The IUE Science Operations Ground System
NASA Technical Reports Server (NTRS)
Pitts, Ronald E.; Arquilla, Richard
1994-01-01
The International Ultraviolet Explorer (IUE) Science Operations System provides full realtime operations capabilities and support to the operations staff and astronomer users. The components of this very diverse and extremely flexible hardware and software system have played a major role in maintaining the scientific efficiency and productivity of the IUE. The software provides the staff and user with all the tools necessary for pre-visit and real-time planning and operations analysis for any day of the year. Examples of such tools include the effects of spacecraft constraints on target availability, maneuver times between targets, availability of guide stars, target identification, coordinate transforms, e-mail transfer of Observatory forms and messages, and quick-look analysis of image data. Most of this extensive software package can also be accessed remotely by individual users for information, scheduling of shifts, pre-visit planning, and actual observing program execution. Astronomers, with a modest investment in hardware and software, may establish remote observing sites. We currently have over 20 such sites in our remote observers' network.
The antisaccade task: visual distractors elicit a location-independent planning 'cost'.
DeSimone, Jesse C; Everling, Stefan; Heath, Matthew
2015-01-01
The presentation of a remote - but not proximal - distractor concurrent with target onset increases prosaccade reaction times (RT) (i.e., the remote distractor effect: RDE). The competitive integration model asserts that the RDE represents the time required to resolve the conflict for a common saccade threshold between target- and distractor-related saccade generating commands in the superior colliculus. To our knowledge however, no previous research has examined whether remote and proximal distractors differentially influence antisaccade RTs. This represents a notable question because antisaccades require decoupling of the spatial relations between stimulus and response (SR) and therefore provide a basis for determining whether the sensory- and/or motor-related features of a distractor influence response planning. Participants completed pro- and antisaccades in a target-only condition and conditions wherein the target was concurrently presented with a proximal or remote distractor. As expected, prosaccade RTs elicited a reliable RDE. In contrast, antisaccade RTs were increased independent of the distractor's spatial location and the magnitude of the effect was comparable across each distractor location. Thus, distractor-related antisaccade RT costs are not accounted for by a competitive integration between conflicting saccade generating commands. Instead, we propose that a visual distractor increases uncertainty related to the evocation of the response-selection rule necessary for decoupling SR relations.
NASA Technical Reports Server (NTRS)
Giardino, Marco J.; Haley, Bryan S.
2005-01-01
Cultural resource management consists of research to identify, evaluate, document and assess cultural resources, planning to assist in decision-making, and stewardship to implement the preservation, protection and interpretation of these decisions and plans. One technique that may be useful in cultural resource management archaeology is remote sensing. It is the acquisition of data and derivative information about objects or materials (targets) located on the Earth's surface or in its atmosphere by using sensor mounted on platforms located at a distance from the targets to make measurements on interactions between the targets and electromagnetic radiation. Included in this definition are systems that acquire imagery by photographic methods and digital multispectral sensors. Data collected by digital multispectral sensors on aircraft and satellite platforms play a prominent role in many earth science applications, including land cover mapping, geology, soil science, agriculture, forestry, water resource management, urban and regional planning, and environmental assessments. Inherent in the analysis of remotely sensed data is the use of computer-based image processing techniques. Geographical information systems (GIS), designed for collecting, managing, and analyzing spatial information, are also useful in the analysis of remotely sensed data. A GIS can be used to integrate diverse types of spatially referenced digital data, including remotely sensed and map data. In archaeology, these tools have been used in various ways to aid in cultural resource projects. For example, they have been used to predict the presence of archaeological resources using modern environmental indicators. Remote sensing techniques have also been used to directly detect the presence of unknown sites based on the impact of past occupation on the Earth's surface. Additionally, remote sensing has been used as a mapping tool aimed at delineating the boundaries of a site or mapping previously unknown features. All of these applications are pertinent to the goals of site discovery and assessment in cultural resource management.
Heath, Matthew; DeSimone, Jesse C
2016-11-01
The saccade literature has consistently reported that the presentation of a distractor remote to a target increases reaction time (i.e., the remote distractor effect: RDE). As well, some studies have shown that a proximal distractor facilitates saccade reaction time. The lateral inhibition hypothesis attributes the aforementioned findings to the inhibition/facilitation of target selection mechanisms operating in the intermediate layers of the superior colliculus (SC). Although the impact of remote and proximal distractors has been extensively examined in the saccade literature, a paucity of work has examined whether such findings generalize to reaching responses, and to our knowledge, no work has directly contrasted reaching RTs for remote and proximal distractors. To that end, the present investigation had participants complete reaches in target only trials (i.e., TO) and when distractors were presented at "remote" (i.e., the opposite visual field) and "proximal" (i.e., the same visual field) locations along the same horizontal meridian as the target. As well, participants reached to the target's veridical (i.e., propointing) and mirror-symmetrical (i.e., antipointing) location. The basis for contrasting pro- and antipointing was to determine whether the distractor's visual- or motor-related activity influence reaching RTs. Results demonstrated that remote and proximal distractors, respectively, increased and decreased reaching RTs and the effect was consistent for pro- and antipointing. Accordingly, results evince that the RDE and the facilitatory effects of a proximal distractor are effector independent and provide behavioral support for the contention that the SC serves as a general target selection mechanism. As well, the comparable distractor-related effects for pro- and antipointing trials indicate that the visual properties of remote and proximal distractors respectively inhibit and facilitate target selection.
Kouloulias, V E; Ntasis, E; Poortmans, Ph; Maniatis, T A; Nikita, K S
2003-01-01
The desire to develop web-based platforms for remote collaboration among physicians and technologists is becoming a great challenge. In this paper we describe a web-based radiotherapy treatment planning (WBRTP) system to facilitate decentralized radiotherapy services by allowing remote treatment planning and quality assurance (QA) of treatment delivery. Significant prerequisites are digital storage of relevant data as well as efficient and reliable telecommunication system between collaborating units. The system of WBRTP includes video conferencing, display of medical images (CT scans, dose distributions etc), replication of selected data from a common database, remote treatment planning, evaluation of treatment technique and follow-up of the treated patients. Moreover the system features real-time remote operations in terms of tele-consulting like target volume delineation performed by a team of experts at different and distant units. An appraisal of its possibilities in quality assurance in radiotherapy is also discussed. As a conclusion, a WBRTP system would not only be a medium for communication between experts in oncology but mainly a tool for improving the QA in radiotherapy.
NASA Astrophysics Data System (ADS)
Moore, Cordelia H.; Radford, Ben T.; Possingham, Hugh P.; Heyward, Andrew J.; Stewart, Romola R.; Watts, Matthew E.; Prescott, Jim; Newman, Stephen J.; Harvey, Euan S.; Fisher, Rebecca; Bryce, Clay W.; Lowe, Ryan J.; Berry, Oliver; Espinosa-Gayosso, Alexis; Sporer, Errol; Saunders, Thor
2016-08-01
Creating large conservation zones in remote areas, with less intense stakeholder overlap and limited environmental information, requires periodic review to ensure zonation mitigates primary threats and fill gaps in representation, while achieving conservation targets. Follow-up reviews can utilise improved methods and data, potentially identifying new planning options yielding a desirable balance between stakeholder interests. This research explored a marine zoning system in north-west Australia-a biodiverse area with poorly documented biota. Although remote, it is economically significant (i.e. petroleum extraction and fishing). Stakeholder engagement was used to source the best available biodiversity and socio-economic data and advanced spatial analyses produced 765 high resolution data layers, including 674 species distributions representing 119 families. Gap analysis revealed the current proposed zoning system as inadequate, with 98.2% of species below the Convention on Biological Diversity 10% representation targets. A systematic conservation planning algorithm Maxan provided zoning options to meet representation targets while balancing this with industry interests. Resulting scenarios revealed that conservation targets could be met with minimal impacts on petroleum and fishing industries, with estimated losses of 4.9% and 7.2% respectively. The approach addressed important knowledge gaps and provided a powerful and transparent method to reconcile industry interests with marine conservation.
Moore, Cordelia H; Radford, Ben T; Possingham, Hugh P; Heyward, Andrew J; Stewart, Romola R; Watts, Matthew E; Prescott, Jim; Newman, Stephen J; Harvey, Euan S; Fisher, Rebecca; Bryce, Clay W; Lowe, Ryan J; Berry, Oliver; Espinosa-Gayosso, Alexis; Sporer, Errol; Saunders, Thor
2016-08-24
Creating large conservation zones in remote areas, with less intense stakeholder overlap and limited environmental information, requires periodic review to ensure zonation mitigates primary threats and fill gaps in representation, while achieving conservation targets. Follow-up reviews can utilise improved methods and data, potentially identifying new planning options yielding a desirable balance between stakeholder interests. This research explored a marine zoning system in north-west Australia-a biodiverse area with poorly documented biota. Although remote, it is economically significant (i.e. petroleum extraction and fishing). Stakeholder engagement was used to source the best available biodiversity and socio-economic data and advanced spatial analyses produced 765 high resolution data layers, including 674 species distributions representing 119 families. Gap analysis revealed the current proposed zoning system as inadequate, with 98.2% of species below the Convention on Biological Diversity 10% representation targets. A systematic conservation planning algorithm Maxan provided zoning options to meet representation targets while balancing this with industry interests. Resulting scenarios revealed that conservation targets could be met with minimal impacts on petroleum and fishing industries, with estimated losses of 4.9% and 7.2% respectively. The approach addressed important knowledge gaps and provided a powerful and transparent method to reconcile industry interests with marine conservation.
Moore, Cordelia H.; Radford, Ben T.; Possingham, Hugh P.; Heyward, Andrew J.; Stewart, Romola R.; Watts, Matthew E.; Prescott, Jim; Newman, Stephen J.; Harvey, Euan S.; Fisher, Rebecca; Bryce, Clay W.; Lowe, Ryan J.; Berry, Oliver; Espinosa-Gayosso, Alexis; Sporer, Errol; Saunders, Thor
2016-01-01
Creating large conservation zones in remote areas, with less intense stakeholder overlap and limited environmental information, requires periodic review to ensure zonation mitigates primary threats and fill gaps in representation, while achieving conservation targets. Follow-up reviews can utilise improved methods and data, potentially identifying new planning options yielding a desirable balance between stakeholder interests. This research explored a marine zoning system in north-west Australia–a biodiverse area with poorly documented biota. Although remote, it is economically significant (i.e. petroleum extraction and fishing). Stakeholder engagement was used to source the best available biodiversity and socio-economic data and advanced spatial analyses produced 765 high resolution data layers, including 674 species distributions representing 119 families. Gap analysis revealed the current proposed zoning system as inadequate, with 98.2% of species below the Convention on Biological Diversity 10% representation targets. A systematic conservation planning algorithm Maxan provided zoning options to meet representation targets while balancing this with industry interests. Resulting scenarios revealed that conservation targets could be met with minimal impacts on petroleum and fishing industries, with estimated losses of 4.9% and 7.2% respectively. The approach addressed important knowledge gaps and provided a powerful and transparent method to reconcile industry interests with marine conservation. PMID:27556689
Targeting and Localization for Mars Rover Operations
NASA Technical Reports Server (NTRS)
Powell, Mark W.; Crockett, Thomas; Fox, Jason M.; Joswig, Joseph C.; Norris, Jeffrey S.; Rabe, Kenneth J.; McCurdy, Michael; Pyrzak, Guy
2006-01-01
In this work we discuss how the quality of localization knowledge impacts the remote operation of rovers on the surface of Mars. We look at the techniques of localization estimation used in the Mars Pathfinder and Mars Exploration Rover missions. We examine the motivation behind the modes of targeting for different types of activities, such as navigation, remote science, and in situ science. We discuss the virtues and shortcomings of existing approaches and new improvements in the latest operations tools used to support the Mars Exploration Rover missions and rover technology development tasks at the Jet Propulsion Laboratory. We conclude with future directions we plan to explore in improving the localization knowledge available for operations and more effective targeting of rovers and their instrument payloads.
NASA Astrophysics Data System (ADS)
Terrazzino, Alfonso; Volponi, Silvia; Borgogno Mondino, Enrico
2001-12-01
An investigation has been carried out, concerning remote sensing techniques, in order to assess their potential application to the energy system business: the most interesting results concern a new approach, based on digital data from remote sensing, to infrastructures with a large territorial distribution: in particular OverHead Transmission Lines, for the high voltage transmission and distribution of electricity on large distances. Remote sensing could in principle be applied to all the phases of the system lifetime, from planning to design, to construction, management, monitoring and maintenance. In this article, a remote sensing based approach is presented, targeted to the line planning: optimization of OHTLs path and layout, according to different parameters (technical, environmental and industrial). Planning new OHTLs is of particular interest in emerging markets, where typically the cartography is missing or available only on low accuracy scale (1:50.000 and lower), often not updated. Multi- spectral images can be used to generate thematic maps of the region of interest for the planning (soil coverage). Digital Elevation Models (DEMs), allow the planners to easily access the morphologic information of the surface. Other auxiliary information from local laws, environmental instances, international (IEC) standards can be integrated in order to perform an accurate optimized path choice and preliminary spotting of the OHTLs. This operation is carried out by an ABB proprietary optimization algorithm: the output is a preliminary path that bests fits the optimization parameters of the line in a life cycle approach.
Remote observing with the Keck Telescopes from the U.S. mainland
NASA Astrophysics Data System (ADS)
Kibrick, Robert I.; Allen, Steve L.; Conrad, Albert
2000-06-01
We describe the current status of efforts to establish a high-bandwidth network from the U.S. mainland to Mauna Kea and a facility in California to support Keck remote observing and engineering via the Internet. The California facility will be an extension of the existing Keck remote operations facility located in Waimea, Hawaii. It will be targeted towards short-duration observing runs which now comprise roughly half of all scheduled science runs on the Keck Telescope. Keck technical staff in Hawaii will support remote observers on the mainland via video conferencing and collaborative software tools. Advantages and disadvantages of remote operation from California versus Hawaii are explored, and costs of alternative communication paths examined. We describe a plan for a backup communications path to protect against failure of the primary network. Alternative software models for remote operation are explored, and recent operational results described.
Automatic building identification under bomb damage conditions
NASA Astrophysics Data System (ADS)
Woodley, Robert; Noll, Warren; Barker, Joseph; Wunsch, Donald C., II
2009-05-01
Given the vast amount of image intelligence utilized in support of planning and executing military operations, a passive automated image processing capability for target identification is urgently required. Furthermore, transmitting large image streams from remote locations would quickly use available band width (BW) precipitating the need for processing to occur at the sensor location. This paper addresses the problem of automatic target recognition for battle damage assessment (BDA). We utilize an Adaptive Resonance Theory approach to cluster templates of target buildings. The results show that the network successfully classifies targets from non-targets in a virtual test bed environment.
Coastal High-resolution Observations and Remote Sensing of Ecosystems (C-HORSE)
NASA Technical Reports Server (NTRS)
Guild, Liane
2016-01-01
Coastal benthic marine ecosystems, such as coral reefs, seagrass beds, and kelp forests are highly productive as well as ecologically and commercially important resources. These systems are vulnerable to degraded water quality due to coastal development, terrestrial run-off, and harmful algal blooms. Measurements of these features are important for understanding linkages with land-based sources of pollution and impacts to coastal ecosystems. Challenges for accurate remote sensing of coastal benthic (shallow water) ecosystems and water quality are complicated by atmospheric scattering/absorption (approximately 80+% of the signal), sun glint from the sea surface, and water column scattering (e.g., turbidity). Further, sensor challenges related to signal to noise (SNR) over optically dark targets as well as insufficient radiometric calibration thwart the value of coastal remotely-sensed data. Atmospheric correction of satellite and airborne remotely-sensed radiance data is crucial for deriving accurate water-leaving radiance in coastal waters. C-HORSE seeks to optimize coastal remote sensing measurements by using a novel airborne instrument suite that will bridge calibration, validation, and research capabilities of bio-optical measurements from the sea to the high altitude remote sensing platform. The primary goal of C-HORSE is to facilitate enhanced optical observations of coastal ecosystems using state of the art portable microradiometers with 19 targeted spectral channels and flight planning to optimize measurements further supporting current and future remote sensing missions.
Guidelines for the Integration of Instructional Television in Speech and Hearing Facilities.
ERIC Educational Resources Information Center
Borich, Gary D.
To devise an efficient instructional television system, the planner must first identify and assess objectives for target audiences; allow for construction of a flexible, expansible system; plan for exchangeable instructional tapes; observe instructional procedures for large class, small group, and remote location operations; consider types of…
Research on optimal path planning algorithm of task-oriented optical remote sensing satellites
NASA Astrophysics Data System (ADS)
Liu, Yunhe; Xu, Shengli; Liu, Fengjing; Yuan, Jingpeng
2015-08-01
GEO task-oriented optical remote sensing satellite, is very suitable for long-term continuous monitoring and quick access to imaging. With the development of high resolution optical payload technology and satellite attitude control technology, GEO optical remote sensing satellites will become an important developing trend for aerospace remote sensing satellite in the near future. In the paper, we focused on GEO optical remote sensing satellite plane array stare imaging characteristics and real-time leading mission of earth observation mode, targeted on satisfying needs of the user with the minimum cost of maneuver, and put forward the optimal path planning algorithm centered on transformation from geographic coordinate space to Field of plane, and finally reduced the burden of the control system. In this algorithm, bounded irregular closed area on the ground would be transformed based on coordinate transformation relations in to the reference plane for field of the satellite payload, and then using the branch and bound method to search for feasible solutions, cutting off the non-feasible solution in the solution space based on pruning strategy; and finally trimming some suboptimal feasible solutions based on the optimization index until a feasible solution for the global optimum. Simulation and visualization presentation software testing results verified the feasibility and effectiveness of the strategy.
Unmanned airship development and remote sensing applications
NASA Astrophysics Data System (ADS)
Boschma, James H.
2001-10-01
This paper discusses the development of unmanned airships for military use during the past decade, and the current status of the Small Airship Surveillance System, Low Intensity Target Exploitation (SASS LITE) platform. Topics covered will also include various missions planned and conducted, and technological advances expected to be implemented on unmanned airships in the near future.
Remote sensing as a source of data for outdoor recreation planning
NASA Technical Reports Server (NTRS)
Reed, W. E.; Goodell, H. G.; Emmitt, G. D.
1972-01-01
Specific data needs for outdoor recreation planning and the ability of tested remote sensors to provide sources for these data are examined. Data needs, remote sensor capabilities, availability of imagery, and advantages and problems of incorporating remote sensing data sources into ongoing planning data collection programs are discussed in detail. Examples of the use of imagery to derive data for a range of common planning analyses are provided. A selected bibliography indicates specific uses of data in planning, basic background materials on remote sensing technology, and sources of information on environmental information systems expected to use remote sensing to provide new environmental data of use in outdoor recreation planning.
Oceanographic Remote Sensing; A Position Paper,
1979-01-26
The purpose of a Navy R&D remote sensing plan should be to set forth the requirements and direction of basic and exploratory research in satellite... remote sensing which supports the overall Navy oceanographic research and operational programs. The aim of the plan would be to outline the established...addressed. The plan should help serve as a single technology and program reference for implementation and planning of Navy related satellite remote
Hirsch, Kimberly D; Strawser, Bryan E
Business continuity practitioners routinely determine which teams in their companies are critical and undertake extensive and rigorous planning processes. But what happens when a business is faced with an unanticipated long-term disruption that primarily affects non-critical teams? How can a company use the essential principles of business continuity and crisis management in order to respond? This paper explores a 2013 business disruption experienced by Target Corporation at one of its headquarters locations caused by a leak in the water line for an ice machine. Challenges encountered and reviewed include supporting non-critical teams, leadership of a multi-week business disruption and how remote work technologies have changed traditional continuity alternative workspace solution planning. Lessons learned from this activation are presented with implications for business continuity and emergency management planning that are applicable to any industry.
NASA Technical Reports Server (NTRS)
Cao, Chang-Yong; Blonski, Slawomir; Ryan, Robert; Gasser, Jerry; Zanoni, Vicki
1999-01-01
The verification and validation (V&V) target range developed at Stennis Space Center is a useful test site for the calibration of remote sensing systems. In this paper, we present a simple algorithm for generating synthetic radiance scenes or digital models of this target range. The radiation propagation for the target in the solar reflective and thermal infrared spectral regions is modeled using the atmospheric radiative transfer code MODTRAN 4. The at-sensor, in-band radiance and spectral radiance for a given sensor at a given altitude is predicted. Software is developed to generate scenes with different spatial and spectral resolutions using the simulated at-sensor radiance values. The radiometric accuracy of the simulation is evaluated by comparing simulated with AVIRIS acquired radiance values. The results show that in general there is a good match between AVIRIS sensor measured and MODTRAN predicted radiance values for the target despite the fact that some anomalies exist. Synthetic scenes provide a cost-effective way for in-flight validation of the spatial and radiometric accuracy of the data. Other applications include mission planning, sensor simulation, and trade-off analysis in sensor design.
NASA Astrophysics Data System (ADS)
Shuxin, Li; Zhilong, Zhang; Biao, Li
2018-01-01
Plane is an important target category in remote sensing targets and it is of great value to detect the plane targets automatically. As remote imaging technology developing continuously, the resolution of the remote sensing image has been very high and we can get more detailed information for detecting the remote sensing targets automatically. Deep learning network technology is the most advanced technology in image target detection and recognition, which provided great performance improvement in the field of target detection and recognition in the everyday scenes. We combined the technology with the application in the remote sensing target detection and proposed an algorithm with end to end deep network, which can learn from the remote sensing images to detect the targets in the new images automatically and robustly. Our experiments shows that the algorithm can capture the feature information of the plane target and has better performance in target detection with the old methods.
Automatic mission planning algorithms for aerial collection of imaging-specific tasks
NASA Astrophysics Data System (ADS)
Sponagle, Paul; Salvaggio, Carl
2017-05-01
The rapid advancement and availability of small unmanned aircraft systems (sUAS) has led to many novel exploitation tasks utilizing that utilize this unique aerial imagery data. Collection of this unique data requires novel flight planning to accomplish the task at hand. This work describes novel flight planning to better support structure-from-motion missions to minimize occlusions, autonomous and periodic overflight of reflectance calibration panels to permit more efficient and accurate data collection under varying illumination conditions, and the collection of imagery data to study optical properties such as the bidirectional reflectance distribution function without disturbing the target in sensitive or remote areas of interest. These novel mission planning algorithms will provide scientists with additional tools to meet their future data collection needs.
Telerobotic system concept for real-time soft-tissue imaging during radiotherapy beam delivery.
Schlosser, Jeffrey; Salisbury, Kenneth; Hristov, Dimitre
2010-12-01
The curative potential of external beam radiation therapy is critically dependent on having the ability to accurately aim radiation beams at intended targets while avoiding surrounding healthy tissues. However, existing technologies are incapable of real-time, volumetric, soft-tissue imaging during radiation beam delivery, when accurate target tracking is most critical. The authors address this challenge in the development and evaluation of a novel, minimally interfering, telerobotic ultrasound (U.S.) imaging system that can be integrated with existing medical linear accelerators (LINACs) for therapy guidance. A customized human-safe robotic manipulator was designed and built to control the pressure and pitch of an abdominal U.S. transducer while avoiding LINAC gantry collisions. A haptic device was integrated to remotely control the robotic manipulator motion and U.S. image acquisition outside the LINAC room. The ability of the system to continuously maintain high quality prostate images was evaluated in volunteers over extended time periods. Treatment feasibility was assessed by comparing a clinically deployed prostate treatment plan to an alternative plan in which beam directions were restricted to sectors that did not interfere with the transabdominal U.S. transducer. To demonstrate imaging capability concurrent with delivery, robot performance and U.S. target tracking in a phantom were tested with a 15 MV radiation beam active. Remote image acquisition and maintenance of image quality with the haptic interface was successfully demonstrated over 10 min periods in representative treatment setups of volunteers. Furthermore, the robot's ability to maintain a constant probe force and desired pitch angle was unaffected by the LINAC beam. For a representative prostate patient, the dose-volume histogram (DVH) for a plan with restricted sectors remained virtually identical to the DVH of a clinically deployed plan. With reduced margins, as would be enabled by real-time imaging, gross tumor volume coverage was identical while notable reductions of bladder and rectal volumes exposed to large doses were possible. The quality of U.S. images obtained during beam operation was not appreciably degraded by radiofrequency interference and 2D tracking of a phantom object in U.S. images obtained with the beam on/off yielded no significant differences. Remotely controlled robotic U.S. imaging is feasible in the radiotherapy environment and for the first time may offer real-time volumetric soft-tissue guidance concurrent with radiotherapy delivery.
Target detection method by airborne and spaceborne images fusion based on past images
NASA Astrophysics Data System (ADS)
Chen, Shanjing; Kang, Qing; Wang, Zhenggang; Shen, ZhiQiang; Pu, Huan; Han, Hao; Gu, Zhongzheng
2017-11-01
To solve the problem that remote sensing target detection method has low utilization rate of past remote sensing data on target area, and can not recognize camouflage target accurately, a target detection method by airborne and spaceborne images fusion based on past images is proposed in this paper. The target area's past of space remote sensing image is taken as background. The airborne and spaceborne remote sensing data is fused and target feature is extracted by the means of airborne and spaceborne images registration, target change feature extraction, background noise suppression and artificial target feature extraction based on real-time aerial optical remote sensing image. Finally, the support vector machine is used to detect and recognize the target on feature fusion data. The experimental results have established that the proposed method combines the target area change feature of airborne and spaceborne remote sensing images with target detection algorithm, and obtains fine detection and recognition effect on camouflage and non-camouflage targets.
The Remote Observing Working Group for the Asteroid Impact and Deflection Assessment (AIDA)
NASA Astrophysics Data System (ADS)
Rivkin, A. S.; Pravec, P.; Thomas, C. A.; Thirouin, A.; Snodgrass, C.; Green, S.; Licandro, J.; Sickafoose, A. A.; Erasmus, N.; Howell, E. S.; Osip, D.; Thomas-Osip, J.; Moskovitz, N.; Scheirich, P.; Oszkiewicz, D.; Richardson, D. C.; Polishook, D.; Ryan, W. H.; Busch, M. W.
2017-09-01
The Asteroid Impact and Deflection Assessment (AIDA) is a joint US-European mission concept designed to demonstrate the effectiveness of an kinetic impactor for planetary defense. Ground-based observing is a key component to AIDA and critical for its success. We present the observing campaign we have been conducting of the asteroid Didymos, the AIDA target, and plans for future work.
[Remote radiation planning support system].
Atsumi, Kazushige; Nakamura, Katsumasa; Yoshidome, Satoshi; Shioyama, Yoshiyuki; Sasaki, Tomonari; Ohga, Saiji; Yoshitake, Tadamasa; Shinoto, Makoto; Asai, Kaori; Sakamoto, Katsumi; Hirakawa, Masakazu; Honda, Hiroshi
2012-08-01
We constructed a remote radiation planning support system between Kyushu University Hospital (KUH) in Fukuoka and Kyushu University Beppu Hospital (KBH) in Oita. Between two institutions, radiology information system for radiotherapy division (RT-RIS) and radiation planning system (RTPS) were connected by virtual private network (VPN). This system enables the radiation oncologists at KUH to perform radiotherapy planning for the patients at KBH. The detail of the remote radiation planning support system in our institutions is as follows: The radiation oncologist at KBH performs radiotherapy planning and the data of the patients are sent anonymously to the radiation oncologists at KUH. The radiation oncologists at KUH receive the patient's data, access to RTPS at KBH, verify or change the radiation planning at KBH: Radiation therapy is performed at KBH according to the confirmed plan by the radiation oncologists at KUH. Our remote radiation planning system is useful for providing radiation therapy with safety and accuracy.
Understanding Planned Change among Remote Nonfaculty Employees in Higher Education
ERIC Educational Resources Information Center
Lubin, Erin Heather
2017-01-01
Implementing planned change in online university divisions with remote nonfaculty employees is a unique challenge. The problem that compelled this study was the need to understand the challenges of implementing planned change for a group of geographically remote nonfaculty employees who served as field team members (FTM) in an online university's…
FIRST FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP627) SHOWING REMOTE ...
FIRST FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING REMOTE ANALYTICAL LABORATORY, DECONTAMINATION ROOM, AND MULTICURIE CELL ROOM. INL DRAWING NUMBER 200-0627-00-008-105065. ALTERNATE ID NUMBER 4272-14-102. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
Lustre Distributed Name Space (DNE) Evaluation at the Oak Ridge Leadership Computing Facility (OLCF)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, James S.; Leverman, Dustin B.; Hanley, Jesse A.
This document describes the Lustre Distributed Name Space (DNE) evaluation carried at the Oak Ridge Leadership Computing Facility (OLCF) between 2014 and 2015. DNE is a development project funded by the OpenSFS, to improve Lustre metadata performance and scalability. The development effort has been split into two parts, the first part (DNE P1) providing support for remote directories over remote Lustre Metadata Server (MDS) nodes and Metadata Target (MDT) devices, while the second phase (DNE P2) addressed split directories over multiple remote MDS nodes and MDT devices. The OLCF have been actively evaluating the performance, reliability, and the functionality ofmore » both DNE phases. For these tests, internal OLCF testbed were used. Results are promising and OLCF is planning on a full DNE deployment by mid-2016 timeframe on production systems.« less
NASA's NI-SAR Observing Strategy and Data Availability for Agricultural Monitoring and Assessment
NASA Astrophysics Data System (ADS)
Siqueira, P.; Dubayah, R.; Kellndorfer, J. M.; Saatchi, S. S.; Chapman, B. D.
2014-12-01
The monitoring and characterization of global crop development by remote sensing is a complex task, in part, because of the time varying nature of the target and the diversity of crop types and agricultural practices that vary worldwide. While some of these difficulties are overcome with the availability of national and market-derived resources (e.g. publication of crop statistics by the USDA and FAO), monitoring by remote sensing has the ability of augmenting those resources to better identify changes over time, and to provide timely assessments for the current year's production. Of the remote sensing techniques that are used for agricultural applications, optical observations of NDVI from Landsat, AVHRR, MODIS and similar sensors have historically provided the majority of data that is used by the community. In addition, radiometer and radar sensors, are often used for estimating soil moisture and structural information for these agricultural regions. The combination of these remote sensing datasets and national resources constitutes the state of the art for crop monitoring and yield forecasts. To help improve these crop monitoring efforts in the future, the joint NASA-ISRO SAR mission known as NI-SAR is being planned for launch in 2020, and will have L- and S-band fully polarimetric radar systems, a fourteen day repeat period, and a swath width on the order of several hundred kilometers. To address the needs of the science and applications communities that NI-SAR will support, the systems observing strategy is currently being planned such that data rate and the system configuration will address the needs of the community. In this presentation, a description of the NI-SAR system will be given along with the currently planned observing strategy and derived products that will be relevant to the overall GEOGLAM initiative.
NASA Astrophysics Data System (ADS)
Zhou, Tingting; Gu, Lingjia; Ren, Ruizhi; Cao, Qiong
2016-09-01
With the rapid development of remote sensing technology, the spatial resolution and temporal resolution of satellite imagery also have a huge increase. Meanwhile, High-spatial-resolution images are becoming increasingly popular for commercial applications. The remote sensing image technology has broad application prospects in intelligent traffic. Compared with traditional traffic information collection methods, vehicle information extraction using high-resolution remote sensing image has the advantages of high resolution and wide coverage. This has great guiding significance to urban planning, transportation management, travel route choice and so on. Firstly, this paper preprocessed the acquired high-resolution multi-spectral and panchromatic remote sensing images. After that, on the one hand, in order to get the optimal thresholding for image segmentation, histogram equalization and linear enhancement technologies were applied into the preprocessing results. On the other hand, considering distribution characteristics of road, the normalized difference vegetation index (NDVI) and normalized difference water index (NDWI) were used to suppress water and vegetation information of preprocessing results. Then, the above two processing result were combined. Finally, the geometric characteristics were used to completed road information extraction. The road vector extracted was used to limit the target vehicle area. Target vehicle extraction was divided into bright vehicles extraction and dark vehicles extraction. Eventually, the extraction results of the two kinds of vehicles were combined to get the final results. The experiment results demonstrated that the proposed algorithm has a high precision for the vehicle information extraction for different high resolution remote sensing images. Among these results, the average fault detection rate was about 5.36%, the average residual rate was about 13.60% and the average accuracy was approximately 91.26%.
Suzuki, Keishiro; Hirasawa, Yukinori; Yaegashi, Yuji; Miyamoto, Hideki; Shirato, Hiroki
2009-01-01
We developed a web-based, remote radiation treatment planning system which allowed staff at an affiliated hospital to obtain support from a fully staffed central institution. Network security was based on a firewall and a virtual private network (VPN). Client computers were installed at a cancer centre, at a university hospital and at a staff home. We remotely operated the treatment planning computer using the Remote Desktop function built in to the Windows operating system. Except for the initial setup of the VPN router, no special knowledge was needed to operate the remote radiation treatment planning system. There was a time lag that seemed to depend on the volume of data traffic on the Internet, but it did not affect smooth operation. The initial cost and running cost of the system were reasonable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rankine, Leith J., E-mail: Leith_Rankine@med.unc.edu; Department of Radiation Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Mein, Stewart
Purpose: To validate the dosimetric accuracy of a commercially available magnetic resonance guided intensity modulated radiation therapy (MRgIMRT) system using a hybrid approach: 3-dimensional (3D) measurements and Monte Carlo calculations. Methods and Materials: We used PRESAGE radiochromic plastic dosimeters with remote optical computed tomography readout to perform 3D high-resolution measurements, following a novel remote dosimetry protocol. We followed the intensity modulated radiation therapy commissioning recommendations of American Association of Physicists in Medicine Task Group 119, adapted to incorporate 3D data. Preliminary tests (“AP” and “3D-Bands”) were delivered to 9.5-cm usable diameter cylindrical PRESAGE dosimeters to validate the treatment planning systemmore » (TPS) for nonmodulated deliveries; assess the sensitivity, uniformity, and rotational symmetry of the PRESAGE dosimeters; and test the robustness of the remote dosimetry protocol. Following this, 4 clinical MRgIMRT plans (“MultiTarget,” “Prostate,” “Head/Neck,” and “C-Shape”) were measured using 13-cm usable diameter PRESAGE dosimeters. For all plans, 3D-γ (3% or 3 mm global, 10% threshold) passing rates were calculated and 3D-γ maps were examined. Point doses were measured with an IBA-CC01 ionization chamber for validation of absolute dose. Finally, by use of an in-house-developed, GPU-accelerated Monte Carlo algorithm (gPENELOPE), we independently calculated dose for all 6 Task Group 119 plans and compared against the TPS. Results: For PRESAGE measurements, 3D-γ analysis yielded passing rates of 98.7%, 99.2%, 98.5%, 98.0%, 99.2%, and 90.7% for AP, 3D-Bands, MultiTarget, Prostate, Head/Neck, and C-Shape, respectively. Ion chamber measurements were within an average of 0.5% (±1.1%) from the TPS dose. Monte Carlo calculations demonstrated good agreement with the TPS, with a mean 3D-γ passing rate of 98.5% ± 1.9% using a stricter 2%/2-mm criterion. Conclusions: We have validated the dosimetric accuracy of a commercial MRgIMRT system using high-resolution 3D techniques. We have demonstrated for the first time that hybrid 3D remote dosimetry is a comprehensive and feasible approach to commissioning MRgIMRT. This may provide better sensitivity in error detection compared with standard 2-dimensional measurements and could be used when implementing complex new magnetic resonance guided radiation therapy technologies.« less
1984-08-01
and FPS-60 -’ vacuum-tube radars. There will be remote control interface units ( RCIU ) for tube-type radars, and an ARSR-3 relocation and RIH package...Facility RCE Remote Control Equipment; Radio Control Equipment RCIU Remote Control Interface Units RCO Remote Communications Outlet RDCC Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callan, J.R.; Kelly, R.T.; Quinn, M.L.
1995-05-01
Remote Afterloading Brachytherapy (RAB) is a medical process used in the treatment of cancer. RAB uses a computer-controlled device to remotely insert and remove radioactive sources close to a target (or tumor) in the body. Some RAB problems affecting the radiation dose to the patient have been reported and attributed to human error. To determine the root cause of human error in the RAB system, a human factors team visited 23 RAB treatment sites in the US The team observed RAB treatment planning and delivery, interviewed RAB personnel, and performed walk-throughs, during which staff demonstrated the procedures and practices usedmore » in performing RAB tasks. Factors leading to human error in the RAB system were identified. The impact of those factors on the performance of RAB was then evaluated and prioritized in terms of safety significance. Finally, the project identified and evaluated alternative approaches for resolving the safety significant problems related to human error.« less
Distributed Planning in a Mixed-Initiative Environment
2008-06-01
Knowledge Sources Control Remote Blackboard Remote Knowledge Sources Remot e Data Remot e Data Java Distributed Blackboard Figure 3 - Distributed...an interface agent or planning agent and the second type is a critic agent. Agents in the DEEP architecture extend and use the Java Agent...chosen because it is fully implemented in Java , and supports these requirements. 2.3.3 Interface Agents Interface agents are the interfaces through
NASA Technical Reports Server (NTRS)
Veziroglu, T. N.; Lee, S. S.
1973-01-01
A feasibility study for the development of a three-dimensional generalized, predictive, analytical model involving remote sensing, in-situ measurements, and an active system to remotely measure turbidity is presented. An implementation plan for the development of the three-dimensional model and for the application of remote sensing of temperature and turbidity measurements is outlined.
NASA Astrophysics Data System (ADS)
Osterman, G. B.; Fisher, B.; Roehl, C. M.; Wunch, D.; Wennberg, P. O.; Eldering, A.; Naylor, B. J.; Crisp, D.; Pollock, H. R.; Gunson, M. R.
2014-12-01
The NASA Orbiting Carbon Observatory-2 (OCO-2) successfully launched from Vandenberg Air Force Base in California on July 2, 2014. The OCO-2 mission is designed to provide remotely sensed measurements of the column averaged dry air mole fraction of carbon dioxide from space. OCO-2 is capable of making measurements in three observation modes: Nadir, glint and target. The standard operational mode for OCO-2 alternates between nadir and glint mode every 16 days, but target mode observations are possible by commanding the spacecraft to point to specific surface location. In this presentation we provide information on the preliminary observations and plans for OCO-2 2015. In particular, we will also provide an update on the pointing capabilities and accuracy for OCO-2. We provide updates on OCO-2 target mode including possible target mode locations. We will show calendars for the different viewing geometries and target mode possibilities.
[A review on polarization information in the remote sensing detection].
Gong, Jie-Qiong; Zhan, Hai-Gang; Liu, Da-Zhao
2010-04-01
Polarization is one of the inherent characteristics. Because the surface of the target structure, internal structure, and the angle of incident light are different, the earth's surface and any target in atmosphere under optical interaction process will have their own characteristic nature of polarization. Polarimetric characteristics of radiation energy from the targets are used in polarization remote sensing detection as detective information. Polarization remote sensing detection can get the seven-dimensional information of targets in complicated backgrounds, detect well-resolved outline of targets and low-reflectance region of objectives, and resolve the problems of atmospheric detection and identification camouflage detection which the traditional remote sensing detection can not solve, having good foreground in applications. This paper introduces the development of polarization information in the remote sensing detection from the following four aspects. The rationale of polarization remote sensing detection is the base of polarization remote sensing detection, so it is firstly introduced. Secondly, the present researches on equipments that are used in polarization remote sensing detection are particularly and completely expatiated. Thirdly, the present exploration of theoretical simulation of polarization remote sensing detection is well detailed. Finally, the authors present the applications research home and abroad of the polarization remote sensing detection technique in the fields of remote sensing, atmospheric sounding, sea surface and underwater detection, biology and medical diagnosis, astronomical observation and military, summing up the current problems in polarization remote sensing detection. The development trend of polarization remote sensing detection technology in the future is pointed out in order to provide a reference for similar studies.
a Novel Framework for Remote Sensing Image Scene Classification
NASA Astrophysics Data System (ADS)
Jiang, S.; Zhao, H.; Wu, W.; Tan, Q.
2018-04-01
High resolution remote sensing (HRRS) images scene classification aims to label an image with a specific semantic category. HRRS images contain more details of the ground objects and their spatial distribution patterns than low spatial resolution images. Scene classification can bridge the gap between low-level features and high-level semantics. It can be applied in urban planning, target detection and other fields. This paper proposes a novel framework for HRRS images scene classification. This framework combines the convolutional neural network (CNN) and XGBoost, which utilizes CNN as feature extractor and XGBoost as a classifier. Then, this framework is evaluated on two different HRRS images datasets: UC-Merced dataset and NWPU-RESISC45 dataset. Our framework achieved satisfying accuracies on two datasets, which is 95.57 % and 83.35 % respectively. From the experiments result, our framework has been proven to be effective for remote sensing images classification. Furthermore, we believe this framework will be more practical for further HRRS scene classification, since it costs less time on training stage.
Autonomous Exploration for Gathering Increased Science
NASA Technical Reports Server (NTRS)
Bornstein, Benjamin J.; Castano, Rebecca; Estlin, Tara A.; Gaines, Daniel M.; Anderson, Robert C.; Thompson, David R.; DeGranville, Charles K.; Chien, Steve A.; Tang, Benyang; Burl, Michael C.;
2010-01-01
The Autonomous Exploration for Gathering Increased Science System (AEGIS) provides automated targeting for remote sensing instruments on the Mars Exploration Rover (MER) mission, which at the time of this reporting has had two rovers exploring the surface of Mars (see figure). Currently, targets for rover remote-sensing instruments must be selected manually based on imagery already on the ground with the operations team. AEGIS enables the rover flight software to analyze imagery onboard in order to autonomously select and sequence targeted remote-sensing observations in an opportunistic fashion. In particular, this technology will be used to automatically acquire sub-framed, high-resolution, targeted images taken with the MER panoramic cameras. This software provides: 1) Automatic detection of terrain features in rover camera images, 2) Feature extraction for detected terrain targets, 3) Prioritization of terrain targets based on a scientist target feature set, and 4) Automated re-targeting of rover remote-sensing instruments at the highest priority target.
NASA Technical Reports Server (NTRS)
Mallon, H. J.; Howard, J. Y.; Karch, K. M.
1971-01-01
A comprehensive inventory of a series of remote sensing applications for a variety of regional planning programs in metropolitan Washington was undertaken. Examples of application, methods for data utilization, and corresponding photographic illustrations are provided illustrating how remote sensing would prove particularly useful as a unique and/or supplemental data source.
Image-based tracking and sensor resource management for UAVs in an urban environment
NASA Astrophysics Data System (ADS)
Samant, Ashwin; Chang, K. C.
2010-04-01
Coordination and deployment of multiple unmanned air vehicles (UAVs) requires a lot of human resources in order to carry out a successful mission. The complexity of such a surveillance mission is significantly increased in the case of an urban environment where targets can easily escape from the UAV's field of view (FOV) due to intervening building and line-of-sight obstruction. In the proposed methodology, we focus on the control and coordination of multiple UAVs having gimbaled video sensor onboard for tracking multiple targets in an urban environment. We developed optimal path planning algorithms with emphasis on dynamic target prioritizations and persistent target updates. The command center is responsible for target prioritization and autonomous control of multiple UAVs, enabling a single operator to monitor and control a team of UAVs from a remote location. The results are obtained using extensive 3D simulations in Google Earth using Tangent plus Lyapunov vector field guidance for target tracking.
Remote sensing for rural development planning in Africa
NASA Technical Reports Server (NTRS)
Dunford, C.; Mouat, D. A.; Norton-Griffiths, M.; Slaymaker, D. M.
1983-01-01
Multilevel remote-sensing techniques were combined to provide land resource and land-use information for rural development planning in Arusha Region, Tanzania. Enhanced Landsat imagery, supplemented by low-level aerial survey data, slope angle data from topographic sheets, and existing reports on vegetation and soil conditions, was used jointly by image analysts and district-level land-management officials to divide the region's six districts into land-planning units. District-planning officials selected a number of these land-planning units for priority planning and development activities. For the priority areas, natural color aerial photographs provided detailed information for land-use planning discussions between district officials and villagers. Consideration of the efficiency of this remote sensing approach leads to general recommendations for similar applications. The technology and timing of data collection and interpretation activities should allow maximum participation by intended users of the information.
SU-F-T-304: Complex Multi-PTV Treatment Evaluation Using a Remotely Processed 3D Gel Dosimeter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoisak, J; Dragojevic, I; Sutlief, S
Purpose: A new 3D gel dosimeter (ClearView™, Modus Medical Systems) was investigated for use as a QA tool for stereotactic radiosurgery (SRS) plans exhibiting high dose gradients and spatially separated treatment targets. The unique feature of this gel dosimeter is the remote processing service provided by Modus Medical Systems. Methods: The gel dosimeters were filled in either 10 cm diameter or 15 cm diameter clear plastic jars. The jars were then shipped in ice-cooled containers to our department for irradiation. Clinical SRS plans for treatment of multiple metastases and plans with simulated concave structures were applied to a CT scanmore » of the gel dosimeter. The gel was irradiated in treatment position using modulated arcs and then returned in the cooled container for processing. The 3D gel dose was compared to the DICOM-RT dose from the treatment plan to assess dosimetric and geometric agreement. Results: There was no discernible difference between the planned and measured dose for dose gradients as high as 10%/mm, which was the highest gradient we evaluated. Geometric agreement for distant metastases separated by 6 cm was within 1.5 mm. Among three identically irradiated gels using a plan intended for nine metastases, the 3%/3mm gamma passing rate was 84.5% with a range of 14.7%, measured over the entire volume of the dosimeter. Regions of larger gamma values correlated with geometric offsets between the planned and measured data. Conclusion: The gel dosimeter exhibits the dosimetric and geometric characteristics necessary for 3D evaluation of treatment plan deliverability. The range of observed gamma passing rates suggests a high sensitivity to geometric registration. With proper management of geometric registration between planned and measured data, this service should enable a radiation oncology department to use 3D dosimetry in end-to-end testing or patient plan delivery QA without the expense of an in-house processing system.« less
Development of a remote proton radiation therapy solution over internet2.
Belard, Arnaud; Tinnel, Brent; Wilson, Steve; Ferro, Ralph; O'Connell, John
2009-12-01
Through our existing partnership, our research program has leveraged the benefits of proton radiation therapy through the development a robust telemedicine solution for remote proton therapy planning. Our proof-of-concept system provides a cost-effective and functional videoconferencing desktop platform for both ad-hoc and scheduled communication, as well as a robust interface for data collaboration (application-sharing of a commercial radiation treatment planning package). Over a 2-year period, our evaluation of this model has highlighted the inherent benefits of this affordable remote treatment planning solution, i.e., (1) giving physicians the ability to remotely participate in refining and generating proton therapy plans via a secure and robust Internet2 VPN tunnel to the University of Pennsylvania's commercial proton treatment planning package; (2) allowing cancer-care providers sending patients to a proton treatment facility to participate in treatment planning decisions by enabling referring or accepting providers to initiate ad-hoc, point-to-point communication with their counterparts to clarify and resolve issues arising before or during patient treatment; and thus (3) allowing stewards of an otherwise highly centralized resource the ability to encourage wider participation with and referrals to sparsely located proton treatment centers by adapting telemedicine techniques that allow sharing of proton therapy planning services. We believe that our elegant and very affordable approach to remote proton treatment planning opens the door to greater worldwide referrals to the scarce resource of proton treatment units and wide-ranging scientific collaboration, both nationally and internationally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juang, T; Bush, K; Loo, B
Purpose: We propose a workflow to improve access to stereotactic ablative radiation therapy (SABR) for rural patients. When implemented, a separate trip to the central facility for simulation can be eliminated. Two elements are required: (1) Fabrication of custom immobilization devices to match positioning on prior diagnostic CT (dxCT). (2) Remote radiation pre-planning on dxCT, with transfer of contours/plan to simulation CT (simCT) and initiation of treatment same-day or next day. In this retrospective study, we validated part 2 of the workflow using patients already treated with SABR for upper lobe lung tumors. Methods: Target/normal structures were contoured on dxCT;more » a plan was created and approved by the physician. Structures were transferred to simCT using deformable image registration and the plan was re-optimized on simCT. Plan quality was evaluated through comparison to gold-standard structures contoured on simCT and a gold-standard plan based on these structures. Workflow-generated plan quality in this study represents a worst-case scenario as these patients were not treated using custom immobilization to match dxCT position as would be done when the workflow is implemented clinically. Results: 5/6 plans created through the pre-planning workflow were clinically acceptable. For all six plans, the gold-standard GTV received full prescription dose, along with median PTV V95%=95.2% and median PTV D95%=95.4%. Median GTV DSC=0.80, indicating high degree of similarity between the deformed and gold-standard GTV contours despite small GTV sizes (mean=3.0cc). One outlier (DSC=0.49) resulted in inadequate PTV coverage (V95%=62.9%) in the workflow plan; in clinical practice, this mismatch between deformed/gold-standard GTV would be revised by the physician after deformable registration. For all patients, normal tissue doses were comparable to the gold-standard plan and well within constraints. Conclusion: Pre-planning SABR cases on diagnostic imaging generated clinically acceptable plans. Coupled with rapid-prototyped custom immobilization, this workflow may improve treatment access for rural patients.« less
Remote-sensing applications as utilized in Florida's coastal zone management program
NASA Technical Reports Server (NTRS)
Worley, D. R.
1975-01-01
Land use maps were developed from photomaps obtained by remote sensing in order to develop a comprehensive state plan for the protection, development, and zoning of coastal regions. Only photographic remote sensors have been used in support of the coastal council's planning/management methodology. Standard photointerpretation and cartographic application procedures for map compilation were used in preparing base maps.
Remote mission specialist - A study in real-time, adaptive planning
NASA Technical Reports Server (NTRS)
Rokey, Mark J.
1990-01-01
A high-level planning architecture for robotic operations is presented. The remote mission specialist integrates high-level directives with low-level primitives executable by a run-time controller for command of autonomous servicing activities. The planner has been designed to address such issues as adaptive plan generation, real-time performance, and operator intervention.
Löck, Steffen; Roth, Klaus; Skripcak, Tomas; Worbs, Mario; Helmbrecht, Stephan; Jakobi, Annika; Just, Uwe; Krause, Mechthild; Baumann, Michael; Enghardt, Wolfgang; Lühr, Armin
2015-09-01
To guarantee equal access to optimal radiotherapy, a concept of patient assignment to photon or particle radiotherapy using remote treatment plan exchange and comparison - ReCompare - was proposed. We demonstrate the implementation of this concept and present its clinical applicability. The ReCompare concept was implemented using a client-server based software solution. A clinical workflow for the remote treatment plan exchange and comparison was defined. The steps required by the user and performed by the software for a complete plan transfer were described and an additional module for dose-response modeling was added. The ReCompare software was successfully tested in cooperation with three external partner clinics and worked meeting all required specifications. It was compatible with several standard treatment planning systems, ensured patient data protection, and integrated in the clinical workflow. The ReCompare software can be applied to support non-particle radiotherapy institutions with the patient-specific treatment decision on the optimal irradiation modality by remote treatment plan exchange and comparison. Copyright © 2015. Published by Elsevier GmbH.
Method for remote detection of trace contaminants
Simonson, Robert J.; Hance, Bradley G.
2003-09-09
A method for remote detection of trace contaminants in a target area comprises applying sensor particles that preconcentrate the trace contaminant to the target area and detecting the contaminant-sensitive fluorescence from the sensor particles. The sensor particles can have contaminant-sensitive and contaminant-insensitive fluorescent compounds to enable the determination of the amount of trace contaminant present in the target are by relative comparison of the emission of the fluorescent compounds by a local or remote fluorescence detector. The method can be used to remotely detect buried minefields.
The design of optimum remote-sensing instruments
NASA Technical Reports Server (NTRS)
Peckham, G. E.; Flower, D. A.
1983-01-01
Remote-sensing instruments allow values for certain properties of a target to be retrieved from measurements of radiation emitted, reflected or transmitted by the target. The retrieval accuracy is affected by random variations in the many target properties which affect the measurements. A method is described, by which statistical properties of the target and theoretical models of its electromagnetic behavior can be used to choose values for the instrument parameters which maximize the retrieval accuracy. The technique is applicable to a wide range of remote-sensing instruments.
Remote Sensing Assessment of Lunar Resources: We Know Where to Go to Find What We Need
NASA Technical Reports Server (NTRS)
Gillis, J. J.; Taylor, G. J.; Lucey, P. G.
2004-01-01
The utilization of space resources is necessary to not only foster the growth of human activities in space, but is essential to the President s vision of a "sustained and affordable human and robotic program to explore the solar system and beyond." The distribution of resources will shape planning permanent settlements by affecting decisions about where to locate a settlement. Mapping the location of such resources, however, is not the limiting factor in selecting a site for a lunar base. It is indecision about which resources to use that leaves the location uncertain. A wealth of remotely sensed data exists that can be used to identify targets for future detailed exploration. Thus, the future of space resource utilization pre-dominantly rests upon developing a strategy for resource exploration and efficient methods of extraction.
Detection of reflecting surfaces by a statistical model
NASA Astrophysics Data System (ADS)
He, Qiang; Chu, Chee-Hung H.
2009-02-01
Remote sensing is widely used assess the destruction from natural disasters and to plan relief and recovery operations. How to automatically extract useful features and segment interesting objects from digital images, including remote sensing imagery, becomes a critical task for image understanding. Unfortunately, current research on automated feature extraction is ignorant of contextual information. As a result, the fidelity of populating attributes corresponding to interesting features and objects cannot be satisfied. In this paper, we present an exploration on meaningful object extraction integrating reflecting surfaces. Detection of specular reflecting surfaces can be useful in target identification and then can be applied to environmental monitoring, disaster prediction and analysis, military, and counter-terrorism. Our method is based on a statistical model to capture the statistical properties of specular reflecting surfaces. And then the reflecting surfaces are detected through cluster analysis.
SEQ-POINTER: Next generation, planetary spacecraft remote sensing science observation design tool
NASA Technical Reports Server (NTRS)
Boyer, Jeffrey S.
1994-01-01
Since Mariner, NASA-JPL planetary missions have been supported by ground software to plan and design remote sensing science observations. The software used by the science and sequence designers to plan and design observations has evolved with mission and technological advances. The original program, PEGASIS (Mariners 4, 6, and 7), was re-engineered as POGASIS (Mariner 9, Viking, and Mariner 10), and again later as POINTER (Voyager and Galileo). Each of these programs were developed under technological, political, and fiscal constraints which limited their adaptability to other missions and spacecraft designs. Implementation of a multi-mission tool, SEQ POINTER, under the auspices of the JPL Multimission Operations Systems Office (MOSO) is in progress. This version has been designed to address the limitations experienced on previous versions as they were being adapted to a new mission and spacecraft. The tool has been modularly designed with subroutine interface structures to support interchangeable celestial body and spacecraft definition models. The computational and graphics modules have also been designed to interface with data collected from previous spacecraft, or on-going observations, which describe the surface of each target body. These enhancements make SEQ POINTER a candidate for low-cost mission usage, when a remote sensing science observation design capability is required. The current and planned capabilities of the tool will be discussed. The presentation will also include a 5-10 minute video presentation demonstrating the capabilities of a proto-Cassini Project version that was adapted to test the tool. The work described in this abstract was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.
SEQ-POINTER: Next generation, planetary spacecraft remote sensing science observation design tool
NASA Astrophysics Data System (ADS)
Boyer, Jeffrey S.
1994-11-01
Since Mariner, NASA-JPL planetary missions have been supported by ground software to plan and design remote sensing science observations. The software used by the science and sequence designers to plan and design observations has evolved with mission and technological advances. The original program, PEGASIS (Mariners 4, 6, and 7), was re-engineered as POGASIS (Mariner 9, Viking, and Mariner 10), and again later as POINTER (Voyager and Galileo). Each of these programs were developed under technological, political, and fiscal constraints which limited their adaptability to other missions and spacecraft designs. Implementation of a multi-mission tool, SEQ POINTER, under the auspices of the JPL Multimission Operations Systems Office (MOSO) is in progress. This version has been designed to address the limitations experienced on previous versions as they were being adapted to a new mission and spacecraft. The tool has been modularly designed with subroutine interface structures to support interchangeable celestial body and spacecraft definition models. The computational and graphics modules have also been designed to interface with data collected from previous spacecraft, or on-going observations, which describe the surface of each target body. These enhancements make SEQ POINTER a candidate for low-cost mission usage, when a remote sensing science observation design capability is required. The current and planned capabilities of the tool will be discussed. The presentation will also include a 5-10 minute video presentation demonstrating the capabilities of a proto-Cassini Project version that was adapted to test the tool. The work described in this abstract was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.
An ERTS multispectral scanner experiment for mapping iron compounds
NASA Technical Reports Server (NTRS)
Vincent, R. K. (Principal Investigator)
1972-01-01
There are no author-identified significant results in this report. An experimental plan for enhancing spectral features related to the chemical composition of geological targets in ERTS multispectral scanner data is described. The experiment is designed to produce visible-reflective infrared ratio images from ERTS-1 data. Iron compounds are promising remote sensing targets because they display prominent spectral features in the visible-reflective infrared wavelength region and are geologically significant. The region selected for this ERTS experiment is the southern end of the Wind River Range in Wyoming. If this method proves successful it should prove useful for regional geologic mapping, mineralogical exploration, and soil mapping. It may also be helpful to ERTS users in scientific disciplines other than geology, especially to those concerned with targets composed of mixtures of live vegetation and soil or rock.
Remote sensing image ship target detection method based on visual attention model
NASA Astrophysics Data System (ADS)
Sun, Yuejiao; Lei, Wuhu; Ren, Xiaodong
2017-11-01
The traditional methods of detecting ship targets in remote sensing images mostly use sliding window to search the whole image comprehensively. However, the target usually occupies only a small fraction of the image. This method has high computational complexity for large format visible image data. The bottom-up selective attention mechanism can selectively allocate computing resources according to visual stimuli, thus improving the computational efficiency and reducing the difficulty of analysis. Considering of that, a method of ship target detection in remote sensing images based on visual attention model was proposed in this paper. The experimental results show that the proposed method can reduce the computational complexity while improving the detection accuracy, and improve the detection efficiency of ship targets in remote sensing images.
A study of the potential of remote sensors in urban transportation planning
NASA Technical Reports Server (NTRS)
Rietschier, D.; Modlin, D. G., Jr.
1973-01-01
The potential uses of remotely sensed data as applied to the transportation planning process are presented. By utilizing the remote sensing technology developed by the National Aeronautics and Space Administration in the various space programs, it is hoped that both the expense and errors inherent in the conventional data collection techniques can be avoided. Additional bonuses derived from the use of remotely sensed data are those of the permanent record nature of the data and the traffic engineering data simultaneously made available. The major mathematical modeling phases and the role remotely sensed data might play in replacing conventionally collected data are discussed. Typical surveys undertaken in the overall planning process determine the nature and extent of travel desires, land uses, transportation facilities and socio-economic characteristics. Except for the socio-economic data, data collected in the other surveys mentioned can be taken from photographs in sufficient detail to be useful in the modeling procedures.
NASA Technical Reports Server (NTRS)
1974-01-01
A comprehensive land use planning process model is being developed in Meade County, South Dakota, using remote sensing technology. The proper role of remote sensing in the land use planning process is being determined by interaction of remote sensing specialists with local land use planners. The data that were collected by remote sensing techniques are as follows: (1) level I land use data interpreted at a scale of 1:250,000 from false color enlargement prints of ERTS-1 color composite transparencies; (2) detailed land use data interpreted at a scale of 1:24,000 from enlargement color prints of high altitude RB-57 photography; and (3) general soils map interpreted at a scale of 1:250,000 from false color enlargement prints of ERTS-1 color composite transparencies. In addition to use of imagery as an interpretation aid, the utility of using photographs as base maps was demonstrated.
The U.S. Department of Energy's Carlsbad Field Office (DOE/CBFO) provided the U.S. Environmental Protection Agency (EPA) this Notification of Planned Change to accept remote-handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP).
Lühr, Armin; Löck, Steffen; Roth, Klaus; Helmbrecht, Stephan; Jakobi, Annika; Petersen, Jørgen B; Just, Uwe; Krause, Mechthild; Enghardt, Wolfgang; Baumann, Michael
2014-02-18
Identifying those patients who have a higher chance to be cured with fewer side effects by particle beam therapy than by state-of-the-art photon therapy is essential to guarantee a fair and sufficient access to specialized radiotherapy. The individualized identification requires initiatives by particle as well as non-particle radiotherapy centers to form networks, to establish procedures for the decision process, and to implement means for the remote exchange of relevant patient information. In this work, we want to contribute a practical concept that addresses these requirements. We proposed a concept for individualized patient allocation to photon or particle beam therapy at a non-particle radiotherapy institution that bases on remote treatment plan comparison. We translated this concept into the web-based software tool ReCompare (REmote COMparison of PARticlE and photon treatment plans). We substantiated the feasibility of the proposed concept by demonstrating remote exchange of treatment plans between radiotherapy institutions and the direct comparison of photon and particle treatment plans in photon treatment planning systems. ReCompare worked with several tested standard treatment planning systems, ensured patient data protection, and integrated in the clinical workflow. Our concept supports non-particle radiotherapy institutions with the patient-specific treatment decision on the optimal irradiation modality by providing expertise from a particle therapy center. The software tool ReCompare may help to improve and standardize this personalized treatment decision. It will be available from our website when proton therapy is operational at our facility.
Wagner, Bree; Fitzpatrick, James; Symons, Martyn; Jirikowic, Tracy; Cross, Donna; Latimer, Jane
2017-06-01
Although previous research has demonstrated the benefits of targeting self-regulation in non-Aboriginal children, it is unclear whether such programs would be effective for Aboriginal children attending school in remote communities. Some of these children have been diagnosed with a fetal alcohol spectrum disorder (FASD) impairing their ability to self-regulate. The aim of this article is to describe a three phase formative process to develop and pilot a curriculum version of the Alert Program ® , a promising intervention for improving self-regulation that could be used in remote community schools. This modified version of the program will be subsequently tested in a cluster randomised controlled trial. A mixed methods approach was used. Modifications to the Alert Program ® , its delivery and evaluation were made after community and stakeholder consultation facilitated by a senior Aboriginal community researcher. Changes to lesson plans and program resources were made to reflect the remote community context, classroom environment and the challenging behaviours of children. Standardised study outcome measures were modified by removing several questions that had little relevance to the lives of children in remote communities. Program training for school staff was reduced in length to reduce staff burden. This study identified aspects of the Alert Program ® training, delivery and measures for evaluation that need modification before their use in assessing the efficacy of the Alert Program ® in remote Aboriginal community primary schools. © 2016 Occupational Therapy Australia.
Kurti, Allison N; Davis, Danielle R; Redner, Ryan; Jarvis, Brantley P; Zvorsky, Ivori; Keith, Diana R; Bolivar, Hypatia A; White, Thomas J; Rippberger, Peter; Markesich, Catherine; Atwood, Gary; Higgins, Stephen T
2016-06-01
Use of technology (e.g., Internet, cell phones) to allow remote implementation of incentives interventions for health-related behavior change is growing. To our knowledge, there has yet to be a systematic review of this literature reported. The present report provides a systematic review of the controlled studies where technology was used to remotely implement financial incentive interventions targeting substance use and other health behaviors published between 2004 and 2015. For inclusion in the review, studies had to use technology to remotely accomplish one of the following two aims alone or in combination: (a) monitor the target behavior, or (b) deliver incentives for achieving the target goal. Studies also had to examine financial incentives (e.g., cash, vouchers) for health-related behavior change, be published in peer-reviewed journals, and include a research design that allowed evaluation of the efficacy of the incentive intervention relative to another condition (e.g., non-contingent incentives, treatment as usual). Of the 39 reports that met inclusion criteria, 18 targeted substance use, 10 targeted medication adherence or home-based health monitoring, and 11 targeted diet, exercise, or weight loss. All 39 (100%) studies used technology to facilitate remote monitoring of the target behavior, and 26 (66.7%) studies also incorporated technology in the remote delivery of incentives. Statistically significant intervention effects were reported in 71% of studies reviewed. Overall, the results offer substantial support for the efficacy of remotely implemented incentive interventions for health-related behavior change, which have the potential to increase the cost-effectiveness and reach of this treatment approach.
Remote image analysis for Mars Exploration Rover mobility and manipulation operations
NASA Technical Reports Server (NTRS)
Leger, Chris; Deen, Robert G.; Bonitz, Robert G.
2005-01-01
NASA's Mars Exploration Rovers are two sixwheeled, 175-kg robotic vehicles which have operated on Mars for over a year as of March 2005. The rovers are controlled by teams who must understand the rover's surroundings and develop command sequences on a daily basis. The tight tactical planning timeline and everchanging environment call for tools that allow quick assessment of potential manipulator targets and traverse goals, since command sequences must be developed in a matter of hours after receipt of new data from the rovers. Reachability maps give a visual indication of which targets are reachable by each rover's manipulator, while slope and solar energy maps show the rover operator which terrain areas are safe and unsafe from different standpoints.
NASA Technical Reports Server (NTRS)
Glass, Brian J.; Thompson, S.; Paulsen, G.
2010-01-01
Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.
NASA Technical Reports Server (NTRS)
1975-01-01
The application of remote sensing techniques to land management, urban planning, agriculture, oceanography, and environmental monitoring is discussed. The results of various projects are presented along with cost effective considerations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... ASSISTANCE PROGRAMS UTILIZATION CONTROL Utilization Review Plans: FFP, Waivers, and Variances for Hospitals and Mental Hospitals Ur Plan: Remote Facility Variances from Time Requirements § 456.520 Definitions... granted by the Administrator to the Medicaid agency for a specific remote facility to use time periods...
DOT National Transportation Integrated Search
2004-08-30
The project's major objective is to demonstrate and assess the applicability of commercial remote sensing products and spatial information technologies to environmental analysis in transportation planning, using the I-405 corridor in Washington State...
NASA Astrophysics Data System (ADS)
This note is call for dive requests, coordinated to the extent practical, from those scientists interested in opportunities for an Alvin/Atlantis II expedition to some remote area. In an effort to facilitate planning for Alvin and to help focus the attention of investigators with diverse scientific interests in remote areas, Feenan Jennings of Texas A & M University, College Station, who chairs the University-National Oceanographic Laboratory System's (UNOLS') Alvin Review Committee (ARC), has announced establishment of an Alvin planning bulletin board on electronic mail. The bulletin board, ALVIN.PLANNING, is to help inform potential users of community interest in conducting Alvin/Atlantis II research projects, especially those involving expeditions to remote areas. ALVIN.PLANNING will be implemented early in 1990. Notice and further details will be broadcast throughout the ocean community.
Belard, Arnaud; Dolney, Derek; Zelig, Tochner; McDonough, James; O'Connell, John
2011-06-01
Proton radiotherapy is a relatively scarce treatment modality in radiation oncology, with only nine centers currently operating in the United States. Funded by Public Law 107-248, the University of Pennsylvania and the Walter Reed Army Medical Center have developed a remote proton radiation therapy solution with the goals of improving access to proton radiation therapy for Department of Defense (DoD) beneficiaries while minimizing treatment delays and time spent away from home/work (time savings of up to 3 weeks per patient). To meet both Health Insurance Portability and Accountability Act guidelines and the more stringent security restrictions imposed by the DoD, our program developed a hybrid remote proton radiation therapy solution merging a CITRIX server with a JITIC-certified (Joint Interoperability Test Command) desktop videoconferencing unit. This conduit, thoroughly tested over a period of 6 months, integrates both institutions' radiation oncology treatment planning infrastructures into a single entity for DoD patients' treatment planning and delivery. This telemedicine solution enables DoD radiation oncologists and medical physicists the ability to (1) remotely access a proton therapy treatment planning platform, (2) transfer patient plans securely to the University of Pennsylvania patient database, and (3) initiate ad-hoc point-to-point and multipoint videoconferences to dynamically optimize and validate treatment plans. Our robust and secure remote treatment planning solution grants DoD patients not only access to a state-of-the-art treatment modality, but also participation in the treatment planning process by Walter Reed Army Medical Center radiation oncologists and medical physicists. This telemedicine system has the potential to lead to a greater integration of military treatment facilities and/or satellite clinics into regional proton therapy centers.
2014-01-01
Background Identifying those patients who have a higher chance to be cured with fewer side effects by particle beam therapy than by state-of-the-art photon therapy is essential to guarantee a fair and sufficient access to specialized radiotherapy. The individualized identification requires initiatives by particle as well as non-particle radiotherapy centers to form networks, to establish procedures for the decision process, and to implement means for the remote exchange of relevant patient information. In this work, we want to contribute a practical concept that addresses these requirements. Methods We proposed a concept for individualized patient allocation to photon or particle beam therapy at a non-particle radiotherapy institution that bases on remote treatment plan comparison. We translated this concept into the web-based software tool ReCompare (REmote COMparison of PARticlE and photon treatment plans). Results We substantiated the feasibility of the proposed concept by demonstrating remote exchange of treatment plans between radiotherapy institutions and the direct comparison of photon and particle treatment plans in photon treatment planning systems. ReCompare worked with several tested standard treatment planning systems, ensured patient data protection, and integrated in the clinical workflow. Conclusions Our concept supports non-particle radiotherapy institutions with the patient-specific treatment decision on the optimal irradiation modality by providing expertise from a particle therapy center. The software tool ReCompare may help to improve and standardize this personalized treatment decision. It will be available from our website when proton therapy is operational at our facility. PMID:24548333
42 CFR 456.522 - Content of request for variance.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Utilization Review Plans: FFP, Waivers, and Variances for Hospitals and Mental Hospitals Ur Plan: Remote Facility Variances from Time... travel time between the remote facility and each facility listed in paragraph (e) of this section; (f...
The application of remote sensing techniques to inter and intra urban analysis
NASA Technical Reports Server (NTRS)
Horton, F. E.
1972-01-01
This is an effort to assess the applicability of air and spaceborne photography toward providing data inputs to urban and regional planning, management, and research. Through evaluation of remote sensing inputs to urban change detection systems, analyzing an effort to replicate an existing urban land use data file using remotely sensed data, estimating population and dwelling units from imagery, and by identifying and evaluating a system of urban places ultilizing space photography, it was determined that remote sensing can provide data concerning land use, changes in commercial structure, data for transportation planning, housing quality, residential dynamics, and population density.
Bilevel shared control for teleoperators
NASA Technical Reports Server (NTRS)
Hayati, Samad A. (Inventor); Venkataraman, Subramanian T. (Inventor)
1992-01-01
A shared system is disclosed for robot control including integration of the human and autonomous input modalities for an improved control. Autonomously planned motion trajectories are modified by a teleoperator to track unmodelled target motions, while nominal teleoperator motions are modified through compliance to accommodate geometric errors autonomously in the latter. A hierarchical shared system intelligently shares control over a remote robot between the autonomous and teleoperative portions of an overall control system. Architecture is hierarchical, and consists of two levels. The top level represents the task level, while the bottom, the execution level. In space applications, the performance of pure teleoperation systems depend significantly on the communication time delays between the local and the remote sites. Selection/mixing matrices are provided with entries which reflect how each input's signals modality is weighted. The shared control minimizes the detrimental effects caused by these time delays between earth and space.
COSMO-SkyMed and GIS applications
NASA Astrophysics Data System (ADS)
Milillo, Pietro; Sole, Aurelia; Serio, Carmine
2013-04-01
Geographic Information Systems (GIS) and Remote Sensing have become key technology tools for the collection, storage and analysis of spatially referenced data. Industries that utilise these spatial technologies include agriculture, forestry, mining, market research as well as the environmental analysis . Synthetic Aperture Radar (SAR) is a coherent active sensor operating in the microwave band which exploits relative motion between antenna and target in order to obtain a finer spatial resolution in the flight direction exploiting the Doppler effect. SAR have wide applications in Remote Sensing such as cartography, surface deformation detection, forest cover mapping, urban planning, disasters monitoring , surveillance etc… The utilization of satellite remote sensing and GIS technology for this applications has proven to be a powerful and effective tool for environmental monitoring. Remote sensing techniques are often less costly and time-consuming for large geographic areas compared to conventional methods, moreover GIS technology provides a flexible environment for, analyzing and displaying digital data from various sources necessary for classification, change detection and database development. The aim of this work si to illustrate the potential of COSMO-SkyMed data and SAR applications in a GIS environment, in particular a demostration of the operational use of COSMO-SkyMed SAR data and GIS in real cases will be provided for what concern DEM validation, river basin estimation, flood mapping and landslide monitoring.
High-resolution remotely sensed small target detection by imitating fly visual perception mechanism.
Huang, Fengchen; Xu, Lizhong; Li, Min; Tang, Min
2012-01-01
The difficulty and limitation of small target detection methods for high-resolution remote sensing data have been a recent research hot spot. Inspired by the information capture and processing theory of fly visual system, this paper endeavors to construct a characterized model of information perception and make use of the advantages of fast and accurate small target detection under complex varied nature environment. The proposed model forms a theoretical basis of small target detection for high-resolution remote sensing data. After the comparison of prevailing simulation mechanism behind fly visual systems, we propose a fly-imitated visual system method of information processing for high-resolution remote sensing data. A small target detector and corresponding detection algorithm are designed by simulating the mechanism of information acquisition, compression, and fusion of fly visual system and the function of pool cell and the character of nonlinear self-adaption. Experiments verify the feasibility and rationality of the proposed small target detection model and fly-imitated visual perception method.
Natural resource inventory for urban planning utilizing remote sensing techniques
NASA Technical Reports Server (NTRS)
Foster, K. E.; Mackey, P. F.; Bonham, C. D.
1972-01-01
Remote sensing techniques were applied to the lower Pantano Wash area to acquire data for planning an ecological balance between the expanding Tucson metropolitan area and its environment. The types and distribution of vegetation are discussed along with the hydrologic aspects of the Wash.
NASA Technical Reports Server (NTRS)
Grant, W. B.; Hinkley, E. D.
1984-01-01
Remote sensor uses laser radiation backscattered from natural targets. He/Ne Laser System for remote scanning of Methane leaks employs topographic target to scatter light to receiver near laser transmitter. Apparatus powered by 1.5kW generator transported to field sites and pointed at suspected methane leaks. Used for remote detection of natural-gas leaks and locating methane emissions in landfill sites.
NASA Technical Reports Server (NTRS)
1975-01-01
The organization, objectives, and accomplishments of the panel on Land Use Planning are reported. Technology developments, and projected developments are discussed along with anticipated information requirements. The issues for users, recommended remote sensing programs, and space systems are presented. It was found that remote sensing systems are useful in future land use planning. It is recommended that a change detection system for monitoring land use and critical environmental areas be developed by 1979.
The application of remote sensing to the development and formulation of hydrologic planning models
NASA Technical Reports Server (NTRS)
Castruccio, P. A.; Loats, H. L., Jr.; Fowler, T. R.; Frech, S. L.
1975-01-01
Regional hydrologic planning models built upon remote sensing capabilities and suited for ungaged watersheds are developed. The effectiveness of such models is determined along with which parameters impact most the minimization of errors associated with the prediction of peak flow events (floods). Emphasis is placed on peak flood prediction because of its significance to users for the purpose of planning, sizing, and designing waterworks.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., climate, and related crop monitoring activities. (d) Remote sensing. (1) Provide technical assistance, coordination, and guidance to Department agencies in planning, developing, and carrying out satellite remote... administrative, management, and budget information relating to Department's remote sensing activities. ...
Next Generation Remote Agent Planner
NASA Technical Reports Server (NTRS)
Jonsson, Ari K.; Muscettola, Nicola; Morris, Paul H.; Rajan, Kanna
1999-01-01
In May 1999, as part of a unique technology validation experiment onboard the Deep Space One spacecraft, the Remote Agent became the first complete autonomous spacecraft control architecture to run as flight software onboard an active spacecraft. As one of the three components of the architecture, the Remote Agent Planner had the task of laying out the course of action to be taken, which included activities such as turning, thrusting, data gathering, and communicating. Building on the successful approach developed for the Remote Agent Planner, the Next Generation Remote Agent Planner is a completely redesigned and reimplemented version of the planner. The new system provides all the key capabilities of the original planner, while adding functionality, improving performance and providing a modular and extendible implementation. The goal of this ongoing project is to develop a system that provides both a basis for future applications and a framework for further research in the area of autonomous planning for spacecraft. In this article, we present an introductory overview of the Next Generation Remote Agent Planner. We present a new and simplified definition of the planning problem, describe the basics of the planning process, lay out the new system design and examine the functionality of the core reasoning module.
Commercialization of the land remote sensing system: An examination of mechanisms and issues
NASA Technical Reports Server (NTRS)
Cauley, J. K.; Gaelick, C.; Greenberg, J. S.; Logsdon, J.; Monk, T.
1983-01-01
In September 1982 the Secretary of Commerce was authorized (by Title II of H.R. 5890 of the 97th Congress) to plan and provide for the management and operation of the civil land remote sensing satellite systems, to provide for user fees, and to plan for the transfer of the ownership and operation of future civil operational land remote sensing satellite systems to the private sector. As part of the planning for transfer, a number of approaches were to be compared including wholly private ownership and operation of the system by an entity competitively selected, mixed government/private ownership and operation, and a legislatively-chartered privately-owned corporation. The results of an analysis and comparison of a limited number of financial and organizational approaches for either transfer of the ownership and operation of the civil operational land remote sensing program to the private sector or government retention are presented.
System architecture for asynchronous multi-processor robotic control system
NASA Technical Reports Server (NTRS)
Steele, Robert D.; Long, Mark; Backes, Paul
1993-01-01
The architecture for the Modular Telerobot Task Execution System (MOTES) as implemented in the Supervisory Telerobotics (STELER) Laboratory is described. MOTES is the software component of the remote site of a local-remote telerobotic system which is being developed for NASA for space applications, in particular Space Station Freedom applications. The system is being developed to provide control and supervised autonomous control to support both space based operation and ground-remote control with time delay. The local-remote architecture places task planning responsibilities at the local site and task execution responsibilities at the remote site. This separation allows the remote site to be designed to optimize task execution capability within a limited computational environment such as is expected in flight systems. The local site task planning system could be placed on the ground where few computational limitations are expected. MOTES is written in the Ada programming language for a multiprocessor environment.
Allegany Ballistics Lab: sensor test target system
NASA Astrophysics Data System (ADS)
Eaton, Deran S.
2011-06-01
Leveraging the Naval Surface Warfare Center, Indian Head Division's historical experience in weapon simulation, Naval Sea Systems Command commissioned development of a remote-controlled, digitally programmable Sensor Test Target as part of a modern, outdoor hardware-in-the-loop test system for ordnance-related guidance, navigation and control systems. The overall Target system design invokes a sciences-based, "design of automated experiments" approach meant to close the logistical distance between sensor engineering and developmental T&E in outdoor conditions over useful real world distances. This enables operating modes that employ broad spectrum electromagnetic energy in many a desired combination, variably generated using a Jet Engine Simulator, a multispectral infrared emitter array, optically enhanced incandescent Flare Simulators, Emitter/Detector mounts, and an RF corner reflector kit. As assembled, the recently tested Sensor Test Target prototype being presented can capably provide a full array of useful RF and infrared target source simulations for RDT&E use with developmental and existing sensors. Certain Target technologies are patent pending, with potential spinoffs in aviation, metallurgy and biofuels processing, while others are variations on well-established technology. The Sensor Test Target System is planned for extended installation at Allegany Ballistics Laboratory (Rocket Center, WV).
Remote Science Operation Center research
NASA Technical Reports Server (NTRS)
Banks, P. M.
1986-01-01
Progress in the following areas is discussed: the design, planning and operation of a remote science payload operations control center; design and planning of a data link via satellite; and the design and prototyping of an advanced workstation environment for multi-media (3-D computer aided design/computer aided engineering, voice, video, text) communications and operations.
SECOND FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP627) WARM LABORATORY ...
SECOND FLOOR PLAN OF REMOTE ANALYTICAL FACILITY (CPP-627) WARM LABORATORY ROOM, DECONTAMINATION ROOM, HOT CHEMISTRY LABORATORY, AND MULTICURIE CELL ROOM. INL DRAWING NUMBER 200-0627-00-098-105066. ALTERNATE ID NUMBER 4272-14-103. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
Remote sensing for restoration planning: how the big picture can inform stakeholders
Susan Cordell; Erin J. Questad; Gregory P. Asner; Kealoha M. Kinney; Jarrod M. Thaxton; Amanda Uowolo; Sam Brooks; Mark W. Chynoweth
2016-01-01
The use of remote sensing in ecosystem management has transformed how land managers, practitioners, and policymakers evaluate ecosystem loss, gain, and change at multiple spatial and temporal scales. Less developed is the use of these spatial tools for planning, implementing, and evaluating ecosystem restoration projects and especially so in multifunctional...
NASA Astrophysics Data System (ADS)
Ravela, S.
2014-12-01
Mapping the structure of localized atmospheric phenomena, from sea breeze and shallow cumuli to thunderstorms and hurricanes, is of scientific interest. Low-cost small unmanned aircraft systems (sUAS) open the possibility for autonomous "instruments" to map important small-scale phenomena (kilometers, hours) and serve as a testbed for for much larger scales. Localized phenomena viewed as coherent structures interacting with their large-scale environment are difficult to map. As simple simulations show, naive Eulerian or Lagrangian strategies can fail in mapping localized phenomena. Model-based techniques are needed. Meteorological targeting, where supplementary UAS measurements additionally constrain numerical models is promising, but may require many primary measurements to be successful. We propose a new, data-driven, field-operable, cooperative autonomous observing system (CAOS) framework. A remote observer (on a UAS) tracks tracers to identify an apparent motion model over short timescales. Motion-based predictions seed MCMC flight plans for other UAS to gather in-situ data, which is fused with the remote measurements to produce maps. The tracking and mapping cycles repeat, and maps can be assimilated into numerical models for longer term forecasting. CAOS has been applied to study small scale emissions. At Popocatepetl, in collaboration with CENAPRED and IPN, it is being applied map the plume using remote IR/UV UAS and in-situ SO2 sensing, with additional plans for water vapor, the electric field and ash. The combination of sUAS with autonomy appears to be highly promising methodology for environmental mapping. For more information, please visit http://caos.mit.edu
Lin, Ivan; Goodale, Belinda; Villanueva, Karen; Spitz, Suzanne
2007-10-01
Multidisciplinary therapy assistants (TAs) are an emerging but poorly understood rural and remote allied health workforce. As an aid to planning and support of TA programs in rural and remote Western Australia (WA), the number, locality and a range of practice variables of rural and remote TAs in WA were determined. Survey questionnaire. Rural and remote regions of WA. Allied health professionals, TAs, TA coordinators and managers of allied health in country regions of WA. Information was gathered on TA location, qualifications, employing organisation, allied health disciplines TAs work with, supervision practices, role and work scenarios. Ninety-eight TAs were identified in rural and remote WA with a further 23 vacant TA positions. Most TAs work across multiple allied health disciplines, half are located at a distance to their supervisors, and very few have a recognised qualification for their TA work. A substantial rural and remote TA workforce was found. A range of TA characteristics were identified that have considerable relevance to the future planning of TA initiatives in rural and remote WA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santoro, J; Witten, M; Haas, J
Purpose: Brachytherapy has been the standard of care for cervical cancer for 100 years. The treatment can be administered using an HDR (high dose rate) remote afterloader with a {sup 192}Ir source in an outpatient setting, a PDR afterloader with a {sup 192}Ir source, or with LDR manually loaded or a remote afterloader utilizing {sup 192}Ir or {sup 137}Cs sources in an inpatient setting. The procedure involves the placement of a tandem and ovoid, tandem and ring, or tandem and cylinder applicator in an operating room setting with the patient under general anesthesia. Inaccuracies introduced into the process occurring betweenmore » placement of the applicator and actual delivery can introduce uncertainty into the actual dose delivered to the tumor and critical organs. In this study we seek to investigate the dosimetric difference between an SBRT-based radiotherapy boost and conventional Brachytherapy in treating cervical cancer. Methods: Five HDR tandem and ovoid patients were planned using the Brachyvision treatment planning system and treated in four fractions using the Varian Varisource afterloader (Varian Medical Systems). For the same cohort, the patient planning CTs were imported into Multiplan (Accuray Inc) and a dose/fractionation-equivalent CyberKnife SBRT plan was retrospectively generated. Dosimetric quantities such as target/CTV D90, V90, D2cc for rectum, bladder, and bowel were measured and compared between the two modalities. Results: The CTV D90 for the tandem and ovoid was 2540cGy (90.7%) and 3009cGy (107.5%) for the CyberKnife plan. The D2cc for the rectum, bladder, and bowel were 1576cGy, 1641cGy, and 996cGy for the tandem and ovoid and 1374cGy, 1564cGy, and 1547cGy for CyberKnife. Conclusion: The D2cc doses to critical structures are comparable in both modalities. The CTV coverage is far superior for the CyberKnife plan. The dose distribution for CyberKnife has the advantage of increased conformality and lower maximum CTV dose.« less
Planning applications of remote sensing in Arizona
NASA Technical Reports Server (NTRS)
Clark, R. B.; Mouat, D. A.
1976-01-01
Planners in Arizona have been experiencing the inevitable problems which occur when large areas of rural and remote lands are converted to urban-recreational uses over a relatively short period of time. Among the planning problems in the state are unplanned and illegal subdivisions, surburban sprawl, surface hydrologic problems related to ephemeral stream overflow, rapidly changing land use patterns, large size of administrative units, and lack of land use inventory data upon which to base planning decisions.
Autonomous Rover Traverse and Precise Arm Placement on Remotely Designated Targets
NASA Technical Reports Server (NTRS)
Nesnas, Issa A.; Pivtoraiko, Mihail N.; Kelly, Alonzo; Fleder, Michael
2012-01-01
This software controls a rover platform to traverse rocky terrain autonomously, plan paths, and avoid obstacles using its stereo hazard and navigation cameras. It does so while continuously tracking a target of interest selected from 10 20 m away. The rover drives and tracks the target until it reaches the vicinity of the target. The rover then positions itself to approach the target, deploys its robotic arm, and places the end effector instrument on the designated target to within 2-3-cm accuracy of the originally selected target. This software features continuous navigation in a fairly rocky field in an outdoor environment and the ability to enable the rover to avoid large rocks and traverse over smaller ones. Using point-and-click mouse commands, a scientist designates targets in the initial imagery acquired from the rover s mast cameras. The navigation software uses stereo imaging, traversability analysis, path planning, trajectory generation, and trajectory execution. It also includes visual target tracking of a designated target selected from 10 m away while continuously navigating the rocky terrain. Improvements in this design include steering while driving, which uses continuous curvature paths. There are also several improvements to the traversability analyzer, including improved data fusion of traversability maps that result from pose estimation uncertainties, dealing with boundary effects to enable tighter maneuvers, and handling a wider range of obstacles. This work advances what has been previously developed and integrated on the Mars Exploration Rovers by using algorithms that are capable of traversing more rock-dense terrains, enabling tight, thread-the-needle maneuvers. These algorithms were integrated on the newly refurbished Athena Mars research rover, and were fielded in the JPL Mars Yard. Forty-three runs were conducted with targets at distances ranging from 5 to 15 m, and a success rate of 93% was achieved for placement of the instrument within 2-3 cm of the target.
Zou, Zhengxia; Shi, Zhenwei
2018-03-01
We propose a new paradigm for target detection in high resolution aerial remote sensing images under small target priors. Previous remote sensing target detection methods frame the detection as learning of detection model + inference of class-label and bounding-box coordinates. Instead, we formulate it from a Bayesian view that at inference stage, the detection model is adaptively updated to maximize its posterior that is determined by both training and observation. We call this paradigm "random access memories (RAM)." In this paradigm, "Memories" can be interpreted as any model distribution learned from training data and "random access" means accessing memories and randomly adjusting the model at detection phase to obtain better adaptivity to any unseen distribution of test data. By leveraging some latest detection techniques e.g., deep Convolutional Neural Networks and multi-scale anchors, experimental results on a public remote sensing target detection data set show our method outperforms several other state of the art methods. We also introduce a new data set "LEarning, VIsion and Remote sensing laboratory (LEVIR)", which is one order of magnitude larger than other data sets of this field. LEVIR consists of a large set of Google Earth images, with over 22 k images and 10 k independently labeled targets. RAM gives noticeable upgrade of accuracy (an mean average precision improvement of 1% ~ 4%) of our baseline detectors with acceptable computational overhead.
Remote sensing techniques aid in preattack planning for fire management
Lucy Anne Salazar
1982-01-01
Remote sensing techniques were investigated as an alternative for documenting selected prettack fire planning information. Locations of fuel models, road systems, and water sources were recorded by Landsat satellite imagery and aerial photography for a portion of the Six Rivers National Forest in northwestern California. The two fuel model groups used were from the...
Benefits from remote sensing data utilization in urban planning processes and system recommendations
NASA Technical Reports Server (NTRS)
Mallon, H. J.; Howard, J. Y.
1972-01-01
The benefits of utilizing remote sensor data in the urban planning process of the Metropolitan Washington Council of Governments are investigated. An evaluation of sensor requirements, a description/ comparison of costs, benefits, levels of accuracy, ease of attainment, and frequency of update possible using sensor versus traditional data acquisition techniques are discussed.
The application of remote sensing to the development and formulation of hydrologic planning models
NASA Technical Reports Server (NTRS)
Castruccio, P. A.; Loats, H. L., Jr.; Fowler, T. R.
1976-01-01
A hydrologic planning model is developed based on remotely sensed inputs. Data from LANDSAT 1 are used to supply the model's quantitative parameters and coefficients. The use of LANDSAT data as information input to all categories of hydrologic models requiring quantitative surface parameters for their effects functioning is also investigated.
Dust Removal on Mars Using Laser-Induced Breakdown Spectroscopy
NASA Technical Reports Server (NTRS)
Graff, T. G.; Morris, R. V.; Clegg, S. M.; Wiens, R. C.; Anderson, R. B.
2011-01-01
Dust coatings on the surface of Mars complicate and, if sufficiently thick, mask the spectral characteristics and compositional determination of underlying material from in situ and remote sensing instrumentation. The Laser-Induced Breakdown Spectroscopy (LIBS) portion of the Chemistry & Camera (ChemCam) instrument, aboard the Mars Science Laboratory (MSL) rover, will be the first active remote sensing technique deployed on Mars able to remove dust. ChemCam utilizes a 5 ns pulsed 1067 nm high-powered laser focused to less than 400 m diameter on targets at distances up to 7 m [1,2]. With multiple laser pulses, dust and weathering coatings can be remotely analyzed and potentially removed using this technique [2,3]. A typical LIBS measurement during MSL surface operations is planned to consist of 50 laser pulses at 14 mJ, with the first 5 to 10 pulses used to analyze as well as remove any surface coating. Additionally, ChemCam's Remote Micro-Imager (RMI) is capable of resolving 200 m details at a distance of 2 m, or 1 mm at 10 m [1,4]. In this study, we report on initial laboratory experiments conducted to characterize the removal of dust coatings using similar LIBS parameters as ChemCam under Mars-like conditions. These experiments serve to better understand the removal of surface dust using LIBS and to facilitate the analysis of ChemCam LIBS spectral data and RMI images.
NASA Astrophysics Data System (ADS)
Gonulalan, Cansu
In recent years, there has been an increasing demand for applications to monitor the targets related to land-use, using remote sensing images. Advances in remote sensing satellites give rise to the research in this area. Many applications ranging from urban growth planning to homeland security have already used the algorithms for automated object recognition from remote sensing imagery. However, they have still problems such as low accuracy on detection of targets, specific algorithms for a specific area etc. In this thesis, we focus on an automatic approach to classify and detect building foot-prints, road networks and vegetation areas. The automatic interpretation of visual data is a comprehensive task in computer vision field. The machine learning approaches improve the capability of classification in an intelligent way. We propose a method, which has high accuracy on detection and classification. The multi class classification is developed for detecting multiple objects. We present an AdaBoost-based approach along with the supervised learning algorithm. The combi- nation of AdaBoost with "Attentional Cascade" is adopted from Viola and Jones [1]. This combination decreases the computation time and gives opportunity to real time applications. For the feature extraction step, our contribution is to combine Haar-like features that include corner, rectangle and Gabor. Among all features, AdaBoost selects only critical features and generates in extremely efficient cascade structured classifier. Finally, we present and evaluate our experimental results. The overall system is tested and high performance of detection is achieved. The precision rate of the final multi-class classifier is over 98%.
NASA Astrophysics Data System (ADS)
McKellip, Rodney; Yuan, Ding; Graham, William; Holland, Donald E.; Stone, David; Walser, William E.; Mao, Chengye
1997-06-01
The number of available spaceborne and airborne systems will dramatically increase over the next few years. A common systematic approach toward verification of these systems will become important for comparing the systems' operational performance. The Commercial Remote Sensing Program at the John C. Stennis Space Center (SSC) in Mississippi has developed design requirements for a remote sensing verification target range to provide a means to evaluate spatial, spectral, and radiometric performance of optical digital remote sensing systems. The verification target range consists of spatial, spectral, and radiometric targets painted on a 150- by 150-meter concrete pad located at SSC. The design criteria for this target range are based upon work over a smaller, prototypical target range at SSC during 1996. This paper outlines the purpose and design of the verification target range based upon an understanding of the systems to be evaluated as well as data analysis results from the prototypical target range.
Planning and Implementation of Remote Sensing Experiments.
Contents: TEKTITE II experiment-upwelling detection (NASA Mx 138); Design of oceanographic experiments (Gulf of Mexico, Mx 159); Design of oceanographic experiments (Gulf of Mexico, Mx 165); Experiments on thermal pollution; Remote sensing newsletter; Symposium on remote sensing in marine biology and fishery resources.
Calibration of the MSL/ChemCam/LIBS Remote Sensing Composition Instrument
NASA Technical Reports Server (NTRS)
Wiens, R. C.; Maurice S.; Bender, S.; Barraclough, B. L.; Cousin, A.; Forni, O.; Ollila, A.; Newsom, H.; Vaniman, D.; Clegg, S.;
2011-01-01
The ChemCam instrument suite on board the 2011 Mars Science Laboratory (MSL) Rover, Curiosity, will provide remote-sensing composition information for rock and soil samples within seven meters of the rover using a laser-induced breakdown spectroscopy (LIBS) system, and will provide context imaging with a resolution of 0.10 mradians using the remote micro-imager (RMI) camera. The high resolution is needed to image the small analysis footprint of the LIBS system, at 0.2-0.6 mm diameter. This fine scale analytical capability will enable remote probing of stratigraphic layers or other small features the size of "blueberries" or smaller. ChemCam is intended for rapid survey analyses within 7 m of the rover, with each measurement taking less than 6 minutes. Repeated laser pulses remove dust coatings and provide depth profiles through weathering layers, allowing detailed investigation of rock varnish features as well as analysis of the underlying pristine rock composition. The LIBS technique uses brief laser pulses greater than 10 MW/square mm to ablate and electrically excite material from the sample of interest. The plasma emits photons with wavelengths characteristic of the elements present in the material, permitting detection and quantification of nearly all elements, including the light elements H, Li, Be, B, C, N, O. ChemCam LIBS projects 14 mJ of 1067 nm photons on target and covers a spectral range of 240-850 nm with resolutions between 0.15 and 0.60 nm FWHM. The Nd:KGW laser is passively cooled and is tuned to provide maximum power output from -10 to 0 C, though it can operate at 20% degraded energy output at room temperature. Preliminary calibrations were carried out on the flight model (FM) in 2008. However, the detectors were replaced in 2009, and final calibrations occurred in April-June, 2010. This presentation describes the LIBS calibration and characterization procedures and results, and details plans for final analyses during rover system thermal testing, planned for early March.
Comprehensive Calibration and Validation Site for Information Remote Sensing
NASA Astrophysics Data System (ADS)
Li, C. R.; Tang, L. L.; Ma, L. L.; Zhou, Y. S.; Gao, C. X.; Wang, N.; Li, X. H.; Wang, X. H.; Zhu, X. H.
2015-04-01
As a naturally part of information technology, Remote Sensing (RS) is strongly required to provide very precise and accurate information product to serve industry, academy and the public at this information economic era. To meet the needs of high quality RS product, building a fully functional and advanced calibration system, including measuring instruments, measuring approaches and target site become extremely important. Supported by MOST of China via national plan, great progress has been made to construct a comprehensive calibration and validation (Cal&Val) site, which integrates most functions of RS sensor aviation testing, EO satellite on-orbit caration and performance assessment and RS product validation at this site located in Baotou, 600km west of Beijing. The site is equipped with various artificial standard targets, including portable and permanent targets, which supports for long-term calibration and validation. A number of fine-designed ground measuring instruments and airborne standard sensors are developed for realizing high-accuracy stepwise validation, an approach in avoiding or reducing uncertainties caused from nonsynchronized measurement. As part of contribution to worldwide Cal&Val study coordinated by CEOS-WGCV, Baotou site is offering its support to Radiometric Calibration Network of Automated Instruments (RadCalNet), with an aim of providing demonstrated global standard automated radiometric calibration service in cooperation with ESA, NASA, CNES and NPL. Furthermore, several Cal&Val campaigns have been performed during the past years to calibrate and validate the spaceborne/airborne optical and SAR sensors, and the results of some typical demonstration are discussed in this study.
Autonomous target recognition using remotely sensed surface vibration measurements
NASA Astrophysics Data System (ADS)
Geurts, James; Ruck, Dennis W.; Rogers, Steven K.; Oxley, Mark E.; Barr, Dallas N.
1993-09-01
The remotely measured surface vibration signatures of tactical military ground vehicles are investigated for use in target classification and identification friend or foe (IFF) systems. The use of remote surface vibration sensing by a laser radar reduces the effects of partial occlusion, concealment, and camouflage experienced by automatic target recognition systems using traditional imagery in a tactical battlefield environment. Linear Predictive Coding (LPC) efficiently represents the vibration signatures and nearest neighbor classifiers exploit the LPC feature set using a variety of distortion metrics. Nearest neighbor classifiers achieve an 88 percent classification rate in an eight class problem, representing a classification performance increase of thirty percent from previous efforts. A novel confidence figure of merit is implemented to attain a 100 percent classification rate with less than 60 percent rejection. The high classification rates are achieved on a target set which would pose significant problems to traditional image-based recognition systems. The targets are presented to the sensor in a variety of aspects and engine speeds at a range of 1 kilometer. The classification rates achieved demonstrate the benefits of using remote vibration measurement in a ground IFF system. The signature modeling and classification system can also be used to identify rotary and fixed-wing targets.
NASA Technical Reports Server (NTRS)
Castruccio, P. A.; Loats, H. L., Jr.; Fowler, T. R.
1977-01-01
Methods for the reduction of remotely sensed data and its application in hydrologic land use assessment, surface water inventory, and soil property studies are presented. LANDSAT data is used to provide quantitative parameters and coefficients to construct watershed transfer functions for a hydrologic planning model aimed at estimating peak outflow from rainfall inputs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branco, D; Taylor, P; Frank, S
2016-06-15
Purpose: To design a Head and Neck (H&N) anthropomorphic QA phantom that the Imaging and Radiation Oncology Core Houston (IROC-H) can use to verify the quality of intensity modulated proton therapy (IMPT) H&N treatments for institutions participating in NCI clinical trials. Methods: The phantom was created to serve as a remote auditing tool for IROC-H to evaluate an institution’s IMPT planning and delivery abilities. The design was based on the composition, size, and geometry of a generalized oropharyngeal tumor and contains critical structures (parotids and spinal cord). Radiochromic film in the axial and sagittal planes and thermoluminescent dosimeters (TLD)-100 capsulesmore » were embedded in the phantom and used to perform the dose delivery evaluation. A CT simulation was used to create a passive scatter and a spot scanning treatment plan with typical clinical constraints for H&N cancer. The IMPT plan was approved by a radiation oncologist and the phantom was irradiated multiple times. The measured dose distribution using a 7%/4mm gamma analysis (85% of pixels passing) and point doses were compared with the treatment planning system calculations. Results: The designed phantom could not achieve the target dose prescription and organ at risk dose constraints with the passive scatter treatment plan. The target prescription dose could be met but not the parotid dose constraint. The average TLD point dose ratio in the target was 0.975, well within the 5% acceptance criterion. The dose distribution analysis using various acceptance criteria, 5%/4mm, 5%/3mm, 7%/4mm and 7%/5mm, had average pixel passing rates of 85.9%, 81.8%, 89.6% and 91.6%, and respectively. Conclusion: An anthropomorphic IMPT H&N phantom was designed that can assess the dose delivery of proton sites wishing to participate in clinical trials using a 5% TLD dose and 7%/4mm gamma analysis acceptance criteria.« less
Sustainable transport planning using GIS and remote sensing: an integrated approach
NASA Astrophysics Data System (ADS)
Giorgoudis, Marios D.; Hadjimitsis, Diofantos G.; Shiftan, Yoram
2014-08-01
The main advantage of using GIS is its ability to access and analyze spatially distributed data. The applications of GIS to transportation can be viewed as involving either on data retrieval; data integrator; or data analysis. The use of remote sensing can assist the retrieval of land use changes. Indeed, the integration of GIS and remote sensing will be used to fill the gap in the smart transport planning. A four step research is going to be done in order to try to integrate the usage of GIS and remote sensing to sustainable transport planning. The proposed research will be held in the city of Limassol, Cyprus. The data that are going to be used are data that are going to be collected through questionnaires, and other available data from the Cyprus Public Works Department and from the Remote Sensing Laboratory and Geo-Environment Research Lab of the Cyprus University of Technology. Overall, statistical analysis and market segmentation of data will be done, the land usage will be examined, and a scenario building on mode choice will be held. This paper presents an overview of the methodology that will be adopted.
NASA Astrophysics Data System (ADS)
Song, Z. N.; Sui, H. G.
2018-04-01
High resolution remote sensing images are bearing the important strategic information, especially finding some time-sensitive-targets quickly, like airplanes, ships, and cars. Most of time the problem firstly we face is how to rapidly judge whether a particular target is included in a large random remote sensing image, instead of detecting them on a given image. The problem of time-sensitive-targets target finding in a huge image is a great challenge: 1) Complex background leads to high loss and false alarms in tiny object detection in a large-scale images. 2) Unlike traditional image retrieval, what we need to do is not just compare the similarity of image blocks, but quickly find specific targets in a huge image. In this paper, taking the target of airplane as an example, presents an effective method for searching aircraft targets in large scale optical remote sensing images. Firstly, we used an improved visual attention model utilizes salience detection and line segment detector to quickly locate suspected regions in a large and complicated remote sensing image. Then for each region, without region proposal method, a single neural network predicts bounding boxes and class probabilities directly from full images in one evaluation is adopted to search small airplane objects. Unlike sliding window and region proposal-based techniques, we can do entire image (region) during training and test time so it implicitly encodes contextual information about classes as well as their appearance. Experimental results show the proposed method is quickly identify airplanes in large-scale images.
NASA Astrophysics Data System (ADS)
Christenson, Elizabeth; Serre, Marc
2015-10-01
North Carolina (NC) is the second largest producer of hogs in the United States with Duplin county, NC having the densest population of hogs in the world. In NC, liquid swine manure is generally stored in open-air lagoons and sprayed onto sprayfields with sprinkler systems to be used as fertilizer for crops. Swine factory farms, termed concentrated animal feeding operations (CAFOs), are regulated by the Department of Environment and Natural Resources (DENR) based on nutrient management plans (NMPs) having balanced plant available nitrogen (PAN). The estimated PAN in liquid manure being sprayed must be less than the estimated PAN needed crops during irrigation. Estimates for PAN needed by crops are dependent on crop and soil types. Objectives of this research were to develop a new, time-efficient method to identify PAN needed by crops on Duplin county sprayfields for years 2010-2014. Using remote sensing data instead of NMP data to identify PAN needed by crops allowed calendar year identification of which crops were grown on sprayfields instead of a five-year range of values. Although permitted data have more detailed crop information than remotely sensed data, identification of PAN needed by crops using remotely sensed data is more time efficient, internally consistent, easily publically accessible, and has the ability to identify annual changes in PAN on sprayfields. Once PAN needed by crops is known, remote sensing can be used to quantify PAN at other spatial scales, such as sub-watershed levels, and can be used to inform targeted water quality monitoring of swine CAFOs.
NASA Astrophysics Data System (ADS)
Ida, Mizuho; Chida, Teruo; Furuya, Kazuyuki; Wakai, Eiichi; Nakamura, Hiroo; Sugimoto, Masayoshi
2009-04-01
For long time operation of a liquid lithium target of the International Fusion Materials Irradiation Facility, annual replacement of a back-wall, a part of the flow channel, is planned, since the target suffers neutron damage of more than 50 dpa/fpy. Considering irradiation/activation conditions, remote weld on stainless steel 316L between a back-wall and a target assembly was employed. Furthermore, dissimilar weld between the 316L and a reduced-activation ferritic/martensitic steel F82H in the back-wall was employed. The objective of this study is to clarify structures and materials of the back-wall with acceptable thermal-stress under nuclear heating. Thermal-stress analysis was done using a code ABAQUS and data of the nuclear heating. As a result, thermal-stress in the back-wall is acceptable level, if thickness of the stress-mitigation part is more than 5 mm. With results of the analysis, necessity of material data for F82H and 316L under conditions of irradiation tests and mechanical tests are clarified.
Resource analysis applications in Michigan. [NASA remote sensing
NASA Technical Reports Server (NTRS)
Schar, S. W.; Enslin, W. R.; Sattinger, I. J.; Robinson, J. G.; Hosford, K. R.; Fellows, R. S.; Raad, J. H.
1974-01-01
During the past two years, available NASA imagery has been applied to a broad spectrum of problems of concern to Michigan-based agencies. These demonstrations include the testing of remote sensing for the purposes of (1) highway corridor planning and impact assessments, (2) game management-area information bases, (3) multi-agency river basin planning, (4) timber resource management information systems, (5) agricultural land reservation policies, and (6) shoreline flooding damage assessment. In addition, cost accounting procedures have been developed for evaluating the relative costs of utilizing remote sensing in land cover and land use analysis data collection procedures.
NASA Technical Reports Server (NTRS)
1981-01-01
The objectives, procedures, accomplishments, plans, and ultimate uses of information from current projects at the Mississippi Remote Sensing Center are discussed for the following applications: (1) land use planning; (2) strip mine inventory and reclamation; (3) biological management for white tailed deer; (4) forest habitats in potential lignite areas; (5) change discrimination in gravel operations; (6) discrimination of freshwater wetlands for inventory and monitoring; and (7) remote sensing data analysis support systems. The initiation of a conceptual design for a LANDSAT based, state wide information system is proposed.
Western Regional Remote Sensing Conference Proceedings, 1981
NASA Technical Reports Server (NTRS)
1981-01-01
Diverse applications of LANDSAT data, problem solutions, and operational goals are described by remote sensing users from 14 western states. The proposed FY82 federal budget reductions for technology transfer activities and the planned transition of the operational remote sensing system to NOAA's supervision are also considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielsen, Roy S.
2015-02-17
New generator technology project is driven by the need to be able to remotely deploy generator technology where it is needed, when it is needed. Both the military and aid programs that provide assistance after disasters could use the ability to deploy energy generation that fits the needs of the situation. Currently, pre-specified generators are deployed, sometime more than half way around the world to provide electricity. Through our Phase-I to Phase III DARPA grant, we will provide a mechanism where a 3d print station and raw materials could be shipped to a deployment site and remotely deployed personnel. Thesemore » remote personnel can collaborate with engineers at a home location where 3d print plans can be optimized for the remote purpose. The plans can then be sent electronically to the remote location for printing, much like NASA sent the plans for a socket wrench to the International Space Station for printing in . If multiple generators need to be deployed at different remote locations, within miles of each other the printer rig can be moved to print the generators where they are needed. 3d printing is growing in the field of manufacturing. 3d printing has matured to the point where many types of materials are now available for many types of manufacturing. Both magnetic and electrically conductive material materials have recently been developed which can now lead to 3d printing of engines and generators. Our project will provide a successful printer rig that can be remotely deployed, to print a generator design in the field as well as provide a process for deploying the printed generator as well. This Systems Engineering Management Plan(SEMP) will provide the planning required for a Phase I DARPA grant that may also include goals for Phase II and Phase II grants. The SEMP provides a proposed project schedule, references, system engineering processes, specialty engineering system deployment and product support sections. Each section will state how our company will provide the necessary services to make this project succeed.« less
Study and development of techniques for automatic control of remote manipulators
NASA Technical Reports Server (NTRS)
Shaket, E.; Leal, A.
1976-01-01
An overall conceptual design for an autonomous control system of remote manipulators which utilizes feedback was constructed. The system consists of a description of the high-level capabilities of a model from which design algorithms are constructed. The autonomous capability is achieved through automatic planning and locally controlled execution of the plans. The operator gives his commands in high level task-oriented terms. The system transforms these commands into a plan. It uses built-in procedural knowledge of the problem domain and an internal model of the current state of the world.
Possible methods for distinguishing icebergs from ships by aerial remote sensing
NASA Technical Reports Server (NTRS)
Howes, W. L.
1979-01-01
The simplest methods for aerial remote sensing which are least affected by atmospheric opacities are summarized. Radar is preferred for targets off the flight path, and microwave radiometry for targets along the flight path. Radar methods are classified by ability to resolve targets. Techniques which do not require target resolution are preferred. Among these techniques, polarization methods appear most promising, specifically those which differentiate the expected relatively greater depolarization by icebergs from that by ships or which detect doubly-reversed circular polarization.
On the feasibility of comprehensive high-resolution 3D remote dosimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juang, Titania; Grant, Ryan; Adamovics, John
2014-07-15
Purpose: This study investigates the feasibility of remote high-resolution 3D dosimetry with the PRESAGE®/Optical-CT system. In remote dosimetry, dosimeters are shipped out from a central base institution to a remote institution for irradiation, then shipped back to the base institution for subsequent readout and analysis. Methods: Two nominally identical optical-CT scanners for 3D dosimetry were constructed and placed at the base (Duke University) and remote (Radiological Physics Center) institutions. Two formulations of PRESAGE® (SS1, SS2) radiochromic dosimeters were investigated. Higher sensitivity was expected in SS1, which had higher initiator content (0.25% bromotrichloromethane), while greater temporal stability was expected in SS2.more » Four unirradiated PRESAGE® dosimeters (two per formulation, cylindrical dimensions 11 cm diameter, 8.5–9.5 cm length) were imaged at the base institution, then shipped to the remote institution for planning and irradiation. Each dosimeter was irradiated with the same simple treatment plan: an isocentric 3-field “cross” arrangement of 4 × 4 cm open 6 MV beams configured as parallel opposed laterals with an anterior beam. This simple plan was amenable to accurate and repeatable setup, as well as accurate dose modeling by a commissioned treatment planning system (Pinnacle). After irradiation and subsequent (within 1 h) optical-CT readout at the remote institution, the dosimeters were shipped back to the base institution for remote dosimetry readout 3 days postirradiation. Measured on-site and remote relative 3D dose distributions were registered to the Pinnacle dose calculation, which served as the reference distribution for 3D gamma calculations with passing criteria of 5%/2 mm, 3%/3 mm, and 3%/2 mm with a 10% dose threshold. Gamma passing rates, dose profiles, and color-maps were all used to assess and compare the performance of both PRESAGE® formulations for remote dosimetry. Results: The best agreements between the Pinnacle plan and dosimeter readout were observed in PRESAGE® formulation SS2. Under 3%/3 mm 3D gamma passing criteria, passing rates were 91.5% ± 3.6% (SS1) and 97.4% ± 2.2% (SS2) for immediate on-site dosimetry, 96.7% ± 2.4% (SS1) and 97.6% ± 0.6% (SS2) for remote dosimetry. These passing rates are well within TG119 recommendations (88%–90% passing). Under the more stringent criteria of 3%/2 mm, there is a pronounced difference [8.0 percentage points (pp)] between SS1 formulation passing rates for immediate and remote dosimetry while the SS2 formulation maintains both higher passing rates and consistency between immediate and remote results (differences ≤ 1.2 pp) at all metrics. Both PRESAGE® formulations under study maintained high linearity of dose response (R{sup 2} > 0.996) for 1–8 Gy over 14 days with response slope consistency within 4.9% (SS1) and 6.6% (SS2), and a relative dose distribution that remained stable over time was demonstrated in the SS2 dosimeters. Conclusions: Remote 3D dosimetry was shown to be feasible with a PRESAGE® dosimeter formulation (SS2) that exhibited relative temporal stability and high accuracy when read off-site 3 days postirradiation. Characterization of the SS2 dose response demonstrated linearity (R{sup 2} > 0.998) over 14 days and suggests accurate readout over longer periods of time would be possible. This result provides a foundation for future investigations using remote dosimetry to study the accuracy of advanced radiation treatments. Further work is planned to characterize dosimeter reproducibility and dose response over longer periods of time.« less
Exploration of Data Fusion between Polarimetric Radar and Multispectral Image Data
2012-09-01
target decomposition theorems in radar polarimetry . Transactions on Geoscience and Remote Sensing, 34(2), 498–518. Cloude, S. R. (1985). Target...Proceedings of the Journees Internationales De La Polarimetrie Radar (JIPR ‘90), Nantes, France. Huynen, J. R. (1965). Measurement of theTarget scattering...J. A. (2006). Review of passive imaging polarimetry for remote sensing applications. Applied Optics, 45(22), 5453–5469. Vanzyl, J., Zebker, H
Developing a remote practice office.
D'Elia, V L
1987-11-01
Remote practice offices (RPOs) offer unique opportunities for hospitals and physicians to increase market share from targeted areas where previously only limited demand existed. This article discusses the benefits and explores the fundamentals of developing a remote practice office.
Study to design and develop remote manipulator systems
NASA Technical Reports Server (NTRS)
Hill, J. W.; Salisbury, J. K., Jr.
1977-01-01
A description is given of part of a continuing effort both to develop models for and to augment the performance of humans controlling remote manipulators. The project plan calls for the performance of several standard tasks with a number of different manipulators, controls, and viewing conditions, using an automated performance measuring system; in addition, the project plan calls for the development of a force-reflecting joystick and supervisory display system.
The application of remote sensing to the development and formulation of hydrologic planning models
NASA Technical Reports Server (NTRS)
Fowler, T. R.; Castruccio, P. A.; Loats, H. L., Jr.
1977-01-01
The development of a remote sensing model and its efficiency in determining parameters of hydrologic models are reviewed. Procedures for extracting hydrologic data from LANDSAT imagery, and the visual analysis of composite imagery are presented. A hydrologic planning model is developed and applied to determine seasonal variations in watershed conditions. The transfer of this technology to a user community and contract arrangements are discussed.
The Economics of Remote Sensing for Planning and Construction
ERIC Educational Resources Information Center
Rottweiler, Kurt A.; Wilson, Jerry C.
1971-01-01
Discusses the latest in remote sensing technology including multispectral scanners, thermal scanners, aero magnetometers and side looking radar. Describes the application of this technology to preconstruction site surveys. (JF)
Crop Identification Technolgy Assessment for Remote Sensing (CITARS). Volume 1: Task design plan
NASA Technical Reports Server (NTRS)
Hall, F. G.; Bizzell, R. M.
1975-01-01
A plan for quantifying the crop identification performances resulting from the remote identification of corn, soybeans, and wheat is described. Steps for the conversion of multispectral data tapes to classification results are specified. The crop identification performances resulting from the use of several basic types of automatic data processing techniques are compared and examined for significant differences. The techniques are evaluated also for changes in geographic location, time of the year, management practices, and other physical factors. The results of the Crop Identification Technology Assessment for Remote Sensing task will be applied extensively in the Large Area Crop Inventory Experiment.
Evolving plans for the USA National Phenology Network
Betancourt, Julio L.; Schwartz, Mark D.; Breshears, David D.; Brewer, Carol A.; Frazer, Gary; Gross, John E.; Mazer, Susan J.; Reed, Bradley C.; Wilson, Bruce E.
2007-01-01
Phenology is the study of periodic plant and animal life cycle events, how these are influenced by seasonal and interannual variations in climate, and how they modulate the abundance, diversity, and interactions of organisms. The USA National Phenology Network (USA-NPN) is currently being organized to engage federal agencies, environmental networks and field stations, educational institutions, and citizen scientists. The first USA-NPN planning workshop was held August 2005, in Tucson, Ariz. (Betancourt et al. [2005]; http://www.uwm.edu/Dept/Geography/npn/; by 1 June 2007, also see http://www.usanpn.org). With sponsorship from the U.S. National Science Foundation, the U.S. Geological Survey (USGS), the U.S. Fish and Wildlife Service, and NASA, the second USA-NPN planning workshop was held at the University of Wisconsin-Milwaukee on 10–12 October 2006 to (1) develop lists of target species and observation protocols; (2) identify existing networks that could comprise the backbone of nationwide observations by 2008; (3) develop opportunities for education, citizen science, and outreach beginning in spring 2007; (4) design strategies for implementing the remote sensing component of USA-NPN; and (5) draft a data management and cyberinfrastructure plan.
USDA-ARS?s Scientific Manuscript database
Remote detection of invasive plant species using geospatial imagery may significantly improve monitoring, planning, and management practices by eliminating shortfalls such as observer bias and accessibility involved in ground-based surveys. The use of remote sensing for accurate mapping invasion ex...
Remote sensing: An inventory of earth's resources
NASA Technical Reports Server (NTRS)
Gramenopoulos, N.
1974-01-01
The remote sensing capabilities of Landsat are reviewed along with the broad areas of application of the Landsat imagery. The importance of Landsat imagery in urban planning and resources management is stressed.
O'Sullivan, Belinda G; McGrail, Matthew R; Stoelwinder, Johannes U
2017-07-01
Objective Targeting rural outreach services to areas of highest relative need is challenging because of the higher costs it imposes on health workers to travel longer distances. This paper studied whether subsidies have the potential to support the provision of specialist outreach services into more remote locations. Methods National data about subsidies for medical specialist outreach providers as part of the Wave 7 Medicine in Australia: Balancing Employment and Life (MABEL) Survey in 2014. Results Nearly half received subsidies: 19% (n=110) from a formal policy, namely the Australian Government Rural Health Outreach Fund (RHOF), and 27% (n=154) from other sources. Subsidised specialists travelled for longer and visited more remote locations relative to the non-subsidised group. In addition, compared with non-subsidised specialists, RHOF-subsidised specialists worked in priority areas and provided equally regular services they intended to continue, despite visiting more remote locations. Conclusion This suggests the RHOF, although limited to one in five specialist outreach providers, is important to increase targeted and stable outreach services in areas of highest relative need. Other subsidies also play a role in facilitating remote service distribution, but may need to be more structured to promote regular, sustained outreach practice. What is known about this topic? There are no studies describing subsidies for specialist doctors to undertake rural outreach work and whether subsidies, including formal and structured subsidies via the Australian Government RHOF, support targeted outreach services compared with no financial support. What does this paper add? Using national data from Australia, we describe subsidisation among specialist outreach providers and show that specialists subsidised via the RHOF or another source are more likely to provide remote outreach services. What are the implications for practitioners? Subsidised specialist outreach providers are more likely to provide remote outreach services. The RHOF, as a formally structured comprehensive subsidy, further targets the provision of priority services into such locations on a regular, ongoing basis.
NASA Astrophysics Data System (ADS)
Kuldeep, Kuldeep; Banu, Vijaya
2016-07-01
The introduction of the novel technology mostly leads to a number of advantages to the society. The space technology has shown such benefits in many fields including the areas of health and education, communication sectors, land and water resources management, weather forecasting and disaster management. It has vast potential for addressing a variety of societal problems of the developing countries especially in India in a effective manner. Large population which is spread over vast and remote areas of the nation, reaching out to them is a difficult task. This manuscript aims to explain the benefits originated from the application of space technology. The satellite imagery and its derived products can better be utilized for local level planning and sustainable development of a region. A case-study using Bhuvan Panchayat Portal developed by National Remote Sensing Centre, ISRO under the project "Space Based Information Support for De-Centralised Planning" towards Digital Empowerment of Society for Panchayat level Planning and Governance has been carried out, which list out the benefits that have accrued from the use of space technology for planning and development at grass root level in India. It covers, in particular, the benefits expected to be derived from the Indian Remote Sensing Satellite (IRS) Images and derived products. Certain conclusions about the benefits from space based inputs have been drawn that may be generally applicable to all developing countries. This paper also investigates the various possibilities and potentials of Remote Sensing technologies for societal applications.
I-FORCAST: Rapid Flight Planning Tool
NASA Technical Reports Server (NTRS)
Oaida, Bogdan; Khan, Mohammed; Mercury, Michael B.
2012-01-01
I-FORCAST (Instrument - Field of Regard Coverage Analysis and Simulation Tool) is a flight planning tool specifically designed for quickly verifying the feasibility and estimating the cost of airborne remote sensing campaigns (see figure). Flights are simulated by being broken into three predefined routing algorithms as necessary: mapping in a snaking pattern, mapping the area around a point target (like a volcano) with a star pattern, and mapping the area between a list of points. The tool has been used to plan missions for radar, lidar, and in-situ atmospheric measuring instruments for a variety of aircraft. It has also been used for global and regional scale campaigns and automatically includes landings when refueling is required. The software has been compared to the flight times of known commercial aircraft route travel times, as well as a UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) campaign, and was within 15% of the actual flight time. Most of the discrepancy is due to non-optimal flight paths taken by actual aircraft to avoid restricted airspace and used to follow landing and take-off corridors.
DOE's Remote-Handled TRU Waste Characterization Program: Implementation Plan
Remote-handled (RH) transuranic (TRU) waste characterization, which involves obtaining chemical, radiological, and physical data, is a primary component of ensuring compliance of the Waste Isolation Pilot Plant (WIPP) with regulatory requirements.
Top of Mars Rover Curiosity Remote Sensing Mast
2011-04-06
The remote sensing mast on NASA Mars rover Curiosity holds two science instruments for studying the rover surroundings and two stereo navigation cameras for use in driving the rover and planning rover activities.
Remote sensing for urban planning
NASA Technical Reports Server (NTRS)
Davis, Bruce A.; Schmidt, Nicholas; Jensen, John R.; Cowen, Dave J.; Halls, Joanne; Narumalani, Sunil; Burgess, Bryan
1994-01-01
Utility companies are challenged to provide services to a highly dynamic customer base. With factory closures and shifts in employment becoming a routine occurrence, the utility industry must develop new techniques to maintain records and plan for expected growth. BellSouth Telecommunications, the largest of the Bell telephone companies, currently serves over 13 million residences and 2 million commercial customers. Tracking the movement of customers and scheduling the delivery of service are major tasks for BellSouth that require intensive manpower and sophisticated information management techniques. Through NASA's Commercial Remote Sensing Program Office, BellSouth is investigating the utility of remote sensing and geographic information system techniques to forecast residential development. This paper highlights the initial results of this project, which indicate a high correlation between the U.S. Bureau of Census block group statistics and statistics derived from remote sensing data.
NASA Astrophysics Data System (ADS)
Araya, Mauricio F.
The existence of SELPER (Sociedad de Especialistas Latinoamericanos en Percepción Remota / Society of Latinamerican Specialists on Remote Sensing) has filled a great gap among latinamerican countries. SELPER was formed in 1980 and several important activities, having international support, have been performed and are planned in the near future. SELPER consolidation will help develop several important regional cooperation programs and the next years look very promisory in this sense. Different steps are planned but the most important is related with the formation of such a Latin American Council on Remote Sensing, having official support from different countries of the region; SELPER can help this important objective. Main advances and needs are summarized in this paper and it is possible to conclude that SELPER will be important for regional and inter-regional scientific and technical cooperation on remote sensing.
The LCOGT NEO Follow-up Network
NASA Astrophysics Data System (ADS)
Lister, Tim; Gomez, Edward; Greenstreet, Sarah
2015-08-01
Las Cumbres Observatory Global Telescope Network (LCOGT) has deployed a homogeneous telescope network of nine 1-meter telescopes to four locations in the northern and southern hemispheres, with a planned network of twelve 1-meter telescopes at 6 locations. This network is very versatile and is designed to respond rapidly to target of opportunity events and also to perform long term monitoring of slowly changing astronomical phenomena. The global coverage of the network and the apertures of telescope available make LCOGT ideal for follow-up and characterization of Solar System objects (e.g. asteroids, Kuiper Belt Objects, comets, Near-Earth Objects (NEOs)) and ultimately for the discovery of new objects.LCOGT has completed the first phase of the deployment with the installation and commissioning of the nine 1-meter telescopes at McDonald Observatory (Texas), Cerro Tololo (Chile), SAAO (South Africa) and Siding Spring Observatory (Australia). The telescope network has been fully operational since 2014 May, and observations are being executed remotely and robotically. Future expansion to sites in the Canary Islands and Tibet is planned for 2016.I am using the LCOGT network to confirm newly detected NEO candidates produced by the major sky surveys such as Catalina Sky Survey (CSS) and PanSTARRS (PS1) and several hundred targets are now being followed-up per year. An increasing amount of time is being spent to obtain follow-up astrometry and photometry for radar-targeted objects and those on the Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) or Asteroid Retrieval Mission (ARM) lists in order to improve the orbits, determine the light curves and rotation periods and improve the characterization. This will be extended to obtain more light curves of other NEOs which could be targets. Recent results have included the first period determinations for several of the Goldstone-targeted NEOs. We are in the process of building a NEO Portal which will allow professionals, amateurs and Citizen Scientists to plan, schedule and analyze NEO imaging and spectroscopy observations and data using the LCOGT Network and to act as a co-ordination hub for the NEO follow-up efforts.
Rapid-Response Characterization of Near-Earth Asteroids Using KMTNet-SAAO
NASA Astrophysics Data System (ADS)
Erasmus, Nicolas; Mommert, Michael; Trilling, David E.; Sickafoose, Amanda A.; van Gend, Carel; Hora, Joseph L.; Worters, Hannah L.
2017-10-01
We present here VRI spectrophotometry of 39 near-Earth asteroids (NEAs) observed with the Sutherland, South Africa, node of the Korea Microlensing Telescope Network (KMTNet). Of the 39 NEAs, 19 were targeted, but because of KMTNet’s large 2 deg × 2 deg field of view, 20 serendipitous NEAs were also captured in the observing fields. Our rapid-response approach meant targeted observations were performed within 44 days (median: 16 days, min: 4 days) of each NEA’s discovery date. Our broadband spectrophotometry is reliable enough to distinguish among four asteroid taxonomies and we were able to confidently categorize 31 of the 39 observed targets as either a S-, C-, X- or D-type asteroid. Our data suggest that the ratio between “stony” S-type NEAs and “not- stony” (C+X+D)-type NEAs, with H magnitudes between 15 and 25, is roughly 1:1. Additionally, we report ~1-hour light curve data for each NEA. Of the 39 targets, we were able to resolve the complete rotation period and amplitude for six and place lower limits for the remaining targets.Based on the success of this pilot study we plan to continue KMTNet observations but also make use of Lesedi, a new 1-meter remotely-operable telescope also situated in Sutherland, to perform similar spectrophotometric observations in the future. As before, we plan to target newly discovered NEAs in order to continue the rapid-response approach. With Lesedi, observations will take place throughout the year and we plan to include smaller NEAs (larger H magnitudes) in our sample. We will also increase the observed duration of each NEA to 2-3 hours so we are more likely to observe a complete rotation period for our observed NEAs.This study was facilitated by observations made at the South African Astronomical Observatory (SAAO) and this work is partially supported by the South African National Research Foundation (NRF). This work is supported in part by the National Aeronautics and Space Administration (NASA) under grant number NNX15AE90G issued through the SSO Near Earth Object Observations Program and in part by a grant from NASA’s Office of the Chief Technologist.
Data Integration Framework Data Management Plan Remote Sensing Dataset
2016-07-01
performed by the Coastal Observations and Analysis Branch (CEERD-HFA) of the Flood and Storm Protection Division (CEERD-HF), U.S. Army Engineer Research... Protection Division, Coastal Observations and Analysis Branch CESAM U.S. Army Corps of Engineers, Mobile District CESAM-OP-J U.S. Army Corps of Engineers...ER D C/ CH L SR -1 6- 2 Coastal Ocean Data Systems Program Data Integration Framework Data Management Plan Remote Sensing Dataset Co
Deployable reconnaissance from a VTOL UAS in urban environments
NASA Astrophysics Data System (ADS)
Barnett, Shane; Bird, John; Culhane, Andrew; Sharkasi, Adam; Reinholtz, Charles
2007-04-01
Reconnaissance collection in unknown or hostile environments can be a dangerous and life threatening task. To reduce this risk, the Unmanned Systems Group at Virginia Tech has produced a fully autonomous reconnaissance system able to provide live video reconnaissance from outside and inside unknown structures. This system consists of an autonomous helicopter which launches a small reconnaissance pod inside a building and an operator control unit (OCU) on a ground station. The helicopter is a modified Bergen Industrial Twin using a Rotomotion flight controller and can fly missions of up to one half hour. The mission planning OCU can control the helicopter remotely through teleoperation or fully autonomously by GPS waypoints. A forward facing camera and template matching aid in navigation by identifying the target building. Once the target structure is identified, vision algorithms will center the UAS adjacent to open windows or doorways. Tunable parameters in the vision algorithm account for varying launch distances and opening sizes. Launch of the reconnaissance pod may be initiated remotely through a human in the loop or autonomously. Compressed air propels the half pound stationary pod or the larger mobile pod into the open portals. Once inside the building, the reconnaissance pod will then transmit live video back to the helicopter. The helicopter acts as a repeater node for increased video range and simplification of communication back to the ground station.
Serchi, V; Peruzzi, A; Cereatti, A; Della Croce, U
2016-01-01
The knowledge of the visual strategies adopted while walking in cognitively engaging environments is extremely valuable. Analyzing gaze when a treadmill and a virtual reality environment are used as motor rehabilitation tools is therefore critical. Being completely unobtrusive, remote eye-trackers are the most appropriate way to measure the point of gaze. Still, the point of gaze measurements are affected by experimental conditions such as head range of motion and visual stimuli. This study assesses the usability limits and measurement reliability of a remote eye-tracker during treadmill walking while visual stimuli are projected. During treadmill walking, the head remained within the remote eye-tracker workspace. Generally, the quality of the point of gaze measurements declined as the distance from the remote eye-tracker increased and data loss occurred for large gaze angles. The stimulus location (a dot-target) did not influence the point of gaze accuracy, precision, and trackability during both standing and walking. Similar results were obtained when the dot-target was replaced by a static or moving 2D target and "region of interest" analysis was applied. These findings foster the feasibility of the use of a remote eye-tracker for the analysis of gaze during treadmill walking in virtual reality environments.
Remote Sensing for Tropical Forest Assessment
AJR Gillespie
1994-01-01
The purpose of this workshop was to allow remote sensing experts from Latin America, the U.S.A., and FAO to discuss state-of-the-art methodology in remote sensing of forest environments, and to develop plans on how to better incorporate this technology into FAO and national forest inventory efforts. The workshop included numerous presentations of ongoing activities, as...
Putting a Medical Library Online: Phase III--Remote Access to CD-ROMs.
ERIC Educational Resources Information Center
Kittle, Paul
1989-01-01
Describes the implementation of a project that provides dial-up access to MEDLINE on remote optical data disk (CD-ROM) using software that enables callers to use programs like Wordstar, Lotus, and dBase. Highlights include networking CD-ROM databases, hardware considerations, advantages and disadvantages of remote access, and future plans. A…
Target-in-the-loop remote sensing of laser beam and atmospheric turbulence characteristics.
Vorontsov, Mikhail A; Lachinova, Svetlana L; Majumdar, Arun K
2016-07-01
A new target-in-the-loop (TIL) atmospheric sensing concept for in situ remote measurements of major laser beam characteristics and atmospheric turbulence parameters is proposed and analyzed numerically. The technique is based on utilization of an integral relationship between complex amplitudes of the counterpropagating optical waves known as overlapping integral or interference metric, whose value is preserved along the propagation path. It is shown that the interference metric can be directly measured using the proposed TIL sensing system composed of a single-mode fiber-based optical transceiver and a remotely located retro-target. The measured signal allows retrieval of key beam and atmospheric turbulence characteristics including scintillation index and the path-integrated refractive index structure parameter.
Applied Remote Sensing Program (ARSP)
NASA Technical Reports Server (NTRS)
Johnson, J. D.; Foster, K. E.; Mouat, D. A.; Miller, D. A.; Conn, J. S.
1976-01-01
The activities and accomplishments of the Applied Remote Sensing Program during FY 1975-1976 are reported. The principal objective of the Applied Remote Sensing Program continues to be designed projects having specific decision-making impacts as a principal goal. These projects are carried out in cooperation and collaboration with local, state and federal agencies whose responsibilities lie with planning, zoning and environmental monitoring and/or assessment in the application of remote sensing techniques. The end result of the projects is the use by the involved agencies of remote sensing techniques in problem solving.
Telescience testbedding for life science missions on the Space Station
NASA Technical Reports Server (NTRS)
Rasmussen, D.; Mian, A.; Bosley, J.
1988-01-01
'Telescience', defined as the ability of distributed system users to perform remote operations associated with NASA Space Station life science operations, has been explored by a developmental testbed project allowing rapid prototyping to evaluate the functional requirements of telescience implementation in three areas: (1) research planning and design, (2) remote operation of facilities, and (3) remote access to data bases for analysis. Attention is given to the role of expert systems in telescience, its use in realistic simulation of Space Shuttle payload remote monitoring, and remote interaction with life science data bases.
Telerobotic on-orbit remote fluid resupply system
NASA Technical Reports Server (NTRS)
1990-01-01
The development of a telerobotic on-orbit fluid resupply demonstration system is described. A fluid transfer demonstration system was developed which functionally simulates operations required to remotely transfer fluids (liquids or gases) from a servicing spacecraft to a receiving spacecraft through the use of telerobotic manipulations. The fluid system is representative of systems used by current or planned spacecraft and propulsion stages requiring on-orbit remote resupply. The system was integrated with an existing MSFC remotely controlled manipulator arm to mate/demate couplings for demonstration and evaluation of a complete remotely operated fluid transfer system.
TH-CD-BRA-02: 3D Remote Dosimetry for MRI-Guided Radiation Therapy: A Hybrid Approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rankine, L; The University of North Carolina at Chapel Hill, Chapel Hill, NC; Mein, S
2016-06-15
Purpose: To validate the dosimetric accuracy of a commercially available MR-IGRT system using a combination of 3D dosimetry measurements (with PRESAGE(R) radiochromic plastic and optical-CT readout) and an in-house developed GPU-accelerated PENELOPE Monte-Carlo dose calculation system. Methods: {sup 60}Co IMRT subject to a 0.35T lateral magnetic field has recently been commissioned in our institution following AAPM’s TG-119 recommendations. We performed PRESAGE(R) sensitivity studies in 4ml cuvettes to verify linearity, MR-compatibility, and energy-independence. Using 10cm diameter PRESAGE(R), we delivered an open calibration field to examine the percent depth dose and a symmetrical 3-field plan with three adjacent regions of varying dosemore » to determine uniformity within the dosimeter under a magnetic field. After initial testing, TG-119 plans were created in the TPS and then delivered to 14.5cm 2kg PRESAGE(R) dosimeters. Dose readout was performed via optical-CT at a second institution specializing in remote 3D dosimetry. Absolute dose was measured using an IBA CC01 ion chamber and the institution standard patient-specific QA methods were used to validate plan delivery. Calculated TG-119 plans were then compared with an independent Monte Carlo dose calculation (gPENELOPE). Results: PRESAGE(R) responds linearly (R{sup 2}=0.9996) to {sup 60}Co irradiation, in the presence of a 0.35T magnetic field, with a sensitivity of 0.0305(±0.003)cm{sup −1}Gy{sup −1}, within 1% of a 6MV non-MR linac irradiation (R{sup 2}=0.9991) with a sensitivity of 0.0302(±0.003)cm{sup −1}Gy{sup −1}. Analysis of TG-119 clinical plans using 3D-gamma (3%/3mm, 10% threshold) give passing rates of: HN 99.1%, prostate 98.0%, C-shape 90.8%, and multi-target 98.5%. The TPS agreed with gPENELOPE with a mean gamma passing rate of 98.4±1.5% (2%/2mm) with the z-score distributions following a standard normal distribution. Conclusion: We demonstrate for the first time that 3D remote dosimetry using both experimental and computational methods is a feasible and reliable approach to commissioning MR-IMRT, which is particularly useful for less specialized clinics in adopting this new treatment modality.« less
Towards SMOS: The 2006 National Airborne Field Experiment Plan
NASA Astrophysics Data System (ADS)
Walker, J. P.; Merlin, O.; Panciera, R.; Kalma, J. D.
2006-05-01
The 2006 National Airborne Field Experiment (NAFE) is the second in a series of two intensive experiments to be conducted in different parts of Australia. The NAFE'05 experiment was undertaken in the Goulburn River catchment during November 2005, with the objective to provide high resolution data for process level understanding of soil moisture retrieval, scaling and data assimilation. The NAFE'06 experiment will be undertaken in the Murrumbidgee catchment during November 2006, with the objective to provide data for SMOS (Soil Moisture and Ocean Salinity) level soil moisture retrieval, downscaling and data assimilation. To meet this objective, PLMR (Polarimetric L-band Multibeam Radiometer) and supporting instruments (TIR and NDVI) will be flown at an altitude of 10,000 ft AGL to provide 1km resolution passive microwave data (and 20m TIR) across a 50km x 50km area every 2-3 days. This will both simulate a SMOS pixel and provide the 1km soil moisture data required for downscale verification, allowing downscaling and near-surface soil moisture assimilation techniques to be tested with remote sensing data which is consistent with that from current (MODIS) and planned (SMOS) satellite sensors.. Additionally, two transects will be flown across the area to provide both 1km multi-angular passive microwave data for SMOS algorithm development, and on the same day, 50m resolution passive microwave data for algorithm verification. The study area contains a total of 13 soil moisture profile and rainfall monitoring sites for assimilation verification, and the transect fight lines are planned to go through 5 of these. Ground monitoring of surface soil moisture and vegetation for algorithm verification will be targeted at these 5 focus farms, with soil moisture measurements made at 250m spacing for 1km resolution flights and 50m spacing for 50m resolution flights. While this experiment has a particular emphasis on the remote sensing of soil moisture, it is open for collaboration from interested scientists from all disciplines of environmental remote sensing and its application. See www.nafe.unimelb.edu.au for more detailed information on these experiments.
Telepresence system development for application to the control of remote robotic systems
NASA Technical Reports Server (NTRS)
Crane, Carl D., III; Duffy, Joseph; Vora, Rajul; Chiang, Shih-Chien
1989-01-01
The recent developments of techniques which assist an operator in the control of remote robotic systems are described. In particular, applications are aimed at two specific scenarios: The control of remote robot manipulators; and motion planning for remote transporter vehicles. Common to both applications is the use of realistic computer graphics images which provide the operator with pertinent information. The specific system developments for several recently completed and ongoing telepresence research projects are described.
Telepresence in neurosurgery: the integrated remote neurosurgical system.
Kassell, N F; Downs, J H; Graves, B S
1997-01-01
This paper describes the Integrated Remote Neurosurgical System (IRNS), a remotely-operated neurosurgical microscope with high-speed communications and a surgeon-accessible user interface. The IRNS will allow high quality bidirectional mentoring in the neurosurgical suite. The research goals of this effort are twofold: to develop a clinical system allowing a remote neurosurgeon to lend expertise to the OR-based neurosurgical team and to provide an integrated training environment. The IRNS incorporates a generic microscope/transport model, Called SuMIT (Surgical Manipulator Interface Translator). Our system is currently under test using the Zeiss MKM surgical transport. A SuMIT interface is also being constructed for the Robotics Research 1607. The IRNS Remote Planning and Navigation Workstation incorporates surgical planning capabilities, real-time, 30 fps video from the microscope and overhead video camera. The remote workstation includes a force reflecting handcontroller which gives the remote surgeon an intuitive way to position the microscope head. Bidirectional audio, video whiteboarding, and image archiving are also supported by the remote workstation. A simulation mode permits pre-surgical simulation, post-surgical critique, and training for surgeons without access to an actual microscope transport system. The components of the IRNS are integrated using ATM switching to provide low latency data transfer. The research, along with the more sophisticated systems that will follow, will serve as a foundation and test-bed for extending the surgeon's skills without regard to time zone or geographic boundaries.
FLOOR PLAN OF MAIN PROCESSING BUILDING (CPP601), FIRST FLOOR SHOWING ...
FLOOR PLAN OF MAIN PROCESSING BUILDING (CPP-601), FIRST FLOOR SHOWING SAMPLE CORRIDORS AND EIGHTEEN CELLS AND ADJOINING REMOTE ANALYTICAL FACILITY (CPP-627) SHOWING REMOTE ANALYTICAL FACILITIES LAB, DECONTAMINATION ROOM, AND MULTICURIE CELL ROOM. TO LEFT ARE LABORATORY BUILDING (CPP-602) AND MAINTENANCE BUILDING (CPP-630). INL DRAWING NUMBER 200-0601-00-706-051979. ALTERNATE ID NUMBER CPP-E-1979. - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-09
... remote sensing system would be set up to monitor nesting seabirds, turtles, and other wildlife... for improved law enforcement oversight and compliance, and remote sensing would also provide better...
Code of Federal Regulations, 2010 CFR
2010-10-01
... ASSISTANCE PROGRAMS UTILIZATION CONTROL Utilization Review Plans: FFP, Waivers, and Variances for Hospitals and Mental Hospitals Ur Plan: Remote Facility Variances from Time Requirements § 456.520 Definitions...
Remote sensing procurement package: A management report for state and local governments
NASA Technical Reports Server (NTRS)
1981-01-01
An overview of the remote sensing procurement process is presented for chief executives, senior administrators, and other local and state officials responsible for purchasing remote sensing products, services, or equipment. Guidelines are provided for planning, organizing, staffing, and implementing such a procurement project. Other sections of the four-volume package are described and their benefits examined.
NASA Technical Reports Server (NTRS)
Summers, R. A.; Smith, W. L.; Short, N. M.
1977-01-01
Effective implementation of the President's National Energy Plan and the Nuclear Power Policy Statement require application of the best remote sensing tools available. The potential contributions of remote sensing, particularly LANDSAT data, have yet to be clearly identified and exploited. These contributions investigated fall into the following categories: (1) exploration; (2) exploitation; (3) power plant siting; (4) environmental assessment and monitoring; and (5) transportation infrastructure.
Reactor Decommissioning - Balancing Remote and Manual Activities - 12159
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, Matt
2012-07-01
Nuclear reactors come in a wide variety of styles, size, and ages. However, during decommissioned one issue they all share is the balancing of remotely and manually activities. For the majority of tasks there is a desire to use manual methods because remote working can be slower, more expensive, and less reliable. However, because of the unique hazards of nuclear reactors some level of remote activity will be necessary to provide adequate safety to workers and properly managed and designed it does not need to be difficult nor expensive. The balance of remote versus manual work can also affect themore » amount and types of waste that is generated. S.A.Technology (SAT) has worked on a number of reactor decommissioning projects over the last two decades and has a range of experience with projects using remote methods to those relying primarily on manual activities. This has created a set of lessons learned and best practices on how to balance the need for remote handling and manual operations. Finding a balance between remote and manual operations on reactor decommissioning can be difficult but by following certain broad guidelines it is possible to have a very successfully decommissioning. It is important to have an integrated team that includes remote handling experts and that this team plans the work using characterization efforts that are efficient and realistic. The equipment need to be simple, robust and flexible and supported by an on-site team committed to adapting to day-to-day challenges. Also, the waste strategy needs to incorporate the challenges of remote activities in its planning. (authors)« less
NASA Astrophysics Data System (ADS)
Zamorano, Lucia J.; Dujovny, Manuel; Ausman, James I.
1990-01-01
"Real time" surgical treatment planning utilizing multimodality imaging (CT, MRI, DA) has been developed to provide the neurosurgeon with 2D multiplanar and 3D views of a patient's lesion for stereotactic planning. Both diagnostic and therapeutic stereotactic procedures have been implemented utilizing workstation (SUN 1/10) and specially developed software and hardware (developed in collaboration with TOMO Medical Imaging Technology, Southfield, MI). This provides complete 3D and 2D free-tilt views as part of the system instrumentation. The 2D Multiplanar includes reformatted sagittal, coronal, paraaxial and free tilt oblique vectors at any arbitrary plane of the patient's lesion. The 3D includes features for extracting a view of the target volume localized by a process including steps of automatic segmentation, thresholding, and/or boundary detection with 3D display of the volumes of interest. The system also includes the capability of interactive playback of reconstructed 3D movies, which can be viewed at any hospital network having compatible software on strategical locations or at remote sites through data transmission and record documentation by image printers. Both 2D and 3D menus include real time stereotactic coordinate measurements and trajectory definition capabilities as well as statistical functions for computing distances, angles, areas, and volumes. A combined interactive 3D-2D multiplanar menu allows simultaneous display of selected trajectory, final optimization, and multiformat 2D display of free-tilt reformatted images perpendicular to selected trajectory of the entire target volume.
Model Checking the Remote Agent Planner
NASA Technical Reports Server (NTRS)
Khatib, Lina; Muscettola, Nicola; Havelund, Klaus; Norvig, Peter (Technical Monitor)
2001-01-01
This work tackles the problem of using Model Checking for the purpose of verifying the HSTS (Scheduling Testbed System) planning system. HSTS is the planner and scheduler of the remote agent autonomous control system deployed in Deep Space One (DS1). Model Checking allows for the verification of domain models as well as planning entries. We have chosen the real-time model checker UPPAAL for this work. We start by motivating our work in the introduction. Then we give a brief description of HSTS and UPPAAL. After that, we give a sketch for the mapping of HSTS models into UPPAAL and we present samples of plan model properties one may want to verify.
Improvement of Hungarian Joint Terminal Attack Program
2013-06-13
LST Laser Spot Tracker NVG Night Vision Goggle ROMAD Radio Operator Maintainer and Driver ROVER Remotely Operated Video Enhanced Receiver TACP...visual target designation. The other component consists of a laser spot tracker (LST), which identifies targets by tracking laser energy reflecting...capability for every type of night time missions, laser spot tracker for laser spot search missions, remotely operated video enhanced receiver
NASA Technical Reports Server (NTRS)
Stysley, Paul
2016-01-01
Applicability to Early Stage Innovation NIAC Cutting edge and innovative technologies are needed to achieve the demanding requirements for NASA origin missions that require sample collection as laid out in the NRC Decadal Survey. This proposal focused on fully understanding the state of remote laser optical trapping techniques for capturing particles and returning them to a target site. In future missions, a laser-based optical trapping system could be deployed on a lander that would then target particles in the lower atmosphere and deliver them to the main instrument for analysis, providing remote access to otherwise inaccessible samples. Alternatively, for a planetary mission the laser could combine ablation and trapping capabilities on targets typically too far away or too hard for traditional drilling sampling systems. For an interstellar mission, a remote laser system could gather particles continuously at a safe distance; this would avoid the necessity of having a spacecraft fly through a target cloud such as a comet tail. If properly designed and implemented, a laser-based optical trapping system could fundamentally change the way scientists designand implement NASA missions that require mass spectroscopy and particle collection.
The effect of offset cues on saccade programming and covert attention.
Smith, Daniel T; Casteau, Soazig
2018-02-01
Salient peripheral events trigger fast, "exogenous" covert orienting. The influential premotor theory of attention argues that covert orienting of attention depends upon planned but unexecuted eye-movements. One problem with this theory is that salient peripheral events, such as offsets, appear to summon attention when used to measure covert attention (e.g., the Posner cueing task) but appear not to elicit oculomotor preparation in tasks that require overt orienting (e.g., the remote distractor paradigm). Here, we examined the effects of peripheral offsets on covert attention and saccade preparation. Experiment 1 suggested that transient offsets summoned attention in a manual detection task without triggering motor preparation planning in a saccadic localisation task, although there were a high proportion of saccadic capture errors on "no-target" trials, where a cue was presented but no target appeared. In Experiment 2, "no-target" trials were removed. Here, transient offsets produced both attentional facilitation and faster saccadic responses on valid cue trials. A third experiment showed that the permanent disappearance of an object also elicited attentional facilitation and faster saccadic reaction times. These experiments demonstrate that offsets trigger both saccade programming and covert attentional orienting, consistent with the idea that exogenous, covert orienting is tightly coupled with oculomotor activation. The finding that no-go trials attenuates oculomotor priming effects offers a way to reconcile the current findings with previous claims of a dissociation between covert attention and oculomotor control in paradigms that utilise a high proportion of catch trials.
Suggestions for Formulating Collaborative Remote Sensing Emergency Plan Based on Case Studies
NASA Astrophysics Data System (ADS)
Liu, B.; Wang, F.; Zheng, X.; Qi, M.
2017-09-01
With the rapid development of the Remote Sensing (RS) technology, Remote Sensing Services for Emergency Monitoring (RSSEM) are playing a more and more important role in the field of emergency management, where the collaborative RS approaches (including such as Space-Air-Ground platforms) can provide the decision-makers a quick access to the detailed, real-time information about the emergencies. However, there are still some problems in the current mechanism of RSSEM, for example, the inappropriate choices of the collaborative RS approaches, the miscellaneous procedures and so on. It is urgent to formulate a collaborative RS emergency plan for regulating the applications of the RS monitoring approaches in order to be well prepared for the emergency management. In our studies, creating a good collaborative RS emergency plan is the main research objective. This paper is divided into four parts. The Part Ⅰ gives a brief introduction about the research background. The Part Ⅱ investigates four case studies to analyze the applications of the RS technologies under the guidance of the available RS related emergency plans, and then points out the existing problems in the mechanism of the RSSEM. The Part Ⅲ proposes our suggestions for formulating the collaborative RS emergency plan to explore the countermeasures of the problems pointed out in the Part Ⅱ. The last part concludes this paper and discusses the future work of the collaborative RS emergency plan.
Marketing and population problems.
Farley, J U; Leavitt, H J
1971-07-01
There are many elements in population programs that are more familiar to marketing men than to some population experts. Advertising is essential to reach the target population, and advertising evaluation techniques (e.g., surrogate indexes or audience measures) might be useful for evaluating both population information activities and the import of the entire program. Fundamental research on basid demand for fertility control is needed and a marketer's experience with planning and evaluating test markets can be useful in assessing potential selling targets and evaluating alternative promotional and distributional strategies. Special family planning clinics have certain disadvantages: expensive and scarce personnel are needed; red tape may be present; the network is based on the assumption that the client is willing to travel relatively great distances repeatedly; and clinics lack anonymity which may scare potential acceptors away. Most developing cultures have an intensively functioning distribution structure which delivers basic commodities to the most remote areas, providing relatively anonymous outlets that are physically close to the customs. Materials requiring a prescription might be distributed in exchange for script issued at and ultimately redeemed by clinics, this requiring only an occasional visit to a clinic. Mail-order service can be used to supplement a clinic's distribution of some contraceptives. It should be remembered that population administrators often have an antipathetic view toward business and marketing and "suspect" the profit motive.
42 CFR 456.521 - Conditions for granting variance requests.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Utilization Review Plans: FFP, Waivers, and Variances for Hospitals and Mental Hospitals Ur Plan: Remote Facility Variances from Time...
42 CFR 456.525 - Request for renewal of variance.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Utilization Review Plans: FFP, Waivers, and Variances for Hospitals and Mental Hospitals Ur Plan: Remote Facility Variances from Time...
42 CFR 456.525 - Request for renewal of variance.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Utilization Review Plans: FFP, Waivers, and Variances for Hospitals and Mental Hospitals Ur Plan: Remote Facility Variances from Time...
NASA Technical Reports Server (NTRS)
Quattrochi, Dale a.; Luvall, Jeffrey C.; Anderson, Martha; Hook, Simon
2006-01-01
There is a rich and long history of thermal infrared (TIR) remote sensing data for multidisciplinary Earth science research. The continuity of TIR data collection, however, is now in jeopardy given there are no planned future Earth observing TIR remote sensing satellite systems with moderately high spatial resolutions to replace those currently in orbit on NASA's Terra suite of sensors. This session will convene researchers who have actively worked in the field of TIR remote sensing to present results that elucidate the importance of thermal remote sensing to the wider Earth science research community. Additionally, this session will also exist as a forum for presenting concepts and ideas for new thermal sensing systems with high spatial resolutions for future Earth science satellite missions, as opposed to planned systems such as the Visible/Infrared Imager/Radiometer (VIIRS) suite of sensors on the National Polar-orbiting Operational Environmental Satellite System (NPOESS) that will collect TIR data at very coarse iairesolutions.
From Pixels to Population Stress: Global Multispectral Remote Sensing for Vulnerable Communities
NASA Astrophysics Data System (ADS)
Prashad, L.; Kaplan, E.; Letouze, E.; Kirkpatrick, R.; Luengo-Oroz, M.; Christensen, P. R.
2011-12-01
The Arizona State University (ASU) School of Earth and Space Exploration's Mars Space Flight Facility (MSFF) and 100 Cities Project, in collaboration with the United Nations Global Pulse initiative are utilizing NASA multispectral satellite data to visualize and analyze socioeconomic characteristics and human activity in Uganda. The Global Pulse initiative is exploring how new kinds of real-time data and innovative technologies can be leveraged to detect early social impacts of slow-onset crisis and global shocks. Global Pulse is developing a framework for real-time monitoring, assembling an open-source toolkit for analyzing new kinds of data and establishing a global network of country-level "Pulse Labs" where governments, UN agencies, academia and the private sector learn together how to harness the new world of "big data" to protect the vulnerable with targeted and agile policy responses. The ASU MSFF and 100 Cities Project are coordinating with the Global Pulse team to utilize NASA remote sensing data in this effort. Human behavior and socioeconomic parameters have been successfully studied via proxy through remote sensing of the physical environment by measuring the growth of city boundaries and transportation networks, crop health, soil moisture, and slum development from visible and infrared imagery. The NASA/ NOAA image of Earth's "Lights at Night" is routinely used to estimate economic development and population density. There are many examples of the conventional uses of remote sensing in humanitarian-related projects including the Famine Early Warning System Network (FEWS NET) and the UN's operational satellite applications programme (UNOSAT), which provides remote sensing for humanitarian and disaster relief. Since the Global Pulse project is focusing on new, innovative uses of technology for early crisis detection, we are focusing on three non-conventional uses of satellite remote sensing to understand what role NASA multispectral satellites can play in monitoring underlying socioeconomic and human parameters. These are: 1) measuring and visualizing changes in agriculture and fertilizer use in Ugandan villages in order to assist policymakers in designing land use policies and evaluating the impact of fertilizer use on smallholder farmers in developing countries; 2) monitoring the size and composition of large scale rubbish dumps to determine correlation with changes in policy and economic growth; 3) measuring the size and shape of open air markets, or proxies related to the markets, to determine if changes can be detected that correspond to fluctuations in economic activity. The ASU MSFF open source geographical information systems (GIS) platform, J-Earth, will be used to provide easy access to and analytical tools for the data and imagery resulting from this project. J-Earth is a part of the Java Mission-planning and Analysis for Remote Sensing (JMARS) suite of software first developed for targeting NASA instruments on planetary missions.
NASA Technical Reports Server (NTRS)
Wildesen, S. E.; Phillips, E. P.
1981-01-01
Because of the size of the Pocomoke River Basin, the inaccessibility of certain areas, and study time constraints, several remote sensing techniques were used to collect base information on the river corridor, (a 23.2 km channel) and on a 1.2 km wooded floodplain. This information provided an adequate understanding of the environment and its resources, thus enabling effective management options to be designed. The remote sensing techniques used for assessment included manual analysis of high altitude color-infrared photography, computer-assisted analysis of LANDSAT-2 imagery, and the application of airborne oceanographic Lidar for topographic mapping. Results show that each techniques was valuable in providing the needed base data necessary for resource planning.
Geologic Studies in Support of Manned Martian Exploration
NASA Astrophysics Data System (ADS)
Frix, Perry; McCloskey, Katherine; Neakrase, Lynn D. V.; Greeley, Ronald
1999-01-01
With the advent of the space exploration of the middle part of this century, Mars has become a tangible target for manned space flight missions in the upcoming decades. The goals of Mars exploration focus mainly on the presence of water and the geologic features associated with it. To explore the feasibility of a manned mission, a field analog project was conducted. The project began by examining a series of aerial photographs representing "descent" space craft images. From the photographs, local and regional geology of the two "landing" sites was determined and several "targets of interest" were chosen. The targets were prioritized based on relevance to achieving the goals of the project and Mars exploration. Traverses to each target, as well as measurements and sample collections were planned, and a timeline for the exercise was created. From this it was found that for any mission to be successful, a balance must be discovered between keeping to the planned timeline schedule, and impromptu revision of the mission to allow for conflicts, problems and other adjustments necessary due to greater information gathered upon arrival at the landing site. At the conclusion of the field exercise, it was determined that a valuable resource for mission planning is high resolution remote sensing of the landing area. This led us to conduct a study to determine what ranges of resolution are necessary to observe geology features important to achieving the goals of Mars exploration. The procedure used involved degrading a set of images to differing resolutions, which were then examined to determine what features could be seen and interpreted. The features were rated for recognizability, the results were tabulated, and a minimum necessary resolution was determined. Our study found that for the streams, boulders, bedrock, and volcanic features that we observed, a resolution of at least 1 meter/pixel is necessary. We note though that this resolution depends on the size of the feature being observed, and thus for Mars the resolution may be lower due to the larger size of some features. With this new information, we then examined the highest resolution images taken to date by the Mars Orbital Camera on board the Mars Global Surveyor, and planned a manned mission. We chose our site keeping in mind the goals for Mars exploration, then determined the local and regional geolog of the "landing area. Prioritization was then done on the geologic features seen and traverses were planned to various "targets of interest". A schedule for each traverse stop, including what measurements and samples were to br taken, and a timeline for the mission was then created with ample time allowed for revisions of plans, new discoveries, and possible complications.
ERIC Educational Resources Information Center
Faulkner, Kathryn; McClelland, Linda
2002-01-01
A seminar on menopausal health was presented to a live audience and remote audiences at 10 sites in rural Queensland (Australia) via videoconferencing. Questionnaires completed by 128 audience members indicated positive reception of the content and delivery method. Similar replies from live and remote audience members indicated that the…
42 CFR 456.508 - Withdrawal of waiver.
Code of Federal Regulations, 2011 CFR
2011-10-01
... (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Utilization Review Plans: FFP, Waivers, and..., 1978, as amended at 61 FR 38399, July 24, 1996] UR Plan: Remote Facility Variances from Time...
Results from the LCOGT Near-Earth Object Follow-up Network
NASA Astrophysics Data System (ADS)
Greenstreet, Sarah; Lister, Tim; Gomez, Edward; Christensen, Eric; Larson, Steve
2015-11-01
Las Cumbres Observatory Global Telescope Network (LCOGT) has deployed a homogeneous telescope network of nine 1-meter and two 2-meter telescopes to five locations in the northern and southern hemispheres, with plans to extend to twelve 1-meter telescopes at 6 locations. The versitility and design of this network allows for rapid response to target of opportunity events as well as the long-term monitoring of slowly changing astronomical phenomena. The network's global coverage and the apertures of telescopes available make LCOGT ideal for follow-up and characterization of Solar System objects (e.g. asteroids, Kuiper Belt Objects, comets, Near-Earth Objects (NEOs)) and ultimately for the discovery of new objects.LCOGT has completed the first phase of the deployment with the installation and commissioning of the nine 1-meter telescopes at McDonald Observatory (Texas), Cerro Tololo (Chile), SAAO (South Africa) and Siding Spring Observatory (Australia). This is complimented by the two 2-meter telescopes at Haleakala (Hawaii) and Siding Spring Observatory. The telescope network has been fully operational since May 2014, and observations are being executed remotely and robotically. Future expansion to sites in the Canary Islands and Tibet are planned for 2016.The LCOGT near-Earth object group is using the network to confirm newly detected NEO candidates produced by the major sky surveys such as Catalina Sky Survey (CSS), PanSTARRS (PS1) and NEOWISE, with several hundred targets being followed per year. Follow-up astrometry and photometry of radar-targeted objects and those on the Near-Earth Object Human Space Flight Accessible Targets Study (NHATS) or Asteroid Retrieval Mission (ARM) lists are improving orbits, producing light curves and rotation periods, and better characterizing these NEOs. Recent results include the first period determinations for several of the Goldstone-targeted NEOs. In addition, we are in the process of building a NEO portal that will allow professionals, amateurs, and Citizen Scientists to plan, schedule, and analyze NEO imaging and spectroscopy observations and data using the LCOGT Network and to act as a coordination hub for the NEO follow-up efforts.
Thermal Infrared Spectroscopy from Mars Landers and Rovers: A New Angle on Remote Sensing
NASA Technical Reports Server (NTRS)
Moersch, J.; Horton, K.; Lucey, P.; Roush, T.; Ruff, S.; Smith, M.
1999-01-01
The MINUTES instrument of the Athena Precursor Experiment (APEX) on the Mars Surveyor 2001 lander mission will perform the first thermal infrared remote sensing observations from the surface of another planet. Experience gained from this experiment will be used to guide observations from identical instruments mounted on the Athena rovers, to be launched in 2003 and 2005. The utility of infrared spectrometers in determining the mineralogic composition of geologic surfaces from airborne and spaceborne platforms has been amply demonstrated. However, relatively little experience exists in using functionally similar instruments on the ground in the context of planetary science. What work has been done on this problem has mostly utilized field spectrometers that are designed to look down on nearby target rocks. While many Mini-TES observations will be made with this type of geometry, it is likely that other observations will be made looking horizontally at the more vertically-oriented facets of rock targets, to avoid spectral contamination from dust mantles. On rover missions, the Mini-TES may also be pointed horizontally at rocks several meters away, to determine if they are worthy of approaching for in situ observations and possible sample cacheing. While these observations will undoubtedly prove useful, there are important, and perhaps unappreciated, differences between horizontal-viewing, surface-based spectroscopy and the more traditional nadir-viewing, orbit or aircraft-based observations. Plans also exist to step the Mini-TES in a rastering motion to build hyperspectral scenes. Horizontal viewing hyperspectral cubes also possess unique qualities that call for innovative analysis techniques. The effect of viewing geometry: In thermal emission spectroscopy, regardless of whether an instrument is looking down on or horizontally at a target, the same basic equation governs the radiance reaching the sensor .
Study of working experience in remote rural areas after medical graduation.
Thapa, K R; Shrestha, B K; Bhattarai, M D
2014-01-01
Posting of doctors in remote rural areas has always been a priority for Government; however data are scarce in the country about experience of doctors of working in remote areas after medical graduation. A questionnaire survey of doctors was planned to analyze their experience of working after graduation in remote rural areas in various parts of the country. The cross-sectional survey was done by convenience sampling method. A one-page questionnaire with one partially closed-end and five open-end type questions was distributed to the doctors who had worked in remote rural areas after graduation under various governments' postings. Two-third of participants had their home in urban areas and 89.8% had stayed for 1 to 5 years. About half of the participants had difficulty in getting the posting in the remote areas of their choice. Most participants indicated provision of opportunities for Residential (postgraduate) Training as their reasons of going to remote areas as well as their suggestions to encourage young graduates to go there. Similarly most also suggested appropriate career, salary and incentives to encourage doctors to go to work in remote areas. About 85% of participants pointed out the major problem faced while posted in remote areas as difficulty in handling varied situations with no guidance or seniors available around. The notable points indicated by the participants are centered on the opportunity for Residential Training and difficulties faced without such training. Residential Training is a priority to be considered while planning the health policy for optimum health care of people.
NASA Astrophysics Data System (ADS)
Ramsey, Michael S.; Harris, Andrew J. L.
2013-01-01
Volcanological remote sensing spans numerous techniques, wavelength regions, data collection strategies, targets, and applications. Attempting to foresee and predict the growth vectors in this broad and rapidly developing field is therefore exceedingly difficult. However, we attempted to make such predictions at both the American Geophysical Union (AGU) meeting session entitled Volcanology 2010: How will the science and practice of volcanology change in the coming decade? held in December 2000 and the follow-up session 10 years later, Looking backward and forward: Volcanology in 2010 and 2020. In this summary paper, we assess how well we did with our predictions for specific facets of volcano remote sensing in 2000 the advances made over the most recent decade, and attempt a new look ahead to the next decade. In completing this review, we only consider the subset of the field focused on thermal infrared remote sensing of surface activity using ground-based and space-based technology and the subsequent research results. This review keeps to the original scope of both AGU presentations, and therefore does not address the entire field of volcanological remote sensing, which uses technologies in other wavelength regions (e.g., ultraviolet, radar, etc.) or the study of volcanic processes other than the those associated with surface (mostly effusive) activity. Therefore we do not consider remote sensing of ash/gas plumes, for example. In 2000, we had looked forward to a "golden age" in volcanological remote sensing, with a variety of new orbital missions both planned and recently launched. In addition, exciting field-based sensors such as hand-held thermal cameras were also becoming available and being quickly adopted by volcanologists for both monitoring and research applications. All of our predictions in 2000 came true, but at a pace far quicker than we predicted. Relative to the 2000-2010 timeframe, the coming decade will see far fewer new orbital instruments with direct applications to volcanology. However ground-based technologies and applications will continue to proliferate, and unforeseen technology promises many exciting possibilities that will advance volcano thermal monitoring and science far beyond what we can currently envision.
Gagnon, Marie-Pierre; Duplantie, Julie; Fortin, Jean-Paul; Landry, Réjean
2006-08-24
Telehealth, as other information and communication technologies (ICTs) introduced to support the delivery of health care services, is considered as a means to answer many of the imperatives currently challenging health care systems. In Canada, many telehealth projects are taking place, mostly targeting rural, remote or isolated populations. So far, various telehealth applications have been implemented and have shown promising outcomes. However, telehealth utilisation remains limited in many settings, despite increased availability of technology and telecommunication infrastructure. A qualitative field study was conducted in four remote regions of Quebec (Canada) to explore perceptions of physicians and managers regarding the impact of telehealth on clinical practice and the organisation of health care services, as well as the conditions for improving telehealth implementation. A total of 54 respondents were interviewed either individually or in small groups. Content analysis of interviews was performed and identified several effects of telehealth on remote medical practice as well as key conditions to ensure the success of telehealth implementation. According to physicians and managers, telehealth benefits include better access to specialised services in remote regions, improved continuity of care, and increased availability of information. Telehealth also improves physicians' practice by facilitating continuing medical education, contacts with peers, and access to a second opinion. At the hospital and health region levels, telehealth has the potential to support the development of regional reference centres, favour retention of local expertise, and save costs. Conditions for successful implementation of telehealth networks include the participation of clinicians in decision-making, the availability of dedicated human and material resources, and a planned diffusion strategy. Interviews with physicians and managers also highlighted the importance of considering telehealth within the broader organisation of health care services in remote and rural regions. This study identified core elements that should be considered when implementing telehealth applications with the purpose of supporting medical practice in rural and remote regions. Decision-makers need to be aware of the specific conditions that could influence telehealth integration into clinical practices and health care organisations. Thus, strategies addressing the identified conditions for telehealth success would facilitate the optimal implementation of this technology.
Gagnon, Marie-Pierre; Duplantie, Julie; Fortin, Jean-Paul; Landry, Réjean
2006-01-01
Background Telehealth, as other information and communication technologies (ICTs) introduced to support the delivery of health care services, is considered as a means to answer many of the imperatives currently challenging health care systems. In Canada, many telehealth projects are taking place, mostly targeting rural, remote or isolated populations. So far, various telehealth applications have been implemented and have shown promising outcomes. However, telehealth utilisation remains limited in many settings, despite increased availability of technology and telecommunication infrastructure. Methods A qualitative field study was conducted in four remote regions of Quebec (Canada) to explore perceptions of physicians and managers regarding the impact of telehealth on clinical practice and the organisation of health care services, as well as the conditions for improving telehealth implementation. A total of 54 respondents were interviewed either individually or in small groups. Content analysis of interviews was performed and identified several effects of telehealth on remote medical practice as well as key conditions to ensure the success of telehealth implementation. Results According to physicians and managers, telehealth benefits include better access to specialised services in remote regions, improved continuity of care, and increased availability of information. Telehealth also improves physicians' practice by facilitating continuing medical education, contacts with peers, and access to a second opinion. At the hospital and health region levels, telehealth has the potential to support the development of regional reference centres, favour retention of local expertise, and save costs. Conditions for successful implementation of telehealth networks include the participation of clinicians in decision-making, the availability of dedicated human and material resources, and a planned diffusion strategy. Interviews with physicians and managers also highlighted the importance of considering telehealth within the broader organisation of health care services in remote and rural regions. Conclusion This study identified core elements that should be considered when implementing telehealth applications with the purpose of supporting medical practice in rural and remote regions. Decision-makers need to be aware of the specific conditions that could influence telehealth integration into clinical practices and health care organisations. Thus, strategies addressing the identified conditions for telehealth success would facilitate the optimal implementation of this technology. PMID:16930484
A dose optimization method for electron radiotherapy using randomized aperture beams
NASA Astrophysics Data System (ADS)
Engel, Konrad; Gauer, Tobias
2009-09-01
The present paper describes the entire optimization process of creating a radiotherapy treatment plan for advanced electron irradiation. Special emphasis is devoted to the selection of beam incidence angles and beam energies as well as to the choice of appropriate subfields generated by a refined version of intensity segmentation and a novel random aperture approach. The algorithms have been implemented in a stand-alone programme using dose calculations from a commercial treatment planning system. For this study, the treatment planning system Pinnacle from Philips has been used and connected to the optimization programme using an ASCII interface. Dose calculations in Pinnacle were performed by Monte Carlo simulations for a remote-controlled electron multileaf collimator (MLC) from Euromechanics. As a result, treatment plans for breast cancer patients could be significantly improved when using randomly generated aperture beams. The combination of beams generated through segmentation and randomization achieved the best results in terms of target coverage and sparing of critical organs. The treatment plans could be further improved by use of a field reduction algorithm. Without a relevant loss in dose distribution, the total number of MLC fields and monitor units could be reduced by up to 20%. In conclusion, using randomized aperture beams is a promising new approach in radiotherapy and exhibits potential for further improvements in dose optimization through a combination of randomized electron and photon aperture beams.
Architecture for Control of the K9 Rover
NASA Technical Reports Server (NTRS)
Bresina, John L.; Bualat, maria; Fair, Michael; Wright, Anne; Washington, Richard
2006-01-01
Software featuring a multilevel architecture is used to control the hardware on the K9 Rover, which is a mobile robot used in research on robots for scientific exploration and autonomous operation in general. The software consists of five types of modules: Device Drivers - These modules, at the lowest level of the architecture, directly control motors, cameras, data buses, and other hardware devices. Resource Managers - Each of these modules controls several device drivers. Resource managers can be commanded by either a remote operator or the pilot or conditional-executive modules described below. Behaviors and Data Processors - These modules perform computations for such functions as planning paths, avoiding obstacles, visual tracking, and stereoscopy. These modules can be commanded only by the pilot. Pilot - The pilot receives a possibly complex command from the remote operator or the conditional executive, then decomposes the command into (1) more-specific commands to the resource managers and (2) requests for information from the behaviors and data processors. Conditional Executive - This highest-level module interprets a command plan sent by the remote operator, determines whether resources required for execution of the plan are available, monitors execution, and, if necessary, selects an alternate branch of the plan.
Reconceptualising risk: Perceptions of risk in rural and remote maternity service planning.
Barclay, Lesley; Kornelsen, Jude; Longman, Jo; Robin, Sarah; Kruske, Sue; Kildea, Sue; Pilcher, Jennifer; Martin, Tanya; Grzybowski, Stefan; Donoghue, Deborah; Rolfe, Margaret; Morgan, Geoff
2016-07-01
to explore perceptions and examples of risk related to pregnancy and childbirth in rural and remote Australia and how these influence the planning of maternity services. data collection in this qualitative component of a mixed methods study included 88 semi-structured individual and group interviews (n=102), three focus groups (n=22) and one group information session (n=17). Researchers identified two categories of risk for exploration: health services risk (including clinical and corporate risks) and social risk (including cultural, emotional and financial risks). Data were aggregated and thematically analysed to identify perceptions and examples of risk related to each category. fieldwork was conducted in four jurisdictions at nine sites in rural (n=3) and remote (n=6) Australia. 117 health service employees and 24 consumers. examples and perceptions relating to each category of risk were identified from the data. Most medical practitioners and health service managers perceived clinical risks related to rural birthing services without access to caesarean section. Consumer participants were more likely to emphasise social risks arising from a lack of local birthing services. our analysis demonstrated that the closure of services adds social risk, which exacerbates clinical risk. Analysis also highlighted that perceptions of clinical risk are privileged over social risk in decisions about rural and remote maternity service planning. a comprehensive analysis of risk that identifies how social and other forms of risk contribute to adverse clinical outcomes would benefit rural and remote people and their health services. Formal risk analyses should consider the risks associated with failure to provide birthing services in rural and remote communities as well as the risks of maintaining services. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Stennis Space Center Verification & Validation Capabilities
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; ONeal, Duane; Knowlton, Kelly; Ross, Kenton; Blonski, Slawomir
2005-01-01
Scientists within NASA s Applied Sciences Directorate have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site enables the in-flight characterization of satellite and airborne high spatial and moderate resolution remote sensing systems and their products. The smaller scale of the newer high resolution remote sensing systems allows scientists to characterize geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active lidar systems. SSC employs geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment, and thermal calibration ponds to characterize remote sensing data products. The SSC Instrument Validation Lab is a key component of the V&V capability and is used to calibrate field instrumentation and to provide National Institute of Standards and Technology traceability. This poster presents a description of the SSC characterization capabilities and examples of calibration data.
42 CFR 456.524 - Notification of Administrator's action and duration of variance.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Utilization Review Plans: FFP, Waivers, and Variances for Hospitals and Mental Hospitals Ur Plan: Remote...
NASA Astrophysics Data System (ADS)
Nakamura, Hiroo; Riccardi, B.; Loginov, N.; Ara, K.; Burgazzi, L.; Cevolani, S.; Dell'Orco, G.; Fazio, C.; Giusti, D.; Horiike, H.; Ida, M.; Ise, H.; Kakui, H.; Matsui, H.; Micciche, G.; Muroga, T.; Nakamura, Hideo; Shimizu, K.; Sugimoto, M.; Suzuki, A.; Takeuchi, H.; Tanaka, S.; Yoneoka, T.
2004-08-01
During the three year key element technology phase of the International Fusion Materials Irradiation Facility (IFMIF) project, completed at the end of 2002, key technologies have been validated. In this paper, these results are summarized. A water jet experiment simulating Li flow validated stable flow up to 20 m/s with a double reducer nozzle. In addition, a small Li loop experiment validated stable Li flow up to 14 m/s. To control the nitrogen content in Li below 10 wppm will require surface area of a V-Ti alloy getter of 135 m 2. Conceptual designs of diagnostics have been carried out. Moreover, the concept of a remote handling system to replace the back wall based on `cut and reweld' and `bayonet' options has been established. Analysis by FMEA showed safe operation of the target system. Recent activities in the transition phase, started in 2003, and plan for the next phase are also described.
Spectral measurements and analyses of atmospheric effects on remote sensor data
NASA Technical Reports Server (NTRS)
Hulstrom, R. L.
1975-01-01
The radiance as measured by a satellite remote sensor is determined by a number of different factors, including the intervening atmosphere, the target reflectivity characteristics, the characteristics of the total incident solar irradiance, and the incident solar irradiance/sensor viewing geometry. Measurement techniques and instrumentation are considered, taking into account total and diffuse solar irradiance, target reflectance/radiance, atmospheric optical depth/transmittance, and atmospheric path radiance.
NASA Astrophysics Data System (ADS)
Raju, P. L. N.; Sarma, K. K.; Barman, D.; Handique, B. K.; Chutia, D.; Kundu, S. S.; Das, R. Kr.; Chakraborty, K.; Das, R.; Goswami, J.; Das, P.; Devi, H. S.; Nongkynrih, J. M.; Bhusan, K.; Singh, M. S.; Singh, P. S.; Saikhom, V.; Goswami, C.; Pebam, R.; Borgohain, A.; Gogoi, R. B.; Singh, N. R.; Bharali, A.; Sarma, D.; Lyngdoh, R. B.; Mandal, P. P.; Chabukdhara, M.
2016-06-01
North Eastern Region (NER) of India comprising of eight states considered to be most unique and one of the most challenging regions to govern due to its unique physiographic condition, rich biodiversity, disaster prone and diverse socio-economic characteristics. Operational Remote Sensing services increased manifolds in the region with the establishment of North Eastern Space Applications Centre (NESAC) in the year 2000. Since inception, NESAC has been providing remote sensing services in generating inventory, planning and developmental activities, and management of natural resources, disasters and dissemination of information and services through geo-web services for NER. The operational remote sensing services provided by NESAC can be broadly divided into three categories viz. natural resource planning and developmental services, disaster risk reduction and early warning services and information dissemination through geo-portal services. As a apart of natural resources planning and developmental services NESAC supports the state forest departments in preparing the forest working plans by providing geospatial inputs covering entire NER, identifying the suitable culturable wastelands for cultivation of silkworm food plants, mapping of natural resources such as land use/land cover, wastelands, land degradation etc. on temporal basis. In the area of disaster risk reduction, NESAC has initiated operational services for early warning and post disaster assessment inputs for flood early warning system (FLEWS) using satellite remote sensing, numerical weather prediction, hydrological modeling etc.; forest fire alert system with actionable attribute information; Japanese Encephalitis Early Warning System (JEWS) based on mosquito vector abundance, pig population and historical disease intensity and agriculture drought monitoring for the region. The large volumes of geo-spatial databases generated as part of operational services are made available to the administrators and local government bodies for better management, preparing prospective planning, and sustainable use of available resources. The knowledge dissemination is being done through online web portals wherever the internet access is available and as well as offline space based information kiosks, where the internet access is not available or having limited bandwidth availability. This paper presents a systematic and comprehensive study on the remote sensing services operational in NER of India for natural resources management, disaster risk reduction and dissemination of information and services, in addition to outlining future areas and direction of space applications for the region.
NASA Technical Reports Server (NTRS)
Murphy, J. D.; Dideriksen, R. I.
1975-01-01
The application of remote sensing technology by the U.S. Department of Agriculture (USDA) is examined. The activities of the USDA Remote-Sensing User Requirement Task Force which include cataloging USDA requirements for earth resources data, determining those requirements that would return maximum benefits by using remote sensing technology and developing a plan for acquiring, processing, analyzing, and distributing data to satisfy those requirements are described. Emphasis is placed on the large area crop inventory experiment and its relationship to the task force.
NASA Technical Reports Server (NTRS)
Zaitzeff, J. B. (Editor); Cornillon, P. (Editor); Aubrey, D. A. (Editor)
1980-01-01
Presentations were grouped in the following categories: (1) a technical orientation of Earth resources remote sensing including data sources and processing; (2) a review of the present status of remote sensing technology applicable to the coastal and marine environment; (3) a description of data and information needs of selected coastal and marine activities; and (4) an outline of plans for marine monitoring systems for the east coast and a concept for an east coast remote sensing facility. Also discussed were user needs and remote sensing potentials in the areas of coastal processes and management, commercial and recreational fisheries, and marine physical processes.
Application of remote sensing to state and regional problems. [for Mississippi
NASA Technical Reports Server (NTRS)
Miller, W. F.; Bouchillon, C. W.; Harris, J. C.; Carter, B.; Whisler, F. D.; Robinette, R.
1974-01-01
The primary purpose of the remote sensing applications program is for various members of the university community to participate in activities that improve the effective communication between the scientific community engaged in remote sensing research and development and the potential users of modern remote sensing technology. Activities of this program are assisting the State of Mississippi in recognizing and solving its environmental, resource and socio-economic problems through inventory, analysis, and monitoring by appropriate remote sensing systems. Objectives, accomplishments, and current status of the following individual projects are reported: (1) bark beetle project; (2) state park location planning; and (3) waste source location and stream channel geometry monitoring.
NASA Astrophysics Data System (ADS)
Goetz, S. J.; Dubayah, R.
2016-12-01
Research on characterization of canopy structure with remote sensing has exploded as airborne data sets have become more widely available to the biodiversity science and habitat management communities. While these advances are important in the context of increasing pressure on both habitat and wildlife, airborne data acquisitions are necessarily limited in geographic scope and thus in their general applicability to biome-scale biodiversity research initiatives, including international programs striving to implement the United Nations Convention on Biological Diversity (CBD) and the associated Aichi Biodiversity Targets. The lack of systematic metrics of canopy structure across large geographic domains also makes it difficult to implement the CBD Strategic Plan systematically across nations, as outlined in National Biodiversity Strategies and Action Plans. The Group on Earth Observations, Biodiversity Observation Network (GEO BON) has proposed a set of Essential Biodiversity Variables (EBVs) that could be used as a global-scale basis for biodiversity monitoring, but several of those EBVs are still limited by the availability of data on habitat 3D structure. Those limitations will be overcome in the near future with a suite of satellite missions that will provide an unprecedented level of active remote sensing measurements useful for deriving structure information, including Tandem-X, ICESat-2, BIOMASS and the Global Ecosystem Dynamics Investigation (GEDI). We will provide a brief overview of the rapid advance of measurements of canopy structure and the applications that have evolved in recent years in terms of 3D habitat characterization, species-specific habitat utilization, and the potential of these new space-based measurements. In this talk we will focus primarily on GEDI, a lidar mission to be installed on the International Space Station that is optimized for retrieving 3D canopy structure. GEDI and the other new missions will provide long-desired consistent and systematic information on EBVs from space, and thereby facilitate the implementation of international biodiversity policy objectives.
NOAA's National Geodetic Survey Utilization of Aerial Sensors for Emergency Response Efforts
NASA Technical Reports Server (NTRS)
White, Stephen
2007-01-01
Remote Sensing Division has a Coastal Mapping program and a Airport Survey program and research and development that support both programs. NOAA/NGS/RSD plans to acquire remotely sensed data to support the agency's homeland security and emergency response requirements.
NASA Technical Reports Server (NTRS)
Sayres, D.S.; Pittman, J. V.; Smith, J. B.; Weinstock, E. M.; Anderson, J. G.; Heymsfield, G.; Li, L.; Fridlind, A.; Ackerman, A. S.
2004-01-01
Remote sensing observations, such as those from AURA, are necessary to understand the role of cirrus in determining the radiative and humidity budgets of the upper troposphere. Using these measurements quantitatively requires comparisons with in situ measurements that have previously been validated. However, a direct comparison of remote and in situ measurements is difficult due to the requirement that the spatial and temporal overlap be sufficient in order to guarantee that both instruments are measuring the same air parcel. A difficult as this might be for gas phase intercomparisons, cloud inhomogeneities significantly exacerbate the problem for cloud ice water content measurements. The CRYSTAL-FACE mission provided an opportunity to assess how well such intercomparisons can be performed and to establish flight plans that will be necessary for validation of future satellite instruments. During CRYSTAL-FACE, remote and in situ instruments were placed on different aircraft (NASA's ER-2 and WB-59, and the two planes flew in tandem so that the in situ payload flew in the field of view of the remote instruments. We show here that, even with this type of careful flight planning, it is not always possible to guarantee that remote and in situ instruments are viewing the same air parcel. We use ice water data derived from the in situ Harvard Total Water (HV-TW) instrument, and the remote Goddard Cloud Radar System (CRS) and show that agreement between HV-TW and CRS is a strong function of the horizontal separation and the time delay between the aircraft transects. We also use a cloud model to simulate possible trajectories through a cloud and evaluate the use of statistical analysis in determining the agreement between the two instruments. This type of analysis should guide flight planning for future intercomparison efforts, whether for aircraft or satellite-borne instrumentation.
NASA Technical Reports Server (NTRS)
Allen, Thomas R., Jr.
1999-01-01
Old Dominion University has claimed the title "University of the 21st Century," with a bold emphasis on technology innovation and application. In keeping with this claim, the proposed work has implemented a new laboratory equipped for remote sensing as well as curriculum and research innovations afforded for present and future faculty and students. The developments summarized within this report would not have been possible without the support of the NASA grant and significant cost-sharing of several units within the University. The grant effectively spring-boarded the university into major improvements in its approach to remote sensing and geospatial information technologies. The university has now committed to licensing Erdas Imagine software for the laboratory, a campus-wide ESRI geographic information system (GIS) products license, and several smaller software and hardware utilities available to faculty and students through the laboratory. Campus beneficiaries of this grant have included faculty from departments including Ocean, Earth. and Atmospheric Sciences, Political Science and Geography, Ecological Sciences, Environmental Health, and Civil and Environmental Engineering. High student interest is evidenced in students in geology, geography, ecology, urban studies, and planning. Three new courses have been added to the catalog and offered this year. Cross-cutting curriculum changes are in place with growing enrollments in remote sensing, GIS, and a new co-taught seminar in applied coastal remote sensing. The enabling grant has also allowed project participants to attract external funding for research grants, thereby providing additional funds beyond the planned matching, maintenance and growth of software and hardware, and stipends for student assistants. Two undergraduate assistants and two graduate assistants have been employed by full-time assistantships as a result. A new certificate is offered to students completing an interdisciplinary course sequence in remote sensing and coastal environments. Subsequent phases of the project are under planning. including seminars for regional coastal managers and public dissemination of remote sensing science through the local media and university publications.
Multi-crop area estimation and mapping on a microprocessor/mainframe network
NASA Technical Reports Server (NTRS)
Sheffner, E.
1985-01-01
The data processing system is outlined for a 1985 test aimed at determining the performance characteristics of area estimation and mapping procedures connected with the California Cooperative Remote Sensing Project. The project is a joint effort of the USDA Statistical Reporting Service-Remote Sensing Branch, the California Department of Water Resources, NASA-Ames Research Center, and the University of California Remote Sensing Research Program. One objective of the program was to study performance when data processing is done on a microprocessor/mainframe network under operational conditions. The 1985 test covered the hardware, software, and network specifications and the integration of these three components. Plans for the year - including planned completion of PEDITOR software, testing of software on MIDAS, and accomplishment of data processing on the MIDAS-VAX-CRAY network - are discussed briefly.
42 CFR 456.523 - Revised UR plan.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Utilization Review Plans: FFP, Waivers, and Variances for Hospitals and Mental Hospitals Ur Plan: Remote Facility Variances from Time Requirements § 456.523 Revised... control over the utilization of services; and (2) Conducts reviews in a way that improves the quality of...
42 CFR 456.523 - Revised UR plan.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Utilization Review Plans: FFP, Waivers, and Variances for Hospitals and Mental Hospitals Ur Plan: Remote Facility Variances from Time Requirements § 456.523 Revised... control over the utilization of services; and (2) Conducts reviews in a way that improves the quality of...
The ten-ecosystem study investigation plan
NASA Technical Reports Server (NTRS)
Kan, E. P.
1976-01-01
With the continental United States divided into ten forest and grassland ecosystems, the Ten Ecosystem Study (TES) is designed to investigate the feasibility and applicability of state-of-the-art automatic data processing remote sensing technology to inventory forest, grassland, and water resources by using Land Satellite data. The study will serve as a prelude to a possible future nationwide remote sensing application to inventory forest and rangeland renewable resources. This plan describes project design and phases, the ten ecosystem, data utilization and output, personnel organization, resource requirements, and schedules and milestones.
Delineation of geological problems for use in urban planning. [in Alabama using remote sensors
NASA Technical Reports Server (NTRS)
Hughes, T. H.; Bloss, P.; Fambrough, R.; Stow, S. H.; Hooks, W. G.; Freehafer, D.; Sutley, D.
1976-01-01
Activities of the University of Alabama in support of state and local planning commissions are reported. Demonstrations were given of the various types of remotely sensed images available from U-2, Skylab, and LANDSAT; and their uses and limitations were discussed. Techniques to be used in determining flood prone areas were provided for environmental studies. A rapid, inexpensive method for study was developed by which imagery is copied on 35 mm film and projected on existing topographic maps for measuring delta volume and growth.
New Earth Observation Capabilities For The Commercial Sector
NASA Technical Reports Server (NTRS)
Stefanov, William L.
2017-01-01
Earth observation data collected from orbital remote sensing systems are becoming increasingly critical to the short- and long-term operations of many commercial industries including agriculture, energy exploration, environmental management, transportation, and urban planning and operations. In this panel, I will present an overview of current and planned NASA remote sensing systems for Earth observation with relevance to commercial and industrial applications. Special emphasis will be given to the International Space Station (ISS) as a platform for both commercial technology demonstration/development and operational data collection through the ISS National Laboratory.
DOT National Transportation Integrated Search
2015-09-23
This research project aimed to develop a remote sensing system capable of rapidly identifying fine-scale damage to critical transportation infrastructure following hazard events. Such a system must be pre-planned for rapid deployment, automate proces...
High-quality remote interactive imaging in the operating theatre
NASA Astrophysics Data System (ADS)
Grimstead, Ian J.; Avis, Nick J.; Evans, Peter L.; Bocca, Alan
2009-02-01
We present a high-quality display system that enables the remote access within an operating theatre of high-end medical imaging and surgical planning software. Currently, surgeons often use printouts from such software for reference during surgery; our system enables surgeons to access and review patient data in a sterile environment, viewing real-time renderings of MRI & CT data as required. Once calibrated, our system displays shades of grey in Operating Room lighting conditions (removing any gamma correction artefacts). Our system does not require any expensive display hardware, is unobtrusive to the remote workstation and works with any application without requiring additional software licenses. To extend the native 256 levels of grey supported by a standard LCD monitor, we have used the concept of "PseudoGrey" where slightly off-white shades of grey are used to extend the intensity range from 256 to 1,785 shades of grey. Remote access is facilitated by a customized version of UltraVNC, which corrects remote shades of grey for display in the Operating Room. The system is successfully deployed at Morriston Hospital, Swansea, UK, and is in daily use during Maxillofacial surgery. More formal user trials and quantitative assessments are being planned for the future.
Radar activities of the DFVLR Institute for Radio Frequency Technology
NASA Technical Reports Server (NTRS)
Keydel, W.
1983-01-01
Aerospace research and the respective applications microwave tasks with respect to remote sensing, position finding and communication are discussed. The radar activities are directed at point targets, area targets and volume targets; they center around signature research for earth and ocean remote sensing, target recognition, reconnaissance and camouflage and imaging and area observation radar techniques (SAR and SLAR). The radar activities cover a frequency range from 1 GHz up to 94 GHz. The radar program is oriented to four possible application levels: ground, air, shuttle orbits and satellite orbits. Ground based studies and measurements, airborne scatterometers and imaging radars, a space shuttle radar, the MRSE, and follow on experiments are considered.
Remote sensing, land use, and demography - A look at people through their effects on the land
NASA Technical Reports Server (NTRS)
Paul, C. K.; Landini, A. J.
1976-01-01
Relevant causes of failure by the remote sensing community in the urban scene are analyzed. The reasons for the insignificant role of remote sensing in urban land use data collection are called the law of realism, the incompatibility of remote sensing and urban management system data formats is termed the law of nominal/ordinal systems compatibility, and the land use/population correlation dilemma is referred to as the law of missing persons. The study summarizes the three laws of urban land use information for which violations, avoidance, or ignorance have caused the decline of present remote sensing research. Particular attention is given to the rationale for urban land use information and for remote sensing. It is shown that remote sensing of urban land uses compatible with the three laws can be effectively developed by realizing the 10 percent contribution of remote sensing to urban land use planning data collection.
NASA-SETI microwave observing project: Targeted Search Element (TSE)
NASA Technical Reports Server (NTRS)
Webster, L. D.
1991-01-01
The Targeted Search Element (TSE) performs one of two complimentary search strategies of the NASA-SETI Microwave Observing Project (MOP): the targeted search. The principle objective of the targeted search strategy is to scan the microwave window between the frequencies of one and three gigahertz for narrowband microwave emissions eminating from the direction of 773 specifically targeted stars. The scanning process is accomplished at a minimum resolution of one or two Hertz at very high sensitivity. Detectable signals will be of a continuous wave or pulsed form and may also drift in frequency. The TSE will possess extensive radio frequency interference (RFI) mitigation and verification capability as the majority of signals detected by the TSE will be of local origin. Any signal passing through RFI classification and classifiable as an extraterrestrial intelligence (ETI) candidate will be further validated at non-MOP observatories using established protocol. The targeted search will be conducted using the capability provided by the TSE. The TSE provides six Targeted Search Systems (TSS) which independently or cooperatively perform automated collection, analysis, storage, and archive of signal data. Data is collected in 10 megahertz chunks and signal processing is performed at a rate of 160 megabits per second. Signal data is obtained utilizing the largest radio telescopes available for the Targeted Search such as those at Arecibo and Nancay or at the dedicated NASA-SETI facility. This latter facility will allow continuous collection of data. The TSE also provides for TSS utilization planning, logistics, remote operation, and for off-line data analysis and permanent archive of both the Targeted Search and Sky Survey data.
Deep neural network-based domain adaptation for classification of remote sensing images
NASA Astrophysics Data System (ADS)
Ma, Li; Song, Jiazhen
2017-10-01
We investigate the effectiveness of deep neural network for cross-domain classification of remote sensing images in this paper. In the network, class centroid alignment is utilized as a domain adaptation strategy, making the network able to transfer knowledge from the source domain to target domain on a per-class basis. Since predicted labels of target data should be used to estimate the centroid of each class, we use overall centroid alignment as a coarse domain adaptation method to improve the estimation accuracy. In addition, rectified linear unit is used as the activation function to produce sparse features, which may improve the separation capability. The proposed network can provide both aligned features and an adaptive classifier, as well as obtain label-free classification of target domain data. The experimental results using Hyperion, NCALM, and WorldView-2 remote sensing images demonstrated the effectiveness of the proposed approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawakami, K., E-mail: k.kawakami@al.t.u-tokyo.ac.jp; Komurasaki, K.; Okamura, H.
2015-02-28
A self-starting phase conjugator was designed for optical energy transfer to a remote target. Saturable-gain four-wave mixing in a laser resonator was achieved using a flash-lamp pumped Nd:YAG crystal and phase-conjugate light (PCL) generation were verified. Wavefront correction experimentation revealed that beam wander caused by air turbulence is compensated. Tracking capability was demonstrated in the range of 9 mrad with tracking accuracy of ±0.04 mrad. The maximum field of view was measured to be 4.7°. Dependence of phase-conjugate light energy on reference light energy was investigated. The maximum output of 320 mJ was obtained. The temporal behavior of PCL ismore » discussed based on the four-wave mixing mechanism. Unlike a conventional loop resonator type phase conjugator, this system is applicable for wireless energy transfer to a remote target.« less
Knepper, D.H.; Langer, W.H.; Miller, S.
1995-01-01
Natural aggregate is vital to the construction industry. Although natural aggregate is a high volume/low value commodity that is abundant, new sources are becoming increasingly difficult to find and develop because of rigid industry specifications, political considerations, development and transportation costs, and environmental concerns. There are two primary sources of natural aggregate: (1) exposed or near-surface bedrock that can be crushed, and (2) deposits of sand and gravel. Remote sensing and airborne geophysics detect surface and near-surface phenomena, and may be useful for detecting and mapping potential aggregate sources; however, before a methodology for applying these techniques can be developed, it is necessary to understand the type, distribution, physical properties, and characteristics of natural aggregate deposits. The distribution of potential aggregate sources is closely tied to local geologic history. Conventional exploration for natural aggregate deposits has been largely a ground-based operation, although aerial photographs and topographic maps have been extensively used to target possible deposits. Today, the exploration process also considers factors such as the availability of the land, space and water supply for processing, political and environmental factors, and distance from the market; exploration and planning cannot be separated. There are many physical properties and characteristics by which to judge aggregate material for specific applications; most of these properties and characteristics pertain only to individual aggregate particles. The application of remote sensing and airborne geophysical measurements to detecting and mapping potential aggregate sources, however, is based on intrinsic bulk physical properties and extrinsic characteristics of the deposits that can be directly measured, mathematically derived from measurement, or interpreted with remote sensing and geophysical data. ?? 1995 Oxford UniversityPress.
Measurement Sets and Sites Commonly Used for High Spatial Resolution Image Product Characterization
NASA Technical Reports Server (NTRS)
Pagnutti, Mary
2006-01-01
Scientists within NASA's Applied Sciences Directorate have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site has enabled the in-flight characterization of satellite high spatial resolution remote sensing system products form Space Imaging IKONOS, Digital Globe QuickBird, and ORBIMAGE OrbView, as well as advanced multispectral airborne digital camera products. SSC utilizes engineered geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment and their Instrument Validation Laboratory to characterize high spatial resolution remote sensing data products. This presentation describes the SSC characterization capabilities and techniques in the visible through near infrared spectrum and examples of calibration results.
NASA Astrophysics Data System (ADS)
Fix, A.; Amediek, A.; Büdenbender, C.; Ehret, G.; Wirth, M.; Quatrevalet, M.; Rapp, M.; Gerilowski, K.; Bovensmann, H.; Gerbig, C.; Pfeilsticker, K.; Zöger, M.; Giez, A.
2013-12-01
To better predict future trends in the cycles of the most important anthropogenic greenhouse gases, CO2 and CH4, there is a need to measure and understand their distribution and variation on various scales. To address these requirements it is envisaged to deploy a suite of state-of-the-art airborne instruments that will be capable to simultaneously measure the column averaged dry-air mixing ratios (XGHG) of both greenhouse gases along the flight path. As the measurement platform serves the research aircraft HALO, a modified Gulfstream G550, operated by DLR. This activity is dubbed CoMet (CO2 and Methane Mission). The instrument package of CoMet will consist of active and passive remote sensors as well as in-situ instruments to complement the column measurements by highly-resolved profile information. As an active remote sensing instrument CHARM-F, the integrated-path differential absorption lidar currently under development at DLR, will provide both, XCO2 and XCH4, below flight altitude. The lidar instrument will be complemented by MAMAP which is a NIR/SWIR absorption spectrometer developed by University of Bremen and which is also capable to derive XCH4 and XCO2. As an additional passive instrument, mini-DOAS operated by University of Heidelberg will contribute with additional context information about the investigated air masses. In order to compare the remote sensing instruments with integrated profile information, in-situ instrumentation is indispensable. The in-situ package will therefore comprise wavelength-scanned Cavity-Ring-Down Spectroscopy (CRDS) for the detection of CO2, CH4, CO and H2O and a flask sampler for collection of atmospheric samples and subsequent laboratory analysis. Furthermore, the BAsic HALO Measurement And Sensor System (BAHAMAS) will provide an accurate set of meteorological and aircraft state parameters for each scientific flight. Within the frame of the first CoMet mission scheduled for the 2015 timeframe it is planned to concentrate on small to sub-continental scale variations of the greenhouse gases. This does not only allow to identify local emission sources of GHGs, but also opens up the opportunity to use important remote sensing and in-situ data information for the inverse modeling approach for regional budgeting. CoMet is also targeting at providing a validation platform of future spaceborne GHG missions in particular the upcoming French-German methane mission MERLIN. CHARM-F was devised as an airborne demonstrator for MERLIN, and, as such will be a key instrument for MERLIN validation.
Hyperspectral target detection using manifold learning and multiple target spectra
Ziemann, Amanda K.; Theiler, James; Messinger, David W.
2016-03-31
Imagery collected from satellites and airborne platforms provides an important tool for remotely analyzing the content of a scene. In particular, the ability to remotely detect a specific material within a scene is of critical importance in nonproliferation and other applications. The sensor systems that process hyperspectral images collect the high-dimensional spectral information necessary to perform these detection analyses. For a d-dimensional hyperspectral image, however, where d is the number of spectral bands, it is common for the data to inherently occupy an m-dimensional space with m << d. In the remote sensing community, this has led to recent interestmore » in the use of manifold learning, which seeks to characterize the embedded lower-dimensional, nonlinear manifold that the data discretely approximate. The research presented in this paper focuses on a graph theory and manifold learning approach to target detection, using an adaptive version of locally linear embedding that is biased to separate target pixels from background pixels. Finally, this approach incorporates multiple target signatures for a particular material, accounting for the spectral variability that is often present within a solid material of interest.« less
Current and emerging operational uses of remote sensing in Swedish forestry
Hakan Olsson; Mikael Egberth; Jonas Engberg; Johan E.S. Fransson; Tina Granqvist Pahlen; < i> et al< /i>
2007-01-01
Satellite remote sensing is being used operationally by Swedish authorities in applications involving, for example, change detection of clear felled areas, use of k-Nearest Neighbour estimates of forest parameters, and post-stratification (in combination with National Forest Inventory plots). For forest management planning of estates, aerial...
Andrew T. Hudak; A. Tod Haren; Nicholas L. Crookston; Robert J. Liebermann; Janet L. Ohmann
2014-01-01
Imputation is commonly used to assign reference stand observations to target stands based on covariate relationships to remotely sensed data to assign inventory attributes across the entire landscape. However, most remotely sensed data are collected at higher resolution than the stand inventory data often used by operational foresters. Our primary goal was to compare...
Researching on the process of remote sensing video imagery
NASA Astrophysics Data System (ADS)
Wang, He-rao; Zheng, Xin-qi; Sun, Yi-bo; Jia, Zong-ren; Wang, He-zhan
Unmanned air vehicle remotely-sensed imagery on the low-altitude has the advantages of higher revolution, easy-shooting, real-time accessing, etc. It's been widely used in mapping , target identification, and other fields in recent years. However, because of conditional limitation, the video images are unstable, the targets move fast, and the shooting background is complex, etc., thus it is difficult to process the video images in this situation. In other fields, especially in the field of computer vision, the researches on video images are more extensive., which is very helpful for processing the remotely-sensed imagery on the low-altitude. Based on this, this paper analyzes and summarizes amounts of video image processing achievement in different fields, including research purposes, data sources, and the pros and cons of technology. Meantime, this paper explores the technology methods more suitable for low-altitude video image processing of remote sensing.
NASA Technical Reports Server (NTRS)
Yao, S. S. (Principal Investigator)
1981-01-01
The planning and scheduling of the use of remote sensing and computer technology to support the land management planning effort at the national forests level are outlined. The task planning and system capability development were reviewed. A user evaluation is presented along with technological transfer methodology. A land management planning pilot test of the San Juan National Forest is discussed.
Indicators of international remote sensing activities
NASA Technical Reports Server (NTRS)
Spann, G. W.
1977-01-01
The extent of worldwide remote sensing activities, including the use of satellite and high/medium altitude aircraft data was studied. Data were obtained from numerous individuals and organizations with international remote sensing responsibilities. Indicators were selected to evaluate the nature and scope of remote sensing activities in each country. These indicators ranged from attendance at remote sensing workshops and training courses to the establishment of earth resources satellite ground stations and plans for the launch of earth resources satellites. Results indicate that this technology constitutes a rapidly increasing component of environmental, land use, and natural resources investigations in many countries, and most of these countries rely on the LANDSAT satellites for a major portion of their data.
NASA Technical Reports Server (NTRS)
Miller, L. D.; Tom, C.; Nualchawee, K.
1977-01-01
A tropical forest area of Northern Thailand provided a test case of the application of the approach in more natural surroundings. Remote sensing imagery subjected to proper computer analysis has been shown to be a very useful means of collecting spatial data for the science of hydrology. Remote sensing products provide direct input to hydrologic models and practical data bases for planning large and small-scale hydrologic developments. Combining the available remote sensing imagery together with available map information in the landscape model provides a basis for substantial improvements in these applications.
San Juan National Forest Land Management Planning Support System (LMPSS) requirements definition
NASA Technical Reports Server (NTRS)
Werth, L. F. (Principal Investigator)
1981-01-01
The role of remote sensing data as it relates to a three-component land management planning system (geographic information, data base management, and planning model) can be understood only when user requirements are known. Personnel at the San Juan National Forest in southwestern Colorado were interviewed to determine data needs for managing and monitoring timber, rangelands, wildlife, fisheries, soils, water, geology and recreation facilities. While all the information required for land management planning cannot be obtained using remote sensing techniques, valuable information can be provided for the geographic information system. A wide range of sensors such as small and large format cameras, synthetic aperture radar, and LANDSAT data should be utilized. Because of the detail and accuracy required, high altitude color infrared photography should serve as the baseline data base and be supplemented and updated with data from the other sensors.
VIPER: Virtual Intelligent Planetary Exploration Rover
NASA Technical Reports Server (NTRS)
Edwards, Laurence; Flueckiger, Lorenzo; Nguyen, Laurent; Washington, Richard
2001-01-01
Simulation and visualization of rover behavior are critical capabilities for scientists and rover operators to construct, test, and validate plans for commanding a remote rover. The VIPER system links these capabilities. using a high-fidelity virtual-reality (VR) environment. a kinematically accurate simulator, and a flexible plan executive to allow users to simulate and visualize possible execution outcomes of a plan under development. This work is part of a larger vision of a science-centered rover control environment, where a scientist may inspect and explore the environment via VR tools, specify science goals, and visualize the expected and actual behavior of the remote rover. The VIPER system is constructed from three generic systems, linked together via a minimal amount of customization into the integrated system. The complete system points out the power of combining plan execution, simulation, and visualization for envisioning rover behavior; it also demonstrates the utility of developing generic technologies. which can be combined in novel and useful ways.
Diverse Planning for UAV Control and Remote Sensing
Tožička, Jan; Komenda, Antonín
2016-01-01
Unmanned aerial vehicles (UAVs) are suited to various remote sensing missions, such as measuring air quality. The conventional method of UAV control is by human operators. Such an approach is limited by the ability of cooperation among the operators controlling larger fleets of UAVs in a shared area. The remedy for this is to increase autonomy of the UAVs in planning their trajectories by considering other UAVs and their plans. To provide such improvement in autonomy, we need better algorithms for generating alternative trajectory variants that the UAV coordination algorithms can utilize. In this article, we define a novel family of multi-UAV sensing problems, solving task allocation of huge number of tasks (tens of thousands) to a group of configurable UAVs with non-zero weight of equipped sensors (comprising the air quality measurement as well) together with two base-line solvers. To solve the problem efficiently, we use an algorithm for diverse trajectory generation and integrate it with a solver for the multi-UAV coordination problem. Finally, we experimentally evaluate the multi-UAV sensing problem solver. The evaluation is done on synthetic and real-world-inspired benchmarks in a multi-UAV simulator. Results show that diverse planning is a valuable method for remote sensing applications containing multiple UAVs. PMID:28009831
A Unified Approach to Model-Based Planning and Execution
NASA Technical Reports Server (NTRS)
Muscettola, Nicola; Dorais, Gregory A.; Fry, Chuck; Levinson, Richard; Plaunt, Christian; Norvig, Peter (Technical Monitor)
2000-01-01
Writing autonomous software is complex, requiring the coordination of functionally and technologically diverse software modules. System and mission engineers must rely on specialists familiar with the different software modules to translate requirements into application software. Also, each module often encodes the same requirement in different forms. The results are high costs and reduced reliability due to the difficulty of tracking discrepancies in these encodings. In this paper we describe a unified approach to planning and execution that we believe provides a unified representational and computational framework for an autonomous agent. We identify the four main components whose interplay provides the basis for the agent's autonomous behavior: the domain model, the plan database, the plan running module, and the planner modules. This representational and problem solving approach can be applied at all levels of the architecture of a complex agent, such as Remote Agent. In the rest of the paper we briefly describe the Remote Agent architecture. The new agent architecture proposed here aims at achieving the full Remote Agent functionality. We then give the fundamental ideas behind the new agent architecture and point out some implication of the structure of the architecture, mainly in the area of reactivity and interaction between reactive and deliberative decision making. We conclude with related work and current status.
Diverse Planning for UAV Control and Remote Sensing.
Tožička, Jan; Komenda, Antonín
2016-12-21
Unmanned aerial vehicles (UAVs) are suited to various remote sensing missions, such as measuring air quality. The conventional method of UAV control is by human operators. Such an approach is limited by the ability of cooperation among the operators controlling larger fleets of UAVs in a shared area. The remedy for this is to increase autonomy of the UAVs in planning their trajectories by considering other UAVs and their plans. To provide such improvement in autonomy, we need better algorithms for generating alternative trajectory variants that the UAV coordination algorithms can utilize. In this article, we define a novel family of multi-UAV sensing problems, solving task allocation of huge number of tasks (tens of thousands) to a group of configurable UAVs with non-zero weight of equipped sensors (comprising the air quality measurement as well) together with two base-line solvers. To solve the problem efficiently, we use an algorithm for diverse trajectory generation and integrate it with a solver for the multi-UAV coordination problem. Finally, we experimentally evaluate the multi-UAV sensing problem solver. The evaluation is done on synthetic and real-world-inspired benchmarks in a multi-UAV simulator. Results show that diverse planning is a valuable method for remote sensing applications containing multiple UAVs.
Remote sensing for vineyard management
NASA Technical Reports Server (NTRS)
Philipson, W. R.; Erb, T. L.; Fernandez, D.; Mcleester, J. N.
1980-01-01
Cornell's Remote Sensing Program has been involved in a continuing investigation to assess the value of remote sensing for vineyard management. Program staff members have conducted a series of site and crop analysis studies. These include: (1) panchromatic aerial photography for planning artificial drainage in a new vineyard; (2) color infrared aerial photography for assessing crop vigor/health; and (3) color infrared aerial photography and aircraft multispectral scanner data for evaluating yield related factors. These studies and their findings are reviewed.
Progress and needs in agricultural research, development, and applications programs
NASA Technical Reports Server (NTRS)
Moore, D. G.; Myers, V. I.
1977-01-01
The dynamic nature of agriculture requires repetitive resource assessments such as those from remote sensing. Until recently, the use of remote sensing in agriculture has been limited primarily to site specific investigations without large-scale evaluations. Examples of successful applications at various user levels are provided. The stage of development for applying remote sensing to many agricultural problems is assessed, and goals for planning future data characteristics for increased use in agriculture are suggested.
Remote microscopy and volumetric imaging on the surface of icy satellites
NASA Astrophysics Data System (ADS)
Soto, Alejandro; Nowicki, Keith; Howett, Carly; Feldkhun, Daniel; Retherford, Kurt D.
2017-10-01
With NASA PIDDP support we have applied recent advancements in Fourier-domain microscopy to develop an instrument capable of microscopic imaging from meter-scale distances for use on a planetary lander on the surface of an icy satellite or other planetary bodies. Without moving parts, our instrument projects dynamic patterns of laser light onto a distant target using a lightweight large-aperture reflector, which then collects the light scattered or fluoresced by the target on a fast photon-bucket detector. Using Fourier Transform based techniques, we reconstruct an image from the detected light. The remote microscope has been demonstrated to produce 2D images with better than 15 micron lateral resolution for targets at a distance of 5 meters and is capable of linearly proportionally higher resolution at shorter distances. The remote microscope is also capable of providing three-dimensional (3D) microscopic imaging capabilities, allowing future surface scientists to explore the morphology of microscopic features in surface ices, for example. The instrument enables microscopic in-situ imaging during day or night without the use of a robotic arm, greatly facilitating the surface operations for a lander or rover while expanding the area of investigation near a landing site for improved science targeting. We are developing this remote microscope for in-situ planetary exploration as a collaboration between the Southwest Research Institute, LambdaMetrics, and the University of Colorado.
International Space Station Remote Sensing Pointing Analysis
NASA Technical Reports Server (NTRS)
Jacobson, Craig A.
2007-01-01
This paper analyzes the geometric and disturbance aspects of utilizing the International Space Station for remote sensing of earth targets. The proposed instrument (in prototype development) is SHORE (Station High-Performance Ocean Research Experiment), a multiband optical spectrometer with 15 m pixel resolution. The analysis investigates the contribution of the error effects to the quality of data collected by the instrument. This analysis supported the preliminary studies to determine feasibility of utilizing the International Space Station as an observing platform for a SHORE type of instrument. Rigorous analyses will be performed if a SHORE flight program is initiated. The analysis begins with the discussion of the coordinate systems involved and then conversion from the target coordinate system to the instrument coordinate system. Next the geometry of remote observations from the Space Station is investigated including the effects of the instrument location in Space Station and the effects of the line of sight to the target. The disturbance and error environment on Space Station is discussed covering factors contributing to drift and jitter, accuracy of pointing data and target and instrument accuracies.
Remote Sensing Capabilities to Detect Maritime Vessels in Distress
NASA Technical Reports Server (NTRS)
Larsen, Rudolph K.; Green, John M.; Huxtable, Barton D.; Rais, Houra
2004-01-01
The National Aeronautics and Space Administration (NASA) has the responsibility for conducting research and development for search and rescue as charged under the National Search and Rescue Plan. For over two decades this task has been undertaken by the Search and Rescue Mission Office at the NASA Goddard Space Flight Center (GSFC). The technology used by the highly successful beacon locating satellite system, Cospas-Sarsat, was conceived and developed at GSFC and is managed by the National Oceanographic and Atmospheric Administration (NOAA). Using beacon-less remote sensing to find people and vessels in distress complements the demonstrated life saving capabilities of this satellite system. The Search and Rescue Mission Office has been investigating the use of fully polarimetric synthetic aperture radar to locate crashed aircraft. An overview of this effort and potential maritime applications of Search and Rescue Synthetic Aperture Radar (SAR) will be presented. The Mission Office has also developed a Laser search and rescue system called L-SAR. The prototype instrument was designed and built by SenSyTech Inc. It specifically targets the location of novel retro-reflective material easily applied to rescue equipment and vessels in distress. An overview of this effort will also be presented.
Remote operation of the Black Knight unmanned ground combat vehicle
NASA Astrophysics Data System (ADS)
Valois, Jean-Sebastien; Herman, Herman; Bares, John; Rice, David P.
2008-04-01
The Black Knight is a 12-ton, C-130 deployable Unmanned Ground Combat Vehicle (UGCV). It was developed to demonstrate how unmanned vehicles can be integrated into a mechanized military force to increase combat capability while protecting Soldiers in a full spectrum of battlefield scenarios. The Black Knight is used in military operational tests that allow Soldiers to develop the necessary techniques, tactics, and procedures to operate a large unmanned vehicle within a mechanized military force. It can be safely controlled by Soldiers from inside a manned fighting vehicle, such as the Bradley Fighting Vehicle. Black Knight control modes include path tracking, guarded teleoperation, and fully autonomous movement. Its state-of-the-art Autonomous Navigation Module (ANM) includes terrain-mapping sensors for route planning, terrain classification, and obstacle avoidance. In guarded teleoperation mode, the ANM data, together with automotive dials and gages, are used to generate video overlays that assist the operator for both day and night driving performance. Remote operation of various sensors also allows Soldiers to perform effective target location and tracking. This document covers Black Knight's system architecture and includes implementation overviews of the various operation modes. We conclude with lessons learned and development goals for the Black Knight UGCV.
NASA Astrophysics Data System (ADS)
Kara, Can; Akçit, Nuhcan
2016-08-01
Land-cover change is considered one of the central components in current strategies for managing natural resources and monitoring environmental changes. It is important to manage land resources in a sustainable manner which targets at compacting and consolidating urban development. From 2005 to 2015,urban growth in Kyrenia has been quite dramatic, showing a wide and scattered pattern, lacking proper plan. As a result of this unplanned/unorganized expansion, agricultural areas, vegetation and water bodies have been lost in the region. Therefore, it has become a necessity to analyze the results of this urban growth and compare the losses between land-cover changes. With this goal in mind, a case study of Kyrenia region has been carried out using a supervised image classification method and Landsat TM images acquired in 2005 and 2015 to map and extract land-cover changes. This paper tries to assess urban-growth changes detected in the region by using Remote Sensing and GIS. The study monitors the changes between different land cover types. Also, it shows the urban occupation of primary soil loss and the losses in forest areas, open areas, etc.
Azzopardi, Peter; Brown, Alex D; Zimmet, Paul; Fahy, Rose E; Dent, Glynis A; Kelly, Martin J; Kranzusch, Kira; Maple-Brown, Louise J; Nossar, Victor; Silink, Martin; Sinha, Ashim K; Stone, Monique L; Wren, Sarah J
2012-07-02
The burden of type 2 diabetes mellitus (T2DM) among Indigenous children and adolescents is much greater than in non-Indigenous young people and appears to be rising, although data on epidemiology and complications are limited. Young Indigenous people living in remote areas appear to be at excess risk of T2DM. Most young Indigenous people with T2DM are asymptomatic at diagnosis and typically have a family history of T2DM, are overweight or obese and may have signs of hyperinsulinism such as acanthosis nigricans. Onset is usually during early adolescence. Barriers to addressing T2DM in young Indigenous people living in rural and remote settings relate to health service access, demographics, socioeconomic factors, cultural factors, and limited resources at individual and health service levels. We recommend screening for T2DM for any Aboriginal or Torres Strait Islander person aged > 10 years (or past the onset of puberty) who is overweight or obese, has a positive family history of diabetes, has signs of insulin resistance, has dyslipidaemia, has received psychotropic therapy, or has been exposed to diabetes in utero. Individualised management plans should include identification of risk factors, complications, behavioural factors and treatment targets, and should take into account psychosocial factors which may influence health care interaction, treatment success and clinical outcomes. Preventive strategies, including lifestyle modification, need to play a dominant role in tackling T2DM in young Indigenous people.
Application of remote sensing to state and regional problems. [mississippi
NASA Technical Reports Server (NTRS)
Miller, W. F.; Powers, J. S.; Clark, J. R.; Solomon, J. L.; Williams, S. G. (Principal Investigator)
1981-01-01
The methods and procedures used, accomplishments, current status, and future plans are discussed for each of the following applications of LANDSAT in Mississippi: (1) land use planning in Lowndes County; (2) strip mine inventory and reclamation; (3) white-tailed deer habitat evaluation; (4) remote sensing data analysis support systems; (5) discrimination of unique forest habitats in potential lignite areas; (6) changes in gravel operations; and (7) determining freshwater wetlands for inventory and monitoring. The documentation of all existing software and the integration of the image analysis and data base software into a single package are now considered very high priority items.
NASA Astrophysics Data System (ADS)
Chinery, G. T.; Wood, J. M.
1985-08-01
This paper describes the Tennessee Valley Authority's (TVA) current photovoltaic (PV) activities. These include four roof-mounted 4 kWp residential arrays (which are also Southeast Residential Station field sites) and two 5-6 kWp commercial sites, all grid connected with no battery storage. Also included are approximately 30 kWp of non-grid-connected remote sites with storage (remote lighting, weather stations, etc.). Monitoring results from the two 'online' residential systems are presented. Finally, TVA's future PV plans are discussed, both with respect to interfacing with a multitude of residential and commercial cogenerators and with regard to possible TVA PV central station plans.
Song, Mi-Kyung; Ward, Sandra E; Hepburn, Kenneth; Paul, Sudeshna; Shah, Raj C; Morhardt, Darby J
2018-06-02
People in the early stages of Alzheimer's disease and related dementias (ADRD) are encouraged to engage in advance care planning (ACP) while they are still competent to appoint a surrogate decision maker and meaningfully participate in ACP discussions with the surrogate. In this NIH Stage I behavioral intervention development trial, we will adapt and test an efficacious ACP intervention, SPIRIT (Sharing Patient's Illness Representation to Increase Trust), with people with mild dementia and their surrogates to promote open, honest discussions while such discussions about end-of-life care are possible. We will first adapt SPIRIT (in person) to target people with mild dementia and their surrogates through a process of modification-pretesting-refinement using stakeholders (persons with mild dementia, family caregivers, and clinicians) and experts, including adapting the delivery mode to interactive web-based videoconference format (SPIRIT-remote). Then in a 3-group RCT with 120 patient-surrogate dyads, we will evaluate the feasibility and acceptability of SPIRIT in-person and SPIRIT remote, and preliminary efficacy of SPIRIT compared to usual care on preparedness outcomes for end-of-life decision making (dyad congruence on goals of care, patient decisional conflict, and surrogate decision-making confidence) shortly after the intervention. This Stage I research of SPIRIT will generate valuable insights regarding how to improve ACP for people with mild dementia who will progress to an advanced stage of the disease in the foreseeable future. ClinicalTrials.gov NCT03311711, Registered 10/12/2017. Copyright © 2018. Published by Elsevier Inc.
Andréfouët, S; Wantiez, L
2010-01-01
Since 1972, the UNESCO "World Heritage Convention" offers an international canvas for conservation and management that targets areas of high cultural and environmental significance. To support the designation of areas within the 36.000 km(2) of New Caledonia coral reefs and lagoons as a World Heritage Site, the natural value and diversity of the proposed zones needed to be demonstrated. To exhaustively identify each configuration of shallow habitats, high resolution remote sensing images were used to select the sampling sites. This optimal scheme resulted in the selection of nearly 1300 sampling sites, and was then simplified to render its application realistic. In the final sampling plan, only the most common or the most remarkable coral zones were selected. Following this selection, in situ habitat and fish surveys were conducted in 2006-2008 in five large areas spanning a 600 km-long latitudinal gradient. Habitats were described using line-intercept transects in parallel with underwater visual census of indicator and commercial coral reef fish species. We report here on the results achieved in terms of: (i) the actual diversity of coral habitats captured by the remote sensing based sampling strategy, (ii) the different reef fish communities captured from the different sites, and (iii) how well they represent New Caledonia diversity. We discuss the possible generalization of this scheme to other sites, in the context of World Heritage Site selection and for other large-scale conservation planning activities. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Congruency effects in the remote distractor paradigm: evidence for top-down modulation.
Born, Sabine; Kerzel, Dirk
2009-08-10
In three experiments, we examined effects of target-distractor similarity in the remote distractor effect (RDE). Observers made saccades to peripheral targets that were either gray or green. Foveal or peripheral distractors were presented at the same time. The distractors could either share the target's defining property (congruent) or be different from the target (incongruent). Congruent distractors slowed down saccadic reaction times more than incongruent distractors. The increase of the RDE with target-distractor congruency depended on task demands. The more participants had to rely on the target property to locate the target, the larger the congruency effect. We conclude that the RDE can be modulated in a top-down manner. Alternative explanations such as persisting memory traces for the target property or differences in stimulus arrangement were considered but discarded. Our claim is in line with models of saccade generation which assume that the structures underlying the RDE (e.g. the superior colliculus) receive bottom-up as well as top-down information.
Study on multispectral imaging detection and recognition
NASA Astrophysics Data System (ADS)
Jun, Wang; Na, Ding; Gao, Jiaobo; Yu, Hu; Jun, Wu; Li, Junna; Zheng, Yawei; Fei, Gao; Sun, Kefeng
2009-07-01
Multispectral imaging detecting technology use target radiation character in spectral spatial distribution and relation between spectral and image to detect target and remote sensing measure. Its speciality is multi channel, narrow bandwidth, large amount of information, high accuracy. The ability of detecting target in environment of clutter, camouflage, concealment and beguilement is improved. At present, spectral imaging technology in the range of multispectral and hyperspectral develop greatly. The multispectral imaging equipment of unmanned aerial vehicle can be used in mine detection, information, surveillance and reconnaissance. Spectral imaging spectrometer operating in MWIR and LWIR has already been applied in the field of remote sensing and military in the advanced country. The paper presents the technology of multispectral imaging. It can enhance the reflectance, scatter and radiation character of the artificial targets among nature background. The targets among complex background and camouflage/stealth targets can be effectively identified. The experiment results and the data of spectral imaging is obtained.
Withers, Mellissa; Kano, Megumi; Pinatih, Gde Ngurah Indraguna
2010-07-01
Exploring fertility preferences in relation to contraceptive use can increase the understanding of future reproductive behaviour and unmet family planning needs. This knowledge can help assist women in meeting their reproductive goals. The influences on the desire for more children and current contraceptive use were examined among 1528 married women of reproductive age in an isolated community in Bali, Indonesia, using multivariate logistic regression analysis. Women who were younger, had fewer living children, had given birth in the past year and had regular access to health services were more likely to desire children. Being older, having fewer living children, not having regular access to health services, having given birth in the past year and having the desire for more children were associated with a lower likelihood of using contraception. Women with regular access to health care are more likely to desire more children, probably because they are confident in their ability to have successful birth outcomes. However, specialized clinics or family planning outreach workers may be required to reduce barriers to service utilization among some groups. The findings of this study identify key target populations for family planning, including older women and postpartum women--groups that may not perceive themselves to be at risk for unintended pregnancy. Meeting unmet need for family planning among these groups could help women meet their fertility goals, as well as reduce maternal morbidity and mortality.
Type 1 Adenylyl Cyclase is Essential for Maintenance of Remote Contextual Fear Memory
Shan, Qiang; Chan, Guy C.-K.; Storm, Daniel R.
2008-01-01
Although molecular mechanisms for hippocampus-dependent memory have been extensively studied, much less is known about signaling events important for remote memory. Here we report that mice lacking type 1 adenylyl cyclase (AC1) are able to establish and retrieve remote contextual memory but unable to sustain it as long as wild type mice. Interestingly, mice over-expressing AC1 show superior remote contextual memory even though they exhibit normal hippocampus-dependent contextual memory. These data illustrate that calcium coupling to cAMP contributes to the stability of remote memory and identifies AC1 as a potential drug target site to improve long-term remote memory. PMID:19036980
Revised Fifth Five Year Economic and Social Development Plan, 1984-1986.
1987-01-01
This document contains provisions of chapter 6 (Promoting Social Development) of the Revised Fifth Five-Year Economic and Social Development Plan (1984-86) of the Republic of Korea. The plan calls for the efficient control of population growth by targeting intensive efforts to women 20-30 years old, eradicating the traditional preference for male children, providing incentives to foster a small family norm, and discouraging couples from having too many children. Family planning (FP) programs will be expanded to increase the contraceptive prevalence rate and improve the quality of contraceptive services. Emphasis will be placed on women 34 years or younger residing in poor urban and remote rural areas. The emphasis of the evaluations of FP guidance and evaluation teams will be on the actual prevention of birth rather than on the contraceptive use ratio, and the FP program will be linked to other health and medical schemes. Families with 2 children or less will receive extended medical services and free kindergarten tuition. Families with 3 or more children may face discriminatory policy measures. The Family Law will be amended to allow daughters to inherit, the Medical Insurance Law will be changed to allow family members dependent upon female workers to be insured, and social institutions hindering female participation in the work force will be banned. The dissemination of FP information and population education will be expanded.
The Planning and Scheduling of HST: Improvements and Enhancements since Launch
NASA Astrophysics Data System (ADS)
Taylor, D. K.; Chance, D. R.; Jordan, I. J. E.; Patterson, A. P.; Stanley, M.; Taylor, D. C.
2001-12-01
The planning and scheduling (P&S) systems used in operating the Hubble Space Telescope (HST) have undergone such substantial and pervasive re-engineering that today they dimly resemble those used when HST was launched. Processes (i.e., software, procedures, networking, etc.) which allow program implementation, the generation of a Long Range Plan (LRP), and the scheduling of science and mission activities have improved drastically in nearly 12 years, resulting in a consistently high observing efficiency, a stable LRP that principal investigators can use, exceptionally clean command loads uplinked to the spacecraft, and the capability of a very fast response time due to onboard anomalies or targets of opportunity. In this presentation we describe many of the systems which comprise the P&S ("front-end") system for HST, how and why they were improved, and what benefits have been realized by either the HST user community or the STScI staff. The systems include the Guide Star System, the Remote Proposal Submission System - 2 (RPS2), Artificial Intelligence (AI) planning tools such as Spike, and the science and mission scheduling software. We also describe how using modern software languages such as Python and better development practices allow STScI staff to do more with HST (e.g., to handle much more science data when ACS is installed) without increasing the cost to HST operations.
Laser transmitter for space-based sodium lidar instrument
NASA Astrophysics Data System (ADS)
Yu, Anthony W.; Krainak, Michael A.; Janches, Diego; Konoplev, Oleg
2016-05-01
We are currently developing a laser transmitter to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of a Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our laser transmitter development effort with emphasis on wavelength tuning and power scaling of a diode-pumped Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that could produce multi-watt 589 nm wavelength output. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from past and current space flight missions.
NASA Technical Reports Server (NTRS)
Burgy, R. H.
1972-01-01
Data relating to hydrologic and water resource systems and subsystems management are reported. Systems models, user application, and remote sensing technology are covered. Parameters governing water resources include evaportranspiration, vegetation, precipitation, streams and estuaries, reservoirs and lakes, and unsaturate and saturated soil zones.
National remote computational flight research facility
NASA Technical Reports Server (NTRS)
Rediess, Herman A.
1989-01-01
The extension of the NASA Ames-Dryden remotely augmented vehicle (RAV) facility to accommodate flight testing of a hypersonic aircraft utilizing the continental United States as a test range is investigated. The development and demonstration of an automated flight test management system (ATMS) that uses expert system technology for flight test planning, scheduling, and execution is documented.
Advances in U.S. Land Imaging Capabilities
NASA Astrophysics Data System (ADS)
Stryker, T. S.
2017-12-01
Advancements in Earth observations, cloud computing, and data science are improving everyday life. Information from land-imaging satellites, such as the U.S. Landsat system, helps us to better understand the changing landscapes where we live, work, and play. This understanding builds capacity for improved decision-making about our lands, waters, and resources, driving economic growth, protecting lives and property, and safeguarding the environment. The USGS is fostering the use of land remote sensing technology to meet local, national, and global challenges. A key dimension to meeting these challenges is the full, free, and open provision of land remote sensing observations for both public and private sector applications. To achieve maximum impact, these data must also be easily discoverable, accessible, and usable. The presenter will describe the USGS Land Remote Sensing Program's current capabilities and future plans to collect and deliver land remote sensing information for societal benefit. He will discuss these capabilities in the context of national plans and policies, domestic partnerships, and international collaboration. The presenter will conclude with examples of how Landsat data is being used on a daily basis to improve lives and livelihoods.
Ship detection in panchromatic images: a new method and its DSP implementation
NASA Astrophysics Data System (ADS)
Yao, Yuan; Jiang, Zhiguo; Zhang, Haopeng; Wang, Mengfei; Meng, Gang
2016-03-01
In this paper, a new ship detection method is proposed after analyzing the characteristics of panchromatic remote sensing images and ship targets. Firstly, AdaBoost(Adaptive Boosting) classifiers trained by Haar features are utilized to make coarse detection of ship targets. Then LSD (Line Segment Detector) is adopted to extract the line features in target slices to make fine detection. Experimental results on a dataset of panchromatic remote sensing images with a spatial resolution of 2m show that the proposed algorithm can achieve high detection rate and low false alarm rate. Meanwhile, the algorithm can meet the needs of practical applications on DSP (Digital Signal Processor).
Archer, Charles J.; Blocksome, Michael A.
2012-12-11
Methods, parallel computers, and computer program products are disclosed for remote direct memory access. Embodiments include transmitting, from an origin DMA engine on an origin compute node to a plurality target DMA engines on target compute nodes, a request to send message, the request to send message specifying a data to be transferred from the origin DMA engine to data storage on each target compute node; receiving, by each target DMA engine on each target compute node, the request to send message; preparing, by each target DMA engine, to store data according to the data storage reference and the data length, including assigning a base storage address for the data storage reference; sending, by one or more of the target DMA engines, an acknowledgment message acknowledging that all the target DMA engines are prepared to receive a data transmission from the origin DMA engine; receiving, by the origin DMA engine, the acknowledgement message from the one or more of the target DMA engines; and transferring, by the origin DMA engine, data to data storage on each of the target compute nodes according to the data storage reference using a single direct put operation.
NASA Technical Reports Server (NTRS)
Walters, R. L.; Eastmond, R. J.; Barr, B. G.
1973-01-01
Project summaries and project reports are presented in the area of satellite remote sensing as applied to local, regional, and national environmental programs. Projects reports include: (1) Douglas County applications program; (2) vegetation damage and heavy metal concentration in new lead belt; (3) evaluating reclamation of strip-mined land; (4) remote sensing applied to land use planning at Clinton Reservoir; and (5) detailed land use mapping in Kansas City, Kansas.
Application of remote sensing to state and regional problems. [Mississippi
NASA Technical Reports Server (NTRS)
Miller, W. F.; Carter, B. D.; Solomon, J. L.; Williams, S. G.; Powers, J. S.; Clark, J. R. (Principal Investigator)
1980-01-01
Progress is reported in the following areas: remote sensing applications to land use planning Lowndes County, applications of LANDSAT data to strip mine inventory and reclamation, white tailed deer habitat evaluation using LANDSAT data, remote sensing data analysis support system, and discrimination of unique forest habitats in potential lignite areas of Mississippi. Other projects discussed include LANDSAT change discrimination in gravel operations, environmental impact modeling for highway corridors, and discrimination of fresh water wetlands for inventory and monitoring.
An airborne remote sensing system for urban air quality
NASA Technical Reports Server (NTRS)
Duncan, L. J.; Friedman, E. J.; Keitz, E. L.; Ward, E. A.
1974-01-01
Several NASA sponsored remote sensors and possible airborne platforms were evaluated. Outputs of dispersion models for SO2 and CO pollution in the Washington, D.C. area were used with ground station data to establish the expected performance and limitations of the remote sensors. Aircraft/sensor support requirements are discussed. A method of optimum flight plan determination was made. Cost trade offs were performed. Conclusions about the implementation of various instrument packages as parts of a comprehensive air quality monitoring system in Washington are presented.
Space transportation, satellite services, and space platforms
NASA Technical Reports Server (NTRS)
Disher, J. H.
1979-01-01
The paper takes a preview of the progressive development of vehicles for space transportation, satellite services, and orbital platforms. A low-thrust upper stage of either the ion engine or chemical type will be developed to transport large spacecraft and space platforms to and from GEO. The multimission spacecraft, space telescope, and other scientific platforms will require orbital serves going beyond that provided by the Shuttle's remote manipulator system, and plans call for extravehicular activity tools, improved remote manipulators, and a remote manned work station (the cherry picker).
BESST: A Miniature, Modular Radiometer
NASA Technical Reports Server (NTRS)
Warden, Robert; Good, William; Baldwin-Stevens, Erik
2010-01-01
A new radiometer assembly has been developed that incorporates modular design principles in order to provide flexibility and versatility. The assembly, shown in Figure 1, is made up of six modules plus a central cubical frame. A small thermal imaging detector is used to determine the temperature of remote objects. To improve the accuracy of the temperature reading, frequent calibration is required. The detector must view known temperature targets before viewing the remote object. Calibration is achieved by using a motorized fold mirror to select the desired scene the detector views. The motor steps the fold mirror through several positions, which allows the detector to view the calibration targets or the remote object. The details, features, and benefits of the radiometer are described in this paper.
Use of Remote Sensing for Decision Support in Africa
NASA Technical Reports Server (NTRS)
Policelli, Frederick S.
2007-01-01
Over the past 30 years, the scientific community has learned a great deal about the Earth as an integrated system. Much of this research has been enabled by the development of remote sensing technologies and their operation from space. Decision makers in many nations have begun to make use of remote sensing data for resource management, policy making, and sustainable development planning. This paper makes an attempt to provide a survey of the current state of the requirements and use of remote sensing for sustainable development in Africa. This activity has shown that there are not many climate data ready decision support tools already functioning in Africa. There are, however, endusers with known requirements who could benefit from remote sensing data.
DOT National Transportation Integrated Search
1973-04-01
An experimental plan for conducting ionospheric scintillation measurements using the geostationary Applications Technology Satellites at 136 MHz and 1550 MHz is presented. A remote unmanned data collection platform is proposed together with detailed ...
Remote sensing in Arizona. [for land use and urban development planning
NASA Technical Reports Server (NTRS)
Winikka, C. C.; Adams, R. E.
1975-01-01
Orthophotoquads prepared from high altitude photography and LANDSAT imagery were utilized for land use mapping and urban development planning. LANDSAT imagery of rough terrains were evaluated by photographic projection on a viewer screen for enlargement of details.
Resilient off-grid microgrids: Capacity planning and N-1 security
Madathil, Sreenath Chalil; Yamangil, Emre; Nagarajan, Harsha; ...
2017-06-13
Over the past century the electric power industry has evolved to support the delivery of power over long distances with highly interconnected transmission systems. Despite this evolution, some remote communities are not connected to these systems. These communities rely on small, disconnected distribution systems, i.e., microgrids to deliver power. However, as microgrids often are not held to the same reliability standards as transmission grids, remote communities can be at risk for extended blackouts. To address this issue, we develop an optimization model and an algorithm for capacity planning and operations of microgrids that include N-1 security and other practical modelingmore » features like AC power flow physics, component efficiencies and thermal limits. Lastly, we demonstrate the computational effectiveness of our approach on two test systems; a modified version of the IEEE 13 node test feeder and a model of a distribution system in a remote community in Alaska.« less
Resilient off-grid microgrids: Capacity planning and N-1 security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madathil, Sreenath Chalil; Yamangil, Emre; Nagarajan, Harsha
Over the past century the electric power industry has evolved to support the delivery of power over long distances with highly interconnected transmission systems. Despite this evolution, some remote communities are not connected to these systems. These communities rely on small, disconnected distribution systems, i.e., microgrids to deliver power. However, as microgrids often are not held to the same reliability standards as transmission grids, remote communities can be at risk for extended blackouts. To address this issue, we develop an optimization model and an algorithm for capacity planning and operations of microgrids that include N-1 security and other practical modelingmore » features like AC power flow physics, component efficiencies and thermal limits. Lastly, we demonstrate the computational effectiveness of our approach on two test systems; a modified version of the IEEE 13 node test feeder and a model of a distribution system in a remote community in Alaska.« less
Traverse Planning Experiments for Future Planetary Surface Exploration
NASA Technical Reports Server (NTRS)
Hoffman, Stephen J.; Voels, Stephen A.; Mueller, Robert P.; Lee, Pascal C.
2012-01-01
The purpose of the investigation is to evaluate methodology and data requirements for remotely-assisted robotic traverse of extraterrestrial planetary surface to support human exploration program, assess opportunities for in-transit science operations, and validate landing site survey and selection techniques during planetary surface exploration mission analog demonstration at Haughton Crater on Devon Island, Nunavut, Canada. Additionally, 1) identify quality of remote observation data sets (i.e., surface imagery from orbit) required for effective pre-traverse route planning and determine if surface level data (i.e., onboard robotic imagery or other sensor data) is required for a successful traverse, and if additional surface level data can improve traverse efficiency or probability of success (TRPF Experiment). 2) Evaluate feasibility and techniques for conducting opportunistic science investigations during this type of traverse. (OSP Experiment). 3) Assess utility of remotely-assisted robotic vehicle for landing site validation survey. (LSV Experiment).
Planning Targets for Phase II Watershed Implementation Plans
On August 1, 2011, EPA provided planning targets for nitrogen, phosphorus and sediment for the Phase II Watershed Implementation Plans (WIPs) of the Chesapeake Bay TMDL. This page provides the letters containing those planning targets.
Urban local climate zone mapping and apply in urban environment study
NASA Astrophysics Data System (ADS)
He, Shan; Zhang, Yunwei; Zhang, Jili
2018-02-01
The city’s local climate zone (LCZ) was considered to be a powerful tool for urban climate mapping. But for cities in different countries and regions, the LCZ division methods and results were different, thus targeted researches should be performed. In the current work, a LCZ mapping method was proposed, which is convenient in operation and city planning oriented. In this proposed method, the local climate zoning types were adjusted firstly, according to the characteristics of Chinese city, that more tall buildings and high density. Then the classification method proposed by WUDAPT based on remote sensing data was performed on Xi’an city, as an example, for LCZ mapping. Combined with the city road network, a reasonable expression of the dividing results was provided, to adapt to the characteristics in city planning that land parcels are usually recognized as the basic unit. The proposed method was validated against the actual land use and construction data that surveyed in Xi’an, with results indicating the feasibility of the proposed method for urban LCZ mapping in China.
Remotely sensed vegetation indices for seasonal crop yields predictions in the Czech Republic
NASA Astrophysics Data System (ADS)
Hlavinka, Petr; Semerádová, Daniela; Balek, Jan; Bohovic, Roman; Žalud, Zdeněk; Trnka, Miroslav
2015-04-01
Remotely sensed vegetation indices by satellites are valuable tool for vegetation conditions assessment also in the case of field crops. This study is based on the use of NDVI (Normalized Difference Vegetation Index) and EVI (Enhanced Vegetation Index) derived from MODIS (Moderate Resolution Imaging Spectroradiometer) aboard Terra satellite. Data available from the year 2000 were analyzed and tested for seasonal yields predictions within selected districts of the Czech Republic (Central Europe). Namely the yields of spring barley, winter wheat and oilseed winter rape during the period from 2000 to 2014 were assessed. Observed yields from 14 districts (NUTS 4) were collected and thus 210 seasons were included. Selected districts differ considerably in their soil fertility and terrain configuration and represent transect across various agroclimatic conditions (from warm and dry to relative cool and wet regions). Two approaches were tested: 1) using of composite remotely sensed data (available in 16 day time step) provided by the USGS (https://lpdaac.usgs.gov/); 2) using daily remotely sensed data in combination with originally developed smoothing method. The yields were successfully predicted based on established regression models (remotely sensed data used as independent parameter). Besides others the impact of severe drought episodes within vegetation were identified and yield reductions at district level predicted (even before harvest). As a result the periods with the best relationship between remotely sensed data and yields were identified. The impact of drought conditions as well as normal or above normal yields of field crops could be predicted by proposed method within study region up to 30 days prior to the harvest. It could be concluded that remotely sensed vegetation conditions assessment should be important part of early warning systems focused on drought. Such information should be widely available for various users (decision makers, farmers, etc.) in order to improve planning, business strategies but also to target the drought relief in case of major drought event. This study was funded by project "Building up a multidisciplinary scientific team focused on drought" No. CZ.1.07/2.3.00/20.0248, project supported by Czech National Agency of Agricultural Research No. QJ1310123 "Crop modelling as a tool for increasing the production potential and food security of the Czech Republic under Climate Change".
Benson, Valerie
2008-01-01
The remote distractor effect (RDE) is a robust finding of an increase in saccade onset latencies (20-40 ms) when a distractor is presented simultaneously with a target, compared to when a target is presented on its own (Walker, Deubel, Schneider, & Findlay, 1997). Distractors presented at fixation produce the largest RDE and the effect decreases as distractors are moved into the periphery. Data from two experiments that contrast with these standard findings are reported. Under bilateral target presentation, larger RDE magnitudes occurred for peripheral than for central distractors, whereas under unilateral presentation, the pattern reversed. The findings are discussed with reference to discrimination processes, attentional factors and current models of oculomotor control. It is suggested that in bilateral target presentation the competition between the distractor and the target results in the programming of a saccade to the distractor, as well as a saccade to the target. Time taken to cancel the saccade to the distractor produces the increased saccade latency for peripheral distractors in that condition.
Project MEDSAT: The design of a remote sensing platform for malaria research and control
NASA Astrophysics Data System (ADS)
1991-04-01
Project MEDSAT was proposed with the specific goal of designing a satellite to remotely sense pertinent information useful in establishing strategies to control malaria. The 340 kg MEDSAT satellite is to be inserted into circular earth orbit aboard the Pegasus Air-Launched Space Booster at an inclination of 21 degrees and an altitude of 473 km. It is equipped with a synthetic aperture radar and a visible thermal/infrared sensor to remotely sense conditions at the target area of Chiapas, Mexico. The orbit is designed so that MEDSAT will pass over the target site twice each day. The data from each scan will be downlinked to Hawaii for processing, resulting in maps indicating areas of high malaria risk. These will be distributed to health officials at the target site. A relatively inexpensive launch by Pegasus and a design using mainly proven, off-the-shelf technology permit a low mission cost, while innovations in the satellite controls and the scientific instruments allow a fairly complex mission.
Project MEDSAT: The design of a remote sensing platform for malaria research and control
NASA Technical Reports Server (NTRS)
1991-01-01
Project MEDSAT was proposed with the specific goal of designing a satellite to remotely sense pertinent information useful in establishing strategies to control malaria. The 340 kg MEDSAT satellite is to be inserted into circular earth orbit aboard the Pegasus Air-Launched Space Booster at an inclination of 21 degrees and an altitude of 473 km. It is equipped with a synthetic aperture radar and a visible thermal/infrared sensor to remotely sense conditions at the target area of Chiapas, Mexico. The orbit is designed so that MEDSAT will pass over the target site twice each day. The data from each scan will be downlinked to Hawaii for processing, resulting in maps indicating areas of high malaria risk. These will be distributed to health officials at the target site. A relatively inexpensive launch by Pegasus and a design using mainly proven, off-the-shelf technology permit a low mission cost, while innovations in the satellite controls and the scientific instruments allow a fairly complex mission.
Research and development plan for the Slagging Pyrolysis Incinerator. [For TRU waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hedahl, T.G.; McCormack, M.D.
1979-01-01
Objective is to develop an incinerator for processing disposed transuranium waste. This R and D plan describes the R and D efforts required to begin conceptual design of the Slagging Pyrolysis Incinerator (Andco-Torrax). The program includes: incinerator, off-gas treatment, waste handling, instrumentation, immobilization analyses, migration studies, regulations, Belgium R and D test plan, Disney World test plan, and remote operation and maintenance. (DLC)
Exploring Models and Data for Remote Sensing Image Caption Generation
NASA Astrophysics Data System (ADS)
Lu, Xiaoqiang; Wang, Binqiang; Zheng, Xiangtao; Li, Xuelong
2018-04-01
Inspired by recent development of artificial satellite, remote sensing images have attracted extensive attention. Recently, noticeable progress has been made in scene classification and target detection.However, it is still not clear how to describe the remote sensing image content with accurate and concise sentences. In this paper, we investigate to describe the remote sensing images with accurate and flexible sentences. First, some annotated instructions are presented to better describe the remote sensing images considering the special characteristics of remote sensing images. Second, in order to exhaustively exploit the contents of remote sensing images, a large-scale aerial image data set is constructed for remote sensing image caption. Finally, a comprehensive review is presented on the proposed data set to fully advance the task of remote sensing caption. Extensive experiments on the proposed data set demonstrate that the content of the remote sensing image can be completely described by generating language descriptions. The data set is available at https://github.com/201528014227051/RSICD_optimal
A geometrically based method for automated radiosurgery planning.
Wagner, T H; Yi, T; Meeks, S L; Bova, F J; Brechner, B L; Chen, Y; Buatti, J M; Friedman, W A; Foote, K D; Bouchet, L G
2000-12-01
A geometrically based method of multiple isocenter linear accelerator radiosurgery treatment planning optimization was developed, based on a target's solid shape. Our method uses an edge detection process to determine the optimal sphere packing arrangement with which to cover the planning target. The sphere packing arrangement is converted into a radiosurgery treatment plan by substituting the isocenter locations and collimator sizes for the spheres. This method is demonstrated on a set of 5 irregularly shaped phantom targets, as well as a set of 10 clinical example cases ranging from simple to very complex in planning difficulty. Using a prototype implementation of the method and standard dosimetric radiosurgery treatment planning tools, feasible treatment plans were developed for each target. The treatment plans generated for the phantom targets showed excellent dose conformity and acceptable dose homogeneity within the target volume. The algorithm was able to generate a radiosurgery plan conforming to the Radiation Therapy Oncology Group (RTOG) guidelines on radiosurgery for every clinical and phantom target examined. This automated planning method can serve as a valuable tool to assist treatment planners in rapidly and consistently designing conformal multiple isocenter radiosurgery treatment plans.
Analysis on the application of background parameters on remote sensing classification
NASA Astrophysics Data System (ADS)
Qiao, Y.
Drawing accurate crop cultivation acreage, dynamic monitoring of crops growing and yield forecast are some important applications of remote sensing to agriculture. During the 8th 5-Year Plan period, the task of yield estimation using remote sensing technology for the main crops in major production regions in China once was a subtopic to the national research task titled "Study on Application of Remote sensing Technology". In 21 century in a movement launched by Chinese Ministry of Agriculture to combine high technology to farming production, remote sensing has given full play to farm crops' growth monitoring and yield forecast. And later in 2001 Chinese Ministry of Agriculture entrusted the Northern China Center of Agricultural Remote Sensing to forecast yield of some main crops like wheat, maize and rice in rather short time to supply information for the government decision maker. Present paper is a report for this task. It describes the application of background parameters in image recognition, classification and mapping with focuses on plan of the geo-science's theory, ecological feature and its cartographical objects or scale, the study of phrenology for image optimal time for classification of the ground objects, the analysis of optimal waveband composition and the application of background data base to spatial information recognition ;The research based on the knowledge of background parameters is indispensable for improving the accuracy of image classification and mapping quality and won a secondary reward of tech-science achievement from Chinese Ministry of Agriculture. Keywords: Spatial image; Classification; Background parameter
DOT National Transportation Integrated Search
2010-03-01
Transportation corridor-planning processes are well understood, and consensus exists among practitioners : about common practices for stages and tasks included in traditional EIS approaches. However, traditional approaches do : not typically employ f...
Remote distractor effects and saccadic inhibition: spatial and temporal modulation.
Walker, Robin; Benson, Valerie
2013-09-12
The onset of a visual distractor remote from a saccade target is known to increase saccade latency (the remote distractor effect [RDE]). In addition, distractors may also selectively inhibit saccades that would be initiated about 90 ms after distractor onset (termed saccadic inhibition [SI]). Recently, it has been proposed that the transitory inhibition of saccades (SI) may underlie the increase in mean latency (RDE). In a first experiment, the distractor eccentricity was manipulated, and a robust RDE that was strongly modulated by distractor eccentricity was observed. However, the underlying latency distributions did not reveal clear evidence of SI. A second experiment manipulated distractor spatial location and the timing of the distractor onset in relation to the target. An RDE was again observed with remote distractors away from the target axis and under conditions with early-onset distractors that would be unlikely to produce SI, whereas later distractor onsets produced an RDE along with some evidence of an SI effect. A third experiment using a mixed block of target-distractor stimulus-onset asynchronies (SOAs) revealed an RDE that varied with both distractor eccentricity and SOA and changes to latency distributions consistent with the timing of SI. We argue that the notion that SI underpins the RDE is similar to the earlier argument that express saccades underlie the fixation offset (gap) effect and that changes in mean latency and to the shape of the underlying latency distributions following a visual onset may involve more than one inhibitory process.
Prowse, Phuong-Tu; Nagel, Tricia
2014-01-01
The aim of this study was to design and trial an Adherence Scale to measure fidelity of Motivational Care Planning (MCP) within a clinical trial. This culturally adapted therapy MCP uses a client centered holistic approach that emphasises family and culture to motivate healthy life style changes. The Motivational Care Planning-Adherence Scale (MCP-AS) was developed through consultation with Aboriginal and Islander Mental Health Initiative (AIMhi) Indigenous and non-Indigenous trainers, and review of MCP training resources. The resultant ten-item scale incorporates a 9-Point Likert Scale with a supporting protocol manual and uses objective, behaviourally anchored criteria for each scale point. A fidelity assessor piloted the tool through analysis of four audio-recordings of MCP (conducted by Indigenous researchers within a study in remote communities in Northern Australia). File audits of the remote therapy sessions were utilised as an additional source of information. A Gold Standard Motivational Care Planning training video was also assessed using the MCP-AS. The Motivational Care Planning-Adherence Scale contains items measuring both process and content of therapy sessions. This scale was used successfully to assess therapy through observation of audio or video-recorded sessions and review of clinical notes. Treatment fidelity measured by the MCP-AS within the pilot study indicated high fidelity ratings. Ratings were high across the three domains of rapport, motivation, and self-management with especially high ratings for positive feedback and engagement, review of stressors and goal setting. The Motivational Care Planning-Adherence Scale has the potential to provide a measure of quality of delivery of Motivation Care Planning. The pilot findings suggest that despite challenges within the remote Indigenous community setting, Indigenous therapists delivered therapy that was of high fidelity. While developed as a research tool, the scale has the potential to support fidelity of delivery of Motivation Care Planning in clinical, supervision and training settings. Larger studies are needed to establish inter-rater reliability and internal and external validity.
Ground zero and up; Nebraska's resources and land use. [using LANDSAT and Skylab data
NASA Technical Reports Server (NTRS)
Edwards, D. M.; Macklem, R.
1975-01-01
A one-semester high school course was developed about the use of remote sensing techniques for land earth resources planning and management. The slide-tape-workbook program was field tested with high school students to show a substantial increase in gain of knowledge and an attitude change in application of remote sensing techniques.
Sensors research and technology
NASA Technical Reports Server (NTRS)
Cutts, James A.
1988-01-01
Information on sensors research and technology is given in viewgraph form. Information is given on sensing techniques for space science, passive remote sensing techniques and applications, submillimeter coherent sensing, submillimeter mixers and local oscillator sources, non-coherent sensors, active remote sensing, solid state laser development, a low vibration cooler, separation of liquid helium and vapor phase in zero gravity, and future plans.
Robert E. Keane; Matthew G. Rollins; Cecilia H. McNicoll; Russell A. Parsons
2002-01-01
Presented is a prototype of the Landscape Ecosystem Inventory System (LEIS), a system for creating maps of important landscape characteristics for natural resource planning. This system uses gradient-based field inventories coupled with gradient modeling remote sensing, ecosystem simulation, and statistical analyses to derive spatial data layers required for ecosystem...
USDA-ARS?s Scientific Manuscript database
This study employs remote sensing and Geographical Information Systems (GIS) data to visualize the impact of climate change caused by flooding in the Southern African region in order to assist decision makers’ plans for future occurrences. In pursuit of this objective, this study uses Digital Elevat...
Classification accuracy for stratification with remotely sensed data
Raymond L. Czaplewski; Paul L. Patterson
2003-01-01
Tools are developed that help specify the classification accuracy required from remotely sensed data. These tools are applied during the planning stage of a sample survey that will use poststratification, prestratification with proportional allocation, or double sampling for stratification. Accuracy standards are developed in terms of an âerror matrix,â which is...
Second Eastern Regional Remote Sensing Applications Conference
NASA Technical Reports Server (NTRS)
Imhoff, M. L. (Editor); Witt, R. G. (Editor); Kugelmann, D. (Editor)
1981-01-01
Participants from state and local governments share experiences in remote sensing applications with one another and with users in the Federal government, universities, and the private sector during technical sessions and forums covering agriculture and forestry; land cover analysis and planning; surface mining and energy; data processing; water quality and the coastal zone; geographic information systems; and user development programs.
Remote sensing of volcanos and volcanic terrains
NASA Technical Reports Server (NTRS)
Mouginis-Mark, Peter J.; Francis, Peter W.; Wilson, Lionel; Pieri, David C.; Self, Stephen; Rose, William I.; Wood, Charles A.
1989-01-01
The possibility of using remote sensing to monitor potentially dangerous volcanoes is discussed. Thermal studies of active volcanoes are considered along with using weather satellites to track eruption plumes and radar measurements to study lava flow morphology and topography. The planned use of orbiting platforms to study emissions from volcanoes and the rate of change of volcanic landforms is considered.
Networked sensors for the combat forces
NASA Astrophysics Data System (ADS)
Klager, Gene
2004-11-01
Real-time and detailed information is critical to the success of ground combat forces. Current manned reconnaissance, surveillance, and target acquisition (RSTA) capabilities are not sufficient to cover battlefield intelligence gaps, provide Beyond-Line-of-Sight (BLOS) targeting, and the ambush avoidance information necessary for combat forces operating in hostile situations, complex terrain, and conducting military operations in urban terrain. This paper describes a current US Army program developing advanced networked unmanned/unattended sensor systems to survey these gaps and provide the Commander with real-time, pertinent information. Networked Sensors for the Combat Forces plans to develop and demonstrate a new generation of low cost distributed unmanned sensor systems organic to the RSTA Element. Networked unmanned sensors will provide remote monitoring of gaps, will increase a unit"s area of coverage, and will provide the commander organic assets to complete his Battlefield Situational Awareness (BSA) picture for direct and indirect fire weapons, early warning, and threat avoidance. Current efforts include developing sensor packages for unmanned ground vehicles, small unmanned aerial vehicles, and unattended ground sensors using advanced sensor technologies. These sensors will be integrated with robust networked communications and Battle Command tools for mission planning, intelligence "reachback", and sensor data management. The network architecture design is based on a model that identifies a three-part modular design: 1) standardized sensor message protocols, 2) Sensor Data Management, and 3) Service Oriented Architecture. This simple model provides maximum flexibility for data exchange, information management and distribution. Products include: Sensor suites optimized for unmanned platforms, stationary and mobile versions of the Sensor Data Management Center, Battle Command planning tools, networked communications, and sensor management software. Details of these products and recent test results will be presented.
Multiuser Collaboration with Networked Mobile Devices
NASA Technical Reports Server (NTRS)
Tso, Kam S.; Tai, Ann T.; Deng, Yong M.; Becks, Paul G.
2006-01-01
In this paper we describe a multiuser collaboration infrastructure that enables multiple mission scientists to remotely and collaboratively interact with visualization and planning software, using wireless networked personal digital assistants(PDAs) and other mobile devices. During ground operations of planetary rover and lander missions, scientists need to meet daily to review downlinked data and plan science activities. For example, scientists use the Science Activity Planner (SAP) in the Mars Exploration Rover (MER) mission to visualize downlinked data and plan rover activities during the science meetings [1]. Computer displays are projected onto large screens in the meeting room to enable the scientists to view and discuss downlinked images and data displayed by SAP and other software applications. However, only one person can interact with the software applications because input to the computer is limited to a single mouse and keyboard. As a result, the scientists have to verbally express their intentions, such as selecting a target at a particular location on the Mars terrain image, to that person in order to interact with the applications. This constrains communication and limits the returns of science planning. Furthermore, ground operations for Mars missions are fundamentally constrained by the short turnaround time for science and engineering teams to process and analyze data, plan the next uplink, generate command sequences, and transmit the uplink to the vehicle [2]. Therefore, improving ground operations is crucial to the success of Mars missions. The multiuser collaboration infrastructure enables users to control software applications remotely and collaboratively using mobile devices. The infrastructure includes (1) human-computer interaction techniques to provide natural, fast, and accurate inputs, (2) a communications protocol to ensure reliable and efficient coordination of the input devices and host computers, (3) an application-independent middleware that maintains the states, sessions, and interactions of individual users of the software applications, (4) an application programming interface to enable tight integration of applications and the middleware. The infrastructure is able to support any software applications running under the Windows or Unix platforms. The resulting technologies not only are applicable to NASA mission operations, but also useful in other situations such as design reviews, brainstorming sessions, and business meetings, as they can benefit from having the participants concurrently interact with the software applications (e.g., presentation applications and CAD design tools) to illustrate their ideas and provide inputs.
Software Suite to Support In-Flight Characterization of Remote Sensing Systems
NASA Technical Reports Server (NTRS)
Stanley, Thomas; Holekamp, Kara; Gasser, Gerald; Tabor, Wes; Vaughan, Ronald; Ryan, Robert; Pagnutti, Mary; Blonski, Slawomir; Kenton, Ross
2014-01-01
A characterization software suite was developed to facilitate NASA's in-flight characterization of commercial remote sensing systems. Characterization of aerial and satellite systems requires knowledge of ground characteristics, or ground truth. This information is typically obtained with instruments taking measurements prior to or during a remote sensing system overpass. Acquired ground-truth data, which can consist of hundreds of measurements with different data formats, must be processed before it can be used in the characterization. Accurate in-flight characterization of remote sensing systems relies on multiple field data acquisitions that are efficiently processed, with minimal error. To address the need for timely, reproducible ground-truth data, a characterization software suite was developed to automate the data processing methods. The characterization software suite is engineering code, requiring some prior knowledge and expertise to run. The suite consists of component scripts for each of the three main in-flight characterization types: radiometric, geometric, and spatial. The component scripts for the radiometric characterization operate primarily by reading the raw data acquired by the field instruments, combining it with other applicable information, and then reducing it to a format that is appropriate for input into MODTRAN (MODerate resolution atmospheric TRANsmission), an Air Force Research Laboratory-developed radiative transport code used to predict at-sensor measurements. The geometric scripts operate by comparing identified target locations from the remote sensing image to known target locations, producing circular error statistics defined by the Federal Geographic Data Committee Standards. The spatial scripts analyze a target edge within the image, and produce estimates of Relative Edge Response and the value of the Modulation Transfer Function at the Nyquist frequency. The software suite enables rapid, efficient, automated processing of ground truth data, which has been used to provide reproducible characterizations on a number of commercial remote sensing systems. Overall, this characterization software suite improves the reliability of ground-truth data processing techniques that are required for remote sensing system in-flight characterizations.
Remote sensing and GIS-based prediction and assessment of copper-gold resources in Thailand
NASA Astrophysics Data System (ADS)
Yang, Shasha; Wang, Gongwen; Du, Wenhui; Huang, Luxiong
2014-03-01
Quantitative integration of geological information is a frontier and hotspot of prospecting decision research in the world. The forming process of large scale Cu-Au deposits is influenced by complicated geological events and restricted by various geological factors (stratum, structure and alteration). In this paper, using Thailand's copper-gold deposit district as a case study, geological anomaly theory is used along with the typical copper and gold metallogenic model, ETM+ remote sensing images, geological maps and mineral geology database in study area are combined with GIS technique. These techniques create ore-forming information such as geological information (strata, line-ring faults, intrusion), remote sensing information (hydroxyl alteration, iron alteration, linear-ring structure) and the Cu-Au prospect targets. These targets were identified using weights of evidence model. The research results show that the remote sensing and geological data can be combined to quickly predict and assess for exploration of mineral resources in a regional metallogenic belt.
The Application of NASA Remote Sensing Technology to Human Health
NASA Technical Reports Server (NTRS)
Watts, C. T.
2007-01-01
With the help of satellites, the Earth's environment can be monitored from a distance. Earth observing satellites and sensors collect data and survey patterns that supply important information about the environment relating to its affect on human health. Combined with ground data, such patterns and remote sensing data can be essential to public health applications. Remote sensing technology is providing information that can help predict factors that affect human health, such as disease, drought, famine, and floods. A number of public health concerns that affect Earth's human population are part of the current National Aeronautics and Space Administration (NASA) Earth Science Applications Plan to provide remotely gathered data to public health decision-makers to aid in forming and implementing policy to protect human health and preserve well-being. These areas of concern are: air quality; water quality; weather and climate change; infectious, zoonotic, and vector-borne disease; sunshine; food resource security; and health risks associated with the built environment. Collaborations within the Earth Science Applications Plan join local, state, national, or global organizations and agencies as partners. These partnerships engage in projects that strive to understand the connection between the environment and health. The important outcome is to put this understanding to use through enhancement of decision support tools that aid policy and management decisions on environmental health risks. Future plans will further employ developed models in formats that are compatible and accessible to all public health organizations.
Stennis Space Center Verification & Validation Capabilities
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; O'Neal, Duane; Knowlton, Kelly; Ross, Kenton; Blonski, Slawomir
2007-01-01
Scientists within NASA#s Applied Research & Technology Project Office (formerly the Applied Sciences Directorate) have developed a well-characterized remote sensing Verification & Validation (V&V) site at the John C. Stennis Space Center (SSC). This site enables the in-flight characterization of satellite and airborne high spatial resolution remote sensing systems and their products. The smaller scale of the newer high resolution remote sensing systems allows scientists to characterize geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists have used the SSC V&V site to characterize thermal infrared systems. Enhancements are being considered to characterize active lidar systems. SSC employs geodetic targets, edge targets, radiometric tarps, atmospheric monitoring equipment, and thermal calibration ponds to characterize remote sensing data products. Similar techniques are used to characterize moderate spatial resolution sensing systems at selected nearby locations. The SSC Instrument Validation Lab is a key component of the V&V capability and is used to calibrate field instrumentation and to provide National Institute of Standards and Technology traceability. This poster presents a description of the SSC characterization capabilities and examples of calibration data.
Process technology and effects of spallation products: Circuit components, maintenance, and handling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigg, B.; Haines, S.J.; Dressler, R.
1996-06-01
Working Session D included an assessment of the status of the technology and components required to: (1) remove impurities from the liquid metal (mercury or Pb-Bi) target flow loop including the effects of spallation products, (2) provide the flow parameters necessary for target operations, and (3) maintain the target system. A series of brief presentations were made to focus the discussion on these issues. The subjects of these presentations, and presenters were: (1) Spallation products and solubilities - R. Dressler; (2) Spallation products for Pb-Bi - Y. Orlov; (3) Clean/up/impurity removal components - B. Sigg; (4) {open_quotes}Road-Map{close_quotes} and remote handlingmore » needs - T. McManamy; (5) Remote handling issues and development - M. Holding. The overall conclusion of this session was that, with the exception of (i) spallation product related processing issues, (ii) helium injection and clean-up, and (iii) specialized remote handling equipment, the technology for all other circuit components (excluding the target itself) exists. Operating systems at the Institute of Physics in Riga, Latvia (O. Lielausis) and at Ben-Gurion University in Beer Shiva, Israel (S. Lesin) have demonstrated that other liquid metal circuit components including pumps, heat exchangers, valves, seals, and piping are readily available and have been reliably used for many years. In the three areas listed above, the designs and analysis are not judged to be mature enough to determine whether and what types of technology development are required. Further design and analysis of the liquid metal target system is therefore needed to define flow circuit processing and remote handling equipment requirements and thereby identify any development needs.« less
NASA Technical Reports Server (NTRS)
Verostko, Charles E. (Inventor); Atwater, James E. (Inventor); Akse, James R. (Inventor); DeHart, Jeffrey L. (Inventor); Wheeler, Richard R. (Inventor)
1998-01-01
A "reagentless" chemiluminescent biosensor and method for the determination of hydrogen peroxide, ethanol and D-glucose in water is disclosed. An aqueous stream is basified by passing it through a solid phase base bed. Luminol is then dissolved in the basified effluent at a controlled rate. Oxidation of the luminol is catalyzed by the target chemical to produce emitted light. The intensity of the emitted light is detected as a measure of the target chemical concentration in the aqueous stream. The emitted light can be transmitted by a fiber optic bundle to a remote location from the aqueous stream for a remote reading of the target chemical concentration.
Fuzzy Logic Path Planning System for Collision Avoidance by an Autonomous Rover Vehicle
NASA Technical Reports Server (NTRS)
Murphy, Michael G.
1991-01-01
Systems already developed at JSC have shown the benefits of applying fuzzy logic control theory to space related operations. Four major issues are addressed that are associated with developing an autonomous collision avoidance subsystem within a path planning system designed for application in a remote, hostile environment that does not lend itself well to remote manipulation of the vehicle involved through Earth-based telecommunication. A good focus for this is unmanned exploration of the surface of Mars. The uncertainties involved indicate that robust approaches such as fuzzy logic control are particularly appropriate. The four major issues addressed are: (1) avoidance of a single fuzzy moving obstacle; (2) back off from a dead end in a static obstacle environment; (3) fusion of sensor data to detect obstacles; and (4) options for adaptive learning in a path planning system.
The LCOGT NEO Follow-up Network
NASA Astrophysics Data System (ADS)
Lister, Tim; Greenstreet, Sarah; Gomez, Edward; Christensen, Eric J.; Larson, Stephen M.
2016-10-01
The LCOGT NEO Follow-up Network is using the telescopes of the Las Cumbres Observatory Global Telescope Network (LCOGT) and a web-based target selection, scheduling and data reduction system to confirm NEO candidates and characterize radar-targeted known NEOs. Starting in July 2014, the LCOGT NEO Follow-up Network has observed over 3,500 targets and reported more than 16,000 astrometric and photometric measurements to the Minor Planet Center (MPC).The LCOGT NEO Follow-up Network's main aims are to perform confirming follow-up of the large number of NEO candidates and to perform characterization measurements of radar targets to obtain light curves and rotation rates. The NEO candidates come from the NEO surveys such as Catalina, PanSTARRS, ATLAS, NEOWISE and others. In particular, we are targeting objects in the Southern Hemisphere, where the LCOGT NEO Follow-up Network is the largest resource for NEO observations.LCOGT has completed the first phase of the deployment with the installation and commissioning of the nine 1-meter telescopes at McDonald Observatory (Texas), Cerro Tololo (Chile), SAAO (South Africa) and Siding Spring Observatory (Australia). The telescope network has been fully operational since 2014 May, and observations are being executed remotely and robotically. Future expansion to a site at Ali Observatory, Tibet is planned for 2017-2018.We have developed web-based software called NEOexchange which automatically downloads and aggregates NEO candidates from the Minor Planet Center's NEO Confirmation Page, the Arecibo and Goldstone radar target lists and the NASA ARM list. NEOexchange allows the planning and scheduling of observations on the LCOGT Telescope Network and the tracking of the resulting blocks and generated data. We have recently extended the NEOexchange software to include automated data reduction to re-compute the astrometric solution, determine the photometric zeropoint and find moving objects and present these results to the user via the website.We will present results from the LCOGT NEO Follow-up Network and from the development of the NEOexchange software which is used to schedule, analyze and report observations taken with the LCOGT Network.
42 CFR 456.522 - Content of request for variance.
Code of Federal Regulations, 2010 CFR
2010-10-01
... SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Utilization Review Plans: FFP, Waivers, and Variances for Hospitals and Mental Hospitals Ur Plan: Remote Facility Variances from Time..., mental hospital, and ICF located within a 50-mile radius of the facility; (e) The distance and average...
42 CFR 456.521 - Conditions for granting variance requests.
Code of Federal Regulations, 2011 CFR
2011-10-01
... SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Utilization Review Plans: FFP, Waivers, and Variances for Hospitals and Mental Hospitals Ur Plan: Remote Facility Variances from Time... is unable to meet the time requirements for which the variance is requested; and (2) A revised UR...
Strategies for using remotely sensed data in hydrologic models
NASA Technical Reports Server (NTRS)
Peck, E. L.; Keefer, T. N.; Johnson, E. R. (Principal Investigator)
1981-01-01
Present and planned remote sensing capabilities were evaluated. The usefulness of six remote sensing capabilities (soil moisture, land cover, impervious area, areal extent of snow cover, areal extent of frozen ground, and water equivalent of the snow cover) with seven hydrologic models (API, CREAMS, NWSRFS, STORM, STANFORD, SSARR, and NWSRFS Snowmelt) were reviewed. The results indicate remote sensing information has only limited value for use with the hydrologic models in their present form. With minor modifications to the models the usefulness would be enhanced. Specific recommendations are made for incorporating snow covered area measurements in the NWSRFS Snowmelt model. Recommendations are also made for incorporating soil moisture measurements in NWSRFS. Suggestions are made for incorporating snow covered area, soil moisture, and others in STORM and SSARR. General characteristics of a hydrologic model needed to make maximum use of remotely sensed data are discussed. Suggested goals for improvements in remote sensing for use in models are also established.
Intra-operative feedback and dynamic compensation for image-guided robotic focal ultrasound surgery.
Chauhan, S; Amir, H; Chen, G; Hacker, A; Michel, M S; Koehrmann, K U
2008-11-01
This paper describes a non-invasive remote temperature measurement technique integrated with a biomechatronic surgery system devised in our laboratory and named FUSBOT (Focal Ultrasound Surgery RoBOT). FUSBOTs use High-Intensity Focused Ultrasound (HIFU) for ablation of cancers/tumors and targets accessible through various soft-tissue acoustic windows in the human body. The focused ultrasound beam parameters are chosen so that biologically significant temperature rises are achieved only within the focal volume. In this paper, FUSBOT(BS), a customized system for breast surgery, is taken as a representative example to demonstrate the implementation and the results of non-invasive feedback during ablation. An 8-axis PC-based controller controls various sub-sections of the system within a safe constrained work envelope. Temperature is a prime target parameter in ablative procedures, and it is of paramount importance that means should be devised for its measurement and control in order to design optimal dose protocols and judge the efficacy of FUS systems. A customized sensory interface is devised and integrated with FUSBOT(BS), and dedicated software algorithms are embedded for surgical planning based on real-time guidance and feedback. Variations in the physical parameters of the tissue interacting with the incident modality are used as surgical feedback. The use of real-time ultrasound imaging and data processed from various sensors to deduce lesion position and thermal feedback during surgery, as integrated with the robotic system for online surgical planning, is described. Dynamic registration algorithms are developed for compensation and re-registration of the robotic end-effector with respect to the target, and representative empirical outcomes for lesion tracking and online temperature estimation in various biological tissues are presented.
Harrison, R M
2008-12-01
The increasing use of imaging for localization and verification in radiotherapy has raised issues concerning the justifiable doses to critical organs and tissues from concomitant exposures, particularly when extensive image-guided radiotherapy is indicated. Doses at positions remote from the target volume include components from high-energy leakage and scatter, as well as from concomitant imaging. In this paper, simulated prostate, breast and larynx treatments are used to compare doses from both high-energy and concomitant exposures as a function of distance from the target volume. It is suggested that the fraction, R, of the total dose at any point within the patient that is attributable to concomitant exposures may be a useful aid in their justification. R is small within the target volume and at large distances from it. However, there is a critical region immediately adjacent to the planning target volume where the dose from concomitant imaging combines with leakage and scatter to give values of R that approach 0.5 in the examples given here. This is noteworthy because the regions just outside the target volume will receive total doses in the order of 1 Gy, where commensurately high risk factors may not be substantially reduced because of cell kill. Other studies have identified these regions as sites of second cancers. The justification of an imaging regimen might therefore usefully take into account the maximum value of R encountered from the combination of imaging and radiotherapy for particular treatment sites.
Remote sensing of coal mine pollution in the upper Potomac River basin
NASA Technical Reports Server (NTRS)
1974-01-01
A survey of remote sensing data pertinent to locating and monitoring sources of pollution resulting from surface and shaft mining operations was conducted in order to determine the various methods by which ERTS and aircraft remote sensing data can be used as a replacement for, or a supplement to traditional methods of monitoring coal mine pollution of the upper Potomac Basin. The gathering and analysis of representative samples of the raw and processed data obtained during the survey are described, along with plans to demonstrate and optimize the data collection processes.
NASA Technical Reports Server (NTRS)
Kumar, L.
1978-01-01
A computer program is described for calculating the flexibility coefficients as arm design changes are made for the remote manipulator system. The coefficients obtained are required as input for a second program which reduces the number of payload deployment and retrieval system simulation runs required to simulate the various remote manipulator system maneuvers. The second program calculates end effector flexibility and joint flexibility terms for the torque model of each joint for any arbitrary configurations. The listing of both programs is included in the appendix.
Remote Sensing Technologies and Geospatial Modelling Hierarchy for Smart City Support
NASA Astrophysics Data System (ADS)
Popov, M.; Fedorovsky, O.; Stankevich, S.; Filipovich, V.; Khyzhniak, A.; Piestova, I.; Lubskyi, M.; Svideniuk, M.
2017-12-01
The approach to implementing the remote sensing technologies and geospatial modelling for smart city support is presented. The hierarchical structure and basic components of the smart city information support subsystem are considered. Some of the already available useful practical developments are described. These include city land use planning, urban vegetation analysis, thermal condition forecasting, geohazard detection, flooding risk assessment. Remote sensing data fusion approach for comprehensive geospatial analysis is discussed. Long-term city development forecasting by Forrester - Graham system dynamics model is provided over Kiev urban area.
Remotely piloted aircraft in the civil environment
NASA Technical Reports Server (NTRS)
Gregory, T. J.; Nelms, W. P.; Karmarkar, J. S.
1977-01-01
Remotely piloted aircraft (RPA's) are of increasing interest to the military and others, as evidenced by a number of technology and development programs that are currently funded or planned. These programs have led to a number of test aircraft with significant capabilities, and future remotely piloted aircraft are forecast to become even more capable as the technology in a number of important subsystem areas is progressing at a rapid rate. As the size, weight and cost of RPA's is reduced, the prospect of using them for civilian applications becomes more likely.
NASA Technical Reports Server (NTRS)
Horton, F. E.
1970-01-01
The utility of remote sensing techniques to urban data acquisition problems in several distinct areas was identified. This endeavor included a comparison of remote sensing systems for urban data collection, the extraction of housing quality data from aerial photography, utilization of photographic sensors in urban transportation studies, urban change detection, space photography utilization, and an application of remote sensing techniques to the acquisition of data concerning intra-urban commercial centers. The systematic evaluation of variable extraction for urban modeling and planning at several different scales, and the model derivation for identifying and predicting economic growth and change within a regional system of cities are also studied.
Remote Excavation System technology evaluation report: Buried Waste Robotics Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-09-01
This document describes the results from the Remote Excavation System demonstration and testing conducted at the Idaho National Engineering Laboratory during June and July 1993. The purpose of the demonstration was to ascertain the feasibility of the system for skimming soil and removing various types of buried waste in a safe manner and within all regulatory requirements, and to compare the performances of manual and remote operation of a backhoe. The procedures and goals of the demonstration were previously defined in The Remote Excavation System Test Plan, which served as a guideline for evaluating the various components of the systemmore » and discussed the procedures used to conduct the tests.« less
Comparison of provider and plan-based targeting strategies for disease management.
Annis, Ann M; Holtrop, Jodi Summers; Tao, Min; Chang, Hsiu-Ching; Luo, Zhehui
2015-05-01
We aimed to describe and contrast the targeting methods and engagement outcomes for health plan-delivered disease management with those of a provider-delivered care management program. Health plan epidemiologists partnered with university health services researchers to conduct a quasi-experimental, mixed-methods study of a 2-year pilot. We used semi-structured interviews to assess the characteristics of program-targeting strategies, and calculated target and engagement rates from clinical encounter data. Five physician organizations (POs) with 51 participating practices implemented care management. Health plan member lists were sent monthly to the practices to accept patients, and then the practices sent back data reports regarding targeting and engagement in care management. Among patients accepted by the POs, we compared those who were targeted and engaged by POs with those who met health plan targeting criteria. The health plan's targeting process combined claims algorithms and employer group preferences to identify candidates for disease management; on the other hand, several different factors influenced PO practices' targeting approaches, including clinical and personal knowledge of the patients, health assessment information, and availability of disease-relevant programs. Practices targeted a higher percentage of patients for care management than the health plan (38% vs 16%), where only 7% of these patients met the targeting criteria of both. Practices engaged a higher percentage of their targeted patients than the health plan (50% vs 13%). The health plan's claims-driven targeting approach and the clinically based strategies of practices both provide advantages; an optimal model may be to combine the strengths of each approach to maximize benefits in care management.
12 CFR 952.4 - Targeted Community Lending Plan
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Targeted Community Lending Plan 952.4 Section... SHEET ITEMS COMMUNITY INVESTMENT CASH ADVANCE PROGRAMS § 952.4 Targeted Community Lending Plan Each Bank shall develop and adopt an annual Targeted Community Lending Plan pursuant to § 944.6 of this chapter...
NASA Technical Reports Server (NTRS)
Erickson, J. D.; Tuyahov, A. J.; Hogg, H. C.
1983-01-01
Planned NASA contributions to the study of the interaction of living organisms with their physical and chemical environments are discussed. Five major land-related research objectives are stated and the role of remote sensing in achieving them is addressed. The importance of improved sensors and cooperation with domestic and international organizations is stressed.
ERIC Educational Resources Information Center
Bennertz, Richard K.
The document highlights in nontechnical language the development of the Defense Documentation Center (DDC) Remote On-Line Retrieval System from its inception in 1967 to what is planned. It describes in detail the current operating system, equipment configuration and associated costs, user training and system evaluation and may be of value to other…
Mission planning for large microwave radiometers
NASA Technical Reports Server (NTRS)
Schartel, W. A.
1984-01-01
Earth orbiting, remote sensing platforms that use microwave radiometers as sensors are susceptible to data interpretation difficulties. The capability of the large microwave radiometer (LMR) was augmented with the inclusion of auxillary sensors that expand and enhance the LMR capability. The final system configuration demonstrates a holistic approach in the design of future orbiting remote sensing platforms that use a LMR as the core instrument.
Thermal remote sensing of active vegetation fires and biomass burning events [Chapter 18
Martin J. Wooster; Gareth Roberts; Alistair M.S. Smith; Joshua Johnston; Patrick Freeborn; Stefania Amici; Andrew T. Hudak
2013-01-01
Thermal remote sensing is widely used in the detection, study, and management of biomass burning occurring in open vegetation fires. Such fires may be planned for land management purposes, may occur as a result of a malicious or accidental ignition by humans, or may result from lightning or other natural phenomena. Under suitable conditions, fires may spread rapidly...
Long-range strategy for remote sensing: an integrated supersystem
NASA Astrophysics Data System (ADS)
Glackin, David L.; Dodd, Joseph K.
1995-12-01
Present large space-based remote sensing systems, and those planned for the next two decades, remain dichotomous and custom-built. An integrated architecture might reduce total cost without limiting system performance. An example of such an architecture, developed at The Aerospace Corporation, explores the feasibility of reducing overall space systems costs by forming a 'super-system' which will provide environmental, earth resources and theater surveillance information to a variety of users. The concept involves integration of programs, sharing of common spacecraft bus designs and launch vehicles, use of modular components and subsystems, integration of command and control and data capture functions, and establishment of an integrated program office. Smart functional modules that are easily tested and replaced are used wherever possible in the space segment. Data is disseminated to systems such as NASA's EOSDIS, and data processing is performed at established centers of expertise. This concept is advanced for potential application as a follow-on to currently budgeted and planned space-based remote sensing systems. We hope that this work will serve to engender discussion that may be of assistance in leading to multinational remote sensing systems with greater cost effectiveness at no loss of utility to the end user.
ASTER VNIR 15 years growth to the standard imaging radiometer in remote sensing
NASA Astrophysics Data System (ADS)
Hiramatsu, Masaru; Inada, Hitomi; Kikuchi, Masakuni; Sakuma, Fumihiro
2015-10-01
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Visible and Near Infrared Radiometer (VNIR) is the remote sensing equipment which has 3 spectral bands and one along-track stereoscopic band radiometer. ASTER VNIR's planned long life design (more than 5 years) is successfully achieved. ASTER VNIR has been imaging the World-wide Earth surface multiband images and the Global Digital Elevation Model (GDEM). VNIR data create detailed world-wide maps and change-detection of the earth surface as utilization transitions and topographical changes. ASTER VNIR's geometric resolution is 15 meters; it is the highest spatial resolution instrument on NASA's Terra spacecraft. Then, ASTER VNIR was planned for the geometrical basis map makers in Terra instruments. After 15-years VNIR growth to the standard map-maker for space remote-sensing. This paper presents VNIR's feature items during 15-year operation as change-detection images , DEM and calibration result. VNIR observed the World-wide Earth images for biological, climatological, geological, and hydrological study, those successful work shows a way on space remote sensing instruments. Still more, VNIR 15 years observation data trend and onboard calibration trend data show several guide or support to follow-on instruments.
42 CFR 456.524 - Notification of Administrator's action and duration of variance.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Utilization Review Plans: FFP, Waivers, and Variances for Hospitals and Mental Hospitals Ur Plan: Remote Facility Variances from Time Requirements § 456.524 Notification of Administrator's action and duration of...
Clever eye algorithm for target detection of remote sensing imagery
NASA Astrophysics Data System (ADS)
Geng, Xiurui; Ji, Luyan; Sun, Kang
2016-04-01
Target detection algorithms for hyperspectral remote sensing imagery, such as the two most commonly used remote sensing detection algorithms, the constrained energy minimization (CEM) and matched filter (MF), can usually be attributed to the inner product between a weight filter (or detector) and a pixel vector. CEM and MF have the same expression except that MF requires data centralization first. However, this difference leads to a difference in the target detection results. That is to say, the selection of the data origin could directly affect the performance of the detector. Therefore, does there exist another data origin other than the zero and mean-vector points for a better target detection performance? This is a very meaningful issue in the field of target detection, but it has not been paid enough attention yet. In this study, we propose a novel objective function by introducing the data origin as another variable, and the solution of the function is corresponding to the data origin with the minimal output energy. The process of finding the optimal solution can be vividly regarded as a clever eye automatically searching the best observing position and direction in the feature space, which corresponds to the largest separation between the target and background. Therefore, this new algorithm is referred to as the clever eye algorithm (CE). Based on the Sherman-Morrison formula and the gradient ascent method, CE could derive the optimal target detection result in terms of energy. Experiments with both synthetic and real hyperspectral data have verified the effectiveness of our method.
NASA Astrophysics Data System (ADS)
Peterson, James Preston, II
Unmanned Aerial Systems (UAS) are rapidly blurring the lines between traditional and close range photogrammetry, and between surveying and photogrammetry. UAS are providing an economic platform for performing aerial surveying on small projects. The focus of this research was to describe traditional photogrammetric imagery and Light Detection and Ranging (LiDAR) geospatial products, describe close range photogrammetry (CRP), introduce UAS and computer vision (CV), and investigate whether industry mapping standards for accuracy can be met using UAS collection and CV processing. A 120-acre site was selected and 97 aerial targets were surveyed for evaluation purposes. Four UAS flights of varying heights above ground level (AGL) were executed, and three different target patterns of varying distances between targets were analyzed for compliance with American Society for Photogrammetry and Remote Sensing (ASPRS) and National Standard for Spatial Data Accuracy (NSSDA) mapping standards. This analysis resulted in twelve datasets. Error patterns were evaluated and reasons for these errors were determined. The relationship between the AGL, ground sample distance, target spacing and the root mean square error of the targets is exploited by this research to develop guidelines that use the ASPRS and NSSDA map standard as the template. These guidelines allow the user to select the desired mapping accuracy and determine what target spacing and AGL is required to produce the desired accuracy. These guidelines also address how UAS/CV phenomena affect map accuracy. General guidelines and recommendations are presented that give the user helpful information for planning a UAS flight using CV technology.
Remote Viewing and Computer Communications--An Experiment.
ERIC Educational Resources Information Center
Vallee, Jacques
1988-01-01
A series of remote viewing experiments were run with 12 participants who communicated through a computer conferencing network. The correct target sample was identified in 8 out of 33 cases. This represented more than double the pure chance expectation. Appendices present protocol, instructions, and results of the experiments. (Author/YP)
Zhang, Fei; Tiyip, Tashpolat; Ding, Jianli; Sawut, Mamat; Tashpolat, Nigara; Kung, Hsiangte; Han, Guihong; Gui, Dongwei
2012-08-01
Aiming at the remote sensing application has been increasingly relying on ground object spectral characteristics. In order to further research the spectral reflectance characteristics in arid area, this study was performed in the typical delta oasis of Weigan and Kuqa rivers located north of Tarim Basin. Data were collected from geo-targets at multiple sites in various field conditions. The spectra data were collected for different soil types including saline-alkaline soil, silt sandy soil, cotton field, and others; vegetations of Alhagi sparsifolia, Phragmites australis, Tamarix, Halostachys caspica, etc., and water bodies. Next, the data were processed to remove high-frequency noise, and the spectral curves were smoothed with the moving average method. The derivative spectrum was generated after eliminating environmental background noise so that to distinguish the original overlap spectra. After continuum removal of the undesirable absorbance, the spectrum curves were able to highlight features for both optical absorbance and reflectance. The spectrum information of each ground object is essential for fully utilizing the multispectrum data generated by remote sensing, which will need a representative spectral library. In this study using ENVI 4.5 software, a preliminary spectral library of surface features was constructed using the data surveyed in the study area. This library can support remote sensing activities such as feature investigation, vegetation classification, and environmental monitoring in the delta oasis region. Future plan will focus on sharing and standardizing the criteria of professional spectral library and to expand and promote the utilization of the spectral databases.
Leveraging remote behavioral health interventions to improve medical outcomes and reduce costs.
Pande, Reena L; Morris, Michael; Peters, Aimee; Spettell, Claire M; Feifer, Richard; Gillis, William
2015-02-01
The dramatic rise in healthcare expenditures calls for innovative and scalable strategies to achieve measurable, near-term improvements in health. Our objective was to determine whether a remotely delivered behavioral health intervention could improve medical health, reduce hospital admissions, and lower cost of care for individuals with a recent cardiovascular event. This retrospective observational cohort study included members of a commercial health plan referred to participate in AbilTo’s Cardiac Health Program. AbilTo is a national provider of telehealth, behavioral change programs for high risk medical populations. The program is an 8-week behavioral health intervention delivered by a licensed clinical social worker and a behavioral coach via phone or secure video. Among the 201 intervention and 180 comparison subjects, the study found that program participants had significantly fewer all-cause hospital admissions in 6 months (293 per 1000 persons/year vs 493 per 1000 persons/year in the comparison group) resulting in an adjusted percent reduction of 31% (P = .03), and significantly fewer total hospital days (1455 days per 1000 persons/year vs 3933 per 1000 persons/year) with an adjusted percent decline of 48% (P = .01). This resulted in an overall savings in the cost of care even after accounting for total program costs. Successful patient engagement in a national, remotely delivered behavioral health intervention can reduce medical utilization in a targeted cardiac population. A restored focus on tackling barriers to behavior change in order to improve medical health is an effective, achievable population health strategy for reducing health costs in the United States.
Fitts, Michelle S; Robertson, Jan; Towle, Simon; Doran, Chris M; McDermott, Robyn; Miller, Adrian; Margolis, Stephen; Ypinazar, Valmae; Clough, Alan R
2017-08-01
Indigenous communities in Queensland (Australia) have been subject to Alcohol Management Plans since 2002/03, with significant penalties for breaching restrictions. 'Sly grog' and 'homebrew' provide access to alcohol despite restrictions. This paper describes how this alcohol is made available and the risks and impacts involved. In affected towns and communities across a large area of rural and remote Queensland, interviews and focus groups documented experiences and views of 255 long-standing community members and service providers. Using an inductive framework, transcribed interviews were analysed to identify supply mechanisms, community and service provider responses and impacts experienced. 'Homebrew' was reportedly manufactured in just a few localities, in locally-specific forms bringing locally-specific harms. However, 'sly grog' sourced from licensed premises located long distances from communities, is a widespread concern across the region. 'Sly grog' sellers circumvent retailers' takeaway liquor license conditions, stockpile alcohol outside restricted areas, send hoax messages to divert enforcement and take extraordinary risks to avoid apprehension. Police face significant challenges to enforce restrictions. On-selling of 'sly grog' appears more common in remote communities with total prohibition. Despite different motives for involvement in an illicit trade 'sly grog' consumers and sellers receive similar penalties. There is a need for: (a) a more sophisticated regional approach to managing takeaway alcohol sales from licensed suppliers, (b) targeted penalties for 'sly grog' sellers that reflect its significant community impact, (c) strategies to reduce the demand for alcohol and (d) research to assess the effects of these strategies in reducing harms.
Memon, Zahid; Zaidi, Shehla; Riaz, Atif
2016-01-01
Low utilization of maternal and child care services in rural areas has constrained Pakistan from meeting targets of Millennium Development Goals (MDGs) 4 and 5. This study explores community barriers in accessing Maternal and Child Health (MCH) services in ten remote rural districts of Pakistan. It further presents how the barriers differ across a range of MCH services, and also whether the presence of Community Health Workers (CHWs) reduces client barriers. Qualitative methods were used involving altogether sixty focus group discussions with mothers, their spouses and community health workers. Low awareness, formidable distances, expense, and poorly functional services were the main barriers reported, while cultural and religious restrictions were lesser reported. For preventive services including antenatal care (ANC), facility deliveries, postnatal care (PNC), childhood immunization and family planning, the main barrier was low awareness. Conversely, formidable distances and poorly functional services were the main reported constraints in the event of maternal complications and acute child illnesses. The study also found that clients residing in areas served by CHWs had better awareness only of ANC and family planning, while other MCH services were overlooked by the health worker program. The paper highlights that traditional policy emphasis on health facility infrastructure expansion is not likely to address poor utilization rates in remote rural areas. Preventive MCH services require concerted attention to building community awareness, task shifting from facility to community for services provision, and re-energization of CHW program. For maternal and child emergencies there is strong community demand to utilize health facilities, but this will require catalytic support for transport networks and functional health care centers. PMID:26925902
1989-07-14
active SAR calibration up bottom of lake, a flat desert, a surface of the target (Brunfeldt, 1982) is commonly used because still water or a largo place...Margalef, R., "Composicion y distribucion del Smith, and R. G. Steward, "Remote Sensing fitoplancton", Memoria , Sociedad de algorithms for
Light-switchable systems for remotely controlled drug delivery.
Shim, Gayong; Ko, Seungbeom; Kim, Dongyoon; Le, Quoc-Viet; Park, Gyu Thae; Lee, Jaiwoo; Kwon, Taekhyun; Choi, Han-Gon; Kim, Young Bong; Oh, Yu-Kyoung
2017-12-10
Light-switchable systems have recently received attention as a new mode of remotely controlled drug delivery. In the past, a multitude of nanomedicine studies have sought to enhance the specificity of drug delivery to target sites by focusing on receptors overexpressed on malignant cells or environmental features of diseases sites. Despite these immense efforts, however, there are few clinically available nanomedicines. We need a paradigm shift in drug delivery. One strategy that may overcome the limitations of pathophysiology-based drug delivery is the use of remotely controlled delivery technology. Unlike pathophysiology-based active drug targeting strategies, light-switchable systems are not affected by the heterogeneity of cells, tissue types, and/or microenvironments. Instead, they are triggered by remote light (i.e., near-infrared) stimuli, which are absorbed by photoresponsive molecules or three-dimensional nanostructures. The sequential conversion of light to heat or reactive oxygen species can activate drug release and allow it to be spatio-temporally controlled. Light-switchable systems have been used to activate endosomal drug escape, modulate the release of chemical and biological drugs, and alter nanoparticle structures to control the release rates of drugs. This review will address the limitations of pathophysiology-based drug delivery systems, the current status of light-based remote-switch systems, and future directions in the application of light-switchable systems for remotely controlled drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.
Remote Sensing for Inland Water Quality Monitoring: A U.S. Army Corps of Engineers Perspective
2011-10-01
outlined in Water Quality Management Plans , including traditional field sampling (water, sediment, and biological) and measure- ment of physical...at one time, a more comprehen- sive historical record or trend analysis, a planning tool for prioritizing field surveying and sampling, and accurate...estimations of optically active constituents used to characterize water quality. Furthermore, when utilized in water quality management planning
1993-03-01
55 17. Magnetic contour and survey data collected at Target 1 ............................ 56 18... Magnetic contour and survey data collected at Target 3 ............................ 58 19. Magnetic contour and survey data collected at Target 4...59 20. Magnetic contour and survey data collected at Target 5 ............................ 60 ’ iii LIST OF TABLES 1. South
1992-12-01
Ground-Based Mission Planning Systems 9 2.3 Networking Mission Planning Systems 11 2.4 Fully Automated Mission Planning I I 2.5 Unmanned Air Vehicles 13...Missile Engagement Zone RPV Remotely Piloted Vehicle MIDS Multifunction Information Distribution System RRDB Rapidly Reconfigurable Databus MIL-STD...Comrmantd OPORD Operations Order TV Television OPS Operational OR Operational Relationship UAV Unmanned Air Vehicle UAV Unnmanned Air Vehicle PA
Computational Modeling and Real-Time Control of Patient-Specific Laser Treatment of Cancer
Fuentes, D.; Oden, J. T.; Diller, K. R.; Hazle, J. D.; Elliott, A.; Shetty, A.; Stafford, R. J.
2014-01-01
An adaptive feedback control system is presented which employs a computational model of bioheat transfer in living tissue to guide, in real-time, laser treatments of prostate cancer monitored by magnetic resonance thermal imaging (MRTI). The system is built on what can be referred to as cyberinfrastructure - a complex structure of high-speed network, large-scale parallel computing devices, laser optics, imaging, visualizations, inverse-analysis algorithms, mesh generation, and control systems that guide laser therapy to optimally control the ablation of cancerous tissue. The computational system has been successfully tested on in-vivo, canine prostate. Over the course of an 18 minute laser induced thermal therapy (LITT) performed at M.D. Anderson Cancer Center (MDACC) in Houston, Texas, the computational models were calibrated to intra-operative real time thermal imaging treatment data and the calibrated models controlled the bioheat transfer to within 5°C of the predetermined treatment plan. The computational arena is in Austin, Texas and managed at the Institute for Computational Engineering and Sciences (ICES). The system is designed to control the bioheat transfer remotely while simultaneously providing real-time remote visualization of the on-going treatment. Post operative histology of the canine prostate reveal that the damage region was within the targeted 1.2cm diameter treatment objective. PMID:19148754
Computational modeling and real-time control of patient-specific laser treatment of cancer.
Fuentes, D; Oden, J T; Diller, K R; Hazle, J D; Elliott, A; Shetty, A; Stafford, R J
2009-04-01
An adaptive feedback control system is presented which employs a computational model of bioheat transfer in living tissue to guide, in real-time, laser treatments of prostate cancer monitored by magnetic resonance thermal imaging. The system is built on what can be referred to as cyberinfrastructure-a complex structure of high-speed network, large-scale parallel computing devices, laser optics, imaging, visualizations, inverse-analysis algorithms, mesh generation, and control systems that guide laser therapy to optimally control the ablation of cancerous tissue. The computational system has been successfully tested on in vivo, canine prostate. Over the course of an 18 min laser-induced thermal therapy performed at M.D. Anderson Cancer Center (MDACC) in Houston, Texas, the computational models were calibrated to intra-operative real-time thermal imaging treatment data and the calibrated models controlled the bioheat transfer to within 5 degrees C of the predetermined treatment plan. The computational arena is in Austin, Texas and managed at the Institute for Computational Engineering and Sciences (ICES). The system is designed to control the bioheat transfer remotely while simultaneously providing real-time remote visualization of the on-going treatment. Post-operative histology of the canine prostate reveal that the damage region was within the targeted 1.2 cm diameter treatment objective.
GIS for public health : A study of Andhra Pradesh
NASA Astrophysics Data System (ADS)
Shrinagesh, B.; Kalpana, Markandey; Kiran, Baktula
2014-06-01
Geographic information systems and remote sensing have capabilities that are ideally suited for use in infectious disease surveillance and control, particularly for the many vector-borne neglected diseases that are often found in poor populations in remote rural areas. They are also highly relevant to meet the demands of outbreak investigation and response, where prompt location of cases, rapid communication of information, and quick mapping of the epidemic's dynamics are vital. The situation has changed dramatically over the past few years. GIS helps in determining geographic distribution of diseases, analysing spatial and temporal trends, Mapping populations at risk, Stratifying risk factors, Assessing resource allocation, Planning and targeting interventions, Monitoring diseases and interventions over time. There are vast disparities in people's health even among the different districts across the state of Andhra Pradesh largely attributed to the resource allocation by the state government. Despite having centers of excellence in healthcare delivery, these facilities are limited and are inadequate in meeting the current healthcare demands. The main objectives are to study the prevalent diseases in Andhra Pradesh, to study the infrastructural facilities available in A.P. The methodology includes the Spatial Database, which will be mostly in the form of digitized format. The Non-Spatial Database includes both secondary data as well as the primary data.
High-Resolution THz Measurements of BrO Generated in AN Inductively Coupled Plasma
NASA Astrophysics Data System (ADS)
Nemchick, Deacon J.; Drouin, Brian
2017-06-01
Building upon the foundation provided by previous work, the X_{1}^{2}Π_{3/2} and X_{2}^{2}Π_{1/2} states of the transient radical, BrO, were interrogated in previously unprobed spectral regions (0.5 to 1.7 THz) by employing JPL developed high-resolution cascaded frequency multiplier sources. Like other members of the halogen monoxides (XO), this species has been the target of several recent atmospheric remote sensing studies and is a known participant in a catalytic ozone degradation cycle. For the current work, BrO is generated in an inductively coupled plasma under dynamic flow conditions and rotational lines are observed directly at their Doppler-limited resolution. New spectral transitions including those owing to both the ground (ν=0) and excited (ν=1 and 2) vibrational states of isotopologues composed of permutations of natural abundance ^{16}O, ^{18}O, ^{79}Br, and ^{81}Br are fit to a global Hamiltonian containing both fine and hyperfine terms. In addition to further refining existing spectroscopic parameters, new observations will be made available to remote detection communities through addition to the JPL catalog. New findings will be discussed along with future plans to extend these studies to other halogen monoxides (X=Cl and I) and the more massive halogen dioxides (OXO & XOO).
Leveraging Technology for Educational Inclusion
ERIC Educational Resources Information Center
Subramaniam, Sudha; Subramaniam, Radha
2017-01-01
The divides created by inequalities of income, lopsided growth and by the vicious circle of poverty has ensnared learning and delayed the planned strategies for educational inclusion. India's eighth Five-Year Plan prioritised and allocated increased funding for education with focus on reach-out to the remote interiors and rural India. However,…
Planning Flight Paths of Autonomous Aerobots
NASA Technical Reports Server (NTRS)
Kulczycki, Eric; Elfes, Alberto; Sharma, Shivanjli
2009-01-01
Algorithms for planning flight paths of autonomous aerobots (robotic blimps) to be deployed in scientific exploration of remote planets are undergoing development. These algorithms are also adaptable to terrestrial applications involving robotic submarines as well as aerobots and other autonomous aircraft used to acquire scientific data or to perform surveying or monitoring functions.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-14
...: The park includes five remote islands spanning 2,228 square miles of land and sea. Updating the park's... General Management Plan/Wilderness Study/Environmental Impact Statement, Channel Islands National Park... (GMP)/Wilderness Study/Environmental Impact Statement (EIS) for Channel Islands National Park. The...
NASA Technical Reports Server (NTRS)
Coiner, J. C.; Bruce, R. C.
1978-01-01
An aircraft/Landsat change-detection study conducted 1948-1972 on Marinduque Province, Republic of the Philippines, is discussed, and a procedure using both remote sensing and information systems for collection, spatial analysis, and display of periodic data is described. Each of the 4,008 25-hectare cells representing Marinduque were observed, and changes in and between variables were measured and tested using nonparametric statistics to determine the effect of specific land cover changes. Procedures using Landsat data to obtain a more continuous updating of the data base are considered. The system permits storage and comparison of historical and current data.
NASA Technical Reports Server (NTRS)
1978-01-01
A digest of information on remote sensor data systems is given. It includes characteristics of spaceborne sensors and the supportive systems immediately associated therewith. It also includes end-to-end systems information that will assist the user in appraising total data system impact produced by a sensor. The objective is to provide a tool for anticipating the complexity of systems and potential data system problems as new user needs are generated. Materials in this handbook span sensor systems from the present to those planned for use in the 1990's. Sensor systems on all planned missions are presented in digest form, condensed from data as available at the time of compilation. Projections are made of anticipated systems.
Water supply studies. [management and planning of water supplies in California
NASA Technical Reports Server (NTRS)
Burgy, R. H.; Algazi, V. R.; Draeger, W. C.; Churchman, C. W.; Thomas, R. W.; Lauer, D. T.; Hoos, I.; Krumpe, P. F.; Nichols, J. D.; Gialdini, M. J.
1973-01-01
The primary test site for water supply investigations continues to be the Feather River watershed in northeastern California. This test site includes all of the area draining into and including the Oroville Reservoir. The principal effort is to determine the extent to which remote sensing techniques, when properly employed, can provide information useful to those persons concerned with the management and planning of lands and facilities for the production of water, using the Oroville Reservoir and the California Water Project as the focus for the study. In particular, emphasis is being placed on determining the cost effectiveness of information derived through remote sensing as compared with that currently being derived through more conventional means.
Numerical aerodynamic simulation program long haul communications prototype
NASA Technical Reports Server (NTRS)
Cmaylo, Bohden K.; Foo, Lee
1987-01-01
This document is a report of the Numerical Aerodynamic Simulation (NAS) Long Haul Communications Prototype (LHCP). It describes the accomplishments of the LHCP group, presents the results from all LHCP experiments and testing activities, makes recommendations for present and future LHCP activities, and evaluates the remote workstation accesses from Langley Research Center, Lewis Research Center, and Colorado State University to Ames Research Center. The report is the final effort of the Long Haul (Wideband) Communications Prototype Plan (PT-1133-02-N00), 3 October 1985, which defined the requirements for the development, test, and operation of the LHCP network and was the plan used to evaluate the remote user bandwidth requirements for the Numerical Aerodynamic Simulation Processing System Network.
Analysis of remote operating systems for space-based servicing operations, volume 1
NASA Technical Reports Server (NTRS)
1985-01-01
A two phase study was conducted to analyze and develop the requirements for remote operating systems as applied to space based operations for the servicing, maintenance, and repair of satellites. Phase one consisted of the development of servicing requirements to establish design criteria for remote operating systems. Phase two defined preferred system concepts and development plans which met the requirements established in phase one. The specific tasks in phase two were to: (1) identify desirable operational and conceptual approaches for selected mission scenarios; (2) examine the potential impact of remote operating systems incorporated into the design of the space station; (3) address remote operating systems design issues, such as mobility, which are effected by the space station configuration; and (4) define the programmatic approaches for technology development, testing, simulation, and flight demonstration.
Possible role of remote sensing for increasing public awareness of the Chesapeake Bay environment
NASA Technical Reports Server (NTRS)
Wilkerson, T. D.; Maher, P. A.; Billings, G.; Cressy, P. J.; Jarman, J. W.; Macleod, N. H.; Trombka, J. I.; Wisner, T.
1978-01-01
Application of remote sensing techniques to the study of the Chesapeake Bay and the availability of the resulting information are discussed in terms of public awareness of the Chesapeake Bay, its total environment, and the need to protect that environment and to preserve the Bay. Recommendations given include: (1) continue the study of remote sensing technology and its use in the Chesapeake Bay region; (2) emphasize the importance of LANDSAT imagery to the evolution of remote sensing technological developments and the awareness of the environment and its changes; (3) increase dissemination of information of the environmental applications of remote sensing technology to the public; (4) design surveys of the Chesapeake Bay environment and its manmade changes; and (5) establish a coordinating regional institution to develop a management plan for the Chesapeake Bay.
On-Orbit MTF Measurement and Product Quality Monitoring for Commercial Remote Sensing Systems
NASA Technical Reports Server (NTRS)
Person, Steven
2007-01-01
Initialization and opportunistic targets are chosen that represent the MTF on the spatial domain. Ideal targets have simple mathematical relationships. Determine the MTF of an on-orbit satellite using in-scene targets: Slant-Edge, Line Source, point Source, and Radial Target. Attempt to facilitate the MTF calculation by automatically locating targets of opportunity. Incorporate MTF results into a product quality monitoring architecture.
Moving Target Techniques: Cyber Resilience throught Randomization, Diversity, and Dynamism
2017-03-03
Moving Target Techniques: Cyber Resilience through Randomization, Diversity, and Dynamism Hamed Okhravi and Howard Shrobe Overview: The static...nature of computer systems makes them vulnerable to cyber attacks. Consider a situation where an attacker wants to compromise a remote system running... cyber resilience that attempts to rebalance the cyber landscape is known as cyber moving target (MT) (or just moving target) techniques. Moving target
Remote Sensing Product Verification and Validation at the NASA Stennis Space Center
NASA Technical Reports Server (NTRS)
Stanley, Thomas M.
2005-01-01
Remote sensing data product verification and validation (V&V) is critical to successful science research and applications development. People who use remote sensing products to make policy, economic, or scientific decisions require confidence in and an understanding of the products' characteristics to make informed decisions about the products' use. NASA data products of coarse to moderate spatial resolution are validated by NASA science teams. NASA's Stennis Space Center (SSC) serves as the science validation team lead for validating commercial data products of moderate to high spatial resolution. At SSC, the Applications Research Toolbox simulates sensors and targets, and the Instrument Validation Laboratory validates critical sensors. The SSC V&V Site consists of radiometric tarps, a network of ground control points, a water surface temperature sensor, an atmospheric measurement system, painted concrete radial target and edge targets, and other instrumentation. NASA's Applied Sciences Directorate participates in the Joint Agency Commercial Imagery Evaluation (JACIE) team formed by NASA, the U.S. Geological Survey, and the National Geospatial-Intelligence Agency to characterize commercial systems and imagery.
NASA Technical Reports Server (NTRS)
1975-01-01
A soils map for land evaluation in Potter County (Eastern South Dakota) was developed to demonstrate the use of remote sensing technology in the area of diverse parent materials and topography. General land use and soils maps have also been developed for land planning LANDSAT, RB-57 imagery, and USGS photographs are being evaluated for making soils and land use maps. LANDSAT fulfilled the requirements for general land use and a general soils map. RB-57 imagery supplemented by large scale black and white stereo coverage was required to provide the detail needed for the final soils map for land evaluation. Color infrared prints excelled black and white coverage for this soil mapping effort. An identification and classification key for wetland types in the Lake Dakota Plain was developed for June 1975 using color infrared imagery. Wetland types in the region are now being mapped via remote sensing techniques to provide a current inventory for development of mitigation measures.
History and use of remote sensing for conservation and management of federal lands in Alaska, USA
Markon, Carl
1995-01-01
Remote sensing has been used to aid land use planning efforts for federal public lands in Alaska since the 1940s. Four federal land management agencies-the U.S. Fish and Wildlife Service, US. Bureau of Land Management, US. National Park Service, and U.S. Forest Service-have used aerial photography and satellite imagery to document the extent, type, and condition of Alaska's natural resources. Aerial photographs have been used to collect detailed information over small to medium-sized areas. This standard management tool is obtainable using equipment ranging from hand-held 35-mm cameras to precision metric mapping cameras. Satellite data, equally important, provide synoptic views of landscapes, are digitally manipulatable, and are easily merged with other digital databases. To date, over 109.2 million ha (72%) of Alaska's land cover have been mapped via remote sensing. This information has provided a base for conservation, management, and planning on federal public lands in Alaska.
Mapping of Coral Reef Environment in the Arabian Gulf Using Multispectral Remote Sensing
NASA Astrophysics Data System (ADS)
Ben-Romdhane, H.; Marpu, P. R.; Ghedira, H.; Ouarda, T. B. M. J.
2016-06-01
Coral reefs of the Arabian Gulf are subject to several pressures, thus requiring conservation actions. Well-designed conservation plans involve efficient mapping and monitoring systems. Satellite remote sensing is a cost-effective tool for seafloor mapping at large scales. Multispectral remote sensing of coastal habitats, like those of the Arabian Gulf, presents a special challenge due to their complexity and heterogeneity. The present study evaluates the potential of multispectral sensor DubaiSat-2 in mapping benthic communities of United Arab Emirates. We propose to use a spectral-spatial method that includes multilevel segmentation, nonlinear feature analysis and ensemble learning methods. Support Vector Machine (SVM) is used for comparison of classification performances. Comparative data were derived from the habitat maps published by the Environment Agency-Abu Dhabi. The spectral-spatial method produced 96.41% mapping accuracy. SVM classification is assessed to be 94.17% accurate. The adaptation of these methods can help achieving well-designed coastal management plans in the region.
How feasible is remote 3D dosimetry for MR guided Radiation Therapy (MRgRT)?
NASA Astrophysics Data System (ADS)
Mein, S.; Rankine, L.; Miles, D.; Juang, T.; Cai, B.; Curcuru, A.; Mutic, S.; Fenoli, J.; Adamovics, J.; Li, H.; Oldham, M.
2017-05-01
To develop and apply a remote dosimetry protocol with PRESAGE® radiochromic plastic and optical-CT readout in the validation of MRI guided radiation therapy (MRgRT) treatments (MRIdian® by ViewRay®). Through multi-institutional collaboration we performed PRESAGE® dosimetry studies in 4ml cuvettes to investigate dose-response linearity, MR-compatibility, and energy-independence. An open calibration field and symmetrical 3-field plans were delivered to 10cm diameter PRESAGE® to examine percent depth dose and response uniformity under a magnetic field. Evidence of non-linear dose response led to a large volume PRESAGE® study where small corrections were developed for temporally- and spatially-dependent behaviors observed between irradiation and delayed readout. TG-119 plans were created in the MRIdian® TPS and then delivered to 14.5cm 2kg PRESAGE® dosimeters. Through the domestic investigation of an off-site MRgRT system, a refined 3D remote dosimetry protocol is presented capable of validation of advanced MRgRT radiation treatments.
Cordova, J. Scott; Kandula, Shravan; Gurbani, Saumya; Zhong, Jim; Tejani, Mital; Kayode, Oluwatosin; Patel, Kirtesh; Prabhu, Roshan; Schreibmann, Eduard; Crocker, Ian; Holder, Chad A.; Shim, Hyunsuk; Shu, Hui-Kuo
2017-01-01
Due to glioblastoma’s infiltrative nature, an optimal radiation therapy (RT) plan requires targeting infiltration not identified by anatomical magnetic resonance imaging (MRI). Here, high-resolution, whole-brain spectroscopic MRI (sMRI) is used to describe tumor infiltration alongside anatomical MRI and simulate the degree to which it modifies RT target planning. In 11 patients with glioblastoma, data from preRT sMRI scans were processed to give high-resolution, whole-brain metabolite maps normalized by contralateral white matter. Maps depicting choline to N-Acetylaspartate (Cho/NAA) ratios were registered to contrast-enhanced T1-weighted RT planning MRI for each patient. Volumes depicting metabolic abnormalities (1.5−, 1.75−, and 2.0-fold increases in Cho/NAA ratios) were compared with conventional target volumes and contrast-enhancing tumor at recurrence. sMRI-modified RT plans were generated to evaluate target volume coverage and organ-at-risk dose constraints. Conventional clinical target volumes and Cho/NAA abnormalities identified significantly different regions of microscopic infiltration with substantial Cho/NAA abnormalities falling outside of the conventional 60 Gy isodose line (41.1, 22.2, and 12.7 cm3, respectively). Clinical target volumes using Cho/NAA thresholds exhibited significantly higher coverage of contrast enhancement at recurrence on average (92.4%, 90.5%, and 88.6%, respectively) than conventional plans (82.5%). sMRI-based plans targeting tumor infiltration met planning objectives in all cases with no significant change in target coverage. In 2 cases, the sMRI-modified plan exhibited better coverage of contrast-enhancing tumor at recurrence than the original plan. Integration of the high-resolution, whole-brain sMRI into RT planning is feasible, resulting in RT target volumes that can effectively target tumor infiltration while adhering to conventional constraints. PMID:28105468
NASA Astrophysics Data System (ADS)
Deo, Ram K.
Credible spatial information characterizing the structure and site quality of forests is critical to sustainable forest management and planning, especially given the increasing demands and threats to forest products and services. Forest managers and planners are required to evaluate forest conditions over a broad range of scales, contingent on operational or reporting requirements. Traditionally, forest inventory estimates are generated via a design-based approach that involves generalizing sample plot measurements to characterize an unknown population across a larger area of interest. However, field plot measurements are costly and as a consequence spatial coverage is limited. Remote sensing technologies have shown remarkable success in augmenting limited sample plot data to generate stand- and landscape-level spatial predictions of forest inventory attributes. Further enhancement of forest inventory approaches that couple field measurements with cutting edge remotely sensed and geospatial datasets are essential to sustainable forest management. We evaluated a novel Random Forest based k Nearest Neighbors (RF-kNN) imputation approach to couple remote sensing and geospatial data with field inventory collected by different sampling methods to generate forest inventory information across large spatial extents. The forest inventory data collected by the FIA program of US Forest Service was integrated with optical remote sensing and other geospatial datasets to produce biomass distribution maps for a part of the Lake States and species-specific site index maps for the entire Lake State. Targeting small-area application of the state-of-art remote sensing, LiDAR (light detection and ranging) data was integrated with the field data collected by an inexpensive method, called variable plot sampling, in the Ford Forest of Michigan Tech to derive standing volume map in a cost-effective way. The outputs of the RF-kNN imputation were compared with independent validation datasets and extant map products based on different sampling and modeling strategies. The RF-kNN modeling approach was found to be very effective, especially for large-area estimation, and produced results statistically equivalent to the field observations or the estimates derived from secondary data sources. The models are useful to resource managers for operational and strategic purposes.
Nurses who work in rural and remote communities in Canada: a national survey.
MacLeod, Martha L P; Stewart, Norma J; Kulig, Judith C; Anguish, Penny; Andrews, Mary Ellen; Banner, Davina; Garraway, Leana; Hanlon, Neil; Karunanayake, Chandima; Kilpatrick, Kelley; Koren, Irene; Kosteniuk, Julie; Martin-Misener, Ruth; Mix, Nadine; Moffitt, Pertice; Olynick, Janna; Penz, Kelly; Sluggett, Larine; Van Pelt, Linda; Wilson, Erin; Zimmer, Lela
2017-05-23
In Canada, as in other parts of the world, there is geographic maldistribution of the nursing workforce, and insufficient attention is paid to the strengths and needs of those providing care in rural and remote settings. In order to inform workforce planning, a national study, Nursing Practice in Rural and Remote Canada II, was conducted with the rural and remote regulated nursing workforce (registered nurses, nurse practitioners, licensed or registered practical nurses, and registered psychiatric nurses) with the intent of informing policy and planning about improving nursing services and access to care. In this article, the study methods are described along with an examination of the characteristics of the rural and remote nursing workforce with a focus on important variations among nurse types and regions. A cross-sectional survey used a mailed questionnaire with persistent follow-up to achieve a stratified systematic sample of 3822 regulated nurses from all provinces and territories, living outside of the commuting zones of large urban centers and in the north of Canada. Rural workforce characteristics reported here suggest the persistence of key characteristics noted in a previous Canada-wide survey of rural registered nurses (2001-2002), namely the aging of the rural nursing workforce, the growth in baccalaureate education for registered nurses, and increasing casualization. Two thirds of the nurses grew up in a community of under 10 000 people. While nurses' levels of satisfaction with their nursing practice and community are generally high, significant variations were noted by nurse type. Nurses reported coming to rural communities to work for reasons of location, interest in the practice setting, and income, and staying for similar reasons. Important variations were noted by nurse type and region. The proportion of the rural nursing workforce in Canada is continuing to decline in relation to the proportion of the Canadian population in rural and remote settings. Survey results about the characteristics and practice of the various types of nurses can support workforce planning to improve nursing services and access to care.
Measurement Sets and Sites Commonly Used for Characterization
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Holekamp, Kara; Ryan, Robert; Sellers, Richard; Davis, Bruce; Zanoni, Vicki
2002-01-01
Scientists at NASA's Earth Science Applications Directorate are creating a well-characterized Verification & Validation (V&V) site at the Stennis Space Center. This site enables the in-flight characterization of remote sensing systems and the data they acquire. The data are predominantly acquired by commercial, high spatial resolution satellite systems, such as IKONOS and QuickBird 2, and airborne systems. The smaller scale of these newer high resolution remote sensing systems allows scientists to characterize the geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the techniques used to characterize data from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active LIDAR systems. SSC employs geodetic targets, edge targets, radiometric tarps, and thermal calibration ponds to characterize remote sensing data products. This paper presents a proposed set of required measurements for visible through long-wave infrared remote sensing systems and a description of the Stennis characterization. Other topics discussed include: 1) The use of ancillary atmospheric and solar measurements taken at SSC that support various characterizations; 2) Additional sites used for radiometric, geometric, and spatial characterization in the continental United States; 3) The need for a standardized technique to be adopted by CEOS and other organizations.
Measurement Sets and Sites Commonly used for Characterizations
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Holekamp, Kara; Ryan, Robert; Blonski, Slawomir; Sellers, Richard; Davis, Bruce; Zanoni, Vicki
2002-01-01
Scientists with NASA's Earth Science Applications Directorate are creating a well-characterized Verification & Validation (V&V) site at the Stennis Space Center (SSC). This site enables the in-flight characterization of remote sensing systems and the data that they require. The data are predominantly acquired by commercial, high-spatial resolution satellite systems, such as IKONOS and QuickBird 2, and airborne systems. The smaller scale of these newer high-resolution remote sensing systems allows scientists to characterize the geometric, spatial, and radiometric data properties using a single V&V site. The targets and techniques used to characterize data from these newer systems can differ significantly from the earlier, coarser spatial resolution systems. Scientists are also using the SSC V&V site to characterize thermal infrared systems and active Light Detection and Ranging (LIDAR) systems. SSC employs geodetic targets, edge targets, radiometric tarps, and thermal calibration ponds to characterize remote sensing data products. This paper presents a proposed set of required measurements for visible-through-longwave infrared remote sensing systems, and a description of the Stennis characterization. Other topics discussed inslude: 1) use of ancillary atmospheric and solar measurements taken at SSC that support various characterizations, 2) other sites used for radiometric, geometric, and spatial characterization in the continental United States,a nd 3) the need for a standardized technique to be adopted by the Committee on Earth Observation Satellites (CEOS) and other organizations.
Laser long-range remote-sensing program experimental results
NASA Astrophysics Data System (ADS)
Highland, Ronald G.; Shilko, Michael L.; Fox, Marsha J.; Gonglewski, John D.; Czyzak, Stanley R.; Dowling, James A.; Kelly, Brian; Pierrottet, Diego F.; Ruffatto, Donald; Loando, Sharon; Matsuura, Chris; Senft, Daniel C.; Finkner, Lyle; Rae, Joe; Gallegos, Joe
1995-12-01
A laser long range remote sensing (LRS) program is being conducted by the United States Air Force Phillips Laboratory (AF/PL). As part of this program, AF/PL is testing the feasibility of developing a long path CO(subscript 2) laser-based DIAL system for remote sensing. In support of this program, the AF/PL has recently completed an experimental series using a 21 km slant- range path (3.05 km ASL transceiver height to 0.067 km ASL target height) at its Phillips Laboratory Air Force Maui Optical Station (AMOS) facility located on Maui, Hawaii. The dial system uses a 3-joule, (superscript 13)C isotope laser coupled into a 0.6 m diameter telescope. The atmospheric optical characterization incorporates information from an infrared scintillometer co-aligned to the laser path, atmospheric profiles from weather balloons launched from the target site, and meteorological data from ground stations at AMOS and the target site. In this paper, we report a description of the experiment configuration, a summary of the results, a summary of the atmospheric conditions and their implications to the LRS program. The capability of such a system for long-range, low-angle, slant-path remote sensing is discussed. System performance issues relating to both coherent and incoherent detection methods, atmospheric limitations, as well as, the development of advanced models to predict performance of long range scenarios are presented.
Object-oriented recognition of high-resolution remote sensing image
NASA Astrophysics Data System (ADS)
Wang, Yongyan; Li, Haitao; Chen, Hong; Xu, Yuannan
2016-01-01
With the development of remote sensing imaging technology and the improvement of multi-source image's resolution in satellite visible light, multi-spectral and hyper spectral , the high resolution remote sensing image has been widely used in various fields, for example military field, surveying and mapping, geophysical prospecting, environment and so forth. In remote sensing image, the segmentation of ground targets, feature extraction and the technology of automatic recognition are the hotspot and difficulty in the research of modern information technology. This paper also presents an object-oriented remote sensing image scene classification method. The method is consist of vehicles typical objects classification generation, nonparametric density estimation theory, mean shift segmentation theory, multi-scale corner detection algorithm, local shape matching algorithm based on template. Remote sensing vehicles image classification software system is designed and implemented to meet the requirements .
NASA Astrophysics Data System (ADS)
Golinkoff, Jordan Seth
The accurate estimation of forest attributes at many different spatial scales is a critical problem. Forest landowners may be interested in estimating timber volume, forest biomass, and forest structure to determine their forest's condition and value. Counties and states may be interested to learn about their forests to develop sustainable management plans and policies related to forests, wildlife, and climate change. Countries and consortiums of countries need information about their forests to set global and national targets to deal with issues of climate change and deforestation as well as to set national targets and understand the state of their forest at a given point in time. This dissertation approaches these questions from two perspectives. The first perspective uses the process model Biome-BGC paired with inventory and remote sensing data to make inferences about a current forest state given known climate and site variables. Using a model of this type, future climate data can be used to make predictions about future forest states as well. An example of this work applied to a forest in northern California is presented. The second perspective of estimating forest attributes uses high resolution aerial imagery paired with light detection and ranging (LiDAR) remote sensing data to develop statistical estimates of forest structure. Two approaches within this perspective are presented: a pixel based approach and an object based approach. Both approaches can serve as the platform on which models (either empirical growth and yield models or process models) can be run to generate inferences about future forest state and current forest biogeochemical cycling.
Remote Monitoring of the Polarized Target's Control for E1039
NASA Astrophysics Data System (ADS)
Fox, David; SeaQuest Collaboration
2017-09-01
The 1039 experiment at FNAL will further our understanding of spin structure by measuring the contribution that sea quarks orbital angular momentum provide to overall nucleon spin. It is accepted that the valence-quarks of nucleons only provide 30% of the total nucleon spin. To study the nucleon's sea quark contribution, E1039 will use the Drell-Yan process by colliding 120 GeV un-polarized beam protons with polarized ammonia targets of hydrogen and deuterium. The asymmetric spin distributions of resulting dimuons will be measured. These asymmetries are sensitive, among other effects, to the orbital angular momentum contribution of the sea quarks. The polarized target requires a multi-stage vacuum pump located near the target. Since access to its present controls will not be possible during running, remote control and monitoring upgrades were required. A secondary control panel was purchased and tested. Information from the programmable logic controller (PLC) must be fed into our data stream to enable remote monitoring and to signal possible alarm conditions. This solution and the program created using explicit TCP/IP messaging to extract data tags from the PLC and log it within our databases will be presented. Supported by U.S. D.O.E. Medium Energy Nuclear Physics under Grant DE-FG02-03ER41243.
Wilson, Morven; Cleland, Jennifer
2008-01-01
Time spent in remote medicine as an undergraduate is influential in career choice in Australia and Northern America. However, its influence is not known in smaller countries, where recruitment into rural medicine is also problematic. Differences across countries mean work is required to explore determinants of success of remote and rural undergraduate training locally. The objectives of this pilot study were to identify why 4th year medical students chose an extended remote and rural option within a degree program which includes a short compulsory period of remote and rural practice. Because this was a novel option the study also looks at the academic performance of the first cohort of students to ensure quality control of teaching and learning. This was a mixed methods (questionnaire, focus group, assessment data) pilot study exploring student views and performance outcomes in 4th year medical undergraduate students (n = 14), University of Aberdeen, who completed an innovative, one-year remote and rural placement. Fourteen students took part in the pilot. Questionnaire data indicated they viewed remote and rural medicine positively. This interest was maintained over the placement. Most had no definite career plans, but did have a slight preference towards general practice. Focus group data indicated four main themes relating to the decision to select the remote and rural placement: (1) teaching reputation; (2) to experience remote and rural medicine; (3) a change from Aberdeen; and (4) lifestyle factors. Assessment data indicated that student performances at the end of the year placement were consistent with their 3rd year performance on all assessments: OSCEs (p = 0.79), written exams (p = 0.10; p = 0.49), special study module/ Ethics (p = 0.10) and year mark averages (p = 0.48). The results indicate that the extended remote and rural placement was a valuable and academically successful experience for the students. Important outcomes include that: the students who chose to undertake the remote and rural option did not suffer academically; and the cohort maintained their enthusiasm for long-term remote and rural practice. This pilot study represents only the short-term results of a remote and rural extended option offered by one university medical school. We plan further follow up on these students and their successors to look at both short- and long-term outcomes in terms of post selection and choosing to live and work within rural communities.
Prioritization of catchments based on soil erosion using remote sensing and GIS.
Khadse, Gajanan K; Vijay, Ritesh; Labhasetwar, Pawan K
2015-06-01
Water and soil are the most essential natural resources for socioeconomic development and sustenance of life. A study of soil and water dynamics at a watershed level facilitates a scientific approach towards their conservation and management. Remote sensing and Geographic Information System are tools that help to plan and manage natural resources on watershed basis. Studies were conducted for the formulation of catchment area treatment plan based on watershed prioritization with soil erosion studies using remote sensing techniques, corroborated with Geographic Information System (GIS), secondary data and ground truth information. Estimation of runoff and sediment yield is necessary in prioritization of catchment for the design of soil conservation structures and for identifying the critical erosion-prone areas of a catchment for implementation of best management plan with limited resources. The Universal Soil Loss Equation, Sediment Yield Determination and silt yield index methods are used for runoff and soil loss estimation for prioritization of the catchments. On the basis of soil erosion classes, the watersheds were grouped into very high, high, moderate and low priorities. High-priority watersheds need immediate attention for soil and water conservation, whereas low-priority watershed having good vegetative cover and low silt yield index may not need immediate attention for such treatments.
Tobacco Sales in Community Pharmacies: Remote Decisions and Demographic Targets
ERIC Educational Resources Information Center
Morton, Cory M.; Peterson, N. Andrew; Schneider, John E.; Smith, Brian J.; Armstead, Theresa L.
2010-01-01
This study applied multilevel modeling procedures with data from 678 community pharmacies and 382 residential census tracts in a Midwestern U.S. state to determine if two sets of variables: retail type (e.g., remotely owned, independently owned) and population demographics of the tracts in which outlets were located were associated with retail…
NASA Astrophysics Data System (ADS)
Krause, H. F.; Deveney, E. F.; Jones, N. L.; Vane, C. R.; Datz, S.; Knudsen, H.; Grafström, P.; Schuch, R.
1997-04-01
Recent atomic physics studies involving ultrarelativistic Pb ions required solid target positioners, scintillators, and a sophisticated data acquisition and control system placed in a remote location at the CERN Super Proton Synchrotron near Geneva, Switzerland. The apparatus, installed in a high-radiation zone underground, had to (i) function for months, (ii) automatically respond to failures such as power outages and particle-induced computer upsets, and (iii) communicate with the outside world via a telephone line. The heart of the apparatus developed was an Apple Macintosh-based CAMAC system that answered the telephone and interpreted and executed remote control commands that (i) sensed and set targets, (ii) controlled voltages and discriminator levels for scintillators, (iii) modified data acquisition hardware logic, (iv) reported control information, and (v) automatically synchronized data acquisition to the CERN spill cycle via a modem signal and transmitted experimental data to a remote computer. No problems were experienced using intercontinental telephone connections at 1200 baud. Our successful "virtual laboratory" approach that uses off-the-shelf electronics is generally adaptable to more conventional bench-type experiments.
Impact of remote sensing upon the planning, management, and development of water resources
NASA Technical Reports Server (NTRS)
Castruccio, P. A.; Loats, H. L.; Fowler, T. R.; Frech, S. L.
1975-01-01
Principal water resources users were surveyed to determine the impact of remote data streams on hydrologic computer models. Analysis of responses demonstrated that: most water resources effort suitable to remote sensing inputs is conducted through federal agencies or through federally stimulated research; and, most hydrologic models suitable to remote sensing data are federally developed. Computer usage by major water resources users was analyzed to determine the trends of usage and costs for the principal hydrologic users/models. The laws and empirical relationships governing the growth of the data processing loads were described and applied to project the future data loads. Data loads for ERTS CCT image processing were computed and projected through the 1985 era.
Development of the remote diagnosis system of the solar radio telescope
NASA Astrophysics Data System (ADS)
Kawashima, Susumu; Shinohara, Noriyuki; Sekiguchi, Hideaki
2005-04-01
"The remote diagnosis system" which we have developed is the one to monitor the operation conditions of two systems of solar radio observation (Nobeyama Radioheliograph and Nobeyama Radio Polarimeters) from the remote place. Under the condition of very limited human power, it is necessary to minimize the load of observers without degrading data quality. Thereupon, we have mulled measures to alleviate the load of observers, and worked out "the remote diagnosis system" which enables us to monitor the operation conditions and detect troubles, if any, in early stages, even if we are away from the observatory building where control system are concentrated. The plan was materialized by adopting an access through the INTERNET to the section where needed information for diagnosis is gathered.
Preparation of high specific activity technetium-96
Mausner, Leonard F.; Srivastava, Suresh C.; Prach, Thomas
1992-01-01
The present invention relates to a method of producing Tc-96 from the proton irradiation of a rhodium target and a technique for isolating under remote hot cell conditions the Tc-96 from the proton irradiated target.
Time-reversal MUSIC imaging of extended targets.
Marengo, Edwin A; Gruber, Fred K; Simonetti, Francesco
2007-08-01
This paper develops, within a general framework that is applicable to rather arbitrary electromagnetic and acoustic remote sensing systems, a theory of time-reversal "MUltiple Signal Classification" (MUSIC)-based imaging of extended (nonpoint-like) scatterers (targets). The general analysis applies to arbitrary remote sensing geometry and sheds light onto how the singular system of the scattering matrix relates to the geometrical and propagation characteristics of the entire transmitter-target-receiver system and how to use this effect for imaging. All the developments are derived within exact scattering theory which includes multiple scattering effects. The derived time-reversal MUSIC methods include both interior sampling, as well as exterior sampling (or enclosure) approaches. For presentation simplicity, particular attention is given to the time-harmonic case where the informational wave modes employed for target interrogation are purely spatial, but the corresponding generalization to broadband fields is also given. This paper includes computer simulations illustrating the derived theory and algorithms.
Development of the Synthetic Aperture Radiometer ESTAR and the Next Generation
NASA Technical Reports Server (NTRS)
LeVine, David M.; Haken, Michael; Swift, Calvin T.
2004-01-01
ESTAR is a research instrument built to develop the technology of aperture synthesis for passive remote sensing of Earth from space. Aperture synthesis is an interferometric technology that addresses the problem of putting large antenna apertures in space to achieve the spatial resolution needed for remote sensing at long wavelengths ESTAR was a first step (synthesis only across track and only at horizontal polarization). The development has progressed to a new generation instrument that is dual polarized and does aperture synthesis in two dimensions. Among the plans for the future is technology to combine active and passive remote sensing.
NASA Technical Reports Server (NTRS)
Brooner, W. G.; Nichols, D. A.
1972-01-01
Development of a scheme for utilizing remote sensing technology in an operational program for regional land use planning and land resource management program applications. The scheme utilizes remote sensing imagery as one of several potential inputs to derive desired and necessary data, and considers several alternative approaches to the expansion and/or reduction and analysis of data, using automated data handling techniques. Within this scheme is a five-stage program development which includes: (1) preliminary coordination, (2) interpretation and encoding, (3) creation of data base files, (4) data analysis and generation of desired products, and (5) applications.
Impact of remote sensing upon the planning, management, and development of water resources
NASA Technical Reports Server (NTRS)
Loats, H. L.; Fowler, T. R.; Frech, S. L.
1974-01-01
A survey of the principal water resource users was conducted to determine the impact of new remote data streams on hydrologic computer models. The analysis of the responses and direct contact demonstrated that: (1) the majority of water resource effort of the type suitable to remote sensing inputs is conducted by major federal water resources agencies or through federally stimulated research, (2) the federal government develops most of the hydrologic models used in this effort; and (3) federal computer power is extensive. The computers, computer power, and hydrologic models in current use were determined.
GIS Methodology for Planning Planetary-Rover Operations
NASA Technical Reports Server (NTRS)
Powell, Mark; Norris, Jeffrey; Fox, Jason; Rabe, Kenneth; Shu, I-Hsiang
2007-01-01
A document describes a methodology for utilizing image data downlinked from cameras aboard a robotic ground vehicle (rover) on a remote planet for analyzing and planning operations of the vehicle and of any associated spacecraft. Traditionally, the cataloging and presentation of large numbers of downlinked planetary-exploration images have been done by use of two organizational methods: temporal organization and correlation between activity plans and images. In contrast, the present methodology involves spatial indexing of image data by use of the computational discipline of geographic information systems (GIS), which has been maturing in terrestrial applications for decades, but, until now, has not been widely used in support of exploration of remote planets. The use of GIS to catalog data products for analysis is intended to increase efficiency and effectiveness in planning rover operations, just as GIS has proven to be a source of powerful computational tools in such terrestrial endeavors as law enforcement, military strategic planning, surveying, political science, and epidemiology. The use of GIS also satisfies the need for a map-based user interface that is intuitive to rover-activity planners, many of whom are deeply familiar with maps and know how to use them effectively in field geology.
Digital spatial soil and land information for agriculture development
NASA Astrophysics Data System (ADS)
Sharma, R. K.; Laghathe, Pankaj; Meena, Ranglal; Barman, Alok Kumar; Das, Satyendra Nath
2006-12-01
Natural resource management calls for study of natural system prevailing in the country. In India floods and droughts visit regularly, causing extensive damages of natural wealth including agriculture that are crucial for sustenance of economic growth. The Indian Sub-continent drained by many major rivers and their tributaries where watershed, the hydrological unit forms a natural system that allows management and development of land resources following natural harmony. Acquisition of various kinds and levels of soil and land characteristics using both conventional and remote sensing techniques and subsequent development of digital spatial data base are essential to evolve strategy for planning watershed development programmes, their monitoring and impact evaluation. The multi-temporal capability of remote sensing sensors helps to update the existing data base which are of dynamic in nature. The paper outlines the concept of spatial data base development, generation using remote sensing techniques, designing of data structure, standardization and integration with watershed layers and various non spatial attribute data for various applications covering watershed development planning, alternate land use planning, soil and water conservation, diversified agriculture practices, generation of soil health card, soil and land reclamation, etc. The soil and land characteristics are vital to derive various interpretative groupings or master table that helps to generate the desired level of information of various clients using the GIS platform. The digital spatial data base on soils and watersheds generated by All India Soil and Land Use Survey will act as a sub-server of the main GIS based Web Server being hoisted by the planning commission for application of spatial data for planning purposes under G2G domain. It will facilitate e-governance for natural resource management using modern technology.
Gaussian mixture models-based ship target recognition algorithm in remote sensing infrared images
NASA Astrophysics Data System (ADS)
Yao, Shoukui; Qin, Xiaojuan
2018-02-01
Since the resolution of remote sensing infrared images is low, the features of ship targets become unstable. The issue of how to recognize ships with fuzzy features is an open problem. In this paper, we propose a novel ship target recognition algorithm based on Gaussian mixture models (GMMs). In the proposed algorithm, there are mainly two steps. At the first step, the Hu moments of these ship target images are calculated, and the GMMs are trained on the moment features of ships. At the second step, the moment feature of each ship image is assigned to the trained GMMs for recognition. Because of the scale, rotation, translation invariance property of Hu moments and the power feature-space description ability of GMMs, the GMMs-based ship target recognition algorithm can recognize ship reliably. Experimental results of a large simulating image set show that our approach is effective in distinguishing different ship types, and obtains a satisfactory ship recognition performance.
Targets Mask U-Net for Wind Turbines Detection in Remote Sensing Images
NASA Astrophysics Data System (ADS)
Han, M.; Wang, H.; Wang, G.; Liu, Y.
2018-04-01
To detect wind turbines precisely and quickly in very high resolution remote sensing images (VHRRSI) we propose target mask U-Net. This convolution neural network (CNN), which is carefully designed to be a wide-field detector, models the pixel class assignment to wind turbines and their context information. The shadow, which is the context information of the target in this study, has been regarded as part of a wind turbine instance. We have trained the target mask U-Net on training dataset, which is composed of down sampled image blocks and instance mask blocks. Some post-processes have been integrated to eliminate wrong spots and produce bounding boxes of wind turbine instances. The evaluation metrics prove the reliability and effectiveness of our method for the average F1-score of our detection method is up to 0.97. The comparison of detection accuracy and time consuming with the weakly supervised targets detection method based on CNN illustrates the superiority of our method.
Optimal Joint Remote State Preparation of Arbitrary Equatorial Multi-qudit States
NASA Astrophysics Data System (ADS)
Cai, Tao; Jiang, Min
2017-03-01
As an important communication technology, quantum information transmission plays an important role in the future network communication. It involves two kinds of transmission ways: quantum teleportation and remote state preparation. In this paper, we put forward a new scheme for optimal joint remote state preparation (JRSP) of an arbitrary equatorial two-qudit state with hybrid dimensions. Moreover, the receiver can reconstruct the target state with 100 % success probability in a deterministic manner via two spatially separated senders. Based on it, we can extend it to joint remote preparation of arbitrary equatorial multi-qudit states with hybrid dimensions using the same strategy.
Miao, Junjie; Yan, Hui; Tian, Yuan; Ma, Pan; Liu, Zhiqiang; Li, Minghui; Ren, Wenting; Chen, Jiayun; Zhang, Ye; Dai, Jianrong
2017-11-01
It is important to minimize lung dose during intensity-modulated radiation therapy (IMRT) of nonsmall cell lung cancer (NSCLC). In this study, an approach was proposed to reduce lung dose by relaxing the constraint of target dose homogeneity during treatment planning of IMRT. Ten NSCLC patients with lung tumor on the right side were selected. The total dose for planning target volume (PTV) was 60 Gy (2 Gy/fraction). For each patient, two IMRT plans with six beams were created in Pinnacle treatment planning system. The dose homogeneity of target was controlled by constraints on the maximum and uniform doses of target volume. One IMRT plan was made with homogeneous target dose (the resulting target dose was within 95%-107% of the prescribed dose), while another IMRT plan was made with inhomogeneous target dose (the resulting target dose was more than 95% of the prescribed dose). During plan optimization, the dose of cord and heart in two types of IMRT plans were kept nearly the same. The doses of lungs, PTV and organs at risk (OARs) between two types of IMRT plans were compared and analyzed quantitatively. For all patients, the lung dose was decreased in the IMRT plans with inhomogeneous target dose. On average, the mean dose, V5, V20, and V30 of lung were reduced by 1.4 Gy, 4.8%, 3.7%, and 1.7%, respectively, and the dose to normal tissue was also reduced. These reductions in DVH values were all statistically significant (P < 0.05). There were no significant differences between the two IMRT plans on V25, V30, V40, V50 and mean dose for heart. The maximum doses of cords in two type IMRT plans were nearly the same. IMRT plans with inhomogeneous target dose could protect lungs better and may be considered as a choice for treating NSCLC. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
26 CFR 1.430(d)-1 - Determination of target normal cost and funding target.
Code of Federal Regulations, 2010 CFR
2010-04-01
... funding target and target normal cost for the plan year if the plan amendment— (i) Takes effect by the... (disregarding the effect on the plan's funding shortfall resulting from changes in interest and mortality... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Determination of target normal cost and funding...
26 CFR 1.430(d)-1 - Determination of target normal cost and funding target.
Code of Federal Regulations, 2013 CFR
2013-04-01
... funding target and target normal cost for the plan year if the plan amendment— (i) Takes effect by the... (disregarding the effect on the plan's funding shortfall resulting from changes in interest and mortality... 26 Internal Revenue 5 2013-04-01 2013-04-01 false Determination of target normal cost and funding...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huh, S; Lee, S; Dagan, R
Purpose: To investigate the feasibility of utilizing Dynamic Arc (DA) and IMRT with 5mm MLC leaf of VERO treatment unit for SRS/FSRT brain cancer patients with non-invasive stereotactic treatments. The DA and IMRT plans using the VERO unit (BrainLab Inc, USA) are compared with cone-based planning and proton plans to evaluate their dosimetric advantages. Methods: The Vero treatment has unique features like no rotational or translational movements of the table during treatments, Dynamic Arc/IMRT, tracking of IR markers, limitation of Ring rotation. Accuracies of the image fusions using CBCT, orthogonal x-rays, and CT are evaluated less than ∼ 0.7mm withmore » a custom-made target phantom with 18 hidden targets. 1mm margin is given to GTV to determine PTV for planning constraints considering all the uncertainties of planning computer and mechanical uncertainties of the treatment unit. Also, double-scattering proton plans with 6F to 9F beams and typical clinical parameters, multiple isocenter plans with 6 to 21 isocenters, and DA/IMRT plans are evaluated to investigate the dosimetric advantages of the DA/IMRT for complex shape of targets. Results: 3 Groups of the patients are divided: (1) Group A (complex target shape), CI's are same for IMRT, and DGI of the proton plan are better by 9.5% than that of the IMRT, (2) Group B, CI of the DA plans (1.91+/−0.4) are better than cone-based plan, while DGI of the DA plan is 4.60+/−1.1 is better than cone-based plan (5.32+/−1.4), (3) Group C (small spherical targets), CI of the DA and cone-based plans are almost the same. Conclusion: For small spherical targets, cone-based plans are superior to other 2 plans: DS proton and DA plans. For complex or irregular plans, dynamic and IMRT plans are comparable to cone-based and proton plans for complex targets.« less
An optimal renewable energy mix for Indonesia
NASA Astrophysics Data System (ADS)
Leduc, Sylvain; Patrizio, Piera; Yowargana, Ping; Kraxner, Florian
2016-04-01
Indonesia has experienced a constant increase of the use of petroleum and coal in the power sector, while the share of renewable sources has remained stable at 6% of the total energy production during the last decade. As its domestic energy demand undeniably continues to grow, Indonesia is committed to increase the production of renewable energy. Mainly to decrease its dependency on fossil fuel-based resources, and to decrease the anthropogenic emissions, the government of Indonesia has established a 23 percent target for renewable energy by 2025, along with a 100 percent electrification target by 2020 (the current rate is 80.4 percent). In that respect, Indonesia has abundant resources to meet these targets, but there is - inter alia - a lack of proper integrated planning, regulatory support, investment, distribution in remote areas of the Archipelago, and missing data to back the planning. To support the government of Indonesia in its sustainable energy system planning, a geographic explicit energy modeling approach is applied. This approach is based on the energy systems optimization model BeWhere, which identifies the optimal location of energy conversion sites based on the minimization of the costs of the supply chain. The model will incorporate the existing fossil fuel-based infrastructures, and evaluate the optimal costs, potentials and locations for the development of renewable energy technologies (i.e., wind, solar, hydro, biomass and geothermal based technologies), as well as the development of biomass co-firing in existing coal plants. With the help of the model, an optimally adapted renewable energy mix - vis-à-vis the competing fossil fuel based resources and applicable policies in order to promote the development of those renewable energy technologies - will be identified. The development of the optimal renewable energy technologies is carried out with special focus on nature protection and cultural heritage areas, where feedstock (e.g., biomass harvesting) and green-field power plant sites will be limited - depending on the protection type and renewable energy technology. The results of the study provide indications to the policy makers on where, how and which technologies should be implemented, and what kind of policy support would be needed in order to increase and meet the Indonesian renewable energy target and to increase the energy access for all.
26 CFR 1.430(i)-1 - Special rules for plans in at-risk status.
Code of Federal Regulations, 2013 CFR
2013-04-01
... to determining the funding target and making other computations for certain defined benefit plans... is in at-risk status for a plan year, including the determination of a plan's funding target attainment percentage and at-risk funding target attainment percentage. Paragraph (c) of this section...
26 CFR 1.430(i)-1 - Special rules for plans in at-risk status.
Code of Federal Regulations, 2012 CFR
2012-04-01
... to determining the funding target and making other computations for certain defined benefit plans... is in at-risk status for a plan year, including the determination of a plan's funding target attainment percentage and at-risk funding target attainment percentage. Paragraph (c) of this section...
26 CFR 1.430(i)-1 - Special rules for plans in at-risk status.
Code of Federal Regulations, 2014 CFR
2014-04-01
... to determining the funding target and making other computations for certain defined benefit plans... is in at-risk status for a plan year, including the determination of a plan's funding target attainment percentage and at-risk funding target attainment percentage. Paragraph (c) of this section...
26 CFR 1.430(i)-1 - Special rules for plans in at-risk status.
Code of Federal Regulations, 2011 CFR
2011-04-01
... to determining the funding target and making other computations for certain defined benefit plans... is in at-risk status for a plan year, including the determination of a plan's funding target attainment percentage and at-risk funding target attainment percentage. Paragraph (c) of this section...
The Colombian Remote Sensing Program,
refer to are: Plan de Integracion Nacional, (PIN), Programa de Desarrollo Rural Integrado, (DRI), Plan Nacional de Alimentacion y Nutricion (PAN) and... Politica Nacional de Ciencia y Tecnologia. The goals and organization of the program are presented in the last part of this report, together with the description of those activities deemed necessary for performing them.
Ecological assessment of sagebrush grasslands in eastern Wyoming
Amy C. Ganguli; Jonathan B. Haufler; Carolyn A. Mehl; Scott D. Yeats
2011-01-01
An understanding of existing ecosystem conditions is necessary for planning efforts that include formulation of landscape conservation goals and implementation strategies. In support of a landscape planning effort for a 946,000-ac mixed-ownership area in eastern Wyoming, we used remote sensing and field sampling to assess existing ecosystem conditions of terrestrial...
Planning for bird conservation: a tale of two models
Douglas H. Johnson; Maiken Winter
2005-01-01
Planning for bird conservation has become increasingly reliant on remote sensing, geographical information systems, and, especially, models used to predict the occurrence of bird species as well as their density and demographics. We address the role of such tools by contrasting two models used in bird conservation. One, the Mallard (Anas platyrhynchos...
PC-based Multiple Information System Interface (PC/MISI) design plan
NASA Technical Reports Server (NTRS)
Dominick, Wayne D. (Editor); Hall, Philip P.
1985-01-01
The general design plan for the implementation of a common user interface to multiple remote information systems within a microcomputer-based environment is presented. The intent is to provide a framework for the development of detailed specifications which will be used as guidelines for the actual development of the system.
Remote detection of rotating machinery with a portable atomic magnetometer.
Marmugi, Luca; Gori, Lorenzo; Hussain, Sarah; Deans, Cameron; Renzoni, Ferruccio
2017-01-20
We demonstrate remote detection of rotating machinery, using an atomic magnetometer at room temperature and in an unshielded environment. The system relies on the coupling of the AC magnetic signature of the target with the spin-polarized, precessing atomic vapor of a radio-frequency optical atomic magnetometer. The AC magnetic signatures of rotating equipment or electric motors appear as sidebands in the power spectrum of the atomic sensor, which can be tuned to avoid noisy bands that would otherwise hamper detection. A portable apparatus is implemented and experimentally tested. Proof-of-concept investigations are performed with test targets mimicking possible applications, and the operational conditions for optimum detection are determined. Our instrument provides comparable or better performance than a commercial fluxgate and allows detection of rotating machinery behind a wall. These results demonstrate the potential for ultrasensitive devices for remote industrial and usage monitoring, security, and surveillance.
Systems and methods for retaining and removing irradiation targets in a nuclear reactor
Runkle, Gary A.; Matsumoto, Jack T.; Dayal, Yogeshwar; Heinold, Mark R.
2015-12-08
A retainer is placed on a conduit to control movement of objects within the conduit in access-restricted areas. Retainers can prevent or allow movement in the conduit in a discriminatory fashion. A fork with variable-spacing between prongs can be a retainer and be extended or collapsed with respect to the conduit to change the size of the conduit. Different objects of different sizes may thus react to the fork differently, some passing and some being blocked. Retainers can be installed in inaccessible areas and allow selective movement in remote portions of conduit where users cannot directly interface, including below nuclear reactors. Position detectors can monitor the movement of objects through the conduit remotely as well, permitting engagement of a desired level of restriction and object movement. Retainers are useable in a variety of nuclear power plants and with irradiation target delivery, harvesting, driving, and other remote handling or robotic systems.
Operating a wide-area remote observing system for the W. M. Keck Observatory
NASA Astrophysics Data System (ADS)
Wirth, Gregory D.; Kibrick, Robert I.; Goodrich, Robert W.; Lyke, James E.
2008-07-01
For over a decade, the W. M. Keck Observatory's two 10-meter telescopes have been operated remotely from its Waimea headquarters. Over the last 6 years, WMKO remote observing has expanded to allow teams at dedicated sites in California to observe either in collaboration with colleagues in Waimea or entirely from the U.S. mainland. Once an experimental effort, the Observatory's mainland observing capability is now fully operational, supported on all science instruments (except the interferometer) and regularly used by astronomers at eight mainland sites. Establishing a convenient and secure observing capability from those sites required careful planning to ensure that they are properly equipped and configured. It also entailed a significant investment in hardware and software, including both custom scripts to simplify launching the instrument interface at remote sites and automated routers employing ISDN backup lines to ensure continuation of observing during Internet outages. Observers often wait until shortly before their runs to request use of the mainland facilities. Scheduling these requests and ensuring proper system operation prior to observing requires close coordination between personnel at WMKO and the mainland sites. An established protocol for approving requests and carrying out pre-run checkout has proven useful in ensuring success. The Observatory anticipates enhancing and expanding its remote observing system. Future plans include deploying dedicated summit computers for running VNC server software, implementing a web-based tracking system for mainland-based observing requests, expanding the system to additional mainland sites, and converting to full-time VNC operation for all instruments.
A new method of inshore ship detection in high-resolution optical remote sensing images
NASA Astrophysics Data System (ADS)
Hu, Qifeng; Du, Yaling; Jiang, Yunqiu; Ming, Delie
2015-10-01
Ship as an important military target and water transportation, of which the detection has great significance. In the military field, the automatic detection of ships can be used to monitor ship dynamic in the harbor and maritime of enemy, and then analyze the enemy naval power. In civilian field, the automatic detection of ships can be used in monitoring transportation of harbor and illegal behaviors such as illegal fishing, smuggling and pirates, etc. In recent years, research of ship detection is mainly concentrated in three categories: forward-looking infrared images, downward-looking SAR image, and optical remote sensing images with sea background. Little research has been done into ship detection of optical remote sensing images with harbor background, as the gray-scale and texture features of ships are similar to the coast in high-resolution optical remote sensing images. In this paper, we put forward an effective harbor ship target detection method. First of all, in order to overcome the shortage of the traditional difference method in obtaining histogram valley as the segmentation threshold, we propose an iterative histogram valley segmentation method which separates the harbor and ships from the water quite well. Secondly, as landing ships in optical remote sensing images usually lead to discontinuous harbor edges, we use Hough Transform method to extract harbor edges. First, lines are detected by Hough Transform. Then, lines that have similar slope are connected into a new line, thus we access continuous harbor edges. Secondary segmentation on the result of the land-and-sea separation, we eventually get the ships. At last, we calculate the aspect ratio of the ROIs, thereby remove those targets which are not ship. The experiment results show that our method has good robustness and can tolerate a certain degree of noise and occlusion.
Worm, Esben S; Høyer, Morten; Hansen, Rune; Larsen, Lars P; Weber, Britta; Grau, Cai; Poulsen, Per R
2018-06-01
Intrafraction motion can compromise the treatment accuracy in liver stereotactic body radiation therapy (SBRT). Respiratory gating can improve treatment delivery; however, gating based on external motion surrogates is inaccurate. The present study reports the use of Calypso-based internal electromagnetic motion monitoring for gated liver SBRT. Fifteen patients were included in a study of 3-fraction respiratory gated liver SBRT guided by 3 implanted electromagnetic transponders. The planning target volume was created by a 5-mm axial and 7-mm (n = 12) or 10-mm (n = 3) craniocaudal expansion of the clinical target volume (CTV) and covered with 67% of the prescribed CTV mean dose. Treatment was gated to the end-exhale phase of the respiratory cycle with beam-on when the target deviated <3 mm (left-right/anteroposterior) and 4 mm (craniocaudal) from the planned position, according to the monitored (25-Hz) transponder centroid position. The couch was adjusted remotely if baseline drifts >1 to 2 mm occurred. Log files of transponder motion were used to determine the geometric error and reconstruct the delivered CTV dose in the actual gated treatments and in simulated nongated treatments. No severe side effects were observed in relation to transponder implantation. All 45 treatment fractions were successfully guided using the Calypso system. The mean number of couch corrections during each gated fraction was 2.8 (range 0-7). The mean duty cycle during gated treatment was 62.5% (range 29.1%-84.9%). Without gating, the mean 3-dimensional geometric error during a fraction would have been 5.4 mm (range 2.7-12.1). Gating reduced this error to 2.0 mm (range 1.2-3.0). The patient mean reduction in minimum dose to 95% of the CTV relative to the planned dose was 6.0 percentage points (range 0.7-22.0) without gating and 0.8 percentage point (range 0.2-2.0) with gating. Gating using internal motion monitoring was successfully applied for liver SBRT. It markedly improved the geometric and dosimetric accuracy compared with nongated standard treatment. Copyright © 2018 Elsevier Inc. All rights reserved.
The IROC Houston Quality Assurance Program: Potential benefits of 3D dosimetry
NASA Astrophysics Data System (ADS)
Followill, D. S.; Molineu, H. A.; Lafratta, R.; Ibbott, G. S.
2017-05-01
The IROC Houston QA Center has provided QA core support for NCI clinical trials by ensuring that radiation doses delivered to trial patients are accurate and comparable between participating institutions. Within its QA program, IROC Houston uses anthropomorphic QA phantoms to credential sites. It is these phantoms that have the highest potential to benefit from the use of 3D dosimeters. Credentialing is performed to verify that institutions that are using advanced technologies to deliver complex treatment plans that conform to targets. This makes it increasingly difficult to assure the intended calculated dose is being delivered correctly using current techniques that are 2D-based. A 3D dosimeter such as PRESAGE® is able to provide a complete 3D measured dosimetry dataset with one treatment plan delivery. In our preliminary studies, the 3D dosimeters in our H&N and spine phantoms were found to be appropriate for remote dosimetry for relative dose measurements. To implement 3D dosimetry in IROC Houston’s phantoms, the benefit of this significant change to its current infrastructure would have to be assessed and further work would be needed before bringing 3D dosimeters into the phantom dosimetry program.
Atmospheric effects in multispectral remote sensor data
NASA Technical Reports Server (NTRS)
Turner, R. E.
1975-01-01
The problem of radiometric variations in multispectral remote sensing data which occur as a result of a change in geometric and environmental factors is studied. The case of spatially varying atmospheres is considered and the effect of atmospheric scattering is analyzed for realistic conditions. Emphasis is placed upon a simulation of LANDSAT spectral data for agricultural investigations over the United States. The effect of the target-background interaction is thoroughly analyzed in terms of various atmospheric states, geometric parameters, and target-background materials. Results clearly demonstrate that variable atmospheres can alter the classification accuracy and that the presence of various backgrounds can change the effective target radiance by a significant amount. A failure to include these effects in multispectral data analysis will result in a decrease in the classification accuracy.
NASA Technical Reports Server (NTRS)
1973-01-01
Remote sensing techniques are being used in Minnesota to study: (1) forest disease detection and control; (2) water quality indicators; (3) forest vegetation classification and management; (4) detection of saline soils in the Red River Valley; (5) corn defoliation; and (6) alfalfa crop productivity. Results of progress, and plans for future work in these areas, are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langford, Zachary; Kumar, Jitendra; Hoffman, Forrest
A multi-sensor remote sensing-based deep learning approach was developed for generating high-resolution (5~m) vegetation maps for the western Alaskan Arctic on the Seward Peninsula, Alaska. This data was developed using the fusion of hyperspectral, multispectral, and terrain datasets. The current data is located in the Kougarok watershed but we plan to expand this over the Seward Peninsula.
ERIC Educational Resources Information Center
Zervas, Panagiotis; Tsourlidaki, Eleftheria; Sotiriou, Sofoklis; Sampson, Demetrios G.
2015-01-01
Technological advancements in the field of World Wide Web have led to a plethora of remote and virtual labs (RVLs) that are currently available online and they are offered with or without cost. However, using a RVL to teach a specific science subject might not be a straightforward task for a science teacher. As a result, science teachers need to…
Remote sensing on Indian and public lands
NASA Technical Reports Server (NTRS)
Torbert, G. B.; Woll, A. M.
1972-01-01
The use of remote sensing techniques by the Bureaus of Indian Affairs and Land Management in planning resource problems, making decisions, writing environmental impact statements, and monitoring their respective programs is investigated. For Indian affairs, data cover the Papago, Fort Apache, San Carlos, and South Dakota Reservations. For the Land Management Office, data cover cadastral surveys, California desert study, range watersheds, and efforts to establish a natural resources information system.
Plan demographics, participants' saving behavior, and target-date fund investments.
Park, Youngkyun
2009-05-01
This analysis explores (1) whether plan demographic characteristics would affect individual participant contribution rates and target-date fund investments and (2) equity glide paths for participants in relation to plan demographics by considering target replacement income and its success rate. PLAN DEMOGRAPHIC CHARACTERISTICS IN PARTICIPANT CONTRIBUTION RATES: This study finds empirical evidence that 401(k) plan participants' contribution rates differ by plan demographics based on participants' income and/or tenure. In particular, participants in 401(k) plans dominated by those with low income and short tenure tend to contribute less than those in plans dominated by participants with high income and long tenure. Future research will explore how participant contribution behavior may also be influenced by incentives provided by employers through matching formulae. PLAN DEMOGRAPHIC CHARACTERISTICS IN TARGET-DATE FUND INVESTMENTS: The study also finds empirical evidence that participants' investments in target-date funds with different equity allocations differ by plan demographics based on participants' income and/or tenure. In particular, target-date fund users with 90 percent or more of their account balances in target-date funds who are in 401(k) plans dominated by low-income and short-tenure participants tend to hold target-date funds with lower equity allocations, compared with their counterparts in plans dominated by high-income and long-tenure participants. Future research will focus on the extent to which these characteristics might influence the selection of target-date funds by plan sponsors. EQUITY GLIDE PATHS: Several stylized equity glide paths as well as alternative asset allocations are compared for participants at various starting ages to demonstrate the interaction between plan demographics and equity glide paths/asset allocations in terms of success rates in meeting various replacement income targets. The equity glide path/asset allocation providing the highest success rate at a particular replacement rate target will vary with the assumed starting date of the participant (see Figure 17). Given the highly stylized nature of the simulations in this Issue Brief it is important to note that the results are not intended to provide a single equity glide path solution in relation to plan demographics. Instead, they serve as a framework to be considered when plan sponsors make a selection concerning which target-date funds to include in their plan. IMPORTANCE OF PARTICIPANT CONTRIBUTION RATES: This analysis finds that although target-date funds with different equity glide paths affect the retirement income replacement success rate, participant contribution rates corresponding to different plan demographic characteristics have a stronger impact. AUTO FEATURES OF THE PPA: This Issue Brief provides a stylized study using observed contribution rates as of the 2007 plan year. However, with the passage of the Pension Protection Act of 2006 and its likely impact on plan design in the future (increased utilization of automatic enrollment and automatic contribution escalations), it is likely that contribution rates among the participants may become more homogenous. In such a scenario, it may be more likely that a single equity glide path would meet a wide range of demographic profiles.
The University of Colorado OSO-8 spectrometer experiment. IV - Mission operations
NASA Technical Reports Server (NTRS)
Hansen, E. R.; Bruner, E. C., Jr.
1979-01-01
The remote operation of two high-resolution ultraviolet spectrometers on the OSO-8 satellite is discussed. Mission operations enabled scientific observers to plan observations based on current solar data, interact with the observing program using real- or near real-time data and commands, evaluate quick-look instrument data, and analyze the observations for publication. During routine operations, experiments were planned a day prior to their execution, and the data from these experiments received a day later. When a shorter turnaround was required, a real-time mode was available. Here, the real-time data and command links into the remote control center were used to evaluate experiment operation and make satellite pointing or instrument configuration changes with a 1-90 minute turnaround.
Improved resource use decisions and actions through remote sensing
NASA Technical Reports Server (NTRS)
Hill-Rowley, R.; Boylan, M.; Enslin, W.; Vlasin, R. D.
1975-01-01
Operational uses of remote sensing for improving management decisions and actions concerning resource uses are considered in terms of first generation, or direct-action; and second generation or indirect, delayed-action applications. From among applications completed during 1974-75, seven case studies are offered in illustration of the many contrasts which can be drawn between first and second generation application studies. These include: (1) multi-agency river basin planning; (2) corridor assessment and route location for highway location together with improvement of county-level planning decisions; (3) improving timber management practices; (4) enforcement of new state statutes; (5) county-wide open space preservation; (6) land value reappraisal relative to property tax equalization; and (7) optimizing agri-business processing plant locations.
Active microwave users working group program planning
NASA Technical Reports Server (NTRS)
Ulaby, F. T.; Bare, J.; Brown, W. E., Jr.; Childs, L. F.; Dellwig, L. F.; Heighway, J. E.; Joosten, R.; Lewis, A. J.; Linlor, W.; Lundien, J. R.
1978-01-01
A detailed programmatic and technical development plan for active microwave technology was examined in each of four user activities: (1) vegetation; (2) water resources and geologic applications, and (4) oceanographic applications. Major application areas were identified, and the impact of each application area in terms of social and economic gains were evaluated. The present state of knowledge of the applicability of active microwave remote sensing to each application area was summarized and its role relative to other remote sensing devices was examined. The analysis and data acquisition techniques needed to resolve the effects of interference factors were reviewed to establish an operational capability in each application area. Flow charts of accomplished and required activities in each application area that lead to operational capability were structured.
26 CFR 1.430(i)-1 - Special rules for plans in at-risk status.
Code of Federal Regulations, 2010 CFR
2010-04-01
... determining the funding target and making other computations for certain defined benefit plans that are in at... status for a plan year, including the determination of a plan's funding target attainment percentage and at-risk funding target attainment percentage. Paragraph (c) of this section describes the funding...
High-intensity-focused-ultrasound (HIFU) induced homeostasis and tissue ablation
NASA Astrophysics Data System (ADS)
Chauhan, Sunita; Michel, M. S.; Alken, Peter; Kohrmann, K. U.; Haecker, Axel
2003-06-01
At high intensity levels, ultrasound energy focused into remote tissue targets in human body has shown to produce thermal necrosis in circumscribed regions with sub-millimeter accuracy. The non-invasive modality known as HIFU has enormous potential for thermal ablation of cancers/tumors of the human body without any adverse effects in the surrounding normal tissue. In this paper, empirical results for parametric assessment and interdependence of several exposure variables are presented for producing thermal necrosis as well as hemostasis. Multiple HIFU transducers in selective spatial configuration have been deployed using a suitably designed experiemntal harness, with and without motorized jig scanning. The pre-planning and on-line procedure for treatment and specified instrumentation is described. Custom designed 25mm aperture HIFU probes resonating at 2 MHz focused at 64 and 80 mm are used. Results have been obtained in ex-vivo animal tissue and in vitro biological phantoms for hemostasis.
Operation and performance of the mars exploration rover imaging system on the martian surface
Maki, J.N.; Litwin, T.; Schwochert, M.; Herkenhoff, K.
2005-01-01
The Imaging System on the Mars Exploration Rovers has successfully operated on the surface of Mars for over one Earth year. The acquisition of hundreds of panoramas and tens of thousands of stereo pairs has enabled the rovers to explore Mars at a level of detail unprecedented in the history of space exploration. In addition to providing scientific value, the images also play a key role in the daily tactical operation of the rovers. The mobile nature of the MER surface mission requires extensive use of the imaging system for traverse planning, rover localization, remote sensing instrument targeting, and robotic arm placement. Each of these activity types requires a different set of data compression rates, surface coverage, and image acquisition strategies. An overview of the surface imaging activities is provided, along with a summary of the image data acquired to date. ?? 2005 IEEE.
Scattering Properties of Lunar Dust Analogs
NASA Technical Reports Server (NTRS)
Davis, S.; Marshall, J.; Richard, D.; Adler, D.; Adler, B.
2013-01-01
A number of space missions are planned to explore the lunar exosphere which may contain a small population of dust particles. The objective of this paper is to present preliminary results from scattering experiments on a suspension of lunar simulants to support one such mission. The intensity of the light scattered from a lunar simulant is measured with a commercial version of the spectrometer used in the forthcoming LADEE mission. Physical properties of the lunar simulant are described along with two similarly-sized reference microspheres. We confirm that micron-sized particles tend to form agglomerates rather than remaining isolated entities and that certain general characteristic of the target particles can be predicted from intensity measurements alone. These results can be used directly to assess general features of the lunar exosphere from LADEE instrument data. Further analysis of particle properties from such remote sensing data will require measurements of polarization signatures.
Enhancing palliative care delivery in a regional community in Australia.
Phillips, Jane L; Davidson, Patricia M; Jackson, Debra; Kristjanson, Linda; Bennett, Margaret L; Daly, John
2006-08-01
Although access to palliative care is a fundamental right for people in Australia and is endorsed by government policy, there is often limited access to specialist palliative care services in regional, rural and remote areas. This article appraises the evidence pertaining to palliative care service delivery to inform a sustainable model of palliative care that meets the needs of a regional population on the mid-north coast of New South Wales. Expert consultation and an eclectic literature review were undertaken to develop a model of palliative care service delivery appropriate to the needs of the target population and resources of the local community. On the basis of this review, a local palliative care system that is based on a population-based approach to service planning and delivery, with formalized integrated network agreements and role delineation between specialist and generalist providers, has the greatest potential to meet the palliative care needs of this regional coastal community.
Virtual Mission Operations of Remote Sensors With Rapid Access To and From Space
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Stewart, Dave; Walke, Jon; Dikeman, Larry; Sage, Steven; Miller, Eric; Northam, James; Jackson, Chris; Taylor, John; Lynch, Scott;
2010-01-01
This paper describes network-centric operations, where a virtual mission operations center autonomously receives sensor triggers, and schedules space and ground assets using Internet-based technologies and service-oriented architectures. For proof-of-concept purposes, sensor triggers are received from the United States Geological Survey (USGS) to determine targets for space-based sensors. The Surrey Satellite Technology Limited (SSTL) Disaster Monitoring Constellation satellite, the United Kingdom Disaster Monitoring Constellation (UK-DMC), is used as the space-based sensor. The UK-DMC s availability is determined via machine-to-machine communications using SSTL s mission planning system. Access to/from the UK-DMC for tasking and sensor data is via SSTL s and Universal Space Network s (USN) ground assets. The availability and scheduling of USN s assets can also be performed autonomously via machine-to-machine communications. All communication, both on the ground and between ground and space, uses open Internet standards.
NASA Technical Reports Server (NTRS)
Singh, Upendra N.; Petros, Mulugeta; Refaat, Tamer F.; Yu, Jirong; Antill, Charles W.; Remus, Ruben
2016-01-01
This presentation will provide status and details of an airborne 2-micron triple-pulse integrated path differential absorption (IPDA) lidar being developed at NASA Langley Research Center with support from NASA ESTO Instrument Incubator Program. The development of this active optical remote sensing IPDA instrument is targeted for measuring both atmospheric carbon dioxide and water vapor in the atmosphere from an airborne platform. This presentation will focus on the advancement of the 2-micron triple-pulse IPDA lidar development. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plan for IPDA lidar system for ground integration, testing and flight validation will also be presented.
Hanan, Erin J; Tague, Christina; Choate, Janet; Liu, Mingliang; Kolden, Crystal; Adam, Jennifer
2018-03-24
Disturbances such as wildfire, insect outbreaks, and forest clearing, play an important role in regulating carbon, nitrogen, and hydrologic fluxes in terrestrial watersheds. Evaluating how watersheds respond to disturbance requires understanding mechanisms that interact over multiple spatial and temporal scales. Simulation modeling is a powerful tool for bridging these scales; however, model projections are limited by uncertainties in the initial state of plant carbon and nitrogen stores. Watershed models typically use one of two methods to initialize these stores: spin-up to steady state or remote sensing with allometric relationships. Spin-up involves running a model until vegetation reaches equilibrium based on climate. This approach assumes that vegetation across the watershed has reached maturity and is of uniform age, which fails to account for landscape heterogeneity and non-steady-state conditions. By contrast, remote sensing, can provide data for initializing such conditions. However, methods for assimilating remote sensing into model simulations can also be problematic. They often rely on empirical allometric relationships between a single vegetation variable and modeled carbon and nitrogen stores. Because allometric relationships are species- and region-specific, they do not account for the effects of local resource limitation, which can influence carbon allocation (to leaves, stems, roots, etc.). To address this problem, we developed a new initialization approach using the catchment-scale ecohydrologic model RHESSys. The new approach merges the mechanistic stability of spin-up with the spatial fidelity of remote sensing. It uses remote sensing to define spatially explicit targets for one or several vegetation state variables, such as leaf area index, across a watershed. The model then simulates the growth of carbon and nitrogen stores until the defined targets are met for all locations. We evaluated this approach in a mixed pine-dominated watershed in central Idaho, and a chaparral-dominated watershed in southern California. In the pine-dominated watershed, model estimates of carbon, nitrogen, and water fluxes varied among methods, while the target-driven method increased correspondence between observed and modeled streamflow. In the chaparral watershed, where vegetation was more homogeneously aged, there were no major differences among methods. Thus, in heterogeneous, disturbance-prone watersheds, the target-driven approach shows potential for improving biogeochemical projections. © 2018 by the Ecological Society of America.
Dosimetric comparison of photon and proton treatment techniques for chondrosarcoma of thoracic spine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Poonam, E-mail: yadav@humonc.wisc.edu; Department of Medical Physics, University of Wisconsin, Madison, WI; University of Wisconsin Riverview Cancer Center, Wisconsin Rapids, WI
2013-10-01
Chondrosarcomas are relatively radiotherapy resistant, and also delivering high radiation doses is not feasible owing to anatomic constraints. In this study, the feasibility of helical tomotherapy for treatment of chondrosarcoma of thoracic spine is explored and compared with other available photon and proton radiotherapy techniques in the clinical setting. A patient was treated for high-grade chondrosarcoma of the thoracic spine using tomotherapy. Retrospectively, the tomotherapy plan was compared with intensity-modulated radiation therapy, dynamic arc photon therapy, and proton therapy. Two primary comparisons were made: (1) comparison of normal tissue sparing with comparable target volume coverage (plan-1), and (2) comparison ofmore » target volume coverage with a constrained maximum dose to the cord center (plan-2). With constrained target volume coverage, proton plans were found to yield lower mean doses for all organs at risk (spinal cord, esophagus, heart, and both lungs). Tomotherapy planning resulted in the lowest mean dose to all organs at risk amongst photon-based methods. For cord dose constrained plans, the static-field intensity-modulated radiation therapy and dynamic arc plans resulted target underdosing in 20% and 12% of planning target volume2 volumes, respectively, whereas both proton and tomotherapy plans provided clinically acceptable target volume coverage with no portion of planning target volume2 receiving less than 90% of the prescribed dose. Tomotherapy plans are comparable to proton plans and produce superior results compared with other photon modalities. This feasibility study suggests that tomotherapy is an attractive alternative to proton radiotherapy for delivering high doses to lesions in the thoracic spine.« less
Remote sensing techniques for conservation and management of natural vegetation ecosystems
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator); Verdesio, J. J.; Dossantos, J. R.
1981-01-01
The importance of using remote sensing techniques, in the visible and near-infrared ranges, for mapping, inventory, conservation and management of natural ecosystems is discussed. Some examples realized in Brazil or other countries are given to evaluate the products from orbital platform (MSS and RBV imagery of LANDSAT) and aerial level (photography) for ecosystems study. The maximum quantitative and qualitative information which can be obtained from each sensor, at different level, are discussed. Based on the developed experiments it is concluded that the remote sensing technique is a useful tool in mapping vegetation units, estimating biomass, forecasting and evaluation of fire damage, disease detection, deforestation mapping and change detection in land-use. In addition, remote sensing techniques can be used in controling implantation and planning natural/artificial regeneration.
Mississippi Sound remote sensing study. [NASA Earth Resources Laboratory seasonal experiments
NASA Technical Reports Server (NTRS)
Atwell, B. H.; Thomann, G. C.
1973-01-01
A study of the Mississippi Sound was initiated in early 1971 by personnel of NASA Earth Resources Laboratory. Four separate seasonal experiments consisting of quasi-synoptic remote and surface measurements over the entire area were planned. Approximately 80 stations distributed throughout Mississippi Sound were occupied. Surface water temperature and secchi extinction depth were measured at each station and water samples were collected for water quality analyses. The surface distribution of three water parameters of interest from a remote sensing standpoint - temperature, salinity and chlorophyll content - are displayed in map form. Areal variations in these parameters are related to tides and winds. A brief discussion of the general problem of radiative measurements of water temperature is followed by a comparison of remotely measured temperatures (PRT-5) to surface vessel measurements.
NASA Astrophysics Data System (ADS)
Anghileri, D.; Kaelin, A.; Peleg, N.; Fatichi, S.; Molnar, P.; Roques, C.; Longuevergne, L.; Burlando, P.
2017-12-01
Hydrological modeling in poorly gauged basins can benefit from the use of remote sensing datasets although there are challenges associated with the mismatch in spatial and temporal scales between catchment scale hydrological models and remote sensing products. We model the hydrological processes and long-term water budget of the Lake Turkana catchment, a transboundary basin between Kenya and Ethiopia, by integrating several remote sensing products into a spatially distributed and physically explicit model, Topkapi-ETH. Lake Turkana is the world largest desert lake draining a catchment of 145'500 km2. It has three main contributing rivers: the Omo river, which contributes most of the annual lake inflow, the Turkwel river, and the Kerio rivers, which contribute the remaining part. The lake levels have shown great variations in the last decades due to long-term climate fluctuations and the regulation of three reservoirs, Gibe I, II, and III, which significantly alter the hydrological seasonality. Another large reservoir is planned and may be built in the next decade, generating concerns about the fate of Lake Turkana in the long run because of this additional anthropogenic pressure and increasing evaporation driven by climate change. We consider different remote sensing datasets, i.e., TRMM-V7 for precipitation, MERRA-2 for temperature, as inputs to the spatially distributed hydrological model. We validate the simulation results with other remote sensing datasets, i.e., GRACE for total water storage anomalies, GLDAS-NOAH for soil moisture, ERA-Interim/Land for surface runoff, and TOPEX/Poseidon for satellite altimetry data. Results highlight how different remote sensing products can be integrated into a hydrological modeling framework accounting for their relative uncertainties. We also carried out simulations with the artificial reservoirs planned in the north part of the catchment and without any reservoirs, to assess their impacts on the catchment hydrological regime and the Lake Turkana level variability.
NASA Astrophysics Data System (ADS)
Venkateswarlu, P.; Reddy, M. A.; Prasad, A. T.
2003-12-01
Application of Remote Sensing and Geographic Information System for the development of land and water resources action plan at micro level for appropriate management of land/water resources of a watershed in rain fed region of Prakasam District in Andhra Pradesh, India forms the focal theme of this paper. The quantitative description of drainage basin geometry can be effectively determined using Remote Sensing and GIS techniques. Each of the sixty-two sub-watersheds of the study area have been studied in terms of the Morphometric parameters - Stream length, Bifurcation ratio, Length ratio, Drainage density, Stream frequency, Texture ratio, Form factor, Area Perimeters, Circularity ratio and Elongation ratio and prioritized all the sub-watersheds under study. The prioritization of sub sheds based on morphometry is compared with sediment yield prioritization and found nearly same for the study area. The information obtained from the thematic maps are integrated and action plans are suggested for land and water resources development on a sustainable basis. Landuse/Landcover, Hydrogeomorphology and Soil thematic maps were generated. In addition slope and Drainage maps were prepared from Survey of India toposheets. Based on the computerized database created using ARC/INFO software, information derived in terms of natural resources and their spatial distribution was then integrated with the socio economic data to formulate an action plan, which includes suggestion of alternative Landuse/Landcover practices. Such a plan is useful for natural resources management and for improving the socio-economic status of rural population on a sustainable basis. Keywords: Natural Resources, Remote Sensing, Morphometry sustainable development.
Sheppard, John P; Lagman, Carlito; Prashant, Giyarpuram N; Alkhalid, Yasmine; Nguyen, Thien; Duong, Courtney; Udawatta, Methma; Gaonkar, Bilwaj; Tenn, Stephen E; Bloch, Orin; Yang, Isaac
2018-06-01
To retrospectively compare ideal radiosurgical target volumes defined by a manual method (surgeon) to those determined by Adaptive Hybrid Surgery (AHS) operative planning software in 7 patients with vestibular schwannoma (VS). Four attending surgeons (3 neurosurgeons and 1 ear, nose, and throat surgeon) manually contoured planned residual tumors volumes for 7 consecutive patients with VS. Next, the AHS software determined the ideal radiosurgical target volumes based on a specified radiotherapy plan. Our primary measure was the difference between the average planned residual tumor volumes and the ideal radiosurgical target volumes defined by AHS (dRV AHS-planned ). We included 7 consecutive patients with VS in this study. The planned residual tumor volumes were smaller than the ideal radiosurgical target volumes defined by AHS (1.6 vs. 4.5 cm 3 , P = 0.004). On average, the actual post-operative residual tumor volumes were smaller than the ideal radiosurgical target volumes defined by AHS (2.2 cm 3 vs. 4.5 cm 3 ; P = 0.02). The average difference between the ideal radiosurgical target volume defined by AHS and the planned residual tumor volume (dRV AHS-planned ) was 2.9 ± 1.7 cm 3 , and we observed a trend toward larger dRV AHS-planned in patients who lost serviceable facial nerve function compared with patients who maintained serviceable facial nerve function (4.7 cm 3 vs. 1.9 cm 3 ; P = 0.06). Planned subtotal resection of VS diverges from the ideal radiosurgical target defined by AHS, but whether that influences clinical outcomes is unclear. Copyright © 2018 Elsevier Inc. All rights reserved.
Charania, N A; Tsuji, L J S
2011-01-01
First Nation communities were highly impacted by the 2009 H1N1 influenza pandemic. Multiple government bodies (ie federal, provincial, and First Nations) in Canada share responsibility for the health sector pandemic response in remote and isolated First Nation communities and this may have resulted in a fragmented pandemic response. This study aimed to discover if and how the dichotomy (or trichotomy) of involved government bodies led to barriers faced and opportunities for improvement during the health sector response to the 2009 H1N1 pandemic in three remote and isolated sub-arctic First Nation communities of northern Ontario, Canada. A qualitative community-based participatory approach was employed. Semi-directed interviews were conducted with adult key informants (n=13) using purposive sampling of participants representing the two (or three) government bodies of each study community. Data were manually transcribed and coded using deductive and inductive thematic analysis to reveal positive aspects, barriers faced, and opportunities for improvement along with the similarities and differences regarding the pandemic responses of each government body. Primary barriers faced by participants included receiving contradicting governmental guidelines and direction from many sources. In addition, there was a lack of human resources, information sharing, and specific details included in community-level pandemic plans. Recommended areas of improvement include developing a complementary communication plan, increasing human resources, and updating community-level pandemic plans. Participants reported many issues that may be attributable to the dichotomy (or trichotomy) of government bodies responsible for healthcare delivery during a pandemic. Increasing formal communication and collaboration between responsible government bodies will assist in clarifying roles and responsibilities and improve the pandemic response in Canada's remote and isolated First Nation communities.
Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danny Anderson
2014-07-01
As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposalmore » vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE and commercial disposal options exist for contact-handled LLW; however, offsite disposal options are either not currently available (i.e., commercial disposal facilities), practical, or cost-effective for all remote-handled LLW streams generated at INL. Offsite disposal of all INL and tenant-generated remote-handled waste is further complicated by issues associated with transporting highly radioactive waste in commerce; and infrastructure and processing changes at the generating facilities, specifically NRF, that would be required to support offsite disposal. The INL Remote-Handled LLW Disposal Project will develop a new remote handled LLW disposal facility to meet mission-critical, remote-handled LLW disposal needs. A formal DOE decision to proceed with the project has been made in accordance with the requirements of National Environmental Policy Act (42 USC§ 4321 et seq.). Remote-handled LLW is generated from nuclear programs conducted at INL, including spent nuclear fuel handling and operations at NRF and operations at the Advanced Test Reactor. Remote-handled LLW also will be generated by new INL programs and from segregation and treatment (as necessary) of remote handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex.« less
Operation and maintenance requirements of the Army Remotely Piloted Vehicle (RPV)
NASA Technical Reports Server (NTRS)
1983-01-01
The Remotely Piloted Vehicle (RPV) system is being developed to provide the Army with a target acquistion, target location, and laser designation capability that will significantly enhance the effectiveness of the artillery. Iterative analyses of the manpower, personnel, and training (MPT) requirements for an RPV system configured to accommodate both a daylight television and a forward looking infrared (FLIR) mission payload subsystem (FMPS) and related support subsystems are examined. Additionally, this analysis incorporates a 24 hour-a-day operational scenario. Therefore, the information presented was developed with a view towards delineating the differences (or deltas) imposed by the new requirements resulting from FMPS/24 hour operating day functions.
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Spiers, Gary D.; Frehlich, Rod G.
2000-01-01
A collection of issues is discussed that are potential pitfalls, if handled incorrectly, for earth-orbiting lidar remote sensing instruments. These issues arise due to the long target ranges, high lidar-to-target relative velocities, low signal levels, use of laser scanners, and other unique aspects of using lasers in earth orbit. Consequences of misunderstanding these topics range from minor inconvenience to improper calibration to total failure. We will focus on wind measurement using coherent detection Doppler lidar, but many of the potential pitfalls apply also to noncoherent lidar wind measurement, and to measurement of parameters other than wind.
The Effectiveness of Hydrothermal Alteration Mapping based on Hyperspectral Data in Tropical Region
NASA Astrophysics Data System (ADS)
Muhammad, R. R. D.; Saepuloh, A.
2016-09-01
Hyperspectral remote sensing could be used to characterize targets at earth's surface based on their spectra. This capability is useful for mapping and characterizing the distribution of host rocks, alteration assemblages, and minerals. Contrary to the multispectral sensors, the hyperspectral identifies targets with high spectral resolution. The Wayang Windu Geothermal field in West Java, Indonesia was selected as the study area due to the existence of surface manifestation and dense vegetation environment. Therefore, the effectiveness of hyperspectral remote sensing in tropical region was targeted as the study objective. The Spectral Angle Mapper (SAM) method was used to detect the occurrence of clay minerals spatially from Hyperion data. The SAM references of reflectance spectra were obtained from field observation at altered materials. To calculate the effectiveness of hyperspectral data, we used multispectral data from Landsat-8. The comparison method was conducted by comparing the SAM's rule images from Hyperion and Landsat-8, resulting that hyperspectral was more accurate than multispectral data. Hyperion SAM's rule images showed lower value compared to Landsat-8, the significant number derived from using Hyperion was about 24% better. This inferred that the hyperspectral remote sensing is preferable for mineral mapping even though vegetation covered study area.
Healthcare Supported by Data Mule Networks in Remote Communities of the Amazon Region
Coutinho, Mauro Margalho; Efrat, Alon; Richa, Andrea
2014-01-01
This paper investigates the feasibility of using boats as data mule nodes, carrying medical ultrasound videos from remote and isolated communities in the Amazon region in Brazil, to the main city of that area. The videos will be used by physicians to perform remote analysis and follow-up routine of prenatal examinations of pregnant women. Two open source simulators (the ONE and NS-2) were used to evaluate the results obtained utilizing a CoDPON (continuous displacement plan oriented network). The simulations took into account the connection times between the network nodes (boats) and the number of nodes on each boat route. PMID:27433519
NASA Technical Reports Server (NTRS)
Jones, E. B.
1983-01-01
As remote sensing increasingly becomes more of an operational tool in the field of snow management and snow hydrology, there is need for some degree of standardization of ""snowpack ground truth'' techniques. This manual provides a first step in standardizing these procedures and was prepared to meet the needs of remote sensing researchers in planning missions requiring ground truth as well as those providing the ground truth. Focus is on ground truth for remote sensors primarily operating in the microwave portion of the electromagnetic spectrum; nevertheless, the manual should be of value to other types of sensor programs. This first edition of ground truth procedures must be updated as new or modified techniques are developed.
DOT National Transportation Integrated Search
2015-03-01
Accurate travel time information is required to efficiently plan and effectively manage transportation network. Technologies and : private data sources such as INRIX, TomTom and HERE offer the potential to continuously collect travel time data and us...
NASA Technical Reports Server (NTRS)
1980-01-01
A plan is presented for a supplemental experiment to evaluate a sample allocation technique for selecting picture elements from remotely sensed multispectral imagery for labeling in connection with a new crop proportion estimation technique. The method of evaluating an improved allocation and proportion estimation technique is also provided.
DOT National Transportation Integrated Search
2008-02-05
The new US DOT RITA program has selected MSU for addressing corridor planning and environmental assessment in new and innovative ways that can be compared to traditional approaches. Our primary focus is on the application and validation of new and in...
NASA Technical Reports Server (NTRS)
Allen, M. A.; Roman, G. S.
1979-01-01
The specification used to install a broadband coaxial cable communication system to support remote terminal operations on the Crew Activity Planning system at the Lyndon B. Johnson Space Center are reported. The system supports high speed communications between a Harris Slash 8 computer and one or more Sanders Graphic 7 displays.
Shuttle remote manipulator system mission preparation and operations
NASA Technical Reports Server (NTRS)
Smith, Ernest E., Jr.
1989-01-01
The preflight planning, analysis, procedures development, and operations support for the Space Transportation System payload deployment and retrieval missions utilizing the Shuttle Remote Manipulator System are summarized. Analysis of the normal operational loads and failure induced loads and motion are factored into all procedures. Both the astronaut flight crews and the Mission Control Center flight control teams receive considerable training for standard and mission specific operations. The real time flight control team activities are described.
NASA Technical Reports Server (NTRS)
Colwell, R. N.; Churchman, C. W.; Burgy, R. H.; Schubert, G.; Estes, J. E.; Bowden, L. W.; Algazi, R.; Coulson, K. L. (Principal Investigator)
1973-01-01
The University of California has been conducting an investigation which seeks to determine the usefulness of modern remote sensing techniques for studying various components of California's earth resources complex. Most of the work has concentrated on California's water resources, but with some attention being given to other earth resources as well and to the interplay between them and California's water resources.
SWIFT Observations in the Arctic Sea State DRI
2015-09-30
to understand the role of waves and sea state in the Arctic Ocean, such that forecast models are improved and a robust climatology is defined...OBJECTIVES The objectives are to: develop a sea state climatology for the Arctic Ocean, improve wave forecasting in the presence of sea ice, improve...experiment, coordination of remote sensing products, and analysis of climatology . A detailed cruise plan has been written, including a table of the remote
NASA Technical Reports Server (NTRS)
Goodell, H. G.
1970-01-01
The interrelationships of biophysical environmental systems are investigated. Social decision-making affecting the environments of a coastal megapolis are examined. Remote sensing from high altitude aircraft and satellites afforded a powerful and indepensible tool for inventory and planning for urban development. Repetitive low to medium altitude photography is also used for studying environmental dynamics, and to document the cultural impact of man on his environment.
A photovoltaic power system in the remote African village of Tangaye, Upper Volta
NASA Technical Reports Server (NTRS)
Bifano, W. J.; Ratajczak, A. F.; Martz, J. E.
1979-01-01
A photovoltaic (PV) system powering a grain mill and a water pump was installed in the remote West African village of Tangaye, Upper Volta. Village characteristics as well as system design, hardware, installation and operation to date are described. The PV system cost is discussed. A baseline socio-economic study performed and a follow-up study is planned to determine the impact of the system on the villagers.
Post Occupancy Evaluation of a Remote Australian Community: Shay Gap, Australia.
1980-07-01
AD-AOB 675 ENVIRONENTAL RESARCH AND DEVELOPMENT FOUNDATION TU ETC F G 5 11 POST OCCUPANCY EVALUATION OF A REMOTE AUSTRALIAN COMMUNITY: SHA--ETC(U...conditions. Lessons learned have aided design and community planning guidelines used by the military, government , and private business to produce more cost...occurs. The education action pattern is scored when formal teaching and learning occur, as in a school classroom. The government action pattern is
NASA Technical Reports Server (NTRS)
Khan, Maudood; Rickman, Doug; Limaye, Ashutosh; Crosson, Bill; Layman, Charles; Hemmings, Sarah
2010-01-01
The topics covered in this slide presentation are: (1) Post-war growth of U.S scientific enterprise, (2) Success of air quality regulations, (3) Complexity and coupled systems, (4) Advances in remote sensing technology, (5) Development planning in the 21stcentury, (5a) The challenge for policy maker and scientist, (5b) Decision-making science, (5c) Role of public-private partnerships.
NASA Technical Reports Server (NTRS)
1979-01-01
The tests and procedures for the manned remote work station (MRWS) open cherry picker (OCP) development test article (DTA) are described to validate systems requirements and performance specifications. A development test program is outlined to evaluate key design issues and man/machine interfaces when the MRWS OCP is used in a shuttle support role of satellite servicing and in orbit construction of large structures.
Research for Environmental Stewardship and Conservation at the APTRU
USDA-ARS?s Scientific Manuscript database
Research methods for mitigation of off-target spray drift, remote sensing for precision crop management, and irrigation and tillage methods are presented. Research for mitigation of off target spray drift includes development of sophisticated weather apparatus to determine weather conditions unfavor...
Sustainable and Smart City Planning Using Spatial Data in Wallonia
NASA Astrophysics Data System (ADS)
Stephenne, N.; Beaumont, B.; Hallot, E.; Wolff, E.; Poelmans, L.; Baltus, C.
2016-09-01
Simulating population distribution and land use changes in space and time offer opportunities for smart city planning. It provides a holistic and dynamic vision of fast changing urban environment to policy makers. Impacts, such as environmental and health risks or mobility issues, of policies can be assessed and adapted consequently. In this paper, we suppose that "Smart" city developments should be sustainable, dynamic and participative. This paper addresses these three smart objectives in the context of urban risk assessment in Wallonia, Belgium. The sustainable, dynamic and participative solution includes (i) land cover and land use mapping using remote sensing and GIS, (ii) population density mapping using dasymetric mapping, (iii) predictive modelling of land use changes and population dynamics and (iv) risk assessment. The comprehensive and long-term vision of the territory should help to draw sustainable spatial planning policies, to adapt remote sensing acquisition, to update GIS data and to refine risk assessment from regional to city scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pace, Brenda Ringe; Gilbert, Hollie Kae
2015-05-01
This plan addresses cultural resource protection procedures to be implemented during construction of the Remote Handled Low Level Waste project at the Idaho National Laboratory. The plan proposes pre-construction review of proposed ground disturbing activities to confirm avoidance of cultural resources. Depending on the final project footprint, cultural resource protection strategies might also include additional survey, protective fencing, cultural resource mapping and relocation of surface artifacts, collection of surface artifacts for permanent curation, confirmation of undisturbed historic canal segments outside the area of potential effects for construction, and/or archaeological test excavations to assess potential subsurface cultural deposits at known culturalmore » resource locations. Additionally, all initial ground disturbing activities will be monitored for subsurface cultural resource finds, cultural resource sensitivity training will be conducted for all construction field personnel, and a stop work procedure will be implemented to guide assessment and protection of any unanticipated discoveries after initial monitoring of ground disturbance.« less
Characterizing land processes in the biosphere
NASA Technical Reports Server (NTRS)
Erickson, J. D.; Tuyahov, A. J.
1984-01-01
NASA long-term planning for the satellite remote sensing of land areas is discussed from the perspective of a holistic interdisciplinary approach to the study of the biosphere. The earth is characterized as a biogeochemical system; the impact of human activity on this system is considered; and the primary scientific goals for their study are defined. Remote-sensing programs are seen as essential in gaining an improved understanding of energy budgets, the hydrological cycle, other biogeological cycles, and the coupling between these cycles, with the construction of a global data base and eventually the development of predictive simulation models which can be used to assess the impact of planned human activities. Current sensor development at NASA includes a multilinear array for the visible and IR and the L-band Shuttle Imaging Radar B, both to be flown on Shuttle missions in the near future; for the 1990s, a large essentially permanent man-tended interdisciplinary multisensor platform connected to an advanced data network is being planned.
Application of remote sensing to selected problems within the state of California
NASA Technical Reports Server (NTRS)
Colwell, R. N. (Principal Investigator); Benson, A. S.; Estes, J. E.; Johnson, C.
1981-01-01
Specific case studies undertaken to demonstrate the usefulness of remote sensing technology to resource managers in California are highlighted. Applications discussed include the mapping and quantization of wildland fire fuels in Mendocino and Shasta Counties as well as in the Central Valley; the development of a digital spectral/terrain data set for Colusa County; the Forsythe Planning Experiment to maximize the usefulness of inputs from LANDSAT and geographic information systems to county planning in Mendocino County; the development of a digital data bank for Big Basin State Park in Santa Cruz County; the detection of salinity related cotton canopy reflectance differences in the Central Valley; and the surveying of avocado acreage and that of other fruits and nut crops in Southern California. Special studies include the interpretability of high altitude, large format photography of forested areas for coordinated resource planning using U-2 photographs of the NASA Bucks Lake Forestry test site in the Plumas National Forest in the Sierra Nevada Mountains.
Remote sensing based approach for monitoring urban growth in Mexico city, Mexico: A case study
NASA Astrophysics Data System (ADS)
Obade, Vincent
The world is experiencing a rapid rate of urban expansion, largely contributed by the population growth. Other factors supporting urban growth include the improved efficiency in the transportation sector and increasing dependence on cars as a means of transport. The problems attributed to the urban growth include: depletion of energy resources, water and air pollution; loss of landscapes and wildlife, loss of agricultural land, inadequate social security and lack of employment or underemployment. Aerial photography is one of the popular techniques for analyzing, planning and minimizing urbanization related problems. However, with the advances in space technology, satellite remote sensing is increasingly being utilized in the analysis and planning of the urban environment. This article outlines the strengths and limitations of potential remote sensing techniques for monitoring urban growth. The selected methods include: Principal component analysis, Maximum likelihood classification and "decision tree". The results indicate that the "classification tree" approach is the most promising for monitoring urban change, given the improved accuracy and smooth transition between the various land cover classes
Risk assessment of storm surge disaster based on numerical models and remote sensing
NASA Astrophysics Data System (ADS)
Liu, Qingrong; Ruan, Chengqing; Zhong, Shan; Li, Jian; Yin, Zhonghui; Lian, Xihu
2018-06-01
Storm surge is one of the most serious ocean disasters in the world. Risk assessment of storm surge disaster for coastal areas has important implications for planning economic development and reducing disaster losses. Based on risk assessment theory, this paper uses coastal hydrological observations, a numerical storm surge model and multi-source remote sensing data, proposes methods for valuing hazard and vulnerability for storm surge and builds a storm surge risk assessment model. Storm surges in different recurrence periods are simulated in numerical models and the flooding areas and depth are calculated, which are used for assessing the hazard of storm surge; remote sensing data and GIS technology are used for extraction of coastal key objects and classification of coastal land use are identified, which is used for vulnerability assessment of storm surge disaster. The storm surge risk assessment model is applied for a typical coastal city, and the result shows the reliability and validity of the risk assessment model. The building and application of storm surge risk assessment model provides some basis reference for the city development plan and strengthens disaster prevention and mitigation.
International Planning for Subglacial Lake Exploration
NASA Astrophysics Data System (ADS)
Kennicutt, M.; Priscu, J.
2003-04-01
As one of the last unexplored frontiers on our planet, subglacial lakes offer a unique and exciting venue for exploration and research. Over the past several years, subglacial lakes have captured the imagination of the scientific community and public, evoking images of potential exotic life forms surviving under some of the most extreme conditions on earth. Various planning activities have recognized that due to the remote and harsh conditions, that a successful subglacial lake exploration program will entail a concerted effort for a number of years. It will also require an international commitment of major financial and human resources. To begin a detailed planning process, the Scientific Committee on Antarctic Research (SCAR) convened the Subglacial Antarctic Lake Exploration Group of Specialists (SALEGOS) in Tokyo in 2000. The group was asked to build on previous workshops and meetings to develop a plan to explore subglacial lake environments. Its mandate adopted the guiding principles as agreed in Cambridge in 1999 that the program would be interdisciplinary in scope, be designed for minimum contamination and disturbance of the subglacial lake environment, have as a goal lake entry and sample retrieval, and that the ultimate target of the program should be Lake Vostok exploration. Since its formation SALEGOS has met three times and addressed some of the more intractable issues related to subglacial lake exploration. Topics under discussion include current state-of-the-knowledge of subglacial environments, technological needs, international management and organizational strategies, a portfolio of scientific projects, "clean" requirements, and logistical considerations. In this presentation the actvities of SALEGOS will be summarized and recommendations for an international subglacial lake exploration program discussed.
Autonomous Rover Traverse and Precise Arm Placement on Remotely Designated Targets
NASA Technical Reports Server (NTRS)
Felder, Michael; Nesnas, Issa A.; Pivtoraiko, Mihail; Kelly, Alonzo; Volpe, Richard
2011-01-01
Exploring planetary surfaces typically involves traversing challenging and unknown terrain and acquiring in-situ measurements at designated locations using arm-mounted instruments. We present field results for a new implementation of an autonomous capability that enables a rover to traverse and precisely place an arm-mounted instrument on remote targets. Using point-and-click mouse commands, a scientist designates targets in the initial imagery acquired from the rover's mast cameras. The rover then autonomously traverse the rocky terrain for a distance of 10 - 15 m, tracks the target(s) of interest during the traverse, positions itself for approaching the target, and then precisely places an arm-mounted instrument within 2-3 cm from the originally designated target. The rover proceeds to acquire science measurements with the instrument. This work advances what has been previously developed and integrated on the Mars Exploration Rovers by using algorithms that are capable of traversing more rock-dense terrains, enabling tight thread-the-needle maneuvers. We integrated these algorithms on the newly refurbished Athena Mars research rover and fielded them in the JPL Mars Yard. We conducted 43 runs with targets at distances ranging from 5 m to 15 m and achieved a success rate of 93% for placement of the instrument within 2-3 cm.
The LCO Follow-up and Characterization Network and AgentNEO Citizen Science Project
NASA Astrophysics Data System (ADS)
Lister, Tim; Greenstreet, Sarah; Gomez, Edward; Christensen, Eric J.; Larson, Stephen M.
2017-10-01
The LCO NEO Follow-up Network is using the telescopes of the Las Cumbres Observatory (LCO) and a web-based target selection, scheduling and data reduction system to confirm NEO candidates and characterize radar-targeted known NEOs. Starting in July 2014, the LCO NEO Follow-up Network has observed over 4,500 targets and reported more than 25,000 astrometric and photometric measurements to the Minor Planet Center.The LCO NEO Follow-up Network's main aims are to perform confirming follow-up of the large number of NEO candidates and to perform characterization measurements of radar targets to obtain light curves and rotation rates. The NEO candidates come from the NEO surveys such as Catalina, PanSTARRS, ATLAS, NEOWISE and others. In particular, we are targeting objects in the Southern Hemisphere, where the LCO NEO Follow-up Network is the largest resource for NEO observations.The first phase of the LCO Network comprises nine 1-meter and seven 0.4-meter telescopes at site at McDonald Observatory (Texas), Cerro Tololo (Chile), SAAO (South Africa) and Siding Spring Observatory (Australia). The network has been fully operational since 2014 May, and observations are being executed remotely and robotically. Additional 0.4-meter telescopes will be deployed in 2017 and 2x1-meter telescopes for a site at Ali Observatory, Tibet are planned for 2018-2019.We have developed web-based software called NEOexchange which automatically downloads and aggregates NEO candidates from the Minor Planet Center's NEO Confirmation Page, the Arecibo and Goldstone radar target lists and the NASA lists. NEOexchange allows the planning and scheduling of observations on the LCO Telescope Network and the tracking of the resulting blocks and generated data. We have extended the NEOexchange software to include automated scheduling and moving object detection, with the results presented to the user via the website.We will present results from the LCO NEO Follow-up Network and from the development of the NEOexchange software which is used to schedule, analyze and report observations taken with the LCO Network. In addition, we describe a Citizen Science project, AgentNEO, which uses LCO data to allow the public to find and learn about asteroids.
SU-F-T-336: A Quick Auto-Planning (QAP) Method for Patient Intensity Modulated Radiotherapy (IMRT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, J; Zhang, Z; Wang, J
2016-06-15
Purpose: The aim of this study is to develop a quick auto-planning system that permits fast patient IMRT planning with conformal dose to the target without manual field alignment and time-consuming dose distribution optimization. Methods: The planning target volume (PTV) of the source and the target patient were projected to the iso-center plane in certain beameye- view directions to derive the 2D projected shapes. Assuming the target interior was isotropic for each beam direction boundary analysis under polar coordinate was performed to map the source shape boundary to the target shape boundary to derive the source-to-target shape mapping function. Themore » derived shape mapping function was used to morph the source beam aperture to the target beam aperture over all segments in each beam direction. The target beam weights were re-calculated to deliver the same dose to the reference point (iso-center) as the source beam did in the source plan. The approach was tested on two rectum patients (one source patient and one target patient). Results: The IMRT planning time by QAP was 5 seconds on a laptop computer. The dose volume histograms and the dose distribution showed the target patient had the similar PTV dose coverage and OAR dose sparing with the source patient. Conclusion: The QAP system can instantly and automatically finish the IMRT planning without dose optimization.« less
ERIC Educational Resources Information Center
Mou, Weimin; Nankoo, Jean-François; Zhou, Ruojing; Spetch, Marcia L.
2014-01-01
Five experiments investigated how human adults use landmark arrays in the immediate environment to reorient relative to the local environment and relative to remote cities. Participants learned targets' directions with the presence of a proximal 4 poles forming a rectangular shape and an array of more distal poles forming a rectangular shape. Then…
ERIC Educational Resources Information Center
Einarsson, Einar O.; Nader, Karim
2012-01-01
It has been suggested that memories become more stable and less susceptible to the disruption of reconsolidation over weeks after learning. Here, we test this by targeting the anterior cingulate cortex (ACC) and test its involvement in the formation, consolidation, and reconsolidation of recent and remote contextual fear memory. We found that…
The value of survival analyses for evidence-based rural medical workforce planning.
Russell, Deborah J; Humphreys, John S; McGrail, Matthew R; Cameron, W Ian; Williams, Peter J
2013-12-11
Globally, abundant opportunities exist for policymakers to improve the accessibility of rural and remote populations to primary health care through improving workforce retention. This paper aims to identify and quantify the most important factors associated with rural and remote Australian family physician turnover, and to demonstrate how evidence generated by survival analysis of health workforce data can inform rural workforce policy making. A secondary analysis of longitudinal data collected by the New South Wales (NSW) Rural Doctors Network for all family physicians working in rural or remote NSW between January 1(st) 2003 and December 31(st) 2012 was performed. The Prentice, Williams and Peterson statistical model for survival analysis was used to identify and quantify risk factors for rural NSW family physician turnover. Multivariate modelling revealed a higher (2.65-fold) risk of family physician turnover in small, remote locations compared to that in small closely settled locations. Family physicians who graduated from countries other than Australia, United Kingdom, United States of America, New Zealand, Ireland, and Canada also had a higher (1.45-fold) risk of turnover compared to Australian trained family physicians. This was after adjusting for the effects of conditional registration. Procedural skills and public hospital admitting rights were associated with a lower risk of turnover. These risks translate to a predicted median survival of 11 years for Australian-trained family physician non-proceduralists with hospital admitting rights working in small coastal closely settled locations compared to 3 years for family physicians in remote locations. This study provides rigorous empirical evidence of the strong association between population size and geographical location and the retention of family physicians in rural and remote NSW. This has important policy ramifications since retention grants for rural and remote family physicians in Australia are currently based on a geographical 'remoteness' classification rather than population size. In addition, this study demonstrates how survival analysis assists health workforce planning, such as through generating evidence to assist in benchmarking 'reasonable' lengths of practice in different geographic settings that might guide service obligation requirements.
Background suppression of infrared small target image based on inter-frame registration
NASA Astrophysics Data System (ADS)
Ye, Xiubo; Xue, Bindang
2018-04-01
We propose a multi-frame background suppression method for remote infrared small target detection. Inter-frame information is necessary when the heavy background clutters make it difficult to distinguish real targets and false alarms. A registration procedure based on points matching in image patches is used to compensate the local deformation of background. Then the target can be separated by background subtraction. Experiments show our method serves as an effective preliminary of target detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
KP, Karrthick; Kataria, T; Thiyagarajan, R
Purpose: To study the critical analysis and efficacy of Linac and Cyberknife (CK) treatment plans for acoustic neuroma/schwannoma. Methods: Twelve of acoustic neuroma/schwannoma patients were taken for these study that. Treatment plans were generated in Multiplan treatment planning system (TPS) for CK using 5,7.5 and 10mm diameter collimators. Target volumes were in the range of 0.280 cc to 9.256 cc. Prescription dose (Rx) ranges from 1150cGy to 1950cGy delivered over 1 to 3 Fractions. For same patients stereotactic Volumetric modulated arc plans were generated using Elekta Linac with MLC thickness of 4mm in Monaco TPS. Appropriate calculation algorithms and gridmore » size were used with same Rx and organ at risk (OAR) constrains for both Linac and CK plans. Treatment plans were developed to achieve at least 95% of the target volume to receive the Rx. The dosimetric indices such as conformity index (CI), coverage, OAR dose and volume receiving 50% of Rx (V50%) were used to evaluate the plans. Results: Target volumes ranges from 0.280 cc to 3.5cc shows the CI of 1.16±0.109 and 1.53±0.360 for cyberknife and Linac plans respectively. For small volume targets, the OARs were well spared in CK plans. There are no significant differences in CI and OAR doses were observed between CK and Linac plans that have the target volume >3.5 cc. Perhaps the V50% were lesser in CK plans, and found to be 12.8± 8.4 and 22.8 ± 15.0 for CK and Linac respectively. Conclusion: The analysis shows the importance of collimator size for small volume targets. The target volumes >3.5 cc can be treated in Linac as comparable with CK. For targets <3.5cc CK plans showed superior plan quality with better CI and OAR sparing than the Linac based plans. Further studies may require evaluating the clinical advantage of CK robotic system.« less
Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Mount, Frances; Carreon, Patricia; Torney, Susan E.
2001-01-01
The Engineering and Mission Operations Directorates at NASA Johnson Space Center are combining laboratories and expertise to establish the Human Centered Autonomous and Assistant Systems Testbed for Exploration Operations. This is a testbed for human centered design, development and evaluation of intelligent autonomous and assistant systems that will be needed for human exploration and development of space. This project will improve human-centered analysis, design and evaluation methods for developing intelligent software. This software will support human-machine cognitive and collaborative activities in future interplanetary work environments where distributed computer and human agents cooperate. We are developing and evaluating prototype intelligent systems for distributed multi-agent mixed-initiative operations. The primary target domain is control of life support systems in a planetary base. Technical approaches will be evaluated for use during extended manned tests in the target domain, the Bioregenerative Advanced Life Support Systems Test Complex (BIO-Plex). A spinoff target domain is the International Space Station (ISS) Mission Control Center (MCC). Prodl}cts of this project include human-centered intelligent software technology, innovative human interface designs, and human-centered software development processes, methods and products. The testbed uses adjustable autonomy software and life support systems simulation models from the Adjustable Autonomy Testbed, to represent operations on the remote planet. Ground operations prototypes and concepts will be evaluated in the Exploration Planning and Operations Center (ExPOC) and Jupiter Facility.
Ray, Mark D.; Sedlacek, Arthur J.
2003-08-19
A method and apparatus for remote, stand-off, and high efficiency spectroscopic detection of biological and chemical substances. The apparatus including an optical beam transmitter which transmits a beam having an axis of transmission to a target, the beam comprising at least a laser emission. An optical detector having an optical detection path to the target is provided for gathering optical information. The optical detection path has an axis of optical detection. A beam alignment device fixes the transmitter proximal to the detector and directs the beam to the target along the optical detection path such that the axis of transmission is within the optical detection path. Optical information gathered by the optical detector is analyzed by an analyzer which is operatively connected to the detector.
Satellite remote sensing, biodiversity research and conservation of the future
Pettorelli, Nathalie; Safi, Kamran; Turner, Woody
2014-01-01
Assessing and predicting ecosystem responses to global environmental change and its impacts on human well-being are high priority targets for the scientific community. The potential for synergies between remote sensing science and ecology, especially satellite remote sensing and conservation biology, has been highlighted by many in the past. Yet, the two research communities have only recently begun to coordinate their agendas. Such synchronization is the key to improving the potential for satellite data effectively to support future environmental management decision-making processes. With this themed issue, we aim to illustrate how integrating remote sensing into ecological research promotes a better understanding of the mechanisms shaping current changes in biodiversity patterns and improves conservation efforts. Added benefits include fostering innovation, generating new research directions in both disciplines and the development of new satellite remote sensing products. PMID:24733945
Measurement of remote micro vibration based on laser feedback interference
NASA Astrophysics Data System (ADS)
Wu, Peng; Qin, Shuijie; Xu, Ning
2018-03-01
The method of remote micro-vibration measurement is studied and presented based on the laser feedback effect in this paper, and the key factors of remote vibration measurement are analyzed. The vibration measurement system is designed and built based on the laser feedback and the research of the remote micro vibration measurement is carried out. The system has ultrahigh measuring sensitivity and the working distance is 25 meters, which can measure the vibration of non-cooperative target. The system has the capability to realize the non-contact measurement of remote micro-vibration at different driving signals and can fulfill the complex vibration measurement and reproduction of multiple frequencies. It can identify the voice signal and the voice signal reproduced is clear to hear. The system can meet various requirements of vibration measurement and has great significance in practical application.
NASA Technical Reports Server (NTRS)
Schulze, Norman; Cimolino, Marc; Guenther, Arthur; Mcminn, Ted; Rainer, Frank; Schmid, Ansgar; Seitel, Steven C.; Soileau, M. J.; Theon, John S.; Walz, William
1991-01-01
NASA has defined a program to address critical laser-induced damage issues peculiar to its remote sensing systems. The Langley Research Center (LaRC), with input from the Goddard Space Flight Center (GSFC), has developed a program plan focusing on the certification of optical materials for spaceflight applications and the development of techniques to determine the reliability of such materials under extended laser exposures. This plan involves cooperative efforts between NASA and optics manufacturers to quantify the performance of optical materials for NASA systems and to ensure NASA's continued application of the highest quality optics possible for enhanced system reliability. A review panel was organized to assess NASA's optical damage concerns and to evaluate the effectiveness of the LaRC proposed program plan. This panel consisted of experts in the areas of laser-induced damage, optical coating manufacture, and the design and development of laser systems for space. The panel was presented information on NASA's current and planned laser remote sensing programs, laser-induced damage problems already encountered in NASA systems, and the proposed program plan to address these issues. Additionally, technical presentations were made on the state of the art in damage mechanisms, optical materials testing, and issues of coating manufacture germane to laser damage.
Jia, Pengfei; Xu, Jun; Zhou, Xiaoxi; Chen, Jian; Tang, Lemin
2017-12-01
The aim of this study is to compare the planning quality and delivery efficiency between dynamic intensity modulated radiation therapy (d-IMRT) and dual arc volumetric modulated arc therapy (VMAT) systematically for nasopharyngeal carcinoma (NPC) patients with multi-prescribed dose levels, and to analyze the correlations between target volumes and plan qualities. A total of 20 patients of NPC with 4-5 prescribed dose levels to achieve simultaneous integrated boost (SIB) treated by sliding window d-IMRT in our department from 2014 to 2015 were re-planned with dual arc VMAT. All optimization objectives for each VMAT plan were as the same as the corresponding d-IMRT plan. The dose parameters for targets and organ at risk (OAR), the delivery time and monitor units (MU) in two sets of plans were compared respectively. The treatment accuracy was tested by three dimensional dose validation system. Finally, the correlations between the difference of planning quality and the volume of targets were discussed. The conform indexes (CIs) of planning target volumes (PTVs) in VMAT plans were obviously high than those in d-IMRT plans ( P < 0.05), but no significant correlations between the difference of CIs and the volume of targets were discovered ( P > 0.05). The target coverage and heterogeneity indexes (HIs) of PTV 1 and PGTV nd and PTV 3 in two sets of plans were consistent. The doses of PTV 2 decreased and HIs were worse in VMAT plans. VMAT could provide better spinal cord and brainstem sparing, but increase mean dose of parotids. The average number of MUs and delivery time for d-IMRT were 3.32 and 2.19 times of that for VMAT. The γ-index (3 mm, 3%) analysis for each plans was more than 97% in COMPASS ® measurement for quality assurance (QA). The results show that target dose coverages in d-IMRT and VMAT plans are similar for NPC with multi-prescribed dose levels. VMAT could improve the the CIs of targets, but reduce the dose to the target volume in neck except for PGTV nd . The biggest advantages of VMAT over d-IMRT are delivery efficiency and QA.
Scheduling for anesthesia at geographic locations remote from the operating room.
Dexter, Franklin; Wachtel, Ruth E
2014-08-01
Providing general anesthesia at locations away from the operating room, called remote locations, poses many medical and scheduling challenges. This review discusses how to schedule procedures at remote locations to maximize anesthesia productivity (see Video, Supplemental Digital Content 1). Anesthesia labour productivity can be maximized by assigning one or more 8-h or 10-h periods of allocated time every 2 weeks dedicated specifically to each remote specialty that has enough cases to fill those periods. Remote specialties can then schedule their cases themselves into their own allocated time. Periods of allocated time (called open, unblocked or first come first served time) can be used by remote locations that do not have their own allocated time. Unless cases are scheduled sequentially into allocated time, there will be substantial extra underutilized time (time during which procedures are not being performed and personnel sit idle even though staffing has been planned) and a concomitant reduction in percent productivity. Allocated time should be calculated on the basis of usage. Remote locations with sufficient hours of cases should be allocated time reserved especially for them in which to schedule their cases, with a maximum waiting time of 2 weeks, to achieve an average wait of 1 week.
What is a picture worth? A history of remote sensing
Moore, Gerald K.
1979-01-01
Remote sensing is the use of electromagnetic energy to measure the physical properties of distant objects. It includes photography and geophysical surveying as well as newer techniques that use other parts of the electromagnetic spectrum. The history of remote sensing begins with photography. The origin of other types of remote sensing can be traced to World War II, with the development of radar, sonar, and thermal infrared detection systems. Since the 1960s, sensors have been designed to operate in virtually all of the electromagnetic spectrum. Today a wide variety of remote sensing instruments are available for use in hydrological studies; satellite data, such as Skylab photographs and Landsat images are particularly suitable for regional problems and studies. Planned future satellites will provide a ground resolution of 10–80 m. Remote sensing is currently used for hydrological applications in most countries of the world. The range of applications includes groundwater exploration determination of physical water quality, snowfield mapping, flood-inundation delineation, and making inventories of irrigated land. The use of remote sensing commonly results in considerable hydrological information at minimal cost. This information can be used to speed-up the development of water resources, to improve management practices, and to monitor environmental problems.
Marking Ground Targets With Radio Transmitters Dropped From Aircraft
Thomas H. Nichols; Michael E. Ostry; Mark R. Fuller
1981-01-01
Reports development and use of a radio transmitter device that can be dropped from aircraft into target areas in remote habitats. Such a device could be a valuable tool for studying and managing forests and wildlife, for controlling forest fires, and for handling emergencies.
Global Coverage Measurement Planning Strategies for Mobile Robots Equipped with a Remote Gas Sensor
Arain, Muhammad Asif; Trincavelli, Marco; Cirillo, Marcello; Schaffernicht, Erik; Lilienthal, Achim J.
2015-01-01
The problem of gas detection is relevant to many real-world applications, such as leak detection in industrial settings and landfill monitoring. In this paper, we address the problem of gas detection in large areas with a mobile robotic platform equipped with a remote gas sensor. We propose an algorithm that leverages a novel method based on convex relaxation for quickly solving sensor placement problems, and for generating an efficient exploration plan for the robot. To demonstrate the applicability of our method to real-world environments, we performed a large number of experimental trials, both on randomly generated maps and on the map of a real environment. Our approach proves to be highly efficient in terms of computational requirements and to provide nearly-optimal solutions. PMID:25803707
Global coverage measurement planning strategies for mobile robots equipped with a remote gas sensor.
Arain, Muhammad Asif; Trincavelli, Marco; Cirillo, Marcello; Schaffernicht, Erik; Lilienthal, Achim J
2015-03-20
The problem of gas detection is relevant to many real-world applications, such as leak detection in industrial settings and landfill monitoring. In this paper, we address the problem of gas detection in large areas with a mobile robotic platform equipped with a remote gas sensor. We propose an algorithm that leverages a novel method based on convex relaxation for quickly solving sensor placement problems, and for generating an efficient exploration plan for the robot. To demonstrate the applicability of our method to real-world environments, we performed a large number of experimental trials, both on randomly generated maps and on the map of a real environment. Our approach proves to be highly efficient in terms of computational requirements and to provide nearly-optimal solutions.
Commercial use of remote sensing in agriculture: a case study
NASA Astrophysics Data System (ADS)
Gnauck, Gary E.
1999-12-01
Over 25 years of research have clearly shown that an analysis of remote sensing imagery can provide information on agricultural crops. Most of this research has been funded by and directed toward the needs of government agencies. Commercial use of agricultural remote sensing has been limited to very small-scale operations supplying remote sensing services to a few selected customers. Datron/Transco Inc. undertook an internally funded remote sensing program directed toward the California cash crop industry (strawberries, lettuce, tomatoes, other fresh vegetables and cotton). The objectives of this program were twofold: (1) to assess the need and readiness of agricultural land managers to adopt remote sensing as a management tool, and (2) determine what technical barriers exist to large-scale implementation of this technology on a commercial basis. The program was divided into three phases: Planning, Engineering Test and Evaluation, and Commercial Operations. Findings: Remote sensing technology can deliver high resolution multispectral imagery with rapid turnaround, that can provide information on crop stress insects, disease and various soil parameters. The limiting factors to the use of remote sensing in agriculture are a lack of familiarization by the land managers, difficulty in translating 'information' into increased revenue or reduced cost for the land manager, and the large economies of scale needed to make the venture commercially viable.
Kainz, Kristofer; Firat, Selim; Wilson, J Frank; Schultz, Christopher; Siker, Malika; Wang, Andrew; Olson, Dan; Li, X Allen
2015-03-21
We compare the quality of photon IMRT (helical tomotherapy) with classic proton plans for brain, head and neck tumors, in terms of target dose uniformity and conformity along with organ-at-risk (OAR) sparing. Plans were created for twelve target volumes among eight cases. All patients were originally planned and treated using helical tomotherapy. Proton plans were generated using a passively-scattered beam model with a maximum range of 32 g cm(-2) (225 MeV), range modulation in 0.5 g cm(-2) increments and range compensators with 4.8 mm milling tool diameters. All proton plans were limited to two to four beams. Plan quality was compared using uniformity index (UI), conformation number (CN) and a EUD-based plan quality index (fEUD). For 11 of the 12 targets, UI was improved for the proton plan; on average, UI was 1.05 for protons versus 1.08 for tomotherapy. For 7 of the 12 targets, the tomotherapy plan exhibited more favorable CN. For proximal OARs, the improved dose conformity to the target volume from tomotherapy led to a lower maximum dose. For distal OARs, the maximum dose was much lower for proton plans. For 6 of the 8 cases, near-total avoidance for distal OARs provided by protons leads to improved fEUD. However, if distal OARs are excluded in the fEUD calculation, the proton plans exhibit better fEUD in only 3 of the 8 cases. The distal OAR sparing and target dose uniformity are generally better with passive-scatter proton planning than with photon tomotherapy; proton therapy may be preferred if the clinician deems those attributes critical. However, tomotherapy may serve equally as well as protons for cases where superior target dose conformity from tomotherapy leads to plan quality nearly identical to or better than protons and for cases where distal OAR sparing is not concerning.
Skinner, Kelly; Hanning, Rhona M; Sutherland, Celine; Edwards-Wheesk, Ruby; Tsuji, Leonard J S
2012-01-01
To plan community-driven health promotion strategies based on a strengths, weaknesses, opportunities, and threats (SWOT) analysis of the healthy eating and physical activity patterns of First Nation (FN) youth. Cross-sectional qualitative and quantitative data used to develop SWOT themes and strategies. Remote, subarctic FN community of Fort Albany, Ontario, Canada. Adult (n = 25) and youth (n = 66, grades 6-11) community members. Qualitative data were collected using five focus groups with adults (two focus groups) and youth (three focus groups), seven individual interviews with adults, and an environmental scan of 13 direct observations of events/locations (e.g., the grocery store). Quantitative data on food/physical activity behaviors were collected using a validated Web-based survey with youth. Themes were identified from qualitative and quantitative data and were analyzed and interpreted within a SWOT matrix. Thirty-two SWOT themes were identified (e.g., accessibility of existing facilities, such as the gymnasium). The SWOT analysis showed how these themes could be combined and transformed into 12 strategies (e.g., expanding and enhancing the school snack/breakfast program) while integrating suggestions from the community. SWOT analysis was a beneficial tool that facilitated the combination of local data and community ideas in the development of targeted health promotion strategies for the FN community of Fort Albany.
Robotic Astrobiology: Searching for Life with Rovers
NASA Astrophysics Data System (ADS)
Cabrol, N. A.; Wettergreen, D. S.; Team, L.
2006-05-01
The Life In The Atacama (LITA) project has developed and field tested a long-range, solar-powered, automated rover platform (Zoe) and a science payload assembled to search for microbial life in the Atacama desert. Life is hardly detectable over most of the extent of the driest desert on Earth. Its geological, climatic, and biological evolution provides a unique training ground for designing and testing exploration strategies and life detection methods for the robotic search for life on Mars. LITA opens the path to a new generation of rover missions that will transition from the current study of habitability (MER) to the upcoming search for, and study of, habitats and life on Mars. Zoe's science payload reflects this transition by combining complementary elements, some directed towards the remote sensing of the environment (geology, morphology, mineralogy, weather/climate) for the detection of conditions favorable to microbial habitats and oases along survey traverses, others directed toward the in situ detection of life' signatures (biological and physical, such as biological constructs and patterns). New exploration strategies specifically adapted to the search for microbial life were designed and successfully tested in the Atacama between 2003-2005. They required the development and implementation in the field of new technological capabilities, including navigation beyond the horizon, obstacle avoidance, and "science-on-the-fly" (automated detection of targets of science value), and that of new rover planning tools in the remote science operation center.
Improving maternity services for Indigenous women in Australia: moving from policy to practice.
Kildea, Sue; Tracy, Sally; Sherwood, Juanita; Magick-Dennis, Fleur; Barclay, Lesley
2016-10-17
The well established disparities in health outcomes between Indigenous and non-Indigenous Australians include a significant and concerning higher incidence of preterm birth, low birth weight and newborn mortality. Chronic diseases (eg, diabetes, hypertension, cardiovascular and renal disease) that are prevalent in Indigenous Australian adults have their genesis in utero and in early life. Applying interventions during pregnancy and early life that aim to improve maternal and infant health is likely to have long lasting consequences, as recognised by Australia's National Maternity Services Plan (NMSP), which set out a 5-year vision for 2010-2015 that was endorsed by all governments (federal and state and territory). We report on the actions targeting Indigenous women, and the progress that has been achieved in three priority areas: The Indigenous maternity workforce; Culturally competent maternity care; and; Developing dedicated programs for "Birthing on Country". The timeframe for the NMSP has expired without notable results in these priority areas. More urgent leadership is required from the Australian government. Funding needs to be allocated to the priority areas, including for scholarships and support to train and retain Indigenous midwives, greater commitment to culturally competent maternity care and the development and evaluation of Birthing on Country sites in urban, rural and particularly in remote and very remote communities. Tools such as the Australian Rural Birth Index and the National Maternity Services Capability Framework can help guide this work.
Wiener, J M; Ehbauer, N N; Mallot, H A
2009-09-01
For large numbers of targets, path planning is a complex and computationally expensive task. Humans, however, usually solve such tasks quickly and efficiently. We present experiments studying human path planning performance and the cognitive processes and heuristics involved. Twenty-five places were arranged on a regular grid in a large room. Participants were repeatedly asked to solve traveling salesman problems (TSP), i.e., to find the shortest closed loop connecting a start location with multiple target locations. In Experiment 1, we tested whether humans employed the nearest neighbor (NN) strategy when solving the TSP. Results showed that subjects outperform the NN-strategy, suggesting that it is not sufficient to explain human route planning behavior. As a second possible strategy we tested a hierarchical planning heuristic in Experiment 2, demonstrating that participants first plan a coarse route on the region level that is refined during navigation. To test for the relevance of spatial working memory (SWM) and spatial long-term memory (LTM) for planning performance and the planning heuristics applied, we varied the memory demands between conditions in Experiment 2. In one condition the target locations were directly marked, such that no memory was required; a second condition required participants to memorize the target locations during path planning (SWM); in a third condition, additionally, the locations of targets had to retrieved from LTM (SWM and LTM). Results showed that navigation performance decreased with increasing memory demands while the dependence on the hierarchical planning heuristic increased.
Horwood, A M; Turner, J E; Houston, S M; Riddell, P M
2001-11-01
A remote haploscopic photorefractor, designed for assessment of accommodation and convergence in infants and clinical groups, was used to determine heterophoria accommodative convergence/accommodation (AC/A) ratios in normal naïve adults. These were compared with conventional clinical measures. Twenty-one naïve subjects were used to compare occluded and unoccluded prism cover test responses with the remote haploscopic photorefractor using a text and picture target. Although luminance was generally low for both targets, binocular vergences were appropriate for target demand in both studies. Binocular accommodation showed greater lag for the highest target accommodative demand and the less demanding target. Occlusion not only reduced vergence response, but also frequently caused a marked reduction in accommodation, especially to the picture target. Normal mean AC/A values were found, but with wide variations between individual subjects. Although mean accommodation, vergence, and AC/A values were comparable with published data, we suggest that in these conditions using naïve subjects, accommodation is frequently inaccurate, especially on occlusion, without concomitant loss of vergence, at least at low light levels. Accommodative convergence may play a less important part in, and other cues contribute more to, the near reflex than has been previously suggested.
ERIC Educational Resources Information Center
Texas State Dept. of Commerce, Austin.
In 1993, Texas' 24 quality work force planning committees used a state-developed targeted occupations planning methodology to identify key industries and targeted occupations with the greatest potential for job openings in their respective regions. Between 11 and 20 key industries (13.5 on average) were identified for each region. The following 10…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, M; Pompos, A; Gu, X
Purpose: To characterize the dose distributions of Cyberknife and intensity-modulated-proton-therapy (IMPT). Methods: A total of 20 patients previously treated with Cyberknife were selected. The original planning-target-volume (PTV) was used in the ‘IMPT-ideal’ plan assuming a comparable image-guidance with Cyberknife. A 3mm expansion was made to create the proton-PTV for the ‘IMPT-3mm’ plan representing the current proton-therapy where a margin of 3mm is used to account for the inferior image-guidance. The proton range uncertainty was taken-care in beam-design by adding the proximal- and distal-margins (3%water-equivalent-depth+1mm) for both proton plans. The IMPT plans were generated to meet the same target coverage asmore » the Cyberknife-plans. The plan quality of IMPT-ideal and IMPT-3mm were compared to the Cyberknife-plan. To characterize plan quality, we defined the ratio(R) of volumes encompassed by the selected isodose surfaces for Cyberknife and IMPT plans (VCK/VIMPT). Comparisons were made for both Cyberknife versus IMPT-ideal and Cyberknife versusIMPT-3mm to further discuss the impact of setup error margins used in proton therapy and the correlation with target size and location. Results: IMPT-ideal plans yield comparable plan quality as CK plans and slightly better OAR sparing while the IMPT-3mm plan results in a higher dose to the OARs, especially for centralized tumors. Comparing to the IMPT-ideal plans, a slightly larger 80% (Ravg=1.05) dose cloud and significantly larger 50% (Ravg=1.3) and 20% (Ravg=1.60) dose clouds are seen in CK plans. However, the 3mm expansion results in a larger high and medium dose clouds in IMPT-3mm plans (Ravg=0.65 for 80%-isodose; Ravg=0.93 for 50%-isodose). The trend increases with the size of the target and the distance from the brainstem to the center of target. Conclusion: Cyberknife is more preferable for treating centralized targets and proton therapy is advantageous for the large and peripheral targets. Advanced image guidance would improve the efficacy of proton therapy for intracranial treatments.« less
Women's experiences after Planned Parenthood's exclusion from a family planning program in Texas.
Woo, C Junda; Alamgir, Hasanat; Potter, Joseph E
2016-04-01
We assessed the impact on depot medroxyprogesterone continuation when a large care provider was banned from a state-funded family planning program. We used three methods to assess the effect of the ban: (a) In a records review, we compared how many state program participants returned to two Planned Parenthood affiliates for a scheduled dose of depot medroxyprogesterone acetate (DMPA) immediately after the ban; (b) We conducted phone interviews with 224 former Planned Parenthood patients about DMPA use and access to contraception immediately after the ban; (c) We compared current contraceptive method of our interviewees to that of comparable DMPA users in the National Survey of Family Growth 2006-2010 (NSFG). (a) Fewer program clients returned for DMPA at a large urban Planned Parenthood, compared to a remotely located affiliate (14.4%, vs. 64.8%), reflecting different levels of access to alternative providers in the two cities. (b) Among program participants who went elsewhere for the injection, only 56.8% obtained it at no cost and on time. More than one in five women missed a dose because of barriers, most commonly due to difficulty finding a provider. (c) Compared to NSFG participants, our interviewees used less effective methods of contraception, even more than a year after the ban went into effect. Injectable contraception use was disrupted during the rollout of the state-funded family planning program. Women living in a remote area of Texas encountered more barriers. Requiring low-income family planning patients to switch healthcare providers has adverse consequences. Copyright © 2016 Elsevier Inc. All rights reserved.
Women’s experiences after Planned Parenthood’s exclusion from a family planning program in Texas☆
Woo, C. Junda; Alamgir, Hasanat; Potter, Joseph E.
2016-01-01
Objective We assessed the impact on depot medroxyprogesterone continuation when a large care provider was banned from a state-funded family planning program. Study Design We used three methods to assess the effect of the ban: (a) In a records review, we compared how many state program participants returned to two Planned Parenthood affiliates for a scheduled dose of depot medroxyprogesterone acetate (DMPA) immediately after the ban; (b) We conducted phone interviews with 224 former Planned Parenthood patients about DMPA use and access to contraception immediately after the ban; (c) We compared current contraceptive method of our interviewees to that of comparable DMPA users in the National Survey of Family Growth 2006–2010 (NSFG). Results (a) Fewer program clients returned for DMPA at a large urban Planned Parenthood, compared to a remotely located affiliate (14.4%, vs. 64.8%), reflecting different levels of access to alternative providers in the two cities. (b) Among program participants who went elsewhere for the injection, only 56.8% obtained it at no cost and on time. More than one in five women missed a dose because of barriers, most commonly due to difficulty finding a provider. (c) Compared to NSFG participants, our interviewees used less effective methods of contraception, even more than a year after the ban went into effect. Conclusions Injectable contraception use was disrupted during the rollout of the state-funded family planning program. Women living in a remote area of Texas encountered more barriers. Implications Requiring low-income family planning patients to switch healthcare providers has adverse consequences. PMID:26680757
The automation of remote vehicle control. [in Mars roving vehicles
NASA Technical Reports Server (NTRS)
Paine, G.
1977-01-01
The automation of remote vehicles is becoming necessary to overcome the requirement of having man present as a controller. By removing man, remote vehicles can be operated in areas where the environment is too hostile for man, his reaction times are too slow, time delays are too long, and where his presence is too costly, or where system performance can be improved. This paper addresses the development of automated remote vehicle control for nonspace and space tasks from warehouse vehicles to proposed Mars rovers. The state-of-the-art and the availability of new technology for implementing automated control are reviewed and the major problem areas are outlined. The control strategies are divided into those where the path is planned in advance or constrained, or where the system is a teleoperator, or where automation or robotics have been introduced.
Predicting occurrence of juvenile shark habitat to improve conservation planning.
Oh, Beverly Z L; Sequeira, Ana M M; Meekan, Mark G; Ruppert, Jonathan L W; Meeuwig, Jessica J
2017-06-01
Fishing and habitat degradation have increased the extinction risk of sharks, and conservation strategies recognize that survival of juveniles is critical for the effective management of shark populations. Despite the rapid expansion of marine protected areas (MPAs) globally, the paucity of shark-monitoring data on large scales (100s-1000s km) means that the effectiveness of MPAs in halting shark declines remains unclear. Using data collected by baited remote underwater video systems (BRUVS) in northwestern Australia, we developed generalized linear models to elucidate the ecological drivers of habitat suitability for juvenile sharks. We assessed occurrence patterns at the order and species levels. We included all juvenile sharks sampled and the 3 most abundant species sampled separately (grey reef [Carcharhinus amblyrhynchos], sandbar [Carcharhinus plumbeus], and whitetip reef sharks [Triaenodon obesus]). We predicted the occurrence of juvenile sharks across 490,515 km 2 of coastal waters and quantified the representation of highly suitable habitats within MPAs. Our species-level models had higher accuracy (ĸ ≥ 0.69) and deviance explained (≥48%) than our order-level model (ĸ = 0.36 and deviance explained of 10%). Maps of predicted occurrence revealed different species-specific patterns of highly suitable habitat. These differences likely reflect different physiological or resource requirements between individual species and validate concerns over the utility of conservation targets based on aggregate species groups as opposed to a species-focused approach. Highly suitable habitats were poorly represented in MPAs with the most restrictions on extractive activities. This spatial mismatch possibly indicates a lack of explicit conservation targets and information on species distribution during the planning process. Non-extractive BRUVS provided a useful platform for building the suitability models across large scales to assist conservation planning across multiple maritime jurisdictions, and our approach provides a simple for method for testing the effectiveness of MPAs. © 2016 Society for Conservation Biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stathakis, S; Defoor, D; Saenz, D
Purpose: Stereotactic radiosurgery (SRS) outcomes are related to the delivered dose to the target and to surrounding tissue. We have commissioned a Monte Carlo based dose calculation algorithm to recalculated the delivered dose planned using pencil beam calculation dose engine. Methods: Twenty consecutive previously treated patients have been selected for this study. All plans were generated using the iPlan treatment planning system (TPS) and calculated using the pencil beam algorithm. Each patient plan consisted of 1 to 3 targets and treated using dynamically conformal arcs or intensity modulated beams. Multi-target treatments were delivered using multiple isocenters, one for each target.more » These plans were recalculated for the purpose of this study using a single isocenter. The CT image sets along with the plan, doses and structures were DICOM exported to Monaco TPS and the dose was recalculated using the same voxel resolution and monitor units. Benchmark data was also generated prior to patient calculations to assess the accuracy of the two TPS against measurements using a micro ionization chamber in solid water. Results: Good agreement, within −0.4% for Monaco and +2.2% for iPlan were observed for measurements in water phantom. Doses in patient geometry revealed up to 9.6% differences for single target plans and 9.3% for multiple-target-multiple-isocenter plans. The average dose differences for multi-target-single-isocenter plans were approximately 1.4%. Similar differences were observed for the OARs and integral dose. Conclusion: Accuracy of the beam is crucial for the dose calculation especially in the case of small fields such as those used in SRS treatments. A superior dose calculation algorithm such as Monte Carlo, with properly commissioned beam models, which is unaffected by the lack of electronic equilibrium should be preferred for the calculation of small fields to improve accuracy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, C; Hrycushko, B; Jiang, S
2014-06-01
Purpose: To compare the radiobiological effect on large tumors and surrounding normal tissues from single fraction SRS, multi-fractionated SRT, and multi-staged SRS treatment. Methods: An anthropomorphic head phantom with a centrally located large volume target (18.2 cm{sup 3}) was scanned using a 16 slice large bore CT simulator. Scans were imported to the Multiplan treatment planning system where a total prescription dose of 20Gy was used for a single, three staged and three fractionated treatment. Cyber Knife treatment plans were inversely optimized for the target volume to achieve at least 95% coverage of the prescription dose. For the multistage plan,more » the target was segmented into three subtargets having similar volume and shape. Staged plans for individual subtargets were generated based on a planning technique where the beam MUs of the original plan on the total target volume are changed by weighting the MUs based on projected beam lengths within each subtarget. Dose matrices for each plan were export in DICOM format and used to calculate equivalent dose distributions in 2Gy fractions using an alpha beta ratio of 10 for the target and 3 for normal tissue. Results: Singe fraction SRS, multi-stage plan and multi-fractionated SRT plans had an average 2Gy dose equivalent to the target of 62.89Gy, 37.91Gy and 33.68Gy, respectively. The normal tissue within 12Gy physical dose region had an average 2Gy dose equivalent of 29.55Gy, 16.08Gy and 13.93Gy, respectively. Conclusion: The single fraction SRS plan had the largest predicted biological effect for the target and the surrounding normal tissue. The multi-stage treatment provided for a more potent biologically effect on target compared to the multi-fraction SRT treatments with less biological normal tissue than single-fraction SRS treatment.« less
Code of Federal Regulations, 2010 CFR
2010-10-01
..., health, or accident insurance plan or other employee welfare or benefit plan that is maintained by a... Transportation Office of the Secretary of Transportation EMPLOYEE RESPONSIBILITIES AND CONDUCT Pt. 99, App. A... States Code, because they are too remote or too inconsequential to affect the integrity of an employee's...
Arizona expects more wildcat drilling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stremel, K.
1984-01-01
Wildcat oil drilling is on the rise in Arizona. Several remote tests have drawn a considerable amount of industry attention, and could account for a moderate increase in activity. A 3900-ft. Devonian test is planned on High Plains Petroleum Corp.'s Apache County acreage south of the Navajo reservation. This article discusses the oil drilling activity planned for the state this year.
Ventilation planning at Energy West's Deer Creek mine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonc, L.; Prosser, B.; Gamble, G.
2009-08-15
In 2004 ventilation planning was initiated to exploit a remote area of Deer Creek mine's reserve (near Huntington, Utah), the Mill Fork Area, located under a mountain. A push-pull ventilation system was selected. This article details the design process of the ventilation system upgrade, the procurement process for the new fans, and the new fan startup testing. 5 figs., 1 photo.
Japanese national forest inventory and its spatial extension by remote sensing
Yasumasa Hirata; Mitsuo Matsumoto; Toshiro Iehara
2009-01-01
Japan has two independent forest inventory systems. One forest inventory is required by the forest planning system based on the Forest Law, in which forest registers and forest planning maps are prepared. The other system is a forest resource monitoring survey, in which systematic sampling is done at 4-km grid intervals. Here, we present these national forest inventory...
NASA Technical Reports Server (NTRS)
Parada, N. D. J. (Principal Investigator)
1983-01-01
Brazilian programs using satellites for remote sensing, meteorology and communications are analyzed including their current status and near future plans. The experience gained and available information are used to critically discuss some aspects of great importance for the existing and prospective user countries.
Lessons from UNSCOM and IAEA regarding remote monitoring and air sampling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dupree, S.A.
1996-01-01
In 1991, at the direction of the United Nations Security Council, UNSCOM and IAEA developed plans for On-going Monitoring and Verification (OMV) in Iraq. The plans were accepted by the Security Council and remote monitoring and atmospheric sampling equipment has been installed at selected sites in Iraq. The remote monitoring equipment consists of video cameras and sensors positioned to observe equipment or activities at sites that could be used to support the development or manufacture of weapons of mass destruction, or long-range missiles. The atmospheric sampling equipment provides unattended collection of chemical samples from sites that could be used tomore » support the development or manufacture of chemical weapon agents. To support OMV in Iraq, UNSCOM has established the Baghdad Monitoring and Verification Centre. Imagery from the remote monitoring cameras can be accessed in near-real time from the Centre through RIF communication links with the monitored sites. The OMV program in Iraq has implications for international cooperative monitoring in both global and regional contexts. However, monitoring systems such as those used in Iraq are not sufficient, in and of themselves, to guarantee the absence of prohibited activities. Such systems cannot replace on-site inspections by competent, trained inspectors. However, monitoring similar to that used in Iraq can contribute to openness and confidence building, to the development of mutual trust, and to the improvement of regional stability.« less
NASA Astrophysics Data System (ADS)
Huyck, Charles K.; Adams, Beverley J.; Kehrlein, David I.
2003-06-01
Remote sensing technology has been widely recognized for contributing to emergency response efforts after the World Trade Center attack on September 11th, 2001. The need to coordinate activities in the midst of a dense, yet relatively small area, made the combination of imagery and mapped data strategically useful. This paper reviews the role played by aerial photography, satellite imagery, and LIDAR data at Ground Zero. It examines how emergency managers utilized these datasets, and identifies significant problems that were encountered. It goes on to explore additional ways in which imagery could have been used, while presenting recommendations for more effective use in future disasters and Homeland Security applications. To plan adequately for future events, it was important to capture knowledge from individuals who responded to the World Trade Center attack. In recognition, interviews with key emergency management and geographic information system (GIS) personnel provide the basis of this paper. Successful techniques should not be forgotten, or serious problems dismissed. Although widely used after September 11th, it is important to recognize that with better planning, remote sensing and GIS could have played an even greater role. Together with a data acquisition timeline, an expanded discussion of these issues is available in the MCEER/NSF report “Emergency Response in the Wake of the World Trade Center Attack; The Remote Sensing Perspective” (Huyck and Adams, 2002)
Influence of multiple brain metastases’ size and number on the quality of SRS - VMAT dose delivery
NASA Astrophysics Data System (ADS)
Prentou, G.; Koutsouveli, E.; Pantelis, E.; Papagiannis, P.; Georgiou, E.; Karaiskos, P.
2017-11-01
Stereotactic radiosurgery with volumetric modulated arc therapy (SRS-VMAT) has recently been introduced for treatment of multiple brain metastases with a single isocenter. The technique’s high efficiency is nevertheless dependent of metastatic tumors’ characteristics such as size and number. In this work the impact of the metastases’ size and number on the plan quality indices clinically used for plan evaluation and acceptance is investigated. Fifteen targets with a diameter of 1 cm and average volume of 0.7 cm3 and ten targets with a diameter of 2 cm and average volume of 6.5 cm3 were contoured on an anonymized patient CT dataset, in Monaco (Elekta) treatment planning system. VMAT plans for different target volumes (1 and 2 cm in diameter) and various target numbers (1-15) were generated using four non-coplanar arcs and the Agility (Elekta) linear accelerator (5 mm MLC width) using a Monte Carlo dose calculation algorithm and 1mm dose calculation grid resolution. Conformity index (CI), gradient index (GI) and heterogeneity index (HI) were determined for each target. High quality plans were created for both 1 cm and 2 cm in diameter targets for limited (<6) number of targets per plan. For increased number of irradiated targets (>6) both CI and GI, clinically used for plan evaluation and acceptance, were found to deteriorate.
Implementation of the Web-based laboratory
NASA Astrophysics Data System (ADS)
Ying, Liu; Li, Xunbo
2005-12-01
With the rapid developments of Internet technologies, remote access and control via Internet is becoming a reality. A realization of the web-based laboratory (the W-LAB) was presented. The main target of the W-LAB was to allow users to easily access and conduct experiments via the Internet. While realizing the remote communication, a system, which adopted the double client-server architecture, was introduced. It ensures the system better security and higher functionality. The experimental environment implemented in the W-Lab was integrated by both virtual lab and remote lab. The embedded technology in the W-LAB system as an economical and efficient way to build the distributed infrastructural network was introduced. Furthermore, by introducing the user authentication mechanism in the system, it effectively secures the remote communication.
Shih, Ching-Hsiang; Wang, Shu-Hui; Chang, Man-Ling; Shih, Ching-Hsiang
2012-01-01
The latest researches have adopted software technology, turning the Nintendo Wii Remote Controller into a high performance three-dimensional object orientation detector. This study extended Wii Remote Controller functionality to assess whether two people with developmental disabilities would be able to actively perform designated simple occupational activities according to simple instructions by controlling their favorite environmental stimulation using a Nintendo Wii Remote Controller. This study was conducted using ABAB designs. The data showed that both participants significantly increased their target response (performing a designated occupational activity) by activating the control system to produce their preferred environmental stimulation during the intervention phases. Copyright © 2012 Elsevier Ltd. All rights reserved.
Spectral reflectances of natural targets for use in remote sensing studies
NASA Technical Reports Server (NTRS)
Bowker, D. E.; Davis, R. E.; Myrick, D. L.; Stacy, K.; Jones, W. T.
1985-01-01
A collection of spectral reflectances of 156 natural targets is presented in a uniform format. For each target both a graphical plot and a digital tabulation of reflectance is given. The data were taken from the literature and include laboratory, field, and aircraft measurements. A discussion of the different measurements of reflectance is given, along with the changes in apparent reflectance when targets are viewed through the atmosphere. The salient features of the reflectance curves of common target types are presented and discussed.
Supervisory autonomous local-remote control system design: Near-term and far-term applications
NASA Technical Reports Server (NTRS)
Zimmerman, Wayne; Backes, Paul
1993-01-01
The JPL Supervisory Telerobotics Laboratory (STELER) has developed a unique local-remote robot control architecture which enables management of intermittent bus latencies and communication delays such as those expected for ground-remote operation of Space Station robotic systems via the TDRSS communication platform. At the local site, the operator updates the work site world model using stereo video feedback and a model overlay/fitting algorithm which outputs the location and orientation of the object in free space. That information is relayed to the robot User Macro Interface (UMI) to enable programming of the robot control macros. The operator can then employ either manual teleoperation, shared control, or supervised autonomous control to manipulate the object under any degree of time-delay. The remote site performs the closed loop force/torque control, task monitoring, and reflex action. This paper describes the STELER local-remote robot control system, and further describes the near-term planned Space Station applications, along with potential far-term applications such as telescience, autonomous docking, and Lunar/Mars rovers.
Geographic information systems, remote sensing, and spatial analysis activities in Texas, 2002-07
Pearson, D.K.; Gary, R.H.; Wilson, Z.D.
2007-01-01
Geographic information system (GIS) technology has become an important tool for scientific investigation, resource management, and environmental planning. A GIS is a computer-aided system capable of collecting, storing, analyzing, and displaying spatially referenced digital data. GIS technology is particularly useful when analyzing a wide variety of spatial data such as with remote sensing and spatial analysis. Remote sensing involves collecting remotely sensed data, such as satellite imagery, aerial photography, or radar images, and analyzing the data to gather information or investigate trends about the environment or the Earth's surface. Spatial analysis combines remotely sensed, thematic, statistical, quantitative, and geographical data through overlay, modeling, and other analytical techniques to investigate specific research questions. It is the combination of data formats and analysis techniques that has made GIS an essential tool in scientific investigations. This document presents information about the technical capabilities and project activities of the U.S. Geological Survey (USGS) Texas Water Science Center (TWSC) GIS Workgroup from 2002 through 2007.
A NDVI assisted remote sensing image adaptive scale segmentation method
NASA Astrophysics Data System (ADS)
Zhang, Hong; Shen, Jinxiang; Ma, Yanmei
2018-03-01
Multiscale segmentation of images can effectively form boundaries of different objects with different scales. However, for the remote sensing image which widely coverage with complicated ground objects, the number of suitable segmentation scales, and each of the scale size is still difficult to be accurately determined, which severely restricts the rapid information extraction of the remote sensing image. A great deal of experiments showed that the normalized difference vegetation index (NDVI) can effectively express the spectral characteristics of a variety of ground objects in remote sensing images. This paper presents a method using NDVI assisted adaptive segmentation of remote sensing images, which segment the local area by using NDVI similarity threshold to iteratively select segmentation scales. According to the different regions which consist of different targets, different segmentation scale boundaries could be created. The experimental results showed that the adaptive segmentation method based on NDVI can effectively create the objects boundaries for different ground objects of remote sensing images.
1980-03-01
Oceanography Center (FNOC) is currently testing and evaluating a computerized flight plan system, referred to, for short, as OPARS. This sytem , developed to...replace the Lockheed Jetplan flight plan sytem , provides users at remote sites with direct access to the FNOC computer via 11 telephone lines. The...validity, but only for format. For example, an entry of ABCE , as the four- letter identification code for the destination airfield, would be accepted
Evaluating remote sensing methods for targeting erosion in riparian corridors
USDA-ARS?s Scientific Manuscript database
State agencies in the United States and other groups developing water quality programs have begun using satellite imagery with hydrologic/water quality modeling to identify possible critical source areas of erosion. To optimize the use of available funds, quantitative targeting of areas with the hig...
Brightness Rural Electrification Program: Renewable Energy in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2004-04-01
Fact sheet describes China's New Brightness Rural Electrification Program to provide electricity for 23 million people in remote areas of China using renewable energy such as wind energy and solar power (photovoltaics). Targets, results, and progress are described. Regions targeted are Inner Mongolia, Tibet, and Gansu.
SU-D-201-06: Remote Dosmetric Auditing of VMAT Deliveries for Clinical Trials Using EPID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Legge, K; Miri, N; Lehmann, J
2016-06-15
Purpose: To develop a method for remote dosimetric auditing the delivery of VMAT using EPID which allows for simple, inexpensive and time efficient dosimetric credentialing for clinical trials. Methods: Remote centers are provided with CT datasets and planning guidelines to produce VMAT plans for a head and neck and a post-prostatectomy treatment. Plans are transferred in the planning system to two virtual water equivalent phantoms, one flat and one cylindrical. Cine images are acquired during VMAT delivery to the EPID in air with gantry angle recorded in image headers. Centers also deliver provided calibration plans to enable EPID signal tomore » dose conversion, determination of the central axis, and correction of EPID sag prior to analysis. EPID images and planned doses are sent to the central site. EPID cine images are converted to dose in the virtual phantoms using an established backprojection method (King et al., Med.Phys. 2012) with EPID backscatter correction. Individual arcs (with gantry angles collapsed to zero) are evaluated at 10 cm depth in the flat phantom using 2D gamma, and total doses are evaluated in the cylindrical phantom using 3D gamma. Results are reported for criteria of 3%,3mm, 3%,2mm and 2%,2mm for all points greater than 10% of global maximum. Results: The pilot study for Varian centers has commenced, and three centers have been audited for head and neck plans and two for post-prostatectomy plans to date. The mean pass rate for arc-by-arc 2D analysis at 3%,3mm is 99.5% and for 3D analysis is 95.8%. A method for Elekta linacs using an inclinometer for gantry angle information is under development. Conclusion: Preliminary results for this new method are promising. The method takes advantage of EPID equipment available at most centers and clinically established software to provide a feasible, low cost solution to credentialing centers for clinical trials. Funding has been provided from Calvary Mater Newcastle Department of Radiation Oncology, TROG Cancer Research and the University of Newcastle. Kimberley Legge is the recipient of an Australian Postgraduate Award. Narges Miri is a recipient of a University of Newcastle postgraduate scholarship.« less
Family planning and maternal and child health services.
Singh, A
1975-12-01
Considerable effort has been made in the area of family planning in the State of Punjab. Family planning personnel has been recruited and trained at the State Family Planning Training and Research Center in Kharar; supplies of Nirodh, IUDs, oral contraceptives, and hospital equipment along with transportation facilities have been made available; and there has been some building construction. The State Health Education Bureau has worked to produce publicity material and has also used the mass media to create awareness of family planning among the people. As many as 120 rural and 49 urban Family Welfare Planning Centers are providing family planning services along with 856 subcenters in rural areas. 1123 other institutions are also doing family planning work in addition to the efforts of 34 mobile sterilization and IUD units attached to the District Family Planning Bureau and the contributions of some voluntary organizations. Although the state has adopted the cafeteria approach to family planning and the focus is on provision of family planning services on routine days in the various institutions to well-motivated couples, mass family planning camps for vasectomy, tubal ligations, and IUD insertions have been held with considerable success. Additionally, the State has integrated family planning programs with maternal and child health care in order to provide a totality of service. This precedes the total integration of this national program w ith general health services. Punjab has done well in achieving its targets for 1974-1975. Sterilization targets were set at 38,300 and 36,460 sterilizations, 95.2% of the target, were performed. IUD targets were 27,000, and the number achieved was 39,637 or 109.4%. The conventional contraceptive user target was 99,800, and 151,976 or 152.3% of the target figure became conventional contraceptive users.
To plan or not to plan: Does planning for production remove facilitation from associative priming?
Jongman, Suzanne R; Meyer, Antje S
2017-11-01
Theories of conversation propose that in order to have smooth transitions from one turn to the next, speakers already plan their response while listening to their interlocutor. Moreover, it has been argued that speakers align their linguistic representations (i.e. prime each other), thereby reducing the processing costs associated with concurrent listening and speaking. In two experiments, we assessed how identity and associative priming from spoken words onto picture naming were affected by a concurrent speech planning task. In a baseline (no name) condition, participants heard prime words that were identical, associatively related, or unrelated to target pictures presented two seconds after prime onset. Each prime was accompanied by a non-target picture and followed by its recorded name. The participant did not name the non-target picture. In the plan condition, the participants first named the non-target picture, instead of listening to the recording, and then the target. In Experiment 1, where the plan- and no-plan conditions were tested between participants, priming effects of equal strength were found in the plan and no-plan condition. In Experiment 2, where the two conditions were tested within participants, the identity priming effect was maintained, but the associative priming effect was only seen in the no-plan but not in the plan condition. In this experiment, participant had to decide at the onset of each trial whether or not to name the non-target picture, rendering the task more complex than in Experiment 1. These decision processes may have interfered with the processing of the primes. Thus, associative priming can take place during speech planning, but only if the cognitive load is not too high. Copyright © 2017 Elsevier B.V. All rights reserved.
Ferguson, Megan; O'Dea, Kerin; Chatfield, Mark; Moodie, Marjory; Altman, Jon; Brimblecombe, Julie
2016-04-01
To determine the average price difference between foods and beverages in remote Indigenous community stores and capital city supermarkets and explore differences across products. A cross-sectional survey compared prices derived from point-of-sale data in 20 remote Northern Territory stores with supermarkets in capital cities of the Northern Territory and South Australia for groceries commonly purchased in remote stores. Average price differences for products, supply categories and food groups were examined. The 443 products examined represented 63% of food and beverage expenditure in remote stores. Remote products were, on average, 60% and 68% more expensive than advertised prices for Darwin and Adelaide supermarkets, respectively. The average price difference for fresh products was half that of packaged groceries for Darwin supermarkets and more than 50% for food groups that contributed most to purchasing. Strategies employed by manufacturers and supermarkets, such as promotional pricing, and supermarkets' generic products lead to lower prices. These opportunities are not equally available to remote customers and are a major driver of price disparity. Food affordability for already disadvantaged residents of remote communities could be improved by policies targeted at manufacturers, wholesalers and/or major supermarket chains. © 2015 The Authors.
Heating and cooling gas-gun targets: nuts and bolts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gustavsen, Richard L; Bartram, Brian D; Gehr, Russell J
The nuts and bolts of a system used to heat and cool gas-gun targets is described. We have now used the system for more than 35 experiments, all of which have used electromagnetic gauging. Features of the system include a cover which is removed (remotely) just prior to projectile impact and the widespread use of metal/polymer insulations. Both the cover and insulation were required to obtain uniform temperatures in samples with low thermal conductivity. The use of inexpensive video cameras to make remote observations of the cover removal was found to be very useful. A brief catalog of useful glue,more » adhesive tape, insulation, and seal materials is given.« less
Examples of current radar technology and applications, chapter 5, part B
NASA Technical Reports Server (NTRS)
1975-01-01
Basic principles and tradeoff considerations for SLAR are summarized. There are two fundamental types of SLAR sensors available to the remote sensing user: real aperture and synthetic aperture. The primary difference between the two types is that a synthetic aperture system is capable of significant improvements in target resolution but requires equally significant added complexity and cost. The advantages of real aperture SLAR include long range coverage, all-weather operation, in-flight processing and image viewing, and lower cost. The fundamental limitation of the real aperture approach is target resolution. Synthetic aperture processing is the most practical approach for remote sensing problems that require resolution higher than 30 to 40 m.
NASA Technical Reports Server (NTRS)
Kavaya, Michael J.; Spiers, Gary D.; Frehlich, Rod G.; Arnold, James E. (Technical Monitor)
2000-01-01
A collection of issues is discussed that are potential pitfalls, if handled incorrectly, for earth-orbiting lidar remote sensing instruments. These issues arise due to the long target ranges, high lidar-to-target relative velocities, low signal levels, use of laser scanners, and other unique aspects of using lasers in earth orbit. Consequences of misunderstanding these topics range from minor inconvenience to improper calibration to total failure. We will focus on wind measurement using coherent detection Doppler lidar, but many of the potential pitfalls apply also to noncoherent lidar wind measurement, and to measurement of parameters other than wind. Each area will be identified as to its applicability.
Optimal directional view angles for remote-sensing missions
NASA Technical Reports Server (NTRS)
Kimes, D. S.; Holben, B. N.; Tucker, C. J.; Newcomb, W. W.
1984-01-01
The present investigation is concerned with the directional, off-nadir viewing of terrestrial scenes using remote-sensing systems from aircraft and satellite platforms, taking into account advantages of such an approach over strictly nadir viewing systems. Directional reflectance data collected for bare soil and several different vegetation canopies in NOAA-7 AVHRR bands 1 and 2 were analyzed. Optimum view angles were recommended for two strategies. The first strategy views the utility of off-nadir measurements as extending spatial and temporal coverage of the target area. The second strategy views the utility of off-nadir measurements as providing additional information about the physical characteristics of the target. Conclusions regarding the two strategies are discussed.
Daylight control system device and method
Paton, John Douglas
2007-03-13
A system and device for and a method of programming and controlling light fixtures is disclosed. A system in accordance with the present invention includes a stationary controller unit that is electrically coupled to the light fixtures. The stationary controller unit is configured to be remotely programmed with a portable commissioning device to automatically control the lights fixtures. The stationary controller unit and the portable commissioning device include light sensors, micro-computers and transceivers for measuring light levels, running programs, storing data and transmitting data between the stationary controller unit and the portable commissioning device. In operation, target light levels selected with the portable commissioning device and the controller unit is remotely programmed to automatically maintain the target level.
Daylight control system, device and method
Paton, John Douglas
2012-08-28
A system and device for and a method of programming and controlling light fixtures is disclosed. A system in accordance with the present invention includes a stationary controller unit that is electrically coupled to the light fixtures. The stationary controller unit is configured to be remotely programmed with a portable commissioning device to automatically control the lights fixtures. The stationary controller unit and the portable commissioning device include light sensors, micro-computers and transceivers for measuring light levels, running programs, storing data and transmitting data between the stationary controller unit and the portable commissioning device. In operation, target light levels selected with the portable commissioning device and the controller unit is remotely programmed to automatically maintain the target level.
Daylight control system device and method
Paton, John Douglas
2009-12-01
A system and device for and a method of programming and controlling light fixtures is disclosed. A system in accordance with the present invention includes a stationary controller unit that is electrically coupled to the light fixtures. The stationary controller unit is configured to be remotely programmed with a portable commissioning device to automatically control the lights fixtures. The stationary controller unit and the portable commissioning device include light sensors, micro-computers and transceivers for measuring light levels, running programs, storing data and transmitting data between the stationary controller unit and the portable commissioning device. In operation, target light levels selected with the portable commissioning device and the controller unit is remotely programmed to automatically maintain the target level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calvo-Ortega, Juan Francisco, E-mail: jfcdrr@yahoo.es; Moragues, Sandra; Pozo, Miquel
2015-01-01
To evaluate the dosimetric effect of placing the isocenter away from the planning target volume (PTV) on intensity-modulated radiosurgery (IMRS) plans to treat brain lesions. A total of 15 patients who received cranial IMRS at our institution were randomly selected. Each patient was treated with an IMRS plan designed with the isocenter located at the target center (plan A). A second off-target isocenter plan (plan B) was generated for each case. In all the plans,100% of the prescription dose covered 99% of the target volume. The plans A and B were compared for the target dosage (conformity index [CI] andmore » homogeneity index) and organs-at-risk (OAR) dose sparing. Peripheral dose falloff was compared by using the metrics volume of normal brain receiving more than 12-Gy dose (V12) and CI at the level of the 50% of the prescription dose (CI 50%). The values found for each metric (plan B vs plan A) were (mean ± standard deviation [SD]) as follows—CI: 1.28 ± 0.15 vs 1.28 ± 0.15, p = 0.978; homogeneity index (HI): 1.29 ± 0.14 vs 1.34 ± 0.17, p = 0.079; maximum dose to the brainstem: 2.95 ± 2.11 vs 2.89 ± 1.88 Gy, p = 0.813; maximum dose to the optical pathway: 2.65 ± 4.18 vs 2.44 ± 4.03 Gy, p = 0.195; and maximum dose to the eye lens: 0.33 ± 0.73 vs 0.33 ± 0.53 Gy, p = 0.970. The values of the peripheral dose falloff were (plan B vs plan A) as follows—V12: 5.98 ± 4.95 vs 6.06 ± 4.92 cm{sup 3}, p = 0.622, and CI 50%: 6.08 ± 2.77 vs 6.28 ± 3.01, p = 0.119. The off-target isocenter solution resulted in dosimetrically comparable plans as the center-target isocenter technique, by avoiding the risk of gantry-couch collision during the cone beam computed tomography (CBCT) acquisition.« less
Planning Tripoli Metro Network by the Use of Remote Sensing Imagery
NASA Astrophysics Data System (ADS)
Alhusain, O.; Engedy, Gy.; Milady, A.; Paulini, L.; Soos, G.
2012-08-01
Tripoli, the capital city of Libya is going through significant and integrated development process, this development is expected to continue in the next few decades. The Libyan authorities have put it as their goal to develop Tripoli to an important metropolis in North Africa. To achieve this goal, they identified goals for the city's future development in all human, economic, cultural, touristic, and nonetheless infrastructure levels. On the infrastructure development level, among other things, they have identified the development of public transportation as one of the important development priorities. At present, public transportation in Tripoli is carried out by a limited capacity bus network alongside of individual transportation. However, movement in the city is characterized mainly by individual transportation with all its disadvantages such as traffic jams, significant air pollution with both carbon monoxide and dust, and lack of parking space. The Libyan authorities wisely opted for an efficient, modern, and environment friendly solution for public transportation, this was to plan a complex Metro Network as the backbone of public transportation in the city, and to develop and integrate the bus network and other means of transportation to be in harmony with the planned Metro network. The Metro network is planned to provide convenient connections to Tripoli International Airport and to the planned Railway station. They plan to build a system of Park and Ride (P+R) facilities at suitable locations along the Metro lines. This paper will present in details the planned Metro Network, some of the applied technological solutions, the importance of applying remote sensing and GIS technologies in different planning phases, and problems and benefits associated with the use of multi-temporal-, multi-format spatial data in the whole network planning phase.
NASA Astrophysics Data System (ADS)
Anderle, Kristjan; Stroom, Joep; Vieira, Sandra; Pimentel, Nuno; Greco, Carlo; Durante, Marco; Graeff, Christian
2018-01-01
Intensity modulated particle therapy (IMPT) can produce highly conformal plans, but is limited in advanced lung cancer patients with multiple lesions due to motion and planning complexity. A 4D IMPT optimization including all motion states was expanded to include multiple targets, where each target (isocenter) is designated to specific field(s). Furthermore, to achieve stereotactic treatment planning objectives, target and OAR weights plus objective doses were automatically iteratively adapted. Finally, 4D doses were calculated for different motion scenarios. The results from our algorithm were compared to clinical stereotactic body radiation treatment (SBRT) plans. The study included eight patients with 24 lesions in total. Intended dose regimen for SBRT was 24 Gy in one fraction, but lower fractionated doses had to be delivered in three cases due to OAR constraints or failed plan quality assurance. The resulting IMPT treatment plans had no significant difference in target coverage compared to SBRT treatment plans. Average maximum point dose and dose to specific volume in OARs were on average 65% and 22% smaller with IMPT. IMPT could also deliver 24 Gy in one fraction in a patient where SBRT was limited due to the OAR vicinity. The developed algorithm shows the potential of IMPT in treatment of multiple moving targets in a complex geometry.
Operational LANDSAT remote sensing system development
NASA Technical Reports Server (NTRS)
Cotter, D. J.
1981-01-01
The reduction of $121.6 million dollars from NOAA's LANDSAT development program for FY 1982, and the shortened time period for transferring remote sensing technology to the private sector resulted in changes in the Agency's plans for managing the operational system. Proposed legislation for congressional consideration or enactment to establish conditions under which this private sector transfer will occur, and the expected gradual rise in the price of data products are discussed. No money exists for capital investment and none is projected for investing in an operational data handling system for the LANDSAT D satellite. Candidates knowledgeable of various aspects of the needs and uses of remote sensing are urged to consider participation in NOAA's advisory committee.
Users report for the Northern Great Plains.
NASA Technical Reports Server (NTRS)
Waltz, F. A.; Myers, V. I.; Heinemann, L. R.
1973-01-01
The applications of remote-sensing techniques offer new approaches to many of the present-day problems encountered by various state agencies in South Dakota. The study was completed in three phases. The first report presented the information needs of the state agencies and educational efforts; the second defined the data handling procedures for fulfilling the applications; and the third phase was a development of a dynamic information dissemination plan on a state-wide basis. Aircraft data, satellite imagery, and other remotely sensed information are valuable for decision-making processes. A design for an organization to acquire for the state the advantages of remote-sensing systems for resources research and management has been developed.
Space-Based Remote Sensing of the Earth: A Report to the Congress
NASA Technical Reports Server (NTRS)
1987-01-01
The commercialization of the LANDSAT Satellites, remote sensing research and development as applied to the Earth and its atmosphere as studied by NASA and NOAA is presented. Major gaps in the knowledge of the Earth and its atmosphere are identified and a series of space based measurement objectives are derived. The near-term space observations programs of the United States and other countries are detailed. The start is presented of the planning process to develop an integrated national program for research and development in Earth remote sensing for the remainder of this century and the many existing and proposed satellite and sensor systems that the program may include are described.
Remote controlled capsules in human drug absorption (HDA) studies.
Wilding, Ian R; Prior, David V
2003-01-01
The biopharmaceutical complexity of today's new drug candidates provides significant challenges for pharmaceutical scientists in terms of both candidate selection and optimizing subsequent development strategy. In addition, life cycle management of marketed drugs has become an important income stream for pharmaceutical companies, but the selection of least risk/highest benefit strategies is far from simple. The proactive adoption of human drug absorption (HDA) studies using remote controlled capsules offers the pharmaceutical scientist significant guidance for planning a route through the maze of product development. This review examines the position of HDA studies in drug development, using a variety of case histories and an insightful update on remote controlled capsules to achieve site-specific delivery.