Science.gov

Sample records for plains site measured

  1. Aerosol measurements at the Southern Great Plains Site: Design and surface installation

    SciTech Connect

    Leifer, R.; Knuth, R.H.; Guggenheim, S.F.; Albert, B.

    1996-04-01

    To impropve the predictive capabilities of the Atmospheric Radiation Measurements (ARM) program radiation models, measurements of awserosol size distributions, condensation particle concentrations, aerosol scattering coefficients at a number of wavelenghts, and the aerosol absorption coefficients are needed at the Southern Great Plains (SGP) site. Alos, continuous measurements of ozone concnetrations are needed for model validation. The environmental Measuremenr Laboratory (EMK) has the responsibility to establish the surface aerosol measurements program at the SGP site. EML has designed a special sampling manifold.

  2. Site/Systems Operations, Maintenance and Facilities Management of the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Site

    SciTech Connect

    Wu, Susan

    2005-08-01

    This contract covered the site/systems operations, maintenance, and facilities management of the DOE Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Site.

  3. Surface summertime radiative forcing by shallow cumuli at the Atmospheric Radiation Measurement Southern Great Plains site

    SciTech Connect

    Berg, Larry K.; Kassianov, Evgueni I.; Long, Charles N.; Mills Jr., David L.

    2011-01-08

    Although shallow cumuli are common over large areas of the globe, their impact on the surface radiative forcing has not been carefully evaluated. This study addresses this shortcoming by analyzing data from days with shallow cumuli collected over eight summers (2000-2007) at the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility (collectively ACRF) Southern Great Plains site. During periods with clouds, the average shortwave and longwave radiative forcings are 45.5 W m-2 and +11.6 W m-2, respectively. The forcing has been defined so that a negative (positive) forcing indicates a surface cooling (warming). On average, the shortwave forcing is negative, however, instances with positive shortwave forcing are observed approximately 20% of the time. These positive values of shortwave forcing are associated with three-dimensional radiative effects of the clouds. The three-dimensional effects are shown to be largest for intermediate cloud amounts. The magnitude of the three-dimensional effects decreased with averaging time, but it is not negligibly small even for large averaging times as long as four hours.

  4. Application of Aerosol Hygroscopicity Measured at the Atmospheric Radiation Measurement Program's Southern Great Plains Site to Examine Composition and Evolution

    NASA Technical Reports Server (NTRS)

    Gasparini, Roberto; Runjun, Li; Collins, Don R.; Ferrare, Richard A.; Brackett, Vincent G.

    2006-01-01

    A Differential Mobility Analyzer/Tandem Differential Mobility Analyzer (DMA/TDMA) was used to measure submicron aerosol size distributions, hygroscopicity, and occasionally volatility during the May 2003 Aerosol Intensive Operational Period (IOP) at the Central Facility of the Atmospheric Radiation Measurement Program's Southern Great Plains (ARM SGP) site. Hygroscopic growth factor distributions for particles at eight dry diameters ranging from 0.012 micrometers to 0.600 micrometers were measured throughout the study. For a subset of particle sizes, more detailed measurements were occasionally made in which the relative humidity or temperature to which the aerosol was exposed was varied over a wide range. These measurements, in conjunction with backtrajectory clustering, were used to infer aerosol composition and to gain insight into the processes responsible for evolution. The hygroscopic growth of both the smallest and largest particles analyzed was typically less than that of particles with dry diameters of about 0.100 micrometers. It is speculated that condensation of secondary organic aerosol on nucleation mode particles is largely responsible for the minimal hygroscopic growth observed at the smallest sizes considered. Growth factor distributions of the largest particles characterized typically contained a nonhygroscopic mode believed to be composed primarily of dust. A model was developed to characterize the hygroscopic properties of particles within a size distribution mode through analysis of the fixed size hygroscopic growth measurements. The performance of this model was quantified through comparison of the measured fixed size hygroscopic growth factor distributions with those simulated through convolution of the size-resolved concentration contributed by each of the size modes and the mode-resolved hygroscopicity. This transformation from sizeresolved hygroscopicity to mode-resolved hygroscopicity facilitated examination of changes in the hygroscopic

  5. Application of Aerosol Hygroscopicity Measured at the Atmospheric Radiation Measurement Program's Southern Great Plains Site to Examine Composition and Evolution

    NASA Technical Reports Server (NTRS)

    Gasparini, Roberto; Runjun, Li; Collins, Don R.; Ferrare, Richard A.; Brackett, Vincent G.

    2006-01-01

    A Differential Mobility Analyzer/Tandem Differential Mobility Analyzer (DMA/TDMA) was used to measure submicron aerosol size distributions, hygroscopicity, and occasionally volatility during the May 2003 Aerosol Intensive Operational Period (IOP) at the Central Facility of the Atmospheric Radiation Measurement Program's Southern Great Plains (ARM SGP) site. Hygroscopic growth factor distributions for particles at eight dry diameters ranging from 0.012 micrometers to 0.600 micrometers were measured throughout the study. For a subset of particle sizes, more detailed measurements were occasionally made in which the relative humidity or temperature to which the aerosol was exposed was varied over a wide range. These measurements, in conjunction with backtrajectory clustering, were used to infer aerosol composition and to gain insight into the processes responsible for evolution. The hygroscopic growth of both the smallest and largest particles analyzed was typically less than that of particles with dry diameters of about 0.100 micrometers. It is speculated that condensation of secondary organic aerosol on nucleation mode particles is largely responsible for the minimal hygroscopic growth observed at the smallest sizes considered. Growth factor distributions of the largest particles characterized typically contained a nonhygroscopic mode believed to be composed primarily of dust. A model was developed to characterize the hygroscopic properties of particles within a size distribution mode through analysis of the fixed size hygroscopic growth measurements. The performance of this model was quantified through comparison of the measured fixed size hygroscopic growth factor distributions with those simulated through convolution of the size-resolved concentration contributed by each of the size modes and the mode-resolved hygroscopicity. This transformation from sizeresolved hygroscopicity to mode-resolved hygroscopicity facilitated examination of changes in the hygroscopic

  6. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    SciTech Connect

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

    1992-03-01

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.

  7. Atmospheric Radiation Measurement (ARM) Data from the Southern Great Plains (SGP) Site

    DOE Data Explorer

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. Scientists are using the information obtained from the permanent SGP site to improve cloud and radiative models and parameterizations and, thereby, the performance of atmospheric general circulation models used for climate research. More than 30 instrument clusters have been placed around the SGP site. The locations for the instruments were chosen so that the measurements reflect conditions over the typical distribution of land uses within the site. The continuous observations at the SGP site are supplemented by intensive observation periods, when the frequency of measurements is increased and special measurements are added to address specific research questions. During such periods, 2 gigabytes or more of data (two billion bytes) are generated daily. SGP data sets from 1993 to the present reside in the ARM Archive at http://www.archive.arm.gov/ http. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  8. Comparison Between Lidar and Nephelometer Measurements of Aerosol Hygroscopicity at the Southern Great Plains Atmospheric Radiation Measurement Site

    NASA Technical Reports Server (NTRS)

    Pahlow, M.; Feingold, G.; Jefferson, A.; Andrews, E.; Ogren, J. A.; Wang, J.; Lee, Y.-N.; Ferrare, R. A.

    2004-01-01

    Aerosol hygroscopicity has a significant effect on radiative properties of aerosols. Here a lidar method, applicable to cloud-capped, well-mixed atmospheric boundary layers, is employed to determine the hygroscopic growth factor f(RH) under unperturbed, ambient atmospheric conditions. The data used for the analysis were collected under a wide range of atmospheric aerosol levels during both routine measurement periods and during the intensive operations period (IOP) in May 2003 at the Southern Great Plains (SGP) Climate Research Facility in Oklahoma, USA, as part of the Atmospheric Radiation Measurement (ARM) program. There is a good correlation (approx. 0.7) between a lidar-derived growth factor (measured over the range 85% RH to 96% RH) with a nephelometer-derived growth factor measured over the RH range 40% to 85%. For these RH ranges, the slope of the lidar-derived growth factor is much steeper than that of the nephelometer-derived growth factor, reflecting the rapid increase in particle size with increasing RH. The results are corroborated by aerosol model calculations of lidar and nephelometer equivalent f(RH) based on in situ aerosol size and composition measurements during the IOP. It is suggested that the lidar method can provide useful measurements of the dependence of aerosol optical properties on relative humidity, and under conditions closer to saturation than can currently be achieved with humidified nephelometers.

  9. Field measures show methanotroph sensitivity to soil moisture follows precipitation regime of the grassland sites across the US Great Plains

    NASA Astrophysics Data System (ADS)

    Koyama, A.; Webb, C. T.; Johnson, N. G.; Brewer, P. E.; von Fischer, J. C.

    2015-12-01

    Methane uptake rates are known to have temporal variation in response to changing soil moisture levels. However, the relative importance of soil diffusivity vs. methanotroph physiology has not been disentangled to date. Testing methanotroph physiology in the laboratory can lead to misleading results due to changes in the fine-scale habitat where methanotrophs reside. To assay the soil moisture sensitivity of methanotrophs under field conditions, we studied 22 field plots scattered across eight Great Plains grassland sites that differed in precipitation regime and soil moisture, making ca. bi-weekly measures during the growing seasons over three years. Quantification of methanotroph activity was achieved from chamber-based measures of methane uptake coincident with SF6-derived soil diffusivity, and interpretation in a reaction-diffusion model. At each plot, we also measured soil water content (SWC), soil temperature and inorganic nitrogen (N) contents. We also assessed methanotroph community composition via 454 sequencing of the pmoA gene. Statistical analyses showed that methanotroph activity had a parabolic response with SWC (concave down), and significant differences in the shape of this response among sites. Moreover, we found that the SWC at peak methanotroph activity was strongly correlated with mean annual precipitation (MAP) of the site. The sequence data revealed distinct composition patterns, with structure that was associated with variation in MAP and soil texture. These results suggest that local precipitation regime shapes methanotroph community composition, which in turn lead to unique sensitivity of methane uptake rates with soil moisture. Our findings suggest that methanotroph activity may be more accurately modeled when the biological and environmental responses are explicitly described.

  10. Validation of Surface Retrieved Cloud Optical Properties with in situ Measurements at the Atmospheric Radiation Measurement Program (ARM) South Great Plains Site

    SciTech Connect

    Min, Qilong; Duan, M.; Marchand, Roger T.

    2003-09-11

    The surface inferred cloud optical properties from a multifilter rotating shadowband radiometer have been validated against the in situ measurements during the second ARM Enhanced Shortwave Experiment (ARESE II) field campaign at the ARM South Great Plains (SGP) site. On the basis of eight effective radius profiles measured by the in situ Forward Spectra Scattering Probe (FSSP), our retrieved cloud effective radii for single-layer warm water clouds agree well with in situ measurements, within 5.5%. The sensitivity study also illustrates that for this case a 13% uncertainty in observed liquid water path (LWP, 20 g/m2) results in 1.5% difference in retrieved cloud optical depth and 12.7% difference in referred cloud effective radius, on average. The uncertainty of the LWP measured by the microwave radiometer (MWR) is the major contributor to the uncertainty of retrieved cloud effective radius. Further, we conclude that the uncertainty of our inferred cloud optical properties is better than 5% for warm water clouds based on a surface closure study, in which cloud optical properties inferred from narrowband irradiances are applied to a shortwave model and the modeled broadband fluxes are compared to a surface pyranometer.

  11. The Vertical Distribution of Aerosols Over the Atmospheric Radiation Measurement Southern Great Plains Site Measured versus Modeled

    SciTech Connect

    Ferrare, R.; Turner, D.D.; Clayton, M.; Guibert, S.; Schulz, M.; Chin, M.

    2005-03-18

    Aerosol extinction profiles measured by the Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility Raman lidar are used to evaluate aerosol extinction profiles and aerosol optical thickness (AOT) simulated by aerosol models as part of the Aerosol module inter- Comparison in global models (AEROCOM) project. This project seeks to diagnose aerosol modules of global models and subsequently identify and eliminate weak components in aerosol modules used for global modeling; AEROCOM activities also include assembling data sets to be used in the evaluations. The AEROCOM average aerosol extinction profiles typically show good agreement with the Raman lidar profiles for altitudes above about 2 km; below 2 km the average model profiles are significantly (30-50%) lower than the Raman lidar profiles. The vertical variability in the average aerosol extinction profiles simulated by these models is less than the variability in the corresponding Raman lidar pro files. The measurements also show a much larger diurnal variability than the Interaction with Chemistry and Aerosols (INCA) model, particularly near the surface where there is a high correlation between aerosol extinction and relative humidity.

  12. Online measurements of ambient fluorescent aerosol particles by WIBS at a polluted regional site in the North China Plain: potential impact of burning activities

    NASA Astrophysics Data System (ADS)

    Su, H.; Wang, Z.; Cheng, Y.; Xie, Z.; Kecorius, S.; McMeeking, G. R.; Yu, X.; Pöhlker, C.; Zhang, M.; Wiedensohler, A.; Kuhn, U.; Poeschl, U.; Huffman, J. A.

    2015-12-01

    Online measurements of ambient fluorescent aerosol particles by WIBS at a polluted regional site in the North China Plain: potential impact of burning activities Zhibin Wang1, Xiawei Yu1,3, Simonas Kecorius2, Zhouqing Xie3, Gavin McMeeking4, Christopher Pöhlker1, Minghui, Zhang1, Alfred Wiedensohler2, Uwe Kuhn1, Yafang Cheng1, Ulrich Pöschl1, Hang Su1,*1Multiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry, Mainz 55128, Germany2Leibniz-Institute for Tropospheric Research, Leipzig 04318, Germany3School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China4Droplet Measurement Technologies, Boulder 80301, USA ABSTRACTBioaerosols are the main subset of super-micron particles, and significantly influence the evolution of cloud and precipitation, as well as the public health. Currently, the detection of ambient biological materials in real-time is mainly based on the presence of fluorophores in the particles. In this study, we present the wideband integrated bioaerosol spectrometer (WIBS) measurement results to characterize the fluorescent aerosol particles (FAP) at a polluted regional site (Xianghe, 39.80 °N, 116.96 °E) in the North China Plain. We observed substantially much higher number concentration of FAP as compared with those of previous studies in clean environments. We found the good agreement between the FAP number fraction in coarse mode particles (> 1 mm) and BC mass fraction in fine particles (< 1 mm), possibly indicating a majority of the observed FAP is to a certain extent related to the anthropogenic burning activities nearby. This interference and uncertainty should be especially noticed when performing fluorescence measurements in the polluted area, where the certain non-biological compounds (such as SOA, PAH and soot) may significantly lead to a positive fluorescence measurement artifacts and an overestimation of actual fluorescent biological aerosol particles. We also

  13. Snake River Plain FORGE Site Characterization Data

    DOE Data Explorer

    Robert Podgorney

    2016-04-18

    The site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. This collection includes data on seismic events, groundwater, geomechanical models, gravity surveys, magnetics, resistivity, magnetotellurics (MT), rock physics, stress, the geologic setting, and supporting documentation, including several papers. Also included are 3D models (Petrel and Jewelsuite) of the proposed site. Data for wells INEL-1, WO-2, and USGS-142 have been included as links to separate data collections. These data have been assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL). Other contributors include the National Renewable Energy Laboratory (NREL), Lawrence Livermore National Laboratory (LLNL), the Center for Advanced Energy Studies (CEAS), the University of Idaho, Idaho State University, Boise State University, University of Wyoming, University of Oklahoma, Energy and Geoscience Institute-University of Utah, US Geothermal, Baker Hughes Campbell Scientific Inc., Chena Power, US Geological Survey (USGS), Idaho Department of Water Resources, Idaho Geological Survey, and Mink GeoHydro.

  14. High Plains Regional Ground-water Study web site

    USGS Publications Warehouse

    Qi, Sharon L.

    2000-01-01

    Now available on the Internet is a web site for the U.S. Geological Survey's (USGS) National Water-Quality Assessment (NAWQA) Program- High Plains Regional Ground-Water Study. The purpose of the web site is to provide public access to a wide variety of information on the USGS investigation of the ground-water resources within the High Plains aquifer system. Typical pages on the web site include the following: descriptions of the High Plains NAWQA, the National NAWQA Program, the study-area setting, current and past activities, significant findings, chemical and ancillary data (which can be downloaded), listing and access to publications, links to other sites about the High Plains area, and links to other web sites studying High Plains ground-water resources. The High Plains aquifer is a regional aquifer system that underlies 174,000 square miles in parts of eight States (Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming). Because the study area is so large, the Internet is an ideal way to provide project data and information on a near real-time basis. The web site will be a collection of living documents where project data and information are updated as it becomes available throughout the life of the project. If you have an interest in the High Plains area, you can check this site periodically to learn how the High Plains NAWQA activities are progressing over time and access new data and publications as they become available.

  15. Impacts of the triggering function of cumulus parameterization on warm-season diurnal rainfall cycles at the Atmospheric Radiation Measurement Southern Great Plains site

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Chi; Pan, Hua-Lu; Hsu, Huang-Hsiung

    2015-10-01

    In this study, we investigated the impacts of the triggering function of the deep convection scheme on diurnal rainfall variation in the middle latitudes by using the single-column version of the Community Atmospheric Model (SCAM). Using the climate statistics of a long-term ensemble analysis of SCAM simulations, we quantified and validated the diurnal rainfall climatological regimes at the Atmospheric Radiation Measurement Southern Great Plains (SGP) site. The results showed that the averaged diurnal rainfall cycle simulated using the default Zhang-Mcfarlane (ZM) scheme of the SCAM peaks near noon, which is far earlier than the observed nighttime peak phase. This bias was due to the ZM scheme, which produced spurious daytime rainfall, even during days in which only light rainfall was observed. By contrast, using a weather-focused scheme, the Simplified Arakawa-Schubert (SAS) scheme, we successfully simulated the nocturnal peak of the diurnal cycle. Experiments conducted on the ZM and SAS schemes featuring different triggering functions revealed that the relaxation of launching parcels above the planetary boundary layer (PBL) and the inclusion of convective inhibition (CIN) were crucial designs for the model to capture the nocturnal rainfall events of the SGP. The inclusion of CIN reduces spurious weak convective events, and the allowance of launching parcels being above the PBL better captures convective cloud base. The results of this study highlight the modulatory effect of low-level inhomogeneity on the diurnal variation of convection over midlatitudes and the importance of the triggering function of the deep convection scheme in capturing those variations.

  16. Moisture and temperature balances at the Atmospheric Radiation Measurement Southern Great Plains Site in forecasts with the Community Atmosphere Model (CAM2)

    NASA Astrophysics Data System (ADS)

    Williamson, D. L.; Boyle, J.; Cederwall, R.; Fiorino, M.; Hnilo, J.; Olson, J.; Phillips, T.; Potter, G.; Xie, S. C.

    2005-08-01

    We compare the balance of terms in moisture and temperature prediction equations during short forecasts by the Community Atmosphere Model (CAM2) with observed estimates at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site for two intensive observing periods (IOPs). The goal is to provide insight into parameterization errors which ultimately should lead to model improvements. The atmospheric initial conditions are obtained from high-resolution numerical weather prediction (NWP) analyses. The land initial conditions are spun up to be consistent with those analyses. Three cases are considered: (1) June/July 1997 when the atmosphere is relatively moist and surface evaporation corresponds to 90% of the precipitation with advection accounting for the remainder; (2) rainy days in April 1997 when the atmosphere is less moist and horizontal advection accounts for much of the precipitation with a small contribution from surface evaporation and the balance being derived from the water already present in the column; and (3) nonrainy days of the April 1997 when the moist process parameterizations are inactive and the planetary boundary layer (PBL) parameterization is dominant. For the first case the Zhang-McFarlane deep convective parameterization drives the model to a wrong state. For the second the Hack shallow convective parameterization appears to be not acting deep enough. During both periods inconsistencies between CAM2 and ARM surface fluxes, land surface conditions and the net surface radiative fluxes indicate that the exchange parameterizations should be examined further. For the third case the PBL parameterization does not appear to create the correct vertical structure. In addition, the individual components of the dynamical tendency are very different between CAM2 and ARM, although the total dynamical tendency is similar in the two. Although these observations do not imply that those components are themselves wrong since they may be responding

  17. A Climatology of Fair-Weather Cloud Statistics at the Atmospheric Radiation Measurement Program Southern Great Plains Site: Temporal and Spatial Variability

    SciTech Connect

    Berg, Larry K.; Kassianov, Evgueni I.; Long, Charles N.; Gustafson, William I.

    2006-03-30

    In previous work, Berg and Stull (2005) developed a new parameterization for Fair-Weather Cumuli (FWC). Preliminary testing of the new scheme used data collected during a field experiment conducted during the summer of 1996. This campaign included a few research flights conducted over three locations within the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site. A more comprehensive verification of the new scheme requires a detailed climatology of FWC. Several cloud climatologies have been completed for the ACRF SGP, but these efforts have focused on either broad categories of clouds grouped by height and season (e.g., Lazarus et al. 1999) or height and time of day (e.g., Dong et al. 2005). In these two examples, the low clouds were not separated by the type of cloud, either stratiform or cumuliform, nor were the horizontal chord length (the length of the cloud slice that passed directly overhead) or cloud aspect ratio (defined as the ratio of the cloud thickness to the cloud chord length) reported. Lane et al. (2002) presented distributions of cloud chord length, but only for one year. The work presented here addresses these shortcomings by looking explicitly at cases with FWC over five summers. Specifically, we will address the following questions: •Does the cloud fraction (CF), cloud-base height (CBH), and cloud-top height (CTH) of FWC change with the time of day or the year? •What is the distribution of FWC chord lengths? •Is there a relationship between the cloud chord length and the cloud thickness?

  18. Comparison of CERES-MODIS Stratus Cloud Properties with Ground-Based Measurements at the DOE ARM Southern Great Plains Site

    NASA Technical Reports Server (NTRS)

    Dong, Xiquan; Minnis Patrick; Xi, Baike; Sun-Mack, Sunny; Chen, Yan

    2008-01-01

    Overcast stratus cloud properties derived for the Clouds and the Earth's Radiant Energy system (CERES) Project using Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) data are compared with observations taken at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site from March 2000 through December 2004. Retrievals from ARM surface-based data were averaged over a 1-hour interval centered at the time of each satellite overpass, and the CERES-MODIS cloud properties were averaged within a 30-km x 30 km box centered on the ARM SGP site. Two datasets were analyzed: all of the data (ALL) which include multilayered, single-layered, and slightly broken stratus decks and a subset, single-layered unbroken decks (SL). The CERES-MODIS effective cloud heights were determined from effective cloud temperature using a lapse rate method with the surface temperature specified as the 24-h mean surface air temperature. For SL stratus, they are, on average, within the ARM radar-lidar estimated cloud boundaries and are 0.534 +/- 0.542 km and 0.108 +/- 0.480 km lower than the cloud physical tops and centers, respectively, and are comparable for day and night observations. The mean differences and standard deviations are slightly larger for ALL data, but not statistically different to those of SL data. The MODIS-derived effective cloud temperatures are 2.7 +/- 2.4 K less than the surface-observed SL cloud center temperatures with very high correlations (0.86-0.97). Variations in the height differences are mainly caused by uncertainties in the surface air temperatures, lapse rates, and cloud-top height variability. The biases are mainly the result of the differences between effective and physical cloud top, which are governed by cloud liquid water content and viewing zenith angle, and the selected lapse rate, -7.1 K km(exp -1). Based on a total of 43 samples, the means and standard deviations of the differences between the daytime Terra and surface

  19. A 25-month database of stratus cloud properties generated from ground-based measurements at the Atmospheric Radiation Measurement Southern Great Plains Site

    NASA Astrophysics Data System (ADS)

    Dong, Xiquan; Minnis, Patrick; Ackerman, Thomas P.; Clothiaux, Eugene E.; Mace, Gerald G.; Long, Charles N.; Liljegren, James C.

    2000-02-01

    A 25-month database of the macrophysical, microphysical, and radiative properties of isolated and overcast low-level stratus clouds has been generated using a newly developed parameterization and surface measurements from the Atmospheric Radiation Measurement central facility in Oklahoma. The database (5-min resolution) includes two parts: measurements and retrievals. The former consist of cloud base and top heights, layer-mean temperature, cloud liquid water path, and solar transmission ratio measured by a ground-based lidar/ceilometer and radar pair, radiosondes, a microwave radiometer, and a standard Eppley precision spectral pyranometer, respectively. The retrievals include the cloud-droplet effective radius and number concentration and broadband shortwave optical depth and cloud and top-of-atmosphere albedos. Stratus without any overlying mid or high-level clouds occurred most frequently during winter and least often during summer. Mean cloud-layer altitudes and geometric thicknesses were higher and greater, respectively, in summer than in winter. Both quantities are positively correlated with the cloud-layer mean temperature. Mean cloud-droplet effective radii range from 8.1 μm in winter to 9.7 μm during summer, while cloud-droplet number concentrations during winter are nearly twice those in summer. Since cloud liquid water paths are almost the same in both seasons, cloud optical depth is higher during the winter, leading to greater cloud albedos and lower cloud transmittances.

  20. A 25-month database of stratus cloud properties generated from ground-based measurements at the Atmospheric Radiation Measurement Southern Great Plains Site

    SciTech Connect

    Dong, Xiquan; Minnis, Patrick; Ackerman, Thomas P.; Clothiaux, Eugene E.; Mace, Gerald G.; Long, Charles N.; Liljegren, James C.

    2000-02-27

    A 25-month database of the macrophysical, microphysical, and radiative properties of isolated and overcast low-level stratus clouds has been generated using a newly developed parameterization and surface measurements from the Atmospheric Radiation Measurement central facility in Oklahoma. The database (5-min resolution) includes two parts: measurements and retrievals. The former consist of cloud base and top heights, layer-mean temperature, cloud liquid water path, and solar transmission ratio measured by a ground-based lidar/ceilometer and radar pair, radiosondes, a microwave radiometer, and a standard Eppley precision spectral pyranometer, respectively. The retrievals include the cloud-droplet effective radius and number concentration and broadband shortwave optical depth and cloud and top-of-atmosphere albedos. Stratus without any overlying mid or high-level clouds occurred most frequently during winter and least often during summer. Mean cloud-layer altitudes and geometric thicknesses were higher and greater, respectively, in summer than in winter. Both quantities are positively correlated with the cloud-layer mean temperature. Mean cloud-droplet effective radii range from 8.1 {mu}m in winter to 9.7 {mu}m during summer, while cloud-droplet number concentrations during winter are nearly twice those in summer. Since cloud liquid water paths are almost the same in both seasons, cloud optical depth is higher during the winter, leading to greater cloud albedos and lower cloud transmittances. (c) 2000 American Geophysical Union.

  1. Site Scientific Mission Plan for the southern Great Plains CART site, July--December 1993

    SciTech Connect

    Schneider, J.M.; Lamb, P.J.; Sisterson, D.L.

    1993-08-01

    The southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six-months beginning on July 1, 1993, and also looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides a planning focus for the ARM Functional Teams (Management Team, Experiment Support Team, Operations Team, Data Management Team, Instrument Team, and Campaign Team), and it serves to disseminate the current plans more generally within the ARM Program and among the Science Team. This document includes a description of the site`s operational status and the primary envisaged site activities, together with information concerning approved and proposed Intensive Observation Periods. Amendments will be prepared and distributed whenever the content changes by more than 30% within a six-month period. The primary users of this document are the site operator, the site scientist, the Science Team through the ARM Program Science Director, the ARM Program Experiment Center, and the aforementioned ARM Program Functional Teams. This plan is a living document that will be updated and reissued every six-months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  2. Site scientific mission plan for the Southern Great Plains CART site: July--December 1998

    SciTech Connect

    Peppler, R.A.; Lamb, P.; Sisterson, D.L.

    1998-07-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site was designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This Site Scientific Mission Plan defines the scientific priorities for site activities during the six months beginning on July 1, 1998, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this document is to provide scientific guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, and Instrument Team [IT]) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the site program manager, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  3. Site scientific mission plan for the Southern Great Plains CART Site, January--June 1999

    SciTech Connect

    Peppler, R.A.; Sisterson, D.L.; Lamb, P.

    1999-03-10

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site was designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This Site Scientific Mission Plan defines the scientific priorities for site activities during the six months beginning on January 1, 1999, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this document is to provide scientific guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, and Instrument Team [IT]) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the site program manager, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  4. Site Scientific Mission Plan for the Southern Great Plains CART site, July--December 1994

    SciTech Connect

    Schneider, J.M.; Lamb, P.J.; Sisterson, D.L.

    1994-07-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on July 1, 1994, and also looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM Functional Teams (Management Team, Experiment Support Team, Operations Team, Data Management Team, Instrument Team, and Campaign Team), and it serves to disseminate the plans more generally within the ARM Program and among the Science Team. This document includes a description of the site`s operational status and the primary envisaged site activities, together with information concerning approved and proposed Intensive Observation Periods. Amendments will be prepared and distributed whenever the content changes by more than 30% within a six-month period. The primary users of this document are the site operator, the site scientist, the Science Team through the ARM Program Science Director, the ARM Program Experiment Center, and the aforementioned ARM Program Functional Teams. This plan is a living document that will be updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  5. Site Scientific Mission Plan for the Southern Great Plains CART site: January--June 1994

    SciTech Connect

    Schneider, J.M.; Lamb, P.J.; Sisterson, D.L.

    1993-12-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on January 1, 1994, and also looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM Functional Teams (Management Team, Experiment Support Team, Operations Team, Data Management Team, Instrument Team, and Campaign Team), and it serves to disseminate the plans more generally within the ARM Program and among the Science Team. This document includes a description of the site`s operational status and the primary envisaged site activities, together with information concerning approved and proposed Intensive Observation Periods. Amendments will be prepared and distributed whenever the content changes by more than 30% within a six-month period. The primary users of this document are the site operator, the site scientist, the Science Team through the ARM Program Science Director, the ARM Program Experiment Center, and the aforementioned ARM Program Functional Teams. This plan is a living document that will be updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  6. Whooping crane stopover site use intensity within the Great Plains

    USGS Publications Warehouse

    Pearse, Aaron T.; Brandt, David A.; Harrell, Wade C.; Metzger, Kristine L.; Baasch, David M.; Hefley, Trevor J.

    2015-09-23

    Whooping cranes (Grus americana) of the Aransas-Wood Buffalo population migrate twice each year through the Great Plains in North America. Recovery activities for this endangered species include providing adequate places to stop and rest during migration, which are generally referred to as stopover sites. To assist in recovery efforts, initial estimates of stopover site use intensity are presented, which provide opportunity to identify areas across the migration range used more intensively by whooping cranes. We used location data acquired from 58 unique individuals fitted with platform transmitting terminals that collected global position system locations. Radio-tagged birds provided 2,158 stopover sites over 10 migrations and 5 years (2010–14). Using a grid-based approach, we identified 1,095 20-square-kilometer grid cells that contained stopover sites. We categorized occupied grid cells based on density of stopover sites and the amount of time cranes spent in the area. This assessment resulted in four categories of stopover site use: unoccupied, low intensity, core intensity, and extended-use core intensity. Although provisional, this evaluation of stopover site use intensity offers the U.S. Fish and Wildlife Service and partners a tool to identify landscapes that may be of greater conservation significance to migrating whooping cranes. Initially, the tool will be used by the U.S. Fish and Wildlife Service and other interested parties in evaluating the Great Plains Wind Energy Habitat Conservation Plan.

  7. Site scientific mission plan for the Southern Great Plains CART site, January-June 1995

    SciTech Connect

    Schneider, J.M.; Lamb, P.J.; Sisterson, D.L.

    1994-12-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on January 1, 1995, and also looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Experiment Support Team [EST], Operations Team, Data Management Team [DMT], Instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary envisaged site activities, together with information concerning approved and proposed Intensive Observation Periods (IOPs). Amendments will be prepared and distributed whenever the content changes by more than 30% within a six-month period. The primary users of this document are the site operator, the site scientist, the Science Team through the ARM Program Science Director, The ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that will be updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  8. Site scientific mission plan for the Southern Great Plains CART site January--June 1996

    SciTech Connect

    Peppler, R.A.; Lamb, P.J.; Sisterson, D.L.

    1996-01-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on January 1, 1996, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed Intensive Observation Periods (IOPs). The primary users of this document are the site operator, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  9. Site scientific mission plan for the southern Great Plain CART site July-December 1997.

    SciTech Connect

    Lamb, P.J.; Peppler, R.A.; Sisterson, D.L.

    1997-08-28

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on July 1, 1997, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, Instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  10. Site scientific mission plan for the Southern Great Plains CART site: January 1997--June 1997

    SciTech Connect

    Peppler, R.A.; Lamb, P.J.; Sisterson, D.L.

    1997-01-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on January 1, 1997, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, Instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  11. Response of Competing Vegetation to Site Preparation on West Gulf Coastal Plain Commercial Forest Land

    Treesearch

    Gale L. Wolters; Henry A. Pearson; Ronald E. Thill; V. Clark Baldwin; Alton Martin

    1995-01-01

    The response of woody and herbaceous vegetation to site preparation, subsoil texture, and fertilization was measured on the West Gulf Coastal Plain. The influences of these treatments on competing vegetation were short-term. Drastic soil disturbance and fertilization briefly increased herbage production. Shear-windrow and shear-disk were generally the most effective...

  12. Site scientific mission plan for the southern Great Plains CART site, January--June 1998

    SciTech Connect

    Peppler, R.A.; Lamb, P.J.; Sisterson, D.L.

    1998-01-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. The primary purpose of this site scientific mission plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team, Operations Team, and Instrument Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the Site operator, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  13. Site scientific mission plan for the southern great plains CART site January-June 2000.

    SciTech Connect

    Peppler, R. A.; Sisterson, D. L.; Lamb, P.

    2001-03-15

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site was designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This Site Scientific Mission Plan defines the scientific priorities for site activities during the six months beginning on January 1, 2000, and looks forward in less detail to subsequent six-month periods. The primary purpose of this document is to provide scientific guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, and Instrument Team [IT]) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the site program manager, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding. With this issue, many aspects of earlier Site Scientific Mission Plan reports have been moved to ARM sites on the World Wide Web. This report and all previous reports are available on the SGP CART web site.

  14. Failure and Redemption of Multifilter Rotating Shadowband Radiometer (MFRSR)/Normal Incidence Multifilter Radiometer (NIMFR) Cloud Screening: Contrasting Algorithm Performance at Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) and Southern Great Plains (SGP) Sites

    SciTech Connect

    Kassianov, Evgueni I.; Flynn, Connor J.; Koontz, Annette S.; Sivaraman, Chitra; Barnard, James C.

    2013-09-11

    Well-known cloud-screening algorithms, which are designed to remove cloud-contaminated aerosol optical depths (AOD) from AOD measurements, have shown great performance at many middle-to-low latitude sites around the world. However, they may occasionally fail under challenging observational conditions, such as when the sun is low (near the horizon) or when optically thin clouds with small spatial inhomogeneity occur. Such conditions have been observed quite frequently at the high-latitude Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) sites. A slightly modified cloud-screening version of the standard algorithm is proposed here with a focus on the ARM-supported Multifilter Rotating Shadowband Radiometer (MFRSR) and Normal Incidence Multifilter Radiometer (NIMFR) data. The modified version uses approximately the same techniques as the standard algorithm, but it additionally examines the magnitude of the slant-path line of sight transmittance and eliminates points when the observed magnitude is below a specified threshold. Substantial improvement of the multi-year (1999-2012) aerosol product (AOD and its Angstrom exponent) is shown for the NSA sites when the modified version is applied. Moreover, this version reproduces the AOD product at the ARM Southern Great Plains (SGP) site, which was originally generated by the standard cloud-screening algorithms. The proposed minor modification is easy to implement and its application to existing and future cloud-screening algorithms can be particularly beneficial for challenging observational conditions.

  15. Site scientific mission plan for the southern great plains CART site, July--December 1995

    SciTech Connect

    Splitt, M.E.; Lamb, P.J.; Sisterson, D.L.

    1995-07-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs Of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific Priorities for site activities during the six months beginning on July 1, 1995, and looks forward in lesser detail to subsequent six-month periods. The Primary Purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary envisioned site activities, together with information concerning approved and proposed Intensive Observation Periods (IOPs). This plan is a living document that will be updated and reissued every six months as the observational facilities are developed, tested, and augmented and as Priorities are adjusted in response to developments in scientific planning and understanding.

  16. Site scientific mission plan for the Southern Great Plains CART site: July--December 1997

    SciTech Connect

    Peppler, R.A.; Lamb, P.J.; Sisterson, D.L.

    1997-07-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on July 1, 1997, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  17. Site scientific mission plan for the Southern Great Plains CART site: July--December 1996

    SciTech Connect

    Peppler, R.A.; Lamb, P.J.; Sisterson, D.L.

    1996-07-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on July 1, 1996, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, Instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding. The primary objectives of the ARM program are: to describe the radiative energy flux profile of the clear and cloudy atmosphere; to understand the processes determining the flux profile; and to parameterize the processes determining the flux profile for incorporation into general circulation models.

  18. Site scientific mission plan for the Southern Great Plains CART Site, July--December 1999

    SciTech Connect

    Peppler, R.A.; Sisterson, D.L.; Lamb, P.

    1999-12-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site was designed to help satify the data needs of the Atmospheric Radiation Measurement (ARM) program science team. The site scientific mission plan defines the scientific priorities for site activities during the 6-month period beginning 1 July 1999, and looks forward in lesser detail to subsequent 6-month periods. The primary purpose of this document is to provide scientific guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams and serves to disseminate the plans more generally within the ARM program and among the members of the science team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  19. Off-Site Movement of Picloram From A Coastal Plain Kudzu Site

    Treesearch

    Jerry L. Michael

    1987-01-01

    Picloram (4-amino-3,5,6-trichloro-picolinic acid) was aerially applied to a longleaf pine (Pinus palustris L.) site in the upper coastal plain of Alabama to control kudzu (Pueraria lobata (Willd.) Ohwi). Granules (10% ai [active ingredient]) were spread at a rate of 56 kg/ha to sandy loam Typic Paleudult soils. Movement was...

  20. Wet-weather timber harvesting and site preparation effects on coastal plain sites: a review

    Treesearch

    Masato Miwa; W. Michael Aust; James A. Burger; Steve C. Patterson; Emily A. Carter

    2004-01-01

    Increased interest in sustainable forestry has intensified the need for information o nthe interaction of forest soils, harvesting methods, site disturbances, and the efficacy of methods for amelio rating disturbances. On wet pine flats, such as those commonly found in the Atlantic and Gulf Coastal Plains, conditions such as frequent rainfall, low relief, and poor...

  1. ESTAR Measurements During the Southern Great Plains Experiment (SGP99)

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Jackson, T. J.; Swift, C. T.; Haken, M.; Bidwell, S.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    During the Southern Great Plains experiment, the synthetic aperture radiometer, ESTAR, mapped L-band brightness temperature over a swath about 50 km wide and about 300 km long extending west from Oklahoma City to El Reno and north from the Little Washita River watershed to the Kansas border. ESTAR flew on the NASA P-3B Orion aircraft at an altitude of 7.6 km and maps were made on 7 days between July 8-20, 1999. The brightness temperature maps reflect the patterns of soil moisture expected from rainfall and are consistent with values of soil moisture observed at the research sites within the SGP99 study area and with previous measurements in this area. The data add to the resources for hydrologic modeling in this area and are further validation of the technology represented by ESTAR as a potential path to a future mission to map soil moisture globally from space.

  2. Southern Great Plains cloud and radiation testbed site

    SciTech Connect

    1996-09-01

    This document presents information about the Cloud and Radiation Testbed Site and the Atmospheric Radiation Measurement program. Topics include; measuring methods, general circulation methods, milestones, instrumentation, meteorological observations, and computing facilities.

  3. AmeriFlux US-ARc ARM Southern Great Plains control site- Lamont

    DOE Data Explorer

    Torn, Margaret [Lawrence Berkeley National Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ARc ARM Southern Great Plains control site- Lamont. Site Description - The ARM SGP Control site is located in the native tallgrass prairies of the USDA Grazinglands Research Laboratory near El Reno, OK. One of two adjacent 35 ha plots with identical towers, measurements at the US-ARc unburned plot are used as the experimental control. The second plot, US-Arb, was burned on 2005/03/08. Measurement comparisons between the control and burn plot are used to address questions regarding the effects of burning activities on carbon fluxes. The region evaded burning activities for at least 15 years. Current disturbances consist of only light grazing activities.

  4. Design of the aerosol sampling manifold for the Southern Great Plains site

    SciTech Connect

    Leifer, R.; Knuth, R.H.; Guggenheim, S.F.; Lee, H.N.

    1995-04-01

    To meet the needs of the ARM program, the Environmental Measurements Laboratory (EML) has the responsibility to establish a surface aerosol measurements program at the Southern Great Plains (SGP) site in Lamont, OK. At the present time, EML has scheduled installation of five instruments at SGP: a single wavelength nephelometer, an optical particle counter (OPC), a condensation particle counter (CPC), an optical absorption monitor (OAM), and an ozone monitor. ARM`s operating protocol requires that all the observational data be placed online and sent to the main computer facility in real time. EML currently maintains a computer file containing back trajectory (BT) analyses for the SGP site. These trajectories are used to characterize air mass types as they pass over the site. EML is continuing to calculate and store the resulting trajectory analyses for future use by the ARM science team.

  5. Plain film measurement error in acute displaced midshaft clavicle fractures

    PubMed Central

    Archer, Lori Anne; Hunt, Stephen; Squire, Daniel; Moores, Carl; Stone, Craig; O’Dea, Frank; Furey, Andrew

    2016-01-01

    Background Clavicle fractures are common and optimal treatment remains controversial. Recent literature suggests operative fixation of acute displaced mid-shaft clavicle fractures (DMCFs) shortened more than 2 cm improves outcomes. We aimed to identify correlation between plain film and computed tomography (CT) measurement of displacement and the inter- and intraobserver reliability of repeated radiographic measurements. Methods We obtained radiographs and CT scans of patients with acute DMCFs. Three orthopedic staff and 3 residents measured radiographic displacement at time zero and 2 weeks later. The CT measurements identified absolute shortening in 3 dimensions (by subtracting the length of the fractured from the intact clavicle). We then compared shortening measured on radiographs and shortening measured in 3 dimensions on CT. Interobserver and intraobserver reliability were calculated. Results We reviewed the fractures of 22 patients. Bland–Altman repeatability coefficient calculations indicated that radiograph and CT measurements of shortening could not be correlated owing to an unacceptable amount of measurement error (6 cm). Interobserver reliability for plain radiograph measurements was excellent (Cronbach α = 0.90). Likewise, intraobserver reliabilities for plain radiograph measurements as calculated with paired t tests indicated excellent correlation (p > 0.05 in all but 1 observer [p = 0.04]). Conclusion To establish shortening as an indication for DMCF fixation, reliable measurement tools are required. The low correlation between plain film and CT measurements we observed suggests further research is necessary to establish what imaging modality reliably predicts shortening. Our results indicate weak correlation between radiograph and CT measurement of acute DMCF shortening. PMID:27438054

  6. Chenier Plain Sediment Burial Pipe Measurements

    NASA Technical Reports Server (NTRS)

    Moeller, Chris; Gunshor, Mat; Huh, Oscar; Winch, Dale

    2000-01-01

    These field notes describe the logistical circumstances and field conditions experienced by the researchers, who measured the waterlines on a series of vertical pipes previously buried in shallow coastal water. The purpose of the measurements was to monitor a portion of the Gulf coast in Louisiana for erosion.

  7. A generational change in site index for naturally established longleaf pine on a south Alabama Coastal Plain site

    Treesearch

    William D. Boyer

    2001-01-01

    Research on longleaf pine (Pinus palustris Mill.) has been carried out for over 50 yr on a Coastal Plain site in south Alabama. Studies have included the original second-growth stands and also naturally established third-growth stands. Site index data revealed that estimated site index values for third growth generally exceeded those for second...

  8. A Generational Change in Site Index for Naturally Established Longleaf Pine on a South Alabama Coastal Plain Site

    Treesearch

    William D. Boyer

    2001-01-01

    Research on longleaf pine (Pinus palustris Mill.) has been carried out for over 50 yr on a coastal plain site in south Alabama. Studies havie included the original second-growth stands and also naturally established third-growth stands. Site index data revealed that estimated site index values for third growth generally exceeded those for second...

  9. Clear Sky Identification Using Data From Remote Sensing Systems at ARM's Southern Great Plains Site

    SciTech Connect

    Delle Monache, L.; Rodriguez, D.; Cederwall, R.

    2000-06-27

    Clouds profoundly affect our weather and climate due, in large part, to their interactions with radiation. Unfortunately, our understanding of these interactions is, at best, incomplete, making it difficult to improve the treatment of atmospheric radiation in climate models. The improved treatment of clouds and radiation, and a better understanding of their interaction, in climate models is one of the Department of Energy's Atmospheric Radiation Measurement (ARM) Program's major goals. To learn more about the distribution of water and ice, i.e., clouds, within an atmospheric column, ARM has chosen to use the remote sensing of clouds, water vapor and aerosols at its three climatologically-diverse sites as its primary observational method. ARM's most heavily instrumented site, which has operated continuously for more than a decade, is its Southern Great Plains (SGP) Central Facility, located near Lamont, OK. Cloud-observing instruments at the Central Facility include the Whole Sky Imager, ceilometers, lidar, millimeter cloud radar, microwave radiometers and radiosondes.

  10. Surface Forcing from CH4 at the North Slope of Alaska and Southern Great Plains Sites

    NASA Astrophysics Data System (ADS)

    Collins, W.; Feldman, D.; Turner, D. D.

    2014-12-01

    Recent increases in atmospheric CH4 have been spatially heterogeneous as indicated by in situ flask measurements and space-borne remote-sensing retrievals from the AIRS instrument, potentially leading to increased radiative forcing. We present detailed, specialized measurements at the DOE ARM North Slope of Alaska (NSA) and Southern Great Plains (SGP) sites to derive the time-series of both CH4 atmospheric concentrations and associated radiative implications at highly-contrasting natural and anthropogenic sources. Using a combination of spectroscopic measurements, in situ observations, and ancillary data for the atmospheric thermodynamic state from radiosondes and cloud-clearing from active sounders, we can separate out the contribution of CH4 to clear-sky downwelling radiance spectra and its infrared surface forcing. The time-series indicates year-to-year variation in shoulder season increases of CH4 concentration and forcing at NSA and large signals from anthropogenic activity at SGP.

  11. Stream habitat characteristics at selected sites in the Georgia-Florida coastal plain

    USGS Publications Warehouse

    Lewis, L.J.; Turtora, Michael

    1998-01-01

    Habitat characterization is part of a multidisciplinary approach to water-quality assessment implemented by the National Water-Quality Assessment Program. Habitat data were collected in the Georgia-Florida Coastal Plain study unit at 24 sites during 1993-95. Data were collected for habitat characteristics at three spatial scales: basin, segment, and reach. Basin data include physiography, land resource provinces, and land use, providing a description of the environmental setting at each site. Segment data include length, gradient, and sinuosity. A Kendall correlation analysis performed on segment characteristics and the log-of-basin area showed a correlation between segment gradient and the log-of-basin area and a correlation between sinuosity and segment length. Reach data consist of field-collected measurements of both instream and riparian habitats. Sand and detritus were the most common channel-bed substrates among the sampled sites. Measurements of channel width, water depth, and bank width and height were used to create cross-sectional profiles of each sampled area. Elevations of selected durations plotted on cross sections illustrated the percentage of time that the banks were inundated at each site. Sites were divided into two groups based on duration of bank inundation (less than or equal to 1 percent and greater than 1 percent). Bank woody vegetation was also sampled and a clustering algorithm known as Two-Way INdicator SPecies ANalysis (TWINSPAN) was used to analyze these data. TWINSPAN divided the sites into two groups based on their vegetation composition. A statistical comparison of the two types of site groups (duration of bank inundation and vegetation) was performed. The significant association between these groups was consistent with the hypothesis that inundation frequency affected riparian vegetation.

  12. A one-year climatology using data from the Southern Great Plains (SGP) site micropulse lidar

    SciTech Connect

    Mace, G.G.; Ackerman, T.P.; Spinhirne, J.; Scott, S.

    1996-04-01

    The micropulse lidar (MPL) has been operational at the Southern Great Plains (SGP) site of the Atmospheric Radiation Measurement Program for the past 15 months. The compact MPL is unique among research lidar systems in that it is eye-safe and operates continuously, except during precipitation. The MPL is capable of detecting cloud base throughout the entire depth of the troposphere. The MPL data set is an unprecedented time series of cloud heights. It is a vital resource for understanding the frequency of cloud ocurrence and the impact of clouds on the surface radiation budget, as well as for large-scale model validation and satellite retrieval verification. The raw lidar data are processed for cloud base height at a temporal frequency of one minute and a vertical resolution of 270 m. The resultant time series of cloud base is used to generate histograms as a function of month and time of day. Sample results are described.

  13. Site Preparation Costs in the Southern Coastal Plain - An Update

    Treesearch

    Richard W. Guldin

    1983-01-01

    Landowners who want to regenerate their land following timber harvest need up-to-date costs for sound assessment of alternative site preparation methods. The first survey of southern costs was conducted in 1952 by Worrell (1953). Periodic updates since then have gradually expanded the cost categories reported. A major expansion of cost categories for site preparation...

  14. MX Siting Investigation. Prime Characterization Sites Central High Plains Candidate Siting Province.

    DTIC Science & Technology

    1979-02-15

    hills on the east and US Highways 6 and 34 on the north and south, respectively. A network of graded and paved farm roads provides access to all areas...boundaries of the site, respectively. A network of graded farm roads traverses the site and provides access to all areas within. 3.1 SCOPE OF...o * 0 0 0 * * 0 00 ~~000 00 0. *..b 0* *. * ** 25. ~ 0.000L0 Verticl Scae: 1 50(15. STATUTON MIESAP + 39 151 Ve tia Exageiton 2II KILOMETERS 0 2

  15. Observation of ambient formaldehyde at urban and rural sites in the North China Plain

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Peng, Wei; Xu, Xiaobin; Lin, Weili; Cheng, Hongbing; Yin, Liyuan; Zhou, Li

    2017-04-01

    Air quality issues in the North China Plain (NCP), including frequently occurred haze and photochemical pollution, has become more and more concerned in recent years. To facilitate a better understanding of the reginal air pollution problem, field campaigns carried out at present not only focus on urban areas but also expanded to surrounding rural areas. Formaldehyde (HCHO) is one of the dominant carbonyl compounds in atmosphere, which closely related to photochemical pollution. As part of several field campaigns study on air pollutions in the NCP, ambient HCHO were measured at an urban site in Beijing from 2013 to 2016, as well as two rural sites Gucheng and Raoyang located in the middle of the NCP in summer of 2013, 2014, and 2016, respectively, using an in-situ HCHO analyzer (AL4021) based on Hantzsch reaction fluorescence method. Mixing ratios of HCHO at the urban and the rural sites of the NCP were at a similar level in summer, which were fairly higher than those reported at other Chinese sites or oversea sites. Different diurnal variation characteristics of HCHO can be seen between urban and rural sites, with two peaks for the former and one peak for the latter. Seasonal variation of HCHO at Beijing was interpreted with relative high concentrations in summer and autumn and low concentrations in winter and spring. In addition, variation of pollutants such as ozone (O3), peroxyacetyl nitrate (PAN) and carbon monoxide (CO) were discussed together with HCHO. And, photolysis rates of HCHO were calculated using simultaneously observed photolysis rate coefficients, demonstrating that the HCHO photolysis rate for yielding hydrogen and CO was faster than that for yielding H and HCO radicals. The results suggested that photochemical processes played an important role for the HCHO peak during daytime.

  16. Organic and Elemental Carbon Aerosol Particulates at the Southern Great Plains Site Field Campaign Report

    SciTech Connect

    Cary, Robert

    2016-04-01

    The purpose of this study was to measure the organic carbon (OC) and elemental carbon (EC) fractions of PM2.5 particulate matter at the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) sampling site for a 6-month period during the summer of 2013. The site is in a rural location remote from any populated areas, so it would be expected to reflect carbon concentration over long-distance transport patterns. During the same period in 2012, a number of prairie fires in Oklahoma and Texas had produced large plumes of smoke particles, but OC and EC particles had not been quantified. In addition, during the summer months, other wild fires, such as forest fires in the Rocky Mountain states and other areas, can produce carbon aerosols that are transported over long distances. Both of these source types would be expected to contain mixtures of both OC and EC.

  17. Soil change and loblolly pine (Pinus taeda) seedling growth following site preparation tillage in the Upper Coastal Plain of the southeastern United States

    Treesearch

    Chad M. Lincoln; Rodney E. Will; Lawrence A. Morris; Emily A. Carter; Daniel Markewtiz; John R. Britt; Ben Cazell; Vic Ford

    2007-01-01

    To determine the relationship between changes in soil physical properties due to tillage and growth of loblolly pine (Pinus taeda L.) seedlings, we measured soil moisture and penetration resistance for a range of tillage treatments on two Upper Coastal Plain sites in Georgia and correlated these measurements to the growth of individual seedlings. The...

  18. AmeriFlux US-ARb ARM Southern Great Plains burn site- Lamont

    DOE Data Explorer

    Torn, Margaret [Lawrence Berkeley National Laboratory

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-ARb ARM Southern Great Plains burn site- Lamont. Site Description - The ARM SGP Burn site is located in the native tallgrass prairies of the USDA Grazinglands Research Laboratory near El Reno, OK. One of two adjacent 35 ha plots, the US-ARb plot was burned on 2005/03/08. The second plot, US-ARc, was left unburned as the control for experimental purposes. Aside from 2005, the region evaded burning activities for at least 15 years. Current disturbances consist of only light grazing activities.

  19. Atrazine retention and degradation in the vadose zone at a till plain site in central Indiana

    USGS Publications Warehouse

    Bayless, E.R.

    2001-01-01

    The vadose zone was examined as an environmental compartment where significant quantities of atrazine and its degradation compounds may be stored and transformed. The vadose zone was targeted because regional studies in the White River Basin indicated a large discrepancy between the mass of atrazine applied to fields and the amount of the pesticide and its degradation compounds that are measured in ground and surface water. A study site was established in a rotationally cropped field in the till plain of central Indiana. Data were gathered during the 1994 growing season to characterize the site hydrogeology and the distribution of atrazine, desethylatrazine, deisopropylatrazine, didealkylatrazine and hydroxyatrazine in runoff, pore water, and ground water. The data indicated that atrazine and its degradation compounds were transported from land surface to a depth of 1.5 m within 60 days of application, but were undetected in the saturated zone at nearby monitoring wells. A numerical model was developed, based on the field data, to provide information about processes that could retain and degrade atrazine in the vadose zone. Simulations indicated that evapotranspiration is responsible for surface directed soil-moisture flow during much of the growing season. This process causes retention and degradation of atrazine in the vadose zone. Increased residence time in the vadose zone leads to nearly complete transformation of atrazine and its degradation products to unquantified degradation compounds. As a result of mascropore flow, small quantities of atrazine and its degradation compounds may reach the saturated zone.

  20. Comparison of optimal irrigation scheduling and groundwater recharge at representative sites in the North China Plain

    NASA Astrophysics Data System (ADS)

    Ma, Ying

    2014-05-01

    The North China Plain (NCP) is an important food production area in China, facing an increasing water shortage and overexploitation of groundwater. It is critical to optimize the irrigation scheduling and accurately estimate groundwater recharge for saving water and increasing crop water use efficiency. However, the water cycle and crop responses to irrigation are quite various in different areas, because of the spatial variation of climatic, soil, water table and other management practices in the NCP. In this study, three representative sites (LC site in the piedmont plain, TZ site in the northern alluvial and lacustrine plain, YC site in the southern alluvial and lacustrine plain) were selected to compare the optimal irrigation scheduling and corresponding groundwater recharge under different hydrological years for winter wheat-summer maize double cropping system. At each site, a physically based agro-hydrological model (SWAP) was calibrated using field data of soil moisture. Then, scenarios under different irrigation time and amount were simulated. Results showed that the optimal irrigation scheduling and corresponding groundwater recharge were significant different between the three representative sites. The mean water table depth at the LC (33.0 m), YC (10.3 m), and TZ site (2.5 m) caused great different time lags of infiltrated water and groundwater contribution to evapotranspiration. Then, the most irrigation amount was required for the TZ site but the least requirement for the YC site at each hydrologic year. As most clay contents in the deep soils at the LC site increased tortuosity and limited water movement, which resulted in lower rates of recharge compared to more sandy soils at the other two sites. Averagely, using the optimal irrigation scheduling could save 2.04×109 m3 irrigation water and reduce about 84.3% groundwater over-exploitation in winter wheat growth period in the NCP. Therefore, comparison of the simulation results among the three

  1. Comparison between active sensor and radiosonde cloud boundaries over the ARM Southern Great Plains site

    NASA Astrophysics Data System (ADS)

    Naud, Catherine M.; Muller, Jan-Peter; Clothiaux, Eugene E.

    2003-02-01

    In order to test the strengths and limitations of cloud boundary retrievals from radiosonde profiles, 4 years of radar, lidar, and ceilometer data collected at the Atmospheric Radiation Measurements Southern Great Plains site from November 1996 through October 2000 are used to assess the retrievals of [1995] and [1996]. The lidar and ceilometer data yield lowest-level cloud base heights that are, on average, within approximately 125 m of each other when both systems detect a cloud. These quantities are used to assess the accuracy of coincident cloud base heights obtained from radar and the two radiosonde-based methods applied to 200 m resolution profiles obtained at the same site. The lidar/ceilometer and radar cloud base heights agree by 0.156 ± 0.423 km for 85.27% of the observations, while the agreement between the lidar/ceilometer and radiosonde-derived heights is at best -0.044 ± 0.559 km for 74.60% of all cases. Agreement between radar- and radiosonde-derived cloud boundaries is better for cloud base height than for cloud top height, being at best 0.018 ± 0.641 km for 70.91% of the cloud base heights and 0.348 ± 0.729 km for 68.27% of the cloud top heights. The disagreements between radar- and radiosonde-derived boundaries are mainly caused by broken cloud situations when it is difficult to verify that drifting radiosondes and fixed active sensors are observing the same clouds. In the case of the radar the presence of clutter (e.g., vegetal particles or insects) can affect the measurements from the surface up to approximately 3-5 km, preventing comparisons with radiosonde-derived boundaries. Overall, [1995] tend to classify moist layers that are not clouds as clouds and both radiosonde techniques report high cloud top heights that are higher than the corresponding heights from radar.

  2. A comparison of radiometric fluxes influenced by parameterization cirrus clouds with observed fluxes at the Southern Great Plains (SGP) cloud and radiation testbed (CART) site

    SciTech Connect

    Mace, G.G.; Ackerman, T.P.; George, A.T.

    1996-04-01

    The data from the Atmospheric Radiation Measurement (ARM) Program`s Southern Great plains Site (SCP) is a valuable resource. We have developed an operational data processing and analysis methodology that allows us to examine continuously the influence of clouds on the radiation field and to test new and existing cloud and radiation parameterizations.

  3. Geochemistry of aerosols from an urban site, Varanasi, in the Eastern Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Ram, Kirpa; Norra, Stefan; Zirzov, Felix; Singh, Sunita; Mehra, Manisha; Nanad Tripathi, Sachichida

    2016-04-01

    PM2.5 aerosol samples were collected from an urban site, Varanasi, in the eastern Indo-Gangetic Plain on weekly basis during 19 March to 29 May 2015 (n=12), along with daily samples (n=8) during 11 to 18 March 2015 to study the geochemical and morphological features of aerosols. Samples were collected with a low volume sampler (Leckel GmbH, Germany) on the terrace of the Institute of Environment and Sustainable Development building, located in the Banaras Hindu University campus in the southern part of the city. Samples were analyzed for element concentration by Inductively Coupled Plasma Mass Spectrometry and particle morphology by Scanning Electron Microscope. PM2.5 concentration ranged between 22.3 and 70.5 μgm-3 in daily samples, whereas those varied between 52.0 and 106 μgm-3 in weekly samples. Lead, potassium, aluminum, zinc and iron have conspicuously higher concentrations with Pb concentration exceeding above the annual limit of 50 ngm-3 in four samples. First results show a trend of corresponding concentrations of chemical elements originated from anthropogenic and geogenic sources. The biogenic particles are a minor fraction of the total particulate aerosols. The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) back trajectory analysis of air parcels indicate that the air mass for the low loaded days originate from eastern directions including the region of the gulf of Bengal, where as high aerosols concentrations in cases of air masses arriving from north-western direction transporting the air pollutants from the Gangetic Plain towards Varanasi. Black carbon (BC) concentration, measured using an microaethalometer (AE-51), exhibit a strong variability (4.4 to 8.4 μg m-3) in the University campus which are ˜20-40% lower than those measured in the Varanasi city. The carbon content was found to be high with soot particles constituting the largest part in these samples and exist as single particle as well as attachment to other particles

  4. Light non-methane hydrocarbons at two sites in the Indo-Gangetic Plain.

    PubMed

    Lal, S; Sahu, L K; Venkataramani, S; Mallik, C

    2012-04-01

    Measurements of light (C(2)-C(5)) non-methane hydrocarbons (NMHCs) were made along with ozone (O(3)), oxides of nitrogen (NO(x)), carbon monoxide (CO) and methane (CH(4)) at Hissar and Kanpur in the Indo-Gangetic Plain (IGP) in India during the month of December, 2004. Air samplings during noon and evening hours provided an opportunity to study the emission characteristics and changes during this period at these sites. The mixing ratio of O(3) was higher during noon hours due to photochemical formation, while the levels of precursor gases showed elevated values during the evening hours on a clear sky day. On foggy days there is no such variation. The lower mixing ratios of O(3) observed on foggy days could be due to the slower rate of photochemical formation caused by a reduction in solar flux and surface deposition caused by the presence of a stable planetary boundary layer. Propene and ethene show the highest evening to noon ratio due to their faster reactivities with OH radicals. Correlations among different species of the measured gases indicate contributions of emissions from biomass and biofuel burning as well as fossil fuel combustion. Although qualitatively in relation to O(3), the propylene (propene) equivalents of NMHCs have been calculated to investigate their roles in O(3) photochemistry and compared with the data from Ahmedabad, an urban site in western India. The important result, which has emerged from the analysis of the observed data, is that while the total amount of these NMHCs is least at Hissar and highest at Ahmedabad, the total propylene-equivalent is highest at Hissar and lowest at Ahmedabad. Further, these two sites in the IGP show significant contributions, almost 72-77%, by propene and ethene while the contribution by these two gases at Ahmedabad is only about 47%. The surface level mixing ratios of O(3) could be treated as representative for the chemical characterization of air mass at a regional scale over the IGP as the month long

  5. Comparison of the nematode fauna from the Weddell Sea Abyssal Plain with two North Atlantic abyssal sites

    NASA Astrophysics Data System (ADS)

    Sebastian, Sajan; Raes, Maarten; De Mesel, Ilse; Vanreusel, Ann

    2007-08-01

    This study provides for the first time data on the nematode community composition from the Weddell Sea Abyssal Plain. In addition, new data on the nematode communities from the Cape Verde Abyssal Plain and the Porcupine Abyssal Plain are provided. Three stations along an east-west transect in the Weddell Sea were sampled during the ANDEEP II campaign and compared with two north-east Atlantic abyssal sites, characterized by a contrasting food supply, in terms of densities, community structure and biodiversity. Local total nematode densities on the Weddell Sea Abyssal Plain (station 138) rank among the highest values recorded from abyssal plains worldwide, pointing to a locally high availability of food for meiofauna. Minor differences in the proportion of dominant genera were observed between the Weddell Sea Abyssal Plain and both North Atlantic sites. The nematode communities at the Weddell Sea Abyssal Plain were dominated by Thalassomonhystera and Acantholaimus, which is comparable to the North Atlantic abyssal plains. No endemic genera for the Southern Ocean were found. However, the higher abundance of the genera Microlaimus and Dichromadora seems to be typical for the Southern Ocean deep-sea, and might be related to the availability of fresh food.

  6. Flood-plain and channel aggradation of selected bridge sites in the Iowa and Skunk River basins, Iowa

    USGS Publications Warehouse

    Eash, D.A.

    1996-01-01

    Flood-plain and channel-aggradation rates were estimated at 10 bridge sites on the Iowa River upstream of Coralville Lake and at two bridge sites in the central part of the Skunk River Basin. Four measurement methods were used to quantify aggradation rates: (1) a dendrogeomorphic method that used tree-age data and sediment-deposition depths, (2) a bridge-opening cross-section method that compared historic and recent cross sections of bridge openings, (3) a stage-discharge rating-curve method that compared historic and recent stages for the 5-year flood discharge and the average discharge, and (4) nine sediment pads that were installed on the Iowa River flood plain at three bridge sites in the vicinity of Marshalltown. The sediment pads were installed prior to overbank flooding in 1993. Sediments deposited on the pads as a result of the 1993 flood ranged in depth from 0.004 to 2.95 feet. Measurement periods used to estimate average aggradation rates ranged from 1 to 98 years and varied among methods and sites. The highest aggradation rates calculated for the Iowa River Basin using the dendrogeomorphic and rating- curve measurement methods were for the State Highway 14 crossing at Marshalltown, where these highest rates were 0.045 and 0.124 feet per year, respectively. The highest aggradation rates calculated for the Skunk River Basin were for the U.S. Highway 63 crossing of the South Skunk River near Oskaloosa, where these highest rates were 0.051 and 0.298 feet per year, respectively.

  7. Periglacial landforms at the Phoenix landing site and the northern plains of Mars

    NASA Astrophysics Data System (ADS)

    Mellon, Michael T.; Arvidson, Raymond E.; Marlow, Jeffrey J.; Phillips, Roger J.; Asphaug, Erik

    2008-11-01

    We examine potentially periglacial landforms in Mars Orbiter Camera (MOC) and High Resolution Imaging Science Experiment (HiRISE) images at the Phoenix landing site and compare them with numerical models of permafrost processes to better understand the origin, nature, and history of the permafrost and the surface of the northern plains of Mars. Small-scale (3-6 m) polygonal-patterned ground is ubiquitous throughout the Phoenix landing site and northern plains. Larger-scale (20-25 m) polygonal patterns and regularly spaced (20-35 m) rubble piles (localized collections of rocks and boulders) are also common. Rubble piles were previously identified as ``basketball terrain'' in MOC images. The small polygon networks exhibit well-developed and relatively undegraded morphology, and they overlay all other landforms. Comparison of the small polygons with a numerical model shows that their size is consistent with a thermal contraction origin on current-day Mars and are likely active. In addition, the observed polygon size is consistent with a subsurface rheology of ice-cemented soil on depth scales of about 10 m. The size and morphology of the larger polygonal patterns and rubble piles indicate a past episode of polygon formation and rock sorting in thermal contraction polygons, while the ice table was about twice as deep as it is presently. The pervasive nature of small and large polygons, and the extensive sorting of surface rocks, indicates that widespread overturning of the surface layer to depths of many meters has occurred in the recent geologic past. This periglacial reworking has had a significant influence on the landscape at the Phoenix landing site and over the Martian northern plains.

  8. Recent Subsidence and Erosion at Diverse Wetland Sites in the Southeastern Mississippi Delta Plain

    USGS Publications Warehouse

    Morton, Robert A.; Bernier, Julie C.; Kelso, Kyle W.

    2009-01-01

    A prior study (U.S. Geological Survey Open-File Report 2005-1216) examined historical land- and water-area changes and estimated magnitudes of land subsidence and erosion at five wetland sites in the Terrebonne hydrologic basin of the Mississippi delta plain. The present study extends that work by analyzing interior wetland loss and relative magnitudes of subsidence and erosion at five additional wetland sites in the adjacent Barataria hydrologic basin. The Barataria basin sites were selected for their diverse physical settings and their recent (post-1978) conversion from marsh to open water. Historical aerial photography, datum-corrected marsh elevations and water depths, sediment cores, and radiocarbon dates were integrated to evaluate land-water changes in the Mississippi delta plain on both historical and geological time scales. The thickness of the organic-rich sediments (peat) and the elevation of the stratigraphic contact between peat and underlying mud were compared at marsh and open-water sites across areas of formerly continuous marsh to estimate magnitudes of recent delta-plain elevation loss caused by vertical erosion and subsidence of the wetlands. Results of these analyses indicate that erosion exceeded subsidence at most of the study areas, although both processes have contributed to historical wetland loss. Comparison of these results with prior studies indicates that subsidence largely caused rapid interior wetland loss in the Terrebonne basin before 1978, whereas erosional processes primarily caused more gradual interior wetland loss in the Barataria basin after 1978. Decadal variations in rates of relative sea-level rise at a National Ocean Service tide gage, elevation changes between repeat benchmark-leveling surveys, and GPS height monitoring at three National Geodetic Survey Continuously Operating Reference Stations indicate that subsidence rates since the early 1990s are substantially lower than those previously reported and are similar in

  9. Ethics review for a multi-site project involving Tribal Nations in the Northern Plains

    PubMed Central

    Angal, Jyoti; Petersen, Julie M.; Tobacco, Deborah; Elliott, Amy J.

    2016-01-01

    Increasingly, Tribal Nations are forming ethics review panels, which function separately from institutional research review boards (IRBs). The emergence of strong community representation coincides with a widespread effort supported by the Department of Health and Human Services and other federal agencies to establish a single IRB for all multi-site research. This article underscores the value of a tribal ethics review board and describes the tribal oversight for the Safe Passage Study - a multi-site, community-based project in the Northern Plains. Our experience demonstrates the benefits of tribal ethics review and makes a strong argument for including tribal oversight in future regulatory guidance for multi-site, community based research. PMID:26928897

  10. Geophysical detection of on-site wastewater plumes in the North Carolina Coastal Plain, USA

    NASA Astrophysics Data System (ADS)

    Smith, Matthew

    Nonpoint source pollution (NPS) continues to be the leading cause of water quality degradation in the United States. On-site wastewater systems (OWS) contribute to NPS; however, due to the range of system designs and complexity of the subsurface, OWS contributions to groundwater pollution are not well understood. As the population of coastal North Carolina continues to increase, better methods to locate and characterize wastewater impacted groundwater are needed. Previous studies have demonstrated the ability of non-intrusive geophysical methods to provide high resolution information on various contaminants in different geologic settings. The goals of this study were to evaluate the utility of ground penetrating radar (GPR) and capacitively coupled resistivity (CCR) for detecting OWS components, delineating associated wastewater plumes, and monitoring temporal variations in groundwater quality. Cross-sectional and three dimensional (3D) geophysical surveys were conducted periodically over a one year period (February 2011--January 2012) at two schools utilizing OWS in the lower Neuse River Basin (NRB) in the North Carolina Coastal Plain (NCCP). Cores were collected at both study sites; as well as monthly groundwater depth, temperature, and specific conductivity measurements to better constrain the geophysical interpretations. Additionally, dissolved inorganic nitrogen (DIN) and Cl concentrations were monitored bi-monthly to assess nutrient transport at the sites. The 3D GPR surveys effectively located the wastewater drainage trenches at both sites, in close agreement with locations described in as-built OWS blueprints. Regression analysis of resistivity versus groundwater specific conductivity revealed an inverse relationship, suggesting resistivity ≤ 250 ohm.m was indicative of wastewater impacted groundwater at both sites. The 3D resistivity models identified regions of low resistivity beneath the drainfields relative to background values. Regression analysis of

  11. Site Index for Loblolly Plantations on Cutover Sites in the West Gulf Coastal Plain

    Treesearch

    T.W. Popham; D.P. Feduccia; T.R. Deli; W.F. Mann; T.E. Campbell

    1979-01-01

    Functions used previously to derive height-age relationships for southern pines are compared in order to develop new site index curves for loblolly pine plantations on cutover sites in the lower West Gulf.

  12. Geomorphology of the 2007 Phoenix Mission Landing Sites in the Northern Plains of Mars

    NASA Astrophysics Data System (ADS)

    Seelos, K. D.; Arvidson, R. E.; Golombek, M.; Parker, T.; Tamppari, L.; Smith, P.

    2005-12-01

    In 2008, the Phoenix lander will touch down in the northern plains of Mars to sample and characterize near surface and underlying ice-rich soils, gather meteorological data, and provide insight into the evolution of the surrounding landscape. Three regions from 65 to 72 N and (A) 250-270E, (B) 120-140E, and (C) 65-85E that meet both engineering and scientific constraints were chosen for concentrated acquisition of remote data to support landing site selection. Smaller areas (150x75 km) within these regions devoid of large craters or other hazards were selected as potential landing sites; center coordinates for these targeted areas are (A) 68N, 260E, (B) 67.5N, 130E, and (C) 70N, 80E. MOLA topographic data along with MOC imagery and THEMIS 36m/pixel visible, 18m/pixel visible, and ~100m/pixel infrared data are utilized to produce geomorphologic maps at 36m/pixel for the larger regions and 18m/pixel for the targeted sites. All regions are dominated by intercrater plains units, with the plains in regions B and C comprised of slightly elevated, multiple kilometer-scale polygonal blocks surrounded or infilled by finer-grained material. The plains unit of region A lacks large polygons, instead exhibiting a smooth to mottled appearance. Patterned ground is ubiquitous throughout all regions. The characteristic dimpled texture of "basketball" terrain is most common, being superposed on the large polygons in regions B and C, and often organized into stripes with orientations partially controlled by local slopes. Small-scale polygonal ground is also observed usually in association with crater ejecta. Craters throughout all regions appear highly degraded, with most small craters (< 1km) remarkably worn with little or no rim definition and ejecta present only as a faint dark halo. Larger craters frequently exhibit pedestal-style ejecta. The style and state of landform degradation and the consistent presence of patterned ground throughout all regions suggests the long

  13. Bed site selection by neonate deer in grassland habitats on the northern Great Plains

    USGS Publications Warehouse

    Grovenburg, T.W.; Jacques, C.N.; Klaver, R.W.; Jenks, J.A.

    2010-01-01

    Bed site selection is an important behavioral trait influencing neonate survival. Vegetation characteristics of bed sites influence thermal protection of neonates and concealment from predators. Although previous studies describe bed site selection of neonatal white-tailed deer (Odocoileus virginianus) in regions of forested cover, none determined microhabitat effects on neonate bed site selection in the Northern Great Plains, an area of limited forest cover. During summers 2007–2009, we investigated bed site selection (n  =  152) by 81 radiocollared neonate white-tailed deer in north-central South Dakota, USA. We documented 80 (52.6%) bed sites in tallgrass–Conservation Reserve Program lands, 35 (23.0%) bed sites in forested cover, and 37 (24.3%) in other habitats (e.g., pasture, alfalfa, wheat). Bed site selection varied with age and sex of neonate. Tree canopy cover (P < 0.001) and tree basal area (P < 0.001) decreased with age of neonates, with no bed sites observed in forested cover after 18 days of age. Male neonates selected sites with less grass cover (P < 0.001), vertical height of understory vegetation (P < 0.001), and density of understory vegetation (P < 0.001) but greater bare ground (P  =  0.047), litter (P  =  0.028), and wheat (P  =  0.044) than did females. Odds of bed site selection increased 3.5% (odds ratio  =  1.035, 95% CI  =  1.008–1.062) for every 1-cm increase in vertical height of understory vegetation. Management for habitat throughout the grasslands of South Dakota that maximizes vertical height of understory vegetation would enhance cover characteristics selected by neonates.

  14. Base-flow measurements at partial-record sites on small streams in South Carolina

    USGS Publications Warehouse

    Barker, Carroll

    1986-01-01

    This report contains site descriptions and base-flow data collected at 362 partial-record sites in South Carolina. These data include site name, site description, latitude, longitude, drainage area, instantaneous streamflow, and date of the streamflow measurement. The base-flow data can be used as an aid to estimate low flow characteristics at ungaged locations on streams in South Carolina. Partial record data collection sites were established in all physiographic provinces except the lower Coastal Plain. Data collection sites were not established in the lower Coastal Plain because of the widespread occurrence of zero during drought periods in all but the larger streams. (USGS)

  15. Hydrogeologic characterization of the cretaceous-tertiary Coastal Plain sequence at the Savannah River Site

    SciTech Connect

    Aadland, R.K.

    1990-01-01

    Several hydrostratigraphic classification schemes have been devised to describe the hydrogeology at the Savannah River Site SRS. Central to these schemes is the one-to-one fixed relationship between the hydrostratigraphic units and the lithostratigraphic units currently favored for the Site. This fixed relationship has proven difficult to apply in studies of widely separated locations at the Site due to the various facies observed in the updip Coastal Plain sequence. A detailed analysis and synthesis of the geophysical, core, and hydrologic data available from more than 164 deep wells from 23 cluster locations both on the Site and in the surrounding region was conducted to provide the basis for a hydrostratigraphic classification scheme which could be applied to the entire SRS region. As a result, an interim hydrostratigraphic classification was developed that defines the regional hydrogeologic characteristics of the aquifers underlying the Site (Aadland et al., 1990). The hydrostratigraphic code accounts for and accommodates the rapid lateral variation in lithofacies observed in the region, and eliminates all formal'' connection between the hydrostratigraphic nomenclature and the lithostratigraphic nomenclature. The code is robust and can be made as detailed as is needed to characterize the aquifer units and aquifer zones described in Site-specific studies. 15 refs., 2 figs.

  16. Factors limiting regeneration of Quercus alba and Cornus florida in formerly cultivated coastal plain sites, South Carolina.

    SciTech Connect

    Riley, Joseph, M., Jr.; Jones, Robert, H.

    2003-01-01

    Riley, J.M. Jr., and R.H.Jones. 2003. Factors limiting regeneration of Quercus alba and Cornus florida in formerly cultivated coastal plain sites, South Carolina. For. Ecol., and Mgt. 177:571-586. To determine the extent that resources, conditions, and herbivoryy limit regeneration of Quercus alba L. and Cornus florida L. in formerly cultivated coastal plain uplands, we planted seedlings of the two species in two pine and one pine-hardwood forest understory and three adjacent clearcuts. Soil carbon and moisture, available nitrogen and phosphorous, and gap light index (GLI) were measured next to each seedling. Over two growing seasons, stem and leaf herbivory were estimated and survival was recorded. At the end of 2 years, all surviving stems were harvested to determine total leaf area and 2-year biomass growth. Survival to the end of the study was not significantly different between clearcuts and understories. However, clearcuts led to significantly greater biomass growth and leaf area for both Q. alba and C. florida. Soil moisture and available nutrients were also greater in the clearcuts. Using separate multiple linear (growth) or logistic (survival) regressions for each combination of three sites, two cutting treatments and two species, we found that soil moisture significantly affected survival in 12.5% and biomass growth in 8.3% of the regressions. Light availability significantly impacted biomass growth in 16.7% of the regressions. Stem and leaf herbivory had very little impact on survival (8.3%), but when combined, these two factors significantly impacted leaf area or biomass growth in 33.3% of the regressions. Seedling responses were highly variable, and no regression model accounted for more that 70.0% of this variation. In our study, stand-scalevariation in seedling responses (especially the difference between clearcut and understory) was much greater than within-stand variation. Of the within stand factors measured, herbivory was clearly the most

  17. Siting MSW landfills using MCE methodology in GIS environment (Case study: Birjand plain, Iran).

    PubMed

    Motlagh, Zeynab Karimzadeh; Sayadi, Mohammad Hossein

    2015-12-01

    The rapid municipal solid waste growth of Birjand plain causes to find an appropriate site selection for the landfill. In order to reduce the negative impacts of waste, the use of novel tools and technologies to gain a suitable site for landfill seems imperative. The present paper aimed to exhibits the Multi Criteria Evaluation (MCE) for the landfill site selection of the Birjand plain because till date a suitable action has not been implicated. In the present research, the parameters such as environmental and socio-economical factors have been used. The factors like slope, water resources, soil parameters, landuse, fault and protected areas in the model of effective environmental criteria and the factors viz. distance from road, urban areas, village, airport, historical place, and industries in the model of socio-economic criteria were investigated and with the use of Weighted Linear Combination (WLC) and Analytical Network Process (ANP) models were compounded and according to the Ordered Weighted Averaging (OWA) and Fuzzy Linguistic Quantifier (LQ) were aggregated. The paper focuses on the OWA method as well as an approach for integrating Geographic Information System (GIS) and OWA. OWA has been developed as a generalization of multi-criteria combination. In this study we attained comparable data via the technique of ANP and five scenarios of OWA method were used. The results of field studies, fifth scenario for the study area proposed. Based on the research findings, OWA method had a great potential and flexibility in the modeling of the complex decision-making problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Geoarchaeology and Geochronology of the Miami (Clovis) Site, Southern High Plains of Texas

    NASA Astrophysics Data System (ADS)

    Holliday, Vance T.; Haynes, C. Vance; Hofman, Jack L.; Meltzer, David J.

    1994-03-01

    The Miami site, excavated in 1937, is in a small "playa" basin on the High Plains surface. The site is one of the earliest documented co-occurrences of Clovis points and mammoth. Reinvestigation of the site and related collections was undertaken to better understand the stratigraphy, geochronology, and archaeology. The basin, 23 m diameter × 1.6 m deep, filled with (1) dark gray silty clay, and (2) near the top of the section, a lens of well-sorted silt or loess. The basin started to fill ca. 13,700 yr B.P., the loess dates to ca. 11,400 yr B.P., and the bone bed probably dates to ca. 11,400-10,500 yr B.P. The loess may be the local manifestation of a "Clovis drought." The partial remains of five mammoths (three adults and two juveniles) were recovered in 1937; no other animal remains are known. The bone is heavily weathered and there are no clear indications of human modification. Artifacts found at the site include three Clovis points and a scraper found among the bones and two flakes and a scraper found on the surface near the playa. The origins of the bone and stone assemblage are uncertain but four scenarios are offered: a successful mammoth kill, an unsuccessful kill with wounded animals dying at the watering hole, opportunistic scavenging following natural deaths, or a palimpsest of multiple deaths following both natural and human causes.

  19. ERTS surveys a 500 km squared locust breeding site in Saudi Arabia. [Red Sea coastal plain

    NASA Technical Reports Server (NTRS)

    Pedgley, D. E.

    1974-01-01

    From September 1972 to January 1973, ERTS-1 precisely located a 500 sq km area on the Red Sea coastal plain of Saudi Arabia within which the Desert Locust (Schistocerca gregaria, Forsk.) bred successfully and produced many small swarms. Growth of vegetation shown by satellite imagery was confirmed from ground surveys and raingauge data. The experiment demonstrates the feasibility of detecting potential locust breeding sites by satellite, and shows that an operational satellite would be a powerful tool for routine survey of the 3 x 10 to the 7th power sq km invasion area of the Desert Locust in Africa and Asia, as well as of other locust species in the arid and semi-arid tropics.

  20. Movement, home range, and site fidelity of bluegills in a Great Plains Lake

    USGS Publications Warehouse

    Paukert, C.P.; Willis, D.W.; Bouchard, M.A.

    2004-01-01

    Little is known about the distribution, movement, and home ranges of bluegills Lepomis macrochirus in lentic environments. Therefore, the objectives of this study were to evaluate the seasonal and diel differences in movement rates, site fidelity, and home range of bluegills in a shallow, natural Great Plains lake. A total of 78 bluegills (200-273 mm total length) were implanted with radio transmitters in March and May 2000. Of these fish, 10 males and 10 females were randomly selected and located every 2 h during one 24-h period each month from April to September 2000. Bluegill movement peaked during midsummer: however, there was little difference in diel movements, suggesting relatively consistent movement throughout the 24-h period. Home range estimates (which included the 24-h tracking plus an additional six locations from the same fish located once per day for six consecutive days each month) ranged up to 172 ha, probably because only about half of the bluegills exhibited site fidelity during any month sampled. Bluegill movement did not appear to be strongly linked with water temperature, barometric pressure, or wind speed. These results suggest that bluegills move considerable distances and that many roam throughout this 332-ha shallow lake. However, diel patterns were not evident. Sampling bluegills in Great Plains lakes using passive gears (e.g., trap nets) may be most effective during the summer months, when fish are most active. Active sampling (e.g., electrofishing) may be more effective than the use of passive gears in spring and fall, when bluegills are less active.

  1. Depositional history, nannofossil biostratigraphy, and correlation of Argo Abyssal Plain Sites 765 and 261

    USGS Publications Warehouse

    Dumoulin, Julie A.; Bown, Paul R.

    1992-01-01

    Sediments from the Argo Abyssal Plain (AAP), northwest of Australia, are the oldest known from the Indian Ocean and were recovered from ODP Site 765 and DSDP Site 261. New biostratigraphic and sedimentologic data from these sites, as well as reinterpretations of earlier findings, indicate that basal sediments at both localities are of Late Jurassic age and delineate a history of starved sedimentation punctuated by periodic influx of calcareous pelagic turbidites.Biostratigraphy and correlation of Upper Jurassic-Lower Cretaceous sediments is based largely on calcareous nannofossils. Both sites yielded variably preserved nannofossil successions ranging from Tithonian to Hauterivian at Site 765 and Kimmeridgian to Hauterivian at Site 261. The nannofloras are comparable to those present in the European and Atlantic Boreal and Tethyan areas, but display important differences that reflect biogeographic differentiation. The Argo region is thought to have occupied a position at the southern limit of the Tethyan nannofloral realm, thus yielding both Tethyan and Austral biogeographic features.Sedimentary successions at the two sites are grossly similar, and differences largely reflect Site 765 's greater proximity to the continental margin. Jurassic sediments were deposited at rates of about 2 m/m.y. near the carbonate compensation depth (CCD) and contain winnowed concentrations of inoceramid prisms and nannofossils, redeposited layers rich in calcispheres and calcisphere debris, manganese nodules, and volcanic detritus. Lower Cretaceous and all younger sediments accumulated below the CCD at rates that were highest (about 20 m/m.y.) during mid-Cretaceous and Neogene time. Background sediment in this interval is noncalcareous claystone; turbidites dominate the sequence and are thicker and coarser grained at Site 765.AAP turbidites consist mostly of calcareous and siliceous biogenic components and volcanogenic smectite clay; they were derived from relatively deep parts of the

  2. New data on the stratigraphy and pedology of the Clovis and Plainview sites, Southern High Plains

    NASA Astrophysics Data System (ADS)

    Holliday, Vance T.

    1985-05-01

    The well known Clovis and Plainview archaeological sites of New Mexico and Texas have yielded new data on regional late Quaternary geologic, paleoclimatic, and pedologic histories. Eolian sedimentation at the Clovis site from about 10,000 to less than 8500 yr B.P. was followed by the formation of a cumulic soil between 8500 and 5000 yr B.P. Episodic eolian and slope wash deposition then culminated in massive eolian sedimentation about 5000 yr B.P. after which a Haplustalf formed then was subsequently buried by part of a dune system within the last 1000 yr. At the Plainview site, a basal stream gravel contains Plainview cultural material (ca. 10,000 yr B.P.), which is followed by a localized early Holocene lacustrine deposit, two eolian deposits (the younger dating to about 5000 yr B.P.), and a marsh deposit which slowly accreted as an Argiustoll formed in the younger eolian unit. The data indicate that on the Southern High Plains (1) between 12,000 and 8500 yr B.P. sedimentation varied from site to site, (2) there was a regional climate change toward warming and drying in the early Holocene, (3) two episodes of severe drought apparently occurred in the middle Holocene (6500 to 4500 yr B.P.), (4) between 4500 yr B.P. and the present an essentially modern climate existed, but with several shifts toward aridity within the last 1000 yr, (5) argillic horizons have developed in late Holocene soils, (6) clay illuviation can occur in calcareous soils, and (7) long-distance correlation of Holocene stratigraphy in the region is possible, particularly with the aid of soil morphology.

  3. Response of competing vegetation to site preparation on west gulf coastal plain commercial forest land. Forest Service general technical report

    SciTech Connect

    Wolters, G.L.; Pearson, H.A.; Thill, R.E.; Baldwin, V.C.; Martin, A.

    1995-09-01

    This study was initiated to determine: (1) the response of saplings, shrubs, and herbaceous vegetation to various mechanical, chemical, and burning treatments on soils common throughout the West Gulf Coastal Plain of Louisiana, Arkansas, and Texas and (2) how fertilization affects understory vegetation response to site preparation on these soils.

  4. Evaluation of nocturnal roost and diurnal sites used by whooping cranes in the Great Plains, United States

    USGS Publications Warehouse

    Pearse, Aaron T.; Harner, Mary J.; Baasch, David M.; Wright, Greg D.; Caven, Andrew J.; Metzger, Kristine L.

    2017-01-17

    Endangered whooping cranes (Grus americana) of the Aransas-Wood Buffalo population migrate through the Great Plains twice each year. Although there is much interest in conservation and management for this species, information regarding characteristics of nocturnal roost sites used during migration has been limited and based largely on incidental observations. Using high-quality location data collected concurrently, we directed a companion field study designed to characterize sites used as roost or day-use sites to augment knowledge and assist the Platte River Recovery Implementation Program in identifying migration habitat for restoration, conservation, and management actions along the Platte River in central Nebraska. We collected data at 504 roost sites and 83 day-use sites used by marked whooping cranes in Texas, Oklahoma, Kansas, Nebraska, South Dakota, North Dakota, Minnesota, and Montana. Roost sites were located in emergent wetlands (50 percent), lacustrine wetlands (25 percent), rivers (20 percent), and dryland sites (5 percent). Most day-use sites were characterized as dryland sites (54 percent), with the balance in wetlands (45 percent) and rivers (1 percent). Habitat criteria thresholds initially derived by the Platte River Recovery Implementation Program to represent where 90 percent of whooping cranes used along the Platte River were different from those we measured over a larger section of the migration corridor. For most of the metrics, the Platte River Recovery Implementation Program’s initial habitat criteria thresholds would be considered more conservative than critical values estimated from our data; thus, whooping cranes were seemingly able to tolerate a wider range of these metrics than initially suspected. One exception was the metric distance to nearest disturbance feature, where our results sug­gest that whooping cranes may be less tolerant to nearby dis­turbances in a larger part of the migration corridor compared to the Platte River

  5. Microscopic composition measurements of organic individual particles collected in the Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Bonanno, D.; China, S.; Fraund, M. W.; Pham, D.; Kulkarni, G.; Laskin, A.; Gilles, M. K.; Moffet, R.

    2016-12-01

    The Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Campaign was carried out to gain a better understanding of the lifecycle of shallow clouds. The HISCALE experiment was designed to contrast two seasons, wet and dry, and determine their effect on atmospheric cloud and aerosol processes. The spring component to HISCALE was selected to characterize mixing state for particles collected onto substrates. Sampling was performed before and after rain events to obtain airborne soil organic particles (ASOP), which are ejected after rain events. The unique composition of the ASOP may affect optical properties and/or hygroscopic properties. The collection of particles took place at the Atmospheric Radiation Measurement Southern Great Plains (ARM SGP) field site. The Scanning Transmission X-Ray Microscope (STXM) was used to image the samples collected during the first HI-SCALE Campaign to determine the carbonaceous mixing state. Scanning Electron Microscopy Energy-dispersive X-ray (SEM/EDX) analysis is more sensitive to the inorganic makeup of particles, while STXM renders a more comprehensive analysis of the organics. Measurements such as nephelometry, Particle Soot Absorption Photometry (PSAP), and Aerosol Mass Spectrometry (AMS) from the ARM archive will be correlated with microscopy measurements. The primary focus is the relation between composition and morphology of ASOP with hygroscopicity and optical properties. Further investigation of these organic particles will be performed to provide a mixing state parameterization and aid in the advancement of current climate models.

  6. Geochronology and Geomorphology of the Pioneer Archaeological Site (10BT676), Upper Snake River Plain, Idaho

    SciTech Connect

    Keene, Joshua L.

    2015-04-01

    The Pioneer site in southeastern Idaho, an open-air, stratified, multi-component archaeological locality on the upper Snake River Plain, provides an ideal situation for understanding the geomorphic history of the Big Lost River drainage system. We conducted a block excavation with the goal of understanding the geochronological context of both cultural and geomorphological components at the site. The results of this study show a sequence of five soil formation episodes forming three terraces beginning prior to 7200 cal yr BP and lasting until the historic period, preserving one cultural component dated to ~3800 cal yr BP and multiple components dating to the last 800 cal yr BP. In addition, periods of deposition and stability at Pioneer indicate climate fluctuation during the middle Holocene (~7200-3800 cal yr BP), minimal deposition during the late Holocene, and a period of increased deposition potentially linked to the Little Ice Age. In addition, evidence for a high-energy erosion event dated to ~3800 cal yr BP suggest a catastrophic flood event during the middle Holocene that may correlate with volcanic activity at the Craters of the Moon lava fields to the northwest. This study provides a model for the study of alluvial terrace formations in arid environments and their potential to preserve stratified archaeological deposits.

  7. OH reactivity at a rural site (Wangdu) in the North China Plain: contributions from OH reactants and experimental OH budget

    NASA Astrophysics Data System (ADS)

    Fuchs, Hendrik; Tan, Zhaofeng; Lu, Keding; Bohn, Birger; Broch, Sebastian; Brown, Steven S.; Dong, Huabin; Gomm, Sebastian; Häseler, Rolf; He, Lingyan; Hofzumahaus, Andreas; Holland, Frank; Li, Xin; Liu, Ying; Lu, Sihua; Min, Kyung-Eun; Rohrer, Franz; Shao, Min; Wang, Baolin; Wang, Ming; Wu, Yusheng; Zeng, Limin; Zhang, Yinson; Wahner, Andreas; Zhang, Yuanhang

    2017-01-01

    In 2014, a large, comprehensive field campaign was conducted in the densely populated North China Plain. The measurement site was located in a botanic garden close to the small town Wangdu, without major industry but influenced by regional transportation of air pollution. The loss rate coefficient of atmospheric hydroxyl radicals (OH) was quantified by direct measurements of the OH reactivity. Values ranged between 10 and 20 s-1 for most of the daytime. Highest values were reached in the late night with maximum values of around 40 s-1. OH reactants mainly originated from anthropogenic activities as indicated (1) by a good correlation between measured OH reactivity and carbon monoxide (linear correlation coefficient R2 = 0.33) and (2) by a high contribution of nitrogen oxide species to the OH reactivity (up to 30 % in the morning). Total OH reactivity was measured by a laser flash photolysis-laser-induced fluorescence instrument (LP-LIF). Measured values can be explained well by measured trace gas concentrations including organic compounds, oxygenated organic compounds, CO and nitrogen oxides. Significant, unexplained OH reactivity was only observed during nights, when biomass burning of agricultural waste occurred on surrounding fields. OH reactivity measurements also allow investigating the chemical OH budget. During this campaign, the OH destruction rate calculated from measured OH reactivity and measured OH concentration was balanced by the sum of OH production from ozone and nitrous acid photolysis and OH regeneration from hydroperoxy radicals within the uncertainty of measurements. However, a tendency for higher OH destruction compared to OH production at lower concentrations of nitric oxide is also observed, consistent with previous findings in field campaigns in China.

  8. Site Effects estimation in the Po Plain area (Northern Italy): correlation between passive geophysical surveys and stratigraphic evidence

    NASA Astrophysics Data System (ADS)

    Mascandola, Claudia; Massa, Marco; Barani, Simone; Argnani, Andrea; Poggi, Valerio; Martelli, Luca; Albarello, Dario; Pergalani, Floriana; Compagnoni, Massimo; Lovati, Sara

    2017-04-01

    The recent case of the 2012, Mw 6.1, Emilia seismic sequence (Northern Italy) highlighted the importance of the site effects estimation in the Po Plain, the larger and deeper Italian sedimentary basin. This study, applied on extensive collection of geophysical and geological data in the entire area, allows a macrozonation of the site effects estimation, useful for scientific and applied purpose. In particular, site-response analysis can be performed in defined macrozones, where the geological-geotecnical and geophysical characteristics are homogeneous at macroscale. The collection of the available stratigraphic discontinuities and passive geophysical surveys (single station and array measurements) allowed defining a general macrozonation in terms of amplified frequencies and shear waves velocity (Vs) gradients. The correlation between the obtained geophysical evidence and the known geological information can then be crucial in order to define the most important stratigraphic discontinuities responsible for the local seismic amplification. In particular, ambient vibration data, recorded by all permanent and temporary seismic stations installed in the target region, were collected and then analyzed with the Nakamura technique, to determine the H/V spectral ratio. Moreover, all the available ambient vibration arrays where collected and analyzes to assess the local Vs profile, considering the Rayleigh waves fundamental mode. The Po Plain stratigraphy is defined by regional unconformities (aquifer limits) that have been extensively mapped throughout the basin and by regional geological and structural maps. In general, the H/V results show two ranges of amplified frequencies, both lower than 1 Hz: the former at frequencies lower than about 0.25 Hz and the latter between 0.4 and 1 Hz. The higher frequency range moves from about 0.4 Hz, in the eastern-Adriatic part of the plain, to about 0.8-1.0 Hz in the central and western part. Based on the available seismic array

  9. On Site Inspection Radionuclide Measurements

    NASA Astrophysics Data System (ADS)

    Hayes, J. C.; Haas, D.; Milbrath, B. D.; Miley, H.; Seifert, C. E.

    2013-12-01

    The goal of an On Site Inspection for the CTBT is the clarification of the nature of a triggering event - probably a seismic signal. After a request for inspection is made and accepted, an inspection team proceeds to the environs of the triggering event and uses visual, seismic, radiological, or other location-finding methods to narrow down the search area. Survey, environmental sampling, and field-lab measurement methods then are used to try to collect definitive facts to support decisions of an Executive Council of the Treaty. Refining and optimizing the science methods for practical survey, sampling, and measurement requires reasonable measurement objectives to be stated. The authors will present a few scenario-dependant objectives such that the field approaches and equipment specifications could follow.

  10. Sampling design and procedures for fixed surface-water sites in the Georgia-Florida coastal plain study unit, 1993

    USGS Publications Warehouse

    Hatzell, H.H.; Oaksford, E.T.; Asbury, C.E.

    1995-01-01

    The implementation of design guidelines for the National Water-Quality Assessment (NAWQA) Program has resulted in the development of new sampling procedures and the modification of existing procedures commonly used in the Water Resources Division of the U.S. Geological Survey. The Georgia-Florida Coastal Plain (GAFL) study unit began the intensive data collection phase of the program in October 1992. This report documents the implementation of the NAWQA guidelines by describing the sampling design and procedures for collecting surface-water samples in the GAFL study unit in 1993. This documentation is provided for agencies that use water-quality data and for future study units that will be entering the intensive phase of data collection. The sampling design is intended to account for large- and small-scale spatial variations, and temporal variations in water quality for the study area. Nine fixed sites were selected in drainage basins of different sizes and different land-use characteristics located in different land-resource provinces. Each of the nine fixed sites was sampled regularly for a combination of six constituent groups composed of physical and chemical constituents: field measurements, major ions and metals, nutrients, organic carbon, pesticides, and suspended sediments. Some sites were also sampled during high-flow conditions and storm events. Discussion of the sampling procedure is divided into three phases: sample collection, sample splitting, and sample processing. A cone splitter was used to split water samples for the analysis of the sampling constituent groups except organic carbon from approximately nine liters of stream water collected at four fixed sites that were sampled intensively. An example of the sample splitting schemes designed to provide the sample volumes required for each sample constituent group is described in detail. Information about onsite sample processing has been organized into a flowchart that describes a pathway for each of

  11. Estimating switchgrass productivity in the Great Plains using satellite vegetation index and site environmental variables

    USGS Publications Warehouse

    Gu, Yingxin; Wylie, Bruce K.; Howard, Daniel M.

    2015-01-01

    Switchgrass is being evaluated as a potential feedstock source for cellulosic biofuels and is being cultivated in several regions of the United States. The recent availability of switchgrass land cover maps derived from the National Agricultural Statistics Service cropland data layer for the conterminous United States provides an opportunity to assess the environmental conditions of switchgrass over large areas and across different geographic locations. The main goal of this study is to develop a data-driven multiple regression switchgrass productivity model and identify the optimal climate and environment conditions for the highly productive switchgrass in the Great Plains (GP). Environmental and climate variables used in the study include elevation, soil organic carbon, available water capacity, climate, and seasonal weather. Satellite-derived growing season averaged Normalized Difference Vegetation Index (GSN) was used as a proxy for switchgrass productivity. Multiple regression analyses indicate that there are strong correlations between site environmental variables and switchgrass productivity (r = 0.95). Sufficient precipitation and suitable temperature during the growing season (i.e., not too hot or too cold) are favorable for switchgrass growth. Elevation and soil characteristics (e.g., soil available water capacity) are also an important factor impacting switchgrass productivity. An anticipated switchgrass biomass productivity map for the entire GP based on site environmental and climate conditions and switchgrass productivity model was generated. Highly productive switchgrass areas are mainly located in the eastern part of the GP. Results from this study can help land managers and biofuel plant investors better understand the general environmental and climate conditions influencing switchgrass growth and make optimal land use decisions regarding switchgrass development in the GP.

  12. Measurement-based direct radiative effect by brown carbon over Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Arola, A.; Schuster, G. L.; Pitkänen, M. R. A.; Dubovik, O.; Kokkola, H.; Lindfors, A. V.; Mielonen, T.; Raatikainen, T.; Romakkaniemi, S.; Tripathi, S. N.; Lihavainen, H.

    2015-08-01

    The importance of light absorbing organic aerosols, often called brown carbon (BrC), has become evident in recent years. However, there are relatively few measurement-based estimates for the direct radiative effect of BrC so far. In those earlier studies, the AErosol RObotic NETwork (AERONET) measured Aerosol Absorption Optical Depth (AAOD) and Absorption Angstrom Exponent (AAE) have been exploited. However, these two pieces of information are clearly not sufficient to separate properly carbonaceous aerosols from dust, while imaginary indices of refraction would contain more and better justified information for this purpose. This is first time that the direct radiative effect (DRE) of BrC is estimated by exploiting the AERONET-retrieved imaginary indices. We estimated it for four sites in Indo-Gangetic Plain (IGP), Karachi, Lahore, Kanpur and Gandhi College. We found a distinct seasonality, which was generally similar among all the sites, but with slightly different strengths. The monthly warming effect up to 0.5 W m-2 takes place during spring season. On the other hand, BrC results in overall cooling effect in the winter season, which can reach levels close to -1W m-2. We then estimated similarly also DRE of black carbon and total aerosol, in order to assess the relative significance of BrC radiative effect in the radiative effects of other components. Even though BrC impact seems minor in this context, we demonstrated that it is not insignificant and moreover that it is crucial to perform spectrally resolved radiative transfer calculations to obtain good estimates for DRE of BrC.

  13. Clay minerals in Northern Plains coal overburden as measured by X-ray diffraction

    SciTech Connect

    Klages, M.G.; Hopper, R.W.

    1982-03-01

    Mathematical models were tested for changing x-ray diffraction data to percentages of clay minerals in coal overburden. Various factors for adjusting peak areas were tested on 50 eastern Montana samples that contained smectite, illite, and daloinite, with lesser amounts of other minerals. Cation exchange capacities (CEC) of the clays were estimated from the calculated mineral percentages and correlated against measured CEC. The best model gave in r/sup 2/ of 0.89. It was used for estimating clay mineralogy at six mine sites in the Northern Great Plains. Average mineral contents in the surface 8 to 38 m of five of seven drill holes in the Montana-Wyoming border area were 40% smectite, with 20% each of illite and kaolinite. Clays from greater depths in the same area had no smectite and an average of 50% each of illite and kaolinite. All samples from a mine in central North Dakota were high in swelling clay, with an average of 60% smectite and 10% vermiculite.Samples from four holes at a mine in eastern Wyoming were all high in kaolinite, having an average of 50% with 30% illite and 10% interstratified smectite-vermiculite.

  14. Influence of Relief on Vegetation Factors and Agrotechnical Differentiation Measures in Transylvania Plain

    NASA Astrophysics Data System (ADS)

    Ioana Moraru, Paula; Rusu, Teodor; Bogdan, Ileana; Ioan Pop, Adrian

    2016-04-01

    Transylvanian Plain (TP), with an area of 395.616 hectares, has a special importance for Romanian agriculture being characterized as a region orographically represented by hilly areas hills whereas climatically appears as a plain. Physical-geographical conditions from TP (low level of forestation; climate specific to plains) have resulted in numerous land degradation phenomena: land erosion, landslide, draining of gradient springs and groundwater level. These conditions create a favourable framework for the development of anthropic morphogenetic processes, as well as those triggered by natural mechanisms, thus intensifying the pace and their territorial expansion. Rainfall, through annual distribution and spring-summer pluvial aggressiveness, require the implementation of preservation measures on arable land, particularly for spring cultures. Along with rainfall, more factors are involved: relief, by the high degree of fragmentation and through tilting slopes; vegetation, by the dominance of cultivated plants and by the advanced state of degradation of vegetal grasslands (especially on southern slopes); lithology, by the predominance of loose rocks (sand, marl, sandstone etc.). In order to determine the influence of landscape morphology on the agro-technical characterization of land, 11 HOBO Micro Stations (H21-002) have been implemented from April to October in the locality Caianu, at various altitudes (311-441 m) at exposure coverage (N, NW, W, S, SE, E, NE). HOBO Smart Temp (S-TMB-M002) temperature sensors and Decagon EC-5 (S-SMC-M005) moisture sensors were connected to HOBO Micro Stations. Additionally, in 4 of the 11 sites, tipping bucket rain gauges (RG3-M) were deployed to measure precipitation. Each station stored electronic data regarding ground temperature at 3 depths (10, 20, 30 cm), humidity at a depth of 10 cm, air temperature (1 m) and precipitation. Data were downloaded from the Micro Stations via a laptop computer using HOBOware Pro Software Version

  15. Analytical study of the effects of the Low-Level Jet on moisture convergence and vertical motion fields at the Southern Great Plains Cloud and Radiation Testbed site

    SciTech Connect

    Bian, X.; Zhong, S.; Whiteman, C.D.; Stage, S.A.

    1996-04-01

    The Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) is located in a region that is strongly affected by a prominent meteorological phenomenon--the Great Plains Low-Level Jet (LLJ). Observations have shown that the LLJ plays a vital role in spring and summertime cloud formation and precipitation over the Great Plains. An improved understanding of the LLJ characteristics and its impact on the environment is necessary for addressing the fundamental issue of development and testing of radiational transfer and cloud parameterization schemes for the general circulation models (GCMs) using data from the SGP CART site. A climatological analysis of the summertime LLJ over the SGP has been carried out using hourly observations from the National Oceanic and Atmospheric Administration (NOAA) Wind Profiler Demonstration Network and from the ARM June 1993 Intensive Observation Period (IOP). The hourly data provide an enhanced temporal and spatial resolution relative to earlier studies which used 6- and 12-hourly rawinsonde observations at fewer stations.

  16. Satellite-derived surface characterization and surface fluxes across the Southern Great Plains Cloud and Radiation Testbed Site.

    SciTech Connect

    Gao, W.; Coulter, R. L.; Lesht, B. M.; Qiu, J.; Wesely, M. L.; Environmental Research

    1996-01-01

    Atmospheric processes in the lower boundary layer are strongly modulated by energy and mass fluxes from and to the underlying surface. The atmosphere-surface interactions usually occur at small temporal (seconds to minutes) and spatial (centimeters to meters) scales, which causes difficulties with including surface processes in atmospheric models, which can only handle much larger scales (kilometers). Developing schemes to characterize spatial variabilities in surface fluxes over heterogeneous surfaces for a regionally representative surface flux that can be correctly used in atmospheric models becomes an important issue. The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) has an outline area of 350 x 450 km, across which land surface type, topography, vegetation, and soil conditions vary widely (Gao 1994). Surface flux measurements at a limited number of surface stations, including surface latent and sensible heat fluxes, net radiation, and soil heat flux by energy balance Bowen ratio (EBBR) stations, heat and momentum fluxes by eddy correlation stations, and upwelling radiation flux by surface radiation stations, are influenced by local surface conditions surrounding the stations and thus may not be able to provide fluxes representative of the entire CART site. Use of these data to represent the entire CART site in modeling studies and in comparing with large-scale satellite observations could lead to significant uncertainties. This study uses high-resolution ({approx}1 km) remote sensing by National Oceanic and Atmospheric Administration (NOAA) polar-orbiting environmental satellites to characterize spatial and temporal variations in land surface conditions and then to develop methods for estimating spatial variations and CART-representative values of surface fluxes.

  17. The Porcupine Abyssal Plain (pap) Time Series Site: Biological and Bigeochemical Changes During The Past 50 Years.

    NASA Astrophysics Data System (ADS)

    Lampitt, R. S.; Billett, D. S. M.; Childs, R.; Popova, E. E.

    The JGOFS "North Atlantic Bloom Experiment" took place in 1989 but this was not the first research into open ocean biology and biogeochemistry in the region. The Por- cupine Abyssal Plain (PAP) is the closest abyssal environment to Northwest Europe and hence has been extensively studied over many years and the NABE stimulated research that has continued since then. Trends in plankton abundance since 1950 are particularly well studied from the Continuous Plankton Recorder surveys (CPR) but since 1989 there have also been nearly continuous measurements of downward par- ticle flux. Benthic communities have frequently been examined over the past decade and it is suggested that these integrate the effects of upper ocean processes in both space and time. There is considerable interannual variability in the abundance of sev- eral planktonic groups in the region as determined by the CPR and more recently from satellite observations and here we examine links between these variations and basic environmental parameters such as the North Atlantic Oscillation index. We discuss links to processes occurring at greater depth such as organic carbon flux and the dra- matic change in benthic community structure which has taken place during this period. Research activity at the PAP site will increase very significantly over the next three years as it is one of the three ANIMATE sites (Atlantic Network of Interdisciplinary Moorings and Timeseries for Europe; an EU funded program). From Autumn 2002, real time data will be available on a variety of upper ocean properties such as PCO2, Nutrients, fluorescence and CTD and these will lead to a much better understand- ing of system function. We describe an upper ocean ecosystem model which gives a good description of deep water organic flux. This model will be developed further to accommodate the additional in situ data provided under ANIMATE.

  18. Lower tropospheric distributions of O3 and aerosol over Raoyang, a rural site in the North China Plain

    NASA Astrophysics Data System (ADS)

    Wang, Rui; Xu, Xiaobin; Jia, Shihui; Ma, Ruisheng; Ran, Liang; Deng, Zhaoze; Lin, Weili; Wang, Ying; Ma, Zhiqiang

    2017-03-01

    The North China Plain (NCP) has become one of the most polluted regions in China, with the rapidly increasing economic growth in the past decades. High concentrations of ambient O3 and aerosol have been observed at urban as well as rural sites in the NCP. Most of the in situ observations of air pollutants have been conducted near the ground so that current knowledge about the vertical distributions of tropospheric O3 and aerosol over the NCP region is still limited. In this study, vertical profiles of O3 and size-resolved aerosol concentrations below 2.5 km were measured in summer 2014 over a rural site in the NCP, using an unmanned aerial vehicle (UAV) equipped with miniature analyzers. In addition, vertical profiles of aerosol scattering property in the lower troposphere and vertical profiles of O3 below 1 km were also observed at the site using a lidar and tethered balloon, respectively. The depths of the mixed layer and residual layer were determined according to the vertical gradients of lidar particle extinction and aerosol number concentration. Average O3 and size-resolved aerosol number concentration in both the mixed and residual layer were obtained from the data observed in seven UAV flights. The results show that during most of the flights the O3 levels above the top of mixed layer were higher than those below. Such a positive gradient in the vertical distribution of O3 makes the residual layer an important source of O3 in the mixed layer, particularly during the morning when the top of mixed layer is rapidly elevated. In contrast to O3, aerosol number concentration was normally higher in the mixed layer than in the residual layer, particularly in the early morning. Aerosol particles were overwhelmingly distributed in the size range < 1 µm, showing slight differences between the mixed and residual layers. Our measurements confirm that the lower troposphere over the rural area of the NCP is largely impacted by anthropogenic pollutants locally emitted or

  19. Automatic Training Site Selection for Agricultural Crop Classification: a Case Study on Karacabey Plain, Turkey

    NASA Astrophysics Data System (ADS)

    Ozdarici Ok, A.; Akyurek, Z.

    2011-09-01

    This study implements a traditional supervised classification method to an optical image composed of agricultural crops by means of a unique way, selecting the training samples automatically. Panchromatic (1m) and multispectral (4m) Kompsat-2 images (July 2008) of Karacabey Plain (~100km2), located in Marmara region, are used to evaluate the proposed approach. Due to the characteristic of rich, loamy soils combined with reasonable weather conditions, the Karacabey Plain is one of the most valuable agricultural regions of Turkey. Analyses start with applying an image fusion algorithm on the panchromatic and multispectral image. As a result of this process, 1m spatial resolution colour image is produced. In the next step, the four-band fused (1m) image and multispectral (4m) image are orthorectified. Next, the fused image (1m) is segmented using a popular segmentation method, Mean- Shift. The Mean-Shift is originally a method based on kernel density estimation and it shifts each pixel to the mode of clusters. In the segmentation procedure, three parameters must be defined: (i) spatial domain (hs), (ii) range domain (hr), and (iii) minimum region (MR). In this study, in total, 176 parameter combinations (hs, hr, and MR) are tested on a small part of the area (~10km2) to find an optimum segmentation result, and a final parameter combination (hs=18, hr=20, and MR=1000) is determined after evaluating multiple goodness measures. The final segmentation output is then utilized to the classification framework. The classification operation is applied on the four-band multispectral image (4m) to minimize the mixed pixel effect. Before the image classification, each segment is overlaid with the bands of the image fused, and several descriptive statistics of each segment are computed for each band. To select the potential homogeneous regions that are eligible for the selection of training samples, a user-defined threshold is applied. After finding those potential regions, the

  20. Multiple new-particle growth pathways observed at the US DOE Southern Great Plains field site

    NASA Astrophysics Data System (ADS)

    Hodshire, Anna L.; Lawler, Michael J.; Zhao, Jun; Ortega, John; Jen, Coty; Yli-Juuti, Taina; Brewer, Jared F.; Kodros, Jack K.; Barsanti, Kelley C.; Hanson, Dave R.; McMurry, Peter H.; Smith, James N.; Pierce, Jeffery R.

    2016-07-01

    New-particle formation (NPF) is a significant source of aerosol particles into the atmosphere. However, these particles are initially too small to have climatic importance and must grow, primarily through net uptake of low-volatility species, from diameters ˜ 1 to 30-100 nm in order to potentially impact climate. There are currently uncertainties in the physical and chemical processes associated with the growth of these freshly formed particles that lead to uncertainties in aerosol-climate modeling. Four main pathways for new-particle growth have been identified: condensation of sulfuric-acid vapor (and associated bases when available), condensation of organic vapors, uptake of organic acids through acid-base chemistry in the particle phase, and accretion of organic molecules in the particle phase to create a lower-volatility compound that then contributes to the aerosol mass. The relative importance of each pathway is uncertain and is the focus of this work. The 2013 New Particle Formation Study (NPFS) measurement campaign took place at the DOE Southern Great Plains (SGP) facility in Lamont, Oklahoma, during spring 2013. Measured gas- and particle-phase compositions during these new-particle growth events suggest three distinct growth pathways: (1) growth by primarily organics, (2) growth by primarily sulfuric acid and ammonia, and (3) growth by primarily sulfuric acid and associated bases and organics. To supplement the measurements, we used the particle growth model MABNAG (Model for Acid-Base chemistry in NAnoparticle Growth) to gain further insight into the growth processes on these 3 days at SGP. MABNAG simulates growth from (1) sulfuric-acid condensation (and subsequent salt formation with ammonia or amines), (2) near-irreversible condensation from nonreactive extremely low-volatility organic compounds (ELVOCs), and (3) organic-acid condensation and subsequent salt formation with ammonia or amines. MABNAG is able to corroborate the observed differing growth

  1. Changes in soil fertility following prescribed burning on Coastal Plain pine sites

    Treesearch

    William H. McKee

    1982-01-01

    Soil and forest floor samples were collected from four prescribed burning studies in the Atlantic and Gulf Coastal Plains. The surface textures of soils ranged from sands to silt loams and the drainage classes from well to poorly drained. Burning treatments had been in force from 8 to 65 years. Reduction of the forest floor and its chemical constituents was related to...

  2. Observation of atmospheric peroxides during Wangdu Campaign 2014 at a rural site in the North China Plain

    NASA Astrophysics Data System (ADS)

    Wang, Yin; Chen, Zhongming; Wu, Qinqin; Liang, Hao; Huang, Liubin; Li, Huan; Lu, Keding; Wu, Yusheng; Dong, Huabin; Zeng, Limin; Zhang, Yuanhang

    2016-09-01

    Measurements of atmospheric peroxides were made during Wangdu Campaign 2014 at Wangdu, a rural site in the North China Plain (NCP) in summer 2014. The predominant peroxides were detected to be hydrogen peroxide (H2O2), methyl hydroperoxide (MHP) and peroxyacetic acid (PAA). The observed H2O2 reached up to 11.3 ppbv, which was the highest value compared with previous observations in China at summer time. A box model simulation based on the Master Chemical Mechanism and constrained by the simultaneous observations of physical parameters and chemical species was performed to explore the chemical budget of atmospheric peroxides. Photochemical oxidation of alkenes was found to be the major secondary formation pathway of atmospheric peroxides, while contributions from alkanes and aromatics were of minor importance. The comparison of modeled and measured peroxide concentrations revealed an underestimation during biomass burning events and an overestimation on haze days, which were ascribed to the direct production of peroxides from biomass burning and the heterogeneous uptake of peroxides by aerosols, respectively. The strengths of the primary emissions from biomass burning were on the same order of the known secondary production rates of atmospheric peroxides during the biomass burning events. The heterogeneous process on aerosol particles was suggested to be the predominant sink for atmospheric peroxides. The atmospheric lifetime of peroxides on haze days in summer in the NCP was about 2-3 h, which is in good agreement with the laboratory studies. Further comprehensive investigations are necessary to better understand the impact of biomass burning and heterogeneous uptake on the concentration of peroxides in the atmosphere.

  3. Understanding Land-Atmosphere Coupling and its Predictability at the ARM Southern Great Plains Site

    NASA Astrophysics Data System (ADS)

    Ferguson, C. R.; Song, H. J.; Roundy, J. K.

    2015-12-01

    Ten years ago, the Global Energy and Water EXchanges Global Land Atmosphere Coupling Experiment (GLACE) spotlighted the Southern Great Plains (SGP) for being one of three hotspots globally for land-derived precipitation predictability. Since then, the GLACE results have served as the underlying motivation for numerous subsequent land-atmosphere (L-A) coupling studies over the SGP domain. The range of these studies includes: local point scale studies leveraging surface meteorological and flux measurements at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement SGP (ARM-SGP) Central Facility, regional pentad to monthly scale atmospheric moisture budget analyses based on atmospheric reanalysis, and regional limited duration (2-7 day) coupled model sensitivity experiments. This study has the following three objectives: (1) to provide the common historical context necessary for bridging past and future interdisciplinary characterizations of L-A coupling, (2) to isolate the mechanism(s) for the region's L-A coupling signal, and (3) to evaluate the short range (12-18hr) predictability of soil moisture-precipitation feedbacks. We produce a convective triggering potential—low-level humidity index (CTP-HI)—based climatology of L-A coupling at ARM-SGP for the period 1979-2014 using North American Regional Reanalysis and North American Land Data Assimilation System Phase 2 data. We link the underlying coupling regime classification timeseries to corresponding synoptic-mesoscale weather patterns and bulk atmospheric moisture budget analyses. On the whole, the region's precipitation variability is largely dependent on large-scale moisture transport and the role of the land is nominal. However, we show that surface sensible heat flux can play an important role in modulating diurnal precipitation cycle phase and amplitude—either directly (enhancing CTP) in water-limited conditions or indirectly (increasing HI) in energy-limited conditions. In fact, both 0700

  4. Enhanced Geothermal System Potential for Sites on the Eastern Snake River Plain, Idaho

    SciTech Connect

    Robert K Podgorney; Thomas R. Wood; Travis L McLing; Gregory Mines; Mitchell A Plummer; Michael McCurry; Ahmad Ghassemi; John Welhan; Joseph Moore; Jerry Fairley; Rachel Wood

    2013-09-01

    The Snake River volcanic province overlies a thermal anomaly that extends deep into the mantle and represents one of the highest heat flow provinces in North America (Blackwell and Richards, 2004). This makes the Snake River Plain (SRP) one of the most under-developed and potentially highest producing geothermal districts in the United States. Elevated heat flow is typically highest along the margins of the topographic SRP and lowest along the axis of the plain, where thermal gradients are suppressed by the Snake River aquifer. Beneath this aquifer, however, thermal gradients rise again and may tap even higher heat flows associated with the intrusion of mafic magmas into the mid-crustal sill complex (e.g., Blackwell, 1989).

  5. Gulf Atlantic Coastal Plain Long Term Agroecosystem Research site, Tifton, GA

    Treesearch

    Timothy Strickland; David D. Bosch; Dinku M. Endale; Thomas L. Potter

    2016-01-01

    The Gulf-Atlantic Coastal Plain (GACP) physiographic region is an important agricultural production area within the southeastern U.S. that extends from Delaware in the Northeast to the Gulf Coast of Texas. The region consists mainly of low-elevation flat to rolling terrain with numerous streams, abundant rainfall, a complex coastline, and many wetlands. The GACP Long ...

  6. Investigations of aerosol black carbon from a semi-urban site in the Indo-Gangetic Plain region

    NASA Astrophysics Data System (ADS)

    Joshi, Hema; Naja, Manish; Singh, K. P.; Kumar, Rajesh; Bhardwaj, P.; Babu, S. Suresh; Satheesh, S. K.; Moorthy, K. Krishna; Chandola, H. C.

    2016-01-01

    Long-term (2009-2012) data from ground-based measurements of aerosol black carbon (BC) from a semi-urban site, Pantnagar (29.0°N, 79.5°E, 231 m amsl), in the Indo-Gangetic Plain (IGP) near the Himalayan foothills are analyzed to study the regional characterization. Large variations are seen in BC at both diurnal and seasonal scales, associated with the mesoscale and synoptic meteorological processes, and local/regional anthropogenic activities. BC diurnal variations show two peaks (morning and evening) arising from the combined effects of the atmospheric boundary layer (ABL) dynamics and local emissions. The diurnal amplitudes as well as the rates of diurnal evolution are the highest in winter season, followed by autumn, and the lowest in summer-monsoon. BC exhibits nearly an inverse relation with mixing layer depth in all seasons; being strongest in winter (R2 = 0.89) and weakest (R2 = 0.33) in monsoon (July-August). Unlike BC, co-located aerosol optical depths (AOD) and aerosol absorption are highest in spring over IGP, probably due to the presence of higher abundances of aerosols (including dust) above the ABL (in the free troposphere). AOD (500 nm) showed annual peak (>0.6) in May-June, dominated by coarse mode, while fine mode aerosols dominated in late autumn and early winter. Aerosols profiles from CALIPSO show highest values close to the surface in winter/autumn, similar to the feature seen in surface BC, whereas at altitudes > 2 km, the extinction is maximum in spring/summer. WRF-Chem model is used to simulate BC temporal variations and then compared with observed BC. The model captures most of the important features of the diurnal and seasonal variations but significantly underestimated the observed BC levels, suggesting improvements in diurnal and seasonal varying BC emissions apart from the boundary layer processes.

  7. Integrated evaluation of aerosols during haze-fog episodes at one regional background site in North China Plain

    NASA Astrophysics Data System (ADS)

    Yuan, Qi; Li, Weijun; Zhou, Shengzhen; Yang, Lingxiao; Chi, Jianwei; Sui, Xiao; Wang, Wenxing

    2015-04-01

    To investigate haze-fog (HF) formation mechanisms and transport, trace gases and aerosols in the aged air masses during regional haze episodes were measured at a regional background site in the North China Plain during 4-19 July, 2011. Mixing state of individual particles, soluble ions of PM2.5, and particle number concentrations were studied using transmission electron microscope, ambient ion monitoring, and wide-range particle spectrometer, respectively. Average mass concentration of PM2.5 was 3 times higher on HF days (70 μg/m3) than on clear days (22 μg/m3). The major soluble ionic components (SO42 -, NO3-, and NH4+) in PM2.5 were over 4 times higher on HF days (40.6 μg/m3) than on clear days (9.1 μg/m3). The high sulfur oxidation ratios (SOR) and nitrogen oxidation ratios (NOR) values during HF days suggest that polluted weather favored transformation of SO2 and NOx into sulfates and nitrates compared to clear days. Particle number fraction of the accumulation mode increases from 11% on clear days up to 26% on HF days. Individual particle analysis shows that secondary inorganic particles (e.g., sulfate and nitrate) as the most abundant species likely determine internal mixing of individual particles and almost half of them mixed refractory particles (e.g., metal, fly ash, soot, and mineral) on HF days. These fine refractory particles were likely emitted from coal fired power plants, heavy industries, and urban city in Shandong and Hebei provinces. Our results suggest that aged air masses mostly contain aged particles of long-range transport and some from new particle formation and growth in the regional background atmosphere.

  8. Implementation and evaluation of the Heffter method to calculate the height of the planetary boundary layer above the ARM Southern Great Plains site

    SciTech Connect

    Pesenson, Igor

    2003-11-30

    This paper explores the Heffter Method--an algorithm for finding the height of the Planetary Boundary Layer (PBL). The algorithm is applied to the Balloon Borne Sounding System (BBSS) data collected over the Southern Great Plains (SGP) Site of the Atmospheric Radiation Measurement (ARM) Program. After discussing the successes and shortcomings of the algorithm, the resulting PBL height estimates for dates in May of 2002 are related to CO{sub 2} concentration and wind data. The CO{sub 2} data used is from the Precision Gas System (PGS) while the wind data is a combination of data from the Portable CO{sub 2} Flux System on the SGP site and BBSS.

  9. Multiple new-particle growth pathways observed at the US DOE Southern Great Plains field site

    DOE PAGES

    Hodshire, Anna L.; Lawler, Michael J.; Zhao, Jun; ...

    2016-07-28

    New-particle formation (NPF) is a significant source of aerosol particles into the atmosphere. However, these particles are initially too small to have climatic importance and must grow, primarily through net uptake of low-volatility species, from diameters  ∼  1 to 30–100 nm in order to potentially impact climate. There are currently uncertainties in the physical and chemical processes associated with the growth of these freshly formed particles that lead to uncertainties in aerosol-climate modeling. Four main pathways for new-particle growth have been identified: condensation of sulfuric-acid vapor (and associated bases when available), condensation of organic vapors, uptake of organic acids through acid–base chemistrymore » in the particle phase, and accretion of organic molecules in the particle phase to create a lower-volatility compound that then contributes to the aerosol mass. The relative importance of each pathway is uncertain and is the focus of this work. The 2013 New Particle Formation Study (NPFS) measurement campaign took place at the DOE Southern Great Plains (SGP) facility in Lamont, Oklahoma, during spring 2013. Measured gas- and particle-phase compositions during these new-particle growth events suggest three distinct growth pathways: (1) growth by primarily organics, (2) growth by primarily sulfuric acid and ammonia, and (3) growth by primarily sulfuric acid and associated bases and organics. To supplement the measurements, we used the particle growth model MABNAG (Model for Acid–Base chemistry in NAnoparticle Growth) to gain further insight into the growth processes on these 3 days at SGP. MABNAG simulates growth from (1) sulfuric-acid condensation (and subsequent salt formation with ammonia or amines), (2) near-irreversible condensation from nonreactive extremely low-volatility organic compounds (ELVOCs), and (3) organic-acid condensation and subsequent salt formation with ammonia or amines. MABNAG is able to corroborate the

  10. Comparison of Vaisala radiosondes RS41 and RS92 at the ARM Southern Great Plains site

    SciTech Connect

    Jensen, Michael P.; Holdridge, Donna J.; Survo, Petteri; Lehtinen, Raisa; Baxter, Shannon; Toto, Tami; Johnson, Karen L.

    2016-07-20

    In the fall of 2013, the Vaisala RS41 (fourth generation) radiosonde was introduced as a replacement for the RS92-SGP radiosonde with improvements in measurement accuracy of profiles of atmospheric temperature, humidity, and pressure. In order to help characterize these improvements, an intercomparison campaign was undertaken at the US Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility site in north-central Oklahoma, USA. During 3–8 June 2014, a total of 20 twin-radiosonde flights were performed in a variety of atmospheric conditions representing typical midlatitude continental summertime conditions. The results show that for most of the observed conditions the RS92 and RS41 measurements agree much better than the manufacturer-specified combined uncertainties with notable exceptions when exiting liquid cloud layers where the “wet-bulbing” effect appears to be mitigated for several cases in the RS41 observations. The RS41 measurements of temperature and humidity, with applied correction algorithms, also appear to show less sensitivity to solar heating. In addition, these results suggest that the RS41 does provide important improvements, particularly in cloudy conditions. For many science applications – such as atmospheric process studies, retrieval development, and weather forecasting and climate modeling – the differences between the RS92 and RS41 measurements should have little impact. However, for long-term trend analysis and other climate applications, additional characterization of the RS41 measurements and their relation to the long-term observational records will be required.

  11. Comparison of Vaisala radiosondes RS41 and RS92 at the ARM Southern Great Plains site

    SciTech Connect

    Jensen, Michael P.; Holdridge, Donna J.; Survo, Petteri; Lehtinen, Raisa; Baxter, Shannon; Toto, Tami; Johnson, Karen L.

    2016-06-20

    In the fall of 2013, the Vaisala RS41 (fourth generation) radiosonde was introduced as a replacement for the RS92-SGP radiosonde with improvements in measurement accuracy of profiles of atmospheric temperature, humidity, and pressure. In order to help characterize these improvements, an intercomparison campaign was undertaken at the US Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility site in north-central Oklahoma, USA. During 3–8 June 2014, a total of 20 twin-radiosonde flights were performed in a variety of atmospheric conditions representing typical midlatitude continental summertime conditions. The results show that for most of the observed conditions the RS92 and RS41 measurements agree much better than the manufacturer-specified combined uncertainties with notable exceptions when exiting liquid cloud layers where the “wet-bulbing” effect appears to be mitigated for several cases in the RS41 observations. The RS41 measurements of temperature and humidity, with applied correction algorithms, also appear to show less sensitivity to solar heating. These results suggest that the RS41 does provide important improvements, particularly in cloudy conditions. For many science applications – such as atmospheric process studies, retrieval development, and weather forecasting and climate modeling – the differences between the RS92 and RS41 measurements should have little impact. However, for long-term trend analysis and other climate applications, additional characterization of the RS41 measurements and their relation to the long-term observational records will be required.

  12. Modeling the Impact of Biogeochemical Hotspots and Hot Moments on Subsurface Carbon Fluxes from a Flood Plain Site

    NASA Astrophysics Data System (ADS)

    Arora, B.; Spycher, N.; Steefel, C. I.; King, E.; Conrad, M. E.

    2015-12-01

    Biogeochemical hotspots and hot moments are known to account for a high percentage of carbon and nutrient cycling within flood plain environments. To quantify the impact of these hotspots and hot moments on the carbon cycle, a 2D reactive transport model was developed for the saturated-unsaturated zone of a flood plain site in Rifle, CO. Previous studies have identified naturally reduced zones (NRZs) in the saturated zone of the Rifle site to be hotspots and important regions for subsurface biogeochemical cycling. Wavelet analysis of geochemical concentrations at the site suggested that hydrologic and temperature variations are hot moments and exert an important control on biogeochemical conditions in the Rifle aquifer. Here, we describe the development of a reactive transport model that couples hydrologic and biogeochemical processes to microbial functional distributions inferred from site-specific 'omic' data. The model includes microbial contributions from heterotrophic and chemolithoautotrophic processes. We use Monod based formulations to represent biomass formation and consider energy partitioning between catabolic and anabolic processes. We use this model to explore community emergence at the Rifle site and further constrain the extent and rates of nutrient uptake as well as abiotic and biotic reactions using stable carbon isotopes. Results from 2D model simulations with only abiotic reactions predict lower CO2 partial pressures in the unsaturated zone and severely underpredict (~200%) carbon fluxes to the river compared to simulations with chemolithoautotrophic pathways. δ13C-CO2 profiles also point to biotic sources for the locally observed high CO2 concentrations above NRZs. Results further indicate that groundwater carbon fluxes from the Rifle site to the river are underestimated by almost 180% (to 3.3 g m-2 d-1) when temperature fluctuations are ignored in the simulations. Preliminary results demonstrate the emergence of denitrifiers at specific depths

  13. Comparison of Vaisala radiosondes RS41 and RS92 at the ARM Southern Great Plains Site

    DOE PAGES

    Jensen, M. P.; Holdridge, D.; Survo, P.; ...

    2015-11-02

    In the fall of 2013, the Vaisala RS41-SG (4th generation) radiosonde was introduced as a replacement for the RS92-SGP radiosonde with improvements in measurement accuracy of profiles of atmospheric temperature, humidity and pressure. Thus, in order to help characterize these improvements, an intercomparison campaign was undertaken at the US Department of Energy's Atmospheric Radiation Measurement (ARM) Facility site in north Central Oklahoma USA. During 3–8 June 2014, a total of 20 twin-radiosonde flights were performed in a variety of atmospheric conditions representing typical midlatitude continental summertime conditions. The results suggest that the RS92 and RS41 measurements generally agree within manufacturermore » specified tolerances with notable exceptions when exiting liquid cloud layers where the "wet bulbing" effect is mitigated in the RS41 observations. The RS41 measurements also appear to show a smaller impact from solar heating. These results suggest that the RS41 does provide important improvements, particularly in cloudy conditions, but under most observational conditions the RS41 and RS92 measurements agree within the manufacturer specified limits and so a switch to RS41 radiosondes will have little impact on long-term observational records.« less

  14. Comparison of Vaisala radiosondes RS41 and RS92 at the ARM Southern Great Plains Site

    SciTech Connect

    Jensen, M. P.; Holdridge, D.; Survo, P.; Lehtinen, R.; Baxter, S.; Toto, T.; Johnson, K. L.

    2015-11-02

    In the fall of 2013, the Vaisala RS41-SG (4th generation) radiosonde was introduced as a replacement for the RS92-SGP radiosonde with improvements in measurement accuracy of profiles of atmospheric temperature, humidity and pressure. Thus, in order to help characterize these improvements, an intercomparison campaign was undertaken at the US Department of Energy's Atmospheric Radiation Measurement (ARM) Facility site in north Central Oklahoma USA. During 3–8 June 2014, a total of 20 twin-radiosonde flights were performed in a variety of atmospheric conditions representing typical midlatitude continental summertime conditions. The results suggest that the RS92 and RS41 measurements generally agree within manufacturer specified tolerances with notable exceptions when exiting liquid cloud layers where the "wet bulbing" effect is mitigated in the RS41 observations. The RS41 measurements also appear to show a smaller impact from solar heating. These results suggest that the RS41 does provide important improvements, particularly in cloudy conditions, but under most observational conditions the RS41 and RS92 measurements agree within the manufacturer specified limits and so a switch to RS41 radiosondes will have little impact on long-term observational records.

  15. Burn site groundwater interim measures work plan.

    SciTech Connect

    Witt, Jonathan L.; Hall, Kevin A.

    2005-05-01

    This Work Plan identifies and outlines interim measures to address nitrate contamination in groundwater at the Burn Site, Sandia National Laboratories/New Mexico. The New Mexico Environment Department has required implementation of interim measures for nitrate-contaminated groundwater at the Burn Site. The purpose of interim measures is to prevent human or environmental exposure to nitrate-contaminated groundwater originating from the Burn Site. This Work Plan details a summary of current information about the Burn Site, interim measures activities for stabilization, and project management responsibilities to accomplish this purpose.

  16. Selecting Sites for Converting Farmlands to Wetlands in the Sanjiang Plain, Northeast China, Based on Remote Sensing and GIS

    NASA Astrophysics Data System (ADS)

    Huang, Ni; Wang, Zongming; Liu, Dianwei; Niu, Zheng

    2010-11-01

    Wetlands in the Sanjiang Plain are rich in biodiversity and natural resources in the northeast of China. However, this wetland area has decreased in size and deteriorated in quality owing to expanded agricultural activities since the 1950s. Converting farmlands to wetlands is necessary to improve these conditions. Using Remote Sensing (RS) and Geographic Information Systems (GIS) technologies, we derived farmland productivity data and hydrology data for the Sanjiang Plain. The farmland productivity data were derived from land use and net primary productivity (NPP) data of the MODIS products. We obtained three productivity farmland classes (low, medium, and high) through the NPP anomaly percentage method. We were only concerned with the low-productivity farmland. Hydrology data were modeled with a wetness index, which was derived from Digital Elevation Model (DEM) data. Based on these two data layers, we identified and prioritized sites for the conversion of farmlands to wetlands. The areas with low farmland productivity and medium or high wetness values have potential to support the conversion of farmlands to wetlands. Potential sites were prioritized in terms of patch size and proximity to natural wetlands and water bodies. We obtained three priority classes, among which the high-priority class would be used as the areas for the recent conversion of farmlands to wetlands. The area of this class was 75,888 ha and accounted for 1.3% of the total farmland area.

  17. Comparison of Vaisala radiosondes RS41 and RS92 at the ARM Southern Great Plains site

    DOE PAGES

    Jensen, Michael P.; Holdridge, Donna J.; Survo, Petteri; ...

    2016-07-20

    In the fall of 2013, the Vaisala RS41 (fourth generation) radiosonde was introduced as a replacement for the RS92-SGP radiosonde with improvements in measurement accuracy of profiles of atmospheric temperature, humidity, and pressure. In order to help characterize these improvements, an intercomparison campaign was undertaken at the US Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility site in north-central Oklahoma, USA. During 3–8 June 2014, a total of 20 twin-radiosonde flights were performed in a variety of atmospheric conditions representing typical midlatitude continental summertime conditions. The results show that for most of the observed conditions the RS92 andmore » RS41 measurements agree much better than the manufacturer-specified combined uncertainties with notable exceptions when exiting liquid cloud layers where the “wet-bulbing” effect appears to be mitigated for several cases in the RS41 observations. The RS41 measurements of temperature and humidity, with applied correction algorithms, also appear to show less sensitivity to solar heating. In addition, these results suggest that the RS41 does provide important improvements, particularly in cloudy conditions. For many science applications – such as atmospheric process studies, retrieval development, and weather forecasting and climate modeling – the differences between the RS92 and RS41 measurements should have little impact. However, for long-term trend analysis and other climate applications, additional characterization of the RS41 measurements and their relation to the long-term observational records will be required.« less

  18. Enhanced formation of fine particulate nitrate at a rural site on the North China Plain in summer: The important roles of ammonia and ozone

    NASA Astrophysics Data System (ADS)

    Wen, Liang; Chen, Jianmin; Yang, Lingxiao; Wang, Xinfeng; Xu, Caihong; Sui, Xiao; Yao, Lan; Zhu, Yanhong; Zhang, Junmei; Zhu, Tong; Wang, Wenxing

    2015-01-01

    Severe PM2.5 pollution was observed frequently on the North China Plain, and nitrate contributed a large fraction of the elevated PM2.5 concentrations. To obtain a comprehensive understanding of the formation pathways of these fine particulate nitrate and the key factors that affect these pathways, field measurements of fine particulate nitrate and related air pollutants were made at a rural site on the North China Plain in the summer of 2013. Extremely high concentrations of fine particulate nitrate were frequently observed at night and in the early morning. The maximum hourly concentration of fine particulate nitrate reached 87.2 μg m-3. This concentration accounted for 29.9% of the PM2.5. The very high NH3 concentration in the early morning significantly accelerated the formation of fine particulate nitrate, as indicated by the concurrent appearance of NH3 and NO3- concentration peaks and a rising neutralization ratio (the equivalent ratio of NH4+ to the sum of SO42- and NO3-). On a number of other episode days, strong photochemical activity during daytime led to high concentrations of O3 at night. The fast secondary formation of fine particulate nitrate was mainly attributed to the hydrolysis of N2O5, which was produced from O3 and NO2. Considering the important roles of NH3 and O3 in fine particulate nitrate formation, we suggest the control of NH3 emissions and photochemical pollution to address the high levels of fine particulate nitrate and the severe PM2.5 pollution on the North China Plain.

  19. Sedimentological techniques applied to the hydrology of the Atlantic coastal plain in South Carolina and Georgia near the Savannah River Site

    SciTech Connect

    Falls, F.W. ); Baum, J.S. ); Edwards, L.E. )

    1994-03-01

    Potential for migration of contaminants in ground water under the Savannah River from South Carolina into Georgia near the US Department of Energy (DOE) Savannah River Site (SRS). The SRS is located in the inner Atlantic Coastal Plain of South Carolina and is underlain by 200 to more than 300 meters of permeable, unconsolidated to poorly consolidated sediments of Cretaceous and Tertiary age. The US Geological Survey, in cooperation with the US Department of Energy and the Georgia Department of Natural Resources, is evaluating ground-water flow through the Coastal Plain sediments in the area. Preliminary hydrologic studies conducted to provide the data needed for digital modeling of the ground-water flow system identified the need for more extensive investigation into the influence of the geologic complexities on that flow system. The Coastal Plain physiographic province in South Carolina and Georgia is comprised of a complex wedge of fluvial, deltaic, and marine sedimentary deposits locally modified by faulting. Several techniques commonly used in petroleum basin analysis (sequence stratigraphy, biostratigraphy, detailed core description, and geophysical well log analysis), were used together with water-level measurements, aquifer-test data, and geochemical data to identify six regional aquifers. Hydraulic conductivity distribution maps within each of these aquifers were constructed using textural analysis of core materials, aquifer test data, and depositional system reconstruction. Sedimentological techniques were used to improve understanding of the depositional system and the ground-water flow system dynamics, and to help focus research in areas where additional hydrologic, geologic, and aquifer-test data are needed.

  20. PERFORMING QUALITY FLOW MEASUREMENTS AT MINE SITES

    EPA Science Inventory

    Accurate flow measurement data is vital to research, monitoring, and remediation efforts at mining sites. This guidebook has been prepared to provide a summary of information relating to the performance of low measurements, and how this information can be applied at mining sites....

  1. PERFORMING QUALITY FLOW MEASUREMENTS AT MINE SITES

    EPA Science Inventory

    Accurate flow measurement data is vital to research, monitoring, and remediation efforts at mining sites. This guidebook has been prepared to provide a summary of information relating to the performance of low measurements, and how this information can be applied at mining sites....

  2. The latitudinal distribution of putative periglacial sites on the northern martian plains.

    NASA Astrophysics Data System (ADS)

    Barrett, Alex; Balme, Matt; Patel, Manish; Hagermann, Axel

    2013-04-01

    Periglacial landscapes are found in cold regions of Earth where the freezing and thawing of the permafrost active layer plays an important role in shaping the landscape. A variety of distinctive landforms such as sorted circles, thermokarst depressions and solifluction lobes are indicative of periglacial environments on Earth. It has been suggested that similar features on the northern plains of Mars could be the result of the same, or similar processes (1). Since the formation of a periglacial landscape requires the freezing and thawing of water their presence on Mars would indicate that the thawing of water-ice has occurred in the geologically recent past. Periglacial landforms could have formed in past periods of higher obliquity when the environment was more conducive to the action of liquid water or due to the depression of the freezing point by brines under current conditions. We have conducted a survey of putative periglacial landforms across the northern Martian plains. Over 400 HiRISE images of the walls and floors of >1 km diameter craters have been examined to map the locations of these landforms across regions of Acidalia, Utopia and Arcadia Planitia between 30 and 80 Degrees North. These data allow an assessment of the latitudinal distribution of these features. Variations between the types of landform found in different regions of the Northern Plains of mars can also be assessed. Scalloped depressions and gullies have a similar latitude range, and are frequently found south of 60 Degrees North. There are a large number of scalloped depressions in Utopia as noted by other studies (2), similar features are found in both Acidalia and Arcadia but are not found over as wide a range of latitudes in Acidalia. Possible sorted landforms (lobes, polygons etc) can be found as far south as 40 and as far north as 70 Degrees North but most are found between 45-65 Degrees North. They seem to occur over a wider range of latitudes in Utopia Planitia than in Acidalia

  3. A study of building the hydrogeological apparent model with geoelectrical measurements for the Chia-Nan Coastal Plain of SW Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, P. Y.; Tsai, J. P.; Chang, L. C.

    2016-12-01

    In the study we used the resistivity measurements collected in the Chia-Nan coastal plain of SW Taiwan to establish a three-dimensional (3D) hydrogeological apparent model. The resistivity measurements include data from half-Schlumberger surveys conducted during the year of 1990-2000 across the entire area and from the recent two-dimensional resistivity surveys for characterizing the recharge zone boundaries. Core records from monitoring wells in the area were used for the training data to help determining the resistivity ranges of the gavel, sand, and muddy sediments in the coastal plain. These resistivity measurements were inverted and converted into 1-D data form and interpolated for rendering a three dimensional resistivity volume that represents the general resistivity distribution in the coastal-plain systems. In addition we used water resistivity data from the observation wells to calculating the formation factors (FI) and to render the FI model. We then compared the FIs with indexed core records near some of the resistivity surveys sites, and concluded the range of the FIs for different materials in a statistical sense. Lastly we transfer the FI model into the gravel-sand-clay apparent model with the classification criteria from previous petrophysical analysis. Because there are more resistivity measurements than the limited geological boreholes, the apparent model is better to represent the detailed sedimentary structures than the traditional over-simplified conceptual models.

  4. End-Pleistocene Soil Constituents from Selected Sites on the Mid-Atlantic Coastal Plain: First Results

    NASA Astrophysics Data System (ADS)

    Lecompte, M. A.; Rock, B. N.; Demitroff, M.; Reid, M.; Lucas, L.; Hughes, D.; Hayden, L. B.

    2008-12-01

    Stratigraphic analyses of soil samples taken from dated and undated sites located along the mid-Atlantic Coastal Plain have yielded evidence of increased contemporary biomass burning, compared to under and overlying strata. Host strata ages are known or projected to bracket the onset of the Younger Dryas cooling episode at 12.9 cal ka. This ongoing investigation includes samples from: 1) a late-Pleistocene aged periglacial feature located within the Pine Barrens of southern New Jersey; 2) an artifact dated stratum (~ 12.9 ka) in an embankment on the Chesapeake Bay in Maryland; and 3) an as yet undated (C14 test results pending) embankment of the Perquimans River in northeastern North Carolina projected to be age-appropriate. Sample analysis of scanning electron (SEM) micrographs from the Chesapeake Bay site revealed charred fragments of late-Wisconsinan Krummholz birch (Betula) and species of spruce (Picea) and fir (Abies), which are not extant on the modern-day, temperate Coastal Plain. In addition, organic faunal material is found in association with ancient charred boreal wood, including hollow hair and skin fragments that are as yet unidentified, perhaps from cold climate adapted animals as inferred from host sediment age. Charred wood fragments are found to be attracted to a neodymium magnet. Some aggregates of organic matter appear to contain magnetic spherule-like grains whose composition is awaiting geochemical analysis. Photomicrographs of all specimens and a stratigraphic breakdown in the relative amount of burned carbon associated with each site and strata will be presented, along with the results of various analyses that are currently underway.

  5. DOE candidate site meteorological measurement program

    SciTech Connect

    Renne, D. S.; Sandusky, W. F.

    1980-01-01

    In March 1976, DOE issued an RFP to acquire, on a competitive basis, a group of candidate sites, proposed by utilities interested in the field testing program. A total of 17 candidate sites were selected from the 64 proposals submitted in response to the RFP. From these sites, five have been chosen thus far to receive turbines for field testing. This paper discusses the meteorological measurement activities at these sites and provides details of the measurement program as it exists in late 1979. In addition, the paper briefly discusses the directions this program will take in the near future, and the options interested electric service organizations have for participating in the program.

  6. Plains Prickly Pear Response to Fire: Effects of Fuel Load, Heat, Fire Weather, and Donor Site Soil

    USDA-ARS?s Scientific Manuscript database

    Plains prickly pear (Opuntia polyacantha Haw.) is common throughout the Great Plains and like related species, often becomes detrimental to agricultural production. We examined direct fire effects on plains prickly pear and mechanisms of tissue damage to facilitate development of fire prescriptions...

  7. Wave Journal Bearing. Part 2: Experimental Pressure Measurements and Fractional Frequency Whirl Threshold for Wave and Plain Journal Bearings

    NASA Technical Reports Server (NTRS)

    Walker, James F.; Dimofte, Florin; Addy, Harold E., Jr.

    1995-01-01

    A new hydrodynamic bearing concept, the wave journal bearing, is being developed because it has better stability characteristics than plain journal bearings while maintaining similar load capacity. An analysis code to predict the steady state and dynamic performance of the wave journal bearing is also part of the development. To verify numerical predictions and contrast the wave journal bearing's stability characteristics to a plain journal bearing, tests were conducted at NASA Lewis Research Center using an air bearing test rig. Bearing film pressures were measured at 16 ports located around the bearing circumference at the middle of the bearing length. The pressure measurements for both a plain journal bearing and a wave journal bearing compared favorably with numerical predictions. Both bearings were tested with no radial load to determine the speed threshold for self-excited fractional frequency whirl. The plain journal bearing started to whirl immediately upon shaft start-up. The wave journal did not incur self-excited whirl until 800 to 900 rpm as predicted by the analysis. Furthermore, the wave bearing's geometry limited the whirl orbit to less than the bearing's clearance. In contrast, the plain journal bearing did not limit the whirl orbit, causing it to rub.

  8. Southern Great Plains Safety Orientation

    SciTech Connect

    Schatz, John

    2014-05-01

    Welcome to the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ARM) Southern Great Plains (SGP) site. This U.S. Department of Energy (DOE) site is managed by Argonne National Laboratory (ANL). It is very important that all visitors comply with all DOE and ANL safety requirements, as well as those of the Occupational Safety and Health Administration (OSHA), the National Fire Protection Association, and the U.S. Environmental Protection Agency, and with other requirements as applicable.

  9. Stand Structure and Yields of Site-Prepared Loblolly Pine Plantations in the Lower Coastal Plain of the Carolinas, Georgia, and North Florida

    Treesearch

    Jerome L. Clutter; William R. Harms; Graham H. Brister; John W. Reney

    1984-01-01

    Equations and tables are presented for estimating total and merchantable volumes and weights of loblolly pine planted on prepared sites in the Lower Atlantic Coastal Plain.The equation system can be used to predict current and projected yields in cubic feet and green and dry weights.

  10. Site-specific irrigation of peanuts on a Coastal Plain field

    USDA-ARS?s Scientific Manuscript database

    Irrigator-Pro is an expert system that prescribes irrigation for corn (Zea mays L.), cotton (Gossypium hirsutum L.) and peanut (Arachis hypogaea). We conducted an experiment in 2007 to evaluate Irrigator-Pro as a tool for variable rate irrigation of peanut using a site-specific center pivot irrigati...

  11. Site characteristics of intact shortgrass steppe in the southern Great Plains USA

    Treesearch

    Paulette L. Ford

    2011-01-01

    Steppe, a mid-latitude, semiarid grassland has a wide global distribution. It is estimated that in the United States less than 23 percent of true shortgrass steppe still exists in native vegetation (National Grasslands Management Review Team Report, 1995). The Kiowa National Grassland long-term, 18-year, experimental fire research site is one such area. Located in the...

  12. Integration of geophysics within the Argonne expedited site characterization Program at a site in the southern High Plains

    SciTech Connect

    Hastings, B.; Hildebrandt, G.; Meyer, T.; Saunders, W.; Burton, J.C.

    1995-05-01

    An Argonne National Laboratory Expedited Site Characterization (ESC) program was carried out at a site in the central United States. The Argonne ESC process emphasizes an interdisciplinary approach in which all available information is integrated to produce as complete a picture as possible of the geologic and hydrologic controls on contaminant distribution and transport. As part of this process, all pertinent data that have been collected from previous investigations are thoroughly analyzed before a decision is made to collect additional information. A seismic reflection program recently concluded at the site had produced inconclusive results. Before we decided whether another acquisition program was warranted, we examined the existing data set to evaluate the quality of the raw data, the appropriateness of the processing sequence, and the integrity of the interpretation. We decided that the field data were of sufficient quality to warrant reprocessing and reinterpretation. The main thrust of the reprocessing effort was to enhance the continuity of a shallow, low-frequency reflection identified as a perching horizon within the Ogallala formation. The reinterpreted seismic data were used to locate the boundaries of the perched aquifer, which helped to guide the Argonne ESC drilling and sampling program. In addition, digitized geophysical well log data from previous drilling programs were reinterpreted and integrated into the geologic and hydrogeologic model.

  13. Evaluation of Daytime Measurements of Aerosols and Water Vapor made by an Operational Raman Lidar over the Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Turner, David; Clayton, Marian; Schmid, Beat; Covert, David; Elleman, Robert; Orgren, John; Andrews, Elisabeth; Goldsmith, John E. M.; Jonsson, Hafidi

    2006-01-01

    Raman lidar water vapor and aerosol extinction profiles acquired during the daytime over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in northern Oklahoma (36.606 N, 97.50 W, 315 m) are evaluated using profiles measured by in situ and remote sensing instruments deployed during the May 2003 Aerosol Intensive Operations Period (IOP). The automated algorithms used to derive these profiles from the Raman lidar data were first modified to reduce the adverse effects associated with a general loss of sensitivity of the Raman lidar since early 2002. The Raman lidar water vapor measurements, which are calibrated to match precipitable water vapor (PWV) derived from coincident microwave radiometer (MWR) measurements were, on average, 5-10% (0.3-0.6 g/m(exp 3) higher than the other measurements. Some of this difference is due to out-of-date line parameters that were subsequently updated in the MWR PWV retrievals. The Raman lidar aerosol extinction measurements were, on average, about 0.03 km(exp -1) higher than aerosol measurements derived from airborne Sun photometer measurements of aerosol optical thickness and in situ measurements of aerosol scattering and absorption. This bias, which was about 50% of the mean aerosol extinction measured during this IOP, decreased to about 10% when aerosol extinction comparisons were restricted to aerosol extinction values larger than 0.15 km(exp -1). The lidar measurements of the aerosol extinction/backscatter ratio and airborne Sun photometer measurements of the aerosol optical thickness were used along with in situ measurements of the aerosol size distribution to retrieve estimates of the aerosol single scattering albedo (omega(sub o)) and the effective complex refractive index. Retrieved values of omega(sub o) ranged from (0.91-0.98) and were in generally good agreement with omega(sub o) derived from airborne in situ measurements of scattering and absorption. Elevated aerosol

  14. Assessing the use of existing data to compare plains fish assemblages collected from random and fixed sites in Colorado

    USGS Publications Warehouse

    Zuellig, Robert E.; Crockett, Harry J.

    2013-01-01

    The U.S. Geological Survey, in cooperation with Colorado Parks and Wildlife, assessed the potential use of combining recently (2007 to 2010) and formerly (1992 to 1996) collected data to compare plains fish assemblages sampled from random and fixed sites located in the South Platte and Arkansas River Basins in Colorado. The first step was to determine if fish assemblages collected between 1992 and 1996 were comparable to samples collected at the same sites between 2007 and 2010. If samples from the two time periods were comparable, then it was considered reasonable that the combined time-period data could be used to make comparisons between random and fixed sites. In contrast, if differences were found between the two time periods, then it was considered unreasonable to use these data to make comparisons between random and fixed sites. One-hundred samples collected during the 1990s and 2000s from 50 sites dispersed among 19 streams in both basins were compiled from a database maintained by Colorado Parks and Wildlife. Nonparametric multivariate two-way analysis of similarities was used to test for fish-assemblage differences between time periods while accounting for stream-to-stream differences. Results indicated relatively weak but significant time-period differences in fish assemblages. Weak time-period differences in this case possibly were related to changes in fish assemblages associated with environmental factors; however, it is difficult to separate other possible explanations such as limited replication of paired time-period samples in many of the streams or perhaps differences in sampling efficiency and effort between the time periods. Regardless, using the 1990s data to fill data gaps to compare random and fixed-site fish-assemblage data is ill advised based on the significant separation in fish assemblages between time periods and the inability to determine conclusive explanations for these results. These findings indicated that additional sampling will

  15. Centrifugal pump inlet pressure site affects measurement.

    PubMed

    Augustin, Simon; Horton, Alison; Butt, Warwick; Bennett, Martin; Horton, Stephen

    2010-09-01

    During extracorporeal life support (ECLS), blood is exposed to a myriad of unphysiological factors that can affect outcome. One aspect of this is the sub-atmospheric pressure generated by the ECLS pump and imparted to blood elements along the pump inlet line. This pressure can be measured on the inlet line close to the pump head by adding a connector, or at the venous cannula connection site. We compared the two measurement sites located at both points; between the venous cannula-inlet tubing and inlet tubing-pump, with a range of cannulae and flows. We also investigated the effects on inlet pressure from pump afterload and increasing inlet tubing length.

  16. Simultaneous Spectral Albedo Measurements Near the Atmospheric Radiation Measurement Southern Great Plains (ARM SGP) Central Facility

    SciTech Connect

    Michalsky, Joseph J.; Min, Qilong; Barnard, James C.; Marchand, Roger T.; Pilewskie, Peter

    2003-04-30

    In this study, a data analysis is performed to determine the area-averaged, spectral albedo at ARM's SGP central facility site. The spectral albedo is then fed into radiation transfer models to show that the diffuse discrepancy is diminished when the spectral albedo is used (as opposed to using the broadband albedo).

  17. Determination of the 100-year flood plain on Upper Three Runs and selected tributaries, and the Savannah River at the Savannah River site, South Carolina, 1995

    USGS Publications Warehouse

    Lanier, T.H.

    1996-01-01

    The 100-year flood plain was determined for Upper Three Runs, its tributaries, and the part of the Savannah River that borders the Savannah River Site. The results are provided in tabular and graphical formats. The 100-year flood-plain maps and flood profiles provide water-resource managers of the Savannah River Site with a technical basis for making flood-plain management decisions that could minimize future flood problems and provide a basis for designing and constructing drainage structures along roadways. A hydrologic analysis was made to estimate the 100-year recurrence- interval flow for Upper Three Runs and its tributaries. The analysis showed that the well-drained, sandy soils in the head waters of Upper Three Runs reduce the high flows in the stream; therefore, the South Carolina upper Coastal Plain regional-rural-regression equation does not apply for Upper Three Runs. Conse- quently, a relation was established for 100-year recurrence-interval flow and drainage area using streamflow data from U.S. Geological Survey gaging stations on Upper Three Runs. This relation was used to compute 100-year recurrence-interval flows at selected points along the stream. The regional regression equations were applicable for the tributaries to Upper Three Runs, because the soil types in the drainage basins of the tributaries resemble those normally occurring in upper Coastal Plain basins. This was verified by analysis of the flood-frequency data collected from U.S. Geological Survey gaging station 02197342 on Fourmile Branch. Cross sections were surveyed throughout each reach, and other pertinent data such as flow resistance and land-use were col- lected. The surveyed cross sections and computed 100-year recurrence-interval flows were used in a step-backwater model to compute the 100-year flood profile for Upper Three Runs and its tributaries. The profiles were used to delineate the 100-year flood plain on topographic maps. The Savannah River forms the southwestern border

  18. Nevada Test Site seismic: telemetry measurements

    SciTech Connect

    Albright, J N; Parker, L E; Horton, E H

    1983-08-01

    The feasibility and limitations of surface-to-tunnel seismic telemetry at the Nevada Test Site were explored through field measurements using current technology. Range functions for signaling were determined through analysis of monofrequency seismic signals injected into the earth at various sites as far as 70 km (43 mi) from installations of seismometers in the G-Tunnel complex of Rainier Mesa. Transmitted signal power at 16, 24, and 32 Hz was measured at two locations in G-Tunnel separated by 670 m (2200 ft). Transmissions from 58 surface sites distributed primarily along three azimuths from G-Tunnel were studied. The G-Tunnel noise environment was monitored over the 20-day duration of the field tests. Noise-power probability functions were calculated for 20-s and 280-s seismic-record populations. Signaling rates were calculated for signals transmitted from superior transmitter sites to G-Tunnel. A detection threshold of 13 dB re 1 nm/sup 2/ displacement power at 95% reliability was demanded. Consideration of field results suggests that even for the frequency range used in this study, substantially higher signaling rates are likely to be obtained in future work in view of the present lack of information relevant to hardware-siting criteria and the seismic propagation paths at the Nevada Test Site. 12 references.

  19. Comparison of column-integrated aerosol optical and physical properties in an urban and suburban site on the North China Plain

    NASA Astrophysics Data System (ADS)

    Fan, Xuehua; Xia, Xiang'ao; Chen, Hongbin

    2015-04-01

    The column-integrated optical properties of aerosol in Beijing and Xianghe, two AErosol RObotic NETwork (AERONET) sites situated on the North China Plain (NCP), are investigated based on Cimel sunphotometer measurements from October 2004 to June 2012. The outstanding feature found is that the seasonal medians of aerosol optical depth (AOD) at the two stations are in good agreement. The correlation coefficients and the absolute differences between AOD at the two stations are larger than 0.84 and less than 0.05, respectively. Good agreement in AOD at these two sites (one urban and the other suburban; 70 km apart) indicates that aerosol pollution in the Greater Beijing area is regional in nature. However, we find significant differences in the absorption Ångström Exponent (AAE), the real and imaginary part of the refractive index, and thereby the single scattering albedo (SSA), and the difference is seasonally dependent. The feature is found to be more prominent in fall when the fine-mode fraction (FMF) and fine-mode effective radius are significantly different at the two stations, besides the parameters mentioned above. The SSA in Beijing at four wavelengths shows lower values as compared to those in Xianghe, although the difference is not significant in some cases. Significant differences in AAE and fine-mode effective radius indicate that there are differences in aerosol physical and chemical properties in urban and suburban regions on the NCP.

  20. Clear-Water Contraction Scour at Selected Bridge Sites in the Black Prairie Belt of the Coastal Plain in Alabama, 2006

    USGS Publications Warehouse

    Lee, K.G.; Hedgecock, T.S.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Alabama Department of Transportation, made observations of clear-water contraction scour at 25 bridge sites in the Black Prairie Belt of the Coastal Plain of Alabama. These bridge sites consisted of 54 hydraulic structures, of which 37 have measurable scour holes. Observed scour depths ranged from 1.4 to 10.4 feet. Theoretical clear-water contraction-scour depths were computed for each bridge and compared with observed scour. This comparison showed that theoretical scour depths, in general, exceeded the observed scour depths by about 475 percent. Variables determined to be important in developing scour in laboratory studies along with several other hydraulic variables were investigated to understand their influence within the Alabama field data. The strongest explanatory variables for clear-water contraction scour were channel-contraction ratio and velocity index. Envelope curves were developed relating both of these explanatory variables to observed scour. These envelope curves provide useful tools for assessing reasonable ranges of scour depth in the Black Prairie Belt of Alabama.

  1. Background light measurements at the DUMAND site

    NASA Technical Reports Server (NTRS)

    Aoki, T.; Kitamura, T.; Matsuno, S.; Mitsui, K.; Ohashi, Y.; Okada, A.; Cady, D. R.; Learned, J. G.; Oconnor, D.; Mcmurdo, M.

    1985-01-01

    Ambient light intensities at the DUMAND site, west of the island of Hawaii were measured around the one photoelectron level. Throughout the water column between 1,500m and 4,700m, a substantial amount of stimulateable bioluminescence is observed with a ship suspended detector. But non-stimulated bioluminescence level is comparable, or less than, K sup 40 background, when measured with a bottom tethered detector typical of a DUMAND optical module.

  2. Column Aerosol Optical Properties and Aerosol Radiative Forcing During a Serious Haze-Fog Month over North China Plain in 2013 Based on Ground-Based Sunphotometer Measurements

    NASA Technical Reports Server (NTRS)

    Che, H.; Xia, X.; Zhu, J.; Li, Z.; Dubovik, O.; Holben, Brent N.; Goloub, P.; Chen, H.; Estelles, V.; Cuevas-Agullo, E.

    2014-01-01

    In January 2013, North China Plain experienced several serious haze events. Cimel sunphotometer measurements at seven sites over rural, suburban and urban regions of North China Plain from 1 to 30 January 2013 were used to further our understanding of spatial-temporal variation of aerosol optical parameters and aerosol radiative forcing (ARF). It was found that Aerosol Optical Depth at 500 nm (AOD500nm) during non-pollution periods at all stations was lower than 0.30 and increased significantly to greater than 1.00 as pollution events developed. The Angstrom exponent (Alpha) was larger than 0.80 for all stations most of the time. AOD500nm averages increased from north to south during both polluted and non-polluted periods on the three urban sites in Beijing. The fine mode AOD during pollution periods is about a factor of 2.5 times larger than that during the non-pollution period at urban sites but a factor of 5.0 at suburban and rural sites. The fine mode fraction of AOD675nm was higher than 80% for all sites during January 2013. The absorption AOD675nm at rural sites was only about 0.01 during pollution periods, while 0.03-0.07 and 0.01-0.03 during pollution and non-pollution periods at other sites, respectively. Single scattering albedo varied between 0.87 and 0.95 during January 2013 over North China Plain. The size distribution showed an obvious tri-peak pattern during the most serious period. The fine mode effective radius in the pollution period was about 0.01-0.08 microns larger than during nonpollution periods, while the coarse mode radius in pollution periods was about 0.06-0.38 microns less than that during nonpollution periods. The total, fine and coarse mode particle volumes varied by about 0.06-0.34 cu microns, 0.03-0.23 cu microns, and 0.03-0.10 cu microns, respectively, throughout January 2013. During the most intense period (1-16 January), ARF at the surface exceeded -50W/sq m, -180W/sq m, and -200W/sq m at rural, suburban, and urban sites

  3. Multi-EM27/SUN Total Carbon Column Observing Network (TCCON) Comparison at the Southern Great Plains Site Field Campaign Report

    SciTech Connect

    Parker, H.; Hedelius, J.

    2016-04-01

    During the summer of 2015, a field campaign took place to help characterize off-the-shelf portable solar-viewing Fourier Transform Spectrometer (FTS) instruments (EM27/SUN). These instruments retrieve greenhouse gas (GHG) abundances from direct solar spectra. A focus of this campaign was to test possible dependence on different atmospheric conditions. Along with the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site in Oklahoma, experiments were conducted in Pasadena, California; Park Falls, Wisconsin; and the Armstrong Flight Research Center (AFRC), California. These locations are home to instruments in the Total Column Carbon Observing Network (TCCON). TCCON measurements were used as standards for the portable (EM27/SUN) measurements. Comparisons between the two types of instruments are crucial in the attempt to use the portable instruments to broaden the capabilities of GHG measurements for monitoring, reporting, and verification of carbon in the atmosphere. This campaign was aimed at testing the response of the portable FTS to different atmospheric conditions both local and regional. Measurements made at ARM SGP provided data in an agricultural environment with a relatively clean atmosphere with respect to pollution. Due to the homogeneity of the region surrounding Lamont, Oklahoma, portable FTS measurements were less effected by large changes in column GHG abundances from air mass movement between regions. These conditions aided in characterizing potential artificial solar zenith angle dependence of the retrievals. Data collected under atmospheric conditions at ARM SGP also provide for the analysis of cloud interference on solar spectra. In situ measurements were also made using a Picarro isotopic methane analyzer to determine surface-level in situ GHG concentrations and possible influences due to local agriculture and nearby towns. Data collected in this campaign have been presented

  4. Observation of profiles of turbulence in stationary and well mixed convective boundary layers over the ARM Southern Great Plains and the Tropical Western Pacific sites

    NASA Astrophysics Data System (ADS)

    Osman, M.; Turner, D. D.; Heus, T.; Newsom, R. K.

    2016-12-01

    The high temporal and vertical resolution and the ability to operate continuously under most atmospheric conditions make Raman lidars outstanding tools for studying turbulence in the convective boundary layer (CBL). Raman lidars have been used to study the turbulent structure of the CBL and the entrainment zone; however, previous studies have been in general based on a limited number of cases, which restricts the representativeness of the results for different atmospheric conditions. This study uses data from the autonomous Raman lidars that measure water vapor over the Southern Great Plains (SGP) site located at Lamont, Oklahoma (USA) and the Tropical Western Pacific (TWP) site located at Darwin (Australia) as part of the Atmospheric Radiation Measurement (ARM) program. The data from SGP used here spans 4 years from January 2012 to December 2015 and the TWP data span 6 years from January 2010 to December 2015. The vertical profiles of turbulent fluctuations have been derived using an auto covariance technique to separate out the instrument random error from the atmospheric variability over a set of 2-h period time series during which the CBL is quasi-stationary and well mixed. The temporal and vertical resolutions of water vapor are 10 s and 37.5 m, respectively. The error analysis of the Raman lidars observations demonstrates that the lidars are capable of resolving the vertical structure of turbulence in the CBL, and the small noise errors allow us to thoroughly examine different moments up to the fourth-order. The monthly, seasonal and yearly variations of the vertical profiles of variance, skewness, kurtosis and integral scale have been carefully analyzed. We particularly highlight noticeable differences between the structure of turbulence in the CBL and the entrainment zone at the SGP and TWP sites.

  5. Regional Ecosystem Carbon Exchange in the Southern Great Plains: Measurements, Modeling, and Scaling

    NASA Astrophysics Data System (ADS)

    Torn, M. S.; Riley, W. J.; Biraud, S. C.; Fischer, M. L.; Billesbach, D. S.; Berry, J. A.

    2007-12-01

    The extremely heterogeneous landscape of the ARM (Atmospheric Radiation Measurement) Climate Research Facility (ACRF) in the U.S. Southern Great Plains is representative of the southern boundary of the NACP Midwest intensive experiment. The area is largely agricultural with vegetation cover type and status that vary on sub- kilometer scales. In this study we developed, applied, and tested a "bottom- up" approach to inferring terrestrial C exchanges at fine scales (down to 250 m). Measurements at the ACRF include a 60 m tower instrumented with eddy covariance (ECOR) systems at several heights, about 20 permanent ECOR towers, several portable ECOR systems, many atmospheric and cloud sensing systems, and regular balloon sonde and aircraft measurements. We applied the land-surface model ISOLSM (with recent modifications to the plant physiological submodel) forced with OK and KS Mesonet climate datasets and MODIS vegetation indices. A method to infer vegetation cover type using satellite data and archetypal LAI annual profiles was developed and successfully tested against USDA census data for the region. The model's net CO2 exchange estimates were calibrated and tested using eddy correlation data from the dominant surface covers. Three years spanning a substantial precipitation gradient (2003 - 2005) were then simulated. Large differences in annual regional CO2 exchanges were predicted corresponding to expected system responses to available moisture. Spatial scaling analysis from 250 m to 100 km indicated that homogenizing LAI and vegetation cover can impact annual NEE substantially, including changing the region from a predicted net CO2 source to a net sink. Further, differences in NEE associated with spatial scaling differed between years, indicating that accurate bottom-up NEE estimates in this heterogeneous region require fine-scale analysis approaches.

  6. Summertime trends in pelagic biogeochemistry at the Porcupine Abyssal Plain study site in the northeast Atlantic

    NASA Astrophysics Data System (ADS)

    Painter, Stuart C.; Lucas, Michael I.; Stinchcombe, Mark C.; Bibby, Thomas S.; Poulton, Alex J.

    2010-08-01

    Measurements of nitrate and carbon uptake made in July 2006 in the Northeast Atlantic Ocean are evaluated with reference to the photophysiology of the attendant phytoplankton population. Over the 11-day observation period integrated chlorophyll concentrations and carbon fixation rates decreased by 76% and 60%, respectively. Integrated nitrate uptake decreased by 50% from initial to final rates but was generally less variable than carbon fixation and chlorophyll in the intervening period. Satellite derived estimates of surface chlorophyll concentrations reveal the uptake observations to be coincident with, and subsequent to, a peak in summer time production. Large reductions in diatom and dinoflagellate abundance were also seen at this time, with indications that increased grazing, due to an increase in ciliate abundance, was an important mechanism terminating summertime production in the NE Atlantic. Meanwhile, the presence of consistently low values of Fv/Fm (<0.3), particularly in surface waters, suggests that production occurs, or is inhibited, with suboptimal photochemical efficiency widespread amongst the phytoplankton population. Furthermore, the low values of Fv/Fm were not alleviated by day-to-day variability in macronutrient concentration. The timing of our observations places them within the seasonal period recognised for the widespread phenomena of carbon overconsumption, and we estimate C:N uptake ratios at this time could be as high as 13:1.

  7. Atmospheric Concentrations, Gas/Particle Partitioning And Exposure Risk Of Polycyclic Aromatic Hydrocarbons (PAHs) At Background, Rural Village And Urban Sites In The North China Plain

    NASA Astrophysics Data System (ADS)

    Wang, W.; Simonich, S.; Zhao, J.; Xue, M.; Wang, W.; Tao, S.

    2009-05-01

    Particle- and gas-phase PAHs were measured in air collected from a background site (Xiaolongmen), two rural village sites (Gubeikou and Donghe), and an urban site (Beijing) located in the North China Plain for four seasons from September 2007 to August 2008 in order to evaluate their concentrations, relative abundance, and gas/particle partitioning. Sixteen PAHs, included in the U.S.EPA priority pollutant list, were determined in the particle (PM10) and gas phases. The annual average 15 PAH concentration in Donghe was 730.7±608.0 ng/m3, which was 18.2, 3.0, 1.8 times higher than Xiaolongmen, Gubeikou and Beijing, respectively. A good linear relationship between gas/particle partitioning coefficients, Kp and subcooled liquid vapor pressure, pl was obtained. At the rural and urban sites, the regression slopes were much steeper than -1, indicating that adsorption of PAH to particulate matter dominated over absorption possibly because, at these sites, the freshly emitted particulate matter and PAHs had not yet reached equilibrium. However, gas/particle partitioning of PAHs approached equilibrium at the background site because of long- range transport of PAHs. In addition, the gas/particle partitioning was studied according to three different models: The Junge-Pankow adsorption model, the Koa absorption model, and the dual organic matter absorption model combined with the soot carbon adsorption model. The Junge-Pankow model and Koa model both under-predicted our experimental Kp values. However, the dual model fit our experimental Kp values well suggesting that the main partitioning mechanism was PAH adsorption onto soot carbon in this region of China. The different particulate matter characteristics (including organic matter and elemental carbon fraction and available adsorption sites), temperature variation during sampling, the presence of a non- exchangeable PAH fraction and non-equilibrium were considered possible reasons for why our experimental Kp values deviated

  8. A comparison of cloud layers from ground and satellite active remote sensing at the Southern Great Plains ARM site

    NASA Astrophysics Data System (ADS)

    Zhang, Jinqiang; Xia, Xiang'ao; Chen, Hongbin

    2017-03-01

    Using the data collected over the Southern Great Plains ARM site from 2006 to 2010, the surface Active Remote Sensing of Cloud (ARSCL) and CloudSat-CALIPSO satellite (CC) retrievals of total cloud and six specified cloud types [low, mid-low (ML), high-mid-low (HML), mid, high-mid (HM) and high] were compared in terms of cloud fraction (CF), cloud-base height (CBH), cloud-top height (CTH) and cloud thickness (CT), on different temporal scales, to identify their respective advantages and limitations. Good agreement between the two methods was exhibited in the total CF. However, large discrepancies were found between the cloud distributions of the two methods at a high (240-m) vertical grid spacing. Compared to the satellites, ARSCL retrievals detected more boundary layer clouds, while they underestimated high clouds. In terms of the six specific cloud types, more low- and mid-level clouds but less HML- and high-level clouds were detected by ARSCL than by CC. In contrast, the ARSCL retrievals of ML- and HM-level clouds agreed more closely with the estimations from the CC product. Lower CBHs tended to be reported by the surface data for low-, ML- and HML-level clouds; however, higher CTHs were often recorded by the satellite product for HML-, HM- and high-level clouds. The mean CTs for low- and ML-level cloud were similar between the two products; however, the mean CTs for HML-, mid-, HM- and high-level clouds from ARSCL were smaller than those from CC.

  9. Evaluation of meteorites as habitats for terrestrial microorganisms: Results from the Nullarbor Plain, Australia, a Mars analogue site

    NASA Astrophysics Data System (ADS)

    Tait, Alastair W.; Wilson, Siobhan A.; Tomkins, Andrew G.; Gagen, Emma J.; Fallon, Stewart J.; Southam, Gordon

    2017-10-01

    Unambiguous identification of biosignatures on Mars requires access to well-characterized, long-lasting geochemical standards at the planet's surface that can be modified by theoretical martian life. Ordinary chondrites, which are ancient meteorites that commonly fall to the surface of Mars and Earth, have well-characterized, narrow ranges in trace element and isotope geochemistry compared to martian rocks. Given that their mineralogy is more attractive to known chemolithotrophic life than the basaltic rocks that dominate the martian surface, exogenic rocks (e.g., chondritic meteorites) may be good places to look for signs of prior life endemic to Mars. In this study, we show that ordinary chondrites, collected from the arid Australian Nullarbor Plain, are commonly colonized and inhabited by terrestrial microorganisms that are endemic to this Mars analogue site. These terrestrial endolithic and chasmolithic microbial contaminants are commonly found in close association with hygroscopic veins of gypsum and Mg-calcite, which have formed within cracks penetrating deep into the meteorites. Terrestrial bacteria are observed within corrosion cavities, where troilite (FeS) oxidation has produced jarosite [KFe3(SO4)2(OH)6]. Where terrestrial microorganisms have colonized primary silicate minerals and secondary calcite, these mineral surfaces are heavily etched. Our results show that inhabitation of meteorites by terrestrial microorganisms in arid environments relies upon humidity and pH regulation by minerals. Furthermore, microbial colonization affects the weathering of meteorites and production of sulfate, carbonate, Fe-oxide and smectite minerals that can preserve chemical and isotopic biosignatures for thousands to millions of years on Earth. Meteorites are thus habitable by terrestrial microorganisms, even under highly desiccating environmental conditions of relevance to Mars. They may therefore be useful as chemical and isotopic ;standards; that preserve evidence of

  10. Laboratory-Measured and Property-Transfer Modeled Saturated Hydraulic Conductivity of Snake River Plain Aquifer Sediments at the Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Perkins, Kim S.

    2008-01-01

    Sediments are believed to comprise as much as 50 percent of the Snake River Plain aquifer thickness in some locations within the Idaho National Laboratory. However, the hydraulic properties of these deep sediments have not been well characterized and they are not represented explicitly in the current conceptual model of subregional scale ground-water flow. The purpose of this study is to evaluate the nature of the sedimentary material within the aquifer and to test the applicability of a site-specific property-transfer model developed for the sedimentary interbeds of the unsaturated zone. Saturated hydraulic conductivity (Ksat) was measured for 10 core samples from sedimentary interbeds within the Snake River Plain aquifer and also estimated using the property-transfer model. The property-transfer model for predicting Ksat was previously developed using a multiple linear-regression technique with bulk physical-property measurements (bulk density [pbulk], the median particle diameter, and the uniformity coefficient) as the explanatory variables. The model systematically underestimates Ksat,typically by about a factor of 10, which likely is due to higher bulk-density values for the aquifer samples compared to the samples from the unsaturated zone upon which the model was developed. Linear relations between the logarithm of Ksat and pbulk also were explored for comparison.

  11. Acidalia Plain

    NASA Image and Video Library

    2006-05-03

    This MOC image shows a relatively flat plain in Acidalia Planitia. The circular feature near the left west edge is the surface manifestation of a buried impact crater, a common feature observed on the northern plains of Mars

  12. LASE measurements of water vapor and aerosol profiles during the Plains Elevated Convection at Night (PECAN) field experiment

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Ferrare, R. A.; Kooi, S. A.; Butler, C. F.; Notari, A.; Hair, J. W.; Collins, J. E., Jr.; Ismail, S.

    2015-12-01

    The Lidar Atmospheric Sensing Experiment (LASE) system was deployed on the NASA DC-8 aircraft during the Plains Elevated Convection At Night (PECAN) field experiment, which was conducted during June-July 2015 over the central and southern plains. LASE is an active remote sensor that employs the differential absorption lidar (DIAL) technique to measure range resolved profiles of water vapor and aerosols above and below the aircraft. The DC-8 conducted nine local science flights from June 30- July 14 where LASE sampled water vapor and aerosol fields in support of the PECAN primary science objectives relating to better understanding nocturnal Mesoscale Convective Systems (MCSs), Convective Initiation (CI), the Low Level Jet (LLJ), bores, and to compare different airborne and ground based measurements. LASE observed large spatial and temporal variability in water vapor and aerosol distributions in advance of nocturnal MCSs, across bores resulting from MCS outflow boundaries, and across the LLJ associated with the development of MCSs and CI. An overview of the LASE data collected during the PECAN field experiment will be presented where emphasis will be placed on variability of water vapor profiles in the vicinity of severe storms and intense convection in the central and southern plains. Preliminary comparisons show good agreement between coincident LASE and radiosonde water vapor profiles. In addition, an advanced water vapor DIAL system being developed at NASA Langley will be discussed.

  13. GRL-FLUXNET: Measuring GHG, Water, and Microbial Fluxes in the Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Gowda, P. H.; Steiner, J. L.; Wagle, P.; Northup, B. K.

    2016-12-01

    The GRLNET flux tower sites use eddy covariance methods to measure the exchanges of carbon dioxide, water vapor, and energy between the atmosphere and a diverse range of terrestrial ecosystems including native and improved tallgrass prairie pastures, burned and unburned pastures, grazed and non-grazed pastures, till and no-till winter wheat and canola, grazed and non-grazed winter wheat, grazed and non-grazed alfalfa. In addition, chamber-based measurements of soil emissions of three major greenhouse gases (CO2, CH4, and N2O) and chamber-based measurements of net ecosystem CO2 exchange (NEE) and ecosystem respiration (autotrophic and heterotrophic) will be carried at the eddy flux sites and several small plot scales with different levels of nitrogen (N), legume treatment, and tillage systems. Biometerological variables such as leaf area index, canopy height, and dry biomass will be collected periodically. Soil chemistry and nutrient status (total soil C and N, extractable soil C, NO2, NO3, NO4, and basic organic acids) and soil microbial community and their activities will be monitored throughout the year at the study sites.

  14. Regional CO2 and latent heat surface fluxes in the Southern Great Plains: Measurements, modeling, and scaling

    SciTech Connect

    Riley, W. J.; Biraud, S.C.; Torn, M.S.; Fischer, M.L.; Billesbach, D.P.; Berry, J.A.

    2009-08-15

    Characterizing net ecosystem exchanges (NEE) of CO{sub 2} and sensible and latent heat fluxes in heterogeneous landscapes is difficult, yet critical given expected changes in climate and land use. We report here a measurement and modeling study designed to improve our understanding of surface to atmosphere gas exchanges under very heterogeneous land cover in the mostly agricultural U.S. Southern Great Plains (SGP). We combined three years of site-level, eddy covariance measurements in several of the dominant land cover types with regional-scale climate data from the distributed Mesonet stations and Next Generation Weather Radar precipitation measurements to calibrate a land surface model of trace gas and energy exchanges (isotope-enabled land surface model (ISOLSM)). Yearly variations in vegetation cover distributions were estimated from Moderate Resolution Imaging Spectroradiometer normalized difference vegetation index and compared to regional and subregional vegetation cover type estimates from the U.S. Department of Agriculture census. We first applied ISOLSM at a 250 m spatial scale to account for vegetation cover type and leaf area variations that occur on hundred meter scales. Because of computational constraints, we developed a subsampling scheme within 10 km 'macrocells' to perform these high-resolution simulations. We estimate that the Atmospheric Radiation Measurement Climate Research Facility SGP region net CO{sub 2} exchange with the local atmosphere was -240, -340, and -270 gC m{sup -2} yr{sup -1} (positive toward the atmosphere) in 2003, 2004, and 2005, respectively, with large seasonal variations. We also performed simulations using two scaling approaches at resolutions of 10, 30, 60, and 90 km. The scaling approach applied in current land surface models led to regional NEE biases of up to 50 and 20% in weekly and annual estimates, respectively. An important factor in causing these biases was the complex leaf area index (LAI) distribution within

  15. Regional CO2 and latent heat surface fluxes in the Southern Great Plains: Measurements, modeling, and scaling

    NASA Astrophysics Data System (ADS)

    Riley, W. J.; Biraud, S. C.; Torn, M. S.; Fischer, M. L.; Billesbach, D. P.; Berry, J. A.

    2009-12-01

    Characterizing net ecosystem exchanges (NEE) of CO2 and sensible and latent heat fluxes in heterogeneous landscapes is difficult, yet critical given expected changes in climate and land use. We report here a measurement and modeling study designed to improve our understanding of surface to atmosphere gas exchanges under very heterogeneous land cover in the mostly agricultural U.S. Southern Great Plains (SGP). We combined three years of site-level, eddy covariance measurements in several of the dominant land cover types with regional-scale climate data from the distributed Mesonet stations and Next Generation Weather Radar precipitation measurements to calibrate a land surface model of trace gas and energy exchanges (isotope-enabled land surface model (ISOLSM)). Yearly variations in vegetation cover distributions were estimated from Moderate Resolution Imaging Spectroradiometer normalized difference vegetation index and compared to regional and subregional vegetation cover type estimates from the U.S. Department of Agriculture census. We first applied ISOLSM at a 250 m spatial scale to account for vegetation cover type and leaf area variations that occur on hundred meter scales. Because of computational constraints, we developed a subsampling scheme within 10 km "macrocells" to perform these high-resolution simulations. We estimate that the Atmospheric Radiation Measurement Climate Research Facility SGP region net CO2 exchange with the local atmosphere was -240, -340, and -270 gC m-2 yr-1 (positive toward the atmosphere) in 2003, 2004, and 2005, respectively, with large seasonal variations. We also performed simulations using two scaling approaches at resolutions of 10, 30, 60, and 90 km. The scaling approach applied in current land surface models led to regional NEE biases of up to 50 and 20% in weekly and annual estimates, respectively. An important factor in causing these biases was the complex leaf area index (LAI) distribution within cover types. Biases in

  16. Deformation Rates in the Snake River Plain and Adjacent Basin and Range Regions Based on GPS Measurements

    NASA Astrophysics Data System (ADS)

    Payne, S. J.; McCaffrey, R.; King, R. W.; Kattenhorn, S. A.

    2012-12-01

    We estimate horizontal velocities for 405 sites using Global Positioning System (GPS) phase data collected from 1994 to 2010 within the Northern Basin and Range Province, U.S.A. The velocities reveal a slowly-deforming region within the Snake River Plain in Idaho and Owyhee-Oregon Plateau in Oregon separated from the actively extending adjacent Basin and Range regions by shear. Our results show a NE-oriented extensional strain rate of 5.6 ± 0.7 nanostrain/yr in the Centennial Tectonic Belt and an ~E-oriented extensional strain rate of 3.5 ± 0.2 nanostrain/yr in the Great Basin. These extensional rates contrast with the very low strain rate within the 125 km x 650 km region of the Snake River Plain and Owyhee-Oregon Plateau which is not distinguishable from zero (-0.1 ± 0.4 x nanostrain/yr). Inversions of Snake River Plain velocities with dike-opening models indicate that rapid extension by dike intrusion in volcanic rift zones, as previously hypothesized, is not currently occurring. GPS data also disclose that rapid extension in the surrounding regions adjacent to the slowly-deforming region of the Snake River Plain drives shear between them. We estimate right-lateral shear with slip rates of 0.3-1.5 mm/yr along the northwestern boundary adjacent to the Centennial Tectonic Belt and left-lateral oblique extension with slip rates of 0.5-1.5 mm/yr along the southeastern boundary adjacent to the Intermountain Seismic Belt. The fastest lateral shearing evident in the GPS occurs near the Yellowstone Plateau where earthquakes with right-lateral strike-slip focal mechanisms are within a NE-trending zone of seismicity. The regional velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic Belt, Snake River Plain, Owyhee-Oregon Plateau, and eastern Oregon, indicating that clockwise rotation is not locally driven by Yellowstone hotspot volcanism, but instead by extension to the south across the Wasatch fault possibly due to gravitational

  17. Comparison of Seasonal Terrestrial Water Storage Variations from GRACE with Groundwater-level Measurements from the High Plains Aquifer (USA)

    NASA Technical Reports Server (NTRS)

    Strassberg, Gil; Scanlon, Bridget R.; Rodell, Matthew

    2007-01-01

    This study presents the first direct comparison of variations in seasonal GWS derived from GRACE TWS and simulated SM with GW-level measurements in a semiarid region. Results showed that variations in GWS and SM are the main sources controlling TWS changes over the High Plains, with negligible storage changes from surface water, snow, and biomass. Seasonal variations in GRACE TWS compare favorably with combined GWS from GW-level measurements (total 2,700 wells, average 1,050 GW-level measurements per season) and simulated SM from the Noah land surface model (R = 0.82, RMSD = 33 mm). Estimated uncertainty in seasonal GRACE-derived TWS is 8 mm, and estimated uncertainty in TWS changes is 11 mm. Estimated uncertainty in SM changes is 11 mm and combined uncertainty for TWS-SM changes is 15 mm. Seasonal TWS changes are detectable in 7 out of 9 monitored periods and maximum changes within a year (e.g. between winter and summer) are detectable in all 5 monitored periods. Grace-derived GWS calculated from TWS-SM generally agrees with estimates based on GW-level measurements (R = 0.58, RMSD = 33 mm). Seasonal TWS-SM changes are detectable in 5 out of the 9 monitored periods and maximum changes are detectable in all 5 monitored periods. Good correspondence between GRACE data and GW-level measurements from the intensively monitored High Plains aquifer validates the potential for using GRACE TWS and simulated SM to monitor GWS changes and aquifer depletion in semiarid regions subjected to intensive irrigation pumpage. This method can be used to monitor regions where large-scale aquifer depletion is ongoing, and in situ measurements are limited, such as the North China Plain or western India. This potential should be enhanced by future advances in GRACE processing, which will improve the spatial and temporal resolution of TWS changes, and will further increase applicability of GRACE data for monitoring GWS.

  18. Comparison of Seasonal Terrestrial Water Storage Variations from GRACE with Groundwater-level Measurements from the High Plains Aquifer (USA)

    NASA Technical Reports Server (NTRS)

    Strassberg, Gil; Scanlon, Bridget R.; Rodell, Matthew

    2007-01-01

    This study presents the first direct comparison of variations in seasonal GWS derived from GRACE TWS and simulated SM with GW-level measurements in a semiarid region. Results showed that variations in GWS and SM are the main sources controlling TWS changes over the High Plains, with negligible storage changes from surface water, snow, and biomass. Seasonal variations in GRACE TWS compare favorably with combined GWS from GW-level measurements (total 2,700 wells, average 1,050 GW-level measurements per season) and simulated SM from the Noah land surface model (R = 0.82, RMSD = 33 mm). Estimated uncertainty in seasonal GRACE-derived TWS is 8 mm, and estimated uncertainty in TWS changes is 11 mm. Estimated uncertainty in SM changes is 11 mm and combined uncertainty for TWS-SM changes is 15 mm. Seasonal TWS changes are detectable in 7 out of 9 monitored periods and maximum changes within a year (e.g. between winter and summer) are detectable in all 5 monitored periods. Grace-derived GWS calculated from TWS-SM generally agrees with estimates based on GW-level measurements (R = 0.58, RMSD = 33 mm). Seasonal TWS-SM changes are detectable in 5 out of the 9 monitored periods and maximum changes are detectable in all 5 monitored periods. Good correspondence between GRACE data and GW-level measurements from the intensively monitored High Plains aquifer validates the potential for using GRACE TWS and simulated SM to monitor GWS changes and aquifer depletion in semiarid regions subjected to intensive irrigation pumpage. This method can be used to monitor regions where large-scale aquifer depletion is ongoing, and in situ measurements are limited, such as the North China Plain or western India. This potential should be enhanced by future advances in GRACE processing, which will improve the spatial and temporal resolution of TWS changes, and will further increase applicability of GRACE data for monitoring GWS.

  19. Airborne DIAL and ground-based Raman lidar measurements of water vapor over the Southern Great Plains

    NASA Astrophysics Data System (ADS)

    Ferrare, Richard A.; Browell, Edward V.; Ismail, Syed; Kooi, Susan; Brackett, Vince G.; Clayton, Marian; Notari, Anthony; Butler, Carolyn F.; Barrick, John; Diskin, Glenn; Lesht, Barry; Schmidlin, Frank J.; Turner, Dave; Whiteman, David; Miloshevich, Larry

    2003-12-01

    Measurements of water vapor profiles over the Southern Great Plains acquired by two different lidars are presented. NASA's airborne DIAL Lidar Atmospheric Sensing Experiment (LASE) system measured water vapor, aerosol, and cloud profiles during the ARM/FIRE Water Vapor Experiment (AFWEX) in November-December 2000 and during the International H2O Project (IHOP) in May-June 2002. LASE measurements acquired during AFWEX are used to characterize upper troposphere water vapor measured by ground-based Raman lidars, radiosondes, and in situ aircraft sensors. LASE measurements acquired during IHOP are being used to better understand the influence water vapor variability on the initiation of deep convection and to improve the quantification and prediction of precipitation associated with these storms. The automated Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar (CARL) has been routinely measuring profiles of water vapor mixing ratio, relative humidity, aerosol extinction, aerosol backscattering, and aerosol and cloud depolarization during both daytime and nighttime operations. Aerosol and water vapor profiles acquired since March 1998 are used to investigate the seasonal variability of the vertical distributions of water vapor and aerosols.

  20. Site, environmental and airflow characteristics for mono-slope beef cattle facilities in the Northern Great Plains

    USDA-ARS?s Scientific Manuscript database

    In conjunction with an emission monitoring study, long-term airflow and environmental data were collected from four regional producer-owned and -operated mono-slope beef cattle facilities in the Northern Great Plains. The barns were oriented east-west, with approximate dimensions of an 8-m south wal...

  1. Timing of chopper herbicide site preparation relative to bedding in the establishment of lower coastal plain pine plantations

    Treesearch

    Dwight K. Lauer; Harold E. Quicke

    2006-01-01

    The timing of Chopper® (BASF Corporation, Research Triangle Park, NC) herbicide applications before and after bedding was examined at four Lower Coastal Plain locations. Two bedding regimes, mid-season and late-season, were included at each location. Mid-season bedding occurred between May and July and late-season bedding between September and November. No post-plant...

  2. Comparison of measured and modeled surface fluxes at two experimental sites in Bulgaria

    NASA Astrophysics Data System (ADS)

    Artinyan, Eram; Bachvarova, Ekaterina; Nedkov, Nikolay; Shopova, Nadezhda; Tsarev, Petko

    2017-04-01

    The poster presents the results of eddy flux measurements at the sites of Chirpan (172 m. a.s.l.) and Rozhen (1759 m. a.s.l.) in Bulgaria compared to flux series computed by SURFEX modeling platform forced with measured meteorological data. The aim of the project is to validate the use of SURFEX modules to simulate local water and energy budget of typical Bulgarian landscapes in order to achieve better representation of evapotranspiration, infiltration and runoff at larger scales. More than 2 years of micrometeorological measures of the first site and 1 year of the second site are completed with ground flux and radiation balance measures with half hour time step. That permits to compare measured and simulated terms of the energy balance equation: net radiation, sensible and latent heat fluxes and ground flux, as well as measured and simulated soil moisture and snow cover properties. Comparison shows higher simulated than measured evapotranspiration in spring for the both sites. For the plain it may be explained with the Vertisol soil type, which high clay content conserves moisture - a feature that has to be maintained in the simulation. For the mountain site snow water content variability shows much faster response of the simulation than the measures during both snow accumulation and snow melt period. Different results are obtained with the introduction of multi-energy-balance option in SURFEX. Keywords: energy balance, water budget, surface fluxes, micro-meteorological method, SURFEX

  3. The collection of clear-water contraction and abutment scour data at selected bridge sites in the coastal plain and piedmont of South Carolina

    USGS Publications Warehouse

    Benedict, Stephen T.; Caldwell, Andy W.; Edited by Abt, S. R. and others

    1998-01-01

    Clear-water contraction and abutment scour data were collected at 128 bridge sites in South Carolina. In the sandy soils of the Coastal Plain, clear-water-scour data were collected at 63 sites (scour depths ranged from 0.4 to 7.2 meters.) In the clayey soils of the Piedmont, clear-water-scour data were collected at 47 sites (scour depths ranged from 0 to 1.4 meters.) In the sandy, clayey soils of the Piedmont, clear-water-scour data were collected at 18 sites (scour depths ranged from 0.9 to 5.5 meters.) The field data are to be compiled into a data base that will include bridge age; basin, soil and hydraulic characteristics; and theoretical scour data. The data are planned to be statistically analyzed for significant relations that may help explain and (or) predict maximum scour depths at bridges in South Carolina.

  4. Stream Channel Offset and Preliminary Slip Rate on the San Andreas Fault, at the Van Matre Ranch Site, in the Carrizo Plain, California

    NASA Astrophysics Data System (ADS)

    Noriega-Carlos, G. R.; Grant, L. B.; Arrowsmith, R.; Young, J. J.

    2004-12-01

    To understand the spatial and temporal variation in fault slip it is important to improve the spatial coverage of slip and slip rate measurements along major active faults. A set of well-preserved channels are offset across the San Andreas fault at the Van Matre Ranch (VMR) site (35.154N, 119.700W) in the Elkhorn Hills area of the Carrizo Plain. The fault zone and offset channels at VMR were exposed by excavation in 1993 and 2004. This study included one fault-perpendicular and 5 fault-parallel trenches that exposed the buried thalwegs of several offset channels. Seventeen samples were collected from channel margin deposits for 14C dating and survey data was taken for accurate offset measurement of the buried thalwegs and geomorphic channels. The geomorphic history of the site is well manifested in the excavations with clear evidence for initial incision of the channels into Plio-Pleistocene fan units that were typically heavily bioturbated. The channels then back filled and the stratified channel sediments grade laterally into clayey silts. The buried thalweg of the currently active channel is offset 24.8 m, while the geomorphic offset is 27.6 m (qualitatively defined conservative uncertainties on offsets are ± 1m). The thalweg of the first beheaded channel is offset 48.8 m with a geomorphic offset of 51.8 m. The geomorphic offset of the second beheaded channel ranges from 71.9 to 79.0 m. There are no ages associated with these channels. The median dates of samples from the clayey silts in the currently active channel margin range between A.D. 1221 and 1108, implying a 34.7 mm/yr slip rate. The significance of the samples ages is dependent upon interpretation of the sediments in which they were collected. They were collected from clayey silts which are either colluvium, washed down from adjacent hill slopes, or autochthonous alteration of the channel deposits by pedogenic processes (largely burrowing). If the samples were derived from colluvial processes, the

  5. Vertical profiles of black carbon measured by a micro-aethalometer in summer in the North China Plain

    NASA Astrophysics Data System (ADS)

    Ran, Liang; Deng, Zhaoze; Xu, Xiaobin; Yan, Peng; Lin, Weili; Wang, Ying; Tian, Ping; Wang, Pucai; Pan, Weilin; Lu, Daren

    2016-08-01

    Black carbon (BC) is a dominant absorber in the visible spectrum and a potent factor in climatic effects. Vertical profiles of BC were measured using a micro-aethalometer attached to a tethered balloon during the Vertical Observations of trace Gases and Aerosols (VOGA) field campaign, in summer 2014 at a semirural site in the North China Plain (NCP). The diurnal cycle of BC vertical distributions following the evolution of the mixing layer (ML) was investigated for the first time in the NCP region. Statistical parameters including identified mixing height (Hm) and average BC mass concentrations within the ML (Cm) and in the free troposphere (Cf) were obtained for a selected dataset of 67 vertical profiles. Hm was usually lower than 0.2 km in the early morning and rapidly rose thereafter due to strengthened turbulence. The maximum height of the ML was reached in the late afternoon. The top of a full developed ML exceeded 1 km on sunny days in summer, while it stayed much lower on cloudy days. The sunset triggered the collapse of the ML, and a stable nocturnal boundary layer (NBL) gradually formed. Accordingly, the highest level Cm was found in the early morning and the lowest was found in the afternoon. In the daytime, BC was almost uniformly distributed within the ML and significantly decreased above the ML. During the field campaign, Cm averaged about 5.16 ± 2.49 µg m-3, with a range of 1.12 to 14.49 µg m-3, comparable with observational results in many polluted urban areas such as Milan in Italy and Shanghai in China. As evening approached, BC gradually built up near the surface and exponentially declined with height. In contrast to the large variability found both in Hm and Cm, Cf stayed relatively unaffected through the day. Cf was less than 10 % of the ground level under clean conditions, while it amounted to half of the ground level in some polluted cases. In situ measurements of BC vertical profiles would hopefully have an important implication for

  6. Ground-water flow, geochemistry, and effects of agricultural practices on nitrogen transport at study sites in the Piedmont and Coastal Plain physiographic provinces, Patuxent River Basin, Maryland

    USGS Publications Warehouse

    McFarland, E. Randolph

    1995-01-01

    The effects of agricultural practices on nitrogen transport were assessed at two 10-acre study sites in the Patuxent River Basin, Maryland, during 1986- 92. Nitrogen load was larger in ground water than in surface runoff at both sites. Denitrification and (or) long traveltimes of ground water at the study site in the Piedmont Province resulted in lower concentrations of nitrate than at the site in the Coastal Plain Province. The study period was brief compared to traveltimes of nitrogen in ground water of several decades. Therefore, the effects of agricultural practices were observed only in parts of both sites. At the Piedmont site, nitrate concentration in two springs was 7 mg/L (milligrams per liter) two years after corn was grown under no-till cultivation, and decreased to 3.5 mg/L during 4 years while cultivation practices and crops included no-till soybeans, continuous alfalfa, and contoured strips alternated among corn, alfalfa, and soybeans. Nitrogen load in ground water decreased from 12 to 6 (lb/acre)/yr (pounds per acre per year). At the Coastal Plain site, the concentration of nitrate in ground water decreased from 10 mg/L after soybeans were grown under no-till cultivation for 2 years, to 9 mg/L after soybeans were grown under conventional till cultivation for 3 years. No-till cultivation in 1988 resulted in a greater nitrogen load in ground water (12.55 (lbs/acre)/yr), as well as greater ground-water recharge and discharge, than conventional till cultivation in 1991 (11.51 (lbs/ acre)/yr), even though the amount and timing of precipitation for both years were similar.

  7. Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870-2000.

    PubMed

    Parton, William J; Gutmann, Myron P; Merchant, Emily R; Hartman, Melannie D; Adler, Paul R; McNeal, Frederick M; Lutz, Susan M

    2015-08-25

    The Great Plains region of the United States is an agricultural production center for the global market and, as such, an important source of greenhouse gas (GHG) emissions. This article uses historical agricultural census data and ecosystem models to estimate the magnitude of annual GHG fluxes from all agricultural sources (e.g., cropping, livestock raising, irrigation, fertilizer production, tractor use) in the Great Plains from 1870 to 2000. Here, we show that carbon (C) released during the plow-out of native grasslands was the largest source of GHG emissions before 1930, whereas livestock production, direct energy use, and soil nitrous oxide emissions are currently the largest sources. Climatic factors mediate these emissions, with cool and wet weather promoting C sequestration and hot and dry weather increasing GHG release. This analysis demonstrates the long-term ecosystem consequences of both historical and current agricultural activities, but also indicates that adoption of available alternative management practices could substantially mitigate agricultural GHG fluxes, ranging from a 34% reduction with a 25% adoption rate to as much as complete elimination with possible net sequestration of C when a greater proportion of farmers adopt new agricultural practices.

  8. Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870–2000

    PubMed Central

    Parton, William J.; Gutmann, Myron P.; Merchant, Emily R.; Hartman, Melannie D.; Adler, Paul R.; McNeal, Frederick M.; Lutz, Susan M.

    2015-01-01

    The Great Plains region of the United States is an agricultural production center for the global market and, as such, an important source of greenhouse gas (GHG) emissions. This article uses historical agricultural census data and ecosystem models to estimate the magnitude of annual GHG fluxes from all agricultural sources (e.g., cropping, livestock raising, irrigation, fertilizer production, tractor use) in the Great Plains from 1870 to 2000. Here, we show that carbon (C) released during the plow-out of native grasslands was the largest source of GHG emissions before 1930, whereas livestock production, direct energy use, and soil nitrous oxide emissions are currently the largest sources. Climatic factors mediate these emissions, with cool and wet weather promoting C sequestration and hot and dry weather increasing GHG release. This analysis demonstrates the long-term ecosystem consequences of both historical and current agricultural activities, but also indicates that adoption of available alternative management practices could substantially mitigate agricultural GHG fluxes, ranging from a 34% reduction with a 25% adoption rate to as much as complete elimination with possible net sequestration of C when a greater proportion of farmers adopt new agricultural practices. PMID:26240366

  9. A Carbon Flux Super Site. New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling

    SciTech Connect

    Leclerc, Monique Y.

    2014-11-17

    This final report presents the main activities and results of the project “A Carbon Flux Super Site: New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling” from 10/1/2006 to 9/30/2014. It describes the new AmeriFlux tower site (Aiken) at Savanna River Site (SC) and instrumentation, long term eddy-covariance, sodar, microbarograph, soil and other measurements at the site, and intensive field campaigns of tracer experiment at the Carbon Flux Super Site, SC, in 2009 and at ARM-CF site, Lamont, OK, and experiments in Plains, GA. The main results on tracer experiment and modeling, on low-level jet characteristics and their impact on fluxes, on gravity waves and their influence on eddy fluxes, and other results are briefly described in the report.

  10. Aerosol Black Carbon In The Indo-Gangetic Plains And In The Foothills Of Himalayas, Measurements vs. Global Modeling

    NASA Astrophysics Data System (ADS)

    Hyvarinen, A.; Henriksson, S.; Räisänen, P.; Pietikäinen, J.; Hooda, R. K.; Laaksonen, A. J.; Lihavainen, H.

    2012-12-01

    Aerosol particles associated with atmospheric brown clouds are highly absorbing due to their large black carbon (BC) content and the occasional presence of large amounts of desert dust. This causes a reduction of solar radiation at the surface accompanied by a substantial atmospheric heating. Direct field observations show that the aerosol pollution from the Indo-Gangetic Plains is transported to the Himalayan foothills especially during the pre-monsoon season. Satellite studies indicate that this pollution is transported further to the higher Himalayas. This would affect the mass balance of the Himalayan glaciers, as they would be influenced by the atmospheric heating caused by the absorbing aerosols, as well as the surface darkening of bright surfaces caused by BC deposition. Global models may be used to estimate the atmospheric concentrations of BC and their subsequent surface deposition. Using different emission scenarios, predictions of possible future trends may also be conducted. However, detailed comparisons between modeled and measured aerosol data should be made to reveal how well the measured aerosol properties can be simulated with the existing emission inventories. In this study, we compare the results of a global atmospheric model (ECHAM5-HAM) against measurements of BC surface concentrations in India. The model is run at an atmospheric resolution of T42L19, implying a horizontal resolution of about 2.8 degrees and 19 vertical levels. Aerosol transport, removal and chemistry are simulated. The emission inventories used are the REAS and GAINS inventories, and three emission scenarios are considered. BC data from two different stations is used: The first station is located in the Indo-Gangetic Plains, in Gual Pahari, about 35 km south of New Delhi. The second station is on the foothills of the Himalayas, in Mukteshwar, about 350 km east of New Delhi at an elevation of about 2 km ASL. Data from Mukteshwar is available from September 2005; data from Gual

  11. Low frequency amplification in deep alluvial basins: an example in the Po Plain (Northern Italy) and consequences for site specific SHA

    NASA Astrophysics Data System (ADS)

    Mascandola, Claudia; Massa, Marco; Barani, Simone; Lovati, Sara; Santulin, Marco

    2016-04-01

    This work deals with the problem of long period seismic site amplification that potentially might involve large and deep alluvial basins in case of strong earthquakes. In particular, it is here presented a case study in the Po Plain (Northern Italy), one of the most extended and deep sedimentary basin worldwide. Even if the studied area shows a low annul seismicity rate with rare strong events (Mw>6.0) and it is characterized by low to medium seismic hazard conditions, the seismic risk is significant for the high density of civil and strategic infrastructures (i.e. high degree of exposition) and the unfavourable geological conditions. The aim of this work is to provide general considerations about the seismic site response of the Po Plain, with particular attention on deep discontinuities (i.e. geological bedrock), in terms of potential low frequency amplification and their incidence on the PSHA. The current results were obtained through active and passive geophysical investigations performed near Castelleone, a site where a seismic station, which is part of the INGV (National Institute for Geophysics and Volcanology) Seismic National Network, is installed from 2009. In particular, the active analyses consisted in a MASW and a refraction survey, whereas the passive ones consisted in seismic ambient noise acquisitions with single stations and arrays of increasing aperture. The results in terms of noise HVSR indicate two main peaks, the first around 0.17 Hz and the second, as already stated in the recent literature, around 0.7 Hz. In order to correlate the amplified frequencies with the geological discontinuities, the array acquisitions were processed to obtain a shear waves velocity profile, computed with a joint inversion, considering the experimental dispersion curves and the HVSR results. The obtained velocity profile shows two main discontinuities: the shallower at ~165 m of depth, which can be correlated to the seismic bedrock (i.e. Vs > 800 m/) and the deeper

  12. Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM)

    DOE PAGES

    Parworth, Caroline; Tilp, Alison; Fast, Jerome; ...

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ~30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations ofmore » the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.« less

  13. Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM)

    SciTech Connect

    Parworth, Caroline; Tilp, Alison; Fast, Jerome; Mei, Fan; Shippert, Tim; Sivaraman, Chitra; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ~30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations of the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.

  14. Mid-Holocene palaeoflood events recorded at the Zhongqiao Neolithic cultural site in the Jianghan Plain, middle Yangtze River Valley, China

    NASA Astrophysics Data System (ADS)

    Wu, Li; Zhu, Cheng; Ma, Chunmei; Li, Feng; Meng, Huaping; Liu, Hui; Li, Linying; Wang, Xiaocui; Sun, Wei; Song, Yougui

    2017-10-01

    Palaeo-hydrological and archaeological investigations were carried out in the Jianghan Plain in the middle reaches of the Yangtze River. Based on a comparative analysis of modern flood sediments and multidisciplinary approaches such as AMS14C and archaeological dating, zircon micromorphology, grain size, magnetic susceptibility, and geochemistry, we identified palaeoflood sediments preserved at the Zhongqiao archaeological site. The results indicate that three palaeoflood events (i.e. 4800-4597, 4479-4367, and 4168-3850 cal. yr BP) occurred at the Zhongqiao Site. Comparisons of palaeoflood deposit layers at a number of Neolithic cultural sites show that two extraordinary palaeoflood events occurred in the Jianghan Plain during approximately 4900-4600 cal. yr BP (i.e.mid-late Qujialing cultural period) and 4100-3800 cal. yr BP (i.e. from late Shijiahe cultural period to the Xia Dynasty). Further analysis of the environmental context suggests that these flooding events might have been connected with great climate variability during approximately 5000-4500 cal. yr BP and at ca. 4000 cal. yr BP. These two palaeoflood events were closely related to the expansion of the Jianghan lakes driven by the climatic change, which in turn influenced the rise and fall of the Neolithic cultures in the middle reaches of the Yangtze River. Other evidence also suggests that the intensified discrepancy between social development and environmental change processes (especially the hydrological process) during the late Shijiahe cultural period might be the key factor causing the collapse of the Shijiahe Culture. The extraordinary floods related to the climatic anomaly at ca. 4000 cal. yr BP and political conflicts from internal or other cultural areas all accelerated the collapse of the Shijiahe Culture.

  15. A long-term study of aerosol–cloud interactions and their radiative effect at the Southern Great Plains using ground-based measurements

    DOE PAGES

    Sena, Elisa T.; McComiskey, Allison; Feingold, Graham

    2016-09-13

    Empirical estimates of the microphysical response of cloud droplet size distribution to aerosol perturbations are commonly used to constrain aerosol–cloud interactions in climate models. Instead of empirical microphysical estimates, here macroscopic variables are analyzed to address the influence of aerosol particles and meteorological descriptors on instantaneous cloud albedo and the radiative effect of shallow liquid water clouds. Long-term ground-based measurements from the Atmospheric Radiation Measurement (ARM) program over the Southern Great Plains are used. A broad statistical analysis was performed on 14 years of coincident measurements of low clouds, aerosol, and meteorological properties. Here two cases representing conflicting results regardingmore » the relationship between the aerosol and the cloud radiative effect were selected and studied in greater detail. Microphysical estimates are shown to be very uncertain and to depend strongly on the methodology, retrieval technique and averaging scale. For this continental site, the results indicate that the influence of the aerosol on the shallow cloud radiative effect and albedo is weak and that macroscopic cloud properties and dynamics play a much larger role in determining the instantaneous cloud radiative effect compared to microphysical effects. On a daily basis, aerosol shows no correlation with cloud radiative properties (correlation = -0.01 ± 0.03), whereas the liquid water path shows a clear signal (correlation = 0.56 ± 0.02).« less

  16. A long-term study of aerosol–cloud interactions and their radiative effect at the Southern Great Plains using ground-based measurements

    SciTech Connect

    Sena, Elisa T.; McComiskey, Allison; Feingold, Graham

    2016-09-13

    Empirical estimates of the microphysical response of cloud droplet size distribution to aerosol perturbations are commonly used to constrain aerosol–cloud interactions in climate models. Instead of empirical microphysical estimates, here macroscopic variables are analyzed to address the influence of aerosol particles and meteorological descriptors on instantaneous cloud albedo and the radiative effect of shallow liquid water clouds. Long-term ground-based measurements from the Atmospheric Radiation Measurement (ARM) program over the Southern Great Plains are used. A broad statistical analysis was performed on 14 years of coincident measurements of low clouds, aerosol, and meteorological properties. Here two cases representing conflicting results regarding the relationship between the aerosol and the cloud radiative effect were selected and studied in greater detail. Microphysical estimates are shown to be very uncertain and to depend strongly on the methodology, retrieval technique and averaging scale. For this continental site, the results indicate that the influence of the aerosol on the shallow cloud radiative effect and albedo is weak and that macroscopic cloud properties and dynamics play a much larger role in determining the instantaneous cloud radiative effect compared to microphysical effects. On a daily basis, aerosol shows no correlation with cloud radiative properties (correlation = -0.01 ± 0.03), whereas the liquid water path shows a clear signal (correlation = 0.56 ± 0.02).

  17. A large OH sink in summertime surface air of the northern Indo-Gangetic plain revealed through in-situ total OH Reactivity measurements

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Garg, S.; Chandra, P.; Sinha, V.

    2013-12-01

    The summertime surface air in the Northern Indo-Gangetic plain is characterized by high temperatures (up to 47 oC) and strong solar radiation (up to 765 Watt/m2), which together with large urban and agricultural emissions in the densely populated region, lead to intense photochemistry. The hydroxyl radical (OH) is the primary atmospheric oxidant responsible for oxidizing gaseous emissions and hence direct measurements of the total OH reactivity are necessary for understanding reactive emission budgets and constraining instantaneous ozone production regimes. Here, we present the first dataset of direct OH reactivity measurements from a regional surface site in the northern India-Gangetic plain (30.667°N, 76.729°E; 310 m above mean sea level). The measurements were performed in April-May 2013 using the comparative reactivity method [1]. A single PTRMS was used for sequential measurements of the total OH reactivity and circa 20 ambient VOCs. Nitrogen oxides (NO and NO2), sulphur dioxide, carbon monoxide, ozone and meteorological parameters were measured concomitantly using the IISER Mohali atmospheric chemistry facility. Air masses impacting the site arrived from rural and agricultural regions at high wind speeds of up to 24 m/s. A large variability was observed in the diel hourly averaged OH reactivity spanning an interquartile range of 36 s-1 - 120 s-1. The daily average and median total OH reactivity was 76 s-1 and 73 s-1, respectively corresponding to average and median OH chemical lifetimes of 13.1 milliseconds and 13.6 milliseconds, respectively. The five highest individual OH sinks measured were: acetaldehyde > isoprene+furan > NO2 > trimethyl benzene > CO. The measured OH reactivity did not show a pronounced diel cycle but remarkably the highest missing OH reactivity fraction (> 50 %) was observed during afternoon hours (12-16 local time) on very sunny days with low RH. This suggests that a significant fraction of secondary oxidation products formed due to

  18. An automated fog monitoring system for the Indo-Gangetic Plains based on satellite measurements

    NASA Astrophysics Data System (ADS)

    Patil, Dinesh; Chourey, Reema; Rizvi, Sarwar; Singh, Manoj; Gautam, Ritesh

    2016-05-01

    Fog is a meteorological phenomenon that causes reduction in regional visibility and affects air quality, thus leading to various societal and economic implications, especially disrupting air and rail transportation. The persistent and widespread winter fog impacts the entire the Indo-Gangetic Plains (IGP), as frequently observed in satellite imagery. The IGP is a densely populated region in south Asia, inhabiting about 1/6th of the world's population, with a strong upward pollution trend. In this study, we have used multi-spectral radiances and aerosol/cloud retrievals from Terra/Aqua MODIS data for developing an automated web-based fog monitoring system over the IGP. Using our previous and existing methodologies, and ongoing algorithm development for the detection of fog and retrieval of associated microphysical properties (e.g. fog droplet effective radius), we characterize the widespread fog detection during both daytime and nighttime. Specifically, for the night time fog detection, the algorithm employs a satellite-based bi-spectral brightness temperature difference technique between two spectral channels: MODIS band-22 (3.9μm) and band-31 (10.75μm). Further, we are extending our algorithm development to geostationary satellites, for providing continuous monitoring of the spatial-temporal variation of fog. We anticipate that the ongoing and future development of a fog monitoring system would be of assistance to air, rail and vehicular transportation management, as well as for dissemination of fog information to government agencies and general public. The outputs of fog detection algorithm and related aerosol/cloud parameters are operationally disseminated via http://fogsouthasia.com/.

  19. Partial Anhysteretic Anisotropy Measured in the Greys Landing Ignimbrite of the Central Snake River Plain

    NASA Astrophysics Data System (ADS)

    Rea-Downing, G. H.; Finn, D. R.; Coe, R. S.; Brown, E. D.; Reichow, M. K.; Knott, T.; Branney, M. J.

    2014-12-01

    Magnetic remanence directions recorded in the glassy sub-lithologies of mid-Miocene rheomorphic Snake River Plain ignimbrites are often discrepant compared to the more reliable directions in crystalline centers and underlying baked paleosols. The rocks have undergone no tectonic strain, and the rheomorphic deformation preserved in the rock occurs at ˜800°C, above magnetic blocking temperatures. Accounting for the discrepantly shallow directions is critical for the use of magnetic remanence for stratigraphic correlation and structural/tectonic reconstructions. Here we present paleomagnetic and rock magnetic data from the Grey's Landing Ignimbrite that demonstrate a strong magnetic anisotropy carried by pseudo-single to single domain magnetite grains which deflect the remanence direction by up to 40°. Strongly lineated anisotropic samples collected at distant sections ( ˜20 km separation) have their remanence deflected toward the respective flow directions inferred from their directions of maximum magnetic susceptibility (K1). Shallow K1 directions in the basal vitrophyre cause a shallowing of magnetic remanence, while a range of steep to shallow K1 directions in the folded upper vitrophyre cause both a steepening and shallowing of the remanence, respectively. There is a strong relationship between the magnitudes of remanence deflection, anisotropy of thermal remanence, coercivity, and strength of natural remanent magnetization between individual samples. There is also a strong relationship between the magnitudes of partial anisotropy of anhysteretic remanent magnetization (pAARM) and the deflection of the remanence vector difference directions, which both increase significantly with higher alternating magnetic fields. Correction of the vector difference direction using the inverse of the pAARM tensor for the same AF range is moderately successful. Previous work suggests that curvilinear demagnetization trends in the basal vitrophyre of an ignimbrite were

  20. Ground-water flow, geochemistry, and effects of agricultural practices on nitrogen transport at study sites in the Piedmont and Coastal Plain physiographic provinces, Patuxent River basin, Maryland

    USGS Publications Warehouse

    McFarland, E. Randolph

    1997-01-01

    In an effort to improve water quality in Chesapeake Bay, agricultural practices are being promoted that are intended to reduce contaminant transport to the Bay. The effects of agricultural practices on nitrogen transport were assessed at two 10-acre study sites in the Patuxent River basin, Maryland, during 1986-92. Nitrogen load was larger in ground water than in surface runoff at both sites. At the study site in the Piedmont Province, nitrogen load in ground water decreased from 12 to 6 (lb/acre)/yr (pound per acre per year) as corn under no-till cultivation was replaced by no-till soybeans, continuous alfalfa, and contoured strip crops alternated among corn, alfalfa, and soybeans. At the study site in the Coastal Plain Province, no-till soybeans resulted in a nitrogen load in ground water of 12.55 (lb/acre)/yr, whereas conventional-till soybeans resulted in a nitrogen load in ground water of 11.51 (lb/acre)/yr.

  1. Long-term Measurements of Submicrometer Aerosol Chemistry at the Southern Great Plains (SGP) Using an Aerosol Chemical Speciation Monitor (ACSM)

    SciTech Connect

    Parworth, Caroline; Fast, Jerome D.; Mei, Fan; Shippert, Timothy R.; Sivaraman, Chitra; Tilp, Alison; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the U.S. Department of Energy’s Southern Great Plains (SGP) site are discussed. Over the period of 19 months (Nov. 20, 2010 – June 2012) highly time resolved (~30 min.) NR-PM1 data was recorded. Using this dataset the value-added product (VAP) of deriving organic aerosol components (OACOMP) is introduced. With this VAP, multivariate analysis of the measured organic mass spectral matrix can be performed on long term data to return organic aerosol (OA) factors that are associated with distinct sources, evolution processes, and physiochemical properties. Three factors were obtained from this VAP including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when nitrate increased due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations showed little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increased and were mainly associated with local fires. Isoprene and carbon monoxide emission rates were computed by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) to represent the spatial distribution of biogenic and anthropogenic sources, respectively. From this model there is evidence to support that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.

  2. Northern Plains 'Crater'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    10 December 2004 The lower left (southwest) corner of this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the location of a somewhat filled and buried meteor impact crater on the northern plains of Mars. The dark dots are boulders. A portion of a similar feature is seen in the upper right (northeast) corner of the image. This picture, showing landforms (including the odd mound north/northeast of the crater) that are typical of the martian northern lowland plains, was obtained as part of the MGS MOC effort to support the search for a landing site for the Phoenix Mars Scout lander. Phoenix will launch in 2007 and land on the northern plains in 2008. This image is located near 68.0oN, 227.4oW, and covers an area approximately 3 km (1.9 mi) wide. The scene is illuminated by sunlight from the lower left.

  3. Presence of Shocked Quartz at Two Cretaceous / Paleogene (K/Pg) Sites in the New Jersey Coastal Plain

    NASA Astrophysics Data System (ADS)

    Mahmood, S. S.; Jarret, S. J.; Sessa, J. A.; Bigolski, J. N.; Aldoroty, R. J.; Ebel, D. S.; Landman, N. H.

    2015-07-01

    Upon re-observation of samples collected at the chemo stratigraphic boundary of the Agony Creek (30m paleodepth) and Crosswicks Creek (100m paleodepth) shocked quartz was found confirming their status as K/Pg sites.

  4. Atmospheric Radiation Measurement (ARM)/CART site

    NASA Technical Reports Server (NTRS)

    Pennell, Bill

    1993-01-01

    The DOE's Atmospheric Radiation Measurement (ARM) goals are as follows: (1) to provide an experimental test bed for improving the treatment of radiative transfer in global climate models (GCM's) under all kinds of cloud cover; and (2) to improve the parameterization and modeling of cloud formation, maintenance, dissipation, and related processes in GCM's. The scientific requirements which are most critical to the objectives of ARM are discussed.

  5. Observation and modelling of the OH, HO2 and RO2 radicals at a rural site (Wangdu) in the North China Plain in summer 2014

    NASA Astrophysics Data System (ADS)

    Fuchs, H.; Tan, Z.; Lu, K.; Bohn, B.; Broch, S.; Dong, H.; Gomm, S.; Häseler, R.; He, L. Y.; Hofzumahaus, A.; Holland, F.; Li, X.; Liu, Y.; Lu, S.; Rohrer, F.; Shao, M.; Wang, B.; Wang, M.; Wu, Y.; Zeng, L.; Zhang, Y.; Wahner, A.; Zhang, Y.

    2016-12-01

    A comprehensive field campaign was carried out in summer 2014 in Wangdu located in the North China Plain. A month of continuous OH, HO2and RO2 measurements were obtained by a laser induced fluorescence system. High daytime OH, HO2 and RO2 radical concentrations were observed. A chemical box model constrained by observed trace gas compounds with state of art chemical mechanism is used to interpret the observed radical concentrations. The model is capable of describing measurements for most of the time. Only during times when NO concentrations ranges around 100pptv, a tendency for higher OH concentrations compared to model calculations is observed. In addition, we found that observed RO2 concentrations were underestimated in the morning hours, which indicated the existence of additional chemical sources of RO2 and an underestimation of the local ozone production rates in the model.

  6. Quantifying the contribution of long-range transport to Particulate Matter (PM) mass loadings at a suburban site in the North-Western Indo Gangetic Plain (IGP)

    NASA Astrophysics Data System (ADS)

    Pawar, H.; Garg, S.; Kumar, V.; Sachan, H.; Arya, R.; Sarkar, C.; Chandra, B. P.; Sinha, B.

    2015-04-01

    Many sites in the densely populated Indo Gangetic Plain (IGP) frequently exceed the national ambient air quality standard (NAAQS) of 100 μg m-3 for 24 h average PM10 and 60 μg m-3 for 24 h average PM2.5 mass loadings, exposing residents to hazardous levels of PM throughout the year. We quantify the contribution of long range transport to elevated PM levels and the number of exceedance events through a back trajectory climatology analysis of air masses arriving at the IISER Mohali Atmospheric Chemistry facility (30.667° N, 76.729° E; 310 m a.m.s.l.) for the period August 2011-June 2013. Air masses arriving at the receptor site were classified into 6 clusters, which represent synoptic scale air mass transport patterns and the average PM mass loadings and number of exceedance events associated with each air mass type were quantified for each season. Long range transport from the west leads to significant enhancements in the average coarse mode PM mass loadings during all seasons. The contribution of long range transport from the west and south west (Source region: Arabia, Thar desert, Middle East and Afghanistan) to coarse mode PM varied between 9 and 57% of the total PM10-2.5 mass. Local pollution episodes (wind speed < 1 m s-1) contributed to enhanced coarse mode PM only during winter season. South easterly air masses (Source region: Eastern IGP) were associated with significantly lower coarse mode PM mass loadings during all seasons. For fine mode PM too, transport from the west usually leads to increased mass loadings during all seasons. Local pollution episodes contributed to enhanced PM2.5 mass loadings during winter and summer season. South easterly air masses were associated with significantly lower PM2.5 mass loadings during all seasons. Using simultaneously measured gas phase tracers we demonstrate that most PM2.5 originated from combustion sources. The fraction of days in each season during which the PM mass loadings exceeded the national ambient air

  7. Error characterization of retrievals for active remote Sensing instruments in the ARM climate research facility at the Southern Great Plains site

    NASA Astrophysics Data System (ADS)

    Chandrasekar, C. V.; Hardin, J. C.; Jensen, M. P.

    2012-12-01

    The ARM Climate Research Facility deploys a network of highly instrumented ground stations, including both mobile and aerial facilities to support the study of global climate change by the national and international research community. The Southern Great Plains facility (SGP) hosts a network of C, X, and K band radars; some are in scanning mode and some are in vertically pointing mode. As an example, the Mid-Latitude Continental Convective Clouds Experiment (MC3E) (Jensen, et al. 2011), was a joint DOE Atmospheric Radiation Measurement (ARM) and NASA Global Precipitation Measurements (GPM) field campaign which took place from April - June 2011 in Central Oklahoma centered at the ARM SGP site. This paper presents retrieval methodologies for the ARM instrument suite with a focus on the error characterization for the radar measurements and the retrievals. There is extensive literature on retrieval algorithms for precipitation and cloud parameters from single frequency, dual-polarization radar systems. Multiple radar deployments are becoming more common, and the MC3E is a text book example of such a deployment. Additionally, networked deployments are becoming more common (Chandrasekar, et al. 2010), resulting in networked retrievals, initially used for attenuation mitigation. Since then, networked retrievals have expanded to include DSDs from networked X-band or Ku-band radars (Yoshikawa, et al., 2012). The above retrieval methodologies were for homogeneous, single frequency systems; the multi frequency nature of the deployment during the MC3E program is the motivation for the integrated formulation and error characterization presented in this paper. The set of radars consists of the NASA NPOL radar at S-band, as well as the C and X-band radars from the ARM program, namely the C-SAPR and X-SAPR family. This paper presents a comprehensive integrated retrieval methodology focusing on error characterization to obtain microphysical retrieval including drop size

  8. Analysis of ground-measured and passive-microwave-derived snow depth variations in midwinter across the Northern Great Plains

    USGS Publications Warehouse

    Chang, A.T.C.; Kelly, R.E.J.; Josberger, E.G.; Armstrong, R.L.; Foster, J.L.; Mognard, N.M.

    2005-01-01

    Accurate estimation of snow mass is important for the characterization of the hydrological cycle at different space and time scales. For effective water resources management, accurate estimation of snow storage is needed. Conventionally, snow depth is measured at a point, and in order to monitor snow depth in a temporally and spatially comprehensive manner, optimum interpolation of the points is undertaken. Yet the spatial representation of point measurements at a basin or on a larger distance scale is uncertain. Spaceborne scanning sensors, which cover a wide swath and can provide rapid repeat global coverage, are ideally suited to augment the global snow information. Satellite-borne passive microwave sensors have been used to derive snow depth (SD) with some success. The uncertainties in point SD and areal SD of natural snowpacks need to be understood if comparisons are to be made between a point SD measurement and satellite SD. In this paper three issues are addressed relating satellite derivation of SD and ground measurements of SD in the northern Great Plains of the United States from 1988 to 1997. First, it is shown that in comparing samples of ground-measured point SD data with satellite-derived 25 ?? 25 km2 pixels of SD from the Defense Meteorological Satellite Program Special Sensor Microwave Imager, there are significant differences in yearly SD values even though the accumulated datasets showed similarities. Second, from variogram analysis, the spatial variability of SD from each dataset was comparable. Third, for a sampling grid cell domain of 1?? ?? 1?? in the study terrain, 10 distributed snow depth measurements per cell are required to produce a sampling error of 5 cm or better. This study has important implications for validating SD derivations from satellite microwave observations. ?? 2005 American Meteorological Society.

  9. The Plains of Venus

    NASA Astrophysics Data System (ADS)

    Sharpton, V. L.

    2013-12-01

    Volcanic plains units of various types comprise at least 80% of the surface of Venus. Though devoid of topographic splendor and, therefore often overlooked, these plains units house a spectacular array of volcanic, tectonic, and impact features. Here I propose that the plains hold the keys to understanding the resurfacing history of Venus and resolving the global stratigraphy debate. The quasi-random distribution of impact craters and the small number that have been conspicuously modified from the outside by plains-forming volcanism have led some to propose that Venus was catastrophically resurfaced around 725×375 Ma with little volcanism since. Challenges, however, hinge on interpretations of certain morphological characteristics of impact craters: For instance, Venusian impact craters exhibit either radar dark (smooth) floor deposits or bright, blocky floors. Bright floor craters (BFC) are typically 100-400 m deeper than dark floor craters (DFC). Furthermore, all 58 impact craters with ephemeral bright ejecta rays and/or distal parabolic ejecta patterns have bright floor deposits. This suggests that BFCs are younger, on average, than DFCs. These observations suggest that DFCs could be partially filled with lava during plains emplacement and, therefore, are not strictly younger than the plains units as widely held. Because the DFC group comprises ~80% of the total crater population on Venus the recalculated emplacement age of the plains would be ~145 Ma if DFCs are indeed volcanically modified during plains formation. Improved image and topographic data are required to measure stratigraphic and morphometric relationships and resolve this issue. Plains units are also home to an abundant and diverse set of volcanic features including steep-sided domes, shield fields, isolated volcanoes, collapse features and lava channels, some of which extend for 1000s of kilometers. The inferred viscosity range of plains-forming lavas, therefore, is immense, ranging from the

  10. Distribution and sources of air pollutants in the North China Plain based on on-road mobile measurements

    NASA Astrophysics Data System (ADS)

    Zhu, Yi; Zhang, Jiping; Wang, Junxia; Chen, Wenyuan; Han, Yiqun; Ye, Chunxiang; Li, Yingruo; Liu, Jun; Zeng, Limin; Wu, Yusheng; Wang, Xinfeng; Wang, Wenxing; Chen, Jianmin; Zhu, Tong

    2016-10-01

    The North China Plain (NCP) has been experiencing severe air pollution problems with rapid economic growth and urbanisation. Many field and model studies have examined the distribution of air pollutants in the NCP, but convincing results have not been achieved, mainly due to a lack of direct measurements of pollutants over large areas. Here, we employed a mobile laboratory to observe the main air pollutants in a large part of the NCP from 11 June to 15 July 2013. High median concentrations of sulfur dioxide (SO2) (12 ppb), nitrogen oxides (NOx) (NO + NO2; 452 ppb), carbon monoxide (CO) (956 ppb), black carbon (BC; 5.5 µg m-3) and ultrafine particles (28 350 cm-3) were measured. Most of the high values, i.e. 95 percentile concentrations, were distributed near large cities, suggesting the influence of local emissions. In addition, we analysed the regional transport of SO2 and CO, relatively long-lived pollutants, based on our mobile observations together with wind field and satellite data analyses. Our results suggested that, for border areas of the NCP, wind from outside this area would have a diluting effect on pollutants, while south winds would bring in pollutants that have accumulated during transport through other parts of the NCP. For the central NCP, the concentrations of pollutants were likely to remain at high levels, partly due to the influence of regional transport by prevalent south-north winds over the NCP and partly by local emissions.

  11. Loblolly pine ( Pinus taeda L.) productivity 23 years after wet site harvesting and site preparation in the lower Atlantic Coastal Plain

    Treesearch

    Charles M. Neaves; W. Michael Aust; M. Chad Bolding; Scott M. Barrett; Carl C. Trettin; Eric Vance

    2017-01-01

    Ground based timber harvesting on wet sites has been linked to alteration of soil properties that may result in reduced long term site productivity. Following Hurricane Hugo in the fall of 1989, numerous salvage logging operations were conducted under high soil moisture conditions to reduce wildfire risk and salvage timber within the Francis Marion National Forest in...

  12. EPA True NO2 ground site measurements ?? multiple sites, TCEQ ground site measurements of meteorological and air pollution parameters ?? multiple sites ,GeoTASO NO2 Vertical Column

    EPA Pesticide Factsheets

    EPA True NO2 ground site measurements ?? multiple sites - http://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.tx-2013; TCEQ ground site measurements of meteorological and air pollution parameters ?? multiple sites - http://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.tx-2013; GeoTASO NO2 Vertical Column - http://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.tx-2013?FALCON=1This dataset is associated with the following publication:Nowlan, C., X. Lu, J. Leitch, K. Chance, G. González Abad, C. Lu, P. Zoogman, J. Cole, T. Delker, W. Good, F. Murcray, L. Ruppert, D. Soo, M. Follette-Cook, S. Janz, M. Kowalewski, C. Loughner, K. Pickering, J. Herman, M. Beaver, R. Long, J. Szykman, L. Judd, P. Kelley, W. Luke, X. Ren, and J. Al-Saadi. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013. Atmospheric Measurement Techniques. Copernicus Publications, Katlenburg-Lindau, GERMANY, 9(6): 2647-2668, (2016).

  13. Similarities among test sites based on performance of advanced breeding lines in the great plains hard winter wheat region

    USDA-ARS?s Scientific Manuscript database

    USDA-ARS coordinated regional wheat (Triticum aestivum L.) breeding trials examine agronomic performance and adaptation over a wider geographic range than single breeding programs can achieve. The trials provide an evaluation of experimental breeding lines in alternate test sites that are environmen...

  14. Longleaf pine (Pinus palustris) restoration on gulf lower coastal plain flatwoods sites: role of shrub control and phosphorous fertilization

    Treesearch

    Eric J. Holzmueller; Johanna E. Freeman; Shibu Jose; Diomides S. Zamora; Jason Liddle

    2010-01-01

    The longleaf pine (Pinus palustris) ecosystem is one of the most threatened ecosystems in North America. Restoration of this ecosystem on flatwoods sites is difficult because of the thick shrub layer and limited nutrient availability of phosphorus (P) that can cause longleaf pine seedlings to remain in the grass stage for a number of years. We...

  15. Gravity measured at the apollo 14 lading site.

    PubMed

    Nance, R L

    1971-12-03

    The gravity at the Apollo 14 landing site has been determined from the accelerometer data that were telemetered from the lunar module. The values for the lunar gravity measured at the Apollo 11, 12, and 14 sites were reduced to a common elevation and were then compared between sites. A theoretical gravity, based on the assumption of a spherical moon, was computed for each landing site and compared with the observed value. The observed gravity was also used to compute the lunar radius at each landing site.

  16. Plains Traveler

    NASA Image and Video Library

    2006-04-10

    This MOC image shows a dust devil traveling across a plain west-southwest of Schiaparelli Crater, in far eastern Sinus Meridiani. The dust devil is casting a shadow toward the northeast, just south below of an egg-shaped crater

  17. Measured and simulated soil water evaporation from four Great Plains soils

    USDA-ARS?s Scientific Manuscript database

    The amount of soil water lost during stage one and stage two soil water evaporation is of interest to crop water use modelers. The ratio of measured soil surface temperature (Ts) to air temperature (Ta) was tested as a signal for the transition in soil water evaporation from stage one to stage two d...

  18. Aquifer geochemistry at potential aquifer storage and recovery sites in coastal plain aquifers in the New York city area, USA

    USGS Publications Warehouse

    Brown, C.J.; Misut, P.E.

    2010-01-01

    The effects of injecting oxic water from the New York city (NYC) drinking-water supply and distribution system into a nearby anoxic coastal plain aquifer for later recovery during periods of water shortage (aquifer storage and recovery, or ASR) were simulated by a 3-dimensional, reactive-solute transport model. The Cretaceous aquifer system in the NYC area of New York and New Jersey, USA contains pyrite, goethite, locally occurring siderite, lignite, and locally varying amounts of dissolved Fe and salinity. Sediment from cores drilled on Staten Island and western Long Island had high extractable concentrations of Fe, Mn, and acid volatile sulfides (AVS) plus chromium-reducible sulfides (CRS) and low concentrations of As, Pb, Cd, Cr, Cu and U. Similarly, water samples from the Lloyd aquifer (Cretaceous) in western Long Island generally contained high concentrations of Fe and Mn and low concentrations of other trace elements such as As, Pb, Cd, Cr, Cu and U, all of which were below US Environmental Protection Agency (USEPA) and NY maximum contaminant levels (MCLs). In such aquifer settings, ASR operations can be complicated by the oxidative dissolution of pyrite, low pH, and high concentrations of dissolved Fe in extracted water.The simulated injection of buffered, oxic city water into a hypothetical ASR well increased the hydraulic head at the well, displaced the ambient groundwater, and formed a spheroid of injected water with lower concentrations of Fe, Mn and major ions in water surrounding the ASR well, than in ambient water. Both the dissolved O2 concentrations and the pH of water near the well generally increased in magnitude during the simulated 5-a injection phase. The resultant oxidation of Fe2+ and attendant precipitation of goethite during injection provided a substrate for sorption of dissolved Fe during the 8-a extraction phase. The baseline scenario with a low (0.001M) concentration of pyrite in aquifer sediments, indicated that nearly 190% more water

  19. Seasonal Lateral Root Growth of Juvenile Loblolly Pine After Thinning and Fertilization on Gulf Coastal Plain Site

    Treesearch

    Mary Anne Sword; James D. Haywood; C. Dan Andries

    1998-01-01

    In 1989, two levels each of stand density and fertilization were factorially established in an 8-year-old loblolly pine plantation on a P-deficient site. Levels of stand density were nonthinned at 2,732 trees per hectare and thinned at 721 trees per hectare. Fertilizer levels were none or application of 150 kilograms P plus 135 kilograms N per hectare. In 1994, stand...

  20. Remote sensing strategy at the first Atmospheric Radiation Measurement field site

    SciTech Connect

    Wesely, M.L.; Griffin, J.W.

    1994-07-01

    The Atmospheric Radiation Measurement (ARM) Program was initiated in 1990 by the US Department of Energy to improve climate model simulations of radiative energy transport and cloud formation, maintenance, and dissipation. ARM stresses the modeling of phenomena occurring at subgrid scales in general circulation models (GCMs). Measurements to support the modeling research will be made at three primary locations. The central facility, the primary location at the Southern Great Plains (SGP) site for study of radiative transfer, uses ground-based remote sensing instrumentation to observe radiation and the atmospheric properties that affect it. Remote sensing instruments and balloon-borne sounding systems installed at several boundary facilities on the perimeter of the overall Cloud and Radiation Testbed (CART) site evaluate vertical profiles of wind, temperature, and humidity. These observations are needed to run single-column models derived from GCMs for a single grid square with an area equivalent to the overall CART area. Observations of local meteorological conditions, air-surface exchange, and solar and infrared radiation at up to 23 extended facilities scattered throughout the CART site provide the surface boundary information needed in the single-column models. Finally, auxiliary facilities at the central facility and at a few locations within 10 km of the central facility will contain whole-sky imaging systems to map cloud characteristics. The purpose of this presentation is to describe the strategy used to obtain remote sensing instrumentation for continuous operation at the central facility.

  1. Taking the measure of a landscape: Comparing a simulated and natural landscape in the Virginia Coastal Plain

    NASA Astrophysics Data System (ADS)

    Howard, Alan D.; Tierney, Heather E.

    2012-01-01

    A landform evolution model is used to investigate the historical evolution of a fluvial landscape along the Potomac River in Virginia, USA. The landscape has developed on three terraces whose ages span 3.5 Ma. The simulation model specifies the temporal evolution of base level control by the river as having a high-frequency component of the response of the Potomac River to sea level fluctuations superimposed on a long-term epeirogenic uplift. The wave-cut benches are assumed to form instantaneously during sea level highstands. The region is underlain by relatively soft coastal plain sediments with high intrinsic erodibility. The survival of portions of these terrace surfaces, up to 3.5 Ma, is attributable to a protective cover of vegetation. The vegetation influence is parameterized as a critical shear stress to fluvial erosion whose magnitude decreases with increasing contributing area. The simulation model replicates the general pattern of dissection of the natural landscape, with decreasing degrees of dissection of the younger terrace surfaces. Channel incision and relief increase in headwater areas are most pronounced during the relatively brief periods of river lowstands. Imposition of the wave-cut terraces onto the simulated landscape triggers a strong incisional response. By qualitative and quantitative measures the model replicates, in a general way, the landform evolution and present morphology of the target region.

  2. Mountains, Craters and Plains

    NASA Image and Video Library

    2016-03-17

    New Horizons views of the informally named Sputnik Planum on Pluto (top) and the informally named Vulcan Planum on Charon (bottom). Both scale bars measure 20 miles (32 kilometers) long; illumination is from the left in both instances. The Sputnik Planum view is centered at 11°N, 180°E, and covers the bright, icy, geologically cellular plains. Here, the cells are defined by a network of interconnected troughs that crisscross these nitrogen-ice plains. At right, in the upper image, the cellular plains yield to pitted plains of southern Sputnik Planum. This observation was obtained by the Ralph/Multispectral Visible Imaging Camera (MVIC) at a resolution of 1,050 feet (320 meters) per pixel. The Vulcan Planum view in the bottom panel is centered at 4°S, 4°E, and includes the "moated mountain" Clarke Mons just above the center of the image. As well as featuring impact craters and sinuous troughs, the water ice-rich plains display a range of surface textures, from smooth and grooved at left, to pitted and hummocky at right. This observation was obtained by the Long Range Reconnaissance Imager (LORRI) at a resolution of 525 feet (160 meters) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20535

  3. 3D mechanical analysis of aeronautical plain bearings: Validation of a finite element model from measurement of displacement fields by digital volume correlation and optical scanning tomography

    NASA Astrophysics Data System (ADS)

    Germaneau, A.; Peyruseigt, F.; Mistou, S.; Doumalin, P.; Dupré, J.-C.

    2010-06-01

    On Airbus aircraft, spherical plain bearings are used on many components; in particular to link engine to pylon or pylon to wing. Design of bearings is based on contact pressure distribution on spherical surfaces. To determine this distribution, a 3D analysis of the mechanical behaviour of aeronautical plain bearing is presented in this paper. A numerical model has been built and validated from a comparison with 3D experimental measurements of kinematic components. For that, digital volume correlation (DVC) coupled with optical scanning tomography (OST) is employed to study the mechanical response of a plain bearing model made in epoxy resin. Experimental results have been compared with the ones obtained from the simulated model. This comparison enables us to study the influence of various boundary conditions to build the FE model. Some factors have been highlighted like the fitting behaviour which can radically change contact pressure distribution. This work shows the contribution of a representative mechanical environment to study precisely mechanical response of aeronautical plain bearings.

  4. Wind Shear Characteristics at Central Plains Tall Towers (presentation)

    SciTech Connect

    Schwartz, M.; Elliott, D.

    2006-06-05

    The objectives of this report are: (1) Analyze wind shear characteristics at tall tower sites for diverse areas in the central plains (Texas to North Dakota)--Turbines hub heights are now 70-100 m above ground and Wind measurements at 70-100+ m have been rare. (2) Present conclusions about wind shear characteristics for prime wind energy development regions.

  5. Measuring the effect of cigarette plain packaging on transaction times and selection errors in a simulation experiment.

    PubMed

    Carter, Owen B J; Mills, Brennen W; Phan, Tina; Bremner, Jonathon R

    2012-11-01

    Australia has introduced legislation to force all cigarette packaging to be generic from 2012 onwards. The tobacco retail industry estimates this will result in transaction times increasing by 15-45 s per pack and is spending at least $A10 million of tobacco industry funds on an advertising campaigns claiming that the increased time and errors associated with plain packaging will ultimately cost small businesses $A 461 million per annum and endanger 15,000 jobs. We undertook an objective experiment to test these claims. Participants (n=52) were randomly assigned to stand in front of a display of either 50 plain or coloured cigarette packets and then were read a randomly ordered list of cigarette brands. The time participants took to locate each packet was recorded and all selection errors were noted. After 50 'transactions', participants repeated the entire experiment with the alternative plain/coloured packs. Afterwards, participants were asked in an open-ended manner whether plain or coloured packaging was easier to locate and why. The average transaction was significantly quicker for plain compared with coloured packs (2.92 vs 3.17 s; p=0.040). One or more mistakes were made by 40.4% of participants when selecting coloured packaging compared with only 17.3% for plain packaging (p=0.011). Qualitative results suggested that the colours and inconsistent location of brand names often served to distract when participants scanned for brands. Rather than plain packaging requiring an additional 45 s per transaction, our results suggest that it will, if anything, modestly decrease transaction times and selection errors.

  6. SITE-SPECIFIC MEASUREMENTS OF RESIDENTIAL RADON PROTECTION CATEGORY

    EPA Science Inventory

    The report describes a series of benchmark measurements of soil radon potential at seven Florida sites and compares the measurements with regional estimates of radon potential from the Florida radon protection map. The measurements and map were developed under the Florida Radon R...

  7. SITE-SPECIFIC MEASUREMENTS OF RESIDENTIAL RADON PROTECTION CATEGORY

    EPA Science Inventory

    The report describes a series of benchmark measurements of soil radon potential at seven Florida sites and compares the measurements with regional estimates of radon potential from the Florida radon protection map. The measurements and map were developed under the Florida Radon R...

  8. Baseline measurements of terrestrial gamma radioactivity at the CEBAF site

    SciTech Connect

    Wollenberg, H.A.; Smith, A.R.

    1991-10-01

    A survey of the gamma radiation background from terrestrial sources was conducted at the CEBAF site, Newport News, Virginia, on November 12--16, 1990, to provide a gamma radiation baseline for the site prior to the startup of the accelerator. The concentrations and distributions of the natural radioelements in exposed soil were measured, and the results of the measurements were converted into gamma-ray exposure rates. Concurrently, samples were collected for laboratory gamma spectral analyses.

  9. Baseline measurements of terrestrial gamma radioactivity at the CEBAF site

    SciTech Connect

    Wollenberg, H.A.; Smith, A.R.

    1991-10-01

    A survey of the gamma radiation background from terrestrial sources was conducted at the CEBAF site, Newport News, Virginia, on November 12--16, 1990, to provide a gamma radiation baseline for the site prior to the startup of the accelerator. The concentrations and distributions of the natural radioelements in exposed soil were measured, and the results of the measurements were converted into gamma-ray exposure rates. Concurrently, samples were collected for laboratory gamma spectral analyses.

  10. Measurements of N2O emissions from different vegetable fields on the North China Plain

    NASA Astrophysics Data System (ADS)

    Diao, Tiantian; Xie, Liyong; Guo, Liping; Yan, Hongliang; Lin, Miao; Zhang, He; Lin, Jia; Lin, Erda

    2013-06-01

    Few studies have measured the N2O emission fluxes from vegetable fields. In order to identify the characteristics and the influencing factors of N2O emissions from different vegetable fields, we measured N2O emissions for a full year from four typical fields, including an open-ground vegetable field that has produced vegetables for over 20 years (OV20), a recently developed open-ground vegetable field that was converted from a maize field three years earlier (OV3), a recently developed greenhouse vegetable field that was converted from a maize field 3 years earlier (GV3) and a typical local maize field (Maize). Four different fertilization treatments were set additionally in the recently developed open-ground vegetable field. These were: no fertilizer or manure (OV3_CK), manure only (OV3_M) and the combination of manure with different rates of chemical fertilizer application (OV3_MF1 and OV3_MF3). The results showed that N2O emission fluxes fluctuated between 0.3 ± 0.1 and 912.4 ± 80.0 mg N2O-N m-2 h-1 with the highest emission peak occurring after fertilization followed by irrigation. Nitrogen application explained 64.6-84.5% of the N2O emission in the vegetable fields. The magnitude of the emission peaks depended on the nitrogen application rate and the duration of the emission peaks was mainly associated with soil temperature when appropriate irrigation was given after fertilization. The N2O emission peaks occurred later and lasted for a longer period when the soil temperature was <24 °C in May. However, emission peaks occurred earlier and lasted for a shorter period when the soil temperature was around 25-33 °C from June to August. The annual N2O emissions from the fertilized vegetable fields were 1.68-2.38 times higher than that from the maize field, which had an emission value of 2.88 ± 0.10 kg N ha-1 a-1. The N2O emission factor (EF) of manure nitrogen was 0.07% over the whole year, but was 0.11% and 0.02% in the spring cucumber season and the autumn

  11. Re-measuring the Slip Rate of the San Andreas Fault at Wallace Creek in the Carrizo Plain, CA

    NASA Astrophysics Data System (ADS)

    Grant Ludwig, L.; Akciz, S. O.; Arrowsmith, R.; Sato, T.; Cheiffetz, T.; Haddad, D. E.; Salisbury, J. B.; Marliyani, G. I.; Bohon, W.

    2015-12-01

    Sieh and Jahns (S&J) (1984) reported a slip rate of 33.9 +2.9 mm/yr for the San Andreas fault (SAF) at Wallace Creek (WC) in the Carrizo Plain. Referenced hundreds of times, their measurement provides critical constraint for many related studies. Paleoseismologic studies at Bidart Fan (BF), ~5 km southeast of WC, show rupture approximately every 88 yrs between ~A.D. 1350 and 1857 (Akciz et al., 2010). Measurements of slip per event for the last 5 or 6 earthquakes at WC (Liu et al., 2004; Liu-Zeng et al., 2006), when combined with rupture dates from BF, yield slip rates up to 50 mm/yr, well above widely accepted values of ~ 35 mm/yr. The apparent discrepancy between slip rates and slip per event measurements provided motivation to re-measure S&J's (1984) slip rate, which was based on 8 detrital charcoal samples, by collecting samples for radiocarbon dating with new methods that have improved dramatically since the early 1980s. We re-excavated S&J's (1984) original trenches WC-2, 7, 9, 10 and 11, and placed a new trench, WC-12. The new trench exposed a rich history of channel cut and fill prior to abandonment of the beheaded channel and incision of the modern channel. The youngest channel fills, which must be slightly younger than the abandonment, indicate that sedimentation occurred between 3675-3285 BP, after which the channel was fully abandoned. Using S&J's (1984) offset measurement of 130 m since ~3400 BP, we recalculate a late Holocene slip rate of ~38 mm/yr in our preliminary analysis. This rate is slightly higher than the S&J (1984) result of 33.9±2.9 mm/yr and Noriega et al. (2006) result of 32.4±3.1 mm/yr at the Van Matre Ranch in the southern Carrizo. Our results are closer to the higher end of the ~36±2 mm/yr velocity gradient across the SAF from decadal timescale geodetic measurements (Schmalzle, et al., 2006).

  12. Variability in aerosol optical properties over an urban site, Kanpur, in the Indo-Gangetic Plain: A case study of haze and dust events

    NASA Astrophysics Data System (ADS)

    Ram, Kirpa; Singh, Sunita; Sarin, M. M.; Srivastava, A. K.; Tripathi, S. N.

    2016-06-01

    In this study, we report on three important optical parameters, viz. absorption and scattering coefficients (babs, bscat) and single scattering abledo (SSA) based on one-year chemical-composition data collected from an urban site (Kanpur) in the Indo-Gangetic-Plain (IGP) of northern India. In addition, absorption Ängstrom exponent (AAE) was also estimated in order to understand the wavelength dependence of absorption and to decipher emission sources of carbonaceous aerosols, in particular of black carbon. The absorption and scattering coefficients ranged between 8.3 to 95.2 Mm- 1 (1 Mm- 1 = 10- 6 m- 1) and 58 to 564 Mm- 1, respectively during the study period (for n = 66; from January 2007 to March 2008) and exhibit large seasonal variability with higher values occurring in winter and lower in the summer. Single scattering albedo varied from 0.65 to 0.92 whereas AAE ranged from 0.79 to 1.40 during pre-monsoon and winter seasons, respectively. The strong seasonal variability in aerosol optical properties is attributed to varying contribution from different emission sources of carbonaceous aerosols in the IGP. A case study of haze and dust events further provide information on extreme variability in aerosol optical parameters, particularly SSA, a crucial parameter in atmospheric radiative forcing estimates.

  13. Heavy mineral delineation of the Cretaceous, Paleocene, and Eocene stratigraphic sections at the Savannah River Site, Upper Coastal Plain of South Carolina

    SciTech Connect

    Cathcart, E.M. . Dept. of Geology); Sargent, K.A. . Dept. of Geology)

    1994-03-01

    The Upper Atlantic Coastal Plain of South Carolina consists of a fluvial-deltaic and shallow marine complex of unconsolidated sediments overlying the crystalline basement rocks of the North American continent. Because of the lateral and vertical variability of these sediments, stratigraphic boundaries have been difficult to distinguish. Portions of the Cretaceous, Paleocene, and eocene stratigraphic sections from cores recovered during the construction of two monitoring wells at the Savannah River Site were studied to determine if heavy mineral suites could be utilized to distinguish boundaries. The stratigraphic sections include: the Late Cretaceous Middendorf, Black Creek, and Steel Creek Formations, the Paleocene Snapp Formation, the late Paleocene-Early Eocene Fourmile Branch Formation, and the Early Eocene Congaree formation. In previous studies composite samples were taken over 2.5 ft. intervals along the cores and processed using a heavy liquid for heavy mineral recovery. During this study, heavy mineral distributions were determined by binocular microscope and the mineral identifications confirmed by x-ray diffraction analysis of hand-picked samples. The heavy mineral concentration data and grain size data were then compared to the stratigraphic boundary positions determined by other workers using more classical methods. These comparisons were used to establish the utility of this method for delineating the stratigraphic boundaries in the area of study.

  14. A Three-Year Study of Ichyoplankton in Coastal Plains Reaches of the Savannah River Site and its Tributaries

    SciTech Connect

    Martin, D.

    2007-03-05

    Altering flow regimes of rivers has large effects on native floras and faunas because native species are adapted to the natural flow regime, many species require lateral connectivity with floodplain habitat for feeding or spawning, and the change in regime often makes it possible for invasive species to replace natives (Bunn & Arthington 2002). Floodplain backwaters, both permanent and temporary, are nursery areas for age 0+ fish and stable isotope studies indicate that much of the productivity that supports fish larvae is autochthonous to these habitats (Herwig et al. 2004). Limiting access by fish to floodplain habitat for feeding, spawning and nursery habitat is one of the problems noted with dams that regulate flow in rivers and is considered to be important as an argument to remove dams and other flow regulating structures from rivers (Shuman 1995; Bednarek 2001). While there have been a number of studies in the literature about the use of floodplain habitat for fish reproduction (Copp 1989; Killgore & Baker 1996; Humphries, et al. 1999; Humphries and Lake 2000; Crain et al. 2004; King 2004) there have been only a few studies that examined this aspect of stream ecology in more than a cursory way. The study reported here was originally designed to determine whether the Department of Energy's (DOE) Savannah River Site was having a negative effect on fish reproduction in the Savannah River but its experimental design allowed examination of the interactions between the river, the floodplain and the tributaries entering the Savannah River across this floodplain. This study is larger in length of river covered than most in the literature and because of its landscape scale may be in important indicator of areas where further study is required.

  15. Airborne particulate polycyclic aromatic hydrocarbon (PAH) pollution in a background site in the North China Plain: concentration, size distribution, toxicity and sources.

    PubMed

    Zhu, Yanhong; Yang, Lingxiao; Yuan, Qi; Yan, Chao; Dong, Can; Meng, Chuanping; Sui, Xiao; Yao, Lan; Yang, Fei; Lu, Yaling; Wang, Wenxing

    2014-01-01

    The size-fractionated characteristics of particulate polycyclic aromatic hydrocarbons (PAHs) were studied from January 2011 to October 2011 using a Micro-orifice Uniform Deposit Impactor (MOUDI) at the Yellow River Delta National Nature Reserve (YRDNNR), a background site located in the North China Plain. The average annual concentration of total PAHs in the YRDNNR (18.95 ± 16.51 ng/m(3)) was lower than that in the urban areas of China; however, it was much higher than that in other rural or remote sites in developed countries. The dominant PAHs, which were found in each season, were fluorene (5.93%-26.80%), phenanthrene (8.17%-26.52%), fluoranthene (15.23%-27.12%) and pyrene (9.23%-16.31%). A bimodal distribution was found for 3-ring PAHs with peaks at approximately 1.0-1.8 μm and 3.2-5.6 μm; however, 4-6 ring PAHs followed a nearly unimodal distribution, with the highest peak in the 1.0-1.8 μm range. The mass median diameter (MMD) values for the total PAHs averaged 1.404, 1.467, 1.218 and 0.931 μm in spring, summer, autumn and winter, respectively. The toxicity analysis indicated that the carcinogenic potency of particulate PAHs existed primarily in the <1.8 μm size range. Diagnostic ratios and PCA analysis indicated that the PAHs in aerosol particles were mainly derived from coal combustion. In addition, back-trajectory calculations demonstrated that atmospheric PAHs were produced primarily by local anthropogenic sources.

  16. Large-eddy simulations of daytime shallow cumulus over Southern Great Plains site: Influence of land surface heterogeneity and atmospheric conditions.

    NASA Astrophysics Data System (ADS)

    Lee, J.; Zhang, Y.

    2016-12-01

    Land surface characteristics are highly heterogeneous which may affect the atmospheric boundary layer (ABL) structure and the boundary layer cloud fields. In this study, land - atmosphere interaction and its feedback on the daytime shallow cumulus development are investigated using large-eddy simulations (LES). The LES cases are based on observations of warm season fair-weather shallow cumulus at the ARM Southern Great Plains (SGP) site in year of 2013. The land surfaces of SGP site are characterized by a patchwork of various length scales and vegetation covers such as grass, pasture, wheat or crop. Such land surface heterogeneity is represented in the LES by either prescribing surface heat fluxes or through interactive land models. The high-resolution surface flux data are from offline Community Land Model (CLM) simulations using the observed land characteristic variability. Based on the land surface forcing that is closed to the observation, we assess the impact of land surface heterogeneity and atmospheric conditions on the development of shallow cumulus. First, we investigate the implication of resolving land surface heterogeneity on cumulus development by comparing the heterogeneous case to the homogeneous land case. The spatially averaged surface fluxes are used in the homogeneous land case so the domain mean forcing is the same for both cases. Second, we investigate the effect of heterogeneity on cloud statistics and dynamics under different atmospheric conditions by changing free tropospheric stability, humidity and wind. Such study will improve our understanding of the mechanisms to link the land heterogeneity, the ABL growth and the cloud formation, and of the relative role of land heterogeneity compared with other atmospheric factors in affecting boundary layer turbulence and cloud dynamics. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-699134

  17. Aerosol Optical Properties Measured on the Mesoscale During the TIGERZ Campaign in the Indo-Gangetic Plain Region of Kanpur, India

    NASA Astrophysics Data System (ADS)

    Giles, D. M.; Holben, B. N.; Tripathi, S. N.; Eck, T. F.; Dickerson, R. R.; Thompson, A. M.; Schafer, J. S.; Slutsker, I.

    2008-12-01

    The NASA AERONET TIGERZ campaign (May to June 2008) characterized aerosols during the late pre- monsoon to early monsoon period in the Indo-Gangetic Plain (IGP) of northern India. The IGP produces a large amount of anthropogenic pollution from urban, industrial, and rural combustion sources nearly continuously with convection-induced winds driving Thar Desert and locally-generated dust periodically into the atmosphere throughout the dry pre-monsoon season. During TIGERZ, up to seven ground-based AERONET passive radiometers were deployed in the vicinity of Kanpur, a major industrial city within the IGP. These first-of-a-kind AERONET spatial variability studies (SVSs) in India occurred six times during the TIGERZ campaign. For each SVS, instruments were deployed in and around Kanpur or along the CALIPSO track in eastern Kanpur anchored by the permanent IIT Kanpur AERONET site to the west. This mesoscale instrument distribution occurred within approximately a 50 km box providing higher spatial resolution in the Kanpur region. In addition, these instruments implemented higher measurement frequency (<3min) than the standard AERONET protocol (~15min). During one SVS, the Cimel radiometer performed higher frequency sky radiance measurements (2-3 almucantars and 1 principal plane per hour) in order to assess the variability of the aerosol properties from the AERONET inversions. Preliminary data for the discrete SVSs (May to June 2008) indicate that the ground-based, area-averaged AOD at 500nm ranged from 0.31 to 0.89 (overall: 0.63±0.25) and the 440-870nm Angstrom exponent ranged from 0.19 to 0.83 (overall: 0.39±0.23); these values suggest varying amounts of aerosol loading (mostly due to dust) during these SVSs. Further data will be presented detailing the spatial and temporal variability of aerosol optical and microphysical properties over Kanpur for TIGERZ SVSs, an analysis of the relation of SVS measurements to the historical record collected at the IIT

  18. The Role of Surface Energy Exchange for Simulating Wind Inflow: An Evaluation of Multiple Land Surface Models in WRF for the Southern Great Plains Site Field Campaign Report

    SciTech Connect

    Wharton, Sonia; Simpson, Matthew; Osuna, Jessica; Newman, Jennifer; Biraud, Sebastien

    2016-05-01

    The Weather Research and Forecasting (WRF) model is used to investigate choice of land surface model (LSM) on the near-surface wind profile, including heights reached by multi-megawatt wind turbines. Simulations of wind profiles and surface energy fluxes were made using five LSMs of varying degrees of sophistication in dealing with soil-plant-atmosphere feedbacks for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) Central Facility in Oklahoma. Surface-flux and wind-profile measurements were available for validation. The WRF model was run for three two-week periods during which varying canopy and meteorological conditions existed. The LSMs predicted a wide range of energy-flux and wind-shear magnitudes even during the cool autumn period when we expected less variability. Simulations of energy fluxes varied in accuracy by model sophistication, whereby LSMs with very simple or no soil-plant-atmosphere feedbacks were the least accurate; however, the most complex models did not consistently produce more accurate results. Errors in wind shear also were sensitive to LSM choice and were partially related to the accuracy of energy flux data. The variability of LSM performance was relatively high, suggesting that LSM representation of energy fluxes in the WRF model remains a significant source of uncertainty for simulating wind turbine inflow conditions.

  19. Measuring and mitigating agricultural greenhouse gas production in the U.S. Great Plains 1870-2000

    USDA-ARS?s Scientific Manuscript database

    In the last 150 years the Great Plains region of the United States has become a major center of agricultural production for the global market. The initial agricultural settlement of this area and subsequent changes in production content and farming techniques have resulted in significant greenhouse ...

  20. Plains Traveler

    NASA Technical Reports Server (NTRS)

    2006-01-01

    10 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a dust devil traveling across a plain west-southwest of Schiaparelli Crater, in far eastern Sinus Meridiani. The dust devil is casting a shadow toward the northeast, just south (below) of an egg-shaped crater.

    Location near: 6.4oS, 349.3oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  1. Utopia Plain

    NASA Technical Reports Server (NTRS)

    2006-01-01

    5 March 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a dark-toned, cratered plain in southwest Utopia Planitia. Large, light-toned, windblown ripples reside on the floors of many of the depressions in the scene, including a long, linear, trough.

    Location near: 30.3oN, 255.3oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Winter

  2. Plains Traveler

    NASA Technical Reports Server (NTRS)

    2006-01-01

    10 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a dust devil traveling across a plain west-southwest of Schiaparelli Crater, in far eastern Sinus Meridiani. The dust devil is casting a shadow toward the northeast, just south (below) of an egg-shaped crater.

    Location near: 6.4oS, 349.3oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  3. Black carbon and wavelength-dependent aerosol absorption in the North China Plain based on two-year aethalometer measurements

    NASA Astrophysics Data System (ADS)

    Ran, L.; Deng, Z. Z.; Wang, P. C.; Xia, X. A.

    2016-10-01

    Light-absorbing components of atmospheric aerosols have gained particular attention in recent years due to their climatic and environmental effects. Based on two-year measurements of aerosol absorption at seven wavelengths, aerosol absorption properties and black carbon (BC) were investigated in the North China Plain (NCP), one of the most densely populated and polluted regions in the world. Aerosol absorption was stronger in fall and the heating season (from November to March) than in spring and summer at all seven wavelengths. Similar spectral dependence of aerosol absorption was observed in non-heating seasons despite substantially strong absorption in fall. With an average absorption Angström exponent (α) of 1.36 in non-heating seasons, freshly emitted BC from local fossil fuel burning was thought to be the major component of light-absorbing aerosols. In the heating season, strong ultraviolet absorption led to an average α of 1.81, clearly indicating the importance of non-BC light-absorbing components, which were possibly from coal burning for domestic heating and aging processes on a regional scale. Diurnally, the variation of BC mass concentrations experienced a double-peak pattern with a higher level at night throughout the year. However, the diurnal cycle of α in the heating season was distinctly different from that in non-heating seasons. α peaked in the late afternoon in non-heating seasons with concomitantly observed low valley in BC mass concentrations. In contrast, α peaked around the midnight in the heating season and lowered down during the daytime. The relationship of aerosol absorption and winds in non-heating seasons also differed from that in the heating season. BC mass concentrations declined while α increased with increasing wind speed in non-heating seasons, which suggested elevated non-BC light absorbers in transported aged aerosols. No apparent dependence of α on wind speed was found in the heating season, probably due to well mixed

  4. Origin of lunar light plains

    NASA Technical Reports Server (NTRS)

    Chao, E. C. T.; Hodges, C. A.; Boyce, J. M.; Soderblom, L. A.

    1975-01-01

    In order to determine the origin of Cayley-type lunar light plains, their physical properties, distribution, and relative ages are examined from Apollo orbital and Lunar Orbiter photographs. The distribution and apparent age of the plains deposits and data on highly feldspathic breccias indicate that these superficial materials are neither locally derived nor part of the Imbrium ejecta. The existence of a planar facies of continuous ejecta at Orientale and in the ejecta blankets of small craters is demonstrated. The data and interpretation presented support the hypothesis that the surface and near-surface materials of some light plains, including those at the Apollo 16 site, are at least partly composed of ejecta from the Orientale basin and that the materials of many rugged areas, such as the Descartes highlands, are overlain by similar material. The possibility that some Cayley-type plains may have a different origin is not excluded.

  5. Preliminary site visit report, UOP (Universal Oil Products) engineering offices: control-technology assessment of petroleum-refinery operations, Des Plains, Illinois, June 2, 1982

    SciTech Connect

    Not Available

    1982-09-01

    A visit was made to Universal Oil Products, Inc. (UOP), Des Plaines, Illinois to assess the control methods used at this facility to protect workers from harmful exposures to chemical and physical agents. Specific attention was given to control methods for hydrogen fluoride (HF) alkylation units. Engineering controls included curbs around equipment to prevent acid spills from contaminating surrounding areas, the drainage of surface liquids into a neutralization pit, the scrubbing of all vent streams leaving the HF units with a potassium hydroxide scrubber to neutralize any HF present, the provision of emergency shower booths, and the installation of a sieve dryer to remove water in entering feed. A point was developed for joints, flanges, and valves of the alkylation unit; originally the paint was orange, but on exposure to HF it turned bright yellow. Protective clothing offered included face shields, gauntlets, rubbers, booths, acid-resistant jackets, overalls, acid hoods, or complete pressurized suits. Work practices were carefully rehearsed so as to avoid accidental exposures. Workers were trained in safety measures, spill cleanups and washdowns, how to neutralize, and proper equipment-tagging procedures. Additional information was provided concerning emergency booths, the use of protective clothing, alkylation change houses, and safety procedures.

  6. First 2 years of Atmospheric CO2 measurements in the Estany Llong plain (2100 masl, Parc Nacional d'Aigüestortes i Estany de Sant Maurici, Pyrenees, Catalonia, Spain).

    NASA Astrophysics Data System (ADS)

    Curcoll, Roger; Recolons, Montserrat; Font, Anna; Agraz, Laura; Parga, Elena; Bacardit, Montse; Camarero, Lluís.; Pueyo, Salva; Rodó, Xavier; Morguí, Josep Anton

    2010-05-01

    Since April 2009, air samples are being taken bi-weekly at 10 GMT in the plain of the Estany Llong at 2100 masl. Estany Llong air sampling site (ELL, 42°34'29''N 0°57'17''E) is a remote site situated in the SW principal valley of the Parc Nacional d'Aigüestortes i Estany de Sant Maurici. New Flask-sampling equipment for Remote Mountain Sites was developed by the Institut Català de Ciències del Clima (IC3) to allow flask sampling in extreme weather conditions and carrying the sampling equipment for more than 10 km without damaging flasks. Dry Air analysis for CO2 are done at the Laboratory of IC3 using two coupled modified IRGA Licor-7000, where both pressure and flow are externally controlled. Far away from populated areas, ELL site acts as a remote site, but it is also responding to discrete events as snow melting, summer cattle breeding on pastures and trekking frequentation. Series of CO2 obtained are included as part of Long Term Ecological Research (LTER) at the Parc Nacional d'Aigüestortes i Estany de Sant Maurici. In the long term, these measurements show the mountain ecosystems contribution and geomorphologic influence on the CO2 budget of the air masses crossing a mountain range.

  7. A new interpretation of deformation rates in the Snake River Plain and adjacent basin and range regions based on GPS measurements

    NASA Astrophysics Data System (ADS)

    Payne, S. J.; McCaffrey, R.; King, R. W.; Kattenhorn, S. A.

    2012-04-01

    Within the Northern Basin and Range Province, USA, we estimate horizontal velocities for 405 sites using Global Positioning System (GPS) phase data collected from 1994 to 2010. The velocities, together with geologic, volcanic, and earthquake data, reveal a slowly deforming region within the Snake River Plain in Idaho and Owyhee-Oregon Plateau in Oregon separated from the actively extending adjacent Basin and Range regions by shear. Our results show a NE-oriented extensional strain rate of 5.6 ± 0.7 × 10-9 yr-1 in the Centennial Tectonic Belt and an ˜E-oriented extensional strain rate of 3.5 ± 0.2 × 10-9 yr-1 in the Great Basin. These extensional rates contrast with the very low strain rate within the 125 km × 650 km region of the Snake River Plain and Owyhee-Oregon Plateau, which is indistinguishable from zero (-0.1 ± 0.4 × 10-9 yr-1). Inversions of the velocities with dyke-opening models indicate that rapid extension by dyke intrusion in volcanic rift zones, as previously hypothesized, is not currently occurring in the Snake River Plain. This slow internal deformation, in contrast to the rapidly extending adjacent Basin and Range regions, indicates shear along the boundaries of the Snake River Plain. We estimate right-lateral shear with slip rates of 0.3-1.4 mm yr-1 along the northwestern boundary adjacent to the Centennial Tectonic Belt and left-lateral oblique extension with slip rates of 0.5-1.5 mm yr-1 along the southeastern boundary adjacent to the Intermountain Seismic Belt. The fastest lateral shearing evident in the GPS occurs near the Yellowstone Plateau where strike-slip focal mechanisms and faults with observed strike-slip components of motion are documented. The regional velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic Belt, Snake River Plain, Owyhee-Oregon Plateau, and eastern Oregon, indicating that clockwise rotation is not locally driven by Yellowstone hotspot volcanism, but instead by extension to the

  8. North-Polar Lunar Light Plains: Ages and Compositional Observations

    NASA Astrophysics Data System (ADS)

    Koehler, U.; Head, J. W., III; Neukum, G.; Wolf, U.

    1999-01-01

    -forming impacts to occur on the Moon that had the ability to resurface areas thousands of kilometers away from their target site. An unknown form of highland volcanism was proposed as a contributing process in light-plains formation. The question remained unanswered whether processes other than impact-related processes were responsible for the formation of these enigmatic geological units, and how these processes might have worked. Focusing on light plains in the northern-nearside highlands, a chronological approach has been chosen to address these questions, and compositional information from multispectral data has been included to support our investigations. Mapping the northern-nearside light plains, earlier workers have recognized the stratigraphically and morphologically obvious bimodal distribution of smooth terrae units north and northeast of Mare Frigoris. The older of these plains (IP-1; based on stratigraphic relations and surface-crater densities) show gradual transition into (Imbrium-impact) Fra Mauro Formation units, whereas the younger unit (IP-2) cannot be related to this relatively nearby impact event. Instead, it was proposed that the impact of Orientale, despite the fact it is several thousand kilometers away, could have smoothed these terrae units with its ejecta stirring up local highland material, an interpretation that seems to be not very compelling, as these younger plains show quite homogeneous surfaces over extended areas. Determining precise surface ages of smooth surface units should help with getting a chronology of plains emplacement in these latitudes. Based on the principle of crater-frequency distribution measurements and adjusting the cumulative crater-frequency distributions to a lunar standard distribution, and "fixing" the Orientale and Imbrium event with the absolute ages obtained by radiometric measurements of Apollo samples to this distribution, one is able to determine reliable absolute-age data for surfaces after measuring the crater

  9. Electrical resistivity borehole measurements: application to an urban tunnel site

    NASA Astrophysics Data System (ADS)

    Denis, A.; Marache, A.; Obellianne, T.; Breysse, D.

    2002-06-01

    This paper shows how it is possible to use wells drilled during geotechnical pre-investigation of a tunneling site to obtain a 2-D image of the resistivity close to a tunnel boring machine. An experimental apparatus is presented which makes it possible to perform single and borehole-to-borehole electrical measurements independent of the geological and hydrogeological context, which can be activated at any moment during the building of the tunnel. This apparatus is first demonstrated through its use on a test site. Numerical simulations and data inversion are used to analyse the experimental results. Finally, electrical resistivity tomography and single-borehole measurements on a tunneling site are presented. Experimental results show the viability of the apparatus and the efficiency of the inverse algorithm, and also highlight the limitations of the electrical resistivity tomography as a tool for geotechnical investigation in urban areas.

  10. Meteorological field measurements at potential and actual wind turbine sites

    SciTech Connect

    Renne, D.S.; Sandusky, W.F.; Hadley, D.L.

    1982-09-01

    An overview of experiences gained in a meteorological measurement program conducted at a number of locations around the United States for the purpose of site evaluation for wind energy utilization is provided. The evolution of the measurement program from its inception in 1976 to the present day is discussed. Some of the major accomplishments and areas for improvement are outlined. Some conclusions on research using data from this program are presented.

  11. 47 CFR Figure 1 to Subpart N of... - Measurement Site

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Measurement Site 1 Figure 1 to Subpart N of Part 2 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO... Position Indicating Radiobeacons (EPIRBs) Pt. 2, Subpt. N, Fig. 1 Figure 1 to Subpart N of Part 2...

  12. 47 CFR Figure 1 to Subpart N of... - Measurement Site

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Measurement Site 1 Figure 1 to Subpart N of Part 2 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL FREQUENCY ALLOCATIONS AND RADIO... Position Indicating Radiobeacons (EPIRBs) Pt. 2, Subpt. N, Fig. 1 Figure 1 to Subpart N of Part 2...

  13. Analysis of Wind Characteristics at United States Tall Tower Measurement Sites

    NASA Astrophysics Data System (ADS)

    Elliott, D.; Schwartz, M.; Scott, G.; Haymes, S.

    2008-12-01

    A major initiative of the U.S. Department of Energy (DOE) is to ensure that 20% of the country's electricity is produced by wind energy by the year 2030. An understanding of the boundary layer characteristics, especially at elevated heights greater than 80 meters (m) above the surface is a key factor for wind turbine design, wind plant layout, and identifying potential markets for advanced wind technology. The wind resource group at the DOE National Renewable Energy Laboratory is analyzing wind data collected at tall (80+ m) towers across the United States. The towers established by both public and private initiative, measure wind characteristics at multiple levels above the surface, with the highest measurement levels generally between 80 and 110 m. A few locations have measurements above 200 m. Measurements of wind characteristics over a wide range of heights are useful to: (1) characterize the local and regional wind climate; (2) validate wind resource estimates derived from numerical models; and (3) directly assess and analyze specific wind resource characteristics such as wind speed shear over the turbine blade swept area. The majority of the available public tall tower measurement sites are located between the Appalachian and Rocky Mountains. The towers are not evenly distributed among the states. The states with the largest number of towers include Indiana, Iowa, Missouri, and Kansas. These states have five or six towers collecting data. Other states with multiple tower locations include Texas, Oklahoma, Minnesota, and Ohio. The primary consideration when analyzing the data from the tall towers is identifying tower flow effects that not only can produce slightly misleading average wind speeds, but also significantly misleading wind speed shear values. In addition, the periods-of-record of most tall tower data are only one to two years in length. The short data collection time frame does not significantly affect the diurnal wind speed pattern though it does

  14. Radical chemistry at a rural site (Wangdu) in the North China Plain: observation and model calculations of OH, HO2 and RO2 radicals

    NASA Astrophysics Data System (ADS)

    Tan, Zhaofeng; Fuchs, Hendrik; Lu, Keding; Hofzumahaus, Andreas; Bohn, Birger; Broch, Sebastian; Dong, Huabin; Gomm, Sebastian; Häseler, Rolf; He, Lingyan; Holland, Frank; Li, Xin; Liu, Ying; Lu, Sihua; Rohrer, Franz; Shao, Min; Wang, Baolin; Wang, Ming; Wu, Yusheng; Zeng, Limin; Zhang, Yinsong; Wahner, Andreas; Zhang, Yuanhang

    2017-01-01

    A comprehensive field campaign was carried out in summer 2014 in Wangdu, located in the North China Plain. A month of continuous OH, HO2 and RO2 measurements was achieved. Observations of radicals by the laser-induced fluorescence (LIF) technique revealed daily maximum concentrations between (5-15) × 106 cm-3, (3-14) × 108 cm-3 and (3-15) × 108 cm-3 for OH, HO2 and RO2, respectively. Measured OH reactivities (inverse OH lifetime) were 10 to 20 s-1 during daytime. The chemical box model RACM 2, including the Leuven isoprene mechanism (LIM), was used to interpret the observed radical concentrations. As in previous field campaigns in China, modeled and measured OH concentrations agree for NO mixing ratios higher than 1 ppbv, but systematic discrepancies are observed in the afternoon for NO mixing ratios of less than 300 pptv (the model-measurement ratio is between 1.4 and 2 in this case). If additional OH recycling equivalent to 100 pptv NO is assumed, the model is capable of reproducing the observed OH, HO2 and RO2 concentrations for conditions of high volatile organic compound (VOC) and low NOx concentrations. For HO2, good agreement is found between modeled and observed concentrations during day and night. In the case of RO2, the agreement between model calculations and measurements is good in the late afternoon when NO concentrations are below 0.3 ppbv. A significant model underprediction of RO2 by a factor of 3 to 5 is found in the morning at NO concentrations higher than 1 ppbv, which can be explained by a missing RO2 source of 2 ppbv h-1. As a consequence, the model underpredicts the photochemical net ozone production by 20 ppbv per day, which is a significant portion of the daily integrated ozone production (110 ppbv) derived from the measured HO2 and RO2. The additional RO2 production from the photolysis of ClNO2 and missing reactivity can explain about 10 % and 20 % of the discrepancy, respectively. The underprediction of the photochemical ozone

  15. A new interpretation of deformation rates in the Snake River Plain and adjacent basin and range regions based on GPS measurements

    SciTech Connect

    S.J. Payne; R. McCaffrey; R.W. King; S.A. Kattenhorn

    2012-04-01

    We evaluate horizontal Global Positioning System (GPS) velocities together with geologic, volcanic, and seismic data to interpret extension, shear, and contraction within the Snake River Plain and the Northern Basin and Range Province, U.S.A. We estimate horizontal surface velocities using GPS data collected at 385 sites from 1994 to 2009 and present an updated velocity field within the Stable North American Reference Frame (SNARF). Our results show an ENE-oriented extensional strain rate of 5.9 {+-} 0.7 x 10{sup -9} yr{sup -1} in the Centennial Tectonic belt and an E-oriented extensional strain rate of 6.2 {+-} 0.3 x 10{sup -9} yr{sup -1} in the Intermountain Seismic belt combined with the northern Great Basin. These extensional strain rates contrast with the regional north-south contraction of -2.6 {+-} 1.1 x 10{sup -9} yr{sup -1} calculated in the Snake River Plain and Owyhee-Oregon Plateau over a 125 x 650 km region. Tests that include dike-opening reveal that rapid extension by dike intrusion in volcanic rift zones does not occur in the Snake River Plain at present. This slow internal deformation in the Snake River Plain is in contrast to the rapidly-extending adjacent Basin and Range provinces and implies shear along boundaries of the Snake River Plain. We estimate right-lateral shear with slip rates of 0.5-1.5 mm/yr along the northwestern boundary adjacent to the Centennial Tectonic belt and left-lateral oblique extension with slip rates of <0.5 to 1.7 mm/yr along the southeastern boundary adjacent to the Intermountain Seismic belt. The fastest lateral shearing occurs near the Yellowstone Plateau where strike-slip focal mechanisms and faults with observed strike-slip components of motion are documented. The regional GPS velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic belt, Idaho batholith, Snake River Plain, Owyhee-Oregon Plateau, and central Oregon, indicating that clockwise rotation is driven by extension to the

  16. Measurement Sets and Sites Commonly Used for Characterization

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Ryan, Robert; Sellers, Richard; Davis, Bruce; Zanoni, Vicki

    2002-01-01

    Scientists at NASA's Earth Science Applications Directorate are creating a well-characterized Verification & Validation (V&V) site at the Stennis Space Center. This site enables the in-flight characterization of remote sensing systems and the data they acquire. The data are predominantly acquired by commercial, high spatial resolution satellite systems, such as IKONOS and QuickBird 2, and airborne systems. The smaller scale of these newer high resolution remote sensing systems allows scientists to characterize the geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active LIDAR systems. SSC employs geodetic targets, edge targets, radiometric tarps, and thermal calibration ponds to characterize remote sensing data products. This paper presents a proposed set of required measurements for visible through long-wave infrared remote sensing systems and a description of the Stennis characterization. Other topics discussed include: 1) The use of ancillary atmospheric and solar measurements taken at SSC that support various characterizations; 2) Additional sites used for radiometric, geometric, and spatial characterization in the continental United States; 3) The need for a standardized technique to be adopted by CEOS and other organizations.

  17. Measurement Sets and Sites Commonly used for Characterizations

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Ryan, Robert; Blonski, Slawomir; Sellers, Richard; Davis, Bruce; Zanoni, Vicki

    2002-01-01

    Scientists with NASA's Earth Science Applications Directorate are creating a well-characterized Verification & Validation (V&V) site at the Stennis Space Center (SSC). This site enables the in-flight characterization of remote sensing systems and the data that they require. The data are predominantly acquired by commercial, high-spatial resolution satellite systems, such as IKONOS and QuickBird 2, and airborne systems. The smaller scale of these newer high-resolution remote sensing systems allows scientists to characterize the geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active Light Detection and Ranging (LIDAR) systems. SSC employs geodetic targets, edge targets, radiometric tarps, and thermal calibration ponds to characterize remote sensing data products. This paper presents a proposed set of required measurements for visible-through-longwave infrared remote sensing systems, and a description of the Stennis characterization. Other topics discussed inslude: 1) use of ancillary atmospheric and solar measurements taken at SSC that support various characterizations, 2) other sites used for radiometric, geometric, and spatial characterization in the continental United States,a nd 3) the need for a standardized technique to be adopted by the Committee on Earth Observation Satellites (CEOS) and other organizations.

  18. Measurement Sets and Sites Commonly Used for Characterization

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Holekamp, Kara; Ryan, Robert; Sellers, Richard; Davis, Bruce; Zanoni, Vicki

    2002-01-01

    Scientists at NASA's Earth Science Applications Directorate are creating a well-characterized Verification & Validation (V&V) site at the Stennis Space Center. This site enables the in-flight characterization of remote sensing systems and the data they acquire. The data are predominantly acquired by commercial, high spatial resolution satellite systems, such as IKONOS and QuickBird 2, and airborne systems. The smaller scale of these newer high resolution remote sensing systems allows scientists to characterize the geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active LIDAR systems. SSC employs geodetic targets, edge targets, radiometric tarps, and thermal calibration ponds to characterize remote sensing data products. This paper presents a proposed set of required measurements for visible through long-wave infrared remote sensing systems and a description of the Stennis characterization. Other topics discussed include: 1) The use of ancillary atmospheric and solar measurements taken at SSC that support various characterizations; 2) Additional sites used for radiometric, geometric, and spatial characterization in the continental United States; 3) The need for a standardized technique to be adopted by CEOS and other organizations.

  19. Long term measurements in reconstructed soils at a coal mine in the plains region of Alberta, Canada

    SciTech Connect

    Macyk, T.M.; Faught, R.L.; Logan, R.J.

    1995-09-01

    In 1983 the Alberta Research Council and Luscar Ltd. initiated a study to monitor the physical and chemical properties of newly mined and reconstructed soils at the Paintearth Mine. The objective was to determine what changes were occurring and the impact, if any, of these changes on long-term soil quality and productivity. Baseline soil sampling and neutron access tube installation were completed shortly after spoil leveling and soil replacement at six locations representing different slope positions and thickness of replaced subsoil. Monitoring sites were also established in unmined soils adjacent to the mine area. Neutron probe measurements to determine soil moisture and bulk density status in the upper 4 m were conducted annually from April to October. Forage crop harvests were completed to determine yield and forage quality in three different years. Sampling of soils in 15 cm intervals to a maximum depth of 210 cm for analytical purposes was completed in seven of the ten years of the study. Soil moisture data indicated that moisture content and distribution pattern in the reconstructed soils were similar to that of adjacent unmined soils. Bulk density at the reconstructed sites decreased with time during the term of the project and was similar to the bulk density values measured at unmined sites. The electrical conductivity data indicated salts were leached or redistributed downward in the profiles over time. Measurements to date indicate that in terms of soil moisture regime, bulk density status and forage yield the reconstructed soils are similar to unmined soils in the area. The overall improvement in the chemical properties of the reconstructed soils from the time of reconstruction could be largely attributed to leaching of salts.

  20. Arid site water balance: evapotranspiration modeling and measurements

    SciTech Connect

    Gee, G.W.; Kirkham, R.R.

    1984-09-01

    In order to evaluate the magnitude of radionuclide transport at an aird site, a field and modeling study was conducted to measure and predict water movement under vegetated and bare soil conditions. Significant quantities of water were found to move below the roo of a shallow-rooted grass-covered area during wet years at the Hanford site. The unsaturated water flow model, UNSAT-1D, was resonably successful in simulating the transient behavior of the water balance at this site. The effects of layered soils on water balance were demonstrated using the model. Models used to evaluate water balance in arid regions should not rely on annual averages and assume that all precipitation is removed by evapotranspiration. The potential for drainage at arid sites exists under conditions where shallow rooted plants grow on coarse textured soils. This condition was observed at our study site at Hanford. Neutron probe data collected on a cheatgrass community at the Hanford site during a wet year indicated that over 5 cm of water drained below the 3.5-m depth. The unsaturated water flow model, UNSAT-1D, predicted water drainage of about 5 cm (single layer, 10 months) and 3.5 cm (two layers, 12 months) for the same time period. Additional field measurements of hydraulic conductivity will likely improve the drainage estimate made by UNSAT-1D. Additional information describing cheatgrass growth and water use at the grass site could improve model predictions of sink terms and subsequent calculations of water storage within the rooting zone. In arid areas where the major part of the annual precipitation occurs during months with low average potential evapotranspiration and where soils are vegetated but are coarse textured and well drained, significant drainage can occur. 31 references, 18 figures, 1 table.

  1. Surface seismic refraction/reflection measurement determinations of potential site resonances and the areal uniformity of NEHRP site class D in Memphis, Tennessee

    USGS Publications Warehouse

    Williams, R.A.; Wood, S.; Stephenson, W.J.; Odum, J.K.; Meremonte, M.E.; Street, R.; Worley, D.M.

    2003-01-01

    We determined S-wave velocities (Vs) to about 40-m depth at 65 locations in the Memphis-Shelby County, Tennessee, area. The Vs measurements were made using high-resolution seismic refraction and reflection methods on the ground surface. We find a clear difference in the Vs profiles between sites located on the Mississippi River flood plain and those located to the east, mostly covered by loess, in the urban areas of Memphis. The average Vs to 30-m depth at 19 sites on the modern Mississippi River floodplain averages 197 m/s (?? 15 m/s) and places 17 of these sites at the low end of NEHRP soil profile category type D (average Vs 180-360 m/s). The two remaining sites are type E. Vs to 30-m depth at 46 sites in the urban areas east of the modern floodplain are more variable and generally higher than the floodplain sites, averaging about 262 m/s (??45 m/s), still within category D. We often observed the base of the loess as a prominent S-wave reflection and as an increase in Vs to about 500 m/s. Based on the two-way travel time of this reflection, during an earthquake the impedance boundary at the loess base may generate resonances in the 3- to 6-Hz range over many areas of Memphis. Amplitude spectra from four local earthquakes recorded at one site located on loess indicate consistent resonance peaks in the 4.5- to 6.5-Hz range.

  2. Microthermal measurements of surface layer seeing at Devasthal site

    NASA Astrophysics Data System (ADS)

    Pant, P.; Stalin, C. S.; Sagar, R.

    1999-04-01

    In order to detect the microthermal fluctuations introduced by the atmospheric turbulence very near to the ground at Devasthal site, a PC based instrumentation has been developed. The optical image degradation due to such turbulence has been quantified. The results of the optical seeing due to the surface layer at Devasthal site are presented and compared with the seeing results obtained from the Differential Image Motion Monitor. Microthermal measurements were taken on 20 nights between March and June 1998, using sensors placed at three equally spaced levels on a 18 m high mast. We found a significant decrease in the optical turbulence over the height of the mast with a mean value of 0.32'' for the 12 to 18 m slab and 1.28'' for the 6 to 12 m slab. For Devasthal site, a seeing of ~ 0.6'' can be achieved, if the telescope is located at a height of ~ 13 m above the ground.

  3. Two Years of Site Diversity Measurements in Guam, USA

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Morse, J.; Zemba, M.; Nessel, J.

    2012-01-01

    As NASA communication networks upgrade to higher frequencies, such as Ka-Band, atmospherically induced attenuation can become significant. This attenuation is caused by rain, clouds and atmospheric gases (oxygen and water vapor), with rain having the most noticeable effects. One technique to circumvent the increase in attenuation is to operate two terminals separated by a distance that exceeds the average rain cell size. The fact that rain cells are of finite size can then be exploited by rerouting the signal to the terminal with the strongest link. This technique, known as site diversity, is best suited for climates that have compact (less than 2km) and intense rain cells such as in Guam. In order to study the potential diversity gain at the Tracking and Data Relay Satellite (TDRS) Remote Ground Terminal (GRGT) complex in Guam a site test interferometer (STI) was installed in May of 2010. The STI is composed of two terminals with a 900m baseline that observe the same unmodulated beacon signal broadcast from a geostationary satellite (e.g., UFO 8). The potential site diversity gain is calculated by measuring the difference in signal attenuation seen at each terminal. Over the two years of data collection the cumulative distribution function (CDF) of the site diversity gain shows a better than 3 dB improvement for 90% of the time over standard operation. These results show that the use of site diversity in Guam can be very effective in combating rain fades.

  4. Molecular composition of organic aerosol over an agricultural site in North China Plain: Contribution of biogenic sources to PM2.5

    NASA Astrophysics Data System (ADS)

    Li, Xingru; Liu, Yusi; Li, Dong; Wang, Guoan; Bai, Yu; Diao, Heling; Shen, Rongrong; Hu, Bo; Xin, Jinyuan; Liu, Zirui; Wang, Yuesi; Guo, Xueqing; Wang, Lili

    2017-09-01

    Sugars and biogenic secondary organic aerosols (BSOAs) are substantial components of particulate organic matter, which affects regional and global air quality and climate. Fine particulate matter (PM2.5) samples were collected from 20 June to 30 July 2015 on a diurnal/nocturnal cycle in Yucheng, China in the North China Plain. The PM2.5 samples were analyzed for sugars and SOA tracers derived from biogenic volatile organic compounds (BVOCs) and other compounds, such as water soluble ions, element carbon (EC), organic carbon (OC) and water soluble organic carbon (WSOC). The quantified organic components accounted for 4.7% and 0.4% of the OC and PM2.5, respectively. SOA tracer concentrations were weakly higher during the day (101.6 ± 61.7 ng m-3) than at night (90.2 ± 41.5 ng m-3)(t = 0.610, P > 0.05), whereas sugar showed higher concentrations at night (227.0 ± 196.9 ng m-3) than during the day (177.9 ± 145.4 ng m-3)(t = -1.329, P > 0.05). Anhydro sugar (mannosan, galactosan, and levoglucosan) were the main components of the measured sugars and accounted for 58.5% and 75.6% of the daytime and nighttime measurements. The levoglucosan/mannosan ratios were 20.2 ± 12.9 and 17.6 ± 9.1 for the daytime and nighttime samples, respectively, indicating that crop residues, herbaceous plants and hardwood were the dominant types of biomass burned in the Yucheng region. Isoprene SOA tracers exhibited the highest levels among the measured SOA tracers, followed by α-pinene SOA tracers. The concentration of BSOC estimated using the tracer method was 3.9-1817.5 ng C m-3 and accounted for 0.1-26.0% of the OC. A clear negative correlation (r = 0.53) between isoprene-derived SOA and in-situ pH demonstrated that acid-catalyzed heterogeneous reactions can significantly enhance SOA mass. In addition, isoprene-derived SOA increased with the relative humidity (RH) when the RH was lower than 50%, whereas it decreased when the RH was higher than 50%.

  5. Underground measurements of seismic vibrations at the SSC site

    SciTech Connect

    Shiltsev, V.D.; Parkhomchuk, V.V.; Weaver, H.J.

    1995-03-17

    The results of underground measurements of seismic vibrations at the tunnel depth of the Superconducting Super Collider (SSC) site are presented. Spectral analysis of the data obtained in the frequency band from 0.05 Hz to 1500 Hz is performed. It is found that amplitudes of ambient ground motion are less than requirements for the Collider, but cultural vibrations are unacceptably large and will cause fast growth of transverse emittance of the SSC beams.

  6. Site-specific solar resource measurements for industrial solar applications

    SciTech Connect

    Marion, W

    1994-06-01

    The solar industry can borrow solar radiation measuring equipment from the National Renewable Energy Laboratory (NREL) as part of NREL`s Solar Industrial Program. This program provides assistance to qualified parties in quantifying the solar radiation resource at prospective sites to reduce the risks of deploying industrial solar energy systems. Up-to-date solar radiation measurements permit comparisons of fresh data with existing data to verify established data bases and also provide data based on actual measurements instead of on less accurate models. This report outlines the responsibilities and obligations of NREL and the solar industry participant. It also describes the equipment for measuring solar radiation, the data quality assessment procedures, and the format of the data provided.

  7. Radiological investigations at the "Taiga" nuclear explosion site: Site description and in situ measurements.

    PubMed

    Ramzaev, V; Repin, V; Medvedev, A; Khramtsov, E; Timofeeva, M; Yakovlev, V

    2011-07-01

    In the summer of 2009, we performed a field survey of the "Taiga" peaceful underground nuclear explosion site, the Perm region, Russia (61.30° N, 56.60° E). The explosion was carried out by the USSR in 1971. This paper provides an extended summary of the available published data on the "Taiga" experiment. A detailed description of the site is illustrated by original aerial and ground-level photos. A large artificial lake (700 m long and 350 m wide) currently occupies the central area of the experimental site. The ground lip surrounding the lake is covered by a newly grown mixed forest. In situ measurements, performed in August 2009, revealed elevated levels of the γ-ray dose rate in air on the banks of the lake "Taiga". Two hot spots were detected on the eastern bank of the lake. The excess of the γ-ray radiation is attributable to the man-made radionuclides (60)Co and (137)Cs. The current external γ-ray dose rate to a human from the contaminations associated with the "Taiga" experiment was between 9 and 70 μSv per week. Periodic monitoring the site is recommended.

  8. Surface ozone measurements at urban coastal site Chennai, in India.

    PubMed

    Pulikesi, M; Baskaralingam, P; Rayudu, V N; Elango, D; Ramamurthi, V; Sivanesan, S

    2006-10-11

    The present study was carried out to gain knowledge of current surface ozone concentrations and the effects of meteorological parameters in the highly populated urban area of Chennai, in South India. We have reported measurement results of surface ozone (O(3)) and meteorological parameters from 17th March to 10th October 2005. A photometric ozone analyzer continuously recorded the ozone concentrations at this site. The present study deals with the statistical characteristics of daily and monthly mean ozone levels under different meteorological conditions. The highest ozone concentrations were recorded in ESE-SE sectors. The monthly mean concentrations were higher in May (23+/-14 ppb) and lower in April at this site (10+/-8 ppb). The maximum hourly ozone concentration reached 69 ppb on 21st April.

  9. Measurements of particulate sugars at urban and forested suburban sites

    NASA Astrophysics Data System (ADS)

    Tominaga, Sae; Matsumoto, Kiyoshi; Kaneyasu, Naoki; Shigihara, Ado; Katono, Koichi; Igawa, Manabu

    2011-04-01

    Neutral sugars (arabinose, fucose, galactose, glucose, mannose, rhamnose, and xylose) in fine and coarse aerosols were measured at urban and forested suburban sites in Japan. The most dominant compound in the sugar group was glucose at both sites. Size partitioning of the sugars generally showed dominance in the fine mode range but shifted toward the coarse mode range in summer. Seasonal trends in the sugar concentrations in the fine and coarse mode ranges were opposite: higher concentrations of fine mode sugars were found in winter, although coarse mode sugars increased in summer. Fine mode glucose consisted dominantly of the combined form, whereas free glucose increased in the coarse mode range. Although the sources of the sugars in the aerosols remain largely uncertain, primary biogenic particles can be considered as candidates of main sources of the sugars in both coarse and fine mode ranges.

  10. Influence of assessment site in measuring transcutaneous bilirubin

    PubMed Central

    da Conceição, Cristiane Maria; Dornaus, Maria Fernanda Pellegrino da Silva; Portella, Maria Aparecida; Deutsch, Alice D'Agostini; Rebello, Celso Moura

    2014-01-01

    ABSTRACT Objective: To investigate the influence of the site of measurement of transcutaneous bilirubin (forehead or sternum) in reproducibility of results as compared to plasma bilirubin. Methods: A cohort study including 58 term newborns with no hemolytic disease. Transcutaneous measurements were performed on the forehead (halfway between the headline and the glabella, from the left toward the right side, making consecutive determinations, one-centimeter apart) and the sternum (five measurements, from the suprasternal notch to the xiphoid process with consecutive determinations, one-centimeter apart) using Bilicheck® (SpectRx Inc, Norcross, Georgia, USA). The correlation and agreement between both methods and plasma bilirubin were calculated. Results: There was a strong linear correlation between both determinations of serum bilirubin at the forehead and sternum (r=0.704; p<0.01 and r=0.653; p<0.01, respectively). There was correspondence of the mean values of transcutaneous bilirubin measured on the sternum (9.9±2.2mg/dL) compared to plasma levels (10.2±1.7mg/dL), but both differ from the values measured on the forehead (8.6±2.0mg/dL), p<0.05. Conclusion: In newborn term infants with no hemolytic disease, measuring of transcutaneous bilirubin on the sternum had higher accuracy as compared to serum bilirubin measurement on the forehead. PMID:24728239

  11. Sulfate Deposition in Regolith Exposed in Trenches on the Plains Between the Spirit Landing Site and Columbia Hills in Gusev Crater, Mars

    NASA Technical Reports Server (NTRS)

    Wang, Alian; Haskin, L. A.; Squyres, S. W.; Arvidson, R.; Crumpler, L.; Gellert, R.; Hurowitz, J.; Schroeder, C.; Tosca, N.; Herkenhoff, K.

    2005-01-01

    During its exploration within Gusev crater between sol 01 and sol 158, the Spirit rover dug three trenches (Fig. 1) to expose the subsurface regolith [1, 2, 9]. Laguna trench (approx. 6 cm deep, approx.203 m from the rim of Bonneville crater) was dug in Laguna Hollow at the boundary of the impact ejecta from Bonneville crater and the surrounding plains. The Big Hole trench (approx. 6-7 cm deep) and The Boroughs trench (approx. 11 cm deep) were dug in the plains between the Bonneville crater and the Columbia Hills (approx.556 m and approx.1698 m from the rim of Bonneville crater respectively). The top, wall and floor regolith of the three trenches were investigated using the entire set of Athena scientific instruments [10].

  12. Application of the microtremor measurements to a site effect study

    NASA Astrophysics Data System (ADS)

    Rezaei, Sadegh; Choobbasti, Asskar Janalizadeh

    2017-07-01

    Earthquake has left much life and property damages. The occurrence of such events necessitates the execution of plans for combating the earthquakes. One of the most important methods for combating earthquakes includes assessing dynamic characteristics of soil and site effect. One of the methods by which one can state dynamic characteristics of the soil of an area is the measurement of microtremors. Microtremors are small-scale vibrations that occur in the ground and have an amplitude range of about 0.1-1 microns. Microtremor measurement is fast, applicable, cost-effective. Microtremor measurements were taken at 15 stations in the Babol, north of Iran. Regarding H/V spectral ratio method, peak frequency and amplification factor were calculated for all microtremor stations. According to the analysis, the peak frequency varies from 0.67 to 8.10 Hz within the study area. Also, the authors investigated the validity of the results by comparing them with SESAME guidelines and geotechnical conditions of study area. The microtremor analysis results are consistent with SESAME guidelines and geotechnical condition of study area. The results show that the microtremor observations are acceptable methods for assessing dynamic characteristics of soil and site effect in the Babol City.

  13. Distribution of atmospheric reactive nitrogen at two sites of different socio- economic characteristics in IndoGangetic Plain(IGP) region, India.

    NASA Astrophysics Data System (ADS)

    Singh, S.; Sharma, A.; Kulshrestha, U. C.

    2015-12-01

    In India, most of the human population lives in rural areas. People depends on agriculture products to meet the demand of food supply. In order to get higher yield of agriculture and food product, increased practice of fertilizer application has added extra burden of nutrients especially, the reactive nitrogen (Nr) species viz NH3 and NOx. Growing energy demands has resulted in increased emissions of NOx from coal combustion in thermal power plant and the petroleum combustion in transport sector. In addition, biomass burning in traditional cooking and heating has become significant source of NH3 and NOx in Indian region. Significance of the study lies in the fact that increasing Nr emissions have adverse impact on human health, plant, soil and water bodies directly and to see the effect, knowledge of emission and deposition for Nr at different sites. Hence, the selection of the sites for present study was done very carefully. Delhi city and Mai village were selected to represent typical characteristics of high and low socioeconomic region respectively. Delhi is the capital of India, known for higher income group urban cluster where rural site having agricultural dominance has its importance in Indian scenario because still in India our primary source of income is agriculture. Atmospheric abundance of two major gaseous inorganic (Nr) species i.e NH3 and NO2 has been measured for one year, on monthly basis. Average concentrations of NH3 at urban and rural site have been recorded as 40.4 ±16.8 and 51.57 ±22.8 μg/m3 respectively. The average concentrations of NO2 have been recorded as 24.4 ±13.5 and 18.8 ± 12.6 μg/m3 at urban & rural site respectively. Study, also presents seasonal and diurnal variations of gaseous reactive nitrogen species at urban & rural sites to observe the contribution of different the sources of atmospheric Nr. Dynamics of Nr at both sites will be discussed in details at the conference.

  14. Texas Tech Uuniversity Measurements at BRACE Sydney Site, May 2002

    NASA Astrophysics Data System (ADS)

    Dasgupta, P. K.; Al-Horr, R. S.; Li, J.

    2003-12-01

    TTU measurements included semi-continuous monitoring of acid gases, gaseous ammonia and total soluble anionic constituents and ammonium in atmospheric particulate matter (with the 50 percent cut off in the collection/measurement system lying above 10 micron mass median aerodynamic diameter) with a 15 min time resolution and formaldehyde, hydrogen peroxide and methyl hydroperoxide measured with 10 min time resolution. Continuous measurements with response times of ~90 s were also made of Hydrogen Peroxide and Formaldehyde on the NOAA Twin Otter Aircraft. Measurements at the Sydney site were made from April 26 through May 31st. Data and findings related to the atmospheric composition of the Tampa Bay Airshed will be presented. The pattern of HCl, particulate nitrate and nitric acid concentrations strongly suggest that at least in part, HCl formation is related to nitrate formation. This postulated reaction of nitric acid on coarse sea salt particles constitutes a dominant pathway for nitrogen deposition. The appearance of gaseous HCl is inversely related to relative humidity; this may be expected as well. The sulfate/ammonium equivalent ratio in equivalents is almost always greater than unity during weekdays suggesting that sulfate is only partially neutralized by ammonium. However, on weekends the same ratio approaches unity. The acidic nature of the fine particles in addition to the abundance of coarse sea salt NaCl also explains the almost exclusive presence of nitrate in the coarse PM fraction. Finally representative patterns of gases and particles will also be presented along with occasional observation of plumes from coal power plants, which passed directly over the Sydney site.

  15. Measurements of total OH reactivity at the PROPHET site

    NASA Astrophysics Data System (ADS)

    Rickly, Pamela; Sakowski, Joseph; Bottorff, Brandon; Lew, Michelle; Stevens, Philip; Sklaveniti, Sofia; Léonardis, Thierry; Locoge, Nadine; Dusanter, Sébastien

    2017-04-01

    As the main oxidant in the daytime atmosphere, the hydroxyl radical (OH) initiates the oxidation of organic trace gases and the formation of pollutants such as ozone and secondary organic aerosols. Understanding both the sources and sinks of OH is therefore important to address issues related to air quality and climate change. Total OH reactivity measurements have proved to be of interest to investigate the OH budget and have highlighted an incomplete understanding of OH sinks in forested environments, which are characterized by high concentrations of biogenic volatile organic compounds (BVOCs) and their oxidation products. A research facility located in a Michigan forest, US, has hosted several campaigns of OH reactivity measurements over the last 15 years through the PROPHET (Program for Research on Oxidants: Photochemistry, Emission and Transport) program. This site is characterized by deciduous trees emitting isoprene and other BVOCs and a low impact of anthropogenic emissions. Measurements of OH reactivity were performed during PROPHET 1998 and CABINEX 2009. More recently, OH reactivity was measured during the PROPHET 2016 - AMOS (Atmospheric Measurements of Oxidants in summer) field campaign using the Comparative Reactivity Method (CRM) and the Total OH Loss Rate Method (TOHLM). In this presentation, we will show that the two measurement techniques agree within uncertainties, giving confidence in the measured OH reactivity. In addition, concomitant measurements of trace gases (VOCs, NOx, O3) made by online and offline instruments were used to perform a comprehensive apportionment of OH sinks. We will provide insights into the OH reactivity budget and will show how it compares to the previous abovementioned studies.

  16. Direct measurements of transport properties are essential for site characterization

    SciTech Connect

    Wright, J.; Conca, J.L.

    1994-08-01

    Direct measurements of transport parameters on subsurface sediments using, the UFA method provided detailed hydrostratigraphic mapping, and subsurface flux distributions at a mixed-waste disposal site at Hanford. Seven hundred unsaturated conductivity measurements on fifty samples were obtained in only six months total of UFA run time. These data are used to provide realistic information to conceptual models, predictive models and restoration strategies. The UFA instrument consists of an ultracentrifuge with a constant, ultralow flow pump that provides fluid to the sample surface through a rotating seal assembly and microdispersal system. Effluent from the sample is collected in a transparent, volumetrically-calibrated chamber at the bottom of the sample assembly. Using a strobe light, an observer can check the chamber while the sample is being centrifuged. Materials can be run in the UFA as recomposited samples or in situ samples can be subcored directly into the sample UFA chamber.

  17. Measurement of volatile organic chemicals at selected sites in California

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Salas, L.; Viezee, W.; Sitton, B.; Ferek, R.

    1992-01-01

    Urban air concentrations of 24 selected volatile organic chemicals that may be potentially hazardous to human health and environment were measured during field experiments conducted at two California locations, at Houston, and at Denver. Chemicals measured included chlorofluorocarbons, halomethanes, haloethanes, halopropanes, chloroethylenes, and aromatic hydrocarbons. With emphasis on California sites, data from these studies are analyzed and interpreted with respect to variabilities in ambient air concentrations, diurnal changes, relation to prevailing meteorology, sources and trends. Except in a few instances, mean concentrations are typically between 0 and 5 ppb. Significant variabilities in atmospheric concentrations associated with intense sources and adverse meteorological conditions are shown to exist. In addition to short-term variability, there is evidence of systematic diurnal and seasonal trends. In some instances it is possible to detect declining trends resulting from the effectiveness of control strategies.

  18. Data assimilation of a ten-day period during June 1993 over the Southern Great Plains Site using a nested mesoscale model

    SciTech Connect

    Dudhia, J.; Guo, Y.R.

    1996-04-01

    A goal of the Atmospheric Radiation Measurement (ARM) Program has been to obtain a complete representation of physical processes on the scale of a general circulation model (GCM) grid box in order to better parameterize radiative processes in these models. Since an observational network of practical size cannot be used alone to characterize the Cloud and Radiation Testbed (CART) site`s 3D structure and time development, data assimilation using the enhanced observations together with a mesoscale model is used to give a full 4D analysis at high resolution. The National Center for Atmospheric Research (NCAR)/Penn State Mesoscale Model (MM5) has been applied over a ten-day continuous period in a triple-nested mode with grid sizes of 60, 20 and 6.67 in. The outer domain covers the United States` 48 contiguous states; the innermost is a 480-km square centered on Lamont, Oklahoma. A simulation has been run with data assimilation using the Mesoscale Analysis and Prediction System (MAPS) 60-km analyses from the Forecast Systems Laboratory (FSL) of the National Ocean and Atmospheric Administration (NOAA). The nested domains take boundary conditions from and feed back continually to their parent meshes (i.e., they are two-way interactive). As reported last year, this provided a simulation of the basic features of mesoscale events over the CART site during the period 16-26 June 1993 when an Intensive Observation Period (IOP) was under way.

  19. Towards increasing the spatial resolution of luminescence chronologies - Portable luminescence reader measurements and standardized growth curves applied to the beach-ridge plain of Phra Thong Island, Thailand

    NASA Astrophysics Data System (ADS)

    Brill, Dominik; Jankaew, Kruawun; Brückner, Helmut

    2016-04-01

    Since optically stimulated luminescence (OSL) dating is time consuming and cost intensive, age information available for individual study sites is usually restricted to significantly less than 100 ages. In particular the interpretation of complex depositional systems with temporally and spatially diverse sedimentation histories may suffer from the effects of a poor spatial resolution or an ineffective distribution of chronological data. In these cases, time and cost efficient approaches that provide reasonable dating accuracy are required to substitute or complement full luminescence dating. For the sandy beach-ridge plain of Phra Thong Island, Thailand, which is chronologically constrained by a set of approximately 50 luminescence ages, we evaluated the potential (i) of luminescence profiling using a portable luminescence reader, and (ii) of standardized growth curves (SGCs) to improve the resolution and sampling strategy of OSL dating in coastal settings. Although SGCs are related to some shortcomings in dating accuracy, and luminescence profiling with even the favorable conditions provided by the homogeneous sandy stratigraphy of the beach-ridge plain does not equal full luminescence dating, both approaches are capable of reproducing some of the main chronostratigraphic features of the island. This includes the differentiation between Holocene and last interglacial ridges, as well as the identification of the general east-west progradation and some (but not all) of several 1500-2000 year hiatuses within the Holocene sediment succession. However, while both approaches can successfully identify relative chronological trends, robust absolute age estimates can only be achieved by considering the highly variable dosimetry, which is the main contributing factor to bulk luminescence signals apart from deposition age on Phra Thong Island. At Phra Thong, portable reader signals as a proxy for palaeodoses combined with sample-specific dose rates proved as the best

  20. Detection limit for activation measurements in ultralow background sites

    NASA Astrophysics Data System (ADS)

    Trache, Livius; Chesneanu, D.; Margineanu, R.; Pantelica, A.; Ghita, D. G.; Burducea, I.; Straticiuc, M.; Tang, X. D.

    2014-09-01

    We used 12C +13C fusion at the beam energies E = 6, 7 and 8 MeV to determine the sensitivity and the limits of activation method measurements in ultralow background sites. A 13C beam of 0.5 μA from the 3 MV Tandem accelerator of the Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH impinged on thick graphite targets. After about 24 hrs of irradiation targets were measured in two different laboratories: one with a heavy shielded Ge detector in the institute (at the surface) and one located underground in the microBequerel laboratory, in the salt mine of Slanic-Prahova, Romania. The 1369- and 2754 keV peaks from 24Na deactivation were clearly observed in the γ-ray spectra obtained for acquisitions lasting a few hours, or a few days. Determination of the detection limit in evaluating the cross sections for the target irradiated at Ec . m = 3 MeV indicates the fact that it is possible to measure gamma spectrum in underground laboratory down to Ec . m = 2 . 6 MeV. Cleaning the spectra with beta-gamma coincidences and increasing beam intensity 20 times will take as further down. The measurements are motivated by the study of the 12 C +12 C reaction at astrophysical energies.

  1. Measurement and Modeling of Vertically Resolved Aerosol Optical Properties and Radiative Fluxes Over the ARM SGP Site

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Arnott, P.; Bucholtz, A.; Colarco, P.; Covert, D.; Eilers, J.; Elleman, R.; Ferrare, R.; Flagan, R.; Jonsson, H.

    2003-01-01

    In order to meet one of its goals - to relate observations of radiative fluxes and radiances to the atmospheric composition - the Department of Energy's Atmospheric Radiation Measurement (ARM) program has pursued measurements and modeling activities that attempt to determine how aerosols impact atmospheric radiative transfer, both directly and indirectly. However, significant discrepancies between aerosol properties measured in situ or remotely remain. One of the objectives of the Aerosol Intensive Operational Period (TOP) conducted by ARM in May 2003 at the ARM Southern Great Plains (SGP) site in north central Oklahoma was to examine and hopefully reduce these differences. The IOP involved airborne measurements from two airplanes over the heavily instrumented SGP site. We give an overview of airborne results obtained aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft. The Twin Otter performed 16 research flights over the SGP site. The aircraft carried instrumentation to perform in-situ measurements of aerosol absorption, scattering, extinction and particle size. This included such novel techniques as the photoacoustic and cavity ring-down methods for in-situ absorption (675 nm) and extinction (675 and 1550 nm) and a new multiwavelength, filter-based absorption photometer (467, 530, 660 nm). A newly developed instrument measured cloud condensation nucleus concentration (CCN) concentrations at two supersaturation levels. Aerosol optical depth and extinction (354-2139 nm) were measured with the NASA Ames Airborne Tracking 14-channel sunphotometer. Furthermore, up-and downwelling solar (broadband and spectral) and infrared radiation were measured using seven individual radiometers. Three up-looking radiometers werer mounted on a newly developed stabilized platform, keeping the instruments level up to aircraft pitch and roll angles of approximately 10(exp 0). This resulted in unprecedented continuous vertical profiles

  2. Kennedy Space Center Press Site (SWMU 074) Interim Measure Report

    NASA Technical Reports Server (NTRS)

    Applegate, Joseph L.

    2015-01-01

    This report summarizes the Interim Measure (IM) activities conducted at the Kennedy Space Center (KSC) Press Site ("the Press Site"). This facility has been designated as Solid Waste Management Unit 074 under KSC's Resource Conservation and Recovery Act Corrective Action program. The activities were completed as part of the Vehicle Assembly Building (VAB) Area Land Use Controls Implementation Plan (LUCIP) Elimination Project. The purpose of the VAB Area LUCIP Elimination Project was to delineate and remove soil affected with constituents of concern (COCs) that historically resulted in Land Use Controls (LUCs). The goal of the project was to eliminate the LUCs on soil. LUCs for groundwater were not addressed as part of the project and are not discussed in this report. This report is intended to meet the Florida Department of Environmental Protection (FDEP) Corrective Action Management Plan requirement as part of the KSC Hazardous and Solid Waste Amendments permit and the U.S. Environmental Protection Agency's (USEPA's) Toxic Substance Control Act (TSCA) self-implementing polychlorinated biphenyl (PCB) cleanup requirements of 40 Code of Federal Regulations (CFR) 761.61(a).

  3. Geotechnical field measurements: G-tunnel, Nevada test site

    NASA Astrophysics Data System (ADS)

    Zimmerman, R. M.; Vollendorf, W. C.

    1982-05-01

    The FY81 geotechnical measurements focused on borehole measurements in the Grouse Canyon welded tuff in G-tunnel on the Nevada Test Site. These ambient temperature measures were taken to: (1) establish baseline reference field data, and (2) gain field testing experience in welded tuff. The in situ state of stress was obtained using the three-hole overcoring method with the US Bureau of Mines three-component borehole deformation gage. The orthogonal horizontal stresses were 5.5 and 0.3 MPa and the nominal vertical was 8.5. Biaxial tests were performed on recovered cores and the average modulus of deformation was 31 GPa. The modulus of deformation using the borehole jack (Goodman) had an average value of 12 GPa. This value is not corrected for effective bearing contact area. Two orthogonal boreholes were used to determine the range of hydraulic conductivities. The range was from 0.022 cm/s (22 Darcy's) to 1.923 cm/s (1988 Dracy's).

  4. Geotechnical field measurements: G-tunnel, Nevada Test Site

    SciTech Connect

    Zimmerman, R.M.; Vollendorf, W.C.

    1982-05-01

    The FY81 geotechnical measurements focused on borehole measurements in the Grouse Canyon welded tuff in G-tunnel on the Nevada Test Site. These ambient temperature measurements were taken to: (1) establish baseline reference field data, and (2) gain field testing experience in welded tuff. The in situ state of stress was obtained using the three-hole overcoring method with the US Bureau of Mines three-component borehole deformation gage. The orthogonal horizontal stresses were 5.5 and 0.3 MPa and the nominal vertical was 8.5. Biaxial tests were performed on recovered cores and the average modulus of deformation was 31 GPa. The modulus of deformation using the borehole jack (Goodman) had an average value of 12 GPa. This value is not corrected for effective bearing contact area. Two orthogonal boreholes were used to determine the range of hydraulic conductivities. The range was from 0.022 cm/s (22 Darcy`s) to 1.923 cm/s (1988 Darcy`s).

  5. Lunar weather measurements at three Apollo sites 1969-1976

    NASA Astrophysics Data System (ADS)

    Hollick, Monique; O'Brien, Brian J.

    2013-11-01

    first lunar weather stations, matchbox-sized, 270 g Apollo Dust Detector Experiments about 100 cm above the surface of the Moon near Apollo 12, 14, and 15 landing sites, measured dust accretion, charged particle radiation, and temperature changes—three environmental factors proved during Apollo to affect technical systems deployed on the Moon. Degradation of seven horizontal solar cells was measured every lunar daytime from 1969 to 1976. The anomalously intense August 1972 solar particle event (SPE) degraded three covered cells by less than 1%, while two cells desensitized by intense preirradiation showed no measurable effects. Although independent studies estimated the long-term fluence bombarding the cells was less than half that of the August SPE, long-term gradual degradation of five covered cells (normalized to 2000 days) was an order of magnitude greater, between 4% and 10%. If the long-term effects were totally caused by dust, with articulated caveats including simulated (maria) Minnesota Lunar Simulant-1 dust particles with diameters 20 to 38 µm, this provides the first direct measured long-term net accretion of dust with an upper limit of order 100 µg cm-2 yr-1, equivalent to a layer 1 mm thick in 1000 years, but it may be significantly less. Two bare cells were abruptly degraded by 7% during the August SPE, however long-term they measured additional damage of 29% and 24%, indicating a long-neglected suite of low-energy radiation, posing risks for bare materials exposed on the surface of the Moon.

  6. Site characterization using a portable optically stimulated luminescence reader: delineating disrupted stratigraphy in Holocene eolian deposits on the Canadian Great Plains

    NASA Astrophysics Data System (ADS)

    Munyikwa, K.; Gilliland, K.; Gibson, T.; Plumb, E.

    2012-12-01

    The use of portable optically stimulated luminescence (POSL) readers to elucidate on complex depositional sequences has been demonstrated in a number of recent studies. POSL readers are robust versions of the traditional lab-bound luminescence readers and they can be used in the field, allowing for rapid decisions to be made when collecting samples for dating. Furthermore, in contrast with lab-bound readers, POSL readers can perform measurements on bulk samples, negating the need to carry out time-intensive mineralogical separations. The POSL reader is equipped with both infra-red and blue light (OSL) stimulating sources such that signal separation during measurement can be carried out by selectively exciting feldspar using the IR source (IRSL) after which a quartz dominant signal is obtained from the same sample using post-IR blue OSL. The signals obtained are then plotted to give luminescence profiles that depict the variation of the luminescence signal with depth. Signal intensities depend on mineralogical concentrations, grain luminescence sensitivities, dose rates as well as on burial ages of the grains. Where all these variables, apart from the burial age, are held constant up the depositional sequence the luminescence profile serves as a proxy for the chronostratigraphy. As a contribution to a growing archive of studies that have employed POSL readers to unravel complex depositional sequences, this study uses a POSL system developed by the Scottish Universities Environmental Research Centre to characterize the stratigraphy at an archaeological site that lies next to an oilfield plant located on a Holocene fossil dune landscape in southern Alberta, Canada. Oilfield activity was initiated at the site several decades ago and it involved the laying of pipelines below ground which disturbed considerable archaeological deposits. Subsequent work led to the discovery of the archeological site which was previously occupied by ancestral indigenous peoples at various

  7. Use of AVHRR-derived spectral reflectances to estimate surface albedo across the Southern Great Plains Cloud and Radiation Testbed (CART) site

    SciTech Connect

    Qiu, J.; Gao, W.

    1997-03-01

    Substantial variations in surface albedo across a large area cause difficulty in estimating regional net solar radiation and atmospheric absorption of shortwave radiation when only ground point measurements of surface albedo are used to represent the whole area. Information on spatial variations and site-wide averages of surface albedo, which vary with the underlying surface type and conditions and the solar zenith angle, is important for studies of clouds and atmospheric radiation over a large surface area. In this study, a bidirectional reflectance model was used to inversely retrieve surface properties such as leaf area index and then the bidirectional reflectance distribution was calculated by using the same radiation model. The albedo was calculated by converting the narrowband reflectance to broadband reflectance and then integrating over the upper hemisphere.

  8. Preventing surgical-site infections: measures other than antibiotics.

    PubMed

    Chauveaux, D

    2015-02-01

    Surgical-site infections (SSIs) due to intra-operative contamination are chiefly ascribable to airborne particles carrying microorganisms, mainly Staphylococcus aureus, which settle on the surgeon's hands and instruments. SSI prevention therefore rests on minimisation of airborne contaminated particle counts, although these have not been demonstrated to correlate significantly with SSI rates. Maintaining clear air in the operating room classically involves the use of ultra clean ventilation systems combining laminar airflow and high-efficiency particulate air filters to create a physical barrier around the surgical table; in addition to a stringent patient preparation protocol, appropriate equipment, and strict operating room discipline on the part of the surgeon and other staff members. SSI rates in clean surgery, although influenced by the type of procedure and by patient-related factors, are consistently very low, of about 1% to 2%. These low rates, together with the effectiveness of prophylactic antibiotic therapy and the multiplicity of parameters influencing the SSI risk, are major obstacles to the demonstration that a specific measure is effective in decreasing SSIs. As a result, controversy surrounds the usefulness of many measures, including laminar airflow, body exhaust suits, patient preparation techniques, and specific surgical instruments. Impeccable surgical technique and operating room behaviour, in contrast, are clearly essential.

  9. The exposure history of the Apollo 16 sites. An assessment based on methane and carbide measurements. [in lunar soils

    NASA Technical Reports Server (NTRS)

    Pillinger, C. T.; Eglinton, C.; Gowar, A. P.; Jull, A. J. T.; Maxwell, J. R.

    1974-01-01

    Soils from eight stations at the Apollo 16 landing site have been analyzed for methane and carbide. These results, in conjunction with published data from photogeology, bulk chemistry, rare gases, primordial and radionuclides, and agglutinate abundances have been interpreted in terms of differing contributions from three components, North and South Ray crater ejecta and Cayley Plains material.

  10. Mountain-Plains Handbook: The Design and Operation of a Residential Family Based Education Program. Appendix. Supplement Four to Volume Three. Measurement and Evaluation: The Research Services Division.

    ERIC Educational Resources Information Center

    Coyle, David A.; And Others

    One of five supplements which accompany chapter 3 of "Mountain-Plains Handbook: The Design and Operation of a Residential, Family Oriented Career Education Model" (CE 014 630), this document contains a master listing of all Mountain-Plains curriculum, compiled by job title, course, unit, and Learning activity package (LAPS) and arranged…

  11. 'Endurance' Goal Across the Plains

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This mosaic image from the Mars Exploration Rover Opportunity's panoramic camera provides an overview of the rover's drive direction toward 'Endurance Crater,' which is in the upper right corner of image.

    The plains appear to be uniform in character from the rovers current position all the way to Endurance Crater. Granules of various sizes blanket the plains. Spherical granules fancifully called blueberries are present some intact and some broken. Larger granules pave the surface, while smaller grains, including broken blueberries, form small dunes. Randomly distributed 1-centimeter (0.4 inch) sized pebbles (as seen just left of center in the foreground of the image) make up a third type of feature on the plains. The pebbles' composition remains to be determined. Scientists plan to examine these in the coming sols.

    Examination of this part of Mars by NASA's Mars Global Surveyor orbiter revealed the presence of hematite, which led NASA to choose Meridiani Planum as Opportunity's landing site. The rover science conducted on the plains of Meridiani Planum serves to integrate what the rovers are seeing on the ground with what orbital data have shown.

    Opportunity will make stop at a small crater called 'Fram' (seen in the upper left, with relatively large rocks nearby) before heading to the rim of Endurance Crater.

  12. 'Endurance' Goal Across the Plains

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This mosaic image from the Mars Exploration Rover Opportunity's panoramic camera provides an overview of the rover's drive direction toward 'Endurance Crater,' which is in the upper right corner of image.

    The plains appear to be uniform in character from the rovers current position all the way to Endurance Crater. Granules of various sizes blanket the plains. Spherical granules fancifully called blueberries are present some intact and some broken. Larger granules pave the surface, while smaller grains, including broken blueberries, form small dunes. Randomly distributed 1-centimeter (0.4 inch) sized pebbles (as seen just left of center in the foreground of the image) make up a third type of feature on the plains. The pebbles' composition remains to be determined. Scientists plan to examine these in the coming sols.

    Examination of this part of Mars by NASA's Mars Global Surveyor orbiter revealed the presence of hematite, which led NASA to choose Meridiani Planum as Opportunity's landing site. The rover science conducted on the plains of Meridiani Planum serves to integrate what the rovers are seeing on the ground with what orbital data have shown.

    Opportunity will make stop at a small crater called 'Fram' (seen in the upper left, with relatively large rocks nearby) before heading to the rim of Endurance Crater.

  13. Detecting Stratigraphic Disturbance Using Normalized Luminescence Signals from a Portable Optically Stimulated Luminescence (OSL) Reader: Improvements to Site Characterization in Holocene Eolian Deposits on the Canadian Great Plains

    NASA Astrophysics Data System (ADS)

    Munyikwa, K.; Gilliland, K.; Gibson, T.

    2016-12-01

    irradiation and then measuring again using the portable reader. Luminescence profiles obtained showed that normalization reduced scatter significantly and improved the ability to identify intact sites from those that have been disrupted. Apart from applications in geoarchaeology, the approach we used has potential for utility in the earth sciences.

  14. Measuring Total Dissolved Gas Pressure at a Petroleum Plume Site

    NASA Astrophysics Data System (ADS)

    Roy, J. W.; Spoelstra, J.; van Stempvoort, D.

    2009-05-01

    Groundwater contamination from petroleum hydrocarbons is ubiquitous across the country, in both urban and rural settings. Natural attenuation of petroleum contaminants may result in the production of gases (e.g. methane, carbon dioxide), in dissolved and potentially gas-phase form, which may affect the extent, persistence and remediation of petroleum hydrocarbon groundwater plumes. Current monitoring practices for gases in groundwater generally involve collecting water samples from wells or gas from gas-water separators during pumping tests, and subsequent analysis in the laboratory. Another potential option is the use of total dissolved gas pressure (TDGP) sensors, which can provide valuable real-time information on dissolved gas conditions while minimizing analytical costs. However, these have not been adequately tested or optimized for use in monitoring petroleum-contaminated groundwater. Preliminary testing of TDGP sensor measurement was performed on a selection of existing wells at a site in Ontario with previously-monitored groundwater contamination by petroleum hydrocarbons. TDGP was measured using a PT4 Tracker (Point Four Systems Inc., B.C.). Other properties such as dissolved oxygen and pH were also measured, and samples were collected and analyzed for major ions, metals, and various petroleum hydrocarbons. Results showed that 3 of the wells had contaminants, as well as elevated methane and dissolved iron. They also had lower nitrate and sulphate concentrations, but so did one uncontaminated well. The TDGP for these wells was elevated compared to background groundwater and compared to that expected for equilibration with the atmosphere. These higher values likely result from the microbial generation of dissolved methane. This data set suggests that natural biodegradation processes are occurring in the petroleum plume. However, some other wells also had elevated TDGP. They could indicate a septic plume, but the relatively low electrical conductivity (EC

  15. Implementing a Measurement Feedback System: A Tale of Two Sites.

    PubMed

    Bickman, Leonard; Douglas, Susan R; De Andrade, Ana Regina Vides; Tomlinson, Michele; Gleacher, Alissa; Olin, Serene; Hoagwood, Kimberly

    2016-05-01

    A randomized experiment was conducted in two outpatient clinics evaluating a measurement feedback system called contextualized feedback systems. The clinicians of 257 Youth 11-18 received feedback on progress in mental health symptoms and functioning either every 6 months or as soon as the youth's, clinician's or caregiver's data were entered into the system. The ITT analysis showed that only one of the two participating clinics (Clinic R) had an enhanced outcome because of feedback, and only for the clinicians' ratings of youth symptom severity on the SFSS. A dose-response effect was found only for Clinic R for both the client and clinician ratings. Implementation analyses showed that Clinic R had better implementation of the feedback intervention. Clinicians' questionnaire completion rate and feedback viewing at Clinic R were 50 % higher than clinicians at Clinic U. The discussion focused on the differences in implementation at each site and how these differences may have contributed to the different outcomes of the experiment.

  16. Implementing a Measurement Feedback System: A Tale of Two Sites

    PubMed Central

    Douglas, Susan R.; Vides De Andrade, Ana Regina; Tomlinson, Michele; Gleacher, Alissa; Olin, Serene; Hoagwood, Kimberly

    2015-01-01

    A randomized experiment was conducted in two outpatient clinics evaluating a measurement feedback system called contextualized feedback systems. The clinicians of 257 Youth 11–18 received feedback on progress in mental health symptoms and functioning either every 6 months or as soon as the youth’s, clinician’s or caregiver’s data were entered into the system. The ITT analysis showed that only one of the two participating clinics (Clinic R) had an enhanced outcome because of feedback, and only for the clinicians’ ratings of youth symptom severity on the SFSS. A dose–response effect was found only for Clinic R for both the client and clinician ratings. Implementation analyses showed that Clinic R had better implementation of the feedback intervention. Clinicians’ questionnaire completion rate and feedback viewing at Clinic R were 50 % higher than clinicians at Clinic U. The discussion focused on the differences in implementation at each site and how these differences may have contributed to the different outcomes of the experiment. PMID:25876736

  17. Measuring site index in the central hardwood region

    Treesearch

    Robert A. McQuilkin

    1989-01-01

    Site index is the average height of dominant and codominant trees growing in well-stocked, even-aged stands at a given age called ?index age.? Fifty years is the most commonly used index age in upland hardwoods. Sometimes 25 or 30 years are used for short-rotation bottomland hardwoods. Site index is widely used to indicate site quality because it correlates well with...

  18. Multiplanar Reformations in the Measurement of Renal Length on CT: Is It Plain Which Plane to Use?

    PubMed

    Lisanti, Christopher J; Oettel, David J; Reiter, Michael J; Schwope, Ryan B

    2015-10-01

    The objective of this study was to determine the accuracy of renal measurement on CT in multiple imaging planes. In this study, three board-certified radiologists retrospectively measured 110 kidneys on CT in 55 consecutive patients. Five measurement methods were used: axial, coronal single image, coronal multiimage, sagittal single image, and sagittal multiimage. The coronal database was sent to a postprocessing workstation, and each radiologist performed a maximum renal measurement using a best off-axis plane that was our reference standard. An ANOVA test with repeated measures and posthoc Bonferroni corrected t tests were performed. The mean differences (± standard error) compared with the reference standard method were as follows: axial, 7.7 ± 0.7 mm; coronal single image, 13.1 ± 1.4 mm; coronal multiimage, 6.4 ± 0.8 mm; sagittal single image, 6.4 ± 0.6 mm; and sagittal multiimage, 2.8 ± 0.3 mm. The reference standard measurement was larger (p < 0.001), whereas the coronal single-image measurement (p ≤ 0.006) was smaller than all other methods. The sagittal multiimage (p ≤ 0.005) was statistically significantly different from all other methods. There were no statistically significant differences among the axial, coronal multiimage, and sagittal single-image methods (p ≥ 0.088). The single-image coronal method is the least accurate, with an error of approximately 13 mm. The axial, multiimage coronal, and single-image sagittal methods underestimate renal size by approximately 6-8 mm. Multiimage sagittal is the most accurate method for measuring kidneys with an error of approximately 3 mm.

  19. Variation of Stable Carbon and Nitrogen Isotopic Composition of PM10 at Urban Sites of Indo Gangetic Plain (IGP) of India.

    PubMed

    Sharma, S K; Mandal, T K; Shenoy, D M; Bardhan, Pratirupa; Srivastava, Manoj K; Chatterjee, A; Saxena, Mohit; Saraswati; Singh, B P; Ghosh, S K

    2015-11-01

    This paper presents the variation of elemental concentrations of total carbon (TC), total nitrogen (TN) and isotopic ratios of δ13C and δ15N along with δ13OC and OC of PM10 mass over Delhi, Varanasi and Kolkata of the Indo Gangetic Plain (IGP), India. For Delhi, the average concentrations of TC and TN of PM10 were 53.0±33.6 and 14.9±10.8 µg m(-3), whereas δ13C and δ15N of PM10 were -25.5±0.5 and 9.6±2.8‰, respectively. For Varanasi, the average values of δ13C and δ15N of PM10 were -25.4±0.8 and 6.8±2.4‰, respectively. For Kolkata, TC and TN values for PM10 ranged from 9.1-98.2 to 1.4-25.9 µg m(-3), respectively with average values of 32.6±24.9 and 9.3±8.2 µg m(-3), respectively. The average concentrations of δ13C and δ15N were -26.0±0.4 and 7.4±2.7‰, respectively over Kolkata with ranges of -26.6 to -24.9‰ and 2.8±11.5‰, respectively. The isotopic analysis revealed that biomass burning, vehicular emission and secondary inorganic aerosols were likely sources of PM10 mass over IGP, India.

  20. A 1 year record of carbonaceous aerosols from an urban site in the Indo-Gangetic Plain: Characterization, sources, and temporal variability

    NASA Astrophysics Data System (ADS)

    Ram, Kirpa; Sarin, M. M.; Tripathi, S. N.

    2010-12-01

    This study presents a comprehensive 1 year (January 2007-March 2008) data set on the chemical composition of ambient aerosols collected from an urban location (Kanpur) in the Indo-Gangetic Plain (IGP) and suggests that the varying strength of the regional emission sources, boundary layer dynamics, and formation of secondary aerosols all contribute significantly to the temporal variability in the mass concentrations of elemental carbon (EC), organic carbon (OC), and water-soluble OC (WSOC). On average, carbonaceous aerosols contribute nearly one third of the PM10 mass during winter, whereas their fractional mass is only ˜10% during summer. A three- to four-fold increase in the OC and K+ concentrations during winter and a significant linear relation between them suggest biomass burning (wood fuel and agricultural waste) emission as a dominant source. The relatively high OC/EC ratio (average: 7.4 ± 3.5 for n = 66) also supports that emissions from biomass burning are overwhelming for the particulate OC in the IGP. The WSOC/OC ratios vary from 0.21 to 0.70 over the annual seasonal cycle with relatively high ratios in the summer, suggesting the significance of secondary organic aerosols. The long-range transport of mineral aerosols from Iran, Afghanistan, and the Thar Desert (western India) is pronounced during summer months. The temporal variability in the concentrations of selected inorganic constituents and neutralization of acidic species (SO42- and NO3-) by NH4+ (dominant during winter) and Ca2+ (in summer) reflect conspicuous changes in the source strength of anthropogenic emissions.

  1. The Plains City Story

    ERIC Educational Resources Information Center

    van Olphen, Marcela; Rios, Francisco; Berube, William; Dexter, Robin; McCarthy, Robert

    2006-01-01

    This case study portrays a contemporary phenomenon that affects many U.S. school districts. Specifically, the authors address the challenges that the superintendent of the Plains City school district faced as a result of a change in the demographic distribution of his district. The gradual development of the pig farming industry in Plains City…

  2. Hummocky and Smooth Plains

    NASA Image and Video Library

    2000-01-15

    This image, from NASA Mariner 10 spacecraft which launched in 1974, is located about 500 km east of the Caloris basin and shows hummocky plains interpreted as Caloris ejecta in the upper half of the picture and smooth plains in the lower half.

  3. Great plains, Chapter 11

    Treesearch

    C.M. Clark

    2011-01-01

    The North American Great Plains are the largest contiguous ecoregion in North America, covering 3.5 million square km2, or 16 percent of the continental area (CEC 1997). In the United States, the Great Plains ecoregion encompasses a roughly triangular region (Figure 2.2), bordered on the west by the Rocky Mountains and the southwestern deserts in...

  4. The Plains City Story

    ERIC Educational Resources Information Center

    van Olphen, Marcela; Rios, Francisco; Berube, William; Dexter, Robin; McCarthy, Robert

    2006-01-01

    This case study portrays a contemporary phenomenon that affects many U.S. school districts. Specifically, the authors address the challenges that the superintendent of the Plains City school district faced as a result of a change in the demographic distribution of his district. The gradual development of the pig farming industry in Plains City…

  5. Aerosol backscatter measurements at 10.6 microns with airborne and ground-based CO2 Doppler lidars over the Colorado High Plains. II - Backscatter structure

    NASA Technical Reports Server (NTRS)

    Bowdle, David A.; Rothermel, Jeffry; Vaughan, J. Michael; Post, Madison J.

    1991-01-01

    Measurements of tropospheric aerosol volume backscatter coefficients at 10.6-microns wavelength were obtained with airborne continuous wave and ground-based pulsed CO2 Doppler lidars over the Colorado High Plains during a 20-day period in summer 1982. A persistent 'background' layer was found between 6- and 10-km altitude, with a generally uniform backscatter mixing ratio of about 10 to the -10th sq m/kg per sr. The upper boundary of this background layer varied with the tropopause height; the lower boundary varied with the strength and diurnal cycle of convective mixing in the planetary boundary layer (PBL). For quiescent meteorological conditions, the transition from the PBL to the background layer was usually very sharp, with backscatter decreases sometimes as large as 3 decades in about 70 m. Sharp gradients were also found at the boundaries of shallow (tens of meters) subvisible cirrus clouds. For less stable conditions, associated with vertical aerosol transport by deep cumuliform clouds, backscatter tended to decrease exponentially with altitude.

  6. Hydrogeologic framework, hydrology, and refined conceptual model of groundwater flow for Coastal Plain aquifers at the Standard Chlorine of Delaware, Inc. Superfund Site, New Castle County, Delaware, 2005-12

    USGS Publications Warehouse

    Brayton, Michael J.; Cruz, Roberto M.; Myers, Luke; Degnan, James R.; Raffensperger, Jeff P.

    2015-01-01

    The regional hydrogeologic framework indicates that the site is underlain by Coastal Plain sediments of the Columbia, Merchantville, and Potomac Formations. Two primary aquifers underlying the site, the Columbia and the upper Potomac, are separated by the Merchantville Formation confining unit. Local groundwater flow in the surficial (Columbia) aquifer is controlled by topography and generally flows northward and discharges to nearby surface water. Regional flow within the Potomac aquifer is towards the southeast, and is strongly influenced by major water withdrawals locally. Previous investigations at the site indicated that contaminants, primarily benzene and chlorinated benzene compounds, were present in the Columbia aquifer in most locations; however, there were only limited detections in the upper Potomac aquifer as of 2004. From 2005 through 2012, the USGS designed a monitoring network, assisted with exploratory drilling, collected data at monitoring wells, conducted geophysical surveys, evaluated water-level responses in wells during pumping of a production well, and evaluated major aquifer withdrawals. Data collected through these efforts were used to refine the local conceptual flow system. The refined conceptual flow system for the site includes: (a) identification of gaps in confining units in the study area, (b) identification and correlation of multiple water-bearing sand intervals within the upper Potomac Formation, (c) connections between groundwater and surface water, (d) connections between shallow and deeper groundwater, (e) new water-level (or potentiometric surface) maps and inferred flow directions, and (f) identification of major local pumping well influences. The implications of the revised conceptual flow system on the occurrence and movement of site contaminants are that the resulting detection of contaminants in the upper Potomac aquifer at specific well locations can be attributed primarily to either advective lateral transport, direct

  7. The effect of boundary layer dynamics on aerosol properties at the Indo-Gangetic plains and at the foothills of the Himalayas

    NASA Astrophysics Data System (ADS)

    Raatikainen, T.; Hyvärinen, A.-P.; Hatakka, J.; Panwar, T. S.; Hooda, R. K.; Sharma, V. P.; Lihavainen, H.

    2014-06-01

    Previous studies have noted that aerosols originating from the polluted Indo-Gangetic plains can reach high altitudes at the Indian Himalayas and thereby have an effect on the south Asian monsoon. Here we examine the transport of pollutions by comparing aerosol properties from a Himalayan foothill measurement site and a site at the Indo-Gangetic plains. Gual Pahari is a polluted semi-urban background measurement site at the Indo-Gangetic plains close to New Delhi and Mukteshwar is a relatively clean background measurement site at the foothills of the Himalayas about 270 km NE from Gual Pahari and about 2 km above the nearby plains. The data set has more than two years of simultaneous measurements including meteorological parameters and aerosol mass concentrations. Modeled backward trajectories and Planetary Boundary Layer (PBL) heights are also used to examine the origin or air masses and the extent of the vertical mixing. The comparison shows that aerosol concentrations at the foothill site are correlated with the average PBL height. Together with the favorable synoptic scale circulation, this suggests a contribution of air mass transport from the plains.

  8. Ages of Lunar Light Plains

    NASA Astrophysics Data System (ADS)

    Hiesinger, Harald; Howes van der Bogert, Carolyn; Thiessen, Fiona; Robinson, Mark

    2013-04-01

    Light plains are characterized by their relative smoothness and lower crater densities (compared to the highlands), and their occurrence as crater fills. They also exhibit highland-like characteristics, such as high albedos (in comparison to mare basalts) and their geological and stratigraphic setting. Despite the long history of investigating light plains, there are still numerous open questions concerning their mode of emplacement, their mineralogical composition, their ages, and their origin. We dated 16 light plains with crater size-frequency distribution (CSFD) measurements. All dated regions were previously identified as light plains in the geologic maps [1-5] and either mapped as smooth light plains (Ip) or light plains with undulatory surfaces (INp). The studied light plains occur both inside and outside the South Pole-Aitken (SPA) basin within a latitudinal band between ~-36° and ~-75°. In particular, we investigated the following smooth light plains: Janssen (40.82°E, -44.96°; Ip [1]), Nishina (-170.8°E, -44.57°; Ip [2]), South of Nishina (Ip [2]), Obruchev (162.43°E, -38.67°; Ip [2]), Oresme (169.22°E, -42.61°, Ip [2]), Schrödinger (132.93°E, -74.73°; Ip [3]), Nearch (39.01°E, -58.58°; Ip [3]), Nasmyth (-56.39°E, -50.49°; Ip [3]), Manzinus (26.37°E, -67.51°; Ip [3]), Klaproth (-26.26°E, -69.85°; Ip [3]), Phocylides (-57.31°E, -52.79°, Ip [3]), Buffon (-133.53°E, -40.64°; Ip [4]), Roche (136.54°E, -42.37°; Ip [5]). We also dated the following light plains with undulatory surfaces: Koch (150.33°E, -42.13°; INp [2]), Garavito (156.78°E, -47.21°; INp [2]), Eötvös (134.43°E, -35.61°; INp [5]). Our CSFD measurements resulted in absolute model ages of 3.71 to 4.02 Ga for all investigated light plains, thus confirming the Imbrian and/or Nectarian ages of the geologic maps [1-5]. We only dated three INp light plains, but they appear to have ages that are close to the upper limit, i.e., 3.96-4.02 Ga. However, further CSFDs of INp

  9. Effectiveness of a physical barrier for contaminant control in an unconfined coastal plain aquifer: the case study of the former industrial site of Bagnoli (Naples, southern Italy).

    PubMed

    Arienzo, Michele; Allocca, Vincenzo; Manna, Ferdinando; Trifuoggi, Marco; Ferrara, Luciano

    2015-12-01

    A vertical engineered barrier (VEB) coupled with a water treatment plant was surveyed in the framework of a vast remedial action at the brownfield site of the former ILVA of Bagnoli steel making facility located in western Naples, Italy. The VEB was put in place to minimize contaminant migration from the brownfield site toward the sea at the shorelines sites of Bagnoli and Coroglio. The efficiency of the VEB was monitored through 12 piezometers, 8 at the Bagnoli shoreline and 4 at the Coroglio shoreline. Concentrations of inorganic and organic pollutants were examined in upstream and downstream groundwater relative to the VEB. The mean levels of Al, As, Fe, and Mn largely exceeded the legal limits, 10-15-fold, whereas that of Hg was up to 3-fold the rules. The VEB decreased the outlet concentrations only at certain specific location of the barrier, four times for Al, 6-fold for Hg, and by 20% for Mn with means largely exceeding the rules. At the other sites, the downstream water showed marked increases of the pollutants up to 3-fold. Outstanding levels of the hydrocarbons > 12 were detected in the inlet water with means of some hundred times the limits at both sites. Likewise most of screened inorganic pollutants, the downstream water showed marked increases of the hydrocarbons up to ~113%. The treatment plant was very effective, with removal efficiencies >80% for As, Al, Fe, and Mn. The study evidenced the need to put alternative groundwater remedial actions.

  10. MEASUREMENT OF BIOAVAILABLE IRON AT TWO HAZARDOUS WASTE SITES

    EPA Science Inventory

    In the past, the concentrations of iron II in monitoring wells has been used to evaluate natural attenuation processes at hazardous waste sites. Changes in the aqueous concentrations of electron acceptors/products are important to the evaluation of natural biological attenuation...

  11. MEASUREMENT OF BIOAVAILABLE IRON AT TWO HAZARDOUS WASTE SITES

    EPA Science Inventory

    In the past, the concentrations of iron II in monitoring wells has been used to evaluate natural attenuation processes at hazardous waste sites. Changes in the aqueous concentrations of electron acceptors/products are important to the evaluation of natural biological attenuation...

  12. Evenness indices measure the signal strength of biweight site chronologies

    Treesearch

    Kurt H. Riitters

    1990-01-01

    The signal strength of a biweight site chronology is properly viewed as an outcome of analysis rather than as a property of the forest-climate system. It can be estimated by the evenness of the empirical weights that are assigned to individual trees. The approach is demonstrated for a 45-year biweight chronology obtained from 40 jack pine (Pinus banksiana Lamb.) trees...

  13. Rocky Martian Plain

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The rocky Martian plain surrounding Viking 2 is seen in high resolution in this 85-degree panorama sweeping from north at the left to east at right during the Martian afternoon on September 5. Large blocks litter the surface. Some are porous, sponge-like rocks like the one at the left edge (size estimate: 1 1/2 to 2 feet); others are dense and fine-grained, such as the very bright rounded block (1 to 1 1/2 feet across) toward lower right. Pebbled surface between the rocks is covered in places by small drifts of very fine material similar to drifts seen at the Viking 1 landing site some 4600 miles to the southwest. The fine-grained material is banked up behind some rocks, but wind tails seen by Viking 1 are not well-developed here. On the right horizon, flat-topped ridges or hills are illuminated by the afternoon sun. Slope of the horizon is due to the 8-degree tilt of the spacecraft.

  14. Rocky Martian Plain

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The rocky Martian plain surrounding Viking 2 is seen in high resolution in this 85-degree panorama sweeping from north at the left to east at right during the Martian afternoon on September 5. Large blocks litter the surface. Some are porous, sponge-like rocks like the one at the left edge (size estimate: 1 1/2 to 2 feet); others are dense and fine-grained, such as the very bright rounded block (1 to 1 1/2 feet across) toward lower right. Pebbled surface between the rocks is covered in places by small drifts of very fine material similar to drifts seen at the Viking 1 landing site some 4600 miles to the southwest. The fine-grained material is banked up behind some rocks, but wind tails seen by Viking 1 are not well-developed here. On the right horizon, flat-topped ridges or hills are illuminated by the afternoon sun. Slope of the horizon is due to the 8-degree tilt of the spacecraft.

  15. Measuring The Influence of Pearlite Dissolution on the Transient Dynamic Strength of Rapidly-Heated Plain Carbon Steels

    PubMed Central

    Mates, Steven; Stoudt, Mark; Gangireddy, Sindhura

    2016-01-01

    Carbon steels containing ferrite-pearlite microstructures weaken dramatically when pearlite dissolves into austenite on heating. The kinetics of this phase transformation, while fast, can play a role during dynamic, high temperature manufacturing processes, including high speed machining, when the time scale of this transformation is on the order of the manufacturing process itself. In such a regime, the mechanical strength of carbon steel can become time-dependent. The present work uses a rapidly-heated, high strain rate mechanical test to study the effect of temperature and time on the amount of pearlite dissolved and on the resulting transient effect on dynamic strength of a low and a high carbon (eutectoid) steel. Measurements indicate that the transient effect occurs for heating times less than about three seconds. The 1075 steel loses about twice the strength compared to the 1018 steel (85 MPa to 45 MPa) owing to its higher initial pearlite volume fraction. Pearlite dissolution is confirmed by metallographic examination of tested samples. Despite the different starting pearlite fractions, the kinetics of dissolution are comparable for the two steels, owing to the similarity in their initial pearlite morphology. PMID:28082822

  16. Measuring The Influence of Pearlite Dissolution on the Transient Dynamic Strength of Rapidly-Heated Plain Carbon Steels.

    PubMed

    Mates, Steven; Stoudt, Mark; Gangireddy, Sindhura

    2016-07-01

    Carbon steels containing ferrite-pearlite microstructures weaken dramatically when pearlite dissolves into austenite on heating. The kinetics of this phase transformation, while fast, can play a role during dynamic, high temperature manufacturing processes, including high speed machining, when the time scale of this transformation is on the order of the manufacturing process itself. In such a regime, the mechanical strength of carbon steel can become time-dependent. The present work uses a rapidly-heated, high strain rate mechanical test to study the effect of temperature and time on the amount of pearlite dissolved and on the resulting transient effect on dynamic strength of a low and a high carbon (eutectoid) steel. Measurements indicate that the transient effect occurs for heating times less than about three seconds. The 1075 steel loses about twice the strength compared to the 1018 steel (85 MPa to 45 MPa) owing to its higher initial pearlite volume fraction. Pearlite dissolution is confirmed by metallographic examination of tested samples. Despite the different starting pearlite fractions, the kinetics of dissolution are comparable for the two steels, owing to the similarity in their initial pearlite morphology.

  17. Establishment treatments affect the relationships among nutrition, productivity and competing vegetation of loblolly pine saplings on a Gulf Coastal Plain site

    Treesearch

    Mary A. Sword; Allan E. Tiarks; James D. Haywood

    1998-01-01

    After cultural treatments such as site preparation, release, and fertilization, changes in the supply of mineral nutrients relative to each other and shifts in the composition of vegetation may have a delayed effect on the nutrition, carbon partitioning, and growth of forest trees. This study was conducted to evaluate the influence of early management options that...

  18. Atmospheric deposition as an important nitrogen load to a typical agroecosystem in the Huang-Huai-Hai Plain. 1. Measurement and preliminary results

    NASA Astrophysics Data System (ADS)

    Huang, Ping; Zhang, Jiabao; Zhu, Anning; Xin, Xiuli; Zhang, Congzhi; Ma, Donghao

    2011-07-01

    Atmospheric nitrogen (N) deposition has been widely considered as an important N input into agroecosystems, but its measurement involves considerable uncertainties with various methods. In this study, a field sampler with distilled water as a surrogate surface was developed and trialed for the collection of dry and wet N deposition. The direct measuring results were compared with the value calculated by the N mass balance method (crop N uptake from plots receiving no N fertilizers of the long-term fertilization experiment in the monitoring station). The results indicated that exposure durations of 3-5 days and water volumes of 2000-2800 ml were tested to be suitable to collect dry N deposition, while water volumes of less than 1000 ml and sampling conducted immediately after rain event were found to be appropriate for wet N collection under the present experimental conditions. The monitoring work was conducted from June 2008 to May 2009, and annual N deposition totaled up to 40.32 kg N ha -1, of which dry deposition accounted for 62.45%. NH 4-N was the dominant species in N deposition and contributed 62.68% and 66.00% to wet and dry deposition, respectively. Organic N (O-N) was found to make greater contributions than NO 3-N in both dry and wet depositions. Total N deposition was parallel to the results estimated by the method of mass N balance from the long-term experiment, as 45.6 kg N ha -1. These results provide helpful knowledge to elucidate the N deposition scenario of a typical agroecosystem and can be of great importance for the calculation of fertilizer recommendations in the Huang-Huai-Hai Plain.

  19. Simultaneous measurements of new particle formation at 1 s time resolution at a street site and a rooftop site

    NASA Astrophysics Data System (ADS)

    Zhu, Yujiao; Yan, Caiqing; Zhang, Renyi; Wang, Zifa; Zheng, Mei; Gao, Huiwang; Gao, Yang; Yao, Xiaohong

    2017-08-01

    This study is the first to use two identical Fast Mobility Particle Sizers for simultaneous measurement of particle number size distributions (PNSDs) at a street site and a rooftop site within 500 m distance in wintertime and springtime to investigate new particle formation (NPF) in Beijing. The collected datasets at 1 s time resolution allow deduction of the freshly emitted traffic particle signal from the measurements at the street site and thereby enable the evaluation of the effects on NPF in an urban atmosphere through a site-by-site comparison. The number concentrations of 8 to 20 nm newly formed particles and the apparent formation rate (FR) in the springtime were smaller at the street site than at the rooftop site. In contrast, NPF was enhanced in the wintertime at the street site with FR increased by a factor of 3 to 5, characterized by a shorter NPF time and higher new particle yields than at the rooftop site. Our results imply that the street canyon likely exerts distinct effects on NPF under warm or cold ambient temperature conditions because of on-road vehicle emissions, i.e., stronger condensation sinks that may be responsible for the reduced NPF in the springtime but efficient nucleation and partitioning of gaseous species that contribute to the enhanced NPF in the wintertime. The occurrence or absence of apparent growth for new particles with mobility diameters larger than 10 nm was also analyzed. The oxidization of biogenic organics in the presence of strong photochemical reactions is suggested to play an important role in growing new particles with diameters larger than 10 nm, but sulfuric acid is unlikely to be the main species for the apparent growth. However, the number of datasets used in this study is relatively small, and larger datasets are essential to draw a general conclusion.

  20. Diagnosing causes of cloud parameterization deficiencies using ARM measurements over SGP site

    SciTech Connect

    Wu, W.; Liu, Y.; Betts, A. K.

    2010-03-15

    Decade-long continuous surface-based measurements at Great Southern Plains (SGP) collected by the US Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility are first used to evaluate the three major reanalyses (i.e., ERA-Interim, NCEP/NCAR Reanalysis I and NCEP/DOE Reanalysis II) to identify model biases in simulating surface shortwave cloud forcing and total cloud fraction. The results show large systematic lower biases in the modeled surface shortwave cloud forcing and cloud fraction from all the three reanalysis datasets. Then we focus on diagnosing the causes of these model biases using the Active Remote Sensing of Clouds (ARSCL) products (e.g., vertical distribution of cloud fraction, cloud-base and cloud-top heights, and cloud optical depth) and meteorological measurements (temperature, humidity and stability). Efforts are made to couple cloud properties with boundary processes in the diagnosis.

  1. Ground Clutter Measurements for Surface-Sited Radar

    DTIC Science & Technology

    1993-02-01

    o&F4 is referred to as " effective clutter strength" to emphasize that it is this product , including propagation effects and not just the...result of its effect on shadowing in a sea of patchy visibility and discrete or localized scattering sources. Following ttis understanding, a general...Model 51 4.3 Non-Site-Specific Model 54 4.4 Effects of Weather and Season 67 5. TEMPORAL CLUTTER STATISTICS 71 6. SUMMARY 77 REFERENCES 81 vii LIST OF

  2. Guide for selecting Manning's roughness coefficients for natural channels and flood plains

    USGS Publications Warehouse

    Arcement, George J.; Schneider, Verne R.

    1989-01-01

    Although much research has been done on Manning's roughness coefficient, n, for stream channels, very little has been done concerning the roughness values for densely vegetated flood plains. The n value is determined from the values of the factors that affect the roughness of channels and flood plains. In densely vegetated flood plains, the major roughness is caused by trees, vines, and brush. The n value for this type of flood plain can be determined by measuring the vegetation density of the flood plain. Photographs of flood-plain segments where n values have been verified can be used as a comparison standard to aid in assigning n values to similar flood plains.

  3. Consistency and Applicability of Parameterization Schemes for Aerosol Size-resolved Activation Ratio based on Field Measurements in the North China Plain.

    NASA Astrophysics Data System (ADS)

    Tao, J.; Zhao, C.

    2016-12-01

    The parameterization of aerosol size-resolved activation ratio (AR) is essential to predict the cloud condensation nulcei (CCN) number concentration (NCCN). The critical issues to the application of the AR parameterization in models are (1) the consistency of the different equations to fit AR curves and (2) the applicability in the estimate of NCCN under different pollution conditions, which were discussed in this study based on the measurements of the aerosol size-resolved AR in summer in the North China Plain. The comparison results of the three kinds of fitting equations demonstrated that both their fitting curves and the variations of their fitting parameters were similar with each other. It was concluded that the consistency of different equations was reached. The commonly used method to calculate NCCN with a fixed AR was found to be accurate except that strong local emissions existed. For the calculation of NCCN under different regional pollution conditions, the representative fitting parameters can be replaced by the campaign averages and good agreements were achieved. NCCN calculation was overestimated by about 10% in the evening when soot emission was abundant and deviated from 1:1 line by 15% during New Particle Formation (NPF) events in the afternoon. The bias of the calculated NCCN due to the significant local emissions can not be eliminated by using the representative fitting parameters and under these circumstance the accurate prediction of NCCN required the on-line information of aerosol hygroscopicity.This research will improve the quantification of the aerosol indirect effect in models.

  4. Widespread Plains Volcanism on Mercury Ended by 3.6 Ga

    NASA Astrophysics Data System (ADS)

    Byrne, P. K.; Ostrach, L. R.; Fassett, C.; Chapman, C. R.; Evans, A. J.; Klimczak, C.; Banks, M. E.; Head, J. W., III; Solomon, S. C.

    2015-12-01

    The largest volcanic plains deposits on Mercury are situated in its northern hemisphere and include the extensive northern smooth plains and the Caloris interior plains. Crater size-frequency analyses have shown that both deposits were emplaced around 3.8 Ga, for any of the published model production function (MPF) chronologies for impact crater formation on Mercury. The largest volcanic deposit in the southern hemisphere, the Rembrandt interior plains, has a model age of ~3.7 Ga. To test the hypothesis that all major volcanic smooth plains on Mercury were emplaced at about the same time, we determined crater size-frequency distributions for nine additional deposits (see Table 1). The diameters of craters that superpose the smooth plains at each site were measured with CraterTools, yielding crater areal densities in terms of N(10), the number of craters ≥10 km in diameter per 106 km2 area (Table 1). Our crater density measurements span N(10) values of 29-146, a range that encompasses corresponding values for the larger areas of smooth plains. With CraterStats, we fit our data (for craters ≥4 km in diameter) to the MPF chronologies of Le Feuvre and Wieczorek. For porous scaling, the model ages of all nine sites span a narrow window (Table 1). Non-porous scaling fails to match the crater size-frequency distributions. We show that widespread plains volcanism, likely the primary process by which Mercury's crust developed, had ended by 3.6 Ga. Younger volcanic deposits have been identified on the planet, but only within impact structures and at volumes much less than the smallest deposit considered here. Superposition relations between shortening landforms and craters on Mercury indicate that global contraction in response to interior cooling was underway by ~3.6 Ga. The cessation of widespread plains volcanism on Mercury may therefore reflect the onset of a stress state within the planet's lithosphere that inhibited magma ascent. Conversely, mantle thermochemical

  5. Triton Volcanic Plains

    NASA Image and Video Library

    2009-08-25

    This view of the volcanic plains of Neptune moon Triton was produced using topographic maps derived from images acquired by NASA Voyager spacecraft during its August 1989 flyby, 20 years ago this week.

  6. Triton Volcanic Plains #2

    NASA Image and Video Library

    2009-08-25

    This view of the volcanic plains of Neptune moon Triton was produced using topographic maps derived from images acquired by NASA Voyager spacecraft during its August 1989 flyby, 20 years ago this week.

  7. 78 FR 66420 - Proposed Enhancements to the Motor Carrier Safety Measurement System (SMS) Public Web Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ... System (SMS) Public Web Site AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION... enhancements to the display of information on the Agency's Safety Measurement System (SMS) public Web site... changes to the design of the SMS public Web site that are the direct result of feedback from stakeholders...

  8. 78 FR 76391 - Proposed Enhancements to the Motor Carrier Safety Measurement System (SMS) Public Web Site

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ... System (SMS) Public Web Site AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION... Safety Measurement System (SMS) public Web site. On December 6, 2013, Advocates ] for Highway and Auto...://www.regulations.gov Web site is generally available 24 hours each day, 365 days each year. You can get...

  9. Active Layer and Moisture Measurements for Intensive Site 0 and 1, Barrow, Alaska

    DOE Data Explorer

    John Peterson

    2015-04-17

    These are measurements of Active Layer Thickness collected along several lines beginning in September, 2011 to the present. The data were collected at several time periods along the Site0 L2 Line, the Site1 AB Line, and an ERT Monitoring Line near Area A in Site1.

  10. Nest sites and conservation of endangered Interior Least Terns Sterna antillarum athalassos on an alkaline flat in the south-central Great Plains (USA)

    USGS Publications Warehouse

    Winton, Brian R.; Leslie, David M.

    2003-01-01

    We monitored nest sites of endangered Interior Least Terns on a 5 095 ha alkaline flat in north-central Oklahoma, USA. After nest loss, Least Terns commonly renested and experienced 30% apparent nest success in 1995-1996 (n = 233 nests). Nest success and predation differed by location on the alkaline flat in 1995 and overall, but nest success and flooding did not differ by microhabitat type. Predation was highest at nests ??? 5 cm from debris (driftwood/hay) in 1995. No differences in nesting success, flooding, or predation were observed on comparing nests inside and outside electrified enclosures. Coyotes and Striped Skunks were confirmed nest predators, and Ring-billed Gulls were suspected nest predators. We identified one location on the alkaline flat of about 1 000 ha with consistently lower nest losses attributable to flooding and predation and the highest hatching success compared with other parts of the alkaline flat; it was typified by open ground and bisected by several creeks. Management activities that minimize flooding and predation in this area could further enhance nest success and theoretically increase overall productivity of this population of Least Terns. However, the efficacy of electrified enclosures and nest-site enhancements, as currently undertaken, is questionable because of considerable annual variation in use by and protection of Least Terns.

  11. Reliability analysis for manual measurement of coronal plane deformity in adolescent scoliosis. Are 30 × 90 cm plain films better than digitized small films?

    PubMed Central

    De Carvalho, Antonio; Thomsen, Laurent; Amzallag, Julien; Cluzel, Guillaume; Pointe, Hubert Ducou le; Mary, Pierre

    2007-01-01

    For several years, digitized small radiographs are used to measure Cobb angle in idiopathic scoliosis. The interobserver and intraobserver Cobb angle measurement variability associated with small radiographs were compared with measurement variability associated with the long-cassette radiographs. Twenty adolescent patients with a double major idiopathic scoliosis had erect full-spine p-A radiographs and Cobb angle measurements performed by eight different observers on a 30 × 90 cm plain-film radiograph and a digitized 14 × 42 cm image. Inter-observer and intra-observer reliability using each techniques were assessed using a paired t-test, Spearman rank correlation study and intraclass correlation coefficients. The angle variability between small film and plain-film measurements was assessed using the same methods. Intra-observer and inter-observer study showed good reliability using both techniques. The comparison between small films and plain-films measurements showed very good agreement with an intraclass correlation coefficient of 95% and confidence interval between 0.962 and 0.972. In our study, Cobb angle determination was not found to vary significantly with film size. The small film image used for full-spine radiographs in our institution allows manual Cobb angle measurements to be performed. A study is currently conducted in our institution to determine if a computer-assisted measurement method significantly improves Cobb angle measurements reliability in routine practice compared with manual measurements of Cobb angles on small films. PMID:17619912

  12. Radiation measurements over a snowfield at an elevated site

    NASA Technical Reports Server (NTRS)

    Korff, H. C.; Gailiun, J. J.; Vonderhaar, T. H.

    1974-01-01

    The components of short wave radiation were measured over a snowfield in a valley of the Rocky Mountains at a height of 2700 m above sea level. Global and reflected radiation were obtained by a set of Eppley pyranometers. In addition, the direct solar radiation and the turbidity of the atmosphere were derived from pyrheliometric data on cloud-free days. Emphasis was given to the reflectance of the snowfield in relation to the position of the sun, especially at low elevation angles. These reflectance values were measured for cloudless as well as for cloudy days and compared with already published values for arctic and antarctic conditions.

  13. Mountain-Plains Handbook: The Design and Operation of a Residential Family Based Education Program. Appendix. Supplement III to Volume 3. Measurement and Evaluation: The Research Services Division.

    ERIC Educational Resources Information Center

    Coyle, David A.; And Others

    One of five supplements which accompany chapter three of "Mountain-Plains Handbook: The Design and Operation of a Residential, Family Oriented Career Education Model" (CE 014 630), this document contains specific infomration concerning the curriculum component of the research services division. The curriculum products are listed by…

  14. MEASURING BASE-FLOW CHEMISTRY AS AN INDICATOR OF REGIONAL GROUND-WATER QUALITY IN THE MID-ATLANTIC COASTAL PLAIN

    EPA Science Inventory

    Water quality in headwater (first-order) streams of the Mid-Atlantic Coastal Plain during base flow in the winter and spring is related to land use, hydrogeology, and other natural and human influences. A random survey of water quality in 174 headwater streams in the Mid-Atlantic...

  15. MEASURING BASE-FLOW CHEMISTRY AS AN INDICATOR OF REGIONAL GROUND-WATER QUALITY IN THE MID-ATLANTIC COASTAL PLAIN

    EPA Science Inventory

    Water quality in headwater (first-order) streams of the Mid-Atlantic Coastal Plain during base flow in the winter and spring is related to land use, hydrogeology, and other natural and human influences. A random survey of water quality in 174 headwater streams in the Mid-Atlantic...

  16. Surface refractivity measurements at NASA spacecraft tracking sites

    NASA Technical Reports Server (NTRS)

    Schmid, P. E.

    1972-01-01

    High-accuracy spacecraft tracking requires tropospheric modeling which is generally scaled by either estimated or measured values of surface refractivity. This report summarizes the results of a worldwide surface-refractivity test conducted in 1968 in support of the Apollo program. The results are directly applicable to all NASA radio-tracking systems.

  17. Aspects of the quality of data from the Southern Great Plains (SGP) cloud and radiation testbed (CART) site broadband radiation sensors

    SciTech Connect

    Splitt, M.E.; Wesely, M.L.

    1996-04-01

    A systmatic evaluation of the performance of broadband radiometers at the Radiation Testbed (CART) site is needed to estimate the uncertainties of the irradiance observations. Here, net radiation observed with the net radiometer in the enrgy balance Bowen ratio station at the Central facility is compared with the net radiation computed as the sum of component irradiances recorded by nearby pyranameters and pyrgeometers. In addition, data obtained from the central facility pyranometers, pyrgeometers, and pyrheliometers are examined for April 1994, when intensive operations periods were being carried out. The data used in this study are from central facility radiometers in a solar and infrared observation station, and EBBR station, the so-called `BSRN` set of upward pointing radiometers, and a set of radiometers pointed down at the 25-m level of a 60-m tower.

  18. Recent Solar Measurements Results at the Parabolic Dish Test Site

    NASA Technical Reports Server (NTRS)

    Ross, D. L.

    1984-01-01

    After the Mexican volcanic eruptions of March 28, April 3 and 4, 1982, the question of its effect on insolation levels at the Parabolic Dish Test Site (PDTS) naturally arose. Clearly, the answer to the original question is that the Mexican volcanic explosion had a significant impact on energy and insolation levels at the PDTS and, furthermore, it has been quite long lasting. The first really significant decrease in energy and insolation levels occurred in June 1982 when the energy level decreased by 19.7% while the peak insolation levels went down by 4.0%. June of 1982 was also the first month (of 13 consecutive months) when peak insolation levels did not equal or exceed 1,000 W/sq m. Signs of a recovery from the effects of the volcanic explosion began to appear in May of 1983, when the energy level exceeded that of May 1981 as well as May 1982. It would appear that energy and insolation levels are improving at the PDTS, but have not quite reached normal or pre-volcanic levels. At this time the data would seem to suggest a return to normal energy and insolation levels will occur in the very near future.

  19. Seismic Velocity Measurements at Expanded Seismic Network Sites

    SciTech Connect

    Woolery, Edward W; Wang, Zhenming

    2005-01-01

    Structures at the Paducah Gaseous Diffusion Plant (PGDP), as well as at other locations in the northern Jackson Purchase of western Kentucky may be subjected to large far-field earthquake ground motions from the New Madrid seismic zone, as well as those from small and moderate-sized local events. The resultant ground motion a particular structure is exposed from such event will be a consequence of the earthquake magnitude, the structures' proximity to the event, and the dynamic and geometrical characteristics of the thick soils upon which they are, of necessity, constructed. This investigation evaluated the latter. Downhole and surface (i.e., refraction and reflection) seismic velocity data were collected at the Kentucky Seismic and Strong-Motion Network expansion sites in the vicinity of the Paducah Gaseous Diffusion Plant (PGDP) to define the dynamic properties of the deep sediment overburden that can produce modifying effects on earthquake waves. These effects are manifested as modifications of the earthquake waves' amplitude, frequency, and duration. Each of these three ground motion manifestations is also fundamental to the assessment of secondary earthquake engineering hazards such as liquefaction.

  20. Protection measures against mine subsidence taken at a building site

    SciTech Connect

    Marino, G.G.; Abdel-Maksoud, M.G.

    2006-03-15

    With little mining information, old abandoned coal workings were grouted beneath a proposed building site. Mine stabilization was found necessary after an investigation of subsidence potential was performed. The investigation indicated that the 67 m deep abandoned mine, although old, still had not collapsed and consequently presented a significant risk of subsidence in the future. Further, based on the history of subsidence over old mines in the area, mine grouting was recommended. To stabilize the mine, about 11,468 m{sup 3} of grout were pumped. The grouting was designed to account for the significant amount of rubble which existed in the mine. There were three grout mixes of different flowability characteristics specified. The 1,725 kPa grout was hatched at a slump of 10 and 20-22 cm and at a flow rate of 30-40 s. Permeation, squeeze (or intrusion), and compaction grouting was performed per the project specifications. Also, to economize on the amount of grouting necessary, subsidence resistant features were incorporated into the design of the building.

  1. Measuring enjoyable informal learning using augmented reality at cultural heritage site

    NASA Astrophysics Data System (ADS)

    Pendit, Ulka Chandini; Zaibon, Syamsul Bahrin; Bakar, Juliana Aida Abu

    2016-08-01

    The instrument of evaluation of measuring enjoyable informal learning at cultural heritage site was produced by validity and reliability analysis. It involved two cycles of steps, content validity and face validity and content validity and reliability analysis. From the analysis, it was found out that the instrument is reliable to be measure enjoyable informal learning at cultural heritage site.

  2. Measurements of fog composition at a rural site

    NASA Astrophysics Data System (ADS)

    Straub, Derek J.; Hutchings, James W.; Herckes, Pierre

    2012-02-01

    Studies that focus on fog chemistry in the United States have been limited to relatively few locations. Apart from measurements along the East and West coasts and extensive analysis of radiation fog in the Central Valley of California, fog composition has been characterized in only a handful of other locations. To complement and expand the existing fog chemistry data that are currently available, a new field campaign was established at a rural location in Central Pennsylvania to produce a unique, long term record of fog composition. From 2007 to 2010, 41 fog events were sampled with an automated Caltech Heated Rod Cloudwater Collector (CHRCC). The collected samples were analyzed primarily for pH and major inorganic ions. Dissolved organic carbon (DOC) and trace metals were analyzed in selected samples and N-nitrosodimethylamine (NDMA) was quantified in two samples. Sample composition varied widely during the study period. Sulfate concentrations ranged from 15 to 955 (median = 123) μN and pH varied between 3.08 and 7.41 (median = 5.77). In terms of volume weighted averages, ammonium was the most abundant ionic species followed by sulfate, calcium, and nitrate. For the subset of samples in which DOC was analyzed, concentrations ranged from 2.2 to 22.6 mgC l -1. Comparisons with regional precipitation chemistry measurements reveal the influence of local agricultural and soil sources on fog composition. The sum of sulfate, nitrate, and ammonium measured in the present study is considerably lower than the majority of radiation, precipitation, and coastal fogs collected in the United States although the ammonium/(nitrate + sulfate) ratio is similar to those found in the Central Valley of California.

  3. Measurements of air pollutants at two disposal sites in Cairo.

    PubMed

    Köck, M

    1989-01-01

    40,000 people live on the periphery of Cairo. They dispose of the city's entire waste. A complete recycling of the waste is carried out (up to 90%). The rest is burnt. Enormous fume emissions result form the incomplete burning process of their constituents of rest wastes (plastic, paper rests, tins cloth rests, org. material). The daily burning process lasts from midday to approximately 11 p.m. The main pollutants measured were: Carbon monoxide, hydrochloric acid and sulphur dioxide. As the results demonstrate, high amounts of carbon monoxide and hydrochloric acid are emitted from the burning process.

  4. Adjusting central and eastern North America ground-motion intensity measures between sites with different reference-rock site conditions

    USGS Publications Warehouse

    Boore, David; Campbell, Kenneth W.

    2017-01-01

    Adjustment factors are provided for converting ground‐motion intensity measures between central and eastern North America (CENA) sites with different reference‐rock site conditions (VS30=760, 2000, and 3000  m/s) for moment magnitudes ranging from 2 to 8, rupture distances ranging from 2 to 1200 km, Fourier amplitude spectra (FAS) for frequencies ranging from 0.01 to 100 Hz, response spectra for periods ranging from 0.01 to 10.0 s, peak ground acceleration, and peak ground velocity. The adjustment factors are given for a wide range of the site diminution parameters (κ0) for sites with VS30=760  m/s and for a κ0 of 0.006 s for two harder rock sites. Fourteen CENA velocity profiles with VS30 values within a factor of 1.1 of 760  m/s were used to derive average FAS amplification factors as a function of frequency, which were then used in simulations of peak ground‐motion parameters and response spectra to derive the adjustment factors. The amplification function differs from that used in western North America (e.g., Campbell and Boore, 2016) in having a peak near 9 Hz, due to the resonance of motions in the relatively thin low‐velocity material over hard rock that characterizes many CENA sites with VS30 near 760  m/s. We call these B/C sites, because this velocity marks the boundary between National Earthquake Hazards Reduction Program site classes B and C (Building Seismic Safety Council, 2004). The adjustments for short‐period motions are sensitive to the value of κ0, but there are very few if any determinations of κ0 for CENA B/C sites. For this reason, we determined κ0from multiple recordings at Pinyon Flat Observatory (PFO), California, which has a velocity‐depth profile similar to those of CENA B/C sites. The PFO and other results from the literature suggest that appropriate values of κ0 for CENA B/C sites are expected to lie between 0.01 and 0.03 s.

  5. Wide Angle Imaging Lidar (WAIL): Theory of Operation and Results from Cross-Platform Validation at the ARM Southern Great Plains Site

    NASA Astrophysics Data System (ADS)

    Polonsky, I. N.; Davis, A. B.; Love, S. P.

    2004-05-01

    WAIL was designed to determine physical and geometrical characteristics of optically thick clouds using the off-beam component of the lidar return that can be accurately modeled within the 3D photon diffusion approximation. The theory shows that the WAIL signal depends not only on the cloud optical characteristics (phase function, extinction and scattering coefficients) but also on the outer thickness of the cloud layer. This makes it possible to estimate the mean optical and geometrical thicknesses of the cloud. The comparison with Monte Carlo simulation demonstrates the high accuracy of the diffusion approximation for moderately to very dense clouds. During operation WAIL is able to collect a complete data set from a cloud every few minutes, with averaging over horizontal scale of a kilometer or so. In order to validate WAIL's ability to deliver cloud properties, the LANL instrument was deployed as a part of the THickness from Off-beam Returns (THOR) validation IOP. The goal was to probe clouds above the SGP CART site at night in March 2002 from below (WAIL and ARM instruments) and from NASA's P3 aircraft (carrying THOR, the GSFC counterpart of WAIL) flying above the clouds. The permanent cloud instruments we used to compare with the results obtained from WAIL were ARM's laser ceilometer, micro-pulse lidar (MPL), millimeter-wavelength cloud radar (MMCR), and micro-wave radiometer (MWR). The comparison shows that, in spite of an unusually low cloud ceiling, an unfavorable observation condition for WAIL's present configuration, cloud properties obtained from the new instrument are in good agreement with their counterparts obtained by other instruments. So WAIL can duplicate, at least for single-layer clouds, the cloud products of the MWR and MMCR together. But WAIL does this with green laser light, which is far more representative than microwaves of photon transport processes at work in the climate system.

  6. Late Eocene to middle Miocene (33 to 13 million years ago) vegetation and climate development on the North American Atlantic Coastal Plain (IODP Expedition 313, Site M0027)

    NASA Astrophysics Data System (ADS)

    Kotthoff, U.; Greenwood, D. R.; McCarthy, F. M. G.; Müller-Navarra, K.; Prader, S.; Hesselbo, S. P.

    2014-08-01

    We investigated the palynology of sediment cores from Site M0027 of IODP (Integrated Ocean Drilling Program) Expedition 313 on the New Jersey shallow shelf to examine vegetation and climate dynamics on the east coast of North America between 33 and 13 million years ago and to assess the impact of over-regional climate events on the region. Palynological results are complemented with pollen-based quantitative climate reconstructions. Our results indicate that the hinterland vegetation of the New Jersey shelf was characterized by oak-hickory forests in the lowlands and conifer-dominated vegetation in the highlands from the early Oligocene to the middle Miocene. The Oligocene witnessed several expansions of conifer forest, probably related to cooling events. The pollen-based climate data imply an increase in annual temperatures from ∼11.5 °C to more than 16 °C during the Oligocene. The Mi-1 cooling event at the onset of the Miocene is reflected by an expansion of conifers and mean annual temperature decrease of ∼4 °C, from ∼16 °C to ∼12 °C around 23 million years before present. Relatively low annual temperatures are also recorded for several samples during an interval around ∼20 million years before present, which may reflect the Mi-1a and the Mi-1aa cooling events. Generally, the Miocene ecosystem and climate conditions were very similar to those of the Oligocene. Miocene grasslands, as known from other areas in the USA during that time period, are not evident for the hinterland of the New Jersey shelf, possibly reflecting moisture from the proto-Gulf Stream. The palaeovegetation data reveal stable conditions during the mid-Miocene climatic optimum at ∼15 million years before present, with only a minor increase in deciduous-evergreen mixed forest taxa and a decrease in swamp forest taxa. Pollen-based annual temperature reconstructions show average annual temperatures of ∼14 °C during the mid-Miocene climatic optimum, ∼2

  7. Backwater at bridges and densely wooded flood plains, Tallahala Creek at Waldrup, Mississippi

    USGS Publications Warehouse

    Colson, B.E.; Ming, C.O.; Arcement, George J.

    1978-01-01

    Floodflow data that will provide a base for evaluating digital models relating to open-channel flow were obtained at 22 sites on streams in Alabama, Louisiana, and Mississippi. Thirty-five floods were measured. Analysis of the data indicated that backwater and discharges computed by standard indirect methods currently in use would be inaccurate where densely vegetated flood plains are crossed by highway embankments and single-opening bridges. This atlas presents flood information at the site on Tallahala Creek at Waldrup, Miss. Water depths, velocities, and discharges through bridge openings on Tallahala Creek at Waldrup, Miss., for floods of April 14, 1969, February 21, 1971, and April 13, 1974, were measured together with peak water surface elevations along embankments and along cross sections. Manning 's roughness coefficient values in different parts of the flood plain are shown on maps, and flood-frequency relations are shown on graphs. (Woodard-USGS)

  8. The Great Plains low-level jet (LLJ) during the atmospheric radiation measurement (ARM) intensive observation period (IOP)-4 and simulations of land use pattern effect on the LLJ

    SciTech Connect

    Wu, Y.; Raman, S.

    1996-04-01

    The Great Plains low-level jet (LLJ) is an important element of the low-level atmospheric circulation. It transports water vapor from the Gulf of Mexico, which in turn affects the development of weather over the Great Plains of the central United States. The LLJ is generally recognized as a complex response of the atmospheric boundary layer to the diurnal cycle of thermal forcing. Early studies have attributed the Great Plains LLJ to the diurnal oscillations of frictional effect, buoyancy over sloping terrain, and the blocking effects of the Rocky Mountains. Recent investigations show that the speed of the LLJ is also affected by the soil type and soil moisture. Some studies also suggest that synoptic patterns may play an important role in the development of the LLJ. Land surface heterogeneties significantly affect mesoscale circulations by generating strong contrasts in surface thermal fluxes. Thus one would expect that the land use pattern should have effects on the LLJ`s development and structure. In this study, we try to determine the relative roles of the synoptic forcing, planetary boundary layers (PBL) processes, and the land use pattern in the formation of the LLJ using the observations from the Atmospheric Radiation Measurement (ARM) Intensive Operation Period (IOP)-4 and numerical sensitivity tests.

  9. Southern Great Plains Newsletter

    SciTech Connect

    J. Prell L. R. Roeder

    2010-09-01

    This months issue contains the following articles: (1) Scientists convene at SGP site for complex convective cloud experiment; (2) VORTEX2 spins down; (3) Sunphotometer supports SPARTICUS (a Sun and Aureole Measurement imaging sunphotometer) campaign and satellite validation studies; and (4) Ceilometer represents first deployment of new ground-based instruments from Recovery Act.

  10. Measurement of carbon for carbon sequestration and site monitoring

    SciTech Connect

    Martin, Madhavi Z; Wullschleger, Stan D; Garten Jr, Charles T; Palumbo, Anthony Vito

    2007-01-01

    A 2 to 6 degree C increase in global temperature by 2050 has been predicted due to the production of greenhouse gases that is directly linked to human activities. This has encouraged an increase in the international efforts on ways to reduce anthropogenic emissions of greenhouse gases particularly carbon dioxide (CO{sub 2}) as evidence for the link between atmospheric greenhouse gases and climate change has been established. Suggestion that soils and vegetation could be managed to increase their uptake and storage of CO{sub 2}, and thus become 'land carbon sinks' is an incentive for scientists to undertake the ability to measure and quantify the carbon in soils and vegetation to establish base-line quantities present at this time. The verification of the permanence of these carbon sinks has raised some concern regarding the accuracy of their long-term existence. Out of the total percentage of carbon that is potentially sequestered in the terrestrial land mass, only 25% of that is sequestered above ground and almost 75% is hypothesized to be sequestered underground. Soil is composed of solids, liquids, and gases which is similar to a three-phase system. The gross chemical composition of soil organic carbon (SOC) consists of 65% humic substances that are amorphous, dark-colored, complex, polyelectrolyte-like materials that range in molecular weight from a few hundred to several thousand Daltons. The very complex structure of humic and fulvic acid makes it difficult to obtain a spectral signature for all soils in general. The humic acids of different soils have been observed to have polymeric structure, appearing as rings, chains and clusters as seen in electron microscope observations. The humification processes of the soils will decide the sizes of their macromolecules that range from 60-500 angstroms. The percentage of the humus that occurs in the light brown soils is much lower than the humus present in dark brown soils. The humus of forest soils is characterized

  11. Surface measurements of solar irradiance: A study of the spatial correlation between simultaneous measurements at separated sites

    NASA Technical Reports Server (NTRS)

    Long, Charles N.; Ackerman, Thomas P.

    1995-01-01

    Pyranometers have been used for many years to measure broadband surface incoming solar irradiance, data that is necessary for surface energy budget, cloud forcing, and satellite validation research. Because such measurements are made at a specific location, it is unclear how representative they may be of a larger area. This study attempts to determine a reasonable spacing between measurement sites for such research by computing the correlation, and standard deviation from perfect correlation, between simultaneous measurements of incoming solar irradiance for a network of surface measurement sites covering a 75 km x 75 km area. Using 1-min data collected from this network of 11 sites during the NASA First ISSCP Radiation Experiment/Surface Radiation Budget (FIRE/SRB) Project temporal averages were calculated. The correlation between any two of these sites was determined by comparing simultaneous measurement averages for the 55 possible combinations of site pairs, along with the distances between them. In an attempt to remove the effect of the diurnal cycle, thus leaving clouds as the primary influence on correlation of the radiation field, model results for a clear day were used to normalize measured irradiances and correlations were again calculated.

  12. Automated measurement of site-specific N-glycosylation occupancy with SWATH-MS.

    PubMed

    Xu, Ying; Bailey, Ulla-Maja; Schulz, Benjamin L

    2015-07-01

    Asparagine-linked glycosylation is a common post-translational modification of proteins catalyzed by oligosaccharyltransferase that is important in regulating many aspects of protein function. Analysis of protein glycosylation, including glycoproteomic measurement of the site-specific extent of glycosylation, remains challenging. Here, we developed methods combining enzymatic deglycosylation and protease digestion with SWATH-MS to enable automated measurement of site-specific occupancy at many glycosylation sites. Deglycosylation with peptide-endoglycosidase H, leaving a remnant N-acetylglucosamine on asparagines previously carrying high-mannose glycans, followed by trypsin digestion allowed robust automated measurement of occupancy at many sites. Combining deglycosylation with the more general peptide-N-glycosidase F enzyme with AspN protease digest allowed robust automated differentiation of nonglycosylated and deglycosylated forms of a given glycosylation site. Ratiometric analysis of deglycosylated peptides and the total intensities of all peptides from the corresponding proteins allowed relative quantification of site-specific glycosylation occupancy between yeast strains with various isoforms of oligosaccharyltransferase. This approach also allowed robust measurement of glycosylation sites in human salivary glycoproteins. This method for automated relative quantification of site-specific glycosylation occupancy will be a useful tool for research with model systems and clinical samples.

  13. A case study of the Great Plains low-level jet using wind profiler network data and a high resolution mesoscale model

    SciTech Connect

    Zhong, S.; Fast, J.D.; Bian, X.; Stage, S.

    1996-04-01

    The Great Plains low-level jet (LLJ) has important effects on the life cycle of clouds and on radiative and surface heat and moisture fluxes at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site. This diurnal phenomenon governs the transport and convergence of low-level moisture into the region and often leads to the development of clouds and precipitation. A full understanding of the life cycle of clouds at the SGP CART site and their proper representation in single column and global climate models cannot be obtained without an improved understanding of this important phenomenon.

  14. Source apportionment and risk assessment of PM1 bound trace metals collected during foggy and non-foggy episodes at a representative site in the Indo-Gangetic plain.

    PubMed

    Singh, Dharmendra Kumar; Gupta, Tarun

    2016-04-15

    The concentration, spatial distribution and source of 13-PM1 bound trace metals (Fe, Cu, Mn, Cr, Zn, Cd, Ni, K, Mg, Na, Ca, Pb and V) and adverse health effects of 5-PM1 bound trace metals (Mn, Zn, Ni, Cr and Cd) collected during foggy and non-foggy episodes are presented. Twenty-four samples from each period (foggy and non-foggy episodes) were collected from Kanpur, a typical densely populated city and the most polluted representative site in the Indo-Gangetic plain of India, and were analyzed for carcinogenic (Ni, Cr and Cd) and non-carcinogenic metals (Mn and Zn). The average mass concentration of PM1 during foggy and non-foggy episodes was found to be 160.16±37.70 and 132.87±27.97μg/m(3). Source identification via principle component analysis suggested that vehicular emission and anthropogenic, industrial and crustal dust were the dominant sources in this region. During both episodes the decreasing order of hazard quotient (Hq) for adult and children was as Mn>Cr>Cd>Ni>Zn. In a non-foggy episode the hazardous index (Hi) values of these 5 trace metals were found to be ~3.5 times higher than a foggy episode's exposed population, respectively. In a foggy episode, due to the exposure to total carcinogenic trace metals (Ni, Cr and Cd) present in the ambient air, 95% probability total incremental lifetime cancer risks (TIlcR) were ~687 cancer cases and ~402 cancer cases per million in the adult population and children population respectively. These cancer cases were ~1.6 times higher than a non-foggy episode's exposed population.

  15. Ground motion measurements at the LBL Light Source site, the Bevatron and at SLAC

    SciTech Connect

    Green, M.A.; Majer, E.I.; More, V.D.; O'Connell, D.R.; Shilling, R.C.

    1986-12-01

    This report describes the technique for measuring ground motion at the site of the 1.0 to 2.0 GeV Synchrotron Radiation Facility which was known as the Advanced Light Source (in 1983 when the measurements were taken). The results of ground motion measurements at the Light Source site at Building 6 at LBL are presented. As comparison, ground motion measurements were made at the Byerly Tunnel, the Bevatron, Blackberry Canyon, and SLAC at the Spear Ring. Ground Motion at the Light Source site was measured in a band from 4 to 100 Hz. The measured noise is primarily local in origin and is not easily transported through LBL soils. The background ground motion is for the most part less than 0.1 microns. Localized truck traffic near Building 6 and the operation of the cranes in the building can result in local ground motions of a micron or more for short periods of time. The background motion at Building 6 is between 1 and 2 orders of magnitude higher than ground motion in a quiet seismic tunnel, which is representative of quiet sites worldwide. The magnitude of the ground motions at SLAC and the Bevatron are comparable to ground motions measured at the Building 6 Light Source site. However, the frequency signature of each site is very different.

  16. Plains Tectonics on Venus

    NASA Technical Reports Server (NTRS)

    Banerdt, W. B.; McGill, G. E.; Zuber, M. T.

    1996-01-01

    Tectonic deformation in the plains of Venus is pervasive, with virtually every area of the planet showing evidence for faulting or fracturing. This deformation can be classified into three general categories, defined by the intensity and areal extent of the surface deformation: distributed deformation, concentrated deformation, and local fracture patterns.

  17. Mountain-Plains Curriculum.

    ERIC Educational Resources Information Center

    Mountain-Plains Education and Economic Development Program, Inc., Glasgow AFB, MT.

    The document lists the Mountain-Plains curriculum by job title (where applicable), including support courses. The curriculum areas covered are mathematics skills, communication skills, office education, lodging services, food services, marketing and distribution, welding support, automotive, small engines, career guidance, World of Work, health…

  18. Mountain-Plains Curriculum.

    ERIC Educational Resources Information Center

    Mountain-Plains Education and Economic Development Program, Inc., Glasgow AFB, MT.

    The document lists the Mountain-Plains curriculum by job title (where applicable), including support courses. The curriculum areas covered are mathematics skills, communication skills, office education, lodging services, food services, marketing and distribution, welding support, automotive, small engines, career guidance, World of Work, health…

  19. A METHOD FOR THE MEASUREMENT OF SITE-SPECIFIC TAUTOMERIC AND ZWITTERIONIC MICROSPECIES EQUILIBRIUM CONSTANTS

    EPA Science Inventory

    We describe a method for the individual measurement of simultaneously occurring, unimolecular, site-specific "microequilibrium" constants as in, for example, prototropic tautomerism and zwitterionic equilibria. Our method represents an elaboration of that of Nygren et al. (Anal. ...

  20. A METHOD FOR THE MEASUREMENT OF SITE-SPECIFIC TAUTOMERIC AND ZWITTERIONIC MICROSPECIES EQUILIBRIUM CONSTANTS

    EPA Science Inventory

    We describe a method for the individual measurement of simultaneously occurring, unimolecular, site-specific "microequilibrium" constants as in, for example, prototropic tautomerism and zwitterionic equilibria. Our method represents an elaboration of that of Nygren et al. (Anal. ...

  1. METHOD FOR THE MEASUREMENT OF SITE-SPECIFIC TAUTOMERIC AND ZWITTERIONIC MICROSPECIES EQUILIBRIUM CONSTANTS

    EPA Science Inventory

    We describe a method for the individual measurement of simultaneously occurring, unimolecular, site-specific “microequilibrium” constants as in, for example, prototropic tautomerism and zwitterionic equilibria. Our method represents an elaboration of that of Nygren et al. (Anal. ...

  2. METHOD FOR THE MEASUREMENT OF SITE-SPECIFIC TAUTOMERIC AND ZWITTERIONIC MICROSPECIES EQUILIBRIUM CONSTANTS

    EPA Science Inventory

    We describe a method for the individual measurement of simultaneously occurring, unimolecular, site-specific “microequilibrium” constants as in, for example, prototropic tautomerism and zwitterionic equilibria. Our method represents an elaboration of that of Nygren et al. (Anal. ...

  3. Spatial Variability of Surface Irradiance Measurements at the Manus ARM Site

    SciTech Connect

    Riihimaki, Laura D.; Long, Charles N.

    2014-05-16

    The location of the Atmospheric Radiation Measurement (ARM) site on Manus island in Papua New Guinea was chosen because it is very close the coast, in a geographically at, near-sea level area of the island, minimizing the impact of local island effects on the meteorology of the measurements [Ackerman et al., 1999]. In this study, we confirm that the Manus site is in deed less impacted by the island meteorology than slightly inland by comparing over a year of broadband surface irradiance and ceilometer measurements and derived quantities at the standard Manus site and a second location 7 km away as part of the AMIE-Manus campaign. The two sites show statistically similar distributions of irradiance and other derived quantities for all wind directions except easterly winds, when the inland site is down wind from the standard Manus site. Under easterly wind conditions, which occur 17% of the time, there is a higher occurrence of cloudiness at the down wind site likely do to land heating and orographic effects. This increased cloudiness is caused by shallow, broken clouds often with bases around 700 m in altitude. While the central Manus site consistently measures a frequency of occurrence of low clouds (cloud base height less than 1200 m) about 25+4% regardless of wind direction, the AMIE site has higher frequencies of low clouds (38%) when winds are from the east. This increase in low, locally produced clouds causes an additional -20 W/m2 shortwave surface cloud radiative effect at the AMIE site in easterly conditions than in other meteorological conditions that exhibit better agreement between the two sites.

  4. The Productivity of Plain English.

    ERIC Educational Resources Information Center

    Department of Commerce, Washington, DC.

    Focusing on a meeting held in January 1983, this pamphlet describes the Forum on the Productivity of Plain English, from which grew the permanent Plain English Forum, which is committed to spreading the message that plain English is good business. The pamphlet includes quotations from leaders in business and industry explaining why they feel that…

  5. Backwater at bridges and densely wooded flood plains, Yockanookany River near Thomastown, Mississippi

    USGS Publications Warehouse

    Colson, B.E.; Ming, C.O.; Arcement, George J.

    1979-01-01

    Floodflow data that will provide a base for evaluating digital models relating to open-channel flow were obtained at 22 sites on streams in Alabama, Louisiana, and Mississippi. Thirty-five floods were measured. Analysis of the data indicated methods currently in use would be inaccurate where densely vegetated flood plains are crossed by highway embankments and single-opening bridges. This atlas presents flood information at the site on Yockanookany River near Thomastown, Miss. Water depths, velocities, and discharges through bridge openings on Yockanookany River near Thomastown, Miss., for floods of April 12, 1969, January 2, 1970, and March 15, 1975, are shown, together with peak water-surface elevations along embankments and along cross sections. Manning 's roughness coefficient values in different parts of the flood plain are shown on maps, and flood-frequency relations are shown on a graph. (Kosco-USGS)

  6. Measurement of the Vertical Distribution of Aerosol by Globally Distributed MP Lidar Network Sites

    NASA Technical Reports Server (NTRS)

    Spinhirne, James; Welton, Judd; Campbell, James; Starr, David OC. (Technical Monitor)

    2001-01-01

    The global distribution of aerosol has an important influence on climate through the scattering and absorption of shortwave radiation and through modification of cloud optical properties. Current satellite and other data already provide a great amount of information on aerosol distribution. However there are critical parameters that can only be obtained by active optical profiling. For aerosol, no passive technique can adequately resolve the height profile of aerosol. The aerosol height distribution is required for any model for aerosol transport and the height resolved radiative heating/cooling effect of aerosol. The Geoscience Laser Altimeter System (GLAS) is an orbital lidar to be launched by 2002. GLAS will provide global measurements of the height distribution of aerosol. The sampling will be limited by nadir only coverage. There is a need for local sites to address sampling, and accuracy factors. Full time measurements of the vertical distribution of aerosol are now being acquired at a number of globally distributed MP (micro pulse) lidar sites. The MP lidar systems provide profiling of all significant cloud and aerosol to the limit of signal attenuation from compact, eye safe instruments. There are currently six sites in operation and over a dozen planned. At all sites there are a complement of passive aerosol and radiation measurements supporting the lidar data. Four of the installations are at Atmospheric Radiation Measurement program sites. The aerosol measurements, retrievals and data products from the network sites will be discussed. The current and planned application of data to supplement satellite aerosol measurements is covered.

  7. Chemical composition of pre-monsoon air in the Indo-Gangetic Plain measured using a new air quality facility and PTR-MS: high surface ozone and strong influence of biomass burning

    NASA Astrophysics Data System (ADS)

    Sinha, V.; Kumar, V.; Sarkar, C.

    2014-06-01

    One seventh of the world's population lives in the Indo-Gangetic Plain (IGP) and the fertile region sustains agricultural food crop production for much of South Asia, yet it remains one of the most under-studied regions of the world in terms of atmospheric composition and chemistry. In particular, the emissions and chemistry of volatile organic compounds (VOCs) that form surface ozone and secondary organic aerosol through photochemical reactions involving nitrogen oxides are not well understood. In this study, ambient levels of VOCs such as methanol, acetone, acetaldehyde, acetonitrile and isoprene were measured for the first time in the IGP. A new atmospheric chemistry facility that combines India's first high-sensitivity proton transfer reaction mass spectrometer, an ambient air quality station and a meteorological station, was used to quantify in situ levels of several VOCs and air pollutants in May 2012 at a suburban site in Mohali (northwest IGP). Westerly winds arriving at high wind speeds (5-20 m s-1) in the pre-monsoon season at the site were conducive for chemical characterization of regional emission signatures. Average levels of VOCs and air pollutants in May~2012 ranged from 1.2 to 2.7 nmol mol-1 for aromatic VOCs, 5.9 to 37.5 nmol mol-1 for the oxygenated VOCs, 1.4 nmol mol-1 for acetonitrile, 1.9 nmol mol-1 for isoprene, 567 nmol mol-1 for carbon monoxide, 57.8 nmol mol-1 for ozone, 11.5 nmol mol-1 for nitrogen oxides, 7.3 nmol mol-1 for sulfur dioxide, 104 μg m-3 for PM2.5 and 276 μg m-3 for PM10. By analyzing the one-minute in situ data with meteorological parameters and applying chemical tracers (e.g., acetonitrile for biomass burning) and inter-VOC correlations, we were able to constrain major emission source activities on both temporal and diel scales. Wheat residue burning caused massive increases (> 3 times the baseline values) for all the measured VOCs and primary pollutants. Other forms of biomass burning at night were also a significant

  8. Chemical composition of pre-monsoon air in the Indo-Gangetic Plain measured using a new PTR-MS and air quality facility: high surface ozone and strong influence of biomass burning

    NASA Astrophysics Data System (ADS)

    Sinha, V.; Kumar, V.; Sarkar, C.

    2013-12-01

    One seventh of the world population lives in the Indo-Gangetic Plain (IGP) and the fertile region sustains agricultural food crop production for much of South Asia. Yet it remains one of the most under-studied regions of the world in terms of atmospheric composition and chemistry. In particular, the emissions and chemistry of volatile organic compounds (VOCs) that form surface ozone and secondary organic aerosol through photochemical reactions involving nitrogen oxides is not well understood. In this study, ambient levels of VOCs such as methanol, acetone, acetaldehyde, acetonitrile and isoprene were measured for the first time in the IGP. A new atmospheric chemistry facility that combines India's first high sensitivity proton transfer reaction mass spectrometer, an ambient air quality station and meteorological station, was used to quantify in-situ levels of several VOCs and air pollutants in May 2012 at a suburban site in Mohali (N. W. IGP). Westerly winds arriving at high wind speeds (5-20 m s-1) in the pre-monsoon season at the site, were conducive for chemical characterization of regional emission signatures. Average levels of VOCs and air pollutants in May 2012 ranged from 1.2-1.7 nmol mol-1 for aromatic VOCs, 5.9-37.4 nmol mol-1 for the oxygenated VOCs, 1.4 nmol mol-1 for acetonitrile, 1.9 nmol mol-1 for isoprene, 567 nmol mol-1 for carbon monoxide, 57.8 nmol mol-1 for ozone, 11.5 nmol mol-1 for nitrogen oxides, 7.3 nmol mol-1 for sulphur dioxide, 104 μg m-3 for PM2.5 and 276 μg m-3 for PM10. By analyzing the one minute in-situ data with meteorological parameters and applying chemical tracers (e.g. acetonitrile for biomass burning) and inter-VOC correlations, we were able to constrain major emission source activities on both temporal and diel scales. Wheat residue burning activity caused massive increases (> 3 times of baseline values) for all the measured VOCs and primary pollutants. Other forms of biomass burning at night were also a significant source

  9. Occurrence and variability of mining-related lead and zinc in the Spring River flood plain and tributary flood plains, Cherokee County, Kansas, 2009--11

    USGS Publications Warehouse

    Juracek, Kyle E.

    2013-01-01

    Historical mining activity in the Tri-State Mining District (TSMD), located in parts of southeast Kansas, southwest Missouri, and northeast Oklahoma, has resulted in a substantial ongoing input of cadmium, lead, and zinc to the environment. To provide some of the information needed to support remediation efforts in the Cherokee County, Kansas, superfund site, a 4-year study was begun in 2009 by the U.S. Geological Survey that was requested and funded by the U.S. Environmental Protection Agency. A combination of surficial-soil sampling and coring was used to investigate the occurrence and variability of mining-related lead and zinc in the flood plains of the Spring River and several tributaries within the superfund site. Lead- and zinc-contaminated flood plains are a concern, in part, because they represent a long-term source of contamination to the fluvial environment. Lead and zinc contamination was assessed with reference to probable-effect concentrations (PECs), which represent the concentrations above which adverse aquatic biological effects are likely to occur. The general PECs for lead and zinc were 128 and 459 milligrams per kilogram, respectively. The TSMD-specific PECs for lead and zinc were 150 and 2,083 milligrams per kilogram, respectively. Typically, surficial soils in the Spring River flood plain had lead and zinc concentrations that were less than the general PECs. Lead and zinc concentrations in the surficial-soil samples were variable with distance downstream and with distance from the Spring River channel, and the largest lead and zinc concentrations usually were located near the channel. Lead and zinc concentrations larger than the general or TSMD-specific PECs, or both, were infrequent at depth in the Spring River flood plain. When present, such contamination typically was confined to the upper 2 feet of the core and frequently was confined to the upper 6 inches. Tributaries with few or no lead- and zinc-mined areas in the basin—Brush Creek

  10. Dating fluvial archives of the Riverine Plain, Southeastern Australia

    NASA Astrophysics Data System (ADS)

    Mueller, Daniela; Cohen, Tim; Reinfelds, Ivars; Jacobs, Zenobia; Shulmeister, James

    2016-04-01

    The Riverine Plain of Southeastern Australia is characterized by a multiplicity of relict river channels. Compared to the modern drainage system the most prominent of those distinct features are defined by large bankfull channel widths, large meander wavelengths and coarse sediment loads. Such morphological differences provide evidence for regimes of higher discharge, stemming from significant changes in runoff volumes, flood-frequency regimes and sediment supply. An existing geochronology for some of these channels is based on multi-grain thermoluminescence (Murrumbidgee River; Page et al., 1996) or radio-carbon dating (Goulburn River; Bowler, 1978) and indicates enhanced fluvial activity between 30 to 13 ka. The absence of exact Last Glacial Maximum (LGM, 21 ± 3 ka) ages of the Murrumbidgee palaeochannels was interpreted to indicate decreased fluvial activity during the peak of the LGM but was not inferred for the nearby Goulburn River. Recent developments in optical dating, especially measurements of individual grains of quartz, allow for an examination of these previous findings. Key sites along the Murrumbidgee and Goulburn Rivers have been revisited and new sites of the adjacent Murray River have been investigated. A revised, high-resolution geochronology based on single-grain optically stimulated luminescence dating is used to examine the precise occurrence of those massive channels and their implications for the Southern Hemisphere LGM. References: Page, K., Nanson, G., Price, D. (1996). Chronology of Murrumbidgee River palaeochannels on the Riverine Plain, southeastern Australia. Journal of Quaternary Science 11(4): 311-326. Bowler, J. (1978). Quaternary Climate and Tectonics in the Evolution of the Riverine Plain, Southeastern Australia. In: Davies, J. & Williams, M. (Editors). Landform Evolution in Australia, Australian National University Press: Canberra. p. 70-112.

  11. Dynamics of playa lakes in the Texas High Plains

    NASA Technical Reports Server (NTRS)

    Reeves, C. C., Jr. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Three small playa lake basins on the southern High Plains, Texas, have been examined by geologists, pedologists, hydrologists, and botanists to establish ground truth for correlation with ERTS-1 imagery. Although the sites are recognizable, details of the three playa basins are too small, at present resolution, to be accurately determined by the available MSS imagery. However, a fourth study site, consisting of a dual playa complex approximately 5 miles long in a basin of 9 square miles, does resolve available imagery allowing accurate measurement of water fluctuations and water depth. Of the available MSS imagery, Band 5 is the most usable. Definition of Band 4 is less due to reduced tonal contrast. The greatest tonal contrast appears on Band 6 and Band 7 between dry land and water areas. Band 6 is particularly good for defining large water areas, Band 7 being best for small lake basins, and Band 5 for growing fields.

  12. Summertime Low-Level Jets over the Great Plains

    SciTech Connect

    Stensrud, D.J.

    1996-04-01

    The sky over the southern Great Plains Cloud and Atmospheric Radiation Testbed (CART) site of the Atmospheric Radiation Measurement (ARM) Program during the predawn and early morning hours often is partially obstructed by stratocumulus, stratus fractus, or cumulus fractus that are moving rapidly to the north, even through the surface winds are weak. This cloud movement is evidence of the low-level jet (LLJ), a wind speed maximum that occurs in the lowest few kilometers of the atmosphere. Owing to the wide spacing between upper-air sounding sites and the relatively infrequent sounding launches, LLJ evolution has been difficult to observe adequately, even though the effects of LLJs on moisture flux into North America are large. Model simulation of the LLJ is described.

  13. Analysis of a long-term measurement of air pollutants (2007-2011) in North China Plain (NCP); Impact of emission reduction during the Beijing Olympic Games.

    PubMed

    Xu, Ruiguang; Tang, Guiqian; Wang, Yuesi; Tie, Xuexi

    2016-09-01

    Five years measurements were used to evaluate the effect of emission controls on the changes of air pollutants in Beijing and its surroundings in the NCP during 2008 Olympic Games (2008OG). The major challenge of this study was to filter out the effect of variability of meteorological conditions, when compared the air pollutants during the game to non-game period. We used four-year (2007, 2009-2011) average as the Non-2008OG to smooth the temporal variability caused by meteorological parameters. To study the spatial variability and regional transport, 6 sites (urban, rural, a mega city, a heavy industrial city, and a remote site) were selected. The result showed that the annually meteorological variability was significantly reduced. Such as, in BJ the differences between 2008OG and 5-years averaged values were 2.7% for relative humidity and 0.6% for wind speed. As a result, the anomaly of air pollutants between 2008OG and Non-2008OG can largely attribute to the emission control. The comparison showed that the major pollutants (PM10, PM2.5, NO, NOx) at the 6 sites in 2008OG were consistently lowered. For example, PM2.5 in BJ decreased from 75 to 45 μg/m(3) (40% reduction). However, the emission controls had minor effect on O3 concentrations (1% reduction). In contrast, the O3 precursor (NOx) reduced from 19.7 to 13.2 ppb (33% reduction). The in-sensitivity between NOx and O3 suggested that the O3 formation was under VOCs control condition in NCP, showing that strong VOC emission control is needed in order to significantly reduce O3 concentration in the region.

  14. Recommended Procedures for Measuring Radon Fluxes from Disposal Sites of Residual Radioactive Materials

    SciTech Connect

    Young, J. A.; Thomas, V. W.; Jackson, P. O.

    1983-03-01

    This report recommends instrumentation and methods suitable for measuring radon fluxes emanating from covered disposal sites of residual radioactive materials such as uranium mill tailings. Problems of spatial and temporal variations in radon flux are discussed and the advantages and disadvantages of several instruments are examined. A year-long measurement program and a two month measurement methodology are then presented based on the inherent difficulties of measuring average radon flux over a cover using the recommended instrumentation.

  15. Effect of complete competition control and annual fertilization on stem growth and canopy relations for a chronosequence of loblolly pine plantations in the lower coastal plain of Georgia

    Treesearch

    B.E. Borders; R.E. Will; D. Marewitz; Alexander Clark; R. Hendrick; R.O. Teskey; Y. Zhang

    2004-01-01

    Stem growth, developmental patterns and canopy relations were measured in a chronosequence of intensively managed loblolly pine stands. The study was located on two distinct sites in the lower coastal plain of Georgia, USA and contained a factorial arrangement of complete control of interspecific competition (W) and annual nitrogen fertilization (F). The W treatment...

  16. Light Plains in the South-Pole Aitken Basin: Surface Ages and Mineralogical Composition

    NASA Astrophysics Data System (ADS)

    Thiessen, F.; Hiesinger, H.; van der Bogert, C. H.; Pasckert, J. H.; Robinson, M. S.

    2012-04-01

    We studied light plains in the north-eastern South-Pole Aitken basin to investigate their origin, ages, and mineralogical composition. Light plains, also known as the Cayley Formation, occur on the near- and farside of the Moon. Due to their smooth texture, lower crater densities, and occurrence as crater fills, they were thought to be of volcanic origin [e.g., 1]. However, Apollo 16 samples of light plains deposits were in fact highly brecciated rocks [2]. Therefore, the Imbrium and Orientale impacts were thought to have formed light plains because they reshaped the surface thousands of kilometers from their impact sites. Subsequent studies revealed varying surface ages of light plains [e.g., 3] and different mineralogical compositions, which are in some cases more highland-like and in others more mare-like. Hence, an origin solely from the Imbrium and/or Orientale impacts is unlikely. Thus, the question whether light plains formed due to large impacts or regional cratering, or through endogenic processes remains open. We performed crater size-frequency measurements [e.g., 4] on Lunar Reconnaissance Orbiter Wide Angle Camera images and obtained absolute model ages between 3.43 and 3.81 Ga. We observed neither a distinctive peak of light plains ages nor clustering of similar ages in any specific regions of the studied area. Due to the fact that the derived ages vary as much as 380 Ma, an origin by a single event seems unlikely. Moreover, some ages even post-date the Imbrium and Orientale impacts, and thus an origin related to those impacts is not likely. Examination of multispectral data from Clementine [5] shows that the Ti abundances vary between 0.2 and 3 wt % and Fe abundances between 12.5 and 19 wt %. We observed a regional difference in distribution: light plains units within the Apollo basin have lower Fe and Ti values and are more highland-like, whereas light plains outside the Apollo basin show higher Fe and Ti values and are more mare-like. Furthermore, M

  17. Subsurface dolomite formation during post-depositional flow of sulphate-bearing fluids from underlying salt giants: Early Pliocene example at DSDP Leg 42A, Site 374, Ionian Abyssal Plain

    NASA Astrophysics Data System (ADS)

    McKenzie, Judith A.; Evans, Nick; Hodell, David; Aloisi, Giovanni; Vasconcelos, Crisogono

    2017-04-01

    Deciphering exact mechanisms for the formation of massive dolomite deposits has long been an enigma in sedimentary geology. The recognition that microbes can play a role in the dolomite precipitation process has added a new dimension to the study of the origin of dolomite formations in both shallow and deep-water environments. This scientific advance has evolved, particularly, through the investigation of dolomite-containing, organic-rich hemipelagic sediments cored on various continental margins during DSDP and ODP drilling campaigns, as well as intensive evaluations of modern hypersaline dolomite-precipitating environments with complementary culture experiments conducted in the laboratory. For example, the association of an active subsurface microbial community in contact with underlying brines of unknown origin leading to in situ dolomite precipitation has been observed in a Quaternary sequence of hemi-pelagic, organic carbon-rich sediments drilled on the Peru Margin, ODP Leg 201, Site 1229 (1). Specifically, it can be concluded that the long-term activity of subsurface microbes can be maintained by post-depositional flow of sulfate-bearing fluids from underlying large-scale evaporite deposits, or salt giants, promoting in situ dolomite precipitation. Another example of dolomite precipitation directly associated with the underlying Messinian salt giant was found at DSDP Leg 42A, Site 374 in the Ionian Abyssal Plain. Deep-sea drilling recovered a lowermost Pliocene sequence of diagenetically altered sediment (Unit II) separating the overlying Pliocene open-marine deposits (Unit I) and the underlying end Messinian dolomitic mudstone with gypsum layers (Unit III). The lower portion of this altered interval contained in Core 11, Section 2 (378.0 - 381.5 mbsf) comprises a dolomicrite with an unusual crystal morphology (2). The original interstitial water geochemical profiles indicate that a saline brine is diffusing upwards from below and into the dolomicrite

  18. Estimating 1980 ground-water pumpage for irrigation on the High Plains in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Heimes, F.J.; Luckey, R.R.

    1983-01-01

    Current ground-water use is required for the High Plains Regional Aquifer-System Analysis. In response to this need, a sampling approach was developed to estimate water pumped for irrigation on the High Plains during 1980. Pumpage was computed by combining application estimates with mapped irrigated-acreage information. Irrigation application (inches of water applied) was measured at 480 sites in 15 counties in the High Plains during the 1980 growing season. The relationship between calculated Blaney-Criddle irrigation demand and measured application was used to estimate application for unsampled areas of the High Plains. Application estimates multiplied by irrigated-acreate estimates, compiled from Landsat-satellite imagery, yielded the volume of ground water pumped for irrigation. The estimate of ground water pumped for irrigation in the High Plains during 1980 and 18,902,000 acre-feet for 13 ,715,000 irrigated areas. The sampled application data were evaluated for significant trends. The application was greater for crops requiring more water such as corn and hay and less for crops such as sorghum, grain, and cotton. The data showed greater application for flood-irrigated systems than for sprinkler-irrigation systems. Areas of the High Plains with thin saturated thickness tended to have a smaller average discharge per well, fewer irrigated acres per well, and a predominance of crops requiring less water crops. (USGS).

  19. Northern Plains of Mars

    NASA Technical Reports Server (NTRS)

    2004-01-01

    22 November 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a typical view of the martian northern plains. Thousands of square kilometers of the northern middle and polar latitudes of Mars look similar to the scene in this image. In late spring and in summer, dust devils crisscross the northern plains, leaving a variety of dark streaks. The streaks do not survive from year to year, indicating their ephemeral nature. The circular features in this image, including the prominent bright circular feature near the bottom, are the locations of buried meteor impact craters. This image is located near 58.1oN, 207.6oW, and covers an area approximately 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  20. In situ radiation measurements at the former Soviet Nuclear Test Site

    SciTech Connect

    Tipton, W.J.

    1996-06-01

    A team from the Remote Sensing Laboratory conducted a series of in situ radiological measurements at the former Soviet Nuclear Test Site near Semipalatinsk, Kazakhstan, during the period of July 21-30, 1994. The survey team measured the terrestrial gamma radiation at selected areas on the site to determine the levels of natural and man-made radiation. The survey was part of a cooperative effort between the United States team and teams of radiation scientists from the National Nuclear Center of the Republic of Kazakhstan and the V.G. Khlopin Radium Institute in St. Petersburg, Russia. In addition to in situ radiation measurements made by the United States and Russian teams, soil samples were collected and analyzed by the Russian and Kazakhstani teams. All teams conducted their measurements at ten locations within the test site. The United States team also made a number of additional measurements to locate and verify the positions of three potential fallout plumes containing plutonium contamination from nonnuclear tests. In addition, the United States team made several measurements in Kurchatov City, the housing area used by personnel and their families who work(ed) at the test sites. Comparisons between the United States and Russian in situ measurements and the soil sample results are presented as well as comparisons with a Soviet aerial survey conducted in 1990-1991. The agreement between the different types of measurements made by all three countries was quite good.

  1. Cracked Plain, Buried Craters

    NASA Technical Reports Server (NTRS)

    2004-01-01

    4 September 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a cracked plain in western Utopia Planitia. The three circular crack patterns indicate the location of three buried meteor impact craters. These landforms are located near 41.9oN, 275.9oW. The image covers an area approximately 3 km (1.9 mi) across. Sunlight illuminates this scene from the lower left.

  2. Ice Mountains and Plains

    NASA Image and Video Library

    2015-09-24

    High-resolution images of Pluto taken by NASA's New Horizons spacecraft just before closest approach on July 14, 2015, are the sharpest images to date of Pluto's varied terrain-revealing details down to scales of 270 meters. In this 75-mile (120-kilometer) section taken from the larger, high-resolution mosaic, the textured surface of the plain surrounds two isolated ice mountains. http://photojournal.jpl.nasa.gov/catalog/PIA19954

  3. Correlating Whole-Body Bone Mineral Densitometry Measurements to Those From Local Anatomical Sites.

    PubMed

    Rajaei, Alireza; Dehghan, Pooneh; Ariannia, Saideh; Ahmadzadeh, Arman; Shakiba, Madjid; Sheibani, Kourosh

    2016-01-01

    Using the same cutoff points for whole-body measurements as for site-specific measurements will result in underestimation of osteoporosis. We assessed the correlation between densitometry measurements for the whole body with those for the femur, lumbar spine, and forearm to evaluate the possibility of replacing site-specific values with whole-body measurements. In this cross-sectional study, we evaluated all patients referred to a single rheumatology clinic for bone mineral density measurements from 2009 to 2010. All patients who had bone mineral density measurements taken from the hip, lumbar spine, forearm, and whole body were enrolled in the study. Standard bone mineral density measurements were performed using a dual energy X-ray absorptiometry device (Hologic Delphi A; Hologic, Bedford, MA, USA). Bone mineral density, Z-score, and T-score were measured for all patients and all body regions. The mean age of the 152 participating patients was 56.7 ± 12.6 years, and 97.4% were female. Pearson correlation coefficients of the whole-body bone mineral density values compared with site-specific values in patients over age 50 were 0.66 - 0.75. Using T-score cutoff points of -1 and -2.5 for osteopenia and osteoporosis, whole-body measurements underestimated the percentage of abnormal patients compared with the site-specific measurements (all P < 0.001). Using receiver operating characteristic (ROC) analysis, the whole-body bone mineral density showed respective areas under the curve of 0.96 and 0.84 for the diagnosis of abnormal hip bone mineral density and osteoporosis. Using the same cutoff points for whole-body measurements as for site-specific measurements will result in overestimation or especially underestimation of osteopenia and osteoporosis diagnosis. Choosing new and appropriate cutoff points for whole-body densitometric measurements when we want to substitutes this assessment instead of site specific measurements seems mandatory and will decrease the rate of

  4. Net Ecosystem Production (NEP) of the Great Plains, United States

    USGS Publications Warehouse

    Howard, Daniel; Gilmanov, Tagir; Gu, Yingxin; Wylie, Bruce; Zhang, Li

    2012-01-01

    Flux tower networks, such as AmeriFlux and FLUXNET, consist of a growing number of eddy covariance flux tower sites that provide a synoptic record of the exchange of carbon, water, and energy between the ecosystem and atmosphere at various temporal frequencies. These towers also detect and measure certain site characteristics, such as wind, temperature, precipitation, humidity, atmospheric pressure, soil features, and phenological progressions. Efforts are continuous to combine flux tower network data with remote sensing data to upscale the conditions observed at specific sites to a regional and, ultimately, worldwide scale. Data-driven regression tree models have the ability to incorporate flux tower records and remote sensing data to quantify exchanges of carbon with the atmosphere (Wylie and others, 2007; Xiao and others, 2010; Zhang and others, 2010; Zhang and others, 2011). Previous study results demonstrated the dramatic effect weather has on NEP and revealed specific ecoregions and times acting as carbon sinks or sources. As of 2012, more than 100 site-years of flux tower measurements, represented by more than 50 individual cropland or grassland sites throughout the Great Plains and surrounding area, have been acquired, quality controlled, and partitioned into gross photosynthesis (Pg) and ecosystem Re using detailed light-response, soil temperature, and vapor pressure deficit (VPD) based analysis.

  5. Expansive Northern Volcanic Plains

    NASA Image and Video Library

    2015-04-16

    Mercury northern region is dominated by expansive smooth plains, created by huge amounts of volcanic material flooding across Mercury surface in the past, as seen by NASA MESSENGER spacecraft. The volcanic lava flows buried craters, leaving only traces of their rims visible. Such craters are called ghost craters, and there are many visible in this image, including a large one near the center. Wrinkle ridges cross this scene and small troughs are visible regionally within ghost craters, formed as a result of the lava cooling. The northern plains are often described as smooth since their surface has fewer impact craters and thus has been less battered by such events. This indicates that these volcanic plains are younger than Mercury's rougher surfaces. Instrument: Mercury Dual Imaging System (MDIS) Center Latitude: 60.31° N Center Longitude: 36.87° E Scale: The large ghost crater at the center of the image is approximately 103 kilometers (64 miles) in diameter http://photojournal.jpl.nasa.gov/catalog/PIA19415

  6. Geothermal features of Snake River plain, Idaho

    SciTech Connect

    Blackwell, D.D.

    1987-08-01

    The Snake River plain is the track of a hot spot beneath the continental lithosphere. The track has passed through southern Idaho as the continental plate has moved over the hot spot at a rate of about 3.5 cm/yr. The present site of the hot spot is Yellowstone Park. As a consequence of the passage, a systematic sequence of geologic and tectonic events illustrates the response of the continental lithosphere to this hotspot event. The three areas that represent various time slices in the evolution are the Yellowstone Plateau, the Eastern Snake River plain downwarp, and the Western Snake River plain basin/Owhyee Plateau. In addition to the age of silicic volcanic activity, the topographic profile of the Snake River plain shows a systematic variation from the high elevations in the east to lowest elevations on the west. The change in elevation follows the form of an oceanic lithosphere cooling curve, suggesting that temperature change is the dominant effect on the elevation.

  7. A site-level comparison of lysimeter and eddy covariance flux measurements of evapotranspiration

    NASA Astrophysics Data System (ADS)

    Hirschi, Martin; Michel, Dominik; Lehner, Irene; Seneviratne, Sonia I.

    2017-03-01

    Accurate measurements of evapotranspiration are required for many meteorological, climatological, ecological, and hydrological research applications and developments. Here we examine and compare two well-established methods to determine evapotranspiration at the site level: lysimeter-based measurements (EL) and eddy covariance (EC) flux measurements (EEC). The analyses are based on parallel measurements carried out with these two methods at the research catchment Rietholzbach in northeastern Switzerland, and cover the time period of June 2009 to December 2015. The measurements are compared on various timescales, and with respect to a 40-year lysimeter-based evapotranspiration time series. Overall, the lysimeter and EC measurements agree well, especially on the annual timescale. On that timescale, the long-term lysimeter measurements also correspond well with catchment water-balance estimates of evapotranspiration. This highlights the representativeness of the site-level lysimeter and EC measurements for the entire catchment despite their comparatively small source areas and the heterogeneous land use and topography within the catchment. Furthermore, we identify that lack of reliable EC measurements using open-path gas analyzers during and following precipitation events (due to limitations of the measurement technique under these conditions) significantly contributes to an underestimation of EEC and to the overall energy balance gap at the site.

  8. Age and sex differences in estimated tibia strength: influence of measurement site.

    PubMed

    Sherk, Vanessa D; Bemben, Debra A

    2013-01-01

    Variability in peripheral quantitative computed tomography (pQCT) measurement sites and outcome variables limit direct comparisons of results between studies. Furthermore, it is unclear what estimates of bone strength are most indicative of changes due to aging, disease, or interventions. The purpose of this study was to examine age and sex differences in estimates of tibia strength. An additional purpose of this study was to determine which tibia site or sites are most sensitive for detecting age and sex differences in tibia strength. Self-identifying Caucasian men (n=55) and women (n=59) aged 20-59yr had their tibias measured with pQCT from 5% to 85% of limb length in 10% increments distal to proximal. Bone strength index, strength strain index (SSI), moments of inertia (Ip, Imax, and Imin), and strength-to-mass ratios (polar moment of inertia to total bone mineral content [BMC] ratio [Ip:Tot.BMC] and strength strain index to total BMC ratio [SSI:Tot.BMC]) were quantified. There were significant (p<0.01) site effects for all strength variables and strength-to-mass ratios. Site×sex interaction effects were significant (p<0.05) for all strength variables. Men had greater (p<0.01) values than women for all strength variables. Sex differences in Ip, Imax, Ip:Tot.BMC, SSI, and SSI:Tot.BMC ratios were the smallest at the 15% site and peaked at various sites, depending on variable. Site×age interactions existed for Imax, Ip:Tot.BMC, and SSI:Tot.BMC. There were significant age effects, Imax, Ip:Tot.BMC, and SSI:Tot.BMC, as values were the lowest in the 20-29 age group. Age and sex differences varied by measurement site and variable, and larger sex differences existed for moments of inertia than SSI. Strength-to-mass ratios may reflect efficiency of the whole bone architecture.

  9. Comparisons of Waist Circumference Measurements at Five Different Anatomical Sites in Chinese Children

    PubMed Central

    Yang, Chaoran

    2017-01-01

    This study compared the waist circumference (WC) measurements of Chinese children at different sites to determine the relationship between WC measurements and body fat. WC was measured at five sites in 255 subjects aged 9–19 years: immediately below the lowest rib (WC1), at the narrowest waist (WC2), the midpoint between the lowest rib and the iliac crest (WC3), 1 cm above the umbilicus (WC4), and immediately above the iliac crest (WC5). Body fat mass (FM), body fat percentage (% BF), body fat mass in the trunk (FM in the trunk), and fat percentage in the trunk (% BF in the trunk) were determined by dual-energy X-ray absorptiometry. The WCs were then compared through ANOVA with repeated measurement. The relationship of WC of each site with FM, % BF, FM in the trunk, and % BF in the trunk was examined through partial correlation. The WCs exhibited the following pattern: WC2 < WC1 < WC3 < WC4 < WC5 (p < 0.001) in males and WC2 < WC1 < WC4, WC3 < WC5 (p < 0.001) in females. The measured WCs were strongly correlated with FM, % BF, FM in the trunk, and % BF in the trunk. The WC measurements at five commonly used sites among Chinese children are different from one another. Results indicate that standardizing the anatomic point for the WC measurements is necessary. PMID:28261614

  10. PM over summertime India: Sources and trends investigated using long term measurements and multi-receptor site back trajectory analysis

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod; Sarkar, Chinmoy; Sachan, Himanshu; Kumar, Devender; Sinha, Baerbel

    2013-04-01

    We apply multi-receptor site residence-time weighted concentration back trajectory analysis to a ten year data set (1991-2003) of PM10 and TSP measurement data from four Indian megacities Delhi, Mumbai, Kolkata and Chennai. The dataset was sourced from the published and peer reviewed work of Gupta and Kumar (2006). Sources and trends of PM10 and TSP during the pre-monsoon season (March-June) were investigated. Residence-time weighted concentration maps were derived using 72 hour HYSPLIT back trajectory ensemble calculations. Trajectory runs were started 100 m AGL and the observed PM monthly averages were attributed to all trajectory runs in a month and each trajectory of the ensemble runs with equal probability. For investigating trends the dataset was further subdivided into two groups of four year durations each (1992-1995 and 2000-2003). We found a linear correlation with a slope of 1.0 (R2=0.9) between estimated seasonal average TSP (2000-2003) using our approach and the measured seasonal averages (2006-2007) for Kanpur, Ahmedabad, Pune and Bangalore. A linear fit between predicted and measured PM10 concentration for 19 sites with PM10 observations of at least one seasonal average between 1999-2009 shows a slope of 1.4 (R2=0.4). For the observation period 2000-2003, the Thar Desert and Taklimakan Desert emerged as largest sources for both PM10 (>180 μg/m3 and >200 μg/m3 respectively) and TSP (>650 μg/m3 and >725 μg/m3 respectively). In-situ observation at Bikaner (central Thar Desert) and in Jhunjhunu (semi-arid site at the border of the Thar Desert) indicate that both TSP and PM10 inside the desert source region are underpredicted by a factor of 10 compared to in-situ observations while for the semi arid area bordering the desert PM10 and TSP are underpredicted by a factor of 5 and 3 respectively. This indicates that strong sources are underpredicted by a receptor site centred approach. The entire North-Western Indo-Gangetic Basin (NW-IGB), where crop

  11. Department of Energy Plutonium ES&H Vulnerability Assessment Savannah River Site interim compensatory measures

    SciTech Connect

    Bickford, W.E.

    1994-09-15

    The Savannah River Site (SRS) has recently completed a self-assessment of potential vulnerabilities associated with plutonium and other transuranic materials stored at the site. An independent Working Group Assessment Team (WGAT) appointed by DOE/ES&H also performed an independent assessment, and reviewed and validated the site self-assessment. The purpose of this report is to provide a status of interim compensatory measures at SRS to address hazards in advance of any corrective actions. ES&H has requested this status for all vulnerabilities ranked medium or higher with respect to potential consequences to workers, environment, and the public.

  12. The advertised price of cigarette packs in retail outlets across Australia before and after the implementation of plain packaging: a repeated measures observational study.

    PubMed

    Scollo, Michelle; Bayly, Megan; Wakefield, Melanie

    2015-04-01

    This study monitored the advertised price of the most prominently promoted and the cheapest single packs of cigarettes in Australian retail outlets before and after the implementation of plain packaging. A panel of 421 outlets in four large Australian cities was visited monthly from May 2012 to August 2013 and the brand, pack size and price of the most-prominently listed and lowest-priced single cigarette pack were recorded from each store's tobacco price board. Changes in the inflation-adjusted stick price were examined using linear mixed models, controlling for fixed effects of city, store type, area socioeconomic status and random effects of time. The adjusted stick price was also examined over time by tobacco manufacturer and pack size. The inflation-adjusted stick price of the most-prominently advertised single packs was significantly higher than in May-July 2012 from August-October 2012 for mainstream and premium brands and from February-April 2013 for value brands. Adjusted average stick prices of lowest-priced packs in August 2013 were $0.02 (95% CI $0.02 to $0.03, p<0.001) higher than in May-July 2012 ($Aug13). A large real increase in stick price was seen in February-April 2013 across all major manufacturers, market segments and pack size categories. The price of cigarettes most prominently promoted on price boards did not decrease in the months following implementation of Australia's plain packaging legislation. Retail prices continued to increase above the level resulting from automatic indexation of excise/customs duty even at the lowest-priced end of the Australian market. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. The advertised price of cigarette packs in retail outlets across Australia before and after the implementation of plain packaging: a repeated measures observational study

    PubMed Central

    Scollo, Michelle; Bayly, Megan; Wakefield, Melanie

    2015-01-01

    Objective This study monitored the advertised price of the most prominently promoted and the cheapest single packs of cigarettes in Australian retail outlets before and after the implementation of plain packaging. Methods A panel of 421 outlets in four large Australian cities was visited monthly from May 2012 to August 2013 and the brand, pack size and price of the most-prominently listed and lowest-priced single cigarette pack were recorded from each store's tobacco price board. Changes in the inflation-adjusted stick price were examined using linear mixed models, controlling for fixed effects of city, store type, area socioeconomic status and random effects of time. The adjusted stick price was also examined over time by tobacco manufacturer and pack size. Results The inflation-adjusted stick price of the most-prominently advertised single packs was significantly higher than in May–July 2012 from August–October 2012 for mainstream and premium brands and from February–April 2013 for value brands. Adjusted average stick prices of lowest-priced packs in August 2013 were $0.02 (95% CI $0.02 to $0.03, p<0.001) higher than in May–July 2012 ($Aug13). A large real increase in stick price was seen in February–April 2013 across all major manufacturers, market segments and pack size categories. Discussion The price of cigarettes most prominently promoted on price boards did not decrease in the months following implementation of Australia's plain packaging legislation. Retail prices continued to increase above the level resulting from automatic indexation of excise/customs duty even at the lowest-priced end of the Australian market. PMID:28407616

  14. Diagnostic utility of attenuation measurement (Hounsfield units) in computed tomography stonogram in predicting the radio-opacity of urinary calculi in plain abdominal radiographs.

    PubMed

    Chua, Michael E; Gatchalian, Glenn T; Corsino, Michael Vincent; Reyes, Buenaventura B

    2012-10-01

    (1) To determine the best cut-off level of Hounsfield units (HU) in the CT stonogram that would predict the appearance of a urinary calculi in plain KUB X-ray; (2) to estimate the sensitivity and specificity of the best cut-off HU; and (3) to determine whether stone size and location affect the in vivo predictability. A prospective cross-sectional study of patients aged 18-85 diagnosed with urolithiases on CT stonogram with concurrent plain KUB radiograph was conducted. Appearance of stones was recorded, and significant difference between radiolucent and radio-opaque CT attenuation level was determined using ANOVA. Receiver operating characteristics (ROC) curve determined the best HU cut-off value. Stone size and location were used for factor variability analysis. A total of 184 cases were included in this study, and the average urolithiasis size on CT stonogram was 0.84 cm (0.3-4.9 cm). On KUB X-ray, 34.2 % of the urolithiases were radiolucent and 65.8 % were radio-opaque. Mean value of CT Hounsfield unit for radiolucent stones was 358.25 (±156), and that for radio-opaque stones was 816.51 (±274). ROC curve determined the best cut-off value of HU at 498.5, with the sensitivity of 89.3 % and specificity of 87.3 %. For >4 mm stones, the sensitivity was 91.3 % and the specificity was 81.8 %. On the other hand, for =<4 mm stones, the sensitivity was 60 % and the specificity was 89.5 %. Based on the constructed ROC curve, a threshold value of 498.5 HU in CT stonogram was established as cut-off in determining whether a calculus is radio-opaque or radiolucent. The determined overall sensitivity and specificity of the set cut-off HU value are optimal. Stone size but not location affects the sensitivity and specificity.

  15. Measuring Turbulence from Moored Acoustic Doppler Velocimeters. A Manual to Quantifying Inflow at Tidal Energy Sites

    SciTech Connect

    Kilcher, Levi; Thomson, Jim; Talbert, Joe; DeKlerk, Alex

    2016-03-01

    This work details a methodology for measuring hub height inflow turbulence using moored acoustic Doppler velocimiters (ADVs). This approach is motivated by the shortcomings of alternatives. For example, remote velocity measurements (i.e., from acoustic Doppler profilers) lack sufficient precision for device simulation, and rigid tower-mounted measurements are very expensive and technically challenging in the tidal environment. Moorings offer a low-cost, site-adaptable and robust deployment platform, and ADVs provide the necessary precision to accurately quantify turbulence.

  16. Evaluation of intercropped switchgrass establishment under a range of experimental site preparation treatments in a forested setting on the Lower Coastal Plain of North Carolina, U.S.A

    Treesearch

    Janine M. Albaugh; Eric B. Sucre; Zakiya H. Leggett; Jean-Christophe Domec; John S. King

    2012-01-01

    There is growing interest in using switchgrass (Panicum virgatum L.) as a biofuel crop and for its potential to sequester carbon. However, there are limited data on the establishment success of this species when grown as a forest intercrop in coastal plain settings of the U.S. Southeast. Therefore, we studied establishment success of switchgrass...

  17. Radiological verification survey results at the Pompton Plains Railroad Spur, Pequannock, New Jersey (PJ008V)

    SciTech Connect

    Rodriguez, R.E.; Johnson, C.A.

    1995-05-01

    The US Department of Energy (DOE) conducted remedial action during 1993 at the Pompton Plains railroad spur and eight vicinity properties in the Wayne and Pequannock Townships in New Jersey as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are in the vicinity of the DOE-owned Wayne Interim Storage Site (WISS), formerly the W.R. Grace facility. The property at the Pompton Plains Railroad Spur, Pequannock, New Jersey is one of these vicinity properties. At the request of DOE, a team from Oak Ridge National Laboratory conducted an independent radiological verification survey at this property. The purpose of the survey, conducted between September and December 1993, was to confirm the success of the remedial actions performed to remove any radioactive materials in excess of the identified guidelines. The verification survey included surface gamma scans and gamma readings at 1 meter, beta-gamma scans, and the collection of soil and debris samples for radionuclide analysis. Results of the survey demonstrated that all radiological measurements on the property at the Pompton Plains railroad spur were within applicable DOE guidelines. Based on the results of the remedial action data and confirmed by the verification survey data, the portions of the site that had been remediated during this action successfully meet the DOE remedial action objectives.

  18. Novel active comb-shaped dry electrode for EEG measurement in hairy site.

    PubMed

    Huang, Yan-Jun; Wu, Chung-Yu; Wong, Alice May-Kuen; Lin, Bor-Shyh

    2015-01-01

    Electroencephalography (EEG) is an important biopotential, and has been widely applied in clinical applications. The conventional EEG electrode with conductive gels is usually used for measuring EEG. However, the use of conductive gel also encounters with the issue of drying and hardening. Recently, many dry EEG electrodes based on different conductive materials and techniques were proposed to solve the previous issue. However, measuring EEG in the hairy site is still a difficult challenge. In this study, a novel active comb-shaped dry electrode was proposed to measure EEG in hairy site. Different form other comb-shaped or spike-shaped dry electrodes, it can provide more excellent performance of avoiding the signal attenuation, phase distortion, and the reduction of common mode rejection ratio. Even under walking motion, it can effectively acquire EEG in hairy site. Finally, the experiments for alpha rhythm and steady-state visually evoked potential were also tested to validate the proposed electrode.

  19. New approaches for assessment of occupational exposure to metals using on-site measurements.

    PubMed

    Nygren, Olle

    2002-10-01

    Traditional assessment of occupational exposure to metals typically involves static or personal aerosol sampling on a membrane filter followed by a laboratory determination of the metal content on the filter sample. These techniques give results with high accuracy and low detection limits. However, they all have a drawback in that, since the samples have to be analysed in a laboratory, the results will usually be obtained days or weeks after the sampling took place. Today there is available a new generation of portable electronic micro-balances and instruments for metal analysis based on X-ray fluorescence. These instruments will make on-site measurements of metal exposure possible, which opens the way for new approaches for assessment of occupational exposure to metals. In combination with high-flow pumps, short-term sampling is possible, which allows monitoring of the exposure variation during a work shift as well as the exposure during individual work tasks of short duration. Screening measurements and emission measurements are other examples of monitoring that are facilitated using on-site determinations. Measure control monitoring can effectively be performed using on-site measurements and is an effective tool in the assessment of workplace improvements. On-site determinations can also form an effective and pedagogic tool showing workers how to perform specific tasks and demonstrating the effectiveness of different measures intended to improve their work environment. Other examples are the assessment of skin exposure using aerosol deposition on pads and screening of contamination using bulk samples.

  20. EUCAARI ion spectrometer measurements at 12 European sites - analysis of new particle formation events

    NASA Astrophysics Data System (ADS)

    Manninen, H. E.; Nieminen, T.; Asmi, E.; Gagné, S.; Häkkinen, S.; Lehtipalo, K.; Aalto, P.; Vana, M.; Mirme, A.; Mirme, S.; Hõrrak, U.; Plass-Dülmer, C.; Stange, G.; Kiss, G.; Hoffer, A.; Törő, N.; Moerman, M.; Henzing, B.; de Leeuw, G.; Brinkenberg, M.; Kouvarakis, G. N.; Bougiatioti, A.; Mihalopoulos, N.; O'Dowd, C.; Ceburnis, D.; Arneth, A.; Svenningsson, B.; Swietlicki, E.; Tarozzi, L.; Decesari, S.; Facchini, M. C.; Birmili, W.; Sonntag, A.; Wiedensohler, A.; Boulon, J.; Sellegri, K.; Laj, P.; Gysel, M.; Bukowiecki, N.; Weingartner, E.; Wehrle, G.; Laaksonen, A.; Hamed, A.; Joutsensaari, J.; Petäjä, T.; Kerminen, V.-M.; Kulmala, M.

    2010-08-01

    We present comprehensive results on continuous atmospheric cluster and particle measurements in the size range ~1-42 nm within the European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) project. We focused on characterizing the spatial and temporal variation of new particle formation events and relevant particle formation parameters across Europe. Different types of air ion and cluster mobility spectrometers were deployed at 12 field sites across Europe from March 2008 to May 2009. The measurements were conducted in a wide variety of environments, including coastal and continental locations as well as sites at different altitudes (both in the boundary layer and the free troposphere). New particle formation events were detected at all of the 12 field sites during the year-long measurement period. From the data, nucleation and growth rates of newly formed particles were determined for each environment. In a case of parallel ion and neutral cluster measurements, we could also estimate the relative contribution of ion-induced and neutral nucleation to the total particle formation. The formation rates of charged particles at 2 nm accounted for 1-30% of the corresponding total particle formation rates. As a significant new result, we found out that the total particle formation rate varied much more between the different sites than the formation rate of charged particles. This work presents, so far, the most comprehensive effort to experimentally characterize nucleation and growth of atmospheric molecular clusters and nanoparticles at ground-based observation sites on a continental scale.

  1. Plan for the testing of radiation measurement instrumentation intended for use at an excavation site

    SciTech Connect

    Gehrke, R.J.

    1994-11-01

    This plan describes performance tests to be made with ionizing radiation measurement instrumentation designed and built for in-field assay at an excavation site. One instrument measures gross gamma-ray and neutron fields and the other identifies gamma-ray emitting radionuclides and also is capable of assaying for selected hazardous materials. These instruments will be operationally tested to verify that original specifications have been met and performance tested to establish and verify that they have the potential to function as intended at an excavation site.

  2. Status of corrective measures technology for shallow land burial at arid sites

    NASA Astrophysics Data System (ADS)

    Abeele, W. V.; Nyhan, J. W.; Drennon, B. J.; Lopez, E. A.; Herrera, W. J.; Langhorst, G. J.

    The field research program involving corrective measure technologies for arid shallow land burial sites is described. Soil erosion and infiltration of water into a simulated trench cap with various surface treatments was measured and compared with similar data from agricultural systems across the United States. Report of field testing of biointrusion barriers continues at a closed-out waste disposal site at Los Alamos. Final results of an experiment designed to determine the effects of subsidence on the performance of a cobble-gravel biobarrier system are reported, as well as the results of hydrologic modeling activities involving biobarrier systems.

  3. Comparing nocturnal eddy covariance measurements to estimates of ecosystem respiration made by scaling chamber measurements at six coniferous boreal sites

    USGS Publications Warehouse

    Lavigne, M.B.; Ryan, M.G.; Anderson, D.E.; Baldocchi, D.D.; Crill, P.M.; Fitzjarrald, D.R.; Goulden, M.L.; Gower, S.T.; Massheder, J.M.; McCaughey, J.H.; Rayment, M.; Striegl, R. G.

    1997-01-01

    During the growing season, nighttime ecosystem respiration emits 30–100% of the daytime net photosynthetic uptake of carbon, and therefore measurements of rates and understanding of its control by the environment are important for understanding net ecosystem exchange. Ecosystem respiration can be measured at night by eddy covariance methods, but the data may not be reliable because of low turbulence or other methodological problems. We used relationships between woody tissue, foliage, and soil respiration rates and temperature, with temperature records collected on site to estimate ecosystem respiration rates at six coniferous BOREAS sites at half-hour or 1-hour intervals, and then compared these estimates to nocturnal measurements of CO2 exchange by eddy covariance. Soil surface respiration was the largest source of CO2 at all sites (48–71%), and foliar respiration made a large contribution to ecosystem respiration at all sites (25–43%). Woody tissue respiration contributed only 5–15% to ecosystem respiration. We estimated error for the scaled chamber predictions of ecosystem respiration by using the uncertainty associated with each respiration parameter and respiring biomass value. There was substantial uncertainty in estimates of foliar and soil respiration because of the spatial variability of specific respiration rates. In addition, more attention needs to be paid to estimating foliar respiration during the early part of the growing season, when new foliage is growing, and to determining seasonal trends of soil surface respiration. Nocturnal eddy covariance measurements were poorly correlated to scaled chamber estimates of ecosystem respiration (r2=0.06–0.27) and were consistently lower than scaled chamber predictions (by 27% on average for the six sites). The bias in eddy covariance estimates of ecosystem respiration will alter estimates of gross assimilation in the light and of net ecosystem exchange rates over extended periods.

  4. Quantifying the contribution of long-range transport to particulate matter (PM) mass loadings at a suburban site in the north-western Indo-Gangetic Plain (NW-IGP)

    NASA Astrophysics Data System (ADS)

    Pawar, H.; Garg, S.; Kumar, V.; Sachan, H.; Arya, R.; Sarkar, C.; Chandra, B. P.; Sinha, B.

    2015-08-01

    Many sites in the densely populated Indo-Gangetic Plain (IGP) frequently exceed the national ambient air quality standard (NAAQS) of 100 μg m-3 for 24 h average PM10 and 60 μg m-3 for 24 h average PM2.5 mass loadings, exposing residents to hazardous levels of particulate matter (PM) throughout the year. We quantify the contribution of long-range transport to elevated PM levels and the number of exceedance events through a back-trajectory climatology analysis of air masses arriving at the IISER Mohali Atmospheric Chemistry facility (30.667° N, 76.729° E; 310 m a.m.s.l.) for the period August 2011-June 2013. Air masses arriving at the receptor site were classified into six clusters, which represent synoptic-scale air-mass transport patterns. Long-range transport from the west leads to significant enhancements in the average fine- and coarse-mode PM mass loadings during all seasons. The contribution of long-range transport from the west and south-west (source regions: Arabia, Thar Desert, Middle East and Afghanistan) to coarse-mode PM varied between 9 and 57 % of the total PM10-2.5 mass. Local pollution episodes (wind speed < 1 m s-1) contributed to enhanced PM2.5 mass loadings during both the winter and summer seasons and to enhanced coarse-mode PM only during the winter season. South-easterly air masses (source region: eastern IGP) were associated with significantly lower fine- and coarse-mode PM mass loadings during all seasons. The fraction of days in each season during which the PM mass loadings exceeded the national ambient air quality standard was controlled by long-range transport to a much lesser degree. For the local cluster, which represents regional air masses (source region: NW-IGP), the fraction of days during which the national ambient air quality standard (NAAQS) of 60 μg m-3 for 24 h average PM2.5 was exceeded varied between 36 % of the days associated with this synoptic-scale transport during the monsoon, and 95 % during post-monsoon and winter

  5. The Sensitivity of Genetic Connectivity Measures to Unsampled and Under-Sampled Sites

    PubMed Central

    Koen, Erin L.; Bowman, Jeff; Garroway, Colin J.; Wilson, Paul J.

    2013-01-01

    Landscape genetic analyses assess the influence of landscape structure on genetic differentiation. It is rarely possible to collect genetic samples from all individuals on the landscape and thus it is important to assess the sensitivity of landscape genetic analyses to the effects of unsampled and under-sampled sites. Network-based measures of genetic distance, such as conditional genetic distance (cGD), might be particularly sensitive to sampling intensity because pairwise estimates are relative to the entire network. We addressed this question by subsampling microsatellite data from two empirical datasets. We found that pairwise estimates of cGD were sensitive to both unsampled and under-sampled sites, and FST, Dest, and deucl were more sensitive to under-sampled than unsampled sites. We found that the rank order of cGD was also sensitive to unsampled and under-sampled sites, but not enough to affect the outcome of Mantel tests for isolation by distance. We simulated isolation by resistance and found that although cGD estimates were sensitive to unsampled sites, by increasing the number of sites sampled the accuracy of conclusions drawn from landscape genetic analyses increased, a feature that is not possible with pairwise estimates of genetic differentiation such as FST, Dest, and deucl. We suggest that users of cGD assess the sensitivity of this measure by subsampling within their own network and use caution when making extrapolations beyond their sampled network. PMID:23409155

  6. Re-visiting the tympanic membrane vicinity as core body temperature measurement site

    PubMed Central

    Gan, Chee Wee; Liang, Wenyu

    2017-01-01

    Core body temperature (CBT) is an important and commonly used indicator of human health and endurance performance. A rise in baseline CBT can be attributed to an onset of flu, infection or even thermoregulatory failure when it becomes excessive. Sites which have been used for measurement of CBT include the pulmonary artery, the esophagus, the rectum and the tympanic membrane. Among them, the tympanic membrane is an attractive measurement site for CBT due to its unobtrusive nature and ease of measurement facilitated, especially when continuous CBT measurements are needed for monitoring such as during military, occupational and sporting settings. However, to-date, there are still polarizing views on the suitability of tympanic membrane as a CBT site. This paper will revisit a number of key unresolved issues in the literature and also presents, for the first time, a benchmark of the middle ear temperature against temperature measurements from other sites. Results from experiments carried out on human and primate subjects will be presented to draw a fresh set of insights against the backdrop of hypotheses and controversies. PMID:28414722

  7. Re-visiting the tympanic membrane vicinity as core body temperature measurement site.

    PubMed

    Yeoh, Wui Keat; Lee, Jason Kai Wei; Lim, Hsueh Yee; Gan, Chee Wee; Liang, Wenyu; Tan, Kok Kiong

    2017-01-01

    Core body temperature (CBT) is an important and commonly used indicator of human health and endurance performance. A rise in baseline CBT can be attributed to an onset of flu, infection or even thermoregulatory failure when it becomes excessive. Sites which have been used for measurement of CBT include the pulmonary artery, the esophagus, the rectum and the tympanic membrane. Among them, the tympanic membrane is an attractive measurement site for CBT due to its unobtrusive nature and ease of measurement facilitated, especially when continuous CBT measurements are needed for monitoring such as during military, occupational and sporting settings. However, to-date, there are still polarizing views on the suitability of tympanic membrane as a CBT site. This paper will revisit a number of key unresolved issues in the literature and also presents, for the first time, a benchmark of the middle ear temperature against temperature measurements from other sites. Results from experiments carried out on human and primate subjects will be presented to draw a fresh set of insights against the backdrop of hypotheses and controversies.

  8. Site-selective NMR measurements in single crystal PrNb2Al20

    NASA Astrophysics Data System (ADS)

    Kubo, Tetsuro; Kotegawa, Hisashi; Tou, Hideki; Harima, Hisatomo; Higashinaka, Ryuji; Nakama, Akihiro; Aoki, Yuji; Sato, Hideyuki

    2017-04-01

    We report the result and analysis of the nuclear magnetic resonance (NMR) measurements at the magnetic field of 8.57 T and temperature of 80 K using a single crystal PrNb2Al20. Combining the field angle dependence of NMR spectra, numerical simulation, and band calculation, we deconvoluted the NMR signals from the Nb, Al 48 f, and Al 96g sites. Unfortunately, the overlapping of NMR lines prevents us to extract the NMR signals from the Al 16c site. However, the obtained nuclear quadrupole resonance (NQR) parameters for the Nb and Al 48f sites are consistent with the previous reports [T. Kubo et al., 2014 JPS Conf. Proc. 3 012031; 2015 J. Phys.: Conf. Ser. 592 012093; 2016 J. Phys. Conf.: Ser. 683 012015] and for the Al 96g site are refined to be vQ = 0.98 MHz and η = 0.46.

  9. Quantitative, directional measurement of electric field heterogeneity in the active site of ketosteroid isomerase.

    PubMed

    Fafarman, Aaron T; Sigala, Paul A; Schwans, Jason P; Fenn, Timothy D; Herschlag, Daniel; Boxer, Steven G

    2012-02-07

    Understanding the electrostatic forces and features within highly heterogeneous, anisotropic, and chemically complex enzyme active sites and their connection to biological catalysis remains a longstanding challenge, in part due to the paucity of incisive experimental probes of electrostatic properties within proteins. To quantitatively assess the landscape of electrostatic fields at discrete locations and orientations within an enzyme active site, we have incorporated site-specific thiocyanate vibrational probes into multiple positions within bacterial ketosteroid isomerase. A battery of X-ray crystallographic, vibrational Stark spectroscopy, and NMR studies revealed electrostatic field heterogeneity of 8 MV/cm between active site probe locations and widely differing sensitivities of discrete probes to common electrostatic perturbations from mutation, ligand binding, and pH changes. Electrostatic calculations based on active site ionization states assigned by literature precedent and computational pK(a) prediction were unable to quantitatively account for the observed vibrational band shifts. However, electrostatic models of the D40N mutant gave qualitative agreement with the observed vibrational effects when an unusual ionization of an active site tyrosine with a pK(a) near 7 was included. UV-absorbance and (13)C NMR experiments confirmed the presence of a tyrosinate in the active site, in agreement with electrostatic models. This work provides the most direct measure of the heterogeneous and anisotropic nature of the electrostatic environment within an enzyme active site, and these measurements provide incisive benchmarks for further developing accurate computational models and a foundation for future tests of electrostatics in enzymatic catalysis.

  10. Continuous Profiles of Cloud Microphysical Properties for the Fixed Atmospheric Radiation Measurement Sites

    SciTech Connect

    Jensen, M; Jensen, K

    2006-06-01

    The Atmospheric Radiation Measurement (ARM) Program defined a specific metric for the third quarter of Fiscal Year 2006 to produce and refine a one-year continuous time series of cloud microphysical properties based on cloud radar measurements for each of the fixed ARM sites. To accomplish this metric, we used a combination of recently developed algorithms that interpret radar reflectivity profiles, lidar backscatter profiles, and microwave brightness temperatures into the context of the underlying cloud microphysical structure.

  11. Prairie grassland bidirectional reflectances measured by different instruments at the FIFE site

    NASA Technical Reports Server (NTRS)

    Deering, D. W.; Middleton, E. M.; Irons, J. R.; Blad, B. L.; Walter-Shea, E. A.; Hays, C. J.; Walthall, C.; Eck, T. F.; Ahmad, S. P.; Banerjee, B. P.

    1992-01-01

    Land surface reflectance measurements were obtained during the First ISLSCP Field Experiment (FIFE) field campaigns utilizing a variety of airborne and ground-based spectral radiometers. To study the validity of the assumption that the values obtained by the several different teams and instruments were interchangeable, the surface radiation measurement teams converged on a common site for one day during the fifth intensive field campaign in 1989. The bidirectional reflectances from the various instruments were basically found to be comparable.

  12. Measurement of the group velocity of light in sea water at the ANTARES site

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Costantini, H.; Coyle, P.; Curtil, C.; De Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatà, S.; Gay, P.; Geyer, K.; Giacomelli, G.; Giordano, V.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; McMillan, J. E.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Samtleben, D. F. E.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Thompson, L. F.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2012-04-01

    The group velocity of light has been measured at eight different wavelengths between 385 nm and 532 nm in the Mediterranean Sea at a depth of about 2.2 km with the ANTARES optical beacon systems. A parametrisation of the dependence of the refractive index on wavelength based on the salinity, pressure and temperature of the sea water at the ANTARES site is in good agreement with these measurements.

  13. Site-directed spin labeling of proteins for distance measurements in vitro and in cells.

    PubMed

    Roser, P; Schmidt, M J; Drescher, M; Summerer, D

    2016-06-15

    Site-directed spin labeling (SDSL) in combination with electron paramagnetic resonance (EPR) spectroscopy allows studying the structure, dynamics, and interactions of proteins via distance measurements in the nanometer range. We here give an overview of available spin labels, the strategies for their introduction into proteins, and the associated potentials for protein structural studies in vitro and in the context of living cells.

  14. SITE-SPECIFIC PROTOCOL FOR MEASURING SOIL RADON POTENTIALS FOR FLORIDA HOUSES

    EPA Science Inventory

    The report describes a protocol for site-specific measurement of radon potentials for Florida houses that is consistent with existing residential radon protection maps. The protocol gives further guidance on the possible need for radon-protective house construction features. In a...

  15. SITE-SPECIFIC PROTOCOL FOR MEASURING SOIL RADON POTENTIALS FOR FLORIDA HOUSES

    EPA Science Inventory

    The report describes a protocol for site-specific measurement of radon potentials for Florida houses that is consistent with existing residential radon protection maps. The protocol gives further guidance on the possible need for radon-protective house construction features. In a...

  16. Measurements of particulate matter concentrations at a landfill site (Crete, Greece)

    SciTech Connect

    Chalvatzaki, E.; Kopanakis, I.; Kontaksakis, M.; Glytsos, T.; Kalogerakis, N.; Lazaridis, M.

    2010-11-15

    Large amounts of solid waste are disposed in landfills and the potential of particulate matter (PM) emissions into the atmosphere is significant. Particulate matter emissions in landfills are the result of resuspension from the disposed waste and other activities such as mechanical recycling and composting, waste unloading and sorting, the process of coating residues and waste transport by trucks. Measurements of ambient levels of inhalable particulate matter (PM{sub 10}) were performed in a landfill site located at Chania (Crete, Greece). Elevated PM{sub 10} concentrations were measured in the landfill site during several landfill operations. It was observed that the meteorological conditions (mainly wind velocity and temperature) influence considerably the PM{sub 10} concentrations. Comparison between the PM{sub 10} concentrations at the landfill and at a PM{sub 10} background site indicates the influence of the landfill activities on local concentrations at the landfill. No correlation was observed between the measurements at the landfill and the background sites. Finally, specific preventing measures are proposed to control the PM concentrations in landfills.

  17. Black carbon and total carbon measurements at urban and rural sites in Kenya, East Africa

    NASA Astrophysics Data System (ADS)

    Gatari, Michael J.; Boman, Johan

    This paper reports measurements of black carbon (BC) and total carbon (TC) (TC=BC+organic carbon) in the lower troposphere in Nairobi and the towns of Nanyuki and Meru in Kenya. The rural sites of Nanyuki and Meru are both located on the equator on the northwestern and northeastern slopes of Mount Kenya, respectively. Particles were collected for 24 h on glass fibre filters using a dichotomous impactor. The content of TC and BC was analysed using a carbon-hydrogen-nitrogen analyser and a black smoke reflectometer. The mean TC concentration in Nanyuki was found to be two times higher than that of Meru, 14±2 and 7±1 μg m -3, respectively. The measured BC concentration in Meru (1.4±0.1 μg m -3) was twice that of Nanyuki (0.72±0.06 μg m -3). The organic carbon (OC) concentration was estimated from the difference between the measured TC and BC. The obtained mean concentrations were lower than those found in the literature for Asia and USA but higher than those of some European cities. The local burning of biomass was seen as the main source of carbonaceous aerosols at all measurement sites. The Nanyuki site exhibited OC concentrations comparable to those of the urban site in Nairobi. Nairobi had the highest concentration of both TC and BC. Vehicular and waste burning emissions in Nairobi may have enriched the carbonaceous aerosols.

  18. Lodgepole pine site index in relation to synoptic measures of climate, soil moisture and soil nutrients.

    Treesearch

    G. Geoff Wang; Shongming Huang; Robert A. Monserud; Ryan J. Klos

    2004-01-01

    Lodgepole pine site index was examined in relation to synoptic measures of topography, soil moisture, and soil nutrients in Alberta. Data came from 214 lodgepole pine-dominated stands sampled as a part of the provincial permanent sample plot program. Spatial location (elevation, latitude, and longitude) and natural subregions (NSRs) were topographic variables that...

  19. IN SITU APPARENT CONDUCTIVITY MEASUREMENTS AND MICROBIAL POPULATION DISTRIBUTION AT A HYDROCARBON CONTAMINATED SITE

    EPA Science Inventory

    We investigated the bulk electrical conductivity and microbial population distribution in sediments at a site contaminated with light non-aqueous phase liquid (LNAPL). The bulk conductivity was measured using in situ vertical resistivity probes, while the most probable number met...

  20. IN SITU APPARENT CONDUCTIVITY MEASUREMENTS AND MICROBIAL POPULATION DISTRIBUTION AT A HYDROCARBON CONTAMINATED SITE

    EPA Science Inventory

    We investigated the bulk electrical conductivity and microbial population distribution in sediments at a site contaminated with light non-aqueous phase liquid (LNAPL). The bulk conductivity was measured using in situ vertical resistivity probes, while the most probable number met...

  1. Measurements of Argon-39 at the U20az underground nuclear explosion site.

    PubMed

    McIntyre, J I; Aalseth, C E; Alexander, T R; Back, H O; Bellgraph, B J; Bowyer, T W; Chipman, V; Cooper, M W; Day, A R; Drellack, S; Foxe, M P; Fritz, B G; Hayes, J C; Humble, P; Keillor, M E; Kirkham, R R; Krogstad, E J; Lowrey, J D; Mace, E K; Mayer, M F; Milbrath, B D; Misner, A; Morley, S M; Panisko, M E; Olsen, K B; Ripplinger, M D; Seifert, A; Suarez, R

    2017-07-26

    Pacific Northwest National Laboratory reports on the detection of (39)Ar at the location of an underground nuclear explosion on the Nevada Nuclear Security Site. The presence of (39)Ar was not anticipated at the outset of the experimental campaign but results from this work demonstrated that it is present, along with (37)Ar and (85)Kr in the subsurface at the site of an underground nuclear explosion. Our analysis showed that by using state-of-the-art technology optimized for radioargon measurements, it was difficult to distinguish (39)Ar from the fission product (85)Kr. Proportional counters are currently used for high-sensitivity measurement of (37)Ar and (39)Ar. Physical and chemical separation processes are used to separate argon from air or soil gas, yielding pure argon with contaminant gases reduced to the parts-per-million level or below. However, even with purification at these levels, the beta decay signature of (85)Kr can be mistaken for that of (39)Ar, and the presence of either isotope increases the measurement background level for the measurement of (37)Ar. Measured values for the (39)Ar measured at the site ranged from 36,000 milli- Becquerel/standard-cubic-meter-of-air (mBq/SCM) for shallow bore holes to 997,000 mBq/SCM from the rubble chimney from the underground nuclear explosion. Copyright © 2017. Published by Elsevier Ltd.

  2. Improved measurement of aluminum in irradiated fuel reprocessed at the Savannah River Site

    SciTech Connect

    Maxwell, S.L. III.

    1991-01-01

    At the Savannah River Site (SRS), irradiated fuel from research reactor operators or their contract fuel service companies is reprocessed in the H-Canyon Separations Facility. Final processing costs are based on analytical measurements of the amount of total metal dissolved. Shipper estimates for uranium and uranium-235 and measured values at SRS have historically agreed very well. There have occasionally been significant differences between shipper estimates for aluminum and the aluminum content determined at SRS. To minimize analytical error that might contribute to poor shipper-receiver agreement for the reprocessing of off-site fuel, a new analytical method to measure aluminum was developed by SRS Analytical Laboratories at the Central Laboratory Facilities. An EDTA (ethylenediaminetetraacetic acid) titration method, subject to dissolver matrix interferences, was previously used at SRS to measure aluminum in H-Canyon dissolver during the reprocessing of offsite fuel. The new method combines rapid ion exchange technology with direct current argon plasma spectrometry to enhance the reliability of aluminum measurements for off-site fuel. The technique rapidly removes spectral interferences such as uranium and significantly lowers gamma levels due to fission products. Aluminium is separated quantitatively by using an anion exchange technique that employs oxalate complexing, small particle size resin and rapid flow rates. The new method, which has eliminated matrix interference problems with these analyses and improved the quality of aluminum measurements, has improved the overall agreement between shipper-receiver values for offsite fuel processed SRS.

  3. Improved measurement of aluminum in irradiated fuel reprocessed at the Savannah River Site

    SciTech Connect

    Maxwell, S.L. III

    1991-12-31

    At the Savannah River Site (SRS), irradiated fuel from research reactor operators or their contract fuel service companies is reprocessed in the H-Canyon Separations Facility. Final processing costs are based on analytical measurements of the amount of total metal dissolved. Shipper estimates for uranium and uranium-235 and measured values at SRS have historically agreed very well. There have occasionally been significant differences between shipper estimates for aluminum and the aluminum content determined at SRS. To minimize analytical error that might contribute to poor shipper-receiver agreement for the reprocessing of off-site fuel, a new analytical method to measure aluminum was developed by SRS Analytical Laboratories at the Central Laboratory Facilities. An EDTA (ethylenediaminetetraacetic acid) titration method, subject to dissolver matrix interferences, was previously used at SRS to measure aluminum in H-Canyon dissolver during the reprocessing of offsite fuel. The new method combines rapid ion exchange technology with direct current argon plasma spectrometry to enhance the reliability of aluminum measurements for off-site fuel. The technique rapidly removes spectral interferences such as uranium and significantly lowers gamma levels due to fission products. Aluminium is separated quantitatively by using an anion exchange technique that employs oxalate complexing, small particle size resin and rapid flow rates. The new method, which has eliminated matrix interference problems with these analyses and improved the quality of aluminum measurements, has improved the overall agreement between shipper-receiver values for offsite fuel processed SRS.

  4. Chlorine-36 in the Snake River Plain Aquifer at the Idaho National Engineering Laboratory; origin and implications

    USGS Publications Warehouse

    Beasley, T.M.; Cecil, L.D.; Sharma, P.; Kubik, P.W.; Fehn, U.; Mann, L.J.; Gove, H.E.

    1993-01-01

    Between 1952 and 1984, low-level radioactive waste was introduced directly into the Snake River Plain aquifer at the Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These wastes were generated, principally, at the nuclear fuel reprocessing facility on the site. Our measurements of 36C1 in monitoring and production well waters, downgradient from disposal wells and seepage ponds, found easily detectable, nonhazardous concentrations of this radionuclide from the point of injection to the INEL southern site boundary. Comparisons are made between 3H and 36Cl concentrations in aquifer water and the advantages of 36C1 as a tracer of subsurface-water dynamics at the site are discussed.

  5. Northern Plains Patterns

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-513, 14 October 2003

    Patterns are common on the northern plains of Mars. Like their terrestrial counterparts in places like Siberia, Alaska, and northern Canada, patterned ground on Mars might be an indicator of the presence of ground ice. Whether it is true that the patterns on Mars are related to ground ice and whether the ice is still present beneath the martian surface are unknown. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) picture shows an example of patterned ground on the martian northern plains near 72.4oN, 252.6oW. The dark dots and lines are low mounds and chains of mounds. The circular feature near the center of the image is the location of a buried meteor impact crater; its presence today is marked only by the dark boulders on its rim and ejecta blanket that have managed to remain uncovered at the martian surface. The area shown is 3 km (1.9 mi) wide and illuminated by sunlight from the lower left.

  6. [Biodegradation Coefficients of Typical Pollutants in the Plain Rivers Network].

    PubMed

    Feng, Shuai; Li, Xu-yongl; Deng, Jian-cai

    2016-05-15

    Biodegradation is a significant part of pollutant integrated degradation, the process rate of which is represented by the biodegradation coefficient. To investigate the biodegradation law of typical pollutants in the plain rivers network located in the upstream of the Lake Taihu, experiments were conducted in site in September 2015, one order kinetics model was used to measure the biodegradation coefficients for permanganate index, ammonia, total nitrogen and total phosphorus, and influencing factors of the biodegradation coefficients were also analyzed. The results showed that the biodegradation coefficients for permanganate index, ammonia, total nitrogen and total phosphorus were 0.008 3-0.126 4 d⁻¹, 0.002 1-0.213 8 d⁻¹, 0.002 1-0.090 5 d⁻¹ and 0.011 0- 0.152 8 d⁻¹, respectively. The influencing factors of the biodegradation coefficients for permanganate index were permanganate index and pH; those for ammonia were ammonia concentration and pH; those for total nitrogen were inorganic nitrogen concentration, total dissolved solid concentration and nitrite concentration; and those for total phosphorus were background concentration and pH. The research results were of important guiding significance for pollutants removal and ecological restoration of the plain rivers network located in the unstream of the Lake Taihu.

  7. A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes

    Treesearch

    Andrew D. Richardson; David Y. Hollinger; George G. Burba; Kenneth J. Davis; Lawrence B. Flanagan; Gabriel G. Katul; J. William Munger; Daniel M. Ricciuto; Paul C. Stoy; Andrew E. Suyker; Shashi B. Verma; Steven C. Wofsy; Steven C. Wofsy

    2006-01-01

    Measured surface-atmosphere fluxes of energy (sensible heat, H, and latent heat, LE) and CO2 (FCO2) represent the ``true?? flux plus or minus potential random and systematic measurement errors. Here, we use data from seven sites in the AmeriFlux network, including five forested sites (two of which include ``tall tower?? instrumentation), one grassland site, and one...

  8. Second chance for the plains bison

    USGS Publications Warehouse

    Freese, Curtis H.; Aune, K.; Boyd, D.; Derr, James N.; Forrest, Steven C.; Gates, C. Cormack; Gogan, Peter J.; Grassel, Shaun M.; Halbert, Natalie D.; Kunkel, Kyran; Redford, K.

    2007-01-01

    Before European settlement the plains bison (Bison bison bison) numbered in the tens of millions across most of the temperate region of North America. Within the span of a few decades during the mid- to late-1800s its numbers were reduced by hunting and other factors to a few hundred. The plight of the plains bison led to one of the first major movements in North America to save an endangered species. A few individuals and the American Bison Society rescued the remaining animals. Attempts to hybridize cattle and bison when bison numbers were low resulted in extensive cattle gene introgression in bison. Today, though approximately 500,000 plains bison exist in North America, few are free of cattle gene introgression, 96% are subject to anthropogenic selection for commodity production, and only 4% are in herds managed primarily for conservation purposes. Small herd size, artificial selection, cattle-gene introgression, and other factors threaten the diversity and integrity of the bison genome. In addition, the bison is for all practical purposes ecologically extinct across its former range, with multiple consequences for grassland biodiversity. Urgent measures are needed to conserve the wild bison genome and to restore the ecological role of bison in grassland ecosystems. Socioeconomic trends in the Great Plains, combined with new information about bison conservation needs and new conservation initiatives by both the public and public sectors, have set the stage for significant progress in bison conservation over the next few years.

  9. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. [Great Plains Corridor

    NASA Technical Reports Server (NTRS)

    Rouse, J. W., Jr. (Principal Investigator); Haas, R. H.; Deering, D. W.; Schell, J. A.

    1973-01-01

    The author has identified the following significant results. The Great Plains Corridor rangeland project utilizes natural vegetation systems as phenological indicators of seasonal development and climatic effects upon regional growth conditions. A method has been developed for quantitative measurement of vegetation conditions over broad regions using ERTS-1 MSS data. Radiance values recorded in ERTS-1 spectral bands 5 and 7, corrected for sun angle, are used to compute a band ratio parameter which is shown to be correlated with green biomass and vegetation moisture content. This report details the progress being made toward determining factors associated with the transformed vegetation index (TVI) and limitations on the method. During the first year of ERTS-1 operation (cycles 1-20), an average of 50% usable ERTS-1 data was obtained for the ten Great Plains Corridor test sites.

  10. Biometeorological and air quality assessment in an industrialized area of eastern Mediterranean: the Thriassion Plain, Greece.

    PubMed

    Mavrakis, Anastasios; Spanou, Anastasia; Pantavou, Katerina; Katavoutas, George; Theoharatos, George; Christides, Anastasios; Verouti, Eleni

    2012-07-01

    Evidence that heat wave events are associated with poor air quality conditions and health hazards has become stronger in recent years. In this study, the impact of two heat wave episodes on human thermal discomfort and air quality is examined during summer 2007, in an industrial plain of eastern Mediterranean: the Thriassion Plain, Greece. For this purpose, two biometeorological indices-Discomfort Index (DI) and Heat Load (HL)-as well as an air quality index-Air Quality Stress Index (AQSI)-were calculated using data from seven measuring sites. A land-use map was procured in order to examine the effect of different land cover types on human thermal comfort. The results indicated high level of thermal discomfort and increased air pollution levels, while a significant correlation between the DI and the AQSI was identified.

  11. Multifrequency measurements of radar ground clutter at 42 sites. Volume 3: Appendix E

    NASA Astrophysics Data System (ADS)

    Billingsley, J. B.; Larrabee, John F.

    1991-11-01

    This report determines how ground clutter strength varies with RF frequency from VHF to X-band in ground-sited radar. This determination is accomplished by providing extensive empirical results from multifrequency clutter measurements conducted at 42 different sites widely dispersed over the North American continent. These results indicate that the frequency dependence of ground clutter strength depends upon terrain type and can vary, for example, from a strongly decreasing function of frequency in forest to a strongly increasing function of frequency in farmland. Five major terrain categories are defined that encompass this dependence, namely, urban, mountains, forest, farmland, and desert. Within each terrain category, results are also shown to be dependent upon the relief or roughness of the terrain and upon the depression angle at which the terrain is illuminated. The depression angle dependence is important, even for the very low angles (typically within a degree of grazing incidence) and small (typically fractional) variations in angle that occur in ground-sited radar. This report presents specific clutter strength results at each of five frequencies (VHF, UHF, L-, S-, and X-band) from each of the 42 sites at which measurements were conducted. The report then combines results from similar sites to obtain the general dependence of clutter strength versus frequency for each terrain category.

  12. Multifrequency measurements of radar ground clutter at 42 sites. Volume 1: Principal results

    NASA Astrophysics Data System (ADS)

    Billingsley, J. B.; Larrabee, J. F.

    1991-11-01

    This report determines how ground clutter strength varies with RF frequency from VHF to X-band in ground-sited radar. These results indicate that the frequency dependence of ground clutter strength depends upon terrain type and can vary, for example, from a strongly decreasing function of frequency in forest to a strongly increasing function of frequency in farmland. Five major terrain categories are defined that encompass this dependence, namely, urban, mountains, forest, farmland, and desert. Within each terrain category, results are also shown to be dependent upon relief or roughness of the terrain and upon the depression angle at which the terrain is illuminated. The depression angle dependence is important, even for the very low angles (typically within a degree of grazing incidence) and small (typical fractional) variations in angle that occur in ground-sited radar. This report presents specific clutter strength results at each of five frequencies (VHF, UHF, L-, S-, and X-band) from each of the 42 sites at which measurements were conducted. The report then combines results from similar sites to obtain the general dependence of clutter strength versus frequency for each terrain category. Clutter strengths are described in terms of moments (including the mean) and percentile levels (including the median) in measured clutter amplitude distributions resulting from cell-by-cell spatial variation over a selected large kilometer-sized macroregion of terrain at each site.

  13. Bias corrections of precipitation measurements across experimental sites in different ecoclimatic regions of western Canada

    NASA Astrophysics Data System (ADS)

    Pan, Xicai; Yang, Daqing; Li, Yanping; Barr, Alan; Helgason, Warren; Hayashi, Masaki; Marsh, Philip; Pomeroy, John; Janowicz, Richard J.

    2016-10-01

    This study assesses a filtering procedure on accumulating precipitation gauge measurements and quantifies the effects of bias corrections for wind-induced undercatch across four ecoclimatic regions in western Canada, including the permafrost regions of the subarctic, the Western Cordillera, the boreal forest, and the prairies. The bias corrections increased monthly precipitation by up to 163 % at windy sites with short vegetation and sometimes modified the seasonal precipitation regime, whereas the increases were less than 13 % at sites shielded by forest. On a yearly basis, the increase of total precipitation ranged from 8 to 20 mm (3-4 %) at sites shielded by vegetation and 60 to 384 mm (about 15-34 %) at open sites. In addition, the bias corrections altered the seasonal precipitation patterns at some windy sites with high snow percentage ( > 50 %). This study highlights the need for and importance of precipitation bias corrections at both research sites and operational networks for water balance assessment and the validation of global/regional climate-hydrology models.

  14. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. [Great Plains Corridor

    NASA Technical Reports Server (NTRS)

    Rouse, J. W., Jr. (Principal Investigator); Haas, R. H.; Deering, D. W.; Schell, J. A.; Harlan, J. C.

    1974-01-01

    The author has identified the following significant results. The Great Plains Corridor rangeland project successfully utilized natural vegetation systems as phenological indicators of seasonal development and climatic effects upon regional growth conditions. An effective method was developed for quantitative measurement of vegetation conditions, including green biomass estimates, recorded in bands 5 and 6, corrected for sun angle, were used to compute a ratio parameter (TV16) which is shown to be highly correlated with green biomass and vegatation moisture content. Analyses results of ERTS-1 digital data and correlated ground data are summarized. Attention was given to analyzing weather influences and test site variables on vegetation condition measurements with ERTS-1 data.

  15. Filling the gaps in meteorological continuous data measured at FLUXNET sites with ERA-Interim reanalysis

    SciTech Connect

    Vuichard, N.

    2015-07-13

    In this study, exchanges of carbon, water and energy between the land surface and the atmosphere are monitored by eddy covariance technique at the ecosystem level. Currently, the FLUXNET database contains more than 500 registered sites, and up to 250 of them share data (free fair-use data set). Many modelling groups use the FLUXNET data set for evaluating ecosystem models' performance, but this requires uninterrupted time series for the meteorological variables used as input. Because original in situ data often contain gaps, from very short (few hours) up to relatively long (some months) ones, we develop a new and robust method for filling the gaps in meteorological data measured at site level. Our approach has the benefit of making use of continuous data available globally (ERA-Interim) and a high temporal resolution spanning from 1989 to today. These data are, however, not measured at site level, and for this reason a method to downscale and correct the ERA-Interim data is needed. We apply this method to the level 4 data (L4) from the La Thuile collection, freely available after registration under a fair-use policy. The performance of the developed method varies across sites and is also function of the meteorological variable. On average over all sites, applying the bias correction method to the ERA-Interim data reduced the mismatch with the in situ data by 10 to 36 %, depending on the meteorological variable considered. In comparison to the internal variability of the in situ data, the root mean square error (RMSE) between the in situ data and the unbiased ERA-I (ERA-Interim) data remains relatively large (on average over all sites, from 27 to 76 % of the standard deviation of in situ data, depending on the meteorological variable considered). The performance of the method remains poor for the wind speed field, in particular regarding its capacity to conserve a standard deviation similar to the one measured at FLUXNET stations.

  16. Plain packaging of cigarettes: do we have sufficient evidence?

    PubMed

    Smith, Collin N; Kraemer, John D; Johnson, Andrea C; Mays, Darren

    2015-01-01

    Tobacco industry marketing is a primary factor influencing cigarette smoking behavior and the cigarette pack has become an important marketing vehicle for tobacco companies. Standardized "plain" cigarette packaging is advocated as a public health policy to prevent and reduce morbidity and mortality caused by smoking by reducing youth smoking initiation and promoting cessation among smokers. Plain packaging was implemented in Australia in December 2012, and several other countries are considering doing so, but each faces foreseeable legal resistance from opponents to such measures. Tobacco companies have challenged these public health policies, citing international trade agreements and intellectual property laws. Decision-making in these court cases will hinge in part on whether the evidence indicates the public health benefits of plain packaging outweigh any potential harm to tobacco manufacturers' interests. We reviewed the available evidence in support of plain packaging, finding evidence from observational, experimental, and population-based studies. Results indicate that plain packaging can reduce positive perceptions of smoking and dissuade tobacco use. Governments deciding to implement plain cigarette packaging measures can rely on this evidence to help make a strong case that plain packaging plays an important role in the context of comprehensive smoking prevention efforts.

  17. Radiation measurements of excavated items at a radioactive-waste burial site

    NASA Astrophysics Data System (ADS)

    Stromswold, D. C.; Alvarez, J. L.; Ludowise, J. D.

    1995-12-01

    Radiation measurements on items excavated from a radioactive-waste burial ground were part of a field test of excavation techniques for the cleanup of subsurface sites. The waste resulted from plutonium production for nuclear weapons at Hanford, WA. The radiation measurements investigated techniques for classifying bulk waste for placement into a permanent disposal facility. Hand-held γ-ray survey instruments measured exposure rates (mR/h) from contaminated dirt and radioactive objects as they were removed by heavy excavation equipment. Gamma-ray detectors mounted on the excavation equipment provided additional data that were transmitted by radio. Exposure rates from identifiable objects (e.g. specific reactor components) were compared with expected exposure rates calculated from site-disposal records and computer modeling. Selected objects were subjected to additional on-site measurements using a high-purity germanium detector. Detected nuclides included 60Co, 137Cs, 152,154Eu, and 108mAg. A large-volume neutron detector checked for possible transuranic nuclides. Alpha and β spectrometry also were tested. but their utility for this application was limited due to the short range of the particles and the difficulty of maintaining a repeatable measurement geometry in the field.

  18. Experimental Results of Site Calibration and Sensitivity Measurements in OTR for UWB Systems

    NASA Astrophysics Data System (ADS)

    Viswanadham, Chandana; Rao, P. Mallikrajuna

    2016-08-01

    System calibration and parameter accuracy measurement of electronic support measures (ESM) systems is a major activity, carried out by electronic warfare (EW) engineers. These activities are very critical and needs good understanding in the field of microwaves, antennas, wave propagation, digital and communication domains. EW systems are broad band, built with state-of-the art electronic hardware, installed on different varieties of military platforms to guard country's security from time to time. EW systems operate in wide frequency ranges, typically in the order of thousands of MHz, hence these are ultra wide band (UWB) systems. Few calibration activities are carried within the system and in the test sites, to meet the accuracies of final specifications. After calibration, parameters are measured for their accuracies either in feed mode by injecting the RF signals into the front end or in radiation mode by transmitting the RF signals on to system antenna. To carry out these activities in radiation mode, a calibrated open test range (OTR) is necessary in the frequency band of interest. Thus site calibration of OTR is necessary to be carried out before taking up system calibration and parameter measurements. This paper presents the experimental results of OTR site calibration and sensitivity measurements of UWB systems in radiation mode.

  19. Experimental Results of Site Calibration and Sensitivity Measurements in OTR for UWB Systems

    NASA Astrophysics Data System (ADS)

    Viswanadham, Chandana; Rao, P. Mallikrajuna

    2017-06-01

    System calibration and parameter accuracy measurement of electronic support measures (ESM) systems is a major activity, carried out by electronic warfare (EW) engineers. These activities are very critical and needs good understanding in the field of microwaves, antennas, wave propagation, digital and communication domains. EW systems are broad band, built with state-of-the art electronic hardware, installed on different varieties of military platforms to guard country's security from time to time. EW systems operate in wide frequency ranges, typically in the order of thousands of MHz, hence these are ultra wide band (UWB) systems. Few calibration activities are carried within the system and in the test sites, to meet the accuracies of final specifications. After calibration, parameters are measured for their accuracies either in feed mode by injecting the RF signals into the front end or in radiation mode by transmitting the RF signals on to system antenna. To carry out these activities in radiation mode, a calibrated open test range (OTR) is necessary in the frequency band of interest. Thus site calibration of OTR is necessary to be carried out before taking up system calibration and parameter measurements. This paper presents the experimental results of OTR site calibration and sensitivity measurements of UWB systems in radiation mode.

  20. Establishing the Antarctic Dome C community reference standard site towards consistent measurements from Earth observation satellites

    USGS Publications Warehouse

    Cao, C.; Uprety, S.; Xiong, J.; Wu, A.; Jing, P.; Smith, D.; Chander, G.; Fox, N.; Ungar, S.

    2010-01-01

    Establishing satellite measurement consistency by using common desert sites has become increasingly more important not only for climate change detection but also for quantitative retrievals of geophysical variables in satellite applications. Using the Antarctic Dome C site (75°06′S, 123°21′E, elevation 3.2 km) for satellite radiometric calibration and validation (Cal/Val) is of great interest owing to its unique location and characteristics. The site surface is covered with uniformly distributed permanent snow, and the atmospheric effect is small and relatively constant. In this study, the long-term stability and spectral characteristics of this site are evaluated using well-calibrated satellite instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Preliminary results show that despite a few limitations, the site in general is stable in the long term, the bidirectional reflectance distribution function (BRDF) model works well, and the site is most suitable for the Cal/Val of reflective solar bands in the 0.4–1.0 µm range. It was found that for the past decade, the reflectivity change of the site is within 1.35% at 0.64 µm, and interannual variability is within 2%. The site is able to resolve calibration biases between instruments at a level of ~1%. The usefulness of the site is demonstrated by comparing observations from seven satellite instruments involving four space agencies, including OrbView-2–SeaWiFS, Terra–Aqua MODIS, Earth Observing 1 (EO-1) – Hyperion, Meteorological Operational satellite programme (MetOp) – Advanced Very High Resolution Radiometer (AVHRR), Envisat Medium Resolution Imaging Spectrometer (MERIS) – dvanced Along-Track Scanning Radiometer (AATSR), and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Dome C is a promising candidate site for climate quality calibration of satellite radiometers towards more consistent satellite measurements, as part

  1. Characterizations of LED road lighting for expressway by various on-site measurement and analysis methods

    NASA Astrophysics Data System (ADS)

    Hung, S. T.; Chen, C. H.; Hsu, S. W.; Wu, K. N.

    2016-09-01

    The LED luminaires are nowadays the mainstream of road lighting for the merit of durable, fast response, controllable, energy saving, and environmental friendly. For the evaluation of highway with LED lightings, we have recently developed on-site measurement of the photometric characteristics of lane and luminaire by luminance image, illuminance and spectral illuminance distribution which be evaluated as uniformity, colorimetry and glare parameters that were measured under the different height and spacing of the lampposts in the experimental field for expressway. We applied the image luminance measurement device to achieve the on-site and real time road lighting evaluation especially for the expressway. Some preliminary results were obtained from these experiments. These results will be applied to developing the standards and specification for road lighting in expressway.

  2. Application of passive sampling for measuring dissolved concentrations of organic contaminants in the water column at three marine superfund sites

    EPA Science Inventory

    At contaminated sediment sites, including U.S. EPA Superfund sites, it is critical to measure water column concentrations of freely dissolved contaminants to understand the complete exposure of aquatic organisms to hydrophobic organic contaminants (HOCs). However, historically a...

  3. Application of passive sampling for measuring dissolved concentrations of organic contaminants in the water column at three marine superfund sites

    EPA Science Inventory

    At contaminated sediment sites, including U.S. EPA Superfund sites, it is critical to measure water column concentrations of freely dissolved contaminants to understand the complete exposure of aquatic organisms to hydrophobic organic contaminants (HOCs). However, historically a...

  4. Metal concentrations in the groundwater in Birjand flood plain, Iran.

    PubMed

    Mansouri, Borhan; Salehi, Javad; Etebari, Behrooz; Moghaddam, Hamid Kardan

    2012-07-01

    The objective of the present study was to investigate the concentration of metals (cadmium, lead, chromium, zinc, copper, and iron) were measured in groundwater at 30 sites from the Birjand flood plain of eastern Iran during the November 2010; identify any relationships between metals and pH, total hardness. Metal concentrations in the groundwater samples were decreased in sequence of Zn > Fe > Cu > Cr > Pb > Cd, respectively. The results showed that the overall mean concentrations of Cd, Pb, and Cr were at 0.000, 0.023, and 0.049 mg l(-1), respectively. The mean concentration of Cu, Zn, and Fe were 0.109, 0.192, and 0.174 mg l(-1), respectively. Results also indicated that there were correlations among Cd, Cu, and Zn metals.

  5. Comparison of sources of submicron particle number concentrations measured at two sites in Rochester, NY.

    PubMed

    Kasumba, John; Hopke, Philip K; Chalupa, David C; Utell, Mark J

    2009-09-01

    Sources contributing to the submicron particles (100-470 nm) measured between January 2002 and December 2007 at two different New York State Department of Environmental Conservation (NYS DEC) sites in Rochester, NY were identified and apportioned using a bilinear receptor model, positive matrix factorization (PMF). Measurements of aerosol size distributions and number concentrations for particles in the size range of 10-500 nm have been made since December 2001 to date in Rochester. The measurements are being made using a scanning mobility particle sizer (SMPS) consisting of a DMA and a CPC (TSI models 3071 and 3010, respectively). From December 2001 to March 2004, particle measurements were made at the NYS DEC site in downtown Rochester, but it was moved to the eastside of Rochester in May 2004. Each measurement period was divided into three seasons i.e., winter (December, January, and February), summer (June, July, and August), and the transitional periods (March, April, May, September, October, and November) so as to avoid experimental uncertainty resulting from too large season-to-season variability in ambient temperature and solar photon intensity that would lead to unstable/non-stationary size distributions. Therefore, the seasons were analyzed independently for possible sources. Ten sources were identified at both sites and these include traffic, nucleation, residential/commercial heating, industrial emissions, secondary nitrate, ozone- rich secondary aerosol, secondary sulfate, regionally transported aerosol, and a mixed source of nucleation and traffic. These results show that the measured total outdoor particle number concentrations in Rochester generally vary with similar temporal patterns, suggesting that the central monitoring site data can be used to estimate outdoor exposure in other parts of the city.

  6. CUES - A Study Site for Measuring Snowpack Energy Balance in the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Bair, Edward; Dozier, Jeff; Davis, Robert; Colee, Michael; Claffey, Keran

    2015-09-01

    Accurate measurement and modeling of the snowpack energy balance are critical to understanding the terrestrial water cycle. Most of the water resources in the western US come from snowmelt, yet statistical runoff models that rely on the historical record are becoming less reliable because of a changing climate. For physically based snow melt models that do not depend on past conditions, ground based measurements of the energy balance components are imperative for verification. For this purpose, the US Army Corps of Engineers Cold Regions Research and Engineering Laboratory (CRREL) and the University of California, Santa Barbara (UCSB) established the “CUES” snow study site (CRREL/UCSB Energy Site, http://www.snow.ucsb.edu/) at 2940 m elevation on Mammoth Mountain, California. We describe CUES, provide an overview of research, share our experience with scientific measurements, and encourage future collaborative research. Snow measurements began near the current CUES site for ski area operations in 1969. In the 1970s, researchers began taking scientific measurements. Today, CUES benefits from year round gondola access and a fiber optic internet connection. Data loggers and computers automatically record and store over 100 measurements from more than 50 instruments each minute. CUES is one of only five high altitude mountain sites in the Western US where a full suite of energy balance components are measured. In addition to measuring snow on the ground at multiple locations, extensive radiometric and meteorological measurements are recorded. Some of the more novel measurements include scans by an automated terrestrial LiDAR, passive and active microwave imaging of snow stratigraphy, microscopic imaging of snow grains, snowflake imaging with a multi-angle camera, fluxes from upward and downward looking radiometers, snow water equivalent from different types of snow pillows, snowmelt from lysimeters, and concentration of impurities in the snowpack. We give an

  7. Standard Measurement and Verification Plan for Lighting Retrofit Projects for Buildings and Building Sites

    SciTech Connect

    Richman, Eric E.

    2012-10-31

    This document provides a framework for standard measurement and verification (M&V) of lighting retrofit and replacement projects. It was developed to provide site owners, contractors, and other involved organizations with the essential elements of a robust M&V plan for lighting projects. It includes details on all aspects of effectively measuring light levels of existing and post-retrofit projects, conducting power measurement, and developing cost-effectiveness analysis. This framework M&V plan also enables consistent comparison among similar lighting projects, and may be used to develop M&V plans for non--lighting-technology retrofits and new installations.

  8. Characterization of an underground site in Northern Italy in view of low radioactivity measurements.

    PubMed

    Brofferio, C; Cesana, A; Fascilla, A; Garlati, L; Giuliani, A; Pedretti, M; Raselli, G L; Terrani, M

    2004-01-01

    A low background station for the measurement of low level radioactivity is under development in Northern Italy. The rock cover is about 300 m water equivalent. We report and discuss measurements of radon concentration in air and of gamma, muon and neutron fluxes performed in the neighborhood of the station site. We present and apply a simple analytical model capable to disentangle the contribution to the measured gamma activities due to 222Rn in air from the one due to 238U and its daughters in the rocks.

  9. Raman Lidar Water Vapor Measurements at the DOE SGP CART Site

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Smith, David E. (Technical Monitor)

    2001-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was deployed to the Department of Energy's (DOE) Cloud and Radiation Testbed site in northern Oklahoma September - December, 2000 for two DOE sponsored field campaigns: 1) the Water Vapor Intensive Operations Experiment 2000 and 2) the Atmospheric Radiations Measurement First International Satellite Cloud Climatology Experiment Experiment (AFWEX). WvIOP2000 focussed on water vapor measurements in the lower troposphere while AFWEX focussed on upper tropospheric water vapor. For the first time ever, four water vapor lidars were operated simultaneously: one airborne and three ground-based systems. Intercomparisons of these measurements and others will be presented at the meeting.

  10. An overview of the on-site inspection measurements from the non-proliferation experiment

    SciTech Connect

    Zucca, J.J.

    1994-12-31

    An on-site inspection (OSI) is an in-person visit to site to collect data and examine evidence in order to determine the source of an ambiguous event detected via remote monitoring systems or other measures. Its purpose is to determine whether the treaty has been violated, to deter violations, and to build confidence. At the time of this writing, it is anticipated that the Comprehensive Test Ban Treaty (CTBT) being developed in the Conference on Disarmament will contain OSI provisions. In an era of testing moratoria, the Non-Proliferation Experiment (NPE) provided a unique opportunity to investigate candidate OSI techniques. On site inspections could occur in three different contexts: after-the-fact inspections based on information from remote monitoring systems; inspections prior to, during, and after large declared chemical explosions (e.g., a large mining explosion); continuous monitoring inspections with unattended sensors at certain agreed-upon sites (e.g., previous test sites). OSI monitoring techniques need to be designed to detect the phenomena and residual effects of nuclear explosions. In the underground case, the primary effects of interest for OSI are the electromagnetic pulse, shock waves, aftershocks, radioactive gas, rubble zone, and apical void. These effects are well known and the basic techniques for their detection well established. We designed our measurement program for the NPE to answer specific issues about these detection technologies. Our measurement program includes the following: zerotime electromagnetic measurements; seismic aftershock survey; before and after electrical soundings; gas tracers introduced into the explosive; before and after multispectral overhead imagery from low-flying aircraft; before and after geological surveys.

  11. EUCAARI ion spectrometer measurements at 12 European sites - analysis of new-particle formation events

    NASA Astrophysics Data System (ADS)

    Manninen, H. E.; Nieminen, T.; Asmi, E.; Gagné, S.; Häkkinen, S.; Lehtipalo, K.; Aalto, P.; Vana, M.; Mirme, A.; Mirme, S.; Hõrrak, U.; Plass-Dülmer, C.; Stange, G.; Kiss, G.; Hoffer, A.; TörH{O}, N.; Moerman, M.; Henzing, B.; de Leeuw, G.; Brinkenberg, M.; Kouvarakis, G. N.; Bougiatioti, A.; Mihalopoulos, N.; O'Dowd, C.; Ceburnis, D.; Arneth, A.; Svenningsson, B.; Swietlicki, E.; Tarozzi, L.; Decesari, S.; Facchini, M. C.; Birmili, W.; Sonntag, A.; Wiedensohler, A.; Boulon, J.; Sellegri, K.; Laj, P.; Gysel, M.; Bukowiecki, N.; Weingartner, E.; Wehrle, G.; Laaksonen, A.; Hamed, A.; Joutsensaari, J.; Petäjä, T.; Kerminen, V.-M.; Kulmala, M.

    2010-04-01

    We present comprehensive results on continuous atmospheric cluster and particle measurements in the size range ~1-42 nm within the European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) project. We focused on characterizing the spatial and temporal variation of new-particle formation events and relevant particle formation parameters across Europe. Different types of air ion and cluster mobility spectrometers were deployed at 12 field sites across Europe from March 2008 to May 2009. The measurements were conducted in a wide variety of environments, including coastal and continental locations as well as sites at different altitudes (both in the boundary layer and the free troposphere). New-particle formation events were detected at all of the 12 field sites during the year-long measurement period. From the data, nucleation and growth rates of newly-formed particles were determined for each environment. In a case of parallel ion and neutral cluster measurements, we could also estimate the relative contribution of ion-induced and neutral nucleation to the total particle formation. The formation rates of charged particles at 2 nm accounted for 1-30% of the respective total particle formation rates. As a significant new result, we found out that the total particle formation rate varied much more between the different sites than the formation rate of charged particles. This work presents, so far, the most comprehensive effort to experimentally characterize nucleation and growth of atmospheric molecular clusters and nanoparticles at ground-based observation sites on a continental scale.

  12. Representativeness of the ground observational sites and up-scaling of the point soil moisture measurements

    NASA Astrophysics Data System (ADS)

    Chen, Jinlei; Wen, Jun; Tian, Hui

    2016-02-01

    Soil moisture plays an increasingly important role in the cycle of energy-water exchange, climate change, and hydrologic processes. It is usually measured at a point site, but regional soil moisture is essential for validating remote sensing products and numerical modeling results. In the study reported in this paper, the minimal number of required sites (NRS) for establishing a research observational network and the representative single sites for regional soil moisture estimation are discussed using the soil moisture data derived from the ;Maqu soil moisture observational network; (101°40‧-102°40‧E, 33°30‧-35°45‧N), which is supported by Chinese Academy of Science. Furthermore, the best up-scaling method suitable for this network has been studied by evaluating four commonly used up-scaling methods. The results showed that (1) Under a given accuracy requirement R ⩾ 0.99, RMSD ⩽ 0.02 m3/m3, NRS at both 5 and 10 cm depth is 10. (2) Representativeness of the sites has been validated by time stability analysis (TSA), time sliding correlation analysis (TSCA) and optimal combination of sites (OCS). NST01 is the most representative site at 5 cm depth for the first two methods; NST07 and NST02 are the most representative sites at 10 cm depth. The optimum combination sites at 5 cm depth are NST01, NST02, and NST07. NST05, NST08, and NST13 are the best group at 10 cm depth. (3) Linear fitting, compared with other three methods, is the best up-scaling method for all types of representative sites obtained above, and linear regression equations between a single site and regional soil moisture are established hereafter. ;Single site; obtained by OCS has the greatest up-scaling effect, and TSCA takes the second place. (4) Linear fitting equations show good practicability in estimating the variation of regional soil moisture from July 3, 2013 to July 3, 2014, when a large number of observed soil moisture data are lost.

  13. Real-time Measurements of Biological Particles at Several Continental Sites using the WIBS-4A

    NASA Astrophysics Data System (ADS)

    McMeeking, G. R.; Kok, G. L.; Petters, M. D.; Wright, T.; Hader, J.; Mccubbin, I. B.; Hallar, A. G.; Twohy, C. H.; Toohey, D. W.; DeMott, P. J.; McCluskey, C.; Baumgardner, D.

    2013-12-01

    Biological particles (bacteria, fungi/fungal spores, viruses, algae and fragments of biological material) may play a significant role in modifying cloud properties by acting as ice nuclei and thus have an indirect effect on climate forcing. Little is known, however, regarding the abundance and distribution of biological particles and their importance to cloud microphysics in different environments. On-line, continuous measurement systems offer the potential to measure biological systems at high time resolution and sensitivity, providing greater insight into their distribution in the atmosphere, dispersal mechanisms and potential soures. The WIBS-4A (Wideband Integrated Bioaerosol Sensor) detects fluorescent biological material in real-time associated with individual particles. It measures five properties: a) optical size via light scattering, b) fluorescent emissions in the wavelength range 310-400 following excitation by 280 nm light, c) fluorescent emissions in the wavelength range 420-650 following excitation by 280 nm light, d) fluorescent emissions in the wavelength range 420-650 following excitation by 370 nm light, and e) particle asymmetry factor based on intensities of forward scattered light onto a 4-element detector. Together, these properties aid the classification of sampled particles that contain biofluorophores such as tryptophan or NAD(P)H, which can be found in biological particles. Here we present results from a series of laboratory, ground- and aircraft-based measurements of biological particles using the WIBS-4A. The studies include airborne measurements over the United States, ground-based measurements at a coastal site, an urban site in the southeast US and a high alpine site, and laboratory measurements of a variety of biological and non-biological particles. Our analysis focused on both the characterization of the instrument response as well as an evaluation of its suitability for performing ambient measurements and potential artifacts. We

  14. Polarized light spectroscopy for measurement of the microvascular response to local heating at multiple skin sites.

    PubMed

    Tesselaar, Erik; Bergkvist, Max; Sjöberg, Folke; Farnebo, Simon

    2012-11-01

    To evaluate whether TiVi, a technique based on polarized light, could measure the change in RBC concentration during local heating in healthy volunteers. Using a custom-made transparent heater, forearm skin was heated to 42 °C for 40 minutes while the change in RBC concentration was measured with TiVi. The perfusion response during local heating was measured at the same time with Laser Doppler flowmetry. Mean RBC concentration increased (91 ± 34 vs. 51 ± 34 A.U. at baseline, p < 0.001). The spatial heterogeneity of the RBC concentration in the measured skin areas was 26 ± 6.4% at baseline, and 23 ± 4.6% after 40 minutes of heating. The mean RBC concentrations in two skin sites were highly correlated (0.98 at baseline and 0.96 after 40 minutes of heating). The change in RBC concentration was less than the change in perfusion, measured with LDF. Unlike with LDF, a neurally mediated peak was not observed with TiVi in most of the test subjects. TiVi is a valuable technique for measuring the microvascular response to local heating in the skin, and offers a high reproducibility for simultaneous measurements at different skin sites, provided carefully controlled experiments are ensured. © 2012 John Wiley & Sons Ltd.

  15. Snake River Plain FORGE Well Data for USGS-142

    DOE Data Explorer

    Robert Podgorney

    2015-11-23

    Well data for the USGS-142 well located in eastern Snake River Plain, Idaho. This data collection includes lithology reports, borehole logs, and photos of rhyolite core samples. This collection of data has been assembled as part of the site characterization data used to develop the conceptual geologic model for the Snake River Plain site in Idaho, as part of phase 1 of the Frontier Observatory for Research in Geothermal Energy (FORGE) initiative. They were assembled by the Snake River Geothermal Consortium (SRGC), a team of collaborators that includes members from national laboratories, universities, industry, and federal agencies, lead by the Idaho National Laboratory (INL).

  16. Measuring and modelling the radiological impact of a phosphogypsum deposition site on the surrounding environment.

    PubMed

    Bituh, Tomislav; Petrinec, Branko; Skoko, Božena; Vučić, Zlatko; Marović, Gordana

    2015-03-01

    Phosphogypsum (PG) is a waste product (residue) from the production of phosphoric acid characterized by technologically enhanced natural radioactivity. Croatia's largest PG deposition site is situated at the edge of Lonjsko Polje Nature Park, a sensitive ecosystem possibly endangered by PG particles. This field study investigates two aspects relevant for the general radiological impact of PG: risk assessment for the environment and risk assessment for occupationally exposed workers and local inhabitants. Activity concentrations of natural radionuclides ((238)U, (235)U, (232)Th, (226)Ra, (210)Pb, and (40)K) were measured in the PG (at the deposition site), soil, and grass samples (in the vicinity of the site). The ERICA Assessment Tool was used to estimate the radiological impact of PG particles on non-human biota of the Lonjsko Polje Nature Park. The average annual effective dose for occupationally exposed workers was 0.4 mSv which was within the worldwide range.

  17. Issues on a tritium measurement system's qualification on a dismantling site

    SciTech Connect

    Pigeon, Benoit; Met, Frederic

    2015-07-01

    In order to choose the suitable outlet, final disposal of radioactive package requires good knowledge of radiological characteristics of the waste. As part of a nuclear facility's dismantling within tritium proceeds, {sup 3}H contamination is evaluated by using wipe tests which are measured by liquid scintillation. The industrialist's choice is a triple coincidence to double coincidence ratio (TDCR) method with a dry counting protocol. The initial protocol had been defined to reduce the quantity of radioactive liquid waste and to perform an automatic quenching correction. A based on TDCR method liquid scintillation analyser was installed on the decommissioning site. It had had to be used by operator non specialized in metrology, This poster presents the laboratory's feedback on the use of the TDCR method on a site: - problems encountered about protocol on a decommissioning site - protocol adjustments and their consequences. (authors)

  18. Comparing measured and modelled soil carbon: which site-specific variables are linked to high stability?

    NASA Astrophysics Data System (ADS)

    Robertson, Andy; Schipanski, Meagan; Ma, Liwang; Ahuja, Lajpat; McNamara, Niall; Smith, Pete; Davies, Christian

    2016-04-01

    Changes in soil carbon (C) stocks have been studied in depth over the last two decades, as net greenhouse gas (GHG) sinks are highlighted to be a partial solution to the causes of climate change. However, the stability of this soil C is often overlooked when measuring these changes. Ultimately a net sequestration in soils is far less beneficial if labile C is replacing more stable forms. To date there is no accepted framework for measuring soil C stability, and as a result there is considerable uncertainty associated with the simulated impacts of land management and land use change when using process-based systems models. However, a recent effort to equate measurable soil C fractions to model pools has generated data that help to assess the impacts of land management, and can ultimately help to reduce the uncertainty of model predictions. Our research compiles this existing fractionation data along with site metadata to create a simplistic statistical model able to quantify the relative importance of different site-specific conditions. Data was mined from 23 published studies and combined with original data to generate a dataset of 100+ land use change sites across Europe. For sites to be included they required soil C fractions isolated using the Zimmermann et al. (2007) method and specific site metadata (mean annual precipitation, MAP; mean annual temperature, MAT; soil pH; land use; altitude). Of the sites, 75% were used to develop a generalized linear mixed model (GLMM) to create coefficients where site parameters can be used to predict influence on the measured soil fraction C stocks. The remaining 25% of sites were used to evaluate uncertainty and validate this empirical model. Further, four of the aforementioned sites were used to simulate soil C dynamics using the RothC, DayCent and RZWQM2 models. A sensitivity analysis (4096 model runs for each variable applying Latin hypercube random sampling techniques) was then used to observe whether these models place

  19. Comparison of mercury concentrations measured at several sites in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Slemr, F.; Angot, H.; Dommergue, A.; Magand, O.; Barret, M.; Weigelt, A.; Ebinghaus, R.; Brunke, E.-G.; Pfaffhuber, K. A.; Edwards, G.; Howard, D.; Powell, J.; Keywood, M.; Wang, F.

    2015-03-01

    Our knowledge of the distribution of mercury concentrations in air of the Southern Hemisphere was until recently based mostly on intermittent measurements made during ship cruises. In the last few years continuous mercury monitoring has commenced at several sites in the Southern Hemisphere, providing new and more refined information. In this paper we compare mercury measurements at several remote sites in the Southern Hemisphere made over a period of at least 1 year at each location. Averages of monthly medians show similar although small seasonal variations at both Cape Point and Amsterdam Island. A pronounced seasonal variation at Troll research station in Antarctica is due to frequent mercury depletion events in the austral spring. Due to large scatter and large standard deviations of monthly average median mercury concentrations at Cape Grim, no systematic seasonal variation could be found there. Nevertheless, the annual average mercury concentrations at all sites during the 2007-2013 period varied only between 0.85 and 1.05 ng m-3. Part of this variability is likely due to systematic measurement uncertainties which we propose can be further reduced by improved calibration procedures. We conclude that mercury is much more uniformly distributed throughout the Southern Hemisphere than the distributions suggested by measurements made onboard ships. This finding implies that smaller trends can be detected in shorter time periods. We also report a change in the trend sign at Cape Point from decreasing mercury concentrations in 1996-2004 to increasing concentrations since 2007.

  20. Cracked and Pitted Plain

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-536, 6 November 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a typical view--at 1.5 meters (5 feet) per pixel--of surfaces in far western Utopia Planitia. In this region, the plains have developed cracks and pit chains arranged in a polygonal pattern. The pits form by collapse along the trend of a previously-formed crack. This picture is located near 45.0oN, 275.4oW. This April 2003 image covers an area 3 km (1.9 mi) wide and is illuminated by sunlight from the lower left.

  1. Atlantic coastal plain

    SciTech Connect

    Libby-French, J.; Amato, R.V.

    1981-10-01

    Exploratory drilling in the Atlantic coastal plain region decreased in 1980. Seven wells were drilled, five of which were completed, for a total footage of 80,968 ft (24,679 m). Six of the wells were located in the Baltimore Canyon Trough, and one was located in the Southeast Georgia Embayment. No exploratory wells were drilled in the Georges Bank Basin or in the onshore portion of this region in 1980. Tenneco and Exxon reported gas shows in two wells in the Baltimore Canyon Trough; the remaining completed wells were reported as dry holes. No lease sales were held in 1980, but two sales are scheduled for 1981 in the Middle and South Atlantic. 1 figure, 2 tables.

  2. Analysis of Hydrogen Tunneling in an Enzyme Active Site using von Neumann Measurements

    PubMed Central

    Sumner, Isaiah; Iyengar, Srinivasan S.

    2010-01-01

    We build on our earlier quantum wavepacket study of hydrogen transfer in the biological enzyme, soybean lipoxygenase-1, by using von Neumann quantum measurement theory to gain qualitative insights into the transfer event. We treat the enzyme active site as a measurement device which acts on the tunneling hydrogen nucleus via the potential it exerts at each configuration. A series of changing active site geometries during the tunneling process effects a sequential projection of the initial, reactant state onto the final, product state. We study this process using several different kinds of von Neumann measurements and show how a discrete sequence of such measurements not only progressively increases the projection of the hydrogen nuclear wavepacket onto the product side but also favors proton over deuteron transfer. Several qualitative features of the hydrogen tunneling problem found in wavepacket dynamics studies are also recovered here. These include the shift in the “transition state” towards the reactant as a result of nuclear quantization, greater participation of excited states in the case of deuterium, and presence of critical points along the reaction coordinate that facilitate hydrogen and deuterium transfer and coincide with surface crossings. To further “tailor” the dynamics, we construct a perturbation to the sequence of measurements, that is a perturbation to the dynamical sequence of active site geometry evolution, which leads us to insight on the existence of sensitive regions of the reaction profile where subtle changes to the dynamics of the active site can have an effect on the hydrogen and deuterium transfer process. PMID:22933858

  3. Perceptions of branded and plain cigarette packaging among Mexican youth.

    PubMed

    Mutti, Seema; Hammond, David; Reid, Jessica L; White, Christine M; Thrasher, James F

    2016-01-29

    Plain cigarette packaging, which seeks to remove all brand imagery and standardize the shape and size of cigarette packs, represents a novel policy measure to reduce the appeal of cigarettes. Plain packaging has been studied primarily in high-income countries like Australia and the UK. It is unknown whether the effects of plain packaging may differ in low-and-middle income countries with a shorter history of tobacco regulation, such as Mexico. An experimental study was conducted in Mexico City to examine perceptions of branded and plain cigarette packaging among smoking and non-smoking Mexican adolescents (n = 359). Respondents were randomly assigned to a branded or plain pack condition and rated 12 cigarette packages for appeal, taste, harm to health and smoker-image traits. As a behavioral measure of appeal, respondents were offered (although not given) four cigarette packs (either branded or plain) and asked to select one to keep. The findings indicated that branded packs were perceived to be more appealing (β = 3.40, p < 0.001) and to contain better tasting cigarettes (β = 3.53, p < 0.001), but were not perceived as less harmful than plain packs. Participants rated people who smoke the branded packs as having relatively more positive smoker-image traits overall (β = 2.10, p < 0.001), with particularly strong differences found among non-smokers for the traits 'glamorous', 'stylish', 'popular' and 'sophisticated' (p < 0.001). No statistically significant difference was found for the proportion of youth that accepted when offered branded compared with plain packs. These results suggest that plain packaging may reduce brand appeal among Mexican youth, consistent with findings in high-income countries.

  4. Evaluation of the H+/site ratio of mitochondrial electron transport from rate measurements.

    PubMed

    Reynafarje, B; Brand, M D; Lehninger, A L

    1976-12-10

    The mitochondrial H+/site ratio (i.e. the number of protons ejected per pair of electrons traversing each of the energy-conserving sites of the respiratory chain) has been evaluated employing a new experimental approach. In this method the rates of oxygen uptake and H+ ejection were measured simultaneously during the initial period of respiration evoked by addition of succinate to aerobic, rotenone-inhibited, de-energized mitochondria. Either K+, in the presence of valinomycin, or Ca2+, was used as mobile cation to dissipate the membrane potential and allow quantitative H+ ejection into the medium. The H+/site ratio observed with this method in the absence of precautions to inhibit the uptake of phosphate was close to 2.0, in agreement with values obtained using the oxygen pulse technique (Mitchell, P. and Moyle, J. (1967) Biochem. J. 105, 1147-1162). However, when phosphate movements were eliminated either by inhibition of the phosphate-hydroxide antiporter with N-ethylamaleimide or by depleting the mitochondria of their endogenous phosphate content, H+/site ratios close to 4.0 were consistently observed. This ratio was independent of the concentration of succinate, of mitochondrial protein, of pH between 6 and 8, and of ionic composition of the medium, provided that sufficient K+ (plus valinomycin) or Ca2+ were present. Specific inhibitors of the hydrolysis of endogenous ATP or transport of other ions (adenine nucleotides, tricarboxylates, HCO3-, etc.) were shown not to affect the observed H+/site ratio. Furthermore, the replacement of succinate by alpha-glycerol phosphate, a substrate which is oxidized on the outer surface of the inner membrane and thus does not need to enter the matrix, gave the same H+/site ratios as did succinate. It is concluded that the H+/site ratio of mitochondrial electron transport, when phosphate movements are eliminated, may be close to 4.0.

  5. Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site

    DOE Data Explorer

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. The North Slope of Alaska (NSA) site is a permanent site providing data about cloud and radiative processes at high latitudes. These data are being used to refine models and parameterizations as they relate to the Arctic. Centered at Barrow and extending to the south (to the vicinity of Atqasuk), west (to the vicinity of Wainwright), and east (towards Oliktok), the NSA site has become a focal point for atmospheric and ecological research activity on the North Slope. Approximately 300,000 NSA data sets from 1993 to the present reside in the ARM Archive at http://www.archive.arm.gov/. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  6. Measuring and modeling near surface reflected and emitted radiation fluxes at the FIFE site

    NASA Technical Reports Server (NTRS)

    Blad, Blaine L.; Norman, John M.; Walter-Shea, Elizabeth; Starks, Patrick; Vining, Roel; Hays, Cynthia

    1988-01-01

    Research was conducted during the four Intensive Field Campaigns (IFC) of the FIFE project in 1987. The research was done on a tall grass prairie with specific measurement sites on and near the Konza Prairie in Kansas. Measurements were made to help meet the following objectives: determination of the variability in reflected and emitted radiation fluxes in selected spectral wavebands as a function of topography and vegetative community; development of techniques to account for slope and sun angle effects on the radiation fluxes; estimation of shortwave albedo and net radiation fluxes using the reflected and emitted spectral measurements described; estimation of leaf and canopy spectral properties from calculated normalized differences coupled with off-nadir measurements using inversion techniques; estimation of plant water status at several locations with indices utilizing plant temperature and other environmental parameters; and determination of relationships between estimated plant water status and measured soil water content. Results are discussed.

  7. Acidalia and Chryse Plains, Mars

    NASA Image and Video Library

    2000-06-14

    Somewhere down there sits the Mars Pathfinder lander and Sojourner rover. This Mars Global Surveyor Mars Orbiter Camera view of the red planet shows the region that includes Ares Vallis and the Chryse Plains upon which both Mars Pathfinder and the Viking 1 landed in 1997 and 1976, respectively. Acidalia Planitia is the dark surface that dominates the center left. The Pathfinder site is immediately south of Acidalia, just left of center in this view. Also shown--the north polar cap is at the top, and Arabia Terra and Sinus Meridiani are to the right. The bluish-white features are clouds. This is a color composite of 9 red and 9 blue image strips taken by the Mars Global Surveyor Mars Orbiter Camera on 9 successive orbits from pole-to-pole during the calibration phase of the mission in March 1999. The color is computer-enhanced and is not shown as it would actually appear to the human eye. http://photojournal.jpl.nasa.gov/catalog/PIA02000

  8. Measurements of CO2 Carbon Stable Isotopes at Artificial and Natural Analog Sites

    NASA Astrophysics Data System (ADS)

    Humphries, S. D.; Clegg, S. M.; Rahn, T.; Fessenden, J. E.; Dobeck, L.; Spangler, L.; McLing, T. L.

    2010-12-01

    Carbon storage in geologic formations is one method to prevent carbon dioxide (CO2), produced by fossil fuel combustion, from entering the Earth's atmosphere. The monitoring, verification and accounting (MVA) of geologically sequestered CO2 is critical to the operation of a geologic storage site. Surface MVA techniques need to identify seepage from the sequestration reservoir at or below ambient CO2 concentrations. The CO2 carbon stable isotope ratio of is a sensitive diagnostic signature that can distinguish between anthropogenic and natural sources of CO2. Frequency Modulated spectroscopy (FMS) is an ultra-sensitive version of absorption spectroscopy that is capable of detecting the CO2 carbon stable isotope ratios. The technique involves phase modulation of the laser such that two side bands, spaced wider than the absorption feature of interest (in this case +/-2 GHz) are created. The signal is mixed with the local oscillator yielding a signal proportional to the species concentration. This FMS signature is recorded at multiple wavelengths to obtain the CO2 carbon isotope ratio.Two instruments using the FMS technique have been built and tested at LANL. One instrument draws ambient air into a multi-pass cell for a measurement, point source measurements. The other instrument uses an open-air path, tested up to 160 m (round trip), to measure the CO2 carbon isotopic ratio along the beam path, column average measurements. In this paper, results from multiple field deployments of one or both of the instruments will be presented. The Zero Emissions Research & Technology (ZERT) group at Montana State University established a field test site where controlled amounts of CO2 are released to test the performance of CO2 detection instruments and measurement techniques. The field site allows a controlled flow rate of CO2 to be released into the near surface through a 100 m long horizontal pipe. In July of 2009, a release was conducted, with a uniform flow rate of 0.2 tons per

  9. Measurement of Crestal Cortical Bone Thickness at Implant Site: A Cone Beam Computed Tomography Study.

    PubMed

    Gupta, Ajai; Rathee, Suprabha; Agarwal, Jaihans; Pachar, Renu B

    2017-09-01

    Dental implants have emerged as a new treatment modality for the majority of patients complaining of missing teeth. Bone quantity and bone quality are among various factors which ensure the longevity of dental implant in the patient's mouth. The assessment of cortical bone thickness of the outer layer and the cancellous bone density by cone beam computed tomography (CBCT) has proved beneficial for the patient. This study aimed at presurgical measurement of crestal bone thickness at various implant sites using CBCT images. This study was conducted in the Department of Prosthodontics in the year 2015. It included 218 patients who wanted to replace missing teeth. Patients were subjected to CBCT scan using NewTom CBCT machine operating at 120 kVp and 5 mA with a resolution of 0.1 × 0.1 × 0.1 mm(3). New Net Technologies (NNT) software with a slice thickness of 0.1 mm was used in this study. A total of 780 implant sites were identified on images of 218 patients. In all patients, the measurement of crestal bone thickness in the region of implant site was performed with NNT software. The buccolingual measurement of crestal bone was done in cross sections obtained after CBCT Results: Out of 218 patients, males were 110 and females were 108. The difference between gender was nonsignificant (p > 0.05). Out of 780 implant sites, 370 were in the maxilla and 410 were in mandible. The difference was nonsignificant (p > 0.05). Out of 780 implant sites, 210 were in anterior maxilla and 160 were in the posterior maxilla. Totally, 235 sites were in anterior mandible and 175 were in the posterior mandible. The distribution was nonsignificant (p = 0.15). The mean crestal bone thickness in anterior maxilla was 0.82 mm, in posterior maxilla was 0.76 mm, in anterior mandible was 1.08 mm, and in posterior mandible was 1.18 mm. The difference among regions was significant (p = 0.01). The highest thickness of cortical bone was observed in posterior mandible followed by anterior mandible

  10. Development of LiDAR measurements for the German offshore test site

    NASA Astrophysics Data System (ADS)

    Rettenmeier, A.; Kühn, M.; Wächter, M.; Rahm, S.; Mellinghoff, H.; Siegmeier, B.; Reeder, L.

    2008-05-01

    The paper introduces the content of the recently started joint research project 'Development of LiDAR measurements for the German Offshore Test Site' which has the objective to support other research projects at the German offshore test site 'alpha ventus'. The project has started before the erection of the offshore wind farm and one aim is to give recommendations concerning LiDAR technology useable for offshore measurement campaigns and data analysis. The work is organized in four work packages. The work package LiDAR technology deals with the specification, acquisition and calibration of a commercial LiDAR system for the measurement campaigns. Power curve measurements are dedicated to power curve assessment with ground-based LiDAR using standard statistical methods. Additionally, it deals with the development of new methods for the measurement of non-steady short-term power curves. Wind field research aims at the development of wake loading simulation methods of wind turbines and the exploration of loading control strategies and nacelle-based wind field measurement techniques. Finally, dissemination of results to the industry takes place in work package Technology transfer.

  11. Site-resolved measurement of the spin-correlation function in the Fermi-Hubbard model.

    PubMed

    Parsons, Maxwell F; Mazurenko, Anton; Chiu, Christie S; Ji, Geoffrey; Greif, Daniel; Greiner, Markus

    2016-09-16

    Exotic phases of matter can emerge from strong correlations in quantum many-body systems. Quantum gas microscopy affords the opportunity to study these correlations with unprecedented detail. Here, we report site-resolved observations of antiferromagnetic correlations in a two-dimensional, Hubbard-regime optical lattice and demonstrate the ability to measure the spin-correlation function over any distance. We measure the in situ distributions of the particle density and magnetic correlations, extract thermodynamic quantities from comparisons to theory, and observe statistically significant correlations over three lattice sites. The temperatures that we reach approach the limits of available numerical simulations. The direct access to many-body physics at the single-particle level demonstrated by our results will further our understanding of how the interplay of motion and magnetism gives rise to new states of matter. Copyright © 2016, American Association for the Advancement of Science.

  12. Site-resolved measurement of the spin-correlation function in the Fermi-Hubbard model

    NASA Astrophysics Data System (ADS)

    Parsons, Maxwell F.; Mazurenko, Anton; Chiu, Christie S.; Ji, Geoffrey; Greif, Daniel; Greiner, Markus

    2016-09-01

    Exotic phases of matter can emerge from strong correlations in quantum many-body systems. Quantum gas microscopy affords the opportunity to study these correlations with unprecedented detail. Here, we report site-resolved observations of antiferromagnetic correlations in a two-dimensional, Hubbard-regime optical lattice and demonstrate the ability to measure the spin-correlation function over any distance. We measure the in situ distributions of the particle density and magnetic correlations, extract thermodynamic quantities from comparisons to theory, and observe statistically significant correlations over three lattice sites. The temperatures that we reach approach the limits of available numerical simulations. The direct access to many-body physics at the single-particle level demonstrated by our results will further our understanding of how the interplay of motion and magnetism gives rise to new states of matter.

  13. Effect of Hexazinone on Groundwater Quality in the Coastal Plain

    Treesearch

    P.R. Bush; J. Michael; D.G. Neary

    1990-01-01

    Hexazinone (3-Cyclohexyl-6-(dimethyl-amino-1-methyl-1,3,5-triazine-2,4(1H, 3H)-dione was applied as pelleted formulation Pronone 10G and the liquid Velpar L formulation to coastal plain study sites near Barnwell, South Carolina and Hughes Island Florida, respectively. These sandy sites were well drained and surface runoff was not observed at eitehr site. Pronone...

  14. Statistical distributions of airborne PCB and pesticide concentrations measured at regional sites on the Great Lakes

    SciTech Connect

    Gatz, D.F.; Sweet, C.W.; Basu, I.; Harlin, K.S.

    1994-12-31

    The purpose of this paper is to report results of testing measured concentrations of total PCBs and ten chlorinated pesticides in air and precipitation in the Great Lakes area for goodness-of-fit to the log normal distribution. Samples were collected at sites on Lakes Superior, Michigan, Erie, and Ontario in 1991--1993. With very few exceptions, distributions of concentrations in the gas and particle phases and in precipitation were not significantly different from log normal.

  15. Comparison of mercury concentrations measured at several sites in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Slemr, F.; Angot, H.; Dommergue, A.; Magand, O.; Barret, M.; Weigelt, A.; Ebinghaus, R.; Brunke, E.-G.; Pfaffhuber, K.; Edwards, G.; Howard, D.; Powell, J.; Keywood, M.; Wang, F.

    2014-12-01

    Our knowledge of the distribution of mercury concentrations in air of the Southern Hemisphere was until recently based mostly on intermittent measurements made during ship cruises. In the last few years continuous mercury monitoring has commenced at several sites in the Southern Hemisphere providing new and more refined information. In this paper we compare mercury measurements at several sites in the Southern Hemisphere made over a period of at least one year at each location. Averages of monthly medians show similar although small seasonal variations at both Cape Point and Amsterdam Island. A pronounced seasonal variation at Troll Research Station in Antarctica is due to frequent mercury depletion events in the austral spring. Due to large scatter and large standard deviations of monthly average median mercury concentrations at Cape Grim no systematic seasonal variation could be found there. Nevertheless, the annual average mercury concentrations at all sites during the 2007-2013 period varied only between 0.85 and 1.05 ng m-3. Part of this variability is likely due to systematic measurement uncertainties which we propose can be further reduced by improved calibration procedures. We conclude that mercury is much more uniformly distributed throughout the Southern Hemisphere than the distributions suggested by measurements made onboard ships. This finding implies (a) that trends observed at one or a few sites in the Southern Hemisphere are likely to be representative for the whole hemisphere, and (b) that smaller trends can be detected in shorter time periods. We also report a change of the trend sign at Cape Point from decreasing mercury concentrations in 1996-2004 to increasing concentrations since 2007.

  16. Perform Initial Measurements to Investigate Microwave Detection for Location of Hemorrhage Sites Within the Body

    DTIC Science & Technology

    1998-08-01

    ability of electromagnetic waves in the RF and microwave region to detect regions of blood pooling in the body. The purpose is to demonstrate the...exposure to electromagnetic waves. The data presented is based upon research and approximations to the actual problem. RF or microwave energy interactions...DAMD17-96-C-6074 TITLE: Perform Initial Measurements to Investigate Microwave Detection for Location of Hemorrhage Sites Within the Body PRINCIPAL

  17. Filling the gaps in meteorological continuous data measured at FLUXNET sites with ERA-Interim reanalysis

    NASA Astrophysics Data System (ADS)

    Vuichard, N.; Papale, D.

    2015-07-01

    Exchanges of carbon, water and energy between the land surface and the atmosphere are monitored by eddy covariance technique at the ecosystem level. Currently, the FLUXNET database contains more than 500 registered sites, and up to 250 of them share data (free fair-use data set). Many modelling groups use the FLUXNET data set for evaluating ecosystem models' performance, but this requires uninterrupted time series for the meteorological variables used as input. Because original in situ data often contain gaps, from very short (few hours) up to relatively long (some months) ones, we develop a new and robust method for filling the gaps in meteorological data measured at site level. Our approach has the benefit of making use of continuous data available globally (ERA-Interim) and a high temporal resolution spanning from 1989 to today. These data are, however, not measured at site level, and for this reason a method to downscale and correct the ERA-Interim data is needed. We apply this method to the level 4 data (L4) from the La Thuile collection, freely available after registration under a fair-use policy. The performance of the developed method varies across sites and is also function of the meteorological variable. On average over all sites, applying the bias correction method to the ERA-Interim data reduced the mismatch with the in situ data by 10 to 36 %, depending on the meteorological variable considered. In comparison to the internal variability of the in situ data, the root mean square error (RMSE) between the in situ data and the unbiased ERA-I (ERA-Interim) data remains relatively large (on average over all sites, from 27 to 76 % of the standard deviation of in situ data, depending on the meteorological variable considered). The performance of the method remains poor for the wind speed field, in particular regarding its capacity to conserve a standard deviation similar to the one measured at FLUXNET stations. The ERA-Interim reanalysis data de-biased at

  18. Filling the gaps in meteorological continuous data measured at FLUXNET sites with ERA-interim reanalysis

    NASA Astrophysics Data System (ADS)

    Vuichard, N.; Papale, D.

    2015-01-01

    Exchanges of carbon, water and energy between the land surface and the atmosphere are monitored by eddy covariance technique at the ecosystem level. Currently, the FLUXNET database contains more than 500 sites registered and up to 250 of them sharing data (Free Fair Use dataset). Many modelling groups use the FLUXNET dataset for evaluating ecosystem model's performances but it requires uninterrupted time series for the meteorological variables used as input. Because original in-situ data often contain gaps, from very short (few hours) up to relatively long (some months), we develop a new and robust method for filling the gaps in meteorological data measured at site level. Our approach has the benefit of making use of continuous data available globally (ERA-interim) and high temporal resolution spanning from 1989 to today. These data are however not measured at site level and for this reason a method to downscale and correct the ERA-interim data is needed. We apply this method on the level 4 data (L4) from the LaThuile collection, freely available after registration under a Fair-Use policy. The performances of the developed method vary across sites and are also function of the meteorological variable. On average overall sites, the bias correction leads to cancel from 10 to 36% of the initial mismatch between in-situ and ERA-interim data, depending of the meteorological variable considered. In comparison to the internal variability of the in-situ data, the root mean square error (RMSE) between the in-situ data and the un-biased ERA-I data remains relatively large (on average overall sites, from 27 to 76% of the standard deviation of in-situ data, depending of the meteorological variable considered). The performance of the method remains low for the wind speed field, in particular regarding its capacity to conserve a standard deviation similar to the one measured at FLUXNET stations. The ERA-interim reanalysis data debiased at FLUXNET sites can be downloaded from the

  19. Aerosol measurements at a high-elevation site: composition, size, and cloud condensation nuclei activity

    SciTech Connect

    Friedman, Beth; Zelenyuk, Alla; Beranek, Josef; Kulkarni, Gourihar R.; Pekour, Mikhail S.; Hallar, Anna G.; McCubbin, Ian; Thornton, Joel A.; Cziczo, D. J.

    2013-12-09

    We present measurements of CCN concentrations and associated aerosol composition and size properties at a high-elevation research site in March 2011. CCN closure and aerosol hygroscopicity were assessed using simplified assumptions of bulk aerosol properties as well as a new method utilizing single particle composition and size to assess the importance of particle mixing state in CCN activation. Free troposphere analysis found no significant difference between the CCN activity of free tropospheric aerosol and boundary layer aerosol at this location. Closure results indicate that using only size and number information leads to adequate prediction, in the majority of cases within 50%, of CCN concentrations, while incorporating the hygroscopicity parameters of the individual aerosol components measured by single particle mass spectrometry adds to the agreement, in most cases within 20%, between predicted and measured CCN concentrations. For high-elevation continental sites, with largely aged aerosol and low amounts of local area emissions, a lack of chemical knowledge and hygroscopicity may not hinder models in predicting CCN concentrations. At sites influenced by fresh emissions or more heterogeneous particle types, single particle composition information may be more useful in predicting CCN concentrations and understanding the importance of particle mixing state on CCN activation.

  20. Geophysical Log Analysis of Selected Test Holes and Wells in the High Plains Aquifer, Central Platte River Basin, Nebraska

    USGS Publications Warehouse

    Anderson, J. Alton; Morin, Roger H.; Cannia, James C.; Williams, John H.

    2009-01-01

    The U.S. Geological Survey in cooperation with the Central Platte Natural Resources District is investigating the hydrostratigraphic framework of the High Plains aquifer in the Central Platte River basin. As part of this investigation, a comprehensive set of geophysical logs was collected from six test holes at three sites and analyzed to delineate the penetrated stratigraphic units and characterize their lithology and physical properties. Flow and fluid-property logs were collected from two wells at one of the sites and analyzed along with the other geophysical logs to determine the relative transmissivity of the High Plains aquifer units. The integrated log analysis indicated that the coarse-grained deposits of the alluvium and the upper part of the Ogallala Formation contributed more than 70 percent of the total transmissivity at this site. The lower part of the Ogallala with its moderately permeable sands and silts contributed some measureable transmissivity, as did the fine-grained sandstone of the underlying Arikaree Group, likely as a result of fractures and bedding-plane partings. Neither the lower nor the upper part of the siltstone- and claystone-dominated White River Group exhibited measurable transmissivity. The integrated analysis of the geophysical logs illustrated the utility of these methods in the detailed characterization of the hydrostratigraphy of the High Plains aquifer.

  1. Microwave radiometric studies and ground truth measurements of the NASA/USGS Southern California test site

    NASA Technical Reports Server (NTRS)

    Edgerton, A. T.; Trexler, D. T.; Sakamoto, S.; Jenkins, J. E.

    1969-01-01

    The field measurement program conducted at the NASA/USGS Southern California Test Site is discussed. Ground truth data and multifrequency microwave brightness data were acquired by a mobile field laboratory operating in conjunction with airborne instruments. The ground based investigations were performed at a number of locales representing a variety of terrains including open desert, cultivated fields, barren fields, portions of the San Andreas Fault Zone, and the Salton Sea. The measurements acquired ground truth data and microwave brightness data at wavelengths of 0.8 cm, 2.2 cm, and 21 cm.

  2. Lightdrum—Portable Light Stage for Accurate BTF Measurement on Site

    PubMed Central

    Havran, Vlastimil; Hošek, Jan; Němcová, Šárka; Čáp, Jiří; Bittner, Jiří

    2017-01-01

    We propose a miniaturised light stage for measuring the bidirectional reflectance distribution function (BRDF) and the bidirectional texture function (BTF) of surfaces on site in real world application scenarios. The main principle of our lightweight BTF acquisition gantry is a compact hemispherical skeleton with cameras along the meridian and with light emitting diode (LED) modules shining light onto a sample surface. The proposed device is portable and achieves a high speed of measurement while maintaining high degree of accuracy. While the positions of the LEDs are fixed on the hemisphere, the cameras allow us to cover the range of the zenith angle from 0∘ to 75∘ and by rotating the cameras along the axis of the hemisphere we can cover all possible camera directions. This allows us to take measurements with almost the same quality as existing stationary BTF gantries. Two degrees of freedom can be set arbitrarily for measurements and the other two degrees of freedom are fixed, which provides a tradeoff between accuracy of measurements and practical applicability. Assuming that a measured sample is locally flat and spatially accessible, we can set the correct perpendicular direction against the measured sample by means of an auto-collimator prior to measuring. Further, we have designed and used a marker sticker method to allow for the easy rectification and alignment of acquired images during data processing. We show the results of our approach by images rendered for 36 measured material samples. PMID:28241466

  3. Quantifying the value of redundant measurements at GCOS Reference Upper-Air Network sites

    SciTech Connect

    Madonna, F.; Rosoldi, M.; Güldner, J.; Haefele, A.; Kivi, R.; Cadeddu, M. P.; Sisterson, D.; Pappalardo, G.

    2014-11-19

    The potential for measurement redundancy to reduce uncertainty in atmospheric variables has not been investigated comprehensively for climate observations. We evaluated the usefulness of entropy and mutual correlation concepts, as defined in information theory, for quantifying random uncertainty and redundancy in time series of the integrated water vapour (IWV) and water vapour mixing ratio profiles provided by five highly instrumented GRUAN (GCOS, Global Climate Observing System, Reference Upper-Air Network) stations in 2010–2012. Results show that the random uncertainties on the IWV measured with radiosondes, global positioning system, microwave and infrared radiometers, and Raman lidar measurements differed by less than 8%. Comparisons of time series of IWV content from ground-based remote sensing instruments with in situ soundings showed that microwave radiometers have the highest redundancy with the IWV time series measured by radiosondes and therefore the highest potential to reduce the random uncertainty of the radiosondes time series. Moreover, the random uncertainty of a time series from one instrument can be reduced by ~ 60% by constraining the measurements with those from another instrument. The best reduction of random uncertainty is achieved by conditioning Raman lidar measurements with microwave radiometer measurements. In conclusion, specific instruments are recommended for atmospheric water vapour measurements at GRUAN sites. This approach can be applied to the study of redundant measurements for other climate variables.

  4. Lightdrum-Portable Light Stage for Accurate BTF Measurement on Site.

    PubMed

    Havran, Vlastimil; Hošek, Jan; Němcová, Šárka; Čáp, Jiří; Bittner, Jiří

    2017-02-23

    We propose a miniaturised light stage for measuring the bidirectional reflectance distribution function (BRDF) and the bidirectional texture function (BTF) of surfaces on site in real world application scenarios. The main principle of our lightweight BTF acquisition gantry is a compact hemispherical skeleton with cameras along the meridian and with light emitting diode (LED) modules shining light onto a sample surface. The proposed device is portable and achieves a high speed of measurement while maintaining high degree of accuracy. While the positions of the LEDs are fixed on the hemisphere, the cameras allow us to cover the range of the zenith angle from 0 ∘ to 75 ∘ and by rotating the cameras along the axis of the hemisphere we can cover all possible camera directions. This allows us to take measurements with almost the same quality as existing stationary BTF gantries. Two degrees of freedom can be set arbitrarily for measurements and the other two degrees of freedom are fixed, which provides a tradeoff between accuracy of measurements and practical applicability. Assuming that a measured sample is locally flat and spatially accessible, we can set the correct perpendicular direction against the measured sample by means of an auto-collimator prior to measuring. Further, we have designed and used a marker sticker method to allow for the easy rectification and alignment of acquired images during data processing. We show the results of our approach by images rendered for 36 measured material samples.

  5. Quantifying the value of redundant measurements at GCOS Reference Upper-Air Network sites

    DOE PAGES

    Madonna, F.; Rosoldi, M.; Güldner, J.; ...

    2014-11-19

    The potential for measurement redundancy to reduce uncertainty in atmospheric variables has not been investigated comprehensively for climate observations. We evaluated the usefulness of entropy and mutual correlation concepts, as defined in information theory, for quantifying random uncertainty and redundancy in time series of the integrated water vapour (IWV) and water vapour mixing ratio profiles provided by five highly instrumented GRUAN (GCOS, Global Climate Observing System, Reference Upper-Air Network) stations in 2010–2012. Results show that the random uncertainties on the IWV measured with radiosondes, global positioning system, microwave and infrared radiometers, and Raman lidar measurements differed by less than 8%.more » Comparisons of time series of IWV content from ground-based remote sensing instruments with in situ soundings showed that microwave radiometers have the highest redundancy with the IWV time series measured by radiosondes and therefore the highest potential to reduce the random uncertainty of the radiosondes time series. Moreover, the random uncertainty of a time series from one instrument can be reduced by ~ 60% by constraining the measurements with those from another instrument. The best reduction of random uncertainty is achieved by conditioning Raman lidar measurements with microwave radiometer measurements. In conclusion, specific instruments are recommended for atmospheric water vapour measurements at GRUAN sites. This approach can be applied to the study of redundant measurements for other climate variables.« less

  6. Electrodermal activity by DC potential and AC conductance measured simultaneously at the same skin site.

    PubMed

    Grimnes, Sverre; Jabbari, Azar; Martinsen, Ørjan G; Tronstad, Christian

    2011-02-01

    For a long time, DC conductance has been the most important parameter in electrodermal routine measurements. However, DC current flow polarizes the electrodes, electrolyzes the skin, disturbs the measurement of conductance by possible varying electromotive forces (EMFs) in the circuit, and impedes the registration of the skin endosomatic DC potential. We therefore present a measuring system where DC current was replaced by a small AC current in a monopolar system, enabling the DC potential and AC conductance to be measured simultaneously at the same skin site. We have also found examples of skin potential (SP) response waveforms with diphasic sharp edges not appearing in the conductance waveforms. The potential responses were found to be more robust with respect to movement artifacts, and the instrumentation could discern whether the indifferent electrode actually was on an inactive skin site. In order to study the generating mechanisms of EDA in detail, the SP must be measured without DC current flow and compared with AC conductance results. © 2010 John Wiley & Sons A/S.

  7. Evaluation of measurement reproducibility using the standard-sites data, 1994 Fernald field characterization demonstration project

    SciTech Connect

    Rautman, C.A.

    1996-02-01

    The US Department of Energy conducted the 1994 Fernald (Ohio) field characterization demonstration project to evaluate the performance of a group of both industry-standard and proposed alternative technologies in describing the nature and extent of uranium contamination in surficial soils. Detector stability and measurement reproducibility under actual operating conditions encountered in the field is critical to establishing the credibility of the proposed alternative characterization methods. Comparability of measured uranium activities to those reported by conventional, US Environmental Protection Agency (EPA)-certified laboratory methods is also required. The eleven (11) technologies demonstrated included (1) EPA-standard soil sampling and laboratory mass-spectroscopy analyses, and currently-accepted field-screening techniques using (2) sodium-iodide scintillometers, (3) FIDLER low-energy scintillometers, and (4) a field-portable x-ray fluorescence spectrometer. Proposed advanced characterization techniques included (5) alpha-track detectors, (6) a high-energy beta scintillometer, (7) electret ionization chambers, (8) and (9) a high-resolution gamma-ray spectrometer in two different configurations, (10) a field-adapted laser ablation-inductively coupled plasma-atomic emission spectroscopy (ICP-AES) technique, and (11) a long-range alpha detector. Measurement reproducibility and the accuracy of each method were tested by acquiring numerous replicate measurements of total uranium activity at each of two ``standard sites`` located within the main field demonstration area. Meteorological variables including temperature, relative humidity. and 24-hour rainfall quantities were also recorded in conjunction with the standard-sites measurements.

  8. Characterizing hydrological processes at the ecological site scale: Coupling rainfall simulation with surface geophysical measurements

    NASA Astrophysics Data System (ADS)

    Carey, A. M.; Paige, G. B.; Carr, B.; Holbrook, W. S.; Miller, S. N.; Peters, M. P.

    2016-12-01

    Ecological sites (ES), hillslope scale soil-vegetation complexes, provide a useful framework for studying complex ecohydrologic processes of rangelands for the improvement of resource management. High-quality hydrologic field investigations are needed to quantitatively link ES characteristics to hydrologic function. Geophysical tools are useful in this context because they provide valuable information about the subsurface at large spatial extents. We conducted 20 field experiments integrating time-lapse electrical resistivity tomography (ERT) and variable intensity rainfall simulation on hillslope plots at five different ESs within the Upper Crow Creek Watershed in southeastern Wyoming. Surface runoff was measured using a pre-calibrated flume. Infiltration information from the rainfall simulator and site specific resistivity-water content relationships coupled with the ERT datasets were used to track the wetting front through time. First order constraints on subsurface structure were made at each site using ERT, seismic refraction and ground penetrating radar. Sites ranged from infiltrating 100% of the applied rainfall to converting over 40% of the rainfall into surface runoff. ANCOVA results indicated significant differences in the rate of the wetting front progression, ranging from 0.346 m min-1/2 for sites with a subsurface dominated by saprolitic material to 0.156 m min-1/2 for sites with a well-developed soil profile. There was broad agreement in subsurface structure between the geophysical methods with GPR typically providing the most detail. Joint interpretation of the geophysics showed that subsurface features such as granite corestones and layers with high clay content had a large effect on the infiltration process. Linking surface information from the rainfall simulator with subsurface information provided by the geophysics, we can begin to discern the characteristics that distinguish the hydrologic response of diverse ESs.

  9. MEASUREMENT AND PREDICTION OF RADIOLYTIC HYDROGEN PRODUCTION IN DEFENSE WASTE PROCESSING SLURRIES AT SAVANNAH RIVER SITE

    SciTech Connect

    Bibler, N; John Pareizs, J; Terri Fellinger, T; Cj Bannochie, C

    2007-01-10

    This paper presents results of measurements and predictions of radiolytic hydrogen production rates from two actual process slurries in the Defense Waste Processing Facility (DWPF) at Savannah River Site (SRS). Hydrogen is a flammable gas and its production in nuclear facilities can be a safety hazard if not mitigated. Measurements were made in the Shielded Cells of Savannah River National Laboratory (SRNL) using a sample of Sludge Batch 3 (SB3) currently being processed by the DWPF. Predictions were made using published values for rates of radiolytic reactions producing H{sub 2} in aqueous solutions and the measured radionuclide and chemical compositions of the two slurries. The agreement between measured and predicted results for nine experiments ranged from complete agreement to 24% difference. This agreement indicates that if the composition of the slurry being processed is known, the rate of radiolytic hydrogen production can be reasonably estimated.

  10. Intercomparison of atmospheric water vapour measurements at a Canadian High Arctic site

    NASA Astrophysics Data System (ADS)

    Weaver, Dan; Strong, Kimberly; Schneider, Matthias; Rowe, Penny M.; Sioris, Chris; Walker, Kaley A.; Mariani, Zen; Uttal, Taneil; McElroy, C. Thomas; Vömel, Holger; Spassiani, Alessio; Drummond, James R.

    2017-08-01

    Water vapour is a critical component of the Earth system. Techniques to acquire and improve measurements of atmospheric water vapour and its isotopes are under active development. This work presents a detailed intercomparison of water vapour total column measurements taken between 2006 and 2014 at a Canadian High Arctic research site (Eureka, Nunavut). Instruments include radiosondes, sun photometers, a microwave radiometer, and emission and solar absorption Fourier transform infrared (FTIR) spectrometers. Close agreement is observed between all combination of datasets, with mean differences ≤ 1.0 kg m-2 and correlation coefficients ≥ 0.98. The one exception in the observed high correlation is the comparison between the microwave radiometer and a radiosonde product, which had a correlation coefficient of 0.92.A variety of biases affecting Eureka instruments are revealed and discussed. A subset of Eureka radiosonde measurements was processed by the Global Climate Observing System (GCOS) Reference Upper Air Network (GRUAN) for this study. Comparisons reveal a small dry bias in the standard radiosonde measurement water vapour total columns of approximately 4 %. A recently produced solar absorption FTIR spectrometer dataset resulting from the MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) retrieval technique is shown to offer accurate measurements of water vapour total columns (e.g. average agreement within -5.2 % of GRUAN and -6.5 % of a co-located emission FTIR spectrometer). However, comparisons show a small wet bias of approximately 6 % at the high-latitude Eureka site. In addition, a new dataset derived from Atmospheric Emitted Radiance Interferometer (AERI) measurements is shown to provide accurate water vapour measurements (e.g. average agreement was within 4 % of GRUAN), which usefully enables measurements to be taken during day and night (especially valuable during polar night).

  11. Comparison of aerosol properties from the Indian Himalayas and the Indo-Gangetic plains

    NASA Astrophysics Data System (ADS)

    Raatikainen, T.; Hyvärinen, A.-P.; Hatakka, J.; Panwar, T. S.; Hooda, R. K.; Sharma, V. P.; Lihavainen, H.

    2011-04-01

    Gual Pahari is a polluted semi-urban background measurement site at the Indo-Gangetic plains close to New Delhi and Mukteshwar is a relatively clean background measurement site at the foothills of the Himalayas about 270 km NE from Gual Pahari and about 2 km above the nearby plains. Two years long data sets including aerosol and meteorological parameters as well as modeled backward trajectories and boundary layer heights were compared. The purpose was to see how aerosol concentrations vary between clean and polluted sites not very far from each other. Specifically, we were exploring the effect of boundary layer evolution on aerosol concentrations. The measurements showed that especially during the coldest winter months, aerosol concentrations are significantly lower in Mukteshwar. On the other hand, the difference is smaller and also the concentration trends are quite similar from April to October. With the exception of the monsoon season, when rains are affecting on aerosol concentrations, clear but practically opposite diurnal cycles are observed. When the lowest daily aerosol concentrations are seen during afternoon hours in Gual Pahari, there is a peak in Mukteshwar aerosol concentrations. In addition to local sources and long-range transport of dust, boundary layer dynamics can explain the observed differences and similarities. When mixing of air masses is limited during the relatively cool winter months, aerosol pollutions are accumulated to the plains, but Mukteshwar is above the pollution layer. When mixing increases in the spring, aerosol concentrations are increased in Mukteshwar and decreased in Gual Pahari. The effect of mixing is also clear in the diurnal concentration cycles. When daytime mixing decreases aerosol concentrations in Gual Pahari, those are increased in Mukteshwar.

  12. Measuring and computing natural ground-water recharge at sites in south-central Kansas

    USGS Publications Warehouse

    Sophocleous, M.A.; Perry, C.A.

    1987-01-01

    To measure the natural groundwater recharge process, two sites in south-central Kansas were instrumented with sensors and data microloggers. The atmospheric-boundary layer and the unsaturated and saturated soil zones were monitored as a single regime. Direct observations also were used to evaluate the measurements. Atmospheric sensors included an anemometer, a tipping-bucket rain gage, an air-temperature thermistor, a relative-humidity probe, a net radiometer, and a barometric-pressure transducer. Sensors in the unsaturated zone consisted of soil-temperature thermocouples, tensiometers coupled with pressure transducers and dial gages, gypsum blocks, and a neutron-moisture probe. The saturated-zone sensors consisted of a water-level pressure transducer, a conventional float gage connected to a variable potentiometer, soil thermocouples, and a number of multiple-depth piezometers. Evaluation of the operation of these sensors and recorders indicates that certain types of equipment, such as pressure transducers, are very sensitive to environmental conditions. A number of suggestions aimed at improving instrumentation of recharge investigations are outlined. Precipitation and evapotranspiration data, taken together with soil moisture profiles and storage changes, water fluxes in the unsaturated zone and hydraulic gradients in the saturated zone at various depths, soil temperature, water table hydrographs, and water level changes in nearby wells, describe the recharge process. Although the two instrumented sites are located in sand-dune environments in area characterized by a shallow water table and a sub-humid continental climate, a significant difference was observed in the estimated total recharge. The estimates ranged from less than 2.5 mm at the Zenith site to approximately 154 mm at the Burrton site from February to June 1983. The principal reasons that the Burrton site had more recharge than the Zenith site were more precipitation, less evapotranspiration, and a

  13. Filling the gaps in meteorological continuous data measured at FLUXNET sites with ERA-Interim reanalysis

    DOE PAGES

    Vuichard, N.; Papale, D.

    2015-07-13

    In this study, exchanges of carbon, water and energy between the land surface and the atmosphere are monitored by eddy covariance technique at the ecosystem level. Currently, the FLUXNET database contains more than 500 registered sites, and up to 250 of them share data (free fair-use data set). Many modelling groups use the FLUXNET data set for evaluating ecosystem models' performance, but this requires uninterrupted time series for the meteorological variables used as input. Because original in situ data often contain gaps, from very short (few hours) up to relatively long (some months) ones, we develop a new and robustmore » method for filling the gaps in meteorological data measured at site level. Our approach has the benefit of making use of continuous data available globally (ERA-Interim) and a high temporal resolution spanning from 1989 to today. These data are, however, not measured at site level, and for this reason a method to downscale and correct the ERA-Interim data is needed. We apply this method to the level 4 data (L4) from the La Thuile collection, freely available after registration under a fair-use policy. The performance of the developed method varies across sites and is also function of the meteorological variable. On average over all sites, applying the bias correction method to the ERA-Interim data reduced the mismatch with the in situ data by 10 to 36 %, depending on the meteorological variable considered. In comparison to the internal variability