Science.gov

Sample records for planar laser-driven targets

  1. Laser-Driven Shock-Timing Experiments in Planar CH and Cryogenic Deuterium Targets

    NASA Astrophysics Data System (ADS)

    Vianello, E.; Hicks, D. G.

    2005-07-01

    Direct-drive inertial-confinement-fusion target designs use multiple shocks to stabilize and condition the imploding shell. The strength and timing of these shocks are critical to optimization of target designs. We present results from experiments on planar CH and cryogenic D2 targets that use two 100-ps pulses to produce two shocks at various conditions. The velocity profiles of these shocks (from VISAR) and self-emission are used to investigate the coupling of multiple beams to the targets and to validate the ability of hydrodynamic codes to simulate multiple, laser-driven shocks. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460, the University of Rochester, and the New York State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article.

  2. Time-resolved soft-x-ray studies of energy transport in layered and planar laser-driven targets

    SciTech Connect

    Stradling, G.L.

    1982-04-19

    New low-energy x-ray diagnostic techniques are used to explore energy-transport processes in laser heated plasmas. Streak cameras are used to provide 15-psec time-resolution measurements of subkeV x-ray emission. A very thin (50 ..mu..g/cm/sup 2/) carbon substrate provides a low-energy x-ray transparent window to the transmission photocathode of this soft x-ray streak camera. Active differential vacuum pumping of the instrument is required. The use of high-sensitivity, low secondary-electron energy-spread CsI photocathodes in x-ray streak cameras is also described. Significant increases in sensitivity with only a small and intermittant decrease in dynamic range were observed. These coherent, complementary advances in subkeV, time-resolved x-ray diagnostic capability are applied to energy-transport investigations of 1.06-..mu..m laser plasmas. Both solid disk targets of a variety of Z's as well as Be-on-Al layered-disk targets were irradiated with 700-psec laser pulses of selected intensity between 3 x 10/sup 14/ W/cm/sup 2/ and 1 x 10/sup 15/ W/cm/sup 2/.

  3. Planar laser-driven ablation model for nonlocalized absorption

    SciTech Connect

    Dahmani, F.; Kerdja, T. )

    1991-05-01

    A model for planar laser-driven ablation is presented. Nonlocalized inverse bremsstrahlung absorption of laser energy at a density {ital n}{sub 1}{lt}{ital n}{sub {ital c}} is assumed. A steady-state solution in the conduction zone is joined to a rarefaction wave in the underdense plasma. The calculations relate all steady-state fluid quantities to only the material, absorbed intensity, and laser wavelength. The theory agrees well with results from a computer hydrodynamics code MEDUSA (Comput. Phys. Commun. {bold 7}, 271 (1974)) and experiments.

  4. High density laser-driven target

    DOEpatents

    Lindl, John D.

    1981-01-01

    A high density target for implosion by laser energy composed of a central quantity of fuel surrounded by a high-Z pusher shell with a low-Z ablator-pusher shell spaced therefrom forming a region filled with low-density material.

  5. Laser-driven planar Rayleigh-Taylor instability experiments

    NASA Astrophysics Data System (ADS)

    Glendinning, S. G.; Weber, S. V.; Bell, P.; Dasilva, L. B.; Dixit, S. N.; Henesian, M. A.; Kania, D. R.; Kilkenny, J. D.; Powell, H. T.; Wallace, R. J.; Wegner, P. J.; Knauer, J. P.; Verdon, C. P.

    1992-08-01

    We have performed a series of experiments on the Nova Laser Facility to examine the hydrodynamic behavior of directly driven planar foils with initial perturbations of varying wavelength. The foils were accelerated with a single, frequency doubled, smoothed and temporally shaped laser beam at 0.8×1014 W/cm2. The experiments are in good agreement with numerical simulations using the computer codes LASNEX and ORCHID which show growth rates reduced to about 70% of classical for this nonlinear regime.

  6. Laser-driven planar Rayleigh-Taylor instability experiments

    SciTech Connect

    Glendinning, S.G.; Weber, S.V.; Bell, P.; DaSilva, L.B.; Dixit, S.N.; Henesian, M.A.; Kania, D.R.; Kilkenny, J.D.; Powell, H.T.; Wallace, R.J.; Wegner, P.J. ); Knauer, J.P.; Verdon, C.P. )

    1992-08-24

    We have performed a series of experiments on the Nova Laser Facility to examine the hydrodynamic behavior of directly driven planar foils with initial perturbations of varying wavelength. The foils were accelerated with a single, frequency doubled, smoothed and temporally shaped laser beam at 0.8{times}10{sup 14} W/cm{sup 2}. The experiments are in good agreement with numerical simulations using the computer codes LASNEX and ORCHID which show growth rates reduced to about 70% of classical for this nonlinear regime.

  7. Solid hydrogen target for laser driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Perin, J. P.; Garcia, S.; Chatain, D.; Margarone, D.

    2015-05-01

    The development of very high power lasers opens up new horizons in various fields, such as laser plasma acceleration in Physics and innovative approaches for proton therapy in Medicine. Laser driven proton acceleration is commonly based on the so-called Target Normal Sheath Acceleration (TNSA) mechanisms: a high power laser is focused onto a solid target (thin metallic or plastic foil) and interact with matter at very high intensity, thus generating a plasma; as a consequence "hot" electrons are produced and move into the forward direction through the target. Protons are generated at the target rear side, electrons try to escape from the target and an ultra-strong quasi-electrostatic field (~1TV/m) is generated. Such a field can accelerate protons with a wide energy spectrum (1-200 MeV) in a few tens of micrometers. The proton beam characteristics depend on the laser parameters and on the target geometry and nature. This technique has been validated experimentally in several high power laser facilities by accelerating protons coming from hydrogenated contaminant (mainly water) at the rear of metallic target, however, several research groups are investigating the possibility to perform experiments by using "pure" hydrogen targets. In this context, the low temperature laboratory at CEA-Grenoble has developed a cryostat able to continuously produce a thin hydrogen ribbon (from 40 to 100 microns thick). A new extrusion concept, without any moving part has been carried out, using only the thermodynamic properties of the fluid. First results and perspectives are presented in this paper.

  8. Laser-driven proton acceleration using a conical nanobrush target

    SciTech Connect

    Yu Jinqing; Zhao Zongqing; Yan Yonghong; Zhou Weimin; Cao Leifeng; Gu Yuqiu; Jin Xiaolin; Li Bin; Wu Fengjuan

    2012-05-15

    A conical nanobrush target is proposed to improve the total proton energy-conversion efficiency in proton beam acceleration and investigated by two-dimensional particle-in-cell (2D-PIC) simulations. Results indicate a significant enhancement of the number and energies of hot electrons through the target rear side of the conical nanobrush target. Compared with the plain target, the field increases several times. We observe enhancements of the average proton energy and total laser-proton energy conversion efficiency of 105%. This enhancement is attributed to both nanobrush and conical configurations. The proton beam is well collimated with a divergence angle less than 28{sup Degree-Sign }. The proposed target may serve as a new method for increasing laser to proton energy-conversion efficiency.

  9. Optimizing laser-driven proton acceleration from overdense targets.

    PubMed

    Stockem Novo, A; Kaluza, M C; Fonseca, R A; Silva, L O

    2016-07-20

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range.

  10. Optimizing laser-driven proton acceleration from overdense targets

    PubMed Central

    Stockem Novo, A.; Kaluza, M. C.; Fonseca, R. A.; Silva, L. O.

    2016-01-01

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range. PMID:27435449

  11. Optimizing laser-driven proton acceleration from overdense targets

    NASA Astrophysics Data System (ADS)

    Stockem Novo, A.; Kaluza, M. C.; Fonseca, R. A.; Silva, L. O.

    2016-07-01

    We demonstrate how to tune the main ion acceleration mechanism in laser-plasma interactions to collisionless shock acceleration, thus achieving control over the final ion beam properties (e. g. maximum energy, divergence, number of accelerated ions). We investigate this technique with three-dimensional particle-in-cell simulations and illustrate a possible experimental realisation. The setup consists of an isolated solid density target, which is preheated by a first laser pulse to initiate target expansion, and a second one to trigger acceleration. The timing between the two laser pulses allows to access all ion acceleration regimes, ranging from target normal sheath acceleration, to hole boring and collisionless shock acceleration. We further demonstrate that the most energetic ions are produced by collisionless shock acceleration, if the target density is near-critical, ne ≈ 0.5 ncr. A scaling of the laser power shows that 100 MeV protons may be achieved in the PW range.

  12. Laser-driven polarized hydrogen and deuterium internal targets

    SciTech Connect

    Jones, C.E.; Fedchak, J.A.; Kowalczyk, R.S.

    1995-08-01

    After completing comprehensive tests of the performance of the source with both hydrogen and deuterium gas, we began tests of a realistic polarized deuterium internal target. These tests involve characterizing the atomic polarization and dissociation fraction of atoms in a storage cell as a function of flow and magnetic field, and making direct measurements of the average nuclear tensor polarization of deuterium atoms in the storage cell. Transfer of polarization from the atomic electron to the nucleus as a result of D-D spin-exchange collisions was observed in deuterium, verifying calculations suggesting that high vector polarization in both hydrogen and deuterium can be obtained in a gas in spin temperature equilibrium without inducing RF transitions between the magnetic substates. In order to improve the durability of the system, the source glassware was redesigned to simplify construction and installation and eliminate stress points that led to frequent breakage. Improvements made to the nuclear polarimeter, which used the low energy {sup 3}H(d,n){sup 4}He reaction to analyze the tensor polarization of the deuterium, included installing acceleration lenses constructed of wire mesh to improve pumping conductance, construction of a new holding field coil, and elimination of the Wien filter from the setup. These changes substantially simplified operation of the polarimeter and should have reduced depolarization in collisions with the wall. However, when a number of tests failed to show an improvement of the nuclear polarization, it was discovered that extended operation of the system with a section of teflon as a getter for potassium caused the dissociation fraction to decline with time under realistic operating conditions, suggesting that teflon may not be a suitable material to eliminate potassium from the target. We are replacing the teflon surfaces with drifilm-coated ones and plan to continue tests of the polarized internal target in this configuration.

  13. Fabrication of nanostructured targets for improved laser-driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Barberio, M.; Scisciò, M.; Veltri, S.; Antici, P.

    2016-07-01

    In this work, we present a novel realization of nanostructured targets suitable for improving laser-driven proton acceleration experiments, in particular with regard to the Target-Normal-Sheath Acceleration (TNSA) acceleration mechanism. The nanostructured targets, produced as films, are realized by a simpler and cheaper method than using conventional lithographic techniques. The growth process includes a two step approach for the production of the gold nanoparticle layers: 1) Laser Ablation in Solution and 2) spray-dry technique using a colloidal solution on target surfaces (Aluminum, Mylar and Multi Walled Carbon Nanotube). The obtained nanostructured films appear, at morphological and chemical analysis, uniformly nanostructured and the nanostructure distributed on the target surfaces without presence of oxides or external contaminants. The obtained targets show a broad optical absorption in all the visible region and a surface roughness that is two times greater than non-nanostructured targets, enabling a greater laser energy absorption during the laser-matter interaction experiments producing the laser-driven proton acceleration.

  14. High-intensity laser-driven proton acceleration enhancement from hydrogen containing ultrathin targets

    SciTech Connect

    Dollar, F.; Reed, S. A.; Matsuoka, T.; Bulanov, S. S.; Chvykov, V.; Kalintchenko, G.; McGuffey, C.; Rousseau, P.; Thomas, A. G. R.; Willingale, L.; Yanovsky, V.; Krushelnick, K.; Maksimchuk, A.; Litzenberg, D. W.

    2013-09-30

    Laser driven proton acceleration experiments from micron and submicron thick targets using high intensity (2 × 10{sup 21} W/cm{sup 2}), high contrast (10{sup −15}) laser pulses show an enhancement of maximum energy when hydrogen containing targets were used instead of non-hydrogen containing. In our experiments, using thin (<1μm) plastic foil targets resulted in maximum proton energies that were consistently 20%–100% higher than when equivalent thickness inorganic targets, including Si{sub 3}N{sub 4} and Al, were used. Proton energies up to 20 MeV were measured with a flux of 10{sup 7} protons/MeV/sr.

  15. Toward high-energy laser-driven ion beams: Nanostructured double-layer targets

    NASA Astrophysics Data System (ADS)

    Passoni, M.; Sgattoni, A.; Prencipe, I.; Fedeli, L.; Dellasega, D.; Cialfi, L.; Choi, Il Woo; Kim, I. Jong; Janulewicz, K. A.; Lee, Hwang Woon; Sung, Jae Hee; Lee, Seong Ku; Nam, Chang Hee

    2016-06-01

    The development of novel target concepts is crucial to make laser-driven acceleration of ion beams suitable for applications. We tested double-layer targets formed of an ultralow density nanostructured carbon layer (˜7 mg/cm 3 , 8 - 12 μ m -thick) deposited on a μ m -thick solid Al foil. A systematic increase in the total number of the accelerated ions (protons and C6 + ) as well as enhancement of both their maximum and average energies was observed with respect to bare solid foil targets. Maximum proton energies up to 30 MeV were recorded. Dedicated three-dimensional particle-in-cell simulations were in remarkable agreement with the experimental results, giving clear indication of the role played by the target nanostructures in the interaction process.

  16. An efficient computational approach for evaluating radiation flux for laser driven inertial confinement fusion targets

    NASA Astrophysics Data System (ADS)

    Li, Haiyan; Huang, Yunbao; Jiang, Shaoen; Jing, Longfei; Ding, Yongkun

    2015-08-01

    Radiation flux computation on the target is very important for laser driven Inertial Confinement Fusion, and view-factor based equation models (MacFarlane, 2003; Srivastava et al., 2000) are often used to compute this radiation flux on the capsule or samples inside the hohlraum. However, the equation models do not lead to sparse matrices and may involve an intensive solution process when discrete mesh elements become smaller and the number of equations increases. An efficient approach for the computation of radiation flux is proposed in this paper, in which, (1) symmetric and positive definite properties are achieved by transformation, and (2) an efficient Cholesky factorization algorithm is applied to significantly accelerate such equations models solving process. Finally, two targets on a laser facility built in China are considered to validate the computing efficiency of present approach. The results show that the radiation flux computation can be accelerated by a factor of 2.

  17. Laser-driven fast-electron transport in preheated foil targets

    SciTech Connect

    Honrubia, J.J.; Kaluza, M.; Schreiber, J.; Tsakiris, G.D.; Meyer-ter-Vehn, J.

    2005-05-15

    Laser-driven relativistic electron transport through aluminum foils preheated and expanded by amplified spontaneous emission (ASE) prepulses has been studied by means of two- and three-dimensional hybrid particle-in-cell simulations. This study is motivated by recent proton acceleration experiments [M. Kaluza, J. Schreiber, M. I. K. Santala, G. D. Tsakiris, K. Eidmann, J. Meyer-ter-Vehn, and K. J. Witte, Phys. Rev. Lett. 93, 045003 (2004)] showing a significant effect of the ASE prepulse on the proton spectra. Here, it is found that electron-beam collimation due to magnetic fields is reduced and resistive heating by return currents is significantly enhanced, when considering ASE-expanded rather than unperturbed solid target foils. It is shown that this allows for a consistent picture of the new proton spectra and the parameters of the driving electron pulse (angular spread at injection, laser-to-electron conversion, and energy spectrum)

  18. X-ray scattering measurements of laser-driven shock compressed plastic and deuterated plastic targets

    NASA Astrophysics Data System (ADS)

    Gauthier, Maxence; Fletcher, Luke; Ravasio, Alessandra; Döppner, Tilo; Glenzer, Siegfried; HED science Collaboration

    2015-03-01

    The study of materials under extreme conditions, i.e., high energy density, has gathered enormous scientific interest in various domains from inertial confinement fusion to planetary physics. The material response of plastic to shock and its behavior is important because of its common use as an ablator in inertial confinement fusion experiments. In this study, simultaneous measurements of spectrally and wavenumber resolved x-ray scattering emission from laser-shock compressed plastic foils allow us to study the structural transition from a polymer to a liquid-like state. The 527 nm, 2 GW laser system available at the MEC station of the LCLS facility has been used to compress CH and CD foils using laser-driven shocks. 40 to 57 μm thick CH and CD targets were compressed using 3 ns square pulses with total laser energy of 6 J per beam. A drive intensity of 3x1013 W/cm2 on each irradiated surface was used to generate high-pressure shock waves into the sample, while 8 keV x-rays from LCLS was used to probe the target.

  19. Al 1s-2p Absorption Spectroscopy of Shock-Wave Heating and Compression in Laser-Driven Planar Foil

    SciTech Connect

    Sawada, H.; Regan, S.P.; Radha, P.B.; Epstein, R.; Li, D.; Goncharov, V.N.; Hu, S.X.; Meyerhofer, D.D.; Delettrez, J.A.; Jaanimagi, P.A.; Smalyuk, V.A.; Boehly, T.R.; Sangster, T.C.; Yaakobi, B.; Mancini, R.C.

    2009-05-19

    Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (Te ~ 10–40 eV, rho ~ 3–11 g/cm^3) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10^14–10^15 W/cm^2 and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4–1.7 keV. The laser ablation process launches 10–70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectra were analyzed using the atomic physic code PRISMSPECT to infer Te and rho in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f =0.06 and f =0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f = 0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.

  20. Al 1s-2p absorption spectroscopy of shock-wave heating and compression in laser-driven planar foil

    SciTech Connect

    Sawada, H.; Regan, S. P.; Radha, P. B.; Epstein, R.; Li, D.; Goncharov, V. N.; Hu, S. X.; Meyerhofer, D. D.; Delettrez, J. A.; Jaanimagi, P. A.; Smalyuk, V. A.; Boehly, T. R.; Sangster, T. C.; Yaakobi, B.; Mancini, R. C.

    2009-05-15

    Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (T{sub e}{approx}10-40 eV, {rho}{approx}3-11 g/cm{sup 3}) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10{sup 14}-10{sup 15} W/cm{sup 2} and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4-1.7 keV. The laser ablation process launches 10-70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectra were analyzed using the atomic physic code PRISMSPECT to infer T{sub e} and {rho} in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f=0.06 and f=0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f=0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.

  1. Enhanced electron injection in laser-driven bubble acceleration by ultra-intense laser irradiating foil-gas targets

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-Bo; Ma, Yan-Yun; Xu, Han; Hafz, Nasr A. M.; Yang, Xiao-Hu; Chen, Min; Yu, Tong-Pu; Zou, De-Bin; Liu, Jian-Xun; Yan, Jian-Feng; Zhuo, Hong-Bin; Gan, Long-Fei; Tian, Li-Chao; Shao, Fu-Qiu; Yin, Yan; Kawata, S.

    2015-08-01

    A scheme for enhancing the electron injection charge in a laser-driven bubble acceleration is proposed. In this scheme, a thin foil target is placed in front of a gas target. Upon interaction with an ultra-intense laser pulse, the foil emits electrons with large longitudinal momenta, allowing them to be trapped into the transmitted shaped laser-excited bubble in the gaseous plasma target. Two-dimensional particle-in-cell simulation is used to demonstrate this scheme, and an electron beam with a total electron number of 4.21 × 10 8 μ m - 1 can be produced, which is twice the number of electrons produced without the foil. Such scheme may be widely used for applications that require high electron yields such as positron and gamma ray generation from relativistic electron beams interacting with solid targets.

  2. Laser-driven flyer plates for shock compression science: launch and target impact probed by photon Doppler velocimetry.

    PubMed

    Curtis, Alexander D; Banishev, Alexandr A; Shaw, William L; Dlott, Dana D

    2014-04-01

    We investigated the launch and target impact of laser-driven Al flyer plates using photon Doppler velocimetry (PDV). We studied different flyer designs launched by laser pulses of different energies, pulse durations and beam diameters, that produced km s(-1) impacts with transparent target materials. Laser-launching Al flyers 25-100 μm thick cemented to glass substrates is usually thought to involve laser vaporization of a portion of the flyer, which creates many difficulties associated with loss of integrity and heating of the flyer material. However, in the system used here, the launch mechanism was surprising and unexpected: it involved optical damage at the glass/cement/flyer interface, with very little laser light reaching the flyer itself. In fact the flyers launched in this manner behaved almost identically to multilayer flyers that were optically shielded from the laser pulses and insulated from heat generated by the pulses. Launching flyers with nanosecond laser pulses creates undesirable reverberating shocks in the flyer. In some cases, with 10 ns launch pulses, the thickest flyers were observed to lose integrity. But with stretched 20 ns pulses, we showed that the reverberations damped out prior to impact with targets, and that the flyers maintained their integrity during flight. Flyer impacts with salt, glass, fused silica, and acrylic polymer were studied by PDV, and the durations of fully supported shocks in those media were determined, and could be varied from 5 to 23 ns.

  3. Laser-driven flyer plates for shock compression science: Launch and target impact probed by photon Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Curtis, Alexander D.; Banishev, Alexandr A.; Shaw, William L.; Dlott, Dana D.

    2014-04-01

    We investigated the launch and target impact of laser-driven Al flyer plates using photon Doppler velocimetry (PDV). We studied different flyer designs launched by laser pulses of different energies, pulse durations and beam diameters, that produced km s-1 impacts with transparent target materials. Laser-launching Al flyers 25-100 μm thick cemented to glass substrates is usually thought to involve laser vaporization of a portion of the flyer, which creates many difficulties associated with loss of integrity and heating of the flyer material. However, in the system used here, the launch mechanism was surprising and unexpected: it involved optical damage at the glass/cement/flyer interface, with very little laser light reaching the flyer itself. In fact the flyers launched in this manner behaved almost identically to multilayer flyers that were optically shielded from the laser pulses and insulated from heat generated by the pulses. Launching flyers with nanosecond laser pulses creates undesirable reverberating shocks in the flyer. In some cases, with 10 ns launch pulses, the thickest flyers were observed to lose integrity. But with stretched 20 ns pulses, we showed that the reverberations damped out prior to impact with targets, and that the flyers maintained their integrity during flight. Flyer impacts with salt, glass, fused silica, and acrylic polymer were studied by PDV, and the durations of fully supported shocks in those media were determined, and could be varied from 5 to 23 ns.

  4. A bright attosecond x-ray pulse train generation in a double-laser-driven cone target

    NASA Astrophysics Data System (ADS)

    Hu, Li-Xiang; Yu, Tong-Pu; Shao, Fu-Qiu; Luo, Wen; Yin, Yan

    2016-06-01

    By using full three-dimensional particle-in-cell and Monte Carlo simulations, we investigate the generation of a high-brightness attosecond x-ray pulse train in a double-laser-driven cone target. The scheme makes use of two lasers: the first high-intensity laser with a laser peak intensity 1.37 × 1020 W/cm2 irradiates the cone and produces overdense attosecond electron bunches; the second counterpropagating weakly relativistic laser with a laser peak intensity 4.932 × 1017 W/cm2 interacts with the produced electron bunches and a bright x-ray pulse train is generated by Thomson backscattering of the second laser off the attosecond electron bunches. It is shown that the photon flux rises by 5 times using the cone target as compared with a normal channel. Meanwhile, the x-ray peak brightness increases significantly from 1.4 × 1021/(s mm2 mrad2 0.1 keV) to 6.0 × 1021/(s mm2 mrad2 0.1 keV), which is much higher than that of the Thomson x-ray source generated from traditional accelerators. We also discuss the influence of the laser and target parameters on the x-ray pulse properties. This compact bright x-ray source may have diverse applications, e.g., the study of electric dynamics and harmonics emission in the atomic scale.

  5. Laser-driven flyer plates for shock compression science: Launch and target impact probed by photon Doppler velocimetry

    SciTech Connect

    Curtis, Alexander D.; Banishev, Alexandr A.; Shaw, William L.; Dlott, Dana D.

    2014-04-15

    We investigated the launch and target impact of laser-driven Al flyer plates using photon Doppler velocimetry (PDV). We studied different flyer designs launched by laser pulses of different energies, pulse durations and beam diameters, that produced km s{sup −1} impacts with transparent target materials. Laser-launching Al flyers 25–100 μm thick cemented to glass substrates is usually thought to involve laser vaporization of a portion of the flyer, which creates many difficulties associated with loss of integrity and heating of the flyer material. However, in the system used here, the launch mechanism was surprising and unexpected: it involved optical damage at the glass/cement/flyer interface, with very little laser light reaching the flyer itself. In fact the flyers launched in this manner behaved almost identically to multilayer flyers that were optically shielded from the laser pulses and insulated from heat generated by the pulses. Launching flyers with nanosecond laser pulses creates undesirable reverberating shocks in the flyer. In some cases, with 10 ns launch pulses, the thickest flyers were observed to lose integrity. But with stretched 20 ns pulses, we showed that the reverberations damped out prior to impact with targets, and that the flyers maintained their integrity during flight. Flyer impacts with salt, glass, fused silica, and acrylic polymer were studied by PDV, and the durations of fully supported shocks in those media were determined, and could be varied from 5 to 23 ns.

  6. Influence of Ambient Plasmas to the Field Dynamics of Laser Driven Mass-Limited Targets

    SciTech Connect

    Schnuerer, M.; Sokollik, T.; Steinke, S.; Nickles, P. V.; Sandner, W.; Toncian, T.; Amin, M.; Willi, O.; Andreev, A. A.

    2010-02-02

    Dilute plasmas surrounding mass-limited targets provide sufficient current for influencing strong fields, which are built up due to the interaction of an intense and ultrafast laser pulse. Such situation occurs, where evaporation of the target surface is present. The high-intensity laser pulse interacts with the quasi-isolated mass-limited target and the spatial wings of the intensity distribution account for ionization of the ambient plasma. A fast change of strong electrical fields following intense laser irradiation of water droplets (16 micron diameter) has been measured with proton imaging. An analytical model explains charge transport accounting for the observation.

  7. Direct observation of ultrafast surface transport of laser-driven fast electrons in a solid target

    SciTech Connect

    Singh, Prashant Kumar; Chatterjee, Gourab; Adak, Amitava; Ahmed, Saima; Lad, Amit D.; Ravindra Kumar, G.; Cui, Y. Q.; Wang, W. M.; Sheng, Z. M.

    2013-11-15

    We demonstrate rapid spread of surface ionization on a glass target excited by an intense, ultrashort laser pulse at an intensity of 3 × 10{sup 17} W cm{sup −2}. Time- and space-resolved reflectivity of the target surface indicates that the initial plasma region created by the pump pulse expands at c/7. The measured quasi-static megagauss magnetic field is found to expand in a manner very similar to that of surface ionization. Two-dimensional particle-in-cell simulations reproduce measurements of surface ionization and magnetic fields. Both the experiment and simulation convincingly demonstrate the role of self-induced electric and magnetic fields in confining fast electrons along the target-vacuum interface.

  8. A spherical shell target scheme for laser-driven neutron sources

    SciTech Connect

    He, Min-Qing Zhang, Hua; Wu, Si-Zhong; Wu, Jun-Feng; Chen, Mo; Cai, Hong-Bo Zhou, Cang-Tao; Cao, Li-Hua; Zheng, Chun-Yang; Zhu, Shao-Ping; He, X. T.; Dong, Quan-Li; Sheng, Zheng-Ming; Pei, Wen-Bing

    2015-12-15

    A scheme for neutron production is investigated in which an ultra-intense laser is irradiated into a two-layer (deuterium and aurum) spherical shell target through the cone shaped entrance hole. It is found that the energy conversion efficiency from laser to target can reach as high as 71%, and deuterium ions are heated to a maximum energy of several MeV from the inner layer surface. These ions are accelerated towards the center of the cavity and accumulated finally with a high density up to tens of critical density in several picoseconds. Two different mechanisms account for the efficient yield of the neutrons in the cavity: (1) At the early stage, the neutrons are generated by the high energy deuterium ions based on the “beam-target” approach. (2) At the later stage, the neutrons are generated by the thermonuclear fusion when the most of the deuterium ions reach equilibrium in the cavity. It is also found that a large number of deuterium ions accelerated inward can pass through the target center and the outer Au layer and finally stopped in the CD{sub 2} layer. This also causes efficient yield of neutrons inside the CD{sub 2} layer due to “beam-target” approach. A postprocessor has been designed to evaluate the neutron yield and the neutron spectrum is obtained.

  9. Bright betatron X-ray radiation from a laser-driven-clustering gas target

    PubMed Central

    Chen, L. M.; Yan, W. C.; Li, D. Z.; Hu, Z. D.; Zhang, L.; Wang, W. M.; Hafz, N.; Mao, J. Y.; Huang, K.; Ma, Y.; Zhao, J. R.; Ma, J. L.; Li, Y. T.; Lu, X.; Sheng, Z. M.; Wei, Z. Y.; Gao, J.; Zhang, J.

    2013-01-01

    Hard X-ray sources from femtosecond (fs) laser-produced plasmas, including the betatron X-rays from laser wakefield-accelerated electrons, have compact sizes, fs pulse duration and fs pump-probe capability, making it promising for wide use in material and biological sciences. Currently the main problem with such betatron X-ray sources is the limited average flux even with ultra-intense laser pulses. Here, we report ultra-bright betatron X-rays can be generated using a clustering gas jet target irradiated with a small size laser, where a ten-fold enhancement of the X-ray yield is achieved compared to the results obtained using a gas target. We suggest the increased X-ray photon is due to the existence of clusters in the gas, which results in increased total electron charge trapped for acceleration and larger wiggling amplitudes during the acceleration. This observation opens a route to produce high betatron average flux using small but high repetition rate laser facilities for applications. PMID:23715033

  10. Micro-sphere layered targets efficiency in laser driven proton acceleration

    SciTech Connect

    Floquet, V.; Martin, Ph.; Ceccotti, T.; Klimo, O.; Psikal, J.; Limpouch, J.; Proska, J.; Novotny, F.; Stolcova, L.; Velyhan, A.; Macchi, A.; Sgattoni, A.; Vassura, L.; Labate, L.; Baffigi, F.; Gizzi, L. A.

    2013-08-28

    Proton acceleration from the interaction of high contrast, 25 fs laser pulses at >10{sup 19} W/cm{sup 2} intensity with plastic foils covered with a single layer of regularly packed micro-spheres has been investigated experimentally. The proton cut-off energy has been measured as a function of the micro-sphere size and laser incidence angle for different substrate thickness, and for both P and S polarization. The presence of micro-spheres with a size comparable to the laser wavelength allows to increase the proton cut-off energy for both polarizations at small angles of incidence (10∘). For large angles of incidence, however, proton energy enhancement with respect to flat targets is absent. Analysis of electron trajectories in particle-in-cell simulations highlights the role of the surface geometry in the heating of electrons.

  11. Heating in short-pulse laser-driven cone-capped wire targets

    NASA Astrophysics Data System (ADS)

    Mason, R. J.; Wei, M.; King, J.; Beg, F.; Stephens, R. B.

    2007-11-01

    The 2-D implicit hybrid simulation code e-PLAS has been used to study heating in cone-capped copper wire targets. The code e-PLAS tracks collisional particle-in-cell (PIC) electrons traversing background plasma of collisional Eulerian cold electron and ion fluids. It computes E- and B-fields by the Implicit Moment Method [1,2]. In recent experiments [3] at the Vulcan laser facility, sub- picosecond laser pulses at 1.06 μm, and 4.0 x 10^20 W/cm^2 intensity were focused into thin-walled (˜10 μm) cones attached to copper wires. The wire diameter was varied from 10-40 μm with a typical length of 1 mm. We characterize heating of the wires as a function of their diameters and length, and relate modifications of this heating to changes in the assumed laser-generated hot electron spectrum and directivity. As in recent nail experiments [4], the cones can serve as reservoirs for hot electrons, diverting them from passage down the wires. [1] R. J. Mason, and C. Cranfill, IEEE Trans. Plasma Sci. PS-14, 45 (1986). [2] R. J. Mason, J. Comp. Phys. 71, 429 (1987). [3] J. King et al., to be submitted to Phys. Rev. Lett.. [4] R. J. Mason, M. Wei, F. Beg, R. Stephens, and C. Snell, in Proc. of ICOPS07, Albuquerque, NM, June 17-22, 2007, Talk 7D4.

  12. Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry

    NASA Astrophysics Data System (ADS)

    Law, K. F. F.; Bailly-Grandvaux, M.; Morace, A.; Sakata, S.; Matsuo, K.; Kojima, S.; Lee, S.; Vaisseau, X.; Arikawa, Y.; Yogo, A.; Kondo, K.; Zhang, Z.; Bellei, C.; Santos, J. J.; Fujioka, S.; Azechi, H.

    2016-02-01

    A kilo-tesla level, quasi-static magnetic field (B-field), which is generated with an intense laser-driven capacitor-coil target, was measured by proton deflectometry with a proper plasma shielding. Proton deflectometry is a direct and reliable method to diagnose strong, mm3-scale laser-produced B-field; however, this was not successful in the previous experiment. A target-normal-sheath-accelerated proton beam is deflected by Lorentz force in the laser-produced magnetic field with the resulting deflection pattern recorded on a radiochromic film stack. A 610 ± 30 T of B-field amplitude was inferred by comparing the experimental proton pattern with Monte-Carlo calculations. The amplitude and temporal evolutions of the laser-generated B-field were also measured by a differential magnetic probe, independently confirming the proton deflectometry measurement results.

  13. Numerical studies of petawatt laser-driven proton generation from two-species targets using a two-dimensional particle-in-cell code

    NASA Astrophysics Data System (ADS)

    Domański, J.; Badziak, J.; Jabloński, S.

    2016-04-01

    Laser-driven generation of high-energy ion beams has recently attracted considerable interest due to a variety of potential applications including proton radiography, ICF fast ignition, nuclear physics or hadron therapy. The ion beam parameters depend on both laser pulse and target parameters, and in order to produce the ion beam of properties required for a particular application the laser and target parameters must be carefully selected, and the mechanism of the ion beam generation should be well understood and controlled. Convenient and commonly used tools for studies of the ion acceleration process are particle-in-cell (PIC) codes. Using two-dimensional PIC simulations, the properties of a proton beam generated from a thin erbium hydride (ErH3) target irradiated by a 25fs laser pulse of linear or circular polarization and of intensity ranging from 1020 to 1021 W/cm2 are investigated and compared with the features of a proton beam produced from a hydrocarbon (CH) target. It has been found that using erbium hydride targets instead of hydrocarbon ones creates an opportunity to generate more compact proton beams of higher mean energy, intensity and of better collimation. This is especially true for the linear polarization of the laser beam, for which the mean proton energy, the amount of high energy protons and the intensity of the proton beam generated from the hydride target is by an order of magnitude higher than for the hydrocarbon target. For the circular polarization, the proton beam parameters are lower than those for the linear one, and the effect of target composition on the acceleration process is weaker.

  14. Laser-driven collimated tens-GeV monoenergetic protons from mass-limited target plus preformed channel

    SciTech Connect

    Zheng, F. L.; Wu, H. C.; Wu, S. Z.; Zhou, C. T.; Cai, H. B.; He, X. T.; Yu, M. Y.; Tajima, T.; Yan, X. Q.

    2013-01-15

    Proton acceleration by ultra-intense laser pulse irradiating a target with cross-section smaller than the laser spot size and connected to a parabolic density channel is investigated. The target splits the laser into two parallel propagating parts, which snowplow the back-side plasma electrons along their paths, creating two adjacent parallel wakes and an intense return current in the gap between them. The radiation-pressure pre-accelerated target protons trapped in the wake fields now undergo acceleration as well as collimation by the quasistatic wake electrostatic and magnetic fields. Particle-in-cell simulations show that stable long-distance acceleration can be realized, and a 30 fs monoenergetic ion beam of >10 GeV peak energy and <2 Degree-Sign divergence can be produced by a circularly polarized laser pulse at an intensity of about 10{sup 22} W/cm{sup 2}.

  15. Laser driven radiography

    SciTech Connect

    Perry, M.D.; Sefcik, J.; Cowan, T.

    1997-12-20

    Intense laser (> 1021 W/cm{sup 3}) driven hard x-ray sources offer a new alternative to conventional electron accelerator Bremsstrahlung sources. These laser driven sources offer considerable simplicity in design and potential cost advantage for multiple axis views. High spatial and temporal resolution is achievable as a result of the very small source size (<100 um) and short-duration of the laser pulse. We have begun a series of experiments with the Petawatt laser at LLNL to determine the photon flux achievable with these sources and assess their potential for Stewardship applications. Additionally, we are developing a conceptual design and cost estimate of a multi-pulse, multi-axis (up to five) radiographic facility utilizing the Contained Firing Facility at site 300 and existing laser hardware.

  16. Femtosecond laser-driven intense Cu K α X-ray source with a novel film target driver

    NASA Astrophysics Data System (ADS)

    Lee, Sungman; Choi, Il Woo; Sohn, Ik-Bu; Lee, Kitae; Shim, Gyu Il; Jeong, Young Uk; Han, Byung Heon; Ryu, Woo Je; Kim, Ha-Na; Cha, Hyungki

    2015-09-01

    A laser-induced intense Ka hard X-ray source was developed by using a novel copper film target and a 27-TW femtosecond laser system. A specially designed pinhole camera was employed to measure the X-ray photon flux, X-ray energy spectrum, and X-ray source image. By adapting a single photon counting method, we estimated the photon number in the full width at half maximum (FWHM) spectral region to be 1.74 × 109 photons/sr for 8.05-keV Cu Ka X-rays. The shape of the X-ray source was matched well with that of the focused laser beam on the target. By provision of a lengthy copper film of 50 m with a thickness of 50 µm, the novel copper film target is capable of long time operation of more than 27 hours at a repetition rate of 10 Hz. The hard X-ray source is suitable for applications in single-shot X-ray contrast imaging or in ultrafast pump-probe analyses of material structures.

  17. Investigations of ultrafast charge dynamics in laser-irradiated targets by a self probing technique employing laser driven protons

    NASA Astrophysics Data System (ADS)

    Ahmed, H.; Kar, S.; Cantono, G.; Nersisyan, G.; Brauckmann, S.; Doria, D.; Gwynne, D.; Macchi, A.; Naughton, K.; Willi, O.; Lewis, C. L. S.; Borghesi, M.

    2016-09-01

    The divergent and broadband proton beams produced by the target normal sheath acceleration mechanism provide the unique opportunity to probe, in a point-projection imaging scheme, the dynamics of the transient electric and magnetic fields produced during laser-plasma interactions. Commonly such experimental setup entails two intense laser beams, where the interaction produced by one beam is probed with the protons produced by the second. We present here experimental studies of the ultra-fast charge dynamics along a wire connected to laser irradiated target carried out by employing a 'self' proton probing arrangement - i.e. by connecting the wire to the target generating the probe protons. The experimental data shows that an electromagnetic pulse carrying a significant amount of charge is launched along the wire, which travels as a unified pulse of 10s of ps duration with a velocity close to speed of light. The experimental capabilities and the analysis procedure of this specific type of proton probing technique are discussed.

  18. 3D Surface Mapping of Capsule Fill-Tube Assemblies used in Laser-Driven Fusion Targets

    SciTech Connect

    Buice, E S; Alger, E T; Antipa, N A; Bhandarkar, S D; Biesiada, T A; Conder, A D; Dzenitis, E G; Flegel, M S; Hamza, A V; Heinbockel, C L; Horner, J; Johnson, M A; Kegelmeyer, L M; Meyer, J S; Montesanti, R C; Reynolds, J L; Taylor, J S; Wegner, P J

    2011-02-18

    This paper presents the development of a 3D surface mapping system used to measure the surface of a fusion target Capsule Fill-Tube Assembly (CFTA). The CFTA consists of a hollow Ge-doped plastic sphere, called a capsule, ranging in outer diameter between 2.2 mm and 2.6 mm and an attached 150 {micro}m diameter glass-core fill-tube that tapers down to a 10{micro} diameter at the capsule. The mapping system is an enabling technology to facilitate a quality assurance program and to archive 3D surface information of each capsule used in fusion ignition experiments that are currently being performed at the National Ignition Facility (NIF). The 3D Surface Mapping System is designed to locate and quantify surface features with a height of 50 nm and 300 nm in width or larger. Additionally, the system will be calibrated such that the 3D measured surface can be related to the capsule surface angular coordinate system to within 0.25 degree (1{sigma}), which corresponds to approximately 5 {micro}m linear error on the capsule surface.

  19. Laser driven ion accelerator

    DOEpatents

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  20. Teller Medal Lecture IFSA2001: Problems and solutions in the design and analysis of early laser driven high energy density and ICF target physics experiments (IFSA 2001)

    NASA Astrophysics Data System (ADS)

    Rosen, Mordecai D.

    2016-10-01

    The high energy density (HED) and inertial confinement fusion (ICF) physics community relies on increasingly sophisticated high power laser driven experiments to advance the field. We review early work in the design and analysis of such experiments, and discuss the problems encountered. By finding solutions to those problems we put the field on firmer ground, allowing the community to develop it to the exciting stage it is in today. Specific examples include: drive and preheat in complex hohlraum geometries with the complicating effects of sample motion; and issues in the successful design of laboratory soft x-ray lasers and in the invention of methods to reduce the required optical laser driver energy by several orders of magnitude.

  1. Teller Medal Lecture IFSA2001: Problems and Solutions in the Design and Analysis of Early Laser Driven High Energy Density and ICF Target Physics Experiments

    SciTech Connect

    Rosen, M D

    2001-08-20

    The high energy density (HED) and inertial confinement fusion (ICF) physics community relies on increasingly sophisticated high power laser driven experiments to advance the field. We review early work in the design and analysis of such experiments, and discuss the problems encountered. By finding solutions to those problems we put the field on firmer ground, allowing the community to develop it to the exciting stage it is in today. Specific examples include: drive and preheat in complex hohlraum geometries with the complicating effects of sample motion; and issues in the successful design of laboratory soft x-ray lasers and in the invention of methods to reduce the required optical laser driver energy by several orders of magnitude.

  2. Directional Laser-Driven Ion Acceleration from Microspheres

    SciTech Connect

    Sokollik, T.; Schnuerer, M.; Steinke, S.; Nickles, P. V.; Sandner, W.; Amin, M.; Toncian, T.; Willi, O.; Andreev, A. A.

    2009-09-25

    Laser-driven ion acceleration is capable of generating ion beams of MeV energy exhibiting unique attributes such as ultralow emittance. Research is still focusing on fundamental laser-target interactions to control further beam attributes. In this Letter we present the observation of directional ion acceleration of irradiated spherical targets through proton imaging. This feature, together with an earlier observed quasimonoenergetic proton burst makes spherical targets extremely attractive candidates for high quality, high repetition rate sources of laser accelerated particles.

  3. Laser-driven fusion reactor

    DOEpatents

    Hedstrom, J.C.

    1973-10-01

    A laser-driven fusion reactor consisting of concentric spherical vessels in which the thermonuclear energy is derived from a deuterium-tritium (D + T) burn within a pellet'', located at the center of the vessels and initiated by a laser pulse. The resulting alpha -particle energy and a small fraction of the neutron energy are deposited within the pellet; this pellet energy is eventually transformed into sensible heat of lithium in a condenser outside the vessels. The remaining neutron energy is dissipated in a lithium blanket, located within the concentric vessels, where the fuel ingredient, tritium, is also produced. The heat content of the blanket and of the condenser lithium is eventually transferred to a conventional thermodynamic plant where the thermal energy is converted to electrical energy in a steam Rankine cycle. (Official Gazette)

  4. Experimental and computational characterization of hydrodynamic expansion of a preformed plasma from thin-foil target for laser-driven proton acceleration

    NASA Astrophysics Data System (ADS)

    Sagisaka, Akito; Nagatomo, Hideo; Daido, Hiroyuki; Pirozhkov, Alexander S.; Ogura, Koichi; Orimo, Satoshi; Mori, Michiaki; Nishiuchi, Mamiko; Yogo, Akifumi; Kado, Masataka

    2009-10-01

    We characterize the electron density distributions of preformed plasma for laser-accelerated proton generation. The preformed plasma of a titanium target 3 μm thick is generated by prepulse and amplified spontaneous emission (ASE) of a high-intensity Ti:sapphire laser and is measured with an interferometer using a second harmonic probe beam. High-energy protons are obtained by reducing the size of the preformed plasma by changing the ASE duration before main pulse at the front side (laser incidence side) of the target. Simulation results with two-dimensional radiation hydrodynamic code are close to the experimental results for low-density region ~4 × 1019 cm-3 at the front side. In the high-density region near to the target surface, the interferometry underestimates the density due to the substantial refraction. The characterization of hydrodynamic expansion with the interferometer and simulation is a useful tool for investigation of high-energy proton generation.

  5. Picosecond metrology of laser-driven proton bursts

    PubMed Central

    Dromey, B.; Coughlan, M.; Senje, L.; Taylor, M.; Kuschel, S.; Villagomez-Bernabe, B.; Stefanuik, R.; Nersisyan, G.; Stella, L.; Kohanoff, J.; Borghesi, M.; Currell, F.; Riley, D.; Jung, D.; Wahlström, C.-G.; Lewis, C.L.S.; Zepf, M.

    2016-01-01

    Tracking primary radiation-induced processes in matter requires ultrafast sources and high precision timing. While compact laser-driven ion accelerators are seeding the development of novel high instantaneous flux applications, combining the ultrashort ion and laser pulse durations with their inherent synchronicity to trace the real-time evolution of initial damage events has yet to be realized. Here we report on the absolute measurement of proton bursts as short as 3.5±0.7 ps from laser solid target interactions for this purpose. Our results verify that laser-driven ion acceleration can deliver interaction times over a factor of hundred shorter than those of state-of-the-art accelerators optimized for high instantaneous flux. Furthermore, these observations draw ion interaction physics into the field of ultrafast science, opening the opportunity for quantitative comparison with both numerical modelling and the adjacent fields of ultrafast electron and photon interactions in matter. PMID:26861592

  6. Development of numerical model to investigate the laser driven shock waves from aluminum target into ambient air at atmospheric pressure and its comparison with experiment

    NASA Astrophysics Data System (ADS)

    Paturi, Prem Kiran; Sakaraboina, Sai Shiva; Chelikani, Leela; Ikkurthi, Venkata Ramana; C. D., Sijoy; Chaturvedi, Shashank; Acrhem Collaboration; Cad Collaboration

    2015-06-01

    A one-dimensional, three-temperature (electron, ion and thermal radiation) numerical model to study the laser induced shock wave (LISW) propagation from aluminum target in ambient air at atmospheric pressure is developed. The hydrodynamic equations of mass, momentum and energy are solved by using an implicit scheme in Lagrangian form. The model considers the laser absorption to take place via inverse-bremsstrahlung due to electron-ion (e-i) process. The flux limited electron thermal energy transport and e-i thermal energy relaxation equations are solved implicitly. The experimental characterization of spatio-temporal evolution of the LISW in air generated by focusing a second harmonic (532 nm, 7ns) of Nd:YAG laser on to surface of Al is performed using shadowgraphy technique with a temporal resolution of 1.5 ns. The radius of SW (2 - 5 mm) and its pressure (40 - 80 MPa) observed in the experiments over 0.2 μs-10 μs time scales were comparable with the numerical results for laser intensities ranging from 2.0 × 1010 to 1.4 × 1011 W/cm2. The work is supported by Defence Research and Developement Organization, India through Grants-in-Aid Program.

  7. X-ray laser driven gold targets

    SciTech Connect

    Petrova, Tz. B. Whitney, K. G.; Davis, J.

    2014-03-15

    The femtosecond population dynamics of gold irradiated by a coherent high-intensity (>10{sup 17} W/cm{sup 2}) x-ray laser pulse is investigated theoretically. There are two aspects to the assembled model. One is the construction of a detailed model of platinum-like gold inclusive of all inner-shell states that are created by photoionization of atomic gold and decay either by radiative or Auger processes. Second is the computation of the population dynamics that ensues when an x-ray pulse is absorbed in gold. The hole state generation depends on the intensity and wavelength of the driving x-ray pulse. The excited state populations reached during a few femtosecond timescales are high enough to generate population inversions, whose gain coefficients are calculated. These amplified lines in the emitted x-ray spectrum provide important diagnostics of the radiation dynamics and also suggest a nonlinear way to increase the frequency of the coherent output x-ray pulses relative to the frequency of the driver input x-ray pulse.

  8. Invited Review Article: "Hands-on" laser-driven ion acceleration: A primer for laser-driven source development and potential applications.

    PubMed

    Schreiber, J; Bolton, P R; Parodi, K

    2016-07-01

    An overview of progress and typical yields from intense laser-plasma acceleration of ions is presented. The evolution of laser-driven ion acceleration at relativistic intensities ushers prospects for improved functionality and diverse applications which can represent a varied assortment of ion beam requirements. This mandates the development of the integrated laser-driven ion accelerator system, the multiple components of which are described. Relevant high field laser-plasma science and design of controlled optimum pulsed laser irradiation on target are dominant single shot (pulse) considerations with aspects that are appropriate to the emerging petawatt era. The pulse energy scaling of maximum ion energies and typical differential spectra obtained over the past two decades provide guidance for continued advancement of laser-driven energetic ion sources and their meaningful applications. PMID:27475539

  9. Invited Review Article: "Hands-on" laser-driven ion acceleration: A primer for laser-driven source development and potential applications

    NASA Astrophysics Data System (ADS)

    Schreiber, J.; Bolton, P. R.; Parodi, K.

    2016-07-01

    An overview of progress and typical yields from intense laser-plasma acceleration of ions is presented. The evolution of laser-driven ion acceleration at relativistic intensities ushers prospects for improved functionality and diverse applications which can represent a varied assortment of ion beam requirements. This mandates the development of the integrated laser-driven ion accelerator system, the multiple components of which are described. Relevant high field laser-plasma science and design of controlled optimum pulsed laser irradiation on target are dominant single shot (pulse) considerations with aspects that are appropriate to the emerging petawatt era. The pulse energy scaling of maximum ion energies and typical differential spectra obtained over the past two decades provide guidance for continued advancement of laser-driven energetic ion sources and their meaningful applications.

  10. Effect of nonthermal electrons on the shock formation in a laser driven plasma

    SciTech Connect

    Nicolaï, Ph. Feugeas, J.-L.; Nguyen-bui, T.; Tikhonchuk, V.; Batani, D.; Maheut, Y.; Antonelli, L.

    2015-04-15

    In the laser-driven inertial fusion schemes and specifically in the shock ignition concept, non thermal electrons may be generated. By depositing their energy far from the origin, they can significantly modify the target hydrodynamics. It is shown in this paper that these electrons may affect the laser-driven shock formation and its propagation through the target. These changes are induced by the target heating and depend on the electron energy spectrum. Furthermore, results of some passive diagnostic may be misinterpreted, indicating an apparent different pressure.

  11. Ultrafast laser-driven proton sources and dynamic proton imaging

    SciTech Connect

    Nickles, Peter V.; Schnuerer, Matthias; Sokollik, Thomas; Ter-Avetisyan, Sargis; Sandner, Wolfgang; Amin, Munib; Toncian, Toma; Willi, Oswald; Andreev, Alexander

    2008-07-15

    Ion bursts, accelerated by an ultrafast (40 fs) laser-assisted target normal sheath acceleration mechanism, can be adjusted so as to deliver a nearly pure proton beam. Such laser-driven proton bursts have predominantly a low transverse emittance and a broad kinetic spectrum suitable for continuous probing of the temporal evolution of spatially extended electric fields that arise after laser irradiation of thin foils. Fields with a strength of up to 10{sup 10} V/m were measured with a new streaklike proton deflectometry setup. The data show the temporal and spatial evolution of electric fields that are due to target charge-up and ion-front expansion following intense laser-target interaction at intensities of 10{sup 17}-10{sup 18} W/cm{sup 2}. Measurement of the field evolution is important to gain further insight into lateral electron-transport processes and the influence of field dynamics on ion beam properties.

  12. Tomography of an ultrafast laser driven proton source

    SciTech Connect

    Ter-Avetisyan, S.; Borghesi, M.; Schnuerer, M.; Sandner, W.; Nickles, P. V.; Nakamura, T.; Mima, K.

    2010-06-15

    Using a multichannel Thomson spectrometer we have implemented a tomographic approach allowing the reconstruction of the emission characteristic of a laser driven proton source with high energy and spatial resolution. The results demonstrate the complexity of the temporal and spatial characteristics of such a source. The emitted proton beam, which is laminar and divergent at high energies, becomes convergent at low energies. This implies that a fraction of the proton beam having this kinetic energy is emitted in a collimated way from the target at the ''turning point'' between these two behaviors. Only a finite fraction of the target surface is contributing to the ion spectrum, which is measured at a specific angle within the beam cone. Therefore the momentum distribution of the protons in the emitted beam at any point in space can be controlled by determining the proton source area.

  13. Laser-driven ICF experiments: Laboratory Report No. 223

    SciTech Connect

    McCrory, R.L.

    1991-04-01

    Laser irradiation uniformity is a key issue and is treated in some detail. The basic irradiation uniformity requirements and practical ways of achieving these requirements are both discussed, along with two beam-smoothing techniques: induced spatial incoherence (ISI), and smoothing by spectral dispersion (SSD). Experiments to measure and control the irradiation uniformity are also highlighted. Following the discussion of irradiation uniformity, a brief review of coronal physics is given, including the basic physical processes and their experimental signatures, together with a summary of pertinent diagnostics and results from experiments. Methods of determining ablation rates and thermal transport are also described. The hydrodynamics of laser-driven targets must be fully understood on the basis of experiments. Results from implosion experiments, including a brief description of the diagnostics, are presented. Future experiments aimed at determining ignition scaling and demonstrating hydrodynamically equivalent physics applicable to high-gain designs.

  14. Review of laser-driven ion sources and their applications.

    PubMed

    Daido, Hiroyuki; Nishiuchi, Mamiko; Pirozhkov, Alexander S

    2012-05-01

    For many years, laser-driven ion acceleration, mainly proton acceleration, has been proposed and a number of proof-of-principle experiments have been carried out with lasers whose pulse duration was in the nanosecond range. In the 1990s, ion acceleration in a relativistic plasma was demonstrated with ultra-short pulse lasers based on the chirped pulse amplification technique which can provide not only picosecond or femtosecond laser pulse duration, but simultaneously ultra-high peak power of terawatt to petawatt levels. Starting from the year 2000, several groups demonstrated low transverse emittance, tens of MeV proton beams with a conversion efficiency of up to several percent. The laser-accelerated particle beams have a duration of the order of a few picoseconds at the source, an ultra-high peak current and a broad energy spectrum, which make them suitable for many, including several unique, applications. This paper reviews, firstly, the historical background including the early laser-matter interaction studies on energetic ion acceleration relevant to inertial confinement fusion. Secondly, we describe several implemented and proposed mechanisms of proton and/or ion acceleration driven by ultra-short high-intensity lasers. We pay special attention to relatively simple models of several acceleration regimes. The models connect the laser, plasma and proton/ion beam parameters, predicting important features, such as energy spectral shape, optimum conditions and scalings under these conditions for maximum ion energy, conversion efficiency, etc. The models also suggest possible ways to manipulate the proton/ion beams by tailoring the target and irradiation conditions. Thirdly, we review experimental results on proton/ion acceleration, starting with the description of driving lasers. We list experimental results and show general trends of parameter dependences and compare them with the theoretical predictions and simulations. The fourth topic includes a review of

  15. Laser-driven fusion etching process

    DOEpatents

    Ashby, C.I.H.; Brannon, P.J.; Gerardo, J.B.

    1987-08-25

    The surfaces of solids are etched by a radiation-driven chemical reaction. The process involves exposing a substrate coated with a layer of a reactant material on its surface to radiation, e.g., a laser, to induce localized melting of the substrate which results in the occurrence of a fusion reaction between the substrate and coating material. The resultant reaction product and excess reactant salt are then removed from the surface of the substrate with a solvent which is relatively inert towards the substrate. The laser-driven chemical etching process is especially suitable for etching ionic substrates, e.g., LiNbO/sub 3/, such as used in electro-optical/acousto-optic devices. It is also suitable for applications wherein the etching process is required to produce an etched ionic substrate having a smooth surface morphology or when a very rapid etching rate is desired.

  16. Laser-driven fusion etching process

    DOEpatents

    Ashby, Carol I. H.; Brannon, Paul J.; Gerardo, James B.

    1989-01-01

    The surfaces of solid ionic substrates are etched by a radiation-driven chemical reaction. The process involves exposing an ionic substrate coated with a layer of a reactant material on its surface to radiation, e.g. a laser, to induce localized melting of the substrate which results in the occurrance of a fusion reaction between the substrate and coating material. The resultant reaction product and excess reactant salt are then removed from the surface of the substrate with a solvent which is relatively inert towards the substrate. The laser-driven chemical etching process is especially suitable for etching ionic salt substrates, e.g., a solid inorganic salt such as LiNbO.sub.3, such as used in electro-optical/acousto-optic devices. It is also suitable for applications wherein the etching process is required to produce an etched ionic substrate having a smooth surface morphology or when a very rapid etching rate is desired.

  17. Stop motion microphotography of laser driven plates

    SciTech Connect

    Frank, A.M.; Trott, W.M.

    1994-09-01

    Laser driven plates have been used for several years for high velocity shock wave and impact studies. Recent questions about the integrity and ablation rates of these plates coupled with an improved capability for microscopic stop motion photography led to this study. For these experiments, the plates were aluminum, coated on the ends of optical fibers. A high power laser pulse in the fiber ionizes the aluminum at the fiber/coating interface. The plasma thus created accelerates the remaining aluminum to high velocities, several kilometers per second. We defined {open_quotes}thick{close_quotes} or {open_quotes}thin{close_quotes} coatings as those where a flying plate (flyer) was launched vs. the material being completely ionized. Here we were specifically interested in the thick/thin boundary to develop data for the numerical models attempting to predict flyer behavior.

  18. Laser-Driven Mini-Thrusters

    SciTech Connect

    Sterling, Enrique; Lin Jun; Sinko, John; Kodgis, Lisa; Porter, Simon; Pakhomov, Andrew V.; Larson, C. William; Mead, Franklin B. Jr.

    2006-05-02

    Laser-driven mini-thrusters were studied using Delrin registered and PVC (Delrin registered is a registered trademark of DuPont) as propellants. TEA CO2 laser ({lambda} = 10.6 {mu}m) was used as a driving laser. Coupling coefficients were deduced from two independent techniques: force-time curves measured with a piezoelectric sensor and ballistic pendulum. Time-resolved ICCD images of the expanding plasma and combustion products were analyzed in order to determine the main process that generates the thrust. The measurements were also performed in a nitrogen atmosphere in order to test the combustion effects on thrust. A pinhole transmission experiment was performed for the study of the cut-off time when the ablation/air breakdown plasma becomes opaque to the incoming laser pulse.

  19. Fiber-coupled laser-driven flyer plates system.

    PubMed

    Zhao, Xing-hai; Zhao, Xiang; Shan, Guang-cun; Gao, Yang

    2011-04-01

    A system for the launch of hypervelocity flyer plates has been developed and characterized. Laser-driven flyers were launched from the substrate backed aluminum-alumina-aluminum sandwiched films. A laser-induced plasma is used to drive flyers with typical thickness of 5.5 μm and diameters of less than 1 mm, to achieve velocities of a few km/s. These flyer plates have many applications, from micrometeorite simulation to laser ignition. The flyer plates considered here have up to three layers: an ablation layer, to form plasma; an insulating layer; and a final, thicker layer that forms the final flyer plates. This technique was developed aiming at improving the energy efficiency of the system. The kinetic energy of flyers launched with the additional layer was found to be enhanced by a factor of near 2 (up to 30%). The optical fiber delivery system governs the output spatial profile of the laser spot and power capacity. Moreover, a technique for coupling high-power laser pulses into an optical fiber has been developed. This fiber optic system has been successfully used to launch flyer plates, and the surface finishing quality of the fiber was found to be an important factor. Importantly, measurements of the flyer performance including the mean velocities and planarity were made by an optical time-of-arrival technique using an optical fiber array probe, demonstrating the good planarity of the flyer and the achievable average velocity of 1.7 km/s with approaching 1 mm diameter. Finally, the relationship between flyer velocities and incident laser pulses energy was also investigated.

  20. Fiber-coupled laser-driven flyer plates system

    NASA Astrophysics Data System (ADS)

    Zhao, Xing-hai; Zhao, Xiang; Shan, Guang-cun; Gao, Yang

    2011-04-01

    A system for the launch of hypervelocity flyer plates has been developed and characterized. Laser-driven flyers were launched from the substrate backed aluminum-alumina-aluminum sandwiched films. A laser-induced plasma is used to drive flyers with typical thickness of 5.5 μm and diameters of less than 1 mm, to achieve velocities of a few km/s. These flyer plates have many applications, from micrometeorite simulation to laser ignition. The flyer plates considered here have up to three layers: an ablation layer, to form plasma; an insulating layer; and a final, thicker layer that forms the final flyer plates. This technique was developed aiming at improving the energy efficiency of the system. The kinetic energy of flyers launched with the additional layer was found to be enhanced by a factor of near 2 (up to 30%). The optical fiber delivery system governs the output spatial profile of the laser spot and power capacity. Moreover, a technique for coupling high-power laser pulses into an optical fiber has been developed. This fiber optic system has been successfully used to launch flyer plates, and the surface finishing quality of the fiber was found to be an important factor. Importantly, measurements of the flyer performance including the mean velocities and planarity were made by an optical time-of-arrival technique using an optical fiber array probe, demonstrating the good planarity of the flyer and the achievable average velocity of 1.7 km/s with approaching 1 mm diameter. Finally, the relationship between flyer velocities and incident laser pulses energy was also investigated.

  1. Towards a novel laser-driven method of exotic nuclei extraction-acceleration for fundamental physics and technology

    NASA Astrophysics Data System (ADS)

    Nishiuchi, M.; Sakaki, H.; Esirkepov, T. Zh.; Nishio, K.; Pikuz, T. A.; Faenov, A. Ya.; Skobelev, I. Yu.; Orlandi, R.; Pirozhkov, A. S.; Sagisaka, A.; Ogura, K.; Kanasaki, M.; Kiriyama, H.; Fukuda, Y.; Koura, H.; Kando, M.; Yamauchi, T.; Watanabe, Y.; Bulanov, S. V.; Kondo, K.; Imai, K.; Nagamiya, S.

    2016-04-01

    A combination of a petawatt laser and nuclear physics techniques can crucially facilitate the measurement of exotic nuclei properties. With numerical simulations and laser-driven experiments we show prospects for the Laser-driven Exotic Nuclei extraction-acceleration method proposed in [M. Nishiuchi et al., Phys, Plasmas 22, 033107 (2015)]: a femtosecond petawatt laser, irradiating a target bombarded by an external ion beam, extracts from the target and accelerates to few GeV highly charged short-lived heavy exotic nuclei created in the target via nuclear reactions.

  2. Interferometry and high speed photography of laser-driven flyer plates

    SciTech Connect

    Paisley, D.L.; Montoya, N.I.; Stahl, D.B.; Garcia, I.A.

    1989-01-01

    Laser-driven thin (2-10-/mu/ thick) plates of aluminum and copper are accelerated to velocities /ge/5 km/s by a 1.06-/mu/ wavelength Nd:YAG 8-10 ns FWHM laser pulse at power densities 0.7-4.0 GW/cm/sup 2/. Accelerations /ge/10/sup 9/ km/s/sup 2/ have been achieved. The acceleration and velocity of these 0.4-1.0-mm-diameter plates are experimentally recorded by velocity interferometry (VISAR) and the planarity of impact by streak photography. 6 refs., 7 figs.

  3. Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams

    SciTech Connect

    Bang, W.; Albright, B. J.; Bradley, P. A.; Vold, E. L.; Boettger, J. C.; Fernández, J. C.

    2015-12-01

    In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ΔE/E~20%, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. As a result, the robustness of the expected heating uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.

  4. Uniform heating of materials into the warm dense matter regime with laser-driven quasimonoenergetic ion beams

    DOE PAGES

    Bang, W.; Albright, B. J.; Bradley, P. A.; Vold, E. L.; Boettger, J. C.; Fernández, J. C.

    2015-12-01

    In a recent experiment at the Trident laser facility, a laser-driven beam of quasimonoenergetic aluminum ions was used to heat solid gold and diamond foils isochorically to 5.5 and 1.7 eV, respectively. Here theoretical calculations are presented that suggest the gold and diamond were heated uniformly by these laser-driven ion beams. According to calculations and SESAME equation-of-state tables, laser-driven aluminum ion beams achievable at Trident, with a finite energy spread of ΔE/E~20%, are expected to heat the targets more uniformly than a beam of 140-MeV aluminum ions with zero energy spread. As a result, the robustness of the expected heatingmore » uniformity relative to the changes in the incident ion energy spectra is evaluated, and expected plasma temperatures of various target materials achievable with the current experimental platform are presented.« less

  5. Laser-driven nonlinear cluster dynamics

    SciTech Connect

    Fennel, Th.; Meiwes-Broer, K.-H.; Tiggesbaeumker, J.; Reinhard, P.-G.; Dinh, P. M.; Suraud, E.

    2010-04-15

    Laser excitation of nanometer-sized atomic and molecular clusters offers various opportunities to explore and control ultrafast many-particle dynamics. Whereas weak laser fields allow the analysis of photoionization, excited-state relaxation, and structural modifications on these finite quantum systems, large-amplitude collective electron motion and Coulomb explosion can be induced with intense laser pulses. This review provides an overview of key phenomena arising from laser-cluster interactions with focus on nonlinear optical excitations and discusses the underlying processes according to the current understanding. A general survey covers basic cluster properties and excitation mechanisms relevant for laser-driven cluster dynamics. Then, after an excursion in theoretical and experimental methods, results for single-photon and multiphoton excitations are reviewed with emphasis on signatures from time- and angular-resolved photoemission. A key issue of this review is the broad spectrum of phenomena arising from clusters exposed to strong fields, where the interaction with the laser pulse creates short-lived and dense nanoplasmas. The implications for technical developments such as the controlled generation of ion, electron, and radiation pulses will be addressed along with corresponding examples. Finally, future prospects of laser-cluster research as well as experimental and theoretical challenges are discussed.

  6. Photonic Crystal Laser-Driven Accelerator Structures

    SciTech Connect

    Cowan, Benjamin M.

    2007-08-22

    Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques.

  7. Progress of Laser-Driven Plasma Accelerators

    SciTech Connect

    Nakajima, Kazuhisa

    2007-07-11

    There is a great interest worldwide in plasma accelerators driven by ultra-intense lasers which make it possible to generate ultra-high gradient acceleration and high quality particle beams in a much more compact size compared with conventional accelerators. A frontier research on laser and plasma accelerators is focused on high energy electron acceleration and ultra-short X-ray and Tera Hertz radiations as their applications. These achievements will provide not only a wide range of sciences with benefits of a table-top accelerator but also a basic science with a tool of ultrahigh energy accelerators probing an unknown extremely microscopic world.Harnessing the recent advance of ultra-intense ultra-short pulse lasers, the worldwide research has made a tremendous breakthrough in demonstrating high-energy high-quality particle beams in a compact scale, so called ''dream beams on a table top'', which represents monoenergetic electron beams from laser wakefield accelerators and GeV acceleration by capillary plasma-channel laser wakefield accelerators. This lecture reviews recent progress of results on laser-driven plasma based accelerator experiments to quest for particle acceleration physics in intense laser-plasma interactions and to present new outlook for the GeV-range high-energy laser plasma accelerators.

  8. Laser-driven ion acceleration with hollow laser beams

    SciTech Connect

    Brabetz, C. Kester, O.; Busold, S.; Bagnoud, V.; Cowan, T.; Deppert, O.; Jahn, D.; Roth, M.; Schumacher, D.

    2015-01-15

    The laser-driven acceleration of protons from thin foils irradiated by hollow high-intensity laser beams in the regime of target normal sheath acceleration (TNSA) is reported for the first time. The use of hollow beams aims at reducing the initial emission solid angle of the TNSA source, due to a flattening of the electron sheath at the target rear side. The experiments were conducted at the PHELIX laser facility at the GSI Helmholtzzentrum für Schwerionenforschung GmbH with laser intensities in the range from 10{sup 18} W cm{sup −2} to 10{sup 20} W cm{sup −2}. We observed an average reduction of the half opening angle by (3.07±0.42)° or (13.2±2.0)% when the targets have a thickness between 12 μm and 14 μm. In addition, the highest proton energies were achieved with the hollow laser beam in comparison to the typical Gaussian focal spot.

  9. Laser-driven relativistic electron beam interaction with solid dielectric

    NASA Astrophysics Data System (ADS)

    Sarkisov, G. S.; Ivanov, V. V.; Leblanc, P.; Sentoku, Y.; Yates, K.; Wiewior, P.; Chalyy, O.; Astanovitskiy, A.; Bychenkov, V. Yu.; Jobe, D.; Spielman, R. B.

    2012-07-01

    The multi-frames shadowgraphy, interferometry and polarimetry diagnostics with sub-ps time resolution were used for an investigation of ionization wave dynamics inside a glass target induced by laser-driven relativistic electron beam. Experiments were done using the 50 TW Leopard laser at the UNR. For a laser flux of ˜2×1018W/cm2 a hemispherical ionization wave propagates at c/3. The maximum of the electron density inside the glass target is ˜2×1019cm-3. Magnetic and electric fields are less than ˜15 kG and ˜1 MV/cm, respectively. The electron temperature has a maximum of ˜0.5 eV. 2D interference phase shift shows the "fountain effect" of electron beam. The very low ionization inside glass target ˜0.1% suggests a fast recombination at the sub-ps time scale. 2D PIC-simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields.

  10. Laser-driven ion acceleration from relativistically transparent nanotargets

    NASA Astrophysics Data System (ADS)

    Hegelich, B. M.; Pomerantz, I.; Yin, L.; Wu, H. C.; Jung, D.; Albright, B. J.; Gautier, D. C.; Letzring, S.; Palaniyappan, S.; Shah, R.; Allinger, K.; Hörlein, R.; Schreiber, J.; Habs, D.; Blakeney, J.; Dyer, G.; Fuller, L.; Gaul, E.; Mccary, E.; Meadows, A. R.; Wang, C.; Ditmire, T.; Fernandez, J. C.

    2013-08-01

    Here we present experimental results on laser-driven ion acceleration from relativistically transparent, overdense plasmas in the break-out afterburner (BOA) regime. Experiments were preformed at the Trident ultra-high contrast laser facility at Los Alamos National Laboratory, and at the Texas Petawatt laser facility, located in the University of Texas at Austin. It is shown that when the target becomes relativistically transparent to the laser, an epoch of dramatic acceleration of ions occurs that lasts until the electron density in the expanding target reduces to the critical density in the non-relativistic limit. For given laser parameters, the optimal target thickness yielding the highest maximum ion energy is one in which this time window for ion acceleration overlaps with the intensity peak of the laser pulse. A simple analytic model of relativistically induced transparency is presented for plasma expansion at the time-evolving sound speed, from which these times may be estimated. The maximum ion energy attainable is controlled by the finite acceleration volume and time over which the BOA acts.

  11. Laser-driven relativistic electron beam interaction with solid dielectric

    SciTech Connect

    Sarkisov, G. S.; Ivanov, V. V.; Leblanc, P.; Sentoku, Y.; Yates, K.; Wiewior, P.; Chalyy, O.; Astanovitskiy, A.; Bychenkov, V. Yu.; Jobe, D.; Spielman, R. B.

    2012-07-30

    The multi-frames shadowgraphy, interferometry and polarimetry diagnostics with sub-ps time resolution were used for an investigation of ionization wave dynamics inside a glass target induced by laser-driven relativistic electron beam. Experiments were done using the 50 TW Leopard laser at the UNR. For a laser flux of {approx}2 Multiplication-Sign 10{sup 18}W/cm{sup 2} a hemispherical ionization wave propagates at c/3. The maximum of the electron density inside the glass target is {approx}2 Multiplication-Sign 10{sup 19}cm{sup -3}. Magnetic and electric fields are less than {approx}15 kG and {approx}1 MV/cm, respectively. The electron temperature has a maximum of {approx}0.5 eV. 2D interference phase shift shows the 'fountain effect' of electron beam. The very low ionization inside glass target {approx}0.1% suggests a fast recombination at the sub-ps time scale. 2D PIC-simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields.

  12. Foam-induced smoothing studied through laser-driven shock waves

    PubMed

    Batani; Nazarov; Hall; Lower; Koenig; Faral; Benuzzi-Mounaix; Grandjouan

    2000-12-01

    The influence of foams on the uniformity of laser energy deposition has been studied by measuring laser-driven shock waves breakout from foam-aluminum layered targets. Well characterized laser nonuniformities have been produced first by using phase zone plates to get a smooth beam and then by inserting different opaque grids before the foam. Smoothing has been studied as a function of foam density and grid materials (producing different radiative effects). PMID:11138157

  13. Absolute equation of state measurements of iron using laser driven shocks

    NASA Astrophysics Data System (ADS)

    Benuzzi-Mounaix, A.; Koenig, M.; Huser, G.; Faral, B.; Batani, D.; Henry, E.; Tomasini, M.; Marchet, B.; Hall, T. A.; Boustie, M.; de Rességuier, Th.; Hallouin, M.; Guyot, F.; Andrault, D.; Charpin, Th.

    2002-06-01

    First absolute equation of state measurements obtained for iron with laser driven shock waves are presented. The shock velocity and the free surface velocity of compressed iron have been simultaneously measured by using a VISAR diagnostic, and step targets. The pressure range 1-8 Mbar has been investigated, which is directly relevant to planetary physics. The experiments have been performed at the Laboratoire pour l'Utilisation des Lasers Intenses of the Ecole Polytechnique.

  14. Characterization of a novel, short pulse laser-driven neutron source

    SciTech Connect

    Jung, D.; Falk, K.; Guler, N.; Devlin, M.; Favalli, A.; Fernandez, J. C.; Gautier, D. C.; Haight, R.; Hamilton, C. E.; Hegelich, B. M.; Johnson, R. P.; Merrill, F.; Schoenberg, K.; Shimada, T.; Taddeucci, T.; Tybo, J. L.; Wender, S. A.; Wilde, C. H.; Wurden, G. A.; Deppert, O.; and others

    2013-05-15

    We present a full characterization of a short pulse laser-driven neutron source. Neutrons are produced by nuclear reactions of laser-driven ions deposited in a secondary target. The emission of neutrons is a superposition of an isotropic component into 4π and a forward directed, jet-like contribution, with energies ranging up to 80 MeV. A maximum flux of 4.4 × 10{sup 9} neutrons/sr has been observed and used for fast neutron radiography. On-shot characterization of the ion driver and neutron beam has been done with a variety of different diagnostics, including particle detectors, nuclear reaction, and time-of-flight methods. The results are of great value for future optimization of this novel technique and implementation in advanced applications.

  15. Fast ignition by laser driven particle beams of very high intensity

    SciTech Connect

    Hora, H.; Read, M. N.; Badziak, J.; Glowacz, S.; Jablonski, S.; Wolowski, J.; Skladanowski, Z.; Li, Y.-T.; Liang, T.-J.; Liu Hong; Sheng Zhengming; Zhang Jie; Cang Yu; Osman, F.; Miley, G. H.; Zhang Weiyan; He Xiantu; Peng Hansheng; Jungwirth, K.; Rohlena, K.

    2007-07-15

    Anomalous observations using the fast ignition for laser driven fusion energy are interpreted and experimental and theoretical results are reported which are in contrast to the very numerous effects usually observed at petawatt-picosecond laser interaction with plasmas. These anomalous mechanisms result in rather thin blocks (pistons) of these nonlinear (ponderomotive) force driven highly directed plasmas of modest temperatures. The blocks consist in space charge neutral plasmas with ion current densities above 10{sup 10} A/cm{sup 2}. For the needs of applications in laser driven fusion energy, much thicker blocks are required. This may be reached by a spherical configuration where a conical propagation may lead to thick blocks for interaction with targets. First results are reported in view of applications for the proton fast igniter and other laser-fusion energy schemes.

  16. Laser-driven flyer plates for reactive materials research

    NASA Astrophysics Data System (ADS)

    Fujiwara, Hiroki; Brown, Kathryn; Conner, Rusty; Dlott, Dana

    2009-06-01

    We have developed a laser-driven flyer plate apparatus to study shock-induced chemistry of reactive materials (RM) containing Al nanoparticles. Reactive materials are generally composed of fuel and oxidizer particles. Under shock compression these components mix and react to liberate energy and do work. Understanding how shocked nanoparticle compositions undergo exothermic chemistry is a difficult problem in materials science, since the reactivity is a function of both chemical and materials parameters. Laser-launched flyer plates coated with a small amount of the RM are made to impact a window and their emission spectrum is studied. Achieving a good reproducible launch is a problem, and is generally limited by the quality of the laser beam profile and the flyer target. Our approach exploits recent advances in beam shaping and microfabrication. This material is based on work supported by the US Army Research Office under award number W911NF-04-1-0178 and the Air Force Office of Scientific Research under award number FA9550-06-1-0235. Kathryn Brown acknowledges support from the Stewardship Sciences Academic Alliance Program from the Carnegie-DOE Alliance Center under grant number DOE CIW 4-3253-13.

  17. Laser driven hydrodynamic instability experiments. Revision 1

    SciTech Connect

    Remington, B.A.; Weber, S.V.; Haan, S.W.; Kilkenny, J.D.; Glendinning, S.G.; Wallace, R.J.; Goldstein, W.H.; Wilson, B.G.; Nash, J.K.

    1993-02-17

    An extensive series of experiments has been conducted on the Nova laser to measure hydrodynamic instabilities in planar foils accelerated by x-ray ablation. Single mode experiments allow a measurement of the fundamental growth rates from the linear well into the nonlinear regime. Two-mode foils allow a first direct observation of mode coupling. Surface-finish experiments allow a measurement of the evolution of a broad spectrum of random initial modes.

  18. Metal doped fluorocarbon polymer films prepared by plasma polymerization using an RF planar magnetron target

    NASA Astrophysics Data System (ADS)

    Biederman, H.; Holland, L.

    1983-07-01

    Fluorocarbon films have been prepared by plasma polymerization of CF4 using an RF planar magnetron with an aluminium target. More than one order of magnitude higher deposition rate has been achieved in comparison with an r.f. diode system operated under similar conditions of monomer pressure and flow rate and power input. A glow discharge in a CF4[25%]-argon [75%] mixture was used to incorporate aluminium from a target electrode into the polymer films. The foregoing mixture and another based on CF4 [87%]-argon [13%] were used in the RF discharge with a copper target. Some experiments with a gold target and pure CF4 as the inlet gas were also made. The film structure was examined by SEM and TEM and characteristic micrographs are presented here. The composition of the films was estimated from an AES study. The sheet resistivity of the metal/polymer film complexes was determined.

  19. Measurements of shock heating using Al absorption spectroscopy in planar targets (abstract)

    SciTech Connect

    Boehly, T. R.; Yaakobi, B.; Knauer, J. P.; Meyerhofer, D. D.; Town, R.; Hoarty, D.; Bahr, R.; Millecchia, M.

    2001-01-01

    In direct-drive laser fusion, the tradeoff between stability and overall efficiency requires precise control of the implosion isentrope. Most target designs use the temporal shape of the drive pulse to create shocks that slightly preheat the capsule shell and establish the isentrope for the rest of the implosion. Also, the use of foam overcoatings has been proposed as a means to reduce laser imprinting. These foams can alter the structure and intensity of the initial shock. To ensure that our hydrocodes adequately model these effects it is important that shock heating of targets be measured and understood. We report on measurements of shock heating in planar targets irradiated with the OMEGA laser system. Planar 20-{mu}m-thick CH targets were irradiated with six ultraviolet (UV) beams at intensities of {approx}2x10{sup 14}W/cm{sup 2} with temporally square and ramped pulses. Some targets also have low-density foam (30 mg/cc) on the irradiated surface. A thin (0.5 {mu}m) Al layer, imbedded in the target, is probed with x rays from a Sm backlighter. The 1s-2p absorption lines in the Al are observed with a streaked x-ray spectrometer. The absorption lines from the F-like to Ne-like ion populations provide a measure of the temperature of the target as a function of time. We present data on measurements that show the relative shock heating by square and ramp pulses. We also present results of atomic physics calculations1 of the absorption spectra that are used to infer the target temperature and show results from hydrodynamic simulations of the experiments.

  20. Laser-Driven Magnetic-Flux Compression: Theory and Experiments

    NASA Astrophysics Data System (ADS)

    Chang, Po-Yu

    Laser-Driven Flux Compression (LDFC) is a technique used to compress the magnetic field in Inertial Confinement Fusion (ICF) targets driven by a laser. The compressed field in the ICF target is beneficial to the target performance. Embedding a magnetic field in a conventional ICF target reduces the heat loss if the central hot spot becomes magnetized. Higher hot spot temperatures lower the requirements on the implosion velocities, leading to larger shell masses and therefore higher energy gains. For a typical hot spot density of ˜ 10 g/cc, and temperature of ˜ 5 keV, a magnetic field B > 10 MG is required to magnetize the hot spot. Such a strong magnetic field is difficult to be externally generated. Instead of providing the strong magnetic field directly, a seed magnetic field much lower than the required field was provided and compressed by the imploding shell. The field needs to be compressed faster than its diffusion due to the finite resistivity of the fill gas and the shell. This requires the gas in the target being ionized by the shock so that the flux is frozen in the gas region and compressed by the imploding shell. In this thesis, theoretical models, numerical calculations, and basic experiments of flux compression in ICF targets are investigated. A measurable Lawson criterion, developed as a metric to assess the performance of an ICF target, is used to evaluate the benefits of suppressing the heat conductivity. A simple model is used to describe the process of field compression by shock waves during the shell implosion. The magnetohydrodynamics codes, LILAC-MHD and LILAC-MHD-SP, are used to simulate the field compression and the target performance. The Magneto-Inertial-Fusion-Electrical-Discharge-System (MIFEDS), the device providing the seed magnetic field, is described in detail. LDFC experiments using the OMEGA laser at the Laboratory for Laser Energetics are presented. The results include the first demonstration of ˜ 550-fold amplification of a 50

  1. Recent advances in laser-driven neutron sources

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.

    2016-11-01

    Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.

  2. Characterization of Heat-Wave Propagation through Laser-Driven Ti-Doped Underdense Plasma

    SciTech Connect

    Tanabe, M; Nishimura, H; Ohnishi, N; Fournier, K B; Fujioka, S; Iwamae, A; Hansen, S B; Nagai, K; Girard, F; Primout, M; Villette, B; Brebion, D; Mima, K

    2009-02-23

    The propagation of a laser-driven heat-wave into a Ti-doped aerogel target was investigated. The temporal evolution of the electron temperature was derived by means of Ti K-shell x-ray spectroscopy, and compared with two-dimensional radiation hydrodynamic simulations. Reasonable agreement was obtained in the early stage of the heat-wave propagation. In the later phase, laser absorption, the propagation of the heat wave, and hydrodynamic motion interact in a complex manner, and the plasma is mostly re-heated by collision and stagnation at the target central axis.

  3. Characterisation of electron beams from laser-driven particle accelerators

    SciTech Connect

    Brunetti, E.; Manahan, G. G.; Shanks, R. P.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A.

    2012-12-21

    The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators.

  4. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas.

    PubMed

    Gotchev, O V; Knauer, J P; Chang, P Y; Jang, N W; Shoup, M J; Meyerhofer, D D; Betti, R

    2009-04-01

    A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged into a low-mass coil that surrounds the laser target. A >15 T target field has been demonstrated using a <100 J capacitor bank, a laser-triggered switch, and a low-impedance (<1 Omega) strip line. The device has been integrated into a series of magnetic-flux-compression experiments on the 60 beam, 30 kJ OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The initial application is a novel magneto-inertial fusion approach [O. V. Gotchev et al., J. Fusion Energy 27, 25 (2008)] to inertial confinement fusion (ICF), where the amplified magnetic field can inhibit thermal conduction losses from the hot spot of a compressed target. This can lead to the ignition of massive shells imploded with low velocity-a way of reaching higher gains than is possible with conventional ICF.

  5. Seeding Magnetic Fields for Laser-Driven Flux Compression in High-Energy-Density Plasmas

    SciTech Connect

    Gotchev, O.V.; Knauer, J.P.; Chang, P.Y.; Jang, N.W.; Shoup III, M.J.; Meyerhofer, D.D.; Betti, R.

    2010-03-23

    A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged into a low-mass coil that surrounds the laser target. A >15 T target field has been demonstrated using a <100 J capacitor bank, a laser-triggered switch, and a low-impedance (<1 Omega) strip line. The device has been integrated into a series of magnetic-flux-compression experiments on the 60 beam, 30 kJ OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The initial application is a novel magneto-inertial fusion approach [O. V. Gotchev et al., J. Fusion Energy 27, 25 (2008)] to inertial confinement fusion (ICF), where the amplified magnetic field can inhibit thermal conduction losses from the hot spot of a compressed target. This can lead to the ignition of massive shells imploded with low velocity—a way of reaching higher gains than is possible with conventional ICF.

  6. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas.

    PubMed

    Gotchev, O V; Knauer, J P; Chang, P Y; Jang, N W; Shoup, M J; Meyerhofer, D D; Betti, R

    2009-04-01

    A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged into a low-mass coil that surrounds the laser target. A >15 T target field has been demonstrated using a <100 J capacitor bank, a laser-triggered switch, and a low-impedance (<1 Omega) strip line. The device has been integrated into a series of magnetic-flux-compression experiments on the 60 beam, 30 kJ OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. The initial application is a novel magneto-inertial fusion approach [O. V. Gotchev et al., J. Fusion Energy 27, 25 (2008)] to inertial confinement fusion (ICF), where the amplified magnetic field can inhibit thermal conduction losses from the hot spot of a compressed target. This can lead to the ignition of massive shells imploded with low velocity-a way of reaching higher gains than is possible with conventional ICF. PMID:19405657

  7. Bacterial cells enhance laser driven ion acceleration

    PubMed Central

    Dalui, Malay; Kundu, M.; Trivikram, T. Madhu; Rajeev, R.; Ray, Krishanu; Krishnamurthy, M.

    2014-01-01

    Intense laser produced plasmas generate hot electrons which in turn leads to ion acceleration. Ability to generate faster ions or hotter electrons using the same laser parameters is one of the main outstanding paradigms in the intense laser-plasma physics. Here, we present a simple, albeit, unconventional target that succeeds in generating 700 keV carbon ions where conventional targets for the same laser parameters generate at most 40 keV. A few layers of micron sized bacteria coating on a polished surface increases the laser energy coupling and generates a hotter plasma which is more effective for the ion acceleration compared to the conventional polished targets. Particle-in-cell simulations show that micro-particle coated target are much more effective in ion acceleration as seen in the experiment. We envisage that the accelerated, high-energy carbon ions can be used as a source for multiple applications. PMID:25102948

  8. Fountain effect of laser-driven relativistic electrons inside a solid dielectric

    SciTech Connect

    Sarkisov, G. S.; Jobe, D.; Spielman, R.; Leblanc, P.; Ivanov, V. V.; Sentoku, Y.; Yates, K.; Wiewior, P.; Bychenkov, V. Yu.

    2011-09-26

    Ultrafast interferometry with sub-ps resolution has been applied for the direct measurement of an electron density induced by a laser-driven relativistic electron beam inside a solid dielectric. The topology of the interference phase shift shows the signature of the ''fountain effect,'' a narrow electron beam that fans out from the propagation axis and heads back to the target surface. Two-dimensional particle-in-cell (PIC) computer simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields. The very low ionization, {approx}0.1%, observed after the heating pulse suggests a fast recombination at the sub-ps time scale.

  9. Laser driven quasi-isentropic compression experiments (ICE) for dynamically loading materials at high strain rates

    SciTech Connect

    Smith, R; Eggert, J; Celliers, P; Jankowski, A; Lorenz, T; Moon, S; Edwards, M J; Collins, G

    2006-03-30

    We demonstrate the recently developed technique of laser driven isentropic compression (ICE) for dynamically compressing Al samples at high loading rates close to the room temperature isentrope and up to peak stresses above 100GPa. Upon analysis of the unloading profiles from a multi-stepped Al/LiF target a continuous path through Stress-Density space may be calculated. For materials with phase transformations ramp compression techniques reveals the location of equilibrium phase boundaries and provide information on the kinetics of the lattice re-ordering.

  10. Characterization of laser-driven shock waves in solids using a fiber optic pressure probe

    DOE PAGES

    Cranch, Geoffrey A.; Lunsford, Robert; Grun, Jacob; Weaver, James; Compton, Steve; May, Mark; Kostinski, Natalie

    2013-11-08

    Measurement of laser-driven shock wave pressure in solid blocks of polymethyl methacrylate is demonstrated using fiber optic pressure probes. Three probes based on a fiber Fabry–Perot, fiber Bragg grating, and interferometric fiber tip sensor are tested and compared. Shock waves are generated using a high-power laser focused onto a thin foil target placed in close proximity to the test blocks. The fiber Fabry–Perot sensor appears capable of resolving the shock front with a rise time of 91 ns. As a result, the peak pressure is estimated, using a separate shadowgraphy measurement, to be 3.4 GPa.

  11. Laser-driven shock experiments at PALS

    NASA Astrophysics Data System (ADS)

    Batani, Dimitri; Stabile, H.; Ravasio, A.; Desai, Tara; Lucchini, G.; Strati, F.; Ullschmied, Jiri; Krousky, E.; Skala, Jiri; Kralikova, Bozena; Pfeifer, Miroslav; Kadlec, Christelle; Mocek, Tomas; Prag, A. R.; Nishimura, Hiroaki; Ochi, Yoshihiro; Zvorykin, Vladimir D.

    2004-04-01

    Here we discuss the results of the experiments performed using the Prague Asterix Laser System (PALS) of wavelength 0.44 μm (3ω of Iodine laser) and energy ~ 250 J in 450 ps (FWHM). Two sets of experiments were carried out, firstly, generation of high quality shocks which were steady in time and uniform in space using Phase Zone Plates (PZP), to establish the scaling laws of shock pressure Vs. laser intensity for aluminum foil target of thickness 8 μm. Our results show a good agreement with the delocalized laser absorption model. Secondly, measurements of the Equation of State of carbon compressed by shocks at megabars of pressure have been realized. Equation of State were obtained for carbon using the impedance mismatch technique. Step targets allowed the simultaneous measurements of shock velocity in two different materials. Aluminum was used as a reference material and relative EOS data for carbon have been obtained up to ~ 14 Mbar pressure.

  12. Dynamic control of laser driven proton beams by exploiting self-generated, ultrashort electromagnetic pulses

    NASA Astrophysics Data System (ADS)

    Kar, S.; Ahmed, H.; Nersisyan, G.; Brauckmann, S.; Hanton, F.; Giesecke, A. L.; Naughton, K.; Willi, O.; Lewis, C. L. S.; Borghesi, M.

    2016-05-01

    As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets, high amplitude EM pulses propagate away from the interaction point and are transported along any stalks and wires attached to the target. The propagation of these high amplitude pulses along a thin wire connected to a laser irradiated target was diagnosed via the proton radiography technique, measuring a pulse duration of ˜20 ps and a pulse velocity close to the speed of light. The strong electric field associated with the EM pulse can be exploited for controlling dynamically the proton beams produced from a laser-driven source. Chromatic divergence control of broadband laser driven protons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supporting wire around the proton beam axis to create a helical coil structure. In addition to providing focussing and energy selection, the technique has the potential to post-accelerate the transiting protons by the longitudinal component of the curved electric field lines produced by the helical coil lens.

  13. Laser-driven inertial ion focusing.

    PubMed

    Zhuo, H B; Yu, Wei; Yu, M Y; Xu, H; Wang, X; Shen, B F; Sheng, Z M; Zhang, J

    2009-01-01

    A Hohlraum-like configuration is proposed for realizing a simple compact source for neutrons. A laser pulse enters a tiny thin-shelled hollow-sphere target through a small opening and is self-consistently trapped in the cavity. The electrons in the inner shell-wall region are expelled by the light pressure. The resulting space-charge field compresses the local ions into a thin layer that becomes strongly heated. An inward expansion of ions into the shell cavity then occurs, resulting in the formation at the cavity center of a hot spot of ions at high density and temperature, similar to that in inertial electrostatic confinement.

  14. Laser-driven quasimonoenergetic proton burst from water spray target

    SciTech Connect

    Ramakrishna, B.; Murakami, M.; Borghesi, M.; Ter-Avetisyan, S.; Ehrentraut, L.; Schnuerer, M.; Steinke, S.; Nickles, P. V.; Psikal, J.; Tikhonchuk, V.

    2010-08-15

    A narrow band proton bursts at energies of 1.6{+-}0.08 MeV were observed when a water spray consisting of (150 nm)-diameter droplets was irradiated by an ultrashort laser pulse of about 45 fs duration and at an intensity of 5x10{sup 19} W/cm{sup 2}. The results are explained by a Coulomb explosion of sub-laser-wavelength droplets composed of two ion species. The laser prepulse plays an important role. By pre-evaporation of the droplets, its diameter is reduced so that the main pulse can interact with a smaller droplet, and this remaining bulk can be ionized to high states. In the case of water, the mixture of quite differently charged ions establishes an 'iso-Coulomb-potential' during the droplet explosion such that protons are accelerated to a peak energy with a narrow energy spread. The model explains this crucial point, which differs critically from usual Coulomb explosion or ion sheath acceleration mechanisms.

  15. Laser-driven electron acceleration in an inhomogeneous plasma channel

    SciTech Connect

    Zhang, Rong; Cheng, Li-Hong; Xue, Ju-Kui

    2015-12-15

    We study the laser-driven electron acceleration in a transversely inhomogeneous plasma channel. We find that, in inhomogeneous plasma channel, the developing of instability for electron acceleration and the electron energy gain can be controlled by adjusting the laser polarization angle and inhomogeneity of plasma channel. That is, we can short the accelerating length and enhance the energy gain in inhomogeneous plasma channel by adjusting the laser polarization angle and inhomogeneity of the plasma channel.

  16. Radiobiological study by using laser-driven proton beams

    SciTech Connect

    Yogo, A.; Nishikino, M.; Mori, M.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Kawachi, T.

    2009-07-25

    Particle acceleration driven by high-intensity laser systems is widely attracting interest as a potential alternative to conventional ion acceleration, including ion accelerator applications to tumor therapy. Recent works have shown that a high intensity laser pulse can produce single proton bunches of a high current and a short pulse duration. This unique feature of laser-ion acceleration can lead to progress in the development of novel ion sources. However, there has been no experimental study of the biological effects of laser-driven ion beams. We describe in this report the first demonstrated irradiation effect of laser-accelerated protons on human lung cancer cells. In-vitro A549 cells are irradiated with a proton dose of 20 Gy, resulting in a distinct formation of gamma-H2AX foci as an indicator of DNA double-strand breaks. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. The laser-driven ion beam is apotential excitation source for time-resolved determination of hydroxyl (OH) radical yield, which will explore relationship between the fundamental chemical reactions of radiation effects and consequent biological processes.

  17. Space-based laser-driven MHD generator: Feasibility study

    NASA Technical Reports Server (NTRS)

    Choi, S. H.

    1986-01-01

    The feasibility of a laser-driven MHD generator, as a candidate receiver for a space-based laser power transmission system, was investigated. On the basis of reasonable parameters obtained in the literature, a model of the laser-driven MHD generator was developed with the assumptions of a steady, turbulent, two-dimensional flow. These assumptions were based on the continuous and steady generation of plasmas by the exposure of the continuous wave laser beam thus inducing a steady back pressure that enables the medium to flow steadily. The model considered here took the turbulent nature of plasmas into account in the two-dimensional geometry of the generator. For these conditions with the plasma parameters defining the thermal conductivity, viscosity, electrical conductivity for the plasma flow, a generator efficiency of 53.3% was calculated. If turbulent effects and nonequilibrium ionization are taken into account, the efficiency is 43.2%. The study shows that the laser-driven MHD system has potential as a laser power receiver for space applications because of its high energy conversion efficiency, high energy density and relatively simple mechanism as compared to other energy conversion cycles.

  18. Radiobiological study by using laser-driven proton beams

    NASA Astrophysics Data System (ADS)

    Yogo, A.; Sato, K.; Nishikino, M.; Mori, M.; Teshima, T.; Numasaki, H.; Murakami, M.; Demizu, Y.; Akagi, S.; Nagayama, S.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Oishi, Y.; Sugiyama, H.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Tanoue, M.; Sugiyama, H.; Sasao, H.; Wakai, D.; Kawachi, T.; Nishimura, H.; Bolton, P. R.; Daido, H.

    2009-07-01

    Particle acceleration driven by high-intensity laser systems is widely attracting interest as a potential alternative to conventional ion acceleration, including ion accelerator applications to tumor therapy. Recent works have shown that a high intensity laser pulse can produce single proton bunches of a high current and a short pulse duration. This unique feature of laser-ion acceleration can lead to progress in the development of novel ion sources. However, there has been no experimental study of the biological effects of laser-driven ion beams. We describe in this report the first demonstrated irradiation effect of laser-accelerated protons on human lung cancer cells. In-vitro A549 cells are irradiated with a proton dose of 20 Gy, resulting in a distinct formation of γ-H2AX foci as an indicator of DNA double-strand breaks. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. The laser-driven ion beam is apotential excitation source for time-resolved determination of hydroxyl (OH) radical yield, which will explore relationship between the fundamental chemical reactions of radiation effects and consequent biological processes.

  19. Study of transport of laser-driven relativistic electrons in solid materials

    NASA Astrophysics Data System (ADS)

    Leblanc, Philippe

    With the ultra intense lasers available today, it is possible to generate very hot electron beams in solid density materials. These intense laser-matter interactions result in many applications which include the generation of ultrashort secondary sources of particles and radiation such as ions, neutrons, positrons, x-rays, or even laser-driven hadron therapy. For these applications to become reality, a comprehensive understanding of laser-driven energy transport including hot electron generation through the various mechanisms of ionization, and their subsequent transport in solid density media is required. This study will focus on the characterization of electron transport effects in solid density targets using the state-of- the-art particle-in-cell code PICLS. A number of simulation results will be presented on the topics of ionization propagation in insulator glass targets, non-equilibrium ionization modeling featuring electron impact ionization, and electron beam guiding by the self-generated resistive magnetic field. An empirically derived scaling relation for the resistive magnetic in terms of the laser parameters and material properties is presented and used to derive a guiding condition. This condition may prove useful for the design of future laser-matter interaction experiments.

  20. Correlation of spectral, spatial, and angular characteristics of an ultrashort laser driven proton source

    SciTech Connect

    Ter-Avetisyan, S.; Schnuerer, M.; Nickles, P. V.; Sandner, W.; Nakamura, T.; Mima, K.

    2009-04-15

    The laser driven ion source is a highly organized dynamical system. It relies on a well defined interrelation between the spatial and momentum distributions of emitted ions. This correlation is found by a consecutive spectral characterization of distinct proton beamlets emitted from different spatial target positions and under different angles. In case of a flat target and a perfectly round laser focal spot, the proton source is circular symmetric and each source point behaves similarly: the higher the proton energy the smaller the source size and the larger the emission angle for a similar source extension. Only the symmetry axis is unique; here all protons are emitted at 0 deg. to the target normal.

  1. Laser-driven microflow-induced bistable orientation of a nematic liquid crystal in perfluoropolymer-treated unrubbed cells.

    PubMed

    Jampani, V S R; Skarabot, M; Takezoe, H; Muševič, I; Dhara, S

    2013-01-14

    We demonstrate laser-driven microflow-induced orientational change (homeotropic to planar) in a dye-doped nematic liquid crystal. The homeotropic to planar director alignment is achieved in unrubbed cells in the thermal hysteresis range of a discontinuous anchoring reorientation transition due to the local heating by light absorption in dye-doped sample. Various bistable patterns were recorded in the cell by a programmable laser tweezers. The width of the patterns depend on the scanning speed of the tightly focussed laser beam and the minimum width obtained is approximately equal to 0.57μm which is about 35 times smaller than the earlier report in the rubbed cells. We show that the motion of the microbeam spot causes local flow as a result the liquid crystal director is aligned along that direction. PMID:23388965

  2. Development of an energy selector system for laser-driven proton beam applications

    NASA Astrophysics Data System (ADS)

    Scuderi, V.; Bijan Jia, S.; Carpinelli, M.; Cirrone, G. A. P.; Cuttone, G.; Korn, G.; Licciardello, T.; Maggiore, M.; Margarone, D.; Pisciotta, P.; Romano, F.; Schillaci, F.; Stancampiano, C.; Tramontana, A.

    2014-03-01

    Nowadays, laser-driven proton beams generated by the interaction of high power lasers with solid targets represent a fascinating attraction in the field of the new acceleration techniques. These beams can be potentially accelerated up to hundreds of MeV and, therefore, they can represent a promising opportunity for medical applications. Laser-accelerated proton beams typically show high flux (up to 1011 particles per bunch), very short temporal profile (ps), broad energy spectra and poor reproducibility. In order to overcome these limitations, these beams have be controlled and transported by means of a proper beam handling system. Furthermore, suitable dosimetric diagnostic systems must be developed and tested. In the framework of the ELIMED project, we started to design a dedicated beam transport line and we have developed a first prototype of a beam line key-element: an Energy Selector System (ESS). It is based on permanent dipoles, capable to control and select in energy laser-accelerated proton beams. Monte Carlo simulations and some preliminary experimental tests have been already performed to characterize the device. A calibration of the ESS system with a conventional proton beam will be performed in September at the LNS in Catania. Moreover, an experimental campaign with laser-driven proton beam at the Centre for Plasma Physics, Queens University in Belfast is already scheduled and will be completed within 2014.

  3. Laser-driven particle and photon beams and some applications

    NASA Astrophysics Data System (ADS)

    Ledingham, K. W. D.; Galster, W.

    2010-04-01

    Outstanding progress has been made in high-power laser technology in the last 10 years with laser powers reaching petawatt (PW) values. At present, there are 15 PW lasers built or being built around the world and plans are afoot for new, even higher power, lasers reaching values of exawatt (EW) or even zetawatt (ZW) powers. Petawatt lasers generate electric fields of 1012 V m-1 with a large fraction of the total pulse energy being converted to relativistic electrons with energies reaching in excess of 1 GeV. In turn these electrons result in the generation of beams of protons, heavy ions, neutrons and high-energy photons. These laser-driven particle beams have encouraged many to think of carrying out experiments normally associated with conventional nuclear accelerators and reactors. To this end a number of introductory articles have been written under a trial name 'Laser Nuclear Physics' (Ledingham and Norreys 1999 Contemp. Phys. 40 367, Ledingham et al 2002 Europhys. News. 33 120, Ledingham et al 2003 Science 300 1107, Takabe et al 2001 J. Plasma Fusion Res. 77 1094). However, even greater strides have been made in the last 3 or 4 years in laser technology and it is timely to reassess the potential of laser-driven particle and photon beams. It must be acknowledged right from the outset that to date laser-driven particle beams have yet to compete favourably with conventional nuclear accelerator-generated beams in any way and so this is not a paper comparing laser and conventional accelerators. However, occasionally throughout the paper as a reality check, it will be mentioned what conventional nuclear accelerators can do.

  4. Observation of gigawatt-class THz pulses from a compact laser-driven particle accelerator.

    PubMed

    Gopal, A; Herzer, S; Schmidt, A; Singh, P; Reinhard, A; Ziegler, W; Brömmel, D; Karmakar, A; Gibbon, P; Dillner, U; May, T; Meyer, H-G; Paulus, G G

    2013-08-16

    We report the observation of subpicosecond terahertz (T-ray) pulses with energies ≥460 μJ from a laser-driven ion accelerator, thus rendering the peak power of the source higher even than that of state-of-the-art synchrotrons. Experiments were performed with intense laser pulses (up to 5×10(19) W/cm(2)) to irradiate thin metal foil targets. Ion spectra measured simultaneously showed a square law dependence of the T-ray yield on particle number. Two-dimensional particle-in-cell simulations show the presence of transient currents at the target rear surface which could be responsible for the strong T-ray emission.

  5. Laser-driven flyer impact experiments at the LULI 2000 laser facility

    NASA Astrophysics Data System (ADS)

    Ozaki, N.; Koenig, M.; Benuzzi-Mounaix, A.; Vinci, T.; Ravasio, A.; Esposito, M.; Lepape, S.; Henry, E.; Hüser, G.; Tanaka, K. A.; Nazarov, W.; Nagai, K.; Yoshida, M.

    2006-06-01

    New laser-driven flyer impact experiments have been performed at the LULI laboratory. In these experiments, three types of targets (single Al flyer, multi-layered, and foam-buffered high-Z metal) were used. Impacted conditions in fused quartz were measured with rear-side (two VISARs and SOP) and transverse diagnostics (shadowgraph). In the foam-buffered target, Ta foil was accelerated up to a velocity of 55 km/s. Shock wave accelerated in fused quartz by an Al flyer impact was generated, and the shock wave passing a distinct boundary to a conductive state was directly observed. This method is a way to create unique conditions within the EOS diagram of material.

  6. Focusing dynamics of high-energy density, laser-driven ion beams.

    PubMed

    Chen, S N; d'Humières, E; Lefebvre, E; Romagnani, L; Toncian, T; Antici, P; Audebert, P; Brambrink, E; Cecchetti, C A; Kudyakov, T; Pipahl, A; Sentoku, Y; Borghesi, M; Willi, O; Fuchs, J

    2012-02-01

    The dynamics of the focusing of laser-driven ion beams produced from concave solid targets was studied. Most of the ion beam energy is observed to converge at the center of the cylindrical targets with a spot diameter of 30  μm, which can be very beneficial for applications requiring high beam energy densities. Also, unbalanced laser irradiation does not compromise the focusability of the beam. However, significant filamentation occurs during the focusing, potentially limiting the localization of the energy deposition region by these beams at focus. These effects could impact the applicability of such high-energy density beams for applications, e.g., in proton-driven fast ignition. PMID:22400936

  7. Laser driven electron acceleration in vacuum, gases and plasmas

    SciTech Connect

    Sprangle, P.; Esarey, E.; Krall, J.

    1996-04-19

    This paper discusses some of the important issues pertaining to laser acceleration in vacuum, neutral gases and plasmas. The limitations of laser vacuum acceleration as they relate to electron slippage, laser diffraction, material damage and electron aperture effects, are discussed. An inverse Cherenkov laser acceleration configuration is presented in which a laser beam is self guided in a partially ionized gas. Optical self guiding is the result of a balance between the nonlinear self focusing properties of neutral gases and the diffraction effects of ionization. The stability of self guided beams is analyzed and discussed. In addition, aspects of the laser wakefield accelerator are presented and laser driven accelerator experiments are briefly discussed.

  8. Hydrodynamic simulations of long-scale-length plasmas for two-plasmon-decay planar-target experiments on the NIF

    NASA Astrophysics Data System (ADS)

    Solodov, A. A.; Rosenberg, M. J.; Myatt, J. F.; Epstein, R.; Regan, S. P.; Seka, W.; Shaw, J.; Hohenberger, M.; Bates, J. W.; Moody, J. D.; Ralph, J. E.; Turnbull, D. P.; Barrios, M. A.

    2016-05-01

    The two-plasmon-decay (TPD) instability can be detrimental for direct-drive inertial confinement fusion because it generates high-energy electrons that can preheat the target, thereby reducing target performance. Hydrodynamic simulations to design a new experimental platform to investigate TPD and other laser-plasma instabilities relevant to direct-drive-ignition implosions at the National Ignition Facility are presented. The proposed experiments utilize planar plastic targets with an embedded Mo layer to characterize generation of hot electrons through Mo Kα fluorescence and hard x-ray emission. Different laser-irradiation geometries approximate conditions near both the equator and the pole of a polar-direct-drive implosion.

  9. Flyer velocity characteristics of the laser-driven MiniFlyer system

    NASA Astrophysics Data System (ADS)

    Stahl, David B.; Gehr, Russell J.; Harper, Ron W.; Rupp, Ted D.; Sheffield, Stephen A.; Robbins, David L.

    2000-04-01

    The laser-driven MiniFlyer system is used to launch a small, thin flyer plate for impact on a target. Consequently, it is an indirect drive technique that de-couples the shock from the laser beam profile. The flyer velocity can be controlled by adjustment of the laser energy. The upper limits on the flyer velocity involve the ability of the substrate window to transmit the laser light without absorbing, reflecting, etc.; i.e., a maximum amount of laser energy is directly converted into kinetic energy of the flyer plate. We have investigated the use of sapphire, quartz, and BK-7 glass as substrate windows. In the past, a particular type of sapphire has been used for nearly all MiniFlyer experiments. Results of this study in terms of the performance of these window materials, based on flyer velocity are discussed.

  10. Equation of state measurements of warm dense carbon using laser-driven shock and release technique.

    PubMed

    Falk, K; Gamboa, E J; Kagan, G; Montgomery, D S; Srinivasan, B; Tzeferacos, P; Benage, J F

    2014-04-18

    We present a new approach to equation of state experiments that utilizes a laser-driven shock and release technique combined with spatially resolved x-ray Thomson scattering, radiography, velocity interferometry, and optical pyrometry to obtain independent measurements of pressure, density, and temperature for carbon at warm dense matter conditions. The uniqueness of this approach relies on using a laser to create very high initial pressures to enable a very deep release when the shock moves into a low-density pressure standard. This results in material at near normal solid density and temperatures around 10 eV. The spatially resolved Thomson scattering measurements facilitate a temperature determination of the released material by isolating the scattering signal from a specific region in the target. Our results are consistent with quantum molecular dynamics calculations for carbon at these conditions and are compared to several equation of state models.

  11. Equation of State Measurements of Warm Dense Carbon Using Laser-Driven Shock and Release Technique

    NASA Astrophysics Data System (ADS)

    Falk, K.; Gamboa, E. J.; Kagan, G.; Montgomery, D. S.; Srinivasan, B.; Benage, J. F.

    2014-04-01

    We present a new approach to equation of state experiments that utilizes a laser-driven shock and release technique combined with spatially resolved x-ray Thomson scattering, radiography, velocity interferometry, and optical pyrometry to obtain independent measurements of pressure, density, and temperature for carbon at warm dense matter conditions. The uniqueness of this approach relies on using a laser to create very high initial pressures to enable a very deep release when the shock moves into a low-density pressure standard. This results in material at near normal solid density and temperatures around 10 eV. The spatially resolved Thomson scattering measurements facilitate a temperature determination of the released material by isolating the scattering signal from a specific region in the target. Our results are consistent with quantum molecular dynamics calculations for carbon at these conditions and are compared to several equation of state models.

  12. Perspectives for neutron and gamma spectroscopy in high power laser driven experiments at ELI-NP

    NASA Astrophysics Data System (ADS)

    Negoita, F.; Gugiu, M.; Petrascu, H.; Petrone, C.; Pietreanu, D.; Fuchs, J.; Chen, S.; Higginson, D.; Vassura, L.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Antici, P.; Balabanski, D.; Balascuta, S.; Cernaianu, M.; Dancus, I.; Gales, S.; Neagu, L.; Petcu, C.; Risca, M.; Toma, M.; Turcu, E.; Ursescu, D.

    2015-02-01

    The measurement of energy spectra of neutrons and gamma rays emitted by nuclei, together with charge particles spectroscopy, are the main tools for understanding nuclear phenomena occurring also in high power laser driven experiments. However, the large number of particles emitted in a very short time, in particular the strong X-rays flash produced in laser-target interaction, impose adaptation of technique currently used in nuclear physics experiment at accelerator based facilities. These aspects are discussed (Section 1) in the context of proposed studies at high power laser system of ELI-NP. Preliminary results from two experiments performed at Titan (LLNL) and ELFIE (LULI) facilities using plastic scintillators for neutron detection (Section 2) and LaBr3(Ce) scintillators for gamma detection (Section 3) are presented demonstrating the capabilities and the limitations of the employed methods. Possible improvements of these spectroscopic methods and their proposed implementation at ELI-NP will be discussed as well in the last section.

  13. Studies of laser-driven isentropic compression of iron in the context of geophysics

    NASA Astrophysics Data System (ADS)

    Mazevet, S.; Huser, G.; Occelli, F.; Festa, F.; Brambrink, E.; Amadou, N.; Vinci, T.; Diziere, A.; Benuzzi-Mounaix, A.; Koenig, M.; Guyot, F.; Morard, G.; Myanishi, K.; Kodama, R.; Ozaki, N.; de Resseguier, Th.

    2010-11-01

    The study of iron using dynamic compression paths yielding parameters different from that achieved on the principal Hugoniot might allow to access parameters relevant for the understanding of the solid-liquid phase transition in the Earth core (330 GPa, 5000 K). Beside the geophysical interest, dynamic compression allows to study the dynamics of the alpha-epsilon phase transition, as compression characteristic times are comparable with reaction kinetics. We have performed laser-driven ramp compression experiments on iron samples using the LULI laser facility. Different pressure ramp shapes and target samples will be presented. These results are also important to design future experiments using very large-scale facilities, which would allow to explore pressure-temperature conditions relevant to terrestrial-type exoplanets, which were recently discovered.

  14. Fourier-Space Nonlinear Rayleigh-Taylor Growth Measurements of 3D Laser-Imprinted Modulations in Planar Targets

    SciTech Connect

    Smalyuk, V.A.; Sadot, O.; Delettrez, J.A.; Meyerhofer, D.D.; Regan, S.P.; Sangster, T.C.

    2005-12-05

    Nonlinear growth of 3-D broadband nonuniformities was measured near saturation levels using x-ray radiography in planar foils accelerated by laser light. The initial target modulations were seeded by laser nonuniformities and later amplified during acceleration by Rayleigh-Taylor instability. The nonlinear saturation velocities are measured for the first time and are found to be in excellent agreement with Haan predictions. The measured growth of long-wavelength modes is consistent with enhanced, nonlinear, long-wavelength generation in ablatively driven targets.

  15. Divergence of laser-driven relativistic electron beams

    NASA Astrophysics Data System (ADS)

    Debayle, A.; Honrubia, J. J.; D'Humières, E.; Tikhonchuk, V. T.

    2010-09-01

    Electron acceleration by ultrahigh intensity lasers is studied by means of two-dimensional planar particle-in-cell simulations. It is shown that the full divergence of the fast electron beam is defined by two complementary physical effects: the regular radial beam deviation depending on the electron radial position and the angular dispersion. If the scale length of the preplasma surrounding the solid target is sufficiently low, the radial deviation is determined by the transverse component of the laser ponderomotive force. The random angular dispersion is due to the small scale magnetic fields excited near the critical density due to the collisionless Weibel instability. When a preplasma is present, the radial beam deviation increases due to the electron acceleration in larger volumes and can become comparable to the local angular dispersion. This effect has been neglected so far in most of the fast electron transport calculations, overestimating significantly the beam collimation by resistive magnetic fields. Simulations with a two-dimensional cylindrically-symmetric hybrid code accounting for the electron radial velocity demonstrate a substantially reduced strength and a shorter penetration of the azimuthal magnetic field in solid targets.

  16. Laser-driven Sisyphus cooling in an optical dipole trap

    SciTech Connect

    Ivanov, Vladyslav V.; Gupta, Subhadeep

    2011-12-15

    We propose a laser-driven Sisyphus-cooling scheme for atoms confined in a far-off resonance optical dipole trap. Utilizing the differential trap-induced ac Stark shift, two electronic levels of the atom are resonantly coupled by a cooling laser preferentially near the trap bottom. After absorption of a cooling photon, the atom loses energy by climbing the steeper potential, and then spontaneously decays preferentially away from the trap bottom. The proposed method is particularly suited to cooling alkaline-earth-metal-like atoms where two-level systems with narrow electronic transitions are present. Numerical simulations for the cases of {sup 88}Sr and {sup 174}Yb demonstrate the expected recoil and Doppler temperature limits. The method requires a relatively small number of scattered photons and can potentially lead to phase-space densities approaching quantum degeneracy in subsecond time scales.

  17. Transition state theory for laser-driven reactions

    SciTech Connect

    Kawai, Shinnosuke; Bandrauk, Andre D.; Jaffe, Charles; Bartsch, Thomas; Palacian, Jesus; Uzer, T.

    2007-04-28

    Recent developments in transition state theory brought about by dynamical systems theory are extended to time-dependent systems such as laser-driven reactions. Using time-dependent normal form theory, the authors construct a reaction coordinate with regular dynamics inside the transition region. The conservation of the associated action enables one to extract time-dependent invariant manifolds that act as separatrices between reactive and nonreactive trajectories and thus make it possible to predict the ultimate fate of a trajectory. They illustrate the power of our approach on a driven Henon-Heiles system, which serves as a simple example of a reactive system with several open channels. The present generalization of transition state theory to driven systems will allow one to study processes such as the control of chemical reactions through laser pulses.

  18. Laser-driven flyer plates for shock compression spectroscopy

    NASA Astrophysics Data System (ADS)

    Dlott, Dana; Shaw, William; Curtis, Alexander; Banishev, Alexandr

    2013-06-01

    A laser-driven mini flyer plate system was developed for shock compression spectroscopy. A commercial one-box 2J YAG laser produces a homogeneous top hat beam with a diffractive optic. An 8 GHz PDV characterizes flyer velocity profiles up to 5 km/s. Flyers are routinely launched with velocities reproducible to + ∖ -1%, and the 1 mm diameter flyers have enough energy to initiate energetic materials. High-speed spectroscopic diagnostics have been synchronized. Design elements such as diameter, thickness, laser pulse duration, substrate size, and so on will be discussed. Illustrations will be presented, including monitoring shock front structures with embedded optical gauges, and understanding mechanisms of reactive nanomaterial impact initiation. Supported by ARO W911NF-10-1-0072, AFOSR FA9550-09-1-0163, DTRA HDTRA1-12-1-0011 and NNSA Carnegie-DOE Alliance Center DOE CIW 4-3253-13.

  19. Characterization of short-pulse laser driven neutron source

    NASA Astrophysics Data System (ADS)

    Falk, Katerina; Jung, Daniel; Guler, Nevzat; Deppert, Oliver; Devlin, Matthew; Fernandez, J. C.; Gautier, D. C.; Geissel, M.; Haight, R. C.; Hegelich, B. M.; Henzlova, Daniela; Ianakiev, K. D.; Iliev, Metodi; Johnson, R. P.; Merrill, F. E.; Schaumann, G.; Schoenberg, K.; Shimada, T.; Taddeucci, T. N.; Tybo, J. L.; Wagner, F.; Wender, S. A.; Wurden, G. A.; Favalli, Andrea; Roth, Markus

    2014-10-01

    We present a full spectral characterization of a novel laser driven neutron source, which employed the Break Out Afterburner ion acceleration mechanism. Neutrons were produced by nuclear reactions of the ions deposited on Be or Cu converters. We observed neutrons at energies up to 150 MeV. The neutron spectra were measured by five neutron time-of-flight detectors at various positions and distances from the source. The nTOF detectors observed that emission of neutrons is a superposition of an isotropic component peaking at 3.5--5 MeV resulting from nuclear reactions in the converter and a directional component at 25--70 MeV, which was a product of break-up reaction of the forward moving deuterons. Energy shifts due to geometrical effects in BOA were also observed.

  20. Pulsed radiobiology with laser-driven plasma accelerators

    NASA Astrophysics Data System (ADS)

    Giulietti, Antonio; Grazia Andreassi, Maria; Greco, Carlo

    2011-05-01

    Recently, a high efficiency regime of acceleration in laser plasmas has been discovered, allowing table top equipment to deliver doses of interest for radiotherapy with electron bunches of suitable kinetic energy. In view of an R&D program aimed to the realization of an innovative class of accelerators for medical uses, a radiobiological validation is needed. At the present time, the biological effects of electron bunches from the laser-driven electron accelerator are largely unknown. In radiobiology and radiotherapy, it is known that the early spatial distribution of energy deposition following ionizing radiation interactions with DNA molecule is crucial for the prediction of damages at cellular or tissue levels and during the clinical responses to this irradiation. The purpose of the present study is to evaluate the radio-biological effects obtained with electron bunches from a laser-driven electron accelerator compared with bunches coming from a IORT-dedicated medical Radio-frequency based linac's on human cells by the cytokinesis block micronucleus assay (CBMN). To this purpose a multidisciplinary team including radiotherapists, biologists, medical physicists, laser and plasma physicists is working at CNR Campus and University of Pisa. Dose on samples is delivered alternatively by the "laser-linac" operating at ILIL lab of Istituto Nazionale di Ottica and an RF-linac operating for IORT at Pisa S. Chiara Hospital. Experimental data are analyzed on the basis of suitable radiobiological models as well as with numerical simulation based on Monte Carlo codes. Possible collective effects are also considered in the case of ultrashort, ultradense bunches of ionizing radiation.

  1. Laser-driven x-ray and neutron source development for industrial applications of plasma accelerators

    NASA Astrophysics Data System (ADS)

    Brenner, C. M.; Mirfayzi, S. R.; Rusby, D. R.; Armstrong, C.; Alejo, A.; Wilson, L. A.; Clarke, R.; Ahmed, H.; Butler, N. M. H.; Haddock, D.; Higginson, A.; McClymont, A.; Murphy, C.; Notley, M.; Oliver, P.; Allott, R.; Hernandez-Gomez, C.; Kar, S.; McKenna, P.; Neely, D.

    2016-01-01

    Pulsed beams of energetic x-rays and neutrons from intense laser interactions with solid foils are promising for applications where bright, small emission area sources, capable of multi-modal delivery are ideal. Possible end users of laser-driven multi-modal sources are those requiring advanced non-destructive inspection techniques in industry sectors of high value commerce such as aerospace, nuclear and advanced manufacturing. We report on experimental work that demonstrates multi-modal operation of high power laser-solid interactions for neutron and x-ray beam generation. Measurements and Monte Carlo radiation transport simulations show that neutron yield is increased by a factor ~2 when a 1 mm copper foil is placed behind a 2 mm lithium foil, compared to using a 2 cm block of lithium only. We explore x-ray generation with a 10 picosecond drive pulse in order to tailor the spectral content for radiography with medium density alloy metals. The impact of using  >1 ps pulse duration on laser-accelerated electron beam generation and transport is discussed alongside the optimisation of subsequent bremsstrahlung emission in thin, high atomic number target foils. X-ray spectra are deconvolved from spectrometer measurements and simulation data generated using the GEANT4 Monte Carlo code. We also demonstrate the unique capability of laser-driven x-rays in being able to deliver single pulse high spatial resolution projection imaging of thick metallic objects. Active detector radiographic imaging of industrially relevant sample objects with a 10 ps drive pulse is presented for the first time, demonstrating that features of 200 μm size are resolved when projected at high magnification.

  2. Analysis of Laser-Driven Particle Acceleration fromPlanar Transparent Boundaries

    SciTech Connect

    Plettner, T.; /SLAC /Stanford U., Ginzton Lab.

    2006-04-07

    This article explores the interaction between a monochromatic plane wave laser beam and a relativistic electron in the presence of a thin dielectric transparent boundary. It is found that the sign of the interaction between the laser and the electron in the downstream space is determined by the optical phase delay of the laser caused by the boundary, and that it can add to or cancel the interaction in the upstream space. Both the inverse-transition radiation picture and the electric field path integral method show this result.

  3. Observed transition from Richtmyer-Meshkov jet formation through feedout oscillations to Rayleigh-Taylor instability in a laser target

    SciTech Connect

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Kessler, T. J.; Schmitt, A. J.; Obenschain, S. P.; Nikitin, S. P.; Oh, J.; Metzler, N.

    2012-10-15

    Experimental study of hydrodynamic perturbation evolution triggered by a laser-driven shock wave breakout at the free rippled rear surface of a plastic target is reported. At sub-megabar shock pressure, planar jets manifesting the development of the Richtmyer-Meshkov-type instability in a non-accelerated target are observed. As the shock pressure exceeds 1 Mbar, an oscillatory rippled expansion wave is observed, followed by the 'feedout' of the rear-surface perturbations to the ablation front and the development of the Rayleigh-Taylor instability, which breaks up the accelerated target.

  4. Magneto-Rayleigh-Taylor Instability: Theory and simulation in planar and cylindrical pulsed power targets

    NASA Astrophysics Data System (ADS)

    Weis, Matthew R.

    Cylindrical liner implosions in the Magnetized Liner Inertial Fusion (MagLIF) concept are susceptible to the magneto-Rayleigh-Taylor instability (MRT). The danger of MRT enters in two phases, (1) during the main implosion, the outer surface of the liner is MRT unstable, and (2) during the short time period when the liner decelerates onto hot fuel, the inner surface becomes unstable. Growth of MRT on the outer surface may also feedthrough, which may seed the inner surface leading to high MRT growth in the second phase. If MRT growth becomes large enough, confinement of the fuel is lost. To characterize MRT we solve the linearized, ideal MHD equations in both planar and cylindrical geometries, including the presence of an axial magnetic field and the effects of sausage and kink modes (present in cylindrical coordinates only). In general, the total instability growth rates in cylindrical geometry are found to be larger than those in planar geometry. MRT and feedthrough is shown to be suppressed by strong magnetic field line bending (tension). However, for the same amount of field line bending, feedthrough is the most stabilized. Application of the planar and the cylindrical model to results from the Z-machine at Sandia National Laboratories is presented. Analytic MRT growth rates for a typical magnetized MagLIF-like implosion show the kink mode to be the fastest growing early and very late in the liner implosion (during deceleration). 1D HYDRA MHD simulations are used to generate realistic, evolving profiles (in density, pressure, and magnetic field) during the implosion from which instantaneous growth rates can be computed exactly, using either the planar or cylindrical analytic formulae developed in this thesis. Sophisticated 2D HYDRA MHD simulations were also performed to compare with the analytic theory and experimental results. In 2D, highly compressed axial magnetic fields can reduce the growth of perturbations at the fuel/liner interface during the implosion

  5. Dynamic x-ray imaging of laser-driven nanoplasmas

    NASA Astrophysics Data System (ADS)

    Fennel, Thomas

    2016-05-01

    A major promise of current x-ray science at free electron lasers is the realization of unprecedented imaging capabilities for resolving the structure and ultrafast dynamics of matter with nanometer spatial and femtosecond temporal resolution or even below via single-shot x-ray diffraction. Laser-driven atomic clusters and nanoparticles provide an ideal platform for developing and demonstrating the required technology to extract the ultrafast transient spatiotemporal dynamics from the diffraction images. In this talk, the perspectives and challenges of dynamic x-ray imaging will be discussed using complete self-consistent microscopic electromagnetic simulations of IR pump x-ray probe imaging for the example of clusters. The results of the microscopic particle-in-cell simulations (MicPIC) enable the simulation-assisted reconstruction of corresponding experimental data. This capability is demonstrated by converting recently measured LCLS data into a ultrahigh resolution movie of laser-induced plasma expansion. Finally, routes towards reaching attosecond time resolution in the visualization of complex dynamical processes in matter by x-ray diffraction will be discussed.

  6. Quantum Localization in Laser-Driven Molecular Rotation

    NASA Astrophysics Data System (ADS)

    Averbukh, Ilya

    2016-05-01

    Recently we predicted that several celebrated solid state quantum localization phenomena - Anderson localization, Bloch oscillations, and Tamm-Shockley surface states - may manifest themselves in the rotational dynamics of laser-kicked molecules. In this talk, I will present these new rotational effects in a gas of linear molecules subject to a moderately long periodic train of femtosecond laser pulses. A small detuning of the train period from the rotational revival time causes Anderson localization in the angular momentum space above some critical value of J - the Anderson wall. This wall marks an impenetrable border stopping any further rotational excitation. Below the Anderson wall, the rotational excitation oscillates with the number of pulses due to a mechanism similar to Bloch oscillations in crystalline solids. I will present the results of the first experimental observation of the laser-induced rotational Bloch oscillations in molecular nitrogen at ambient conditions (Stanford & Weizmann, 2015). We will also discuss the prospects of observing the rotational analogues of the Tamm surface states in a similar experimental setup. Our results offer laser-driven molecular rotation as a new platform for studies on the localization phenomena in quantum transport. These effects are important for many processes involving highly excited rotational states, including coherent optical manipulations in molecular mixtures, and propagation of powerful laser pulses in atmosphere.

  7. Physics of laser-driven plasma-based electron accelerators

    SciTech Connect

    Esarey, E.; Schroeder, C. B.; Leemans, W. P.

    2009-07-15

    Laser-driven plasma-based accelerators, which are capable of supporting fields in excess of 100 GV/m, are reviewed. This includes the laser wakefield accelerator, the plasma beat wave accelerator, the self-modulated laser wakefield accelerator, plasma waves driven by multiple laser pulses, and highly nonlinear regimes. The properties of linear and nonlinear plasma waves are discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized, including laser pulse diffraction, electron dephasing, laser pulse energy depletion, and beam loading limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and with preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions, such as Raman, self-modulation, and hose instabilities, are discussed. Experiments demonstrating key physics, such as the production of high-quality electron bunches at energies of 0.1-1 GeV, are summarized.

  8. Propagation of Laser-Driven Relativistic Electron Beam inside Solid Dielectric

    NASA Astrophysics Data System (ADS)

    Sarkisov, G. S.; Jobe, D.; Spielman, R.; Ivanov, V. V.; Leblanc, P.; Sentoku, Y.; Yates, K.; Wiewior, P.; Bychenkov, V. Yu.

    2011-10-01

    Laser probing diagnostics shadowgraphy, interferometry and polarimetry was used for comprehensive characterization of ionization wave dynamics inside glass target induced by laser-driven relativistic electron beam. Experiment was done using 50-TW Leopard laser at University of Nevada Reno. It has been shown that for laser flax ~2 ×1018W/cm2 hemispheric ionization wave propagates with c/3 speed has smooth electron density distribution, absorbing probing green beam in 2-10 times. Maximum of free-electron density inside glass target is ~2x1019cm-3, which correspond to ionization ~0.1%. Magnetic and electric fields do not exceed ~15 kG and ~1 MV/cm. Electron temperature has hot-ring structure with maximum 0.1-0.5 eV. The topology of the interference phase shift shows the signature of the ``fountain effect'', a narrow electron beam that fans out from the propagation axis and heads back to the target surface. Two-dimensional PIC-simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields. The very low ionization, ~0.1%, observed after the heating pulse suggests a fast recombination at the sub-ps time scale. Work was supported by the DOE/NNSA under UNR grant DE-FC52-06NA27616 and grant DE-PS02-08ER08-16.

  9. Propagation of a laser-driven relativistic electron beam inside a solid dielectric

    NASA Astrophysics Data System (ADS)

    Sarkisov, G. S.; Ivanov, V. V.; Leblanc, P.; Sentoku, Y.; Yates, K.; Wiewior, P.; Chalyy, O.; Astanovitskiy, A.; Bychenkov, V. Yu.; Jobe, D.; Spielman, R. B.

    2012-09-01

    Laser probe diagnostics: shadowgraphy, interferometry, and polarimetry were used for a comprehensive characterization of ionization wave dynamics inside a glass target induced by a laser-driven, relativistic electron beam. Experiments were done using the 50-TW Leopard laser at the University of Nevada, Reno. We show that for a laser flux of ˜2 × 1018 W/cm2 a hemispherical ionization wave propagates at c/3 for 10 ps and has a smooth electron-density distribution. The maximum free-electron density inside the glass target is ˜2 × 1019 cm-3, which corresponds to an ionization level of ˜0.1%. Magnetic fields and electric fields do not exceed ˜15 kG and ˜1 MV/cm, respectively. The electron temperature has a hot, ringlike structure with a maximum of ˜0.7 eV. The topology of the interference phase shift shows the signature of the “fountain effect”, a narrow electron beam that fans out from the propagation axis and heads back to the target surface. Two-dimensional particle-in-cell (PIC) computer simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields driven by laser. The very low ionization observed after the laser heating pulse suggests a fast recombination on the sub-ps time scale.

  10. Propagation of a laser-driven relativistic electron beam inside a solid dielectric.

    PubMed

    Sarkisov, G S; Ivanov, V V; Leblanc, P; Sentoku, Y; Yates, K; Wiewior, P; Chalyy, O; Astanovitskiy, A; Bychenkov, V Yu; Jobe, D; Spielman, R B

    2012-09-01

    Laser probe diagnostics: shadowgraphy, interferometry, and polarimetry were used for a comprehensive characterization of ionization wave dynamics inside a glass target induced by a laser-driven, relativistic electron beam. Experiments were done using the 50-TW Leopard laser at the University of Nevada, Reno. We show that for a laser flux of ∼2 × 10(18) W/cm2 a hemispherical ionization wave propagates at c/3 for 10 ps and has a smooth electron-density distribution. The maximum free-electron density inside the glass target is ∼2 × 10(19) cm-3, which corresponds to an ionization level of ∼0.1%. Magnetic fields and electric fields do not exceed ∼15 kG and ∼1 MV/cm, respectively. The electron temperature has a hot, ringlike structure with a maximum of ∼0.7 eV. The topology of the interference phase shift shows the signature of the "fountain effect", a narrow electron beam that fans out from the propagation axis and heads back to the target surface. Two-dimensional particle-in-cell (PIC) computer simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields driven by laser. The very low ionization observed after the laser heating pulse suggests a fast recombination on the sub-ps time scale. PMID:23031038

  11. Propagation of a laser-driven relativistic electron beam inside a solid dielectric.

    PubMed

    Sarkisov, G S; Ivanov, V V; Leblanc, P; Sentoku, Y; Yates, K; Wiewior, P; Chalyy, O; Astanovitskiy, A; Bychenkov, V Yu; Jobe, D; Spielman, R B

    2012-09-01

    Laser probe diagnostics: shadowgraphy, interferometry, and polarimetry were used for a comprehensive characterization of ionization wave dynamics inside a glass target induced by a laser-driven, relativistic electron beam. Experiments were done using the 50-TW Leopard laser at the University of Nevada, Reno. We show that for a laser flux of ∼2 × 10(18) W/cm2 a hemispherical ionization wave propagates at c/3 for 10 ps and has a smooth electron-density distribution. The maximum free-electron density inside the glass target is ∼2 × 10(19) cm-3, which corresponds to an ionization level of ∼0.1%. Magnetic fields and electric fields do not exceed ∼15 kG and ∼1 MV/cm, respectively. The electron temperature has a hot, ringlike structure with a maximum of ∼0.7 eV. The topology of the interference phase shift shows the signature of the "fountain effect", a narrow electron beam that fans out from the propagation axis and heads back to the target surface. Two-dimensional particle-in-cell (PIC) computer simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields driven by laser. The very low ionization observed after the laser heating pulse suggests a fast recombination on the sub-ps time scale.

  12. A Novel Method for Proximity Detection of Moving Targets Using a Large-Scale Planar Capacitive Sensor System

    PubMed Central

    Ye, Yong; Deng, Jiahao; Shen, Sanmin; Hou, Zhuo; Liu, Yuting

    2016-01-01

    A novel method for proximity detection of moving targets (with high dielectric constants) using a large-scale (the size of each sensor is 31 cm × 19 cm) planar capacitive sensor system (PCSS) is proposed. The capacitive variation with distance is derived, and a pair of electrodes in a planar capacitive sensor unit (PCSU) with a spiral shape is found to have better performance on sensitivity distribution homogeneity and dynamic range than three other shapes (comb shape, rectangular shape, and circular shape). A driving excitation circuit with a Clapp oscillator is proposed, and a capacitance measuring circuit with sensitivity of 0.21 Vp−p/pF is designed. The results of static experiments and dynamic experiments demonstrate that the voltage curves of static experiments are similar to those of dynamic experiments; therefore, the static data can be used to simulate the dynamic curves. The dynamic range of proximity detection for three projectiles is up to 60 cm, and the results of the following static experiments show that the PCSU with four neighboring units has the highest sensitivity (the sensitivities of other units are at least 4% lower); when the attack angle decreases, the intensity of sensor signal increases. This proposed method leads to the design of a feasible moving target detector with simple structure and low cost, which can be applied in the interception system. PMID:27196905

  13. Analytical model and measurements of the target erosion depth profile of balanced and unbalanced planar magnetron cathodes

    NASA Astrophysics Data System (ADS)

    Pereira, P. J. S.; Escrivão, M. L.; Teixeira, M. R.; Maneira, M. J. P.; Nunes, Y.

    2014-12-01

    The erosion depth profile of planar targets in balanced and unbalanced magnetron cathodes with cylindrical symmetry is measured along the target radius. The magnetic fields have rotational symmetry. The horizontal and vertical components of the magnetic field B are measured at points above the cathode target with z = 2 × 10-3 m. The experimental data reveal that the target erosion depth profile is a function of the angle θ made by B with a horizontal line defined by z = 2 × 10-3 m. To explain this dependence a simplified model of the discharge is developed. In the scope of the model, the pathway lengths of the secondary electrons in the pre-sheath region are calculated by analytical integration of the Lorentz differential equations. Weighting these lengths by using the distribution law of the mean free path of the secondary electrons, we estimate the densities of the ionizing events over the cathode and the relative flux of the sputtered atoms. The expression so deduced correlates for the first time the erosion depth profile of the target with the angle θ. The model shows reasonably good fittings to the experimental target erosion depth profiles confirming that ionization occurs mainly in the pre-sheath zone.

  14. Laser-driven γ-ray, positron, and neutron source from ultra-intense laser-matter interactions

    SciTech Connect

    Nakamura, Tatsufumi; Hayakawa, Takehito

    2015-08-15

    In ultra-intense laser-matter interactions, γ-rays are effectively generated via the radiation reaction effect. Since a significant fraction of the laser energy is converted into γ-rays, understanding of the energy transport inside of the target is important. We have developed a Particle-in-Cell code which includes generation of the γ-rays, their energy transport, and photo-nuclear reactions. Using the code, we have investigated the characteristics of the quantum beams generated by the transport of the laser-driven γ-rays. It is shown that collimated, mono-energetic positron beams with hundreds of MeV are generated by using thick targets. Neutron beams are also effectively generated by using beryllium targets via photo-nuclear reactions. These lead to the proposal of quantum beam sources of γ-rays, positrons, and neutrons with distinctive characters, which are selectively generated by choosing target conditions.

  15. Nuclear Material Detection by One-Short-Pulse-Laser-Driven Neutron Source

    SciTech Connect

    Favalli, Andrea; Aymond, F.; Bridgewater, Jon S.; Croft, Stephen; Deppert, O.; Devlin, Matthew James; Falk, Katerina; Fernandez, Juan Carlos; Gautier, Donald Cort; Gonzales, Manuel A.; Goodsell, Alison Victoria; Guler, Nevzat; Hamilton, Christopher Eric; Hegelich, Bjorn Manuel; Henzlova, Daniela; Ianakiev, Kiril Dimitrov; Iliev, Metodi; Johnson, Randall Philip; Jung, Daniel; Kleinschmidt, Annika; Koehler, Katrina Elizabeth; Pomerantz, Ishay; Roth, Markus; Santi, Peter Angelo; Shimada, Tsutomu; Swinhoe, Martyn Thomas; Taddeucci, Terry Nicholas; Wurden, Glen Anthony; Palaniyappan, Sasikumar; McCary, E.

    2015-01-28

    Covered in the PowerPoint presentation are the following areas: Motivation and requirements for active interrogation of nuclear material; laser-driven neutron source; neutron diagnostics; active interrogation of nuclear material; and, conclusions, remarks, and future works.

  16. An effective technique for calibrating the intrinsic parameters of a vascular C-arm from a planar target

    NASA Astrophysics Data System (ADS)

    Gorges, Sébastien; Kerrien, Erwan; Berger, Marie-Odile; Trousset, Yves; Pescatore, Jérémie; Anxionnat, René; Picard, Luc

    2006-03-01

    The real time recovery of the projection geometry is a fundamental issue in interventional navigation applications (e.g. guide wire reconstruction, medical augmented reality). In most works, the intrinsic parameters are supposed to be constant and the extrinsic parameters (C-arm motion) are deduced either from the orientation sensors of the C-arm or from other additional sensors (eg. optical and/or electro-magnetic sensors). However, due to the weight of the X-ray tube and the C-arm, the system is undergoing deformations which induce variations of the intrinsic parameters as a function of the C-arm orientation. In our approach, we propose to measure the effects of the mechanical deformations onto the intrinsic parameters in a calibration procedure. Robust calibration methods exist (the gold standard is the multi-image calibration) but they are time consuming and too tedious to set up in a clinical context. For these reasons, we developed an original and easy to use method, based on a planar calibration target, which aims at measuring with a high level of accuracy the variation of the intrinsic parameters on a vascular C-arm. The precision of the planar-based method was evaluated by the mean of error propagation using techniques described in. 8 It appeared that the precision of the intrinsic parameters are comparable to the one obtained from the multi-image calibration method. The planar-based method was also successfully used to assess to behavior of the C-arm with respect to the C-arm orientations. Results showed a clear variation of the principal point when the LAO/RAO orientation was changed. In contrast, the intrinsic parameters do not change during a cranio-caudal C-arm motion.

  17. Preferential enhancement of laser-driven carbon ion acceleration from optimized nanostructured surfaces

    PubMed Central

    Dalui, Malay; Wang, W.-M.; Trivikram, T. Madhu; Sarkar, Subhrangshu; Tata, Sheroy; Jha, J.; Ayyub, P.; Sheng, Z. M.; Krishnamurthy, M.

    2015-01-01

    High-intensity ultrashort laser pulses focused on metal targets readily generate hot dense plasmas which accelerate ions efficiently and can pave way to compact table-top accelerators. Laser-driven ion acceleration studies predominantly focus on protons, which experience the maximum acceleration owing to their highest charge-to-mass ratio. The possibility of tailoring such schemes for the preferential acceleration of a particular ion species is very much desired but has hardly been explored. Here, we present an experimental demonstration of how the nanostructuring of a copper target can be optimized for enhanced carbon ion acceleration over protons or Cu-ions. Specifically, a thin (≈0.25 μm) layer of 25–30 nm diameter Cu nanoparticles, sputter-deposited on a polished Cu-substrate, enhances the carbon ion energy by about 10-fold at a laser intensity of 1.2×1018  W/cm2. However, particles smaller than 20 nm have an adverse effect on the ion acceleration. Particle-in-cell simulations provide definite pointers regarding the size of nanoparticles necessary for maximizing the ion acceleration. The inherent contrast of the laser pulse is found to play an important role in the species selective ion acceleration. PMID:26153048

  18. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets.

    PubMed

    Mirzaie, Mohammad; Hafz, Nasr A M; Li, Song; Liu, Feng; He, Fei; Cheng, Ya; Zhang, Jie

    2015-10-01

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.

  19. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets

    NASA Astrophysics Data System (ADS)

    Mirzaie, Mohammad; Hafz, Nasr A. M.; Li, Song; Liu, Feng; He, Fei; Cheng, Ya; Zhang, Jie

    2015-10-01

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ˜1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.

  20. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets

    SciTech Connect

    Mirzaie, Mohammad; Hafz, Nasr A. M. Li, Song; Liu, Feng; Zhang, Jie; He, Fei; Cheng, Ya

    2015-10-15

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.

  1. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets.

    PubMed

    Mirzaie, Mohammad; Hafz, Nasr A M; Li, Song; Liu, Feng; He, Fei; Cheng, Ya; Zhang, Jie

    2015-10-01

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes. PMID:26520950

  2. Preferential enhancement of laser-driven carbon ion acceleration from optimized nanostructured surfaces.

    PubMed

    Dalui, Malay; Wang, W-M; Trivikram, T Madhu; Sarkar, Subhrangsu; Sarkar, Subhrangshu; Tata, Sheroy; Jha, J; Ayyub, P; Sheng, Z M; Krishnamurthy, M

    2015-01-01

    High-intensity ultrashort laser pulses focused on metal targets readily generate hot dense plasmas which accelerate ions efficiently and can pave way to compact table-top accelerators. Laser-driven ion acceleration studies predominantly focus on protons, which experience the maximum acceleration owing to their highest charge-to-mass ratio. The possibility of tailoring such schemes for the preferential acceleration of a particular ion species is very much desired but has hardly been explored. Here, we present an experimental demonstration of how the nanostructuring of a copper target can be optimized for enhanced carbon ion acceleration over protons or Cu-ions. Specifically, a thin (≈ 0.25 μm) layer of 25-30 nm diameter Cu nanoparticles, sputter-deposited on a polished Cu-substrate, enhances the carbon ion energy by about 10-fold at a laser intensity of 1.2 × 10(18)  W/cm(2). However, particles smaller than 20 nm have an adverse effect on the ion acceleration. Particle-in-cell simulations provide definite pointers regarding the size of nanoparticles necessary for maximizing the ion acceleration. The inherent contrast of the laser pulse is found to play an important role in the species selective ion acceleration. PMID:26153048

  3. Simplified laser-driven flyer plates for shock compression science

    NASA Astrophysics Data System (ADS)

    Brown, Kathryn E.; Shaw, William L.; Zheng, Xianxu; Dlott, Dana D.

    2012-10-01

    We describe a simplified system of laser-driven flyer plates for shock compression science and shock spectroscopy. We used commercially available one-box Nd:YAG lasers and beam homogenization solutions to create two launch systems, one based on a smaller (400 mJ) YAG laser and an inexpensive diffusive optic, and one based on a larger (2500 mJ) laser and a diffractive beam homogenizer. The flyer launch, flight, and impact processes were characterized by an 8 GHz fiberoptic photon Doppler velocimeter. We investigated effects of different substrates, adhesives, absorbers, ablative layers, and punching out disks from continuous foils versus fabricating individual foil disks, and found that a simple metal foil epoxied to a glass window was satisfactory in almost all cases. Our simplified system launched flyer plates with velocities up to 4.5 km s-1 and kinetic energies up to 250 mJ that can drive sustained steady shocks for up to 25 ns. The factor that limits these velocities and energies is the laser fluence that can be transmitted through the glass substrate to the flyer surface without optical damage. Methods to increase this transmission are discussed. Reproducible flyer launches were demonstrated with velocity variations of 0.06% and impact time variations of 1 ns. The usefulness of this flyer plate system is demonstrated by Hugoniot equation of state measurements of a polymer film, emission spectroscopy of a dye embedded in the polymer, and impact initiation and emission spectroscopy of a reactive material consisting of nanoscopic fuel and oxidizer particles.

  4. Simplified laser-driven flyer plates for shock compression science.

    PubMed

    Brown, Kathryn E; Shaw, William L; Zheng, Xianxu; Dlott, Dana D

    2012-10-01

    We describe a simplified system of laser-driven flyer plates for shock compression science and shock spectroscopy. We used commercially available one-box Nd:YAG lasers and beam homogenization solutions to create two launch systems, one based on a smaller (400 mJ) YAG laser and an inexpensive diffusive optic, and one based on a larger (2500 mJ) laser and a diffractive beam homogenizer. The flyer launch, flight, and impact processes were characterized by an 8 GHz fiberoptic photon Doppler velocimeter. We investigated effects of different substrates, adhesives, absorbers, ablative layers, and punching out disks from continuous foils versus fabricating individual foil disks, and found that a simple metal foil epoxied to a glass window was satisfactory in almost all cases. Our simplified system launched flyer plates with velocities up to 4.5 km s(-1) and kinetic energies up to 250 mJ that can drive sustained steady shocks for up to 25 ns. The factor that limits these velocities and energies is the laser fluence that can be transmitted through the glass substrate to the flyer surface without optical damage. Methods to increase this transmission are discussed. Reproducible flyer launches were demonstrated with velocity variations of 0.06% and impact time variations of 1 ns. The usefulness of this flyer plate system is demonstrated by Hugoniot equation of state measurements of a polymer film, emission spectroscopy of a dye embedded in the polymer, and impact initiation and emission spectroscopy of a reactive material consisting of nanoscopic fuel and oxidizer particles.

  5. Simplified laser-driven flyer plates for shock compression science

    SciTech Connect

    Brown, Kathryn E.; Shaw, William L.; Zheng Xianxu; Dlott, Dana D.

    2012-10-15

    We describe a simplified system of laser-driven flyer plates for shock compression science and shock spectroscopy. We used commercially available one-box Nd:YAG lasers and beam homogenization solutions to create two launch systems, one based on a smaller (400 mJ) YAG laser and an inexpensive diffusive optic, and one based on a larger (2500 mJ) laser and a diffractive beam homogenizer. The flyer launch, flight, and impact processes were characterized by an 8 GHz fiberoptic photon Doppler velocimeter. We investigated effects of different substrates, adhesives, absorbers, ablative layers, and punching out disks from continuous foils versus fabricating individual foil disks, and found that a simple metal foil epoxied to a glass window was satisfactory in almost all cases. Our simplified system launched flyer plates with velocities up to 4.5 km s{sup -1} and kinetic energies up to 250 mJ that can drive sustained steady shocks for up to 25 ns. The factor that limits these velocities and energies is the laser fluence that can be transmitted through the glass substrate to the flyer surface without optical damage. Methods to increase this transmission are discussed. Reproducible flyer launches were demonstrated with velocity variations of 0.06% and impact time variations of 1 ns. The usefulness of this flyer plate system is demonstrated by Hugoniot equation of state measurements of a polymer film, emission spectroscopy of a dye embedded in the polymer, and impact initiation and emission spectroscopy of a reactive material consisting of nanoscopic fuel and oxidizer particles.

  6. A Flexible Calibration Method Using the Planar Target with a Square Pattern for Line Structured Light Vision System

    PubMed Central

    Sun, Qiucheng; Hou, Yueqian; Tan, Qingchang; Li, Guannan

    2014-01-01

    A flexible calibration approach for line structured light vision system is proposed in this paper. Firstly a camera model is established by transforming the points from the 2D image plane to the world coordinate frame, and the intrinsic parameters of camera can be obtained accurately. Then a novel calibration method for structured light projector is presented by moving a planar target with a square pattern randomly, and the method mainly involves three steps: first, a simple linear model is proposed, by which the plane equation of the target at any orientations can be determined based on the square’s geometry information; second, the pixel coordinates of the light stripe center on the target images are extracted as the control points; finally, the points are projected into the camera coordinate frame with the help of the intrinsic parameters and the plane equations of the target, and the structured light plane can be determined by fitting these three-dimensional points. The experimental data show that the method has good repeatability and accuracy. PMID:25203507

  7. Design of the prototype of a beam transport line for handling and selection of low energy laser-driven beams

    NASA Astrophysics Data System (ADS)

    Schillaci, F.; Maggiore, M.; Cirrone, G. A. P.; Cuttone, G.; Pisciotta, P.; Costa, M.; Rifuggiato, D.; Romano, F.; Scuderi, V.

    2016-11-01

    A first prototype of transport beam-line for laser-driven ion beams to be used for the handling of particles accelerated by high-power laser interacting with solid targets has been realized at INFN. The goal is the production of a controlled and stable beam in terms of energy and angular spread. The beam-line consists of two elements: an Energy Selection System (ESS), already realized and characterized with both conventional and laser-accelerated beams, and a Permanent Magnet Quadrupole system (PMQ) designed, in collaboration with SIGMAPHI (Fr), to improve the ESS performances. In this work a description of the ESS system and some results of its characterization with conventional beams are reported, in order to provide a complete explanation of the acceptance calculation. Then, the matching with the PMQ system is presented and, finally, the results of preliminary simulations with a realistic laser-driven energy spectrum are discussed demonstrating the possibility to provide a good quality beam downstream the systems.

  8. Neutron imaging with the short-pulse laser driven neutron source at the Trident laser facility

    NASA Astrophysics Data System (ADS)

    Guler, N.; Volegov, P.; Favalli, A.; Merrill, F. E.; Falk, K.; Jung, D.; Tybo, J. L.; Wilde, C. H.; Croft, S.; Danly, C.; Deppert, O.; Devlin, M.; Fernandez, J.; Gautier, D. C.; Geissel, M.; Haight, R.; Hamilton, C. E.; Hegelich, B. M.; Henzlova, D.; Johnson, R. P.; Schaumann, G.; Schoenberg, K.; Schollmeier, M.; Shimada, T.; Swinhoe, M. T.; Taddeucci, T.; Wender, S. A.; Wurden, G. A.; Roth, M.

    2016-10-01

    Emerging approaches to short-pulse laser-driven neutron production offer a possible gateway to compact, low cost, and intense broad spectrum sources for a wide variety of applications. They are based on energetic ions, driven by an intense short-pulse laser, interacting with a converter material to produce neutrons via breakup and nuclear reactions. Recent experiments performed with the high-contrast laser at the Trident laser facility of Los Alamos National Laboratory have demonstrated a laser-driven ion acceleration mechanism operating in the regime of relativistic transparency, featuring a volumetric laser-plasma interaction. This mechanism is distinct from previously studied ones that accelerate ions at the laser-target surface. The Trident experiments produced an intense beam of deuterons with an energy distribution extending above 100 MeV. This deuteron beam, when directed at a beryllium converter, produces a forward-directed neutron beam with ˜5 × 109 n/sr, in a single laser shot, primarily due to deuteron breakup. The neutron beam has a pulse duration on the order of a few nanoseconds with an energy distribution extending from a few hundreds of keV to almost 80 MeV. For the experiments on neutron-source spot-size measurements, our gated neutron imager was setup to select neutrons in the energy range of 2.5-35 MeV. The spot size of neutron emission at the converter was measured by two different imaging techniques, using a knife-edge and a penumbral aperture, in two different experimental campaigns. The neutron-source spot size is measured ˜1 mm for both experiments. The measurements and analysis reported here give a spatial characterization for this type of neutron source for the first time. In addition, the forward modeling performed provides an empirical estimate of the spatial characteristics of the deuteron ion-beam. These experimental observations, taken together, provide essential yet unique data to benchmark and verify theoretical work into the

  9. Towards controlled flyer acceleration by a laser-driven mini flyer

    NASA Astrophysics Data System (ADS)

    Yu, Hyeonju; Fedotov, Vitalij; Baek, Wonkye; Yoh, Jack J.

    2014-06-01

    A laser driven flyer (LDF) system is designed to blast off a very small, thin flyer plate for impact on a target. When a Nd:YAG laser beam is focused through a transparent substrate onto thin metal, a fraction of the metal is ablated. The blow-off products being contained between the substrate and the flyer make the remaining thin film launch as a separate flyer. Some energy of the laser beam is lost by reflection at the boundary between substrate and metal because of the high reflectivity. By using a proper metal of high absorptance at 1.064 μm wavelength, the laser coupling to the flyer would define the system efficiency of a launch system. An effort is presented here to improve the coupling results in the enhancement of the flyer velocity for a given pulse energy. An optimum energy conversion between laser energy and kinetic energy of the flyer is achieved through a black paint coating technique as opposed to a more conventional means of a multi-layered approach requiring electron beaming or magnetron sputtering that are rather expensive and time consuming. The mini flyer flown under 1.4 km/s showed a controlled flight trajectory without fragmentation, suggesting that performance of this simple system is competitive to if not better than other attempts by the multi-layered LDF systems.

  10. Flyer Velocity Characteristics of the Laser-Driven MiniFlyer System

    NASA Astrophysics Data System (ADS)

    Stahl, D. B.; Robbins, D. L.; Sheffield, S. A.

    1999-06-01

    The laser-driven MiniFlyer system is used to launch a small, thin flyer plate for subsequent impact on a target. Consequently, it is an indirect drive technique which de-couples the shock from the laser beam profile. The flyer velocity can be controlled by adjustment of the laser energy within certain limits. The upper limits on the flyer velocity involve the ability of the flyer substrate window to transmit the laser light without absorbing, reflecting, etc.; i.e., a maximum amount of laser energy (at 1064 nm wavelength) is directly converted into kinetic energy of the flyer plate. We have investigated the use of sapphire, quartz, BK-7 glass, and polymethyl methacrylate (PMMA) as substrate windows. Quartz and BK-7 have performed the best with respect to optical damage threshold. In the past, a particular type of sapphire has been used for nearly all MiniFlyer experiments but this material has been found to be the worst in terms of transmission. Other types of sapphire have been found to be somewhat better but still not as good as the other materials. Results of this study in terms of the performance of these window materials, based on optical transmission and flyer velocity, are discussed.

  11. Fundamental Studies on the Use of Laser-Driven Proton Beams for Fast Ignition

    NASA Astrophysics Data System (ADS)

    McGuffey, C.; Kim, J.; Beg, F. N.; Wei, M. S.; Chen, S. N.; Fuchs, J.; Nilson, P. M.; Theobald, W.; Habara, H.; Tanaka, K.; Yabuuchi, T.; Foord, M. E.; Patel, P. K.; McLean, H. S.; Roth, M.; McKenna, P.

    2015-11-01

    A short-pulse-laser-driven intense proton beam remains a candidate for Fast Ignition heater due to its focusability and high current. However, the proton current density necessary for FI in practice has never been produced in the laboratory and there are many physics issues that should be addressed using current and near-term facilities. For example, the extraction of sufficient proton charge from the short-pulse laser target could be evaluated with the multi-kilojoule NIF ARC laser. Transport of the beam through matter, such as a cone tip, and deposition in the fuel must be considered carefully as it will isochorically heat any material it enters and produce a rapidly-evolving, warm dense matter state with uncertain transport and stopping properties. Here we share experimental measurements of the proton spectra after passing through metal cones and foils taken with the kilojoule-class, multi-picosecond OMEGA EP and LFEX lasers. We also present complementary PIC simulations of beam generation and transport to and in the foils. Upcoming experiments to further evaluate proton beam performance in proton FI will also be outlined. This work was supported by the DOE/NNSA NLUF program, Contract DE-NA0002034 and by the AFOSR under Contract FA9550-14-1-0346.

  12. Perspectives for neutron and gamma spectroscopy in high power laser driven experiments at ELI-NP

    SciTech Connect

    Negoita, F. Gugiu, M. Petrascu, H. Petrone, C. Pietreanu, D.; Fuchs, J.; Chen, S.; Higginson, D.; Vassura, L.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Antici, P.; Balabanski, D.; Balascuta, S.; Cernaianu, M.; Dancus, I.; Gales, S.; Neagu, L.; Petcu, C.; and others

    2015-02-24

    The measurement of energy spectra of neutrons and gamma rays emitted by nuclei, together with charge particles spectroscopy, are the main tools for understanding nuclear phenomena occurring also in high power laser driven experiments. However, the large number of particles emitted in a very short time, in particular the strong X-rays flash produced in laser-target interaction, impose adaptation of technique currently used in nuclear physics experiment at accelerator based facilities. These aspects are discussed (Section 1) in the context of proposed studies at high power laser system of ELI-NP. Preliminary results from two experiments performed at Titan (LLNL) and ELFIE (LULI) facilities using plastic scintillators for neutron detection (Section 2) and LaBr{sub 3}(Ce) scintillators for gamma detection (Section 3) are presented demonstrating the capabilities and the limitations of the employed methods. Possible improvements of these spectroscopic methods and their proposed implementation at ELI-NP will be discussed as well in the last section.

  13. Detailed energy distributions in laser-produced plasmas of solid gold and foam gold planar targets

    SciTech Connect

    Dong, Yunsong; Zhang, Lu; Yang, Jiamin; Shang, Wanli

    2013-12-15

    Foam gold was proposed to increase the laser to x-ray conversion efficiency due to its important applications. To understand the mechanism of x-ray enhancement, the detailed energy distributions and plasma profiles for laser-irradiated solid gold and foam gold targets were studied comparatively by hydrodynamic simulations using the code Multi-1D. It is confirmed that the radiation heat wave is subsonic for the normal solid gold target, while supersonic for the foam gold target. The shock wave, which is behind the supersonic radiation heat wave for the foam gold target, generates a plasma temperature gradient with high temperature near the shock wave front to produce an additional net outward radiation for enhancement of the x-ray emission. Much larger inward plasma velocity is also driven by the shock wave as an initial plasma velocity for the laser deposition and electron thermal conduct zone, which decreases the expanding plasma kinetic energy loss and helps to increase the x-ray radiation.

  14. Feasibility investigations on a novel micro-embossing using laser-driven flyer

    NASA Astrophysics Data System (ADS)

    Liu, Huixia; Shen, Zongbao; Wang, Xiao; Li, Pin; Hu, Yang; Gu, Chunxing

    2012-09-01

    A novel micro-plastic microfabrication technique for embossing is presented, which uses laser-driven flyer as the loading method in forming. Experiments were performed by allowing the laser-driven flyer to impact the thin film, which is placed above a micromold. Micro-channel with dimension of 160 μm×45 μm was successfully fabricated on copper foil surface using laser-driven flyer. The effects of laser energy on deformation mechanism were investigated experimentally. Surface roughness changes on formed sample were discussed. The novel technique holds promise for achieving precise, well-controlled, low-cost, high efficiency of three-dimensional metallic microstructures. In addition, this technique can cold form high strength or difficult materials.

  15. Measurements of laser-driven magnetic fields in quasi-hohlraum geometries

    NASA Astrophysics Data System (ADS)

    Pollock, Bradley; Turnbull, D.; Goyon, C.; Ross, S.; Farmer, W.; Hazi, A.; Tubman, E.; Woolsey, N.; Law, K.; Fujioka, S.; Moody, J.

    2015-11-01

    Magnetic fields of 10-100 T have been produced with a laser-driven scheme using a parallel-plate target geometry, where a laser is directed through a hole in the front plate and irradiates the plate behind it. Hot electrons generated from the rear plate collect on the front plate, creating a voltage difference (~ 10-100 keV) between them. When the plates are connected via a quasi-loop conductor, this voltage sources current in the range of ~ 0.1-1 MA which produces a magnetic field along the axis of the loop. The field is generated on fast (~ ns) timescales, and can be scaled by changing the drive laser parameters. Recent experiments at the Jupiter Laser Facility have allowed temporally-resolved measurements of the voltage between the plates with ~ 1 J laser drive. Separate experiments at the Omega EP laser system have allowed direct Faraday rotation (in fused SiO2) measurements of the field strength inside the current loop by employing the 4w polarimetry capability of EP. We have also measured the extent and structure of the field with proton deflectometry at EP. The maximum field recorded along the axis of the quasi-loop is ~ 5 T at moderate (100 J) laser drive, and measurements of fringing fields outside the loop at 1 kJ indicate that the field increases to ~ 40 T. These results are compared with modeling to determine the current driven in the target, and infer information about the plasma conditions which sourced the current. This work was performed under the auspices of the United States Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  16. Study on the dynamic behavior of matters using laser-driven shock waves in the water confinement

    NASA Astrophysics Data System (ADS)

    Yu, Hyeonju; Yoh, Jack J.

    2015-06-01

    The strain rates achievable in laser-driven shock experiments overlap with gas gun and can reach much higher values. The laser-based method also has advantages in terms of system size, cost, repeatability, and controllability. In this research, we aim to measure equation of state, Hugoniot elastic limit, strain rate, and compressive yield strength of target samples by making use of the velocity interferometer or the VISAR. High pressure shock wave is generated by a Q-switched Nd:YAG laser operating at 1.064 μm wavelength with pulse energy up to 3 joules and 9 ns pulse duration. All the experiments are conducted in the water confinement to increase the peak stresses to an order of GPa. Furthermore, quantitative comparisons are made to the existing shock data in order to emphasize the novelty of the proposed setup which is relatively simple and reliable. Corresponding author.

  17. Streaked Optical Pyrometer System for Laser-Driven Shock-Wave Experiments on OMEGA

    SciTech Connect

    Miller, J.E.; Boehly, T.R.; Melchior, Meyerhofer, D.D.; Celliers, P.M.; Eggert, J.H.; Hicks, D.G.; Sorce, C.M.; Oertel, J.A.; Emmel, P.M.

    2007-03-23

    The temperature of laser-driven shock waves is of interest to inertial confinement fusion and high-energy-density physics. We report on a streaked optical pyrometer that measures the self-emission of laser-driven shocks simultaneously with a velocity interferometer system for any reflector (VISAR). Together these diagnostics are used to obtain the temporally and spatially resolved temperatures of ~Mbar shocks driven by the OMEGA laser. We provide a brief description of the diagnostic and how it is used with VISAR. Key spectral calibration results are discussed and important characteristics of the recording system are presented.

  18. Streaked optical pyrometer system for laser-driven shock-wave experiments on OMEGA.

    PubMed

    Miller, J E; Boehly, T R; Melchior, A; Meyerhofer, D D; Celliers, P M; Eggert, J H; Hicks, D G; Sorce, C M; Oertel, J A; Emmel, P M

    2007-03-01

    The temperature of laser-driven shock waves is of interest to inertial confinement fusion and high-energy-density physics. We report on a streaked optical pyrometer that measures the self-emission of laser-driven shocks simultaneously with a velocity interferometer system for any reflector (VISAR). Together these diagnostics are used to obtain the temporally and spatially resolved temperatures of approximately megabar shocks driven by the OMEGA laser. We provide a brief description of the diagnostic and how it is used with VISAR. Key spectral calibration results are discussed and important characteristics of the recording system are presented. PMID:17411209

  19. Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including early detection of cancers

    DOEpatents

    Martinez, Jennifer S.; Swanson, Basil I.; Shively, John E.; Li, Lin

    2009-06-02

    An assay element is described including recognition ligands adapted for binding to carcinoembryonic antigen (CEA) bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of CEA is described including injecting a possible CEA-containing sample into a sensor cell including the assay element, maintaining the sample within the sensor cell for time sufficient for binding to occur between CEA present within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

  20. The initiation of high surface area Pentaerythritol Tetranitrate using fiber-coupled laser-driven flyer plates

    NASA Astrophysics Data System (ADS)

    Bowden, M. D.; Drake, R. C.

    2007-09-01

    A system for launching flyer plates using a Q-switched Nd:YAG laser has been developed for shock initiation of secondary explosives. Flyer plates have been launched at velocities exceeding 4 km s -1. These flyers produce sub-nanosecond duration shocks in excess of 30 GPa on impact. Flyer planarity and integrity have been studied by impacting polymethylmethacrylate (PMMA) windows and using a high-speed streak camera to record the light generated. Analysis of this data has provided an insight of the key mechanisms and enabled the system attributes to be controlled and optimized for explosive initiation. Pentaerythritol Tetranitrate (PETN) has been tested with specific surface areas (SSA) ranging from 12,700 cm2 g -1 to 25,100 cm2 g -1 and the effect of SSA on initiation threshold in this extremely short duration shock regime is examined. A minimum surface area size for initiation is evident. Calculations show that the pulse width is on the order of the particle size. We observed partial reactions in some firings, and we propose a mechanism to explain this. The normalized initiation thresholds are compared to electrical slapper thresholds on the same explosives, and these data have been used to evaluate P2τ for both laser driven flyer plates and electrically driven flyer plates. The critical energy fluence calculated is compared to published values and discussed for similar systems.

  1. Influence of shock waves on laser-driven proton acceleration

    SciTech Connect

    Lundh, O.; Lindau, F.; Persson, A.; Wahlstroem, C.-G.; McKenna, P.; Batani, D.

    2007-08-15

    The influence of shock waves, driven by amplified spontaneous emission (ASE), on laser-accelerated proton beams is investigated. A local deformation, produced by a cold shock wave launched by the ablation pressure of the ASE pedestal, can under oblique laser irradiation significantly direct the proton beam toward the laser axis. This can be understood in the frame of target normal sheath acceleration as proton emission from an area of the target where the local target normal is shifted toward the laser axis. Hydrodynamic simulations and experimental data show that there exists a window in laser and target parameter space where the target can be significantly deformed and yet facilitate efficient proton acceleration. The dependence of the magnitude of the deflection on target material, foil thickness, and ASE pedestal intensity and duration is experimentally investigated. The deflection angle is found to increase with increasing ASE intensity and duration and decrease with increasing target thickness. In a comparison between aluminum and copper target foils, aluminum is found to yield a larger proton beam deflection. An analytic model is successfully used to predict the proton emission direction.

  2. Advanced scheme for high-yield laser driven nuclear reactions

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Picciotto, A.; Velyhan, A.; Krasa, J.; Kucharik, M.; Mangione, A.; Szydlowsky, A.; Malinowska, A.; Bertuccio, G.; Shi, Y.; Crivellari, M.; Ullschmied, J.; Bellutti, P.; Korn, G.

    2015-01-01

    The use of a low contrast nanosecond laser pulse with a relatively low intensity (3  ×  1016 W cm-2) allowed the enhancing of the yield of induced nuclear reactions in advanced solid targets. In particular the ‘ultraclean’ proton-boron fusion reaction, producing energetic alpha particles without neutron generation, was chosen. A spatially well-defined layer of boron dopants in a hydrogen-enriched silicon substrate was used as a target. A combination of the specific target composition and the laser pulse temporal shape allowed the enhancing of the yield of alpha particles up to 109 per steradian. This result can be ascribed to the interaction of the long-laser pre-pulse with the target and to the optimal target geometry and composition.

  3. Active Interrogation of Sensitive Nuclear Material Using Laser Driven Neutron Beams

    SciTech Connect

    Favalli, Andrea; Roth, Markus

    2015-05-01

    An investigation of the viability of a laser-driven neutron source for active interrogation is reported. The need is for a fast, movable, operationally safe neutron source which is energy tunable and has high-intensity, directional neutron production. Reasons for the choice of neutrons and lasers are set forth. Results from the interrogation of an enriched U sample are shown.

  4. Structure Loaded Vacuum Laser-Driven Particle Acceleration Experiments at SLAC

    SciTech Connect

    Plettner, T.; Byer, R.L.; Colby, E.R.; Cowan, B.M.; Ischebeck, R.; McGuinness, C.; Lincoln, M.R.; Sears, C.M.; Siemann, R.H.; Spencer, J.E.; /SLAC /Stanford U., Phys. Dept.

    2007-04-09

    We present an overview of the future laser-driven particle acceleration experiments. These will be carried out at the E163 facility at SLAC. Our objectives include a reconfirmation of the proof-of-principle experiment, a staged buncher laser-accelerator experiment, and longer-term future experiments that employ dielectric laser-accelerator microstructures.

  5. Calculation of Coupling Efficiencies for Laser-Driven Photonic Bandgap Structures

    SciTech Connect

    England, R. J.; Ng, C.; Noble, R.; Spencer, J. E.

    2010-11-04

    We present a technique for calculating the power coupling efficiency for a laser-driven photonic bandgap structure using electromagnetic finite element simulations, and evaluate the efficiency of several coupling scenarios for the case of a hollow-core photonic bandgap fiber accelerator structure.

  6. Observation of laser driven supercritical radiative shock precursors.

    PubMed

    Bouquet, S; Stéhlé, C; Koenig, M; Chièze, J-P; Benuzzi-Mounaix, A; Batani, D; Leygnac, S; Fleury, X; Merdji, H; Michaut, C; Thais, F; Grandjouan, N; Hall, T; Henry, E; Malka, V; Lafon, J-P J

    2004-06-01

    We present a supercritical radiative shock experiment performed with the LULI nanosecond laser facility. Using targets filled with xenon gas at low pressure, the propagation of a strong shock with a radiative precursor is evidenced. The main measured shock quantities (electronic density and propagation velocity) are shown to be in good agreement with theory and numerical simulations. PMID:15245230

  7. Electrochemical planarization

    DOEpatents

    Bernhardt, A.F.; Contolini, R.J.

    1993-10-26

    In a process for fabricating planarized thin film metal interconnects for integrated circuit structures, a planarized metal layer is etched back to the underlying dielectric layer by electropolishing, ion milling or other procedure. Electropolishing reduces processing time from hours to minutes and allows batch processing of multiple wafers. The etched back planarized thin film interconnect is flush with the dielectric layer. 12 figures.

  8. Electrochemical planarization

    DOEpatents

    Bernhardt, Anthony F.; Contolini, Robert J.

    1993-01-01

    In a process for fabricating planarized thin film metal interconnects for integrated circuit structures, a planarized metal layer is etched back to the underlying dielectric layer by electropolishing, ion milling or other procedure. Electropolishing reduces processing time from hours to minutes and allows batch processing of multiple wafers. The etched back planarized thin film interconnect is flush with the dielectric layer.

  9. Laser Driven Ion accelerators - current status and perspective

    SciTech Connect

    Zepf, M.; Robinson, A. P. L.

    2009-01-22

    The interaction of ultra-intense lasers with thin foil targets has recently emerged as a route to achieving extreme acceleration gradients and hence ultra-compact proton and ion accelerators. There are a number of distinct physical processes by which the protons/ions can be accelerated to energies in excess of 10 MeV. The recent development is discussed and a new mechanism--Radiation Pressure Acceleration is highlighted as a route to achieving efficient production of relativistic ions beams.

  10. Measurement of RT amplitudes and wavelengths of laser driven plates

    SciTech Connect

    Frank, A.M.; Gillespie, C.H.

    1997-10-16

    A laser drive plate, that is a dense solid plate drive by a laser heated, lower density plasma, is inherently Raleigh-Taylor (R-T) unstable, We have previously indicated that observed surface perturbation on the plate are probably R-T instabilities, initiated by the mode structure of the driving laser beam. Using a semi- transparent impact target viewed with a polarized Epi-Illuminated Confocal Streak Microscope, has allowed us to measure the amplitude and growth of the instability.

  11. Chirped pulse reflectivity in laser driven shock experiments

    NASA Astrophysics Data System (ADS)

    Benuzzi, Alessandra; Koenig, Michel; Faral, Bernard; Batani, Dimitri; Scianitti, Francesca; di Santo, Domenico; Hall, Tom

    1998-11-01

    We performed an experiment based on using two pulses delivered by the 100 TW LULI laser. The first one is an uncompressed (FWHM =89 600 ps) chirped main pulse generating a shock wave in a CH-Al target coated into 2 mm fused quartz. The target rear side emissivity was recorded by a visible streak camera in order to check the shock uniformity. The second one is a partially compressed (FWHM =89 100 ps) chirped probe pulse which irradiates the rear face of the target (the quartz side). We measured on the same laser shot a)the chirped pulse reflectometry(1) which allowed us to obtain a very high temporal resolution, thus a good precision in the shock breakout time determination b) the reflected probe phase change as a function of time using the frequency domain interferometry technique(2). Such measurement allowed us to deduce the interface Al-quartz displacement velocity which yields information on preheating effects and on fluid velocity. [1] D. M. Gold, A. Sullivan, R. Sheperd, J. Dunn & R. Stewart, Proceedings of 26th Annual Anomalous Absorption Conference, Fairbanks, Alaska (1996). [2] J. P. Geindre, P. Audebert, A. Rousse, F. Falli=E8s, J. C. Gauthier, A. Mysyrowicz, A. D. Santos, G. Hammoniaux & A. Antonetti, Optics Lett. 19, 1997 (1994).

  12. Laser-driven ablation through fast electrons in PALS experiment

    NASA Astrophysics Data System (ADS)

    Gus'kov, S. Yu.; Chodukowski, T.; Demchenko, N.; Kalinowska, Z.; Kasperczuk, A.; Krousky, E.; Pfeifer, M.; Pisarczyk, P.; Pisarczyk, T.; Renner, O.; Skala, J.; Smid, M.; Ullschmied, J.

    2016-03-01

    Energy transfer to shock wave in Al and Cu targets irradiated by a laser pulse with intensity of I≈1-50 PW/cm2 and duration of 250 ps was investigated at Prague Asterix Laser System (PALS). The iodine laser provided energy in the range of 100-600 J at the first and third harmonic frequencies. The focal spot radius of laser beam on the target was varied from 160 to 40 μm. The dominant contribution of fast electron energy transfer into the ablation process was found when using the first harmonic radiation, the focal spot radius of 40-100 μm, and the energy of 300-600 J. The fast electron heating results in the growth of ablation pressure from 60 Mbar at the intensity of 10 PW/cm2 to 180 Mbar at the intensity of 50 PW/cm2 and in the growth of the efficiency of the energy conversion into the shock wave from 2 to 7% under the conditions of 2D ablation.

  13. Intense laser driven collision-less shock and ion acceleration in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Mima, K.; Jia, Q.; Cai, H. B.; Taguchi, T.; Nagatomo, H.; Sanz, J. R.; Honrubia, J.

    2016-05-01

    The generation of strong magnetic field with a laser driven coil has been demonstrated by many experiments. It is applicable to the magnetized fast ignition (MFI), the collision-less shock in the astrophysics and the ion shock acceleration. In this paper, the longitudinal magnetic field effect on the shock wave driven by the radiation pressure of an intense short pulse laser is investigated by theory and simulations. The transition of a laminar shock (electro static shock) to the turbulent shock (electromagnetic shock) occurs, when the external magnetic field is applied in near relativistic cut-off density plasmas. This transition leads to the enhancement of conversion of the laser energy into high energy ions. The enhancement of the conversion efficiency is important for the ion driven fast ignition and the laser driven neutron source. It is found that the total number of ions reflected by the shock increases by six time when the magnetic field is applied.

  14. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences.

    PubMed

    Nakajima, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker's review article on "Laser Acceleration and its future" [Toshiki Tajima, (2010)],(1)) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated.

  15. Study of shockwave method for diagnosing the radiation fields of laser-driven gold hohlraums

    NASA Astrophysics Data System (ADS)

    Li, Yongsheng; Lan, Ke; Huo, Wenyi; Lai, Dongxian; Gao, Yaoming; Pei, Wenbing

    2013-11-01

    Besides the routinely used broad-band x-ray spectrometer (Dante or SXS), ablative shock-wave method is often used to diagnose the radiation fields of laser-driven Hohlraums. The x-ray ablation process of Aluminum and Titanium is studied numerically with a 1-D radiation hydrodynamic code RDMG [F. Tinggui et al., Chin. J. Comput. Phys. 16, 199 (1999)], based on which a new scaling relation of the equivalent radiation temperature with the ablative shock velocity in Aluminum plates is proposed, and a novel method is developed for determining simultaneously the radiation temperature and the M-band (2-4 keV) fraction in laser-driven gold Hohlraums.

  16. An online, energy-resolving beam profile detector for laser-driven proton beams.

    PubMed

    Metzkes, J; Zeil, K; Kraft, S D; Karsch, L; Sobiella, M; Rehwald, M; Obst, L; Schlenvoigt, H-P; Schramm, U

    2016-08-01

    In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ∼4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source. PMID:27587116

  17. Guided post-acceleration of laser-driven ions by a miniature modular structure

    NASA Astrophysics Data System (ADS)

    Kar, Satyabrata; Ahmed, Hamad; Prasad, Rajendra; Cerchez, Mirela; Brauckmann, Stephanie; Aurand, Bastian; Cantono, Giada; Hadjisolomou, Prokopis; Lewis, Ciaran L. S.; Macchi, Andrea; Nersisyan, Gagik; Robinson, Alexander P. L.; Schroer, Anna M.; Swantusch, Marco; Zepf, Matt; Willi, Oswald; Borghesi, Marco

    2016-04-01

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m-1, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications.

  18. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences

    PubMed Central

    NAKAJIMA, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker’s review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)],1) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. PMID:26062737

  19. An online, energy-resolving beam profile detector for laser-driven proton beams

    NASA Astrophysics Data System (ADS)

    Metzkes, J.; Zeil, K.; Kraft, S. D.; Karsch, L.; Sobiella, M.; Rehwald, M.; Obst, L.; Schlenvoigt, H.-P.; Schramm, U.

    2016-08-01

    In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ˜4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source.

  20. A Laser-Driven Linear Collider: Sample Machine Parameters and Configuration

    SciTech Connect

    Colby, E.R.; England, R.J.; Noble, R.J.; /SLAC

    2011-05-20

    We present a design concept for an e{sup +}e{sup -} linear collider based on laser-driven dielectric accelerator structures, and discuss technical issues that must be addressed to realize such a concept. With a pulse structure that is quasi-CW, dielectric laser accelerators potentially offer reduced beamstrahlung and pair production, reduced event pileup, and much cleaner environment for high energy physics and. For multi-TeV colliders, these advantages become significant.

  1. The Laser-Driven X-ray Big Area Backlighter (BABL): Design, Optimization, and Evolution

    NASA Astrophysics Data System (ADS)

    Flippo, Kirk; DeVolder, Barbara; Doss, Forrest; Kline, John; Merritt, Elizabeth; Loomis, Eric; Capelli, Deanna; Schmidt, Derek; Schmitt, Mark J.

    2016-05-01

    The Big Area BackLigher (BABL) has been developed for large area laser-driven x-ray backlighting on the National Ignition Facility (NIF), which can be used for general High Energy Density (HED) experiments. The BABL has been optimized via hydrodynamic simulations to produce laser-to-x-ray conversion efficiencies of up to nearly 5%. Four BABL foil materials, Zn, Fe, V, and Cu, have been used for He-α x ray production.

  2. Monochromatic computed tomography with a compact laser-driven X-ray source.

    PubMed

    Achterhold, K; Bech, M; Schleede, S; Potdevin, G; Ruth, R; Loewen, R; Pfeiffer, F

    2013-01-01

    A laser-driven electron-storage ring can produce nearly monochromatic, tunable X-rays in the keV energy regime by inverse Compton scattering. The small footprint, relative low cost and excellent beam quality provide the prospect for valuable preclinical use in radiography and tomography. The monochromaticity of the beam prevents beam hardening effects that are a serious problem in quantitative determination of absorption coefficients. These values are important e.g. for osteoporosis risk assessment. Here, we report quantitative computed tomography (CT) measurements using a laser-driven compact electron-storage ring X-ray source. The experimental results obtained for quantitative CT measurements on mass absorption coefficients in a phantom sample are compared to results from a rotating anode X-ray tube generator at various peak voltages. The findings confirm that a laser-driven electron-storage ring X-ray source can indeed yield much higher CT image quality, particularly if quantitative aspects of computed tomographic imaging are considered.

  3. Integrated simulation approach for laser-driven fast ignition.

    PubMed

    Wang, W-M; Gibbon, P; Sheng, Z-M; Li, Y-T

    2015-01-01

    An integrated simulation approach fully based on the particle-in-cell (PIC) model is proposed, which involves both fast-particle generation via laser solid-density plasma interaction and transport and energy deposition of the particles in extremely high-density plasma. It is realized by introducing two independent systems in a simulation, where the fast-particle generation is simulated by a full PIC system and the transport and energy deposition computed by a second PIC system with a reduced field solver. Data of the fast particles generated in the full PIC system are copied to the reduced PIC system in real time as the fast-particle source. Unlike a two-region approach, which takes a single PIC system and two field solvers in two plasma density regions, respectively, the present one need not match the field solvers since the reduced field solver and the full solver adopted respectively in the two systems are independent. A simulation case is presented, which demonstrates that this approach can be applied to integrated simulation of fast ignition with real target densities, e.g., 300 g/cm(3). PMID:25679717

  4. An efficient, selective collisional ejection mechanism for inner-shell population inversion in laser-driven plasmas

    SciTech Connect

    SCHROEDER,W. ANDREAS; NELSON,THOMAS R.; BORISOV,A.B.; LONGWORTH,J.W.; BOYER,K.; RHODES,C.K.

    2000-06-07

    A theoretical analysis of laser-driven collisional ejection of inner-shell electrons is presented to explain the previously observed anomalous kilovolt L-shell x-ray emission spectra from atomic Xe cluster targets excited by intense sub-picosecond 248nrn ultraviolet radiation. For incident ponderomotively-driven electrons photoionized by strong above threshold ionization, the collisional ejection mechanism is shown to be highly l-state and significantly n-state (i.e. radially) selective for time periods shorter than the collisional dephasing time of the photoionized electronic wavefunction. The resulting preference for the collisional ejection of 2p electrons by an ionized 4p state produces the measured anomalous Xe(L) emission which contains direct evidence for (i) the generation of Xe{sup 27+}(2p{sup 5}3d{sup 10}) and Xe{sup 28+}(2p{sup 5}3d{sup 9}) ions exhibiting inner-shell population inversion and (ii) a coherent correlated electron state collision responsible for the production of double 2p vacancies. For longer time periods, the selectivity of this coherent impact ionization mechanism is rapidly reduced by the combined effects of intrinsic quantum mechanical spreading and dephasing--in agreement with the experimentally observed and extremely strong {minus}{lambda}{sup {minus}6} pump-laser wavelength dependence of the efficiency of inner-shell (2p) vacancy production in Xe clusters excited in underdense plasmas.

  5. Ultrafast Synchrotron-Enhanced Thermalization of Laser-Driven Colliding Pair Plasmas.

    PubMed

    Lobet, M; Ruyer, C; Debayle, A; d'Humières, E; Grech, M; Lemoine, M; Gremillet, L

    2015-11-20

    We report on the first self-consistent numerical study of the feasibility of laser-driven relativistic pair shocks of prime interest for high-energy astrophysics. Using a QED-particle-in-cell code, we simulate the collective interaction between two counterstreaming electron-positron jets driven from solid foils by short-pulse (~60 fs), high-energy (~100 kJ) lasers. We show that the dissipation caused by self-induced, ultrastrong (>10^{6} T) electromagnetic fluctuations is amplified by intense synchrotron emission, which enhances the magnetic confinement and compression of the colliding jets.

  6. Three-dimensional Dielectric Photonic Crystal Structures for Laser-driven Acceleration

    SciTech Connect

    Cowan, Benjamin M.; /Tech-X, Boulder /SLAC

    2007-12-14

    We present the design and simulation of a three-dimensional photonic crystal waveguide for linear laser-driven acceleration in vacuum. The structure confines a synchronous speed-of-light accelerating mode in both transverse dimensions. We report the properties of this mode, including sustainable gradient and optical-to-beam efficiency. We present a novel method for confining a particle beam using optical fields as focusing elements. This technique, combined with careful structure design, is shown to have a large dynamic aperture and minimal emittance growth, even over millions of optical wavelengths.

  7. Time- and Space-Resolved Optical Probing of Femtosecond-Laser-Driven Shock Waves in Aluminum

    SciTech Connect

    Evans, R.; Badger, A.D.; Fallies, F.; Mahdieh, M.; Hall, T.A.; Audebert, P.; Geindre, J.; Gauthier, J.; Mysyrowicz, A.; Grillon, G.; Antonetti, A.

    1996-10-01

    We present the first measurements of particle velocity histories at the interface between an aluminum sample shocked by a 120fs laser-driven pressure pulse and a fused silica window. Frequency-domain interferometry is used to provide space- and time-resolved measurements of the phase shift of a pair of probe pulses backscattered at the shocked interface. Pressures of 1{endash}3 Mbar are inferred from the simultaneous measurement of the particle and shock velocities along the aluminum Hugoniot curve for {approximately}10{sup 14} W/cm{sup 2} laser irradiances. {copyright} {ital 1996 The American Physical Society.}

  8. Modeling laser-driven electron acceleration using WARP with Fourier decomposition

    NASA Astrophysics Data System (ADS)

    Lee, P.; Audet, T. L.; Lehe, R.; Vay, J.-L.; Maynard, G.; Cros, B.

    2016-09-01

    WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.

  9. Modeling of reflection-type laser-driven white lighting considering phosphor particles and surface topography.

    PubMed

    Lee, Dong-Ho; Joo, Jae-Young; Lee, Sun-Kyu

    2015-07-27

    This paper presents a model of blue laser diode (LD)-based white lighting coupled with a yellow YAG phosphor, for use in the proper design and fabrication of phosphor in automotive headlamps. First, the sample consisted of an LD, collecting lens, and phosphor was prepared that matches the model. The light distribution of the LD and the phosphor were modeled to investigate an effect of the surface topography and phosphor particle properties on the laser-driven white lighting systems by using the commercially available optical design software. Based on the proposed model, the integral spectrum distribution and the color coordinates were discussed.

  10. Ultrafast Synchrotron-Enhanced Thermalization of Laser-Driven Colliding Pair Plasmas.

    PubMed

    Lobet, M; Ruyer, C; Debayle, A; d'Humières, E; Grech, M; Lemoine, M; Gremillet, L

    2015-11-20

    We report on the first self-consistent numerical study of the feasibility of laser-driven relativistic pair shocks of prime interest for high-energy astrophysics. Using a QED-particle-in-cell code, we simulate the collective interaction between two counterstreaming electron-positron jets driven from solid foils by short-pulse (~60 fs), high-energy (~100 kJ) lasers. We show that the dissipation caused by self-induced, ultrastrong (>10^{6} T) electromagnetic fluctuations is amplified by intense synchrotron emission, which enhances the magnetic confinement and compression of the colliding jets. PMID:26636856

  11. Using laser-driven flyer plates to study the shock initiation of nanoenergetic materials

    NASA Astrophysics Data System (ADS)

    Shaw, W. L.; Williams, R. A.; Dreizin, E. L.; Dlott, D. D.

    2014-05-01

    A tabletop system has been developed to launch aluminium laser-driven flyer plates at speeds of up to 4 km/s. The flyers were used to initiate nanoenergetic reactive materials including aluminium/iron oxide and aluminium/molybdenum oxide thermites produced by arrested reactive milling. The flyer flight and impact was characterized by photon Doppler velocimetry and the initiation process by time-resolved emission spectroscopy. Impact initiation thresholds were determined for 50 μm thick flyer plates producing 10 ns shocks. The intensities, delays and durations of the emission bursts, and the effects of nanostructure and microstructure on them were used to investigate fundamental mechanisms of impact initiation.

  12. Study of Rayleigh–Taylor growth in laser irradiated planar SiO{sub 2} targets at ignition-relevant conditions

    SciTech Connect

    Hager, J. D.; Collins, T. J. B.; Knauer, J. P.; Meyerhofer, D. D.; Sangster, T. C.; Smalyuk, V. A.

    2013-07-15

    Rayleigh–Taylor (RT) growth experiments were performed on the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using planar SiO{sub 2} targets seeded with a single mode 60-μm wavelength perturbation driven at peak laser intensities up to 9 × 10{sup 14} W/cm{sup 2}. These are the first RT measurements in SiO{sub 2} at conditions relevant to direct-drive inertial confinement fusion ignition. The measured average modulation growth rates agree with the 2-D hydrodynamics code DRACO, providing an important step in the development of target ablators that are robust to RT growth and hot- electron preheat considerations when driven at the intensities required to achieve thermonuclear ignition.

  13. Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including protein markers, pathogens and cellular debris

    DOEpatents

    Martinez, Jennifer S.; Swanson, Basil I.; Grace, Karen M.; Grace, Wynne K.; Shreve, Andrew P.

    2009-06-02

    An assay element is described including recognition ligands bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of a biological target is described including injecting a biological target-containing sample into a sensor cell including the assay element, with the recognition ligands adapted for binding to selected biological targets, maintaining the sample within the sensor cell for time sufficient for binding to occur between selected biological targets within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting the fluorescent-label in any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

  14. Fabrication of targets to support laser-driven shockwave experiments. Progress report

    SciTech Connect

    Stein, J.D.

    1980-12-01

    Methods are being examined to fabricate and characterize precise multiple-stepped foils. Physical vapor deposition of metals onto substrates using precise masking to define each step was evaluated. A process for depositing metal onto preetched substrates to replicate precise steps is being developed.

  15. Fast ignition of inertial fusion targets by laser-driven carbon beams

    SciTech Connect

    Honrubia, J. J.; Temporal, M.; Fernandez, J. C.; Hegelich, B. M.; Meyer-ter-Vehn, J.

    2009-10-15

    Two-dimensional simulations of ion beam driven fast ignition are presented. Ignition energies of protons with Maxwellian spectrum and carbon ions with quasimonoenergetic and Maxwellian energy distributions are evaluated. The effect of the coronal plasma surrounding the compressed deuterium-tritium is studied for three different fuel density distributions. It is found that quasimonoenergetic ions have better coupling with the compressed deuterium-tritium and substantially lower ignition energies. Comparison of quasimonoenergetic carbon ions and relativistic electrons as ignitor beams shows similar laser energy requirements, provided that a laser to quasimonoenergetic carbon ion conversion efficiency around 10% can be achieved.

  16. Planar micromixer

    DOEpatents

    Fiechtner, Gregory J.; Singh, Anup K.; Wiedenman, Boyd J.

    2008-03-18

    The present embodiment describes a laminar-mixing embodiment that utilizes simple, three-dimensional injection. Also described is the use of the embodiment in combination with wide and shallow sections of channel to affect rapid mixing in microanalytical systems. The shallow channel sections are constructed using all planar micromachining techniques, including those based on isotropic etching. The planar construction enables design using minimum dispersion concepts that, in turn, enable simultaneous mixing and injection into subsequent chromatography channels.

  17. Particle simulation of high-energy-density laser-driven reconnection experiments

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, A.; Fox, W.; Germaschewski, K.

    2012-10-01

    Recently, reconnection between magnetic fields, self-generated through the Biermann battery effect, has been observed and studied in high-energy-density, laser-driven experiments on the Vulcan, OMEGA, and Shenguang laser facilities. This is a novel regime for magnetic reconnection study, characterized by extremely high magnetic fields, high plasma beta and strong, supersonic plasma inflow. Reconnection in this regime is investigated with particle-in-cell simulations using the PSC code. Previous 2-d particle-in-cell reconnection simulations with parameters and geometry relevant to the experiments identified key ingredients for obtaining the very fast reconnection rates, namely two-fluid reconnection mediated by collisionless effects (that is, the Hall current and electron pressure tensor), strong flux pile-up of the inflowing magnetic field [1], and secondary instabilities that lead to magnetic island formation. We present further detailed simulations of reconnection in this geometry, exploring the role of binary particle collisions and examining mechanisms for particle energization and acceleration, as has been recently observed in laser-driven reconnection experiments [2].[4pt] [1] W. Fox, et al, PRL 106, 215003 (2011).[0pt] [2] Q.L.Dong, et al., PRL 108, 215001 (2012).

  18. Quantum electrodynamical theory of high-efficiency excitation energy transfer in laser-driven nanostructure systems

    NASA Astrophysics Data System (ADS)

    Weeraddana, Dilusha; Premaratne, Malin; Gunapala, Sarath D.; Andrews, David L.

    2016-08-01

    A fundamental theory is developed for describing laser-driven resonance energy transfer (RET) in dimensionally constrained nanostructures within the framework of quantum electrodynamics. The process of RET communicates electronic excitation between suitably disposed emitter and detector particles in close proximity, activated by the initial excitation of the emitter. Here, we demonstrate that the transfer rate can be significantly increased by propagation of an auxiliary laser beam through a pair of nanostructure particles. This is due to the higher order perturbative contribution to the Förster-type RET, in which laser field is applied to stimulate the energy transfer process. We construct a detailed picture of how excitation energy transfer is affected by an off-resonant radiation field, which includes the derivation of second and fourth order quantum amplitudes. The analysis delivers detailed results for the dependence of the transfer rates on orientational, distance, and laser intensity factor, providing a comprehensive fundamental understanding of laser-driven RET in nanostructures. The results of the derivations demonstrate that the geometry of the system exercises considerable control over the laser-assisted RET mechanism. Thus, under favorable conformational conditions and relative spacing of donor-acceptor nanostructures, the effect of the auxiliary laser beam is shown to produce up to 70% enhancement in the energy migration rate. This degree of control allows optical switching applications to be identified.

  19. Radiation reaction effect on laser driven auto-resonant particle acceleration

    SciTech Connect

    Sagar, Vikram; Sengupta, Sudip; Kaw, P. K.

    2015-12-15

    The effects of radiation reaction force on laser driven auto-resonant particle acceleration scheme are studied using Landau-Lifshitz equation of motion. These studies are carried out for both linear and circularly polarized laser fields in the presence of static axial magnetic field. From the parametric study, a radiation reaction dominated region has been identified in which the particle dynamics is greatly effected by this force. In the radiation reaction dominated region, the two significant effects on particle dynamics are seen, viz., (1) saturation in energy gain by the initially resonant particle and (2) net energy gain by an initially non-resonant particle which is caused due to resonance broadening. It has been further shown that with the relaxation of resonance condition and with optimum choice of parameters, this scheme may become competitive with the other present-day laser driven particle acceleration schemes. The quantum corrections to the Landau-Lifshitz equation of motion have also been taken into account. The difference in the energy gain estimates of the particle by the quantum corrected and classical Landau-Lifshitz equation is found to be insignificant for the present day as well as upcoming laser facilities.

  20. Laser driven single shock compression of fluid deuterium from 45 to 220 GPa

    SciTech Connect

    Hicks, D; Boehly, T; Celliers, P; Eggert, J; Moon, S; Meyerhofer, D; Collins, G

    2008-03-23

    The compression {eta} of liquid deuterium between 45 and 220 GPa under laser-driven shock loading has been measured using impedance matching to an aluminum (Al) standard. An Al impedance match model derived from a best fit to absolute Hugoniot data has been used to quantify and minimize the systematic errors caused by uncertainties in the high-pressure Al equation of state. In deuterium below 100 GPa results show that {eta} {approx_equal} 4.2, in agreement with previous impedance match data from magnetically-driven flyer and convergent-explosive shock wave experiments; between 100 and 220 GPa {eta} reaches a maximum of {approx}5.0, less than the 6-fold compression observed on the earliest laser-shock experiments but greater than expected from simple extrapolations of lower pressure data. Previous laser-driven double-shock results are found to be in good agreement with these single-shock measurements over the entire range under study. Both sets of laser-shock data indicate that deuterium undergoes an abrupt increase in compression at around 110 GPa.

  1. Guided post-acceleration of laser-driven ions by a miniature modular structure

    PubMed Central

    Kar, Satyabrata; Ahmed, Hamad; Prasad, Rajendra; Cerchez, Mirela; Brauckmann, Stephanie; Aurand, Bastian; Cantono, Giada; Hadjisolomou, Prokopis; Lewis, Ciaran L. S.; Macchi, Andrea; Nersisyan, Gagik; Robinson, Alexander P. L.; Schroer, Anna M.; Swantusch, Marco; Zepf, Matt; Willi, Oswald; Borghesi, Marco

    2016-01-01

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m−1, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications. PMID:27089200

  2. Towards optical polarization control of laser-driven proton acceleration in foils undergoing relativistic transparency

    PubMed Central

    Gonzalez-Izquierdo, Bruno; King, Martin; Gray, Ross J.; Wilson, Robbie; Dance, Rachel J.; Powell, Haydn; Maclellan, David A.; McCreadie, John; Butler, Nicholas M. H.; Hawkes, Steve; Green, James S.; Murphy, Chris D.; Stockhausen, Luca C.; Carroll, David C.; Booth, Nicola; Scott, Graeme G.; Borghesi, Marco; Neely, David; McKenna, Paul

    2016-01-01

    Control of the collective response of plasma particles to intense laser light is intrinsic to relativistic optics, the development of compact laser-driven particle and radiation sources, as well as investigations of some laboratory astrophysics phenomena. We recently demonstrated that a relativistic plasma aperture produced in an ultra-thin foil at the focus of intense laser radiation can induce diffraction, enabling polarization-based control of the collective motion of plasma electrons. Here we show that under these conditions the electron dynamics are mapped into the beam of protons accelerated via strong charge-separation-induced electrostatic fields. It is demonstrated experimentally and numerically via 3D particle-in-cell simulations that the degree of ellipticity of the laser polarization strongly influences the spatial-intensity distribution of the beam of multi-MeV protons. The influence on both sheath-accelerated and radiation pressure-accelerated protons is investigated. This approach opens up a potential new route to control laser-driven ion sources. PMID:27624920

  3. The ELIMED transport and dosimetry beamline for laser-driven ion beams

    NASA Astrophysics Data System (ADS)

    Romano, F.; Schillaci, F.; Cirrone, G. A. P.; Cuttone, G.; Scuderi, V.; Allegra, L.; Amato, A.; Amico, A.; Candiano, G.; De Luca, G.; Gallo, G.; Giordanengo, S.; Guarachi, L. Fanola; Korn, G.; Larosa, G.; Leanza, R.; Manna, R.; Marchese, V.; Marchetto, F.; Margarone, D.; Milluzzo, G.; Petringa, G.; Pipek, J.; Pulvirenti, S.; Rizzo, D.; Sacchi, R.; Salamone, S.; Sedita, M.; Vignati, A.

    2016-09-01

    A growing interest of the scientific community towards multidisciplinary applications of laser-driven beams has led to the development of several projects aiming to demonstrate the possible use of these beams for therapeutic purposes. Nevertheless, laser-accelerated particles differ from the conventional beams typically used for multiscipilinary and medical applications, due to the wide energy spread, the angular divergence and the extremely intense pulses. The peculiarities of optically accelerated beams led to develop new strategies and advanced techniques for transport, diagnostics and dosimetry of the accelerated particles. In this framework, the realization of the ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) beamline, developed by INFN-LNS (Catania, Italy) and that will be installed in 2017 as a part of the ELIMAIA beamline at the ELI-Beamlines (Extreme Light Infrastructure Beamlines) facility in Prague, has the aim to investigate the feasibility of using laser-driven ion beams for multidisciplinary applications. In this contribution, an overview of the beamline along with a detailed description of the main transport elements as well as the detectors composing the final section of the beamline will be presented.

  4. Towards optical polarization control of laser-driven proton acceleration in foils undergoing relativistic transparency.

    PubMed

    Gonzalez-Izquierdo, Bruno; King, Martin; Gray, Ross J; Wilson, Robbie; Dance, Rachel J; Powell, Haydn; Maclellan, David A; McCreadie, John; Butler, Nicholas M H; Hawkes, Steve; Green, James S; Murphy, Chris D; Stockhausen, Luca C; Carroll, David C; Booth, Nicola; Scott, Graeme G; Borghesi, Marco; Neely, David; McKenna, Paul

    2016-01-01

    Control of the collective response of plasma particles to intense laser light is intrinsic to relativistic optics, the development of compact laser-driven particle and radiation sources, as well as investigations of some laboratory astrophysics phenomena. We recently demonstrated that a relativistic plasma aperture produced in an ultra-thin foil at the focus of intense laser radiation can induce diffraction, enabling polarization-based control of the collective motion of plasma electrons. Here we show that under these conditions the electron dynamics are mapped into the beam of protons accelerated via strong charge-separation-induced electrostatic fields. It is demonstrated experimentally and numerically via 3D particle-in-cell simulations that the degree of ellipticity of the laser polarization strongly influences the spatial-intensity distribution of the beam of multi-MeV protons. The influence on both sheath-accelerated and radiation pressure-accelerated protons is investigated. This approach opens up a potential new route to control laser-driven ion sources. PMID:27624920

  5. A technology platform for translational research on laser driven particle accelerators for radiotherapy

    NASA Astrophysics Data System (ADS)

    Enghardt, W.; Bussmann, M.; Cowan, T.; Fiedler, F.; Kaluza, M.; Pawelke, J.; Schramm, U.; Sauerbrey, R.; Tünnermann, A.; Baumann, M.

    2011-05-01

    It is widely accepted that proton or light ion beams may have a high potential for improving cancer cure by means of radiation therapy. However, at present the large dimensions of electromagnetic accelerators prevent particle therapy from being clinically introduced on a broad scale. Therefore, several technological approaches among them laser driven particle acceleration are under investigation. Parallel to the development of suitable high intensity lasers, research is necessary to transfer laser accelerated particle beams to radiotherapy, since the relevant parameters of laser driven particle beams dramatically differ from those of beams delivered by conventional accelerators: The duty cycle is low, whereas the number of particles and thus the dose rate per pulse are high. Laser accelerated particle beams show a broad energy spectrum and substantial intensity fluctuations from pulse to pulse. These properties may influence the biological efficiency and they require completely new techniques of beam delivery and quality assurance. For this translational research a new facility is currently constructed on the campus of the university hospital Dresden. It will be connected to the department of radiooncology and host a petawatt laser system delivering an experimental proton beam and a conventional therapeutic proton cyclotron. The cyclotron beam will be delivered on the one hand to an isocentric gantry for patient treatments and on the other hand to an experimental irradiation site. This way the conventional accelerator will deliver a reference beam for all steps of developing the laser based technology towards clinical applicability.

  6. Towards optical polarization control of laser-driven proton acceleration in foils undergoing relativistic transparency

    NASA Astrophysics Data System (ADS)

    Gonzalez-Izquierdo, Bruno; King, Martin; Gray, Ross J.; Wilson, Robbie; Dance, Rachel J.; Powell, Haydn; MacLellan, David A.; McCreadie, John; Butler, Nicholas M. H.; Hawkes, Steve; Green, James S.; Murphy, Chris D.; Stockhausen, Luca C.; Carroll, David C.; Booth, Nicola; Scott, Graeme G.; Borghesi, Marco; Neely, David; McKenna, Paul

    2016-09-01

    Control of the collective response of plasma particles to intense laser light is intrinsic to relativistic optics, the development of compact laser-driven particle and radiation sources, as well as investigations of some laboratory astrophysics phenomena. We recently demonstrated that a relativistic plasma aperture produced in an ultra-thin foil at the focus of intense laser radiation can induce diffraction, enabling polarization-based control of the collective motion of plasma electrons. Here we show that under these conditions the electron dynamics are mapped into the beam of protons accelerated via strong charge-separation-induced electrostatic fields. It is demonstrated experimentally and numerically via 3D particle-in-cell simulations that the degree of ellipticity of the laser polarization strongly influences the spatial-intensity distribution of the beam of multi-MeV protons. The influence on both sheath-accelerated and radiation pressure-accelerated protons is investigated. This approach opens up a potential new route to control laser-driven ion sources.

  7. Guided post-acceleration of laser-driven ions by a miniature modular structure.

    PubMed

    Kar, Satyabrata; Ahmed, Hamad; Prasad, Rajendra; Cerchez, Mirela; Brauckmann, Stephanie; Aurand, Bastian; Cantono, Giada; Hadjisolomou, Prokopis; Lewis, Ciaran L S; Macchi, Andrea; Nersisyan, Gagik; Robinson, Alexander P L; Schroer, Anna M; Swantusch, Marco; Zepf, Matt; Willi, Oswald; Borghesi, Marco

    2016-01-01

    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m(-1), already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications. PMID:27089200

  8. The predominant WT1 isoform (+KTS) encodes a DNA binding protein targeting the planar cell polarity gene Scribble in renal podocytes

    PubMed Central

    Wells, Julie; Rivera, Miguel N.; Kim, Woo Jae; Starbuck, Kristen; Haber, Daniel A.

    2010-01-01

    WT1 encodes a tumor suppressor, first identified by its inactivation in Wilms Tumor. While one WT1 splicing variant encodes a well-characterized zinc finger transcription factor, little is known about the function of the most prevalent WT1 isoform, whose DNA binding domain is disrupted by a three amino acid (KTS) insertion. Using cells which conditionally express WT1(+KTS), we undertook a genome-wide chromatin immunoprecipitation and cloning (ChIP-cloning) analysis to identify candidate WT1(+KTS) regulated promoters. We identified the planar cell polarity (PCP) gene Scribble (SCRB) as the first WT1(+KTS) target gene in podocytes of the kidney. WT1 and SCRB expression patterns overlap precisely in developing renal glomeruli of mice, and WT1(+KTS) binds to a 33 nucleotide region within the Scribble promoter in both mouse and human cell lines and kidneys. Together, our results support a role for the predominant WT1(+KTS) isoform in transcriptional regulation and suggest a link between the WT1-dependent tumor suppressor pathway and a key component of the planar cell polarity pathway. PMID:20571064

  9. The predominant WT1 isoform (+KTS) encodes a DNA-binding protein targeting the planar cell polarity gene Scribble in renal podocytes.

    PubMed

    Wells, Julie; Rivera, Miguel N; Kim, Woo Jae; Starbuck, Kristen; Haber, Daniel A

    2010-07-01

    WT1 encodes a tumor suppressor first identified by its inactivation in Wilms' Tumor. Although one WT1 splicing variant encodes a well-characterized zinc finger transcription factor, little is known about the function of the most prevalent WT1 isoform, whose DNA binding domain is disrupted by a three-amino acid (KTS) insertion. Using cells that conditionally express WT1(+KTS), we undertook a genome-wide chromatin immunoprecipitation and cloning analysis to identify candidate WT1(+KTS)-regulated promoters. We identified the planar cell polarity gene Scribble (SCRB) as the first WT1(+KTS) target gene in podocytes of the kidney. WT1 and SCRB expression patterns overlap precisely in developing renal glomeruli of mice, and WT1(+KTS) binds to a 33-nucleotide region within the Scribble promoter in mouse and human cell lines and kidneys. Together, our results support a role for the predominant WT1(+KTS) isoform in transcriptional regulation and suggest a link between the WT1-dependent tumor suppressor pathway and a key component of the planar cell polarity pathway. PMID:20571064

  10. Characterisation of deuterium spectra from laser driven multi-species sources by employing differentially filtered image plate detectors in Thomson spectrometers.

    PubMed

    Alejo, A; Kar, S; Ahmed, H; Krygier, A G; Doria, D; Clarke, R; Fernandez, J; Freeman, R R; Fuchs, J; Green, A; Green, J S; Jung, D; Kleinschmidt, A; Lewis, C L S; Morrison, J T; Najmudin, Z; Nakamura, H; Nersisyan, G; Norreys, P; Notley, M; Oliver, M; Roth, M; Ruiz, J A; Vassura, L; Zepf, M; Borghesi, M

    2014-09-01

    A novel method for characterising the full spectrum of deuteron ions emitted by laser driven multi-species ion sources is discussed. The procedure is based on using differential filtering over the detector of a Thompson parabola ion spectrometer, which enables discrimination of deuterium ions from heavier ion species with the same charge-to-mass ratio (such as C(6+), O(8+), etc.). Commonly used Fuji Image plates were used as detectors in the spectrometer, whose absolute response to deuterium ions over a wide range of energies was calibrated by using slotted CR-39 nuclear track detectors. A typical deuterium ion spectrum diagnosed in a recent experimental campaign is presented, which was produced from a thin deuterated plastic foil target irradiated by a high power laser. PMID:25273715

  11. Compact disposal of high-energy electron beams using passive or laser-driven plasma decelerating stage

    SciTech Connect

    Bonatto, A.; Schroeder, C. B.; Vay, J. -L.; Geddes, C. R.; Benedetti, C.; Esarey and, E.; Leemans, W. P.

    2014-07-13

    A plasma decelerating stage is investigated as a compact alternative for the disposal of high-energy beams (beam dumps). This could benefit the design of laser-driven plasma accelerator (LPA) applications that require transportability and or high-repetition-rate operation regimes. Passive and laser-driven (active) plasma-based beam dumps are studied analytically and with particle-in-cell (PIC) simulations in a 1D geometry. Analytical estimates for the beam energy loss are compared to and extended by the PIC simulations, showing that with the proposed schemes a beam can be efficiently decelerated in a centimeter-scale distance.

  12. Influence of electromagnetic oscillating two-stream instability on the evolution of laser-driven plasma beat-wave

    SciTech Connect

    Gupta, D. N.; Singh, K. P.; Suk, H.

    2007-01-15

    The electrostatic oscillating two-stream instability of laser-driven plasma beat-wave was studied recently by Gupta et al. [Phys. Plasmas 11, 5250 (2004)], who applied their theory to limit the amplitude level of a plasma wave in the beat-wave accelerator. As a self-generated magnetic field is observed in laser-produced plasma, hence, the electromagnetic oscillating two-stream instability may be another possible mechanism for the saturation of laser-driven plasma beat-wave. The efficiency of this scheme is higher than the former.

  13. 2D profile of poloidal magnetic field diagnosed by a laser-driven ion-beam trace probe (LITP)

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoyi; Xiao, Chijie; Chen, Yihang; Xu, Tianchao; Lin, Chen; Wang, Long; Xu, Min; Yu, Yi

    2016-11-01

    Based on large energy spread of laser-driven ion beam (LIB), a new method, the Laser-driven Ion-beam Trace Probe (LITP), was suggested recently to diagnose the poloidal magnetic field (Bp) and radial electric field (Er) in toroidal devices. Based on another property of LIB, a wide angular distribution, here we suggested that LITP could be extended to get 2D Bp profile or 1D profile of both poloidal and radial magnetic fields at the same time. In this paper, we show the basic principle, some preliminary simulation results, and experimental preparation to test the basic principle of LITP.

  14. Optical smoothing of laser imprinting in planar-target experiments on OMEGA EP using multi-FM 1-D smoothing by spectral dispersion

    NASA Astrophysics Data System (ADS)

    Hohenberger, M.; Shvydky, A.; Marozas, J. A.; Fiksel, G.; Bonino, M. J.; Canning, D.; Collins, T. J. B.; Dorrer, C.; Kessler, T. J.; Kruschwitz, B. E.; McKenty, P. W.; Meyerhofer, D. D.; Regan, S. P.; Sangster, T. C.; Zuegel, J. D.

    2016-09-01

    Direct-drive ignition on the National Ignition Facility (NIF) requires single-beam smoothing to minimize imprinting of laser nonuniformities that can negatively affect implosion performance. One-dimensional, multi-FM smoothing by spectral dispersion (SSD) has been proposed to provide the required smoothing [Marozas et al., Bull. Am. Phys. Soc. 55, 294 (2010)]. A prototype multi-FM SSD system has been integrated into the NIF-like beamline of the OMEGA EP Laser System. Experiments have been performed to verify the smoothing performance by measuring Rayleigh-Taylor growth rates in planar targets of laser-imprinted and preimposed surface modulations. Multi-FM 1-D SSD has been observed to reduce imprint levels by ˜50% compared to the nominal OMEGA EP SSD system. The experimental results are in agreement with 2-D DRACO simulations using realistic, time-dependent far-field spot-intensity calculations that emulate the effect of SSD.

  15. A thin-film Hugoniot measurement using a laser-driven flyer plate

    NASA Astrophysics Data System (ADS)

    Fujiwara, Hiroki; Brown, Kathryn; Dlott, Dana

    2011-06-01

    A laser-driven flyer plate and a high-speed 8 GHz all-fiber displacement interferometer (DISAR) were used to measure the Hugoniot of polymer thin films (a few micrometers thick) such as PMMA (polymethyl methacrylate) under steady-state shockwave propagation. Results were obtained using conventional methods such as measuring the impact velocity and knowing the Hugoniot of the flyer-plate material, but these were inaccurate. Instead we incorporated nanometer-thick gauge layers in the thin film, whose locations were precisely known. This material is based on work supported by the US Army Research Office under grant W911NF-10-0072, and the US Air Force Office of Scientific Research under award number FAA9550-09-1-0163.

  16. Numerical Simulation of Laser-Driven Rayleigh-Taylor Instability using TVD MUSCL Scheme

    NASA Astrophysics Data System (ADS)

    Nagatomo, Hideo; Ohnishi, Naofumo; Takeuchi, Hajime; Takabe, Hideaki; Mima, Kunioki

    1996-11-01

    For the inertial confinement fusion, it is important to simulate and predict the hydrodynamic instabilities. The numerical simulation of the laser-driven Rayleigh-Taylor instability was performed by using a newly developed numerical code which include the two temperature plasma effect and the equation of state. This code is robust and less dissipative because the scheme is based on flux vector splitting method. Furthermore, this method is coupled with high-order MUSCL TVD scheme which enable to capture the shock, the vortices and the contact discontinuity clearly. In the two temperature model, the relaxation of the ion and electron temperature is considered. Cowan ion equation and Thomas-Fermi fitting formula for electron are applied to the equation of state. The dependence on the equation of state will be discussed in this presentation. Also, some numerical results which are solved by the other numerical codes will be shown for the comparison.

  17. Particle-in-cell simulations of electron energization in laser-driven magnetic reconnection

    DOE PAGES

    Lu, San; Lu, Quanming; Guo, Fan; Sheng, Zhengming; Wang, Huanyu; Wang, Shui

    2016-01-25

    Electrons can be energized during laser-driven magnetic reconnection, and the energized electrons form three super-Alfvénic electron jets in the outflow region (Lu et al 2014 New J. Phys. 16 083021). In this paper, by performing two-dimensional particle-in-cell simulations, we find that the electrons can also be significantly energized before magnetic reconnection occurs. When two plasma bubbles with toroidal magnetic fields expand and squeeze each other, the electrons in the magnetic ribbons are energized through betatron acceleration due to the enhancement of the magnetic field, and an electron temperature anisotropymore » $${T}_{{\\rm{e}}\\perp }\\gt {T}_{{\\rm{e}}| | }$$ develops. Meanwhile, some electrons are trapped and bounced repeatedly between the two expanding/approaching bubbles and get energized through a Fermi-like process. Furthermore, the energization before magnetic reconnection is more significant (or important) than that during magnetic reconnection.« less

  18. Stable Laser-Driven Electron Beams from a Steady-State-Flow Gas Cell

    SciTech Connect

    Osterhoff, J.; Popp, A.; Karsch, S.; Major, Zs.; Marx, B.; Fuchs, M.; Hoerlein, R.; Gruener, F.; Habs, D.; Krausz, F.; Rowlands-Rees, T. P.; Hooker, S. M.

    2009-01-22

    Quasi-monoenergetic, laser-driven electron beams of up to {approx}200 MeV in energy have been generated from steady-state-flow gas cells [1]. These beams are emitted within a low-divergence cone of 2.1{+-}0.5 mrad FWHM and feature unparalleled shot-to-shot stability in energy (2.5% rms), pointing direction (1.4 mrad rms) and charge (16% rms) owing to a highly reproducible plasma-density profile within the laser-plasma-interaction volume. Laser-wakefield acceleration (LWFA) in gas cells of this type constitutes a simple and reliable source of relativistic electrons with well defined properties, which should allow for applications such as the production of extreme-ultraviolet undulator radiation in the near future.

  19. Flash Kα radiography of laser-driven solid sphere compression for fast ignition

    NASA Astrophysics Data System (ADS)

    Sawada, H.; Lee, S.; Shiroto, T.; Nagatomo, H.; Arikawa, Y.; Nishimura, H.; Ueda, T.; Shigemori, K.; Sunahara, A.; Ohnishi, N.; Beg, F. N.; Theobald, W.; Pérez, F.; Patel, P. K.; Fujioka, S.

    2016-06-01

    Time-resolved compression of a laser-driven solid deuterated plastic sphere with a cone was measured with flash Kα x-ray radiography. A spherically converging shockwave launched by nanosecond GEKKO XII beams was used for compression while a flash of 4.51 keV Ti Kα x-ray backlighter was produced by a high-intensity, picosecond laser LFEX (Laser for Fast ignition EXperiment) near peak compression for radiography. Areal densities of the compressed core were inferred from two-dimensional backlit x-ray images recorded with a narrow-band spherical crystal imager. The maximum areal density in the experiment was estimated to be 87 ± 26 mg/cm2. The temporal evolution of the experimental and simulated areal densities with a 2-D radiation-hydrodynamics code is in good agreement.

  20. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas

    DOE PAGES

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C.; Hamilton, Christopher E.; Santiago, Miguel A.; Kreuzer, Christian; Sefkow, Adam B.; Shah, Rahul C.; Fernández, Juan C.

    2015-12-11

    Table-top laser–plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. We report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ~5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (~1012 V m-1) and magnetic (~104 T) fields. Furthermore, these results contributemore » to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science.« less

  1. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas.

    PubMed

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C; Hamilton, Christopher E; Santiago, Miguel A; Kreuzer, Christian; Sefkow, Adam B; Shah, Rahul C; Fernández, Juan C

    2015-01-01

    Table-top laser-plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. Here we report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ∼5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (∼10(12) V m(-1)) and magnetic (∼10(4) T) fields. These results contribute to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science. PMID:26657147

  2. Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics

    NASA Astrophysics Data System (ADS)

    Quan, Wei; Hao, Xiaolei; Chen, Yongju; Yu, Shaogang; Xu, Songpo; Wang, Yanlan; Sun, Renping; Lai, Xuanyang; Wu, Chengyin; Gong, Qihuang; He, Xiantu; Liu, Xiaojun; Chen, Jing

    2016-06-01

    In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends.

  3. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas

    SciTech Connect

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C.; Hamilton, Christopher E.; Santiago, Miguel A.; Kreuzer, Christian; Sefkow, Adam B.; Shah, Rahul C.; Fernández, Juan C.

    2015-12-11

    Table-top laser–plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. We report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ~5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (~1012 V m-1) and magnetic (~104 T) fields. Furthermore, these results contribute to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science.

  4. New methods for high current fast ion beam production by laser-driven acceleration

    SciTech Connect

    Margarone, D.; Krasa, J.; Prokupek, J.; Velyhan, A.; Laska, L.; Jungwirth, K.; Mocek, T.; Korn, G.; Rus, B.; Torrisi, L.; Gammino, S.; Cirrone, P.; Cutroneo, M.; Romano, F.; Picciotto, A.; Serra, E.; Giuffrida, L.; Mangione, A.; Rosinski, M.; Parys, P.; and others

    2012-02-15

    An overview of the last experimental campaigns on laser-driven ion acceleration performed at the PALS facility in Prague is given. Both the 2 TW, sub-nanosecond iodine laser system and the 20 TW, femtosecond Ti:sapphire laser, recently installed at PALS, are used along our experiments performed in the intensity range 10{sup 16}-10{sup 19} W/cm{sup 2}. The main goal of our studies was to generate high energy, high current ion streams at relatively low laser intensities. The discussed experimental investigations show promising results in terms of maximum ion energy and current density, which make the laser-accelerated ion beams a candidate for new-generation ion sources to be employed in medicine, nuclear physics, matter physics, and industry.

  5. Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics

    PubMed Central

    Quan, Wei; Hao, XiaoLei; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Wang, YanLan; Sun, RenPing; Lai, XuanYang; Wu, ChengYin; Gong, QiHuang; He, XianTu; Liu, XiaoJun; Chen, Jing

    2016-01-01

    In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends. PMID:27256904

  6. Demonstration of the density dependence of x-ray flux in a laser-driven hohlraum.

    PubMed

    Young, P E; Rosen, M D; Hammer, J H; Hsing, W S; Glendinning, S G; Turner, R E; Kirkwood, R; Schein, J; Sorce, C; Satcher, J H; Hamza, A; Reibold, R A; Hibbard, R; Landen, O; Reighard, A; McAlpin, S; Stevenson, M; Thomas, B

    2008-07-18

    Experiments have been conducted using laser-driven cylindrical hohlraums whose walls are machined from Ta2O5 foams of 100 mg/cc and 4 g/cc densities. Measurements of the radiation temperature demonstrate that the lower density walls produce higher radiation temperatures than the high density walls. This is the first experimental demonstration of the prediction that this would occur [M. D. Rosen and J. H. Hammer, Phys. Rev. E 72, 056403 (2005)10.1103/PhysRevE.72.056403]. For high density walls, the radiation front propagates subsonically, and part of the absorbed energy is wasted by the flow kinetic energy. For the lower wall density, the front velocity is supersonic and can devote almost all of the absorbed energy to heating the wall.

  7. Physical approach to adhesion testing using laser-driven shock waves

    NASA Astrophysics Data System (ADS)

    Bolis, C.; Berthe, L.; Boustie, M.; Arrigoni, M.; Barradas, S.; Jeandin, M.

    2007-05-01

    This paper deals with an adhesion test of coatings using laser-driven shock waves. Physical aspects concerning laser-matter interaction, shock wave propagation and interface fracture strength are described. This comprehensive approach using two numerical codes (HUGO and SHYLAC) allows the determination of mechanisms responsible for coating debonding and a quantitative evaluation of fracture strength. From this description, a coating test protocol is also designed. To diagnose coating debonding, it is based on the analysis of experimental rear free surface velocity profiles measured by velocity interferometer system for any reflectors (VISAR). Ni electrolytic coating (70-90 µm) deposited on a Cu substrate (120-190 µm) is used for the experimental validation of the test. The fracture strength is 1.49 ± 0.01 GPa for a laser pulse duration of 10 ns at 1.064 µm.

  8. A simple model for estimating a magnetic field in laser-driven coils

    NASA Astrophysics Data System (ADS)

    Fiksel, Gennady; Fox, William; Gao, Lan; Ji, Hantao

    2016-09-01

    Magnetic field generation by laser-driven coils is a promising way of magnetizing plasma in laboratory high-energy-density plasma experiments. A typical configuration consists of two electrodes—one electrode is irradiated with a high-intensity laser beam and another electrode collects charged particles from the expanding plasma. The two electrodes are separated by a narrow gap forming a capacitor-like configuration and are connected with a conducting wire-coil. The charge-separation in the expanding plasma builds up a potential difference between the electrodes that drives the electrical current in the coil. A magnetic field of tens to hundreds of Teslas generated inside the coil has been reported. This paper presents a simple model that estimates the magnetic field using simple assumptions. The results are compared with the published experimental data.

  9. Efficient quasi-monoenergetic ion beams from laser-driven relativistic plasmas

    PubMed Central

    Palaniyappan, Sasi; Huang, Chengkun; Gautier, Donald C.; Hamilton, Christopher E.; Santiago, Miguel A.; Kreuzer, Christian; Sefkow, Adam B.; Shah, Rahul C.; Fernández, Juan C.

    2015-01-01

    Table-top laser–plasma ion accelerators have many exciting applications, many of which require ion beams with simultaneous narrow energy spread and high conversion efficiency. However, achieving these requirements has been elusive. Here we report the experimental demonstration of laser-driven ion beams with narrow energy spread and energies up to 18 MeV per nucleon and ∼5% conversion efficiency (that is 4 J out of 80-J laser). Using computer simulations we identify a self-organizing scheme that reduces the ion energy spread after the laser exits the plasma through persisting self-generated plasma electric (∼1012 V m−1) and magnetic (∼104 T) fields. These results contribute to the development of next generation compact accelerators suitable for many applications such as isochoric heating for ion-fast ignition and producing warm dense matter for basic science. PMID:26657147

  10. Laser-driven generation of high-quality ultra-relativistic positron beams

    NASA Astrophysics Data System (ADS)

    Sarri, G.

    2015-04-01

    An ultra-relativistic electron beam propagating through a high-Z solid triggers an electromagnetic cascade, whereby a large number of high-energy photons and electron-positron pairs are produced mainly via the bremsstrahlung and Bethe-Heitler processes, respectively. These mechanisms are routinely used to generate positron beams in conventional accelerators such as the electron-positron collider (LEP). Here we show that the application of similar physical mechanisms to a laser-driven electron source allows for the generation of high-quality positron beams in a much more compact and cheaper configuration. We anticipate that the application of these results to the next generation of lasers might open the pathway for the realization of an all-optical high-energy electron-positron collider.

  11. A compact broadband ion beam focusing device based on laser-driven megagauss thermoelectric magnetic fields.

    PubMed

    Albertazzi, B; d'Humières, E; Lancia, L; Dervieux, V; Antici, P; Böcker, J; Bonlie, J; Breil, J; Cauble, B; Chen, S N; Feugeas, J L; Nakatsutsumi, M; Nicolaï, P; Romagnani, L; Shepherd, R; Sentoku, Y; Swantusch, M; Tikhonchuk, V T; Borghesi, M; Willi, O; Pépin, H; Fuchs, J

    2015-04-01

    Ultra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g., proton-therapy or fuel recycling) and fundamental (e.g., neutron probing) domains. However, this requires overcoming the beam angular divergence at the source. This has been attempted, either with large-scale conventional setups or with compact plasma techniques that however have the restriction of short (<1 mm) focusing distances or a chromatic behavior. Here, we show that exploiting laser-triggered, long-lasting (>50 ps), thermoelectric multi-megagauss surface magnetic (B)-fields, compact capturing, and focusing of a diverging laser-driven multi-MeV ion beam can be achieved over a wide range of ion energies in the limit of a 5° acceptance angle.

  12. A compact broadband ion beam focusing device based on laser-driven megagauss thermoelectric magnetic fields.

    PubMed

    Albertazzi, B; d'Humières, E; Lancia, L; Dervieux, V; Antici, P; Böcker, J; Bonlie, J; Breil, J; Cauble, B; Chen, S N; Feugeas, J L; Nakatsutsumi, M; Nicolaï, P; Romagnani, L; Shepherd, R; Sentoku, Y; Swantusch, M; Tikhonchuk, V T; Borghesi, M; Willi, O; Pépin, H; Fuchs, J

    2015-04-01

    Ultra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g., proton-therapy or fuel recycling) and fundamental (e.g., neutron probing) domains. However, this requires overcoming the beam angular divergence at the source. This has been attempted, either with large-scale conventional setups or with compact plasma techniques that however have the restriction of short (<1 mm) focusing distances or a chromatic behavior. Here, we show that exploiting laser-triggered, long-lasting (>50 ps), thermoelectric multi-megagauss surface magnetic (B)-fields, compact capturing, and focusing of a diverging laser-driven multi-MeV ion beam can be achieved over a wide range of ion energies in the limit of a 5° acceptance angle. PMID:25933857

  13. A compact broadband ion beam focusing device based on laser-driven megagauss thermoelectric magnetic fields

    NASA Astrophysics Data System (ADS)

    Albertazzi, B.; d'Humières, E.; Lancia, L.; Dervieux, V.; Antici, P.; Böcker, J.; Bonlie, J.; Breil, J.; Cauble, B.; Chen, S. N.; Feugeas, J. L.; Nakatsutsumi, M.; Nicolaï, P.; Romagnani, L.; Shepherd, R.; Sentoku, Y.; Swantusch, M.; Tikhonchuk, V. T.; Borghesi, M.; Willi, O.; Pépin, H.; Fuchs, J.

    2015-04-01

    Ultra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g., proton-therapy or fuel recycling) and fundamental (e.g., neutron probing) domains. However, this requires overcoming the beam angular divergence at the source. This has been attempted, either with large-scale conventional setups or with compact plasma techniques that however have the restriction of short (<1 mm) focusing distances or a chromatic behavior. Here, we show that exploiting laser-triggered, long-lasting (>50 ps), thermoelectric multi-megagauss surface magnetic (B)-fields, compact capturing, and focusing of a diverging laser-driven multi-MeV ion beam can be achieved over a wide range of ion energies in the limit of a 5° acceptance angle.

  14. Characterization of the ELIMED Permanent Magnets Quadrupole system prototype with laser-driven proton beams

    NASA Astrophysics Data System (ADS)

    Schillaci, F.; Pommarel, L.; Romano, F.; Cuttone, G.; Costa, M.; Giove, D.; Maggiore, M.; Russo, A. D.; Scuderi, V.; Malka, V.; Vauzour, B.; Flacco, A.; Cirrone, G. A. P.

    2016-07-01

    Laser-based accelerators are gaining interest in recent years as an alternative to conventional machines [1]. In the actual ion acceleration scheme, energy and angular spread of the laser-driven beams are the main limiting factors for beam applications and different solutions for dedicated beam-transport lines have been proposed [2,3]. In this context a system of Permanent Magnet Quadrupoles (PMQs) has been realized [2] by INFN-LNS (Laboratori Nazionali del Sud of the Instituto Nazionale di Fisica Nucleare) researchers, in collaboration with SIGMAPHI company in France, to be used as a collection and pre-selection system for laser driven proton beams. This system is meant to be a prototype to a more performing one [3] to be installed at ELI-Beamlines for the collection of ions. The final system is designed for protons and carbons up to 60 MeV/u. In order to validate the design and the performances of this large bore, compact, high gradient magnetic system prototype an experimental campaign have been carried out, in collaboration with the group of the SAPHIR experimental facility at LOA (Laboratoire d'Optique Appliquée) in Paris using a 200 TW Ti:Sapphire laser system. During this campaign a deep study of the quadrupole system optics has been performed, comparing the results with the simulation codes used to determine the setup of the PMQ system and to track protons with realistic TNSA-like divergence and spectrum. Experimental and simulation results are good agreement, demonstrating the possibility to have a good control on the magnet optics. The procedure used during the experimental campaign and the most relevant results are reported here.

  15. Proposed Laser-driven, Dielectric Microstructure Few-cm Long Undulator for Attosecond Coherent X-rays

    SciTech Connect

    Plettner, T; Byer, R.L.; /Stanford U., Ginzton Lab.

    2011-09-16

    This article presents the concept of an all-dielectric laser-driven undulator for the generation of coherent X-rays. The proposed laser-driven undulator is expected to produce internal deflection forces equivalent to a several-Tesla magnetic field acting on a speed-of-light particle. The key idea for this laser-driven undulator is its ability to provide phase synchronicity between the deflection force and the electron beam for a distance that is much greater than the laser wavelength. The potential advantage of this undulator is illustrated with a possible design example that assumes a small laser accelerator which delivers a 2 GeV, 1 pC, 1 kHz electron bunch train to a 10 cm long, 1/2 mm period laser-driven undulator. Such an undulator could produce coherent X-ray pulses with {approx}10{sup 9} photons of 64 keV energy. The numerical modeling for the expected X-ray pulse shape was performed with GENESIS, which predicts X-ray pulse durations in the few-attosecond range. Possible applications for nonlinear electromagnetic effects from these X-ray pulses are briefly discussed.

  16. Utilizing a Low-Cost, Laser-Driven Interactive System (LaDIS) to Improve Learning in Developing Rural Regions

    ERIC Educational Resources Information Center

    Liou, Wei-Kai; Chang, Chun-Yen

    2014-01-01

    This study proposes an innovation Laser-Driven Interactive System (LaDIS), utilizing general IWBs (Interactive Whiteboard) didactics, to support student learning for rural and developing regions. LaDIS is a system made to support traditional classroom practices between an instructor and a group of students. This invention effectively transforms a…

  17. Streaked X-Ray Imager for Observation of Oscillations of Perturbed Ablation Fronts in Planar ICF Targets During Shock Transit

    NASA Astrophysics Data System (ADS)

    Gotchev, O. V.; Goncharov, V. N.; Jaanimagi, P. A.; Knauer, J. P.; Meyerhofer, D. D.

    2001-10-01

    The dynamic overpressure effect sets the growth rate of the ablative Richtmyer-Meshkov instability and the late imprint levels in directly driven targets. It leads to temporal oscillations of the perturbed ablation front that have been predicted analytically and observed in 2-D ORCHID simulations. These predictions will be verified on OMEGA by measuring the perturbation amplitudes and frequencies directly with a high-resolution, IR-coated Kirkpatrick-Baez (KB) microscope, coupled to a high-current streak tube. The construction and characterization of this new diagnostic tool are described. The optic has up to three-orders-of-magnitude-higher throughput than conventional pinhole arrays, mainly due to the single-layer IR coating and an optimized grazing angle of 2.1^o. Resolution is 3-μm over a 120-μm field of view, as determined by ray tracing. Signal-level calculations for competing theoretical models treating these phenomena were performed to optimize target design, laser pulse shape, and backlighter. Preliminary experimental results may be shown. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  18. Bidimensional Particle-In-Cell simulations for laser-driven proton acceleration using ultra-short, ultra-high contrast laser

    SciTech Connect

    Scisciò, M.; Palumbo, L.; D'Humières, E.; Fourmaux, S.; Kieffer, J. C.; Antici, P.

    2014-12-15

    In this paper, we report on bi-dimensional Particle-In-Cell simulations performed in order to reproduce the laser-driven proton acceleration obtained when a commercial 200 TW Ti:Sa Laser hits a solid target. The laser-to prepulse contrast was enhanced using plasma mirrors yielding to a main-to-prepulse contrast of ∼10{sup 12}. We varied the pulse duration from 30 fs to 500 fs and the target thickness from 30 nm to several tens of μm. The on-target laser energy was up to 1.8 J leading to an intensity in excess of 10{sup 20 }W cm{sup −2}. A comparison between numerical and existing experimental data [S. Fourmaux et al., Phys. Plasmas 20, 013110 (2013)] is performed, showing a good agreement between experimental results and simulations which confirms that for ultra-thin targets there is an optimum expansion regime. This regime depends on the target thickness and on the laser intensity: if the target is too expanded, the laser travels through the target without being able to deposit its energy within the target. If the target is not sufficiently expanded, the laser energy is reflected by the target. It is important to note that maximum proton energies are reached at longer pulse durations (in the 100 fs regime) than what is currently the best compression pulse length for this type of lasers (typically 20–30 fs). This duration, around 50–100 fs, can be considered a minimum energy transfer time between hot electrons to ions during the considered acceleration process.

  19. Optical smoothing of laser imprinting in planar-target experiments on OMEGA EP using multi-FM 1-D smoothing by spectral dispersion

    DOE PAGES

    Hohenberger, M.; Shvydky, A.; Marozas, J. A.; Fiksel, G.; Bonino, M. J.; Canning, D.; Collins, T. J. B.; Dorrer, C.; Kessler, T. J.; Kruschwitz, B. E.; et al

    2016-09-07

    Direct-drive ignition on the National Ignition Facility (NIF) requires single-beam smoothing to minimize imprinting of laser nonuniformities that can negatively affect implosion performance. One-dimensional, multi-FM smoothing by spectral dispersion (SSD) has been proposed to provide the required smoothing [J. A. Marozas, J. D. Zuegel, and T. J. B. Collins, Bull. Am. Phys. Soc. 55, 294 (2010)]. A prototype multi-FM SSD system has been integrated into the NIF-like beamline of the OMEGA EP Laser System. Experiments have been performed to verify the smoothing performance by measuring Rayleigh–Taylor growth rates in planar targets of laser-imprinted and preimposed surface modulations. Multi-FM 1-D SSDmore » has been observed to reduce imprint levels by ~50% compared to the nominal OMEGA EP SSD system. In conclusion, the experimental results are in agreement with 2-D DRACO simulations using realistic, time-dependent far-field spot-intensity calculations that emulate the effect of SSD.« less

  20. Numerical modeling of laser-driven experiments of colliding jets: Turbulent amplification of seed magnetic fields

    NASA Astrophysics Data System (ADS)

    Tzeferacos, Petros; Fatenejad, Milad; Flocke, Norbert; Graziani, Carlo; Gregori, Gianluca; Lamb, Donald; Lee, Dongwook; Meinecke, Jena; Scopatz, Anthony; Weide, Klaus

    2014-10-01

    In this study we present high-resolution numerical simulations of laboratory experiments that study the turbulent amplification of magnetic fields generated by laser-driven colliding jets. The radiative magneto-hydrodynamic (MHD) simulations discussed here were performed with the FLASH code and have assisted in the analysis of the experimental results obtained from the Vulcan laser facility. In these experiments, a pair of thin Carbon foils is placed in an Argon-filled chamber and is illuminated to create counter-propagating jets. The jets carry magnetic fields generated by the Biermann battery mechanism and collide to form a highly turbulent region. The interaction is probed using a wealth of diagnostics, including induction coils that are capable of providing the field strength and directionality at a specific point in space. The latter have revealed a significant increase in the field's strength due to turbulent amplification. Our FLASH simulations have allowed us to reproduce the experimental findings and to disentangle the complex processes and dynamics involved in the colliding flows. This work was supported in part at the University of Chicago by DOE NNSA ASC.

  1. Nonthermal Electron Energization from Magnetic Reconnection in Laser-Driven Plasmas.

    PubMed

    Totorica, Samuel R; Abel, Tom; Fiuza, Frederico

    2016-03-01

    The possibility of studying nonthermal electron energization in laser-driven plasma experiments of magnetic reconnection is studied using two- and three-dimensional particle-in-cell simulations. It is demonstrated that nonthermal electrons with energies more than an order of magnitude larger than the initial thermal energy can be produced in plasma conditions currently accessible in the laboratory. Electrons are accelerated by the reconnection electric field, being injected at varied distances from the X points, and in some cases trapped in plasmoids, before escaping the finite-sized system. Trapped electrons can be further energized by the electric field arising from the motion of the plasmoid. This acceleration gives rise to a nonthermal electron component that resembles a power-law spectrum, containing up to ∼8% of the initial energy of the interacting electrons and ∼24% of the initial magnetic energy. Estimates of the maximum electron energy and of the plasma conditions required to observe suprathermal electron acceleration are provided, paving the way for a new platform for the experimental study of particle acceleration induced by reconnection. PMID:26991182

  2. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages.

    PubMed

    Jones, Christopher P; Brenner, Ceri M; Stitt, Camilla A; Armstrong, Chris; Rusby, Dean R; Mirfayzi, Seyed R; Wilson, Lucy A; Alejo, Aarón; Ahmed, Hamad; Allott, Ric; Butler, Nicholas M H; Clarke, Robert J; Haddock, David; Hernandez-Gomez, Cristina; Higginson, Adam; Murphy, Christopher; Notley, Margaret; Paraskevoulakos, Charilaos; Jowsey, John; McKenna, Paul; Neely, David; Kar, Satya; Scott, Thomas B

    2016-11-15

    A small scale sample nuclear waste package, consisting of a 28mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500keV), with a source size of <0.5mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30cm(2) scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned.

  3. Comparison study of in vivo dose response to laser-driven versus conventional electron beam.

    PubMed

    Oppelt, Melanie; Baumann, Michael; Bergmann, Ralf; Beyreuther, Elke; Brüchner, Kerstin; Hartmann, Josefin; Karsch, Leonhard; Krause, Mechthild; Laschinsky, Lydia; Leßmann, Elisabeth; Nicolai, Maria; Reuter, Maria; Richter, Christian; Sävert, Alexander; Schnell, Michael; Schürer, Michael; Woithe, Julia; Kaluza, Malte; Pawelke, Jörg

    2015-05-01

    The long-term goal to integrate laser-based particle accelerators into radiotherapy clinics not only requires technological development of high-intensity lasers and new techniques for beam detection and dose delivery, but also characterization of the biological consequences of this new particle beam quality, i.e. ultra-short, ultra-intense pulses. In the present work, we describe successful in vivo experiments with laser-driven electron pulses by utilization of a small tumour model on the mouse ear for the human squamous cell carcinoma model FaDu. The already established in vitro irradiation technology at the laser system JETI was further enhanced for 3D tumour irradiation in vivo in terms of beam transport, beam monitoring, dose delivery and dosimetry in order to precisely apply a prescribed dose to each tumour in full-scale radiobiological experiments. Tumour growth delay was determined after irradiation with doses of 3 and 6 Gy by laser-accelerated electrons. Reference irradiation was performed with continuous electron beams at a clinical linear accelerator in order to both validate the dedicated dosimetry employed for laser-accelerated JETI electrons and above all review the biological results. No significant difference in radiation-induced tumour growth delay was revealed for the two investigated electron beams. These data provide evidence that the ultra-high dose rate generated by laser acceleration does not impact the biological effectiveness of the particles. PMID:25600561

  4. Evaluating laser-driven Bremsstrahlung radiation sources for imaging and analysis of nuclear waste packages.

    PubMed

    Jones, Christopher P; Brenner, Ceri M; Stitt, Camilla A; Armstrong, Chris; Rusby, Dean R; Mirfayzi, Seyed R; Wilson, Lucy A; Alejo, Aarón; Ahmed, Hamad; Allott, Ric; Butler, Nicholas M H; Clarke, Robert J; Haddock, David; Hernandez-Gomez, Cristina; Higginson, Adam; Murphy, Christopher; Notley, Margaret; Paraskevoulakos, Charilaos; Jowsey, John; McKenna, Paul; Neely, David; Kar, Satya; Scott, Thomas B

    2016-11-15

    A small scale sample nuclear waste package, consisting of a 28mm diameter uranium penny encased in grout, was imaged by absorption contrast radiography using a single pulse exposure from an X-ray source driven by a high-power laser. The Vulcan laser was used to deliver a focused pulse of photons to a tantalum foil, in order to generate a bright burst of highly penetrating X-rays (with energy >500keV), with a source size of <0.5mm. BAS-TR and BAS-SR image plates were used for image capture, alongside a newly developed Thalium doped Caesium Iodide scintillator-based detector coupled to CCD chips. The uranium penny was clearly resolved to sub-mm accuracy over a 30cm(2) scan area from a single shot acquisition. In addition, neutron generation was demonstrated in situ with the X-ray beam, with a single shot, thus demonstrating the potential for multi-modal criticality testing of waste materials. This feasibility study successfully demonstrated non-destructive radiography of encapsulated, high density, nuclear material. With recent developments of high-power laser systems, to 10Hz operation, a laser-driven multi-modal beamline for waste monitoring applications is envisioned. PMID:27484945

  5. Time-dependent quantum chemistry of laser driven many-electron molecules

    SciTech Connect

    Nguyen-Dang, Thanh-Tung; Couture-Bienvenue, Étienne; Viau-Trudel, Jérémy; Sainjon, Amaury

    2014-12-28

    A Time-Dependent Configuration Interaction approach using multiple Feshbach partitionings, corresponding to multiple ionization stages of a laser-driven molecule, has recently been proposed [T.-T. Nguyen-Dang and J. Viau-Trudel, J. Chem. Phys. 139, 244102 (2013)]. To complete this development toward a fully ab-initio method for the calculation of time-dependent electronic wavefunctions of an N-electron molecule, we describe how tools of multiconfiguration quantum chemistry such as the management of the configuration expansion space using Graphical Unitary Group Approach concepts can be profitably adapted to the new context, that of time-resolved electronic dynamics, as opposed to stationary electronic structure. The method is applied to calculate the detailed, sub-cycle electronic dynamics of BeH{sub 2}, treated in a 3–21G bound-orbital basis augmented by a set of orthogonalized plane-waves representing continuum-type orbitals, including its ionization under an intense λ = 800 nm or λ = 80 nm continuous-wave laser field. The dynamics is strongly non-linear at the field-intensity considered (I ≃ 10{sup 15} W/cm{sup 2}), featuring important ionization of an inner-shell electron and strong post-ionization bound-electron dynamics.

  6. Time-dependent quantum chemistry of laser driven many-electron molecules.

    PubMed

    Nguyen-Dang, Thanh-Tung; Couture-Bienvenue, Étienne; Viau-Trudel, Jérémy; Sainjon, Amaury

    2014-12-28

    A Time-Dependent Configuration Interaction approach using multiple Feshbach partitionings, corresponding to multiple ionization stages of a laser-driven molecule, has recently been proposed [T.-T. Nguyen-Dang and J. Viau-Trudel, J. Chem. Phys. 139, 244102 (2013)]. To complete this development toward a fully ab-initio method for the calculation of time-dependent electronic wavefunctions of an N-electron molecule, we describe how tools of multiconfiguration quantum chemistry such as the management of the configuration expansion space using Graphical Unitary Group Approach concepts can be profitably adapted to the new context, that of time-resolved electronic dynamics, as opposed to stationary electronic structure. The method is applied to calculate the detailed, sub-cycle electronic dynamics of BeH2, treated in a 3-21G bound-orbital basis augmented by a set of orthogonalized plane-waves representing continuum-type orbitals, including its ionization under an intense λ = 800 nm or λ = 80 nm continuous-wave laser field. The dynamics is strongly non-linear at the field-intensity considered (I ≃ 10(15) W/cm(2)), featuring important ionization of an inner-shell electron and strong post-ionization bound-electron dynamics.

  7. Femtosecond-Laser-Driven Cluster-Based Plasma Source for High-Resolution Ionography

    NASA Astrophysics Data System (ADS)

    Faenov, A. Ya.; Pikuz, T. A.; Fukuda, Y.; Kando, M.; Kotaki, H.; Homma, T.; Kawase, K.; Kameshima, T.; Pirozhkov, A.; Yogo, A.; Tampo, M.; Mori, M.; Sakaki, H.; Hayashi, Y.; Nakamura, T.; Pikuz, S. A.; Kartashev, V.; Skobelev, I. Yu.; Gasilov, S. V.; Giulietti, A.; Cecchetti, C. A.; Boldarev, A. S.; Gasilov, V. A.; Magunov, A.; Kar, S.; Borghesi, M.; Bolton, P.; Daido, H.; Tajima, T.; Kato, Y.; Bulanov, S. V.

    2009-07-01

    The intense isotropic source of multicharged ions, with energy above 300 keV, was produced by femtosecond Ti:Sa laser pulses irradiation (intensity of ˜4×1017 W/cm2) of the He and CO2 gases mixture expanded in supersonic jet. High contrast ionography images have been obtained for 2000 dpi metal mesh, 1 μm polypropylene and 100 nm Zr foils, as well as for different biological objects. Images were recorded on 1 mm thick CR-39 ion detector placed in contact with back surface of the imaged samples, at the distances 140-160 mm from the plasma source. The obtained spatial resolution of the image was ˜600 nm. A 100 nm object thickness difference was resolved very well for both Zr and polymer foils. The multicharged ion energy for Carbon and Oxygen ions passing through the 1 μm polypropylene foil is estimated to give the energy of more than 300 keV. An almost equal number of ions were measured with total number of about 108 per shot at a different direction from plasma source. Easy production of different sub-MeV ions in wide space angle, recognizes femtosecond-laser-driven-cluster-based plasma as a well-suited bright source for novel type of submicron ionography to image different media, including nanofoils, membranes, and other low-contrast objects.

  8. Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source

    PubMed Central

    Wenz, J.; Schleede, S.; Khrennikov, K.; Bech, M.; Thibault, P.; Heigoldt, M.; Pfeiffer, F.; Karsch, S.

    2015-01-01

    X-ray phase-contrast imaging has recently led to a revolution in resolving power and tissue contrast in biomedical imaging, microscopy and materials science. The necessary high spatial coherence is currently provided by either large-scale synchrotron facilities with limited beamtime access or by microfocus X-ray tubes with rather limited flux. X-rays radiated by relativistic electrons driven by well-controlled high-power lasers offer a promising route to a proliferation of this powerful imaging technology. A laser-driven plasma wave accelerates and wiggles electrons, giving rise to a brilliant keV X-ray emission. This so-called betatron radiation is emitted in a collimated beam with excellent spatial coherence and remarkable spectral stability. Here we present a phase-contrast microtomogram of a biological sample using betatron X-rays. Comprehensive source characterization enables the reconstruction of absolute electron densities. Our results suggest that laser-based X-ray technology offers the potential for filling the large performance gap between synchrotron- and current X-ray tube-based sources. PMID:26189811

  9. Cost reduction study for the LANL KrF laser-driven LMF design

    SciTech Connect

    Not Available

    1989-10-27

    This report is in fulfillment of the deliverable requirements for the optical components portions of the LANL-KrF Laser-Driven LMF Design Cost Reduction Study. This report examines the future cost reductions that may accrue through the use of mass production, innovative manufacturing techniques, and new materials. Results are based on data collection and survey of optical component manufacturers, BDM experience, and existing cost models. These data provide a good representation of current methods and technologies from which future estimates can be made. From these data, a series of scaling relationships were developed to project future costs for a selected set of technologies. The scaling relationships are sensitive to cost driving parameters such as size and surface figure requirements as well as quantity requirements, production rate, materials, and manufacturing processes. In addition to the scaling relationships, descriptions of the selected processes were developed along with graphical representations of the processes. This report provides a useful tool in projecting the costs of advanced laser concepts at the component level of detail. A mix of the most diverse yet comparable technologies was chosen for this study. This yielded a useful, yet manageable number of variables to examine. The study has resulted in a first-order cost model which predicts the relative cost behavior of optical components within different variable constraints.

  10. Comparison study of in vivo dose response to laser-driven versus conventional electron beam.

    PubMed

    Oppelt, Melanie; Baumann, Michael; Bergmann, Ralf; Beyreuther, Elke; Brüchner, Kerstin; Hartmann, Josefin; Karsch, Leonhard; Krause, Mechthild; Laschinsky, Lydia; Leßmann, Elisabeth; Nicolai, Maria; Reuter, Maria; Richter, Christian; Sävert, Alexander; Schnell, Michael; Schürer, Michael; Woithe, Julia; Kaluza, Malte; Pawelke, Jörg

    2015-05-01

    The long-term goal to integrate laser-based particle accelerators into radiotherapy clinics not only requires technological development of high-intensity lasers and new techniques for beam detection and dose delivery, but also characterization of the biological consequences of this new particle beam quality, i.e. ultra-short, ultra-intense pulses. In the present work, we describe successful in vivo experiments with laser-driven electron pulses by utilization of a small tumour model on the mouse ear for the human squamous cell carcinoma model FaDu. The already established in vitro irradiation technology at the laser system JETI was further enhanced for 3D tumour irradiation in vivo in terms of beam transport, beam monitoring, dose delivery and dosimetry in order to precisely apply a prescribed dose to each tumour in full-scale radiobiological experiments. Tumour growth delay was determined after irradiation with doses of 3 and 6 Gy by laser-accelerated electrons. Reference irradiation was performed with continuous electron beams at a clinical linear accelerator in order to both validate the dedicated dosimetry employed for laser-accelerated JETI electrons and above all review the biological results. No significant difference in radiation-induced tumour growth delay was revealed for the two investigated electron beams. These data provide evidence that the ultra-high dose rate generated by laser acceleration does not impact the biological effectiveness of the particles.

  11. Novel free-form hohlraum shape design and optimization for laser-driven inertial confinement fusion

    SciTech Connect

    Jiang, Shaoen; Jing, Longfei Ding, Yongkun; Huang, Yunbao

    2014-10-15

    The hohlraum shape attracts considerable attention because there is no successful ignition method for laser-driven inertial confinement fusion at the National Ignition Facility. The available hohlraums are typically designed with simple conic curves, including ellipses, parabolas, arcs, or Lame curves, which allow only a few design parameters for the shape optimization, making it difficult to improve the performance, e.g., the energy coupling efficiency or radiation drive symmetry. A novel free-form hohlraum design and optimization approach based on the non-uniform rational basis spline (NURBS) model is proposed. In the present study, (1) all kinds of hohlraum shapes can be uniformly represented using NURBS, which is greatly beneficial for obtaining the optimal available hohlraum shapes, and (2) such free-form uniform representation enables us to obtain an optimal shape over a large design domain for the hohlraum with a more uniform radiation and higher drive temperature of the fuel capsule. Finally, a hohlraum is optimized and evaluated with respect to the drive temperature and symmetry at the Shenguang III laser facility in China. The drive temperature and symmetry results indicate that such a free-form representation is advantageous over available hohlraum shapes because it can substantially expand the shape design domain so as to obtain an optimal hohlraum with high performance.

  12. Time-dependent quantum chemistry of laser driven many-electron molecules

    NASA Astrophysics Data System (ADS)

    Nguyen-Dang, Thanh-Tung; Couture-Bienvenue, Étienne; Viau-Trudel, Jérémy; Sainjon, Amaury

    2014-12-01

    A Time-Dependent Configuration Interaction approach using multiple Feshbach partitionings, corresponding to multiple ionization stages of a laser-driven molecule, has recently been proposed [T.-T. Nguyen-Dang and J. Viau-Trudel, J. Chem. Phys. 139, 244102 (2013)]. To complete this development toward a fully ab-initio method for the calculation of time-dependent electronic wavefunctions of an N-electron molecule, we describe how tools of multiconfiguration quantum chemistry such as the management of the configuration expansion space using Graphical Unitary Group Approach concepts can be profitably adapted to the new context, that of time-resolved electronic dynamics, as opposed to stationary electronic structure. The method is applied to calculate the detailed, sub-cycle electronic dynamics of BeH2, treated in a 3-21G bound-orbital basis augmented by a set of orthogonalized plane-waves representing continuum-type orbitals, including its ionization under an intense λ = 800 nm or λ = 80 nm continuous-wave laser field. The dynamics is strongly non-linear at the field-intensity considered (I ≃ 1015 W/cm2), featuring important ionization of an inner-shell electron and strong post-ionization bound-electron dynamics.

  13. Overview of laser-driven generation of electron-positron beams

    NASA Astrophysics Data System (ADS)

    Sarri, G.; Dieckmann, M. E.; Kourakis, I.; di Piazza, A.; Reville, B.; Keitel, C. H.; Zepf, M.

    2015-08-01

    Electron-positron (e-p) plasmas are widely thought to be emitted, in the form of ultra-relativistic winds or collimated jets, by some of the most energetic or powerful objects in the Universe, such as black-holes, pulsars, and quasars. These phenomena represent an unmatched astrophysical laboratory to test physics at its limit and, given their immense distance from Earth (some even farther than several billion light years), they also provide a unique window on the very early stages of our Universe. However, due to such gigantic distances, their properties are only inferred from the indirect interpretation of their radiative signatures and from matching numerical models: their generation mechanism and dynamics still pose complicated enigmas to the scientific community. Small-scale reproductions in the laboratory would represent a fundamental step towards a deeper understanding of this exotic state of matter. Here we present recent experimental results concerning the laser-driven production of ultra-relativistic e-p beams. In particular, we focus on the possibility of generating beams that present charge neutrality and that allow for collective effects in their dynamics, necessary ingredients for the testing pair-plasma physics in the laboratory. A brief discussion of the analytical and numerical modelling of the dynamics of these plasmas is also presented in order to provide a summary of the novel plasma physics that can be accessed with these objects. Finally, general considerations on the scalability of laboratory plasmas up to astrophysical scenarios are given.

  14. [Non-contrast time-resolved magnetic resonance angiography combining high resolution multiple phase echo planar imaging based signal targeting and alternating radiofrequency contrast inherent inflow enhanced multi phase angiography combining spatial resolution echo planar imaging based signal targeting and alternating radiofrequency in intracranial arteries].

    PubMed

    Nakamura, Masanobu; Yoneyama, Masami; Tabuchi, Takashi; Takemura, Atsushi; Obara, Makoto; Sawano, Seishi

    2012-01-01

    Detailed information on anatomy and hemodynamics in cerebrovascular disorders such as AVM and Moyamoya disease is mandatory for defined diagnosis and treatment planning. Arterial spin labeling technique has come to be applied to magnetic resonance angiography (MRA) and perfusion imaging in recent years. However, those non-contrast techniques are mostly limited to single frame images. Recently we have proposed a non-contrast time-resolved MRA technique termed contrast inherent inflow enhanced multi phase angiography combining spatial resolution echo planar imaging based signal targeting and alternating radiofrequency (CINEMA-STAR). CINEMA-STAR can extract the blood flow in the major intracranial arteries at an interval of 70 ms and thus permits us to observe vascular construction in full by preparing MIP images of axial acquisitions with high spatial resolution. This preliminary study demonstrates the usefulness of the CINEMA-STAR technique in evaluating the cerebral vasculature.

  15. Investigation of the forming pressure and formability of metal foil by laser-driven multi-layered flyer

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Yuan, Yaoqiang; Shen, Zongbao; Gu, Chunxing; Zhang, Qiang; Liu, Huixia

    2014-06-01

    Metal foil forming by laser-driven flyer (LDF) is a new micro-forming technology. The performance of the flyer is one of the main factors affecting the forming quality of workpiece. Considering the features of this technology, this paper presents a novel multi-layered flyer. Via magnetron sputtering, the absorption layer (titanium) and the ablation layer (aluminum) are produced on the confining medium. The impactor layer is manufactured by special cutting (a micro-punching method) and adhered to the center of the ablation layer by a gluing method. A pressure measurement system is conducted to measure the shockwave forming pressure of the laser-driven flyer, and a series of forming experiments are carried out to investigate the forming ability of the multi-layered flyer. Experimental results show that the multi-layered flyer can enhance the laser coupling efficiency to the flyer and achieve higher forming pressure than the single-layered flyer. Especially, the multi-layered flyer with the nonmetallic impactor layer of 100 μm polyurethane rubber has good forming quality in the laser-driven flyer micro-forming (LDFμF).

  16. Ultrafast electron microscopy and diffraction with laser-driven field emitters

    NASA Astrophysics Data System (ADS)

    Ropers, Claus

    2015-03-01

    Ultrafast structural dynamics in solids and nanostructures can be investigated by an increasing number of sophisticated electron and x-ray diffraction techniques. Electrons are particularly suited for this purpose, exhibiting high scattering cross-sections and allowing for beam control by versatile electrostatic or magnetic lens systems. The capabilities of time-resolved electron imaging techniques critically depend on the employed source of laser-driven ultrashort electron pulses. Nanoscopic sources offer exceptional possibilities for the generation of electron probe pulses with very short durations and high spatial beam coherence. In this talk, I will discuss recent progress in the development of ultrafast electron microscopy and diffraction based on nanoscopic photocathodes. In particular, we implemented ultrafast low-energy electron diffraction (ULEED) and ultrafast transmission electron microscopy (UTEM) driven by nonlinear photoemission from field emission tips. ULEED enables the study of structural changes with high temporal resolution and ultimate surface sensitivity, at sub-keV electron energies. As a first application of this technique, we studied the structural phase transition in a stripe-like polymer superstructure on freestanding monolayer graphene. An advanced UTEM instrument was realized by custom modifications of a standard transmission electron microscope, leading to electron focal spot sizes in the microscope's sample plane of about 10 nm and electron pulse durations of less than 700 fs. Utilizing these features, we investigate the quantum-coherent interaction between the ultrashort electron pulse and the optical near-field of an illuminated nanostructure. Finally, further applications and prospects of ultrafast electron imaging, diffraction and spectroscopy using nanoscale field emitters will be discussed.

  17. Recreating planetary interiors in the laboratory by laser-driven ramp-compression

    NASA Astrophysics Data System (ADS)

    Coppari, Federica

    2015-06-01

    Recent advances in laser-driven compression now allow to reproduce conditions existing deep inside large planets in the laboratory. Ramp-compression allows to compress matter along a thermodynamic path not accessible through standard shock compression techniques, and opens the way to the exploration of new pressure, density and temperature conditions. By carefully tuning the laser pulse shape we can compress the material to extremely high pressure and keep the temperature relatively low (i.e. below the melting temperature). In this way, we can probe solid states of matter at unprecedented high pressures. This loading technique has been combined with diagnostics generally used in condensed matter physics, such as x-ray diffraction and x-ray absorption spectroscopy (EXAFS, Extended X-ray Absorption Fine Structure, in particular), to provide a complete picture of the behavior of matter in-situ during compression. X-ray diffraction provides a snapshot of the structure and density of the material, while EXAFS has been used to infer the temperature. Simultaneous optical velocimetry measurements using VISAR (Velocity Interferometer for Any Reflector) yield an accurate determination of the pressure history during compression. In this talk I will present some of the results obtained in ramp-compression experiments performed at the Omega Laser Facility (University of Rochester) where the phase maps of planetary relevant materials, such as Fe, FeO and MgO, have been studied to unprecedented high pressures. Our data provide experimental constraints on the equations of state, strength and structure of these materials expected to dominate the interiors of massive rocky extra-solar planets and a benchmark for theoretical simulations. Combination of these new experimental data with models for planetary formation and evolutions is expected to improve our understanding of complex dynamics occurring in the Universe. This work was performed under the auspices of the US Department of

  18. Recent developments in laser-driven and hollow-core fiber optic gyroscopes

    NASA Astrophysics Data System (ADS)

    Digonnet, M. J. F.; Chamoun, J. N.

    2016-05-01

    Although the fiber optic gyroscope (FOG) continues to be a commercial success, current research efforts are endeavoring to improve its precision and broaden its applicability to other markets, in particular the inertial navigation of aircraft. Significant steps in this direction are expected from the use of (1) laser light to interrogate the FOG instead of broadband light, and (2) a hollow-core fiber (HCF) in the sensing coil instead of a conventional solid-core fiber. The use of a laser greatly improves the FOG's scale-factor stability and eliminates the source excess noise, while an HCF virtually eliminates the Kerr-induced drift and significantly reduces the thermal and Faraday-induced drifts. In this paper we present theoretical evidence that in a FOG with a 1085-m coil interrogated with a laser, the two main sources of noise and drift resulting from the use of coherent light can be reduced below the aircraft-navigation requirement by using a laser with a very broad linewidth, in excess of 40 GHz. We validate this concept with a laser broadened with an external phase modulator driven with a pseudo-random bit sequence at 2.8 GHz. This FOG has a measured noise of 0.00073 deg/√h, which is 30% below the aircraft-navigation requirement. Its measured drift is 0.03 deg/h, the lowest reported for a laser-driven FOG and only a factor of 3 larger than the navigation-grade specification. To illustrate the potential benefits of a hollow-core fiber in the FOG, this review also summarizes the previously reported performance of an experimental FOG utilizing 235 m of HCF and interrogated with broadband light.

  19. SU-D-BRE-05: Feasibility and Limitations of Laser-Driven Proton Therapy: A Treatment Planning Study

    SciTech Connect

    Hofmann, K; Wilkens, J; Masood, U; Pawelke, J

    2014-06-01

    Purpose: Laser-acceleration of particles may offer a cost- and spaceefficient alternative for future radiation therapy with particles. Laser-driven particle beams are pulsed with very short bunch times, and a high number of particles is delivered within one laser shot which cannot be portioned or modulated during irradiation. The goal of this study was to examine whether good treatment plans can be produced for laser-driven proton beams and to investigate the feasibility of a laser-driven treatment unit. Methods: An exponentially decaying proton spectrum was tracked through a gantry and energy selection beam line design to produce multiple proton spectra with different energy widths centered on various nominal energies. These spectra were fed into a treatment planning system to calculate spot scanning proton plans using different lateral widths of the beam and different numbers of protons contained in the initial spectrum. The clinical feasibility of the resulting plans was analyzed in terms of dosimetric quality and the required number of laser shots as an estimation of the overall treatment time. Results: We were able to produce treatment plans with plan qualities of clinical relevance for a maximum initial proton number per laser shot of 6*10{sup 8}. However, the associated minimum number of laser shots was in the order of 10{sup 4}, indicating a long delivery time in the order of at least 15 minutes, when assuming an optimistic repetition rate of the laser system of 10 Hz. Conclusion: With the simulated beam line and the assumed shape of the proton spectrum it was impossible to produce clinically acceptable treatment plans that can be delivered in a reasonable time. The situation can be improved by a method or a device in the beam line which can modulate the number of protons from shot to shot. Supported by DFG Cluster of Excellence: Munich-Centre for Advanced Photonics.

  20. In Situ Raman Monitoring of Silver(I)-Aided Laser-Driven Cleavage Reaction of Cyclobutane.

    PubMed

    Chen, Dengtai; Han, Xijiang; Du, Yunchen; Wang, Hsing-Lin; Xu, Ping

    2016-01-01

    The cyclobutane cleavage reaction is an important process and has received continuous interest. Herein, we demonstrate the visible laser-driven cleavage reaction of cyclobutane in crystal form by using in situ Raman spectroscopy. Silver(I) coordination-induced strain and thermal effects from the laser irradiation are the two main driving forces for the cleavage of cyclobutane crystals. This work may open up a new avenue for studying cyclobutane cleavage reactions, as compared to the conventional routes using ex situ techniques. PMID:26510491

  1. Laser-Driven Coherent Betatron Oscillation in a Laser-Wakefield Cavity: Formation of Sinusoid Beam Shapes and Coherent Trajectories

    SciTech Connect

    Nemeth, Karoly; Li Yuelin; Shang Hairong; Harkay, Katherine C.; Shen Baifei; Crowell, Robert; Cary, John R.

    2009-01-22

    High amplitude coherent electron-trajectories have been seen in 3D particle-in-cell simulations of the colliding pulse injection scheme of laser-wakefield accelerators in the bubble regime, and explained as a consequence of laser-driven coherent betatron oscillation in our recent paper [K. Nemeth et al., Phys. Rev. Lett. 100, 095002 (2008)]. In the present paper we provide more details on the shape of the trajectories, their relationship to the phase velocity of the laser and indicate the dependence of the phenomenon on the accuracy of the numerical representation and choice of laser/plasma parameters.

  2. Full-Trajectory Diagnosis of Laser-Driven Radiative Blast Waves in Search of Thermal Plasma Instabilities

    SciTech Connect

    Moore, A. S.; Gumbrell, E. T.; Lazarus, J.; Hohenberger, M.; Robinson, J. S.; Smith, R. A.; Plant, T. J. A.; Symes, D. R.; Dunne, M.

    2008-02-08

    Experimental investigations into the dynamics of cylindrical, laser-driven, high-Mach-number shocks are used to study the thermal cooling instability predicted to occur in astrophysical radiative blast waves. A streaked Schlieren technique measures the full blast-wave trajectory on a single-shot basis, which is key for observing shock velocity oscillations. Electron density profiles and deceleration parameters associated with radiative blast waves were recorded, enabling the calculation of important blast-wave parameters including the fraction of radiated energy, {epsilon}, as a function of time for comparison with radiation-hydrodynamics simulations.

  3. Full-trajectory diagnosis of laser-driven radiative blast waves in search of thermal plasma instabilities.

    PubMed

    Moore, A S; Gumbrell, E T; Lazarus, J; Hohenberger, M; Robinson, J S; Smith, R A; Plant, T J A; Symes, D R; Dunne, M

    2008-02-01

    Experimental investigations into the dynamics of cylindrical, laser-driven, high-Mach-number shocks are used to study the thermal cooling instability predicted to occur in astrophysical radiative blast waves. A streaked Schlieren technique measures the full blast-wave trajectory on a single-shot basis, which is key for observing shock velocity oscillations. Electron density profiles and deceleration parameters associated with radiative blast waves were recorded, enabling the calculation of important blast-wave parameters including the fraction of radiated energy, epsilon, as a function of time for comparison with radiation-hydrodynamics simulations. PMID:18352379

  4. Generation and diagnostics of atmospheric pressure CO{sub 2} plasma by laser driven plasma wind tunnel

    SciTech Connect

    Matsui, Makoto; Yamagiwa, Yoshiki; Tanaka, Kensaku; Arakawa, Yoshihiro; Nomura, Satoshi; Komurasaki, Kimiya

    2012-08-01

    Atmospheric pressure CO{sub 2} plasma was generated by a laser driven plasma wind tunnel. At an ambient pressure of 0.38 MPa, a stable plasma was maintained by a laser power of 1000 W for more than 20 min. The translational temperature was measured using laser absorption spectroscopy with the atomic oxygen line at 777.19 nm. The measured absorption profiles were analyzed by a Voigt function considering Doppler, Stark, and pressure-broadening effects. Under the assumption of thermochemical equilibrium, all broadening effects were consistent with each other. The measured temperature ranged from 8500 K to 8900 K.

  5. Laser-driven shock experiments in pre-compressed water: Implications for magnetic field generation in Icy Giant planets

    SciTech Connect

    Lee, K; Benedetti, L R; Jeanloz, R; Celliers, P M; Eggert, J H; Hicks, D G; Moon, S J; Mackinnon, A; Henry, E; Koenig, M; Benuzzi-Mounaix, A; Collins, G W

    2005-11-10

    Laser-driven shock compression of pre-compressed water (up to 1 GPa precompression) produces high-pressure, -temperature conditions in the water inducing two optical phenomena: opacity and reflectivity in the initially transparent water. The onset of reflectivity at infrared wavelengths can be interpreted as a semi-conductor to electronic conductor transition in water and is found at pressures above {approx}130 GPa for single-shocked samples pre-compressed to 1 GPa. This electronic conduction provides an additional contribution to the conductivity required for magnetic field generation in Icy Giant planets like Uranus and Neptune.

  6. High-Precision Measurements of the Equation of State of Polymers at 100 to 1000 GPa Using Laser-Driven Shock Waves

    NASA Astrophysics Data System (ADS)

    Barrios, M. A.

    2009-11-01

    The equation of state (EOS) of materials at extreme temperatures and pressures is of interest to astrophysics, high-energy-density physics, and inertial confinement fusion (ICF). The high-pressure (>100 GPa) behavior of polymer materials is essential to the understanding of ablator materials for ignition targets. EOS measurements on CHx provide benchmarks on the behavior of polymers under extreme conditions and the effect of stoichiometry (i.e., the C:H ratio) on that behavior. High-power lasers produce shock pressures greater than 100 GPa, and recent advances in diagnostics and analysis have made it possible to perform highly accurate measurements of shock velocity. This improves upon the impedance-matching technique for laser-driven shock experiments, producing ˜1% precision at extreme pressures. The OMEGA laser is used to produce principal (single-shock) Hugoniot EOS measurements on polystyrene (CH), polypropylene (CH2), GDP (C43H56O), and Ge-doped GDP at shock pressures of ˜100 to 1000 GPa. We also present a novel target design that provides double-shock (re-shock) data together with the above data. These data are pertinent to ICF target designs that use multiple shocks to approximate an isentropic compression. Results of the single- and double-shock experiments on these polymers are presented and compared to various EOS models. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302. In collaboration with T.R. Boehly, D.E. Fratanduono, D.D. Meyerhofer (LLE), D.G. Hicks, P.M. Celliers, and G.W. Collins (LLNL).

  7. Precision Mapping of Laser-Driven Magnetic Fields and Their Evolution in High-Energy-Density Plasmas

    NASA Astrophysics Data System (ADS)

    Gao, L.; Nilson, P. M.; Igumenshchev, I. V.; Haines, M. G.; Froula, D. H.; Betti, R.; Meyerhofer, D. D.

    2015-05-01

    The magnetic fields generated at the surface of a laser-irradiated planar solid target are mapped using ultrafast proton radiography. Thick (50 μ m ) plastic foils are irradiated with 4-kJ, 2.5-ns laser pulses focused to an intensity of 4 ×1014 W /cm2 . The data show magnetic fields concentrated at the edge of the laser-focal region, well within the expanding coronal plasma. The magnetic-field spatial distribution is tracked and shows good agreement with 2D resistive magnetohydrodynamic simulations using the code draco when the Biermann battery source, fluid and Nernst advection, resistive magnetic diffusion, and Righi-Leduc heat flow are included.

  8. Precision mapping of laser-driven magnetic fields and their evolution in high-energy-density plasmas

    SciTech Connect

    Gao, L.; Nilson, P. M.; Igumenshchev, I. V.; Haines, M. G.; Froula, D. H.; Betti, R.; Meyerhofer, D. D.

    2015-05-29

    The magnetic fields generated at the surface of a laser-irradiated planar solid target are mapped using ultrafast proton radiography. Thick (50 μm) plastic foils are irradiated with 4-kJ, 2.5-ns laser pulses focused to an intensity of 4 x 10¹⁴ W/cm². The data show magnetic fields concentrated at the edge of the laser-focal region, well within the expanding coronal plasma. The magnetic-field spatial distribution is tracked and shows good agreement with 2D resistive magnetohydrodynamic simulations using the code DRACO when the Biermann battery source, fluid and Nernst advection, resistive magnetic diffusion, and Righi-Leduc heat flow are included.

  9. Precision mapping of laser-driven magnetic fields and their evolution in high-energy-density plasmas.

    PubMed

    Gao, L; Nilson, P M; Igumenshchev, I V; Haines, M G; Froula, D H; Betti, R; Meyerhofer, D D

    2015-05-29

    The magnetic fields generated at the surface of a laser-irradiated planar solid target are mapped using ultrafast proton radiography. Thick (50  μm) plastic foils are irradiated with 4-kJ, 2.5-ns laser pulses focused to an intensity of 4×10^{14}  W/cm^{2}. The data show magnetic fields concentrated at the edge of the laser-focal region, well within the expanding coronal plasma. The magnetic-field spatial distribution is tracked and shows good agreement with 2D resistive magnetohydrodynamic simulations using the code draco when the Biermann battery source, fluid and Nernst advection, resistive magnetic diffusion, and Righi-Leduc heat flow are included. PMID:26066442

  10. Laser-driven miniature flyer plates for shock initiation of secondary explosives

    SciTech Connect

    Paisley, D.L.

    1989-01-01

    Miniature flyer plates (<1-mm diameter X <5-micron thick) of aluminum and other materials are accelerated by a 10-ns pulsed Nd:YAG laser to velocities >5 km/s. Velocity profiles are recorded by velocity interferometry (VISAR) techniques and impact planarity by electronic streak photography. Techniques for improving energy coupling from laser to flyer plate will be discussed. Flyer plate performance parameters will be compared with material properties. The P/sup n/t criteria for shock initiation of explosives will be compared for various flyer materials, pressure, and pulse duration. Performance of secondary explosives (PETN, HNS, HMX, various PBX, others) will be reported. These data will detail the experimental effect of t (in P/sup n/t) approaching values of a few nanoseconds. 9 refs., 5 figs.

  11. A global simulation for laser-driven MeV electrons in 50-{mu}m-diameter fast ignition targets

    SciTech Connect

    Ren, C.; Tzoufras, M.; Tonge, J.; Mori, W.B.; Tsung, F.S.; Fiore, M.; Fonseca, R.A.; Silva, L.O.; Adam, J.-C.; Heron, A.

    2006-05-15

    The results from 2.5-dimensional particle-in-cell simulations for the interaction of a picosecond-long ignition laser pulse with a plasma pellet of 50-{mu}m diameter and 40 critical density are presented. The high-density pellet is surrounded by an underdense corona and is isolated by a vacuum region from the simulation box boundary. The laser pulse is shown to filament and create density channels on the laser-plasma interface. The density channels increase the laser absorption efficiency and help generate an energetic electron distribution with a large angular spread. The combined distribution of the forward-going energetic electrons and the induced return electrons is marginally unstable to the current filament instability. The ions play an important role in neutralizing the space charges induced by the temperature disparity between different electron groups. No global coalescing of the current filaments resulted from the instability is observed, consistent with the observed large angular spread of the energetic electrons.

  12. Reduction of time-averaged irradiation speckle nonuniformity in laser-driven plasmas due to target ablation

    NASA Astrophysics Data System (ADS)

    Epstein, R.

    1997-09-01

    In inertial confinement fusion (ICF) experiments, irradiation uniformity is improved by passing laser beams through distributed phase plates (DPPs), which produce focused intensity profiles with well-controlled, reproducible envelopes modulated by fine random speckle. [C. B. Burckhardt, Appl. Opt. 9, 695 (1970); Y. Kato and K. Mima, Appl. Phys. B 29, 186 (1982); Y. Kato et al., Phys. Rev. Lett. 53, 1057 (1984); Laboratory for Laser Energetics LLE Review 33, NTIS Document No. DOE/DP/40200-65, 1987 (unpublished), p. 1; Laboratory for Laser Energetics LLE Review 63, NTIS Document No. DOE/SF/19460-91, 1995 (unpublished), p. 1.] A uniformly ablating plasma atmosphere acts to reduce the contribution of the speckle to the time-averaged irradiation nonuniformity by causing the intensity distribution to move relative to the absorption layer of the plasma. This occurs most directly as the absorption layer in the plasma moves with the ablation-driven flow, but it is shown that the effect of the accumulating ablated plasma on the phase of the laser light also makes a quantitatively significant contribution. Analytical results are obtained using the paraxial approximation applied to the beam propagation, and a simple statistical model is assumed for the properties of DPPs. The reduction in the time-averaged spatial spectrum of the speckle due to these effects is shown to be quantitatively significant within time intervals characteristic of atmospheric hydrodynamics under typical ICF irradiation intensities.

  13. First Observations of Laser-Driven Acceleration of Relativistic Electrons in a Semi-Infinite Vacuum Space

    SciTech Connect

    Plettner, T.; Byer, R.L.; Smith, T.I.; Colby, E.; Cowan, B.; Sears, C.M.S.; Spencer, J.E.; Siemann, R.H.; /SLAC

    2006-02-17

    We have observed acceleration of relativistic electrons in vacuum driven by a linearly polarized visible laser beam incident on a thin gold-coated reflective boundary. The observed energy modulation effect follows all the characteristics expected for linear acceleration caused by a longitudinal electric field. As predicted by the Lawson-Woodward theorem the laser driven modulation only appears in the presence of the boundary. It shows a linear dependence with the strength of the electric field of the laser beam and also it is critically dependent on the laser polarization. Finally, it appears to follow the expected angular dependence of the inverse transition radiation process. experiment as the Laser Electron Accelerator Project (LEAP).

  14. P-ρ-T measurements of H2O up to 260 GPa under laser-driven shock loading.

    PubMed

    Kimura, T; Ozaki, N; Sano, T; Okuchi, T; Sano, T; Shimizu, K; Miyanishi, K; Terai, T; Kakeshita, T; Sakawa, Y; Kodama, R

    2015-04-28

    Pressure, density, and temperature data for H2O were obtained up to 260 GPa by using laser-driven shock compression technique. The shock compression technique combined with the diamond anvil cell was used to assess the equation of state models for the P-ρ-T conditions for both the principal Hugoniot and the off-Hugoniot states. The contrast between the models allowed for a clear assessment of the equation of state models. Our P-ρ-T data totally agree with those of the model based on quantum molecular dynamics calculations. These facts indicate that this model is adopted as the standard for modeling interior structures of Neptune, Uranus, and exoplanets in the liquid phase in the multi-Mbar range. PMID:25933771

  15. Time-resolved x-ray scattering measurements of shock propagation in laser-driven CH foils

    NASA Astrophysics Data System (ADS)

    Barbrel, Benjamin; Koenig, Michel; Benuzzi-Mounaix, Alessandra; Brambrink, Erik; Brown, Colin; Khattak, Fida; Nagler, Bob; Rabec-Le-Gloaec, Marc; Spindloe, Chris; Tolley, Marc; Vinko, Samuel; Riley, David; Wark, Justin; Gregori, Gianluca

    2008-11-01

    We have performed time-resolved x-ray scattering measurements in the warm dense matter regime at the LULI 2000 laser facility (Ecole Polytechnique, France). The laser-driven shocked CH samples were probed with 30ps, 8keV Cu Kalpha radiation, delayed with respect to the shock propagation. The angularly resolved scattered x-ray signal, collected over a wide angle range (25-55 degrees), gives access to the plasma structure factor. For the first time, the use of a short pulse x-ray source allows ourselves to probe the microscopic properties of WDM at different plasma conditions as the shock travels. Spectrum shows evidence of strong coupling behaviour in the CH plasma. Results are compared to simulations taking account strong coupling effect and appropriate multi ionic-species treatment. The data analysis and the models used will be presented and discussed.

  16. Direct laser-driven ramp compression studies of iron: A first step toward the reproduction of planetary core conditions

    NASA Astrophysics Data System (ADS)

    Amadou, N.; Brambrink, E.; Benuzzi-Mounaix, A.; Huser, G.; Guyot, F.; Mazevet, S.; Morard, G.; de Resseguier, T.; Vinci, T.; Myanishi, K.; Ozaki, N.; Kodama, R.; Boehly, T.; Henry, O.; Raffestin, D.; Koenig, M.

    2013-06-01

    The study of iron under quasi-isentropic compression using high energy lasers, might allow to understand its thermodynamical properties, in particular its melting line in conditions of pressure and temperature relevant to Earth-like planetary cores (330-1500 GPa, 5000-8000 K). However, the iron alpha-epsilon solid-solid phase transition at 13 GPa favors shock formation during the quasi-isentropic compression process which can depart from the appropriate thermodynamical path. Understanding this shock formation mechanism is a key issue for being able to reproduce Earth-like planetary core conditions in the laboratory by ramp compression. In this article, we will present recent results of direct laser-driven quasi-isentropic compression experiments on iron samples obtained on the LULI 2000 and LIL laser facilities.

  17. P-ρ-T measurements of H2O up to 260 GPa under laser-driven shock loading.

    PubMed

    Kimura, T; Ozaki, N; Sano, T; Okuchi, T; Sano, T; Shimizu, K; Miyanishi, K; Terai, T; Kakeshita, T; Sakawa, Y; Kodama, R

    2015-04-28

    Pressure, density, and temperature data for H2O were obtained up to 260 GPa by using laser-driven shock compression technique. The shock compression technique combined with the diamond anvil cell was used to assess the equation of state models for the P-ρ-T conditions for both the principal Hugoniot and the off-Hugoniot states. The contrast between the models allowed for a clear assessment of the equation of state models. Our P-ρ-T data totally agree with those of the model based on quantum molecular dynamics calculations. These facts indicate that this model is adopted as the standard for modeling interior structures of Neptune, Uranus, and exoplanets in the liquid phase in the multi-Mbar range.

  18. Advanced scheme for high-yield laser driven proton-boron fusion reaction

    NASA Astrophysics Data System (ADS)

    Margarone, D.; Picciotto, A.; Velyhan, A.; Krasa, J.; Kucharik, M.; Morrissey, M.; Mangione, A.; Szydlowsky, A.; Malinowska, A.; Bertuccio, G.; Shi, Y.; Crivellari, M.; Ullschmied, J.; Bellutti, P.; Korn, G.

    2015-02-01

    A low contrast nanosecond laser pulse with relatively low intensity (3 × 1016 W cm-2) was used to enhance the yield of induced nuclear reactions in advanced solid targets. In particular the "ultraclean" proton-boron fusion reaction, producing energetic alpha-particles without neutron generation, was chosen. A spatially well-defined layer of boron dopants in a hydrogen-enriched silicon substrate was used as target. The combination of the specific target geometry and the laser pulse temporal shape allowed enhancing the yield of alpha-particles up to 109 per steradian, i.e 100 times higher than previous experimental achievements. Moreover the alpha particle stream presented a clearly peaked angular and energy distribution, which make this secondary source attractive for potential applications. This result can be ascribed to the interaction of the long laser pre-pulse with the target and to the optimal target geometry and composition.

  19. Hydrophobic anticancer drug delivery by a 980 nm laser-driven photothermal vehicle for efficient synergistic therapy of cancer cells in vivo.

    PubMed

    Dong, Kai; Liu, Zhen; Li, Zhenhua; Ren, Jinsong; Qu, Xiaogang

    2013-08-27

    A novel 980 nm laser-driven hydrophobic anticancer drug-delivery platform based on hollow CuS nanoparticles is constructed in this work. The excellent synergistic therapy combining drug treatment and photothermal ablation of cancer cells both in vitro and in vivo is demonstrated, which opens up new opportunities for biological and medical applications.

  20. Chirped pulse reflectivity and frequency domain interferometry in laser driven shock experiments.

    PubMed

    Benuzzi-Mounaix, A; Koenig, M; Boudenne, J M; Hall, T A; Batani, D; Scianitti, F; Masini, A; Di Santo, D

    1999-09-01

    We show the simultaneous applicability of the frequency domain interferometry and the chirped pulse reflectometry techniques to measure shock parameters. The experiment has been realized with the laser at the Laboratoire pour l'Utilisation des Lasers Intenses (LULI) with a 550-ps pulse duration and an intensity on target approximately 5 x 10(13) W/cm(2) to produce a shock in a layered aluminum-fused silica target. A second low energy, partially compressed chirped probe beam was used to irradiate the target rear side and the reflected light has been analyzed with a spectrometer, achieving a temporal resolution of the order of 1 ps. PMID:11970183

  1. Chirped pulse reflectivity and frequency domain interferometry in laser driven shock experiments

    NASA Astrophysics Data System (ADS)

    Benuzzi-Mounaix, A.; Koenig, M.; Boudenne, J. M.; Hall, T. A.; Batani, D.; Scianitti, F.; Masini, A.; di Santo, D.

    1999-09-01

    We show the simultaneous applicability of the frequency domain interferometry and the chirped pulse reflectometry techniques to measure shock parameters. The experiment has been realized with the laser at the Laboratoire pour l'Utilisation des Lasers Intenses (LULI) with a 550-ps pulse duration and an intensity on target ~5×1013 W/cm2 to produce a shock in a layered aluminum-fused silica target. A second low energy, partially compressed chirped probe beam was used to irradiate the target rear side and the reflected light has been analyzed with a spectrometer, achieving a temporal resolution of the order of 1 ps.

  2. Femtosecond laser driven high-flux highly collimated MeV-proton beam

    SciTech Connect

    Nishiuchi, M.; Daido, H.; Yogo, A.; Orimo, S.; Ogura, K.; Ma, J.; Sagisaka, A.; Mori, M.; Pirozhkov, A. S.; Kiriyama, H.; Esirkepov, T. Zh.; Bulanov, S. V.; Choi, Il Woo; Yu, Tae Jun; Shung, Jae Hee; Jeong, Tae Moon; Ko, Do-Kyeong; Lee, Jongmin; Kim, Hyung Taek; Hong, Kyung-Ham

    2008-06-24

    Highlly collimated energetic protons whose energies are up to 4 MeV are generated by an intense femtosecond Titanium Sappheire laser pulse interacting with a 7.5, 12.5, and 25 {mu}m-thick Polyimide tape target and 5 {mu}m-thick copper target. We find no clear difference on the proton spectra from 7.5, 12.5, and 25 {mu}m Polyimide tape target. The highest conversion efficiency from laser energy into protons of {approx}3% is observed with a 7.5 {mu}m thick Polyimide target. The quality of the proton beam is good enough to obtain a clear projection image of a mesh having 10 {mu}m line and space structure, installed into the passage of the beam. We obtain clear vertical lines on the proton intensity profiles from the copper target, which are considered to be transferred from the surface of the copper target. From it, we can restrict the size of the proton emitting region to be {approx}20 {mu}m.

  3. Femtosecond laser driven high-flux highly collimated MeV-proton beam

    NASA Astrophysics Data System (ADS)

    Nishiuchi, M.; Daido, H.; Yogo, A.; Orimo, S.; Ogura, K.; Ma, J.; Sagisaka, A.; Mori, M.; Pirozhkov, A. S.; Kiriyama, H.; Bulanov, S. V.; Esirkepov, T. Zh.; Choi, Il Woo; Yu, Tae Jun; Shung, Jae Hee; Jeong, Tae Moon; Kim, Hyung Taek; Hong, Kyung-Ham; Noh, Young-Chul; Ko, Do-Kyeong; Lee, Jongmin; Oishi, Y.; Nemoto, K.; Nagatomo, H.; Nagai, K.

    2008-06-01

    Highlly collimated energetic protons whose energies are up to 4 MeV are generated by an intense femtosecond Titanium Sappheire laser pulse interacting with a 7.5, 12.5, and 25 μm-thick Polyimide tape target and 5 μm-thick copper target. We find no clear difference on the proton spectra from 7.5, 12.5, and 25 μm Polyimide tape target. The highest conversion efficiency from laser energy into protons of ˜3% is observed with a 7.5 μm thick Polyimide target. The quality of the proton beam is good enough to obtain a clear projection image of a mesh having 10 μm line and space structure, installed into the passage of the beam. We obtain clear vertical lines on the proton intensity profiles from the copper target, which are considered to be transferred from the surface of the copper target. From it, we can restrict the size of the proton emitting region to be ˜20 μm.

  4. Laser-driven magnetic-flux compression in high-energy-density plasmas.

    PubMed

    Gotchev, O V; Chang, P Y; Knauer, J P; Meyerhofer, D D; Polomarov, O; Frenje, J; Li, C K; Manuel, M J-E; Petrasso, R D; Rygg, J R; Séguin, F H; Betti, R

    2009-11-20

    The demonstration of magnetic field compression to many tens of megagauss in cylindrical implosions of inertial confinement fusion targets is reported for the first time. The OMEGA laser [T. R. Boehly, Opt. Commun. 133, 495 (1997)10.1016/S0030-4018(96)00325-2] was used to implode cylindrical CH targets filled with deuterium gas and seeded with a strong external field (>50 kG) from a specially developed magnetic pulse generator. This seed field was trapped (frozen) in the shock-heated gas fill and compressed by the imploding shell at a high implosion velocity, minimizing the effect of resistive flux diffusion. The magnetic fields in the compressed core were probed via proton deflectrometry using the fusion products from an imploding D3He target. Line-averaged magnetic fields between 30 and 40 MG were observed.

  5. Characterization of warm dense matter (WDM) from high intensity laser driven shockwaves

    NASA Astrophysics Data System (ADS)

    Krauland, Christine; Wei, Mingsheng; Santos, Joao; Belancourt, Patrick; Theobald, Wolfgang; Keiter, Paul; Beg, Farhat

    2015-11-01

    Understanding the transport physics of an intense relativistic electron beam in various plasma regimes is crucial for many high-energy-density applications, such as fast heating for advanced ICF schemes and ion sources. Most short pulse laser-matter interaction experiments for electron transport studies have been performed with initially cold targets where the resistivity is far from that in warm dense and hot dense plasmas. In order to extend fast electron transport and energy coupling studies in pre-assembled plasmas, we must first characterize those regime possibilities. We present initial experiments conducted on the OMEGA EP laser (~ 1014 W/cm2) to characterize WDM created from the shock compression of low density (ρ0 ~ 330 mg/cc) CRF foams and solid Al foil targets. In foam targets, imaging x-ray Thomson scattering is used to measure spatial profiles of the temperature, ionization state and relative material density. The ASBO diagnostic and radiation hydrodynamics simulations deduce shock pressure in Al targets of various thicknesses. Details of the experiment and available data will be presented. The work was funded by the US DOE/NNSA NLUF Program.

  6. Extreme ultraviolet diagnostics of preformed plasma in laser-driven proton acceleration experiments

    SciTech Connect

    Ragozin, Eugene N.; Pirozhkov, Alexander S.; Yogo, Akifumi; Ma Jinglong; Ogura, Koichi; Orimo, Satoshi; Sagisaka, Akito; Mori, Michiaki; Li, Zhong; Nishiuchi, Mamiko; Daido, Hiroyuki

    2006-12-15

    Proton acceleration experiments involving a 5 {mu}m thick Ti foil target irradiation are carried out with the femtosecond Ti:sapphire laser JLITE-X. The plasma emission at 13.5 nm is recorded employing concave multilayer mirrors, which image the front- and rear-side plasmas onto the sensitive surfaces of a fast x-ray photodiode and a backside-illuminated charge coupled device. Online time-of-flight fast-particle measurements are performed simultaneously with the extreme ultraviolet (XUV) measurements. A strong correlation is observed between the energetic proton signal and the spatiotemporal behavior of the XUV plasma emission. In particular, the longer duration of the prepulse-produced XUV plasma emission indicates a lowering of the maximum proton energy. This allows using the XUV emission for the diagnostics of the high-intensity laser-solid-target interaction.

  7. Time- and spectrally resolved measurements of laser-driven hohlraum radiation

    SciTech Connect

    Hessling, T.; Blazevic, A.; Stoehlker, T.; Frank, A.; Kraus, D.; Roth, M.; Schaumann, G.; Schumacher, D.; Hoffmann, D. H. H.

    2011-07-15

    At the GSI Helmholtz center for heavy-ion research combined experiments with heavy ions and laser-produced plasmas are investigated. As a preparation to utilize indirectly heated targets, where a converter hohlraum provides thermal radiation to create a more homogeneous plasma, this converter target has to be characterized. In this paper the latest results of these measurements are presented. Small spherical cavities with diameters between 600 and 750 {mu}m were heated with laser energies up to 30 J at 532-nm wavelength. Radiation temperatures could be determined by time-resolved as well as time-integrated diagnostics, and maximum values of up to 35 eV were achieved.

  8. Reduction of angular divergence of laser-driven ion beams during their acceleration and transport

    NASA Astrophysics Data System (ADS)

    Zakova, M.; Pšikal, Jan; Margarone, Daniele; Maggiore, Mario; Korn, G.

    2015-05-01

    Laser plasma physics is a field of big interest because of its implications in basic science, fast ignition, medicine (i.e. hadrontherapy), astrophysics, material science, particle acceleration etc. 100-MeV class protons accelerated from the interaction of a short laser pulse with a thin target have been demonstrated. With continuing development of laser technology, greater and greater energies are expected, therefore projects focusing on various applications are being formed, e.g. ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration). One of the main characteristic and crucial disadvantage of ion beams accelerated by ultra-short intense laser pulses is their large divergence, not suitable for the most of applications. In this paper two ways how to decrease beam divergence are proposed. Firstly, impact of different design of targets on beam divergence is studied by using 2D Particlein-cell simulations (PIC). Namely, various types of targets include at foils, curved foil and foils with diverse microstructures. Obtained results show that well-designed microstructures, i.e. a hole in the center of the target, can produce proton beam with the lowest divergence. Moreover, the particle beam accelerated from a curved foil has lower divergence compared to the beam from a flat foil. Secondly, another proposed method for the divergence reduction is using of a magnetic solenoid. The trajectories of the laser accelerated particles passing through the solenoid are modeled in a simple Matlab program. Results from PIC simulations are used as input in the program. The divergence is controlled by optimizing the magnetic field inside the solenoid and installing an aperture in front of the device.

  9. First Results from Laser-Driven MagLIF Experiments on OMEGA: Optimization of Illumination Uniformity

    NASA Astrophysics Data System (ADS)

    Chang, P.-Y.; Barnak, D. H.; Betti, R.; Davies, J. R.; Fiksel, G.

    2015-11-01

    The physics principles of magnetic liner inertial fusion (MagLIF) are investigated on the Omega Laser Facility using 40 beams for compression and 1 beam for preheating a small (300- μm-radius, 1-mm-long) cylindrical plastic shell. Here we report of the first implosion experiments to optimize the illumination uniformity. These initial experiments do not include laser preheat. The beams in ring 3 and ring 4 around the symmetric axis are used to implode a cylindrical target. Beams in different rings illuminate the target surface with different incident angles, leading to different energy-coupling efficiencies. The beams in ring 3 have a shallower angle of incident than ring 4. When implosion velocities are compared for targets driven by either ring 3 or ring 4, we find that ring 3 couples ~ 40 % less kinetic energy than ring 4. One- and two-dimensional simulations using LILAC (1-D) and FLASH (2-D) are used to compare to the experimental results and to optimize the illumination uniformity. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and by DE-FG02-04ER54786 and DE-FC02-04ER54789 (Fusion Science Center).

  10. Applications of compact laser-driven EUV/XUV plasma sources

    NASA Astrophysics Data System (ADS)

    Barkusky, Frank; Bayer, Armin; Döring, Stefan; Flöter, Bernhard; Großmann, Peter; Peth, Christian; Reese, Michael; Mann, Klaus

    2009-05-01

    In recent years, technological developments in the area of extreme ultraviolet lithography (EUVL) have experienced great improvements. So far, intense light sources based on discharge or laser plasmas, beam steering and imaging optics as well as sensitive detectors are available. Currently, applications of EUV radiation apart from microlithography, such as metrology, high-resolution microscopy, or surface analysis come more and more into focus. In this contribution we present an overview on the EUV/XUV activities of the Laser-Laboratorium Göttingen based on table-top laser-produced plasma (LPP) sources. As target materials gaseous or liquid jets of noble gases or solid Gold are employed. Depending on the applications, the very clean but low intense gaseous targets are mainly used for metrology, whereas the targets for high brilliances (liquid, solid) are used for microscopy and direct structuring. For the determination of interaction mechanisms between EUV radiation and matter, currently the solid Gold target is used. In order to obtain a small focal spot resulting in high EUV fluence, a modified Schwarzschild objective consisting of two spherical mirrors with Mo/Si multilayer coatings is adapted to this source. By demagnified (10x) imaging of the Au plasma an EUV spot of 3 μm diameter with a maximum energy density of ~1.3 J/cm2 is generated (pulse duration 8.8 ns). First applications of this integrated source and optics system reveal its potential for high-resolution modification and direct structuring of solid surfaces. For chemical analysis of various samples a NEXAFS setup was developed. It consists of a LPP, using gaseous Krypton as a broadband emitter in the water-window range, as well as a flat field spectrograph. The laboratory system is set to the XUV spectral range around the carbon K-edge (4.4 nm). The table-top setup allows measurements with spectral accuracy comparable to synchrotron experiments. NEXAFS-experiments in transmission and reflection are

  11. Laser-driven plasma jets propagating in an ambient gas studied with optical and proton diagnostics

    SciTech Connect

    Gregory, C. D.; Loupias, B.; Koenig, M.; Waugh, J.; Woolsey, N. C.; Dono, S.; Kuramitsu, Y.; Sakawa, Y.; Bouquet, S.; Falize, E.; Michaut, C.; Nazarov, W.; Pikuz, S. A. Jr.

    2010-05-15

    The results of an experiment to propagate laser-generated plasma jets into an ambient medium are presented. The jets are generated via laser irradiation of a foam-filled cone target, the results and characterization of which have been reported previously [Loupias et al., Phys. Rev. Lett. 99, 265001 (2007)] for propagation in vacuum. The introduction of an ambient medium of argon at varying density is seen to result in the formation of a shock wave, and the shock front displays perturbations that appear to grow with time. The system is diagnosed with the aid of proton radiography, imaging the perturbed structure in the dense parts of the shock with high resolution.

  12. Modleing of psec laser driven Ne-like and Ni-like x-ray lasers

    SciTech Connect

    Nilsen, J.

    1997-06-01

    This paper models recent experiments in which a solid titanium target was illuminated by several joules of combined energy from a nsec laser pulse to create a preplasma followed by a psec laser pulse to drive the gain. Gains greater than 200 cm{sup -1} are predicted for the Ne-like Ti 3p {sup 1}S{sub 0} {yields} 3s {sup 1}P{sub 1} transition at 32.6 nm which is driven by the monopole collisional excitation. High gain is also predicted for the 3d {sup 1}P{sub 1} {yields} 3p {sup 1}P{sub 1} transition at 30.1 nm which is driven by a combination of collisional excitation and self photopumping. We also discuss the possibilities for driving a Ne-like Ge laser using this approach. For the Ni-like ions we model a solid molybdenum target under similar conditions used for Ti and predict gains greater than 300 cm{sup -1} for the Ni-like Mo 4d {sup 1}S{sub 0} {yields} 4p {sup 1}P{sub 1} transition at 18.9 nm which is driven by the monopole collisional excitation. High gain is also predicted for a self photopumped 4f {sup 1}P{sub 1} {yields} 4d {sup 1}P{sub 1} transition at 22.0 nm and several other transitions driven by inner shell collisional ionization.

  13. Laser-driven micro-Coulomb charge movement and energy conversion to relativistic electrons

    NASA Astrophysics Data System (ADS)

    Cobble, J. A.; Palaniyappan, S.; Johnson, R. P.; Shimada, T.; Huang, C.; Gautier, D. C.; Clark, D. D.; Falk, K.; Jung, D.

    2016-09-01

    Development of robust instrumentation has shown evidence for a multi-μC expulsion of relativistic electrons from a sub-μm-thick foil, laser illuminated with 60-70 J on target at 2 × 1020 W/cm2. From previous work and with electron spectroscopy, it is seen that an exponential electron energy distribution is accurate enough to calculate the emitted electron charge and energy content. The 5-10-μC charge for the >100-TW Trident Laser represents the first active measurement of the >50% laser-light-to-electron conversion efficiency. By shorting out the TV/m electric field usually associated with accelerating multi-MeV ions from such targets, one finds that this charge is representative of a multi-MA current of relativistic electrons for diverse applications from electron fast ignition to advanced radiography concepts. Included with the details of the discoveries of this research, shortcomings of the diagnostics and means of improving their fidelity are discussed.

  14. Design optimization and transverse coherence analysis for an x-ray free electron laser driven by SLAC LINAC

    SciTech Connect

    Xie, M.

    1995-12-31

    I present a design study for an X-ray Free Electron Laser driven by the SLAC linac, the Linac Coherent Light Source (LCLS). The study assumes the LCLS is based on Self-Amplified Spontaneous Emission (SASE). Following a brief review of the fundamentals of SASE, I will provide without derivation a collection of formulas relating SASE performance to the system parameters. These formulas allow quick evaluation of FEL designs and provide powerful tools for optimization in multi-dimensional parameter space. Optimization is carried out for the LCLS over all independent system parameters modeled, subjected to a number of practical constraints. In addition to the optimizations concerning gain and power, another important consideration for a single pass FEL starting from noise is the transverse coherence property of the amplified radiation, especially at short wavelength. A widely used emittance criteria for FELs requires that the emittance is smaller than the radiation wavelength divided by 4{pi}. For the LCLS the criteria is violated by a factor of 5, at a normalized emittance of 1.5 mm-mrad, wavelength of 1.5 {angstrom}, and beam energy of 15 GeV. Thus it is important to check quantitatively the emittance effect on the transverse coherence. I will examine the emittance effect on transverse coherence by analyzing different transverse modes and show that full transverse coherence can be obtained even at the LCLS parameter regime.

  15. Simulation study of enhancing laser-driven multi-keV line-radiation through application of external magnetic fields

    NASA Astrophysics Data System (ADS)

    Kemp, G. Elijah; Colvin, J. D.; Fournier, K. B.; May, M. J.; Barrios, M. A.; Patel, M. V.; Koning, J. M.; Scott, H. A.; Marinak, M. M.

    2015-11-01

    Laser-driven, spectrally tailored, high-flux x-ray sources have been developed over the past decade for testing the radiation hardness of materials used in various civilian, space and military applications. The optimal electron temperatures for these x-ray sources occur around twice the desired photon energy. At the National Ignition Facility (NIF) laser, the available energy can produce plasmas with ~ 10keV electron temperatures which result in highly-efficient ~ 5keV radiation but less than optimal emission from the > 10keV sources. In this work, we present a possible venue for enhancing multi-keV x-ray emission on existing laser platforms through the application of an external magnetic field. Preliminary radiation-hydrodynamics calculations with Hydra suggest as much as 2 - 14 × increases in laser-to-x-ray conversion efficiency for 22 - 68keV K-shell sources are possible on the NIF laser - without any changes in laser-drive conditions - through the application of an external axial 50 T field. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  16. Laser-driven short-duration heating angioplasty: chronic artery lumen patency and histology in porcine iliac artery

    NASA Astrophysics Data System (ADS)

    Shimazaki, Natsumi; Kunio, Mie; Naruse, Sho; Arai, Tsunenori; Sakurada, Masami

    2012-02-01

    We proposed a short-duration heating balloon angioplasty. We designed a prototype short-duration heating balloon catheter that can heat artery media to 60-70°C within 15-25 s with a combination of laser-driven heat generation and continuous fluid irrigation in the balloon. The purpose of this study was to investigate chronic artery lumen patency as well as histological alteration of artery wall after the short-duration heating balloon dilatation with porcine healthy iliac artery. The short-term heating balloon dilated sites were angiographically patent in acute (1 hour) and in chronic phases (1 and 4 weeks). One week after the dilatation, smooth muscle cells (SMCs) density in the artery media measured from H&E-stained specimens was approx. 20% lower than that in the reference artery. One and four weeks after the dilatations, normal structure of artery adventitia was maintained without any incidence of thermal injury. Normal lamellar structure of the artery media was also maintained. We found that the localized heating restricted to artery media by the short-duration heating could maintain adventitial function and artery normal structure in chronic phase.

  17. Laser driven nuclear science and applications: The need of high efficiency, high power and high repetition rate Laser beams

    NASA Astrophysics Data System (ADS)

    Gales, S.

    2015-10-01

    Extreme Light Infrastructure (ELI) is a pan European research initiative selected on the European Strategy Forum on Research Infrastructures Roadmap that aims to close the gap between the existing laboratory-based laser driven research and international facility-grade research centre. The ELI-NP facility, one of the three ELI pillars under construction, placed in Romania and to be operational in 2018, has as core elements a couple of new generation 10 PW laser systems and a narrow bandwidth Compton backscattering gamma source with photon energies up to 19 MeV. ELI-NP will address nuclear photonics, nuclear astrophysics and quantum electrodynamics involving extreme photon fields. Prospective applications of high power laser in nuclear astrophysics, accelerator physics, in particular towards future Accelerator Driven System, as well as in nuclear photonics, for detection and characterization of nuclear material, and for nuclear medicine, will be discussed. Key issues in these research areas will be at reach with significant increase of the repetition rates and of the efficiency at the plug of the high power laser systems as proposed by the ICAN collaboration.

  18. Laser-driven high-energy-density deuterium and tritium ions for neutron production in a double-cone configuration

    SciTech Connect

    Hu, Li-Xiang; Yu, Tong-Pu Shao, Fu-Qiu; Yin, Yan; Ma, Yan-Yun; Zhu, Qing-Jun

    2015-12-15

    By using two-dimensional particle-in-cell simulations, we investigate laser-driven ion acceleration and compression from a thin DT foil in a double-cone configuration. By using two counterpropagating laser pulses, it is shown that a double-cone structure can effectively guide, focus, and strengthen the incident laser pulses, resulting in the enhanced acceleration and compression of D{sup +} and T{sup +}. Due to the ion Coulomb repulsion and the effective screening from the external laser electric fields, the transverse diffusion of ions is significantly suppressed. Finally, the peak energy density of the compressed ions exceeds 2.73 × 10{sup 16 }J/m{sup 3}, which is about five orders of magnitude higher than the threshold for high energy density physics, 10{sup 11 }J/m{sup 3}. Under this condition, DT fusion reactions are initiated and the neutron production rate per volume is estimated to be as high as 7.473 × 10{sup 35}/m{sup 3} s according to Monte Carlo simulations. It is much higher than that of the traditional large neutron sources, which may facilitate many potential applications.

  19. Laser-driven 6-16 keV x-ray imaging and backlighting with spherical crystals

    NASA Astrophysics Data System (ADS)

    Schollmeier, M.; Rambo, P. K.; Schwarz, J.; Smith, I. C.; Porter, J. L.

    2014-10-01

    Laser-driven x-ray self-emission imaging or backlighting of High Energy Density Physics experiments requires brilliant sources with keV energies and x-ray crystal imagers with high spatial resolution of about 10 μ m. Spherically curved crystals provide the required resolution when operated at near-normal incidence, which minimizes image aberrations due to astigmatism. However, this restriction dramatically limits the range of suitable crystal and spectral line combinations. We present a survey of crystals and spectral lines for x-ray backlighting and self-emission imaging with energies between 6 and 16 keV. Ray-tracing simulations including crystal rocking curves have been performed to predict image brightness and spatial resolution. Results have been benchmarked to experimental data using both Sandia's 4 kJ, ns Z-Beamlet and 200 J, ps Z-Petawatt laser systems. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2014-15552A.

  20. Laser-driven coupled electron-nuclear dynamics: Quantum mechanical simulation of molecular photodesorption from metal films

    NASA Astrophysics Data System (ADS)

    Klamroth, Tillmann; Kröner, Dominik; Saalfrank, Peter

    2005-11-01

    In this paper we report dynamical simulations of laser-driven, coupled nuclear-electron dynamics for a molecule-surface system. Specifically, the laser desorption of a small molecule (NO) from a metal slab (Pt) in the so-called DIET limit (Desorption Induced by Electronic Transitions), is studied. The excitation of the metal electrons by a laser pulse followed by the formation of a negative ion resonance, its subsequent decay, and the simultaneous desorption of the molecule are all treated within a single quantum mechanical model. This model is based on an earlier theory of Harris and others [S. M. Harris, S. Holloway, and G. R. Darling, J. Chem. Phys. 102, 8235 (1995)], according to which a nuclear degree of freedom is coupled to an electronic one, both propagated on a single non-Born-Oppenheimer potential energy surface. The goals of the present contribution are (i) to make a conceptual connection of this model to the frequently adopted nonadiabatic “multi-state” models of photodesorption, (ii) to understand details of the desorption mechanism, (iii) to explicitly account for the laser pulse, and (iv) to study the photodesorption as a function of the thickness of the metal film, and the laser parameters. As an important methodological aspect we also present a highly efficient numerical scheme to propagate the wave packet in a problem-adapted diabatic basis.

  1. Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current

    DOE PAGES

    Gao, Lan; Ji, Hantao; Fiksel, Gennady; Fox, William; Evans, Michelle; Alfonso, Noel

    2016-04-15

    Magnetic fields generated by a current flowing through a U-shaped coil connecting two copper foils were measured using ultrafast proton radiography. Two ~ 1.25 kJ, 1-ns laser pulses propagated through laser entrance holes in the front foil and were focused to the back foil with an intensity of ~ 3 x 1016 W/cm2. The intense laser-solid interaction induced a high voltage between the copper foils and generated a large current in the connecting coil. The proton data show ~ 40-50 T magnetic fields at the center of the coil ~ 3-4 ns after laser irradiation. In conclusion, the experiments providemore » significant insight for future target designs that aim to develop a powerful source of external magnetic fields for various applications in high-energy-density science.« less

  2. A platform to study magnetic field amplification of laser driven shocks due to induced turbulence

    NASA Astrophysics Data System (ADS)

    Meinecke, Jena; Doyle, Hugo; Bell, A. R.; Crowston, Robert; Drake, Paul; Fatenejad, M.; Hartley, Nick; Koenig, Michel; Kuramitsu, Y.; Kuranz, Carolyn; Lamb, Don; MacDonald, Mike; Miniati, F.; Murphy, Chris; Pelka, Alex; Ravasio, Alessandra; Reville, Brian; Sakawa, Y.; Schekochihin, A. A.; Scopatz, Anthony; Tzeferacos, Petros; Wan, Wesley; Woolsey, Nigel; Gregori, Gianluca

    2012-10-01

    Misaligned pressure and temperature gradients associated with asymmetrical shock waves generate currents which seed magnetic fields (Biermann battery process). These fields could then be further amplified by increasing particle gyration driven by vorticity and turbulence. Studies of such phenomena have been conducted at the Rutherford Appleton Laboratory and scaled to astrophysical conditions (e.g., protogalacitc structure formation) using magnetohydrodynamic scaling techniques. Shock waves were driven in a 1 mbar Argon gas filled chamber from ablation of 500 micron Carbon rods using 300 J of 527 nm, 1 ns pulse light. A plastic grid was positioned 1 cm from the target to drive turbulence with outer scale ˜1 mm (the size of the grid opening). An induction coil, located 2 cm from the grid, was used to measure the magnetic field while optical diagnostics were used to track the fluid flow. Preliminary results and comparisons with hydrodynamic codes will be shown.

  3. In-Flight Measurements of Capsule Shell Adiabats in Laser-Driven Implosions

    SciTech Connect

    Kritcher, A. L.; Doeppner, T.; Ma, T.; Landen, O. L.; Wallace, R.; Glenzer, S. H.; Fortmann, C.

    2011-07-01

    We present the first x-ray Thomson scattering measurements of temperature and density from spherically imploding matter. The shape of the Compton downscattered spectrum provides a first-principles measurement of the electron velocity distribution function, dependent on T{sub e} and the Fermi temperature T{sub F}{approx}n{sub e}{sup 2/3}. In-flight compressions of Be and CH targets reach 6-13 times solid density, with T{sub e}/T{sub F}{approx}0.4-0.7 and {Gamma}{sub ii}{approx}5, resulting in minimum adiabats of {approx}1.6-2. These measurements are consistent with low-entropy implosions and predictions by radiation-hydrodynamic modeling.

  4. Revealing the Microscopic Real-Space Excursion of a Laser-Driven Electron

    NASA Astrophysics Data System (ADS)

    Kurz, Heiko G.; Kretschmar, Martin; Binhammer, Thomas; Nagy, Tamas; Ristau, Detlev; Lein, Manfred; Morgner, Uwe; Kovačev, Milutin

    2016-07-01

    High-order harmonic spectroscopy allows one to extract information on fundamental quantum processes, such as the exit time in the tunneling of an electron through a barrier with attosecond time resolution and molecular structure with angstrom spatial resolution. Here, we study the spatial motion of the electron during high-order harmonic generation in an in situ pump-probe measurement using high-density liquid water droplets as a target. We show that molecules adjacent to the emitting electron-ion pair can disrupt the electron's trajectory when positioned within the range of the maximum electronic excursion distance. This allows us to use the parent ion and the neighboring molecules as boundaries for the electronic motion to measure the maximum electronic excursion distance during the high-order harmonic generation process. Our analysis of the process is relevant for optimizing high-harmonic yields in dense media.

  5. Study of high Mach number laser driven blast waves in gases

    SciTech Connect

    Edens, A. D.; Adams, R. G.; Rambo, P.; Ruggles, L.; Smith, I. C.; Porter, J. L.; Ditmire, T.

    2010-11-15

    A series of experiments were performed examining the evolution of blast waves produced by laser irradiation of a target immersed in gas. Blast waves were produced by illumination of wires by 1 kJ, 1 ns laser pulses from the Z-Beamlet laser at Sandia National Laboratories. The blast waves were imaged by probe laser pulses at various times to examine the trajectory, radiative precursor, and induced perturbations on the blast wave front. Well defined perturbations were induced on the blast wave front with arrays of wires placed in the gas and the results of the experiments are compared to the theoretical predictions for the Vishniac overstability. It is found that the experimental results are in general agreement with these theoretical predictions on thin blast wave shells and are in quantitative agreement in the simplest case.

  6. High field terahertz emission from relativistic laser-driven plasma wakefields

    SciTech Connect

    Chen, Zi-Yu; Pukhov, Alexander

    2015-10-15

    We propose a method to generate high field terahertz (THz) radiation with peak strength of GV/cm level in the THz frequency gap range of 1–10 THz using a relativistic laser interaction with a gaseous plasma target. Due to the effect of local pump depletion, an initially Gaussian laser pulse undergoes leading edge erosion and eventually evolves to a state with leading edge being step function. Interacting with such a pulse, electrons gain transverse residual momentum and excite net transverse currents modulated by the relativistic plasma frequency. These currents give rise to the low frequency THz emission. We demonstrate this process with one and two dimensional particle-in-cell simulations.

  7. In-Flight Measurements of Capsule Adiabats in Laser Driven Spherical Implosions

    SciTech Connect

    Kritcher, A L; Doppner, T; Fortman, C; Ma, T; Landen, O L; Wallace, R; Glenzer, S H

    2011-03-07

    We present the first x-ray Thomson scattering measurements of temperature and density from spherically imploding matter. The shape of the Compton downscattered spectrum provides a first-principles measurement of the electron velocity distribution function, dependent on T{sub e} and the Fermi temperature T{sub F} {approx} n{sub e}{sup 2/3}. In flight compressions of Be and CH targets reach 6-13 times solid density, with T{sub e}/T{sub F} {approx} 0.4-0.7, resulting in minimum adiabats of {approx}1.6-2. These measurements are consistent with low-entropy implosions and predictions by simulations using radiation-hydrodynamic modeling.

  8. LASER-driven fast electron dynamics in gaseous media under the influence of large electric fields

    NASA Astrophysics Data System (ADS)

    Batani, D.; Baton, S. D.; Manclossi, M.; Piazza, D.; Koenig, M.; Benuzzi-Mounaix, A.; Popescu, H.; Rousseaux, C.; Borghesi, M.; Cecchetti, C.; Schiavi, A.

    2009-03-01

    We present the results of experiments performed at the LULI laboratory, using the 100 TW laser facility, on the study of the propagation of fast electrons in gas targets. The implemented diagnostics included chirped shadowgraphy and proton imaging. Proton images showed the presence of very large fields in the gas (produced by charge separation). In turn, these imply a strong inhibition of propagation, and a slowing down of the fast electron cloud as it penetrates in the gas. Indeed chirped shadowgraphy images show a reduction in time of the velocity of the electron cloud from the initial value, of the order of a fraction of c, over a time scale of a few picoseconds.

  9. Radiation transport and energetics of laser-driven half-hohlraums at the National Ignition Facility

    SciTech Connect

    Moore, A. S. Graham, P.; Comley, A. J.; Foster, J.; Cooper, A. B. R.; Schneider, M. B.; MacLaren, S.; Lu, K.; Seugling, R.; Satcher, J.; Klingmann, J.; Marrs, R.; May, M.; Widmann, K.; Glendinning, G.; Castor, J.; Sain, J.; Baker, K.; Hsing, W. W.; Young, B.; and others

    2014-06-15

    Experiments that characterize and develop a high energy-density half-hohlraum platform for use in benchmarking radiation hydrodynamics models have been conducted at the National Ignition Facility (NIF). Results from the experiments are used to quantitatively compare with simulations of the radiation transported through an evolving plasma density structure, colloquially known as an N-wave. A half-hohlraum is heated by 80 NIF beams to a temperature of 240 eV. This creates a subsonic diffusive Marshak wave, which propagates into a high atomic number Ta{sub 2}O{sub 5} aerogel. The subsequent radiation transport through the aerogel and through slots cut into the aerogel layer is investigated. We describe a set of experiments that test the hohlraum performance and report on a range of x-ray measurements that absolutely quantify the energetics and radiation partition inside the target.

  10. Ultrafast proton radiography of the magnetic fields generated by a laser-driven coil current

    NASA Astrophysics Data System (ADS)

    Gao, Lan; Ji, Hantao; Fiksel, Gennady; Fox, William; Evans, Michelle; Alfonso, Noel

    2016-04-01

    Magnetic fields generated by a current flowing through a U-shaped coil connecting two copper foils were measured using ultrafast proton radiography. Two ˜1.25 kJ, 1-ns laser pulses propagated through laser entrance holes in the front foil and were focused to the back foil with an intensity of ˜3 × 1016 W/cm2. The intense laser-solid interaction induced a high voltage between the copper foils and generated a large current in the connecting coil. The proton data show ˜40-50 T magnetic fields at the center of the coil ˜3-4 ns after laser irradiation. The experiments provide significant insight for future target designs that aim to develop a powerful source of external magnetic fields for various applications in high-energy-density science.

  11. Numerical simulatin of supernova-relevant laser-driven hydro experiments on OMEGA

    SciTech Connect

    Leibrandt, D; Robey, H F; Edwards, M J; Braun, D G; Miles, A R; Drake, R P

    2004-02-10

    In ongoing experiments performed on the OMEGA laser [J. M. Soures et al., Phys. Plasmas 5, 2108 (1996)] at the University of Rochester Laboratory for Laser Energetics (LLE), nanosecond laser pulses are used to drive strong blast waves into two-layer targets. Perturbations on the interface between the two materials are unstable to the Richtmyer-Meshkov instability as a result of shock transit and the Rayleigh-Taylor instability during the deceleration-phase behind the shock front. These experiments are designed to produce a strongly shocked interface whose evolution is a scaled version of the unstable hydrogen-helium interface in core-collapse supernovae such as SN 1987A. The ultimate goal of this research is to develop an understanding of the effect of hydrodynamic instabilities and the resulting transition to turbulence on supernovae observables that remain as yet unexplained. The authors are, at present, particularly interested in the development of the Rayleigh-Taylor instability through the late nonlinear stage, the transition to turbulence, and the subsequent transport of material within the turbulent region. In this paper, the results of numerical simulations of 2D single and multimode experiments are presented. These simulations are run using the 2D Arbitrary Lagrangian Eulerian (ALE) radiation hydrodynamics code CALE [R. T. Barton, Numerical Astrophysics (Jones and Bartlett, Boston, 1985)]. The simulation results are shown to compare well with experimental radiography. A buoyancy-drag model captures the behavior of the single-mode interface, but gives only partial agreement in the multi-mode cases. The Richtmyer-Meshkov and target decompression contributions to the perturbation growth are both estimated and shown to be significant. Significant dependence of the simulation results on the material equation of state (EOS) is demonstrated, and the prospect of continuing the experiments to conclusively demonstrate the transition to turbulence is discussed.

  12. Angular distributions of reflected and refracted relativistic electron beams crossing a thin planar target at a small angle to its surface

    SciTech Connect

    Serov, A. V.; Mamonov, I. A.; Kol’tsov, A. V.

    2015-10-15

    The scattering of electrons by aluminum, copper, and lead foils, as well as by bimetallic aluminum-lead and aluminum-copper foils, has been studied experimentally. A microtron with an energy of particles of 7.4 MeV has been used as a source of electrons. The beam of particles incident on a target at small angles is split into particles reflected from the foil, which constitute a reflected beam, and particles crossing the foil, which constitute a refracted beam. The effect of the material and thickness of the foil, as well as the angle between the initial trajectory of the beam and the plane of the target, on the direction of motion and the angular divergence of the beam crossing the foil and the beam reflected from the foil has been analyzed. Furthermore, the effect of the sequence of metal layers in bimetallic films on the angles of refraction and reflection of the beam has been examined.

  13. Nanometer-scale characterization of laser-driven plasmas, compression, shocks and phase transitions, by coherent small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Kluge, Thomas

    2015-11-01

    Combining ultra-intense short-pulse and high-energy long-pulse lasers, with brilliant coherent hard X-ray FELs, such as the Helmholtz International Beamline for Extreme Fields (HIBEF) under construction at the HED Instrument of European XFEL, or MEC at LCLS, holds the promise to revolutionize our understanding of many High Energy Density Physics phenomena. Examples include the relativistic electron generation, transport, and bulk plasma response, and ionization dynamics and heating in relativistic laser-matter interactions, or the dynamics of laser-driven shocks, quasi-isentropic compression, and the kinetics of phase transitions at high pressure. A particularly promising new technique is the use of coherent X-ray diffraction to characterize electron density correlations, and by resonant scattering to characterize the distribution of specific charge-state ions, either on the ultrafast time scale of the laser interaction, or associated with hydrodynamic motion. As well one can image slight density changes arising from phase transitions inside of shock-compressed high pressure matter. The feasibility of coherent diffraction techniques in laser-driven matter will be discussed. including recent results from demonstration experiments at MEC. Among other things, very sharp density changes from laser-driven compression are observed, having an effective step width of 10 nm or smaller. This compares to a resolution of several hundred nm achievedpreviously with phase contrast imaging. and on behalf of HIBEF User Consortium, for the Helmholtz International Beamline for Extreme Fields at the European XFEL.

  14. Particle acceleration on a chip: A laser-driven micro-accelerator for research and industry

    NASA Astrophysics Data System (ADS)

    Yoder, R. B.; Travish, G.

    2013-03-01

    Particle accelerators are conventionally built from radio-frequency metal cavities, but this technology limits the maximum energy available and prevents miniaturization. In the past decade, laser-powered acceleration has been intensively studied as an alternative technology promising much higher accelerating fields in a smaller footprint and taking advantage of recent advances in photonics. Among the more promising approaches are those based on dielectric field-shaping structures. These ``dielectric laser accelerators'' (DLAs) scale with the laser wavelength employed and can be many orders of magnitude smaller than conventional accelerators; DLAs may enable the production of high-intensity, ultra-short relativistic electron bunches in a chip-scale device. When combined with a high- Z target or an optical-period undulator, these systems could produce high-brilliance x-rays from a breadbox-sized device having multiple applications in imaging, medicine, and homeland security. In our research program we have developed one such DLA, the Micro-Accelerator Platform (MAP). We describe the fundamental physics, our fabrication and testing program, and experimental results to date, along with future prospects for MAP-based light-sources and some remaining challenges. Supported in part by the Defense Threat Reduction Agency and National Nuclear Security Administration.

  15. Numerical study of neutron beam divergence in a beam-fusion scenario employing laser driven ions

    NASA Astrophysics Data System (ADS)

    Alejo, A.; Green, A.; Ahmed, H.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; McKenna, P.; Mirfayzi, S. R.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.; Kar, S.

    2016-09-01

    The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher-catcher scenario, anisotropy in neutron emission was studied for the deuterium-deuterium fusion reaction. Simulation results are consistent with the narrow-divergence (∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.

  16. Thermal and log-normal distributions of plasma in laser driven Coulomb explosions of deuterium clusters

    NASA Astrophysics Data System (ADS)

    Barbarino, M.; Warrens, M.; Bonasera, A.; Lattuada, D.; Bang, W.; Quevedo, H. J.; Consoli, F.; de Angelis, R.; Andreoli, P.; Kimura, S.; Dyer, G.; Bernstein, A. C.; Hagel, K.; Barbui, M.; Schmidt, K.; Gaul, E.; Donovan, M. E.; Natowitz, J. B.; Ditmire, T.

    2016-08-01

    In this work, we explore the possibility that the motion of the deuterium ions emitted from Coulomb cluster explosions is highly disordered enough to resemble thermalization. We analyze the process of nuclear fusion reactions driven by laser-cluster interactions in experiments conducted at the Texas Petawatt laser facility using a mixture of D2+3He and CD4+3He cluster targets. When clusters explode by Coulomb repulsion, the emission of the energetic ions is “nearly” isotropic. In the framework of cluster Coulomb explosions, we analyze the energy distributions of the ions using a Maxwell-Boltzmann (MB) distribution, a shifted MB distribution (sMB), and the energy distribution derived from a log-normal (LN) size distribution of clusters. We show that the first two distributions reproduce well the experimentally measured ion energy distributions and the number of fusions from d-d and d-3He reactions. The LN distribution is a good representation of the ion kinetic energy distribution well up to high momenta where the noise becomes dominant, but overestimates both the neutron and the proton yields. If the parameters of the LN distributions are chosen to reproduce the fusion yields correctly, the experimentally measured high energy ion spectrum is not well represented. We conclude that the ion kinetic energy distribution is highly disordered and practically not distinguishable from a thermalized one.

  17. Laboratory High-velocity, Laser-Driven, Magnetized, Collision-less Flows

    NASA Astrophysics Data System (ADS)

    Pepin, Henri; Higginson, D.; Korneev, Ph.; Beard, J.; Chen, S. N.; Grech, M.; Gremillet, L.; D'Humières, E.; Pikuz, S.; Pollock, B.; Ruyer, C.; Riquier, R.; Fuchs, J.

    2015-11-01

    Understanding the mechanism leading to the acceleration of cosmic-ray particles up to extremely high-energies is an outstanding problem in astrophysics. This acceleration is thought to be linked to the collision-less shocks formed by the collision of energetic magnetized astrophysical outflows such as supernovae remnants and gamma-ray bursts. To gain insight on these particle accelerators, we have performed experiments on the Titan laser (60J/beam, 650fs). By irradiating opposing targets we launch two counter-streaming beams, embedded in an external 20T B-field. We observe a density increase in the middle of the streams and a proton acceleration at double the energy without external field. Particle-in-cell simulations show that the expansion of the beams causes a compression of the external B-field up to 500T, which is strong enough to reflect electrons from the strong field region. This creates a charge-separation and causes the development of strong E-fields which accelerates the ions at large energies, consistent with the experiment.

  18. Femtosecond-laser-driven photoelectron-gun for time-resolved cathodoluminescence measurement of GaN.

    PubMed

    Onuma, T; Kagamitani, Y; Hazu, K; Ishiguro, T; Fukuda, T; Chichibu, S F

    2012-04-01

    A rear-excitation femtosecond-laser-driven photoelectron gun (PE-gun) is developed for measuring time-resolved cathodoluminescence (TRCL) spectrum of wide bandgap materials and structures such as semiconductors and phosphors. The maximum quantum efficiency of a 20-nm-thick Au photocathode excited using a frequency-tripled Al(2)O(3):Ti laser under a rear-excitation configuration is 3.6×10(-6), which is a reasonable value for a PE-gun. When the distance between the front edge of the PE-gun and the observation point is 10 mm, the narrowest electron-beam (e-beam) diameter is 19 μm, which corresponds to one tenth of the laser-beam diameter and is comparable to the initial e-beam diameter of a typical W hair-pin filament of thermionic electron-gun. From the results of TRCL measurements on the freestanding GaN grown by the ammonothermal method and a GaN homoepitaxial film grown by metalorganic vapor phase epitaxy, overall response time for the present TRCL system is estimated to be 8 ps. The value is the same as that of time-resolved photoluminescence measurement using the same excitation laser pulses, meaning that the time-resolution is simply limited by the streak-camera, not by the PE-gun performance. The result of numerical simulation on the temporal e-beam broadening caused by the space-charge-effect suggests that the present PE-gun can be used as a pulsed e-beam source for spatio-time-resolved cathodoluminescence, when equipped in a scanning electron microscope.

  19. Acceleration{endash}deceleration process of thin foils confined in water and submitted to laser driven shocks

    SciTech Connect

    Romain, J.P.; Auroux, E.

    1997-08-01

    An experimental, numerical, and analytical study of the acceleration and deceleration process of thin metallic foils immersed in water and submitted to laser driven shocks is presented. Aluminum and copper foils of 20 to 120 {mu}m thickness, confined on both sides by water, have been irradiated at 1.06 {mu}m wavelength by laser pulses of {approximately}20ns duration, {approximately}17J energy, and {approximately}4GW/cm{sup 2} incident intensity. Time resolved velocity measurements have been made, using an electromagnetic velocity gauge. The recorded velocity profiles reveal an acceleration{endash}deceleration process, with a peak velocity up to 650 m/s. Predicted profiles from numerical simulations reproduce all experimental features, such as wave reverberations, rate of increase and decrease of velocity, peak velocity, effects of nature, and thickness of the foils. A shock pressure of about 2.5 GPa is inferred from the velocity measurements. Experimental points on the evolution of plasma pressure are derived from the measurements of peak velocities. An analytical description of the acceleration{endash}deceleration process, involving multiple shock and release waves reflecting on both sides of the foils, is presented. The space{endash}time diagrams of waves propagation and the successive pressure{endash}particle velocity states are determined, from which theoretical velocity profiles are constructed. All characteristics of experimental records and numerical simulations are well reproduced. The role of foil nature and thickness, in relation with the shock impedance of the materials, appears explicitly. {copyright} {ital 1997 American Institute of Physics.}

  20. Learning planar ising models

    SciTech Connect

    Johnson, Jason K; Chertkov, Michael; Netrapalli, Praneeth

    2010-11-12

    Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus our attention on the class of planar Ising models, for which inference is tractable using techniques of statistical physics [Kac and Ward; Kasteleyn]. Based on these techniques and recent methods for planarity testing and planar embedding [Chrobak and Payne], we propose a simple greedy algorithm for learning the best planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. We present the results of numerical experiments evaluating the performance of our algorithm.

  1. Laser driven grating linac

    SciTech Connect

    Palmer, R B

    1980-01-01

    The fields induced over a grating exposed to plane parallel light are explored. It is shown that acceleration is possible if either the particles travel skew to the grating lines, or if the radiation is falling at a skew angle onto the grating. A general theory of diffraction in this skew case is given. In one particular case numerical solutions are worked out for some deep grating. It is found that accelerating fields larger even than the initial fields can be obtained, the limit being set by resistive losses on the grating surface. Simple calculations are made to see what accelerating fields might be obtained using CO/sub 2/ lasers. Accelerations of 2 or 20 GeV per meter seem possible depending on whether the grating is allowed to be destroyed or not. Power requirements, injection and focussing are briefly discussed and no obvious difficulties are seen. It is concluded, therefore, that the proposed mechanism should be considered as a good candidate for the next generation of particle accelerators.

  2. P - ρ - T data for H2O up to 260 GPa under laser-driven shock loading

    NASA Astrophysics Data System (ADS)

    Kimura, T.; Ozaki, N.; Sano, T.; Okuchi, T.; Shimizu, K.; Miyanishi, K.; Terai, T.; Kakeshita, T.; Sakawa, Y.; Kodama, R.

    2014-12-01

    H2O is believed to be one of the most abundant compounds in ice giants including Neptune and Uranus1. Therefore, equation of state (EOS) for H2O is critical for understanding the formation and evolution of these planets. Various EOS models have been suggested for modeling the interior structure of the ice giants2-4. The recent shock experiments reported that their P - ρ data of H2O are in agreement with those of the QMD based EOS model5, indicating that this model is most suitable for modeling H2O in the ice giants. Whether H2O is in the solid or liquid state in the planetary interior has a great importance to understand their internal structures6. While the QMD model predicted that the solid H2O is present in deep interior of their planets above ~100 GPa4, the recent measurements revealed that H2O remains in the liquid state even at the deep interior conditions7. This discrepancy between experimental and theoretical studies suggests that the QMD based EOS model is disputable for modeling the planetary interior. Indeed, the comparison between data obtained from the shock experiments and the QMD based EOS did not cover the temperature5. We have obtained P - ρ - T data for H2O up to 260 GPa by using laser-driven shock compression technique. The diamond cell applied for the laser shock experiments was used as the sample container in order to achieve temperature conditions lower than the principal Hugoniot states. This shock technique combined with the cell can be used for an assessment the EOS models because it is possible to compare the states under the conditions that the contrast between the models clearly appears. Our data covering P - ρ - T on both the principal and the off Hugoniot curves agree with those of the QMD model, indicating this model to be adopted as the standard for modeling the interior structures of Neptune, Uranus, and exoplanets. References 1W. B. Hubbard et al., The interior of Neptune: Neptune and Triton(Univ. Arizona Press, Tucson, 1995) p

  3. High-precision measurements of the equation of state of hydrocarbons at 1-10 Mbar using laser-driven shock waves

    SciTech Connect

    Barrios, M. A.; Meyerhofer, D. D.; Hicks, D. G.; Eggert, J. H.; Celliers, P. M.; Collins, G. W.; Boehly, T. R.; Fratanduono, D. E.

    2010-05-15

    The equation of state (EOS) of polystyrene and polypropylene were measured using laser-driven shock waves with pressures from 1 to 10 Mbar. Precision data resulting from the use of alpha-quartz as an impedance-matching (IM) standard tightly constrains the EOS of these hydrocarbons, even with the inclusion of systematic errors inherent to IM. The temperature at these high pressures was measured, which, combined with kinematic measurements, provide a complete shock EOS. Both hydrocarbons were observed to reach similar compressions and temperatures as a function of pressure. The materials were observed to transition from transparent insulators to reflecting conductors at pressures of 1 to 2 Mbar.

  4. Enjoyment of Euclidean Planar Triangles

    ERIC Educational Resources Information Center

    Srinivasan, V. K.

    2013-01-01

    This article adopts the following classification for a Euclidean planar [triangle]ABC, purely based on angles alone. A Euclidean planar triangle is said to be acute angled if all the three angles of the Euclidean planar [triangle]ABC are acute angles. It is said to be right angled at a specific vertex, say B, if the angle ?ABC is a right angle…

  5. Dielectric Covered Planar Antennas

    NASA Technical Reports Server (NTRS)

    Llombart Juan, Nuria (Inventor); Lee, Choonsup (Inventor); Chattopadhyay, Goutam (Inventor); Gill, John J. (Inventor); Skalare, Anders J. (Inventor); Siegel, Peter H. (Inventor)

    2014-01-01

    An antenna element suitable for integrated arrays at terahertz frequencies is disclosed. The antenna element comprises an extended spherical (e.g. hemispherical) semiconductor lens, e.g. silicon, antenna fed by a leaky wave waveguide feed. The extended spherical lens comprises a substantially spherical lens adjacent a substantially planar lens extension. A couple of TE/TM leaky wave modes are excited in a resonant cavity formed between a ground plane and the substantially planar lens extension by a waveguide block coupled to the ground plane. Due to these modes, the primary feed radiates inside the lens with a directive pattern that illuminates a small sector of the lens. The antenna structure is compatible with known semiconductor fabrication technology and enables production of large format imaging arrays.

  6. Planar electrochemical device assembly

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2007-06-19

    A pre-fabricated electrochemical device having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films is bonded to a porous electrically conductive support. A second porous electrically conductive support may be bonded to a counter electrode of the electrochemical device. Multiple electrochemical devices may be bonded in parallel to a single porous support, such as a perforated sheet to provide a planar array. Planar arrays may be arranged in a stacked interconnected array. A method of making a supported electrochemical device is disclosed wherein the method includes a step of bonding a pre-fabricated electrochemical device layer to an existing porous metal or porous metal alloy layer.

  7. Planar electrochemical device assembly

    DOEpatents

    Jacobson; Craig P. , Visco; Steven J. , De Jonghe; Lutgard C.

    2010-11-09

    A pre-fabricated electrochemical device having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films is bonded to a porous electrically conductive support. A second porous electrically conductive support may be bonded to a counter electrode of the electrochemical device. Multiple electrochemical devices may be bonded in parallel to a single porous support, such as a perforated sheet to provide a planar array. Planar arrays may be arranged in a stacked interconnected array. A method of making a supported electrochemical device is disclosed wherein the method includes a step of bonding a pre-fabricated electrochemical device layer to an existing porous metal or porous metal alloy layer.

  8. Planar triode pulser socket

    DOEpatents

    Booth, R.

    1994-10-25

    A planar triode is mounted in a PC board orifice by means of a U-shaped capacitor housing and anode contact yoke removably attached to cathode leg extensions passing through and soldered to the cathode side of the PC board by means of a PC cathode pad. A pliant/flexible contact attached to the orifice make triode grid contact with a grid pad on the grid side of the PC board, permitting quick and easy replacement of bad triodes. 14 figs.

  9. Planar triode pulser socket

    DOEpatents

    Booth, Rex

    1994-01-01

    A planar triode is mounted in a PC board orifice by means of a U-shaped capacitor housing and anode contact yoke removably attached to cathode leg extensions passing through and soldered to the cathode side of the PC board by means of a PC cathode pad. A pliant/flexible contact attached to the orifice make triode grid contact with a grid pad on the grid side of the PC board, permitting quick and easy replacement of bad triodes.

  10. Planar waveguide optical immunosensors

    NASA Astrophysics Data System (ADS)

    Choquette, Steven J.; Locascio-Brown, Laurie E.; Durst, Richard A.

    1991-03-01

    Monoclonal antibodies were covalently bonded to the surfaces of planar waveguides to confer immunoreacth''ity. Silver-ion diffused waveguides were used to measure theophylline concentrations in a fluorescence immunoassay and silicon nitride waveguides were used to detect theophylline in an absorbance-based immunoassay. Liposomes were employed in both assays as the optically detectable label in a competitive reaction to monitor antigen-antibody complexation. Regeneration of the active antibody site will be discussed.

  11. Prospect of polarized targets in electron rings

    SciTech Connect

    Holt, R.J.

    1984-01-01

    The feasibility of performing electron scattering experiments with polarized targets in electron storage rings is discussed. Three examples of the physics which would be accessible with this novel method are given. It is noted that this new method is compatible with recent proposals for linac-stretcher-ring accelerator designs. A new method for producing a polarized hydrogen or deuterium target is proposed and some preliminary results are described. A brief summary of laser-driven polarized targets as well as conventionally-produced polarized atomic beams is included.

  12. Automated planar patch-clamp.

    PubMed

    Milligan, Carol J; Möller, Clemens

    2013-01-01

    Ion channels are integral membrane proteins that regulate the flow of ions across the plasma membrane and the membranes of intracellular organelles of both excitable and non-excitable cells. Ion channels are vital to a wide variety of biological processes and are prominent components of the nervous system and cardiovascular system, as well as controlling many metabolic functions. Furthermore, ion channels are known to be involved in many disease states and as such have become popular therapeutic targets. For many years now manual patch-clamping has been regarded as one of the best approaches for assaying ion channel function, through direct measurement of ion flow across these membrane proteins. Over the last decade there have been many remarkable breakthroughs in the development of technologies enabling the study of ion channels. One of these breakthroughs is the development of automated planar patch-clamp technology. Automated platforms have demonstrated the ability to generate high-quality data with high throughput capabilities, at great efficiency and reliability. Additional features such as simultaneous intracellular and extracellular perfusion of the cell membrane, current clamp operation, fast compound application, an increasing rate of parallelization, and more recently temperature control have been introduced. Furthermore, in addition to the well-established studies of over-expressed ion channel proteins in cell lines, new generations of planar patch-clamp systems have enabled successful studies of native and primary mammalian cells. This technology is becoming increasingly popular and extensively used both within areas of drug discovery as well as academic research. Many platforms have been developed including NPC-16 Patchliner(®) and SyncroPatch(®) 96 (Nanion Technologies GmbH, Munich), CytoPatch™ (Cytocentrics AG, Rostock), PatchXpress(®) 7000A, IonWorks(®) Quattro and IonWorks Barracuda™, (Molecular Devices, LLC); Dynaflow(®) HT (Cellectricon

  13. P-ρ-T measurements of H{sub 2}O up to 260 GPa under laser-driven shock loading

    SciTech Connect

    Kimura, T.; Ozaki, N.; Kodama, R.; Sano, T.; Sakawa, Y.; Okuchi, T.; Sano, T.; Miyanishi, K.; Terai, T.; Kakeshita, T.; Shimizu, K.

    2015-04-28

    Pressure, density, and temperature data for H{sub 2}O were obtained up to 260 GPa by using laser-driven shock compression technique. The shock compression technique combined with the diamond anvil cell was used to assess the equation of state models for the P-ρ-T conditions for both the principal Hugoniot and the off-Hugoniot states. The contrast between the models allowed for a clear assessment of the equation of state models. Our P-ρ-T data totally agree with those of the model based on quantum molecular dynamics calculations. These facts indicate that this model is adopted as the standard for modeling interior structures of Neptune, Uranus, and exoplanets in the liquid phase in the multi-Mbar range.

  14. Revealing the second harmonic generation in a femtosecond laser-driven cluster-based plasma by analyzing shapes of Ar XVII spectral lines.

    PubMed

    Oks, Eugene; Dalimier, Elisabeth; Faenov, Anatoly; Pikuz, Tatiana; Fukuda, Yuji; Andreev, Alexander; Koga, James; Sakaki, Hironao; Kotaki, Hideyuki; Pirozhkov, Alexander; Hayashi, Yukio; Skobelev, Igor; Pikuz, Sergei; Kawachi, Tetsuya; Kando, Masaki; Kondo, Kiminori; Zhidkov, Alexei; Kodama, Ryosuke

    2015-12-14

    We present experiments dealing with a femtosecond laser-driven cluster-based plasma, where by analyzing the nonlinear phenomenon of satellites of spectral lines of Ar XVII, we revealed the nonlinear phenomenon of the generation of the second harmonic of the laser frequency. For performing this analysis we developed new results in the theory of satellites of spectral lines. From such lineshape analysis we found, in particular, that the efficiency of converting the short (40 fs) intense (3x10¹⁸ W/cm²) incident laser light into the second harmonic was 2%. This result is in the excellent agreement with the 2-Dimensional Particle-In-Cell (2D PIC) simulation that we also performed. There is also an order of magnitude agreement between the thresholds for the SHG found from the line shape analysis and from the 2D PIC simulations.

  15. Preparation and characterization of planar deuterium cryotargets.

    PubMed

    Lei, Haile; Li, Jun; Tang, Yongjian; Liu, Yuanqiong

    2009-03-01

    Using a planar-cryotarget system with the cooling power provided by a Gifford-McMahon cryocooler, the deuterium vapor is condensed to form liquid in a cylinder target cell. The liquefaction processes of deuterium are examined by the Mach-Zehnder interference and infrared spectra. The infrared-absorption spectra of deuterium show a strong absorption peak around 3040 nm at 19 K. The thickness distribution of the condensed deuterium in the target cell is determined from Mach-Zehnder interference images by developing a new mathematical treatment method in combination with the digital-image processing technique.

  16. Planar oscillatory stirring apparatus

    NASA Technical Reports Server (NTRS)

    Wolf, M. F. (Inventor)

    1985-01-01

    The present invention is directed to an apparatus for stirring materials using planar orthogonal axes oscillations. The apparatus has a movable slide plate sandwiched between two fixed parallel support plates. Pressurized air is supplied to the movable slide plate which employs a tri-arm air bearing vent structure which allows the slide plate to float and to translate between the parallel support plates. The container having a material to be stirred is secured to the upper surface of the slide plate through an aperture in the upper support plate. A motor driven eccentric shaft loosely extends into a center hole bearing of the slide plate to cause the horizontal oscillations. Novelty lies in the combination of elements which exploits the discovery that low frequency, orthogonal oscillations applied horizontally to a Bridgman crucible provides a very rigorous stirring action, comparable with and more effective by an order of magnitude than the accelerated crucible rotation technique.

  17. Planar ion microtraps

    NASA Astrophysics Data System (ADS)

    Brewer, R. G.; Devoe, R. G.; Kallenbach, R.

    1992-12-01

    Planar quadrupole ion traps have been analyzed through numerical and analytic solutions of Laplace's equation. These involve either one or more conducting rings or their analogs, a hole in one or more conducting sheets. The leading terms in the potential are harmonic, corresponding to the Paul trap, but with coefficients that reduce their efficiency and for some traps, the anharmonic terms can be suppressed to eighth-order. Stable ion trapping is predicted for all electrode configurations possessing radial and axial symmetry. A three-hole microtrap with an inner hole radius of 80 μm trapped from one to many (dense clouds) laser-cooled Ba+ ions where the two-ion distance is compressed to 1 μm, allowing new experiments in quantum optics. Also, arrays of traps for optical clocks are contemplated using photolithographic fabrication.

  18. Planar elliptic growth

    SciTech Connect

    Mineev, Mark

    2008-01-01

    The planar elliptic extension of the Laplacian growth is, after a proper parametrization, given in a form of a solution to the equation for areapreserving diffeomorphisms. The infinite set of conservation laws associated with such elliptic growth is interpreted in terms of potential theory, and the relations between two major forms of the elliptic growth are analyzed. The constants of integration for closed form solutions are identified as the singularities of the Schwarz function, which are located both inside and outside the moving contour. Well-posedness of the recovery of the elliptic operator governing the process from the continuum of interfaces parametrized by time is addressed and two examples of exact solutions of elliptic growth are presented.

  19. The feed-out process: Rayleigh-Taylor and Richtmyer-Meshkov instabilities in thin, laser-driven foils

    SciTech Connect

    Smitherman, D.P.

    1998-04-01

    Eight beams carrying a shaped pulse from the NOVA laser were focused into a hohlraum with a total energy of about 25 kJ. A planar foil was placed on the side of the hohlraum with perturbations facing away from the hohlraum. All perturbations were 4 {micro}m in amplitude and 50 {micro}m in wavelength. Three foils of pure aluminum were shot with thicknesses and pulse lengths respectively of 86 {micro}m and 2. 2 ns, 50 {micro}m and 4.5 ns, and 35 {micro}m with both 2.2 ns and 4. 5 ns pulses. Two composite foils constructed respectively of 32 and 84 {micro}m aluminum on the ablative side and 10 {micro}m beryllium on the cold surface were also shot using the 2.2 ns pulse. X-ray framing cameras recorded perturbation growth using both face- and side-on radiography. The LASNEX code was used to model the experiments. A shock wave interacted with the perturbation on the cold surface generating growth from a Richtmyer-Meshkov instability and a strong acoustic mode. The cold surface perturbation fed-out to the Rayleigh-Taylor unstable ablation surface, both by differential acceleration and interface coupling, where it grew. A density jump did not appear to have a large effect on feed-out from interface coupling. The Rayleigh-Taylor instability`s vortex pairs overtook and reversed the direction of flow of the Richtmyer-Meshkov vortices, resulting in the foil moving from a sinuous to a bubble and spike configuration. The Rayleigh-Taylor instability may have acted as an ablative instability on the hot surface, and as a classical instability on the cold surface, on which grew second and third order harmonics.

  20. Non-planar chemical preconcentrator

    DOEpatents

    Manginell, Ronald P.; Adkins, Douglas R.; Sokolowski, Sara S.; Lewis, Patrick R.

    2006-10-10

    A non-planar chemical preconcentrator comprises a high-surface area, low mass, three-dimensional, flow-through sorption support structure that can be coated or packed with a sorptive material. The sorptive material can collect and concentrate a chemical analyte from a fluid stream and rapidly release it as a very narrow temporal plug for improved separations in a microanalytical system. The non-planar chemical preconcentrator retains most of the thermal and fabrication benefits of a planar preconcentrator, but has improved ruggedness and uptake, while reducing sorptive coating concerns and extending the range of collectible analytes.

  1. Electrochemical planarization for microelectronic circuits

    SciTech Connect

    Contolini, R.J.; Mayer, S.T.; Bernhardt, A.F.

    1993-03-25

    The need for flatter and smoother surfaces (planarization) in microelectronic circuits increases as the number of metal levels in ultra large scale integrated (ULSI) circuits increases. At Lawrence Livermore National Laboratory, the authors have developed an electrochemical planarization process that fills vias and trenches with metal (without voids) and subsequently planarizes the surface. Use is made of plasma-enhanced chemical vapor deposition (PECVD) of SiO[sub 2] for the dielectric layers and electroplated copper for the metalization. This report describes the advantages of this process over existing techniques, possibilities for collaboration, and previous technology transfer.

  2. Electrochemical planarization for microelectronic circuits

    NASA Astrophysics Data System (ADS)

    Contolini, R. J.; Mayer, S. T.; Bernhardt, A. F.

    1993-03-01

    The need for flatter and smoother surfaces (planarization) in microelectronic circuits increases as the number of metal levels in ultra large scale integrated (ULSI) circuits increases. At Lawrence Livermore National Laboratory, the authors have developed an electrochemical planarization process that fills vias and trenches with metal (without voids) and subsequently planarizes the surface. Use is made of plasma-enhanced chemical vapor deposition (PECVD) of SiO2 for the dielectric layers and electroplated copper for the metalization. This report describes the advantages of this process over existing techniques, possibilities for collaboration, and previous technology transfer.

  3. Object Classification via Planar Abstraction

    NASA Astrophysics Data System (ADS)

    Oesau, Sven; Lafarge, Florent; Alliez, Pierre

    2016-06-01

    We present a supervised machine learning approach for classification of objects from sampled point data. The main idea consists in first abstracting the input object into planar parts at several scales, then discriminate between the different classes of objects solely through features derived from these planar shapes. Abstracting into planar shapes provides a means to both reduce the computational complexity and improve robustness to defects inherent to the acquisition process. Measuring statistical properties and relationships between planar shapes offers invariance to scale and orientation. A random forest is then used for solving the multiclass classification problem. We demonstrate the potential of our approach on a set of indoor objects from the Princeton shape benchmark and on objects acquired from indoor scenes and compare the performance of our method with other point-based shape descriptors.

  4. Process for forming planarized films

    DOEpatents

    Pang, Stella W.; Horn, Mark W.

    1991-01-01

    A planarization process and apparatus which employs plasma-enhanced chemical vapor deposition (PECVD) to form plarnarization films of dielectric or conductive carbonaceous material on step-like substrates.

  5. Ethanol (C2H5OH) spray of sub-micron droplets for laser driven negative ion source

    NASA Astrophysics Data System (ADS)

    Prasad, R.; Borghesi, M.; Abicht, F.; Nickles, P. V.; Stiel, H.; Schnürer, M.; Ter-Avetisyan, S.

    2012-08-01

    Liquid ethanol (C2H5OH) was used to generate a spray of sub-micron droplets. Sprays with different nozzle geometries have been tested and characterised using Mie scattering to find scaling properties and to generate droplets with different diameters within the spray. Nozzles having throat diameters of 470 μm and 560 μm showed generation of ethanol spray with droplet diameters of (180 ± 10) nm and (140 ± 10) nm, respectively. These investigations were motivated by the observation of copious negative ions from these target systems, e.g., negative oxygen and carbon ions measured from water and ethanol sprays irradiated with ultra-intense (5 × 1019 W/cm2), ultra short (40 fs) laser pulses. It is shown that the droplet diameter and the average atomic density of the spray have a significant effect on the numbers and energies of accelerated ions, both positive and negative. These targets open new possibilities for the creation of efficient and compact sources of different negative ion species.

  6. Texturing of high T(sub c) superconducting polycrystalline fibers/wires by laser-driven directional solidification in an thermal gradient

    NASA Technical Reports Server (NTRS)

    Varshney, Usha; Eichelberger, B. Davis, III

    1995-01-01

    This paper summarizes the technique of laser-driven directional solidification in a controlled thermal gradient of yttria stabilized zirconia core coated Y-Ba-Cu-O materials to produce textured high T(sub c) superconducting polycrystalline fibers/wires with improved critical current densities in the extended range of magnetic fields at temperatures greater than 77 K. The approach involves laser heating to minimize phase segregation by heating very rapidly through the two-phase incongruent melt region to the single phase melt region and directionally solidifying in a controlled thermal gradient to achieve highly textured grains in the fiber axis direction. The technique offers a higher grain growth rate and a lower thermal budget compared with a conventional thermal gradient and is amenable as a continuous process for improving the J(sub c) of high T(sub c) superconducting polycrystalline fibers/wires. The technique has the advantage of suppressing weak-link behavior by orientation of crystals, formation of dense structures with enhanced connectivity, formation of fewer and cleaner grain boundaries, and minimization of phase segregation in the incongruent melt region.

  7. LESM: a laser-driven sub-MeV electron source delivering ultra-high dose rate on thin biological samples

    NASA Astrophysics Data System (ADS)

    Labate, L.; Andreassi, M. G.; Baffigi, F.; Bizzarri, R.; Borghini, A.; Bussolino, G. C.; Fulgentini, L.; Ghetti, F.; Giulietti, A.; Köster, P.; Lamia, D.; Levato, T.; Oishi, Y.; Pulignani, S.; Russo, G.; Sgarbossa, A.; Gizzi, L. A.

    2016-07-01

    We present a laser-driven source of electron bunches with average energy 260~\\text{keV} and picosecond duration, which has been setup for radiobiological tests covering the previously untested sub-MeV energy range. Each bunch combines high charge with short duration and sub-millimeter range into a record instantaneous dose rate, as high as {{10}9}~\\text{Gy}~{{\\text{s}}-1} . The source can be operated at 10~\\text{Hz} and its average dose rate is 35~\\text{mGy}~{{\\text{s}}-1} . Both the high instantaneous dose rate and high level of relative biological effectiveness, attached to sub-MeV electrons, make this source very attractive for studies of ultrafast radiobiology on thin cell samples. The source reliability, in terms of shot-to-shot stability of features such as mean energy, bunch charge and transverse beam profile, is discussed, along with a dosimetric characterization. Finally, a few preliminary biological tests performed with this source are presented.

  8. Using Laser-driven Shocks to Study the Phase Diagrams Of Low-Z Materials at Mbar Pressures and eV Temperatures

    SciTech Connect

    Celliers, P. M.; Eggert, J. H.; Hicks, D. G.; Bradley, D. K.; Collins, G. W.; Boehly, T. R.; Miller, J. E.; Brygoo, S.; Loubeyre, P.; McWilliams, R. S.; Jeanloz, R.

    2007-08-02

    Accurate phase diagrams for simple molecular fluids and solids (H2, He, H2O, SiO2, and C) and their constituent elements at eV temperatures and pressures up to tens of Mbar are integral to planetary models of the gas giant planets (Jupiter, Saturn, Uranus and Neptune), and the rocky planets. Laboratory experiments at high pressure have, until recently, been limited to around 1 Mbar. These pressures are usually achieved dynamically with explosives and two-stage light-gas guns, or statically with diamond anvil cells. Current and future high energy laser and pulsed power facilities will be able to produce tens of Mbar pressures in these light element materials. This presentation will describe the capabilities available at current high energy laser facilities to achieve these extreme conditions, and focus on several examples including water, silica, diamond-phase-carbon, helium and hydrogen. Under strong shock compression all of these materials become electronic conductors, and are transformed eventually to dense plasmas. The experiments reveal some details of the nature of this transition. To obtain high pressure data closer to planetary isentropes advanced compression techniques are required. We are developing a promising technique to achieve higher density states: precompression of samples in a static diamond anvil cell followed by laser driven shock compression. This technique and results from the first experiments with it will be described. Details about this topic can be found in some of our previous publications.

  9. Flat panel planar optic display

    SciTech Connect

    Veligdan, J.T.

    1994-11-01

    A prototype 10 inch flat panel Planar Optic Display, (POD), screen has been constructed and tested. This display screen is comprised of hundreds of planar optic class sheets bonded together with a cladding layer between each sheet where each glass sheet represents a vertical line of resolution. The display is 9 inches wide by 5 inches high and approximately 1 inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  10. (Cd,Mn)Te detectors for characterization of x-ray emissions generated during laser-driven fusion experiments

    SciTech Connect

    Cross,A.S.; Knauer, J. P.; Mycielski, A.; Kochanowska, D.; Wiktowska-Baran, M.; Jakiela, R.; Domagala, J.; Cui, Y.; James, R.; Sobolewski, R.

    2008-10-19

    We present our measurements of (Cd,Mn)Te photoconductive detectors (PCDs), fabricated for the goal of measuring both the temporal and spectral dependences of X-ray emissions generated from laser-illuminated targets during the inertial confinement fusion experiments. Our Cd{sub 1-x}Mn{sub x}Te (x = 0.05) single crystals, doped with V, were grown using a vertical Bridgman method and, subsequently, annealed in Cd for the highest resistivity ({approx}10{sup 10} {Omega}cm) and a good mobility-lifetime product ({approx}10{sup -3} cm{sup 2}/V). The 1-mm- and 2.3-mm-thick detectors were placed in the same housing as two 1-mm-thick diamond PCDs. All devices were pre-screened by a 7.6-mm-thick Be X-ray filter with a frequency cutoff of 1 keV. The incident shots from the OMEGA laser were 1-ns-long square pulses with energies ranging from 2.3 kJ to 22.6 kJ, and the PCDs were biased with 5000 V/cm. The response amplitudes and rise times of our (Cd,Mn)Te PCDs were comparable with the diamond detector performance, while the decay times were 4 to 10 times longer and in the 2-5 ns range. We observed two X-ray emission events separated by 1.24 ns. The first was identified as caused by heating of the target and creating a hot corona, while the second one was from the resulting compressed core. For comparison purposes, our testing was performed using {approx}1 keV X-ray photons, optimal for the diamond PCD. According to the presented simulations, however, at X-ray energies >10 keV diamond absorption efficiency drops to <50%, whereas for (Cd,Mn)Te the drop occurs at {approx}100 keV with near perfect, 100% absorption, up to 50 keV.

  11. Microsecond evolution of laser driven blast waves, the influence of shock asymmetries and the resulting development of magnetic fields

    NASA Astrophysics Data System (ADS)

    Tubman, Eleanor; Crowston, R.; Lam, G.; Dimoline, G.; Alraddadi, R.; Doyle, H.; Meinecke, J.; Cross, J.; Bolis, R.; Lamb, D.; Tzeferacos, P.; Doria, D.; Reville, B.; Ahmed, H.; Borghesi, M.; Gregori, G.; Woolsey, N.

    2015-11-01

    The ability to recreate scaled conditions of a supernova remnant within a laboratory environment is of great interest for informing the understanding of the evolution of galactic magnetic fields. The experiments rely on a near point explosion driven by one sided laser illumination producing a plasma, surrounded by a background gas. The subsequent shock and blast waves emerge following an initial ballistic phase into a self-similar expansion. Studies have been undertaken into the evolution of shock asymmetries which lead to magnetic field generation via the Biermann battery mechanism. Here we use the Vulcan laser facility, with targets such as carbon rods and plastic spheres placed in ambient gases of argon, helium or hydrogen, to produce the blast waves. These conditions allow us to study the asymmetries of the shocks using multi-frame imaging cameras, interferometry, and spectroscopy, while measuring the resulting magnetic fields with B-dot probes. The velocity of the shock and the temporal resolution of the asymmetries can be acquired on a single shot by the multi-framing cameras, and comparison with the measured B-dot fields allow for detailed inferences to be made.

  12. Quasi-monoenergetic ion beam acceleration by laser-driven shock and solitary waves in near-critical plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, W. L.; Qiao, B.; Huang, T. W.; Shen, X. F.; You, W. Y.; Yan, X. Q.; Wu, S. Z.; Zhou, C. T.; He, X. T.

    2016-07-01

    Ion acceleration in near-critical plasmas driven by intense laser pulses is investigated theoretically and numerically. A theoretical model has been given for clarification of the ion acceleration dynamics in relation to different laser and target parameters. Two distinct regimes have been identified, where ions are accelerated by, respectively, the laser-induced shock wave in the weakly driven regime (comparatively low laser intensity) and the nonlinear solitary wave in the strongly driven regime (comparatively high laser intensity). Two-dimensional particle-in-cell simulations show that quasi-monoenergetic proton beams with a peak energy of 94.6 MeV and an energy spread 15.8% are obtained by intense laser pulses at intensity I0 = 3 × 1020 W/cm2 and pulse duration τ = 0.5 ps in the strongly driven regime, which is more advantageous than that got in the weakly driven regime. In addition, 233 MeV proton beams with narrow spread can be produced by extending τ to 1.0 ps in the strongly driven regime.

  13. Planar patch clamp: advances in electrophysiology.

    PubMed

    Brüggemann, Andrea; Farre, Cecilia; Haarmann, Claudia; Haythornthwaite, Ali; Kreir, Mohamed; Stoelzle, Sonja; George, Michael; Fertig, Niels

    2008-01-01

    Ion channels have gained increased interest as therapeutic targets over recent years, since a growing number of human and animal diseases have been attributed to defects in ion channel function. Potassium channels are the largest and most diverse family of ion channels. Pharmaceutical agents such as Glibenclamide, an inhibitor of K(ATP) channel activity which promotes insulin release, have been successfully sold on the market for many years. So far, only a small group of the known ion channels have been addressed as potential drug targets. The functional testing of drugs on these ion channels has always been the bottleneck in the development of these types of pharmaceutical compounds.New generations of automated patch clamp screening platforms allow a higher throughput for drug testing and widen this bottleneck. Due to their planar chip design not only is a higher throughput achieved, but new applications have also become possible. One of the advantages of planar patch clamp is the possibility of perfusing the intracellular side of the membrane during a patch clamp experiment in the whole-cell configuration. Furthermore, the extracellular membrane remains accessible for compound application during the experiment.Internal perfusion can be used not only for patch clamp experiments with cell membranes, but also for those with artificial lipid bilayers. In this chapter we describe how internal perfusion can be applied to potassium channels expressed in Jurkat cells, and to Gramicidin channels reconstituted in a lipid bilayer. PMID:18998092

  14. Planar photovoltaic solar concentrator module

    DOEpatents

    Chiang, Clement J.

    1992-01-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  15. Planar photovoltaic solar concentrator module

    DOEpatents

    Chiang, C.J.

    1992-12-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

  16. Effects of the P2 M-band flux asymmetry of laser-driven gold Hohlraums on the implosion of ICF ignition capsule

    NASA Astrophysics Data System (ADS)

    Li, Yongsheng; Gu, Jianfa; Wu, Changshu; Song, Peng; Dai, Zhensheng; Li, Shuanggui; Li, Xin; Kang, Dongguo; Gu, Peijun; Zheng, Wudi; Zou, Shiyang; Ding, Yongkun; Lan, Ke; Ye, Wenhua; Zhang, Weiyan

    2016-07-01

    Low-mode asymmetries in the laser-indirect-drive inertial confinement fusion implosion experiments conducted on the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, S228 (2004)] are deemed the main obstacles hindering further improvement of the nuclear performance of deuterium-tritium-layered capsules. The dominant seeds of these asymmetries include the P2 and P4 asymmetries of x-ray drives and P2 asymmetry introduced by the supporting "tent." Here, we explore the effects of another possible seed that can lead to low-mode asymmetric implosions, i.e., the M-band flux asymmetry (MFA) in laser-driven cylindrical gold Hohlraums. It is shown that the M-band flux facilitates the ablation and acceleration of the shell, and that positive P2 MFAs can result in negative P2 asymmetries of hot spots and positive P2 asymmetries of shell's ρR. An oblate or toroidal hot spot, depending on the P2 amplitude of MFA, forms at stagnation. The energy loss of such a hot spot via electron thermal conduction is seriously aggravated not only due to the enlarged hot spot surface but also due to the vortices that develop and help transferring thermal energy from the hotter center to the colder margin of such a hot spot. The cliffs of nuclear performance for the two methodologies of applying MFA (i.e., symmetric flux in the presence of MFA and MFA added for symmetric soft x-ray flux) are obtained locating at 9.5% and 5.0% of P2/P0 amplitudes, respectively.

  17. Spectrometer system using a modular echelle spectrograph and a laser-driven continuum source for simultaneous multi-element determination by graphite furnace absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Geisler, Sebastian; Okruss, Michael; Becker-Ross, Helmut; Huang, Mao Dong; Esser, Norbert; Florek, Stefan

    2015-05-01

    A multi-element absorption spectrometer system has been developed based on a laser-driven xenon continuum source and a modular simultaneous echelle spectrograph (MOSES), which is characterized by a minimized number of optical components resulting in high optical throughput, high transmittance and high image quality. The main feature of the new optical design is the multifunction usage of a Littrow prism, which is attached on a rotation stage. It operates as an order-sorter for the echelle grating in a double-pass mode, as a fine positioning device moving the echelle spectrum on the detector, and as a forwarder to address different optical components, e.g., echelle gratings, in the setup. Using different prisms, which are mounted back to back on the rotation stage, a multitude of different spectroscopic modes like broad-range panorama observations, specific UV-VIS and NIR studies or high resolution zoom investigations of variable spectral channels can be realized. In the UV panorama mode applied in this work, MOSES has simultaneously detectable wavelength coverage from 193 nm to 390 nm with a spectral resolution λ/Δλ of 55,000 (3-pixel criterion). In the zoom mode the latter can be further increased by a factor of about two for a selectable section of the full wavelength range. The applicability and the analytical performance of the system were tested by simultaneous element determination in a graphite furnace, using eight different elements. Compared to an instrument operating in the optimized single line mode, the achieved analytical sensitivity using the panorama mode was typically a factor of two lower. Using the zoom mode for selected elements, comparable sensitivities were obtained. The results confirm the influence of the different spectral resolutions.

  18. Role of laser contrast and foil thickness in target normal sheath acceleration

    NASA Astrophysics Data System (ADS)

    Gizzi, L. A.; Altana, C.; Brandi, F.; Cirrone, P.; Cristoforetti, G.; Fazzi, A.; Ferrara, P.; Fulgentini, L.; Giove, D.; Koester, P.; Labate, L.; Lanzalone, G.; Londrillo, P.; Mascali, D.; Muoio, A.; Palla, D.; Schillaci, F.; Sinigardi, S.; Tudisco, S.; Turchetti, G.

    2016-09-01

    In this paper we present an experimental investigation of laser driven light-ion acceleration using the ILIL laser at an intensity of 2×1019 W/cm2. In the experiment we focused our attention on the identification of the role of target thickness and resistivity in the fast electron transport and in the acceleration process. Here we describe the experimental results concerning the effect of laser contrast in the laser-target interaction regime. We also show preliminary results on ion acceleration which provide information about the role of bulk target ions and surface ions and target dielectric properties in the acceleration process.

  19. Summing Planar Bosonic Open Strings

    SciTech Connect

    Bardakci, Korkut

    2006-02-16

    In earlier work, planar graphs of massless {phi}{sup 3} theory were summed with the help of the light cone world sheet picture and the mean field approximation. In the present article, the same methods are applied to the problem of summing planar bosonic open strings. They find that in the ground state of the system, string boundaries form a condensate on the world sheet, and a new string emerges from this summation. Its slope is always greater than the initial slope, and it remains non-zero even when the initial slope is set equal to zero. If they assume the initial string tends to a field a theory in the zero slope limit, this result provides evidence for string formation in field theory.

  20. Window defect planar mapping technique

    NASA Technical Reports Server (NTRS)

    Minton, F. R.; Minton, U. O. (Inventor)

    1976-01-01

    A method of planar mapping defects in a window having an edge surface and a planar surface. The method is comprised of steps for mounting the window on a support surface. Then a light sensitive paper is placed adjacent to the window surface. A light source is positioned adjacent to the window edge. The window is then illuminated with the source of light for a predetermined interval of time. Defects on the surface of the glass, as well as in the interior of the glass are detected by analyzing the developed light sensitive paper. The light source must be in the form of optical fibers or a light tube whose light transmitting ends are placed near the edge surface of the window.

  1. Manufacturing of planar ceramic interconnects

    SciTech Connect

    Armstrong, B.L.; Coffey, G.W.; Meinhardt, K.D.; Armstrong, T.R.

    1996-12-31

    The fabrication of ceramic interconnects for solid oxide fuel cells (SOFC) and separator plates for electrochemical separation devices has been a perennial challenge facing developers. Electrochemical vapor deposition (EVD), plasma spraying, pressing, tape casting and tape calendering are processes that are typically utilized to fabricate separator plates or interconnects for the various SOFC designs and electrochemical separation devices. For sake of brevity and the selection of a planar fuel cell or gas separation device design, pressing will be the only fabrication technique discussed here. This paper reports on the effect of the characteristics of two doped lanthanum manganite powders used in the initial studies as a planar porous separator for a fuel cell cathode and as a dense interconnect for an oxygen generator.

  2. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1985-06-24

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping lase pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  3. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1985-08-23

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  4. Macroscopic resonances in planar geometry

    NASA Astrophysics Data System (ADS)

    Strutinsky, V.; Vydrug-Vlasenko, S.; Magner, A.

    1987-09-01

    Resonating response is a characteristic feature of free-particle system contained between two vibrating planar surfaces. Resonance frequencies and widths are determined by a mean period of motion of particles reflected from the walls. Resonances due to quasiperiodic macroscopic motion appear when the interaction among quasi-particles by means of perturbations of the common self-consistent field is included. They have finite widths corresponding to collisionless Landau dissipation. Possible relationship of this phenomenon to nuclear giant resonances is discussed.

  5. Compact planar microwave blocking filters

    NASA Technical Reports Server (NTRS)

    U-Yen, Kongpop (Inventor); Wollack, Edward J. (Inventor)

    2012-01-01

    A compact planar microwave blocking filter includes a dielectric substrate and a plurality of filter unit elements disposed on the substrate. The filter unit elements are interconnected in a symmetrical series cascade with filter unit elements being organized in the series based on physical size. In the filter, a first filter unit element of the plurality of filter unit elements includes a low impedance open-ended line configured to reduce the shunt capacitance of the filter.

  6. NMR planar microcoil for microanalysis

    NASA Astrophysics Data System (ADS)

    Sorli, B.; Chateaux, J. F.; Quiquerez, L.; Bouchet-Fakri, L.; Briguet, A.; Morin, P.

    2006-11-01

    This article deals with the analysis of small sample volume by using a planar microcoil and a micromachined cavity. This microcoil is used as a nuclear magnetic resonance (NMR) radio frequency detection coil in order to perform in vitro NMR analysis of the sample introduced into the microcavity. It is a real challenging task to develop microsystem for NMR spectrum extraction for smaller and smaller sample volume. Moreover, it is advantageous that these microsystems could be integrated in a Micro Total Analysing System (μ -TAS) as an analysing tool. In this paper, NMR theory, description, fabrication process and electrical characterization of planar microcoils receiver are described. Results obtained on NMR microspectroscopy experiments have been performed on water and ethanol, using a 1 mm diameter planar coil. This microcoil is tuned and matched at 85.13 MHz which is the Larmor frequency of proton in a 2 T magnetic field. This paper has been presented at “3e colloque interdisciplinaire en instrumentation (C2I 2004)”, École Normale Supérieure de Cachan, 29 30 janvier 2004.

  7. Cilia organize ependymal planar polarity

    PubMed Central

    Mirzadeh, Zaman; Han, Young-Goo; Soriano-Navarro, Mario; García-Verdugo, Jose Manuel; Alvarez-Buylla, Arturo

    2010-01-01

    Multi-ciliated epithelial cells, called ependymal cells, line the ventricles in the adult brain. Most ependymal cells are born prenatally and are derived from radial glia. Ependymal cells have a remarkable planar polarization that determines orientation of ciliary beating and propulsion of cerebrospinal fluid (CSF). Disruption of ependymal ciliary beating, by injury or disease, results in aberrant CSF circulation and hydrocephalus, a common disorder of the central nervous system. Very little is known about the mechanisms guiding ependymal planar polarity and whether this organization is acquired during ependymal cell development or is already present in radial glia. Here we show that basal bodies in ependymal cells in the lateral ventricle walls of adult mice are polarized in two ways: i) rotational; angle of individual basal bodies with respect to their long axis and ii) translational; the position of basal bodies on the apical surface of the cell. Conditional ablation of motile cilia disrupted rotational orientation, but translational polarity was largely preserved. In contrast, translational polarity was dramatically affected when radial glial primary cilia were ablated earlier in development. Remarkably, radial glia in the embryo have a translational polarity that predicts the orientation of mature ependymal cells. These results suggest that ependymal planar cell polarity is a multi-step process initially organized by primary cilia in radial glia and then refined by motile cilia in ependymal cells. PMID:20164345

  8. Planar LTCC transformers for high voltage flyback converters: Part II.

    SciTech Connect

    Schofield, Daryl; Schare, Joshua M., Ph.D.; Slama, George; Abel, David

    2009-02-01

    This paper is a continuation of the work presented in SAND2007-2591 'Planar LTCC Transformers for High Voltage Flyback Converters'. The designs in that SAND report were all based on a ferrite tape/dielectric paste system originally developed by NASCENTechnoloy, Inc, who collaborated in the design and manufacturing of the planar LTCC flyback converters. The output/volume requirements were targeted to DoD application for hard target/mini fuzing at around 1500 V for reasonable primary peak currents. High voltages could be obtained but with considerable higher current. Work had begun on higher voltage systems and is where this report begins. Limits in material properties and processing capabilities show that the state-of-the-art has limited our practical output voltage from such a small part volume. In other words, the technology is currently limited within the allowable funding and interest.

  9. Lessons from Two Years of Building Fusion Ignition Targets with the Precision Robotic Assembly Machine

    SciTech Connect

    Montesanti, R C; Alger, E T; Atherton, L J; Bhandarkar, S D; Castro, C; Dzenitis, E G; Hamza, A V; Klingmann, J L; Nikroo, A; Parham, T G; Reynolds, J L; Seugling, R M; Swisher, M F; Taylor, J S; Witte, M C

    2010-02-19

    The Precision Robotic Assembly Machine was developed to manufacture the small and intricate laser-driven fusion ignition targets that are being used in the world's largest and most energetic laser, the National Ignition Facility (NIF). The National Ignition Campaign (NIC) goal of using the NIF to produce a self-sustaining nuclear fusion burn with energy gain - for the first time ever in a laboratory setting - requires targets that are demanding in materials fabrication, machining, and assembly. We provide an overview of the design and function of the machine, with emphasis on the aspects that revolutionized how NIC targets are manufactured.

  10. Combined proton acceleration from foil targets by ultraintense short laser pulses

    NASA Astrophysics Data System (ADS)

    Fang, Yuan; Yu, Tongpu; Ge, Xulei; Yang, Su; Wei, Wenqing; Yuan, Tao; Liu, Feng; Chen, Min; Liu, Jingquan; Li, Yutong; Yuan, Xiaohui; Sheng, Zhengming; Zhang, Jie

    2016-04-01

    Proton emission from solid foil targets irradiated by relativistically intense femtosecond laser pulses is studied experimentally. Broad plateaus in energy spectra are measured from micron-thick targets when the incident laser pulses have relatively low intensity contrasts. It is proposed that such proton spectra can be attributed to the combined processes of laser-driven collisionless shock acceleration and target normal sheath acceleration. Simple analytic estimation and two-dimensional particle-in-cell simulations are performed, which support our interpretation. The obtained plateau-shape spectrum may also serve as an effective tool to diagnose the plasma state and verify the ion acceleration mechanisms in laser-solid interactions.

  11. Proton Imaging Of Laser Irradiated Foils And Mass-Limited Targets

    SciTech Connect

    Sokollik, T.; Schnuerer, M.; Ter-Avetisyan, S.; Steinke, S.; Nickles, P. V.; Sandner, W.; Amin, M.; Toncian, T.; Willi, O.; Andreev, A. A.

    2009-07-25

    Due to the envisioned advantages of mass-limited targets for laser driven ion beams, which are high efficiency and high cut-off energies, their field dynamics are of special interest. Micro-water droplets can be used as mass-limited targets with a high repetition rate. Our investigations show that the surrounding dilute plasma of such liquid spheres influences the interaction. We review our experimental findings together with computer simulations and conclude on the different processes in electron transport and related acceleration fields for mass-limited targets and foils, respectively.

  12. Interpretation of planar shock ignition experiments at LULI

    NASA Astrophysics Data System (ADS)

    Laffite, Stephane; Baton, Sophie; Koenig, Michel; Brambrink, Erik; Schlenvoigt, Hubert; Debras, Gregoire; Loiseau, Pascal; Rousseaux, Christophe; Philippe, Frank; Ribeyre, Xavier; Schurtz, Guy; Cea, Dam, Dif, F-91197, Arpajon, France Team; Luli, Route de Saclay, 91128 Palaiseau, France Team; Celia, Talence, F-33405, France Team

    2011-10-01

    The capacity to launch a strong shock wave in a compressed target in presence of large pre-plasma has been investigated in a planar geometry, at 2 ω. Experiments were performed at the LULI facility. The target is a three-material target: CH on the laser side, Titanium and Quartz on the opposite side. Two beams are involved. A low-intensity beam launches a first shock and compresses the target. Then, an intensity spike launches a strong chock in the pre-shocked plasma. Shock chronometry and velocity in quartz are measured with a VISAR on the rear side of the target. Three events are observed in both experiments and calculations. We observed a good agreement on chronometry which, nevertheless, departs with time.

  13. Recent advances in planar tetracoordinate carbon chemistry.

    PubMed

    Merino, Gabriel; Méndez-Rojas, Miguel A; Vela, Alberto; Heine, Thomas

    2007-01-15

    We summarize our contributions on the quest of new planar tetracoordinate carbon entities (new carbon molecules with exotic chemical structures and strange bonding schemes). We give special emphasis on the rationalization why in this type of molecules the planar configuration is favored over the tetrahedral one. We will concentrate on the latter and will show that molecules containing planar tetracoordinate carbons have a stabilizing system of delocalized pi electrons, which shows similar properties as pi systems in aromatic molecules.

  14. Liftings and stresses for planar periodic frameworks

    PubMed Central

    Borcea, Ciprian; Streinu, Ileana

    2015-01-01

    We formulate and prove a periodic analog of Maxwell’s theorem relating stressed planar frameworks and their liftings to polyhedral surfaces with spherical topology. We use our lifting theorem to prove deformation and rigidity-theoretic properties for planar periodic pseudo-triangulations, generalizing features known for their finite counterparts. These properties are then applied to questions originating in mathematical crystallography and materials science, concerning planar periodic auxetic structures and ultrarigid periodic frameworks. PMID:26973370

  15. Planar waveguide sensor of ammonia

    NASA Astrophysics Data System (ADS)

    Rogoziński, Roman; Tyszkiewicz, Cuma; Karasiński, Paweł; Izydorczyk, Weronika

    2015-12-01

    The paper presents the concept of forming ammonia sensor based on a planar waveguide structure. It is an amplitude sensor produced on the basis of the multimode waveguide. The technological base for this kind of structure is the ion exchange method and the sol-gel method. The planar multimode waveguide of channel type is produced in glass substrate (soda-lime glass of Menzel-Glaser company) by the selective Ag+↔Na+ ion exchange. On the surface of the glass substrate a porous (~40%) silica layer is produced by the sol-gel method. This layer is sensitized to the presence of ammonia in the surrounding atmosphere by impregnation with Bromocresol Purple (BCP) dye. Therefore it constitutes a sensor layer. Spectrophotometric tests carried out showed about 50% reduction of cross-transmission changes of such sensor layer for a wave λ=593 nm caused by the presence of 25% ammonia water vapor in its ambience. The radiation source used in this type of sensor structure is a light emitting diode LED. The gradient channel waveguide is designed for frontal connection (optical glue) with a standard multimode telecommunications waveguide 62.5/125μm.

  16. Planar Hall effect bridge magnetic field sensors

    SciTech Connect

    Henriksen, A. D.; Dalslet, B. T.; Skieller, D. H.; Lee, K. H.; Okkels, F.; Hansen, M. F.

    2010-07-05

    Until now, the planar Hall effect has been studied in samples with cross-shaped Hall geometry. We demonstrate theoretically and experimentally that the planar Hall effect can be observed for an exchange-biased ferromagnetic material in a Wheatstone bridge topology and that the sensor signal can be significantly enhanced by a geometric factor. For the samples in the present study, we demonstrate an enhancement of the sensor output by a factor of about 100 compared to cross-shaped sensors. The presented construction opens a new design and application area of the planar Hall effect, which we term planar Hall effect bridge sensors.

  17. Planar Hall effect bridge magnetic field sensors

    NASA Astrophysics Data System (ADS)

    Henriksen, A. D.; Dalslet, B. T.; Skieller, D. H.; Lee, K. H.; Okkels, F.; Hansen, M. F.

    2010-07-01

    Until now, the planar Hall effect has been studied in samples with cross-shaped Hall geometry. We demonstrate theoretically and experimentally that the planar Hall effect can be observed for an exchange-biased ferromagnetic material in a Wheatstone bridge topology and that the sensor signal can be significantly enhanced by a geometric factor. For the samples in the present study, we demonstrate an enhancement of the sensor output by a factor of about 100 compared to cross-shaped sensors. The presented construction opens a new design and application area of the planar Hall effect, which we term planar Hall effect bridge sensors.

  18. Helical axis stellarator with noninterlocking planar coils

    DOEpatents

    Reiman, Allan; Boozer, Allen H.

    1987-01-01

    A helical axis stellarator using only noninterlocking planar, non-circular coils, generates magnetic fields having a magnetic well and large rotational transform with resultant large equilibrium beta.

  19. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, David B.

    1987-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  20. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, David B.

    1989-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  1. Design criterion for inclined planar radomes on radar corner reflectors used for spaceborne SAR calibration

    NASA Astrophysics Data System (ADS)

    Keen, K. M.

    1985-06-01

    Larger corner reflector ground targets currently planned for spaceborne SAR calibration will require planar A-sandwich radome covers for weather protection and mechanical stability. The radomes must be inclined with respect to reflector apertures, however, to avoid scattering cross-section uncertainties in the target beam peak direction. A criterion for inclination angle is derived here.

  2. Perspectives on Magnetized Target Fusion Power Plants

    NASA Astrophysics Data System (ADS)

    Miller, R. L.

    2007-06-01

    One approach to Magnetized Target Fusion (MTF) builds upon the ongoing experimental effort (FRX-L) to generate a Field Reversed Configuration (FRC) target plasma suitable for translation and cylindrical-liner (i.e., converging flux conserver) implosion. Numerical modeling is underway to elucidate key performance drivers for possible future power-plant extrapolations. The fusion gain, Q (ratio of DT fusion yield to the sum of initial liner kinetic energy plus plasma formation energy), sets the power-plant duty cycle for a nominal design electric power [ e.g. 1,000 MWe(net)]. A pulsed MTF power plant of this type derives from the historic Fast Liner Reactor (FLR) concept and shares attributes with the recent Inertial Fusion Energy (IFE) Z-pinch and laser-driven pellet HYLIFE-II conceptual designs.

  3. The planar parabolic optical antenna.

    PubMed

    Schoen, David T; Coenen, Toon; García de Abajo, F Javier; Brongersma, Mark L; Polman, Albert

    2013-01-01

    One of the simplest and most common structures used for directing light in macroscale applications is the parabolic reflector. Parabolic reflectors are ubiquitous in many technologies, from satellite dishes to hand-held flashlights. Today, there is a growing interest in the use of ultracompact metallic structures for manipulating light on the wavelength scale. Significant progress has been made in scaling radiowave antennas to the nanoscale for operation in the visible range, but similar scaling of parabolic reflectors employing ray-optics concepts has not yet been accomplished because of the difficulty in fabricating nanoscale three-dimensional surfaces. Here, we demonstrate that plasmon physics can be employed to realize a resonant elliptical cavity functioning as an essentially planar nanometallic structure that serves as a broadband unidirectional parabolic antenna at optical frequencies.

  4. 10-inch planar optic display

    NASA Astrophysics Data System (ADS)

    Beiser, Leo; Veligdan, James T.

    1996-05-01

    A planar optic display (POD) is being built and tested for suitability as a high brightness replacement for the cathode ray tube, (CRT). The POD display technology utilizes a laminated optical waveguide structure which allows a projection type of display to be constructed in a thin (1 to 2 inch) housing. Inherent in the optical waveguide is a black cladding matrix which gives the display a black appearance leading to very high contrast. A digital micromirror device, (DMD) from Texas Instruments is used to create video images in conjunction with a 100 milliwatt green solid state laser. An anamorphic optical system is used to inject light into the POD to form a stigmatic image. In addition to the design of the POD screen, we discuss: image formation, image projection, and optical design constraints.

  5. A bioinspired planar superhydrophobic microboat

    NASA Astrophysics Data System (ADS)

    Yong, Jiale; Yang, Qing; Chen, Feng; Zhang, Dongshi; Du, Guangqing; Si, Jinhai; Yun, Feng; Hou, Xun

    2014-03-01

    In nature, a frog can easily rest on a lotus leaf even though the frog's weight is several times the weight of the lotus leaf. Inspired by the lotus leaf, we fabricated a planar superhydrophobic microboat (SMB) with a superhydrophobic upper surface on a PDMS sheet which was irradiated by a focused femtosecond laser. The SMB can not only float effortlessly over the water surface but can also hold up some heavy objects, exhibiting an excellent loading capacity. The water surface is curved near the edge of the upper surface and the SMB's upper edge is below the water level, greatly enhancing the displacement. Experimental results and theoretical analysis demonstrate that the superhydrophobicity on the edge of the upper surface is responsible for the SMB's large loading capacity. Here, we call it the ‘superhydrophobic edge effect’.

  6. The simplicity of planar networks

    NASA Astrophysics Data System (ADS)

    Viana, Matheus P.; Strano, Emanuele; Bordin, Patricia; Barthelemy, Marc

    2013-12-01

    Shortest paths are not always simple. In planar networks, they can be very different from those with the smallest number of turns - the simplest paths. The statistical comparison of the lengths of the shortest and simplest paths provides a non trivial and non local information about the spatial organization of these graphs. We define the simplicity index as the average ratio of these lengths and the simplicity profile characterizes the simplicity at different scales. We measure these metrics on artificial (roads, highways, railways) and natural networks (leaves, slime mould, insect wings) and show that there are fundamental differences in the organization of urban and biological systems, related to their function, navigation or distribution: straight lines are organized hierarchically in biological cases, and have random lengths and locations in urban systems. In the case of time evolving networks, the simplicity is able to reveal important structural changes during their evolution.

  7. Ten inch Planar Optic Display

    SciTech Connect

    Beiser, L.; Veligdan, J.

    1996-04-01

    A Planar Optic Display (POD) is being built and tested for suitability as a high brightness replacement for the cathode ray tube, (CRT). The POD display technology utilizes a laminated optical waveguide structure which allows a projection type of display to be constructed in a thin (I to 2 inch) housing. Inherent in the optical waveguide is a black cladding matrix which gives the display a black appearance leading to very high contrast. A Digital Micromirror Device, (DMD) from Texas Instruments is used to create video images in conjunction with a 100 milliwatt green solid state laser. An anamorphic optical system is used to inject light into the POD to form a stigmatic image. In addition to the design of the POD screen, we discuss: image formation, image projection, and optical design constraints.

  8. Direct current planar excimer source

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Takano, N.; Schoenbach, K. H.; Guru, D.; McLaren, J.; Heberlein, J.; May, R.; Cooper, J. R.

    2007-07-01

    Excimer emission at 172 nm was observed from xenon discharges generated between a perforated anode, with opening dimensions in the sub-millimetre range, and a planar cathode. A thin dielectric layer 100-250 µm in thickness, with the same size opening as the anode, is aligned with the anode opening and used to separate the electrodes. Devices with this structure are referred to as cathode boundary layer (CBL) discharge or micro-hollow cathode discharge devices, depending on the surface structure of the cathode. The emission intensity and efficiency of these devices are pressure- and current-dependent. Typical power densities and internal efficiencies (ratio of excimer radiant power to electrical input power) are 0.5-1.5 W cm-2 and 3-5%, respectively. In the current range between normal and abnormal mode operation, the CBL discharge shows regularly arranged filaments (self-organization). Optimum emission of the excimer radiation is observed at the transition from the normal glow mode to self-organization. The resistive current-voltage characteristic in the self-organization region allows the operation of multiple CBL devices in parallel without individual ballast, but with an excimer emission slightly off the maximum value. The measured decrease of the excimer emission to about 10% of its initial value after approximately 250 h of continuous operation seems to be caused by the increasing contamination of xenon, through minor leaks in the discharge chamber and/or the outgassing of chamber components. Refilling the chamber with fresh gas after such an extended operation resulted in full recovery of the discharge with respect to excimer emission. The results suggest the possibility of generating extended lifetime, intense, large area, planar excimer sources using CBL discharges in sealed discharge chambers including getters.

  9. Positron Emission Mammotomography with Dual Planar Detectors

    SciTech Connect

    Mark Smith; Raymond Raylman; Stanislaw Majewski

    2003-06-29

    Positron emission mammography (PEM) is usually performed with two stationary planar detectors above and below a compressed breast. There is image blurring normal to the detectors due to the limited angular range of the lines of response. Positron emission mammotomography (PEM-T) with dual planar detectors rotating about the breast can obtain complete angular sampling and has the potential to improve activity estimation.

  10. Ordered chromatic number of planar maps

    SciTech Connect

    Simmons, G.J.

    1982-01-01

    In this paper it is shown that there exist planar maps and orderings of the regions of those maps foe which no finite number of colors will suffice for a parsimonious proper coloring. In particular, planar maps with 0(2/sup n/2/) regions are exhibited that require n colors for their proper ordered coloring.

  11. Improved double planar probe data analysis technique

    SciTech Connect

    Ghim, Young-chul; Hershkowitz, Noah

    2009-03-15

    Plasma electron number density and ion number density in a dc multidipole weakly collisional Ar plasma are measured with a single planar Langmuir probe and a double planar probe, respectively. A factor of two discrepancy between the two density measurements is resolved by applying Sheridan's empirical formula [T. E. Sheridan, Phys. Plasmas 7, 3084 (2000)] for sheath expansion to the double probe data.

  12. NPS Gas Gun for Planar Impact Studies

    NASA Astrophysics Data System (ADS)

    Cheong Ho, Chien; Hixson, Robert

    2009-11-01

    The Naval Postgraduate School (NPS) commissioned a Gas Gun for shock wave studies on 9^th October 2009, by performing the first experiment. The Gas Gun is the key element of NPS Shock Wave Research Program within the Physics Department, where well-characterized planar impacts are essential for obtaining high quality data, to characterize a solid material. This first experiment was very successful, and returned key data on the quality of the impact conditions created. The Gas Gun is designed by SANDIA NATIONAL LABORATORIES, and the NPS spent twelve months fabricating the components of the Gas Gun and six months assembling the Gas Gun. Three inch projectile are launched at velocities up to 0.5 km/s, creating high pressure and temperature states that can be used to characterize the fundamental response of relevant materials to dynamic loading. The projectile is launched from a `wrap around' gas breech where helium gas is pressurized to relatively low pressure. This gas is used to accelerate the projectile down a 3m barrel. Upon impact, the speed of the projectile and the flatness of the impact is measured, via a stepped circular pin array circuit. The next stage of development for the Gas Gun is to integrate a Velocity Interferometer System for Any Reflector (VISAR). The VISAR sees all the waves that flow through the target plate as a result of the impact. This is a key diagnostic for determining material properties under dynamic loading conditions.

  13. Ablation of planar targets driven by suprathermal electrons

    SciTech Connect

    Gratton, R.; Piriz, A.R.

    1986-03-01

    When an intense laser pulse of large wavelength impinges on a solid, the absorption region is pushed back by the evaporated plasma to a distance z/sub cr/ from the surface, which may be of the order of or even larger than the beam radius r/sub s/. Therefore (in addition to the absorption processes, not treated here), the energy transport through the outflowing plasma plays a key role in the interaction. The correct way to interpret the experimental results seems to be to assign the transport mainly to the almost freely streaming suprathermal electrons coming from the absorption region. This is confirmed by a simple steady-state model which accounts for the two-dimensional effects arising when z/sub cr/> or =r/sub s/. In spite of the over-simplifications needed to handle the problem analytically, the model provides scaling laws in fair agreement with the published experimental data.

  14. Enhanced target normal sheath acceleration of protons from intense laser interaction with a cone-tube target

    NASA Astrophysics Data System (ADS)

    Xiao, K. D.; Huang, T. W.; Zhou, C. T.; Qiao, B.; Wu, S. Z.; Ruan, S. C.; He, X. T.

    2016-01-01

    Laser driven proton acceleration is proposed to be greatly enhanced by using a cone-tube target, which can be easily manufactured by current 3D-print technology. It is observed that energetic electron bunches are generated along the tube and accelerated to a much higher temperature by the combination of ponderomotive force and longitudinal electric field which is induced by the optical confinement of the laser field. As a result, a localized and enhanced sheath field is produced at the rear of the target and the maximum proton energy is about three-fold increased based on the two-dimentional particle-in-cell simulation results. It is demonstrated that by employing this advanced target scheme, the scaling of the proton energy versus the laser intensity is much beyond the normal target normal sheath acceleration (TNSA) case.

  15. Confocal detection of planar homogeneous and heterogeneous immunosorbent assays

    NASA Astrophysics Data System (ADS)

    Ghafari, Homanaz; Zhou, Yanzhou; Ali, Selman; Hanley, Quentin S.

    2009-11-01

    Optically sectioned detection of fluorescence immunoassays using a confocal microscope enables the creation of both homo- and heterogeneous planar format assays. We report a set assays requiring optically sectioned detection using a model system and analysis procedures for separating signals of a surface layer from an overlying solution. A model sandwich assay with human immunoglobulin G as the target antigen is created on a glass substrate. The prepared surfaces are exposed to antigen and a FITC-labeled secondary antibody. The resulting preparations are either read directly to provide a homogeneous assay or after wash steps, giving a heterogeneous assay. The simplicity of the object shapes arising from the planar format makes the decomposition of analyte signals from the thin film bound to the surface and overlayer straightforward. Measured response functions of the thin film and overlayer fit well to the Cauchy-Lorentz and cumulative Cauchy-Lorentz functions, respectively, enabling the film and overlayer to be separated. Under the conditions used, the detection limits for the homogeneous and heterogeneous forms of the assay are 2.2 and 5.5 ng/ml, respectively. Planar format, confocally read fluorescence assays enable wash-free detection of antigens and should be applicable to a wide range of assays involving surface-bound species.

  16. Confocal detection of planar homogeneous and heterogeneous immunosorbent assays.

    PubMed

    Ghafari, Homanaz; Zhou, Yanzhou; Ali, Selman; Hanley, Quentin S

    2009-01-01

    Optically sectioned detection of fluorescence immunoassays using a confocal microscope enables the creation of both homo- and heterogeneous planar format assays. We report a set assays requiring optically sectioned detection using a model system and analysis procedures for separating signals of a surface layer from an overlying solution. A model sandwich assay with human immunoglobulin G as the target antigen is created on a glass substrate. The prepared surfaces are exposed to antigen and a FITC-labeled secondary antibody. The resulting preparations are either read directly to provide a homogeneous assay or after wash steps, giving a heterogeneous assay. The simplicity of the object shapes arising from the planar format makes the decomposition of analyte signals from the thin film bound to the surface and overlayer straightforward. Measured response functions of the thin film and overlayer fit well to the Cauchy-Lorentz and cumulative Cauchy-Lorentz functions, respectively, enabling the film and overlayer to be separated. Under the conditions used, the detection limits for the homogeneous and heterogeneous forms of the assay are 2.2 and 5.5 ng/ml, respectively. Planar format, confocally read fluorescence assays enable wash-free detection of antigens and should be applicable to a wide range of assays involving surface-bound species.

  17. Piezo Voltage Controlled Planar Hall Effect Devices

    NASA Astrophysics Data System (ADS)

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K. W.; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-01

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  18. Piezo Voltage Controlled Planar Hall Effect Devices.

    PubMed

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K W; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-22

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  19. Planar doped barrier subharmonic mixers

    NASA Technical Reports Server (NTRS)

    Lee, T. H.; East, J. R.; Haddad, G. I.

    1992-01-01

    The Planar Doped Barrier (PDB) diode is a device consisting of a p(+) doping spike between two intrinsic layers and n(+) ohmic contacts. This device has the advantages of controllable barrier height, diode capacitance and forward to reverse current ratio. A symmetrically designed PDB has an anti-symmetric current vs. voltage characteristic and is ideal for use as millimeter wave subharmonic mixers. We have fabricated such devices with barrier heights of 0.3, 0.5 and 0.7 volts from GaAs and InGaAs using a multijunction honeycomb structure with junction diameters between one and ten microns. Initial RF measurements are encouraging. The 0.7 volt barrier height 4 micron GaAs devices were tested as subharmonic mixers at 202 GHz with an IF frequency of 1 GHz and had 18 dB of conversion loss. The estimated mismatch loss was 7 dB and was due to higher diode capacitance. The LO frequency was 100.5 GHz and the pump power was 8 mW.

  20. Tuner and radiation shield for planar electron paramagnetic resonance microresonators

    SciTech Connect

    Narkowicz, Ryszard; Suter, Dieter

    2015-02-15

    Planar microresonators provide a large boost of sensitivity for small samples. They can be manufactured lithographically to a wide range of target parameters. The coupler between the resonator and the microwave feedline can be integrated into this design. To optimize the coupling and to compensate manufacturing tolerances, it is sometimes desirable to have a tuning element available that can be adjusted when the resonator is connected to the spectrometer. This paper presents a simple design that allows one to bring undercoupled resonators into the condition for critical coupling. In addition, it also reduces radiation losses and thereby increases the quality factor and the sensitivity of the resonator.

  1. Non-planar microfabricated gas chromatography column

    DOEpatents

    Lewis, Patrick R.; Wheeler, David R.

    2007-09-25

    A non-planar microfabricated gas chromatography column comprises a planar substrate having a plurality of through holes, a top lid and a bottom lid bonded to opposite surfaces of the planar substrate, and inlet and outlet ports for injection of a sample gas and elution of separated analytes. A plurality of such planar substrates can be aligned and stacked to provide a longer column length having a small footprint. Furthermore, two or more separate channels can enable multi-channel or multi-dimensional gas chromatography. The through holes preferably have a circular cross section and can be coated with a stationary phase material or packed with a porous packing material. Importantly, uniform stationary phase coatings can be obtained and band broadening can be minimized with the circular channels. A heating or cooling element can be disposed on at least one of the lids to enable temperature programming of the column.

  2. Novel Planar and Integrated Microwave Antennas

    NASA Technical Reports Server (NTRS)

    Saed, Mohammad A.

    2000-01-01

    This project dealt with design, analysis, and testing of new types of planar and integrated antennas operating in the microwave frequency range. The following was accomplished during this project period:

  3. Non classical effects in planar waveguides

    NASA Technical Reports Server (NTRS)

    Bertolotti, M.; Jansky, J.; Perina, J.; Pernova, V.; Sibilia, C.

    1993-01-01

    The quantum description of light propagation inside a planar waveguide is given. In particular, the description describes the behavior of the field inside a directions coupler. Nonclassical effects are presented and discussed.

  4. Planar cell polarity of the kidney.

    PubMed

    Schnell, Ulrike; Carroll, Thomas J

    2016-05-01

    Planar cell polarity (PCP) or tissue polarity refers to the polarization of tissues perpendicular to the apical-basal axis. Most epithelia, including the vertebrate kidney, show signs of planar polarity. In the kidney, defects in planar polarity are attributed to several disease states including multiple forms of cystic kidney disease. Indeed, planar cell polarity has been shown to be essential for several cellular processes that appear to be necessary for establishing and maintaining tubule diameter. However, uncovering the genetic mechanisms underlying PCP in the kidney has been complicated as the roles of many of the main players are not conserved in flies and vice versa. Here, we review a number of cellular and molecular processes that can affect PCP of the kidney with a particular emphasis on the mechanisms that do not appear to be conserved in flies or that are not part of canonical determinants.

  5. Structure of The Planar Galilean Conformal Algebra

    NASA Astrophysics Data System (ADS)

    Gao, Shoulan; Liu, Dong; Pei, Yufeng

    2016-08-01

    In this paper, we compute the low-dimensional cohomology groups of the planar Galilean conformal algebra introduced by Bagchi and Goparkumar. Consequently we determine its derivations, central extensions, and automorphisms.

  6. On linear area embedding of planar graphs

    NASA Astrophysics Data System (ADS)

    Dolev, D.; Trickey, H.

    1981-09-01

    Planar embedding with minimal area of graphs on an integer grid is one of the major issues in VLSI. Valiant (V) gave an algorithm to construct a planar embedding for trees in linear area; he also proved that there are planar graphs that require quadratic area. An algorithm to embed outerplanar graphs in linear area is given. This algorithm is extended to work for every planar graph that has the following property: for every vertex there exists a path of length less than K to the exterior face, where K is a constant. Finally, finding a minimal embedding area is shown to be NP-complete for forests, and hence more general types of graphs.

  7. The Planar Gauge in a New Formalism

    NASA Astrophysics Data System (ADS)

    Leibbrandt, George; Nyeo, Su-Long

    The main feature of the planar gauge, apart from the decoupling of ghosts, is the nontransversality of the Yang-Mills self-energy with the resulting appearance of a pincer diagram in the Ward identity. We employ the general prescription for axial-type gauges, recently developed by one of the authors, to check this Ward identity and derive BRS-invariant counterterms in the planar gauge.

  8. The planar gauge in a new formalism

    SciTech Connect

    Leibbrandt, G.; Nyeo, S.L.

    1988-09-01

    The main feature of the planar gauge, apart from the decoupling of ghosts, is the nontransversatility of the Yang-Mills self-energy with the resulting appearance of a pincer diagram in the Ward identity. The authors employ the general prescription for axial-type gauges, recently developed by one of the authors, to check this Ward identity and derive BRS-invariant counterterms in the planar gauge.

  9. Electron-optical systems for planar gyrotrons

    NASA Astrophysics Data System (ADS)

    Manuilov, V. N.; Zaslavsky, V. Yu.; Ginzburg, N. S.; Glyavin, M. Yu.; Kuftin, A. N.; Zotova, I. V.

    2014-02-01

    The methodology of designing an electron-optical system (EOS) that forms sheet helical electron beams (HEBs) for high-power gyrotrons is developed. As an example, we consider the EOS for a 140-GHz gyrotron operated at the first harmonic of the cyclotron frequency with an accelerating voltage of 50 kV, a beam current of 30 A, and a magnetic field compression of 36. A planar geometry of the magnetron-injection gun (MIG) is suggested. The adiabatic theory of MIGs modified for the planar geometry of EOS is used for preliminary estimations of MIG parameters. Numerical simulation of the HEB properties based on the CST STUDIO SUITE 3D code is performed to find the optimal configuration of a planar MIG. The accuracy of the calculated data is discussed. The main factors that affect the HEB quality are considered. It is shown that a sheet HEB with a pitch-factor of 1.3 and velocity spread not exceeding 25%-30% can be formed; this is quite acceptable for high-efficiency operation of modern gyrotrons. Calculation of the beam-wave interaction with the obtained HEB parameters proved that a high output power with a sufficiently good efficiency of about 20% can be reached. Simulations show the feasibility of the experimental implementation of a novel planar EOS and its use in short-wave planar gyrotrons. The developed technique can be used for the study and optimization of planar gyrotrons of different frequency bands and power levels.

  10. MULTI-IFE-A one-dimensional computer code for Inertial Fusion Energy (IFE) target simulations

    NASA Astrophysics Data System (ADS)

    Ramis, R.; Meyer-ter-Vehn, J.

    2016-06-01

    The code MULTI-IFE is a numerical tool devoted to the study of Inertial Fusion Energy (IFE) microcapsules. It includes the relevant physics for the implosion and thermonuclear ignition and burning: hydrodynamics of two component plasmas (ions and electrons), three-dimensional laser light ray-tracing, thermal diffusion, multigroup radiation transport, deuterium-tritium burning, and alpha particle diffusion. The corresponding differential equations are discretized in spherical one-dimensional Lagrangian coordinates. Two typical application examples, a high gain laser driven capsule and a low gain radiation driven marginally igniting capsule are discussed. In addition to phenomena relevant for IFE, the code includes also components (planar and cylindrical geometries, transport coefficients at low temperature, explicit treatment of Maxwell's equations) that extend its range of applicability to laser-matter interaction at moderate intensities (<1016 W cm-2). The source code design has been kept simple and structured with the aim to encourage user's modifications for specialized purposes.

  11. Formation and propagation of laser-driven plasma jets in an ambient medium studied with X-ray radiography and optical diagnostics

    SciTech Connect

    Dizière, A.; Pelka, A.; Ravasio, A.; Yurchak, R.; Loupias, B.; Falize, E.; Kuramitsu, Y.; Sakawa, Y.; Morita, T.; Pikuz, S.; Koenig, M.

    2015-01-15

    In this paper, we present experimental results obtained on the LULI2000 laser facility regarding structure and dynamics of astrophysical jets propagating in interstellar medium. The jets, generated by using a cone-shaped target, propagate in a nitrogen gas that mimics the interstellar medium. X-ray radiography as well as optical diagnostics were used to probe both high and low density regions. In this paper, we show how collimation of the jets evolves with the gas density.

  12. Integration of planar transformer and/or planar inductor with power switches in power converter

    DOEpatents

    Chen, Kanghua; Ahmed, Sayeed; Zhu, Lizhi

    2007-10-30

    A power converter integrates at least one planar transformer comprising a multi-layer transformer substrate and/or at least one planar inductor comprising a multi-layer inductor substrate with a number of power semiconductor switches physically and thermally coupled to a heat sink via one or more multi-layer switch substrates.

  13. Experiment in Planar Geometry for Shock Ignition Studies

    NASA Astrophysics Data System (ADS)

    Baton, S. D.; Koenig, M.; Brambrink, E.; Schlenvoigt, H. P.; Rousseaux, C.; Debras, G.; Laffite, S.; Loiseau, P.; Philippe, F.; Ribeyre, X.; Schurtz, G.

    2012-05-01

    The capacity to launch a strong shock wave in a compressed target in the presence of large preplasma has been investigated experimentally and numerically in a planar geometry. The experiment was performed on the LULI 2000 laser facility using one laser beam to compress the target and a second to launch the strong shock simulating the intensity spike in the shock ignition scheme. Thanks to a large set of diagnostics, it has been possible to compare accurately experimental results with 2D numerical simulations. A good agreement has been observed even if a more detailed study of the laser-plasma interaction for the spike is necessary in order to confirm that this scheme is a possible alternative for inertial confinement fusion.

  14. Experiment in planar geometry for shock ignition studies.

    PubMed

    Baton, S D; Koenig, M; Brambrink, E; Schlenvoigt, H P; Rousseaux, C; Debras, G; Laffite, S; Loiseau, P; Philippe, F; Ribeyre, X; Schurtz, G

    2012-05-11

    The capacity to launch a strong shock wave in a compressed target in the presence of large preplasma has been investigated experimentally and numerically in a planar geometry. The experiment was performed on the LULI 2000 laser facility using one laser beam to compress the target and a second to launch the strong shock simulating the intensity spike in the shock ignition scheme. Thanks to a large set of diagnostics, it has been possible to compare accurately experimental results with 2D numerical simulations. A good agreement has been observed even if a more detailed study of the laser-plasma interaction for the spike is necessary in order to confirm that this scheme is a possible alternative for inertial confinement fusion. PMID:23003050

  15. Deflagration-to-detonation transition in inertial-confinement-fusion baseline targets.

    PubMed

    Gauthier, P; Chaland, F; Masse, L

    2004-11-01

    By means of highly resolved one-dimensional hydrodynamics simulations, we provide an understanding of the burn process in inertial-confinement-fusion baseline targets. The cornerstone of the phenomenology of propagating burn in such laser-driven capsules is shown to be the transition from a slow unsteady reaction-diffusion regime of thermonuclear combustion (some sort of deflagration) to a fast detonative one. Remarkably, detonation initiation follows the slowing down of a shockless supersonic reaction wave driven by energy redeposition from the fusion products themselves. Such a route to detonation is specific to fusion plasmas. PMID:15600681

  16. Magnetic reconnection driven by Gekko XII lasers with a Helmholtz capacitor-coil target

    NASA Astrophysics Data System (ADS)

    Pei, X. X.; Zhong, J. Y.; Sakawa, Y.; Zhang, Z.; Zhang, K.; Wei, H. G.; Li, Y. T.; Li, Y. F.; Zhu, B. J.; Sano, T.; Hara, Y.; Kondo, S.; Fujioka, S.; Liang, G. Y.; Wang, F. L.; Zhao, G.

    2016-03-01

    We demonstrate a novel plasma device for magnetic reconnection, driven by Gekko XII lasers irradiating a double-turn Helmholtz capacitor-coil target. Optical probing revealed an accumulated plasma plume near the magnetic reconnection outflow. The background electron density and magnetic field were measured to be approximately 1018 cm-3 and 60 T by using Nomarski interferometry and the Faraday effect, respectively. In contrast with experiments on magnetic reconnection constructed by the Biermann battery effect, which produced high beta values, our beta value was much lower than one, which greatly extends the parameter regime of laser-driven magnetic reconnection and reveals its potential in astrophysical plasma applications.

  17. Deflagration-to-detonation transition in inertial-confinement-fusion baseline targets.

    PubMed

    Gauthier, P; Chaland, F; Masse, L

    2004-11-01

    By means of highly resolved one-dimensional hydrodynamics simulations, we provide an understanding of the burn process in inertial-confinement-fusion baseline targets. The cornerstone of the phenomenology of propagating burn in such laser-driven capsules is shown to be the transition from a slow unsteady reaction-diffusion regime of thermonuclear combustion (some sort of deflagration) to a fast detonative one. Remarkably, detonation initiation follows the slowing down of a shockless supersonic reaction wave driven by energy redeposition from the fusion products themselves. Such a route to detonation is specific to fusion plasmas.

  18. Deflagration-to-detonation transition in inertial-confinement-fusion baseline targets

    SciTech Connect

    Gauthier, P.; Chaland, F.; Masse, L.

    2004-11-01

    By means of highly resolved one-dimensional hydrodynamics simulations, we provide an understanding of the burn process in inertial-confinement-fusion baseline targets. The cornerstone of the phenomenology of propagating burn in such laser-driven capsules is shown to be the transition from a slow unsteady reaction-diffusion regime of thermonuclear combustion (some sort of deflagration) to a fast detonative one. Remarkably, detonation initiation follows the slowing down of a shockless supersonic reaction wave driven by energy redeposition from the fusion products themselves. Such a route to detonation is specific to fusion plasmas.

  19. Planar quantum squeezing and atom interferometry

    SciTech Connect

    He, Q. Y.; Drummond, P. D.; Reid, M. D.; Peng Shiguo

    2011-08-15

    We obtain a lower bound on the sum of two orthogonal spin component variances in a plane. This gives a planar uncertainty relation which holds even when the Heisenberg relation is not useful. We investigate the asymptotic, large-J limit and derive the properties of the planar quantum squeezed states that saturate this uncertainty relation. These states extend the concept of spin squeezing to any two conjugate spin directions. We show that planar quantum squeezing can be achieved experimentally as the ground state of a Bose-Einstein condensate in two coupled potential wells with a critical attractive interaction. These states reduce interferometric phase noise at all phase angles simultaneously. This is useful for one-shot interferometric phase measurements where the measured phase is completely unknown. Our results can also be used to derive entanglement criteria for multiple spins J at separated sites, with applications in quantum information.

  20. The Feynman Identity for Planar Graphs

    NASA Astrophysics Data System (ADS)

    da Costa, G. A. T. F.

    2016-08-01

    The Feynman identity (FI) of a planar graph relates the Euler polynomial of the graph to an infinite product over the equivalence classes of closed nonperiodic signed cycles in the graph. The main objectives of this paper are to compute the number of equivalence classes of nonperiodic cycles of given length and sign in a planar graph and to interpret the data encoded by the FI in the context of free Lie superalgebras. This solves in the case of planar graphs a problem first raised by Sherman and sets the FI as the denominator identity of a free Lie superalgebra generated from a graph. Other results are obtained. For instance, in connection with zeta functions of graphs.

  1. Piezo Voltage Controlled Planar Hall Effect Devices

    PubMed Central

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K. W.; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-01-01

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials. PMID:27329068

  2. Piezo Voltage Controlled Planar Hall Effect Devices.

    PubMed

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K W; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-01-01

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials. PMID:27329068

  3. Planar zeros in gauge theories and gravity

    NASA Astrophysics Data System (ADS)

    Jiménez, Diego Medrano; Vera, Agustín Sabio; Vázquez-Mozo, Miguel Á.

    2016-09-01

    Planar zeros are studied in the context of the five-point scattering amplitude for gauge bosons and gravitons. In the case of gauge theories, it is found that planar zeros are determined by an algebraic curve in the projective plane spanned by the three stereographic coordinates labelling the direction of the outgoing momenta. This curve depends on the values of six independent color structures. Considering the gauge group SU( N) with N = 2 , 3 , 5 and fixed color indices, the class of curves obtained gets broader by increasing the rank of the group. For the five-graviton scattering, on the other hand, we show that the amplitude vanishes whenever the process is planar, without imposing further kinematic conditions. A rationale for this result is provided using color-kinematics duality.

  4. Chromosome aberrations and cellular premature senescence as radiation-induced sub-lethal effects: Implications for laser-driven charged-particle radiotherapy

    NASA Astrophysics Data System (ADS)

    Manti, L.; Perozziello, F. M.; Grossi, G.

    2013-07-01

    The use of charged particles significantly reduces the dose absorbed by normal cells due to the inverse dose-depth deposition profile. This is the physical pillar justifying hadrontherapy as the eligible treatment for deepseated tumours. However, a non-negligible amount of radiation is nevertheless absorbed in correspondence with the plateau region of the Bragg curve, which may result in the induction of sub-lethal effects. Very little experimental data exist on the induction of such effects. Moreover, reliable follow-up data on such adverse effects in hadrontherapy patients are limited since this type of treatment has been adopted relatively recently. A fortiori, the dependence of sub-lethal effects on unprecedented factors, such as the exceedingly high dose rates and/or the pulsed nature of beams originated by laser interaction with target materials, is unknown. This warrants investigation prior to a therapeutic use of such beams.

  5. Test of Thermal Transport Models through Dynamic Overpressure Stabilization of Ablation-Front Perturbation Growth in Laser-Driven CH Foils

    SciTech Connect

    Gotchev, O.V.; Goncharov, V.N.; Knauer, J.P.; Boehly, T.R.; Collins, T.J.B.; Epstein, R.; Jaanimagi, P.A.; Meyerhofer, D.D.

    2006-03-24

    Heat-flow-induced dynamic overpressure at the perturbed ablation front of an ICF target can stabilize the ablative Richtmyer/Meshkov-like instability and mitigate the subsequent ablative Rayleigh/Taylor (RT) instability. A series of experiments was performed on the OMEGA laser to quantify the dynamic overpressure stabilization during the shock transit. Analysis of the experimental data using hydrocode simulations shows that the observed oscillatory evolution of the ablation-front perturbations depends on Dc, the size of the thermal conduction zone, and the fluid velocity in the blowoff region Vbl that are sensitive to the thermal transport model used. We show that the simulations match the experiment well when the time dependence of the heat-flux inhibition is taken into account using a recently developed nonlocal heat transport model.

  6. Chromosome aberrations and cellular premature senescence as radiation-induced sub-lethal effects: Implications for laser-driven charged-particle radiotherapy

    SciTech Connect

    Manti, L.; Perozziello, F. M.; Grossi, G.

    2013-07-26

    The use of charged particles significantly reduces the dose absorbed by normal cells due to the inverse dose-depth deposition profile. This is the physical pillar justifying hadrontherapy as the eligible treatment for deepseated tumours. However, a non-negligible amount of radiation is nevertheless absorbed in correspondence with the plateau region of the Bragg curve, which may result in the induction of sub-lethal effects. Very little experimental data exist on the induction of such effects. Moreover, reliable follow-up data on such adverse effects in hadrontherapy patients are limited since this type of treatment has been adopted relatively recently. A fortiori, the dependence of sub-lethal effects on unprecedented factors, such as the exceedingly high dose rates and/or the pulsed nature of beams originated by laser interaction with target materials, is unknown. This warrants investigation prior to a therapeutic use of such beams.

  7. Electron-optical systems for planar gyrotrons

    SciTech Connect

    Manuilov, V. N.; Zaslavsky, V. Yu.; Ginzburg, N. S.; Glyavin, M. Yu.; Kuftin, A. N.; Zotova, I. V.

    2014-02-15

    The methodology of designing an electron-optical system (EOS) that forms sheet helical electron beams (HEBs) for high-power gyrotrons is developed. As an example, we consider the EOS for a 140-GHz gyrotron operated at the first harmonic of the cyclotron frequency with an accelerating voltage of 50 kV, a beam current of 30 A, and a magnetic field compression of 36. A planar geometry of the magnetron-injection gun (MIG) is suggested. The adiabatic theory of MIGs modified for the planar geometry of EOS is used for preliminary estimations of MIG parameters. Numerical simulation of the HEB properties based on the CST STUDIO SUITE 3D code is performed to find the optimal configuration of a planar MIG. The accuracy of the calculated data is discussed. The main factors that affect the HEB quality are considered. It is shown that a sheet HEB with a pitch-factor of 1.3 and velocity spread not exceeding 25%–30% can be formed; this is quite acceptable for high-efficiency operation of modern gyrotrons. Calculation of the beam-wave interaction with the obtained HEB parameters proved that a high output power with a sufficiently good efficiency of about 20% can be reached. Simulations show the feasibility of the experimental implementation of a novel planar EOS and its use in short-wave planar gyrotrons. The developed technique can be used for the study and optimization of planar gyrotrons of different frequency bands and power levels.

  8. Recirculating planar magnetrons: simulations and experiment

    SciTech Connect

    Franzi, Matthew; Gilgenbach, Ronald; French, David; Lau, Y.Y.; Simon, David; Hoff, Brad; Luginsland, John W.

    2011-07-01

    The Recirculating Planar Magnetron (RPM) is a novel crossed-field device whose geometry is expected to reduce thermal load, enhance current yield as well as ease the geometric limitations in scaling to high RF frequencies as compared to the conventional cylindrical magnetrons. The RPM has two different adaptations: A. Axial B field and radial E field; B. Radial B field and axial E field. The preliminary configuration (A) to be used in experiments at the University of Michigan consists of two parallel planar sections which join on either end by cylindrical regions to form a concentric extruded ellipse. Similar to conventional magnetrons, a voltage across the AK gap in conjunction with an axial magnetic field provides the electrons with an ExB drift. The device is named RPM because the drifting electrons recirculate from one planar region to the other. The drifting electrons interact with the resonantly tuned slow wave structure on the anode causing spoke formation. These electron spokes drive a RF electric field in the cavities from which RF power may be extracted to Waveguides. The RPM may be designed in either a conventional configuration with the anode on the outside, for simplified extraction, or as an inverted magnetron with the anode at the inner conductor, for fast start-up. Currently, experiments at the Pulsed Power and Microwave Laboratory at the University of Michigan are in the setup and design phase. A conventional RPM with planar cavities is to be installed on the Michigan Electron Long Beam Accelerator (MELBA) and is anticipated to operate at -200kV, 0.2T with a beam current of 1-10 kA at 1GHz. The conventional RPM consists of 12 identical planar cavities, 6 on each planar side, with simulated quality factor of 20.

  9. Planar Inlet Design and Analysis Process (PINDAP)

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Gruber, Christopher R.

    2005-01-01

    The Planar Inlet Design and Analysis Process (PINDAP) is a collection of software tools that allow the efficient aerodynamic design and analysis of planar (two-dimensional and axisymmetric) inlets. The aerodynamic analysis is performed using the Wind-US computational fluid dynamics (CFD) program. A major element in PINDAP is a Fortran 90 code named PINDAP that can establish the parametric design of the inlet and efficiently model the geometry and generate the grid for CFD analysis with design changes to those parameters. The use of PINDAP is demonstrated for subsonic, supersonic, and hypersonic inlets.

  10. Planar Bragg grating in bulk polymethylmethacrylate.

    PubMed

    Rosenberger, M; Koller, G; Belle, S; Schmauss, B; Hellmann, R

    2012-12-01

    We report on a one-step writing process of a planar waveguide including a Bragg grating structure in bulk Polymethylmethacrylate (PMMA). A KrF excimer laser and a phase mask covered by an amplitude mask were used to locally increase the refractive index in PMMA and thereby generate simultaneously the planar waveguide and the Bragg grating. Our results show a reflected wavelength of the Bragg grating of about 1558.5 nm in accordance to the phase mask period. The reflectivity of the grating is about 80%. Initial characteristics of the Bragg grating structure towards humidity are investigated.

  11. Observation of Quasi Mono-Energetic Protons in Laser Spray-Target Interaction

    SciTech Connect

    Ramakrishna, B.; Borghesi, M.; Doria, D.; Sarri, G.; Ter-Avetisyan, S.; Andreev, A.; Ehrentraut, L.; Sandner, W.; Schnuerer, M.; Steinke, S.; Nickles, P. V.

    2010-02-02

    Laser driven ion acceleration arises from charge separation effects caused by an ultrahigh intensity laser pulse. Limited mass targets confine the accelerated electrons within the target size and prevent the large area spreading seen in extended foil targets. Furthermore, if the target size is smaller than the laser wavelength and focal spot diameter, homogeneous heating of the target is ensured. Observation of quasi-monoenergetic protons in the interaction of a high intensity high contrast laser pulse at 5x10{sup 19} W/cm{sup 2} with 150 nm--diameter water droplets is investigated. An ensemble of such objects is formed in a spray. Quasi mono energetic proton bursts of energy Eapprox1.6 MeV are observed and are associated with a specific ionization and explosion dynamics of the spheres.

  12. First Results from Laser-Driven MagLIF Experiments on OMEGA: Time Evolution of Laser Gas Heating Using Soft X-Ray Diagnostics

    NASA Astrophysics Data System (ADS)

    Barnak, D. H.; Betti, R.; Chang, P.-Y.; Davies, J. R.

    2015-11-01

    Magnetized liner inertial fusion (MagLIF) is a promising inertial confinement fusion scheme comprised of three stages: axial magnetization, laser heating of the deuterium -tritium gas fill, and compression of the gas by the liner. To study the physics of MagLIF, a scaled-down version has been designed and implemented on the OMEGA-60 laser. This talk will focus primarily on the heating process of a MagLIF target using a 351-nm laser. A neon-doped deuterium gas capsule was heated using a 2.5-ns square pulse delivering 200 J of laser energy. Spectral analysis of the x-ray emission from the side and the laser entrance hole of the capsule is used to infer the time evolution of the gas temperature. The x-ray spectra for a grid of possible gas temperatures and densities are simulated using Spect3D atomic modeling software. The simulation results are then used to deconvolve the raw signals and obtain density and temperature estimations. A gas temperature lower bound of 100 eV at 1.3 ns after the start of the laser pulse can be inferred from these estimations. The estimations are then compared to 2-D hydrocode modeling. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and by DE-FG02-04ER54786 and DE-FC02-04ER54789 (Fusion Science Center).

  13. Non-destructive evaluation of adhesive layer using a planar array capacitive imaging technology

    NASA Astrophysics Data System (ADS)

    Zhang, Yuyan; Zhao, Limei; Wen, Yintang; Sun, Dongtao

    2016-04-01

    The thermal protection materials for aircraft are usually assembled on the substrate surface by means of adhesion agent. It is very necessary to evaluate the interface bonding quality which has great influence on heat preservation performance. At present, there is still no relatively satisfactory and reliable method for defect detection of cohesive coating. Planar array electrical capacitance tomography (ECT) is a suitable non-invasive imaging technique when there is only limited access to the targeted object. This research aims to investigate the feasibility of using planar array electrical capacitive tomography for bondline defect detection. In this paper, a planar array ECT system is developed consist of a planar array sensor of 12 electrodes, a capacitance acquisition system and image reconstruction software. The sensor development, simulation of sensitivity map, practical application and imaging reconstruction are discussed. A series of specimens of thermal protection material with man-made defects are tested by the proposed planar array ECT system. The experimental results show that the defect in cohesive coating can be effectively detected and the minimum size can be detected is 10mm×10mm.

  14. Actively Shielded Gradient Coils and Echo-Planar MRI

    NASA Astrophysics Data System (ADS)

    Elekes, Almos A.

    Echo-planar imaging (EPI), which produces images in 25-100 msec, is the fastest magnetic resonance imaging (MRI) technique. Its implementation is hampered by the demands it places on the scanner components. It requires strong magnetic gradient fields, produced by rapidly switched gradient coils; therefore the coils must have low inductance. They also have to be accommodated without inducing eddy currents in the magnet's metallic structure, otherwise the images would be degraded. All the major technical problems of echo-planar imaging are solved. Two transverse, actively shielded gradient coils were designed, built and tested. The coils were designed by the combined application of the minimum inductance and target field methods. The gradient strengths are 10 and 13 G/cm, unusually high for EPI, but well suited for microimaging, MR spectroscopy and petrochemical core analysis. The gradient time constants are short, so high resolution images are possible under 50 ms. The research was carried out at on a 4.5T/30cm superconducting, superferric shielded magnet located at the Texas Accelerator Center. The results of EPI and microimaging are presented.

  15. Duality analysis on random planar lattices.

    PubMed

    Ohzeki, Masayuki; Fujii, Keisuke

    2012-11-01

    The conventional duality analysis is employed to identify a location of a critical point on a uniform lattice without any disorder in its structure. In the present study, we deal with the random planar lattice, which consists of the randomized structure based on the square lattice. We introduce the uniformly random modification by the bond dilution and contraction on a part of the unit square. The random planar lattice includes the triangular and hexagonal lattices in extreme cases of a parameter to control the structure. A modern duality analysis fashion with real-space renormalization is found to be available for estimating the location of the critical points with a wide range of the randomness parameter. As a simple test bed, we demonstrate that our method indeed gives several critical points for the cases of the Ising and Potts models and the bond-percolation thresholds on the random planar lattice. Our method leads to not only such an extension of the duality analyses on the classical statistical mechanics but also a fascinating result associated with optimal error thresholds for a class of quantum error correction code, the surface code on the random planar lattice, which is known as a skillful technique to protect the quantum state.

  16. Angular-planar CMB power spectrum

    SciTech Connect

    Pereira, Thiago S.; Abramo, L. Raul

    2009-09-15

    Gaussianity and statistical isotropy of the Universe are modern cosmology's minimal set of hypotheses. In this work we introduce a new statistical test to detect observational deviations from this minimal set. By defining the temperature correlation function over the whole celestial sphere, we are able to independently quantify both angular and planar dependence (modulations) of the CMB temperature power spectrum over different slices of this sphere. Given that planar dependence leads to further modulations of the usual angular power spectrum C{sub l}, this test can potentially reveal richer structures in the morphology of the primordial temperature field. We have also constructed an unbiased estimator for this angular-planar power spectrum which naturally generalizes the estimator for the usual C{sub l}'s. With the help of a chi-square analysis, we have used this estimator to search for observational deviations of statistical isotropy in WMAP's 5 year release data set (ILC5), where we found only slight anomalies on the angular scales l=7 and l=8. Since this angular-planar statistic is model-independent, it is ideal to employ in searches of statistical anisotropy (e.g., contaminations from the galactic plane) and to characterize non-Gaussianities.

  17. Piecewise-Planar Parabolic Reflectarray Antenna

    NASA Technical Reports Server (NTRS)

    Hodges, Richard; Zawadzki, Mark

    2009-01-01

    The figure shows a dual-beam, dualpolarization Ku-band antenna, the reflector of which comprises an assembly of small reflectarrays arranged in a piecewise- planar approximation of a parabolic reflector surface. The specific antenna design is intended to satisfy requirements for a wide-swath spaceborne radar altimeter, but the general principle of piecewise-planar reflectarray approximation of a parabolic reflector also offers advantages for other applications in which there are requirements for wideswath antennas that can be stowed compactly and that perform equally in both horizontal and vertical polarizations. The main advantages of using flat (e.g., reflectarray) antenna surfaces instead of paraboloidal or parabolic surfaces is that the flat ones can be fabricated at lower cost and can be stowed and deployed more easily. Heretofore, reflectarray antennas have typically been designed to reside on single planar surfaces and to emulate the focusing properties of, variously, paraboloidal (dish) or parabolic antennas. In the present case, one approximates the nominal parabolic shape by concatenating several flat pieces, while still exploiting the principles of the planar reflectarray for each piece. Prior to the conception of the present design, the use of a single large reflectarray was considered, but then abandoned when it was found that the directional and gain properties of the antenna would be noticeably different for the horizontal and vertical polarizations.

  18. Duality analysis on random planar lattices

    NASA Astrophysics Data System (ADS)

    Ohzeki, Masayuki; Fujii, Keisuke

    2012-11-01

    The conventional duality analysis is employed to identify a location of a critical point on a uniform lattice without any disorder in its structure. In the present study, we deal with the random planar lattice, which consists of the randomized structure based on the square lattice. We introduce the uniformly random modification by the bond dilution and contraction on a part of the unit square. The random planar lattice includes the triangular and hexagonal lattices in extreme cases of a parameter to control the structure. A modern duality analysis fashion with real-space renormalization is found to be available for estimating the location of the critical points with a wide range of the randomness parameter. As a simple test bed, we demonstrate that our method indeed gives several critical points for the cases of the Ising and Potts models and the bond-percolation thresholds on the random planar lattice. Our method leads to not only such an extension of the duality analyses on the classical statistical mechanics but also a fascinating result associated with optimal error thresholds for a class of quantum error correction code, the surface code on the random planar lattice, which is known as a skillful technique to protect the quantum state.

  19. A Planar Calculus for Infinite Index Subfactors

    NASA Astrophysics Data System (ADS)

    Penneys, David

    2013-05-01

    We develop an analog of Jones' planar calculus for II 1-factor bimodules with arbitrary left and right von Neumann dimension. We generalize to bimodules Burns' results on rotations and extremality for infinite index subfactors. These results are obtained without Jones' basic construction and the resulting Jones projections.

  20. Experimental investigation of planar ion traps

    SciTech Connect

    Pearson, C. E.; Leibrandt, D. R.; Bakr, W. S.; Mallard, W. J.; Brown, K. R.; Chuang, I. L.

    2006-03-15

    Chiaverini et al. [Quantum Inf. Comput. 5, 419 (2005)] recently suggested a linear Paul trap geometry for ion-trap quantum computation that places all of the electrodes in a plane. Such planar ion traps are compatible with modern semiconductor fabrication techniques and can be scaled to make compact, many-zone traps. In this paper we present an experimental realization of planar ion traps using electrodes on a printed circuit board to trap linear chains of tens of charged particles of 0.44 {mu}m diameter in a vacuum of 15 Pa (10{sup -1} torr). With these traps we address concerns about the low trap depth of planar ion traps and develop control electrode layouts for moving ions between trap zones without facing some of the technical difficulties involved in an atomic ion-trap experiment. Specifically, we use a trap with 36 zones (77 electrodes) arranged in a cross to demonstrate loading from a traditional four-rod linear Paul trap, linear ion movement, splitting and joining of ion chains, and movement of ions through intersections. We further propose an additional dc-biased electrode above the trap which increases the trap depth dramatically, and a planar ion-trap geometry that generates a two-dimensional lattice of point Paul traps.

  1. Electromagnetic inhomogeneous waves at planar boundaries: tutorial.

    PubMed

    Frezza, Fabrizio; Tedeschi, Nicola

    2015-08-01

    In this review paper, we summarize the fundamental properties of inhomogeneous waves at the planar interface between two media. We point out the main differences between the wave types: lateral waves, surface waves, and leaky waves. We analyze each kind of inhomogeneous wave, giving a quasi-optical description and explaining the physical origin of some of their properties.

  2. COMPUTER ANALYSIS OF PLANAR GAMMA CAMERA IMAGES

    EPA Science Inventory



    COMPUTER ANALYSIS OF PLANAR GAMMA CAMERA IMAGES

    T Martonen1 and J Schroeter2

    1Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. EPA, Research Triangle Park, NC 27711 USA and 2Curriculum in Toxicology, Unive...

  3. Helical axis stellarator with noninterlocking planar coils

    DOEpatents

    Reiman, A.; Boozer, A.H.

    1984-03-06

    The present invention generates stellarator fields having favorable properties (magnetic well and large rotational transform) by a simple coil system consisting only of unlinked planar non-circular coils. At large rotational transform toroidal effects on magnetic well and rotational transform are small and can be ignored. We do so herein, specializing in straight helical systems.

  4. Proceedings of the workshop on polarized targets in storage rings

    SciTech Connect

    Holt, R.J.

    1984-08-01

    Polarization phenomena have played an increasingly important part in the study of nuclei and nucleons in recent years. Polarization studies have been hampered by the relatively few and rather fragile polarized targets which are presently available. The concept of polarized gas targets in storage rings opens a much wider range of possibilities than is available in the external target geometry. This novel method will represent a considerable advance in nuclear physics and will continue to receive much attention in plans for future facilities. An internal, polarized-target station is being planned for the cooler ring at the Indiana University Cyclotron Facility. Internal targets are compatible with recent designs of electron accelerators proposed by the Massachusetts Institute of Technology and the Southeastern Universities Research Association. The key to nuclear-science programs based on internal targets pivots on recent developments in polarized atomic beam methods, which include the more recent laser-driven polarized targets. The workshop drew together a unique group of physicists in the fields of high-energy, nuclear and atomic physics. The meeting was organized in a manner that stimulated discussion among the 58 participants and focused on developments in polarized target technology and the underlying atomic physics. An impressive array of future possibilities for polarized targets as well as current developments in polarized target technology were discussed at the workshop. Abstracts of individual items from the workshop were prepared separately for the data base.

  5. Extended x-ray absorption fine structure measurements of quasi-isentropically compressed vanadium targets on the OMEGA laser

    SciTech Connect

    Yaakobi, B.; Boehly, T. R.; Sangster, T. C.; Meyerhofer, D. D.; Remington, B. A.; Allen, P. G.; Pollaine, S. M.; Lorenzana, H. E.; Lorenz, K. T.; Hawreliak, J. A.

    2008-06-15

    The use of in situ extended x-ray absorption fine structure (EXAFS) for characterizing nanosecond laser-shocked vanadium, titanium, and iron has recently been demonstrated. These measurements are extended to laser-driven, quasi-isentropic compression experiments (ICE). The radiation source (backlighter) for EXAFS in all of these experiments is obtained by imploding a spherical target on the OMEGA laser [T. R. Boehly et al., Rev. Sci. Instrum. 66, 508 (1995)]. Isentropic compression (where the entropy is kept constant) enables to reach high compressions at relatively low temperatures. The absorption spectra are used to determine the temperature and compression in a vanadium sample quasi-isentropically compressed to pressures of up to {approx}0.75 Mbar. The ability to measure the temperature and compression directly is unique to EXAFS. The drive pressure is calibrated by substituting aluminum for the vanadium and interferometrically measuring the velocity of the back target surface by the velocity interferometer system for any reflector (VISAR). The experimental results obtained by EXAFS and VISAR agree with each other and with the simulations of a hydrodynamic code. The role of a shield to protect the sample from impact heating is studied. It is shown that the shield produces an initial weak shock that is followed by a quasi-isentropic compression at a relatively low temperature. The role of radiation heating from the imploding target as well as from the laser-absorption region is studied. The results show that in laser-driven ICE, as compared with laser-driven shocks, comparable compressions can be achieved at lower temperatures. The EXAFS results show important details not seen in the VISAR results.

  6. Extended X-Ray Absorption Fine Structure Measurements of Quasi-Isentropically Compressed Vanadium Targets on the OMEGA Laser

    SciTech Connect

    Yaakobi, B.; Boehly, T.R.; Sangster, T.C.; Meyerhofer, D.D.; Remington, B.A.; Allen, P.G.; Pollaine, S.M.; Lorenzana, H.E.; Lorenz, K.T.; Hawreliak, J.A.

    2008-07-21

    The use of in situ extended x-ray absorption fine structure (EXAFS) for characterizing nanosecond laser-shocked vanadium, titanium, and iron has recently been demonstrated. These measurements are extended to laser-driven, quasi-isentropic compression experiments (ICE). The radiation source (backlighter) for EXAFS in all of these experiments is obtained by imploding a spherical target on the OMEGA laser [T. R. Boehly et al., Rev. Sci. Instrum. 66, 508 (1995)]. Isentropic compression (where the entropy is kept constant) enables to reach high compressions at relatively low temperatures. The absorption spectra are used to determine the temperature and compression in a vanadium sample quasi-isentropically compressed to pressures of up to ~0.75 Mbar. The ability to measure the temperature and compression directly is unique to EXAFS. The drive pressure is calibrated by substituting aluminum for the vanadium and interferometrically measuring the velocity of the back target surface by the velocity interferometer system for any reflector (VISAR). The experimental results obtained by EXAFS and VISAR agree with each other and with the simulations of a hydrodynamic code. The role of a shield to protect the sample from impact heating is studied. It is shown that the shield produces an initial weak shock that is followed by a quasi-isentropic compression at a relatively low temperature. The role of radiation heating from the imploding target as well as from the laser-absorption region is studied. The results show that in laser-driven ICE, as compared with laser-driven shocks, comparable compressions can be achieved at lower temperatures. The EXAFS results show important details not seen in the VISAR results.

  7. Manufacturing costs for planar solid oxide fuel cells

    SciTech Connect

    Krist, K.; Wright, J.D.; Romero, C.

    1995-12-31

    In this paper the authors calculate how much one can afford to pay for a fuel cell, and set quantitative performance and cost targets that if met, will result in SOFC technology where the performance is high enough and the cost is low enough to generate commercial interest. To do this, the authors first calculate how much one can afford to pay for a fuel cell stack in two important applications: small scale cogeneration (200 kW{sub e}) and large scale power generation (50 MW{sub e}). They then compare the cost of the materials needed to fabricate the fuel cell with the allowable cost. Finally, they use a mathematical model of fuel cell performance to quantify some of the improvements that will be needed if planar fuel cells are to operate efficiently at 800 C or below.

  8. Planar Jumping-Drop Thermal Diodes

    NASA Astrophysics Data System (ADS)

    Boreyko, Jonathan; Zhao, Yuejun; Chen, Chuan-Hua

    2011-11-01

    Phase-change thermal diodes transport heat asymmetrically with a large rectification coefficient unmatched by their solid-state counterparts, but are limited by either the gravitational orientation or one-dimensional configuration. We report a planar phase-change diode scalable to large areas with an orientation-independent diodicity of up to 100, in which water/vapor is enclosed by parallel superhydrophobic and superhydrophilic plates. The thermal rectification is enabled by spontaneously jumping dropwise condensate which only occurs when the superhydrophobic surface is colder than the superhydrophilic surface. Our jumping-drop thermal diode is expected to be particularly useful for the thermal protection of planar electronic components and the thermal regulation of large-area energy harvesting systems.

  9. Planar nanophotonic devices and integration technologies

    NASA Astrophysics Data System (ADS)

    De La Rue, Richard M.; Sorel, Marc; Samarelli, Antonio; Velha, Philippe; Strain, Michael; Johnson, Nigel P.; Sharp, Graham; Rahman, Faiz; Khokhar, Ali Z.; Macintyre, Douglas S.; McMeekin, Scott G.; Lahiri, Basudev

    2011-07-01

    Planar devices that can be categorised as having a nanophotonic dimension constitute an increasingly important area of photonics research. Device structures that come under the headings of photonic crystals, photonic wires and metamaterials are all of interest - and devices based on combinations of these conceptual approaches may also play an important role. Planar micro-/nano-photonic devices seem likely to be exploited across a wide spectrum of applications in optoelectronics and photonics. This spectrum includes the domains of display devices, biomedical sensing and sensing more generally, advanced fibre-optical communications systems - and even communications down to the local area network (LAN) level. This article will review both device concepts and the applications possibilities of the various different devices.

  10. Electrostatic correlations near charged planar surfaces

    PubMed Central

    Deng, Mingge; Em Karniadakis, George

    2014-01-01

    Electrostatic correlation effects near charged planar surfaces immersed in a symmetric electrolytes solution are systematically studied by numerically solving the nonlinear six-dimensional electrostatic self-consistent equations. We compare our numerical results with widely accepted mean-field (MF) theory results, and find that the MF theory remains quantitatively accurate only in weakly charged regimes, whereas in strongly charged regimes, the MF predictions deviate drastically due to the electrostatic correlation effects. We also observe a first-order like phase-transition corresponding to the counterion condensation phenomenon in strongly charged regimes, and compute the phase diagram numerically within a wide parameter range. Finally, we investigate the interactions between two likely-charged planar surfaces, which repulse each other as MF theory predicts in weakly charged regimes. However, our results show that they attract each other above a certain distance in strongly charged regimes due to significant electrostatic correlations. PMID:25194382

  11. Alignment algorithms for planar optical waveguides

    NASA Astrophysics Data System (ADS)

    Zheng, Yu; Duan, Ji-an

    2012-10-01

    Planar optical waveguides are the key elements in a modern, high-speed optical network. An important problem facing the optical fiber communication system is optical-axis alignment and coupling between waveguide chips and transmission fibers. The advantages and disadvantages of the various algorithms used for the optical-axis alignment, namely, hill-climbing, pattern search, and genetic algorithm are analyzed. A new optical-axis alignment for planar optical waveguides is presented which is a composite of a genetic algorithm and a pattern search algorithm. Experiments have proved the proposed alignment's feasibility; compared with hill climbing, the search process can reduce the number of movements by 88% and reduce the search time by 83%. Moreover, the search success rate in the experiment can reach 100%.

  12. Constant field gradient planar coupled cavity structure

    DOEpatents

    Kang, Yoon W.; Kustom, Robert L.

    1999-01-01

    A cavity structure having at least two opposing planar housing members spaced apart to accommodate the passage of a particle beam through the structure between the members. Each of the housing members have a plurality of serially aligned hollows defined therein, and also passages, formed in the members, which interconnect serially adjacent hollows to provide communication between the hollows. The opposing planar housing members are spaced and aligned such that the hollows in one member cooperate with corresponding hollows in the other member to form a plurality of resonant cavities aligned along the particle beam within the cavity structure. To facilitate the obtaining of a constant field gradient within the cavity structure, the passages are configured so as to be incrementally narrower in the direction of travel of the particle beam. In addition, the spacing distance between the opposing housing members is configured to be incrementally smaller in the direction of travel of the beam.

  13. Constant field gradient planar coupled cavity structure

    DOEpatents

    Kang, Y.W.; Kustom, R.L.

    1999-07-27

    A cavity structure is disclosed having at least two opposing planar housing members spaced apart to accommodate the passage of a particle beam through the structure between the members. Each of the housing members have a plurality of serially aligned hollows defined therein, and also passages, formed in the members, which interconnect serially adjacent hollows to provide communication between the hollows. The opposing planar housing members are spaced and aligned such that the hollows in one member cooperate with corresponding hollows in the other member to form a plurality of resonant cavities aligned along the particle beam within the cavity structure. To facilitate the obtaining of a constant field gradient within the cavity structure, the passages are configured so as to be incrementally narrower in the direction of travel of the particle beam. In addition, the spacing distance between the opposing housing members is configured to be incrementally smaller in the direction of travel of the beam. 16 figs.

  14. Constant field gradient planar cavity structure

    SciTech Connect

    Kang, Yoon W.; Kustom, R.L.

    1997-12-01

    A cavity structure is described having at least two opposing planar housing members spaced apart to accommodate the passage of a particle beam through the structure between the members. Each of the housing members have a plurality of serially aligned hollows defined therein, and also passages, formed in the members, which interconnect serially adjacent hollows to provide communication between the hollows. The opposing planar housing members are spaced and aligned such that the hollows in one member cooperate with corresponding hollows in the other member to form a plurality of resonant cavities aligned along the particle beam within the cavity structure. To facilitate the obtaining of a constant field gradient within the cavity structure, the passages are configured so as to be incrementally narrower in the direction of travel of the particle beam. In addition, the spacing distance between the opposing housing members is configured to be incrementally smaller in the direction of travel of the beam.

  15. Planar graphical models which are easy

    SciTech Connect

    Chertkov, Michael; Chernyak, Vladimir

    2009-01-01

    We describe a rich family of binary variables statistical mechanics models on planar graphs which are equivalent to Gaussian Grassmann Graphical models (free fermions). Calculation of partition function (weighted counting) in the models is easy (of polynomial complexity) as reduced to evaluation of determinants of matrixes linear in the number of variables. In particular, this family of models covers Holographic Algorithms of Valiant and extends on the Gauge Transformations discussed in our previous works.

  16. Grasp synthesis for planar and solid objects

    NASA Technical Reports Server (NTRS)

    Chen, Yu-Che; Walker, Ian D.; Cheatham, John B.

    1992-01-01

    This paper presents an analysis of the mechanics for multifingered grasps of planar and solid objects. Squeezing and frictional effects between the fingers and the grasped objects is fully visualized through our approach. An algorithm for qualitively choosing the grasp points is developed based on the mechanics of grasping. It is shown further that our method can be easily extended for the soft-fingered grasp model where the torsional moments along the contact normals can be transmitted through the grasp points.

  17. Spontaneous Planar Chiral Symmetry Breaking in Cells

    NASA Astrophysics Data System (ADS)

    Hadidjojo, Jeremy; Lubensky, David

    Recent progress in animal development has highlighted the central role played by planar cell polarity (PCP) in epithelial tissue morphogenesis. Through PCP, cells have the ability to collectively polarize in the plane of the epithelium by localizing morphogenetic proteins along a certain axis. This allows direction-dependent modulation of tissue mechanical properties that can translate into the formation of complex, non-rotationally invariant shapes. Recent experimental observations[1] show that cells, in addition to being planar-polarized, can also spontaneously develop planar chirality, perhaps in the effort of making yet more complex shapes that are reflection non-invariant. In this talk we will present our work in characterizing general mechanisms that can lead to spontaneous chiral symmetry breaking in cells. We decompose interfacial concentration of polarity proteins in a hexagonal cell packing into irreducible representations. We find that in the case of polar concentration distributions, a chiral state can only be reached from a secondary instability after the cells are polarized. However in the case of nematic distributions, we show that a finite-amplitude (subcritical, or ``first-order'') nematic transition can send the system from disorder directly to a chiral state. In addition, we find that perturbing the system by stretching the hexagonal packing enables direct (supercritical, or ``second-order'') chiral transition in the nematic case. Finally, we do a Landau expansion to study competition between stretch-induced chirality and the tendency towards a non-chiral state in packings that have retained the full 6-fold symmetry.

  18. Personal audio with a planar bright zone.

    PubMed

    Coleman, Philip; Jackson, Philip J B; Olik, Marek; Pedersen, Jan Abildgaard

    2014-10-01

    Reproduction of multiple sound zones, in which personal audio programs may be consumed without the need for headphones, is an active topic in acoustical signal processing. Many approaches to sound zone reproduction do not consider control of the bright zone phase, which may lead to self-cancellation problems if the loudspeakers surround the zones. Conversely, control of the phase in a least-squares sense comes at a cost of decreased level difference between the zones and frequency range of cancellation. Single-zone approaches have considered plane wave reproduction by focusing the sound energy in to a point in the wavenumber domain. In this article, a planar bright zone is reproduced via planarity control, which constrains the bright zone energy to impinge from a narrow range of angles via projection in to a spatial domain. Simulation results using a circular array surrounding two zones show the method to produce superior contrast to the least-squares approach, and superior planarity to the contrast maximization approach. Practical performance measurements obtained in an acoustically treated room verify the conclusions drawn under free-field conditions. PMID:25324075

  19. Fast planar segmentation of depth images

    NASA Astrophysics Data System (ADS)

    Javan Hemmat, Hani; Pourtaherian, Arash; Bondarev, Egor; de With, Peter H. N.

    2015-03-01

    One of the major challenges for applications dealing with the 3D concept is the real-time execution of the algorithms. Besides this, for the indoor environments, perceiving the geometry of surrounding structures plays a prominent role in terms of application performance. Since indoor structures mainly consist of planar surfaces, fast and accurate detection of such features has a crucial impact on quality and functionality of the 3D applications, e.g. decreasing model size (decimation), enhancing localization, mapping, and semantic reconstruction. The available planar-segmentation algorithms are mostly developed using surface normals and/or curvatures. Therefore, they are computationally expensive and challenging for real-time performance. In this paper, we introduce a fast planar-segmentation method for depth images avoiding surface normal calculations. Firstly, the proposed method searches for 3D edges in a depth image and finds the lines between identified edges. Secondly, it merges all the points on each pair of intersecting lines into a plane. Finally, various enhancements (e.g. filtering) are applied to improve the segmentation quality. The proposed algorithm is capable of handling VGA-resolution depth images at a 6 FPS frame-rate with a single-thread implementation. Furthermore, due to the multi-threaded design of the algorithm, we achieve a factor of 10 speedup by deploying a GPU implementation.

  20. Planar Tunneling Spectroscopy of Graphene Nanodevices

    NASA Astrophysics Data System (ADS)

    Wang, Joel I.-Jan; Bretheau, Landry; Pisoni, Riccardo; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo

    2-D Van-der-Waals mesoscopic physics have seen a rapid development in the last 10 years, with new materials each year added to the toolbox. Stacking them like Lego enables the combination of their individual electronic properties. In particular, hexagonal boron nitride, which is an insulator, gives the possibility to perform planar (2-D to 2-D) tunneling spectroscopy within this type of heterostructures. Unlike standard transport measurements, tunneling spectroscopy enables to probe the electronic properties in the energy domain. Moreover, since planar tunneling probes a large area of the system, global quantum features such as quantum Hall effect, superconducting proximity effect or quantum confinement can be investigated. In this talk, we will present implementation of heterostructures consisting of graphene, hexagonal boron nitride, and graphite, fabricated for planar tunneling spectroscopy. In order to reveal the intrinsic properties of materials, the fabrication scheme aims at preserving the pristine nature of the 2-DEGS as well as minimizing the doping introduced by external probes. As a demonstration, measurements of these devices in normal states, high magnetic field environment, and induced superconducting state will be presented.

  1. Recirculating Planar Magnetron Modeling and Experiments

    NASA Astrophysics Data System (ADS)

    Franzi, Matthew; Gilgenbach, Ronald; Hoff, Brad; French, Dave; Lau, Y. Y.

    2011-10-01

    We present simulations and initial experimental results of a new class of crossed field device: Recirculating Planar Magnetrons (RPM). Two geometries of RPM are being explored: 1) Dual planar-magnetrons connected by a recirculating section with axial magnetic field and transverse electric field, and 2) Planar cathode and anode-cavity rings with radial magnetic field and axial electric field. These RPMs have numerous advantages for high power microwave generation by virtue of larger area cathodes and anodes. The axial B-field RPM can be configured in either the conventional or inverted (faster startup) configuration. Two and three-dimensional EM PIC simulations show rapid electron spoke formation and microwave oscillation in pi-mode. Smoothbore prototype axial-B RPM experiments are underway using the MELBA accelerator at parameters of -300 kV, 1-20 kA and pulselengths of 0.5-1 microsecond. Implementation and operation of the first RPM slow wave structure, operating at 1GHz, will be discussed. Research supported by AFOSR, AFRL, L-3 Communications, and Northrop Grumman. Done...processed 1830 records...17:52:57 Beginning APS data extraction...17:52:57

  2. Scalable Designs for Planar Ion Trap Arrays

    NASA Astrophysics Data System (ADS)

    Slusher, R. E.

    2007-03-01

    Recent progress in quantum operations with trapped ion qubits has been spectacular for qubit counts up to approximately ten ions. Two qubit quantum gates, quantum error correction, simple quantum algorithms and entanglement of up to 8 qubits have been demonstrated by groups including those at NIST, University of Michigan, University of Innsbruck and Oxford. Interesting problems in quantum information processing including quantum simulations of condensed matter systems and quantum repeaters for long distance quantum communication systems require hundreds or thousands of qubits. Initial designs for an ion trap ``Quantum CCD'' using spatially multiplexed planar ion traps as well as initial experiments using planar ion traps are promising routes to scaling up the number of trapped ions to more interesting levels. We describe designs for planar ion traps fabricated using silicon VLSI techniques. This approach allows the control voltages required for the moving and positioning the ions in the array to be connected vertically through the silicon substrate to underlying CMOS electronics. We have developed techniques that allow the ion trap structures to be fabricated monolithically on top of the CMOS electronics. The planar traps have much weaker trapping depths than the more conventional multi-level traps. However, the trap depths are still adequate for trapping hot ions from many ion sources. The planar traps also involve more complex configurations for laser cooling and micromotion control. Initial solutions to these problems will be presented. Laser access to the ions can be provided by laser beams grazing the trap surface or by using vertical slots through the trap chip. We will also discuss limits imposed by power dissipation and ion transport through trap junctions (e.g. crosses and Ys). We have fabricated these VLSI based traps in a number of configurations. Initial fabrication and packaging challenges will be discussed. D. Kielpinski, C. Monroe, and D.J. Wineland

  3. Miniature shock tube for laser driven shocks.

    PubMed

    Busquet, Michel; Barroso, Patrice; Melse, Thierry; Bauduin, Daniel

    2010-02-01

    We describe in this paper the design of a miniature shock tube (smaller than 1 cm(3)) that can be placed in a vacuum vessel and allows transverse optical probing and longitudinal backside extreme ultraviolet emission spectroscopy in the 100-500 A range. Typical application is the study of laser launched radiative shocks, in the framework of what is called "laboratory astrophysics."

  4. Laser-driven Acceleration in Clustered Plasmas

    SciTech Connect

    Gao, X.; Wang, X.; Shim, B.; Downer, M. C.

    2009-01-22

    We propose a new approach to avoid dephasing limitation of laser wakefield acceleration by manipulating the group velocity of the driving pulse using clustered plasmas. We demonstrated the control of phase velocity in clustered plasmas by third harmonic generation and frequency domain interferometry experiments. The results agree with a numerical model. Based on this model, the group velocity of the driving pulse in clustered plasmas was calculated and the result shows the group velocity can approach the speed of light c in clustered plasmas.

  5. Laser-driven polyplanar optic display

    SciTech Connect

    Veligdan, J.T.; Biscardi, C.; Brewster, C.; DeSanto, L.; Beiser, L.

    1998-01-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. This display screen is 2 inches thick and has a matte-black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 200 milliwatt green solid-state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, the authors discuss the DLP chip, the optomechanical design and viewing angle characteristics.

  6. Laser driven acceleration in vacuum and gases

    SciTech Connect

    Sprangle, P.; Esarey, E.; Hafizi, B.; Hubbard, R.; Krall, J.; Ting, A.

    1997-03-01

    Several important issues pertaining to particle acceleration in vacuum and gases are discussed. The limitations of laser vacuum acceleration as they relate to electron slippage, laser diffraction, material damage, and electron aperture effects are presented. Limitations on the laser intensity and particle self-fields due to material breakdown are quantified. In addition, the reflection of the self-fields associated with the accelerated particles places a limit on the number of particles. Two configurations for the inverse Cherenkov accelerator (ICA) are considered, in which the electromagnetic driver is propagated in a waveguide that is (i) lined with a dielectric material or (ii) filled with a neutral gas. The acceleration gradient in the ICA is limited by tunneling and collisional ionization in the dielectric liner or gas. Ionization can lead to significant modification of the optical properties of the waveguide, altering the phase velocity and causing particle slippage, thus disrupting the acceleration process. Maximum accelerating gradients and pulse durations are presented for a 10 {mu}m and a 1 mm wavelength driver. We show that the use of an unguided Bessel (axicon) beam can enhance the energy gain compared to a higher order Gaussian beam. The enhancement factor is N{sup 1/2}, where N is the number of lobes in the Bessel beam. {copyright} {ital 1997 American Institute of Physics.}

  7. Planar and non-planar ion acoustic shock waves in electron positron ion plasmas

    NASA Astrophysics Data System (ADS)

    Masood, Waqas; Jehan, Nusrat; Mirza, Arshad M.; Sakanaka, P. H.

    2008-06-01

    Ion acoustic shock waves (IASW's) are studied in an unmagnetized plasma consisting of electrons, positrons and adiabatically hot positive ions. This is done by deriving the Kortweg-deVries-Burger (KdVB) equation under the small amplitude perturbation expansion method. The dissipation is introduced by taking into account the kinematic viscosity among the plasma constituents. It is found that the strength of ion acoustic shock wave is maximum for spherical, intermediate for cylindrical, and minimum for planar geometry. It is observed that the positron concentration, ratio of ion to electron temperature, and the plasma kinematic viscosity significantly modifies the shock structure. Finally, it is found that the temporal evolution of the non-planar IASW's is quite different by comparison with the planar geometry. The relevance of the present study with regard to the dense astrophysical environments is also pointed out.

  8. Advanced alternate planar geometry solid oxide fuel cells. Final report

    SciTech Connect

    Elangovan, S.; Prouse, D.; Khandkar, A.; Donelson, R.; Marianowski, L.

    1992-11-01

    The potential of high temperature Solid Oxide Fuel Cells as high performance, high efficiency energy conversion device is well known. Investigation of several cell designs have been undertaken by various researchers to derive the maximum performance benefit from the device while maintaining a lower cost of production to meet the commercialization cost target. The present investigation focused on the planar SOFC design which allows for the use of mature low cost production processes to be employed. A novel design concept was investigated which allows for improvements in performance through increased interface stability, and lowering of cost through enhanced structural integrity and the use of low cost metal interconnects. The new cell design consisted of a co-sintered porous/dense/porous zirconia layer with the electrode material infiltrated into the porous layers. The two year program conducted by a team involving Ceramatec and the Institute of Gas Technology, culminated in a multi-cell stack test that exhibited high performance. Considerable progress was achieved in the selection of cell components, and establishing and optimizing the cell and stack fabrication parameters. It was shown that the stack components exhibited high conductivities and low creep at the operating temperature. The inter-cell resistive losses were shown to be small through out-of-cell characterization. The source of performance loss was identified to be the anode electrolyte interface. This loss however can be minimized by improving the anode infiltration technique. Manifolding and sealing of the planar devices posed considerable challenge. Even though the open circuit voltage was 250 mV/cell lower than theoretical, the two cell stack had a performance of 300 mA/cm{sup 2} at 0.4V/cell with an area specific resistance of 1 {Omega}-cm{sup 2}/cell. improvements in manifolding are expected to provide much higher performance.

  9. Advanced alternate planar geometry solid oxide fuel cells

    SciTech Connect

    Elangovan, S.; Prouse, D.; Khandkar, A.; Donelson, R.; Marianowski, L. )

    1992-11-01

    The potential of high temperature Solid Oxide Fuel Cells as high performance, high efficiency energy conversion device is well known. Investigation of several cell designs have been undertaken by various researchers to derive the maximum performance benefit from the device while maintaining a lower cost of production to meet the commercialization cost target. The present investigation focused on the planar SOFC design which allows for the use of mature low cost production processes to be employed. A novel design concept was investigated which allows for improvements in performance through increased interface stability, and lowering of cost through enhanced structural integrity and the use of low cost metal interconnects. The new cell design consisted of a co-sintered porous/dense/porous zirconia layer with the electrode material infiltrated into the porous layers. The two year program conducted by a team involving Ceramatec and the Institute of Gas Technology, culminated in a multi-cell stack test that exhibited high performance. Considerable progress was achieved in the selection of cell components, and establishing and optimizing the cell and stack fabrication parameters. It was shown that the stack components exhibited high conductivities and low creep at the operating temperature. The inter-cell resistive losses were shown to be small through out-of-cell characterization. The source of performance loss was identified to be the anode electrolyte interface. This loss however can be minimized by improving the anode infiltration technique. Manifolding and sealing of the planar devices posed considerable challenge. Even though the open circuit voltage was 250 mV/cell lower than theoretical, the two cell stack had a performance of 300 mA/cm[sup 2] at 0.4V/cell with an area specific resistance of 1 [Omega]-cm[sup 2]/cell. improvements in manifolding are expected to provide much higher performance.

  10. Automatic calibration of laser range cameras using arbitrary planar surfaces

    SciTech Connect

    Baker, J.E.

    1994-06-01

    Laser Range Cameras (LRCs) are powerful tools for many robotic/computer perception activities. They can provide accurate range images and perfectly registered reflectance images of the target scene, useful for constructing reliably detailed 3-D world maps and target characterizations. An LRC`s output is an array of distances obtained by scanning a laser over the scene. To accurately interpret this data, the angular definition of each pixel, i.e., the 3-D direction corresponding to each distance measurement, must be known. This angular definition is a function of the camera`s intrinsic design and unique implementation characteristics, e.g., actual mirror positions, axes of rotation, angular velocities, etc. Typically, the range data is converted to Cartesian coordinates by calibration-parameterized, non-linear transformation equations. Unfortunately, typical LRC calibration techniques are manual, intensive, and inaccurate. Common techniques involve imaging carefully orchestrated artificial targets and manually measuring actual distances and relative angles to infer the correct calibration parameter values. This paper presents an automated method which uses Genetic Algorithms to search for calibration parameter values and possible transformation equations which combine to maximize the planarity of user-specified sub-regions of the image(s). This method permits calibration to be based on an arbitrary plane, without precise knowledge of the LRC`s mechanical precision, intrinsic design, or its relative positioning to the target. Furthermore, this method permits rapid, remote, and on-line recalibration - important capabilities for many robotic systems. Empirical validation of this system has been performed using two different LRC systems and has led to significant improvement in image accuracy while reducing the calibration time by orders of magnitude.

  11. Planar jumping-drop thermal diodes

    NASA Astrophysics Data System (ADS)

    Boreyko, Jonathan B.; Zhao, Yuejun; Chen, Chuan-Hua

    2011-12-01

    Phase-change thermal diodes rectify heat transport much more effectively than solid-state ones, but are limited by either the gravitational orientation or one-dimensional configuration. Here, we report a planar phase-change diode scalable to large areas with an orientation-independent diodicity of over 100, in which water/vapor is enclosed by parallel superhydrophobic and superhydrophilic plates. The thermal rectification is enabled by spontaneously jumping dropwise condensate which only occurs when the superhydrophobic surface is colder than the superhydrophilic surface.

  12. Multi-frequency recirculating planar magnetrons

    NASA Astrophysics Data System (ADS)

    Greening, Geoffrey B.; Jordan, Nicholas M.; Exelby, Steven C.; Simon, David H.; Lau, Y. Y.; Gilgenbach, Ronald M.

    2016-08-01

    The multi-frequency recirculating planar magnetron (MFRPM) is the first magnetron capable of simultaneous generation of significantly different output frequencies (1 and 2 GHz) in a single operating pulse. Design and simulation of a prototype MFRPM were followed by hardware fabrication and experimental verification using the Michigan Electron Long Beam Accelerator with a Ceramic insulator at -300 kV, 1-5 kA, and 0.14-0.23 T axial magnetic field. Preliminary results demonstrated simultaneous generation of microwave pulses near 1 GHz and 2 GHz at powers up to 44 MW and 21 MW, respectively, with peak total efficiencies up to 9%.

  13. Vortex gyroscope imaging of planar superfluids.

    PubMed

    Powis, A T; Sammut, S J; Simula, T P

    2014-10-17

    We propose a robust imaging technique that makes it possible to distinguish vortices from antivortices in quasi-two-dimensional Bose-Einstein condensates from a single image of the density of the atoms. Tilting the planar condensate prior to standard absorption imaging excites a generalized gyroscopic mode of the condensate, revealing the sign and location of each vortex. This technique is anticipated to enable experimental measurement of the incompressible kinetic energy spectrum of the condensate and the observation of a negative-temperature phase transition of the vortex gas, driven by two-dimensional superfluid turbulence.

  14. Grasp synthesis for planar and solid objects

    NASA Technical Reports Server (NTRS)

    Chen, Yu-Che; Walker, Ian D.; Cheatham, John B.

    1993-01-01

    An analysis of the mechanics for multifingered grasps of planar and solid objects is presented. A method that is intuitive and computationally efficient is proposed. The search for finger grasp positions is combined with finger (manipulation and squeezing) for calculations in a single method. Physically, the squeezing and frictional effects between the fingers and the grasped objects are fully visualized through this approach. Mathematically, the complexity of finger force calculations are reduced when this scheme is compared with previously available schemes. The efficiency of the scheme is illustrated. On the basis of the analysis of grasp mechanics, an algorithm for quantitatively choosing the grasp points is proposed to ensure stable grasps.

  15. Theoretical analysis of planar pulse microwiggler

    SciTech Connect

    Qing-Xiang Liu |; Yong Xu

    1995-12-31

    The Magnetic field distributions of a planar pulse microwiggler are studied analytically and numerically. Exact solutions of two-dimensional magnetic fields are derived, which show that along the electron axis the fields have a variation close enough to a sine wave. We also investigate wiggler field errors due to machining tolerance and effects of the field errors on trajectories of electron with the help numerical simulations. The results are critical for successful operation of CAEP compact free-electron laser experiment under preparation.

  16. Extended Scaling Relations for Planar Lattice Models

    NASA Astrophysics Data System (ADS)

    Benfatto, G.; Falco, P.; Mastropietro, V.

    2009-12-01

    It is widely believed that the critical properties of several planar lattice systems, like the Eight Vertex or the Ashkin-Teller models, are well described by an effective continuum fermionic theory obtained as a formal scaling limit. On the basis of this assumption several extended scaling relations among their indices were conjectured. We prove the validity of some of them, among which the ones predicted by Kadanoff (Phys Rev Lett 39:903-905, 1977) and by Luther and Peschel (Phys Rev B 12:3908-3917, 1975).

  17. Optical planar waveguide for cell counting

    NASA Astrophysics Data System (ADS)

    LeBlanc, John; Mueller, Andrew J.; Prinz, Adrian; Butte, Manish J.

    2012-01-01

    Low cost counting of cells has medical applications in screening, military medicine, disaster medicine, and rural healthcare. In this report, we present a shallow, buried, planar waveguide fabricated by potassium ion exchange in glass that enables low-cost and rapid counting of metal-tagged objects that lie in the evanescent field of the waveguide. Laser light transmitted through the waveguide was attenuated proportionately to the presence of metal-coated microstructures fabricated from photoresist. This technology enables the low-cost enumeration of cells from blood, urine, or other biofluids.

  18. The cell biology of planar cell polarity

    PubMed Central

    2014-01-01

    Planar cell polarity (PCP) refers to the coordinated alignment of cell polarity across the tissue plane. Key to the establishment of PCP is asymmetric partitioning of cortical PCP components and intercellular communication to coordinate polarity between neighboring cells. Recent progress has been made toward understanding how protein transport, endocytosis, and intercellular interactions contribute to asymmetric PCP protein localization. Additionally, the functions of gradients and mechanical forces as global cues that bias PCP orientation are beginning to be elucidated. Together, these findings are shedding light on how global cues integrate with local cell interactions to organize cellular polarity at the tissue level. PMID:25349257

  19. High-performance planar nanoscale dielectric capacitors

    NASA Astrophysics Data System (ADS)

    Özçelik, V. Ongun; Ciraci, S.

    2015-05-01

    We propose a model for planar nanoscale dielectric capacitors consisting of a single layer, insulating hexagonal boron nitride (BN) stripe placed between two metallic graphene stripes, all forming commensurately a single atomic plane. First-principles density functional calculations on these nanoscale capacitors for different levels of charging and different widths of graphene-BN stripes mark high gravimetric capacitance values, which are comparable to those of supercapacitors made from other carbon-based materials. Present nanocapacitor models allow the fabrication of series, parallel, and mixed combinations which offer potential applications in two-dimensional flexible nanoelectronics, energy storage, and heat-pressure sensing systems.

  20. Planar graphical models which are easy

    NASA Astrophysics Data System (ADS)

    Chernyak, Vladimir Y.; Chertkov, Michael

    2010-11-01

    We describe a rich family of binary variables statistical mechanics models on a given planar graph which are equivalent to Gaussian Grassmann graphical models (free fermions) defined on the same graph. Calculation of the partition function (weighted counting) for such a model is easy (of polynomial complexity) as it is reducible to evaluation of a Pfaffian of a matrix of size equal to twice the number of edges in the graph. In particular, this approach touches upon holographic algorithms of Valiant and utilizes the gauge transformations discussed in our previous works.

  1. Broadband Planar 5:1 Impedence Transformer

    NASA Technical Reports Server (NTRS)

    Ehsan, Negar; Hsieh, Wen-Ting; Moseley, Samuel H.; Wollack, Edward J.

    2015-01-01

    This paper presents a broadband Guanella-type planar impedance transformer that transforms so 50 omega to 10 omega with a 10 dB bandwidth of 1-14GHz. The transformer is designed on a flexible 50 micrometer thick polyimide substrate in microstrip and parallel-plate transmission line topologies, and is Inspired by the traditional 4:1 Guanella transformer. Back-to-back transformers were designed and fabricated for characterization in a 50 omega system. Simulated and measured results are in excellent agreement.

  2. A planar near-field scanning technique for bistatic radar cross section measurements

    NASA Technical Reports Server (NTRS)

    Tuhela-Reuning, S.; Walton, E. K.

    1990-01-01

    A progress report on the development of a bistatic radar cross section (RCS) measurement range is presented. A technique using one parabolic reflector and a planar scanning probe antenna is analyzed. The field pattern in the test zone is computed using a spatial array of signal sources. It achieved an illumination pattern with 1 dB amplitude and 15 degree phase ripple over the target zone. The required scan plane size is found to be proportional to the size of the desired test target. Scan plane probe sample spacing can be increased beyond the Nyquist lambda/2 limit permitting constant probe sample spacing over a range of frequencies.

  3. Tissue distribution of co-planar and non-planar tetra- and hexa-chlorobiphenyl isomers in guinea pigs after oral ingestion

    SciTech Connect

    Jan, J.; Logar, B.; Jan, J.

    1996-03-01

    Food ingestion is the most important route for the uptake of lipophilic organochlorine contaminants. Uptake and transfer of the contaminants from the digestive tract to target organs can be used for risk evaluation. The bioconcentration and migration of polychlorobiphenyls (PCBs) is highly structure - dependent. Bioconcentration is correlated with lipophilicity on the basis of the n-octanol/water partition coefficient in its logarithmic form - logKow. However, some factors e.g. diffusion through cell membranes, accumulation in specific organs and tissues, uptake and deputation kinetics and metabolism can also influence the bioconcentration. Individual PCB compounds of commercial PCB preparation are taken up by organisms to markedly different extents. Until now little is known about the distribution of non-planar and co-planar PCBs in different tissues. Co-planar PCBs have dioxin - like toxicity. This study examines differences in the bioconcentration of two pairs of tetra and hexa chlorobiphenyls from the digestive tract and their distribution in different tissues of guinea pigs.

  4. Planar Rayleigh-Taylor experiments on Nova

    SciTech Connect

    Remington, B.A.; Haan, S.W.; Glendinning, S.G.; Kilkenny, J.D.; Wallace, R.J.

    1991-07-02

    We have performed experiments at the Nova Laser Facility to study surface perturbation growth on planar foils accelerated radiatively by a shaped x-ray drive. The experiments are designed to address in two dimensions the extent to which single-mode perturbations grow and multiple-mode perturbations couple to one another. Using a 22x magnification x-ray microscope in combination with a large are backlighter as our primary detector system, we have accelerated planar fluorosilicone (FS) foils and plastic foils doped with bromine (CH(Br)). Using face-on radiography, we have measured the growth of single-mode sinusoidal surface perturbations in an amplitude-scaling series with FS foils and in a wavelength-scaling series with CH(Br) foils. We have also measured the growth of a perturbation consisting of the superposition of two modes. Measurements in side-on geometry give the foil trajectory. Comparisons with 2-D computer simulations show generally good agreements, though results depend on the choice of opacity model. 21 refs., 9 figs.

  5. Fungal melanins differ in planar stacking distances.

    PubMed

    Casadevall, Arturo; Nakouzi, Antonio; Crippa, Pier R; Eisner, Melvin

    2012-01-01

    Melanins are notoriously difficult to study because they are amorphous, insoluble and often associated with other biological materials. Consequently, there is a dearth of structural techniques to study this enigmatic pigment. Current models of melanin structure envision the stacking of planar structures. X ray diffraction has historically been used to deduce stacking parameters. In this study we used X ray diffraction to analyze melanins derived from Cryptococcus neoformans, Aspergillus niger, Wangiella dermatitides and Coprinus comatus. Analysis of melanin in melanized C. neoformans encapsulated cells was precluded by the fortuitous finding that the capsular polysaccharide had a diffraction spectrum that was similar to that of isolated melanin. The capsular polysaccharide spectrum was dominated by a broad non-Bragg feature consistent with origin from a repeating structural motif that may arise from inter-molecular interactions and/or possibly gel organization. Hence, we isolated melanin from each fungal species and compared diffraction parameters. The results show that the inferred stacking distances of fungal melanins differ from that reported for synthetic melanin and neuromelanin, occupying intermediate position between these other melanins. These results suggest that all melanins have a fundamental diffracting unit composed of planar graphitic assemblies that can differ in stacking distance. The stacking peak appears to be a distinguishing universal feature of melanins that may be of use in characterizing these enigmatic pigments.

  6. Multistability in planar liquid crystal wells.

    PubMed

    Luo, Chong; Majumdar, Apala; Erban, Radek

    2012-06-01

    A planar bistable liquid crystal device, reported in Tsakonas et al. [Appl. Phys. Lett. 90, 111913 (2007)], is modeled within the Landau-de Gennes theory for nematic liquid crystals. This planar device consists of an array of square micrometer-sized wells. We obtain six different classes of equilibrium profiles and these profiles are classified as diagonal or rotated solutions. In the strong anchoring case, we propose a Dirichlet boundary condition that mimics the experimentally imposed tangent boundary conditions. In the weak anchoring case, we present a suitable surface energy and study the multiplicity of solutions as a function of the anchoring strength. We find that diagonal solutions exist for all values of the anchoring strength W ≥ 0, while rotated solutions only exist for W ≥ W_{c}>0, where W_{c} is a critical anchoring strength that has been computed numerically. We propose a dynamic model for the switching mechanisms based on only dielectric effects. For sufficiently strong external electric fields, we numerically demonstrate diagonal-to-rotated and rotated-to-diagonal switching by allowing for variable anchoring strength across the domain boundary.

  7. Planarization of topography with spin-on carbon hard mask

    NASA Astrophysics Data System (ADS)

    Noya, Go; Hama, Yusuke; Ishii, Maki; Nakasugi, Shigemasa; Kudo, Takanori; Padmanaban, Munirathna

    2016-03-01

    Spin-on-carbon hard mask (SOC HM) has been used in semiconductor manufacturing since 45nm node as an alternative carbon hard mask process to chemical vapor deposition (CVD). As advancement of semiconductor to 2X nm nodes and beyond, multiple patterning technology is used and planarization of topography become more important and challenging ever before. In order to develop next generation SOC, one of focuses is planarization of topography. SOC with different concepts for improved planarization and the influence of thermal flow temperature, crosslink, film shrinkage, baking conditions on planarization and filling performance are described in this paper.

  8. Planar Particle Imaging Doppler Velocimetry Developed

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    2000-01-01

    Two current techniques exist for the measurement of planar, three-component velocity fields. Both techniques require multiple views of the illumination plane in order to extract all three velocity components. Particle image velocimetry (PIV) is a high-resolution, high accuracy, planar velocimetry technique that provides valuable instantaneous velocity information in aeropropulsion test facilities. PIV can provide three-component flow-field measurements using a two-camera, stereo viewing configuration. Doppler global velocimetry (DGV) is another planar velocimetry technique that can provide three component flow-field measurements; however, it requires three detector systems that must be located at oblique angles from the measurement plane. The three-dimensional configurations of either technique require multiple (DGV) or at least large (stereo PIV) optical access ports in the facility in which the measurements are being conducted. Optical access is extremely limited in aeropropulsion test facilities. In many cases, only one optical access port is available. A hybrid measurement technique has been developed at the NASA Glenn Research Center, planar particle image and Doppler velocimetry (PPIDV), which combines elements from both the PIV and DGV techniques into a single detection system that can measure all three components of velocity across a planar region of a flow field through a single optical access port. In the standard PIV technique, a pulsed laser is used to illuminate the flow field at two closely spaced instances in time, which are recorded on a "frame-straddling" camera, yielding a pair of single-exposure image frames. The PIV camera is oriented perpendicular to the light sheet, and the processed PIV data yield the two-component velocity field in the plane of the light sheet. In the standard DGV technique, an injection-seeded Nd:YAG pulsed laser light sheet illuminates the seeded flow field, and three receiver systems are used to measure three components

  9. Indirectly driven targets for ignition

    SciTech Connect

    Wilson, D.C.; Krauser, W.J.

    1994-12-31

    Both Los Alamos and Lawrence Livermore Laboratories have studied capsule and laser driven target designs for the National Ignition Facility. The current hohlraum design is a 2.76mm radius, 9.5mm long gold cylinder with 1.39mm radius laser entrance holes covered by 1{mu}m thick plastic foils. Laser beams strike the inside cylinder wall from two separate cones with a peak power less than 400 TW. The problem with a pressure pulse caused by wall plasma stagnating on axis has been overcome by filling the hohlraum with gas. Currently this is equi-molar hydrogen-helium gas at 0.83 mg/cc density. One capsule uses a 160 {mu}m plastic ablator doped with oxygen and bromine surrounding an 80 {mu}m thick DT ice layer with an inner radius of 0.87 mm. Los Alamos integrated calculations of the hohlraum and this capsule using 1.4 MJ of laser energy achieve yields of 4.9 MJ using LTE atomic physics, and 3.5 MJ with non-LTE. This confirms Livermore calculations of ignition. For radiation driven implosions, a beryllium ablator offers a viable alternative to plastic. It is strong enough to contain high DT pressures. Copper, soluble at required levels, is an excellent dopant to add opacity. A beryllium capsule with a 155 {mu}m thick ablator doped with 0.9 atom % copper, and the same inner dimensions as the plastic capsule, placed in a similar hohlraum , yields 6.9 MJ with LTE. Although these calculations show the designs are sensitive, they add to the confidence that NIF can achieve ignition. Using their best integrated calculations which are not yet fully optimized, they confirm Livermore calculations of ignition with a plastic capsule, and have added an alternate capsule design with a beryllium ablator.

  10. MCM Polarimetric Radiometers for Planar Arrays

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Dawson, Douglas; Gaier, Todd

    2007-01-01

    A polarimetric radiometer that operates at a frequency of 40 GHz has been designed and built as a prototype of multiple identical units that could be arranged in a planar array for scientific measurements. Such an array is planned for use in studying the cosmic microwave background (CMB). All of the subsystems and components of this polarimetric radiometer are integrated into a single multi-chip module (MCM) of substantially planar geometry. In comparison with traditional designs of polarimetric radiometers, the MCM design is expected to greatly reduce the cost per unit in an array of many such units. The design of the unit is dictated partly by a requirement, in the planned CMB application, to measure the Stokes parameters I, Q, and U of the CMB radiation with high sensitivity. (A complete definition of the Stokes parameters would exceed the scope of this article. In necessarily oversimplified terms, I is a measure of total intensity of radiation, while Q and U are measures of the relationships between the horizontally and vertically polarized components of radiation.) Because the sensitivity of a single polarimeter cannot be increased significantly, the only way to satisfy the high-sensitivity requirement is to make a large array of polarimeters that operate in parallel. The MCM includes contact pins that can be plugged into receptacles on a standard printed-circuit board (PCB). All of the required microwave functionality is implemented within the MCM; any required supporting non-microwave ("back-end") electronic functionality, including the provision of DC bias and control signals, can be implemented by standard PCB techniques. On the way from a microwave antenna to the MCM, the incoming microwave signal passes through an orthomode transducer (OMT), which splits the radiation into an h + i(nu) beam and an h - i(nu) beam (where, using complex-number notation, h denotes the horizontal component, nu denotes the vertical component, and +/-i denotes a +/-90deg phase

  11. Achromatic illumination system for small targets

    DOEpatents

    Sigler, Robert D.

    1979-01-01

    A pair of light beams is directed to provide illumination that is substantially uniform from all directions on a small target by a system comprising a pair of corrector windows, a pair of planar reflecting surfaces, a pair of paraboloidal mirrors and a reflecting mirror cavity. The components are arranged so that each of the beams passes through a corrector and is reflected from the planar surface to the paraboloidal mirror, from which it is focused through a hole in the planar surface to the interior of the cavity. The surface of the interior portion of the cavity is shaped to reflect the focused beam three times before the focused reflected beam strikes the target.

  12. Enhanced relativistic laser-plasma coupling utilizing laser-induced micromodified target

    NASA Astrophysics Data System (ADS)

    Ivanov, K. A.; Brantov, A. V.; Kudryashov, S. I.; Makarov, S. V.; Gozhev, D. A.; Volkov, R. V.; Ionin, A. A.; Bychenkov, V. Yu; Savel'ev, A. B.

    2015-04-01

    The interaction of slighly relativistic femtosecond laser radiation with microstructured Si targets was studied. The microstructuring was performed by nanosecond pulse laser ablation with additional chemical etching of the target material. An analysis was made of the optical damage under the action of femtosecond radiation near the ablation threshold. It was experimentally demonstrated that the hot electron temperature increases appreciably in the laser-driven plasma (from ~370 to almost 500 keV) as well as radiation yield in the MeV range at the interaction of a high power femtosecond laser pulse with a microstructured surface in comparison with a flat surface. Numerical simulations using 3D3V PIC code Mandor revealed that the charged particle energy growth is caused by the stochastic motion of electrons in the complex field formed by the laser field and the quasistatic field at the sharp tips of micromodifications.

  13. High efficiency proton beam generation through target thickness control in femtosecond laser-plasma interactions

    SciTech Connect

    Green, J. S. Robinson, A. P. L.; Booth, N.; Carroll, D. C.; Rusby, D.; Wilson, L.; Dance, R. J.; Gray, R. J.; MacLellan, D. A.; McKenna, P.; Murphy, C. D.

    2014-05-26

    Bright proton beams with maximum energies of up to 30 MeV have been observed in an experiment investigating ion sheath acceleration driven by a short pulse (<50 fs) laser. The scaling of maximum proton energy and total beam energy content at ultra-high intensities of ∼10{sup 21} W cm{sup −2} was investigated, with the interplay between target thickness and laser pre-pulse found to be a key factor. While the maximum proton energies observed were maximised for μm-thick targets, the total proton energy content was seen to peak for thinner, 500 nm, foils. The total proton beam energy reached up to 440 mJ (a conversion efficiency of 4%), marking a significant step forward for many laser-driven ion applications. The experimental results are supported by hydrodynamic and particle-in-cell simulations.

  14. Energy landscapes of planar colloidal clusters

    NASA Astrophysics Data System (ADS)

    Morgan, John W. R.; Wales, David J.

    2014-08-01

    A short-ranged pairwise Morse potential is used to model colloidal clusters with planar morphologies. Potential and free energy global minima as well as rearrangement paths, obtained by basin-hopping global optimisation and discrete path sampling, are characterised. The potential and free energy landscapes are visualised using disconnectivity graphs. The short-ranged potential is found to favour close-packed structures, with the potential energy primarily controlled by the number of nearest neighbour contacts. In the case of quasi-degeneracy the free energy global minimum may differ from the potential energy global minimum. This difference is due to symmetry effects, which result in a higher entropy for structures with lower symmetry.

  15. Exact formation of hairy planar black holes

    NASA Astrophysics Data System (ADS)

    Fan, Zhong-Ying; Chen, Bin

    2016-04-01

    We consider Einstein gravity minimally coupled to a scalar field with a given potential in general dimensions. We obtain large classes of static hairy planar black holes which are asymptotic to anti-de Sitter (AdS) space-times. In particular, for a special case μ =(n -2 )/2 , we obtain new classes of exact dynamical solutions describing black hole formation. We find there are two classes of collapse solutions. The first class of solutions describes the evolution start from AdS space-time with a naked singularity at the origin. The space-time is linearly unstable and evolves into stationary black hole states even under small perturbation. The second class of solutions describes the space-time spontaneously evolving from AdS vacua into stationary black hole states undergoing nonlinear instability. We also discuss the global properties of all these dynamical solutions.

  16. Planar Thermoelectric Microgenerators Based on Silicon Nanowires

    NASA Astrophysics Data System (ADS)

    Dávila, D.; Tarancón, A.; Kendig, D.; Fernández-Regúlez, M.; Sabaté, N.; Salleras, M.; Calaza, C.; Cané, C.; Gràcia, I.; Figueras, E.; Santander, J.; San Paulo, A.; Shakouri, A.; Fonseca, L.

    2011-05-01

    Silicon nanowires have been implemented in microfabricated structures to develop planar thermoelectric microgenerators ( μTEGs) monolithically integrated in silicon to convert heat flow from thermal gradients naturally present in the environment into electrical energy. The compatibility of typical microfabrication technologies and the vapor-liquid-solid (VLS) mechanism employed for silicon nanowire growth has been evaluated. Low-thermal-mass suspended structures have been designed, simulated, and microfabricated on silicon-on-insulator substrates to passively generate thermal gradients and operate as microgenerators using silicon nanowires as thermoelectric material. Both electrical measurements to evaluate the connectivity of the nanowires and thermoreflectance imaging to determine the heat transfer along the device have been employed.

  17. Energy landscapes of planar colloidal clusters.

    PubMed

    Morgan, John W R; Wales, David J

    2014-09-21

    A short-ranged pairwise Morse potential is used to model colloidal clusters with planar morphologies. Potential and free energy global minima as well as rearrangement paths, obtained by basin-hopping global optimisation and discrete path sampling, are characterised. The potential and free energy landscapes are visualised using disconnectivity graphs. The short-ranged potential is found to favour close-packed structures, with the potential energy primarily controlled by the number of nearest neighbour contacts. In the case of quasi-degeneracy the free energy global minimum may differ from the potential energy global minimum. This difference is due to symmetry effects, which result in a higher entropy for structures with lower symmetry.

  18. Droplet Impact on Inclined, Planar Surfaces

    NASA Astrophysics Data System (ADS)

    Neitzel, G. Paul; Carroll, Phares

    2010-11-01

    The impact of a liquid droplet on a planar surface is of interest in a variety of applications ranging from droplet-impingement cooling to forensic blood-spatter analysis. An experimental system capable of generating liquid droplets of varying diameters and velocities of relevance to the latter of these applications has been developed for use in an educational context by secondary-school students. Experiments have been performed to quantify droplet patterns corresponding to several relevant dimensionless parameters, i.e., the Weber number, contact angle, impact/inclination angle, and roughness ratio. Results show that characteristics of droplet collisions, namely the eccentricity of the splash zone and creation of spines from a droplet's corona, can be attributed to and predicted by these dimensionless parameters for the range of inclination angle, Weber number, and impact surfaces included in the present study.

  19. Planar-constructed spatial micro-stage

    DOEpatents

    Jokiel, Jr., Bernhard; Benavides, Gilbert L.; Bieg, Lothar F.; Allen, James J.

    2004-01-13

    A multiple degree of freedom platform assembly formed from a plurality of thin films on a substrate can, when activated, move out of the plane of the substrate without additional manufacturing steps. The platform is connected to the substrate by at least three linkages, each linkage being pivotally connected to the platform and the base. At least two of the base connections are to powered traveling devices that are manufactured at one end of a path and which may be moved to locations along the path to cause the platform to move to predetermined positions. The entire assembly, including hinges, is manufactured as planar structures; preferably by a thin film technology such as MEMS.

  20. All-metal superconducting planar microwave resonator

    NASA Astrophysics Data System (ADS)

    Horsley, Matt; Pereverzev, Sergey; Dubois, Jonathon; Friedrich, Stephan; Qu, Dongxia; Libby, Steve; Lordi, Vincenzo; Carosi, Gianpaolo; Stoeffl, Wolfgang; Chapline, George; Drury, Owen; Quantum Noise in Superconducting Devices Team

    There is common agreement that noise and resonance frequency jitter in superconducting microwave planar resonators are caused by presence of two-level systems, or fluctuators, in resonator materials- in dielectric substrate, in superconducting and dielectric layers and on the boundaries and interfaces. Scaling of noise with device dimensions indicate that fluctuators are likely concentrated around boundaries; physical nature of those fluctuators remains unclear. The presence of dielectrics is not necessary for the superconducting device functionality, and one can ask question about properties of all-metal device, where dielectric substrate and oxide films on metal are absent. Resonator made from of thin conducting layer with cuts in it is usually called slot line resonator. We report on the design, fabrication and initial testing of multiple split rings slot line resonator made out of thin molybdenum plate. This work is being funded as part of a three year strategic initiative (LDRD 16-SI-004) to better understand noise in superconducting devices.