain Plains Learning Experience Guide: Automotive Repair. Course: Detailing and Servicing.
ERIC Educational Resources Information Center
Schramm, C.; Osland, Walt
One of twelve individualized courses included in an automotive repair curriculum, this course covers the techniques of minor automotive servicing. The course is comprised of four units: (1) Oil Changing, (2) Chassis Lubrication, (3) Tires, and, (4) Minor Body Adjustments. Each unit begins with a Unit Learning Experience Guide that gives directions…
Small Smooth Units ('Young' Lavas?) Abutting Lobate Scarps on Mercury
NASA Astrophysics Data System (ADS)
Malliband, C. C.; Rothery, D. A.; Balme, M. R.; Conway, S. J.
2018-05-01
We have identified small units abutting, and so stratigraphy younger than, lobate scarps. This post dates the end of large scale smooth plains formation at the onset of global contraction. This elaborates the history of volcanism on Mercury.
Geologic Map of the Aino Planitia (V46) Quadrangle, Venus 1:5,000,000
Stofan, Ellen R.; Guest, John E.
2003-01-01
The Aino Planitia quadrangle (V-46) extends from 25?-50? S. latitude, 60?-90? E. longitude. The quadrangle was mapped at 1:5,000,000 scale as part of the NASA Planetary Geologic Mapping Program. Aino Planitia is a lowland region in the southern hemisphere of Venus and is southwest of Thetis Regio in western Aphrodite Terra. It is dominated by low-lying plains units that are characterized by northeast-trending wrinkle ridges and numerous small volcanic edifices, including shields, domes, and cones. The quadrangle contains a major volcano, Kunapipi Mons, and portions of Juno Chasma. A northern extension of the Lada Terra highland is in the southwestern portion of the map. Eight coronae are mapped in the quadrangle, the largest of which is the 500-km-diameter Copia Corona. The region is dominated by plains that are interpreted to be of volcanic origin. Most of the plains units are composites of flow units of differing ages. The overall topography of V-46 consists of low-lying plains slightly below Mean Planetary Radius (MPR, 6051.84 km). The summit of Kunapipi Mons is the highest point in the quadrangle, at about 2.2 km above MPR; the lowest points in rifts and troughs are at about 1.7 km below MPR. The regions that are the roughest at Magellan radar wavelengths in the quadrangle occur along the rim of Copia Corona, with most regions being relatively smooth (roughness comparable to the average Venus surface. Emissivity values in the quadrangle vary from 0.82-0.90.
Ruhlman, Jana; Gass, Leila; Middleton, Barry
2012-01-01
The Chihuahuan Desert is the largest of the North American deserts, extending from southern New Mexico and Texas deep into Mexico, with approximately 90 percent of its area falling south of the United States–Mexico border (Lowe, 1964, p. 24). The Chihuahuan Deserts Ecoregion covers approximately 174,472 km2 (67,364 mi2) within the United States, including much of west Texas, southern New Mexico, and a small portion of southeastern Arizona (Omernik, 1987; U.S. Environmental Protection Agency, 1997). The ecoregion is generally oriented from northwest to southeast, with the Madrean Archipelago Ecoregion to the west; the Arizona/New Mexico Mountains, Arizona/New Mexico Plateau, Southwestern Tablelands, and Western High Plains Ecoregions to the north; and the Edwards Plateau and Southern Texas Plains Ecoregions to the east (fig. 1).
NASA Astrophysics Data System (ADS)
Ivanov, M. A.; Head, J. W.
2018-03-01
This chapter reviews the conditions under which the basic landforms of Venus formed, interprets their nature, and analyzes their local, regional, and global age relationships. The strong greenhouse effect on Venus causes hyper-dry, almost stagnant near-surface environments. These conditions preclude water-driven, and suppress wind-related, geological processes; thus, the common Earth-like water-generated geological record of sedimentary materials does not currently form on Venus. Three geological processes are important on the planet: volcanism, tectonics, and impact cratering. The small number of impact craters on Venus ( 1,000) indicates that their contribution to resurfacing is minor. Volcanism and tectonics are the principal geological processes operating on Venus during its observable geologic history. Landforms of the volcanic and tectonic nature have specific morphologies, which indicate different modes of formation, and their relationships permit one to establish their relative ages. Analysis of these relationships at the global scale reveals that three distinct regimes of resurfacing comprise the observable geologic history of Venus: (1) the global tectonic regime, (2) the global volcanic regime, and (3) the network rifting-volcanism regime. During the earlier global tectonic regime, tectonic resurfacing dominated. Tectonic deformation at this time caused formation of strongly tectonized terrains such as tessera, and deformational belts. Exposures of these units comprise 20% of the surface of Venus. The apparent beginning of the global tectonic regime is related to the formation of tessera, which is among the oldest units on Venus. The age relationships among the tessera structures indicate that this terrain is the result of crustal shortening. During the global volcanic regime, volcanism overwhelmed tectonic activity and caused formation of vast volcanic plains that compose 60% of the surface of Venus. The plains show a clear stratigraphic sequence from older shield plains to younger regional plains. The distinctly different morphologies of the plains indicate different volcanic formation styles ranging from eruption through broadly distributed local sources of shield plains to the volcanic flooding of regional plains. The density of impact craters on units of the tectonic and volcanic regimes suggests that these regimes characterized about the first one-third of the visible geologic history of Venus. During this time, 80%–85% of the surface of the planet was renovated. The network rifting-volcanism regime characterized the last two-thirds of the visible geologic history of Venus. The major components of the regime include broadly synchronous lobate plains and rift zones. Although the network rifting-volcanism regime characterized 2/3 of the visible geologic history of Venus, only 15%–20% of the surface was resurfaced during this time. This means that the level of endogenous activity during this time has dropped by about an order of magnitude compared with the earlier regimes.
Scenarios of bioenergy development impacts on regional groundwater withdrawals
Uden, Daniel R.; Allen, Craig R.; Mitchell, Rob B.; Guan, Qingfeng; McCoy, Tim D.
2013-01-01
Irrigation increases agricultural productivity, but it also stresses water resources (Huffaker and Hamilton 2007). Drought and the potential for drier conditions resulting from climate change could strain water supplies in landscapes where human populations rely on finite groundwater resources for drinking, agriculture, energy, and industry (IPCC 2007). For instance, in the North American Great Plains, rowcrops are utilized for livestock feed, food, and bioenergy production (Cassman and Liska 2007), and a large portion is irrigated with groundwater from the High Plains aquifer system (McGuire 2011). Under projected future climatic conditions, greater crop water use requirements and diminished groundwater recharge rates could make rowcrop irrigation less feasible in some areas (Rosenberg et al. 1999; Sophocleous 2005). The Rainwater Basin region of south central Nebraska, United States, is an intensively farmed and irrigated Great Plains landscape dominated by corn (Zea mays L.) and soybean (Glycine max L.) production (Bishop and Vrtiska 2008). Ten starch-based ethanol plants currently service the region, producing ethanol from corn grain (figure 1). In this study, we explore the potential of switchgrass (Panicum virgatum L.), a drought-tolerant alternative bioenergy feedstock, to impact regional annual groundwater withdrawals for irrigation under warmer and drier future conditions. Although our research context is specific to the Rainwater Basin and surrounding North American Great Plains, we believe the broader research question is internationally pertinent and hope that this study simulates similar research in other areas.
Roller, J.C.; Strozier, O.P.; Jackson, W.H.; Healy, J.H.
1963-01-01
During 1963 the U.S. Geological Survey, with the assistance of United ElectroDynamics, Inc., recorded five separate reversed seismic profiles. In addition to these profiles, the U.S. Geological Survey participated in a seismic-calibration program for the DRIBBLE experiment at Tatum Dome, Mississippi, a 20,000-pound shot near Dexter, Missouri, and in a cooperative seismic experiment in the Lake Superior region. This work is a continuation of the program started in 1961; however, the emphasis has shifted from a detailed study of the earth's crust in the western United States to a study of crustal structure in various geologic environments including the Wyoming thrust belt, Colorado Plateau, Central Lowlands, the Gulf Coastal Plain, and the southern part of the Canadian Shield. The U.S. Geological Survey has now completed reversed seismic-refraction profiles in nine different geologic provinces. These data present a promising indication that it may be possible to predict the crustal structure in unexplored areas by considering the regional geologic and physiographic environment. The following Pn velocities have been determined: 8.2 km/sec in the Wyoming thrust belt, 7.9 km/sec in the Colorado Plateau, 8.1 km/sec in the Central Lowlands, and about 8.2 km/sec in the Gulf Coastal Plain. The data from the Lake Superior region have not yet been interpreted.
Impacts of agricultural land use on biological integrity: A causal analysis
Riseng, C.M.; Wiley, M.J.; Black, R.W.; Munn, M.D.
2011-01-01
Agricultural land use has often been linked to nutrient enrichment, habitat degradation, hydrologic alteration, and loss of biotic integrity in streams. The U.S. Geological Survey's National Water Quality Assessment Program sampled 226 stream sites located in eight agriculture-dominated study units across the United States to investigate the geographic variability and causes of agricultural impacts on stream biotic integrity. In this analysis we used structural equation modeling (SEM) to develop a national and set of regional causal models linking agricultural land use to measured instream conditions. We then examined the direct, indirect, and total effects of agriculture on biotic integrity as it acted through multiple water quality and habitat pathways. In our nation-wide model, cropland affected benthic communities by both altering structural habitats and by imposing water quality-related stresses. Regionspecific modeling demonstrated that geographic context altered the relative importance of causal pathways through which agricultural activities affected stream biotic integrity. Cropland had strong negative total effects on the invertebrate community in the national, Midwest, and Western models, but a very weak effect in the Eastern Coastal Plain model. In theWestern Arid and Eastern Coastal Plain study regions, cropland impacts were transmitted primarily through dissolved water quality contaminants, but in the Midwestern region, they were transmitted primarily through particulate components of water quality. Habitat effects were important in the Western Arid model, but negligible in the Midwest and Eastern Coastal Plain models. The relative effects of riparian forested wetlands also varied regionally, having positive effects on biotic integrity in the Eastern Coastal Plain andWestern Arid region models, but no statistically significant effect in the Midwest. These differences in response to cropland and riparian cover suggest that best management practices and planning for the mitigation of agricultural land use impacts on stream ecosystems should be regionally focused. ?? 2011 by the Ecological Society of America.
Remote Sensing and Geologic Studies of the Schiller-Schickard Region of the Moon
NASA Technical Reports Server (NTRS)
Blewett, David T.; Hawke, B. Ray; Lucey, Paul G.; Taylor, G. Jeffrey; Jaumann, Ralf; Spudis, Paul D.
1995-01-01
Near-infrared reflectance spectra, multispectral images, and photogeologic data for the Schiller-Schickard (SS) region were obtained and analyzed in order to determine the composition and origin of a variety of geologic units. These include light plains deposits, Orientale-related deposits, mare units, and dark-haloed impact craters (DHCs). Spectral data indicate that the pre-Orientale highland surface was dominated by noritic anorthosite. Near-IR spectra show that DHCs in the region have excavated ancient (greater than 3.8 Ga) mare basalts from beneath highland-bearing material emplaced by the Orientale impact. Ancient mare basalts were widespread in the SS region prior to the Orientale event, and their distribution appears to have been controlled by the presence of several old impact basins, including the Schiller-Zucchius basin and a basin previously unrecognized. Both near-IR spectra and multispectral images indicate that light plains and other Orientale-related units in the SS region contain major amounts of local, pre-Orientale mare basalt. The amounts of local material in these deposits approach, but seldom exceed, the maximum values predicted by the local mixing hypothesis of Oberbeck and co-workers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, S.R.; Liszewski, M.J.
1997-08-01
The unsaturated zone and the Snake River Plain aquifer at and near the Idaho National Engineering Laboratory (INEL) are made up of at least 178 basalt-flow groups, 103 sedimentary interbeds, 6 andesite-flow groups, and 4 rhyolite domes. Stratigraphic units identified in 333 wells in this 890-mile{sup 2} area include 121 basalt-flow groups, 102 sedimentary interbeds, 6 andesite-flow groups, and 1 rhyolite dome. Stratigraphic units were identified and correlated using the data from numerous outcrops and 26 continuous cores and 328 natural-gamma logs available in December 1993. Basalt flows make up about 85% of the volume of deposits underlying the area.
Young people's perceptions of cigarette packaging and plain packaging: an online survey.
Moodie, Crawford; Ford, Allison; Mackintosh, Anne Marie; Hastings, Gerard
2012-01-01
In the United Kingdom, with most marketing channels prohibited, packaging is one of the few remaining ways that tobacco companies can promote their products. An online survey with young people aged 10-17 years (N = 658) was used to explore why youth choose cigarettes, perceptions of pack color, and perceptions of plain (nonbranded) cigarette packaging. Young people were also shown an image of 3 plain packs, which differed by shape and method of opening, and asked which they liked most and thought others their age would smoke. Price and what significant others smoke were key factors for choosing cigarettes, with packaging also an important influence. More than a third of the sample associated lighter pack color with weak tasting and less harmful cigarettes. Plain packs were rated negatively as were perceptions of plain pack users. One in 3 showed a preference for either a narrow "perfume type" plain pack or a plain "slide" pack that opened from the side, and 1 in 3 also thought that young people would smoke these packs. Packaging appears to both attract young people and mislead them about product strength and relative harm. Innovative pack construction (novel pack shape and method of opening) and the use of color are instrumental in these effects. The findings therefore suggest that any move to plain packaging should not only consider the benefits of removing branding (including color) but also of standardizing pack construction in terms of shape and method of opening.
Land changes and their driving forces in the Southeastern United States
Napton, Darrell E.; Auch, Roger F.; Headley, Rachel; Taylor, Janis
2010-01-01
The ecoregions of the Middle Atlantic Coastal Plain, Southeastern Plains, Piedmont, and Blue Ridge provide a continuum of land cover from the Atlantic Ocean to the highest mountains in the East. From 1973 to 2000, each ecoregion had a unique mosaic of land covers and land cover changes. The forests of the Blue Ridge Mountains provided amenity lands. The Piedmont forested area declined, while the developed area increased. The Southeastern Plains became a commercial forest region, and most agricultural lands that changed became forested. Forests in the Middle Atlantic Coastal Plain declined, and development related to recreation and retirement increased. The most important drivers of land conversion were associated with commercial forestry, competition between forest and agriculture, and economic and population growth. These and other drivers were modified by each ecoregion’s unique suitability and land use legacies with the result that the same drivers often produced different land changes in different ecoregions.
Ages of fracturing and resurfacing in the Amenthes region, Mars
NASA Technical Reports Server (NTRS)
Maxwell, Ted A.; Mcgill, George E.
1988-01-01
An attempt is made to determine whether there is any tectonic evidence in the relatively recent history of the boundary zone that will place contraints on the origin of the Martian dichotomy. It is found that the timing of resurfacing events and structural modification of outlier plateaus and mesas in the Martian eastern hemisphere provides a contraint on the history of tectonic events along the cratered terrain-northern plains boundary. The circumferential grabens surrounding the Isidis basin ceased forming before the final emplacement of ridged plains on the adjacent northern lowlands. The cratered plateau east of the Isidis basin includes two crater populations; stripping of the rims of craters was complete before downfalling of the transition zone between the cratered terrain and the northern plains, and a young population of craters on the plateau records the same age as the ridged plains units north of the boundary.
NASA Technical Reports Server (NTRS)
Leake, M. A.
1982-01-01
The geologic framework of the intercrater plains on Mercury and the Moon as determined through geologic mapping is presented. The strategies used in such mapping are discussed first. Then, because the degree of crater degradation is applied to both mapping and crater statistics, the correlation of degradation classification of lunar and Mercurian craters is thoroughly addressed. Different imaging systems can potentially affect this classification, and are therefore also discussed. The techniques used in mapping Mercury are discussed in Section 2, followed by presentation of the Geologic Map of Mercury in Section 3. Material units, structures, and relevant albedo and color data are discussed therein. Preliminary conclusions regarding plains' origins are given there. The last section presents the mapping analyses of the lunar intercrater plains, including tentative conclusions of their origin.
Stream carbon dynamics in low-gradient headwaters of a forested watershed
April Bryant-Mason; Y. Jun Xu; Johnny M. Grace
2013-01-01
Headwater streams drain more than 70 percent of the total watershed area in the United States. Understanding of carbon dynamics in the headwater systems is of particular relevance for developing best silvicultural practices to reduce carbon export. This study was conducted in a low-gradient, predominantly forested watershed located in the Gulf Coastal Plain region, to...
USDA-ARS?s Scientific Manuscript database
Scaling evapotranspiration (ET) from local measures to regional and global values is a critical task as improved understanding of ET processes can benefit weather and climate analysis and prediction, water management, and agriculture. This study examined the ET values produced by the Breathing Earth...
Common Sense: Plain Talk to Legislators about School Finance.
ERIC Educational Resources Information Center
Hickrod, G. Alan; And Others
This publication contains testimony, given by personnel at the Center for the Study of Educational Finance, initially intended for legislators at the federal and state levels to help them deal with public policy matters in K-12 finance. The first document is testimony given before the United States Senate Committee on Labor and Human Resources,…
Draw-a-Person-in-the-Rain: Does Geographic Location Matter?
ERIC Educational Resources Information Center
Graves, Adam; Jones, Leslie; Kaplan, Frances F.
2013-01-01
This pilot study examines an aspect of construct validity of the Draw-a-Person-in-the-Rain (DAPR) assessment utilizing a sample ("N" = 58) of third-grade public school children from three geographic regions of the United States (Great Plains, Rocky Mountain, and Pacific Northwest) that differ in climate and frequency of precipitation. A…
Effect of vegetative competition on the moisture and nutrient status of loblolly pine
G.A. Carter; J.H. Miller; D.E. Davis; R.M. Patterson
1984-01-01
A field study examined the effects of competing vegetation on the moisture and nutrient status of 5-year-old loblolly pines (Pinus taeda L.). Similar experiments were conducted on a Piedmont site and a Coastal Plain site using individual pines as experimental units. Predawn measurements of xylem pressure potential were made using detached needle...
Mountain Plains Learning Experience Guide: Appliance Repair. Course: Heater-Type Appliances.
ERIC Educational Resources Information Center
Ziller, T.
One of two individualized courses included in an appliance repair curriculum (see CE 027 767), this course covers minor and major heater-type appliances. The course is comprised of six units: (1) Irons, (2) Roasters, (3) Space Heaters, (4) Water Heaters, (5) Electric Ranges, and (6) Gas Ranges. Each unit begins with a Unit Learning Experience…
Breton, Magdalena Opazo; Britton, John; Huang, Yue; Bogdanovica, Ilze
2018-05-29
Plain packaging of cigarettes appeared in the UK in July 2016 and was ubiquitous by May 2017. The change coincided with another legislative change, raising the minimum pack size from 10 to 20 cigarettes. Laws imposing plain packaging on cigarette packs remove another promotional route from tobacco companies but the effect of such laws on brand diversity, pricing, and sales volume is unknown. This study aimed to 1) describe and quantify changes in brand diversity, price segmentation and sales volumes and 2) estimate the association between the introduction of plain cigarette packaging and cigarette pricing in the UK. We used a natural experiment design to assess the impact of plain packaging legislation on brand diversity and cigarette prices. The data comprised a sample of 76% of sales of cigarettes in the UK between March 2013 and June 2017. United Kingdom MEASUREMENTS: Cigarette prices, number of brands and products, volumes of sales FINDINGS: During the period analysed, there was a slight decrease in the number of cigarette brands. There was also an initial increase observed in the number of cigarette products, mainly due to an increase in the number of products in packs of fewer than 20 cigarettes sold before July 2016, which was then followed by a rapid decrease in the number of products that coincided with the implementation of the new legislation. Cigarette sales volumes during this period did not deviate from the preceding secular trend, but prices rose substantially. Regression results showed that price per cigarette, regardless of pack size, was 5.0 (95% CI 4.8 to 5.3) pence higher in plain than in fully branded packs. For packs of 20 cigarettes, price increases were greater in the lower price quintiles, ranging from 2.6 (95% CI 2.4 to 2.7) GBP in the lowest to 0.3 (95% CI 0.3-0.4) GBP per pack in the highest quintile. The implementation of standardised packaging legislation in the UK, which included minimum pack sizes of 20, was associated with significant increases overall in the price of manufactured cigarettes but no clear deviation in the ongoing downward trend in total volume of cigarette sales. This article is protected by copyright. All rights reserved.
NASA Technical Reports Server (NTRS)
Dietz, J. B.
1973-01-01
The environmental heat flux routine version 4, (EHFR-4) is a generalized computer program which calculates the steady state and/or transient thermal environments experienced by a space system during lunar surface, deep space, or thermal vacuum chamber operation. The specific environments possible for EHFR analysis include: lunar plain, lunar crater, combined lunar plain and crater, lunar plain in the region of spacecraft surfaces, intervehicular, deep space in the region of spacecraft surfaces, and thermal vacuum chamber generation. The EHFR was used for Extra Vehicular Mobility Unit environment analysis of the Apollo 11-17 missions, EMU manned and unmanned thermal vacuum qualification testing, and EMU-LRV interface environmental analyses.
National Agricultural Library | United States Department of Agriculture
Skip to main content Home National Agricultural Library United States Department of Agriculture Ag User Instruction Series on the National Agricultural Library's YouTube channel. These video tutorials Home | USDA.gov | Agricultural Research Service | Plain Language | FOIA | Accessibility Statement
Status and trends of land change in the Great Plains of the United States--1973 to 2000
Taylor, Janis; Acevedo, William; Auch, Roger F.; Drummond, Mark A.
2015-09-03
This report is only one of the products produced by USGS on land-use and land-cover change in the United States. Other reports and land-cover statistics are available online at http://landcovertrends.usgs.gov.
NASA Astrophysics Data System (ADS)
Pu, Bing; Ginoux, Paul
2018-03-01
High concentrations of dust particles can cause respiratory problems and increase non-accidental mortality. Studies found fine dust (with an aerodynamic diameter of less than 2.5 µm) is an important component of the total PM2.5 mass in the western and central US in spring and summer and has positive trends. This work examines climatic factors influencing long-term variations in surface fine dust concentration in the US using station data from the Interagency Monitoring Protected Visual Environments (IMPROVE) network during 1990-2015. The variations in the fine dust concentration can be largely explained by the variations in precipitation, surface bareness, and 10 m wind speed. Moreover, including convective parameters such as convective inhibition (CIN) and convective available potential energy (CAPE) that reveal the stability of the atmosphere better explains the variations and trends over the Great Plains from spring to fall.While the positive trend of fine dust concentration in the southwestern US in spring is associated with precipitation deficit, the increase in fine dust over the central Great Plains in summer is largely associated with enhanced CIN and weakened CAPE, which are caused by increased atmospheric stability due to surface drying and lower-troposphere warming. The strengthening of the Great Plains low-level jet also contributes to the increase in fine dust concentration in the central Great Plains in summer via its positive correlation with surface winds and negative correlation with CIN.Summer dusty days in the central Great Plains are usually associated with a westward extension of the North Atlantic subtropical high that intensifies the Great Plains low-level jet and also results in a stable atmosphere with subsidence and reduced precipitation.
A two-dimensional, finite-difference model of the high plains aquifer in southern South Dakota
Kolm, K.E.; Case, H. L.
1983-01-01
The High Plains aquifer is the principal source of water for irrigation, industry, municipalities, and domestic use in south-central South Dakota. The aquifer, composed of upper sandstone units of the Arikaree Formation, and the overlying Ogallala and Sand Hills Formations, was simulated using a two-dimensional, finite-difference computer model. The maximum difference between simulated and measured potentiometric heads was less than 60 feet (1- to 4-percent error). Two-thirds of the simulated potentiometric heads were within 26 feet of the measured values (3-percent error). The estimated saturated thickness, computed from simulated potentiometric heads, was within 25-percent error of the known saturated thickness for 95 percent of the study area. (USGS)
Global Geological Map of Venus
NASA Astrophysics Data System (ADS)
Ivanov, M. A.
2008-09-01
Introduction: The Magellan SAR images provide sufficient data to compile a geological map of nearly the entire surface of Venus. Such a global and selfconsistent map serves as the base to address the key questions of the geologic history of Venus. 1) What is the spectrum of units and structures that makes up the surface of Venus [1-3]? 2) What volcanic/tectonic processes do they characterize [4-7]? 3) Did these processes operated locally, regionally, or globally [8- 11]? 4) What are the relationships of relative time among the units [8]? 5) At which length-scale these relationships appear to be consistent [8-10]? 6) What is the absolute timing of formation of the units [12-14]? 7) What are the histories of volcanism, tectonics and the long-wavelength topography on Venus? 7) What model(s) of heat loss and lithospheric evolution [15-21] do these histories correspond to? The ongoing USGS program of Venus mapping has already resulted in a series of published maps at the scale 1:5M [e.g. 22-30]. These maps have a patch-like distribution, however, and are compiled by authors with different mapping philosophy. This situation not always results in perfect agreement between the neighboring areas and, thus, does not permit testing geological hypotheses that could be addressed with a self-consistent map. Here the results of global geological mapping of Venus at the scale 1:10M is presented. The map represents a contiguous area extending from 82.5oN to 82.5oS and comprises ~99% of the planet. Mapping procedure: The map was compiled on C2- MIDR sheets, the resolution of which permits identifying the basic characteristics of previously defined units. The higher resolution images were used during the mapping to clarify geologic relationships. When the map was completed, its quality was checked using published USGS maps [e.g., 22-30] and the catalogue of impact craters [31]. The results suggest that the mapping on the C2-base provided a highquality map product. Units and structures: A limited set of material units and tectonic structures describes the geological situation on the surface of Venus (Fig. 1). The globally applicable stratigraphic sequence summarizing varieties of local to regional columns consists of the following units (from older to younger), the relative ages of which are established by relationships of embayment: Tessera (t) represents elevated regions deformed by multiple sets of tectonic structures. Densely lineated plains (pdl) are dissected by numerous subparallel narrow and short lineaments. Ridged plains (pr) commonly form elongated belts of ridges. Shield plains (psh) have numerous small volcanic edifices on the surface. Regional plains were divided into the lower (pr1) and the upper (pr2) units. The lower unit has uniform and relatively low radar albedo; the upper unit is brighter and often forms flow-like occurrences. Shield clusters (sc) are morphologically similar to psh but occur as small patches that postdate regional plains. Smooth plains (ps) have uniform and low radar albedo and occur near impact craters and at distinct volcanic centers. Lobate plains (pl) form fields of lava flows that are typically undeformed by tectonic structures and are associated with major volcanic centers. Several structural assemblages complicate the surface of the material units: Tessera-forming structures (ridges and grooves), belts of ridges, belts of grooves (structural unit gb), mountain belts (structural unit mt that occurs around Lakhmi Planum), wrinkle ridges, and rift zones (structural unit rt). The higly tectonized material and structural units such as t, pdl, pr, mt, and gb predate vast plains units such as psh and rp1. Wrinkle ridges deform all units that are older than units ps and pl. Smooth and lobate plains together with rift zones and shield clusters appear to be contemporaneous and form the top of the global stratigraphic column. Crater statistics: Two factors, the atmosphere screening [32-34] and the observational bias [35], appear to affect the statistics of the smaller craters on Venus. For the larger craters, these factors appear to be less important and craters >8 km were used to estimate the crater density on mapped units. The shape and size of occurrences of units may also affect the crater statistics on Venus where the total number of craters is small. To minimize influence of this factor the crater density on large and contiguous units that have quasiequidimensional occurrences was estimated. Sometimes, the small total number of craters on Venus impels to combine some units into one in order to increase the crater statistics. The generally similar nature of the heavily tectonized units (t, pdl, pr, gb) and their consistent relationships with the vast plains units permit to combine them into one, the tectonized terrains unit. Both units of regional plains were also combined. Thus, craters were counted on five units: tt (tectonized terrains: t+pdl+pr+gb), psh, rp (rp1+rp2), pl, and rt that make up ~95.8% of the map area. The mean densities (craters per 106km2) of craters on these units are as follow: tt 1.70 (±0.27, two σ); psh: 1.62 (±0.28); rp: 1.63 (±0.18); pl: 0.84 (±0.29); rt: 0.98 (±0.40). The mean density of craters (>8 km) in the map area (all units) is 1.56. If the mean crater density corresponds to the mean surface age, T [19], then the ages of the above units as fractions of T are: tt: 1.09 (±0.17, two σ) T, psh: 1.04 (±0.18) T, rp: 1.05 (±0.12) T, pl: 0.54 (±0.19) T, rt: 0.63 (±0.26) T. These results are consistent with the observed stratigraphic relationships and suggest that the visible stratigraphic record consists of two periods: Fortunian, which includes units from tessera to regional plains (densely clustered around 1.06 T) and Atlian, during which smooth and lobate plains and rift zones were emplaced. These units formed during significantly longer time interval from ~1 T and perhaps to the present. The exposed (minimal) area of the Fortunian units is ~81.7% of the map area, whereas the younger units cover ~14.1% of the surface. Depending upon the estimates of T (750 Ma [36], 500 Ma [37], 300 Ma [38]), duration of Fortunian Period can be from 300 m.y (T=750 Ma) to 120 m.y (T=300 Ma). The minimum integrated resurfacing rate (both volcanic and tectonic) at this time was from ~1.2 to ~3.1 km2/y. Duration of Atlian Period is estimated to be from 750 to 300 m.y and the integrated resurfacing rate during this period could be from ~0.2 to ~0.4 km2/y. Such a significant drop of the resurfacing rates suggests that Fortunian and Atlian periods correspond to two different geodynamic regimes that probably were related to different regimes of mantle convection and lithospheric properties. References: 1) Basilevsky, A. T. and J.W. Head, PSS, 43, 1523, 1995; 2) Basilevsky, A.T. and J.W. Head, PSS, 48, 75, 2000 3) DeShon, H.R. et al., JGR, 105, 6983, 2000; 4) Head, J.W. et al., JGR, 97, 13153, 1992; 5) Solomon, S.C. et al., JGR, 97, 13199, 1992; 6) Squyres, S.W. et al., JGR, 97, 13579, 1992; 7) Stofan, E. R. et al., JGR, 97, 13347, 1992; 8) Guest, J.E., and E.R., Icarus139, 56, 1999; 9) Basilevsky, A.T.,et al., in: Venus II, S.W. Bougher et al. eds., Univ. Arizona Press 1047, 1997; 10) Head, J.W. and A.T. Basilevsky, Geology, 26, 35, 1998; 11) Ivanov, M.A. and J.W. Head, JGR, 106, 17515, 2001; 12) Price, M. and J., Nature, 372, 756, 1994; 13) Price, M. et al., JGR, 101, 4657, 1996 14) Namiki, N. and S.C. Solomon, Science, 265, 929, 1994 15) Parmentier, E.M. and P.C. Hess, GRL, 19, 2015, 1992; 16) Head, J.W. et al., PSS, 42, 803, 1994; 17) Turcotte, D.L., JGR, 98, 127061, 1993; 18) Arkani-Hamed, J. and M.N. Toksoz, PEPI, 34, 232, 1984; 19) Solomon, S.C, LPSC (Abstr.), XXIV, 1331, 1993; 20) Phillips R.J. and V.L. Hansen, Science, 279, 1492, 1998; 21) Solomatov, S.V. and L.-N. Moresi, JGR, 101, 4737, 1996; 22) Bender, K.C., et al., USGS Map I-2620, 2000; 23) Rosenberg, E. and G. E. McGill, USGS Map I-2721, 2001; 24) Ivanov, M. A. and J. W. Head, USGS Map I-2684, 2001; 25) Ivanov, M. A. and J. W. Head, USGS Map I-2792, 2003; 26) Ivanov, M. A. and J. W. Head, USGS Map 2870, 2005; 27) Bridges, N. T. and G. E. McGill, USGS Map I-2747, 2002; 28) Campbell, B. A. and P. G. Campbell, USGS Map I-2743, 2002; 29) Hansen, V. L. and H. R. DeShon, USGS Map I-2752, 2002; 30) Brian, A.W., et al., USGS Map 2813, 2005; 31) Schaber, G.G.et al., USGS OFR 98-104, 1998; 32) Phillips, R.J., et al., JGR , 97, 15923, 1992; 33) Ivanov, B.A., et al., JGR , 97, 16167, 1992; 34) Herrick, R.R. and R.J. Phillips, Icarus, 112, 253, 1994; 35) Ivanov, M.A. and A.T. Basilevsky, GRL, 20, 2579, 1993; 36) McKinnon, W.B., et al., in: Venus II, S.W. Bougher et al. eds., Univ. Arizona Press1014, 1997; 37) Schaber, G.G., et al., JGR, 97, 13257, 1992; 38) Strom, R.G., et al., JGR, 99, 10899, 1994.
Ma, H. -Y.; Klein, S. A.; Xie, S.; ...
2018-02-27
Many weather forecast and climate models simulate warm surface air temperature (T 2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T 2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions ofmore » surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T 2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T 2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.« less
NASA Astrophysics Data System (ADS)
Ma, H.-Y.; Klein, S. A.; Xie, S.; Zhang, C.; Tang, S.; Tang, Q.; Morcrette, C. J.; Van Weverberg, K.; Petch, J.; Ahlgrimm, M.; Berg, L. K.; Cheruy, F.; Cole, J.; Forbes, R.; Gustafson, W. I.; Huang, M.; Liu, Y.; Merryfield, W.; Qian, Y.; Roehrig, R.; Wang, Y.-C.
2018-03-01
Many weather forecast and climate models simulate warm surface air temperature (T2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions of surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.
NASA Astrophysics Data System (ADS)
Brevik, E. C.; Heilig, J.; Kempenich, J.; Doolittle, J.; Ulmer, M.
2012-04-01
Sodium-affected soils (SAS) cover over 4 million hectares in the Northern Great Plains of the United States. Improving the classification, interpretation, and mapping of SAS is a major goal of the United States Department of Agriculture-Natural Resource Conservation Service (USDA-NRCS) as Northern Great Plains soil surveys are updated. Apparent electrical conductivity (ECa) as measured with ground conductivity meters has shown promise for mapping SAS, however, this use of this geophysical tool needs additional evaluation. This study used an EM-38 MK2-2 meter (Geonics Limited, Mississauga, Ontario), a Trimble AgGPS 114 L-band DGPS (Trimble, Sunnyvale, CA) and the RTmap38MK2 program (Geomar Software, Inc., Mississauga, Ontario) on an Allegro CX field computer (Juniper Systems, North Logan, UT) to collect, observe, and interpret ECa data in the field. The ECa map generated on-site was then used to guide collection of soil samples for soil characterization and to evaluate the influence of soil properties in SAS on ECa as measured with the EM-38MK2-2. Stochastic models contained in the ESAP software package were used to estimate the SAR and salinity levels from the measured ECa data in 30 cm depth intervals to a depth of 90 cm and for the bulk soil (0 to 90 cm). This technique showed promise, with meaningful spatial patterns apparent in the ECa data. However, many of the stochastic models used for salinity and SAR for individual depth intervals and for the bulk soil had low R-squared values. At both sites, significant variability in soil clay and water contents along with a small number of soil samples taken to calibrate the ECa values to soil properties likely contributed to these low R-squared values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, H. -Y.; Klein, S. A.; Xie, S.
Many weather forecast and climate models simulate warm surface air temperature (T 2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T 2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions ofmore » surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T 2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T 2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.« less
The pattern of spatial flood disaster region in DKI Jakarta
NASA Astrophysics Data System (ADS)
Tambunan, M. P.
2017-02-01
The study of disaster flood area was conducted in DKI Jakarta Province, Indonesia. The aim of this research is: to study the spatial distribution of potential and actual of flood area The flood was studied from the geographic point of view using spatial approach, while the study of the location, the distribution, the depth and the duration of flooding was conducted using geomorphologic approach and emphasize on the detailed landform unit as analysis unit. In this study the landforms in DKI Jakarta have been a diversity, as well as spatial and temporal pattern of the actual and potential flood area. Landform at DKI Jakarta has been largely used as built up area for settlement and it facilities, thus affecting the distribution pattern of flooding area. The collection of the physical condition of landform in DKI Jakarta data prone were conducted through interpretation of the topographic map / RBI map and geological map. The flood data were obtained by survey and secondary data from Kimpraswil (Public Work) of DKI Jakarta Province for 3 years (1996, 2002, and 2007). Data of rainfall were obtained from BMKG and land use data were obtained from BPN DKI Jakarta. The analysis of the causal factors and distribution of flooding was made spatially and temporally using geographic information system. This study used survey method with a pragmatic approach. In this study landform as result from the analytical survey was settlement land use as result the synthetic survey. The primary data consist of landform, and the flood characteristic obtained by survey. The samples were using purposive sampling. Landform map was composed by relief, structure and material stone, and process data Landform map was overlay with flood map the flood prone area in DKI Jakarta Province in scale 1:50,000 to show. Descriptive analysis was used the spatial distribute of the flood prone area. The result of the study show that actual of flood prone area in the north, west and east of Jakarta lowland both in beach ridge, coastal alluvial plain, and alluvial plain; while the flood potential area on the slope is found flat and steep at alluvial fan, alluvial plain, beach ridge, and coastal alluvial plain in DKI Jakarta. Based on the result can be concluded that actual flood prone is not distributed on potential flood prone
Geohydrologic units of the Gulf Coastal Plain in Arkansas
Petersen, J.C.; Broom, M.E.; Bush, W.V.
1985-01-01
This report describes geohydrologic units of the Jurassic, Cretaceous, Tertiary and Quaternary Systems and of the Paleozoic Era in the Gulf Coastal Plain in Arkansas. Structure contour maps on top of the Paleozoic rocks, Trinity Group, Tokio Formation, Nacatoch Sand, Midway Group, Wilcox Group, Carrizo Sand, Cane River Formation. Sparta Sand, and the Memphis Sand are included. Thickness maps of the Wilcox Group, Carrizo Sand, Cane River Formation, Sparta Sand, and the Memphis Sand and maps showing lines of equal dissolved-solids concentrations of the Nacatoch Sand, Wilcox Group, Carrizo Sand, Cane River Formation, and Sparta Sand are also included. The dissolved-solids maps are at about a 1:2 million scale. All other maps are at a 1:1 million scale. Brief descriptions of the geohydrologic units mentioned above and of the Cook Mountain and Cockfield Formations and the Jackson Group are also included. (USGS)
Spatially explicit land-use and land-cover scenarios for the Great Plains of the United States
Sohl, Terry L.; Sleeter, Benjamin M.; Sayler, Kristi L.; Bouchard, Michelle A.; Reker, Ryan R.; Bennett, Stacie L.; Sleeter, Rachel R.; Kanengieter, Ronald L.; Zhu, Zhi-Liang
2012-01-01
The Great Plains of the United States has undergone extensive land-use and land-cover change in the past 150 years, with much of the once vast native grasslands and wetlands converted to agricultural crops, and much of the unbroken prairie now heavily grazed. Future land-use change in the region could have dramatic impacts on ecological resources and processes. A scenario-based modeling framework is needed to support the analysis of potential land-use change in an uncertain future, and to mitigate potentially negative future impacts on ecosystem processes. We developed a scenario-based modeling framework to analyze potential future land-use change in the Great Plains. A unique scenario construction process, using an integrated modeling framework, historical data, workshops, and expert knowledge, was used to develop quantitative demand for future land-use change for four IPCC scenarios at the ecoregion level. The FORE-SCE model ingested the scenario information and produced spatially explicit land-use maps for the region at relatively fine spatial and thematic resolutions. Spatial modeling of the four scenarios provided spatial patterns of land-use change consistent with underlying assumptions and processes associated with each scenario. Economically oriented scenarios were characterized by significant loss of natural land covers and expansion of agricultural and urban land uses. Environmentally oriented scenarios experienced modest declines in natural land covers to slight increases. Model results were assessed for quantity and allocation disagreement between each scenario pair. In conjunction with the U.S. Geological Survey's Biological Carbon Sequestration project, the scenario-based modeling framework used for the Great Plains is now being applied to the entire United States.
Ecosystem production functions for water supply, climate regulation, and water purification were estimated for 568 headwater streams and their catchments. Water supply per unit catchment area was highest in the Northern Appalachian Mountains and lowest in the Northern Plains. C, ...
A synoptic survey of ecosystem services from headwater catchments in the United States- webinar
Ecosystem production functions for water supply, climate regulation, and water purification were estimated for 568 headwater streams and their catchments. Water supply per unit catchment area was highest in the Northern Appalachian Mountains and lowest in the Northern Plains. C, ...
NASA Astrophysics Data System (ADS)
Parton, W. J.; Del Grosso, S. J.; Smith, W. K.; Chen, M.
2017-12-01
The El Nino Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) are multi-annual to multi-decadal climate patterns defined by ocean temperature anomalies that can strongly modulate climate variability. Here we evaluated the impacts of PDO and ENSO sea surface temperature (SST) anomalies on observed grassland above ground plant production (ANPP; 1940 to 2015), spring (April to July) cumulative actual evapotranspiration (iAET; 1900 to 2015) , and satellite-derived growing season (April to October) cumulative normalized difference vegetation index (iNDVI 1982 to 2015) across the United States Great Plains. The results showed that grassland ANPP is well correlated to iAET (r2=0.69) and iNDVI (r2=0.50 to 0.70) for the Cheyenne Wyoming and Northeastern Colorado long-term ANPP sites. At the site scale, during the negative phase of the PDO, we find ANPP is much lower (25%) and that variability of iAET, iNDVI, and ANPP are much higher (2 to 3 times) compared to the warm phase PDO. Further, we find there is a high frequency of below normal iAET when PDO and ENSO SST's are both negative, while there is a high frequency of above normal iAET when PDO and ENSO values are positive. At the regional scale, iAET, iNDVI, and modeled ANPP data sets show that plant production and iAET values are high in the southern Great Plains and low in the northern Great Plains when spring PDO and ENSO are both in the positive phase, while the opposite pattern is observed when both PDO and ENSO are both in the negative phase. Variability of iAET, iNDVI, and modeled ANPP are much higher in the central Great Plains during the negative phase PDO. We demonstrate clearly that the PDO and ENSO SST anomalies have large impacts on mean and variability of grassland plant production across the Great Plains.
Renken, Robert A.
1996-01-01
The Southeastern Coastal Plain aquifer system consists of a thick sequence of unconsolidated to poorly consolidated Cretaceous and Tertiary rocks that extend from Mississippi to South Carolina. Four regional sand and gravel aquifers are separated by three regional confining units of clay, shale, and chalk that do not conform everywhere to stratigraphic boundaries. The change in geologic facies is the most important factor controlling the distribution of transmissivity within the aquifer system.
Modified Mercalli intensity assignments for the May 16, 1909, Northern Plains earthquake
Bakun, W.H.; Stickney, M.C.; Rogers, G.; Ristau, J.
2010-01-01
We use newspaper accounts from the United States and Canada to assign modified Mercalli intensity (MMI) at 90 towns for the May 16, 1909 Northern Plains earthquake. Our MMI assignments generally are consistent with those plotted on Nuttli's (1976) isoseiemal map. The earthquake was felt over more than 1,500,000 km2 in the states of Minnesota, Montana, North Dakota, South Dakota, and Wyoming and the provinces of Alberta, Manitoba, Ontario, and Saskatchewan.
Chua, Michael E; Gatchalian, Glenn T; Corsino, Michael Vincent; Reyes, Buenaventura B
2012-10-01
(1) To determine the best cut-off level of Hounsfield units (HU) in the CT stonogram that would predict the appearance of a urinary calculi in plain KUB X-ray; (2) to estimate the sensitivity and specificity of the best cut-off HU; and (3) to determine whether stone size and location affect the in vivo predictability. A prospective cross-sectional study of patients aged 18-85 diagnosed with urolithiases on CT stonogram with concurrent plain KUB radiograph was conducted. Appearance of stones was recorded, and significant difference between radiolucent and radio-opaque CT attenuation level was determined using ANOVA. Receiver operating characteristics (ROC) curve determined the best HU cut-off value. Stone size and location were used for factor variability analysis. A total of 184 cases were included in this study, and the average urolithiasis size on CT stonogram was 0.84 cm (0.3-4.9 cm). On KUB X-ray, 34.2 % of the urolithiases were radiolucent and 65.8 % were radio-opaque. Mean value of CT Hounsfield unit for radiolucent stones was 358.25 (±156), and that for radio-opaque stones was 816.51 (±274). ROC curve determined the best cut-off value of HU at 498.5, with the sensitivity of 89.3 % and specificity of 87.3 %. For >4 mm stones, the sensitivity was 91.3 % and the specificity was 81.8 %. On the other hand, for =<4 mm stones, the sensitivity was 60 % and the specificity was 89.5 %. Based on the constructed ROC curve, a threshold value of 498.5 HU in CT stonogram was established as cut-off in determining whether a calculus is radio-opaque or radiolucent. The determined overall sensitivity and specificity of the set cut-off HU value are optimal. Stone size but not location affects the sensitivity and specificity.
Stratigraphy in the Samarkand Sulci Region of Enceladus
NASA Astrophysics Data System (ADS)
Roatsch, T.; Wagner, R. J.; Schmedemann, N.; Helfenstein, P.; Stephan, K.; Voigt, J.; Jaumann, R.; Giese, B.; Porco, C.
2016-12-01
Saturn's cryovolcanically active moon Enceladus is a primary target for NASA's Cassini Saturn orbiter. In a flyby on Dec. 19, 2015 (orbit 228EN), images with 65 m spatial resolution were taken from the Samarkand Sulci and Anbar Fossae [1] region with the Cassini ISS NAC camera. This study area was geologically mapped, based on the geological context by [2]. Crater counts for age dating were carried out and compared to our previous counts done in a global mosaic at lower resolution [3]. A stereo-derived digital elevation model reveals intense tectonic faulting causing a remarkable height range of up to 1750 meters with respect to the surrounding cratered plains [4]. Relative ages of geologic units can be inferred from mutual crosscutting and/or superposition, but ages from craters counts are comparably uncertain due to low crater frequencies and small areas of measurement. Tectonic features of the study area cut through older densely cratered plains with model ages ranging from 3.9 Gyr to only 500 Ma, depending of impact chronology model [5, and ref's therein] applied to crater frequency measurements. In the units characterized by intense tectonism, larger craters like those found in the cratered plains in parts have survived but smaller much less frequent craters reflect the age of tectonic resurfacing, with model ages ranging from 1.5 Gyr to 15 Myr. Geologic units which show putative small craters (number < 3) at the given resolution have considerably low estimated (maximum) ages on the order of << 10 Myr suggesting intense tectonism has been taking place in the recent past. References: [1] Roatsch, T., et al. (2013), Planet. Space Sci. 77, 118-125. [2] Crow-Willard, E. N., and Pappalardo, R. T. (2015), JGR 120, doi:10.1002/2015JE004818. [3] Jaumann R., et al. (2011), EPSC Abstracts Vol. 6, abstr. No. EPSC-DPS2011-435-1. [4] Giese B., et al. (2016), paper in preparation. [5] Dones, L., et al. (2009), In: Saturn from Cassini-Huygens, Springer Publ., pp. 613-635.
NASA Astrophysics Data System (ADS)
Costard, Francois; Sejourne, Antoine; Losiak, Ania; Swirad, Zusanna; Balm, Matthew; Conway, Susan; Gallagher, Colman; van-Gassel, Stephan; Hauber, Ernst; Johnsson, Andreas; Kereszturi, Akos; Platz, Thomas; Ramsdale, Jason; Reiss, Dennis; Skinner, James
2015-04-01
An ISSI (International Space Science Institute) international team has been convened to study the Northern Plain of Mars. The northern plains of Mars are extensive, geologically young, low-lying areas that contrast in age and relief to Mars' older, heavily cratered, southern highlands. Mars' northern plains are characterised by a wealth of landforms and landscapes that have been inferred to be related to the presence of ice or ice-rich material. Such landforms include 'scalloped' pits and depressions, polygonally-patterned grounds, and viscous flow features similar in form to terrestrial glacial or ice-sheet landforms. Furthermore, new (within the last few years) impact craters have exposed ice in the northern plains, and spectral data from orbiting instruments have revealed the presence of tens of percent by weight of water within the upper most ~50 cm of the martian surface at high latitudes. The western Utopia Planitia contains numerous relatively young ice-related landforms (< 10 Ma). Among them, there are scalloped depressions, spatially-associated polygons and polygon-junction pits. There is an agreement within the community that they are periglacial in origin and, derivatively, indicate the presence of an ice-rich permafrost. However, these landforms were studied individually and, many questions remain about their formation-evolution and climatic significance. In contrast, we conducted a geomorphological study of all landforms in Utopia Planitia along a long strip from ~30N to ~80N latitude and about 250km wide. The goals are to: (i) map the geographical distribution of the ice-related landforms; (ii) identify their association with subtly-expressed geological units and; (iii) discuss the climatic modifications of the ice-rich permafrost in UP. Our work combines a study with CTX (5-6 m/pixel) and HRSC (~12.5-50 m/pixel) images, supported by higher resolution HiRISE (25 cm/pixel) and MOC (~2 m/pixel) and a comparison with analogous landforms on Earth.
Large Area Crop Inventory Experiment (LACIE). Phase 2 evaluation report
NASA Technical Reports Server (NTRS)
1977-01-01
Documentation of the activities of the Large Area Crop Inventory Experiment during the 1976 Northern Hemisphere crop year is presented. A brief overview of the experiment is included as well as phase two area, yield, and production estimates for the United States Great Plains, Canada, and the Union of Soviet Socialist Republics spring winter wheat regions. The accuracies of these estimates are compared with independent government estimates. Accuracy assessment of the United States Great Plains yardstick region based on a through blind sight analysis is given, and reasons for variations in estimating performance are discussed. Other phase two technical activities including operations, exploratory analysis, reporting, methods of assessment, phase three and advanced system design, technical issues, and developmental activities are also included.
Forces Shaping Future U.S. Coal Production and Use
Attanasi, E.D.; Pierce, Brenda S.
2001-01-01
More than half of the electricity in the United States is generated by coal-fired powerplants. U.S. coal producers sell almost 90 percent of their product for electricity generation, and so, the future of the U.S. coal industry will be determined by the future of coal-fired electricity-generation plants. The U.S. Geological Survey (USGS) is completing a National Coal Resource Assessment (NCRA) of five major coal-producing regions of the United States (fig. 1): (1) the Appalachian Basin, (2) the Illinois Basin, (3) the Gulf Coast, (4) the Colorado Plateau, and (5) the Northern Rocky Mountains and Great Plains. The Powder River and Williston Basins are the principal producing areas of the Northern Rocky Mountains and Great Plains region.
NASA Technical Reports Server (NTRS)
1975-01-01
The economic losses sustained in the U.S. coastal zones were studied for the purpose of quantitatively establishing economic benefits as a consequence of improving the predictive quality of destructive phenomena in U.S. coastal zones. Improved prediction of hurricane landfall and improved experimental knowledge of hurricane seeding are discussed.
Cumulative radiation dose caused by radiologic studies in critically ill trauma patients.
Kim, Patrick K; Gracias, Vicente H; Maidment, Andrew D A; O'Shea, Michael; Reilly, Patrick M; Schwab, C William
2004-09-01
Critically ill trauma patients undergo many radiologic studies, but the cumulative radiation dose is unknown. The purpose of this study was to estimate the cumulative effective dose (CED) of radiation resulting from radiologic studies in critically ill trauma patients. The study group was composed of trauma patients at an urban Level I trauma center with surgical intensive care unit length of stay (LOS) greater than 30 days. The radiology records were reviewed. A typical effective dose per study for each type of plain film radiograph, computed tomographic scan, fluoroscopic study, and nuclear medicine study was used to calculate CED. Forty-six patients met criteria. The mean surgical intensive care unit and hospital LOS were 42.7 +/- 14.0 and 59.5 +/- 28.5 days, respectively. The mean Injury Severity Score was 32.2 +/- 15.0. The mean number of studies per patient was 70.1 +/- 29.0 plain film radiographs, 7.8 +/- 4.1 computed tomographic scans, 2.5 +/- 2.6 fluoroscopic studies, and 0.065 +/- 0.33 nuclear medicine study. The mean CED was 106 +/- 59 mSv per patient (range, 11-289 mSv; median, 104 mSv). Among age, mechanism, Injury Severity Score, and LOS, there was no statistically significant predictor of high CED. The mean CED in the study group was 30 times higher than the average yearly radiation dose from all sources for individuals in the United States. The theoretical additional morbidity attributable to radiologic studies was 0.78%. From a radiobiologic perspective, risk-to-benefit ratios of radiologic studies are favorable, given the importance of medical information obtained. Current practice patterns regarding use of radiologic studies appear to be acceptable.
Hyun Woo Kim; Devendra M. Amatya; George M. Chescheir; Wayne R. Skaggs; Jami E. Nettles
2013-01-01
Hydrological effects of land-use change are of great concern to ecohydrologists and watershed managers, especially in the Atlantic coastal plain of the southeastern United States. The concern is attributable to rapid population growth and the resulting pressure to develop forested lands. Many researchers have studied these effects in various scales, with varying...
USDA-ARS?s Scientific Manuscript database
The brown marmorated stink bug (BMSB), Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), an invasive insect pest in the United States, has recently expanded its range to the Coastal Plain region of Georgia. This study was conducted to monitor the BMSB, as well as native stink bugs, near woodland f...
Impact of fire in two old-growth montane longleaf pine stands
John S. Kush; John C. Gilbert; Crystal Lupo; Na Zhou; Becky Barlow
2013-01-01
The structure of longleaf pine (Pinus palustris Mill.) forests of the Southeastern United States Coastal Plains has been the focus of numerous studies. By comparison, the forests in the mountains of Alabama and Georgia are not well understood. Less than 1 percent of longleaf pine stands found in the montane portion of longleafâs range are considered...
Inventory and analysis of leafy spurge (Euphorbia esula) sites: a feasibility study
Richard E. Francis; Meredith J. Morris; Richard J. Myhre; Daniel L. Noble
1980-01-01
Leafy spurge (Euphorbia esula L.) infests more than 2.25 million acres of agricultural and range lands in the United States and had an economic impact of $10.5 million in 1978 (Noble et al. 1979). The most widespread and heaviest areas of infestation are in the northern and central Great Plains. However, quantitative information and compatible...
USDA-ARS?s Scientific Manuscript database
The crop coefficient (Kc) method is widely used for operational estimation of actual evapotranspiration (ETa) and crop water requirements. The standard method for obtaining Kc is via a lookup table from FAO-56 (Food and Agriculture Organization of the United Nations Irrigation and Drainage Paper No....
Phomopsis Stem Canker: A reemerging threat to sunflower (Helianthus annuus) in the United States
USDA-ARS?s Scientific Manuscript database
Phomopsis stem canker causes yield reductions on sunflower (Helianthus annuus L.) on several continents, including Australia, Europe, and North America. In the United States, Phomopsis stem canker incidence has increased 16-fold in the Northern Great Plains between 2001 and 2012. Although Diaporthe ...
Phomopsis stem canker: a re-emerging threat to sunflowers (Helianthus annuus) in the United States
USDA-ARS?s Scientific Manuscript database
Phomopsis stem canker frequently causes yield reductions on sunflowers (Helianthus annuus L.) on several continents, including Australia, Russia, Europe and North America. Between 2001 and 2012, the incidence of Phomopsis stem canker has increased 16 fold in the Northern Great Plains of the United...
Fluxes of nitric oxide (NO) were measured during the summer of 1994 (12 July to 11 August) in the Upper Coastal Plain of North Carolina in a continuing effort to characterize NO emissions from intensively managed agricultural soils in the southeastern United States. Previous work...
Towards the development of a laurel wilt screening program in redbay (Persea borbonia)
Marc Hughes; Jason Smith
2012-01-01
Laurel wilt is a highly destructive disease of redbay (Persea borbonia (L.) Spreng.) and other Lauraceous natives in the southeastern United States. The disease and associated vector, the redbay ambrosia beetle (Xyleborus glabratus), has spread through the United States coastal plain. The presence of surviving and...
18 CFR 415.3 - Purpose and findings.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) Land and water use regulations of responsible units of government shall not impair or conflict with the.... (9) Plans for land and water use adopted by responsible agencies shall not impair or conflict with these flood plain use standards. (10) No action of any unit of government shall impair or conflict with...
Pope, Daryll A.; Gordon, Alison D.
1999-01-01
The confined aquifers of the New Jersey Coastal Plain are sands that range in thickness from 50 to 600 feet and are separated by confining units. The confining units are composed of silts and clays that range in thickness from 500 to 1,000 feet. The aquifers are recharged by precipitation on their outcrop areas. This water then flows laterally downdip and vertically to the deeper confined aquifers. The confined aquifers ultimately discharge to the Raritan and Delaware Bays and to the Atlantic Ocean. In 1988, ground-water withdrawals from confined and unconfined New Jersey Coastal Plain aquifers were approximately 345 million gallons per day, more than 75 percent of which was pumped from the confined aquifers. These withdrawals have created large cones of depression in several Coastal Plain aquifers near populated areas, particularly in Camden and Monmouth Counties. The continued decline of water levels in confined aquifers can cause saltwater intrusion, reduce stream discharge near the outcrop areas, and threaten the quality of the ground-water supply. SHARP, a quasi-three-dimensional finite-difference computer model that can simulate freshwater and saltwater flow, was used to simulate the ground-water flow system in the New Jersey Coastal Plain, including the location and movement of the freshwater-saltwater interface in nine aquifers and eight intervening confining units. The freshwater-saltwater interface is defined as the hypothetical line seaward of which the chloride concentration is equal to or greater than 10,000 milligrams per liter. Model simulations were used to estimate the location and movement of the freshwater-saltwater interface resulting from (1) eustatic sea-level changes over the past 84,000 years, (2) ground-water withdrawals from 1896 through 1988, (3) and future ground-water withdrawals from 1988 to 2040 from Coastal Plain aquifers. Simultion results showed that the location and movement of the freshwater-saltwater interface are more dependent on the historical sea level than on the stresses imposed on the flow system by ground-water withdrawals from the Coastal Plain aquifers from 1896 to 1988. Results of a predictive simulation in which pumpage from existing wells was increased by 30 percent indicate that additional withdrawals from each of the eight confined aquifers in the Coastal Plain would broaden and deepen the existing cones of depression and result in significant drawdowns from the 1988 potentiometric surfaces. Drawdowns of 30 feet were simulated at the center of the cone of depression in the Upper, Middle, and Lower Potomac-Raritan-Magothy aquifers in Camden and Ocean Counties. Simulated drawdowns exceeded 80 feet at the center of the cone of depression in the Wenonah-Mount Laurel and Englishtown aquifers in Monmouth County. Drawdowns of 30 feet were simulated in the lower Kirkwood-Cohansey and confined Kirkwood aquifers in Cape May County. Simulation results showed that the increase in ground-water withdrawals would result in only minimal movement of the freshwater-saltwater interface by 2040, despite large drawdowns.
NASA Astrophysics Data System (ADS)
Steenberg, L.; Gruber, B.; Boroughs, S.; Wolff, J.
2015-12-01
The Brown's Creek rhyolite (BCR), ~70 km south of Boise, Idaho, erupted during a period of widespread rhyolitic volcanism in southwestern Idaho during the middle Miocene. However, the Brown's Creek unit has several characteristics that are unusual relative to near contemporaneous units in the Central Snake Rive Plain (CSRP) and units in the Western Snake River Plain (WSRP). The BCR can contain up to 40% phenocrysts, with some feldspar and quartz crystals in excess of 2 cm in diameter. A proximal vent location is particularly well exposed in the BCR, and appears as an elongated topographic "dome" with pervasive, chaotic and steep flow banding, ramp structures, and breccias. Evidence of dome building activity is also represented by a matrix supported deposit of ash and poorly sorted, angular, rhyolite clasts up to boulder size; which crops out in a small area near the vent. The BCR is among numerous units in the CSRP and WSRP that show evidence of interaction with ancient Lake Idaho (e.g. silicification, opalized zones, pepperites, etc), but the unconformity with the sedimentary rocks of the lake and its feeder streams, is extremely well preserved in the Brown's Creek rhyolite. Geochemically, the Brown's Creek rhyolite shows greater compositional variation in comparison to other individual units in the region. This variation (e.g. Ba/Sr and Zr/Nb) may be a result of variable crystal cargo in hand samples, but could potentially represent a zoned magma body, which is also extremely rare in the CSRP or WSRP. A limited number of samples have trace element concentrations/ratios (e.g. Rb, U, and Th) that may indicate the presence of a second unit underlying the dominant outcrops of BCR, but Nb/Ta ratios are relatively invariant across the entire BCR suite; if there are two units in the BCR, their sources are the same or very similar.
Precipitation Dynamical Downscaling Over the Great Plains
NASA Astrophysics Data System (ADS)
Hu, Xiao-Ming; Xue, Ming; McPherson, Renee A.; Martin, Elinor; Rosendahl, Derek H.; Qiao, Lei
2018-02-01
Detailed, regional climate projections, particularly for precipitation, are critical for many applications. Accurate precipitation downscaling in the United States Great Plains remains a great challenge for most Regional Climate Models, particularly for warm months. Most previous dynamic downscaling simulations significantly underestimate warm-season precipitation in the region. This study aims to achieve a better precipitation downscaling in the Great Plains with the Weather Research and Forecast (WRF) model. To this end, WRF simulations with different physics schemes and nudging strategies are first conducted for a representative warm season. Results show that different cumulus schemes lead to more pronounced difference in simulated precipitation than other tested physics schemes. Simply choosing different physics schemes is not enough to alleviate the dry bias over the southern Great Plains, which is related to an anticyclonic circulation anomaly over the central and western parts of continental U.S. in the simulations. Spectral nudging emerges as an effective solution for alleviating the precipitation bias. Spectral nudging ensures that large and synoptic-scale circulations are faithfully reproduced while still allowing WRF to develop small-scale dynamics, thus effectively suppressing the large-scale circulation anomaly in the downscaling. As a result, a better precipitation downscaling is achieved. With the carefully validated configurations, WRF downscaling is conducted for 1980-2015. The downscaling captures well the spatial distribution of monthly climatology precipitation and the monthly/yearly variability, showing improvement over at least two previously published precipitation downscaling studies. With the improved precipitation downscaling, a better hydrological simulation over the trans-state Oologah watershed is also achieved.
Enhanced Geothermal System Potential for Sites on the Eastern Snake River Plain, Idaho
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert K Podgorney; Thomas R. Wood; Travis L McLing
2013-09-01
The Snake River volcanic province overlies a thermal anomaly that extends deep into the mantle and represents one of the highest heat flow provinces in North America (Blackwell and Richards, 2004). This makes the Snake River Plain (SRP) one of the most under-developed and potentially highest producing geothermal districts in the United States. Elevated heat flow is typically highest along the margins of the topographic SRP and lowest along the axis of the plain, where thermal gradients are suppressed by the Snake River aquifer. Beneath this aquifer, however, thermal gradients rise again and may tap even higher heat flows associatedmore » with the intrusion of mafic magmas into the mid-crustal sill complex (e.g., Blackwell, 1989).« less
Effectiveness Of Plain Shoulder Radiograph In Detecting Degenerate Rotator Cuff Tears.
Hussain, Adnan; Muzzammil, Muhammad; Butt, Faisal; Valsamis, Epaminondas Markos; Dwyer, Amitabh J
2018-01-01
Studies have demonstrated radiographic findings of sclerosis and cortical irregularity at the greater tuberosity can suggest a rotator cuff tear. Plain radiographs are the most easily attainable first-line investigations in evaluating shoulder injuries. This study determines the effectiveness in predicting degenerate rotator cuff tears by detecting radiographic changes on shoulder x-rays. Retrospective cross-sectional study with a consecutive series of patients conducted in Hinchingbrooke Hospital, Huntingdon, United Kingdom from January 2015 to June 2017. Anteroposterior shoulder radiographs of 150 symptomatic patients who underwent shoulder arthroscopy were independently analysed by surgeons who were blinded from the arthroscopic results. Patients aged fewer than 30 and over 70 years were excluded. Patients with advanced osteoarthritis and cuff tear arthropathy evident on x-rays were also excluded. Sixty-five patients included in the study had rotator cuff tears on arthroscopy. Radiographic changes were correlated with arthroscopic findings to determine this test's ability to predict degenerate rotator cuff tears. When both cortical irregularity and sclerosis were present on the plain radiograph, these signs had a sensitivity of 78.8% [95% CI 65.7, 87.8%] and specificity 77.4% [95% CI 67.2, 85.0%] with a positive predictive value of 68.3%, using contingency table analysis. The presence of cortical irregularity was found to be a better predictor of a tear as compared to sclerosis. This study concludes that plain radiograph are good modality for initial evaluation of rotator cuff tears and detecting when both cortical irregularity and sclerosis. Consideration of these radiographic findings serves as a useful adjunct in diagnostic workup and can guide subsequent investigations and treatment when evaluating rotator cuff tears of the shoulder.
Berndt, M.P.; Oaksford, E.T.; Darst, M.R.; Marella, R.L.
1996-01-01
The Georgia-Florida Coastal Plain study unit covers an area of nearly 62,000 square miles in the southeastern United States, mostly in the Coastal Plain physiographic province. Land resource provinces have been designated based on generalized soil classifications. Land resource provinces in the study area include: the Coastal Flatwoods, the Southern Coastal Plain, the Central Florida Ridge, the Sand Hills, and the Southern Piedmont. The study area includes all or parts of seven hydrologic subregions: the Ogeechee-Savannah, the Altamaha- St.Marys, the Suwannee, the Ochlockonee, the St. Johns, the Peace-Tampa Bay, and the Southern Florida. The primary source of water for public supply in the study area is ground water from the Upper Floridan aquifer. In 1990, more than 90 percent of the 2,888 million gallons per day of ground water used came from this aquifer. The population of the study area was 9.3 million in 1990. The cities of Jacksonville, Orlando, St. Petersburg, Tallahassee, and Tampa, Florida, and parts of Atlanta and Savannah, Georgia, are located in the study area. Forest and agricultural areas are the most common land uses in the study area, accounting for 48 percent and 25 percent of the study area, respectively. Climatic conditions range from temperate in Atlanta, Georgia, where mean annual temperature is about 61.3 degrees Fahrenheit, to subtropical in Tampa, Florida, where mean annual temperature is about 72.4 degrees Fahrenheit. Long-term average precipitation (1961-90) ranges from 43.9 inches per year in Tampa, Florida, and 44.6 in Macon, Georgia, to 65.7 inches per year in Tallahassee, Florida. Floods in the study area result from frontal systems, hurricanes, tropical storms, or severe thunderstorms. Droughts are not common in the study area,especially in the Florida part of the study area due to extensive maritime exposure. The primary physical and cultural characteristics in the study area include physiography, soils and land resource provinces, geologic setting, ground-water systems, surface- water systems, climate, floods, droughts, population, land use, and water use. Factors affecting water quality in the study area are land use (primarily urban and agricultural land uses), water use in coastal areas, hydrogeology, ground-water/surface-water interaction, geology, and climate. Surface-water quality problems in urban areas have occurred in the Ogeechee, Canoochee, Ocmulgee, St. Marys, Alapaha, Withlacoochee (north), Santa Fe, Ochlockonee, St. Johns, and Oklawaha Rivers and include nitrogen and phosphorus loading, low dissolved oxygen, elevated bacteria, sediment, and turbidity, and increased concentrations of metals. In agricultural areas, surface-water quality problems include elevated nitrogen and phosphorus concentrations, erosion, and sedimentation and have occurred in the Ocmulgee, St. Marys, Santa Fe, Ochlockonee, St. Johns, Oklawaha, Withlacoochee (South), Hillsborough, and Alafia Rivers. Ground water-quality problems such as saltwater intrusion have occurred mostly in coastal areas and were caused by excessive withdrawals.
Macfarlane, P.A.
2009-01-01
Regional aquifers in thick sequences of continentally derived heterolithic deposits, such as the High Plains of the North American Great Plains, are difficult to characterize hydrostratigraphically because of their framework complexity and the lack of high-quality subsurface information from drill cores and geophysical logs. However, using a database of carefully evaluated drillers' and sample logs and commercially available visualization software, it is possible to qualitatively characterize these complex frameworks based on the concept of relative permeability. Relative permeability is the permeable fraction of a deposit expressed as a percentage of its total thickness. In this methodology, uncemented coarse and fine sediments are arbitrarily set at relative permeabilities of 100% and 0%, respectively, with allowances made for log entries containing descriptions of mixed lithologies, heterolithic strata, and cementation. To better understand the arrangement of high- and low-permeability domains within the High Plains aquifer, a pilot study was undertaken in southwest Kansas to create three-dimensional visualizations of relative permeability using a database of >3000 logs. Aggregate relative permeability ranges up to 99% with a mean of 51%. Laterally traceable, thick domains of >80% relative permeability embedded within a lower relative permeability matrix strongly suggest that preferred pathways for lateral and vertical water transmission exist within the aquifer. Similarly, domains with relative permeabilities of <45% are traceable laterally over appreciable distances in the sub-surface and probably act as leaky confining layers. This study shows that the aquifer does not consist solely of local, randomly distributed, hydrostratigraphic units, as suggested by previous studies. ?? 2009 Geological Society of America.
Landscape trends in Mid-Atlantic and Southeastern United States ecoregions
Griffith, J.A.; Stehman, S.V.; Loveland, Thomas R.
2003-01-01
Landscape pattern and composition metrics are potential indicators for broad-scale monitoring of change and for relating change to human and ecological processes. We used a probability sample of 20-km × 20-km sampling blocks to characterize landscape composition and pattern in five US ecoregions: the Middle Atlantic Coastal Plain, Southeastern Plains, Northern Piedmont, Piedmont, and Blue Ridge Mountains. Land use/land cover (LULC) data for five dates between 1972 and 2000 were obtained for each sample block. Analyses focused on quantifying trends in selected landscape pattern metrics by ecoregion and comparing trends in land cover proportions and pattern metrics among ecoregions. Repeated measures analysis of the landscape pattern documented a statistically significant trend in all five ecoregions towards a more fine-grained landscape from the early 1970s through 2000. The ecologically important forest cover class also became more fine-grained with time (i.e., more numerous and smaller forest patches). Trends in LULC, forest edge, and forest percent like adjacencies differed among ecoregions. These results suggest that ecoregions provide a geographically coherent way to regionalize the story of national land use and land cover change in the United States. This study provides new information on LULC change in the southeast United States. Previous studies of the region from the 1930s to the 1980s showed a decrease in landscape fragmentation and an increase in percent forest, while this study showed an increase in forest fragmentation and a loss of forest cover.
Hydrology and Geomorphology of Tallgrass Prairie Intermittent Headwater Streams
NASA Astrophysics Data System (ADS)
Daniels, M. D.; Grudzinski, B.
2011-12-01
The arid to semi-arid Great Plains region of the United States covers more than 1 million km2, yet virtually nothing is known about the geomorphology of its intermittent headwater streams. These streams and the perennial rivers they feed support a unique and increasingly endangered assemblage of endemic fish species. While human impacts in the region are not at first glace significant, the reality is that the Great Plains are an intensively managed landscape, with pervasive cattle grazing, channelization, and groundwater over-pumping affecting these systems. These stresses will only increase with potential climate and related land use changes. Few natural remnants of native grassland remain today, limiting opportunities to study the natural dynamics of these systems in contrast to the anthropogenically modified systems. This paper presents a review of the existing geomorphological and hydrological knowledge of Great Plains headwater streams and presents the initial analysis of an 18 year intermittent headwater stream record from the tallgrass Konza Prairie LTER, Kansas. Results suggest that fire frequency and grazing and the resultant riparian vegetation composition strongly influence stream flow dynamics as well as stream geomorphology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinbeck, K.; Brown, C. L.
1979-03-01
Two biomass plantations, one in the Coastal Plain, the other in the Piedmont province of Georgia, have been established. Platanus occidentalis, Liquidambar styraciflua, Flnus glutinosa and Robinia pseudoacacia were planted in pure and mixed plots. Differences in the growth at the end of the first growing season were attributed mostly to weed competition in the Coastal Plain. Robinia grew remarkably well in the Piedmont, averaging more than 2.2 m tall in irrigated plots. A fungus tentatively identified as belonging to the genus Botryosphaeria is causing heavy Alnus mortality in the Coastal Plain. Progress in the genetic improvement phase of themore » project included a collection of Platanus seedlots from throughout Georgia to identify promising provenances and the production of Liquidambar and Robinia plantlets in tissue culture. Differences in the calorific content of young sprout material from nine hardwood species (unit oven dry weight basis) were found to be small. Other studies dealt with the effects of different harvesting cycles on the size and carbohydrate contents of sycamore rootstocks.« less
User account | National Agricultural Library
Skip to main content Home National Agricultural Library United States Department of Agriculture Ag | Agricultural Research Service | Plain Language | FOIA | Accessibility Statement | Information Quality | Privacy
Fenolio, Dante B.; Niemiller, Matthew L.; Gluesenkamp, Andrew G.; Mckee, Anna; Taylor, Steven J.
2017-01-01
Cambarus cryptodytes (Dougherty Plain Cave Crayfish) is an obligate inhabitant of groundwater habitats (i.e., a stygobiont) with troglomorphic adaptations in the Floridan aquifer system of southwestern Georgia and adjacent Florida panhandle, particularly in the Dougherty Plain and Marianna Lowlands. Documented occurrences of Dougherty Plain Cave Crayfish are spatially distributed as 2 primary clusters separated by a region where few caves and springs have been documented; however, the paucity of humanly accessible karst features in this intermediate region has inhibited investigation of the species' distribution. To work around this constraint, we employed bottle traps to sample for Dougherty Plain Cave Crayfish and other groundwater fauna in 18 groundwater-monitoring wells that access the Floridan aquifer system in 10 counties in southwestern Georgia. We captured 32 Dougherty Plain Cave Crayfish in 9 wells in 8 counties between September 2014 and August 2015. We detected crayfish at depths ranging from 17.9 m to 40.6 m, and established new county records for Early, Miller, Mitchell, and Seminole counties in Georgia, increasing the number of occurrences in Georgia from 8 to 17 sites. In addition, a new US Geological Survey (USGS) Hydrologic Unit Code 8 (HUC8) watershed record was established for the Spring Creek watershed. These new records fill in the distribution gap between the 2 previously known clusters in Georgia and Jackson County, FL. Furthermore, this study demonstrates that deployment of bottle traps in groundwater-monitoring wells can be an effective approach to presence—absence surveys of stygobionts, especially in areas where surface access to groundwater is limited.
Hosterman, John W.
1984-01-01
The Gulf of Mexico Coastal Plain produces approximately 85 percent of the ball clay used in the United States. The best commercial-grade clay deposits are composed of poorly crystalline kaolinite and small amounts of Md illite and (or) smectite. Sand and silt and iron oxide minerals are virtually absent, but quartz is present in the clay-size fraction. The best grade ball clays are found as lenses limited to the Wilcox Group (Paleocene and lower Eocene) and Claiborne Group (middle Eocene). Reserves of ball clay are sufficient for the present, but because of the lenticular nature of the clay bodies, close-spaced drilling, detailed sampling, mineralogic analyses, and ceramic testing are needed to prove future reserves.Approximately 11 percent of the total bentonite produced in the United States comes from the Gulf Coast region. The commercial-grade bentonites are composed primarily of smectite with little or no Md illite and kaolinite. The nonclay impurities are quartz, feldspar, muscovite, biotite, calcite, dolomite, gypsum, and heulandite. Commercial bentonites occur in the Upper Cretaceous formations in Alabama and Mississippi, in Paleocene formations in Mississippi and Tennessee, and in Eocene and Miocene formations in Texas. The demand for low-swelling bentonite of the Gulf Coastal Plain has not increased along with the demand for swelling bentonite; therefore the reserves are adequate.
Marshes and turbid waters in the French Atlantic littoral
NASA Technical Reports Server (NTRS)
Verger, F. (Principal Investigator)
1973-01-01
The author has identified the following significant results. The multispectral information provided by ERTS-1 is very rich for the coastal regions but the cloud cover, even when only partial, often cuts up the data, and lessens its practical value. The research by densitometric methods has thus far been the most fruitful. It consists of measuring densities along preferential axes. This method has enabled the investigators to perfect a system of computer cartography for the best image. Comparative study of microdensitometric transects in four MSS bands for carefully dilimited profiles on the ground, makes it possible to isolate and recognize various types of countryside: (1) countryside of coastal plains; (2) countryside of coastal sand dunes and beaches; and (3) forms and processes of offshore domains. This study shows the usefulness of the ERTS program in establishing a rapid cartography of the physiographic units of the coastal plains in the interest of a rational program of exploitation and development.
Ellis, M.S.; Nichols, D.J.
2002-01-01
In 1999, 1,100 million short tons of coal were produced in the United States, 38 percent from the Northern Rocky Mountains and Great Plains region. This coal has low ash content, and sulfur content is in compliance with Clean Air Act standards (U.S. Statutes at Large, 1990).The National Coal Resource Assessment for this region includes geologic, stratigraphic, palynologic, and geochemical studies and resource calculations for 18 major coal zones in the Powder River, Williston, Green River, Hanna, and Carbon Basins. Calculated resources are 660,000 million short tons. Results of the study are available in U.S. Geological Survey Professional Paper 1625?A (Fort Union Coal Assess-ment Team, 1999) and Open-File Report 99-376 (Flores and others, 1999) in CD-ROM format.
NASA Technical Reports Server (NTRS)
Leake, M. A.
1982-01-01
The intercrater plains of Mercury and the Moon are defined, in part, by their high densities of small craters. The crater size frequency statistics presented in this chapter may help constrain the relative ages and origins of these surfaces. To this end, the effects of common geologic processes on crater frequency statistics are compared with the diameter frequency distributions of the intercrater regions of the Moon and Mercury. Such analyses may determine whether secondary craters dominate the distribution at small diameters, and whether volcanic plains or ballistic deposits form the intercrater surface. Determining the mass frequency distribution and flux of the impacting population is a more difficult problem. The necessary information such as scaling relationships between projectile energy and crater diameter, the relative fluxes of solar system objects, and the absolute ages of surface units is model dependent and poorly constrained, especially for Mercury.
Origin of Pest Lineages of the Colorado Potato Beetle (Coleoptera: Chrysomelidae).
Izzo, Victor M; Chen, Yolanda H; Schoville, Sean D; Wang, Cong; Hawthorne, David J
2018-04-02
Colorado potato beetle (Leptinotarsa decemlineata Say [Coleoptera: Chrysomelidae]) is a pest of potato throughout the Northern Hemisphere, but little is known about the beetle's origins as a pest. We sampled the beetle from uncultivated Solanum host plants in Mexico, and from pest and non-pest populations in the United States and used mitochondrial DNA and nuclear loci to examine three hypotheses on the origin of the pest lineages: 1) the pest beetles originated from Mexican populations, 2) they descended from hybridization between previously divergent populations, or 3) they descended from populations that are native to the Plains states in the United States. Mitochondrial haplotypes of non-pest populations from Mexico and Arizona differed substantially from beetles collected from the southern plains and potato fields in the United States, indicating that beetles from Mexico and Arizona did not contribute to founding the pest lineages. Similar results were observed for AFLP and microsatellite data . In contrast, non-pest populations from the states of Colorado, Kansas, Nebraska, New Mexico, and Texas were genetically similar to U.S. pest populations, indicating that they contributed to the founding of the pest lineages. Most of the pest populations do not show a significant reduction in genetic diversity compared to the plains populations in the United States. We conclude that genetically heterogeneous beetle populations expanded onto potato from native Solanum hosts. This mode of host range expansion may have contributed to the abundant genetic diversity of contemporary populations, perhaps contributing to the rapid evolution of climate tolerance, host range, and insecticide resistance.
,; Prowell, D.C.; Christopher, R.A.
2004-01-01
This paper formally defines two new Upper Cretaceous subsurface units in the southern Atlantic Coastal Plain of North Carolina, South Carolina and Georgia: the Collins Creek Formation and the Pleasant Creek Formation. These units are confined to the subsurface of the outer Coastal Plain, and their type sections are established in corehole CHN-820 from Charleston County, S.C. The Collins Creek Formation consists of greenish-gray lignitic sand and dark-greenish-gray sandy clay and is documented in cores from Allendale, Beaufort, Berkeley, Dorchester, Jasper and Marion Counties, South Carolina, and from Screven County, Georgia. Previously, Collins Creek strata had been incorrectly assigned to the Middendorf Formation. These sediments occupy a stratigraphic position between the Turonian/Coniacian Cape Fear Formation (?) below and the proposed upper Coniacian to middle Santonian Pleasant Creek Formation above. The Collins Creek Formation is middle and late Coniacian in age on the basis of calcareous nannofossil and palynomorph analyses. The Pleasant Creek Formation consists of olive-gray sand and dark-greenish-gray silty to sandy clay and is documented in cores from New Hanover County, North Carolina, and Berkeley, Charleston, Dorchester, Horry and Marion Counties, South Carolina. The strata of this unit previously were assigned incorrectly to the Middendorf Formation and (or) the Cape Fear Formation. These sediments occupy a stratigraphic position between the proposed Collins Creek Formation below and the Shepherd Grove Formation above. The Pleasant Creek Formation is late Coniacian and middle Santonian in age, on the basis of its calcareous nannofossil and palynomorph assemblages.
ERIC Educational Resources Information Center
Laws, Kevin
A social studies unit and student workbook explore changes in land use that have occurred over time in a semiarid area of eastern Australia, the Back Lachlan District. Part of the "outback," the District consists of a huge level plain with low rainfall, only one river, and vegetation ranging from timber to grass and shrub. Chapter I…
Andrew J. Hartsell
2015-01-01
This study will investigate how global and local predictors differ with varying spatial scale in relation to species evenness and richness in the gulf coastal plain. Particularly, all-live trees >= one-inch d.b.h. Forest Inventory and Analysis (FIA) data was used as the basis for the study. Watersheds are defined by the USGS 12 digit hydrologic units. The...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, D; Parsons, D; Geerts, B
The Plains Elevated Convection at Night (PECAN) experiment is a large field campaign that is being supported by the National Science Foundation (NSF) with contributions from the National Oceanic and Atmospheric Administration (NOAA), the National Atmospheric and Space Administration (NASA), and the U.S. Department of Energy (DOE). The overarching goal of the PECAN experiment is to improve the understanding and simulation of the processes that initiate and maintain convection and convective precipitation at night over the central portion of the Great Plains region of the United States (Parsons et al. 2013). These goals are important because (1) a large fractionmore » of the yearly precipitation in the Great Plains comes from nocturnal convection, (2) nocturnal convection in the Great Plains is most often decoupled from the ground and, thus, is forced by other phenomena aloft (e.g., propagating bores, frontal boundaries, low-level jets [LLJ], etc.), (3) there is a relative lack of understanding how these disturbances initiate and maintain nocturnal convection, and (4) this lack of understanding greatly hampers the ability of numerical weather and climate models to simulate nocturnal convection well. This leads to significant uncertainties in predicting the onset, location, frequency, and intensity of convective cloud systems and associated weather hazards over the Great Plains.« less
First report of dodder (Cuscuta pentagona) on chickpea (Cicer arietinum) in the United States
USDA-ARS?s Scientific Manuscript database
Chickpea (Cicer arietinum L.) is an important rotational and an emerging specialty crop in the Pacific Northwest of the United States, in California, and in the Northern Great Plains of the USA and Canada. Dodders (Cuscuta spp.) are widespread parasitic weeds on many crops worldwide. Several Cusc...
Mountain Plains Learning Experience Guide: Marketing. Course: Marketing Operations.
ERIC Educational Resources Information Center
Preston, T.; Egan, B.
One of thirteen individualized courses included in a marketing curriculum, this course covers the fundamental concepts of the marketing and distribution field, including the operations of wholesale and retail businesses. The course is comprised of three units: (1) The Marketing Process, (2) Wholesaling, and (3) Retailing. Each unit begins with a…
Physiologic specialization of Puccinia triticina on Wheat in the United States in 2015
USDA-ARS?s Scientific Manuscript database
Collections of Puccinia triticina obtained from wheat fields and breeding plots in the Great Plains, Ohio River Valley, and southeastern states, were tested for virulence in 2015 in order to determine the virulence of the wheat leaf rust pathogen population in the United States. Single uredinial iso...
Mountain Plains Learning Experience Guide: Marketing. Course: Advertising and Promotion.
ERIC Educational Resources Information Center
Egan, B.
One of thirteen individualized courses included in a marketing curriculum, this course covers the planning and writing of advertisements and organizing sales promotion and public relation activities in wholesale and retail businesses. The course is comprised of two units: (1) Advertising Fundamentals and (2) Promotion. Each unit begins with a Unit…
The Sunny Point Formation: a new Upper Cretaceous subsurface unit in the Carolina Coastal Plain
Balson, Audra E.; Self-Trail, Jean; Terry, Dennis O.
2013-01-01
This paper formally defines the Sunny Point Formation, a new Upper Cretaceous subsurface unit confined to the outer Atlantic Coastal Plain of North and South Carolina. Its type section is established in corehole NH-C-1-2001 (Kure Beach) from New Hanover County, North Carolina. The Sunny Point Formation consists of light-olive-gray to greenish-gray, fine to coarse micaceous sands and light-olive-brown and grayish-red silty, sandy clays. The clay-rich sections typically include ironstone, lignitized wood, root traces, hematite concretions, goethite, limonite, and sphaerosiderites. The Sunny Point Formation is also documented in cores from Bladen County, North Carolina, and from Dorchester and Horry Counties, South Carolina. Previously, strata of the Sunny Point Formation had been incorrectly assigned to the Cape Fear and Middendorf Formations. The Sunny Point occupies a stratigraphic position above the Cenomanian marine Clubhouse Formation and below an upper Turonian unnamed marine unit. Contacts between these units are sharp and unconformable. Calcareous nannofossil and palynomorph analyses indicate that the Sunny Point Formation is Turonian.
Arctic Refuge coastal plain terrestrial wildlife research summaries
Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.
2002-01-01
In 1980, when the U.S. Congress enacted the Alaska National Interest Lands Conservation Act (ANILCA), it also mandated a study of the coastal plain of the Arctic National Wildlife Refuge. Section 1002 of ANILCA stated that a comprehensive inventory of fish and wildlife resources would be conducted on 1.5 million acres of the Arctic Refuge coastal plain (1002 Area). Potential petroleum reserves in the 1002 Area were also to be evaluated from surface geological studies and seismic exploration surveys. Results of these studies and recommendations for future management of the Arctic Refuge coastal plain were to be prepared in a report to Congress.In 1987, the Department of the Interior published the Arctic National Wildlife Refuge, Alaska, Coastal Plain Resource Assessment - Report and Recommendations to the Congress of the United States and Final Environmental Impact Statement. This report to Congress identified the potential for oil and gas production (updated* most recently by the U.S. Geological Survey in 2001), described the biological resources, and evaluated the potential adverse effects to fish and wildlife resources. The 1987 report analyzed the potential environmental consequences of five management alternatives for the coastal plain, ranging from wilderness designation to opening the entire area to lease for oil and gas developement. The report's summary recommended opening the 1002 Area to an orderly oil and gas leasing program, but cautioned that adverse effects to some wildlife populations were possible.Congress did not act on this recommendation nor any other alternative for the 1002 Area, and scientists continued studies of key wildlife species and habitats on the coastal plain of the Arctic Refuge and surrounding areas. This report contains updated summaries of those scientific investigations of caribou, muskoxen, predators (grizzly bears, wolves, golden eagles), polar bears, snow geese, and their wildlife habitats.Contributions to this report were made by scientists affiliated with the U.S. Geological Survey; U.S. Fish and Wildlife Service; Alaska Department of Fish and Game; University of Alaska-Fairbanks; Canadian Wildlife Service; Yukon Department of Renewable Resources; and the Northwest Territories Department of Resources, Wildlife, and Economic Development.Sections of the report presenting new information on caribou and forage plants were peer-reviewed by three independent, non-affiliated scientists. The remaining sections summarize previously published peer-reviewed scientific papers and were reviewed by a single independent scientist. The U.S. Geological Survey and the U.S. Fish and Wildlife Service collaborated in the publication of this report.
Farid, Asam; Khalid, Perveiz; Jadoon, Khan Zaib; Jouini, Mohammed Soufiane
2014-10-01
Geostatistical variogram and inversion techniques combined with modern visualization tools have made it possible to re-model one-dimensional electrical resistivity data into two-dimensional (2D) models of the near subsurface. The resultant models are capable of extending the original interpretation of the data to depict alluvium layers as individual lithological units within the 2D space. By tuning the variogram parameters used in this approach, it is then possible to visualize individual lithofacies and geomorphological features for these lithologic units. The study re-examines an electrical resistivity dataset collected as part of a groundwater study in an area of the Bannu basin in Pakistan. Additional lithological logs from boreholes throughout the area have been combined with the existing resistivity data for calibration. Tectonic activity during the Himalayan orogeny uplifted and generated significant faulting in the rocks resulting in the formation of a depression which subsequently has been filled with clay-silt and dirty sand facies typical of lacustrine and flood plain environments. Streams arising from adjacent mountains have reworked these facies which have been eroded and replaced by gravel-sand facies along channels. It is concluded that the sediments have been deposited as prograding fan shaped bodies, flood plain, and lacustrine deposits. Clay-silt facies mark the locations of paleo depressions or lake environments, which have changed position over time due to local tectonic activity and sedimentation. The Lakki plain alluvial system has thus formed as a result of local tectonic activity with fluvial erosion and deposition characterized by coarse sediments with high electrical resistivities near the mountain ranges and fine sediments with medium to low electrical resistivities towards the basin center.
Geologic Stratigraphy, Delta Morphology, and Regional History of Hypanis Delta, Mars
NASA Astrophysics Data System (ADS)
Adler, J.; Bell, J. F., III; Warner, N. H.; Fawdon, P.; Gupta, S.; Sefton-Nash, E.; Grindrod, P. M.; Davis, J.
2016-12-01
Hypanis is a large Noachian aged fan-shaped deposit that has been interpreted by many as being a delta in Xanthe Terra along the dichotomy boundary. The position of the putative delta at the edge of an open basin and its preserved morphology including potential access to bottomset beds had made Hypanis a compelling candidate future landing site for Mars 2020 and ExoMars. Its topographic location, without a clear local closed basin, may even imply a large northern sea. We further previous studies of Hypanis delta by 1) analyzing the stratigraphy of floor plains materials surrounding ancient deltaic deposits 2) conducting a survey of sedimentary bed strike and dip distribution, and 3) presenting a regional history model that includes a diversity of volcanic, sedimentary, tectonic, and impact processes identified. Hypanis delta has previously been dated at 3.8 Ga based on crater counts in the Hypanis Valles catchment and previous fluvial system analysis estimates 150 km3 of sediment deposited. We utilize 17 HiRISE and 8 CTX DTMs to measure fluvial and stratigraphic quantities, a CTX 5 m/pixel mosaic basemap (USGS), and THEMIS day/night IR images. We determine map unit stratigraphy (relative ages) from superposition and cross cutting relationships supported in our 3D models. We discuss periods of subaqueous sedimentation, fluvial migration, volcanic resurfacing, and multiple periods of erosion throughout the study region to explain the observed morphologies and inferred geologic timeline. Additional work focuses on newly discovered tectonic features prevalent in the low-lying plains unit. These 2 m wide linear features suggest orthogonal jointing and relatively recent faulting. We assess whether these features could be related to the cooling of Hesperian lava plains or isostatic uplift from a removed glacier or eroded landmass.
Huifeng Hu; G.Geoff Wang; Joan L. Walker; Benjamin O. Knapp
2012-01-01
Throughout the southeastern United States, land managers are currently interested in converting loblolly pine (Pinus taeda L.) plantations to species rich longleaf pine (Pinus palustris Mill.) ecosystems. In a 3-year study on moderately well- to well-drained soils of the Lower Coastal Plain in North Carolina, we examined the...
The High Plains Aquifer, USA: Groundwater development and sustainability
Dennehy, K.F.; Litke, D.W.; McMahon, P.B.
2002-01-01
The High Plains Aquifer, located in the United States, is one of the largest freshwater aquifers in the world and is threatened by continued decline in water levels and deteriorating water quality. Understanding the physical and cultural features of this area is essential to assessing the factors that affect this groundwater resource. About 27% of the irrigated land in the United States overlies this aquifer, which yields about 30% of the nation's groundwater used for irrigation of crops including wheat, corn, sorghum, cotton and alfalfa. In addition, the aquifer provides drinking water to 82% of the 2.3 million people who live within the aquifer boundary. The High Plains Aquifer has been significantly impacted by human activities. Groundwater withdrawals from the aquifer exceed recharge in many areas, resulting in substantial declines in groundwater level. Residents once believed that the aquifer was an unlimited resource of high-quality water, but they now face the prospect that much of the water may be gone in the near future. Also, agricultural chemicals are affecting the groundwater quality. Increasing concentrations of nitrate and salinity can first impair the use of the water for public supply and then affect its suitability for irrigation. A variety of technical and institutional measures are currently being planned and implemented across the aquifer area in an attempt to sustain this groundwater resource for future generations. However, because groundwater withdrawals remain high and water quality impairments are becoming more commonplace, the sustainability of the High Plains Aquifer is uncertain.
Woodside, M.D.; Simerl, B.R.
1995-01-01
Because nutrients can cause water-quaiity degradation, a major focus of NAWQA is to investigate effects of nutrients on surface- and ground-water quality. This report summarizes surface-water quality study design and land uses in the NAWQA Albemarle-Pamlico Drainage Basin study unit, one of 60 study units nationwide, and shows how nutrient concentrations are related to land uses at selected basins in the study unit. The study area encompasses about 28,000 square miles (mi2) in central and eastern North Carolina and southern Virginia. The major river basins in the Albemarle-Pamlico Drainage Basin are the Chowan, Roanoke, Tar, and Neuse. The barrier islands, estuaries, and the AlbemarIe, Pamlico, and associated sounds are not included in the study-unit area. The Albemarle-Pamlico Drainage Basin covers four physiographic provinces:Valley and Ridge, Blue Ridge, Piedmont, and Coastal Plain. About 50 percent of the land in the study areais forested, 30 percent is cropland, 15 percent is wetland, and 5 percent is developed. The population--of the study unit is about 3 million people.
Estimated historical distribution of grassland communities of the Southern Great Plains
Reese, Gordon C.; Manier, Daniel J.; Carr, Natasha B.; Callan, Ramana; Leinwand, Ian I.F.; Assal, Timothy J.; Burris, Lucy; Ignizio, Drew A.
2016-12-07
The purpose of this project was to map the estimated distribution of grassland communities of the Southern Great Plains prior to Euro-American settlement. The Southern Great Plains Rapid Ecoregional Assessment (REA), under the direction of the Bureau of Land Management and the Great Plains Landscape Conservation Cooperative, includes four ecoregions: the High Plains, Central Great Plains, Southwestern Tablelands, and the Nebraska Sand Hills. The REA advisors and stakeholders determined that the mapping accuracy of available national land-cover maps was insufficient in many areas to adequately address management questions for the REA. Based on the recommendation of the REA stakeholders, we estimated the potential historical distribution of 10 grassland communities within the Southern Great Plains project area using data on soils, climate, and vegetation from the Natural Resources Conservation Service (NRCS) including the Soil Survey Geographic Database (SSURGO) and Ecological Site Information System (ESIS). The dominant grassland communities of the Southern Great Plains addressed as conservation elements for the REA area are shortgrass, mixed-grass, and sand prairies. We also mapped tall-grass, mid-grass, northwest mixed-grass, and cool season bunchgrass prairies, saline and foothill grasslands, and semi-desert grassland and steppe. Grassland communities were primarily defined using the annual productivity of dominant species in the ESIS data. The historical grassland community classification was linked to the SSURGO data using vegetation types associated with the predominant component of mapped soil units as defined in the ESIS data. We augmented NRCS data with Landscape Fire and Resource Management Planning Tools (LANDFIRE) Biophysical Settings classifications 1) where NRCS data were unavailable and 2) where fifth-level watersheds intersected the boundary of the High Plains ecoregion in Wyoming. Spatial data representing the estimated historical distribution of grassland communities of the Southern Great Plains are provided as a 30 x 30-meter gridded surface (raster dataset). This information will help to address the priority management questions for grassland communities for the Southern Great Plains REA and can be used to inform other regional-level land management decisions.
NASA Technical Reports Server (NTRS)
Dobrea, E. Z. Noe; Bishop, J. L.; McKeown, N. K.; Swayze, G.; Michalski, J. R.; Poulet, F.; Bibring, J.-P.; Mustard, J. F.; Ehlmann, B. L.; Arvidson, R.;
2007-01-01
The largest exposure of phyllosilicates on Mars occurs on the highland plains around Mawrth Vallis. This exposure extends for about 300 km southward from the edge of the dichotomy boundary, covering an area greater than 200 x 300 kilometers over an elevation range of approximately 2000 meters. At least two different types of hydrated phyllosilicates (Fe/Mg-rich and Al-rich phyllosilicates) have been identified in OMEGA data based on absorption bands near 2.3 and 2.2 micrometers, respectively. These clay-bearing units are associated with layered, indurated light-toned units with complex spatial and stratigraphic relationships, and are unconfomably overlain by a darker, indurated, more heavily cratered unit. Ongoing analysis of OMEGA (approximately 1 kilometer/pixel) and CRISM multi-spectral (MSP, 200 meters/pixel) data reveal hydrated minerals with absorptions at approximately 2.2 or 2.3 micrometers in locations up to 300 kilometers away from the borders of the previously identified extent of clay-bearing units. We seek to: 1) further constrain the mineralogy of the hydrated species identified in [5], and 2) understand spatial and stratigraphic relationships between the different hydrated minerals and the cratered plains units in which they are found. In this work we perform mineralogical and stratigraphic comparisons between units to test whether these extended units may be related, in order to establish a broad zone of alteration.
Areas Contributing Recharge to Wells in the Tafuna-Leone Plain, Tutuila, American Samoa
Izuka, Scot K.; Perreault, Jeff A.; Presley, Todd K.
2007-01-01
To address the concerns about the potential for contamination of drinking-water wells in the Tafuna-Leone Plain, Tutuila, American Samoa, a numerical ground-water flow model was developed and used to delineate areas contributing recharge to the wells (ACRWs). Surveys and analyses were conducted to obtain or compile certain essential hydrogeologic information needed for the model, such as groundwater production statistics, ground-water levels under current production, and an assessment of the distribution of groundwater recharge. The ground-water surveys indicate that total production from all wells in the Tafuna-Leone Plain between 1985 and 2005 averaged 6.1 Mgal/d and showed a gradual increase. A synoptic survey indicates that current water levels in the Tafuna-Leone Plain are highest near its inland boundary, decrease toward the coast, and are slightly depressed in high-production well fields. Ground-water levels showed little effect from the increased production because hydraulic conductivites are high and withdrawal is small relative to recharge. Analysis of ground-water recharge using a soil water-budget analysis indicates that the Tafuna-Leone Plain and adjacent areas receive about 280 Mgal/d of water from rainfall, of which 24 percent runs off to the ocean, 26 percent is removed by evapotranspiration, and 50 percent goes to ground-water recharge. Ground-water recharge per unit area is generally higher at the mountain crests than at the coast, but the highest recharge per unit area is in the mountain-front recharge zone at the juncture between the Tafuna-Leone Plain and the adjacent mountains. Surface water from the mountains also contributes to ground-water recharge in the eastern Tafuna-Leone Plain, in a process analogous to mountain-front recharge described in arid areas. Analysis of stream-gage data indicates that in the mountains of Tutuila, ground water discharges and contributes substantially to the total flow of the streams. In contrast, multiple lines of evidence indicate that in the eastern Tafuna-Leone Plain, surface water recharges the highly permeable underlying aquifer. Steady-state model simulations representing current ground-water production conditions in the Tafuna-Leone Plain indicate that most ACRWs extend less than a mile from the production wells; thus, travel distance between any point within an ACRW and its well is short. A simulation representing a condition in which all wells are operating at maximum capacity resulted in larger ACRWs, which demonstrates that increasing ground-water withdrawal from existing wells, or building and developing new wells, increases the surface area that could potentially contribute contaminants. In some places, such as in Malaeimi Valley, water can travel quickly via surface-water routes to an area where the water can infiltrate within the ACRWs of a well field.
User account | National Agricultural Library
Skip to main content Home National Agricultural Library United States Department of Agriculture Ag registered trademark of Dries Buytaert. NAL Home | USDA.gov | Agricultural Research Service | Plain Language
7 CFR 610.4 - Technical assistance furnished.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., zoning (rural, urban, and flood plain), school, and institution boards, highway departments, and tax assessors. (3) Citizen groups, youth groups, recreation groups, and garden clubs. (4) State and local units...
7 CFR 610.4 - Technical assistance furnished.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., zoning (rural, urban, and flood plain), school, and institution boards, highway departments, and tax assessors. (3) Citizen groups, youth groups, recreation groups, and garden clubs. (4) State and local units...
Cerberus Plains: A most excellent Pathfinder landing site
NASA Technical Reports Server (NTRS)
Plescia, Jeff B.
1994-01-01
The Cerberus Plains in southeastern Elysium and western Amazonis cover greater than 10(exp 5) sq km, extending an east-west distance of approximately 3000 km and a north-south distance of up to 700 km near 195 deg. Crater numbers are 89 plus or minus 15 craters greater than 1 km/10(exp 6) sq km, indicating a stratigraphic age of Upper Amazonian and an absolute age of 200-500 Ma. The material forming the surface is referred to as the Cerberus Formation. The two ideas postulated about the unit's origin are fluvial and volcanic. Regardless of which interpretation is correct, the Cerberus Plains is an important candidate for a pathfinder landing site because it represents the youngest major geologic event (be it fluvial or volcanic) on Mars.
Hydrogeologic Framework of the New Jersey Coastal Plain
Zapecza, Otto S.
1989-01-01
This report presents the results of a water-resources, oriented subsurface mapping program within the Coastal Plain of New Jersey. The occurrence and configuration of 15 regional hydrogeologic units have been defined, primarily on the basis of an interpretation of borehole geophysical data. The nine aquifers and six confining beds are composed of unconsolidated clay, silt, sand, and gravel and range in age from Cretaceous to Quaternary. Electric and gamma-ray logs from more than 1,000 Coastal Plain wells were examined. Of these, interpretive data for 302 sites were selected, on the basis of logged depth, quality of data, and data distribution, to prepare structure contour and thickness maps for each aquifer and a thickness map for each confining bed. These maps, together with 14 hydrogeologic sections, show the geometry, lateral extent, and vertical and horizontal relationships among the 15 hydrogeologic units. The hydrogeologic maps and sections show that distinct lower, middle, and upper aquifers are present within the Potomac, Raritan-Magothy aquifer system near the Delaware River from Burlington County to Salem County. Although the lower aquifer is recognized only in this area, the middle aquifer extends into the northeastern Coastal Plain of New Jersey, where it is stratigraphically equivalent to the Farrington aquifer. The upper aquifer extends throughout most of the New Jersey Coastal Plain and is stratigraphically equivalent to the Old Bridge aquifer in the northeastern Coastal Plain. The overlying Merchantville-Woodbury confining bed is the most regionally extensive confining bed within the New Jersey Coastal Plain. Its thickness ranges from less than 100 feet near the outcrop to more than 450 feet along the coast. The Englishtown aquifer system acts as a single aquifer throughout most of its subsurface extent, but it contains two water-bearing sands in pars of Monmouth and Ocean Counties. The overlying Marshalltown-Wenonah confining bed is a thin, leaky unit ranging in thickness from approximately 20 to 80 feet. The Wenonah-Mount Laurel aquifer is identified in the subsurface throughout the New Jersey Coastal Plain southeast of its outcrop area. Sediments that overlie the Wenonah-Mount Lauren aquifer and that are subjacent to the major aquifers within the Kirkwood Formation and the Cohansey Sand are described hydrologically as a composite confining bed. These include the Navesink Formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Formation, and Piney Point Formation and the basal clay of the Kirkwood Formation.. The Vincentown Formation functions as n aquifer within 3 to 10 miles downdip of its outcrop area. In areas farther downdip the Vincentown Formation functions as a confining bed. The Piney Point aquifer is laterally persistent from the southern New Jersey Coastal Plain northward into parts of Burlington and Ocean Counties. The Atlantic City 800-foot sand of the Kirkwood Formation can be recognized in the subsurface along coastal areas of Cape May, Atlantic, and southern Ocean Counties, but inland only as far west as the extent of the overlying confining bed. In areas west of the extent of the overlying confining bed, the Kirkwood Formation is in hydraulic connection with the overlying Cohansey Sand and younger surficial deposits and functions as an unconfined aquifer.
Effects of fire in the Northern Great Plains
Higgins, Kenneth F.; Kruse, Arnold D.; Piehl, James L.
1989-01-01
This publication is a review of selected literature about prescribed burning in the Northern Great Plains (NGP) for management of wildlife. It also will be useful to other resource managers and researchers and to persons interested in the NGP. It is more 'descriptive' than 'interpretative.'The publication is a joint effort of the South Dakota State Cooperative Fish and Wildlife Research Unit (SDCFWRU), South Dakota State University, Brookings; the Northern Prairie Wildlife Research Center (NPWRC), Jamestown, N.D.; and the U.S. Fish and Wildlife Service (USFWS), Fergus Falls, Minn. Manuscript typing and library services were shared between SDCFWRU and NPWRC.This publication (EC 761) is the second of three SDSU Extension circulars on grassland fires. EC 760 is Prescribed burning guidelines in the Northern Great Plains; EC 762 is Annotated bibliography of fire literature relative to northern grasslands in South-Central Canada and North-Central United States and contains many more citations than presented in this publication. All three circulars may be obtained from either the Wildlife and Fisheries Sciences Department; SDSU Box 2206; ph (605) 688-6121; or from the Ag Communications Bulletin Room; SDSU Box 2231; ph (605) 688-5628; both in Brookings, S.D. 57007.
Volcano-ice interactions on Mars
NASA Technical Reports Server (NTRS)
Allen, C. C.
1979-01-01
Central volcanic eruptions beneath terrestrial glaciers have built steep-sided, flat-topped mountains composed of pillow lava, glassy tuff, capping flows, and cones of basalt. Subglacial fissure eruptions produced ridges of similar composition. In some places the products from a number of subglacial vents have combined to form widespread deposits. The morphologies of these subglacial volcanoes are distinctive enough to allow their recognition at the resolutions characteristic of Viking orbiter imagery. Analogs to terrestrial subglacial volcanoes have been identified on the northern plains and near the south polar cap of Mars. The polar feature provides probable evidence of volcanic eruptions beneath polar ice. A mixed unit of rock and ice is postulated to have overlain portions of the northern plains, with eruptions into this ground ice having produced mountains and ridges analogous to those in Iceland. Subsequent breakdown of this unit due to ice melting revealed the volcanic features. Estimated heights of these landforms indicate that the ice-rich unit once ranged from approximately 100 to 1200 m thick.
Robinson, J.W.; McCabea, P.J.
1997-01-01
Excellent three-dimensional exposures of the Upper Jurassic Salt Wash Sandstone Member of the Morrison Formation in the Henry Mountains area of southern Utah allow measurement of the thickness and width of fluvial sandstone and shale bodies from extensive photomosaics. The Salt Wash Sandstone Member is composed of fluvial channel fill, abandoned channel fill, and overbank/flood-plain strata that were deposited on a broad alluvial plain of low-sinuosity, sandy, braided streams flowing northeast. A hierarchy of sandstone and shale bodies in the Salt Wash Sandstone Member includes, in ascending order, trough cross-bedding, fining-upward units/mudstone intraclast conglomerates, singlestory sandstone bodies/basal conglomerate, abandoned channel fill, multistory sandstone bodies, and overbank/flood-plain heterolithic strata. Trough cross-beds have an average width:thickness ratio (W:T) of 8.5:1 in the lower interval of the Salt Wash Sandstone Member and 10.4:1 in the upper interval. Fining-upward units are 0.5-3.0 m thick and 3-11 m wide. Single-story sandstone bodies in the upper interval are wider and thicker than their counterparts in the lower interval, based on average W:T, linear regression analysis, and cumulative relative frequency graphs. Multistory sandstone bodies are composed of two to eight stories, range up to 30 m thick and over 1500 m wide (W:T > 50:1), and are also larger in the upper interval. Heterolithic units between sandstone bodies include abandoned channel fill (W:T = 33:1) and overbank/flood-plain deposits (W:T = 70:1). Understanding W:T ratios from the component parts of an ancient, sandy, braided stream deposit can be applied in several ways to similar strata in other basins; for example, to (1) determine the width of a unit when only the thickness is known, (2) create correlation guidelines and maximum correlation lengths, (3) aid in interpreting the controls on fluvial architecture, and (4) place additional constraints on input variables to stratigraphie and fluid-flow modeling. The usefulness of these types of data demonstrates the need to develop more data sets from other depositional environments.
Owens, James Patrick; Minard, James Pierson
1979-01-01
The 'yellow gravels' referred to by R. D. Salisbury in 1898 and the 'Trenton gravel,' as defined by H. C. Lewis in 1880, were investigated along the inner edge of the New Jersey Coastal Plain in southern New Jersey and in the northern Delmarva Peninsula. The highest level deposits, the Beacon Hill gravel, are found on only the highest hills in the New Jersey Coastal Plain. Their distribution suggests deposition from north to south across the plain. After deposition of the Beacon Hill, probably in middle or late Miocene time, a narrow valley was formed paralleling the inner edge of the New Jersey Coastal Plain between Raritan Bay and Camden. South of Camden, the valley broadened, covering much of southern New Jersey. The deposits in this valley are largely the Bridgeton Formation as we have redefined it. A second narrow valley was entrenched through the Bridgeton between Trenton and Salem, N.J. This valley broadens and covers much of the northern Delmarva Peninsula west of the Delaware River. The fill in the valley is largely the Pensauken Formation, as we have redefined it in our report. Collectively, the Beacon Hill, the Bridgeton, and the Pensauken were originally the 'yellow gravels' of Salisbury. These deposits are all fluviatile in origin and were largely formed as a series of step like downcutting channels. The Delaware Valley between Trenton and the lower Delaware Bay region is occupied by the 'Trenton gravel,' which is below the average level of the 'yellow gravels.' Two units recognized throughout the area and informally named the Spring Lake beds and the Van Sciver Lake beds are lithologically distinct from the 'yellow gravel' formations. The lithologies of the Spring Lake beds and the Van Sciver Lake beds are much more heterogeneous than those of the older formations. These two units, particularly, contain much greater amounts of silt and clay, often in thick beds. The depositional environments associated with the two units include fluviatile, estuarine, and marginal marine. Both these units are interpreted to be late Pleistocene (Sangamonian) in age.
NASA Astrophysics Data System (ADS)
Hurley, Alexander; Kettridge, Nicholas; Devito, Kevin; Hokanson, Kelly; Krause, Stefan
2017-04-01
Hydrologic connectivity in the sub-humid Western Boreal Plain is largely controlled by storage-threshold dynamics where deep and coarse glacial deposits with high infiltration and storage capacities are prevalent. Here, vertical fluxes generally dominate over surface runoff, which has return periods of several years. Within this landscape, small, ephemeral wetlands with shallow peat soils are embedded in a matrix of other landscape units. They are typically gently-sloped and found in low-lying areas within forests or along margins of other wetlands. These ephemeral wetlands frequently saturate, and thus promote lateral water transfer as surface runoff or subsurface flows to adjacent and downstream systems. In the Western Boreal Plain, the importance of such water transmitting units (WTUs) is exacerbated by regional, multi-year water deficits resulting from inter-annual precipitation variability, and high evapotranspirative (ET) demand coinciding with most of the annual precipitation. Hence, the occurrence of WTUs may be key to maintaining the ecohydrological functioning of systems with temporary or missing connections to ground- or surface water. We present a conceptual model of these shallow, ephemeral wetlands based on our current understanding of dominant, ecohydrological processes promoting water transmission and highlight current knowledge gaps. Ongoing research focuses on quantifying individual water balance components, identifying potential feedback mechanisms between vegetation, soil properties and layering, and how climate modulates them. Key questions are: (1) What are dominant water balance components and their seasonal and internal dynamics? (2) Do vegetation structure and community composition decrease ET losses from the soil surface and wetland vegetation by shading and sheltering (i.e. decoupling from turbulent atmospheric exchange)? (3) Do adjacent upland and wetland systems depend on water transmission to maintain their functioning and productivity? (4) Are saturation and lateral water transport enhanced by the formation of surface-near ice layers by decreasing storage capacity, and does spatial variability of soil properties affect this process? Ultimately, this work will contribute to a growing knowledge base on the ecohydrological functioning of landscape units and catchment dynamics of the Western Boreal Plain.
NASA Astrophysics Data System (ADS)
Wardell, Nigel; Camerlenghi, Angelo; Urgeles, Roger; Geletti, Riccardo; Tinivella, Umberta; Giustiniani, Michela; Accettella, Daniela
2014-05-01
The south Balearic margin is characterized by an abrupt tectonically-controlled transition between a steep continental slope (Emile Baudot escarpment) and the Algero-Balearic abyssal plain, in which Messinain salt-induced deformation affects the seafloor morphology. Multichannel seismic profiles, multibeam bathymetry, and shallow seismic data demonstrate that the extent of salt deformation does not coincide with the bathymetric plain-slope transition. Instead, deformation occurs south of linear structure in the abyssal plain located some tens of kilometres from the base of the slope. The quality of the multi-channel seismic record in the deep water deformed area is severely decreased by the three dimensional character of the salt structures. However, the abyssal plain near the base of the slope reveals details on the Messinian sequence, its structure, post-Messinan deformation, and relation with subsurface fluids. The analysis of part of the EUROFLEETS SALTFLU multichannel seismic data set has included detailed RMS velocity analysis, post-stack and pre-stack time migration. An anomalously thick (up to 800 ms twt) acoustically laminated unit comprising the Messinian Upper Unit (UU) is present near the base of the slope and is characterized by syn-sedimentary gentle symmetric folding. The crests of such folds are affected by small-offset, layer-bound fractures and faults propagating from the upper part to the UU to the Plio-Quaternary sequence. Amplitude anomalies, polarity inversion and at times acoustic blanking reveal the presence of fluids (presumably gas) within the Messinian sequence. A clear seismic evidence for the Mobile Unit (MU, or salt layer) is missing in this area. Seismic evidence for the MU exists south of the linear structural boundary, where salt induced deformation has created vertical displacements of several hundreds of metres, diapiric growth, and at least two salt/mud piercement structures at the seafloor. In the highly deformed area, the UU and the Lower Unit (LU) appear to amalgamate as a consequence of complete salt withdrawal around diapirs. The seismic analysis is focussed on determining whether the boundary between low and high degree of deformation in the abyssal plain is determined by the limit of the salt distribution. In this case the northern limit of the Messinian pure salt basin would not coincide with the present day continental slope, thus requiring either a strong control of Messinian tectonic structures an salt deposition and/or a contamination of salt with clastics.
Geologic Map of the Goleta Quadrangle, Santa Barbara County, California
Minor, Scott A.; Kellogg, Karl S.; Stanley, Richard G.; Brandt, Theodore R.
2007-01-01
This map depicts the distribution of bedrock units and surficial deposits and associated deformation underlying those parts of the Santa Barbara coastal plain and adjacent southern flank of the Santa Ynez Mountains within the Goleta 7 ?? quadrangle at a compilation scale of 1:24,000 (one inch on the map = 2,000 feet on the ground) and with a horizontal positional accuracy of at least 20 m. The Goleta map overlaps an earlier preliminary geologic map of the central part of the coastal plain (Minor and others, 2002) that provided coverage within the coastal, central parts of the Goleta and contiguous Santa Barbara quadrangles. In addition to new mapping in the northern part of the Goleta quadrangle, geologic mapping in other parts of the map area has been revised from the preliminary map compilation based on new structural interpretations supplemented by new biostratigraphic data. All surficial and bedrock map units are described in detail in the accompanying map pamphlet. Abundant biostratigraphic and biochronologic data based on microfossil identifications are presented in expanded unit descriptions of the marine Neogene Monterey and Sisquoc Formations. Site-specific fault-kinematic observations (including slip-sense determinations) are embedded in the digital map database. The Goleta quadrangle is located in the western Transverse Ranges physiographic province along an east-west-trending segment of the southern California coastline about 100 km (62 mi) northwest of Los Angeles. The Santa Barbara coastal plain surface, which spans the central part of the quadrangle, includes several mesas and hills that are geomorphic expressions of underlying, potentially active folds and partly buried oblique and reverse faults of the Santa Barbara fold and fault belt (SBFFB). Strong earthquakes have occurred offshore within 10 km of the Santa Barbara coastal plain in 1925 (6.3 magnitude), 1941 (5.5 magnitude) and 1978 (5.1 magnitude). These and numerous smaller seismic events located beneath and offshore of the coastal plain, likely occurred on reverse-oblique-slip faults that are similar to, or continuous with, Quaternary reverse faults crossing the coastal plain. Thus, faults of the SBFFB pose a significant earthquake hazard to the approximately 200,000 people living within the major coastal population centers of Santa Barbara and Goleta. In addition, numerous Quaternary landslide deposits along the steep southern flank of the Santa Ynez Mountains indicate the potential for continued slope failures and mass movements in developed areas. Folded, faulted, and fractured sedimentary rocks in the subsurface of the coastal plain and adjacent Santa Barbara Channel are sources and form reservoirs for economic deposits of oil and gas, some of which are currently being extracted offshore. Shallow, localized sedimentary aquifers underlying the coastal plain provide limited amounts of water for the urban areas, but the quality of some of this groundwater is compromised by coastal salt-water contamination. The present map compilation provides a set of uniform geologic digital coverages that can be used for analysis and interpretation of these and other geologic hazards and resources in the Goleta region.
Brown, Philip M.; Brown, D.L.; Reid, M.S.; Lloyd, O.B.
1979-01-01
The report describes the subsurface distribution of rocks of Cretaceous to Late Jurassic( ) age in the Atlantic Coastal Plain , South Carolina, and Georgia, and examines their potential for deep-well waste storage into th part of the regional sediment mass which lies below the deepest zones containing usable ground waters. For the study, usable ground water is considered to be that which contains less than 10,000 mg/L dissolved solids. Using a group of geohydrologic parameters derived from or combining 21 categories of basic data, established from study and interpretation of well cuttings and geophysical logs, a series of 32 regional maps and 8 stratigraphic cross sections was constructed. For each of the eight geologic units delineated in the subsurface, the maps illustrate the distribution of waste-storage potential in terms of areal extent, depth below land surface, sand-shale geometry, and the approximate sodium chloride concentration of a unit 's nonusable ground water. In areas where the geologic units contain nonusable ground water, the depth below land surface and the thickness of potential waste-storage reservoir and reservoir-seal combinations are variable. The range in variability appears to be broad enough to meet the need for a wide choice among the geologic requirements that would normally be considered in selecting specific waste-storage sites for detailed examination. (Woodard-USGS)
NASA Astrophysics Data System (ADS)
Grenier, Christophe; Régnier, Damien; Mouche, Emmanuel; Benabderrahmane, Hakim; Costard, François; Davy, Philippe
2013-02-01
The impact of glaciation cycles on groundwater flow was studied within the framework of nuclear waste storage in underground geological formations. The eastern section of the Paris Basin (a layered aquifer with impervious/pervious alternations) in France was considered for the last 120 ka. Cold periods corresponded with arid climates. The issue of talik development below water bodies was addressed. These unfrozen zones can maintain open pathways for aquifer recharge. Transient thermal evolution was simulated on a small-scale generic unit of the landscape including a "river" and "plain". Coupled thermo-hydraulic modeling and simplified conductive heat transfer were considered for a broad range of scenarios. The results showed that when considering the current limited river dimensions and purely conductive heat transfer, taliks are expected to close within a few centuries. However, including coupled advection for flows from the river to the plain (probably pertinent for the eastern Paris Basin aquifer recharge zones) strongly delays talik closure (millennium scale). The impact on regional underground flows is expected to vary from a complete stop of recharge to a reduced recharge, corresponding to the talik zones. Consequences for future modeling approaches of the Paris Basin are discussed.
3/29/2018: Making Data Machine-Readable Webinar | National Agricultural
Library Skip to main content Home National Agricultural Library United States Department of | USDA.gov | Agricultural Research Service | Plain Language | FOIA | Accessibility Statement | Information
Geology of the Lachesis Tessera Quadrangle (V-18), Venus
NASA Technical Reports Server (NTRS)
McGowan, Eileen M.; McGill, George G.
2010-01-01
The Lachesis Tessera Quadrangle (V-18) lies between 25deg and 50deg north, 300deg and 330deg east. Most of the quadrangle consists of "regional plains" (1) of Sedna and Guinevere Planitiae. A first draft of the geology has been completed, and the tentative number of mapped units by terrain type is: tesserae - 2; plains - 4; ridge belts - 1; fracture belts - 1 (plus embayed fragments of possible additional belts); coronae - 5; central volcanoes - 2; shield flows - 2; paterae - 1; impact craters - 13; undifferentiated flows - 1; bright materials - 1.
Preliminary report on geology along Atlantic Continental Margin of northeastern United States
Minard, J.P.; Perry, W.J.; Weed, E.G.A.; Rhodehamel, E.C.; Robbins, E.I.; Mixon, R.B.
1974-01-01
The U.S. Geological Survey is conducting a geologic and geophysical study of the northeastern United States outer continental shelf and the adjacent slope from Georges Bank to Cape Hatteras. The study also includes the adjacent coastal plain because it is a more accessible extension of the shelf. The total study area is about 324,000 sq km, of which the shelf and slope constitute about 181,000 sq km and the coastal plain constitutes 143,000 sq km. The shelf width ranges from about 30 km at Cape Hatteras to about 195 km off Raritan Bay and on Georges Bank. Analyses of bottom samples make it possible to construct a preliminary geologic map of the shelf and slope to a water depth of 2,000 m. The oldest beds cropping out in the submarine canyons and on the slope are of early ate Cretaceous age. Beds of Early Cretaceous and Jurassic age are present in deep wells onshore and probably are present beneath the shelf in the area of this study. Such beds are reported beneath the Scotian shelf on the northeast where they include limestone, salt, and anhydrite. Preliminary conclusions suggest a considerably thicker Mesozoic sedimentary sequence than has been described previously. The region is large; the sedimentary wedge is thick; structures seem favorable; and the hydrocarbon potential may be considerable.
Groundwater availability in the Atlantic Coastal Plain of North and South Carolina
Campbell, Bruce G.; Coes, Alissa L.
2010-01-01
The Atlantic Coastal Plain aquifers and confining units of North and South Carolina are composed of crystalline carbonate rocks, sand, clay, silt, and gravel and contain large volumes of high-quality groundwater. The aquifers have a long history of use dating back to the earliest days of European settlement in the late 1600s. Although extensive areas of some of the aquifers have or currently (2009) are areas of groundwater level declines from large-scale, concentrated pumping centers, large areas of the Atlantic Coastal Plain contain substantial quantities of high-quality groundwater that currently (2009) are unused. Groundwater use from the Atlantic Coastal Plain aquifers in North Carolina and South Carolina has increased during the past 60 years as the population has increased along with demands for municipal, industrial, and agricultural water needs. While North Carolina and South Carolina work to increase development of water supplies in response to the rapid growth in these coastal populations, both States recognize that they are facing a number of unanswered questions regarding availability of groundwater supplies and the best methods to manage these important supplies. An in-depth assessment of groundwater availability of the Atlantic Coastal Plain aquifers of North and South Carolina has been completed by the U.S. Geological Survey Groundwater Resources Program. This assessment includes (1) a determination of the present status of the Atlantic Coastal Plain groundwater resources; (2) an explanation for how these resources have changed over time; and (3) development of tools to assess the system's response to stresses from potential future climate variability. Results from numerous previous investigations of the Atlantic Coastal Plain by Federal and State agencies have been incorporated into this effort. The primary products of this effort are (1) comprehensive hydrologic datasets such as groundwater levels, groundwater use, and aquifer properties; (2) a revised hydrogeologic framework; (3) simulated water budgets of the overall study area along with several subareas; and (4) construction and calibration of a numerical modeling tool that is used to forecast the potential effects of climate change on groundwater levels.
Bern, Carleton R.; Shah, Anjana K.; Benzel, William M.; Lowers, Heather A.
2016-01-01
Rare earth element (REE) resources are currently of great interest because of their importance as raw materials for high-technology manufacturing. The REE-phosphates monazite (light REE enriched) and xenotime (heavy REE enriched) resist weathering and can accumulate in placer deposits as part of the heavy mineral assemblage. The Atlantic and Gulf coastal plains of the southeastern United States are known to host heavy mineral deposits with economic concentrations of zircon, ilmenite and rutile. This study provides a perspective on the distribution and composition of REE phosphate minerals in the region. The elemental chemistry and mineralogy of sands and associated heavy-mineral assemblages from new and archived sediment samples across the coastal plains are examined, along with phase-specific compositions of monazite, xenotime and zircon. Both monazite and xenotime are present across the coastal plains. The phase-specific compositions allow monazite content to be estimated using La as a geochemical proxy. Similarly, both Y and Yb are geochemical proxies for xenotime, but their additional presence in zircon and monazite require a correction to prevent overestimation of xenotime content. Applying this correction, maps of monazite and xenotime content across the coastal plains were generated using sample coverage from the National Geochemical Database (NGS) and National Uranium Resource Evaluation (NURE). The NGS and NURE approach of sampling stream sediments in small watersheds links samples to nearby lithologies. The results show an approximately 40 km-wide band of primarily Cretaceous, marine sediments bordering the Piedmont province from North Carolina to Alabama in which monazite and xenotime content are relatively high (up to 4.4 wt. % in < 150 μm bulk sediment). Strong correlations between concentrations of the two phases were found, with estimated monazite:xenotime ratios ranging approximately 6:1 to 12:1 depending upon the dataset analyzed. From a resource perspective, xenotime correlation with monazite indicates a heavy REE potential in coastal plain placers, and exploration may be warranted within the identified coastal plain band along the boundary of the Piedmont region.
Stanton, Jennifer S.; Qi, Sharon L.; Ryter, Derek W.; Falk, Sarah E.; Houston, Natalie A.; Peterson, Steven M.; Westenbroek, Stephen M.; Christenson, Scott C.
2011-01-01
The High Plains aquifer, underlying almost 112 million acres in the central United States, is one of the largest aquifers in the Nation. It is the primary water supply for drinking water, irrigation, animal production, and industry in the region. Expansion of irrigated agriculture throughout the past 60 years has helped make the High Plains one of the most productive agricultural regions in the Nation. Extensive withdrawals of groundwater for irrigation have caused water-level declines in many parts of the aquifer and increased concerns about the long-term sustainability of the aquifer. Quantification of water-budget components is a prerequisite for effective water-resources management. Components analyzed as part of this study were precipitation, evapotranspiration, recharge, surface runoff, groundwater discharge to streams, groundwater fluxes to and from adjacent geologic units, irrigation, and groundwater in storage. These components were assessed for 1940 through 1949 (representing conditions prior to substantial groundwater development and referred to as "pregroundwater development" throughout this report) and 2000 through 2009. Because no single method can perfectly quantify the magnitude of any part of a water budget at a regional scale, results from several methods and previously published work were compiled and compared for this study when feasible. Results varied among the several methods applied, as indicated by the range of average annual volumes given for each component listed in the following paragraphs. Precipitation was derived from three sources: the Parameter-Elevation Regressions on Independent Slopes Model, data developed using Next Generation Weather Radar and measured precipitation from weather stations by the Office of Hydrologic Development at the National Weather Service for the Sacramento-Soil Moisture Accounting model, and precipitation measured at weather stations and spatially distributed using an inverse-distance-weighted interpolation method. Precipitation estimates using these sources, as a 10-year average annual total volume for the High Plains, ranged from 192 to 199 million acre-feet (acre-ft) for 1940 through 1949 and from 185 to 199 million acre-ft for 2000 through 2009. Evapotranspiration was obtained from three sources: the National Weather Service Sacramento-Soil Moisture Accounting model, the Simplified-Surface-Energy-Balance model using remotely sensed data, and the Soil-Water-Balance model. Average annual total evapotranspiration estimated using these sources was 148 million acre-ft for 1940 through 1949 and ranged from 154 to 193 million acre-ft for 2000 through 2009. The maximum amount of shallow groundwater lost to evapotranspiration was approximated for areas where the water table was within 5 feet of land surface. The average annual total volume of evapotranspiration from shallow groundwater was 9.0 million acre-ft for 1940 through 1949 and ranged from 9.6 to 12.6 million acre-ft for 2000 through 2009. Recharge was estimated using two soil-water-balance models as well as previously published studies for various locations across the High Plains region. Average annual total recharge ranged from 8.3 to 13.2 million acre-ft for 1940 through 1949 and from 15.9 to 35.0 million acre-ft for 2000 through 2009. Surface runoff and groundwater discharge to streams were determined using discharge records from streamflow-gaging stations near the edges of the High Plains and the Base-Flow Index program. For 1940 through 1949, the average annual net surface runoff leaving the High Plains was 1.9 million acre-ft, and the net loss from the High Plains aquifer by groundwater discharge to streams was 3.1 million acre-ft. For 2000 through 2009, the average annual net surface runoff leaving the High Plains region was 1.3 million acre-ft and the net loss by groundwater discharge to streams was 3.9 million acre-ft. For 2000 through 2009, the average annual total estimated groundwater pumpage volume from two soil-water-balance models ranged from 8.7 to 16.2 million acre-ft. Average annual irrigation application rates for the High Plains ranged from 8.4 to 16.2 inches per year. The USGS Water-Use Program published estimated total annual pumpage from the High Plains aquifer for 2000 and 2005. Those volumes were greater than those estimated from the two soil-water-balance models. Total groundwater in storage in the High Plains aquifer was estimated as 3,173 million acre-ft prior to groundwater development and 2,907 million acre-ft in 2007. The average annual decrease of groundwater in storage between 2000 and 2007 was 10 million acre-ft per year.
USDA-ARS?s Scientific Manuscript database
The Center at Florence is one of the ninety research units of the United States Department of Agriculture - Agricultural Research Service (USDA-ARS). The mission of the Center is to conduct research and transfer solutions that improve agricultural production, protect the environment, and enhance the...
Ecology of bottomland oaks in the southeastern United states
Emile S. Gardiner
2001-01-01
0aks (Querczrs spp.) are among the most ecologically and economically valued trees of the floodplain forests which occupy the river valleys that dissect the Gulf and Atlantic coastal plains of the southeastem United States. In these floodplain forests, several species from the sections Quercus and Lobarae are commonly found distributed along a gradient of sites ranging...
Canopy temperature and maturity in cotton
USDA-ARS?s Scientific Manuscript database
Heat units are a widely used indicator of maturity in cotton. It is generally assumed that it takes approximately 2200°F (1222°C) heat units for a cotton plant on the South High Plains of Texas to mature. This value is based on a typical planting date of May 15 with ample irrigation. As water for c...
Productivity and carbon sequestration of forests in the southern United States
Kurt H. Johnsen; Tara L. Keyser; John R. Butnor; Carlos A. Gonzalez-Beenecke; Donald J. Kaczmarek; Chris A. Maier; Heather R. McCarthy; Ge. Sun
2014-01-01
Sixty percent of the Southern United States landscape is forested (Wear 2002). Forest types vary greatly among the five subregions of the South, which include the Coastal Plain, Piedmont, Appalachian-Cumberland, Mid-South, and the Mississippi Alluvial Valley. Current inventory data show upland hardwood forests being the predominant forest type in the South (>30...
Mountain Plains Learning Experience Guide: Marketing. Course: Cash Register Operation.
ERIC Educational Resources Information Center
Egan, B.
One of thirteen individualized courses included in a marketing curriculum, this course is on the fundamentals of operating a cash register. The course is comprised of four units: (1) Face of Cash Register, (2) Operating a Checkout Station, (3) Checker-Cashier Qualities, and (4) NCR 250 Electronic Cash Register. Each unit begins with a Unit…
Mountain Plains Learning Experience Guide: Electrical Wiring. Course: Electrical Wiring Rough-In.
ERIC Educational Resources Information Center
Arneson, R.; And Others
One of two individualized courses included in an electrical wiring curriculum, this course covers electrical installations that are generally hidden within the structure. The course is comprised of four units: (1) Outlet and Switch Boxes, (2) Wiring, (3) Service Entrance, and (4) Signal and Low Voltage Systems. Each unit begins with a Unit…
Continuous Cover Forestry in the United States--Experience With Southern Pines
James M. Guldin
2002-01-01
Continuous cover forestry (CCF) has not been common in the southern United States, but if does exist. The best record of reseurch and practice exists for mixed loblolly-shortleaf pine (Pinus taeda L.-P. echinata Mill.) stands in the Upper West Gulf Coastal Plain west of the Mississippi River. After 60 years, the Good and Poor...
USDA-ARS?s Scientific Manuscript database
Spring wheat (Triticum aestivum L.) growers and industry value adapted wheat cultivars with high quality attributes, essential criteria for maintaining wheat as a competitive crop in the spring wheat growing region of the United States. To address this goal, the breeding program at North Dakota Sta...
A Climatology of Low-Level Jet Dynamics Over the Great Plains of the United States
NASA Astrophysics Data System (ADS)
Christian, Katarina
The Great Plains Low-Level Jet (LLJ) has been studied since the early 1950s, but there remains great uncertainty within the scientific community as to how the LLJ develops. As such, it was the purpose of this study to produce a 3-year mean climatology comparing strong LLJ days to non-LLJ days to examine the most significant dynamical characteristics involved in LLJ development. Two case studies representing a strong LLJ day and non-LLJ day were also examined. The importance of weak upper level synoptic forcing and strong cumulative heating across the sloping terrain was found to be essential to the development of the LLJ. The Holton mechanism was observed for both strong LLJ days and non-LLJ days, and as such, was not found to contribute significantly to the development of the LLJ. The Blackadar mechanism was found to explain supergeostrophic wind speeds and a veering wind profile during the overnight hours.
Areally Extensive Surface Bedrock Exposures on Mars: Many Are Clastic Rocks, Not Lavas
NASA Astrophysics Data System (ADS)
Rogers, A. Deanne; Warner, Nicholas H.; Golombek, Matthew P.; Head, James W.; Cowart, Justin C.
2018-02-01
Areally extensive exposures of intact olivine/pyroxene-enriched rock, as well as feldspar-enriched rock, are found in isolated locations throughout the Martian highlands. The petrogenetic origin(s) of these rock units are not well understood, but some previous studies favored an effusive volcanic origin partly on the basis of distinctive composition and relatively high thermal inertia. Here we show that the regolith development, crater retention, and morphological characteristics for many of these "bedrock plains" are not consistent with competent lavas and reinterpret the high thermal inertia orbital signatures to represent friable materials that are more easily kept free of comminution products through eolian activity. Candidate origins include pyroclastic rocks, impact-generated materials, or detrital sedimentary rocks. Olivine/pyroxene enrichments in bedrock plains relative to surrounding materials could have potentially formed through deflation and preferential removal of plagioclase.
Synthesis on Quaternary aeolian research in the unglaciated eastern United States
NASA Astrophysics Data System (ADS)
Markewich, Helaine W.; Litwin, Ronald J.; Wysocki, Douglas A.; Pavich, Milan J.
2015-06-01
Late-middle and late Pleistocene, and Holocene, inland aeolian sand and loess blanket >90,000 km2 of the unglaciated eastern United States of America (USA). Deposits are most extensive in the Lower Mississippi Valley (LMV) and Atlantic Coastal Plain (ACP), areas presently lacking significant aeolian activity. They provide evidence of paleoclimate intervals when wind erosion and deposition were dominant land-altering processes. This study synthesizes available data for aeolian sand deposits in the LMV, the Eastern Gulf Coastal Plain (EGCP) and the ACP, and loess deposits in the Middle Atlantic Coastal Plain (MACP). Data indicate: (a) the most recent major aeolian activity occurred in response to and coincident with growth and decay of the Laurentide Ice Sheet (LIS); (b) by ∼40 ka, aeolian processes greatly influenced landscape evolution in all three regions; (c) aeolian activity peaked in OIS2; (d) OIS3 and OIS2 aeolian records are in regional agreement with paleoecological records; and (e) limited aeolian activity occurred in the Holocene (EGCP and ACP). Paleoclimate and atmospheric-circulation models (PCMs/ACMs) for the last glacial maximum (LGM) show westerly winter winds for the unglaciated eastern USA, but do not resolve documented W and SW winds in the SEACP and WNW and N winds in the MACP. The minimum areal extent of aeolian deposits in the EGCP and ACP is ∼10,000 km2. For the LMV, it is >80,000 km2. Based on these estimates, published PCMs/ACMs likely underrepresent the areal extent of LGM aeolian activity, as well as the extent and complexity of climatic changes during this interval.
4/4/2018: The Ag Data Commons Metrics | National Agricultural Library
Skip to main content Home National Agricultural Library United States Department of Agriculture Ag | Agricultural Research Service | Plain Language | FOIA | Accessibility Statement | Information Quality | Privacy
The National Coal Resource Assessment Overview
Pierce, Brenda S.; Dennen, Kristin O.
2009-01-01
The U.S. Geological Survey (USGS) has completed the National Coal Resource Assessment (NCRA), a multiyear project by the USGS Energy Resources Program, in partnership with State geological surveys in the coal producing regions of the United States. The NCRA is the first digital national coal-resource assessment. Coal beds and zones were assessed in five regions that account for more than 90 percent of the Nation's coal production - (1) the Appalachian Basin, (2) the Illinois Basin, (3) the Gulf Coastal Plain, (4) the Colorado Plateau, and (5) the Northern Rocky Mountains and Great Plains. The purpose of this Professional Paper, USGS Professional Paper 1625-F, is to present a tabulation and overview of the assessment results, insight into the methods used in the NCRA, and supplemental information on coal quality, economics, and other factors that affect coal production in the United States.
Cannon, Debra M.; Bellino, Jason C.; Williams, Lester J.
2012-01-01
A digital dataset of hydrogeologic data for Mesozoic through early Tertiary rocks in the Southeastern Coastal Plain was developed using data from five U.S. Geological Survey (USGS) reports published between 1951 and 1996. These reports contain maps and data depicting the extent and elevation of the Southeast Coastal Plain stratigraphic and hydrogeologic units in Florida and parts of Mississippi, Alabama, Georgia, and South Carolina. The reports are: Professional Paper 1410-B (Renken, 1996), Professional Paper 1088 (Brown and others, 1979), Professional Paper 524-G (Applin and Applin, 1967), Professional Paper 447 (Applin and Applin, 1965), and Circular 91 (Applin, 1951). The digital dataset provides hydrogeologic data for the USGS Energy Resources Program assessment of potential reservoirs for carbon sequestration and for the USGS Groundwater Resource Program assessment of saline aquifers in the southeastern United States. A Geographic Information System (ArcGIS 9.3.1) was used to construct 33 digital (raster) surfaces representing the top or base of key stratigraphic and hydrogeologic units. In addition, the Geographic Information System was used to generate 102 geo-referenced scanned maps from the five reports and a geo-database containing structural and thickness contours, faults, extent polygons, and common features. The dataset also includes point data of well construction and stratigraphic elevations and scanned images of two geologic cross sections and a nomenclature chart.
Groundwater quality in the Coastal Los Angeles Basin, California
Fram, Miranda S.; Belitz, Kenneth
2012-01-01
The Coastal Los Angeles Basin study unit is approximately 860 square miles and consists of the Santa Monica, Hollywood, West Coast, Central, and Orange County Coastal Plain groundwater basins (California Department of Water Resources, 2003). The basins are bounded in part by faults, including the Newport-Inglewood fault zone, and are filled with Holocene-, Pleistocene-, and Pliocene-age marine and alluvial sediments. The Central Basin and Orange County Coastal Plain are divided into a forebay zone on the northeast and a pressure zone in the center and southwest. The forebays consist of unconsolidated coarser sediment, and the pressure zones are characterized by lenses of coarser sediment divided into confined to semi-confined aquifers by lenses of finer sediments. The primary aquifer system in the study unit is defined as those parts of the aquifer system corresponding to the perforated intervals of wells listed in the California Department of Public Health (CDPH) database of public-supply wells. The majority of public-supply wells are drilled to depths of 510 to 1,145 feet, consist of solid casing from the land surface to a depth of about 300 to 510 feet, and are perforated below the solid casing. Water quality in the primary aquifer system may differ from that in the shallower and deeper parts of the aquifer systems.
3D Bedrock Structure of Bornova Plain and Its surroundings (İzmir/Western Turkey)
NASA Astrophysics Data System (ADS)
Pamuk, Eren; Gönenç, Tolga; Özdağ, Özkan Cevdet; Akgün, Mustafa
2018-01-01
An earthquake record is needed on engineering bedrock to perform soil deformation analysis. This record could be obtained in different ways (seismographs on engineering bedrock; by the help of the soil transfer function; scenario earthquakes). S-wave velocity ( V s) profile must be known at least till engineering bedrock for calculating soil transfer functions true and completely. In addition, 2D or 3D soil, engineering-seismic bedrock models are needed for soil response analyses to be carried out. These models are used to determine changes in the amplitude and frequency content of earthquake waves depending on the seismic impedance from seismic bedrock to the ground surface and the basin effects. In this context, it is important to use multiple in situ geophysical techniques to create the soil-bedrock models. In this study, 2D and 3D soil-bedrock models of Bornova plain and its surroundings (Western Turkey), which are very risky in terms of seismicity, were obtained by combined survey of surface wave and microgravity methods. Results of the study show that the engineering bedrock depths in the middle part of Bornova plain range from 200 to 400 m and the southern and northern parts which are covered limestone and andesite show the engineering bedrock ( V s > 760 m/s) feature. In addition, seismic bedrock ( V s < 3000 m/s) depth changes from 550 to 1350 m. The predominant period values obtained from single station microtremor method change from 0.45 to 1.6 s while they are higher than 1 s in the middle part of Bornova plain where the basin is deeper. Bornova Plain has a very thick sediment units which have very low V s values above engineering bedrock. In addition, it is observed sudden changes at the interfaces of the layer in horizontal and vertical directions.
A postglacial chronology for some alluvial valleys in Wyoming
Leopold, Luna Bergere; Miller, John P.
1954-01-01
Alluvial terraces were studied in several major river basins in eastern Wyoming. Three terraces are present along nearly all the streams and large tributaries. There are several extensive dissected erosion surfaces in the area, but these are much older than, and stand well above, the recent alluvial terraces with which this report is concerned.The three alluvial terraces stand respectively about 40, 10, and 5 feet above the present streams. The uppermost and oldest is a fill terrace comprised of three stratigraphic units of varying age. The oldest unit is Pleistocene and the youngest unit postdates the development of a soil zone, or paleosol, which is characterized by strong accumulation of calcium carbonate and gypsum. This paleosol is an important stratigraphic marker. The middle terrace is generally a cut terrace and is developed on the material making up the youngest alluvium of the high terrace. The lowest is a fill terrace, the surface of which is only slightly higher than the present flood plain.The oldest terrace can tentatively be traced into mountain valleys of the Bighorn Range on the basis of discontinuous remnants. The terrace remnants occur far upstream from the youngest moraine in the valleys studied. On this basis, the terrace sequence is considered to postdate the last Wisconsin ice in the Bighorn Mountains. The paleosol is tentatively correlated with Altithermal time, called in Europe the Climatic Optimum. The terrace sequence is very similar to that suggested by various workers in the southwestern United States.Two streams, Clear Creek and the Powder River, deposited comparable silty alluvium, the surface of which now comprises the highest alluvial terrace. The gradients of these former flood plains differed markedly between the two streams despite the comparability in size of material deposited. This difference in gradient is believed to have required different relative contributions of water from mountain and plain areas than now exist.Knowledge of Recent physiographic history of the area is the basis of determining the relative ages of some gully features. Certain vertical-walled channels or arroyos that might appear to be attributable to postsettlement grazing or other man-induced influences are shown to be Recent but pre-Columbian in age. Such differentiation in age of erosion features is necessary for proper understanding of present-day soil erosion problems.
Hatzell, H.H.; Oaksford, E.T.; Asbury, C.E.
1995-01-01
The implementation of design guidelines for the National Water-Quality Assessment (NAWQA) Program has resulted in the development of new sampling procedures and the modification of existing procedures commonly used in the Water Resources Division of the U.S. Geological Survey. The Georgia-Florida Coastal Plain (GAFL) study unit began the intensive data collection phase of the program in October 1992. This report documents the implementation of the NAWQA guidelines by describing the sampling design and procedures for collecting surface-water samples in the GAFL study unit in 1993. This documentation is provided for agencies that use water-quality data and for future study units that will be entering the intensive phase of data collection. The sampling design is intended to account for large- and small-scale spatial variations, and temporal variations in water quality for the study area. Nine fixed sites were selected in drainage basins of different sizes and different land-use characteristics located in different land-resource provinces. Each of the nine fixed sites was sampled regularly for a combination of six constituent groups composed of physical and chemical constituents: field measurements, major ions and metals, nutrients, organic carbon, pesticides, and suspended sediments. Some sites were also sampled during high-flow conditions and storm events. Discussion of the sampling procedure is divided into three phases: sample collection, sample splitting, and sample processing. A cone splitter was used to split water samples for the analysis of the sampling constituent groups except organic carbon from approximately nine liters of stream water collected at four fixed sites that were sampled intensively. An example of the sample splitting schemes designed to provide the sample volumes required for each sample constituent group is described in detail. Information about onsite sample processing has been organized into a flowchart that describes a pathway for each of the constituent groups.
Sequential deformation of plains along Tessera boundaries on Venus: Evidence from Alpha Regio
NASA Technical Reports Server (NTRS)
Gilmore, M. S.; Head, James W., III
1992-01-01
Tesserae are regions of elevated terrain characterized by two or more sets of ridges and grooves that intersect orthogonally. Tesserae comprise 15-20 percent of the surface of Venus, but the nature of their formation and evolution is not well understood; processes proposed to account for their characteristics are many and varied. Two types of tessera boundaries have been described: type 1 are generally embayed by plains; and type 2 boundaries are characterized by being linear at the 100-km scale and often associated with steep scarps or tectonic features. Margins such as the western edge of Alpha have been described as type 2. Some of the tessera have boundaries that display deformation of both the edge of the tessera and the adjoining plains. This study focuses on the western edge of Alpha Regio in an effort to characterize on occurrence of this type of boundary and assess the implications of the style in general. Using Magellan SAR imagery, lineament lengths, orientations, and spacing were measured for ten 50 x 60 km areas spanning 500 km of the western boundary. Structural characteristics and orientations were compared to stratigraphic units in order to assess the sequence and style of deformation.
Flood-plain areas of the Mississippi River, mile 866.8 to mile 888.0, Minnesota
Carlson, George H.; Gue, Lowell C.
1980-01-01
Profiles of the regional flood, 500-year flood, and flood-protection elevation have been developed for a 21-mile reach of the Mississippi River. Areas flooded by the regional flood and by the 500-year flood were delineated by photogrammetric mapping techniques and are shown on seven large-scale map sheets. Over 1,300 acres of flood plain are included in the cities of Anoka, Champlin, Coon Rapids, Dayton, Ramsey and Elk River, and in unincorporated areas of Wright County. The flood-outline maps and flood profiles comprise data needed by local units of government to adopt, enforce, and administer flood-plain management regulations along the Mississippi River throughout the study reach. Streamflow data from two gaging stations provided the basis for definition of the regional and 500-year floods. Cross-section data obtained at 83 locations were used to develop a digital computer model of the river. Flood elevation and discharge data from the 1965 flood provided a basis for adjusting the computer model. Information relating the history of floods, formation of ice jams, and duration of flood elevations at Anoka and at Elk River are included.
Edmonson, Jesse; Friedman, Jonathan; Meko, David; Touchan, Ramzi; Scott, Julian; Edmonson, Alan
2014-01-01
A new 368-year tree-ring chronology (A.D. 1643–2010) has been developed in western North Dakota using plains cottonwood (Populus deltoides subsp. monilifera) growing on the relatively undisturbed floodplain of the Little Missouri River in the North Unit of Theodore Roosevelt National Park. We document many slow-growing living trees between 150–370 years old that contradict the common understanding that cottonwoods grow fast and die young. In this northern location, cottonwood produces distinct annual rings with dramatic interannual variability that strongly crossdate. The detrended tree-ring chronology is significantly positively correlated with local growing season precipitation and soil moisture conditions (r = 0.69). This time series shows periods of prolonged low radial tree growth during the known droughts of the instrumental record (e.g. 1931–1939 and 1980–1981) and also during prehistory (e.g. 1816–1823 and 1856–1865) when other paleoclimate studies have documented droughts in this region. Tree rings of cottonwood will be a useful tool to help reconstruct climate, streamflow, and the floodplain history of the Little Missouri River and other northern river systems.
NASA Astrophysics Data System (ADS)
Steward, David R.; Bruss, Paul J.; Yang, Xiaoying; Staggenborg, Scott A.; Welch, Stephen M.; Apley, Michael D.
2014-05-01
The High Plains Aquifer provides groundwater for 30% of the irrigated agriculture in the USA. Within Kansas, groundwater supports the congressional district with highest market value of agriculture. And yet, over-pumping and associated groundwater declines threaten the long-term prospects. The groundwater portion of this study quantifies the availability of groundwater stores over the next 100 years. A water-use function is developed to quantify the historical and future impacts of irrigation on corn production. A relationship between corn consumption per head of cattle quantifies the herd size that can be supported by irrigated corn. Together, we project the impacts of changes in groundwater stores on corn and cattle production for the next century. Scenarios analyze the impacts of water savings today on current and future agriculture production. Reference: Steward, D. R., Bruss, P. J., Yang, X., Staggenborg, S. A., Welch, S. M. and M. D. Apley, Tapping unsustainable groundwater stores for agricultural production in the High Plains Aquifer of Kansas, projections to 2110, Proceedings of the National Academy of Sciences of the United States of America, 110(37) E3477-E3486, September 10, 2013. http://dx.doi.org/10.1073/pnas.1220351110
Geologic Mapping of V-19, V-28, and V-53
NASA Technical Reports Server (NTRS)
Stofan, E. R.; Martin, P.; Guest, J. E.
2008-01-01
The Sedna Planitia Quadrangle (V-19) extend from 25 deg N - 50 deg N latitude, 330 deg - 0 deg longitude. The quadrangle contains the northern-most portion of western Eistla Regio and the Sedna Planitia lowlands. Geologic maps of Sedna Planitia (V-199), Hecate Chasma (V-28) quadrangles have been completed at the 1:5,000,000 scale as part of the NASA Planetary Geologic Mapping Program. All quadrangles (V-53, V-28 and V-19) have been reviewed at lease once and will be resubmitted. In V-28 and V-53, more plains materials units have been mapped than in previously mapped quadrangles V-46 and V-39. V-19 is more comparable to these latter maps in terms of numbers of plains units. In V-28, all of the plains materials units to the south of the rift have an unusually high concentration of volcanic edifices, which both predate and postdate the units. A similar situation is seen in V-53 and V-19, where small edifice formation is not confined to any specific time period. In the two chasma-related quadrangles, coronae are located along the rift, as well as to the north and the south of the rifts. Coronae in both quadrangles exhibit all forms of corona topographic shapes, including depressions, rimmed depressions, plateaus and domes. In V-28 and V-53, some coronae along the rift do not have much associated volcanism; coronae with the most volcanism in these quadrangles are located at least 500 km off the rifts or on the Themis Regio highland. All three quadrangles have very horizontal stratigraphic columns, as limited contact between units prevents clear age determinations. While this results in the appearance that all units formed at the same time, the use of hachured columns for each unit illustrates the limited nature of our stratigraphic knowledge in these quadrangles, allowing for numerous possible geologic histories. The scale of resurfacing in these quadrangles is on the scale of 100s of kilometers, consistent with the fact that they lie in the most volcanic region of Venus.
NASA Astrophysics Data System (ADS)
Wagner, R. J.; Schmedemann, N.; Stephan, K.; Jaumann, R.; Neesemann, A.; Preusker, F.; Kersten, E.; Roatsch, T.; Hiesinger, H.; Williams, D. A.; Yingst, R. A.; Crown, D. A.; Mest, S. C.; Raymond, C. A.; Russell, C. T.
2017-12-01
Since March 6, 2015, the surface of dwarf planet (1) Ceres is being imaged by the FC framing camera aboard the Dawn spacecraft from orbit at various altitudes [1]. For this study we focus on images from the Survey orbit phase (4424 km altitude) with spatial resolutions of 400 m/pxl and use images and topographic data from DTMs (digital terrain models) for global geologic mapping. On Ceres' surface cratered plains are ubiquitous, with variations in superimposed crater frequency indicating different ages and processes. Here, we take the topography into account for geologic mapping and discriminate cratered plains units according to their topographic level - high-standing, medium, or low-lying - in order to examine a possible correlation between topography and surface age. Absolute model ages (AMAs) are derived from two impact cratering chronology models discussed in detail by [2] (henceforth termed LDM: lunar-derived model, and ADM: asteroid-derived model). We also apply an improved method to obtain relative ages and AMAs from crater frequency measurements termed Poisson timing analysis [3]. Our ongoing analysis shows no trend that the topographic level has an influence on the age of the geologic units. Both high-standing and low-lying cratered plains have AMAs ranging from 3.5 to 1.5 Ga (LDM), versus 4.2 to 0.5 Ga (ADM). Some areas of measurement within these units, however, show effects of resurfacing processes in their crater distributions and feature an older and a younger age. We use LAMO data (altitude: 375 km; resolution 30 m/pxl) and/or HAMO data (altitude: 1475 km; resolution 140 m/pxl) to study local geologic units and their ages, e.g., smaller impact craters, especially those not dated so far with crater measurements and/or those with specific spectral properties [4], deposits of mass wasting (e.g., landslides), and mountains, such as Ahuna Mons. Crater frequencies are used to set these geologic units into the context of Ceres' time-stratigraphic system and chronologic periods [5]. References: [1] Russell C. T., et al. (2016), Science 353, doi:10.1126/science.aaf4219. [2] Hiesinger H. H. et al. (2016), Science 353, doi:10.1126/science.aaf4759. [3] Michael G. G. et al. (2016), Icarus 277, 279-285. [4] Stephan K. et al. (2017), submitted to Icarus. [5] Mest S. C. et al. (2017), LPSC XLVIII, abstr. No. 2512.
Deposits of Claiborne and Jackson age in Georgia
Cooke, Charles Wythe; Shearer, Harold Kurtz
1919-01-01
In 1911 the Geological Survey of Georgia published as Bulletin 26 a "Preliminary report on the geology of the Coastal Plain of Georgia," by Otto Veatch and Lloyd William Stephenson, prepared in cooperation with the United States Geological Survey under the supervision of T. Wayland Vaughan, a geologist in charge of Coastal Plain investigations, who contributed the determinations of the invertebrate fossils of the Tertiary and Quaternary formations. Although this report constituted a decided advance in our knowledge of the geology of the Coastal Plain of Georgia, it was admittedly of reconnaissance character, and corrections and additions to it were to be expected. During the last few years field work has been prosecuted vigorously in the Coastal Plain of Georgia, and the additional information thus accumulated throws light upon certain problems of stratigraphy left unsolved by Veatch and Stephenson and alters considerably some of their correlations. The object of the present paper is to present the new evidence regarding the age and correlation of the Eocene formations of Georgia and to revise in accordance with present knowledge the descriptions of the deposits of Claiborne and Jackson age.
Map showing flood-prone areas, greater Denver area, Front Range Urban Corridor, Colorado
McCain, J.F.; Hotchkiss, W.R.
1975-01-01
The rapid growth of population in the Front Range Urban Corridor of Colorado is causing intense competition for available land resources. One form of competition posing serious problems in indiscriminate development on flood plains along creeks and rivers. Flood plains are natural features of the landscape developed by streams in carry water in excess of channel capacity. Although not used as often by the stream, flood plains are as much a part of the stream system as is the channel. Whenever man competes with this natural function of the flood plain he must inevitably pay the price through property damage and varying degrees of human suffering Flood damages in the United States have been estimated to average about \\$1 billion annually (American Public Works Association, 1966.) This tremendous waste of national resources is borne not only by those citizens in direct contact with floods but also to a lesser degree by all citizens through increased cost of public services. Thus, floods are of concern to the entire community, and solutions to existing or potential problems should be a community effort.
Nature, distribution, and origin of Titan’s Undifferentiated Plains
Lopes, Rosaly; Malaska, M. J.; Solomonidou, A.; Le, Gall A.; Janssen, M.A.; Neish, Catherine D.; Turtle, E.P.; Birch, S. P. D.; Hayes, A.G.; Radebaugh, J.; Coustenis, A.; Schoenfeld, A.; Stiles, B.W.; Kirk, Randolph L.; Mitchell, K.L.; Stofan, E.R.; Lawrence, K. J.; ,
2016-01-01
The Undifferentiated Plains on Titan, first mapped by Lopes et al. (Lopes, R.M.C. et al., 2010. Icarus, 205, 540–588), are vast expanses of terrains that appear radar-dark and fairly uniform in Cassini Synthetic Aperture Radar (SAR) images. As a result, these terrains are often referred to as “blandlands”. While the interpretation of several other geologic units on Titan – such as dunes, lakes, and well-preserved impact craters – has been relatively straightforward, the origin of the Undifferentiated Plains has remained elusive. SAR images show that these “blandlands” are mostly found at mid-latitudes and appear relatively featureless at radar wavelengths, with no major topographic features. Their gradational boundaries and paucity of recognizable features in SAR data make geologic interpretation particularly challenging. We have mapped the distribution of these terrains using SAR swaths up to flyby T92 (July 2013), which cover >50% of Titan’s surface. We compared SAR images with other data sets where available, including topography derived from the SARTopo method and stereo DEMs, the response from RADAR radiometry, hyperspectral imaging data from Cassini’s Visual and Infrared Mapping Spectrometer (VIMS), and near infrared imaging from the Imaging Science Subsystem (ISS). We examined and evaluated different formation mechanisms, including (i) cryovolcanic origin, consisting of overlapping flows of low relief or (ii) sedimentary origins, resulting from fluvial/lacustrine or aeolian deposition, or accumulation of photolysis products created in the atmosphere. Our analysis indicates that the Undifferentiated Plains unit is consistent with a composition predominantly containing organic rather than icy materials and formed by depositional and/or sedimentary processes. We conclude that aeolian processes played a major part in the formation of the Undifferentiated Plains; however, other processes (fluvial, deposition of photolysis products) are likely to have contributed, possibly in differing proportions depending on location.
05/04/2018: Articles citing Ag Data Commons datasets | National
Agricultural Library Skip to main content Home National Agricultural Library United States trademark of Dries Buytaert. NAL Home | USDA.gov | Agricultural Research Service | Plain Language | FOIA
Calhoun, Daniel L.; Gregory, M. Brian; Weyers, Holly S.
2008-01-01
Benthic algal and invertebrate communities in two Coastal Plain regions of the Eastern United States?the Delmarva Peninsula (27 sites) and Georgia Upper Coastal Plain (29 sites)?were assessed to determine if aspects of agricultural land use and nutrient conditions (dissolved and whole-water nitrogen and phosphorus) could be linked to biological community compositions. Extensive effort was made to compile land-use data describing the basin and riparian conditions at multiple scales to determine if scale played a role in these relations. Large differences in nutrient condition were found between the two study areas, wherein on average, the Delmarva sites had three times the total phosphorus and total nitrogen as did the sites in the Georgia Upper Coastal Plain. A statistical approach was undertaken that included multivariate correlations between Bray-Curtis similarity matrices of the biological communities and Euclidean similarity matrices of instream nutrients and land-use categories. Invertebrate assemblage composition was most associated with land use near the sampled reach, and algal diatom assemblage composition was most associated with land use farther from the streams and into the watersheds. Link tree analyses were conducted to isolate portions of nonmetric multidimensional scaling ordinations of community compositions that could be explained by break points in abiotic datasets. Invertebrate communities were better defined by factors such as agricultural land use near streams and geographic position. Algal communities were better defined by agricultural land use at the basin scale and instream nutrient chemistry. Algal autecological indices were more correlated with gradients of nutrient condition than were typically employed invertebrate metrics and may hold more promise in indicating nutrient impairment in these regions. Nutrient conditions in the respective study areas are compared to draft nutrient criteria established by the U.S. Environmental Protection Agency. Substantial reductions in some nutrients would be required to meet proposed reference conditions on the Delmarva Peninsula.
Land change variability and human-environment dynamics in the United States Great Plains
Drummond, M.A.; Auch, Roger F.; Karstensen, K.A.; Sayler, K. L.; Taylor, Janis L.; Loveland, Thomas R.
2012-01-01
Land use and land cover changes have complex linkages to climate variability and change, biophysical resources, and socioeconomic driving forces. To assess these land change dynamics and their causes in the Great Plains, we compare and contrast contemporary changes across 16 ecoregions using Landsat satellite data and statistical analysis. Large-area change analysis of agricultural regions is often hampered by change detection error and the tendency for land conversions to occur at the local-scale. To facilitate a regional-scale analysis, a statistical sampling design of randomly selected 10 km × 10 km blocks is used to efficiently identify the types and rates of land conversions for four time intervals between 1973 and 2000, stratified by relatively homogenous ecoregions. Nearly 8% of the overall Great Plains region underwent land-use and land-cover change during the study period, with a substantial amount of ecoregion variability that ranged from less than 2% to greater than 13%. Agricultural land cover declined by more than 2% overall, with variability contingent on the differential characteristics of regional human–environment systems. A large part of the Great Plains is in relatively stable land cover. However, other land systems with significant biophysical and climate limitations for agriculture have high rates of land change when pushed by economic, policy, technology, or climate forcing factors. The results indicate the regionally based potential for land cover to persist or fluctuate as land uses are adapted to spatially and temporally variable forcing factors.
Phomopsis Stem Canker: A Reemerging Threat to Sunflower (Helianthus annuus) in the United States.
Mathew, Febina M; Alananbeh, Kholoud M; Jordahl, James G; Meyer, Scott M; Castlebury, Lisa A; Gulya, Thomas J; Markell, Samuel G
2015-07-01
Phomopsis stem canker causes yield reductions on sunflower (Helianthus annuus L.) on several continents, including Australia, Europe, and North America. In the United States, Phomopsis stem canker incidence has increased 16-fold in the Northern Great Plains between 2001 and 2012. Although Diaporthe helianthi was assumed to be the sole causal agent in the United States, a newly described species, D. gulyae, was found to be the primary cause of Phomopsis stem canker in Australia. To determine the identity of Diaporthe spp. causing Phomopsis stem canker in the Northern Great Plains, 275 infected stems were collected between 2010 and 2012. Phylogenetic analyses of sequences of the ribosomal DNA internal transcribed spacer region, elongation factor subunit 1-α, and actin gene regions of representative isolates, in comparison with those of type specimens, confirmed two species (D. helianthi and D. gulyae) in the United States. Differences in aggressiveness between the two species were determined using the stem-wound method in the greenhouse; overall, D. helianthi and D. gulyae did not vary significantly (P≤0.05) in their aggressiveness at 10 and 14 days after inoculation. These findings indicate that both Diaporthe spp. have emerged as sunflower pathogens in the United States, and have implications on the management of this disease.
Hidden in Plain sight: synthetic pheromone misleads beetles, protects trees
Paul Meznarich; Robert Progar
2015-01-01
In the last decade, pine forests throughout much of the western United States have been ravaged by the mountain pine beetle (Dendroctonus ponderosae). This bark beetle is native to the United States and has been responsible for massive tree kills in the past. The current outbreak, however, has been notably severe and wide ranging and the effects have been more dramatic...
Hydrology and water budget for a forested atlantic coastal plain watershed, South Carolina
Scott V. Harder; Devendra M Amatya; Callahan Timothy J.; Carl C. Trettin; Hakkila Jon
2007-01-01
Increases in timber demand and urban development in the Atlantic Coastal Plain over the past decade have motivated studies on the hydrology, water quality, and sustainable management of coastal plain watersheds. However, studies on baseline water budgets are limited for the low-lying, forested watersheds of the Atlantic Coastal Plain. The purpose of this study was to...
Hyrdology and water budget for a forested atlantic coastal plain watershed, South Carolina
Scott V. Harder; Devendra M. Amatya; Timothy J. Callahan; Carl C. Trettin; Jon Hakkila
2007-01-01
Increases in timber demand and urban development in the Atlantic Coastal Plain over the past decade have motivated studies on the hydrology, water quality, and sustainable management of coastal plain watersheds. However, studies on baseline water budgets are limited for the low-lying, forested watersheds of the Atlantic Coastal Plain. The purpose of this study was to...
Contrasting soils and landscapes of the Piedmont and Coastal Plain, eastern United States
Markewich, H.W.; Pavich, M.J.; Buell, G.R.
1990-01-01
The Piedmont and Coastal Plain physiographic provinces comprise 80 percent of the Atlantic Coastal states from New Jersey to Georgia. The provinces are climatically similar. The soil moisture regime is udic. The soil temperature regime is typically thermic from Virginia through Georgia, although it is mesic at altitudes above 400 m in Georgia and above 320 m in Virginia. The soil temperature regime is mesic for the Piedmont and Coastal Plain from Maryland through New Jersey. The tightly folded, structurally complex crystalline rocks of the Piedmont and the gently dipping "layer-cake" clastic sedimentary rocks and sediments of the Coastal Plain respond differently to weathering, pedogenesis, and erosion. The different responses result in two physiographically contrasting terrains; each has distinctive near-surface hydrology, regolith, drainage morphology, and morphometry. The Piedmont is predominantly an erosional terrain. Interfluves are as narrow as 0.5 to 2 km, and are convex upward. Valleys are as narrow as 0.1 to 0.5 km and generally V-shaped in cross section. Alluvial terraces are rare and discontinuous. Soils in the Piedmont are typically less than 1 m thick, have less sand and more clay than Coastal Plain soils, and generally have not developed sandy epipedons. Infiltration rates for Piedmont soils are low at 6-15 cm/h. The soil/saprolite, soil/rock, and saprolite/rock boundaries are distinct (can be placed within 10 cm) and are characterized by ponding and/or lateral movement of water. Water movement through soil into saprolite, and from saprolite into rock, is along joints, foliation, bedding planes and faults. Soils and isotopic data indicate residence times consistent with a Pleistocene age for most Piedmont soils. The Coastal Plain is both an erosional and a constructional terrain. Interfluves commonly are broader than 2 km and are flat. Valleys are commonly as wide as 1 km to greater than 10 km, and contain numerous alluvial and estuarine terrace sequences that can be correlated along valleys for tens of kilometers. Coastal Plain soils are typically as thick as 2 to 8 m, have high sand content throughout, and have sandy epipedons. These epipedons consist of both A and E horizons and are 1 to 4 m thick. In Coastal Plain soils, the boundaries are transitional between the solum and the underlying parent material and between weathered and unweathered parent material. Infiltration rates for Coastal Plain soils are typically higher at 13-28 cm/h, than are those for Piedmont soils. Indeed, for unconsolidated quartz sand, rates may exceed 50 cm/h. Water moves directly from the soil into the parent material through intergranularpores with only minor channelization along macropores, joints, and fractures. The comparatively high infiltration capacity results in relatively low surface runoff, and correspondingly less erosion than on the Piedmont uplands. Due to differences in Piedmont and Coastal Plain erosion rates, topographic inversion is common along the Fall Zone; surfaces on Cenozoic sedimentary deposits of the Coastal Plain are higher than erosional surfaces on regolith weathered from late Precambrian to early Paleozoic crystalline rocks of the Piedmont. Isotopic, paleontologic, and soil data indicate that Coastal Plain surficial deposits are post-middle Miocene to Holocene in age, but most are from 5 to 2 Ma. Thus, the relatively uneroded surfaces comprise a Pliocene landscape. In the eastern third of the Coastal Plain, deposits that are less than 3.5 Ma include alluvial terraces, marine terraces and barrier/back-barrier complexes as morphostratigraphic units that cover thousands of square kilometers. Isotopic and soil data indicate that eastern Piedmont soils range from late Pliocene to Pleistocene in age, but are predominantly less than 2 Ma old. Thus, the eroded uplands of the Piedmont "peneplain" comprise a Pleistocene landscape. ?? 1990.
How Crime in the United States is Measured
2008-01-03
the screen questionnaire describe crimes in plain language, avoiding technical legal terms. To elicit an accurate response, respondents are provided...Order Code RL34309 How Crime in the United States Is Measured January 3, 2008 Nathan James Analyst in Crime Policy Domestic Social Policy Division...SUBTITLE How Crime in the United States is Measured 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e
Galileo imaging results from the second Earth-Moon flyby: Lunar Maria and related units
NASA Technical Reports Server (NTRS)
Greeley, R.; Belton, M. J. S.; Head, J. W.; Mcewen, A. S.; Pieters, C. M.; Neukum, G.; Becker, T. L.; Fischer, E. M.; Kadel, S. D.; Robinson, M. S.
1993-01-01
The second flyby of the Earth-Moon System by Galileo occurred on December 7, 1992, on its trajectory toward Jupiter. The flyby took the spacecraft over the lunar north polar region from the dark farside and continued across the illuminated nearside. This provided the first opportunity to observe northern and northeastern limb regions with a modern, multispectral imaging system with high spatial resolution (up to 1.1 km/pixel). Scientific objectives included compositional assessment of previously uncharacterized mare regions, study of various light plains materials, and assessment of dark mantle deposits (DMD) and dark halo craters (DHC). Color composite images were prepared from ratios of Galileo SSI filter data (0.76/0.41 yields red; 0.76/0.99 yields green; 0.41/0.76 yields blue) and used for preliminary comparison of units. The 0.41/0.76 ratio has been empirically correlated to Ti content of mare soils (blue is relatively high, red is relatively low). The relative strengths of the ferrous one micron absorption in mafic minerals can be compared using the 0.76/0.99 ratio. In addition, relative ages of units analyzed spectrally were determined from crater statistics using Lunar Orbiter images following the techniques of Neukum et al. Mare deposits analyzed include Mare Humboldtianum, central and eastern Mare Frigoris, Mare Crisium and other deposits in the Crisium Basin, and isolated mare patches on the northeastern lunar limb. Preliminary results show a diversity of 0.41/0.76 micron signatures, implying a wide range of titanium contents. Some light plains units are similar to units found at the Apollo 16 site; others may be ancient mare materials. Dark mantle deposits (DMD) analyzed also are available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarthy, J.M.; Arnett, R.C.; Neupauer, R.M.
This report documents a study conducted to develop a regional groundwater flow model for the Eastern Snake River Plain Aquifer in the area of the Idaho National Engineering Laboratory. The model was developed to support Waste Area Group 10, Operable Unit 10-04 groundwater flow and transport studies. The products of this study are this report and a set of computational tools designed to numerically model the regional groundwater flow in the Eastern Snake River Plain aquifer. The objective of developing the current model was to create a tool for defining the regional groundwater flow at the INEL. The model wasmore » developed to (a) support future transport modeling for WAG 10-04 by providing the regional groundwater flow information needed for the WAG 10-04 risk assessment, (b) define the regional groundwater flow setting for modeling groundwater contaminant transport at the scale of the individual WAGs, (c) provide a tool for improving the understanding of the groundwater flow system below the INEL, and (d) consolidate the existing regional groundwater modeling information into one usable model. The current model is appropriate for defining the regional flow setting for flow submodels as well as hypothesis testing to better understand the regional groundwater flow in the area of the INEL. The scale of the submodels must be chosen based on accuracy required for the study.« less
Fuzzy logic-based assessment for mapping potential infiltration areas in low-gradient watersheds.
Quiroz Londoño, Orlando Mauricio; Romanelli, Asunción; Lima, María Lourdes; Massone, Héctor Enrique; Martínez, Daniel Emilio
2016-07-01
This paper gives an account of the design a logic-based approach for identifying potential infiltration areas in low-gradient watersheds based on remote sensing data. This methodological framework is applied in a sector of the Pampa Plain, Argentina, which has high level of agricultural activities and large demands for groundwater supplies. Potential infiltration sites are assessed as a function of two primary topics: hydrologic and soil conditions. This model shows the state of each evaluated subwatershed respecting to its potential contribution to infiltration mainly based on easily measurable and commonly used parameters: drainage density, geomorphologic units, soil media, land-cover, slope and aspect (slope orientation). Mapped outputs from the logic model displayed 42% very low-low, 16% moderate, 41% high-very high contribution to potential infiltration in the whole watershed. Subwatersheds in the upper and lower section were identified as areas with high to very high potential infiltration according to the following media features: low drainage density (<1.5 km/km(2)), arable land and pastures as the main land-cover categories, sandy clay loam to loam - clay loam soils and with the geomorphological units named poorly drained plain, channelized drainage plain and, dunes and beaches. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hydrogeologic framework of the North Carolina Coastal Plain aquifer system
Winner, M.D.; Coble, R.W.
1989-01-01
The hydrogeologic framework of the North Carolina Coastal Plain aquifer system consists of ten aquifers separated by nine confining units. From top to bottom the aquifers are: the surficial aquifer, Yorktown aquifer, Pungo River aquifer, Castle Hayne aquifer, Beaufort aquifer, Peedee aquifer, Black Creek aquifer, upper Cape Fear aquifer, lower Cape Fear aquifer, and the Lower Cretaceous aquifer. The uppermost aquifer (the surficial aquifer in most places) is a water-table aquifer and the bottom of the system is underlain by crystalline bedrock. The sedimentary deposits forming the aquifers are of Holocene to Cretaceous age and are composed mostly of sand with lesser amounts of gravel and limestone. Confining units between aquifers are composed primarily of clay and silt. The thickness of the aquifers ranges from zero along the Fall Line to more than 10,000 feet at Cape Hatteras. Prominent structural features are the increasing easterly homoclinal dip of the sediments and the Cape Fear arch, the axis of which trends in a southeast direction. The stratigraphic continuity is determined from correlations of 161 geophysical logs along with data from drillers' and geologists' logs. Aquifers were defined by means of these logs plus water-level and water-quality data and evidence of the continuity of pumping effects. Eighteen hydrogeologic sections depict the correlation of these aquifers throughout the Coastal Plain.
Monterrey, Mexico as seen from STS-60
1994-02-09
STS060-83-041 (3-11 Feb 1994) --- The large city of Monterrey, in northeastern Mexico, was founded at the edge between the Sierra Madre Oriental and the Rio Grande Embayment portion of the Gulf Coastal Plain. This location is analogous to the Fall Line along the United States eastern seaboard, but instead of lying along a stream at the head of navigation, Monterrey lies at the boundary between a well-watered mountain range and a semi-arid plain where irrigation is often necessary for successful agriculture. The mountains themselves are formed from folded limestone and shale beds; to the south of the city, beds are crumpled into tight folds. Around and north of the city, more open folds gradually give way to nearly flat-lying beds of the coastal plain. Because of the water and other resources such as shale and limestone to quarry and burn for cement, Monterrey early became a thriving industrial center. It is now one of Mexico's largest cities with a population of approximately 5 million. According to NASA geologists, the STS-60 photography of this area is the best that has been acquired during the past 32 years of space photography by the United States. Monterrey remains an area of high interest for future photography in order to assess the impact of urbanization in this area.
NASA Astrophysics Data System (ADS)
McBeck, J.; Seelos, K. D.; Ackiss, S. E.; Buczkowski, D.
2014-12-01
Previous analyses of Thermal Emission Imaging System (THEMIS) data indicate that high thermal inertia (TI) materials within the cratered highlands north of Hellas are in situ bedrock units enriched in olivine. The high TI materials occur in both ~3.5 Ga infilled, flat-floored craters as well as ~3.8-4.0 Ga expanses of intercrater plains. A spatial association of the intercrater plains units with the Hellas ring structures suggests that they may have resulted from magma ascension and eruption via crustal fractures. Infilled craters may have formed after individual impact events triggered decompressional melting and effusive volcanism. Here we examine the mineralogy of both the high TI intercrater plains materials and high TI crater floor materials to the north of Hellas (30°E to 85°E and 7°S to 27°S) using Vis/NIR spectral data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). We report on the spatial distribution and variability of observed mafic minerals (olivine, low-calcium pyroxene, and high-calcium pyroxene) to constrain whether the formation of these outcrops were caused or influenced by a single event (e.g., the Hellas impact), multiple individual events, or by some other means, and to provide overall insight into Noachian/Hesperian crustal evolution of Mars.
LACIE analyst interpretation keys
NASA Technical Reports Server (NTRS)
Baron, J. G.; Payne, R. W.; Palmer, W. F. (Principal Investigator)
1979-01-01
Two interpretation aids, 'The Image Analysis Guide for Wheat/Small Grains Inventories' and 'The United States and Canadian Great Plains Regional Keys', were developed during LACIE phase 2 and implemented during phase 3 in order to provide analysts with a better understanding of the expected ranges in color variation of signatures for individual biostages and of the temporal sequences of LANDSAT signatures. The keys were tested using operational LACIE data, and the results demonstrate that their use provides improved labeling accuracy in all analyst experience groupings, in all geographic areas within the U.S. Great Plains, and during all periods of crop development.
Eng, K.; Tasker, Gary D.; Milly, P.C.D.
2005-01-01
Region-of-influence (RoI) approaches for estimating streamflow characteristics at ungaged sites were applied and evaluated in a case study of the 50-year peak discharge in the Gulf-Atlantic Rolling Plains of the southeastern United States. Linear regression against basin characteristics was performed for each ungaged site considered based on data from a region of influence containing the n closest gages in predictor variable (PRoI) or geographic (GRoI) space. Augmentation of this count based cutoff by a distance based cutoff also was considered. Prediction errors were evaluated for an independent (split-sampled) dataset. For the dataset and metrics considered here: (1) for either PRoI or GRoI, optimal results were found when the simpler count based cutoff, rather than the distance augmented cutoff, was used; (2) GRoI produced lower error than PRoI when applied indiscriminately over the entire study region; (3) PRoI performance improved considerably when RoI was restricted to predefined geographic subregions.
Kilometer-Scale Topographic Roughness of Mercury: Correlation with Geologic Features and Units
NASA Technical Reports Server (NTRS)
Kreslavsky, Mikhail A.; Head, James W.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.
2014-01-01
We present maps of the topographic roughness of the northern circumpolar area of Mercury at kilometer scales. The maps are derived from range profiles obtained by the Mercury Laser Altimeter (MLA) instrument onboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. As measures of roughness, we used the interquartile range of profile curvature at three baselines: 0.7 kilometers, 2.8 kilometers, and 11 kilometers. The maps provide a synoptic overview of variations of typical topographic textures. They show a dichotomy between the smooth northern plains and rougher, more heavily cratered terrains. Analysis of the scale dependence of roughness indicates that the regolith on Mercury is thicker than on the Moon by approximately a factor of three. Roughness contrasts within northern volcanic plains of Mercury indicate a younger unit inside Goethe basin and inside another unnamed stealth basin. These new data permit interplanetary comparisons of topographic roughness.
Soil sedimentology at Gusev Crater from Columbia Memorial Station to Winter Haven
Cabrol, N.A.; Herkenhoff, K. E.; Greeley, R.; Grin, E.A.; Schroder, C.; d'Uston, C.; Weitz, C.; Yingst, R.A.; Cohen, B. A.; Moore, J.; Knudson, A.; Franklin, B.; Anderson, R.C.; Li, R.
2008-01-01
A total of 3140 individual particles were examined in 31 soils along Spirit's traverse. Their size, shape, and texture were quantified and classified. They represent a unique record of 3 years of sedimentologic exploration from landing to sol 1085 covering the Plains Unit to Winter Haven where Spirit spent the Martian winter of 2006. Samples in the Plains Unit and Columbia Hills appear as reflecting contrasting textural domains. One is heterogeneous, with a continuum of angular-to-round particles of fine sand to pebble sizes that are generally dust covered and locally cemented in place. The second shows the effect of a dominant and ongoing dynamic aeolian process that redistributes a uniform population of medium-size sand. The texture of particles observed in the samples at Gusev Crater results from volcanic, aeolian, impact, and water-related processes. Copyright 2008 by the American Geophysical Union.
Bouchard, Michelle; Butman, David; Hawbaker, Todd; Li, Zhengpeng; Liu, Jinxun; Liu, Shu-Guang; McDonald, Cory; Reker, Ryan R.; Sayler, Kristi; Sleeter, Benjamin; Sohl, Terry; Stackpoole, Sarah; Wein, Anne; Zhu, Zhi-Liang; Zhu, Zhi-Liang
2011-01-01
This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act (EISA) of 2007 and to improve understanding of carbon and greenhouse gas (GHG) fluxes in the Great Plains region in the central part of the United States. The assessment examined carbon storage, carbon fluxes, and other GHG fluxes (methane and nitrous oxide) in all major terrestrial ecosystems (forests, grasslands/shrublands, agricultural lands, and wetlands) and freshwater aquatic systems (rivers, streams, lakes, and impoundments) in two time periods: baseline (generally in the first half of the 2010s) and future (projections from baseline to 2050). The assessment was based on measured and observed data collected by the U.S. Geological Survey (USGS) and many other agencies and organizations and used remote sensing, statistical methods, and simulation models.
Grantz, A.; Phillips, R.L.; Mullen, M.W.; Starratt, S.W.; Jones, Glenn A.; Naidu, A.S.; Finney, B.P.
1996-01-01
Four box cores and one piston core show that Holocene sedimentation on the southern Canada Abyssal Plain for the last 8010??120 yr has consisted of a continuing rain of pelagic organic and ice-rafted elastic sediment with a net accumulation rate during the late Holocene of ???10 mm/1000 yr, and episodically emplaced turbidites 1-5 m thick deposited at intervals of 830 to 3450 yr (average 2000 yr). The average net accumulation rate of the mixed sequence of turbidites and thin pelagite interbeds in the cores is about 1.2 m/1000 yr. Physiography suggests that the turbidites originated on the Mackenzie Delta or its clinoform, and ??13C values of -27 to - 25??? in the turbidites are compatible with a provenance on a delta. Extant displaced neritic and lower slope to basin plain calcareous benthic foraminifers coexist in the turbidite units. Their joint occurence indicates that the turbidites originated on the modern continental shelf and entrained sediment from the slope and rise enroute to their final resting place on the Canada Abyssal Plain. The presence of Middle Pleistocene diatoms in the turbidites suggests, in addition, that the turbidites may have originated in shallow submarine slides beneath the upper slope or outer shelf. Small but consistent differences in organic carbon content and ??13C values between the turbidite units suggest that they did not share an identical provenance, which is at least compatible with an origin in slope failures. The primary provenance of the ice-rafted component of the pelagic beds was the glaciated terrane of northwestern Canada; and the provenance of the turbidite units was Pleistocene and Holocene sedimentary deposits on the outer continental shelf and upper slope of the Mackenzie Delta. Largely local derivation of the sediment of the Canada Abyssal Plain indicates that sediment accumulation rates in the Arctic Ocean are valid only for regions with similar depositional sources and processes, and that these rates cannot be extrapolated regionally. The location of an elliptical zone of active seismicity over the inferred provenance of the turbidites suggests that they were triggered by large earthquakes. Distal turbidite sediment accumulation rates were more than two orders of magnitude greater than pelagic sediment accumulation rates on the Canada Abyssal Plain during the last 8000 years. This disparity reconciles the discrepancy between the high accumulation rates assumed by some for the Arctic Ocean because of the numerous major rivers and large ice sheets that discharge into this small mediterranean basin and the low pelagic sedimentation rates that have been reported from the Arctic Ocean.
A study of the United States coal resources
NASA Technical Reports Server (NTRS)
Ferm, J. C.; Muthig, P. J.
1982-01-01
Geologically significant coal resources were identified. Statistically controlled tonnage estimates for each resource type were prepared. Particular emphasis was placed on the identification and description of coals in terms of seam thickness, inclination, depth of cover, discontinuities caused by faulting and igneous intrusion, and occurrence as isolated or multiseam deposits. The national resource was organized into six major coal provinces: the Appalachian Plateau, the Interior Basins, the Gulf Coastal Plain, the Rocky Mountain Basins, the High Plains, and North Alaska. Each basin within a province was blocked into subareas of homogeneous coal thickness. Total coal tonnage for a subarea was estimated from an analysis of the cumulative coal thickness derived from borehole or surface section records and subsequently categorized in terms of seam thickness, dip, overburden, multiseam proportions, coal quality, and tonnage impacted by severe faulting and igneous intrusions. Confidence intervals were calculated for both subarea and basin tonnage estimates.
NASA Technical Reports Server (NTRS)
Wang, S.-Y. Simon; Barandiaran, Danny; Hilburn, Kyle; Houser, Paul; Oglesby, Bob; Pan, Ming; Pinker, Rachel; Santanello, Joe; Schubert, Siegfried; Wang, Hailan;
2015-01-01
This paper summarizes research related to the 2012 record drought in the central United States conducted by members of the NASA Energy and Water cycle Study (NEWS) Working Group. Past drought patterns were analyzed for signal coherency with latest drought and the contribution of long-term trends in the Great Plains low-level jet, an important regional circulation feature of the spring rainy season in the Great Palins. Long-term changes in the seasonal transition from rainy spring into dry summer were also examined. Potential external forcing from radiative processes, soil-air interactions, and ocean teleconnections were assessed as contributors to the intensity of the drought. The atmospheric Rossby wave activity was found to be a potential source of predictability for the onset of drought. A probabilistic model was introduced and evaluated for its performance in predicting drought recovery in the Great Plains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shih-Yu; Chen, Tsing-Chang; Correia, James
Northwest flow severe weather outbreaks (NWF outbreaks) describe a type of summer convective storm that occurs in areas of mid-level NWF in the central United States. Convective storms associated with NWF outbreaks are often progressive (i.e. traveling a long distance) along systematic, northwestsoutheast oriented tracks throughout the northern plains. Previous studies have observed that progressive convective storms under NWF are often coupled with subsynoptic-scale midtropospheric perturbations (MPs) coming from the Rocky Mountains. This study traces such MPs for the decade of 1997-2006 using the North American Regional Reanalysis to examine their climatology and possible influence on NWF outbreaks. MPs initiatedmore » over the Rocky Mountains have a maximum frequency in July when the North American anticyclone fully develops and forms prevailing NWF over the northern plains. MPs developed under this anticyclone appear restricted in their vertical extension. Nevertheless, persistent upward motion is apparent in the leading edge (east) of MPs soon after their genesis subsequently inducing or intensifying convective storms. MPs propagate along systematic tracks similar to those of NWF outbreaks. The propagation of MPs also synchronizes with the progressive behavior of the associated convective storms. When encountering strong low-level jets (LLJs), upward motion and convergence of water vapor flux associated with MPs intensify substantially, resulting in strongly enhanced convection and precipitation. Convective wind and hail frequencies associated with MPs in strong LLJs reveal a pattern and magnitude very similar to that of NWF outbreaks. While about 60% of summer rainfall in the northern plains is linked to MPs, 75% of these instances occur in strong LLJs.« less
New mapping of Radlandi basin and detailed analysis of its inner plains
NASA Astrophysics Data System (ADS)
Minelli, Francesco; Giorgetti, Carolina; Mondini, Alessandro; Pauselli, Cristina; Mancinelli, Paolo
2013-04-01
NEW MAPPING OF RADITLADI BASIN AND DETAILED ANALYSIS OF ITS INNER PLAINS. Francesco Minelli 1, Carolina Giorgetti 1, Alessandro C. Mondini 2, Cristina Pauselli 1, Paolo Mancinelli1. 1 Gruppo di Geologia Strutturale e Geofisica (GSG), Dipartimento di Scienze della Terra, Università degli Studi di Perugia, 06123, Perugia, Italy . Email: minelli91@yahoo.it. 2 CNR IRPI Perugia, 06123, Perugia. Introduction: The Raditladi basin is a large peak-ring impact crater discovered during the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) first flyby of Mercury in January 2008 [1]. The Raditladi basin is relatively young [2], and the study of the internal structures give an indication of the processes that acted recently in Mercury's geological history. Geological mapping: We first present the geological mapping of Raditladi crater. In the map we defined different sub-units on the base of previous studies [4][5] and surface morphology and reflectance. Through a GIS software we associated a polygonal layer to each sub-unit, this allowed to distinguish nine different layers. Due to the similarities with the Rachmaninoff basin, to define sub-units mapped on Raditladi, we adopted Rachmaninoff crater's units definitions made by Marchi et al. (2011) [4]. Structures analysis : We also mapped secondary structures consisting in concentric troughs arranged in a circular pattern. We defined two different kinds of troughs: (i) structures characterized by a distinct flat floor and interpretable as grabens, and (ii) structures with linear and curvilinear segments [5]. Inner plain deposit: The analysis of the topography made possible the estimation of the deposit's thickness. The measurement of the thickness is possible thanks to the presence of two small craters, crater A and crater, located in Raditladi's Inner plain. Observing the morphology of the two small craters' rim and hummocky central floor, we distinguished two different units: the shallower consists in thin material [6] and the deeper consists in shocked surface. To estimate the deposit thickness, we realized two sections across the two craters, we considered the rim uplift due to the stratigraphic doubling [7], and the depth at which we observed the shocked surface situated below the surficial deposit. Moreover the two craters, one near the center and the other near the peak ring, allowed us to observe the variation of the deposit's thickness: tracing a section that cuts both the craters is possible to appreciate its thinning towards the basin center. On the base of impact crater experiment made by Takita & Sumita (2011) [6] we supposed that the deposit consist in a thin upper layer of material with a fine granulometry. The deposit thickness measured in the crater B, near the peak ring, is 839 m and in the crater A, near the basin center, is 846 m. In conclusion, the obtained values, differing only for 7 m, show an approximately constant thickness of the deposit from the basin center, where the values is slightly greater, to the peak ring. References: [1] Solomon S.C. et al. (2008) Science, 321, 59-62.[2] Strom R.G. et al. (2008) Science, 321, 79. [3] Hawkins S.E. et al. (2007) Space Sci. Rev., 131, 247-338[4] Marchi S. et al. (2011) Planet. Space Sci, 59, 1968-1980. [5] Prockter L.M. et al. (2009) Lunar Planet. Sci. Conf. Abstract, 40, 1758. [6] Takita H. & Sumita I. (2011) Japan Geoscience Union Meeting 2011, PPS020-P05. [7] H.J. Melosh (1989) Oxford Monographs on Geology and Geophysics Series, 11.
Volcanism on Io: New insights from global geologic mapping
Williams, D.A.; Keszthelyi, L.P.; Crown, D.A.; Yff, J.A.; Jaeger, W.L.; Schenk, P.M.; Geissler, P.E.; Becker, T.L.
2011-01-01
We produced the first complete, 1:15M-scale global geologic map of Jupiter's moon Io, based on a set of monochrome and color Galileo-Voyager image mosaics produced at a spatial resolution of 1km/pixel. The surface of Io was mapped into 19 units based on albedo, color and surface morphology, and is subdivided as follows: plains (65.8% of surface), lava flow fields (28.5%), mountains (3.2%), and patera floors (2.5%). Diffuse deposits (DD) that mantle the other units cover ???18% of Io's surface, and are distributed as follows: red (8.6% of surface), white (6.9%), yellow (2.1%), black (0.6%), and green (???0.01%). Analyses of the geographical and areal distribution of these units yield a number of results, summarized below. (1) The distribution of plains units of different colors is generally geographically constrained: Red-brown plains occur >??30?? latitude, and are thought to result from enhanced alteration of other units induced by radiation coming in from the poles. White plains (possibly dominated by SO2+contaminants) occur mostly in the equatorial antijovian region (??30??, 90-230??W), possibly indicative of a regional cold trap. Outliers of white, yellow, and red-brown plains in other regions may result from long-term accumulation of white, yellow, and red diffuse deposits, respectively. (2) Bright (possibly sulfur-rich) flow fields make up 30% more lava flow fields than dark (presumably silicate) flows (56.5% vs. 43.5%), and only 18% of bright flow fields occur within 10km of dark flow fields. These results suggest that secondary sulfurous volcanism (where a bright-dark association is expected) could be responsible for only a fraction of Io's recent bright flows, and that primary sulfur-rich effusions could be an important component of Io's recent volcanism. An unusual concentration of bright flows at ???45-75??N, ???60-120??W could be indicative of more extensive primary sulfurous volcanism in the recent past. However, it remains unclear whether most bright flows are bright because they are sulfur flows, or because they are cold silicate flows covered in sulfur-rich particles from plume fallout. (3) We mapped 425 paterae (volcano-tectonic depressions), up from 417 previously identified by Radebaugh et al. (Radebaugh, J., Keszthelyi, L.P., McEwen, A.S., Turtle, E.P., Jaeger, W., Milazzo, M. [2001]. J. Geophys. Res. 106, 33005-33020). Although these features cover only 2.5% of Io's surface, they correspond to 64% of all detected hot spots; 45% of all hot spots are associated with the freshest dark patera floors, reflecting the importance of active silicate volcanism to Io's heat flow. (4) Mountains cover only ???3% of the surface, although the transition from mountains to plains is gradational with the available imagery. 49% of all mountains are lineated and presumably layered, showing evidence of linear structures supportive of a tectonic origin. In contrast, only 6% of visible mountains are mottled (showing hummocks indicative of mass wasting) and 4% are tholi (domes or shields), consistent with a volcanic origin. (5) Initial analyses of the geographic distributions of map units show no significant longitudinal variation in the quantity of Io's mountains or paterae, in contrast to earlier studies. This is because we use the area of mountain and patera materials as opposed to the number of structures, and our result suggests that the previously proposed anti-correlation of mountains and paterae (Schenk, P., Hargitai, H., Wilson, R., McEwen, A., Thomas, P. [2001]. J. Geophys. Res. 106, 33201-33222; Kirchoff, M.R., McKinnon, W.B., Schenk, P.M. [2011]. Earth Planet. Sci. Lett. 301, 22-30) is more complex than previously thought. There is also a slight decrease in surface area of lava flows toward the poles of Io, perhaps indicative of variations in volcanic activity. (6) The freshest bright and dark flows make up about 29% of all of Io's flow fields, suggesting active emplacement is occurring in less than a third of Io's
Areal Crater Density Analysis of Volcanic Smooth Plains: A New Approach to Distinguishing Age Units
NASA Astrophysics Data System (ADS)
Ostrach, L. R.; Robinson, M. S.
2013-12-01
It is well documented that the lunar maria were emplaced over an extended period of time [e.g., 1-3], and mare units exhibit significant color differences in multispectral data that are interpreted to correlate with distinct mineralogical compositions and ages [e.g., 3-7]. Areal crater density (ACD) analysis is used as a novel approach to identify resurfacing boundaries within Mare Imbrium as a test case for mercurian studies. Absolute model age dating and measures of ACD from crater counts on Lunar Reconnaissance Orbiter Wide Angle Camera (LRO WAC) mosaics reveal two spatially expansive, statistically separable units in Mare Imbrium. The older, spectrally red unit (~15-18 wt% FeO, ~2-5 wt% TiO2 [8]) in the east is ~3.3 Ga, and the younger, spectrally blue unit (~17-20 wt% FeO, ~7-10 wt% TiO2 [8]) in the west is ~2.2 Ga. ACD measurements show a regional boundary at the contact between these two regions. The geologic contact is confidently observed in ACD maps derived for regions with model age differences >300-500 million years and spatial extents >1 × 104 km2. The older, spectrally red unit exhibits higher ACD (>35000 craters with diameters ≥500 m per 106 km2) and the younger, spectrally blue unit has a lower ACD (<26000 craters with diameters ≥500 m per 106 km2); the absolute model ages and ACD results agree with other dating studies of this region [5, 9-12]. Thus, ACD measurements provide a reliable technique to distinguish relative ages among geologic units as well as a means to explore the statistical significance of published absolute model ages. Moreover, the ability to distinguish surface units of different ages from measures of crater frequencies in Mare Imbrium, when spectral information is not available or units do not exhibit spectral contrasts, shows that the ACD technique may be applied to other planetary bodies to search for age boundaries within contiguous smooth plains units. For example, multispectral differences within volcanic units (age and composition) are not observed on Mercury [e.g., 13-15], so the ACD method can be used to test hypotheses concerning timing of smooth plains emplacement [15]. [1] Hartmann W.K. et al. (1981) In: BVTP, 1049-1127. [2] Stöffler D. et al. (2006) Rev. Mineral. Geochem, 60, 519-596. [3] Hiesinger H. et al. (2011) Spec. Pap. - Geol. Soc. Am, 477, 1-51. [4] Pieters C.M. (1978) Proc. Lunar Plan. Sci. Conf, 9th, 2825-2849. [5] Hiesinger H. et al. (2000) J. Geophys. Res, 105, 29239-29275. [6] Staid M.I. and C.M. Pieters (2001) J. Geophys. Res, 106, 27887-27900. [7] Staid M.I. et al. (2011) J. Geophys. Res, 116, E00G10. [8] Lucey P.G. et al. (2000) J. Geophys. Res, 105, 20297-20306. [9] Schaber G.G. (1973) In: Apollo 17 PSR, NASA SP-330, 30-17 to 30-25. [10] Schaber G.G. et al. (1975) The Moon, 13, 395-423. [11] Boyce J.M. and A.L. Dial Jr. (1975) Proc. Lunar Sci. Conf, 6th, 2585-2595. [12] Bugiolacchi R. and J.E. Guest (2008) Icarus, 197, 1-18. [13] Robinson M.S. et al. (2008) Science, 321, 66-69. [14] Denevi B.W. et al. (2009) Science, 324, 613-618. [15] Denevi B.W. et al. (2013) J. Geophys. Res, 118, 1-17.
Geology and ore deposits of the Philipsburg quadrangle, Montana
Emmons, William Harvey; Calkins, Frank Cathcart
1913-01-01
Philipsburg lies about midway between the eastern and western limits of the Rocky Mountain system, if the term be used in the broad sense prevailing in the United States. In the general latitude of Montana the system as defined by American usage is bounded on the west by the Columbia River basalt plain and on the east by the Great Plains. The western limit is fairly definite, but on the east there is no very definite line between the plains and mountains; the mountains are fairly continuous west and north of the Philipsburg quadrangle, but to the east and southeast mountains alternate with broad stretches of semiarid lowland. The quadrangle therefore overlaps the line between two physiographic provinces, one characterized by isolated mountain groups, of which the Flint Creek Range is the most westerly, and the other by more continuous elevations, of which the Sapphire Mountains are an example.
NASA Technical Reports Server (NTRS)
Gutmann, Ethan Dain
2002-01-01
There are over 100,000 square kilometers of eolian sand dunes and sand sheets in the High Plains of the central United States. These land-forms may be unstable and may reactivate again as a result of land-use, climate change, or natural climatic variability. The main goal of this thesis was to develop a model that could be used to map an estimate of future dune activity. Multi-temporal calibrated Landsats 5 Thematic Mapper (TM) and 7 Enhanced Thematic Map per Plus (ETM+) NDVI imagery were used in conjunction with the CENTURY vegetation model to correlate vegetation cover to climatic variability. This allows the creation of a predicted vegetation map which, combined with current wind and soil data, was used to create a potential sand transport map for range land in the High Plains under drought conditions.
Rupert, Michael G.; Hunt, Charles D.; Skinner, Kenneth D.; Frans, Lonna M.; Mahler, Barbara J.
2015-01-01
The Columbia Plateau, Snake River Plain, and Hawaii are large volcanic areas in the western United States and mid-Pacific ocean that contain extensive regional aquifers of a hard, gray, volcanic rock called basalt. Residents of the Columbia Plateau, the Snake River Plain, and the island of Oahu depend on groundwater as their primary source of drinking water. Although the depth to the water table can be several hundred feet, the groundwater is highly vulnerable to contamination because the permeable sediments and rocks allow contaminants to move readily down to the water table. Intense agricultural and urban activities occur above the drinking-water supply and are increasing in some areas. Contaminants, such as nitrate, pesticides, and volatile organic compounds, associated with agricultural and urban activities, have adversely affected groundwater quality.
Desert plains classification based on Geomorphometrical parameters (Case study: Aghda, Yazd)
NASA Astrophysics Data System (ADS)
Tazeh, mahdi; Kalantari, Saeideh
2013-04-01
This research focuses on plains. There are several tremendous methods and classification which presented for plain classification. One of The natural resource based classification which is mostly using in Iran, classified plains into three types, Erosional Pediment, Denudation Pediment Aggradational Piedmont. The qualitative and quantitative factors to differentiate them from each other are also used appropriately. In this study effective Geomorphometrical parameters in differentiate landforms were applied for plain. Geomorphometrical parameters are calculable and can be extracted using mathematical equations and the corresponding relations on digital elevation model. Geomorphometrical parameters used in this study included Percent of Slope, Plan Curvature, Profile Curvature, Minimum Curvature, the Maximum Curvature, Cross sectional Curvature, Longitudinal Curvature and Gaussian Curvature. The results indicated that the most important affecting Geomorphometrical parameters for plain and desert classifications includes: Percent of Slope, Minimum Curvature, Profile Curvature, and Longitudinal Curvature. Key Words: Plain, Geomorphometry, Classification, Biophysical, Yazd Khezarabad.
Early emergence of anthropogenically forced heat waves in the western United States and Great Lakes
NASA Astrophysics Data System (ADS)
Lopez, Hosmay; West, Robert; Dong, Shenfu; Goni, Gustavo; Kirtman, Ben; Lee, Sang-Ki; Atlas, Robert
2018-05-01
Climate projections for the twenty-first century suggest an increase in the occurrence of heat waves. However, the time at which externally forced signals of anthropogenic climate change (ACC) emerge against background natural variability (time of emergence (ToE)) has been challenging to quantify, which makes future heat-wave projections uncertain. Here we combine observations and model simulations under present and future forcing to assess how internal variability and ACC modulate US heat waves. We show that ACC dominates heat-wave occurrence over the western United States and Great Lakes regions, with ToE that occurred as early as the 2020s and 2030s, respectively. In contrast, internal variability governs heat waves in the northern and southern Great Plains, where ToE occurs in the 2050s and 2070s; this later ToE is believed to be a result of a projected increase in circulation variability, namely the Great Plain low-level jet. Thus, greater mitigation and adaptation efforts are needed in the Great Lakes and western United States regions.
Regional chemical setting of the Apollo 16 landing site and the importance of the Kant Plateau
NASA Technical Reports Server (NTRS)
Andre, C. G.; El-Baz, F.
1982-01-01
Orbital X-ray data from the Apollo 16 region indicate that physiographic units identified before the lunar mission can be classified as chemical units as well. The Descartes Mountains, however, appear to be an extension of the Kant Plateau composition that is unusually anorthositic and resembles farside terra. The Cayley Plains have closer affinities to basaltic materials than terra materials, physically, spectrally and chemically. The Theophilus impact, 330 km east of the landing site, excavated magnesium-rich basalts from below less-magnesian flows in Mare Nectaris; but, mafic ejecta was substantially blocked from the Apollo 16 site by the Kant Plateau that rises 5 km above the level of the mare. Apollo 16 soil samples from stations selected to collect either Descartes Mountains material or Cayley Plains material were surprisingly similar. However, they do, indeed, show the chemical trends indicative of the two units as defined by the orbiting geochemistry detectors. The Kant Plateau and Descartes Mountains material may be among the rare nearside examples of a plagioclase-rich cumulate of the primordial magma ocean.
A 5-year analysis of crop phenologies from the United States Heartland (Invited)
NASA Astrophysics Data System (ADS)
Johnson, D. M.
2010-12-01
Time series imagery data from the National Aeronautics and Space Administration (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) was intersected with annually updated field-level crop data from the United States Department of Agriculture (USDA) Farm Service Agency (FSA). Phenological metrics were derived for major crop types found in the United States (US) Heartland region. The specific MODIS data consisted of the 16-day composited Normalized Difference Vegetation Index (NDVI) 250 meter spatial resolution imagery from the Terra satellite. Crops evaluated included corn, soybeans, wheat, cotton, sorghum, rice, and other small grains. Charts showing the annual average state-level NDVI phenologies by crop were constructed for the five years between 2006 and 2010. The states of interest covered the intensively cultivated regions in the US Great Plains, Corn Belt, and Mississippi River Alluvial Plain. Results demonstrated the recent biophysical growth cycles of prevalent and widespread US crops and how they varied by geography and year. Linkages between the time series data and planting practices, weather impacts, crop progress reports, and yields were also investigated.
NASA Astrophysics Data System (ADS)
Finn, David R.; Coe, Robert S.; Brown, Ethan; Branney, Michael; Reichow, Marc; Knott, Thomas; Storey, Michael; Bonnichsen, Bill
2016-09-01
In this paper, we present paleomagnetic, geochemical, mineralogical, and geochronologic evidence for correlation of the mid-Miocene Cougar Point Tuff (CPT) in southwest Snake River Plain (SRP) of Idaho. The new stratigraphy presented here significantly reduces the frequency and increases the scale of known SRP ignimbrite eruptions. The CPT section exposed at the Black Rock Escarpment along the Bruneau River has been correlated eastward to the Brown's Bench escarpment (six common eruption units) and Cassia Mountains (three common eruption units) regions of southern Idaho. The CPT records an unusual pattern of geomagnetic field directions that provides the basis for robust stratigraphic correlations. Paleomagnetic characterization of eruption units based on geomagnetic field variation has a resolution on the order of a few centuries, providing a strong test of whether two deposits could have been emplaced from the same eruption or from temporally separate events. To obtain reliable paleomagnetic directions, the anisotropy of anhysteretic remanence was measured to correct for magnetic anisotropy, and an efficient new method was used to remove gyroremanence acquired during alternating field demagnetization.
Ward, Lauck W.
1985-01-01
Along the Pamunkey River and its tributaries can be found a very complete, well-preserved, Tertiary stratigraphic record that reflects the sea-level changes as well as the local tectonic history of the central Virginia Coastal Plain. Using this record, I have described the lower Tertiary units and proposed a sequential model for their occurrence. Sediments examined in this study range in age from early Paleocene to latest Oligocene or earliest Miocene. Upper Tertiary units are described where they occur in the same sections with the lower Tertiary beds. The Brightseat Formation (lower Paleocene), Aquia Formation (upper Paleocene), Marlboro Clay (upper Paleocene), Nanjemoy Formation (lower Eocene), Piney Point Formation (middle Eocene) and Old Church Formation (new unit, upper Oligocene and lower Miocene) were studied. The definitions of the Piscataway and Paspotansa Members of the Aquia are amended, and a lectostratotype (principal reference section) is designated for those units as well as the Aquia on the Potomac River just below the mouth of Aquia Creek. A lectostratotype section is also designated for the Nanjemoy and its two members, the Potapaco and the Woodstock. That section is on the Potomac above Popes Creek. Beds assigned to the Piney Point and Old Church Formations, previously known only in the subsurface, crop out extensively on the Pamunkey River. A hypostratotype (reference section) is selected for the Piney Point Formation on the Pamunkey River at Horseshoe. The Old Church Formation (named herein) is included in the Chesapeake Group. Areal extent of the stratigraphic units was determined by correlation of outcropping beds on the Pamunkey, Patuxent, Potomac, Rappahannock, Mattaponi, Chickahominy, and James Rivers supplemented by well data. Comparisons of the onlap histories of the Salisbury, Albemarle, and Charleston Embayments indicate a number of simultaneous transgressive events implying global sea-level rises. More restricted transgressions appear to be the result of local downwarping.
Mineralogical maturity in dunefields of North America, Africa and Australia
Muhs, D.R.
2004-01-01
Studies of dunefields in central and western North America show that mineralogical maturity can provide new insights into the origin and evolution of aeolian sand bodies. Many of the world's great sand seas in Africa, Asia and Australia are quartz-dominated and thus can be considered to be mineralogically mature. The Algodones (California) and Parker (Arizona) dunes in the southwestern United States are also mature, but have inherited a high degree of mineralogical maturity from quartz-rich sedimentary rocks drained by the Colorado River. In Libya, sediments of the Zallaf sand sea, which are almost pure quartz, may have originated in a similar fashion. The Fort Morgan (Colorado) and Casper (Wyoming) dunefields in the central Great Plains of North America, and the Namib sand sea of southern Africa have an intermediate degree of mineralogical maturity because their sources are large rivers that drained both unweathered plutonic and metamorphic rocks and mature sedimentary rocks. Mojave Desert dunefields in the southwestern United States are quite immature because they are in basins adjacent to plutonic rocks that were their sources. Other dunefields in the Great Plains of North America (those in Nebraska and Texas) are more mature than any possible source sediments and therefore reflect mineralogical evolution over time. Such changes in composition can occur because of either of two opposing long-term states of the dunefield. In one state, dunes are stable for long periods of time and chemical weathering depletes feldspars and other weatherable minerals in the sediment body. In the other state, which is most likely for the Great Plains, abrasion and ballistic impacts deplete the carbonate minerals and feldspars because the dunes are active for longer periods than they are stable. ?? 2003 Elsevier B.V. All rights reserved.
Synthesis on Quaternary aeolian research in the unglaciated eastern United States
Markewich, Helaine Walsh; Litwin, Ronald J.; Wysocki, Douglas A.; Pavich, Milan J.
2015-01-01
Late-middle and late Pleistocene, and Holocene, inland aeolian sand and loess blanket >90,000 km2 of the unglaciated eastern United States of America (USA). Deposits are most extensive in the Lower Mississippi Valley (LMV) and Atlantic Coastal Plain (ACP), areas presently lacking significant aeolian activity. They provide evidence of paleoclimate intervals when wind erosion and deposition were dominant land-altering processes. This study synthesizes available data for aeolian sand deposits in the LMV, the Eastern Gulf Coastal Plain (EGCP) and the ACP, and loess deposits in the Middle Atlantic Coastal Plain (MACP). Data indicate: (a) the most recent major aeolian activity occurred in response to and coincident with growth and decay of the Laurentide Ice Sheet (LIS); (b) by ∼40 ka, aeolian processes greatly influenced landscape evolution in all three regions; (c) aeolian activity peaked in OIS2; (d) OIS3 and OIS2 aeolian records are in regional agreement with paleoecological records; and (e) limited aeolian activity occurred in the Holocene (EGCP and ACP). Paleoclimate and atmospheric-circulation models (PCMs/ACMs) for the last glacial maximum (LGM) show westerly winter winds for the unglaciated eastern USA, but do not resolve documented W and SW winds in the SEACP and WNW and N winds in the MACP. The minimum areal extent of aeolian deposits in the EGCP and ACP is ∼10,000 km2. For the LMV, it is >80,000 km2. Based on these estimates, published PCMs/ACMs likely underrepresent the areal extent of LGM aeolian activity, as well as the extent and complexity of climatic changes during this interval.
John A. Stanturf; Robert C. Kellison; F.S. Broerman; Stephen B. Jones
2003-01-01
The history of forest management in the southern United States has been a process of intensification and the pine forests of the Coastal Plain can be regarded as in the early stage of crop domestication. Silviculture research into tree improvement and other aspects of plantation establishment and management has been critical to the domestication process, which began in...
Ikiel, Cercis; Ustaoglu, Beyza; Dutucu, Ayse Atalay; Kilic, Derya Evrim
2013-02-01
The aim of this study is to research natural land cover change caused by the permanent effects of human activities in Duzce plain and its surroundings, and to determine the current status of the land cover. For this purpose, two Landsat TM images were used in the study for the years 1987 and 2010. These images are analysed by using data image processing techniques in ERDAS Imagine©10.0 and ArcGIS©10.0 software. Land cover change nomenclature is classified according to the Coordination of Information on the Environment Level 2 Classification (1--urban fabric, 2--industrial, commercial and transport units, 3--heterogeneous agricultural areas, 4--forests, and 5--inland wetlands). Furthermore, the image analysis results are confirmed by the field research. According to the results, a decrease of 33.5 % was recorded in forest areas from 24,840.7 to 16,529.0 ha; an increase of 11.2 % was recorded in heterogeneous agricultural areas from 47,702.7 to 53,051.7 ha. Natural vegetation, which is the large part of land cover in the research area, has been changing rapidly because of rapid urbanisation and agricultural activities. As a result, it is concluded that significant changes have occurred on the natural land cover between the years 1987 and 2010 in the Duzce plain and its surroundings.
Environmental setting of the Yellowstone River basin, Montana, North Dakota, and Wyoming
Zelt, Ronald B.; Boughton, G.K.; Miller, K.A.; Mason, J.P.; Gianakos, L.M.
1999-01-01
Natural and anthropogenic factors influence water-quality conditions in the Yellowstone River Basin. Physiography parallels the structural geologic setting that is generally composed of several uplifts and structural basins. Contrasts in climate and vegetation reflect topographic controls and the midcontinental location of the study unit. Surface-water hydrology reflects water surpluses in mountainous areas that are dominated by snowmelt runoff, and arid to semiarid conditions in the plains that are dissected by typically irrigated valleys in the remainder of the study unit. Principal shallow aquifers are Tertiary sandstones and unconsolidated Quaternary deposits. Human population, though sparsely distributed in general, is growing most rapidly in a few urban centers and resort areas, mostly in the northwestern part of the basin. Land use is areally dominated by grazing in the basins and plains and economically dominated by mineral-extraction activities. Forests are the dominant land cover in mountainous areas. Cropland is a major land use in principal stream valleys. Water use is dominated by irrigated agriculture overall, but mining and public-supply facilities are major users of ground water. Coal and hydrocarbon production and reserves distinguish the Yellowstone River Basin as a principal energy-minerals resources region. Current metallic ore production or reserves are nationally significant for platinum-group elements and chromium.The study unit was subdivided as an initial environmental stratification for use in designing the National Water-Quality Assessment Program investigation that began in 1997. Ecoregions, geologic groups, mineral-resource areas, and general land-cover and land-use categories were used in combination to define 18 environmental settings in the Yellowstone River Basin. It is expected that these different settings will be reflected in differing water-quality or aquatic-ecological characteristics.
Stephens, Jessica D; Santos, Scott R; Folkerts, Debbie R
2011-01-01
Pitcher plant bogs, or carnivorous plant wetlands, have experienced extensive habitat loss and fragmentation throughout the southeastern United States Coastal Plain, resulting in an estimated reduction to <3% of their former range. This situation has lead to increased management attention of these habitats and their carnivorous plant species. However, conservation priorities focus primarily on the plants since little information currently exists on other community members, such as their endemic arthropod biota. Here, we investigated the population structure of one of these, the obligate pitcher plant moth Exyra semicrocea (Lepidoptera: Noctuidae), using mitochondrial cytochrome c oxidase subunit I (COI) gene sequences. Examination of 221 individuals from 11 populations across eight southeastern US states identified 51 unique haplotypes. These haplotypes belonged to one of two divergent (∼1.9-3.0%) lineages separated by the Mississippi alluvial plain. Populations of the West Gulf Coastal Plain exhibited significant genetic structure, contrasting with similarly distanced populations east of the Mississippi alluvial plain. In the eastern portion of the Coastal Plain, an apparent transition zone exists between two regionally distinct population groups, with a well-established genetic discontinuity for other organisms coinciding with this zone. The structure of E. semicrocea appears to have been influenced by patchy pitcher plant bog habitats in the West Gulf Coastal Plain as well as impacts of Pleistocene interglacials on the Apalachicola-Chattahoochee-Flint River Basin. These findings, along with potential extirpation of E. semicrocea at four visited, but isolated, sites highlight the need to consider other endemic or associated community members when managing and restoring pitcher plant bog habitats.
Groundwater declines are linked to changes in Great Plains stream fish assemblages
Prekins, Joshuah S.; Gido, Keith B.; Falke, Jeffrey A.; Fausch, Kurt D.; Crockett, Harry; Johnson, Eric R.; Sanderson, John
2017-01-01
Groundwater pumping for agriculture is a major driver causing declines of global freshwater ecosystems, yet the ecological consequences for stream fish assemblages are rarely quantified. We combined retrospective (1950–2010) and prospective (2011–2060) modeling approaches within a multiscale framework to predict change in Great Plains stream fish assemblages associated with groundwater pumping from the United States High Plains Aquifer. We modeled the relationship between the length of stream receiving water from the High Plains Aquifer and the occurrence of fishes characteristic of small and large streams in the western Great Plains at a regional scale and for six subwatersheds nested within the region. Water development at the regional scale was associated with construction of 154 barriers that fragment stream habitats, increased depth to groundwater and loss of 558 km of stream, and transformation of fish assemblage structure from dominance by large-stream to small-stream fishes. Scaling down to subwatersheds revealed consistent transformations in fish assemblage structure among western subwatersheds with increasing depths to groundwater. Although transformations occurred in the absence of barriers, barriers along mainstem rivers isolate depauperate western fish assemblages from relatively intact eastern fish assemblages. Projections to 2060 indicate loss of an additional 286 km of stream across the region, as well as continued replacement of large-stream fishes by small-stream fishes where groundwater pumping has increased depth to groundwater. Our work illustrates the shrinking of streams and homogenization of Great Plains stream fish assemblages related to groundwater pumping, and we predict similar transformations worldwide where local and regional aquifer depletions occur.
Groundwater declines are linked to changes in Great Plains stream fish assemblages.
Perkin, Joshuah S; Gido, Keith B; Falke, Jeffrey A; Fausch, Kurt D; Crockett, Harry; Johnson, Eric R; Sanderson, John
2017-07-11
Groundwater pumping for agriculture is a major driver causing declines of global freshwater ecosystems, yet the ecological consequences for stream fish assemblages are rarely quantified. We combined retrospective (1950-2010) and prospective (2011-2060) modeling approaches within a multiscale framework to predict change in Great Plains stream fish assemblages associated with groundwater pumping from the United States High Plains Aquifer. We modeled the relationship between the length of stream receiving water from the High Plains Aquifer and the occurrence of fishes characteristic of small and large streams in the western Great Plains at a regional scale and for six subwatersheds nested within the region. Water development at the regional scale was associated with construction of 154 barriers that fragment stream habitats, increased depth to groundwater and loss of 558 km of stream, and transformation of fish assemblage structure from dominance by large-stream to small-stream fishes. Scaling down to subwatersheds revealed consistent transformations in fish assemblage structure among western subwatersheds with increasing depths to groundwater. Although transformations occurred in the absence of barriers, barriers along mainstem rivers isolate depauperate western fish assemblages from relatively intact eastern fish assemblages. Projections to 2060 indicate loss of an additional 286 km of stream across the region, as well as continued replacement of large-stream fishes by small-stream fishes where groundwater pumping has increased depth to groundwater. Our work illustrates the shrinking of streams and homogenization of Great Plains stream fish assemblages related to groundwater pumping, and we predict similar transformations worldwide where local and regional aquifer depletions occur.
Groundwater declines are linked to changes in Great Plains stream fish assemblages
Perkin, Joshuah S.; Gido, Keith B.; Falke, Jeffrey A.; Fausch, Kurt D.; Crockett, Harry; Johnson, Eric R.; Sanderson, John
2017-01-01
Groundwater pumping for agriculture is a major driver causing declines of global freshwater ecosystems, yet the ecological consequences for stream fish assemblages are rarely quantified. We combined retrospective (1950–2010) and prospective (2011–2060) modeling approaches within a multiscale framework to predict change in Great Plains stream fish assemblages associated with groundwater pumping from the United States High Plains Aquifer. We modeled the relationship between the length of stream receiving water from the High Plains Aquifer and the occurrence of fishes characteristic of small and large streams in the western Great Plains at a regional scale and for six subwatersheds nested within the region. Water development at the regional scale was associated with construction of 154 barriers that fragment stream habitats, increased depth to groundwater and loss of 558 km of stream, and transformation of fish assemblage structure from dominance by large-stream to small-stream fishes. Scaling down to subwatersheds revealed consistent transformations in fish assemblage structure among western subwatersheds with increasing depths to groundwater. Although transformations occurred in the absence of barriers, barriers along mainstem rivers isolate depauperate western fish assemblages from relatively intact eastern fish assemblages. Projections to 2060 indicate loss of an additional 286 km of stream across the region, as well as continued replacement of large-stream fishes by small-stream fishes where groundwater pumping has increased depth to groundwater. Our work illustrates the shrinking of streams and homogenization of Great Plains stream fish assemblages related to groundwater pumping, and we predict similar transformations worldwide where local and regional aquifer depletions occur. PMID:28652354
NASA Astrophysics Data System (ADS)
Bodine, D. J.; Dougherty, E.; Rasmussen, K. L.; Torres, A. D.
2015-12-01
During the summer in the U.S. Great Plains, some of the heaviest precipitation falls from large thunderstorm complexes known as Mesoscale Convective Systems (MCSs). These frequently occurring MCSs are often nocturnal in nature, so the dynamics associated with these systems are more elusive than those in the daytime. The Plains Elevated Convection at Night (PECAN) field campaign was launched over a 7-week period as an endeavor to better understand nocturnal MCSs occurring in the Great Plains. PECAN featured a dense array of ground-based and airborne instruments to observe nocturnal MCS, including dual-polarization radars at multiple frequencies, mobile mesonets, and sounding units. Our role in PECAN involved deploying Ott Parsivel disdrometers to gain information on drop size distributions (DSDs) and fall speeds. Analysis of disdrometer data in conjunction with radar data presented using Contour Frequency by Altitude Diagrams (CFADs) and high-resolution radiosonde data allows for a structural comparison of PECAN MCS cases to previously identified MCS archetypes. Novel insights into the structural evolution of nocturnal MCSs in relation to their synoptic, mesoscale, and thermodynamic environments are presented, using data collected from dense and numerous observation platforms. Understanding the environmental conditions that result in different nocturnal MCS configurations is useful for gaining insight into precipitation distributions and potential severe weather and flooding hazards in the Great Plains.
NASA Astrophysics Data System (ADS)
Kang, Ranbir S.; Marston, Richard A.
2006-09-01
This research evaluates the impact of rural-to-urban land use conversion on channel morphology and riparian vegetation for three streams in the Central Redbed Plains geomorphic province (central Great Plains ecoregion) of Oklahoma. The Deep Fork Creek watershed is largely urbanized; the Skeleton Creek watershed is largely rural; and the Stillwater Creek watershed is experiencing a rapid transition from rural to urban land cover. Each channel was divided into reaches based on tributary junctions, sinuosity, and slope. Field surveys were conducted at transects in a total of 90 reaches, including measurements of channel units, channel cross-section at bankfull stage, and riparian vegetation. Historical aerial photographs were available for only Stillwater Creek watershed, which were used to document land cover in this watershed, especially changes in the extent of urban areas (impervious cover). The three streams have very low gradients (< 0.001), width-to-depth ratios < 10, and cohesive channel banks, but have incised into red Permian shales and sandstone. The riparian vegetation is dominated by cottonwoods, ash, and elm trees that provide a dense root mat on stream banks where the riparian vegetation is intact. Channels increased in width and depth in the downstream direction as is normally expected, but the substrate materials and channel units remained unchanged. Statistical analyses demonstrated that urbanization did not explain spatial patterns of changes in any variables. These three channels in the central Redbed Plains are responding as flumes during peak flows, funneling runoff and the wash-load sediment downstream in major runoff events without any effect on channel dimensions. Therefore, local geological conditions (similar bedrock, cohesive substrates and similar riparian vegetation) are mitigating the effects of urbanization.
Water quality of hydrologic bench marks; an indicator of water quality in the natural environment
Biesecker, James E.; Leifeste, Donald K.
1974-01-01
Water-quality data, collected at 57 hydrologic bench-mark stations in 37 States, allow the definition of water quality in the 'natural' environment and the comparison of 'natural' water quality with water quality of major streams draining similar water-resources regions. Results indicate that water quality in the 'natural' environment is generally very good. Streams draining hydrologic bench-mark basins generally contain low concentrations of dissolved constituents. Water collected at the hydrologic bench-mark stations was analyzed for the following minor metals: arsenic, barium, cadmium, hexavalent chromium, cobalt, copper, lead, mercury, selenium, silver, and zinc. Of 642 analyses, about 65 percent of the observed concentrations were zero. Only three samples contained metals in excess of U.S. Public Health Service recommended drinking-water standards--two selenium concentrations and one cadmium concentration. A total of 213 samples were analyzed for 11 pesticidal compounds. Widespread but very low-level occurrence of pesticide residues in the 'natural' environment was found--about 30 percent of all samples contained low-level concentrations of pesticidal compounds. The DDT family of pesticides occurred most commonly, accounting for 75 percent of the detected occurrences. The highest observed concentration of DDT was 0.06 microgram per litre, well below the recommended maximum permissible in drinking water. Nitrate concentrations in the 'natural' environment generally varied from 0.2 to 0.5 milligram per litre. The average concentration of nitrate in many major streams is as much as 10 times greater. The relationship between dissolved-solids concentration and discharge per unit area in the 'natural' environment for the various physical divisions in the United States has been shown to be an applicable tool for approximating 'natural' water quality. The relationship between dissolved-solids concentration and discharge per unit area is applicable in all the physical divisions of the United States, except the Central Lowland province of the Interior Plains, the Great Plains province of the Interior Plains, and the Basin and Ridge province of the Intermontane Plateaus. The relationship between dissolved-solids concentration and discharge per unit area is least variable in the New England province and Blue Ridge province of the Appalachian Highlands. The dissolved-solids concentration versus discharge per unit area in the Central Lowland province of the Interior Plains is highly variable. A sample collected from the hydrologic bench-mark station at Bear Den Creek near Mandaree, N. Dak., contained 3,420 milligrams per litre dissolved solids. This high concentration in the 'natural' environment indicates that natural processes can be principal agents in modifying the environment and can cause degradation. Average annual runoff and rock type can be used as predictive tools to determine the maximum dissolved-solids concentration expected in the 'natural' environment.
Mars: Stratigraphy of Western Highlands and Polar Regions
NASA Technical Reports Server (NTRS)
Tanaka, K. L.; Scott, D. H.; Tuesink, M. F.
1985-01-01
Geologic mapping and stratigraphic studies of Mars based on Viking images improved knowledge of the relative age and occurrence of geologic units on a global scale. Densities of geologic units or features during the Noarchian, Hesperian, and Amazonian periods are indicated for the North and South polar regions as well as the equatorial region of Mars. Cumulative counts of crater size frequencies for craters larger than 2 km in diameter on plateau units mapped in the western region of Mars counts indicate that the plateau terrain as a whole was thinly resurfaced during the Hesperian Period, and a large proportion of pre-existing craters less than 10 to 15 km in diameter was buried. The formation of northern plains, subpolar highlands, and both polar regions is also described.
The geology and chronology of the Acheulean deposits in the Mieso area (East-Central Ethiopia).
Benito-Calvo, Alfonso; Barfod, Dan N; McHenry, Lindsay J; de la Torre, Ignacio
2014-11-01
This paper presents the Quaternary sequence of the Mieso area of Central-East Ethiopia, located in the piedmont between the SE Ethiopian Escarpment and the Main Ethiopian Rift-Afar Rift transition sector.In this region, a piedmont alluvial plain is terraced at þ25 m above the two main fluvial courses, the Mieso and Yabdo Rivers. The piedmont sedimentary sequence is divided into three stratigraphic units separated by unconformities. Mieso Units I and II contain late Acheulean assemblages and a weakly consolidated alluvial sequence, consisting mainly of fine sediments with buried soils and, to a lesser degree, conglomerates. Palaeo-wetland areas were common in the alluvial plain, represented by patches of tufas, stromatolites and clays. At present, the piedmont alluvial surface is preserved mainly on a dark brown soil formed at the top of Unit II. Unit III corresponds to a fluvial deposit overlying Unit II, and is defined by sands, silty clays and gravels, including several Later Stone Age (LSA) occurrences. Three fine-grained tephra levels are interbedded in Unit I (tuffs TBI and TA) and II (tuff CB), and are usually spatially-constrained and reworked. Argon/argon (40Ar/39Ar) dating from tuff TA, an ash deposit preserved in a palustrine environment, yielded an age of 0.212 ± 0.016 Ma (millions of years ago). This date places thetop of Unit I in the late Middle Pleistocene, with Acheulean sites below and above tuff TA. Regional correlations tentatively place the base of Unit I around the Early-Middle Pleistocene boundary, Unit II inthe late Middle Pleistocene and within the Late Pleistocene, and the LSA occurrences of Unit III in the LatePleistoceneeHolocene.
Young adult smokers' perceptions of plain packaging: a pilot naturalistic study.
Moodie, Crawford; Mackintosh, Anne Marie; Hastings, Gerard; Ford, Allison
2011-09-01
To explore the impact, if any, that using plain (non-branded) cigarette packs in real-life settings has on young adult smokers. Naturalistic-type research was employed, where smokers used brown 'plain' packs for 2 weeks and their regular packs for 2 weeks, in real-life settings. Participants were recruited in Glasgow, Scotland. Of the 140 smokers aged 18-35 years who participated in the naturalistic study, 48 correctly completed and returned all questionnaires. Over the 4-week study period, participants completed a questionnaire twice a week assessing pack perceptions and feelings, feelings about smoking, salience of health warnings and smoking-related behaviours. A subsample of 18 participated in a post-study interview, which employed a semistructured topic guide to assess perceptions and experiences of using plain packs. Trends in the data show that in comparison with branded packaging, plain packaging increased negative perceptions and feelings about the pack and about smoking. Plain packaging also increased avoidant behaviour (hiding the pack, covering the pack), certain smoking cessation behaviours, such as smoking less around others and forgoing cigarettes, and thinking about quitting. Almost half (n=8) of those in the post-study interview, predominantly women (n=6), reported that the use of plain packs had either increased avoidant behaviour or reduced consumption. This pilot naturalistic study suggests that plain packaging could potentially help reduce tobacco consumption among some young adult smokers, and women in particular. Employing an innovative research methodology, the findings of this study are consistent with, and indeed support, past plain packaging research.
1995-01-01
Station number Station drainage area (km2) Land resource province Land-use description Fixed-site type Altamaha River near Everett City, Ga . 02226160...Creek near Tallahassee, Fla. 02326838 27 SCP suburban indicator Little River near Ty Ty, Ga . 02317797 334 SCP agriculture (mixed row crops) indicator...Middle Prong St. Marys River near Taylor, Fla. 02229000 324 CFW silviculture indicator Tucsawhatchee Creek near Hawkinsville, Ga . 02215100 422 SCP
High Plains Regional Ground-water Study web site
Qi, Sharon L.
2000-01-01
Now available on the Internet is a web site for the U.S. Geological Survey's (USGS) National Water-Quality Assessment (NAWQA) Program-High Plains Regional Ground-Water Study. The purpose of the web site is to provide public access to a wide variety of information on the USGS investigation of the ground-water resources within the High Plains aquifer system. Typical pages on the web site include the following: descriptions of the High Plains NAWQA, the National NAWQA Program, the study-area setting, current and past activities, significant findings, chemical and ancillary data (which can be downloaded), listing and access to publications, links to other sites about the High Plains area, and links to other web sites studying High Plains ground-water resources. The High Plains aquifer is a regional aquifer system that underlies 174,000 square miles in parts of eight States (Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming). Because the study area is so large, the Internet is an ideal way to provide project data and information on a near real-time basis. The web site will be a collection of living documents where project data and information are updated as it becomes available throughout the life of the project. If you have an interest in the High Plains area, you can check this site periodically to learn how the High Plains NAWQA activities are progressing over time and access new data and publications as they become available.
Effects of assumed tow architecture on the predicted moduli and stresses in woven composites
NASA Technical Reports Server (NTRS)
Chapman, Clinton Dane
1994-01-01
This study deals with the effect of assumed tow architecture on the elastic material properties and stress distributions of plain weave woven composites. Specifically, the examination of how a cross-section is assumed to sweep-out the tows of the composite is examined in great detail. The two methods studied are extrusion and translation. This effect is also examined to determine how sensitive this assumption is to changes in waviness ratio. 3D finite elements were used to study a T300/Epoxy plain weave composite with symmetrically stacked mats. 1/32nd of the unit cell is shown to be adequate for analysis of this type of configuration with the appropriate set of boundary conditions. At low waviness, results indicate that for prediction of elastic properties, either method is adequate. At high waviness, certain elastic properties become more sensitive to the method used. Stress distributions at high waviness ratio are shown to vary greatly depending on the type of loading applied. At low waviness, both methods produce similar results.
Animals & Livestock | National Agricultural Library
Skip to main content Home National Agricultural Library United States Department of Agriculture Ag (maps, tables, graphs), Agricultural Products html National Animal Nutrition Program (NANP) Feed | Agricultural Research Service | Plain Language | FOIA | Accessibility Statement | Information Quality | Privacy
Genetic transformation of Pinus palustris (longleaf pine)
Alex M. Diner
1999-01-01
Longleaf pine (Pinus palustris Mill.) is an important softwood species in the Southeast United States. In presettlement times, this species occupied extensive, pure stands throughout the Atlantic and Gulf Coastal Plains from southeastern Virginia to eastern Texas, as well as south...
Statistical analysis of the radon-222 potential of rocks in Virginia, U.S.A.
Brown, C. Erwin; Mose, D.G.; Mushrush, G.W.; Chrosniak, C.E.
1992-01-01
More than 3,200 indoor radon-222 (222Rn) measurements were made seasonally in an area of about 1,000 square kilometers of the Coastal Plain and Piedmont physiographic provinces in Virginia, U.S.A. Results of these measurements indicate that some geological units are associated, on the average, with twice as much indoor222Rn as other geological units, and that indoor222Rn varies seasonally. The Kruskal-Wallis test was used to test whether indoor222Rn concentrations for data gathered over the winter and summer seasons differ significantly by rock unit. The tests concluded that indoor222Rn concentrations for different rock units were not equal at the 5-percent significance level. The rocks associated with the highest median indoor222Rn concentration are specific rocks in the Mesozoic Culpeper basin, including shale and siltstone units with Jurassic diabase intrusives, and mica schists in the Piedmont physiographic province. The pre-Triassic Peters Creek Schist has the highest ranking in terms of indoor222Rn concentration. The rocks associated with the lowest indoor222Rn concentrations include coastal plain sediments, the Occoquan Granite, Falls Church Tonalite, Piney Branch Mafic and Ultramafic complex, and unnamed mafic and ultramafic inclusions, respectively. The rocks have been ranked according to observed222Rn concentration by transforming the average rank of indoor222Rn concentrations to z scores. ?? 1992 Springer-Verlag New York Inc.
Conductivity Investigation of Infiltration Through a Playa Lake Near Lubbock, Texas
NASA Astrophysics Data System (ADS)
Taylor, T. L.
2017-12-01
The playas of the High Plains of the United States are known to contribute to the recharge of the underlying Ogallala aquifer. The investigation of the High Plains playa-aquifer system began in 1895. Since then there has been many conceptual models about recharge beneath playa floors and how they recharge theOgallala aquifer. We are using a compartmentalized playa located in the High Plains of Texas which has the greatest concentration of playas in the US. It is estimated that there is anywhere between 22,000 and 60,000 playas present. Investigation the pathways forinfiltration thorugh playa is necessary to understand therecharge to the Ogallala aquifer.The purpose of this electromagnetic investigation is to study the fluid flow path within a playa structure bymeasurements of conductivity in the subsurface. The measurements have been processed to show a 2-D profile of the Playa. Conductivity measurements were collected with an EM31 and so are confined to the top few meters of the soil. Regions with high conductivity are assumed to contain more water than the areas with low conductivity. Repeated profiles collected before and after rain events to identify regions that accommodate more infiltration than other. The results indicate that there is greater infiltration at the annulus of the playa than in the center.
Kenny, J.F.; Wolf, R.J.; Hansen, Cristi V.
1993-01-01
The purpose of the investigation is to provide a description of the principal geohydrologic systems in Upper Cambrian through Lower Cretaceous rocks in Kansas. This investigation was made as part of the Central Midwest Regional Aquifer-System Analysis (CMRASA). The CMRASA is one of several major investigations by the U.S. Geological Survey of regional aquifer systems in the United States. These regional investigations are designed to increase knowledge of the flow regime and hydrologic properties of major aquifer systems and to provide quantitative information for the assessment, development, and management of water supplies. The CMRASA study area includes all or parts of 10 Central Midwestern States (Jorgensen and Signor, 1981), as shown of the envelope cover,This Hydrologic Investigations Atlas, which consists of a series of chapters, presents a description of the physical framework and geohydrology of principal aquifers and confining systems in Kansas. Chapter H presents the geohydrology of the upper aquifer unit in the Western Interior Plains aquifer system. The physical framework of the aquifer system in relation to other systems is described by maps and sections showing areal extent and the thickness of rocks that compose the unit. The physical framework of the upper aquifer unit is described in detail in chapter D of the atlas (Hansen and others, in press). The hydrology of the system in relation to that of other systems is described in this chapter by maps showing the altitude of fluid levels and the direction of water movement within the unit. The chemical composition of water in the system is described by maps that show the distribution of dissolved-solids concentrations and the differences in water types on the basis of principal chemical constituents. Chapter A of this atlas series (Wolf and others, 1990) describes the relation of principal geohydrologic systems in Kansas and presents a more detailed discussion of the methods and data used to prepare and ensure consistency among the sets of maps.
Liu, J.; Liu, S.; Loveland, Thomas R.; Tieszen, L.L.
2008-01-01
Land cover change is one of the key driving forces for ecosystem carbon (C) dynamics. We present an approach for using sequential remotely sensed land cover observations and a biogeochemical model to estimate contemporary and future ecosystem carbon trends. We applied the General Ensemble Biogeochemical Modelling System (GEMS) for the Laurentian Plains and Hills ecoregion in the northeastern United States for the period of 1975-2025. The land cover changes, especially forest stand-replacing events, were detected on 30 randomly located 10-km by 10-km sample blocks, and were assimilated by GEMS for biogeochemical simulations. In GEMS, each unique combination of major controlling variables (including land cover change history) forms a geo-referenced simulation unit. For a forest simulation unit, a Monte Carlo process is used to determine forest type, forest age, forest biomass, and soil C, based on the Forest Inventory and Analysis (FIA) data and the U.S. General Soil Map (STATSGO) data. Ensemble simulations are performed for each simulation unit to incorporate input data uncertainty. Results show that on average forests of the Laurentian Plains and Hills ecoregion have been sequestrating 4.2 Tg C (1 teragram = 1012 gram) per year, including 1.9 Tg C removed from the ecosystem as the consequences of land cover change. ?? 2008 Elsevier B.V.
Bifurcation of the Yellowstone plume driven by subduction-induced mantle flow
NASA Astrophysics Data System (ADS)
Kincaid, C.; Druken, K. A.; Griffiths, R. W.; Stegman, D. R.
2013-05-01
The causes of volcanism in the northwestern United States over the past 20 million years are strongly contested. Three drivers have been proposed: melting associated with plate subduction; tectonic extension and magmatism resulting from rollback of a subducting slab; or the Yellowstone mantle plume. Observations of the opposing age progression of two neighbouring volcanic chains--the Snake River Plain and High Lava Plains--are often used to argue against a plume origin for the volcanism. Plumes are likely to occur near subduction zones, yet the influence of subduction on the surface expression of mantle plumes is poorly understood. Here we use experiments with a laboratory model to show that the patterns of volcanism in the northwestern United States can be explained by a plume upwelling through mantle that circulates in the wedge beneath a subduction zone. We find that the buoyant plume may be stalled, deformed and partially torn apart by mantle flow induced by the subducting plate. Using plausible model parameters, bifurcation of the plume can reproduce the primary volcanic features observed in the northwestern United States, in particular the opposite progression of two volcanic chains. Our results support the presence of the Yellowstone plume in the northwestern United States, and also highlight the power of plume-subduction interactions to modify surface geology at convergent plate margins.
Westerman, Drew A.; Gillip, Jonathan A.; Richards, Joseph M.; Hays, Phillip D.; Clark, Brian R.
2016-09-29
A hydrogeologic framework was constructed to represent the altitudes and thicknesses of hydrogeologic units within the Ozark Plateaus aquifer system as part of a regional groundwater-flow model supported by the U.S. Geological Survey Water Availability and Use Science Program. The Ozark Plateaus aquifer system study area is nearly 70,000 square miles and includes parts of Arkansas, Kansas, Missouri, and Oklahoma. Nine hydrogeologic units were selected for delineation within the aquifer system and include the Western Interior Plains confining system, the Springfield Plateau aquifer, the Ozark confining unit, the Ozark aquifer, which was divided into the upper, middle, and lower Ozark aquifers to better capture the spatial variation in the hydrologic properties, the St. Francois confining unit, the St. Francois aquifer, and the basement confining unit. Geophysical and well-cutting logs, along with lithologic descriptions by well drillers, were compiled and interpreted to create hydrologic altitudes for each unit. The final compiled dataset included more than 23,000 individual altitude points (excluding synthetic points) representing the nine hydrogeologic units within the Ozark Plateaus aquifer system.
Past permafrost on the Mid-Atlantic coastal plain, eastern United States
French, H.; Demitroff, M.; Newell, Wayne L.
2009-01-01
Sand-wedge casts, soil wedges and other non-diastrophic, post-depositional sedimentary structures suggest that Late-Pleistocene permafrost and deep seasonal frost on the Mid-Atlantic Coastal Plain extended at least as far south as southern Delaware, the Eastern Shore and southern Maryland. Heterogeneous cold-climate slope deposits mantle lower valley-side slopes in central Maryland. A widespread pre-existing fragipan is congruent with the inferred palaeo-permafrost table. The high bulk density of the fragipan was probably enhanced by either thaw consolidation when icy permafrost degraded at the active layer-permafrost interface or by liquefaction and compaction when deep seasonal frost thawed. ?? 2009 John Wiley & Sons, Ltd.
Andreasen, David C.; Nardi, Mark R.; Staley, Andrew W.; Achmad, Grufron; Grace, John W.
2016-01-01
Groundwater is the source of drinking water for ∼1.4 million people in the Coastal Plain Province of Maryland (USA). In addition, groundwater is essential for commercial, industrial, and agricultural uses. Approximately 0.757 × 109 L d–1 (200 million gallons/d) were withdrawn in 2010. As a result of decades of withdrawals from the coastal plain confined aquifers, groundwater levels have declined by as much as 70 m (230 ft) from estimated prepumping levels. Other issues posing challenges to long-term groundwater sustainability include degraded water quality from both man-made and natural sources, reduced stream base flow, land subsidence, and changing recharge patterns (drought) caused by climate change. In Maryland, groundwater supply is managed primarily by the Maryland Department of the Environment, which seeks to balance reasonable use of the resource with long-term sustainability. The chief goal of groundwater management in Maryland is to ensure safe and adequate supplies for all current and future users through the implementation of appropriate usage, planning, and conservation policies. To assist in that effort, the geographic information system (GIS)–based Maryland Coastal Plain Aquifer Information System was developed as a tool to help water managers access and visualize groundwater data for use in the evaluation of groundwater allocation and use permits. The system, contained within an ESRI ArcMap desktop environment, includes both interpreted and basic data for 16 aquifers and 14 confining units. Data map layers include aquifer and confining unit layer surfaces, aquifer extents, borehole information, hydraulic properties, time-series groundwater-level data, well records, and geophysical and lithologic logs. The aquifer and confining unit layer surfaces were generated specifically for the GIS system. The system also contains select groundwater-quality data and map layers that quantify groundwater and surface-water withdrawals. The aquifer information system can serve as a pre- and postprocessing environment for groundwater-flow models for use in water-supply planning, development, and management. The system also can be expanded to include features that evaluate constraints to groundwater development, such as insufficient available drawdown, degraded groundwater quality, insufficient aquifer yields, and well-field interference. Ultimately, the aquifer information system is intended to function as an interactive Web-based utility that provides a broad array of information related to groundwater resources in Maryland’s coastal plain to a wide-ranging audience, including well drillers, consultants, academia, and the general public.
NASA Technical Reports Server (NTRS)
Tanaka, K. L.; Dohm, J. M.; Irwin, R.; Kolb, E. J.; Skinner, J. A., Jr.; Hare, T. M.
2010-01-01
We are in the fourth year of a fiveyear effort to map the global geology of Mars at 1:20M scale using mainly Mars Global Surveyor, Mars Express, and Mars Odyssey image and altimetry datasets. Previously, we reported on details of project management, mapping datasets (local and regional), initial and anticipated mapping approaches, and tactics of map unit delineation and description [1-2]. Last year, we described mapping and unit delineation results thus far, a new unit identified in the northern plains, and remaining steps to complete the map [3].
Rowan, E.L.; Warwick, Peter D.; Pitman, Janet K.; Kennan, Lorcan; Pindell, James; Rosen, Norman C.
2007-01-01
The thermal maturation history of the Paleocene-Eocene Wilcox Group has been reconstructed based on burial history models of 53 wells in the Texas coastal plain. This modeling study has been conducted in conjunction with a geologically based assessment of the oil and gas resources in Cenozoic strata of the Gulf of Mexico coastal plain and state waters. In the onshore Texas coastal plain, coals and organic-rich shales, predominantly of terrestrial origin, within the Wilcox Group are the primary source of oil (Wenger et al., 1994) as well as a source of gas. The Wilcox, however, is modeled as a single unit, without subdivision into source rock and non-source rock intervals.Generation of oil from Type III kerogen within the Wilcox Group is modeled using hydrous pyrolysis reaction kinetic parameters (Lewan, M.D., written communication, 2006). Gas generation from Type III kerogen is represented using calculated Ro values. The models are calibrated with bottom hole temperature (BHT), and vitrinite reflectance (Ro %) data for the Wilcox Group. Ro data from near-coastal sites have been selected to minimize the possible effects of uplift and erosion and then composited to give a regional Rodepth trend.Model calculations for the study area, the onshore Texas coastal plain, indicate that downdip portions of the basal Wilcox had reached sufficient thermal maturity to generate hydrocarbons by early Eocene (~50 Ma). This relatively early maturation is explained by rapid sediment accumulation in the early Tertiary combined with the reaction kinetic parameters used in the models. Thermal maturation increases through time with increasing burial depth and temperature, gradually moving the maturation front updip. At present day, hydrocarbon generation is complete in the downdip Wilcox within the study area but is currently ongoing in the updip portions of the formation.
Symstad, Amy J.; Jonas, Jayne L.; Edited by Guntenspergen, Glenn R.
2014-01-01
Natural range of variation (NRV) may be used to establish decision thresholds or action assessment points when ecological thresholds are either unknown or do not exist for attributes of interest in a managed ecosystem. The process for estimating NRV involves identifying spatial and temporal scales that adequately capture the heterogeneity of the ecosystem; compiling data for the attributes of interest via study of historic records, analysis and interpretation of proxy records, modeling, space-for-time substitutions, or analysis of long-term monitoring data; and quantifying the NRV from those data. At least 19 National Park Service (NPS) units in North America’s Great Plains are monitoring plant species richness and evenness as indicators of vegetation integrity in native grasslands, but little information on natural, temporal variability of these indicators is available. In this case study, we use six long-term vegetation monitoring datasets to quantify the temporal variability of these attributes in reference conditions for a variety of Great Plains grassland types, and then illustrate the implications of using different NRVs based on these quantities for setting management decision thresholds. Temporal variability of richness (as measured by the coefficient of variation, CV) is fairly consistent across the wide variety of conditions occurring in Colorado shortgrass prairie to Minnesota tallgrass sand savanna (CV 0.20–0.45) and generally less than that of production at the same sites. Temporal variability of evenness spans a greater range of CV than richness, and it is greater than that of production in some sites but less in other sites. This natural temporal variability may mask undesirable changes in Great Plains grasslands vegetation. Consequently, we suggest that managers consider using a relatively narrow NRV (interquartile range of all richness or evenness values observed in reference conditions) for designating a surveillance threshold, at which greater attention to the situation would be paid, and a broader NRV for designating management thresholds, at which action would be instigated.
Late movement of basin-edge lobate scarps on Mercury
NASA Astrophysics Data System (ADS)
Fegan, E. R.; Rothery, D. A.; Marchi, S.; Massironi, M.; Conway, S. J.; Anand, M.
2017-05-01
Basin-edge lobate scarps are a sub-type of tectonic shortening structure on the surface of Mercury that have formed at the edge of volcanic units that fill or partly fill impact basins. We have performed a global survey of these features and find that they are widespread in basins across the planet. We obtained model ages from crater size-frequency distribution analysis for a subset of our surveyed basins, for both the smooth plains infill and for the last resolvable tectonic activity on the associated basin-edge scarps. Our results indicate that some of these lobate scarps were still accumulating strain in the late Mansurian (approximately 1 Ga). From a photogeological assessment, we find that the orientations of these basin-edge lobate scarps are similar to those reported for the global population of lobate scarps in earlier studies, appearing to align ∼north-south at low latitudes and ∼east-west at higher latitudes. However, reassessing these landforms' orientation with artificially illuminated topographic data does not allow us to rule out the effect of illumination bias. We propose that these landforms, the result of crustal shortening in response to global contraction, formed along the interface between the basin floor and the smooth plains unit, which acted as a mechanical discontinuity along which shortening strains were concentrated.
Causes of Long-Term Drought in the United States Great Plains
NASA Technical Reports Server (NTRS)
Schubert, Siegfried D.; Suarez, Max J.; Pegion, Philip J.; Koster, Randal D.; Bacmeister, Julio T.
2003-01-01
This study examines the causes of long term droughts in the United States Great Plains (USGP). The focus is on the relative roles of slowly varying SSTs and interactions with soil moisture. The results from ensembles of long term (1930-1999) simulations carried out with the NASA Seasonal-to- Interannual Prediction Project (NSIPP-1) atmospheric general circulation model (AGCM) show that the SSTs account for about 1/3 of the total low frequency rainfall variance in the USGP. Results from idealized experiments with climatological SST suggest that the remaining low frequency variance in the USGP precipitation is the result of interactions with soil moisture. In particular, simulations with soil moisture feedback show a five-fold increase in the variance in annual USGP precipitation compared with simulations in which the soil feedback is excluded. In addition to increasing variance, the interactions with the soil introduce year-to-year memory in the hydrological cycle that is consistent with a red noise process, in which the deep soil is forced by white noise and damped with a time scale of about 2 years. As such, the role of low frequency SST variability is to introduce a bias to the net forcing on the soil moisture that drives the random process preferentially to either wet or dry conditions.
Use of online health information resources by American Indians and Alaska Natives
Geana, Mugur; Daley, Christine Makosky; Nazir, Niaman; Cully, Lance; Etheridge, Jesse; Bledowski, Caroline; Choi, Won S.; Greiner, K. Allen
2012-01-01
According to the Office of Minority Health, an estimated 4.9 million people living in the United States consider themselves American Indian or Alaska Native (AIAN), either alone or in combination with one or more races/ethnicities. AIAN are a racial/ethnic group experiencing serious health disparities, with very little if any improvement in health outcomes over the last several decades. This study was designed to explore use of the Internet as a health information source among American Indians in the Central Plains region of the United States. Nine hundred and ninety eight Natives in the region were recruited from May 2008 to December 2009 at pow wows, health fairs, through focus groups, career fairs and conferences, and other social and cultural events, and asked to complete a self-administered survey. Although compared with data from the general population, AIAN from our sample may seem heavier Internet users, their use of modern wireless devices is limited, and their usage of Internet to access health information is lower compared to the adult US population. Natives living in the Central Plains region face generational differences in both general and health-related use of the Internet. Inadequate availability of culturally appropriate health information websites may drive AIAN towards search engines and general information websites. PMID:22642739
Ten-Year Climatology of Summertime Diurnal Rainfall Rate Over the Conterminous U.S.
NASA Technical Reports Server (NTRS)
Matsui, Toshihisa; Mocko, David; Lee, Myong-In; Tao, Wei-Kuo; Suarez, Max J.; Pielke, Roger A., Sr.
2010-01-01
Diurnal cycles of summertime rainfall rates are examined over the conterminous United States, using radar-gauge assimilated hourly rainfall data. As in earlier studies, rainfall diurnal composites show a well-defined region of rainfall propagation over the Great Plains and an afternoon maximum area over the south and eastern portion of the United States. Zonal phase speeds of rainfall in three different small domains are estimated, and rainfall propagation speeds are compared with background zonal wind speeds. Unique rainfall propagation speeds in three different regions can be explained by the evolution of latent-heat theory linked to the convective available potential energy, than by gust-front induced or gravity wave propagation mechanisms.
Wilcox, R.E.; Naeser, C.W.
1992-01-01
For many years the numerous deposits of so-called 'Pearlette volcanic ash' in the Great Plains region of the United States were considered to be the remnants of the same volcanic event, and were used as a time-stratigraphic marker of probable Middle Pleistocene age. Although a few early workers had suggested that more than one air-fall event might be represented among the Pearlette occurrences, it was not until the latter half of the present century, after identification of volcanic ash beds by detailed chemical and mineralogical methods had been developed, that it could be established that the 'Pearlette family' of volcanic ashes included three ash beds of subtly differing characteristics. Development of isotopic methods of age determination has established that the ages of the three are significantly different (2.09, 1.29, and 0.60 Ma). The area of distribution of the Pearlette family ash beds was found to include not only the Great Plains, but also to extend across the Rocky Mountain and the Basin and Range provinces to the Pacific Ocean. The search for the sources of these three similar appearing ash beds, facilitated greatly by information gained from concurrent mapping projects underway in areas of major Late Cenozoic volcanic activity in western United States, ultimately led to the sites of the caldera-forming eruptions in the Yellowstone National Park region. ?? 1992.
Hounsfield unit values of retropharyngeal abscess-like lesions seen in Kawasaki disease.
Sasaki, Toru; Miyata, Rie; Hatai, Yoshiho; Makita, Kohzoh; Tsunoda, Koichi
2014-04-01
Retropharyngeal abscess-like lesions are occasionally seen in computed tomography (CT) imaging of patients with Kawasaki disease (KD) and these patients often undergo unnecessary surgery. We could distinguish the lesions from true abscesses by measuring their Hounsfield unit values (HUs). To distinguish the retropharyngeal abscess-like lesions from true abscesses without any surgical procedure. We investigated six cases of KD showing such lesions on CTs, both with and without contrast enhancement (CE). We measured the HUs of those lesions and compared them with those of 10 true abscesses as controls. Abscess-like lesions of KD were well enhanced by CE, whereas abscesses showed virtually no enhancement. The mean HU in the six KD cases was 20.0 ± 4.65 (mean ± SD) on plain CTs and 35.6 ± 4.49 on contrast CTs. In abscesses, it was 30.3 ± 4.42 on plain CTs and 30.3 ± 3.57 on contrast CTs. The difference in HU values [(HU on contrast CT) - (HU on plain CT)] was defined as ΔHU. The mean ΔHU was 15.6 ± 5.36 in the six KD lesions and 0.0 ± 2.93 in abscesses, with statistical significance of p < 0.0001 by Student's t test. Thus, ΔHU value may potentially be a useful parameter for their distinction.
Villegas-Ríos, David; Alonso-Fernández, Alexandre; Fabeiro, Mariña; Bañón, Rafael; Saborido-Rey, Fran
2013-01-01
Fish populations are often treated as homogeneous units in typical fishery management, thereby tacitly ignoring potential intraspecific variation which can lead to imprecise management rules. However, intraspecific variation in life-history traits is widespread and related to a variety of factors. We investigated the comparative age-based demography of the two main colour patterns of Labrus bergylta (plain and spotted, which coexist in sympatry), a commercially valuable resource in the NE Atlantic. Individuals were aged based on otolith readings after validating the annual periodicity of annuli deposition. The relationships between the otolith weight and fish age and between otolith length and fish length were strong but differed between colour patterns. The fit of the growth models to the age and length data resulted in divergent growth curves between colour morphotypes and between sexes. Males and spotted individuals attained larger mean asymptotic sizes (Linf) than females and plain individuals, respectively, but converged to them more slowly (smaller k). Estimates of mortality based on catch curves from two independent datasets provided a global total mortality (Z) of 0.35 yr–1, although Z was larger in plain and female individuals. Overall, the results of this research have direct implications for management of L. bergylta and, as a precautionary measure, we recommend considering both colour patterns as two different management units. PMID:24058404
Hydrogeologic framework of the North Carolina coastal plain
Winner, M.D.; Coble, R.W.
1996-01-01
The hydrogeologic framework of the North Carolina Coastal Plain aquifer system consists of 10 aquifers separated by 9 confining units. From top to bottom, the aquifers are the surficial aquifer, Yorktown aquifer, Pungo River aquifer, Castle Hayne aquifer, Beaufort aquifer, Peedee aquifer, Black Creek aquifer, upper Cape Fear aquifer, lower Cape Fear aquifer, and Lower Cretaceous aquifer. The uppermost aquifer (the surficial aquifer in most places) is a water-table aquifer, and the bottom of the system is underlain by crystalline bedrock. The sedimentary deposits forming the aquifers are of Holocene to Cretaceous age and are composed mostly of sand, with lesser amounts of gravel and limestone. The confining units between the aquifers are composed primarily of clay and silt. The thickness of the aquifers ranges from zero along the Fall Line to more than 10,000 feet at Cape Hatteras. Prominent structural features are the increasing easterly homoclinal dip of the sediments and the Cape Fear arch, the axis of which trends in a southeast direction. Stratigraphic continuity was determined from correlations of 161 geophysical logs along with data from drillers? and geologists? logs. Aquifers were defined by means of these logs as well as water-level and water-quality data and evidence of the continuity of pumping effects. Eighteen hydrogeologic sections depict the correlation of these aquifers throughout the North Carolina Coastal Plain.
Variability of hydrological droughts in the conterminous United States, 1951 through 2014
Austin, Samuel H.; Wolock, David M.; Nelms, David L.
2018-02-22
Spatial and temporal variability in the frequency, duration, and severity of hydrological droughts across the conterminous United States (CONUS) was examined using monthly mean streamflow measured at 872 sites from 1951 through 2014. Hydrological drought is identified as starting when streamflow falls below the 20th percentile streamflow value for 3 consecutive months and ending when streamflow remains above the 20th percentile streamflow value for 3 consecutive months. Mean drought frequency for all aggregated ecoregions in CONUS is 16 droughts per 100 years. Mean drought duration is 5 months, and mean drought severity is 39 percent on a scale ranging from 0 percent to 100 percent (with 100% being the most severe). Hydrological drought frequency is highest in the Western Mountains aggregated ecoregion and lowest in the Eastern Highlands, Northeast, and Southeast Plains aggregated ecoregions. Hydrological drought frequencies of 17 or more droughts per 100 years were found for the Central Plains, Southeast Coastal Plains, Western Mountains, and Western Xeric aggregated ecoregions. Drought duration and severity indicate spatial variability among the sites, but unlike drought frequency, do not show coherent spatial patterns. A comparison of an older period (1951–82) with a recent period (1983–2014) indicates few sites have statistically significant changes in drought frequency, drought duration, or drought severity at a 95-percent confidence level.
ASSESSING THE SUITABILITY OF WINDBREAKS AS WILDLIFE HABITAT - 1994 PILOT PLAN
The Environmental Monitoring and Assessment Program's (EMAP) Agroecosystem Resource Group is developing a program to monitor and evaluate the ecological condition of United States agricultural lands. indbreaks are an important non-crop element in the Great Plains, an extensive ag...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Disclosure. 37.54 Section 37.54 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Disclosure. 37.54 Section 37.54 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC...
Mapping the Sedna-Lavinia Region of Venus
NASA Technical Reports Server (NTRS)
Campbell, Bruce A.; Anderson, Ross F.
2008-01-01
Geologic mapping of Venus at 1:5 M scale has shown in great detail the flow complexes of volcanoes, coronae, and shield fields, and the varying structural patterns that differentiate tesserae from corona rims and isolated patches of densely lineated terrain. In most cases, however, the lower-elevation plains between the higher-standing landforms are discriminated only on the basis of potentially secondary features such as late-stage lava flooding or tectonic overprinting. This result, in which volcanoes and tesserae appear as "islands in the sea," places weak constraints on the relative age of large upland regions and the nature of the basement terrain. In this work, we focus on the spatial distribution and topography of densely lineated and tessera units over a large region of Venus, and their relationship to apparently later corona and shield flow complexes. The goal is to identify likely connections between patches of deformed terrain that suggest earlier features of regional extent, and to compare the topography of linked patches with other such clusters as a guide to whether they form larger tracts beneath the plains. Mapping Approach. We are mapping the region from 57S to 57N, 300E-60E. Since the 1:5 M quadrangles emphasize detail of tessera structure and corona/edifice flows, we simply adopt the outlines of these features as they relate to the outcrops of either "densely lineated terrain" or tessera (Fig. 1). The densely lineated material is mapped in many quadrangles based on pervasive structural deformation, typically with a single major axis (in contrast to the overlapping orthogonal patterns on tesserae). This unit definition is often extended to include material of corona rims. We do not at present differentiate between plains units, since earlier efforts show that their most defining attributes may be secondary to the original emplacement (e.g., lobate or sheet-like flooding by thin flow units, tectonic patterns related to regional and localized stress regimes) [1].
Stephens, Jessica D.; Santos, Scott R.; Folkerts, Debbie R.
2011-01-01
Pitcher plant bogs, or carnivorous plant wetlands, have experienced extensive habitat loss and fragmentation throughout the southeastern United States Coastal Plain, resulting in an estimated reduction to <3% of their former range. This situation has lead to increased management attention of these habitats and their carnivorous plant species. However, conservation priorities focus primarily on the plants since little information currently exists on other community members, such as their endemic arthropod biota. Here, we investigated the population structure of one of these, the obligate pitcher plant moth Exyra semicrocea (Lepidoptera: Noctuidae), using mitochondrial cytochrome c oxidase subunit I (COI) gene sequences. Examination of 221 individuals from 11 populations across eight southeastern US states identified 51 unique haplotypes. These haplotypes belonged to one of two divergent (∼1.9–3.0%) lineages separated by the Mississippi alluvial plain. Populations of the West Gulf Coastal Plain exhibited significant genetic structure, contrasting with similarly distanced populations east of the Mississippi alluvial plain. In the eastern portion of the Coastal Plain, an apparent transition zone exists between two regionally distinct population groups, with a well-established genetic discontinuity for other organisms coinciding with this zone. The structure of E. semicrocea appears to have been influenced by patchy pitcher plant bog habitats in the West Gulf Coastal Plain as well as impacts of Pleistocene interglacials on the Apalachicola-Chattahoochee-Flint River Basin. These findings, along with potential extirpation of E. semicrocea at four visited, but isolated, sites highlight the need to consider other endemic or associated community members when managing and restoring pitcher plant bog habitats. PMID:21829473
Tanaka, K.L.; Skinner, J.A.; Hare, T.M.; Joyal, T.; Wenker, A.
2003-01-01
Geologic mapping of the northern plains of Mars, based on Mars Orbiter Laser Altimeter topography and Viking and Mars Orbiter Camera images, reveals new insights into geologic processes and events in this region during the Hesperian and Amazonian Periods. We propose four successive stages of lowland resurfacing likely related to the activity of near-surface volatiles commencing at the highland-lowland boundary (HLB) and progressing to lower topographic levels as follows (highest elevations indicated): Stage 1, upper boundary plains, Early Hesperian, <-2.0 to -2.9 km; Stage 2, lower boundary plains and outflow channel dissection, Late Hesperian, <-2.7 to -4.0 km; Stage 3, Vastitas Borealis Formation (VBF) surface, Late Hesperian to Early Amazonian, <-3.1 to -4.1 km; and Stage 4, local chaos zones, Early Amazonian, <-3.8 to -5.0 km. At Acidalia Mensa, Stage 2 and 3 levels may be lower (<-4.4 and -4.8 km, respectively). Contractional ridges form the dominant structure in the plains and developed from near the end of the Early Hesperian to the Early Amazonian. Geomorphic evidence for a northern-plains-filling ocean during Stage 2 is absent because one did not form or its evidence was destroyed by Stage 3 resurfacing. Remnants of possible Amazonian dust mantles occur on top of the VBF. The north polar layered deposits appear to be made up of an up to kilometer-thick lower sequence of sandy layers Early to Middle Amazonian in age overlain by Late Amazonian ice-rich dust layers; both units appear to have outliers, suggesting that they once were more extensive.
River flood plains: Some observations on their formation
Wolman, M. Gordon; Leopold, Luna Bergere
1957-01-01
On many small rivers and most great rivers, the flood plain consists of channel and overbank deposits. The proportion of the latter is generally very small.Frequency studies indicate that the flood plains of many streams of different sizes flowing in diverse physiographic and climatic regions are subject to flooding about once a year.The uniform frequency of flooding of the flood-plain surface and the small amount of deposition observed in great floods (average 0.07 foot) support the conclusion that overbank deposition contributes only a minor part of the material constituting the flood plain. The relatively high velocities (1 to 4 fps) which can occur in overbank flows and the reduction in sediment concentration which often accompanies large floods may also help account for this. Although lateral migration of channels is important in controlling the elevation of the flood plain, rates of migration are extremely variable and alone cannot account for the uniform relation the flood-plain surface bears to the channel.Detailed studies of flood plains in Maryland and in North Carolina indicate that it is difficult to differentiate between channel and overbank deposits in a stratigraphic section alone.Because deposition on the flood plain does not continue indefinitely, the flood-plain surface can only be transformed into a terrace surface by some tectonic or climatic change which alters the regimen of the river and causes it to entrench itself below its established bed and associated flood plain. A terrace, then, is distinguished from a flood plain by the frequency with which each is overflowed.
Staff Study Coronet Operations in the Kanto Plain of Honshu
1945-08-15
Base Troons 60,000 Air-Ground Personnel 60,000 Ease and Service Troops Large number of Citizens Volunteer" Units (3) That the initial assaults will...operation, the eraemy will have been forced to withdraw the bulk of his remaining land- based air force to the Asiatic Mainland, but that this... bases , proceeding to the objective area under cover of the Pacific Fleet and carrier and land- based aviation. It effects, on "Y"-Day, a landing of the
Stewart, Lisa M.; Hicks, David W.
1996-01-01
This report is part of an interdisciplinary effort to identify and describe processes that control movement and fate of selected fertilizers and pesticides in the surface and subsurface environments in the Fall Line Hills district of the Georgia Coastal Plain physiographic province. This report describes the hydrogeology of the interstream area between Ty Ty Creek and it's tributary near Plains, Sumter County, Georgia. Geologic units of interest to this study are, in ascending order, (1) the Tuscahoma Formation, a bluish gray, silty clay; (2) the Tallahatta Formation, a fine-to-coarse, poorly sorted quartz sand that is divided into an upper and lower unit; and (3) the undifferentiated overburden, which consists of fine to medium poorly sorted sand, silt and clay. Continuous-core samples indicate that the unsaturated zone includes the undifferentiated overburden and the upper unit of the Tallahatta Formation, and attains a maximum thickness of about 52 feet (ft) in the southern part of the study area. The Claiborne aquifer in the study area consists of the lower unit of the Tallahatta Formation and ranges in thickness from 3 ft near Ty Ty Creek tributary to about 20 ft in the upland divide area. It is confined below by the clayey sediments of the Tuscahoma Formation. The Claiborne aquifer in the study area generally is confined above by an extensive clay layer that is the base if the upper unit of the Tallahatta Formation. Fluctuations in the amount of vertical recharge to the aquifer result in areal and temporal changes in aquifer conditions from confined to unconfined in parts of the study area. Hydraulic conductivity of the aquifer ranges from 3.5 to 7 feet per day. The transmissivity of the aquifer is approximately 50 feet squared per day. Water-level data indicate the potentiometric surface slopes to the south, southeast, and southwest with a gradient of about 87 to 167 feet per mile. The shape of the potentiometric surface and the direction of groundwater flow remains relatively unchanged during high and low water-level periods. Water levels in the Claiborne aquifer fluctuated by a maximum of 6 ft during the period from January to December 1991. Recharge to the Claiborne aquifer consists of a local and regional flow component. Lateral ground-water flow (regional flow) into the study area is dependent on regional hydraulic controls (pumpage, stream discharge, and rainfall). The rate of lateral movement of ground water is dependent on the hydraulic conductivity of the saturated zone, the hydraulic gradient, and other hydraulic factors, and is considered to be relatively constant. Local recharge enters the ground-water system as rainfall that percolates down to the water table. Annual water-level fluctuations in the Claiborne aquifer indicate that the majority of regional and local recharge occurs in the interstream area with recharge decreasing downslope to the streams. Ground water discharges to Ty Ty Creek and it's tributary throughout the year during low and high water-level periods.
Hobza, Christopher M.; Bedrosian, Paul A.; Bloss, Benjamin R.
2012-01-01
The Elkhorn-Loup Model (ELM) was begun in 2006 to understand the effect of various groundwater-management scenarios on surface-water resources. During phase one of the ELM study, a lack of subsurface geological information was identified as a data gap. Test holes drilled to the base of the aquifer in the ELM study area are spaced as much as 25 miles apart, especially in areas of the western Sand Hills. Given the variable character of the hydrostratigraphic units that compose the High Plains aquifer system, substantial variation in aquifer thickness and characteristics can exist between test holes. To improve the hydrogeologic understanding of the ELM study area, the U.S. Geological Survey, in cooperation with the Nebraska Department of Natural Resources, multiple Natural Resources Districts participating in the ELM study, and the University of Nebraska-Lincoln Conservation and Survey Division, described the subsurface lithology at six test holes drilled in 2010 and concurrently collected borehole geophysical data to identify the base of the High Plains aquifer system. A total of 124 time-domain electromagnetic (TDEM) soundings of resistivity were collected at and between selected test-hole locations during 2008-11 as a quick, non-invasive means of identifying the base of the High Plains aquifer system. Test-hole drilling and geophysical logging indicated the base-of-aquifer elevation was less variable in the central ELM area than in previously reported results from the western part of the ELM study area, where deeper paleochannels were eroded into the Brule Formation. In total, more than 435 test holes were examined and compared with the modeled-TDEM soundings. Even where present, individual stratigraphic units could not always be identified in modeled-TDEM sounding results if sufficient resistivity contrast was not evident; however, in general, the base of aquifer [top of the aquifer confining unit (ACU)] is one of the best-resolved results from the TDEM-based models, and estimates of the base-of-aquifer elevation are in good accordance with those from existing test-hole data. Differences between ACU elevations based on modeled-TDEM and test-hole data ranged from 2 to 113 feet (0.6 to 34 meters). The modeled resistivity results reflect the eastward thinning of Miocene-age and older stratigraphic units, and generally allowed confident identification of the accompanying change in the stratigraphic unit forming the ACU. The differences in elevation of the top of the Ogallala, estimated on the basis of the modeled-TDEM resistivity, and the test-hole data ranged from 11 to 251 feet (3.4 to 77 meters), with two-thirds of model results being within 60 feet of the test-hole contact elevation. The modeled-TDEM soundings also provided information regarding the distribution of Plio-Pleistocene gravel deposits, which had an average thickness of 100 feet (30 meters) in the study area; however, in many cases the contact between the Plio-Pleistocene deposits and the overlying Quaternary deposits cannot be reliably distinguished using TDEM soundings alone because of insufficient thickness or resistivity contrast.
Qi, Sharon
2010-01-01
This digital data set represents the extent of the High Plains aquifer in the central United States. The extent of the High Plains aquifer covers 174,000 square miles in eight states: Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. This data set represents a compilation of information from digital and paper sources and personal communication. This boundary is an update to the boundary published in U.S. Geological Survey Professional Paper 1400-B, and this report supersedes Open-File Report 99-267. The purpose of this data set is to refine and update the extent of the High Plains aquifer based on currently available information. This data set represents a compilation of arcs from a variety of sources and scales that represent the 174,000 square-mile extent of the High Plains aquifer within the eight states. Where updated information was not available, the original boundary extent defined by OFR 99-267 was retained. The citations for the sources in each State are listed in the 00README.txt file. The boundary also contains internal polygons, or 'islands', that represent the areas within the aquifer boundary where the aquifer is not present due to erosion or non-deposition. The datasets that pertain to this report can be found on the U.S. Geological Survey's NSDI (National Spatial Data Infrastructure) Node, the links are provided on the sidebar.
Abyssal hills: Influence of topography on benthic foraminiferal assemblages
NASA Astrophysics Data System (ADS)
Stefanoudis, Paris V.; Bett, Brian J.; Gooday, Andrew J.
2016-11-01
Abyssal plains, often thought of as vast flat areas, encompass a variety of terrains including abyssal hills, features that constitute the single largest landscape type on Earth. The potential influence on deep-sea benthic faunas of mesoscale habitat complexity arising from the presence of abyssal hills is still poorly understood. To address this issue we focus on benthic foraminifera (testate protists) in the >150-μm fraction of Megacorer samples (0-1 cm layer) collected at five different sites in the area of the Porcupine Abyssal Plain Sustained Observatory (NE Atlantic, 4850 m water depth). Three sites are located on the tops of small abyssal hills (200-500 m elevation) and two on the adjacent abyssal plain. We examined benthic foraminiferal assemblage characteristics (standing stock, diversity, composition) in relation to seafloor topography (hills vs. plain). Density and rarefied diversity were not significantly different between the hills and the plain. Nevertheless, hills do support a higher species density (i.e. species per unit area), a distinct fauna, and act to increase the regional species pool. Topographically enhanced bottom-water flows that influence food availability and sediment type are suggested as the most likely mechanisms responsible for these differences. Our findings highlight the potential importance of mesoscale heterogeneity introduced by relatively modest topography in regulating abyssal foraminiferal diversity. Given the predominance of abyssal hill terrain in the global ocean, we suggest the need to include faunal data from abyssal hills in assessments of abyssal ecology.
Wintering Golden Eagles on the coastal plain of South Carolina
Vukovich, Mark; Turner, Kelsey L.; Grazia, Tracy E.; ...
2015-10-01
Golden Eagles (Aquila chrysaetos) are rare winter residents in eastern North America, with most found along the Appalachian Mountains and few reported on the coastal plain of the Carolinas. We used remote cameras baited with wild pig (Sus scrofa) and white-tailed deer (Odocoileus virginianus) carcasses to detect, age, and individually identify Golden Eagles on the U.S. Department of Energy’s Savannah River Site on the coastal plain of South Carolina. We identified eight individual Golden Eagles during the winters of 2013–2014 and 2014–2015, with one detected during both winters. We detected eagles for 19 and 66 calendar days during the wintersmore » of 2013–2014 and 2014–2015, respectively, with two adult eagles detected for 30 and 31 calendar days in 2014–2015. Eagles typically scavenged on carcasses for a few days, left, and then returned when cameras were baited with another carcass, suggesting they had remained in the area. These observations suggest that large tracts of forests on the coastal plain may be important wintering areas for some Golden Eagles and, further, that other areas in the coastal plain of the southeastern United States may also harbor wintering eagles. Identification of wintering areas of Golden Eagles in the east will be an important step in the conservation of this protected species, and camera traps baited with carcasses can be an effective tool for such work.« less
Wintering Golden Eagles on the coastal plain of South Carolina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vukovich, Mark; Turner, Kelsey L.; Grazia, Tracy E.
Golden Eagles (Aquila chrysaetos) are rare winter residents in eastern North America, with most found along the Appalachian Mountains and few reported on the coastal plain of the Carolinas. We used remote cameras baited with wild pig (Sus scrofa) and white-tailed deer (Odocoileus virginianus) carcasses to detect, age, and individually identify Golden Eagles on the U.S. Department of Energy’s Savannah River Site on the coastal plain of South Carolina. We identified eight individual Golden Eagles during the winters of 2013–2014 and 2014–2015, with one detected during both winters. We detected eagles for 19 and 66 calendar days during the wintersmore » of 2013–2014 and 2014–2015, respectively, with two adult eagles detected for 30 and 31 calendar days in 2014–2015. Eagles typically scavenged on carcasses for a few days, left, and then returned when cameras were baited with another carcass, suggesting they had remained in the area. These observations suggest that large tracts of forests on the coastal plain may be important wintering areas for some Golden Eagles and, further, that other areas in the coastal plain of the southeastern United States may also harbor wintering eagles. Identification of wintering areas of Golden Eagles in the east will be an important step in the conservation of this protected species, and camera traps baited with carcasses can be an effective tool for such work.« less
Johnson, E.A.; Pierce, F.W.
1990-01-01
The Tongue River Member of the Paleocene Fort Union Formation is an important coal-bearing sedimentary unit in the Powder River Basin of Wyoming and Montana. We studied the depositional environments of a portion of this member at three sites 20 km apart in the southeastern part of the basin. Six lithofacies are recognized that we assign to five depositional facies categorized as either channel or interchannel-wetlands environments. (1) Type A sandstone is cross stratified and occurs as lenticular bodies with concave-upward basal surfaces; these bodies are assigned to the channel facies interpreted to be the product of low-sinuosity streams. (2) Type B sandstone occurs in parallel-bedded units containing mudrock partings and fossil plant debris; these units constitute the levee facies. (3) Type C sandstone typically lacks internal structure and occurs as tabular bodies separating finer grained deposits; these bodies represent the crevasse-splay facies. (4) Gray mudrock is generally nonlaminated and contains ironstone concretions; these deposits constitute the floodplain facies. (5) Carbonaceous shale and coal are assigned to the swamp facies. We recognize two styles of stream deposition in our study area. Laterally continuous complexes of single and multistoried channel bodies occur at our middle study site and we interpret these to be the deposits of sandy braided stream systems. In the two adjacent study sites, single and multistoried channel bodies are isolated in a matrix of finer-grained interchannel sediment suggesting deposition by anastomosed streams. A depositional model for our study area contains northwest-trending braided stream systems. Avulsions of these systems created anastomosed streams that flowed into adjacent interchannel areas. We propose that during late Paleocene a broad alluvial plain existed on the southeastern flank of the Powder River Basin. The braided streams that crossed this surface were tributaries to a northward-flowing, basin-axis trunk stream that existed to the west. ?? 1990.
Geologic history of the Cerberus Plains, Mars
NASA Astrophysics Data System (ADS)
Lanagan, Peter Denham
This work examines the relative chronology of geologic units within the Cerberus Plains of Mars with an emphasis on lava flows emplaced after the last Marte Valles fluvial episode. High resolution images show the bulk of the Cerberus Plains is covered by platy-ridged and inflated lavas, which are interpreted as insulated sheet flows. Eastern Cerberus Plains lavas originate at Cerberus Fossae fissures and shields. Some flows extend for >2000 km through Marte Valles into Amazonis Planitia. Athabasca Valles are both incised into pristine lavas and embayed by pristine lavas, indicating that Athabascan fluvial events were contemporaneous with volcanic eruptions. Deposits of the Medusae Fossae Formation lie both over and under lavas, suggesting the deposition of the Medusae Fossae Formation was contemporaneous with volcanism. Statistics of small craters indicate lavas in the Western Cerberus Plains may be less than a million years old, but the model isochrons may be unreliable if the small crater population is dominated by secondary craters. Images showing no large craters with diameters >500 m superimposed on Western Cerberus Plains lavas indicate the same surface is younger than 49 Ma. High resolution Mars Orbiter Camera (MOC) images have revealed the existence of small cones in the Cerberus Plains, Marte Valles, and Amazonis Planitia. These cones are similar in both morphology and planar dimensions to the larger Icelandic rootless cones, which form due to explosive interactions between surficial lavas and near-surface groundwater. If martian cones form in the same manner as terrestrial rootless cones, then equatorial ground-ice or ground water must have been present near the surface in geologically recent times. Evidence for a shallow lake in the Western Cerberus Plains during the Late Amazonian is also presented. High-resolution images show features interpreted as flood-eroded scarps and fluvial spillways exiting the lake. Based on present-day topography, a lake would have covered an area of 8.4 x 10 4 km 2 , had an average depth of 12 m, and have contained a volume of 1.0 x 10 3 km 3 of water. Lake waters were likely primarily lost to the atmosphere through sublimation, although some quantity of water likely spilled into the Eastern Cerberus Plains or infiltrated into the shallow crust.
Eco-efficiency model for evaluating feedlot rations in the Great Plains, United States
USDA-ARS?s Scientific Manuscript database
Environmental impacts attributable to beef feedlot production provide an opportunity for economically-linked environmental efficiency optimization. An adaptable eco-efficiency model was developed to assess the impacts of dietary rations. The hybridized model utilized California Net Energy System m...
Bioenergy | National Agricultural Library
Skip to main content Home National Agricultural Library United States Department of Agriculture Ag , graphs), Agricultural Products html Data from: Comparative farm-gate life cycle assessment of oilseed registered trademark of Dries Buytaert. NAL Home | USDA.gov | Agricultural Research Service | Plain Language
Mountain Plains Learning Experience Guide: Heating, Refrigeration, & Air Conditioning.
ERIC Educational Resources Information Center
Carey, John
This Heating, Refrigeration, and Air Conditioning course is comprised of eleven individualized units: (1) Refrigeration Tools, Materials, and Refrigerant; (2) Basic Heating and Air Conditioning; (3) Sealed System Repairs; (4) Basic Refrigeration Systems; (5) Compression Systems and Compressors; (6) Refrigeration Controls; (7) Electric Circuit…
Registration of 'Rollag' spring wheat
USDA-ARS?s Scientific Manuscript database
Fusarium head blight (FHB) (caused primarily by Fusarium graminearum Schwabe) is a disease that annually threatens wheat (Triticum aestivum L.) grown in the northern plains of the United States. Resistance to this disease is a high priority trait in the University of Minnesota’s spring wheat breedi...
50 CFR 37.51 - Operational reports.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Operational reports. 37.51 Section 37.51 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Revision. 37.25 Section 37.25 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC NATIONAL...
50 CFR 37.51 - Operational reports.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Operational reports. 37.51 Section 37.51 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC...
50 CFR 37.13 - Group participation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Group participation. 37.13 Section 37.13 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC...
50 CFR 37.46 - Cost reimbursement.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Cost reimbursement. 37.46 Section 37.46 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC...
50 CFR 37.46 - Cost reimbursement.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Cost reimbursement. 37.46 Section 37.46 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Bonding. 37.14 Section 37.14 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC NATIONAL...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Bonding. 37.14 Section 37.14 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC NATIONAL...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Revision. 37.25 Section 37.25 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC NATIONAL...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Records. 37.52 Section 37.52 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC NATIONAL...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Records. 37.52 Section 37.52 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC NATIONAL...
50 CFR 37.13 - Group participation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Group participation. 37.13 Section 37.13 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC...
Accuracy assessment of NOAA gridded daily reference evapotranspiration for the Texas High Plains
USDA-ARS?s Scientific Manuscript database
The National Oceanic and Atmospheric Administration (NOAA) provides daily reference evapotranspiration (ETref) maps for the contiguous United States using climatic data from North American Land Data Assimilation System (NLDAS). This data provides large-scale spatial representation of ETref, which i...
Preliminary geologic map of the Santa Barbara coastal plain area, Santa Barbara County, California
Minor, Scott A.; Kellogg, Karl S.; Stanley, Richard G.; Stone, Paul; Powell, Charles L.; Gurrola, Larry D.; Selting, Amy J.; Brandt, Theodore R.
2002-01-01
This report presents a new geologic digital map of the Santa Barbara coastal plain area at a compilation scale of 1:24,000 (one inch on the map = 2,000 feet on the ground) and with a horizontal positional accuracy of at least 20 m. This preliminary map depicts the distribution of bedrock units and surficial deposits and associated deformation underlying and adjacent to the coastal plain within the contiguous Santa Barbara and Goleta 7.5' quadrangles. A planned second version will extend the mapping westward into the adjoining Dos Pueblos Canyon quadrangle and eastward into the Carpinteria quadrangle. The mapping presented here results from the collaborative efforts of geologists with the U.S. Geological Survey Southern California Areal Mapping Project (SCAMP) (Minor, Kellogg, Stanley, Stone, and Powell) and the tectonic geomorphology research group at the University of California at Santa Barbara (Gurrola and Selting). C.L. Powell, II, performed all new fossil identifications and interpretations reported herein. T.R. Brandt designed and edited the GIS database,performed GIS database integration and created the digital cartography for the map layout. The Santa Barbara coastal plain is located in the western Transverse Ranges physiographic province along a west-trending segment of the southern California coastline about 100 km (62 mi) northwest of Los Angeles. The coastal plain region, which extends from the Santa Ynez Mountains on the north to the Santa Barbara Channel on the south, is underlain by numerous active and potentially active folds and partly buried thrust faults of the Santa Barbara fold and fault belt. Strong earthquakes that occurred in the region in 1925 (6.8 magnitude) and 1978 (5.1 magnitude) are evidence that such structures pose a significant earthquake hazard to the approximately 200,000 people living within the major coastal population centers of Santa Barbara and Goleta. Also, young landslide deposits along the steep lower flank of the Santa Ynez Mountains indicate the potential for continued slope failures and mass movements that may threaten urbanized parts of the coastal plain. Deformed sedimentary rocks in the subsurface of the coastal plain and the adjacent Santa Barbara Channel contain deposits of oil and gas, some of which are currently being extracted. Shallow, localized sedimentary aquifers underlying the coastal plain provide limited amounts of water for the urban areas, but the quality of some of this groundwater is compromised by coastal salt-water contamination. The present map compilation provides a set of uniform geologic digital coverages that can be used for analysis and prediction of these and other geologic hazards and resources in the coastal plain region. In the map area the oldest stratigraphic units consist of resistant Eocene to Oligocene marine and terrestrial sedimentary rocks that form a mostly southward-dipping and laterally continuous sequence along the south flank of the Santa Ynez Mountains. Less resistant, but more variably deformed, Miocene, Pliocene, and Pleistocene marine sedimentary rocks and deposits are exposed in the lower Santa Ynez foothills and in the coastal hills and sea cliffs farther south. Pleistocene and Holocene surficial alluvial, colluvial, estuarine, and marine-terrace deposits directly underlie much of the low-lying coastal plain area, and similar-aged alluvial and landslide deposits locally mantle the lower flanks of the Santa Ynez Mountains. Structurally, the Santa Barbara coastal plain area is dominated by the Santa Barbara fold and fault belt, an east-west-trending zone of Quaternary, partly active folds and blind and exposed reverse and thrust faults. The dominant trend of individual structures within the belt is west-northwest -- slightly oblique to the overall trend of the fold and fault belt. A conspicuous exception, however, is the More Ranch fault system, which strikes east-northeast across the fold and f
Urban Heat Island Over Delhi Punches Holes in Widespread Fog in the Indo-Gangetic Plains
NASA Astrophysics Data System (ADS)
Gautam, Ritesh; Singh, Manoj K.
2018-01-01
Persistent and widespread fog affects several densely populated and agriculturally fertile basins around the world. Dense and polluted fog is especially known to impact transportation, air quality, and public health. Here we report a striking observation of holes in fog over urban areas in satellite imagery. The extent of fog holes appear highly correlated with city populations in fog-prevalent regions of Asia, Europe, and the United States. We find the highest frequency and largest extent of fog holes over Delhi along with suppressed fog fraction, amidst increased fog occurrence over the Indo-Gangetic Plains, based on 17 years of satellite data (2000-2016). This apparent urban heat impact is characterized in sharp urban-rural gradients in surface temperatures and fog thickness. Urban heating seems to have already amplified the long-term fog decline in Europe and the United States and should be assessed over regions undergoing urban expansion including India, where no previous linkages are reported between urban heating and fog.
Geologic map of the Lada Terra quadrangle (V-56), Venus
Kumar, P. Senthil; Head, James W.
2013-01-01
This publication provides a geological map of Lada Terra quadrangle (V–56), a portion of the southern hemisphere of Venus that extends from lat 50° S. to 70° S. and from long 0° E. to 60° E. V–56 is bordered by Kaiwan Fluctus (V–44) and Agnesi (V–45) quadrangles in the north and by Mylitta Fluctus (V–61), Fredegonde (V–57), and Hurston (V–62) quadrangles in the west, east, and south, respectively. The geological map of V–56 quadrangle reveals evidence for tectonic, volcanic, and impact processes in Lada Terra in the form of tesserae, regional extensional belts, coronae, and volcanic plains. In addition, the map also shows relative age relations such as overlapping or cross-cutting relations between the mapped geologic units. The geology observed within this quadrangle addresses (1) how coronae evolved in association with regional extensional belts and (2) how tesserae, regional plains, and impact craters, which are also significant geological units observed in Lada Terra quadrangle, were formed.
Kilometer-scale topographic roughness of Mercury: Correlation with geologic features and units
NASA Astrophysics Data System (ADS)
Kreslavsky, Mikhail A.; Head, James W.; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.
2014-12-01
We present maps of the topographic roughness of the northern circumpolar area of 30 Mercury at kilometer scales. The maps are derived from range profiles obtained by the 31 Mercury Laser Altimeter (MLA) instrument onboard the MErcury Surface, Space 32 ENvironment, Geochemistry, and Ranging (MESSENGER) mission. As measures of 33 roughness, we used the interquartile range of profile curvature at three baselines: 0.7 km, 34 2.8 km, and 11 km. The maps provide a synoptic overview of variations of typical 35 topographic textures. They show a dichotomy between the smooth northern plains and 36 rougher, more heavily cratered terrains. Analysis of the scale dependence of roughness 37 indicates that the regolith on Mercury is thicker than on the Moon by approximately a 38 factor of three. Roughness contrasts within northern volcanic plains of Mercury indicate a 39 younger unit inside Goethe basin and inside another unnamed stealth basin. These new 40 data permit interplanetary comparisons of topographic roughness.
Small volcanic edifices and volcanism in the plains of Venus
NASA Technical Reports Server (NTRS)
Guest, John E.; Bulmer, Mark H.; Aubele, Jayne; Beratan, Kathi; Greeley, Ronald; Head, James W.; Michaels, Gregory; Weitz, Catherine; Wiles, Charles
1992-01-01
The different types of eruption that have occurred over time in the Venusian plains are considered. The most extensive volcanic units consist of flood lavas, the largest of which have volumes of the order of thousands of cubic kilometers. They are inferred to have erupted at high effusion rates, and they exhibit a range of radar backscatter characteristics indicating different surface textures and ages. Small edifices on the plains occur mainly in clusters associated with fracture belts. The majority are shield volcanos that may be up to a few tens of kilometers across but are generally 10 km or less in diameter. Volcanic domes have diameters up to several tens of kilometers and volumes of the order of 100 cu cm. These are interpreted as being constructed of lava erupted with a relatively high effective viscosity and thus possibly composed of more silicic lava. For many domes, the flanks were unstable during and after eruption and experienced gravity sliding that produced steep scalloped outer margins.
Application of wheat yield model to United States and India. [Great Plains
NASA Technical Reports Server (NTRS)
Feyerherm, A. M. (Principal Investigator)
1977-01-01
The author has identified the following significant results. The wheat yield model was applied to the major wheat-growing areas of the US and India. In the US Great Plains, estimates from the winter and spring wheat models agreed closely with USDA-SRS values in years with the lowest yields, but underestimated in years with the highest yields. Application to the Eastern Plains and Northwest indicated the importance of cultural factors, as well as meteorological ones in the model. It also demonstrated that the model could be used, in conjunction with USDA-SRRS estimates, to estimate yield losses due to factors not included in the model, particularly diseases and freezes. A fixed crop calendar for India was built from a limited amount of available plot data from that country. Application of the yield model gave measurable evidence that yield variation from state to state was due to different mixes of levels of meteorological and cultural factors.
Vogel, Jason R; Moore, Trisha L; Coffman, Reid R; Rodie, Steven N; Hutchinson, Stacy L; McDonough, Kelsey R; McLemore, Alex J; McMaine, John T
2015-09-01
Since its inception, Low Impact Development (LID) has become part of urban stormwater management across the United States, marking progress in the gradual transition from centralized to distributed runoff management infrastructure. The ultimate goal of LID is full, cost-effective implementation to maximize watershed-scale ecosystem services and enhance resilience. To reach that goal in the Great Plains, the multi-disciplinary author team presents this critical review based on thirteen technical questions within the context of regional climate and socioeconomics across increasing complexities in scale and function. Although some progress has been made, much remains to be done including continued basic and applied research, development of local LID design specifications, local demonstrations, and identifying funding mechanisms for these solutions. Within the Great Plains and beyond, by addressing these technical questions within a local context, the goal of widespread acceptance of LID can be achieved, resulting in more effective and resilient stormwater management.
Geologic Mapping in the Hesperia Planum Region of Mars
NASA Technical Reports Server (NTRS)
Gregg, Tracy K. P.; Crown, David A.
2010-01-01
Hesperia Planum, characterized by a high concentration of mare-type wrinkle ridges and ridge rings, encompasses > 2 million square km in the southern highlands of Mars. The most common interpretation is that the plains were emplaced as "flood" lavas with total thicknesses of <3 km [4-10]. The wrinkle ridges on its surface make Hesperia Planum the type locale for "Hesperian-aged ridged plains" on Mars, and wrinkle-ridge formation occurred in more than one episode. Hesperia Planum s stratigraphic position and crater-retention age define the base of the Hesperian System. However, preliminary results of geologic mapping reveal that the whole of Hesperia Planum is unlikely to be composed of the same materials, emplaced at the same geologic time. To unravel these complexities, we are generating a 1:1.5M-scale geologic map of Hesperia Planum and its surroundings. To date, we have identified 4 distinct plains units within Hesperia Planum and are attempting to determine the nature and relative ages of these materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, S. J.; Bruhn, D. F.; Hodges, J. M.
During 2012, the Idaho National Laboratory Seismic Monitoring Program evaluated 17,329 independent triggers that included earthquakes from around the world, the western United States, and local region of the Snake River Plain. Seismologists located 1,460 earthquakes and man-made blasts within and near the 161-km (or 100-mile) radius of the Idaho National Laboratory. Of these earthquakes, 16 had small-to-moderate size magnitudes (M) from 3.0 to 3.6. Within the 161-km radius, the majority of 695 earthquakes (M < 3.6) occurred in the active regions of the Basin and Range Provinces adjacent to the eastern Snake River Plain. Only 11 microearthquakes occurred withinmore » the Snake River Plain, four of which occurred in Craters of the Moon National Monument. The earthquakes had magnitudes from 1.0 to 1.7 and occurred at deep depths (11-24 km). Two events with magnitudes less than 1.0 occurred within the Idaho National Laboratory boundaries and had depths less than 10 km.« less
Butler, Caitlyn S; Nerenberg, Robert
2010-05-01
Microbial fuel cells (MFCs) can be built with layered electrode assemblies, where the anode, proton exchange membrane (PEM), and cathode are pressed into a single unit. We studied the performance and microbial community structure of MFCs with layered assemblies, addressing the effect of materials and oxygen crossover on the community structure. Four MFCs with layered assemblies were constructed using Nafion or Ultrex PEMs and a plain carbon cloth electrode or a cathode with an oxygen-resistant polytetrafluoroethylene diffusion layer. The MFC with Nafion PEM and cathode diffusion layer achieved the highest power density, 381 mW/m(2) (20 W/m(3)). The rates of oxygen diffusion from cathode to anode were three times higher in the MFCs with plain cathodes compared to those with diffusion-layer cathodes. Microsensor studies revealed little accumulation of oxygen within the anode cloth. However, the abundance of bacteria known to use oxygen as an electron acceptor, but not known to have exoelectrogenic activity, was greater in MFCs with plain cathodes. The MFCs with diffusion-layer cathodes had high abundance of exoelectrogenic bacteria within the genus Geobacter. This work suggests that cathode materials can significantly influence oxygen crossover and the relative abundance of exoelectrogenic bacteria on the anode, while PEM materials have little influence on anode community structure. Our results show that oxygen crossover can significantly decrease the performance of air-cathode MFCs with layered assemblies, and therefore limiting crossover may be of particular importance for these types of MFCs.
Bartos, Timothy T.; Diehl, Sharon F.; Hallberg, Laura L.; Webster, Daniel M.
2014-01-01
The geologic and hydrogeologic characteristics of Tertiary lithostratigraphic units (Ogallala Formation and White River Group) that typically compose or underlie the High Plains aquifer system in southeastern Wyoming were described physically and chemically, and evaluated at a location on the Belvoir Ranch in Laramie County, Wyoming. On the basis of this characterization and evaluation, three Tertiary lithostratigraphic units were identified using physical and chemical characteristics determined during this study and previous studies, and these three units were determined to be correlative with three identified hydrogeologic units composing the groundwater system at the study site—a high-yielding aquifer composed of the entire saturated thickness of the heterogeneous and coarse-grained fluvial sediments assigned to the Ogallala Formation (Ogallala aquifer); an underlying confining unit composed primarily of very fine-grained volcaniclastic sediments and mudrocks assigned to the Brule Formation of the White River Group and some additional underlying sediments that belong to either the Brule or Chadron Formation, or both (Brule confining unit); and an underlying low-yielding aquifer composed primarily of poorly sorted fluvial sediments assigned to the Chadron Formation of the White River Group (Chadron aquifer). Despite widely varying sediment heterogeneity and consolidation, some limited hydraulic connection throughout the full vertical extent of the Ogallala aquifer was indicated but not conclusively proven by interpretation of similar chemical and isotopic characteristics, modern apparent groundwater ages, and similar hydraulic-head responses measured continuously in two Ogallala aquifer monitoring wells installed for this study at two different widely separated (83 feet) depth intervals. Additional work beyond the scope of this study, such as aquifer tests, would be required to conclusively determine hydraulic connection within the Ogallala aquifer. Groundwater levels (hydraulic heads) measured continuously using water-level recorders in both monitoring wells completed in the Ogallala aquifer showed a consistent strong upward vertical gradient in the Ogallala aquifer, indicating the potential for water to move from deeper to shallower parts of the aquifer, regardless of the time of year and the presumed effects of pumping of public-supply and industrial wells in the area. Continuous measurement of groundwater levels in the shallowest monitoring well, installed near the water table, and examination of subsequently constructed water-level hydrographs indicated substantial groundwater recharge is likely during the spring of 2009 and 2010 from the ephemeral stream (Lone Tree Creek) located adjacent to the study site that flows primarily in response to spring snowmelt from the adjacent Laramie Mountains and surface runoff from precipitation events. Using the water-table fluctuation method, groundwater recharge was estimated to be about 13 inches for the period beginning in early October 2009 and ending in late June 2010, and about 4 inches for the period beginning in March 2011 and ending in early July 2011. Comparison of previously measured groundwater levels (hydraulic heads) and groundwater-quality characteristics in nearby monitoring wells completed in the Chadron aquifer with those measured in the two monitoring wells installed for this study in the Ogallala aquifer, combined with detailed lithologic characterization, strongly indicated the Brule confining unit hydraulically confines and isolates the Chadron aquifer from the overlying Ogallala aquifer, thus likely limiting hydraulic connection between the two units. Consequently, because of the impermeable nature of the Brule confining unit and resulting hydraulic separation of the Ogallala and Chadron aquifers, and compared with local and regional hydrostratigraphic definitions of the High Plains aquifer system, the groundwater system in Tertiary lithostratigraphic units overlying the Upper Cretaceous Lance Formation at the location studied on the Belvoir Ranch was defined as being composed of, from shallowest to deepest, the High Plains aquifer system (high-yielding Ogallala aquifer only, composed of the saturated Ogallala Formation); the Brule confining unit composed of the Brule Formation of the White River Group and an underlying fine-grained depth interval with sediments that belong to either the Brule or Chadron Formation, or both; and the low-yielding Chadron aquifer (composed of poorly sorted coarse-grained sediments with substantial fine-grained matrix material assigned to the Chadron Formation of the White River Group).
Warwick, Peter D.; Coleman, James; Hackley, Paul C.; Hayba, Daniel O.; Karlsen, Alexander W.; Rowan, Elisabeth L.; Swanson, Sharon M.; Kennan, Lorcan; Pindell, James; Rosen, Norman C.
2007-01-01
This report presents a review of the U.S. Geological Survey (USGS) 2007 assessment of the undiscovered oil and gas resources in Paleogene strata underlying the U.S. Gulf of Mexico Coastal Plain and state waters. Geochemical, geologic, geophysical, thermal maturation, burial history, and paleontologic studies have been combined with regional cross sections and data from previous USGS petroleum assessments have helped to define the major petroleum systems and assessment units. Accumulations of both conventional oil and gas and continuous coal-bed gas within these petroleum systems have been digitally mapped and evaluated, and undiscovered resources have been assessed following USGS methodology.The primary source intervals for oil and gas in Paleogene (and Cenozoic) reservoirs are coal and shale rich in organic matter within the Wilcox Group (Paleocene-Eocene) and Sparta Formation of the Claiborne Group (Eocene); in addition, Cretaceous and Jurassic source rocks probably have contributed substantial petroleum to Paleogene (and Cenozoic) reservoirs.For the purposes of the assessment, Paleogene strata have divided into the following four stratigraphic study intervals: (1) Wilcox Group (including the Midway Group and the basal Carrizo Sand of the Claiborne Group; Paleocene-Eocene); (2) Claiborne Group (Eocene); (3) Jackson and Vicksburg Groups (Eocene-Oligocene); and (4) the Frio-Anahuac Formations (Oligocene). Recent discoveries of coal-bed gas in Paleocene strata confirm a new petroleum system that was not recognized in previous USGS assessments. In total, 26 conventional Paleogene assessment units are defined. In addition, four Cretaceous-Paleogene continuous (coal-bed gas) assessment units are included in this report. Initial results of the assessment will be released as USGS Fact Sheets (not available at the time of this writing).Comprehensive reports for each assessment unit are planned to be released via the internet and distributed on CD-ROMs within the next year.
A Synoptic Climatology of Combined Severe/Weather/Flash Flood Events
NASA Astrophysics Data System (ADS)
Pallozzi, Kyle J.
Classical forms of severe weather such as tornadoes, damaging convective wind gusts, and large hail, as well as flash flooding events, all have potentially large societal impacts. This impact is further magnified when these hazards occur simultaneously in time and space. A major challenge for operational forecasters is how to accurately predict the occurrence of combined storm hazards, and how to communicate the associated multiple threat hazards to the public. A seven-year climatology (2009-2015) of combined severe weather/flash flooding (SVR/FF) events across the contiguous United States was developed in attempt to study the combined SVR/FF event hazards further. A total of 211 total cases were identified and sub-divided into seven subcategories based on their convective morphology and meteorological characteristics. Heatmaps of event report frequency were created to extract spatial, seasonal and interannual patterns in SVR/FF event activity. Diurnal trends were examined from time series plots of tornado, hail, wind and flash flood/flood reports. Event-centered composites of environmental variables were created for each subcategory from 13 km RUC/RAP analyses. Representative cases studies were conducted for each subcategory. A "ring of fire" with the highest levels of SVR/FF event activity was noted across the central United States. SVR/FF events were least common in the Southeast, High Plains, and Northern Plains. Enhanced SVR/FF activity reflected contributions from synoptic events during the cool and shoulder seasons over the Lower Mississippi, Arkansas and Tennessee Valleys, and MCS activity during the warm season over the lower Great Plains, and the Upper Mississippi, Missouri and Ohio River Valleys. Results from the composite analyses indicated that relatively high values of CAPE, surface-500 hPa shear and precipitable water were observed for all subcategories. Case studies show that many high-end SVR/FF events featured slow-moving, or quasi-stationary fronts/outflow boundaries, a moist troposphere and front-paralleling 850-300 hPa mean winds. In this environment, individual convective cells can be advected downstream along the initiating boundary, resulting in flood-producing training echoes. A relatively moist troposphere leads to efficient precipitation production, limits cold-pool formation/off-boundary propagation, and further increases the likelihood of flash flooding.
Occult pneumothorax in the mechanically ventilated trauma patient
Ball, Chad G.; Hameed, S. Morad; Evans, Dave; Kortbeek, John B.; Kirkpatrick, Andrew W.
2003-01-01
The term occult pneumothorax (OP) describes a pneumothorax that is not suspected on the basis of clinical examination or plain radiography but is ultimately detected with thoracoabdominal computed tomography (CT). This situation is increasingly common in trauma care with the increased use of CT. The rate is approximately 5% in injured people presenting to hospital, with CT revealing at least twice as many pneumothoraces as suspected on plain radiography. Whereas pneumothorax is a common and treatable cause of mortality and morbidity, there is substantial disagreement regarding the appropriate treatment of OP. The greatest controversy is in patients in the critical care unit who require positive-pressure ventilation. There is little current evidence to direct the proper management of ventilated trauma patients with OP, and no studies have focussed specifically on these patients. Future randomized trials will need to consider the potential effects of OP on pulmonary mechanics and potential influences on the known risks of ventilator-induced lung injury associated with mechanical ventilation. PMID:14577712
NASA Astrophysics Data System (ADS)
Skinner, P. S.; Basu, S.
2009-12-01
Wind resources derived from the nocturnal low-level jet of the Great Plains of the United States are a driving factor in the proliferation of wind energy facilities across the region. Accurate diagnosis and forecasting of the low-level jet is important to not only assess the wind resource but to estimate the potential for shear-induced stress generation on turbine rotors. This study will examine the utility of Aircraft Communications Addressing and Reporting System (ACARS) observations in diagnosing low-level jet events across the Texas Panhandle. ACARS observations from Lubbock International Airport (KLBB) will be compared to observations from a 915 MHZ Doppler radar vertical boundary-layer profiler with 60m vertical resolution located at the field experiment site of Texas Tech University. The ability of ACARS data to adequately observe low-level jet events during the spring and summer of 2009 will be assessed and presented.
Analysis of woven and braided fabric reinforced composites
NASA Technical Reports Server (NTRS)
Naik, Rajiv A.
1994-01-01
A general purpose micromechanics analysis that discretely models the yarn architecture within the textile repeating unit cell, was developed to predict overall, three dimensional, thermal and mechanical properties. This analytical technique was implemented in a user-friendly, personal computer-based, windows compatible code called Textile Composite Analysis for Design (TEXCAD). TEXCAD was used to analyze plain, 5-harness satin, and 8-harness satin weave composites along with 2-D braided and 2x2, 2-D triaxial braided composites. The calculated overall stiffnesses correlated well with available 3-D finite element results and test data for both the woven and the braided composites. Parametric studies were performed to investigate the effects of yarn size on the yarn crimp and the overall thermal and mechanical constants for plain weave composites. The effects of braid angle were investigated for the 2-D braided composites. Finally, the effects of fiber volume fraction on the yarn undulations and the thermal and mechanical properties of 2x2, 2-D triaxial braided composites were also investigated.
NASA Astrophysics Data System (ADS)
Joe, Y. J.; Seokhoon, Y.; Nam, S. I.; Polyak, L.; Niessen, F.
2017-12-01
For regional context of the Quaternary history of Arctic marine glaciations, such as glacial events in northern North America and on the Siberian and Chukchi margins, we used CHIRP sub-bottom profiles (SBP) along with sediment cores, including a 14-m long piston core ARA06-04JPC taken from the Chukchi abyssal plain during the RV Araon expedition in 2015. Based on core correlation with earlier developed Arctic Ocean stratigraphies using distribution of various sedimentary proxies, core 04JPC is estimated to extend to at least Marine Isotope Stage 13 (>0.5 Ma). The stratigraphy developed for SBP lines from the Chukchi abyssal plain to surrounding slopes can be divided into four major seismostratigraphic units (SSU 1-4). SBP records from the abyssal plain show well preserved stratification, whereas on the surrounding slopes this pattern is disrupted by lens-shaped, acoustically transparent sedimentary bodies interpreted as glaciogenic debris flow deposits. Based on the integration of sediment physical property and SBP data, we conclude that these debris flows were generated during several ice-sheet grounding events on the Chukchi and East Siberian margins, including adjacent ridges and plateaus, during the middle to late Quaternary.
Xie, Min; Huang, Jianxin; Li, Peng; Ou, Zhiyan; Hou, Jing
2016-06-23
We aimed to conduct a pharmacodynamic comparison of rocuronium bromide between patients from the plateau area and from the plain area. A total of 104 patients who received laparoscopic cholecystectomy in Sichuan Provincial People's Hospital and Aba Autonomous Prefecture People's Hospital from October 2015 to December 2015 were included in this study. Among them, 46 patients were from the plateau area and 58 were from the plain area. Both groups received total intravenous anesthesia (TIVA) with a dose of 0.6mg/kg rocuronium bromide during induction. In the meantime, neuromuscular block was monitored using a train-of-four (TOF) stimulation mode. The onset time (time to achieve the lowest TOF value after the injection of rocuronium bromide), duration of maximal neuromuscular block (duration of lowest T1 value), time to 25% recovery, time to 75% recovery, recovery index (time from 25% recovery to 75% recovery), time to extubation, length of stay in Post Anesthesia Care Unit (PACU) and muscle strength upon PACU discharge were all recorded. The onset time, time to 25% recovery, time to 75% recovery and time to extubation were all significantly prolonged in patients from the plateau area after receiving one single dose of rocuronium bromide (P<0.05). However, both groups didn't show any significant difference in maximal neuromuscular block, recovery index (time from 25% recovery to 75% recovery), length of stay in PACU or muscle strength upon PACU discharge (P>0.05). Compared to patients from the plain area, patients from the plateau area showed prolonged onset time of rocuronium bromide, reduced metabolic capabilities and longer duration of muscular relaxation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Technical Reports Server (NTRS)
Warner, Amanda Susan
2002-01-01
The High Plains is an economically important and climatologically sensitive region of the United States and Canada. The High Plains contain 100,000 sq km of Holocene sand dunes and sand sheets that are currently stabilized by natural vegetation. Droughts and the larger threat of global warming are climate phenomena that could cause depletion of natural vegetation and make this region susceptible to sand dune reactivation. This thesis is part of a larger study that is assessing the effect of climate variability on the natural vegetation that covers the High Plains using Landsat 5 and Landsat 7 data. The question this thesis addresses is how can fractional vegetation cover be mapped with the Landsat instruments using linear spectral mixture analysis and to what accuracy. The method discussed in this thesis made use of a high spatial and spectral resolution sensor called AVIRIS (Airborne Visible and Infrared Imaging Spectrometer) and field measurements to test vegetation mapping in three Landsat 7 sub-scenes. Near-simultaneous AVIRIS images near Ft. Morgan, Colorado and near Logan, New Mexico were acquired on July 10, 1999 and September 30, 1999, respectively. The AVIRIS flights preceded Landsat 7 overpasses by approximately one hour. These data provided the opportunity to test spectral mixture algorithms with AVIRIS and to use these data to constrain the multispectral mixed pixels of Landsat 7. The comparisons of mixture analysis between the two instruments showed that AVIRIS endmembers can be used to unmix Landsat 7 data with good estimates of soil cover, and reasonable estimates of non-photosynthetic vegetation and green vegetation. Landsat 7 derived image endmembers correlate with AVIRIS fractions, but the error is relatively large and does not give a precise estimate of cover.
A Baroclinic Nocturnal Low-Level Jet over the Great Plains
NASA Astrophysics Data System (ADS)
Shapiro, A.; Gebauer, J.; Fedorovich, E.
2016-12-01
The nocturnal low-level jet (LLJ) is a warm-season atmospheric boundary layer phenomenon common to the Great Plains of the United States and other places worldwide. Low-level jets develop around sunset in fair weather conditions conducive to strong radiative cooling and reach peak intensity in the pre-dawn hours. Key precursors to their formation are the establishment of a strongly turbulent dry convective boundary layer during the afternoon and a rapid cessation of the turbulence during the early evening transition. The two main physical mechanisms underpinning the generation of nocturnal low-level jets over the Great Plains are associated with diurnal variations in turbulent mixing (Blackadar mechanism) and in heating/cooling of the gently sloping terrain (Holton mechanism). These two mechanisms were recently combined within a single unified theory (Shapiro et al. 2016) in which analytical solutions of the Boussinesq equations of motion and thermal energy were obtained. In the present study we apply the unified theory to the case where the free-atmosphere geostrophic wind is zero, and there is strong daytime heating of the slope. When appropriately tuned, the analytical model predicts the low elevation (jet nose within 250 m of the ground) and strong wind maximum (> 15 m/s) characteristic of the strongly baroclinic jet observed over northern Kansas on 10 June 2015 during Intensive Observing Period 7 of the Plains Elevated Convection at Night (PECAN) field experiment. Although there is generally good agreement between the tuned model and observations (including soundings and aircraft data), our main interest is in investigating the profound roles of the free-atmosphere stratification, daytime heating, and daytime/nighttime mixing on jet strength and structure.
A simulation/optimization model for groundwater resources management in the Afram Plains area, Ghana
Yidana, S.M.
2008-01-01
A groundwater flow simulation model was developed using available hydrogeo logical data to A groundwater flow simulation model was developed using available hydrogeological data to describe groundwater flow in the Afram Plains area. A nonlinear optimization model was then developed and solved for the management of groundwater resources to meet irrigation and household needs. The objective was to maximize groundwater extraction for irrigation activities from the shallow aquifers of the southern Voltaian Sedimentary Basin that underly the area This would improve food security, raise the standard of living and ultimately alleviate poverty in the Afram Plains. The calibrated flow model is in tandem with the general hydrochemical evolution of groundwater in the area and fits the observed data with about a 98% degree of confidence. Groundwater resources may not be the limiting factor in the development of irrigated agriculture. Groundwater has tremendous potential to meet current and future irrigation needs. It was determined from this study that profit from maize irrigation in the Afram Plains area could rise from US$301, 000 in 2007 to over US$3.5 million by the end of the last management period (2013) as irrigation practice is improved, and the economic strength to increase the acreage for irrigation improves. Even with these margins of profit, the drawdown constraint was not reached in any of the management periods. It is expected that rechargefrom the irrigation water would reclaim the lost hydraulic head. The single significant constraint was the amount of land area that could be developed for irrigation in the area. The profit obtained per unit cubic meter of water used also improved over the same management period.
Assessing United States Policy in Iraq: The Kurdish Dilemma
2009-03-01
the Mesopotamian plains and the Iranian and Anatolian plateaux.”1 Through history, this geographic location, locked in the mountains between the great...seismic data from nearly three decades ago.”23 Additionally, “ Geologists and consultants have estimated that relatively unexplored territory in the western
Middle East Regional Irrigation Management Information Systems project-Some science products
USDA-ARS?s Scientific Manuscript database
Similarities in the aridity of environments and water scarcity for irrigation allow common approaches to irrigation management problems and research methods in the Southern Great Plains of the United States and the Middle East. Measurement methods involving weighing lysimeters and eddy covariance sy...
50 CFR 37.3 - Other applicable laws.
Code of Federal Regulations, 2011 CFR
2011-10-01
... NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC... submerged lands of the coastal lagoons, “United States v. Alaska”, Sup. Ct., No. 84, Orig. (1979), is... exploration in the coastal lagoons. In the event of an inconsistency between such requirements the permittee...
50 CFR 37.3 - Other applicable laws.
Code of Federal Regulations, 2012 CFR
2012-10-01
... NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC... submerged lands of the coastal lagoons, “United States v. Alaska”, Sup. Ct., No. 84, Orig. (1979), is... exploration in the coastal lagoons. In the event of an inconsistency between such requirements the permittee...
50 CFR 37.3 - Other applicable laws.
Code of Federal Regulations, 2013 CFR
2013-10-01
... NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC... submerged lands of the coastal lagoons, “United States v. Alaska”, Sup. Ct., No. 84, Orig. (1979), is... exploration in the coastal lagoons. In the event of an inconsistency between such requirements the permittee...
50 CFR 37.3 - Other applicable laws.
Code of Federal Regulations, 2014 CFR
2014-10-01
... NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC... submerged lands of the coastal lagoons, “United States v. Alaska”, Sup. Ct., No. 84, Orig. (1979), is... exploration in the coastal lagoons. In the event of an inconsistency between such requirements the permittee...
50 CFR 37.3 - Other applicable laws.
Code of Federal Regulations, 2010 CFR
2010-10-01
... NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC... submerged lands of the coastal lagoons, “United States v. Alaska”, Sup. Ct., No. 84, Orig. (1979), is... exploration in the coastal lagoons. In the event of an inconsistency between such requirements the permittee...
Genomics & Genetics | National Agricultural Library
Skip to main content Home National Agricultural Library United States Department of Agriculture Ag agricultural and environmental settings. Deadpool proximal sensing cart docx xlsx 3x jpeg 5x pdf Data from Buytaert. NAL Home | USDA.gov | Agricultural Research Service | Plain Language | FOIA | Accessibility
Data system for multiplexed water-current meters
NASA Technical Reports Server (NTRS)
Ramsey, C. R.
1977-01-01
Flow rates at 32 flood plain locations are measured simultaneously by single digital logic unit with high noise immunity. Water flowing through pygmy current meters rotates element that closes electrical contact once every resolution, so flow rate is measured by counting number of closures in time interval.
Historical drought effects on rangelands in northwest Oklahoma
USDA-ARS?s Scientific Manuscript database
Droughts are common to the Great Plains and these weather events are the most costly natural hazard affecting the United States. Most of the monetary losses are associated with lost crop production, but losses to public water supplies, recreation and tourism, and ecological services are not account...
50 CFR 37.24 - Plan of operation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Plan of operation. 37.24 Section 37.24 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC...
50 CFR 37.23 - Special use permit.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Special use permit. 37.23 Section 37.23 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC...
50 CFR 37.23 - Special use permit.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Special use permit. 37.23 Section 37.23 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC...
50 CFR 37.24 - Plan of operation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Plan of operation. 37.24 Section 37.24 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE COASTAL PLAIN, ARCTIC...
ANALYSIS AND REDUCTION OF LANDSAT DATA FOR USE IN A HIGH PLAINS GROUND-WATER FLOW MODEL.
Thelin, Gail; Gaydas, Leonard; Donovan, Walter; Mladinich, Carol
1984-01-01
Data obtained from 59 Landsat scenes were used to estimate the areal extent of irrigated agriculture over the High Plains region of the United States for a ground-water flow model. This model provides information on current trends in the amount and distribution of water used for irrigation. The analysis and reduction process required that each Landsat scene be ratioed, interpreted, and aggregated. Data reduction by aggregation was an efficient technique for handling the volume of data analyzed. This process bypassed problems inherent in geometrically correcting and mosaicking the data at pixel resolution and combined the individual Landsat classification into one comprehensive data set.
1988-12-01
Protective Casing 5 Depth to Water AA It. cm. Materials Used Water Level Determined By 444 Plain PVC .S,/ 1 l,/e (64/9 " / V.’ ) >.ength Plain PVC...F 7I1. •lIi•,Z,,/. . DateooimelPersonnel Casing Painted oL e 0 /f tES OatIelTimne/Personnel Numbers Painted Tv’L/ .if h114 eaV Materials U~e 13 bq...8217 -L..L Borehole Completed as Monitoring Well? 1J0I Date/Time Griouting Completed ZI " ? "i6S" Depth of Tremmie Pipe 1 I Gallons of Grout __ Materials
Analysis of nutrients in the surface waters of the Georgia-Florida Coastal Plain study unit, 1970-91
Ham, L.K.; Hatzell, H.H.
1996-01-01
During the early phase of the Georgia-Florida National Water Quality Assessment study, existing information on nutrients was compiled and analyzed in order to evaluate the nutrient concentrations within the 61,545 square mile study unit. Evaluation of the nutrient concentrations collected at surface- water sites between October 1, 1970, and September 30,1991, utilized the environmental characteristics of land resource provinces, land use, and nonpoint and point-source discharges within the study unit. Long-term trends were investigated to determine the temporal distribution of nutrient concentrations. In order to determine a level of concern for nutrient concentrations, the U.S. Environmental Protection Agency (USEPA) guidelines were used-(1) for nitrate concentrations, the maximum contaminant level in public-drinking water supplies (10 mg/L); (2) for ammonia concentrations, the chronic exposure of aquatic organisms to un-ionized ammonia (2.1 mg/L); (3) for total-phosphorus concentrations, the recommended concentration in flowing water to discourage excessive growth of aquatic plants (0.1 mg/L); and (4) for kjeldahl concentrations, however, no guidelines were available. For sites within the 10 major river basins, median nutrient concentrations were generally below USEPA guidelines, except for total-phosphorus concentrations where 45 percent of the medians exceeded the guideline. The only median ammonia concentration that exceeded the guideline occurred at the Swift Creek site (3.4 mg/L), in the Suwannee River basin, perhaps due to wastewater discharges. For all sites within the Withlacoochee, Aucilla, and St. Marys River basins, median concentrations of nitrate, ammonia, and total phosphorus were below the USEPA guidelines. Nutrient data at each monitoring site within each major basin were aggregated for comparisons of median nutrient concentrations among major basins. The Ochlockonee and Hillsborough River basins had the highest median nutrient concentrations, the Aucilla River basin had the lowest. Median concentrations of nitrate and ammonia among all major basins were below USEPA guidelines. The median total-phosphorus concentrations for the following river basins exceeded the USEPA guideline-Hillsborough, St. Johns, Suwannee, Ochlockonee, Satilla, Altamaha, and Ogeechee. Although nutrient concentrations within the study unit were low, long-term increasing trends were found in all four nutrients. All 18 study-unit wide nitrate trends had increasing slopes ranging from less than 0.01 to 0.07 (mg/L)/yr. The range in slope for the 13 ammonia trends was -0.03 to 0.01 (mg/L)/yr with 6 increasing trends in the northern part of the study unit. Of the 17 total-phosphorus trends found in the study unit, 10 were found at sites where the median concentration exceeded the USEPA guideline. At these 10 sites, 4 sites had increasing trends with slopes ranging from less than 0.01 to 0.07 (mg/L)/yr, 5 sites had decreasing trends with slopes ranging from -0.01 to -0.24 (mg/L)/yr, and one site showed a seasonal concentration trend. Median nutrient concentrations were significantly different among the four land resource provinces-Southern Piedmont, Southern Coastal Plain, Coastal Flatwoods, and Central Florida Ridge. As a result, nutrient concentrations among basins with similar nutrient inputs but located within different land resource provinces are not expected to be the same due to differences in the combination of factors such as soil permeability, runoff rates, and stream channel slopes. This concept is an important consideration in designing a surface-water quality network within the study area. For the most part, the Coastal Flatwoods showed the lowest median nutrient concentrations and the Southern Coastal Plain had the highest median nutrient concentrations. Lower median nitrate concentrations in surface-water basins were associated with the forest/wetland land-use category and higher median concentrations of nitrate and ammonia with
Bell, C.F.
1996-01-01
In October 1993, the U.S. Geological Survey began a study to characterize the hydrogeology of the shallow aquifer system at the Explosive Experimental Area, Naval Surface Warfare Center, Dahlgren Site, Dahlgren, Virginia, which is located on the Potomac River in the Coastal Plain Physiographic Province. The study provides a description of the hydrogeologic units, directions of ground-water flow, and back-ground water quality in the study area to a depth of about 100 feet. Lithologic, geophysical, and hydrologic data were collected from 28 wells drilled for this study, from 3 existing wells, and from outcrops. The shallow aquifer system at the Explosive Experimental Area consists of two fining-upward sequences of Pleistocene fluvial-estuarine deposits that overlie Paleocene-Eocene marine deposits of the Nanjemoy-Marlboro confining unit. The surficial hydrogeologic unit is the Columbia aquifer. Horizontal linear flow of water in this aquifer generally responds to the surface topography, discharging to tidal creeks, marshes, and the Potomac River, and rates of flow in this aquifer range from 0.003 to 0.70 foot per day. The Columbia aquifer unconformably overlies the upper confining unit 12-an organic-rich clay that is 0 to 55 feet thick. The upper confining unit conformably overlies the upper confined aquifer, a 0- to 35-feet thick unit that consists of interbedded fine-grained to medium-grained sands and clay. The upper confined aquifer probably receives most of its recharge from the adjacent and underlying Nanjemoy-Marlboro confining unit. Water in the upper confined aquifer generally flows eastward, northward, and northeastward at about 0.03 foot per day toward the Potomac River and Machodoc Creek. The Nanjemoy-Marlboro confining unit consists of glauconitic, fossiliferous silty fine-grained sands of the Nanjemoy Formation. Where the upper confined system is absent, the Nanjemoy-Marlboro confining unit is directly overlain by the Columbia aquifer. In some parts of the Explosive Experimental Area, horizontal hydraulic conductivities of the Nanjemoy-Marlboro confining unit and the Columbia aquifer are similar (from 10-4 to 10-2 foot per day), and these units effectively combine to form a thick (greater than 50 feet) aquifer. The background water quality of the shallow aquifer system is characteristic of ground waters in the Virginia Coastal Plain Physiographic Province. Water in the Columbia aquifer is a mixed ionic type, has a median pH of 5.9, and a median total dissolved solids of 106 milligrams per liter. Water in the upper confined aquifer and Nanjemoy-Marlboro confining unit is a sodium- calcium-bicarbonate type, and generally has higher pH, dissolved solids, and alkalinity than water in the Columbia aquifer. Water in the upper confined aquifer and some parts of the Columbia aquifer is anoxic, and it has high concentrations of dissolved iron, manganese, and sulfide.
NASA Astrophysics Data System (ADS)
Nádor, Annamária; Thamó-Bozsó, Edit; Magyari, Árpád; Babinszki, Edit
2007-11-01
Fine-grained sandy-silty channel-belt and floodplain deposits of the Berettyó-Körös Rivers, a main eastern transverse tributary system of the modern Tisza River in the eastern part of the Pannonian Basin, were deposited during the Late Pleistocene under net subsiding conditions. The palaeo-drainage network pattern of a 2500 km 2 large part of the alluvial plain was reconstructed based on interpretation of airborne photographs and analysis of 18th century topographic maps, which show the natural river patterns that predate the introduction of river regulation schemes. The investigation showed that a large meandering river system, with two main channel belts surrounding a floodbasin, entered the alluvial plain from the northeast, and a braided river entered the alluvial plain from the southeast. Detailed sedimentary logs of seven continuous corings and several sand and clay-pit sections were used to characterize different alluvial units. Optical luminescence dating (OSL) of 25 quartz samples and four 14C datings showed that the sediments are of Late Pleniglacial to Late Glacial age. Transport directions inferred from heavy mineral analyses combined with the OSL ages strongly suggest that the large meandering system represents the palaeo-Tisza River, which supposedly flowed along the northeast-southwest striking Érmellék depression during the Late Pleniglacial. The braided river can be regarded as a precursor to the Fekete and Fehér-Körös Rivers, which entered the alluvial plain from the southeast during the Late Glacial. The interpretation of seismic profiles, field measurements of neotectonic activity, and variations in thickness of sediments along the studied profile revealed that river development was largely controlled by subsidence along the Érmellék depression until 14 to 16 ky, and by uplift of the southeastern part of the catchment area. The studied fluvial successions also document the response of the palaeo-Tisza and Körös system to the climate changes of the Weichselian Late Pleniglacial-Late Glacial period. Much of the sand from the meandering zones was deposited during the Bølling-Allerød and Ságvár-Lascaux interstadials, whereas some dated sand units from the braided zone represent the Older and Younger Dryas. The error ranges of OSL dates, which often exceed the duration of Weichselian substages and subdivisions, prevented an unambiguous correlation of the studied sections with the millennial-scale climate changes of the last 25 ky. Meandering and braided river activity coexisted under different climate conditions, whereas locations of the main channel belts are related to subsidence anomalies. The results of our study thus clearly indicate that tectonics was the primary control on river development.
Landforms of the United States
Hack, John T.
1969-01-01
The United States contains a great variety of landforms which offer dramatic contrasts to a crosscountry traveler. Mountains and desert areas, tropical jungles and areas of permanently frozen subsoil, deep canyons and broad plains are examples of the Nation's varied surface. The present-day landforms the features that make up the face of the earth are products of the slow, sculpturing actions of streams and geologic processes that have been at work throughout the ages since the earth's beginning.
Landforms of the United States
Hack, John T.
1988-01-01
The United States contains a great variety of landforms which offer dramatic contrasts to a cross-country traveler. Mountains and desert areas, tropical jungles and areas of permanently frozen subsoil, and deep canyons and broad plains are examples of the Nation's varied surface. The presentday landforms the features that make up the face of the Earth are products of the slow sculpturing actions of streams and geologic processes that have been at work throughout the ages since the Earth's beginning.
1977-06-01
the screening process, and the number of unit siting regions of 5000 nm 2 contained in each. The highest ranked suitable areas occur in the Basin and...SUITABLE AND POTENTIALLY SUITABLE AREA............23 3.4.1 GENERAL....................23 3.4.2 BASIN AND RANGE PROVINCE. ........... 23 13.4.3 GREAT...Approximately 70 percent of total suitable area occurs in the Basin and Range, Great Plains, and Central Lowlands physiographic provinces of the western and
NASA Astrophysics Data System (ADS)
Christiansen, E. H.; McCurry, M. O.; Champion, D. E.; Bolte, T.; Holtz, F.; Knott, T.; Branney, M. J.; Shervais, J. W.
2013-12-01
The rhyolites on the track of the Yellowstone hotspot are the classic examples of continental hotspot volcanism and the study of surface outcrops is maturing rapidly. However, in the central part of the track, where silicic volcanism is most voluminous, compositionally distinctive, and isotopically most anomalous, study of these large magma systems has been hindered because eruptive sources are buried. The 2 km Kimberly core helps fill that gap; it penetrates through surficial basalt, deep into the rhyolitic underpinnings on the southern margin of the province. The Kimberly core is dominated by thick sections of rhyolite lava and welded ignimbrite, with basalt-sediment intercalations between 241 m and 424 m depth. We tentatively interpret the core to include a thick intracaldera tuff. Our preliminary studies suggest that there are three major rhyolite units in the core. Rhyolite 3, the uppermost unit, is a nearly 130 m thick, low-silica rhyolite lava. Rhyolite 2 is the most highly evolved with ~75% silica and distinctively resorbed quartz. Rhyolite 1 is at least 1,340 m thick (the base was not cut by the core), has no apparent flow contacts or cooling breaks, and may represent a single, thick intracaldera ignimbrite. Paleomagnetic inclinations form a curious V-shaped profile, shallowing by about 18○ between 700 and 1700 m depth. We interpret this to be the result of slower cooling of the mid-part of the thick intracaldera ignimbrite. The lower unit is a low-silica rhyolite with high concentrations of Fe2O3 and TiO2--among the highest of any known ignimbrite on the SRP. It is chemically distinct from the upper units, very homogeneous, not vertically zoned, and lacks multiple populations of phenocrysts. It somewhat resembles the regionally extensive ~10 Ma outflow tuff of Wooden Shoe Butte. However, this is one of several large, petrologically similar ignimbrites as young as 8.6 Ma exposed in the Cassia Mountains south of the hole, so further work is needed. Like most rhyolites from the Snake River Plain, all 3 units have the characteristics of A-type rhyolites with high concentrations of alkalies, high Fe/Mg and TiO2/MgO ratios, as well as high concentrations Nb, Y, Zr and Ga. Initial analyses of plag, cpx, and qtz show that all three units are low δ18O rhyolites, like most from the Central Snake River Plain-- δ18O in feldspar ranges from 1‰ in Rhyolite 1 to 3‰ in Rhyolites 2 and 3. In the thick lower ignimbrite, whole-rock δ18O increases systematically from the base upward (0.5‰ to as much as 9‰ in the altered top and δD ranges from -140 to -180‰). Whole rock variations correlate with water content, apparently controlled by secondary clay. We suggest that these characteristics were largely imposed by their derivation from partial melting of basaltic sills and surrounding older crust. The low δ18O values reflect recycling of hydrothermally altered crustal rocks and indicate progressive incorporation of more hydrothermally altered material into the younger magmas. More work is needed to establish correlation with regional units, understand the emplacement of the rhyolites and their volcanic setting, and ascertain the origin of these distinctive low δ18O, A-type rhyolites.
Garoushi, Sufyan K; Lassila, Lippo V J; Tezvergil, Arzu; Vallittu, Pekka K
2006-09-01
The aim of this study was to determine the static load-bearing capacity of composite resin onlay restorations made of particulate filler composite (PFC) with two different types of fiber-reinforced composite (FRC) substructures. In addition, flexural properties of the material combination and the effect of polymerization devices were tested. Specimens were prepared to simulate an onlay restoration, which consisted of 2 to 3 mm of FRC layer as a substructure (short random and continuous bidirectional fiber orientation) and a 1 mm surface layer of PFC. Control specimens were prepared from plain PFC. In Group A the specimens were incrementally polymerized only with a hand-light curing unit for 40 s, while in Group B the specimens were post-cured in a light-curing oven for 15 min before they were statically loaded with a steel ball. Bar-shaped test specimens were prepared to measure the flexural properties of material combination using a three-point bending test (ISO 10477). Analysis of variance (ANOVA) revealed all specimens with a FRC substructure have higher values of static load-bearing capacity and flexural properties than those obtained with plain PFC (p<0.001). The load-bearing capacity of all the specimens decreased after post-curing and water storage. Restorations made from a material combination of FRC and PFC showed better mechanical properties than those obtained with plain PFC.
Mechanical properties of concrete containing a high volume of tire-rubber particles.
Khaloo, Ali R; Dehestani, M; Rahmatabadi, P
2008-12-01
Due to the increasingly serious environmental problems presented by waste tires, the feasibility of using elastic and flexible tire-rubber particles as aggregate in concrete is investigated in this study. Tire-rubber particles composed of tire chips, crumb rubber, and a combination of tire chips and crumb rubber, were used to replace mineral aggregates in concrete. These particles were used to replace 12.5%, 25%, 37.5%, and 50% of the total mineral aggregate's volume in concrete. Cylindrical shape concrete specimens 15 cm in diameter and 30 cm in height were fabricated and cured. The fresh rubberized concrete exhibited lower unit weight and acceptable workability compared to plain concrete. The results of a uniaxial compressive strain control test conducted on hardened concrete specimens indicate large reductions in the strength and tangential modulus of elasticity. A significant decrease in the brittle behavior of concrete with increasing rubber content is also demonstrated using nonlinearity indices. The maximum toughness index, indicating the post failure strength of concrete, occurs in concretes with 25% rubber content. Unlike plain concrete, the failure state in rubberized concrete occurs gently and uniformly, and does not cause any separation in the specimen. Crack width and its propagation velocity in rubberized concrete are lower than those of plain concrete. Ultrasonic analysis reveals large reductions in the ultrasonic modulus and high sound absorption for tire-rubber concrete.
NASA Astrophysics Data System (ADS)
Weinberger, G.; Rosenthal, E.
1994-03-01
On the basis of a broadly expanding data base, the hydrogeological properties of the Judea Group sequence in the northern Negev and southern Coastal Plain of Israel have been reassessed. The updated subsurface model is based on data derived from water- and oil-wells and on recent large-scale geophysical investigations. A new regional pattern of the reassessed geological through the subsurface of the study area has been revealed. In view of the reassessed geological and hydrological subsurface setting, it appears that the Judea Group aquifer should not be regarded as one continuous and undisturbed hydrological unit; owing to the occurrence of regional faults, its subaquifers are locally interconnected. These subaquifers, which contain mainly high-quality water, are juxtaposed, as a result of faulting, against Kurnub Group sandstones containing brackish paleowater. The latter Group is faulted against late Jurassic formations containing highly saline groundwater. In the Beer Sheva area, the Judea Group aquifer is vertically displaced against the Senonian and Eocene Mt. Scopus and Avdat Groups, which also contain brackish and saline water. In the southern Coastal Plain, major faults locally dissect also the Pleistocene Kurkar Group, facilitating inflow of Mg-rich groundwater deriving from Judea Group dolomites. The new geological evidence and its hydrogeological implications provide new solutions for previously unexplained salinization phenomena.
NASA Astrophysics Data System (ADS)
Rahmani, V.; Kastens, J.; deNoyelles, F.; Huggins, D.; Martinko, E.
2015-12-01
Dam construction has multiple environmental and hydrological consequences including impacts on upstream and downstream ecosystems, water chemistry, and streamflow. Behind the dam the reservoir can trap sediment from the stream and fill over time. With increasing population and drinking and irrigation water demands, particularly in the areas that have highly variable weather and extended drought periods such as the United States Great Plains, reservoir sedimentation escalates water management concerns. Under nearly all projected climate change scenarios we expect that reservoir water storage and management will come under intense scrutiny because of the extensive use of interstate river compacts in the Great Plains. In the state of Kansas, located in the Great Plains, bathymetric surveys have been completed during the last decade for many major lakes by the Kansas Biological Survey, Kansas Water Office, and the U.S. Army Corps of Engineers. In this paper, we studied the spatial and temporal changes of reservoir characteristics including sedimentation yield, depletion rate, and storage capacity loss for 24 federally-operated reservoirs in Kansas. These reservoirs have an average age of about 50 years and collectively have lost approximately 15% of their original capacity, with the highest annual observed single-reservoir depletion rate of 0.84% and sedimentation yield of 1,685 m3 km-2 yr-1.
Hansen, C.V.; Wolf, R.J.; Spinazola, J.M.
1992-01-01
The purpose of this Hydrologic Investigations Atlas is to provide a description of the geohydrologic systems in Upper Cambrian through Lower Cretaceous rocks in Kansas. This investigation was made as part of the Central Midwest Regional Aquifer-System Analysis (CMRASA). The CMRASA is one of several major investigations by the U.S. Geological Survey of regional aquifer systems in the United States. These regional investigations are designed to increase knowledge of the flow regime and hydrologic properties of major aquifer systems and to provide quantitative information for the assessment, development, and management of water supplies. The CMRASA study area includes all or parts of 10 Central Midwestern States (Jorgensen and Signor, 1981), as shown on the envelope cover.
Evaluating the impact of future climate change on irrigated maize production in Kansas
USDA-ARS?s Scientific Manuscript database
The United States southern and central High Plains including western Kansas are experiencing declining ground water supplies from the Ogallala as a result of withdrawals for irrigation exceeding annual recharge, this situation will be exacerbated by future climate change. The purpose of this simulat...
Fuels management in the Subtropical Mountains Division
James M. Guldin
2012-01-01
The heterogeneity of the forests west of the Mississippi River in the Southern United States is strongly influenced by physiography and topography. The west Gulf Coastal Plain of southern Arkansas, northwestern Louisiana, and eastern Texas features highly productive pine-dominated forests (Pinus spp.) on gentle terrain that are interspersed by major...