Sample records for planar maximum deviations

  1. 2,4-Dichloro­pyrimidine

    PubMed Central

    Chen, Yan; Fang, Zheng; Wei, Ping

    2009-01-01

    The mol­ecule of the title compound, C4H2Cl2N2, is almost planar [maximum deviation = 0.013 (3) Å for a Cl atom]. In the crystal structure, inter­molecular C—H⋯N inter­actions link the mol­ecules into chains. PMID:21583278

  2. N-Crotylphthalimide

    PubMed Central

    Flores-Alamo, Marcos; del Carmen Romero-Quiroz, María; Morgado, Jorge

    2010-01-01

    In the title compound {systematic name: 2-[(E)-but-2-en-1-yl]isoindoline-1,3-dione}, C12H11NO2, the phthalimide ring system is essentially planar, with a maximum deviation of 0.008 (1) Å, while the plane of the N-crotyl substituent is orthogonal to the phthalimide ring system, making a dihedral angle of 87.5 (1)°. PMID:21589502

  3. Assessment of planarity of the golf swing based on the functional swing plane of the clubhead and motion planes of the body points.

    PubMed

    Kwon, Young-Hoo; Como, Christopher S; Singhal, Kunal; Lee, Sangwoo; Han, Ki Hoon

    2012-06-01

    The purposes of this study were (1) to determine the functional swing plane (FSP) of the clubhead and the motion planes (MPs) of the shoulder/arm points and (2) to assess planarity of the golf swing based on the FSP and the MPs. The swing motions of 14 male skilled golfers (mean handicap = -0.5 +/- 2.0) using three different clubs (driver, 5-iron, and pitching wedge) were captured by an optical motion capture system (250Hz). The FSP and MPs along with their slope/relative inclination and direction/direction of inclination were obtained using a new trajectory-plane fitting method. The slope and direction of the FSP revealed a significant club effect (p < 0.001). The relative inclination and direction of inclination of the MP showed significant point (p < 0.001) and club (p < 0.001) effects and interaction (p < 0.001). Maximum deviations of the points from the FSP revealed a significant point effect (p < 0.001) and point-club interaction (p < 0.001). It was concluded that skilled golfers exhibited well-defined and consistent FSP and MPs, and the shoulder/arm points moved on vastly different MPs and exhibited large deviations from the FSP. Skilled golfers in general exhibited semi-planar downswings with two distinct phases: a transition phase and a planar execution phase.

  4. 1-(Hydroxy­meth­yl)pyrene

    PubMed Central

    Gruber, Tobias; Seichter, Wilhelm; Weber, Edwin

    2010-01-01

    The asymmetric unit of the title compound, C17H12O, contains two molecules, in which the fused aromatic ring systems are almost planar [maximum deviations = 0.0529 (9) and 0.0256 (9) Å]. In the crystal, aromatic π–π stacking inter­actions (perpendicular distance of centroids of about 3.4 Å) and strong O—H⋯O hydrogen bonds result in a helical arrangement of pyrenyl dimers. PMID:21579858

  5. Propyl 3-oxo-2,3-dihydro-1,2-benzothia-zole-2-carboxyl-ate.

    PubMed

    Wang, Xiang-Hui; Yang, Jian-Xin; You, Cheng-Hang; Lin, Qiang

    2011-09-01

    The title compound, C(11)H(11)NO(3)S, was synthesized by the reaction of benzo[d]isothia-zol-3(2H)-one with propyl carbono-chloridate in toluene. The benzoisothiazolone ring system is approximately planar with a maximum deviation from the mean plane of 0.0226 (14) Å for the N atom. Weak inter-molecular C-H⋯O hydrogen bonding occurs in the crystal structure.

  6. Bis(2,1,3-benzoselenadiazole-κN)dibromidocopper(II)

    PubMed Central

    Fun, Hoong-Kun; Goh, Jia Hao; Maity, Annada C.; Goswami, Shyamaprosad

    2011-01-01

    In the title complex, [CuBr2(C6H4N2Se)2], the CuII ion is tetra­coordinated by two bromide anions and two N atoms in a distorted square-planar geometry. The two essentially planar 2,1,3-benzoselenadiazole ligands [maximum deviations = 0.012 (2) and 0.030 (2) Å] are approximately coplanar [dihedral angle = 6.14 (6)°]. In the crystal, short inter­molecular Se⋯Br, Se⋯N and N⋯N inter­actions are observed. These short inter­actions and inter­molecular C—H⋯Br hydrogen bonds link the complex mol­ecules into two-dimensional arrays parallel to the ac plane. PMID:21522854

  7. Planar structured perovskite solar cells by hybrid physical chemical vapor deposition with optimized perovskite film thickness

    NASA Astrophysics Data System (ADS)

    Wei, Xiangyang; Peng, Yanke; Jing, Gaoshan; Cui, Tianhong

    2018-05-01

    The thickness of perovskite absorber layer is a critical parameter to determine a planar structured perovskite solar cell’s performance. By modifying the spin coating speed and PbI2/N,N-dimethylformamide (DMF) solution concentration, the thickness of perovskite absorber layer was optimized to obtain high-performance solar cells. Using a PbI2/DMF solution of 1.3 mol/L, maximum power conversion efficiency (PCE) of a perovskite solar cell is 15.5% with a perovskite film of 413 nm at 5000 rpm, and PCE of 14.3% was also obtained for a solar cell with a perovskite film of 182 nm thick. It is derived that higher concentration of PbI2/DMF will result in better perovskite solar cells. Additionally, these perovskite solar cells are highly uniform. In 14 sets of solar cells, standard deviations of 11 sets of solar cells were less than 0.50% and the smallest standard deviation was 0.25%, which demonstrates the reliability and effectiveness of hybrid physical chemical vapor deposition (HPCVD) method.

  8. 4-Nitro­benzyl 2-bromo­acetate

    PubMed Central

    Zhu, Kai; Liu, Hui; Wang, Yan-Hua; Han, Ping-Fang; Wei, Ping

    2009-01-01

    In the mol­ecule of the title compound, C9H8BrNO4, the acetate group is close to planar [maximum deviation = 0.042 (3) Å] and is oriented at a dihedral angle of 73.24 (3)° with respect to the aromatic ring. In the crystal structure, inter­molecular C—H⋯O inter­actions link the mol­ecules into a three-dimensional network, forming R 2 2(10) ring motifs. PMID:21582813

  9. Propyl 3-oxo-2,3-dihydro-1,2-benzothia­zole-2-carboxyl­ate

    PubMed Central

    Wang, Xiang-hui; Yang, Jian-xin; You, Cheng-hang; Lin, Qiang

    2011-01-01

    The title compound, C11H11NO3S, was synthesized by the reaction of benzo[d]isothia­zol-3(2H)-one with propyl carbono­chloridate in toluene. The benzoisothiazolone ring system is approximately planar with a maximum deviation from the mean plane of 0.0226 (14) Å for the N atom. Weak inter­molecular C—H⋯O hydrogen bonding occurs in the crystal structure. PMID:22065833

  10. Directional amorphization of boron carbide subjected to laser shock compression.

    PubMed

    Zhao, Shiteng; Kad, Bimal; Remington, Bruce A; LaSalvia, Jerry C; Wehrenberg, Christopher E; Behler, Kristopher D; Meyers, Marc A

    2016-10-25

    Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45∼50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B 4 C.

  11. Directional amorphization of boron carbide subjected to laser shock compression

    PubMed Central

    Zhao, Shiteng; Kad, Bimal; Remington, Bruce A.; LaSalvia, Jerry C.; Wehrenberg, Christopher E.; Behler, Kristopher D.; Meyers, Marc A.

    2016-01-01

    Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45∼50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B4C. PMID:27733513

  12. Directional amorphization of boron carbide subjected to laser shock compression

    DOE PAGES

    Zhao, Shiteng; Kad, Bimal; Remington, Bruce A.; ...

    2016-10-12

    Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. When using high-power pulsed-laser-driven shock compression, an unprecedented high strain rates can be achieved; we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45~50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. We also propose that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversionmore » calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B 4C.« less

  13. Experimental and theoretical studies of the crystal structures of bis-isoxazole-bis-methylene dinitrate (BIDN) and bis-isoxazole tetramethylene tetranitrate (BITN) by x-ray crystallography and density functional theory

    NASA Astrophysics Data System (ADS)

    Taylor, Decarlos E.; Sausa, Rosario C.

    2018-06-01

    The determination of crystal structures plays an important role for model testing and validation, and understanding intra and intermolecular interactions that influence crystal packing. Here, we report the molecular structure of two recently synthesized energetic molecules, 3,3-bis-isoxazole-5,5‧-bis-methylene dinitrate (C8H6N4O8, BIDN) and bis-isoxazole tetramethylene tetranitrate (C10H8N6O14, BITN) determined by single crystal x-ray diffraction and solid state density functional theory (DFT). BIDN is composed of two planar alkyl nitrate groups (r.m.s deviation = 0.0004 (1) Å) bonded to two planar azole rings (r.m.s deviation = 0.001 (1) Å, whereas BITN is composed of four planar alkyl nitrate groups (average r.m.s deviation = 0.002 (1) Å) bonded to two planar azole rings (average r.m.s deviation = 0.002 (1) Å). The theoretical calculations predict very well the planarity of both the alkyl nitrate groups and rings for both compounds. Furthermore, they predict well the bond lengths and angles of both molecules with mean deviation values of 0.018 Å (BIDN) and 0.017 Å (BITN) and 0.481° (BIDN) and 0.747° (BITN). Overall, the DFT determined torsion angles agree well with those determined experimentally for both BIDN (average deviation = 1.139°) and BITN (average deviation = 0.604°). The theoretical cell constant values are in excellent agreement with those determined experimentally for both molecules, with the BIDN a cell value and β angle showing the largest deviation, 2.1% and -1.3%, respectively. Contacts between the atoms N and H dominate the intermolecular interactions of BIDN, whereas contacts involving the atoms O and H dominate the BITN intermolecular interactions. Electrostatic potential calculations at the B3LYP/6-31G* level reveal BIDN exhibits a lower sensitivity to impact compared to BITN.

  14. A discrete spherical harmonics method for radiative transfer analysis in inhomogeneous polarized planar atmosphere

    NASA Astrophysics Data System (ADS)

    Tapimo, Romuald; Tagne Kamdem, Hervé Thierry; Yemele, David

    2018-03-01

    A discrete spherical harmonics method is developed for the radiative transfer problem in inhomogeneous polarized planar atmosphere illuminated at the top by a collimated sunlight while the bottom reflects the radiation. The method expands both the Stokes vector and the phase matrix in a finite series of generalized spherical functions and the resulting vector radiative transfer equation is expressed in a set of polar directions. Hence, the polarized characteristics of the radiance within the atmosphere at any polar direction and azimuthal angle can be determined without linearization and/or interpolations. The spatial dependent of the problem is solved using the spectral Chebyshev method. The emergent and transmitted radiative intensity and the degree of polarization are predicted for both Rayleigh and Mie scattering. The discrete spherical harmonics method predictions for optical thin atmosphere using 36 streams are found in good agreement with benchmark literature results. The maximum deviation between the proposed method and literature results and for polar directions \\vert μ \\vert ≥0.1 is less than 0.5% and 0.9% for the Rayleigh and Mie scattering, respectively. These deviations for directions close to zero are about 3% and 10% for Rayleigh and Mie scattering, respectively.

  15. 1-[(3,5-Dimethyl-1H-pyrazol-1-yl)carbon­yl]-5-methyl­indolizine-3-carbo­nitrile

    PubMed Central

    Gu, Wei-Jin; Xie, Wen-Li; Wang, Ting-Ting

    2012-01-01

    In the title mol­ecule, C16H14N4O, the indolizine ring system is essentially planar, with a maximum deviation of 0.013 (3) Å, and forms a dihedral angle of 7.52 (12)° with the pyrazole ring. In the crystal, weak C—H⋯O hydrogen bonds and π–π stacking inter­actions, with a centroid–centroid distance of 3.6378 (16) Å, link mol­ecules along [001]. PMID:23476226

  16. Technical errors in planar bone scanning.

    PubMed

    Naddaf, Sleiman Y; Collier, B David; Elgazzar, Abdelhamid H; Khalil, Magdy M

    2004-09-01

    Optimal technique for planar bone scanning improves image quality, which in turn improves diagnostic efficacy. Because planar bone scanning is one of the most frequently performed nuclear medicine examinations, maintaining high standards for this examination is a daily concern for most nuclear medicine departments. Although some problems such as patient motion are frequently encountered, the degraded images produced by many other deviations from optimal technique are rarely seen in clinical practice and therefore may be difficult to recognize. The objectives of this article are to list optimal techniques for 3-phase and whole-body bone scanning, to describe and illustrate a selection of deviations from these optimal techniques for planar bone scanning, and to explain how to minimize or avoid such technical errors.

  17. An exact solution for the steady state phase distribution in an array of oscillators coupled on a hexagonal lattice

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.

    2004-01-01

    When electronic oscillators are coupled to nearest neighbors to form an array on a hexagonal lattice, the planar phase distributions desired for excitation of a phased array antenna are not steady state solutions of the governing non-linear equations describing the system. Thus the steady state phase distribution deviates from planar. It is shown to be possible to obtain an exact solution for the steady state phase distribution and thus determine the deviation from the desired planar distribution as a function of beam steering angle.

  18. 2,3-Dimethyl-6-nitro-2H-indazole

    PubMed Central

    Chen, Yan; Fang, Zheng; Wei, Ping

    2009-01-01

    In the mol­ecule of the title compound, C9H9N3O2, the indazole ring system is almost planar [maximum deviation = 0.019 (3) Å for the C atom bearing the nitro group]. In the crystal structure, inter­molecular C—H⋯O inter­actions link the mol­ecules into centrosymmetric dimers, forming R 2 2(18) ring motifs. Aromatic π–π contacts between indazole rings [centroid–centroid distances = 3.632 (1) and 3.705 (1) Å] may further stabilize the structure. PMID:21583483

  19. The 1:1 co-crystal of 2-bromo-naphthalene-1,4-dione and 1,8-di-hydroxy-anthracene-9,10-dione: crystal structure and Hirshfeld surface analysis.

    PubMed

    Tonin, Marlon D L; Garden, Simon J; Jotani, Mukesh M; Wardell, Solange M S V; Wardell, James L; Tiekink, Edward R T

    2017-05-01

    The asymmetric unit of the title co-crystal, C 10 H 5 BrO 2 ·C 14 H 8 O 4 [systematic name: 2-bromo-1,4-di-hydro-naphthalene-1,4-dione-1,8-dihy-droxy-9,10-di-hydro-anthracene-9,10-dione (1/1)], features one mol-ecule of each coformer. The 2-bromo-naphtho-quinone mol-ecule is almost planar [r.m.s deviation of the 13 non-H atoms = 0.060 Å, with the maximum deviations of 0.093 (1) and 0.099 (1) Å being for the Br atom and a carbonyl-O atom, respectively]. The 1,8-di-hydroxy-anthra-quinone mol-ecule is planar (r.m.s. deviation for the 18 non-H atoms is 0.022 Å) and features two intra-molecular hy-droxy-O-H⋯O(carbon-yl) hydrogen bonds. Dimeric aggregates of 1,8-di-hydroxy-anthra-quinone mol-ecules assemble through weak inter-molecular hy-droxy-O-H⋯O(carbon-yl) hydrogen bonds. The mol-ecular packing comprises stacks of mol-ecules of 2-bromo-naphtho-quinone and dimeric assembles of 1,8-di-hydroxy-anthra-quinone with the shortest π-π contact within a stack of 3.5760 (9) Å occurring between the different rings of 2-bromo-naphtho-quinone mol-ecules. The analysis of the Hirshfeld surface reveals the importance of the inter-actions just indicated but, also the contribution of additional C-H⋯O contacts as well as C=O⋯π inter-actions to the mol-ecular packing.

  20. Descriptive parameter for photon trajectories in a turbid medium

    NASA Astrophysics Data System (ADS)

    Gandjbakhche, Amir H.; Weiss, George H.

    2000-06-01

    In many applications of laser techniques for diagnostic or therapeutic purposes it is necessary to be able to characterize photon trajectories to know which parts of the tissue are being interrogated. In this paper, we consider the cw reflectance experiment on a semi-infinite medium with uniform optical parameters and having a planar interface. The analysis is carried out in terms of a continuous-time random walk and the relation between the occupancy of a plane parallel to the surface to the maximum depth reached by the random walker is studied. The first moment of the ratio of average depth to the average maximum depth yields information about the volume of tissue interrogated as well as giving some indication of the region of tissue that gets the most light. We have also calculated the standard deviation of this random variable. It is not large enough to qualitatively affect information contained in the first moment.

  1. Crystal structure of 3-amino-1-(4-meth-oxy-phen-yl)-1H-benzo[f]chromene-2-carbo-nitrile.

    PubMed

    Mohamed, Shaaban K; Horton, Peter N; Akkurt, Mehmet; Younes, Sabry H H; Albayati, Mustafa R

    2015-07-01

    In the title compound, C21H16N2O2, the meth-oxy-benzene ring is almost perpendicular to the mean plane of the naphthalene ring system, making a dihedral angle of 83.62 (5)°. The 4H-pyran ring fused with the naphthalene ring system is almost planar [maximum deviation = 0.033 (1) Å]. In the crystal, mol-ecules are linked into inversion dimers by pairs of N-H⋯N hydrogen bonds. N-H⋯O hydrogen bonds connect the dimers, forming a helical supra-molecular chain along the a-axis direction. The crystal packing also features C-H⋯π inter-actions.

  2. Wetting, meniscus structure, and capillary interactions of microspheres bound to a cylindrical liquid interface.

    PubMed

    Kim, Paul Y; Dinsmore, Anthony D; Hoagland, David A; Russell, Thomas P

    2018-03-14

    Wetting, meniscus structure, and capillary interactions for polystyrene microspheres deposited on constant curvature cylindrical liquid interfaces, constructed from nonvolatile ionic or oligomeric liquids, were studied by optical interferometry and optical microscopy. The liquid interface curvature resulted from the preferential wetting of finite width lines patterned onto planar silicon substrates. Key variables included sphere diameter, nominal (or average) contact angle, and deviatoric interfacial curvature. Menisci adopted the quadrupolar symmetry anticipated by theory, with interfacial deformation closely following predicted dependences on sphere diameter and nominal contact angle. Unexpectedly, the contact angle was not constant locally around the contact line, the nominal contact angle varied among seemingly identical spheres, and the maximum interface deviation did not follow the predicted dependence on deviatoric interfacial curvature. Instead, this deviation was up to an order-of-magnitude larger than predicted. Trajectories of neighboring microspheres visually manifested quadrupole-quadrupole interactions, eventually producing square sphere packings that foreshadow interfacial assembly as a potential route to hierarchical 2D particle structures.

  3. (7-Chloro-2-oxo-2H-chromen-4-yl)methyl pyrrolidine-1-carbodi­thio­ate

    PubMed Central

    Kotresh, O.; Devarajegowda, H. C.; Shirahatti, Arunkumar; Kumar, K. Mahesh; Mahabhaleshwaraiah, N. M.

    2013-01-01

    In the title compound, C15H14ClNO2S2, the 2H-chromene ring system is essentially planar, with a maximum deviation of 0.0133 (10) Å. Three C atoms and their attached H atoms of the pyrrolidine ring are disordered [occupany ratio 0.874 (7):0.126 (7)] with both disorder components adopting a twisted conformation. The dihedral angle between the 2H-chromene ring system and the major occupancy component of the pyrrolidine ring is 89.45 (7)°. In the crystal, inversion dimers linked by pairs of C—H⋯S and C—H⋯O inter­actions generate R 2 2(24) and R 2 2(10) loops, respectively. Further C—H⋯O hydrogen bonds link the dimers into [100] chains. C—H⋯π inter­actions also occur and there is very weak π–π stacking [inter­planar spacing = 3.650 (5) Å; centroid–centroid distance = 4.095 (7) Å] between inversion-related chloro­benzene rings. PMID:24454115

  4. Crystal structure of di-bromo-meth-oxy-seselin (DBMS), a photobiologically active pyran-ocoumarin.

    PubMed

    Bauri, A K; Foro, Sabine; Rahman, A F M M

    2017-05-01

    The title compound, C 15 H 14 Br 2 O 4 [systematic name: rac -(9 S ,10 R )-3,9-dibromo-10-methoxy-8,8-dimethyl-9,10-dihydropyrano[2,3- h ]chromen-2(8 H )-one], is a pyran-ocoumarin derivative formed by the bromination of seselin, which is a naturally occurring angular pyran-ocoumarin isolated from the Indian herb Trachyspermum stictocarpum . In the mol-ecule, the benzo-pyran ring system is essentially planar, with a maximum deviation of 0.044 (2) Å for the O atom. The di-hydro-pyran ring is in a half-chair conformation and the four essentially planar atoms of this ring form a dihedral angle of 4.6 (2)° with the benzo-pyran ring system. In the crystal, mol-ecules are linked by weak C-H⋯O hydrogen bonds, forming chains propagating along [010]. In addition, π-π stacking inter-actions, with centroid-centroid distances of 3.902 (2) and 3.908 (2) Å, link the hydrogen-bonded chains into layers parallel to (001).

  5. 4-Diphenyl­phosphanyl-1,5-naphthyridine

    PubMed Central

    Wu, Ya-Ming

    2012-01-01

    The asymmetric unit of the title compound, C20H15N2P, contains two independent mol­ecules with similar structures. The 1,5-naphthyridine ring system is nearly planar, with maximum deviations of 0.010 (3) and 0.012 (3) Å; its mean plane is oriented with respect to the two phenyl rings at 79.69 (12) and 84.00 (10)° in one mol­ecule, and at 74.25 (12) and 82.05 (11)° in the other. The two phenyl rings are twisted with respect to each other with a dihedral angle of 75.96 (14)° in one mol­ecule and 86.30 (13)° in the other. PMID:23125782

  6. 5-Amino-7-(4-bromo­phen­yl)-3,7-di­hydro-2H-thieno[3,2-b]pyran-6-carbo­nitrile 1,1-dioxide

    PubMed Central

    Yu, Chen-Xia; Feng, Xiao-Dong; Jiang, Bei; Wang, Cui-Hua; Yao, Chang-Sheng

    2010-01-01

    In the title compound, C14H11BrN2O3S, the 2,3-dihydro­thio­phene ring is almost planar [maximum deviation = 0.006 (1) Å]. The pyran ring is in an envelope conformation [puckering parameters Q = 0.115 (2) Å, θ = 77.5 (10), ϕ = 172.9 (10)°]. The pyran and phenyl rings are approximately perpendicular, making a dihedral angle of −76.4 (2)°. The crystal packing is stabilized by inter­molecular N—H⋯O hydrogen bonds, with the sulfone O atoms acting as acceptors. PMID:21579705

  7. Crystal structure of 1-ferrocenyl-2-(4-methyl-benzo-yl)spiro-[11H-pyrrolidizine-3,11'-indeno[1,2-b]quinoxaline].

    PubMed

    Chandralekha, Kuppan; Gavaskar, Deivasigamani; Sureshbabu, Adukamparai Rajukrishnan; Lakshmi, Srinivasakannan

    2014-09-01

    In the title compound, [Fe(C5H5)(C34H28N3O)], the four-fused-rings system of the 11H-indeno-[1,2-b]quinoxaline unit is approximately planar [maximum deviation = 0.167 (4) Å] and forms a dihedral angle of 37.25 (6)° with the plane of the benzene ring of the methyl-benzoyl group. Both pyrrolidine rings adopt a twist conformation. An intra-molecular C-H⋯O hydrogen bond is observed. In the crystal, mol-ecules are linked by C-H⋯O hydrogen bonds and weak C-H⋯π inter-actions, forming double chains extending parallel to the c axis.

  8. Zero, minimum and maximum relative radial acceleration for planar formation flight dynamics near triangular libration points in the Earth-Moon system

    NASA Astrophysics Data System (ADS)

    Salazar, F. J. T.; Masdemont, J. J.; Gómez, G.; Macau, E. E.; Winter, O. C.

    2014-11-01

    Assume a constellation of satellites is flying near a given nominal trajectory around L4 or L5 in the Earth-Moon system in such a way that there is some freedom in the selection of the geometry of the constellation. We are interested in avoiding large variations of the mutual distances between spacecraft. In this case, the existence of regions of zero and minimum relative radial acceleration with respect to the nominal trajectory will prevent from the expansion or contraction of the constellation. In the other case, the existence of regions of maximum relative radial acceleration with respect to the nominal trajectory will produce a larger expansion and contraction of the constellation. The goal of this paper is to study these regions in the scenario of the Circular Restricted Three Body Problem by means of a linearization of the equations of motion relative to the periodic orbits around L4 or L5. This study corresponds to a preliminar planar formation flight dynamics about triangular libration points in the Earth-Moon system. Additionally, the cost estimate to maintain the constellation in the regions of zero and minimum relative radial acceleration or keeping a rigid configuration is computed with the use of the residual acceleration concept. At the end, the results are compared with the dynamical behavior of the deviation of the constellation from a periodic orbit.

  9. An investigation of the effects of the high maximum-thickness-to-chord ratio on the performance of nozzle guide vanes in a transonic planar cascade

    NASA Astrophysics Data System (ADS)

    Radmard, Rama

    1993-03-01

    The performance of turbine airfoils is usually predicted by empirical correlations, which however are inadequate for the case of airfoils with maximum thickness to chord ratio (MTCR) higher than 25 percent. Studies were conducted to create a data base from which the performance of turbine airfoils with a MTCR higher than 25 percent could be predicted. A planar cascade consisting of four airfoils was constructed to allow the investigation of the effect of the MTCR on the airfoil performance. Three airfoil sets with MTCR of 15.2 percent (baseline), 26.6 percent, and 48.2 percent were used. Measurements included surface Mach number distributions for the baseline airfoil, total pressure loss coefficients, and deviation angles for isentropic exit Mach numbers of 0.7 (design), 0.9, and 1.1. The effect of varying the inlet boundary layer thickness and free-stream turbulence level was also examined. The results showed that the 26.6 percent airfoil produced lower losses as predicted by the Kacker and Okapuu (1982) correlation. The introduction of turbulence produced a significant redistribution of losses in the exit plane. The secondary loss decreased as the leading edge diameter was increased. Except for the baseline blade where high under-turning in exit flow angle was observed, the airfoils showed a decrease in over-turning with increasing exit Mach number, as predicted by Ainley and Mathieson (1951).

  10. Preparation of ultra-thin and high-quality WO{sub 3} compact layers and comparision of WO{sub 3} and TiO{sub 2} compact layer thickness in planar perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jincheng; Shi, Chengwu, E-mail: shicw506@foxmail.com; Chen, Junjun

    2016-06-15

    In this paper, the ultra-thin and high-quality WO{sub 3} compact layers were successfully prepared by spin-coating-pyrolysis method using the tungsten isopropoxide solution in isopropanol. The influence of WO{sub 3} and TiO{sub 2} compact layer thickness on the photovoltaic performance of planar perovskite solar cells was systematically compared, and the interface charge transfer and recombination in planar perovskite solar cells with TiO{sub 2} compact layer was analyzed by electrochemical impedance spectroscopy. The results revealed that the optimum thickness of WO{sub 3} and TiO{sub 2} compact layer was 15 nm and 60 nm. The planar perovskite solar cell with 15 nm WO{submore » 3} compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO{sub 2} compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency. - Graphical abstract: The planar perovskite solar cell with 15 nm WO{sub 3} compact layer gave a 9.69% average and 10.14% maximum photoelectric conversion efficiency, whereas the planar perovskite solar cell with 60 nm TiO{sub 2} compact layer achieved a 11.79% average and 12.64% maximum photoelectric conversion efficiency. Display Omitted - Highlights: • Preparation of ultra-thin and high-quality WO{sub 3} compact layers. • Perovskite solar cell with 15 nm-thick WO{sub 3} compact layer achieved PCE of 10.14%. • Perovskite solar cell with 60 nm-thick TiO{sub 2} compact layer achieved PCE of 12.64%.« less

  11. Relation of planar Hall and planar Nernst effects in thin film permalloy

    NASA Astrophysics Data System (ADS)

    Wesenberg, D.; Hojem, A.; Bennet, R. K.; Zink, B. L.

    2018-06-01

    We present measurements of the planar Nernst effect (PNE) and the planar Hall effect (PHE) of nickel-iron (Ni–Fe) alloy thin films. We suspend the thin-film samples, measurement leads, and lithographically-defined heaters and thermometers on silicon-nitride membranes to greatly simplify control and measurement of thermal gradients essential to quantitative determination of magnetothermoelectric effects. Since these thermal isolation structures allow measurements of longitudinal thermopower, or the Seebeck coefficient, and four-wire electrical resistivity of the same thin film, we can quantitatively demonstrate the link between the longitudinal and transverse effects as a function of applied in-plane field and angle. Finite element thermal analysis of this essentially 2D structure allows more confident determination of the thermal gradient, which is reduced from the simplest assumptions due to the particular geometry of the membranes, which are more than 350 μm wide in order to maximize sensitivity to transverse thermoelectric effects. The resulting maximum values of the PNE and PHE coefficients for the Ni–Fe film with 80% Ni we study here are and , respectively. All signals are exclusively symmetry with applied field, ruling out long-distance spin transport effects. We also consider a Mott-like relation between the PNE and PHE, and use both this and the standard Mott relation to determine the energy-derivative of the resistivity at the Fermi energy to be , which is very similar to values for films we previously measured using similar thermal platforms. Finally, using an estimated value for the lead contribution to the longitudinal thermopower, we show that the anisotropic magnetoresistance (AMR) ratio in this Ni–Fe film is two times larger than the magnetothermopower ratio, which is the first evidence of a deviation from strict adherence to the Mott relation between Seebeck coefficient and resistivity.

  12. On stabilization of field emission and increase in the current density of planar nanostructures with DLC films

    NASA Astrophysics Data System (ADS)

    Yakunin, Alexander N.; Aban'shin, Nikolay P.; Avetisyan, Yuri A.; Akchurin, Georgy G.; Loginov, Alexander P.; Mosiyash, Denis S.; Akchurin, Garif G.

    2018-04-01

    The paper provides a justification and a comparative analysis of the scaling directions of the developed and investigated planar triode field emission cathode unit with the aim of increasing the maximum field current density up to 0.75 A-cm-2 without sacrificing durability. The design features of the vacuum device with a planar structure provided low-voltage control - at 150 V in the mode of long-term durability and not more than 250 V in the mode of the maximum permissible emission current.

  13. Dimethyl 4-[3-(4-meth­oxy­phen­yl)-1-phenyl-1H-pyrazol-4-yl]-2,6-dimethyl-1,4-dihydro­pyridine-3,5-dicarboxyl­ate dihydrate

    PubMed Central

    Fun, Hoong-Kun; Ooi, Chin Wei; Garudachari, B.; Shivananda, Kammasandra Nanjunda; Isloor, Arun M.

    2012-01-01

    In the title compound, C27H27N3O5·2H2O, the dihydro­pyridine ring adopts a flattened boat conformation. The central pyrazole ring is essentially planar [maximum deviation of 0.003 (1) Å] and makes dihedral angles of 50.42 (6) and 26.44 (6)° with the benzene rings. In the crystal, mol­ecules are linked via N—H⋯O, O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds into two-dimensional networks parallel to the bc plane. The crystal structure is further consolidated by weak C—H⋯π inter­actions. PMID:22798871

  14. (Z)-N,N-Dimethyl-2-[phen­yl(pyridin-2-yl)methyl­idene]hydrazinecarbothio­amide

    PubMed Central

    Jayakumar, K.; Sithambaresan, M.; Prathapachandra Kurup, M. R.

    2011-01-01

    The title compound, C15H16N4S, exists in the Z conformation with the thionyl S atom lying cis to the azomethine N atom. The shortening of the N—N distance [1.3697 (17) Å] is due to extensive delocalization with the pyridine ring. The hydrazine–carbothio­amide unit is almost planar, with a maximum deviation of 0.013 (2) Å for the amide N atom. The stability of this conformation is favoured by the formation of an intra­molecular N—H⋯N hydrogen bond. The packing of the mol­ecules involves no classical inter­molecular hydrogen-bonding inter­actions; however, a C—H⋯π inter­action occurs. PMID:22199715

  15. 2,2,2-Trifluoro-1-[3-(2,2,2-trifluoro­acet­yl)azulen-1-yl]ethanone

    PubMed Central

    Förster, Sebastian; Eissmann, Frank; Seichter, Wilhelm; Weber, Edwin

    2011-01-01

    There are two mol­ecules in the asymmetric unit of the title compound, C14H6F6O2, in which the azulene systems possess an almost planar geometry with maximum deviations of 0.0438 (15) and 0.0396 (14) Å. Besides intra- and inter­molecular C—H⋯O and C—H⋯F inter­actions, the structure displays three F⋯F contacts [2.793 (2), 2.8820 (17) and 2.9181 (16) Å]. Furthermore, a characteristic azulene π-stacking is observed with an alternating sequence of electron-rich five-membered rings and electron-deficient seven-membered rings [centroid–centroid distances = 3.5413 (12), 3.6847 (12), 3.5790 (12) and 3.7718 (12) Å]. PMID:21754800

  16. Crystal structure of (7-methyl-2-oxo-2H-chromen-4-yl)methyl piperidine-1-carbo­di­thio­ate

    PubMed Central

    Roopashree, K. R.; Meenakshi, T. G.; Kumar, K. Mahesh; Kotresh, O.; Devarajegowda, H. C.

    2015-01-01

    In the title compound, C17H19NO2S2, the 2H-chromene ring system is nearly planar, with a maximum deviation of 0.0383 (28) Å, and the piperidine ring adopts a chair conformation. The 2H-chromene ring makes dihedral angles of 32.89 (16) and 67.33 (8)°, respectively, with the mean planes of the piperidine ring and the carbodi­thio­ate group. In the crystal, C—H⋯O and weak C—H⋯S hydrogen bonds link the mol­ecules into chains along [001]. The crystal structure also features C—H⋯π and π–π inter­actions, with a centroid–centroid distance of 3.7097 (17) Å. PMID:26396821

  17. (E)-N′-(4-Meth­oxy­benzyl­idene)pyridine-3-carbohydrazide dihydrate

    PubMed Central

    Novina, J. Josephine; Vasuki, G.; Suresh, M.; Padusha, M. Syed Ali

    2013-01-01

    In the title compound, C14H13N3O2·2H2O, the hydrazone mol­ecule adopts an E conformation with respect to the C=N bond. The dihedral angle between the benzene and pyridine rings is 8.55 (10)°. The methyl­idene–hydrazide [–C(=O)–N–N=C–] fragment is essentially planar, with a maximum deviation of 0.0375 (13) Å. The mean planes of the benzene and pyridine rings make dihedral angles of 2.71 (14) and 11.25 (13)°, respectively, with mean plane of the methyl­idene-hydrazide fragment. In the crystal, the benzohydrazide and water mol­ecules are linked by N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds into a three-dimensional network. PMID:24046719

  18. 4,4′-[Ethylenebis(nitrilomethylidyne)]dibenzonitrile

    PubMed Central

    Kia, Reza; Fun, Hoong-Kun; Kargar, Hadi

    2009-01-01

    The mol­ecule of the title Schiff base compound, C18H14N4, lies across a crystallographic inversion centre and adopts an E configuration with respect to the azomethine (C=N) bonds. The imino groups are coplanar with the aromatic rings with a maximum deviation of 0.1574 (12) Å for the N atom. Within the mol­ecule, the planar units are parallel, but extend in opposite directions from the dimethyl­ene bridge. In the crystal structure, pairs of inter­molecular C—H⋯N hydrogen bonds link neighbouring mol­ecules into centrosymmetric dimers with R 2 2(10) ring motifs. An inter­esting feature of the crystal structure is the short inter­molecular C⋯C inter­action with a distance of 3.3821 (13) Å, which is shorter than the sum of the van der Waals radius of a carbon atom. PMID:21582425

  19. Crystal structure of 3-(adamantan-1-yl)-4-(4-chloro-phen-yl)-1H-1,2,4-triazole-5(4H)-thione.

    PubMed

    Al-Wabli, Reem I; El-Emam, Ali A; Alroqi, Obaid S; Chidan Kumar, C S; Fun, Hoong-Kun

    2015-02-01

    The title compound, C18H20ClN3S, is a functionalized triazoline-3-thione derivative. The benzene ring is almost perpendic-ular to the planar 1,2,4-triazole ring [maximum deviation = 0.007 (1) Å] with a dihedral angle of 89.61 (5)° between them and there is an adamantane substituent at the 3-position of the triazole-thione ring. In the crystal, N-H⋯S hydrogen-bonding inter-actions link the mol-ecules into chains extending along the c-axis direction. The crystal packing is further stabilized by weak C-H⋯π inter-actions that link adjacent chains into a two-dimensional structure in the bc plane. The crystal studied was an inversion twin with a 0.50 (3):0.50 (3) domain ratio.

  20. 2,3-Diamino-pyridinium sorbate-sorbic acid (1/1).

    PubMed

    Hemamalini, Madhukar; Goh, Jia Hao; Fun, Hoong-Kun

    2012-01-01

    In the title mol-ecular salt-adduct, C(5)H(8)N(3) (+)·C(6)H(7)O(2) (-)·C(6)H(8)O(2), the 2,3-diamino-pyridinium cation is essentially planar, with a maximum deviation of 0.013 (2) Å, and is protanated at its pyridine N atom. The sorbate anion and sorbic acid mol-ecules exist in extended conformations. In the crystal, the protonated N atom and one of the two amino-group H atoms are hydrogen bonded to the sorbate anion through a pair of N-H⋯O hydrogen bonds, forming an R(1) (2)(6) ring motif. The carboxyl groups of the sorbic acid mol-ecules and the carboxyl-ate groups of the sorbate anions are connected via O-H⋯O hydrogen bonds. Furthermore, the ion pairs and neutral mol-ecules are connected via inter-molecular N-H⋯O hydrogen bonds, forming sheets lying parallel to (100).

  1. Crystal structure of (2Z,5Z)-3-(4-meth­oxy­phen­yl)-2-[(4-meth­oxy­phenyl)­imino]-5-[(E)-3-(2-nitro­phen­yl)allyl­idene]-1,3-thia­zolidin-4-one

    PubMed Central

    Rahmani, Rachida; Djafri, Ahmed; Daran, Jean-Claude; Djafri, Ayada; Chouaih, Abdelkader; Hamzaoui, Fodil

    2016-01-01

    In the title compound, C26H21N3O5S, the thia­zole ring is nearly planar with a maximum deviation of 0.017 (2) Å, and is twisted with respect to the three benzene rings, making dihedral angles of 25.52 (12), 85.77 (12) and 81.85 (13)°. In the crystal, weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions link the mol­ecules into a three-dimensional supra­molecular architecture. Aromatic π–π stacking is also observed between the parallel nitro­benzene rings of neighbouring mol­ecules, the centroid-to-centroid distance being 3.5872 (15) Å. PMID:26958377

  2. Computer-controlled multi-parameter mapping of 3D compressible flowfields using planar laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Donohue, James M.; Victor, Kenneth G.; Mcdaniel, James C., Jr.

    1993-01-01

    A computer-controlled technique, using planar laser-induced iodine fluorescence, for measuring complex compressible flowfields is presented. A new laser permits the use of a planar two-line temperature technique so that all parameters can be measured with the laser operated narrowband. Pressure and temperature measurements in a step flowfield show agreement within 10 percent of a CFD model except in regions close to walls. Deviation of near wall temperature measurements from the model was decreased from 21 percent to 12 percent compared to broadband planar temperature measurements. Computer-control of the experiment has been implemented, except for the frequency tuning of the laser. Image data storage and processing has been improved by integrating a workstation into the experimental setup reducing the data reduction time by a factor of 50.

  3. Defective TiO 2 with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells

    DOE PAGES

    Li, Yanbo; Cooper, Jason K.; Liu, Wenjun; ...

    2016-08-18

    Formation of planar heterojunction perovskite solar cells exhibiting both high efficiency and stability under continuous operation remains a challenge. Here, we show this can be achieved by using a defective TiO 2 thin film as the electron transport layer. TiO 2 layers with native defects are deposited by electron beam evaporation in an oxygen-deficient environment. Deep-level hole traps are introduced in the TiO 2 layers and contribute to a high photoconductive gain and reduced photocatalytic activity. The high photoconductivity of the TiO 2 electron transport layer leads to improved efficiency for the fabricated planar devices. A maximum power conversion efficiencymore » of 19.0% and an average PCE of 17.5% are achieved. In addition, the reduced photocatalytic activity of the TiO 2 layer leads to enhanced long-Term stability for the planar devices. Under continuous operation near the maximum power point, an efficiency of over 15.4% is demonstrated for 100 h.« less

  4. 2'-Fluoro-3',5'-dimethoxy-acetanilide.

    PubMed

    Xie, Kai; Lou, Yuan-Yuan; Zheng, Jin; Zhao, Qing-Jie; Wei, Ya-Bing

    2008-12-24

    Mol-ecules of the title compound, C(10)H(12)FNO(3), are nearly planar considering all non-H atoms with a mean deviation of 0.0288 Å. Mol-ecules are linked through inter-molecular N-H⋯O and N-H⋯F hydrogen bonds.

  5. Quasi-Sun-Pointing of Spacecraft Using Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Spilker, Thomas

    2003-01-01

    A report proposes a method of utilizing solar-radiation pressure to keep the axis of rotation of a small spin-stabilized spacecraft pointed approximately (typically, within an angle of 10 deg to 20 deg) toward the Sun. Axisymmetry is not required. Simple tilted planar vanes would be attached to the outer surface of the body, so that the resulting spacecraft would vaguely resemble a rotary fan, windmill, or propeller. The vanes would be painted black for absorption of Solar radiation. A theoretical analysis based on principles of geometric optics and mechanics has shown that torques produced by Solar-radiation pressure would cause the axis of rotation to precess toward Sun-pointing. The required vane size would be a function of the angular momentum of the spacecraft and the maximum acceptable angular deviation from Sun-pointing. The analysis also shows that the torques produced by the vanes would slowly despin the spacecraft -- an effect that could be counteracted by adding specularly reflecting "spin-up" vanes.

  6. Crystal structure of 5,15-bis-(4-methyl-phen-yl)-10,20-bis-(4-nitro-phen-yl)porphyrin nitro-benzene disolvate.

    PubMed

    Baptayev, Bakhytzhan; Adilov, Salimgerey

    2018-01-01

    The whole mol-ecule of the title porphyrin, C 46 H 32 N 6 O 4 ·2C 6 H 5 NO 2 , which crystallized as a nitro-benzene disolvate, is generated by inversion symmetry. The porphyrin macrocycle is almost planar, the maximum deviation from the mean plane of the non-hydrogen atoms is 0.097 (2) Å. The aryl rings at the meso positions are inclined to this mean plane by 74.84 (6)° for the nitro-phenyl rings and 73.37 (7)° for the tolyl rings. In the crystal, the porphyrin mol-ecules are linked by C-H⋯O hydrogen bonds, forming chains along [100]. The solvent mol-ecules are also linked by C-H⋯O hydrogen bonds, forming chains along [100]. Inter-digitation of the p -tolyl groups along the c axis creates rectangular channels in which the solvent mol-ecules are located.

  7. Effect of polymer residues on the electrical properties of large-area graphene–hexagonal boron nitride planar heterostructures

    DOE PAGES

    Voyloy, Dimitry; Lassiter, Matthew G.; Sokolov, Alexei P.; ...

    2017-06-19

    Polymer residue plays an important role in the performance of 2D heterostructured materials. Herein, we study the effect of polymer residual impurities on the electrical properties of graphene–boron nitride planar heterostructures. Large-area graphene (Gr) and hexagonal boron nitride (h-BN) monolayers were synthesized using chemical vapor deposition techniques. Atomic van-der-Waals heterostructure layers based on varied configurations of Gr and h-BN layers were assembled. The average interlayer resistance of the heterojunctions over a 1 cm 2 area for several planar heterostructure configurations was assessed by impedance spectroscopy and modeled by equivalent electrical circuits. As a result, conductive AFM measurements showed that themore » presence of polymer residues on the surface of the Gr and h-BN monolayers resulted in significant resistance deviations over nanoscale regions.« less

  8. Effect of polymer residues on the electrical properties of large-area graphene–hexagonal boron nitride planar heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voyloy, Dimitry; Lassiter, Matthew G.; Sokolov, Alexei P.

    Polymer residue plays an important role in the performance of 2D heterostructured materials. Herein, we study the effect of polymer residual impurities on the electrical properties of graphene–boron nitride planar heterostructures. Large-area graphene (Gr) and hexagonal boron nitride (h-BN) monolayers were synthesized using chemical vapor deposition techniques. Atomic van-der-Waals heterostructure layers based on varied configurations of Gr and h-BN layers were assembled. The average interlayer resistance of the heterojunctions over a 1 cm 2 area for several planar heterostructure configurations was assessed by impedance spectroscopy and modeled by equivalent electrical circuits. As a result, conductive AFM measurements showed that themore » presence of polymer residues on the surface of the Gr and h-BN monolayers resulted in significant resistance deviations over nanoscale regions.« less

  9. An evaluation of the stability of image quality parameters of Elekta X-ray volume imager and iViewGT imaging systems.

    PubMed

    Stanley, Dennis N; Rasmussen, Karl; Kirby, Neil; Papanikolaou, Nikos; Gutiérrez, Alonso N

    2018-05-01

    A robust image quality assurance and analysis methodology for image-guided localization systems is crucial to ensure the accurate localization and visualization of target tumors. In this study, the long-term stability of selected image parameters was assessed and evaluated for the cone-beam computed tomography (CBCT) mode, planar radiographic kV mode, and the radiographic MV mode of an Elekta VersaHD. The CATPHAN, QckV-1, and QC-3 phantoms were used to evaluate the image quality parameters. The planar radiographic images were analyzed in PIPSpro™ with spatial resolution (f30, f40, f50), contrast to noise ratio (CNR) and noise being recorded. For XVI CBCT, Head and Neck Small20 (S20) and Pelvis Medium20 (M20) standard acquisition modes were evaluated for uniformity, noise, spatial resolution, and HU constancy. Dose and kVp for the XVI were recorded using the Unfors RaySafe Xi system with the R/F low detector for the kV planar radiographic mode. For each metric, values were normalized to the mean and the standard deviations were recorded. A total of 30 measurements were performed on a single Elekta VersaHD linear accelerator over an 18-month period without significant adjustment or recalibration to the XVI or iViewGT systems during the evaluated time frame. For the planar radiographic spatial resolution, the normalized standard deviation values of the f30, f40, and f50 were 0.004, 0.003, and 0.003 and 0.015, 0.009, and 0.017 for kV and MV, respectively. The average recorded dose for kV was 67.96 μGy. The standard deviations of the evaluated metrics for the S20 acquisition were 0.083(f30), 0.058(f40), 0.056(f50), 0.021(Water/poly-HU constancy), 0.029(uniformity) and 0.028(noise). The standard deviations for the M20 acquisition were 0.093(f30), 0.043(f40), 0.037(f50), 0.016(Water/poly-HU constancy), 0.010(uniformity) and 0.011(Noise). A study was performed to assess the stability of the basic image quality parameters recommended by TG-142 for the Elekta XVI and iViewGT imaging systems. The two systems show consistent imaging and dosimetric properties over the evaluated time frame. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  10. A novel five-wire micro anemometer with 3D directionality for low speed air flow detection and acoustic particle velocity detecting capability

    NASA Astrophysics Data System (ADS)

    Li, Zhe; Chang, Wenhan; Gao, Chengchen; Hao, Yilong

    2018-04-01

    In this paper, a novel five-wire micro-fabricated anemometer with 3D directionality based on calorimetric principle is proposed, which is capable of measuring low speed airflow. This structure is realized by vertically bonding two different dies, which can be fabricated on the same wafer resulting in a simple fabrication process. Experiments on speed lower than 200 mm s-1 are conducted, showing good repeatability and directionality. The speed of airflow is controlled by the volumetric flow rate. The measured velocity sensitivity is 9.4 mV · s m-1, with relative direction sensitivity of 37.1 dB. The deviation between the expected and the measured directivity is analyzed by both theories and simulations. A correction procedure is proposed and turns out to be useful to eliminate this deviation. To further explore the potential of our device, we expose it to acoustic plane waves in a standing wave tube, showing consistent planar directivity of figure of eight. The measured velocity sensitivity at 1 kHz and 120 dBC is 4.4 mV · s m-1, with relative direction sensitivity of 27.0 dB. By using the correction method proposed above, the maximum angle error is about  ±2°, showing its good directionality accuracy.

  11. Polymer planar lightwave circuit based hybrid-integrated coherent receiver for advanced modulation signals

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Han, Yang; Liang, Zhongcheng; Chen, Yongjin

    2012-11-01

    Applying coherent detection technique to advanced modulation formats makes it possible to electronically compensate the signal impairments. A key issue for a successful deployment of coherent detection technique is the availability of cost-efficient and compact integrated receivers, which are composed of an optical 90° hybrid mixer and four photodiodes (PDs). In this work, three different types of optical hybrids are fabricated with polymer planar lightwave circuit (PLC), and hybridly integrated with four vertical backside illuminated III-V PDs. Their performances, such as the insertion loss, the transmission imbalance, the polarization dependence and the phase deviation of 90° hybrid will be discussed.

  12. Heat of mixing and morphological stability

    NASA Technical Reports Server (NTRS)

    Nandapurkar, P.; Poirier, D. R.

    1988-01-01

    A mathematical model, which incorporates heat of mixing in the energy balance, has been developed to analyze the morphological stability of a planar solid-liquid interface during the directional solidification of a binary alloy. It is observed that the stability behavior is almost that predicted by the analysis of Mullins and Sekerka (1963) at low growth velocities, while deviations in the critical concentration of about 20-25 percent are observed under rapid solidification conditions for certain systems. The calculations indicate that a positive heat of mixing makes the planar interface more unstable, whereas a negative heat of mixing makes it more stable, in terms of the critical concentration.

  13. Performance of Planar-Waveguide External Cavity Laser for Precision Measurements

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan; Krainak, Michael A.; Stolpner, Lew

    2010-01-01

    A 1542-nm planar-waveguide external cavity laser (PW-ECL) is shown to have a sufficiently low level of frequency and intensity noise to be suitable for precision measurement applications. The frequency noise and intensity noise of the PW-ECL was comparable or better than the nonplanar ring oscillator (NPRO) and fiber laser between 0.1 mHz to 100 kHz. Controllability of the PW-ECL was demonstrated by stabilizing its frequency to acetylene (13C2H2) at 10(exp -13) level of Allan deviation. The PW-ECL also has the advantage of the compactness of a standard butterfly package, low cost, and a simple design consisting of a semiconductor gain media coupled to a planar-waveguide Bragg reflector. These features would make the PW-ECL suitable for precision measurements, including compact optical frequency standards, space lidar, and space interferometry

  14. The effect of cathode felt geometries on electrochemical characteristics of sodium sulfur (NaS) cells: Planar vs. tubular

    NASA Astrophysics Data System (ADS)

    Kim, Goun; Park, Yoon-Cheol; Lee, Younki; Cho, Namung; Kim, Chang-Soo; Jung, Keeyoung

    2016-09-01

    Two sodium sulfur (NaS) cells, one with a planar design and the other with a tubular design, were subject to discharge-charge cycles in order to investigate the effect of cathode felt geometries on electrochemical characteristics of NaS cells. Their discharge-charge behaviors over 200 cycles were evaluated at the operation temperature of 350 °C with the current densities of 100 mA cm-2 for discharge and 80 mA cm-2 for charge. The results showed that the deviation from theoretical open circuit voltage changes of a planar cell was smaller than those of a tubular cell resulting in potential specific power loss reduction during operation. In order to understand the effect, a three dimensional statistically representative matrix for a cathode felt has been generated using experimentally measured data. It turns out that the area specific fiber number density in the outer side area of a tubular cathode felt is smaller than that of a planar felt resulting in occurrence of larger voltage drops via retarded convection of cathode melts during cell operation.

  15. 3-Oxo-2,3-dihydro-1H-inden-4-yl acetate

    PubMed Central

    Lin, Hong-Yi; Chang, Che-Wei; Tsai, Hsing-Yang; Luo, Ming-Hui; Chen, Kew-Yu

    2012-01-01

    In the title compound, C11H10O3, the 1-indanone unit is essentially planar (r.m.s. deviation = 0.036 Å). In the crystal, mol­ecules are linked by non-classical C—H⋯O hydrogen bonds, forming a C(6) chain along [010]. PMID:23284409

  16. Development of a novel precision instrument for high-resolution simultaneous normal and shear force measurements between small planar samples

    NASA Astrophysics Data System (ADS)

    Lundstrom, Troy; Clark, William; Jalili, Nader

    2017-05-01

    In the design and development of end effector pads for silicon wafer handling robots, it is imperative that the static friction/adhesion force properties of the pads with respect to a variety of planar surfaces be characterized. In this work, the overall design, calibration, and data acquisition procedure of an instrument developed for performing these measurements on small (<10 mm × 10 mm) planar samples is presented. This device was used to perform adhesion/maximum shear force measurements on polydimethylsiloxane, a silicon wafer, and custom carbon nanotubes forest surfaces. The device was successfully able to measure an effective, mean profile adhesion force of 715 μN between a silicon wafer and a polydimethylsiloxane (2.768 × 10-6 m2) sample. In addition, a nonlinear maximum shear over normal force relationship was also measured between custom carbon nanotubes forest and the silicon wafer surfaces. The maximum shear over a normal force coefficient was found to decrease with increasing initial normal force. Currently, there are numerous devices for measuring normal/shear forces at the nano/micro- and macroscales; however, this device allows for the consistent measurement of these same types of forces on components with surface dimensions ranging from 0.1 mm to 10 mm.

  17. Synthesis and crystal structures of (2E)-1,4-bis-(4-chloro-phen-yl)but-2-ene-1,4-dione and (2E)-1,4-bis-(4-bromo-phen-yl)but-2-ene-1,4-dione.

    PubMed

    Lastovickova, Dominika N; La Scala, John J; Sausa, Rosario C

    2018-03-01

    The mol-ecular structure of (2 E )-1,4-bis-(4-chloro-phen-yl)but-2-ene-1,4-dione [C 16 H 10 Cl 2 O 2 , ( 1 )] is composed of two p -chlorophenyl rings, each bonded on opposite ends to a near planar 1,4- trans enedione moiety [-C(=O)-CH=CH-(C=O)-] [r.m.s. deviation = 0.003 (1) Å]. (2 E )-1,4-Bis(4-bromo-phen-yl)but-2-ene-1,4-dione [C 16 H 10 Br 2 O 2 , ( 2 )] has a similar structure to ( 1 ), but with two p -bromophenyl rings and a less planar enedione group [r.m.s. deviation = 0.011 (1) Å]. Both mol-ecules sit on a center of inversion, thus Z ' = 0.5. The dihedral angles between the ring and the enedione group are 16.61 (8) and 15.58 (11)° for ( 1 ) and ( 2 ), respectively. In the crystal, mol-ecules of ( 1 ) exhibit C-Cl⋯Cl type I inter-actions, whereas mol-ecules of ( 2 ) present C-Br⋯Br type II inter-actions. van der Waals-type inter-actions contribute to the packing of both mol-ecules, and the packing reveals face-to-face ring stacking with similar inter-planar distances of approximately 3.53 Å.

  18. Effects of Random Shadings, Phasing Errors, and Element Failures on the Beam Patterns of Linear and Planar Arrays

    DTIC Science & Technology

    1980-03-14

    failure Sigmar (Or) in line 50, the standard deviation of the relative error of the weights Sigmap (o) in line 60, the standard deviation of the phase...200, the weight structures in the x and y coordinates Q in line 210, the probability of element failure Sigmar (Or) in line 220, the standard...NUMBER OF ELEMENTS =u;2*H 120 PRINT "Pr’obability of elemenit failure al;O 130 PRINT "Standard dtvi&t ion’ oe r.1&tive ýrror of wl; Sigmar 14 0 PRINT

  19. Structure and absolute configuration of some 5-chloro-2-methoxy-N-phenylbenzamide derivatives

    NASA Astrophysics Data System (ADS)

    Galal, Alaaeldin M. F.; Shalaby, Elsayed M.; Abouelsayed, Ahmed; Ibrahim, Medhat A.; Al-Ashkar, Emad; Hanna, Atef G.

    2018-01-01

    The absolute configuration of 5-chloro-2-methoxy-N-phenylbenzamide single crystal [compound (1)] and the effect of introducing -[CH2]n-, n = 1,2 group adjacent to the amide group [compounds (2) and (3)], were studied. Furthermore, the replacement of the methoxy group with a hydroxy group [compound (4)] was defined. Proton and carbon-13 NMR spectrometer were used to record the structural information of the prepared compounds. X-ray single crystal diffractometer were used to elucidate the 3D structural configurations. Intensity data for the studied compounds were collected at room temperature. The X-ray data prove that compound (1) is almost planar, with maximum r.m.s. deviations of 0.210(3) Å corresponds to C13. This planarity starts to disturb by adding -[CH2]n-, n = 1,2 groups between the NH group and the phenyl ring in compounds (2) and (3), respectively. By replacing the OCH3 group by an OH group in compound (4), the plane of the chlorophenyl moiety is nearly perpendicular to that of the phenyl ring. Such new structural configurations were further illustrated by the infrared, and ultraviolet-visible spectroscopy measurements in the frequency range 400-4000 cm-1 and 190-1100 nm, respectively. Spectroscopic analyses were verified with the help of molecular modeling using density functional theory. The estimated total dipole moment for the prepared compounds reflects its ability to interact with its surrounding molecules. The higher dipole moment for a given structures is combined with the higher reactivity for potential use in medicinal applications.

  20. Coercivity of die upset NdFeB magnets: A strong pinning model

    NASA Astrophysics Data System (ADS)

    Pinkerton, F. E.; Fuerst, C. D.

    1990-09-01

    We show that the temperature dependence of the intrinsic coercivity Hci( T) between 5 and 600 K in a die-upset NdFeB magnet is in good agreement with a model for strong domain wall pinning by a random array of pinning sites proposed by Gaunt [P. Gaunt, Phil. Mag. B48 (1983) 261]. The model includes both the temperature dependence of the intrinsic magnetic properties of the Nd 2Fe 14B phase and the effects of thermal activation of domain walls over the pinning barrier. The pinning sites are modeled as nonmagnetic planar inhomogeneities at the boundaries aetween platelet-shaped Nd 2Fe 14B grains. We develop an expression for the maximum pinning force per site, f, and derive the model prediction that (H ci/γH A) {1}/{2} varies linearly with (T/γ) {2}/{3}, where HA and γ are the magnetocrystalline anisotropy and the domain wall energy per unit area of the Nd 2Fe 14B phase, respectively. The model is in good agreement with the observed Hci values over a broad temperature range from 200 to 477 K. Deviations from the model below 200 K are an artifact of the axial-to-conical spin reorientation in Nd 2Fe 14B at low temperature. Deviations at high temperature most likely occur because the strong pinning model is no longer valid close to the Curie temperature (585 K).

  1. Melaminium nitrate–melamine–water (1/1/1)

    PubMed Central

    Adam, Farook; Lin, Sek Kei; Hello, Kasim Mohammed; Hemamalini, Madhukar; Fun, Hoong-Kun

    2010-01-01

    In the crystal structure of the title salt, C3H7N6 +·NO3 −·C3H6N6·H2O, the asymmetric unit consists of two neutral melamine (1,3,5-triazine-2,4,6-triamine) mol­ecules, two melaminium cations, two nitrate anions and two solvent water mol­ecules. One of the nitrate anions is disordered over two sets of positions, with a refined occupancy ratio of 0.909 (3):0.091 (3). The cations and neutral mol­ecules are approximately planar, with maximum deviations of 0.018 (2), 0.024 (2), 0.019 (2) and 0.007 (2) Å for each, respectively. In the crystal structure, melaminium cations and netural melamine mol­ecules self-assemble via N—H⋯N hydrogen bonds to form a supra­molecular hexa­gonal-shaped motif. In addition, the nitrate anions and water mol­ecules are connected by N—H⋯O hydrogen bonds to form a three-dimensional network. PMID:21589188

  2. Bromido({2-[2-(diphenyl­phosphan­yl)benzyl­idene]hydrazin-1-yl­idene}(4-meth­oxy­anilino)methane­thiol­ato)palladium(II) acetone monosolvate

    PubMed Central

    Mokthar, Khalisah Asilah; Shamsuddin, Mustaffa; Rosli, Mohd Mustaqim; Fun, Hoong-Kun

    2012-01-01

    In the title compound, [PdBr(C27H23N3OPS)]·C3H6O, the coordination geometry about the PdII atom is distorted square-planar, arising from the attached Br, S, P and N atoms (N and Br are trans), the maximum deviation from the plane being 0.2053 (4) Å for the N atom. The three benzene rings attached to the P atom make dihedral angles of 69.78 (7), 87.05 (7) and 77.50 (7)° with each other. An intra­molecular C—H⋯N hydrogen bond forms an S(6) ring motif. In the crystal, the complex mol­ecules form infinite chains along the a-axis direction through C—H⋯Br inter­actions, and a C—H⋯O inter­action links the main mol­ecule with the acetone solvent mol­ecule. PMID:22807805

  3. 4-{2-[2-(4-Chloro­benzyl­idene)hydrazinyl­idene]-3,6-dihydro-2H-1,3,4-thia­diazin-5-yl}-3-phenyl­sydnone

    PubMed Central

    Fun, Hoong-Kun; Loh, Wan-Sin; Nithinchandra; Kalluraya, Balakrishna

    2011-01-01

    The title compound, C18H13ClN6O2S, exists in trans and cis configurations with respect to the acyclic C=N bonds [C=N = 1.2837 (15) and 1.3000 (14) Å, respectively]. The 3,6-dihydro-2H-1,3,4-thia­diazine ring adopts a half-boat conformation. The sydnone ring is approximately planar [maximum deviation = 0.002 (1) Å] and forms dihedral angles of 50.45 (7) and 61.21 (6)° with the aromatic rings. In the crystal, inter­molecular N—H⋯N, C—H⋯Cl and C—H⋯S hydrogen bonds link the mol­ecules into layers parallel to ab plane. The crystal packing is stabilized by C—H⋯π inter­actions and further consolidated by π–π inter­actions involving the phenyl rings [centroid–centroid distance = 3.6306 (7) Å]. PMID:21754481

  4. Planar Embedding of Planar Graphs,

    DTIC Science & Technology

    1983-02-01

    Stanford University and supported by a Chaim Wcismann postdoctoral fellowship and DARPA contract MDAOO3-C-0102. Current address: Institute of ...rectilinear embeddings (both with and without cross - overs), using the bounding box area cost. He proved that a tree of vertices with maximum degree 4 can...be laid out without crossovers in an area that is linear in the number of edges (or vertices). He also showed how Ato get a such an embedding for any

  5. Geometric Verification of Dynamic Wave Arc Delivery With the Vero System Using Orthogonal X-ray Fluoroscopic Imaging.

    PubMed

    Burghelea, Manuela; Verellen, Dirk; Poels, Kenneth; Gevaert, Thierry; Depuydt, Tom; Tournel, Koen; Hung, Cecilia; Simon, Viorica; Hiraoka, Masahiro; de Ridder, Mark

    2015-07-15

    The purpose of this study was to define an independent verification method based on on-board orthogonal fluoroscopy to determine the geometric accuracy of synchronized gantry-ring (G/R) rotations during dynamic wave arc (DWA) delivery available on the Vero system. A verification method for DWA was developed to calculate O-ring-gantry (G/R) positional information from ball-bearing positions retrieved from fluoroscopic images of a cubic phantom acquired during DWA delivery. Different noncoplanar trajectories were generated in order to investigate the influence of path complexity on delivery accuracy. The G/R positions detected from the fluoroscopy images (DetPositions) were benchmarked against the G/R angulations retrieved from the control points (CP) of the DWA RT plan and the DWA log files recorded by the treatment console during DWA delivery (LogActed). The G/R rotational accuracy was quantified as the mean absolute deviation ± standard deviation. The maximum G/R absolute deviation was calculated as the maximum 3-dimensional distance between the CP and the closest DetPositions. In the CP versus DetPositions comparison, an overall mean G/R deviation of 0.13°/0.16° ± 0.16°/0.16° was obtained, with a maximum G/R deviation of 0.6°/0.2°. For the LogActed versus DetPositions evaluation, the overall mean deviation was 0.08°/0.15° ± 0.10°/0.10° with a maximum G/R of 0.3°/0.4°. The largest decoupled deviations registered for gantry and ring were 0.6° and 0.4° respectively. No directional dependence was observed between clockwise and counterclockwise rotations. Doubling the dose resulted in a double number of detected points around each CP, and an angular deviation reduction in all cases. An independent geometric quality assurance approach was developed for DWA delivery verification and was successfully applied on diverse trajectories. Results showed that the Vero system is capable of following complex G/R trajectories with maximum deviations during DWA below 0.6°. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Information Entropy Production of Maximum Entropy Markov Chains from Spike Trains

    NASA Astrophysics Data System (ADS)

    Cofré, Rodrigo; Maldonado, Cesar

    2018-01-01

    We consider the maximum entropy Markov chain inference approach to characterize the collective statistics of neuronal spike trains, focusing on the statistical properties of the inferred model. We review large deviations techniques useful in this context to describe properties of accuracy and convergence in terms of sampling size. We use these results to study the statistical fluctuation of correlations, distinguishability and irreversibility of maximum entropy Markov chains. We illustrate these applications using simple examples where the large deviation rate function is explicitly obtained for maximum entropy models of relevance in this field.

  7. Adaptive Gain-based Stable Power Smoothing of a DFIG

    DOE PAGES

    Muljadi, Eduard; Lee, Hyewon; Hwang, Min; ...

    2017-11-01

    In a power system that has a high wind penetration, the output power fluctuation of a large-scale wind turbine generator (WTG) caused by the varying wind speed increases the maximum frequency deviation, which is an important metric to assess the quality of electricity, because of the reduced system inertia. This paper proposes a stable power-smoothing scheme of a doubly-fed induction generator (DFIG) that can suppress the maximum frequency deviation, particularly for a power system with a high wind penetration. To do this, the proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combinationmore » with the maximum power point tracking control loop. To improve the power-smoothing capability while guaranteeing the stable operation of a DFIG, the gain of the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. Here, the simulation results based on the IEEE 14-bus system demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WTG under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less

  8. Adaptive Gain-based Stable Power Smoothing of a DFIG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Lee, Hyewon; Hwang, Min

    In a power system that has a high wind penetration, the output power fluctuation of a large-scale wind turbine generator (WTG) caused by the varying wind speed increases the maximum frequency deviation, which is an important metric to assess the quality of electricity, because of the reduced system inertia. This paper proposes a stable power-smoothing scheme of a doubly-fed induction generator (DFIG) that can suppress the maximum frequency deviation, particularly for a power system with a high wind penetration. To do this, the proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combinationmore » with the maximum power point tracking control loop. To improve the power-smoothing capability while guaranteeing the stable operation of a DFIG, the gain of the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. Here, the simulation results based on the IEEE 14-bus system demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WTG under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less

  9. 40 CFR 86.1233-96 - Diurnal emission test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient... deionized water shall be placed in the methanol sampling system (methanol-fueled vehicles only). (3) Turn...

  10. 40 CFR 86.133-96 - Diurnal emission test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient... deionized water shall be placed in the methanol sampling system (methanol-fueled vehicles only). (3) Turn...

  11. Partially orthogonal resonators for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Chacon-Caldera, Jorge; Malzacher, Matthias; Schad, Lothar R.

    2017-02-01

    Resonators for signal reception in magnetic resonance are traditionally planar to restrict coil material and avoid coil losses. Here, we present a novel concept to model resonators partially in a plane with maximum sensitivity to the magnetic resonance signal and partially in an orthogonal plane with reduced signal sensitivity. Thus, properties of individual elements in coil arrays can be modified to optimize physical planar space and increase the sensitivity of the overall array. A particular case of the concept is implemented to decrease H-field destructive interferences in planar concentric in-phase arrays. An increase in signal to noise ratio of approximately 20% was achieved with two resonators placed over approximately the same planar area compared to common approaches at a target depth of 10 cm at 3 Tesla. Improved parallel imaging performance of this configuration is also demonstrated. The concept can be further used to increase coil density.

  12. Maximum safe speed estimation using planar quintic Bezier curve with C2 continuity

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mohamad Fakharuddin; Misro, Md Yushalify; Ramli, Ahmad; Ali, Jamaludin Md

    2017-08-01

    This paper describes an alternative way in estimating design speed or the maximum speed allowed for a vehicle to drive safely on a road using curvature information from Bezier curve fitting on a map. We had tested on some route in Tun Sardon Road, Balik Pulau, Penang, Malaysia. We had proposed to use piecewise planar quintic Bezier curve while satisfying the curvature continuity between joined curves in the process of mapping the road. By finding the derivatives of quintic Bezier curve, the value of curvature was calculated and design speed was derived. In this paper, a higher order of Bezier Curve had been used. A higher degree of curve will give more freedom for users to control the shape of the curve compared to curve in lower degree.

  13. Planar Laser Imaging of Sprays for Liquid Rocket Studies

    NASA Technical Reports Server (NTRS)

    Lee, W.; Pal, S.; Ryan, H. M.; Strakey, P. A.; Santoro, Robert J.

    1990-01-01

    A planar laser imaging technique which incorporates an optical polarization ratio technique for droplet size measurement was studied. A series of pressure atomized water sprays were studied with this technique and compared with measurements obtained using a Phase Doppler Particle Analyzer. In particular, the effects of assuming a logarithmic normal distribution function for the droplet size distribution within a spray was evaluated. Reasonable agreement between the instrument was obtained for the geometric mean diameter of the droplet distribution. However, comparisons based on the Sauter mean diameter show larger discrepancies, essentially because of uncertainties in the appropriate standard deviation to be applied for the polarization ratio technique. Comparisons were also made between single laser pulse (temporally resolved) measurements with multiple laser pulse visualizations of the spray.

  14. Ethyl 2-[(carbamothioyl-amino)-imino]-propano-ate.

    PubMed

    Corrêa, Charlane C; Graúdo, José Eugênio J C; de Oliveira, Luiz Fernando C; de Almeida, Mauro V; Diniz, Renata

    2011-08-01

    The title compound, C(6)H(11)N(3)O(2)S, consists of a roughly planar mol-ecule (r.m.s deviation from planarity = 0.077 Å for the non-H atoms) and has the S atom in an anti position to the imine N atom. This N atom is the acceptor of a strongly bent inter-nal N-H⋯N hydrogen bond donated by the amino group. In the crystal, mol-ecules are arranged in undulating layers parallel to (010). The mol-ecules are linked via inter-molecular amino-carboxyl N-H⋯O hydrogen bonds, forming chains parallel to [001]. The chains are cross-linked by N(carbazone)-H⋯S and C-H⋯S inter-actions, forming infinite sheets.

  15. Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%

    DOE PAGES

    Liao, Weiqiang; Zhao, Dewei; Yu, Yue; ...

    2016-08-29

    Efficient lead (Pb)-free inverted planar formamidinium tin triiodide (FASnI 3) perovskite solar cells (PVSCs) are demonstrated. Our FASnI 3 PVSCs achieved average power conversion efficiencies (PCEs) of 5.41% ± 0.46% and a maximum PCE of 6.22% under forward voltage scan. Here, the PVSCs exhibit small photocurrent–voltage hysteresis and high reproducibility. The champion cell shows a steady-state efficiency of ≈6.00% for over 100 s.

  16. 40 CFR 86.133-96 - Diurnal emission test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... according to the profile specified in § 86.133 and appendix II of this part. (1) Temperatures measured with the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient...

  17. 40 CFR 86.1233-96 - Diurnal emission test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... according to the profile specified in § 86.1233 and appendix II of this part. (1) Temperatures measured with the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient...

  18. 40 CFR 86.133-96 - Diurnal emission test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... according to the profile specified in § 86.133 and appendix II of this part. (1) Temperatures measured with the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient...

  19. 40 CFR 86.1233-96 - Diurnal emission test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... according to the profile specified in § 86.1233 and appendix II of this part. (1) Temperatures measured with the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient...

  20. 40 CFR 86.133-96 - Diurnal emission test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... according to the profile specified in § 86.133 and appendix II of this part. (1) Temperatures measured with the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient...

  1. 40 CFR 86.1233-96 - Diurnal emission test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... according to the profile specified in § 86.1233 and appendix II of this part. (1) Temperatures measured with the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient...

  2. 40 CFR 86.133-96 - Diurnal emission test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... according to the profile specified in § 86.133 and appendix II of this part. (1) Temperatures measured with the underbody temperature sensor shall follow the profile with a maximum deviation of 3 °F at any time... temperature sensors shall follow the profile with a maximum deviation of 5 °F at any time. (2) Ambient...

  3. Predictive model for disinfection by-product in Alexandria drinking water, northern west of Egypt.

    PubMed

    Abdullah, Ali M; Hussona, Salah El-dien

    2013-10-01

    Chlorine has been utilized in the early stages of water treatment processes as disinfectant. Disinfection for drinking water reduces the risk of pathogenic infection but may pose a chemical threat to human health due to disinfection residues and their by-products (DBP) when the organic and inorganic precursors are present in water. In the last two decades, many modeling attempts have been made to predict the occurrence of DBP in drinking water. Models have been developed based on data generated in laboratory-scale and field-scale investigations. The objective of this paper is to develop a predictive model for DBP formation in the Alexandria governorate located at the northern west of Egypt based on field-scale investigations as well as laboratory-controlled experimentations. The present study showed that the correlation coefficient between trihalomethanes (THM) predicted and THM measured was R (2)=0.88 and the minimum deviation percentage between THM predicted and THM measured was 0.8 %, the maximum deviation percentage was 89.3 %, and the average deviation was 17.8 %, while the correlation coefficient between dichloroacetic acid (DCAA) predicted and DCAA measured was R (2)=0.98 and the minimum deviation percentage between DCAA predicted and DCAA measured was 1.3 %, the maximum deviation percentage was 47.2 %, and the average deviation was 16.6 %. In addition, the correlation coefficient between trichloroacetic acid (TCAA) predicted and TCAA measured was R (2)=0.98 and the minimum deviation percentage between TCAA predicted and TCAA measured was 4.9 %, the maximum deviation percentage was 43.0 %, and the average deviation was 16.0 %.

  4. Simultaneous enhancement of Chlorella vulgaris growth and lipid accumulation through the synergy effect between light and nitrate in a planar waveguide flat-plate photobioreactor.

    PubMed

    Liao, Qiang; Sun, Yahui; Huang, Yun; Xia, Ao; Fu, Qian; Zhu, Xun

    2017-11-01

    Interval between adjacent planar waveguides and light intensity emitted from waveguide surface were the primary two factors affecting light distribution characteristics in the planar waveguide flat-plate photobioreactor (PW-PBR). In this paper, the synergy effect between light and nitrate in the PW-PBR was realized to simultaneously enhance microalgae growth and lipid accumulation. Under an interval of 10mm between adjacent planar waveguides, 100% of microalgae cells in regions between adjacent waveguides could be illuminated. Chlorella vulgaris growth and lipid accumulation were synchronously elevated as light intensities emitted from planar waveguide surface increasing. With an identical initial nitrate concentration of 18mM, the maximum lipid content (41.66% in dry biomass) and lipid yield (2200.25mgL -1 ) were attained under 560μmolm -2 s -1 , which were 86.82% and 133.56% higher relative to those obtained under 160μmolm -2 s -1 , respectively. The PW-PBR provides a promising way for microalgae lipid production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Sentinel lymph nodes and lymphatic vessels: noninvasive dual-modality in vivo mapping by using indocyanine green in rats--volumetric spectroscopic photoacoustic imaging and planar fluorescence imaging.

    PubMed

    Kim, Chulhong; Song, Kwang Hyun; Gao, Feng; Wang, Lihong V

    2010-05-01

    To noninvasively map sentinel lymph nodes (SLNs) and lymphatic vessels in rats in vivo by using dual-modality nonionizing imaging-volumetric spectroscopic photoacoustic imaging, which measures optical absorption, and planar fluorescence imaging, which measures fluorescent emission-of indocyanine green (ICG). Institutional animal care and use committee approval was obtained. Healthy Sprague-Dawley rats weighing 250-420 g (age range, 60-120 days) were imaged by using volumetric photoacoustic imaging (n = 5) and planar fluorescence imaging (n = 3) before and after injection of 1 mmol/L ICG. Student paired t tests based on a logarithmic scale were performed to evaluate the change in photoacoustic signal enhancement of SLNs and lymphatic vessels before and after ICG injection. The spatial resolutions of both imaging systems were compared at various imaging depths (2-8 mm) by layering additional biologic tissues on top of the rats in vivo. Spectroscopic photoacoustic imaging was applied to identify ICG-dyed SLNs. In all five rats examined with photoacoustic imaging, SLNs were clearly visible, with a mean signal enhancement of 5.9 arbitrary units (AU) + or - 1.8 (standard error of the mean) (P < .002) at 0.2 hour after injection, while lymphatic vessels were seen in four of the five rats, with a signal enhancement of 4.3 AU + or - 0.6 (P = .001). In all three rats examined with fluorescence imaging, SLNs and lymphatic vessels were seen. The average full width at half maximum (FWHM) of the SLNs in the photoacoustic images at three imaging depths (2, 6, and 8 mm) was 2.0 mm + or - 0.2 (standard deviation), comparable to the size of a dissected lymph node as measured with a caliper. However, the FWHM of the SLNs in fluorescence images widened from 8 to 22 mm as the imaging depth increased, owing to strong light scattering. SLNs were identified spectroscopically in photoacoustic images. These two modalities, when used together with ICG, have the potential to help map SLNs in axillary staging and to help evaluate tumor metastasis in patients with breast cancer.

  6. Differentiating Tumor Progression from Pseudoprogression in Patients with Glioblastomas Using Diffusion Tensor Imaging and Dynamic Susceptibility Contrast MRI.

    PubMed

    Wang, S; Martinez-Lage, M; Sakai, Y; Chawla, S; Kim, S G; Alonso-Basanta, M; Lustig, R A; Brem, S; Mohan, S; Wolf, R L; Desai, A; Poptani, H

    2016-01-01

    Early assessment of treatment response is critical in patients with glioblastomas. A combination of DTI and DSC perfusion imaging parameters was evaluated to distinguish glioblastomas with true progression from mixed response and pseudoprogression. Forty-one patients with glioblastomas exhibiting enhancing lesions within 6 months after completion of chemoradiation therapy were retrospectively studied. All patients underwent surgery after MR imaging and were histologically classified as having true progression (>75% tumor), mixed response (25%-75% tumor), or pseudoprogression (<25% tumor). Mean diffusivity, fractional anisotropy, linear anisotropy coefficient, planar anisotropy coefficient, spheric anisotropy coefficient, and maximum relative cerebral blood volume values were measured from the enhancing tissue. A multivariate logistic regression analysis was used to determine the best model for classification of true progression from mixed response or pseudoprogression. Significantly elevated maximum relative cerebral blood volume, fractional anisotropy, linear anisotropy coefficient, and planar anisotropy coefficient and decreased spheric anisotropy coefficient were observed in true progression compared with pseudoprogression (P < .05). There were also significant differences in maximum relative cerebral blood volume, fractional anisotropy, planar anisotropy coefficient, and spheric anisotropy coefficient measurements between mixed response and true progression groups. The best model to distinguish true progression from non-true progression (pseudoprogression and mixed) consisted of fractional anisotropy, linear anisotropy coefficient, and maximum relative cerebral blood volume, resulting in an area under the curve of 0.905. This model also differentiated true progression from mixed response with an area under the curve of 0.901. A combination of fractional anisotropy and maximum relative cerebral blood volume differentiated pseudoprogression from nonpseudoprogression (true progression and mixed) with an area under the curve of 0.807. DTI and DSC perfusion imaging can improve accuracy in assessing treatment response and may aid in individualized treatment of patients with glioblastomas. © 2016 by American Journal of Neuroradiology.

  7. The planar shape of drumlins

    NASA Astrophysics Data System (ADS)

    Spagnolo, Matteo; Clark, Chris D.; Hughes, Anna L. C.; Dunlop, Paul; Stokes, Chris R.

    2010-12-01

    The asymmetry of the planar shape of drumlins is an established paradigm in the literature and characterizes drumlins as resembling tear drops with a blunt (bullet-shaped) stoss end and a tapering (pointed) lee end. It is widely cited and never been seriously questioned. In this paper, the planar shape of 44,500 drumlins mapped in various regional settings from drumlin fields in North America and Northern Europe were objectively analysed by means of Geographic Information System tools. Two parameters were considered. The first (denoted here as Aspl) focuses on the relative position of the point of intersection between the axes of the maximum length and the maximum width. It is defined as the distance between the upstream (i.e. beginning of the drumlin) and the intersection point (measured along the longitudinal axis) divided by the entire length of the long axis. Results indicate that the intersection point of the majority of drumlins (64%) is very close to the longitudinal midpoint (0.33 < Aspl < 0.66). The second parameter ( Aspl _A) is defined as the ratio between the area of the upstream half of the drumlin to that of the entire drumlin. Results show that for most drumlins (81%), the upper half area is almost as large as the down-half (0.45 < Aspl _A < 0.55). Taken together, these results concordantly indicate that drumlin planar shape has a strong tendency to be longitudinally symmetric and that the long-established paradigm of their plan form is false.

  8. Current from a nano-gap hyperbolic diode using shape-factors: Theory

    NASA Astrophysics Data System (ADS)

    Jensen, Kevin L.; Shiffler, Donald A.; Peckerar, Martin; Harris, John R.; Petillo, John J.

    2017-08-01

    Quantum tunneling by field emission from nanoscale features or sharp field emission structures for which the anode-cathode gap is nanometers in scale ("nano diodes") experience strong deviations from the planar image charge lowered tunneling barrier used in the Murphy and Good formulation of the Fowler-Nordheim equation. These deviations alter the prediction of total current from a curved surface. Modifications to the emission barrier are modeled using a hyperbolic (prolate spheroidal) geometry to determine the trajectories along which the Gamow factor in a WKB-like treatment is undertaken; a quadratic equivalent potential is determined, and a method of shape factors is used to evaluate the corrected total current from a protrusion or wedge geometry.

  9. Ethyl 2-[(carbamothioyl­amino)­imino]­propano­ate

    PubMed Central

    Corrêa, Charlane C.; Graúdo, José Eugênio J.C.; de Oliveira, Luiz Fernando C.; de Almeida, Mauro V.; Diniz, Renata

    2011-01-01

    The title compound, C6H11N3O2S, consists of a roughly planar mol­ecule (r.m.s deviation from planarity = 0.077 Å for the non-H atoms) and has the S atom in an anti position to the imine N atom. This N atom is the acceptor of a strongly bent inter­nal N—H⋯N hydrogen bond donated by the amino group. In the crystal, mol­ecules are arranged in undulating layers parallel to (010). The mol­ecules are linked via inter­molecular amino–carboxyl N—H⋯O hydrogen bonds, forming chains parallel to [001]. The chains are cross-linked by Ncarbazone—H⋯S and C—H⋯S inter­actions, forming infinite sheets. PMID:22091006

  10. 1.5-μm high-average power laser amplifier using a Er,Yb:glass planar waveguide for coherent Doppler lidar

    NASA Astrophysics Data System (ADS)

    Sakimura, Takeshi; Watanabe, Yojiro; Ando, Toshiyuki; Kameyama, Shumpei; Asaka, Kimio; Tanaka, Hisamichi; Yanagisawa, Takayuki; Hirano, Yoshihito; Inokuchi, Hamaki

    2012-11-01

    We have developed a 1.5-μm eye-safe wavelength high average power laser amplifier using an Er,Yb:glass planar waveguide for coherent Doppler LIDAR. Large cooling surface of the planar waveguide enabled high average power pumping for Er,Yb:glass which has low thermal fracture limit. Nonlinear effects are suppressed by the large beam size which is designed by the waveguide thickness and the beam width of the planar direction. Multi-bounce optical path configuration and high-intensity pumping provide high-gain and high-efficient operation using three-level laser material. With pulsed operation, the maximum pulse energy of 1.9 mJ was achieved at the repetition rate of 4 kHz. Output average power of the amplified signal was 7.6W with the amplified gain of more than 20dB. This amplifier is suitable for coherent Doppler LIDAR to enhance the measurable range.

  11. Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22.

    PubMed

    Liao, Weiqiang; Zhao, Dewei; Yu, Yue; Grice, Corey R; Wang, Changlei; Cimaroli, Alexander J; Schulz, Philip; Meng, Weiwei; Zhu, Kai; Xiong, Ren-Gen; Yan, Yanfa

    2016-11-01

    Efficient lead (Pb)-free inverted planar formamidinium tin triiodide (FASnI 3 ) perovskite solar cells (PVSCs) are demonstrated. Our FASnI 3 PVSCs achieved average power conversion efficiencies (PCEs) of 5.41% ± 0.46% and a maximum PCE of 6.22% under forward voltage scan. The PVSCs exhibit small photocurrent-voltage hysteresis and high reproducibility. The champion cell shows a steady-state efficiency of ≈6.00% for over 100 s. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Flexible, planar-integrated, all-solid-state fiber supercapacitors with an enhanced distributed-capacitance effect.

    PubMed

    Liu, Bin; Tan, Dongsheng; Wang, Xianfu; Chen, Di; Shen, Guozhen

    2013-06-10

    Flexible and highly efficient energy storage units act as one of the key components in portable electronics. In this work, by planar-integrated assembly of hierarchical ZnCo₂O₄ nanowire arrays/carbon fibers electrodes, a new class of flexible all-solid-state planar-integrated fiber supercapacitors are designed and produced via a low-cost and facile method. The as-fabricated flexible devices exhibit high-efficiency, enhanced capacity, long cycle life, and excellent electrical stability. An enhanced distributed-capacitance effect is experimentally observed for the device. This strategy enables highly flexible new structured supercapacitors with maximum functionality and minimized size, thus making it possible to be readily applied in flexible/portable photoelectronic devices. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Output Error Analysis of Planar 2-DOF Five-bar Mechanism

    NASA Astrophysics Data System (ADS)

    Niu, Kejia; Wang, Jun; Ting, Kwun-Lon; Tao, Fen; Cheng, Qunchao; Wang, Quan; Zhang, Kaiyang

    2018-03-01

    Aiming at the mechanism error caused by clearance of planar 2-DOF Five-bar motion pair, the method of equivalent joint clearance of kinematic pair to virtual link is applied. The structural error model of revolute joint clearance is established based on the N-bar rotation laws and the concept of joint rotation space, The influence of the clearance of the moving pair is studied on the output error of the mechanis. and the calculation method and basis of the maximum error are given. The error rotation space of the mechanism under the influence of joint clearance is obtained. The results show that this method can accurately calculate the joint space error rotation space, which provides a new way to analyze the planar parallel mechanism error caused by joint space.

  14. 6-(4-Nitro­phen­oxy)hexa­nol

    PubMed Central

    Saif Ullah Khan, Muhammad; Akhter, Zareen; Bolte, Michael; Cheema, Sajjad A.; Siddiqi, Humaira M.

    2009-01-01

    The title compound, C12H17NO4, features an almost planar mol­ecule (r.m.s. deviation for all non-H atoms = 0.070 Å). All methyl­ene C—C bonds adopt an anti­periplanar conformation. In the crystal structure the mol­ecules lie in planes parallel to (12) and the packing is stabilized by O—H⋯O hydrogen bonds. PMID:21583147

  15. 3-Chloro-4-methyl­quinolin-2(1H)-one

    PubMed Central

    Kassem, Mohamed G.; Ghabbour, Hazem A.; Abdel-Aziz, Hatem A.; Fun, Hoong-Kun; Ooi, Chin Wei

    2012-01-01

    The title compound, C10H8ClNO, is almost planar (r.m.s. deviation for the 13 non-H atoms = 0.023 Å). In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R 2 2(8) rings. Weak aromatic π–π stacking inter­actions [centroid–centroid distance = 3.7622 (12) Å] also occur. PMID:22589913

  16. Mineral shock signatures in rocks from Dhala (Mohar) impact structure, Shivpuri district, Madhya Pradesh, India

    NASA Astrophysics Data System (ADS)

    Roy, Madhuparna; Pandey, Pradeep; Kumar, Shailendra; Parihar, P. S.

    2017-12-01

    A concrete study combining optical microscopy, Raman spectroscopy and X-ray diffractometry, was carried out on subsurface samples of basement granite and melt breccia from Mohar (Dhala) impact structure, Shivpuri district, Madhya Pradesh, India. Optical microscopy reveals aberrations in the optical properties of quartz and feldspar in the form of planar deformation feature-like structures, lowered birefringence and mosaics in quartz, toasting, planar fractures and ladder texture in alkali feldspar and near-isotropism in bytownite. It also brings to light incidence of parisite, a radioactive rare mineral in shocked granite. Raman spectral pattern, peak positions, peak widths and multiplicity of peak groups of all minerals, suggest subtle structural/crystallographic deviations. XRD data further reveals minute deviations of unit cell parameters of quartz, alkali feldspar and plagioclase, with respect to standard α-quartz, high- and low albite and microcline. Reduced cell volumes in these minerals indicate compression due to pressure. The c0/a0 values indicate an inter-tetrahedral angle roughly between 120o and 144o, further pointing to a possible pressure maxima of around 12 GPa. The observed unit cell aberration of minerals may indicate an intermediate stage between crystalline and amorphous stages, thereby, signifying possible overprinting of decompression signatures over shock compression effects, from a shock recovery process.

  17. Preliminary analysis of hot spot factors in an advanced reactor for space electric power systems

    NASA Technical Reports Server (NTRS)

    Lustig, P. H.; Holms, A. G.; Davison, H. W.

    1973-01-01

    The maximum fuel pin temperature for nominal operation in an advanced power reactor is 1370 K. Because of possible nitrogen embrittlement of the clad, the fuel temperature was limited to 1622 K. Assuming simultaneous occurrence of the most adverse conditions a deterministic analysis gave a maximum fuel temperature of 1610 K. A statistical analysis, using a synthesized estimate of the standard deviation for the highest fuel pin temperature, showed probabilities of 0.015 of that pin exceeding the temperature limit by the distribution free Chebyshev inequality and virtually nil assuming a normal distribution. The latter assumption gives a 1463 K maximum temperature at 3 standard deviations, the usually assumed cutoff. Further, the distribution and standard deviation of the fuel-clad gap are the most significant contributions to the uncertainty in the fuel temperature.

  18. Ordering transitions of weakly anisotropic hard rods in narrow slitlike pores.

    PubMed

    Aliabadi, Roohollah; Gurin, Péter; Velasco, Enrique; Varga, Szabolcs

    2018-01-01

    The effect of strong confinement on the positional and orientational ordering is examined in a system of hard rectangular rods with length L and diameter D (L>D) using the Parsons-Lee modification of the second virial density-functional theory. The rods are nonmesogenic (L/D<3) and confined between two parallel hard walls, where the width of the pore (H) is chosen in such a way that both planar (particle's long axis parallel to the walls) and homeotropic (particle's long axis perpendicular to the walls) orderings are possible and a maximum of two layers is allowed to form in the pore. In the extreme confinement limit of H≤2D, where only one-layer structures appear, we observe a structural transition from a planar to a homeotropic fluid layer with increasing density, which becomes sharper as L→H. In wider pores (2D

  19. Novel planar field emission of ultra-thin individual carbon nanotubes.

    PubMed

    Song, Xuefeng; Gao, Jingyun; Fu, Qiang; Xu, Jun; Zhao, Qing; Yu, Dapeng

    2009-10-07

    In this work, we proposed and realized a new prototype of planar field emission device based on as-grown individual carbon nanotubes (CNTs) on the surface of a Si-SiO2 substrate. The anode, cathode and the CNT tip all lie on the same surface, so the electron emission is reduced from three-dimensional to two-dimensional. The benefits of such a design include usage of thinner CNT emitters, integrity with planar technology, stable construction, better heat dissipation, etc. A tip-to-tip field emission device was presented besides the tip-to-electrode one. Real-time, in situ observation of the planar field emission was realized in a scanning electron microscope (SEM). Measurements showed that the minimum voltage for 10 nA field emission current was only 8.0 V and the maximum emission current density in an individual CNT emitter (1.0 nm in diameter) exceeded 5.7 x 10(8) A cm(-2). These results stand out in the comparison with recent works on individual CNT field emission, indicating that the planar devices based on ultra-thin individual CNTs are more competitive candidates for next-generation electron field emitters.

  20. Maximum entropy analysis of NMR data of flexible multirotor molecules partially oriented in nematic solution: 2,2':5',2″-terthiophene, 2,2'- and 3,3'-dithiophene

    NASA Astrophysics Data System (ADS)

    Caldarelli, Stefano; Catalano, Donata; Di Bari, Lorenzo; Lumetti, Marco; Ciofalo, Maurizio; Alberto Veracini, Carlo

    1994-07-01

    The dipolar couplings observed by NMR spectroscopy of solutes in nematic solvents (LX-NMR) are used to build up the maximum entropy (ME) probability distribution function of the variables describing the orientational and internal motion of the molecule. The ME conformational distributions of 2,2'- and 3,3'-dithiophene and 2,2':5',2″-terthiophene (α-terthienyl)thus obtained are compared with the results of previous studies. The 2,2'- and 3,3'-dithiophene molecules exhibit equilibria among cisoid and transoid forms; the probability maxima correspond to planar and twisted conformers for 2,2'- or 3,3'-dithiophene, respectively, 2,2':5',2″-Terthiophene has two internal degrees of freedom; the ME approach indicates that the trans, trans and cis, trans planar conformations are the most probable. The correlation between the two intramolecular rotations is also discussed.

  1. How random is a random vector?

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2015-12-01

    Over 80 years ago Samuel Wilks proposed that the "generalized variance" of a random vector is the determinant of its covariance matrix. To date, the notion and use of the generalized variance is confined only to very specific niches in statistics. In this paper we establish that the "Wilks standard deviation" -the square root of the generalized variance-is indeed the standard deviation of a random vector. We further establish that the "uncorrelation index" -a derivative of the Wilks standard deviation-is a measure of the overall correlation between the components of a random vector. Both the Wilks standard deviation and the uncorrelation index are, respectively, special cases of two general notions that we introduce: "randomness measures" and "independence indices" of random vectors. In turn, these general notions give rise to "randomness diagrams"-tangible planar visualizations that answer the question: How random is a random vector? The notion of "independence indices" yields a novel measure of correlation for Lévy laws. In general, the concepts and results presented in this paper are applicable to any field of science and engineering with random-vectors empirical data.

  2. Percentage depth dose calculation accuracy of model based algorithms in high energy photon small fields through heterogeneous media and comparison with plastic scintillator dosimetry.

    PubMed

    Alagar, Ananda Giri Babu; Mani, Ganesh Kadirampatti; Karunakaran, Kaviarasu

    2016-01-08

    Small fields smaller than 4 × 4 cm2 are used in stereotactic and conformal treatments where heterogeneity is normally present. Since dose calculation accuracy in both small fields and heterogeneity often involves more discrepancy, algorithms used by treatment planning systems (TPS) should be evaluated for achieving better treatment results. This report aims at evaluating accuracy of four model-based algorithms, X-ray Voxel Monte Carlo (XVMC) from Monaco, Superposition (SP) from CMS-Xio, AcurosXB (AXB) and analytical anisotropic algorithm (AAA) from Eclipse are tested against the measurement. Measurements are done using Exradin W1 plastic scintillator in Solid Water phantom with heterogeneities like air, lung, bone, and aluminum, irradiated with 6 and 15 MV photons of square field size ranging from 1 to 4 cm2. Each heterogeneity is introduced individually at two different depths from depth-of-dose maximum (Dmax), one setup being nearer and another farther from the Dmax. The central axis percentage depth-dose (CADD) curve for each setup is measured separately and compared with the TPS algorithm calculated for the same setup. The percentage normalized root mean squared deviation (%NRMSD) is calculated, which represents the whole CADD curve's deviation against the measured. It is found that for air and lung heterogeneity, for both 6 and 15 MV, all algorithms show maximum deviation for field size 1 × 1 cm2 and gradually reduce when field size increases, except for AAA. For aluminum and bone, all algorithms' deviations are less for 15 MV irrespective of setup. In all heterogeneity setups, 1 × 1 cm2 field showed maximum deviation, except in 6MV bone setup. All algorithms in the study, irrespective of energy and field size, when any heterogeneity is nearer to Dmax, the dose deviation is higher compared to the same heterogeneity far from the Dmax. Also, all algorithms show maximum deviation in lower-density materials compared to high-density materials.

  3. Crystal structure of 10-ethyl-7-(9-ethyl-9H-carbazol-3-yl)-10H-pheno-thia-zine-3-carbaldehyde.

    PubMed

    Mahalakshmi, Vairavan; Gouthaman, Siddan; Sugunalakshmi, Madurai; Bargavi, Srinivasan; Lakshmi, Srinivasakannan

    2017-05-01

    The title compound, C 29 H 24 N 2 OS, contains a pheno-thia-zine moiety linked to a planar carbazole unit (r.m.s. deviation = 0.029 Å) by a C-C single bond. The pheno-thia-zine moiety possesses a typical non-planar butterfly structure with a fold angle of 27.36 (9)° between the two benzene rings. The dihedral angle between the mean planes of the carbazole and pheno-thia-zine units is 27.28 (5)°. In the crystal, mol-ecules stack in pairs along the c -axis direction, linked by offset π-π inter-actions [inter-centroid distance = 3.797 (1) Å]. There are C-H⋯π inter-actions present linking these dimers to form a three-dimensional structure.

  4. (2E,5E)-2,5-Bis(4-hy-droxy-3-meth-oxy-benzyl-idene)cyclo-penta-none ethanol monosolvate.

    PubMed

    Da'i, Muhammad; Yanuar, Arry; Meiyanto, Edy; Jenie, Umar Anggara; Supardjan, Amir Margono

    2013-04-01

    In the title structure, C21H20O5·C2H5OH, the curcumine-type mol-ecule has a double E conformation for the two benzyl-idene double bonds [C=C = 1.342 (4) and 1.349 (4) Å] and is nearly planar with respect to the non-H atoms (r.m.s. deviation from planarity = 0.069 Å). The two phenolic OH groups form bifurcated hydrogen bonds with intra-molecular branches to adjacent meth-oxy O atoms and inter-molecular branches to either a neighbouring mol-ecule or an ethanol solvent mol-ecule. The ethanol O atom donates a hydrogen bond to the keto O atom. These hydrogen bonds link the constituents into layers parallel to (101) in the crystal structure.

  5. Stacked multilayers of alternating reduced graphene oxide and carbon nanotubes for planar supercapacitors

    NASA Astrophysics Data System (ADS)

    Moon, Geon Dae; Joo, Ji Bong; Yin, Yadong

    2013-11-01

    A simple layer-by-layer approach has been developed for constructing 2D planar supercapacitors of multi-stacked reduced graphene oxide and carbon nanotubes. This sandwiched 2D architecture enables the full utilization of the maximum active surface area of rGO nanosheets by using a CNT layer as a porous physical spacer to enhance the permeation of a gel electrolyte inside the structure and reduce the agglomeration of rGO nanosheets along the vertical direction. As a result, the stacked multilayers of rGO and CNTs are capable of offering higher output voltage and current production.A simple layer-by-layer approach has been developed for constructing 2D planar supercapacitors of multi-stacked reduced graphene oxide and carbon nanotubes. This sandwiched 2D architecture enables the full utilization of the maximum active surface area of rGO nanosheets by using a CNT layer as a porous physical spacer to enhance the permeation of a gel electrolyte inside the structure and reduce the agglomeration of rGO nanosheets along the vertical direction. As a result, the stacked multilayers of rGO and CNTs are capable of offering higher output voltage and current production. Electronic supplementary information (ESI) available: Experimental details, SEM and TEM images and additional electrochemical data. See DOI: 10.1039/c3nr04339h

  6. Simulation, design and fabrication of a planar micro thermoelectric generator

    NASA Astrophysics Data System (ADS)

    Pelegrini, S.; Adami, A.; Collini, C.; Conci, P.; Lorenzelli, L.; Pasa, A. A.

    2013-05-01

    This study describes the design, simulation, and micro fabrication of a micro thermoelectric generator (μTEG) based on planar technology using constantan (CuNi) and copper (Cu) thermocouples deposited electrochemically (ECD) on silicon substrate. The present thin film technology can be manufactured into large area and also on flexible substrate with low cost of production and can be used to exploit waste heat from equipments or hot surfaces in general. In the current implementation, the silicon structure has been designed and optimized with analytical models and FE simulations in order to exploit the different thermal conductivity of silicon and air gaps to produce the maximum temperature difference on a planar surface. The results showed that a temperature difference of 10K across the structure creates a temperature difference of 5.3K on the thermocouples, thus providing an efficiency of thermal distribution up to 55%, depending on the heat convection at the surface. Efficiency of module has been experimentally tested under different working condition, showing the dependence of module output on the external heat exchange (natural and forced convection). Maximum generated potential at 6m/s airflow is 5.7V/m2 K and thermoelectric efficiency is 1.9μW K-2 m-2.

  7. Fabrication and Characterization of Planar Spring Based on FR4-PCB for Electrodynamics Vibration Energy Harvesting Application

    NASA Astrophysics Data System (ADS)

    Sugandi, Gandi; Mambu, Grace A.; Mulyadi, Dadang; Mulyana, Edi

    2017-07-01

    Planar spring as a mechanical resonator is very important in designing an electrodynamic vibration energy harvesting application (EVEH) to generate output power with high efficiency. Generally, component of the mechanical resonator is a cantilever beam that is designed using one cantilever with an inertial mass placed cantilever tip. In this study, a planar spring which has four arms cantilever beam was designed and fabricated using an extra-thin FR4-PCB material with a total thickness of 130 µm. There are four types of planar spring that were designed and fabricated in this research to produce resonant frequencies at about 30, 40, 50 and 60 Hz with 1 mm width cantilever arm and various length of 13.5, 11.2, 9.8 and 8.7 mm, respectively. FR4 resonator is fabricated using technology LASER-cutting in order to obtain results precisely. The resonant frequency generated by the mechanical resonator is characterized using vibrator system with certain acceleration. The resonant frequency of the planar spring was obtained at a frequency where the maximum induced voltage occurs. The resonant frequency generated by each type of planar spring was obtained at 24.81, 34.24, 40.2, and 46.8 Hz with three conditions of acceleration of 0.02, 0.06, and 0,1g (g=9.8 m/s2).

  8. High-Accuracy Near-Surface Large-Eddy Simulation with Planar Topography

    DTIC Science & Technology

    2015-08-03

    Navier-Stokes equation, in effect randomizing the subfilter-scale (SFS) stress divergence. In the intervening years it has been discovered that this...surface stress models do introduce spurious effects that force deviations from LOTW at the first couple grid levels adjacent to the surface. Fig. 10 shows...SFS stress is sufficiently overwhelming to produce the overshoot. When the LES is moved into the HAZ so that the viscous effects causing the

  9. Length-dependent thermal transport in one-dimensional self-assembly of planar π-conjugated molecules

    NASA Astrophysics Data System (ADS)

    Tang, Hao; Xiong, Yucheng; Zu, Fengshuo; Zhao, Yang; Wang, Xiaomeng; Fu, Qiang; Jie, Jiansheng; Yang, Juekuan; Xu, Dongyan

    2016-06-01

    This work reports a thermal transport study in quasi-one-dimensional organic nanostructures self-assembled from conjugated planar molecules via π-π interactions. Thermal resistances of single crystalline copper phthalocyanine (CuPc) and perylenetetracarboxylic diimide (PTCDI) nanoribbons are measured via a suspended thermal bridge method. We experimentally observed the deviation from the linear length dependence for the thermal resistance of single crystalline β-phase CuPc nanoribbons, indicating possible subdiffusion thermal transport. Interestingly, a gradual transition to the linear length dependence is observed with the increase of the lateral dimensions of CuPc nanoribbons. The measured thermal resistance of single crystalline CuPc nanoribbons shows an increasing trend with temperature. However, the trend of temperature dependence of thermal resistance is reversed after electron irradiation, i.e., decreasing with temperature, indicating that the single crystalline CuPc nanoribbons become `amorphous'. Similar behavior is also observed for PTCDI nanoribbons after electron irradiation, proving that the electron beam can induce amorphization of single crystalline self-assembled nanostructures of planar π-conjugated molecules. The measured thermal resistance of the `amorphous' CuPc nanoribbon demonstrates a roughly linear dependence on the nanoribbon length, suggesting that normal diffusion dominates thermal transport.This work reports a thermal transport study in quasi-one-dimensional organic nanostructures self-assembled from conjugated planar molecules via π-π interactions. Thermal resistances of single crystalline copper phthalocyanine (CuPc) and perylenetetracarboxylic diimide (PTCDI) nanoribbons are measured via a suspended thermal bridge method. We experimentally observed the deviation from the linear length dependence for the thermal resistance of single crystalline β-phase CuPc nanoribbons, indicating possible subdiffusion thermal transport. Interestingly, a gradual transition to the linear length dependence is observed with the increase of the lateral dimensions of CuPc nanoribbons. The measured thermal resistance of single crystalline CuPc nanoribbons shows an increasing trend with temperature. However, the trend of temperature dependence of thermal resistance is reversed after electron irradiation, i.e., decreasing with temperature, indicating that the single crystalline CuPc nanoribbons become `amorphous'. Similar behavior is also observed for PTCDI nanoribbons after electron irradiation, proving that the electron beam can induce amorphization of single crystalline self-assembled nanostructures of planar π-conjugated molecules. The measured thermal resistance of the `amorphous' CuPc nanoribbon demonstrates a roughly linear dependence on the nanoribbon length, suggesting that normal diffusion dominates thermal transport. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09043a

  10. SU-E-J-50: An Evaluation of the Stability of Image Quality Parameters of the Elekta XVI and IView Imaging Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanley, D; Papanikolaou, N; Gutierrez, A

    2015-06-15

    Introduction Quality assurance of the image quality for image guided localization systems is crucial to ensure accurate visualization and localization of target volumes. In this study, the long term stability of selected image parameters was assessed and evaluated for CBCT mode, planar radiographic kV mode and MV mode. Methods and Materials: The CATPHAN, QckV-1 and QC-3 phantoms were used to evaluate the image quality parameters. The planar radiographic images were analyzed in PIPSpro™ with spatial resolution (f30, f40, f50) being recorded. For XVI CBCT, Head and Neck Small20 (S20) and Pelvis Medium20 (M20) standard acquisition modes were evaluated for Uniformity,more » Noise, Spatial Resolution and HU constancy. Dose and kVp for the XVI were recorded using the Unfors RaySafe Xi system with the R/F Low Detector for the kV planar radiographic mode. Results A total of 20 and 10 measurements were acquired for the planar radiographic and CBCT systems respectively over a two month period. Values were normalized to the mean and the standard deviations (STD) were recorded. For the planar radiographic spatial resolution, the STD for f30, f40, f50 were 0.004, 0.002, 0.002 and 0.005, 0.007, 0.008 for the kV and MV, respectively. The average recorded dose for kV was 38.7±2.7 μGy. The STD of the evaluated metrics for the S20 acquisition were: 0.444(f30), 0.067(f40), 0.062(f50), 0.018(Water/poly-HU constancy), 0.028(uniformity) and 0.106(noise). The standard deviations for the M20 acquisition were: 0.108(f30), 0.073(f40), 0.091(f50), 0.008(Water/poly-HU constancy), 0.005(uniformity) and 0.005(noise). Using these, tolerances can be reported as a warning and action threshold of 1σ and 2σ. Conclusion A study was performed to assess the stability of the basic image quality parameters recommended by TG-142 for the Elekta XVI and iView imaging systems. Consistent imaging and dosimetric properties over the evaluated time frame were noted. This work was funded in part by the Cancer Prevention Research Institute of Texas Pre doctoral fellowship training grant (RP140105) to Dennis N. Stanley M.Sc.« less

  11. Stacked multilayers of alternating reduced graphene oxide and carbon nanotubes for planar supercapacitors.

    PubMed

    Moon, Geon Dae; Joo, Ji Bong; Yin, Yadong

    2013-12-07

    A simple layer-by-layer approach has been developed for constructing 2D planar supercapacitors of multi-stacked reduced graphene oxide and carbon nanotubes. This sandwiched 2D architecture enables the full utilization of the maximum active surface area of rGO nanosheets by using a CNT layer as a porous physical spacer to enhance the permeation of a gel electrolyte inside the structure and reduce the agglomeration of rGO nanosheets along the vertical direction. As a result, the stacked multilayers of rGO and CNTs are capable of offering higher output voltage and current production.

  12. Automated recognition of quasi-planar ignimbrite sheets and paleo-surfaces via robust segmentation of DTM - examples from the Western Cordillera of the Central Andes

    NASA Astrophysics Data System (ADS)

    Székely, B.; Karátson, D.; Koma, Zs.; Dorninger, P.; Wörner, G.; Brandmeier, M.; Nothegger, C.

    2012-04-01

    The Western slope of the Central Andes between 22° and 17°S is characterized by large, quasi-planar landforms with tilted ignimbrite surfaces and overlying younger sedimentary deposits (e.g. Nazca, Oxaya, Huaylillas ignimbrites). These surfaces were only modified by tectonic uplift and tilting of the Western Cordillera preserving minor now fossilized drainage systems. Several deep, canyons started to form from about 5 Ma ago. Due to tectonic oversteepening in a arid region of very low erosion rates, gravitational collapses and landslides additionally modified the Andean slope and valley flanks. Large areas of fossil surfaces, however, remain. The age of these surfaces has been dated between 11 Ma and 25 Ma at elevations of 3500 m in the Precordillera and at c. 1000 m near the coast. Due to their excellent preservation, our aim is to identify, delineate, and reconstruct these original ignimbrite and sediment surfaces via a sophisticated evaluation of SRTM DEMs. The technique we use here is a robust morphological segmentation method that is insensitive to a certain amount of outliers, even if they are spatially correlated. This paves the way to identify common local planar features and combine these into larger areas of a particular surface segment. Erosional dissection and faulting, tilting and folding define subdomains, and thus the original quasi-planar surfaces are modified. Additional processes may create younger surfaces, such as sedimentary floodplains and salt pans. The procedure is tuned to provide a distinction of these features. The technique is based on the evaluation of local normal vectors (perpendicular to the actual surface) that are obtained by determination of locally fitting planes. Then, this initial set of normal vectors are gradually classified into groups with similar properties providing candidate point clouds that are quasi co-planar. The quasi co-planar sets of points are analysed further against other criteria, such as number of minimum points, maximized standard deviation of spatial scatter, maximum point-to-plane surface, etc. SRTM DEMs of selected areas of the Western slope of the Central Andes have been processed with various parameter sets. The resulting domain structure shows strong correlation with tectonic features (e.g. faulting) and younger depositional surfaces whereas other segmentation features appear or disappear depending on parameters of the analysis. For example, a fine segmentation results - for a given study area - in ca. 2500 planar features (of course not all are geologically meaningful), whereas a more meaningful result has an order of magnitude less planes, ca. 270. The latter segmentation still covers the key areas, and the dissecting features (e.g., large incised canyons) are typically identified. For the fine segmentation version an area of 3863 km2 is covered by fitted planes for the ignimbrite surfaces, whereas for the more robust segmentation this area is 2555 km2. The same values for the sedimentary surfaces are 3162 km2 and 2080 km2, respectively. The total processed area was 14498 km2. As the previous numbers and the 18,1% and 18,6% decrease in the coverage suggest, the robust segmentation remains meaningful for large parts of the area while the number of planar features decreased by an order of magnitude. This result also emphasizes the importance of the initial parameters. To verify the results in more detail, residuals (difference between measured and modelled elevation) are also evaluated, and the results are fed back to the segmentation procedure. Steeper landscapes (young volcanic edifices) are clearly separated from higher-order (long-wavelength) structures. This method allows to quantitatively identify uniform surface segments and to relate these to geologically and morphologically meaningful parameters (type of depositional surface, rock type, surface age).

  13. Single-event burnout hardening of planar power MOSFET with partially widened trench source

    NASA Astrophysics Data System (ADS)

    Lu, Jiang; Liu, Hainan; Cai, Xiaowu; Luo, Jiajun; Li, Bo; Li, Binhong; Wang, Lixin; Han, Zhengsheng

    2018-03-01

    We present a single-event burnout (SEB) hardened planar power MOSFET with partially widened trench sources by three-dimensional (3D) numerical simulation. The advantage of the proposed structure is that the work of the parasitic bipolar transistor inherited in the power MOSFET is suppressed effectively due to the elimination of the most sensitive region (P-well region below the N+ source). The simulation result shows that the proposed structure can enhance the SEB survivability significantly. The critical value of linear energy transfer (LET), which indicates the maximum deposited energy on the device without SEB behavior, increases from 0.06 to 0.7 pC/μm. The SEB threshold voltage increases to 120 V, which is 80% of the rated breakdown voltage. Meanwhile, the main parameter characteristics of the proposed structure remain similar with those of the conventional planar structure. Therefore, this structure offers a potential optimization path to planar power MOSFET with high SEB survivability for space and atmospheric applications. Project supported by the National Natural Science Foundation of China (Nos. 61404161, 61404068, 61404169).

  14. Multimode waveguide speckle patterns for compressive sensing.

    PubMed

    Valley, George C; Sefler, George A; Justin Shaw, T

    2016-06-01

    Compressive sensing (CS) of sparse gigahertz-band RF signals using microwave photonics may achieve better performances with smaller size, weight, and power than electronic CS or conventional Nyquist rate sampling. The critical element in a CS system is the device that produces the CS measurement matrix (MM). We show that passive speckle patterns in multimode waveguides potentially provide excellent MMs for CS. We measure and calculate the MM for a multimode fiber and perform simulations using this MM in a CS system. We show that the speckle MM exhibits the sharp phase transition and coherence properties needed for CS and that these properties are similar to those of a sub-Gaussian MM with the same mean and standard deviation. We calculate the MM for a multimode planar waveguide and find dimensions of the planar guide that give a speckle MM with a performance similar to that of the multimode fiber. The CS simulations show that all measured and calculated speckle MMs exhibit a robust performance with equal amplitude signals that are sparse in time, in frequency, and in wavelets (Haar wavelet transform). The planar waveguide results indicate a path to a microwave photonic integrated circuit for measuring sparse gigahertz-band RF signals using CS.

  15. Extension of the SAFT-VR Mie EoS To Model Homonuclear Rings and Its Parametrization Based on the Principle of Corresponding States.

    PubMed

    Müller, Erich A; Mejía, Andrés

    2017-10-24

    The statistical associating fluid theory of variable range employing a Mie potential (SAFT-VR-Mie) proposed by Lafitte et al. (J. Chem Phys. 2013, 139, 154504) is one of the latest versions of the SAFT family. This particular version has been shown to have a remarkable capability to connect experimental determinations, theoretical calculations, and molecular simulations results. However, the theoretical development restricts the model to chains of beads connected in a linear fashion. In this work, the capabilities of the SAFT-VR Mie equation of state for modeling phase equilibria are extended for the case of planar ring compounds. This modification proposed replaces the Helmholtz energy of chain formation by an empirical contribution based on a parallelism to the second-order thermodynamic perturbation theory for hard sphere trimers. The proposed expression is given in terms of an extra parameter, χ, that depends on the number of beads, m s , and the geometry of the ring. The model is used to describe the phase equilibrium for planar ring compounds formed of Mie isotropic segments for the cases of m s equals to 3, 4, 5 (two configurations), and 7 (two configurations). The resulting molecular model is further parametrized, invoking a corresponding states principle resulting in sets of parameters that can be used indistinctively in theoretical calculations or in molecular simulations without any further refinements. The extent and performance of the methodology has been exemplified by predicting the phase equilibria and vapor pressure curves for aromatic hydrocarbons (benzene, hexafluorobenzene, toluene), heterocyclic molecules (2,5-dimethylfuran, sulfolane, tetrahydro-2H-pyran, tetrahydrofuran), and polycyclic aromatic hydrocarbons (naphthalene, pyrene, anthracene, pentacene, and coronene). An important aspect of the theory is that the parameters of the model can be used directly in molecular dynamics (MD) simulations to calculate equilibrium phase properties and interfacial tensions with an accuracy that rivals other coarse grained and united atom models, for example, liquid densities, are predicted, with a maximum absolute average deviation of 3% from both the theory and the MD simulations, while the interfacial tension is predicted, with a maximum absolute average of 8%. The extension to mixtures is exemplified by considering a binary system of hexane (chain fluid) and tetrahydro-2H-pyran (ring fluid).

  16. A Planar Microfluidic Mixer Based on Logarithmic Spirals

    PubMed Central

    Scherr, Thomas; Quitadamo, Christian; Tesvich, Preston; Park, Daniel Sang-Won; Tiersch, Terrence; Hayes, Daniel; Choi, Jin-Woo; Nandakumar, Krishnaswamy

    2013-01-01

    A passive, planar micromixer design based on logarithmic spirals is presented. The device was fabricated using polydimethylsiloxane soft photolithography techniques, and mixing performance was characterized via numerical simulation and fluorescent microscopy. Mixing efficiency initially declined as Reynolds number increased, and this trend continued until a Reynolds number of 15 where a minimum was reached at 53%. Mixing efficiency then began to increase reaching a maximum mixing efficiency of 86% at Re = 67. Three-dimensional simulations of fluid mixing in this design were compared to other planar geometries such as the Archimedes spiral and Meandering-S mixers. The implementation of logarithmic curvature offers several unique advantages that enhance mixing, namely a variable cross-sectional area and a logarithmically varying radius of curvature that creates 3-D Dean vortices. These flow phenomena were observed in simulations with multilayered fluid folding and validated with confocal microscopy. This design provides improved mixing performance over a broader range of Reynolds numbers than other reported planar mixers, all while avoiding external force fields, more complicated fabrication processes, and the introduction of flow obstructions or cavities that may unintentionally affect sensitive or particulate-containing samples. Due to the planar design requiring only single-step lithographic features, this compact geometry could be easily implemented into existing micro-total analysis systems requiring effective rapid mixing. PMID:23956497

  17. A planar microfluidic mixer based on logarithmic spirals

    NASA Astrophysics Data System (ADS)

    Scherr, Thomas; Quitadamo, Christian; Tesvich, Preston; Sang-Won Park, Daniel; Tiersch, Terrence; Hayes, Daniel; Choi, Jin-Woo; Nandakumar, Krishnaswamy; Monroe, W. Todd

    2012-05-01

    A passive, planar micromixer design based on logarithmic spirals is presented. The device was fabricated using polydimethylsiloxane soft photolithography techniques, and mixing performance was characterized via numerical simulation and fluorescent microscopy. Mixing efficiency initially declined as the Reynolds number increased, and this trend continued until a Reynolds number of 15 where a minimum was reached at 53%. Mixing efficiency then began to increase reaching a maximum mixing efficiency of 86% at Re = 67. Three-dimensional (3D) simulations of fluid mixing in this design were compared to other planar geometries such as the Archimedes spiral and Meandering-S mixers. The implementation of logarithmic curvature offers several unique advantages that enhance mixing, namely a variable cross-sectional area and a logarithmically varying radius of curvature that creates 3D Dean vortices. These flow phenomena were observed in simulations with multilayered fluid folding and validated with confocal microscopy. This design provides improved mixing performance over a broader range of Reynolds numbers than other reported planar mixers, all while avoiding external force fields, more complicated fabrication processes and the introduction of flow obstructions or cavities that may unintentionally affect sensitive or particulate-containing samples. Due to the planar design requiring only single-step lithographic features, this compact geometry could be easily implemented into existing micro-total analysis systems requiring effective rapid mixing.

  18. Optimum Particle Size for Gold-Catalyzed CO Oxidation

    PubMed Central

    2018-01-01

    The structure sensitivity of gold-catalyzed CO oxidation is presented by analyzing in detail the dependence of CO oxidation rate on particle size. Clusters with less than 14 gold atoms adopt a planar structure, whereas larger ones adopt a three-dimensional structure. The CO and O2 adsorption properties depend strongly on particle structure and size. All of the reaction barriers relevant to CO oxidation display linear scaling relationships with CO and O2 binding strengths as main reactivity descriptors. Planar and three-dimensional gold clusters exhibit different linear scaling relationship due to different surface topologies and different coordination numbers of the surface atoms. On the basis of these linear scaling relationships, first-principles microkinetics simulations were conducted to determine CO oxidation rates and possible rate-determining step of Au particles. Planar Au9 and three-dimensional Au79 clusters present the highest CO oxidation rates for planar and three-dimensional clusters, respectively. The planar Au9 cluster is much more active than the optimum Au79 cluster. A common feature of optimum CO oxidation performance is the intermediate binding strengths of CO and O2, resulting in intermediate coverages of CO, O2, and O. Both these optimum particles present lower performance than maximum Sabatier performance, indicating that there is sufficient room for improvement of gold catalysts for CO oxidation. PMID:29707098

  19. 7-Meth­oxy­indan-1-one

    PubMed Central

    Chang, Yuan Jay; Chen, Kew-Yu

    2012-01-01

    In the title compound, C10H10O2, the 1-indanone unit is essentially planar (r.m.s. deviation = 0.028 Å). In the crystal, molecules are linked via C—H⋯O hydrogen bonds, forming layers lying parallel to the ab plane. This two-dimensional structure is stabilized by a weak C—H⋯π inter­action. A second weak C—H⋯π inter­action links the layers, forming a three-dimensional structure. PMID:23284398

  20. Monoclinic distortion and magnetic coupling in the double perovskite Sr{sub 2−x}Ca{sub x}YRuO{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernardo, P.L.; Ghivelder, L.; Eslava, G.G.

    2014-12-15

    Abstracts: This work investigates in the insulating double perovskites Sr{sub 2−x}Ca{sub x}YRuO{sub 6}. We address the angular dependence of the strength of the magnetic coupling due to the deviation from planarity of the basal layers of the monoclinic structure, characterized by the in-plane angle α<180°, in order to probe the impact of the structural distortions in the magnetic properties of the compounds. High resolution x-ray powder diffraction, susceptibility, and specific heat measurements were performed. The deviation from planarity significantly increases (α=144° for x=1) while the bond distances vary in a complex way as a consequence of the strong monoclinic distortion.more » We found that the magnetic transition temperature, T{sub M}, shows a linear dependence on cos [(π−α)/2]. This result is discussed in terms of t{sub 2g}(π)–e{sub g}(σ) mixing of the magnetic orbitals of the Ru{sup 5+} ions and unbalanced competitive super-exchange interactions. The deleterious effect of Ca doping for the magnetic coupling is confirmed by the reduction in the short-range antiferromagnetic correlations characteristic of the parent compound at T>>T{sub M} and the enhancement of magnetic frustration for T« less

  1. ASTP (SA-210) Launch vehicle operational flight trajectory. Part 3: Final documentation

    NASA Technical Reports Server (NTRS)

    Carter, A. B.; Klug, G. W.; Williams, N. W.

    1975-01-01

    Trajectory data are presented for a nominal and two launch window trajectory simulations. These trajectories are designed to insert a manned Apollo spacecraft into a 150/167 km. (81/90 n. mi.) earth orbit inclined at 51.78 degrees for rendezvous with a Soyuz spacecraft, which will be orbiting at approximately 225 km. (121.5 n. mi.). The launch window allocation defined for this launch is 500 pounds of S-IVB stage propellant. The launch window opening trajectory simulation depicts the earliest launch time deviation from a planar flight launch which conforms to this constraint. The launch window closing trajectory simulation was developed for the more stringent Air Force Eastern Test Range (AFETR) flight azimuth restriction of 37.4 degrees east-of-north. These trajectories enclose a 12.09 minute launch window, pertinent features of which are provided in a tabulation. Planar flight data are included for mid-window reference.

  2. (2E,5E)-2,5-Bis(4-hy­droxy-3-meth­oxy­benzyl­idene)cyclo­penta­none ethanol monosolvate

    PubMed Central

    Da’i, Muhammad; Yanuar, Arry; Meiyanto, Edy; Jenie, Umar Anggara; Supardjan, Amir Margono

    2013-01-01

    In the title structure, C21H20O5·C2H5OH, the curcumine-type mol­ecule has a double E conformation for the two benzyl­idene double bonds [C=C = 1.342 (4) and 1.349 (4) Å] and is nearly planar with respect to the non-H atoms (r.m.s. deviation from planarity = 0.069 Å). The two phenolic OH groups form bifurcated hydrogen bonds with intra­molecular branches to adjacent meth­oxy O atoms and inter­molecular branches to either a neighbouring mol­ecule or an ethanol solvent mol­ecule. The ethanol O atom donates a hydrogen bond to the keto O atom. These hydrogen bonds link the constituents into layers parallel to (101) in the crystal structure. PMID:23634071

  3. A multilayer membrane amperometric glucose sensor fabricated using planar techniques for large-scale production.

    PubMed

    Matsumoto, T; Saito, S; Ikeda, S

    2006-03-23

    This paper reports on a multilayer membrane amperometric glucose sensor fabricated using planar techniques. It is characterized by good reproducibility and suitable for large-scale production. The glucose sensor has 82 electrode sets formed on a single glass substrate, each with a platinum working electrode (WE), a platinum counter electrode (CE) and an Ag/AgCl reference electrode (RE). The electrode sets are coated with a membrane consisting of five layers: gamma-aminopropyltriethoxysilane (gamma-APTES), Nafion, glucose oxidase (GOX), gamma-APTES and perfluorocarbon polymer (PFCP), in that order. Tests have shown that the sensor has acceptably low dispersion (relative standard deviation, R.S.D.=42.9%, n=82), a wide measurement range (1.11-111 mM) and measurement stability over a 27-day period. Measurements of the glucose concentration in a control human urine sample demonstrated that the sensor has very low dispersion (R.S.D.=2.49%, n=10).

  4. Transition from a planar interface to cellular and dendritic structures during rapid solidification processing

    NASA Technical Reports Server (NTRS)

    Laxmanan, V.

    1986-01-01

    The development of theoretical models which characterize the planar-cellular and cell-dendrite transitions is described. The transitions are analyzed in terms of the Chalmers number, the solute Peclet number, and the tip stability parameter, which correlate microstructural features and processing conditions. The planar-cellular transition is examined using the constitutional supercooling theory of Chalmers et al., (1953) and it is observed that the Chalmers number is between 0 and 1 during dendritic and cellular growth. Analysis of cell-dendrite transition data reveal that the transition occurs when the solute Peclet number goes through a minimum, the primary arm spacings go through a maximum, and the Chalmers number is equal to 1/2. The relation between the tip stability parameter and the solute Peclet number is investigated and it is noted that the tip stability parameter is useful for studying dendritic growth in alloys.

  5. In vivo dosimetry for external photon treatments of head and neck cancers by diodes and TLDS.

    PubMed

    Tung, C J; Wang, H C; Lo, S H; Wu, J M; Wang, C J

    2004-01-01

    In vivo dosimetry was implemented for treatments of head and neck cancers in the large fields. Diode and thermoluminescence dosemeter (TLD) measurements were carried out for the linear accelerators of 6 MV photon beams. ESTRO in vivo dosimetry protocols were followed in the determination of midline doses from measurements of entrance and exit doses. Of the fields monitored by diodes, the maximum absolute deviation of measured midline doses from planned target doses was 8%, with the mean value and the standard deviation of -1.0 and 2.7%. If planned target doses were calculated using radiological water equivalent thicknesses rather than patient geometric thicknesses, the maximum absolute deviation dropped to 4%, with the mean and the standard deviation of 0.7 and 1.8%. For in vivo dosimetry monitored by TLDs, the shift in mean dose remained small but the statistical precision became poor.

  6. Percentage depth dose calculation accuracy of model based algorithms in high energy photon small fields through heterogeneous media and comparison with plastic scintillator dosimetry

    PubMed Central

    Mani, Ganesh Kadirampatti; Karunakaran, Kaviarasu

    2016-01-01

    Small fields smaller than 4×4 cm2 are used in stereotactic and conformal treatments where heterogeneity is normally present. Since dose calculation accuracy in both small fields and heterogeneity often involves more discrepancy, algorithms used by treatment planning systems (TPS) should be evaluated for achieving better treatment results. This report aims at evaluating accuracy of four model‐based algorithms, X‐ray Voxel Monte Carlo (XVMC) from Monaco, Superposition (SP) from CMS‐Xio, AcurosXB (AXB) and analytical anisotropic algorithm (AAA) from Eclipse are tested against the measurement. Measurements are done using Exradin W1 plastic scintillator in Solid Water phantom with heterogeneities like air, lung, bone, and aluminum, irradiated with 6 and 15 MV photons of square field size ranging from 1 to 4 cm2. Each heterogeneity is introduced individually at two different depths from depth‐of‐dose maximum (Dmax), one setup being nearer and another farther from the Dmax. The central axis percentage depth‐dose (CADD) curve for each setup is measured separately and compared with the TPS algorithm calculated for the same setup. The percentage normalized root mean squared deviation (%NRMSD) is calculated, which represents the whole CADD curve's deviation against the measured. It is found that for air and lung heterogeneity, for both 6 and 15 MV, all algorithms show maximum deviation for field size 1×1 cm2 and gradually reduce when field size increases, except for AAA. For aluminum and bone, all algorithms' deviations are less for 15 MV irrespective of setup. In all heterogeneity setups, 1×1 cm2 field showed maximum deviation, except in 6 MV bone setup. All algorithms in the study, irrespective of energy and field size, when any heterogeneity is nearer to Dmax, the dose deviation is higher compared to the same heterogeneity far from the Dmax. Also, all algorithms show maximum deviation in lower‐density materials compared to high‐density materials. PACS numbers: 87.53.Bn, 87.53.kn, 87.56.bd, 87.55.Kd, 87.56.jf PMID:26894345

  7. On-line determination of transient stability status using multilayer perceptron neural network

    NASA Astrophysics Data System (ADS)

    Frimpong, Emmanuel Asuming; Okyere, Philip Yaw; Asumadu, Johnson

    2018-01-01

    A scheme to predict transient stability status following a disturbance is presented. The scheme is activated upon the tripping of a line or bus and operates as follows: Two samples of frequency deviation values at all generator buses are obtained. At each generator bus, the maximum frequency deviation within the two samples is extracted. A vector is then constructed from the extracted maximum frequency deviations. The Euclidean norm of the constructed vector is calculated and then fed as input to a trained multilayer perceptron neural network which predicts the stability status of the system. The scheme was tested using data generated from the New England test system. The scheme successfully predicted the stability status of all two hundred and five disturbance test cases.

  8. Field of view of limitations in see-through HMD using geometric waveguides.

    PubMed

    DeHoog, Edward; Holmstedt, Jason; Aye, Tin

    2016-08-01

    Geometric waveguides are being integrated into head-mounted display (HMD) systems, where having see-through capability in a compact, lightweight form factor is required. We developed methods for determining the field of view (FOV) of such waveguide HMD systems and have analytically derived the FOV for waveguides using planar and curved geometries. By using real ray-tracing methods, we are able to show how the geometry and index of refraction of the waveguide, as well as the properties of the coupling optics, impact the FOV. Use of this analysis allows one to determine the maximum theoretical FOV of a planar or curved waveguide-based system.

  9. Thio-phene-2-carbonyl azide.

    PubMed

    Hsu, Gene C; Singer, Laci M; Cordes, David B; Findlater, Michael

    2013-01-01

    The title compound, C5H3N3OS, is almost planar (r.m.s. deviation for the ten non-H atoms = 0.018 Å) and forms an extended layer structure in the (100) plane, held together via hydrogen-bonding inter-actions between adjacent mol-ecules. Of particular note is the occurrence of RC-H⋯N(-)=N(+)=NR inter-actions between an aromatic C-H group and an azide moiety which, in conjunction with a complementary C-H⋯O=C inter-action, forms a nine-membered ring.

  10. N-(1H-Indazol-5-yl)-4-meth-oxy-benzene-sulfonamide.

    PubMed

    Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Saadi, Mohamed; El Ammari, Lahcen

    2013-10-26

    In the title compound, C14H13N3O3S, the fused ring system is almost planar, the largest deviation from the mean plane being 0.023 (2) Å, and makes a dihedral angle of 47.92 (10)° with the benzene ring of the benzene-sulfonamide moiety. In the crystal, mol-ecules are connected through N-H⋯O hydrogen bonds and weak C-H⋯O contacts, forming a two-dimensional network which is parallel to (010).

  11. SU-F-T-301: Planar Dose Pass Rate Inflation Due to the MapCHECK Measurement Uncertainty Function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, D; Spaans, J; Kumaraswamy, L

    Purpose: To quantify the effect of the Measurement Uncertainty function on planar dosimetry pass rates, as analyzed with Sun Nuclear Corporation analytic software (“MapCHECK” or “SNC Patient”). This optional function is toggled on by default upon software installation, and automatically increases the user-defined dose percent difference (%Diff) tolerance for each planar dose comparison. Methods: Dose planes from 109 IMRT fields and 40 VMAT arcs were measured with the MapCHECK 2 diode array, and compared to calculated planes from a commercial treatment planning system. Pass rates were calculated within the SNC analytic software using varying calculation parameters, including Measurement Uncertainty onmore » and off. By varying the %Diff criterion for each dose comparison performed with Measurement Uncertainty turned off, an effective %Diff criterion was defined for each field/arc corresponding to the pass rate achieved with MapCHECK Uncertainty turned on. Results: For 3%/3mm analysis, the Measurement Uncertainty function increases the user-defined %Diff by 0.8–1.1% average, depending on plan type and calculation technique, for an average pass rate increase of 1.0–3.5% (maximum +8.7%). For 2%, 2 mm analysis, the Measurement Uncertainty function increases the user-defined %Diff by 0.7–1.2% average, for an average pass rate increase of 3.5–8.1% (maximum +14.2%). The largest increases in pass rate are generally seen with poorly-matched planar dose comparisons; the MapCHECK Uncertainty effect is markedly smaller as pass rates approach 100%. Conclusion: The Measurement Uncertainty function may substantially inflate planar dose comparison pass rates for typical IMRT and VMAT planes. The types of uncertainties incorporated into the function (and their associated quantitative estimates) as described in the software user’s manual may not accurately estimate realistic measurement uncertainty for the user’s measurement conditions. Pass rates listed in published reports or otherwise compared to the results of other users or vendors should clearly indicate whether the Measurement Uncertainty function is used.« less

  12. Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Mohammadian, Shahabeddin K.; Zhang, Yuwen

    2015-01-01

    Three dimensional transient thermal analysis of an air-cooled module that contains prismatic Li-ion cells next to a special kind of aluminum pin fin heat sink whose heights of pin fins increase linearly through the width of the channel in air flow direction was studied for thermal management of Lithium-ion battery pack. The effects of pin fins arrangements, discharge rates, inlet air flow velocities, and inlet air temperatures on the battery were investigated. The results showed that despite of heat sinks with uniform pin fin heights that increase the standard deviation of the temperature field, using this kind of pin fin heat sink compare to the heat sink without pin fins not only decreases the bulk temperature inside the battery, but also decreases the standard deviation of the temperature field inside the battery as well. Increasing the inlet air temperature leads to decreasing the standard deviation of the temperature field while increases the maximum temperature of the battery. Furthermore, increasing the inlet air velocity first increases the standard deviation of the temperature field till reaches to the maximum point, and after that decreases. Also, increasing the inlet air velocity leads to decrease in the maximum temperature of the battery.

  13. A Modified Differential Coherent Bit Synchronization Algorithm for BeiDou Weak Signals with Large Frequency Deviation.

    PubMed

    Han, Zhifeng; Liu, Jianye; Li, Rongbing; Zeng, Qinghua; Wang, Yi

    2017-07-04

    BeiDou system navigation messages are modulated with a secondary NH (Neumann-Hoffman) code of 1 kbps, where frequent bit transitions limit the coherent integration time to 1 millisecond. Therefore, a bit synchronization algorithm is necessary to obtain bit edges and NH code phases. In order to realize bit synchronization for BeiDou weak signals with large frequency deviation, a bit synchronization algorithm based on differential coherent and maximum likelihood is proposed. Firstly, a differential coherent approach is used to remove the effect of frequency deviation, and the differential delay time is set to be a multiple of bit cycle to remove the influence of NH code. Secondly, the maximum likelihood function detection is used to improve the detection probability of weak signals. Finally, Monte Carlo simulations are conducted to analyze the detection performance of the proposed algorithm compared with a traditional algorithm under the CN0s of 20~40 dB-Hz and different frequency deviations. The results show that the proposed algorithm outperforms the traditional method with a frequency deviation of 50 Hz. This algorithm can remove the effect of BeiDou NH code effectively and weaken the influence of frequency deviation. To confirm the feasibility of the proposed algorithm, real data tests are conducted. The proposed algorithm is suitable for BeiDou weak signal bit synchronization with large frequency deviation.

  14. Resistive switching of Sn-doped In2O3/HfO2 core-shell nanowire: geometry architecture engineering for nonvolatile memory.

    PubMed

    Huang, Chi-Hsin; Chang, Wen-Chih; Huang, Jian-Shiou; Lin, Shih-Ming; Chueh, Yu-Lun

    2017-05-25

    Core-shell NWs offer an innovative approach to achieve nanoscale metal-insulator-metal (MIM) heterostructures along the wire radial direction, realizing three-dimensional geometry architecture rather than planar type thin film devices. This work demonstrated the tunable resistive switching characteristics of ITO/HfO 2 core-shell nanowires with controllable shell thicknesses by the atomic layer deposition (ALD) process for the first time. Compared to planar HfO 2 thin film device configuration, ITO/HfO 2 core-shell nanowire shows a prominent resistive memory behavior, including lower power consumption with a smaller SET voltage of ∼0.6 V and better switching voltage uniformity with variations (standard deviation(σ)/mean value (μ)) of V SET and V RESET from 0.38 to 0.14 and from 0.33 to 0.05 for ITO/HfO 2 core-shell nanowire and planar HfO 2 thin film, respectively. In addition, endurance over 10 3 cycles resulting from the local electric field enhancement can be achieved, which is attributed to geometry architecture engineering. The concept of geometry architecture engineering provides a promising strategy to modify the electric-field distribution for solving the non-uniformity issue of future RRAM.

  15. IRNSS/NavIC L5 Attitude Determination

    PubMed Central

    Zaminpardaz, Safoora; Teunissen, Peter J.G.; Nadarajah, Nandakumaran

    2017-01-01

    The Indian Regional Navigation Satellite System (IRNSS) has recently (May 2016) become fully-operational and has been provided with the operational name of NavIC (Navigation with Indian Constellation). It has been developed by the Indian Space Research Organization (ISRO) with the objective of offering positioning, navigation and timing (PNT) to the users in its service area. This contribution provides for the first time an assessment of the IRNSS L5-signal capability to achieve instantaneous attitude determination on the basis of data collected in Perth, Australia. Our evaluations are conducted for both a linear array of two antennas and a planar array of three antennas. A pre-requisite for precise and fast IRNSS attitude determination is the successful resolution of the double-differenced (DD) integer carrier-phase ambiguities. In this contribution, we will compare the performances of different such methods, amongst which the unconstrained and the multivariate-constrained LAMBDA method for both linear and planar arrays. It is demonstrated that the instantaneous ambiguity success rates increase from 15% to 90% for the linear array and from 5% to close to 100% for the planar array, thus showing that standalone IRNSS can realize 24-h almost instantaneous precise attitude determination with heading and elevation standard deviations of 0.05° and 0.10°, respectively. PMID:28146107

  16. Surface thermodynamics of planar, cylindrical, and spherical vapour-liquid interfaces of water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lau, Gabriel V.; Müller, Erich A.; Jackson, George

    2015-03-21

    The test-area (TA) perturbation approach has been gaining popularity as a methodology for the direct computation of the interfacial tension in molecular simulation. Though originally implemented for planar interfaces, the TA approach has also been used to analyze the interfacial properties of curved liquid interfaces. Here, we provide an interpretation of the TA method taking the view that it corresponds to the change in free energy under a transformation of the spatial metric for an affine distortion. By expressing the change in configurational energy of a molecular configuration as a Taylor expansion in the distortion parameter, compact relations are derivedmore » for the interfacial tension and its energetic and entropic components for three different geometries: planar, cylindrical, and spherical fluid interfaces. While the tensions of the planar and cylindrical geometries are characterized by first-order changes in the energy, that of the spherical interface depends on second-order contributions. We show that a greater statistical uncertainty is to be expected when calculating the thermodynamic properties of a spherical interface than for the planar and cylindrical cases, and the evaluation of the separate entropic and energetic contributions poses a greater computational challenge than the tension itself. The methodology is employed to determine the vapour-liquid interfacial tension of TIP4P/2005 water at 293 K by molecular dynamics simulation for planar, cylindrical, and spherical geometries. A weak peak in the curvature dependence of the tension is observed in the case of cylindrical threads of condensed liquid at a radius of about 8 Å, below which the tension is found to decrease again. In the case of spherical drops, a marked decrease in the tension from the planar limit is found for radii below ∼ 15 Å; there is no indication of a maximum in the tension with increasing curvature. The vapour-liquid interfacial tension tends towards the planar limit for large system sizes for both the cylindrical and spherical cases. Estimates of the entropic and energetic contributions are also evaluated for the planar and cylindrical geometries and their magnitudes are in line with the expectations of our simple analysis.« less

  17. Synthesis and crystal structures of (2 E )-1,4-bis(4-chlorophenyl)but-2-ene-1,4-dione and (2 E )-1,4-bis(4-bromophenyl)but-2-ene-1,4-dione

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lastovickova, Dominika N.; La Scala, John J.; Sausa, Rosario C.

    The molecular structure of (2 E )-1,4-bis(4-chlorophenyl)but-2-ene-1,4-dione [C 16 H 10 Cl 2 O 2 , ( 1 )] is composed of two p -chlorophenyl rings, each bonded on opposite ends to a near planar 1,4- trans enedione moiety [–C(=O)—CH=CH—(C=O)–] [r.m.s. deviation = 0.003 (1) Å]. (2 E )-1,4-Bis(4-bromophenyl)but-2-ene-1,4-dione [C 16 H 10 Br 2 O 2 , ( 2 )] has a similar structure to ( 1 ), but with two p -bromophenyl rings and a less planar enedione group [r.m.s. deviation = 0.011 (1) Å]. Both molecules sit on a center of inversion, thus Z ′ = 0.5. The dihedral angles between themore » ring and the enedione group are 16.61 (8) and 15.58 (11)° for ( 1 ) and ( 2 ), respectively. In the crystal, molecules of ( 1 ) exhibit C—Cl...Cl type I interactions, whereas molecules of ( 2 ) present C—Br...Br type II interactions. van der Waals-type interactions contribute to the packing of both molecules, and the packing reveals face-to-face ring stacking with similar interplanar distances of approximately 3.53 Å.« less

  18. Synthesis and crystal structures of (2 E )-1,4-bis(4-chlorophenyl)but-2-ene-1,4-dione and (2 E )-1,4-bis(4-bromophenyl)but-2-ene-1,4-dione

    DOE PAGES

    Lastovickova, Dominika N.; La Scala, John J.; Sausa, Rosario C.

    2018-02-13

    The molecular structure of (2 E )-1,4-bis(4-chlorophenyl)but-2-ene-1,4-dione [C 16 H 10 Cl 2 O 2 , ( 1 )] is composed of two p -chlorophenyl rings, each bonded on opposite ends to a near planar 1,4- trans enedione moiety [–C(=O)—CH=CH—(C=O)–] [r.m.s. deviation = 0.003 (1) Å]. (2 E )-1,4-Bis(4-bromophenyl)but-2-ene-1,4-dione [C 16 H 10 Br 2 O 2 , ( 2 )] has a similar structure to ( 1 ), but with two p -bromophenyl rings and a less planar enedione group [r.m.s. deviation = 0.011 (1) Å]. Both molecules sit on a center of inversion, thus Z ′ = 0.5. The dihedral angles between themore » ring and the enedione group are 16.61 (8) and 15.58 (11)° for ( 1 ) and ( 2 ), respectively. In the crystal, molecules of ( 1 ) exhibit C—Cl...Cl type I interactions, whereas molecules of ( 2 ) present C—Br...Br type II interactions. van der Waals-type interactions contribute to the packing of both molecules, and the packing reveals face-to-face ring stacking with similar interplanar distances of approximately 3.53 Å.« less

  19. SU-E-T-607: Performance Quantification of the Nine Detectors Used for Dosimetry Measurements in Advanced Radiation Therapy Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markovic, M; Stathakis, S; Jurkovic, I

    2015-06-15

    Purpose: The purpose of this study was to quantify performance of the nine detectors used for dosimetry measurements in advanced radiation therapy treatments. Methods: The 6 MV beam was utilized for measurements of the field sizes with the lack of lateral charge particle equilibrium. For dose fidelity aspect, energy dependence was studied by measuring PDD and profiles at different depths. The volume effect and its influence on the measured dose profiles have been observed by measuring detector’s response function. Output factor measurements with respect to change in energy spectrum have been performed and collected data has been analyzed. The linearitymore » of the measurements with the dose delivered has been evaluated and relevant comparisons were done. Results: The measured values of the output factors with respect to change in energy spectrum indicated presence of the energy dependence. The detectors with active volume size ≤ 0.3 mm3 maximum deviation from the mean is 5.6% for the field size 0.5 x 0.5 cm2 while detectors with active volume size > 0.3 mm3 have maximum deviation from the mean 7.1%. Linearity with dose at highest dose rate examined for diode detectors showed maximum deviation of 4% while ion chambers showed maximum deviation of 2.2%. Dose profiles showed energy dependence at shallow depths (surface to dmax) influenced by low energy particles with 12 % maximum deviation from the mean for 5 mm2 field size. In relation to Monte Carlo calculation, the detector’s response function σ values were between (0.42±0.25) mm and (1.2±0.25) mm. Conclusion: All the detectors are appropriate for the dosimetry measurements in advanced radiation therapy treatments. The choice of the detectors has to be determined by the application and the scope of the measurements in respect to energy dependence and ability to accurately resolve dose profiles as well as to it’s intrinsic characteristics.« less

  20. Two-point method uncertainty during control and measurement of cylindrical element diameters

    NASA Astrophysics Data System (ADS)

    Glukhov, V. I.; Shalay, V. V.; Radev, H.

    2018-04-01

    The topic of the article is devoted to the urgent problem of the reliability of technical products geometric specifications measurements. The purpose of the article is to improve the quality of parts linear sizes control by the two-point measurement method. The article task is to investigate methodical extended uncertainties in measuring cylindrical element linear sizes. The investigation method is a geometric modeling of the element surfaces shape and location deviations in a rectangular coordinate system. The studies were carried out for elements of various service use, taking into account their informativeness, corresponding to the kinematic pairs classes in theoretical mechanics and the number of constrained degrees of freedom in the datum element function. Cylindrical elements with informativity of 4, 2, 1 and θ (zero) were investigated. The uncertainties estimation of in two-point measurements was made by comparing the results of of linear dimensions measurements with the functional diameters maximum and minimum of the element material. Methodical uncertainty is formed when cylindrical elements with maximum informativeness have shape deviations of the cut and the curvature types. Methodical uncertainty is formed by measuring the element average size for all types of shape deviations. The two-point measurement method cannot take into account the location deviations of a dimensional element, so its use for elements with informativeness less than the maximum creates unacceptable methodical uncertainties in measurements of the maximum, minimum and medium linear dimensions. Similar methodical uncertainties also exist in the arbitration control of the linear dimensions of the cylindrical elements by limiting two-point gauges.

  1. The concave iris in pigment dispersion syndrome.

    PubMed

    Liu, Lance; Ong, Ee Lin; Crowston, Jonathan

    2011-01-01

    To visualize the changes of the iris contour in patients with pigment dispersion syndrome after blinking, accommodation, and pharmacologic miosis using anterior segment optical coherence tomography. Observational case series. A total of 33 eyes of 20 patients with pigment dispersion syndrome. Each eye was imaged along the horizontal 0- to 180-degree meridian using the Visante Anterior Segment Imaging System (Carl Zeiss Meditec, Dublin, CA). Scans were performed at baseline and after focusing on an internal fixation target for 5 minutes, forced blinking, accommodation, and pharmacologic miosis with pilocarpine 2%. Quantitative analysis of the changes in the iris configuration. After 5 minutes of continual fixation, the iris became planar with the mean ± standard deviation curvature decreasing from 214 ± 74 μm to 67 ± 76 μm (P < 0.05). The iris remained planar in all patients with pigment dispersion syndrome after forced blinking, but the iris concavity recovered to 227 ± 113 μm (P = 0.34) and 238 ± 119 μm (P = 0.19) with the -3.0 and -6.0 diopter lenses, respectively. Pilocarpine-induced miosis caused the iris to assume a planar configuration in all subjects. This study shows that the iris in pigment dispersion syndrome assumes a planar configuration when fixating and that the concavity of the iris surface is not restored by blinking. Accommodation restored the iris concavity, suggesting that the posterior curvature of the iris in pigment dispersion syndrome is induced and probably maintained, at least in part, by accommodation. Copyright © 2011 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  2. Hybrid two-dimensional navigator correction: a new technique to suppress respiratory-induced physiological noise in multi-shot echo-planar functional MRI

    PubMed Central

    Barry, Robert L.; Klassen, L. Martyn; Williams, Joy M.; Menon, Ravi S.

    2008-01-01

    A troublesome source of physiological noise in functional magnetic resonance imaging (fMRI) is due to the spatio-temporal modulation of the magnetic field in the brain caused by normal subject respiration. fMRI data acquired using echo-planar imaging is very sensitive to these respiratory-induced frequency offsets, which cause significant geometric distortions in images. Because these effects increase with main magnetic field, they can nullify the gains in statistical power expected by the use of higher magnetic fields. As a study of existing navigator correction techniques for echo-planar fMRI has shown that further improvements can be made in the suppression of respiratory-induced physiological noise, a new hybrid two-dimensional (2D) navigator is proposed. Using a priori knowledge of the slow spatial variations of these induced frequency offsets, 2D field maps are constructed for each shot using spatial frequencies between ±0.5 cm−1 in k-space. For multi-shot fMRI experiments, we estimate that the improvement of hybrid 2D navigator correction over the best performance of one-dimensional navigator echo correction translates into a 15% increase in the volume of activation, 6% and 10% increases in the maximum and average t-statistics, respectively, for regions with high t-statistics, and 71% and 56% increases in the maximum and average t-statistics, respectively, in regions with low t-statistics due to contamination by residual physiological noise. PMID:18024159

  3. Flight parameter estimation using instantaneous frequency and time delay measurements from a three-element planar acoustic array.

    PubMed

    Lo, Kam W

    2016-05-01

    The acoustic signal emitted by a turbo-prop aircraft consists of a strong narrowband tone superimposed on a broadband random component. A ground-based three-element planar acoustic array can be used to estimate the full set of flight parameters of a turbo-prop aircraft in transit by measuring the time delay (TD) between the signal received at the reference sensor and the signal received at each of the other two sensors of the array over a sufficiently long period of time. This paper studies the possibility of using instantaneous frequency (IF) measurements from the reference sensor to improve the precision of the flight parameter estimates. A simplified Cramer-Rao lower bound analysis shows that the standard deviations in the estimates of the aircraft velocity and altitude can be greatly reduced when IF measurements are used together with TD measurements. Two flight parameter estimation algorithms that utilize both IF and TD measurements are formulated and their performances are evaluated using both simulated and real data.

  4. Planar heterojunction perovskite solar cells with superior reproducibility

    PubMed Central

    Jeon, Ye-Jin; Lee, Sehyun; Kang, Rira; Kim, Jueng-Eun; Yeo, Jun-Seok; Lee, Seung-Hoon; Kim, Seok-Soon; Yun, Jin-Mun; Kim, Dong-Yu

    2014-01-01

    Perovskite solar cells (PeSCs) have been considered one of the competitive next generation power sources. To date, light-to-electric conversion efficiencies have rapidly increased to over 10%, and further improvements are expected. However, the poor device reproducibility of PeSCs ascribed to their inhomogeneously covered film morphology has hindered their practical application. Here, we demonstrate high-performance PeSCs with superior reproducibility by introducing small amounts of N-cyclohexyl-2-pyrrolidone (CHP) as a morphology controller into N,N-dimethylformamide (DMF). As a result, highly homogeneous film morphology, similar to that achieved by vacuum-deposition methods, as well as a high PCE of 10% and an extremely small performance deviation within 0.14% were achieved. This study represents a method for realizing efficient and reproducible planar heterojunction (PHJ) PeSCs through morphology control, taking a major step forward in the low-cost and rapid production of PeSCs by solving one of the biggest problems of PHJ perovskite photovoltaic technology through a facile method. PMID:25377945

  5. The study of the special features of winter stratospheric warming manifestations over Tomsk according to the lidar temperature measurements

    NASA Astrophysics Data System (ADS)

    Marichev, V. N.; Samokhvalov, I. V.

    2014-11-01

    In the article the lidar observations of the winter stratosphere warming manifestations of (SW) 2011-13 over Tomsk are considered. In 2010/11 the winter warming took place in January with insignificant positive temperature deviations from the mean monthly values in its first decade and then two maxima on the 14th and 15th of January at the altitude of 30-40 km with a deviation to 45K. In 2011/12 the beginning of the SW was recorded from lidar measurements on December 26 and lasted for two decades of January. The maximum development of SW was at the end of December 2011 - the first decade of January. The biggest temperature deviations were at the 40-60K level in the height interval of 35-45 km. In 2012/13 the SW began on December 25. The phase of its maximum development fell on the 1-4th of January when the stratopause altitude dropped on 30 km and the maximum temperature deviation from the model at this level reached 70K. In contrast to the first two warming (minor), the last was referred to the major type wherein air mass circulation change happened in the upper stratosphere over Tomsk ((http://www.geo.fu-berlin.de/en/met/ag/strat/index.html).).

  6. 2-Nitro­benzyl 2-chloro­acetate

    PubMed Central

    Zhu, Kai; Liu, Hui; Wang, Yan-Hua; Han, Ping-Fang; Wei, Ping

    2009-01-01

    In the mol­ecule of the title compound, C9H8ClNO4, an intra­molecular C—H⋯O inter­action results in the formation of a near-planar (r.m.s. deviation 0.002 Å) five-membered ring, which is oriented at a dihedral angle of 4.07 (4)° with respect to the adjacent aromatic ring. In the crystal structure, inter­molecular C—H⋯O inter­actions link the mol­ecules into a two-dimensional network. PMID:21577790

  7. Terrace-like morphology of the boundary created through basal-prismatic transformation in magnesium

    DOE PAGES

    Liu, Bo -Yu; Wan, Liang; Wang, Jian; ...

    2015-01-24

    Here, the boundaries created through basal-prismatic transformation in submicron-sized single crystal magnesium have been investigated systematically using in situ transmission electron microscopy. We found that these boundaries not only deviated significantly from the twin plane associated with {101¯2} twin, but also possessed a non-planar morphology. After the sample was thinned to be less than 90 nm, aberration-corrected scanning transmission electron microscopy observation found that the basic components of these boundaries are actually terrace-like basal-prismatic interfaces.

  8. 1-[(1,3-Dithio­lan-2-yl)meth­yl]-6-methyl-8-nitro-1,2,3,5,6,7-hexa­hydro­imidazo[1,2-c]pyrimidine

    PubMed Central

    Tian, Zhongzhen; Dong, Haijun; Li, Dongmei; Wang, Gaolei

    2010-01-01

    In the title compound, C11H18N4O2S2, the dithiol­ane ring displays an envelope conformation, the tetra­hydro­pyrimidine ring has a conformation that is between half-chair and screw-boat, and the imidazole ring is essentially planar (r.m.s. deviation = 0.0017 Å). No significant directional inter­molecular inter­actions are present in the structure. PMID:21588676

  9. 4-Methyl-N-(1-methyl-1H-indazol-5-yl)benzene-sulfonamide.

    PubMed

    Chicha, Hakima; Oulemda, Bassou; Rakib, El Mostapha; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    In the title compound, C15H15N3O2S, the fused ring system is close to planar, the largest deviation from the mean plane being 0.030 (2) Å, and makes a dihedral angle of 48.84 (9)° with the benzene ring belonging to the methyl-benzene-sulfonamide moiety. In the crystal, mol-ecules are -connected through N-H⋯N hydrogen bonds and weak C-H⋯O contacts, forming a two-dimensional network parallel to (001).

  10. 4-Methyl-N-(1-methyl-1H-indazol-5-yl)benzene­sulfonamide

    PubMed Central

    Chicha, Hakima; Oulemda, Bassou; Rakib, El Mostapha; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    In the title compound, C15H15N3O2S, the fused ring system is close to planar, the largest deviation from the mean plane being 0.030 (2) Å, and makes a dihedral angle of 48.84 (9)° with the benzene ring belonging to the methyl­benzene­sulfonamide moiety. In the crystal, mol­ecules are ­connected through N—H⋯N hydrogen bonds and weak C—H⋯O contacts, forming a two-dimensional network parallel to (001). PMID:24427093

  11. N-(1H-Indazol-5-yl)-4-meth­oxy­benzene­sulfonamide

    PubMed Central

    Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Saadi, Mohamed; El Ammari, Lahcen

    2013-01-01

    In the title compound, C14H13N3O3S, the fused ring system is almost planar, the largest deviation from the mean plane being 0.023 (2) Å, and makes a dihedral angle of 47.92 (10)° with the benzene ring of the benzene­sulfonamide moiety. In the crystal, mol­ecules are connected through N—H⋯O hydrogen bonds and weak C—H⋯O contacts, forming a two-dimensional network which is parallel to (010). PMID:24454128

  12. N-(2-Allyl-4-eth-oxy-2H-indazol-5-yl)-4-methyl-benzene-sulfonamide.

    PubMed

    Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Viale, Maurizio; Saadi, Mohamed; El Ammari, Lahcen

    2014-05-01

    The indazole ring system of the title compound, C19H21N3O3S, is almost planar (r.m.s. deviation = 0.0192 Å) and forms dihedral angles of 77.99 (15) and 83.9 (3)° with the benzene ring and allyl group, respectively. In the crystal, centrosymmetrically related mol-ecules are connected by pairs of N-H⋯O hydrogen bonds into dimers, which are further linked by C-H⋯O hydrogen bonds, forming columns parallel to the b axis.

  13. Measurement of acoustic properties of the composite materials constituting the main rotor hub of the Agusta-Westland helicopter EH-101 (civil version)

    NASA Astrophysics Data System (ADS)

    Tenti, L.; Denis, R.; Lakestani, F.

    1991-10-01

    The acoustic properties of the EH-101 helicopter rotor hub are tested by characterizing the ultrasonic propagation phenomena in the main directions of the composite materials. The carbon fiber and epoxy resin that make up the rotor hub are measured to determine the attenuation coefficient, phase propagation at normal incidence, and phase propagation as a function of angle of incidence. The speeds are measured for external box and filler samples, and strap samples are discussed separately because of their anisotropic nature and structural importance. Deviations angles of 5 deg cause refraction angles of 10 deg in the deviation of the phase propagation; therefore planar defects with an angle of 10 deg relative to the fiber direction can be easily detected. The method presented is useful in characterizing and locating defects in the composite materials that make up the main rotor hub of helicopters.

  14. Reconstitution of Biological Molecular generators of electric current. Bacteriorhodopsin.

    PubMed

    Drachev, L A; Frolov, V N; Kaulen, A D; Liberman, E A; Ostroumov, S A; Plakunova, V G; Semenov, A Y; Skulachev, V P

    1976-11-25

    1. Photoinduced generation of electric current by bacteriorhodopsin, incorporated into the planar phospholipid membrane, has been directly measured with conventional electrometer techniques. 2. Two methods for bacteriorhodopsin incorporation have been developed: (a) formation of planar membrane from a mixture of decane solution of phospholipids and of the fraction of violet fragments of the Halobacterium halobium membrane (bacteriorhodopsin sheets), and (b) adhesion of bacteriorhodopsin-containing reconstituted spherical membranes (proteoliposomes) to the planar membrane in the presence of Ca2+ or some other cations. In both cases, illumination was found to induce electric current generation directed across the planar membrane, an effect which was measured by macroelectrodes immersed into electrolyte solutions on both sides of the membrane. 3. The maximal values of the transmembrane electric potential were of about 150 mV at a current of about 10(-11) A. The electromotive force measured by means of counterbalancing the photoeffect by an external battery, was found to reach the value of 300 mV. 4. The action spectrum of the photoeffect coincides with the bacteriorhodopsin absorption spectrum (maximum about 570 nm). 5. Both components of the electrochemical potential of H+ ions (electric potential and delta pH) across the planar membrane affect the bacteriorhodopsin photoelectric response in a fashion which could be expected if bacteriorhodopsin were a light-dependent electrogenic proton pump. 6. La3+ ions were shown to inhibit operation of those bacteriorhodopsin which pump out H+ ions from the La3+-containing compartment. 7. The photoeffect, mediated by proteoliposomes associated with thick planar membrane, is decreased by gramicidin A at concentrations which do not influence the planar membrane resistance in the light. On the contrary, a protonophorous uncoupler, trichlorocarbonylcyanidephenylhydrazone, decreases the photoeffect only if it is added at a concentration lowering the light resistance. The dark resistance is shown to be higher than the light one, and decreases to the light level by gramicidin. 8. A simple equivalent electric scheme consistent with the above results has been proposed.

  15. Design principles for single standing nanowire solar cells: going beyond the planar efficiency limits.

    PubMed

    Zeng, Yang; Ye, Qinghao; Shen, Wenzhong

    2014-05-09

    Semiconductor nanowires (NWs) have long been used in photovoltaic applications but restricted to approaching the fundamental efficiency limits of the planar devices with less material. However, recent researches on standing NWs have started to reveal their potential of surpassing these limits when their unique optical property is utilized in novel manners. Here, we present a theoretical guideline for maximizing the conversion efficiency of a single standing NW cell based on a detailed study of its optical absorption mechanism. Under normal incidence, a standing NW behaves as a dielectric resonator antenna, and its optical cross-section shows its maximum when the lowest hybrid mode (HE11δ) is excited along with the presence of a back-reflector. The promotion of the cell efficiency beyond the planar limits is attributed to two effects: the built-in concentration caused by the enlarged optical cross-section, and the shifting of the absorption front resulted from the excited mode profile. By choosing an optimal NW radius to support the HE11δ mode within the main absorption spectrum, we demonstrate a relative conversion-efficiency enhancement of 33% above the planar cell limit on the exemplary a-Si solar cells. This work has provided a new basis for designing and analyzing standing NW based solar cells.

  16. Possibility of Atherosclerosis in an Arterial Bifurcation Model

    PubMed Central

    Arjmandi-Tash, Omid; Razavi, Seyed Esmail; Zanbouri, Ramin

    2011-01-01

    Introduction Arterial bifurcations are susceptible locations for formation of atherosclerotic plaques. In the present study, steady blood flow is investigated in a bifurcation model with a non-planar branch. Methods The influence of different bifurcation angles and non-planar branch is demonstrated on wall shear stress (WSS) distribution using three-dimensional Navier–Stokes equations. Results The WSS values are low in two locations at the top and bottom walls of the mother vessels just before the bifurcation, especially for higher bifurcation angles. These regions approach the apex of bifurcation with decreasing the bifurcation angle. The WSS magnitudes approach near to zero at the outer side of bifurcation plane and these locations are separation-prone. By increasing the bifurcation angle, the minimum WSS decreases at the outer side of bifurcation plane but low WSS region squeezes. WSS peaks exist on the inner side of bifurcation plane near the entry section of daughter vessels and these initial peaks drop as bifurcation angle is increased. Conclusion It is concluded that the non-planarity of the daughter vessel lowers the minimum WSS at the outer side of bifurcation and increases the maximum WSS at the inner side. So it seems that the formation of atherosclerotic plaques at bifurcation region in direction of non-planar daughter vessel is more risky. PMID:23678432

  17. Design principles for single standing nanowire solar cells: going beyond the planar efficiency limits

    PubMed Central

    Zeng, Yang; Ye, Qinghao; Shen, Wenzhong

    2014-01-01

    Semiconductor nanowires (NWs) have long been used in photovoltaic applications but restricted to approaching the fundamental efficiency limits of the planar devices with less material. However, recent researches on standing NWs have started to reveal their potential of surpassing these limits when their unique optical property is utilized in novel manners. Here, we present a theoretical guideline for maximizing the conversion efficiency of a single standing NW cell based on a detailed study of its optical absorption mechanism. Under normal incidence, a standing NW behaves as a dielectric resonator antenna, and its optical cross-section shows its maximum when the lowest hybrid mode (HE11δ) is excited along with the presence of a back-reflector. The promotion of the cell efficiency beyond the planar limits is attributed to two effects: the built-in concentration caused by the enlarged optical cross-section, and the shifting of the absorption front resulted from the excited mode profile. By choosing an optimal NW radius to support the HE11δ mode within the main absorption spectrum, we demonstrate a relative conversion-efficiency enhancement of 33% above the planar cell limit on the exemplary a-Si solar cells. This work has provided a new basis for designing and analyzing standing NW based solar cells. PMID:24810591

  18. Transport properties and device-design of Z-shaped MoS2 nanoribbon planar junctions

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Zhou, Wenzhe; Liu, Qi; Yang, Zhixiong; Pan, Jiangling; Ouyang, Fangping; Xu, Hui

    2017-09-01

    Based on MoS2 nanoribbons, metal-semiconductor-metal planar junction devices were constructed. The electronic and transport properties of the devices were studied by using density function theory (DFT) and nonequilibrium Green's functions (NEGF). It is found that a band gap about 0.4 eV occurs in the planar junction. The electron and hole transmissions of the devices are mainly contributed by the Mo atomic orbitals. The electron transport channel is located at the edge of armchair MoS2 nanoribbon, while the hole transport channel is delocalized in the channel region. The I-V curve of the two-probe device shows typical transport behavior of Schottky barrier, and the threshold voltage is of about 0.2 V. The field effect transistors (FET) based on the planar junction turn out to be good bipolar transistors, the maximum current on/off ratio can reach up to 1 × 104, and the subthreshold swing is 243 mV/dec. It is found that the off-state current is dependent on the length and width of the channel, while the on-state current is almost unaffected. The switching performance of the FET is improved with increasing the length of the channel, and shows oscillation behavior with the change of the channel width.

  19. Intra-fraction motion of larynx radiotherapy

    NASA Astrophysics Data System (ADS)

    Durmus, Ismail Faruk; Tas, Bora

    2018-02-01

    In early stage laryngeal radiotherapy, movement is an important factor. Thyroid cartilage can move from swallowing, breathing, sound and reflexes. The effects of this motion on the target volume (PTV) during treatment were examined. In our study, the target volume movement during the treatment for this purpose was examined. Thus, setup margins are re-evaluated and patient-based PTV margins are determined. Intrafraction CBCT was scanned in 246 fractions for 14 patients. During the treatment, the amount of deviation which could be lateral, vertical and longitudinal axis was determined. ≤ ± 0.1cm deviation; 237 fractions in the lateral direction, 202 fractions in the longitudinal direction, 185 fractions in the vertical direction. The maximum deviation values were found in the longitudinal direction. Intrafraction guide in laryngeal radiotherapy; we are sure of the correctness of the treatment, the target volume is to adjust the margin and dose more precisely, we control the maximum deviation of the target volume for each fraction. Although the image quality of intrafraction-CBCT scans was lower than the image quality of planning CT, they showed sufficient contrast for this work.

  20. Highly Flexible and Planar Supercapacitors Using Graphite Flakes/Polypyrrole in Polymer Lapping Film.

    PubMed

    Raj, C Justin; Kim, Byung Chul; Cho, Won-Je; Lee, Won-gil; Jung, Sang-Don; Kim, Yong Hee; Park, Sang Yeop; Yu, Kook Hyun

    2015-06-24

    Flexible supercapacitor electrodes have been fabricated by simple fabrication technique using graphite nanoflakes on polymer lapping films as flexible substrate. An additional thin layer of conducting polymer polypyrrole over the electrode improved the surface conductivity and exhibited excellent electrochemical performances. Such capacitor films showed better energy density and power density with a maximum capacitance value of 37 mF cm(-2) in a half cell configuration using 1 M H2SO4 electrolyte, 23 mF cm(-2) in full cell, and 6 mF cm(-2) as planar cell configuration using poly(vinyl alcohol) (PVA)/phosphoric acid (H3PO4) solid state electrolyte. Moreover, the graphite nanoflakes/polypyrrole over polymer lapping film demonstrated good flexibility and cyclic stability.

  1. Ceramic planar waveguide laser of non-aqueous tape casting fabricated YAG/Yb:YAG/YAG

    PubMed Central

    Wang, Chao; Li, Wenxue; Yang, Chao; Bai, Dongbi; Li, Jiang; Ge, Lin; Pan, Yubai; Zeng, Heping

    2016-01-01

    Ceramic YAG/Yb:YAG/YAG planar waveguide lasers were realized on continuous-wave and mode-locked operations. The straight waveguide, fabricated by non-aqueous tape casting and solid state reactive sintering, enabled highly efficient diode-pumped waveguide continuous-wave laser with the slope efficiency of 66% and average output power of more than 3 W. The influence of the waveguide structure on the wavelength tunability was also experimentally investiccgated with a dispersive prism. Passively mode-locked operation of the ceramic waveguide laser was achieved by using a semiconductor saturable absorber mirror (SESAM), output 2.95 ps pulses with maximum power of 385 mW at the central wavelength of 1030 nm. PMID:27535577

  2. Trilateral interlaboratory with SSL (WLEDi) luminaire

    NASA Astrophysics Data System (ADS)

    Burini Junior, E. C.; Santos, E. R.; Assaf, L. O.

    2018-03-01

    The IEE/USP laboratory and two others, all belonging to RBLE (Brazilian Network of Test Laboratories) participated in a trilateral comparison performed from measurement independently of participants interaction. The results from electric and photometric measurements carried out on samples of Solid State Lighting - SSL, Inorganic White Light Emitting Diode (WLEDi) luminaires by three accredited laboratories were considered in order to point out mutual deviations and to verify the confidence in a bilateral comparison. The first analysis revealed a maximum deviation of 4.2 % between the luminous intensity attributed by one laboratory and the arithmetic mean value from three laboratories. The largest standard uncertainty value of 1.9 % was estimated for Total Harmonic Distortion of electric current THDi and the lowest value, 0.4 %, to the luminous flux. The extreme deviation for one parameter results was 7.2 % at maximum luminous intensity and the lowest was 1.7 % for luminous flux.

  3. A strong pinning model for the coercivity of die-upset Pr-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Pinkerton, F. E.; fürst, C. D.

    1991-04-01

    We have measured the temperature dependence of the intrinsic coercivity Hci(T) between 5 and 565 K in a die-upset Pr-Fe-B magnet. Over a very wide temperature range up to 477 K, Hci(T) is in excellent agreement with a model for strong domain-wall pinning by a random array of pinning sites proposed by Gaunt [P. Gaunt, Philos. Mag. B 48, 261 (1983)]. The model includes both the temperature dependence of the intrinsic magnetic properties of the Pr2Fe14B phase and the effects of thermal activation of domain walls over the pinning barrier. The pinning sites are modeled as nonmagnetic planar inhomogeneities at the boundaries between platelet-shaped Pr2Fe14B grains. We develop an expression for the maximum pinning force per site, f, and derive the model prediction that (Hci/γHA)1/2 varies linearly with (T/γ)2/3, where HA and γ are the magnetocrystalline anisotropy field and the domain-wall energy per unit area of the Pr2Fe14B phase, respectively. Significant deviations from the model are observed only at high temperature, suggesting that the strong pinning model is no longer valid very close to the Curie temperature (565 K). The present result agrees with the model fit obtained for a die-upset Nd-Fe-B magnet.

  4. Formation of self-organized nanoporous anodic oxide from metallic gallium.

    PubMed

    Pandey, Bipin; Thapa, Prem S; Higgins, Daniel A; Ito, Takashi

    2012-09-25

    This paper reports the formation of self-organized nanoporous gallium oxide by anodization of solid gallium metal. Because of its low melting point (ca. 30 °C), metallic gallium can be shaped into flexible structures, permitting the fabrication of nanoporous anodic oxide monoliths within confined spaces like the inside of a microchannel. Here, solid gallium films prepared on planar substrates were employed to investigate the effects of anodization voltage (1, 5, 10, 15 V) and H(2)SO(4) concentration (1, 2, 4, 6 M) on anodic oxide morphology. Self-organized nanopores aligned perpendicular to the film surface were obtained upon anodization of gallium films in ice-cooled 4 and 6 M aqueous H(2)SO(4) at 10 and 15 V. Nanopore formation could be recognized by an increase in anodic current after a current decrease reflecting barrier oxide formation. The average pore diameter was in the range of 18-40 nm with a narrow diameter distribution (relative standard deviation ca. 10-20%), and was larger at lower H(2)SO(4) concentration and higher applied voltage. The maximum thickness of nanoporous anodic oxide was ca. 2 μm. In addition, anodic formation of self-organized nanopores was demonstrated for a solid gallium monolith incorporated at the end of a glass capillary. Nanoporous anodic oxide monoliths formed from a fusible metal will lead to future development of unique devices for chemical sensing and catalysis.

  5. Technical Note: Evaluation of the systematic accuracy of a frameless, multiple image modality guided, linear accelerator based stereotactic radiosurgery system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, N., E-mail: nwen1@hfhs.org; Snyder, K. C.; Qin, Y.

    2016-05-15

    Purpose: To evaluate the total systematic accuracy of a frameless, image guided stereotactic radiosurgery system. Methods: The localization accuracy and intermodality difference was determined by delivering radiation to an end-to-end prototype phantom, in which the targets were localized using optical surface monitoring system (OSMS), electromagnetic beacon-based tracking (Calypso®), cone-beam CT, “snap-shot” planar x-ray imaging, and a robotic couch. Six IMRT plans with jaw tracking and a flattening filter free beam were used to study the dosimetric accuracy for intracranial and spinal stereotactic radiosurgery treatment. Results: End-to-end localization accuracy of the system evaluated with the end-to-end phantom was 0.5 ± 0.2more » mm with a maximum deviation of 0.9 mm over 90 measurements (including jaw, MLC, and cone measurements for both auto and manual fusion) for single isocenter, single target treatment, 0.6 ± 0.4 mm for multitarget treatment with shared isocenter. Residual setup errors were within 0.1 mm for OSMS, and 0.3 mm for Calypso. Dosimetric evaluation based on absolute film dosimetry showed greater than 90% pass rate for all cases using a gamma criteria of 3%/1 mm. Conclusions: The authors’ experience demonstrates that the localization accuracy of the frameless image-guided system is comparable to robotic or invasive frame based radiosurgery systems.« less

  6. Parametric study of a pin-plane probe in moderately magnetized plasma

    NASA Astrophysics Data System (ADS)

    Binwal, S.; Gandhi, S.; Kabariya, H.; Karkari, S. K.

    2015-12-01

    The application of a planar Langmuir probe in magnetized plasma is found to be problematic due to significant perturbation of plasma along the magnetic field lines intercepting the probe surface. This causes the Ampere-Volts ‘I e(U)’ characteristics of the probe to deviate from its usual exponential law; in conjunction the electron saturation current I es is significantly reduced. Moreover estimating the electron temperature T e by considering the entire semi-log plot of I e(U) gives ambiguous values of T e. To address this problem, Pitts and Stangeby developed a formula for the reduction factor for I es. This formula depends on a number of uncertain parameters, namely; the ion temperature T +, electron cross-field diffusion coefficient {{D}\\bot ,\\text{e}} and the local potential hill V h estimated by applying a floating pin probe in the vicinity of the planar probe. Due to implicit dependence of these parameters on T e, the resulting analysis is not straightforward. This paper presents a parametric study of different parameters that influence the characteristics of a planar probe in magnetized plasma. For this purpose a pin-plane probe is constructed and applied in the magnetized plasma column. A comprehensive discussion is presented that highlights the practical methodology of using this technique for extracting useful information of plasma parameters in magnetized plasmas.

  7. A 3-Axis Miniature Magnetic Sensor Based on a Planar Fluxgate Magnetometer with an Orthogonal Fluxguide.

    PubMed

    Lu, Chih-Cheng; Huang, Jeff

    2015-06-19

    A new class of tri-axial miniature magnetometer consisting of a planar fluxgate structure with an orthogonal ferromagnetic fluxguide centrally situated over the magnetic cores is presented. The magnetic sensor possesses a cruciform ferromagnetic core placed diagonally upon the square excitation coil under which two pairs of pick-up coils for in-plane field detection are allocated. Effective principles and analysis of the magnetometer for 3-D field vectors are described and verified by numerically electromagnetic simulation for the excitation and magnetization of the ferromagnetic cores. The sensor is operated by applying the second-harmonic detection technique that can verify V-B relationship and device responsivity. Experimental characterization of the miniature fluxgate device demonstrates satisfactory spatial magnetic field detection results in terms of responsivity and noise spectrum. As a result, at an excitation frequency of 50 kHz, a maximum in-plane responsivity of 122.4 V/T appears and a maximum out-of-plane responsivity of 11.6 V/T is obtained as well. The minimum field noise spectra are found to be 0.11 nT/√Hz and 6.29 nT/√Hz, respectively, in X- and Z-axis at 1 Hz under the same excitation frequency. Compared with the previous tri-axis fluxgate devices, this planar magnetic sensor with an orthogonal fluxguide provides beneficial enhancement in both sensory functionality and manufacturing simplicity. More importantly, this novel device concept is considered highly suitable for the extension to a silicon sensor made by the current CMOS-MEMS technologies, thus emphasizing its emerging applications of field detection in portable industrial electronics.

  8. Descriptive Statistics and Cluster Analysis for Extreme Rainfall in Java Island

    NASA Astrophysics Data System (ADS)

    E Komalasari, K.; Pawitan, H.; Faqih, A.

    2017-03-01

    This study aims to describe regional pattern of extreme rainfall based on maximum daily rainfall for period 1983 to 2012 in Java Island. Descriptive statistics analysis was performed to obtain centralization, variation and distribution of maximum precipitation data. Mean and median are utilized to measure central tendency data while Inter Quartile Range (IQR) and standard deviation are utilized to measure variation of data. In addition, skewness and kurtosis used to obtain shape the distribution of rainfall data. Cluster analysis using squared euclidean distance and ward method is applied to perform regional grouping. Result of this study show that mean (average) of maximum daily rainfall in Java Region during period 1983-2012 is around 80-181mm with median between 75-160mm and standard deviation between 17 to 82. Cluster analysis produces four clusters and show that western area of Java tent to have a higher annual maxima of daily rainfall than northern area, and have more variety of annual maximum value.

  9. Frequency correction method for improved spatial correlation of hyperpolarized 13C metabolites and anatomy.

    PubMed

    Cunningham, Charles H; Dominguez Viqueira, William; Hurd, Ralph E; Chen, Albert P

    2014-02-01

    Blip-reversed echo-planar imaging (EPI) is investigated as a method for measuring and correcting the spatial shifts that occur due to bulk frequency offsets in (13)C metabolic imaging in vivo. By reversing the k-space trajectory for every other time point, the direction of the spatial shift for a given frequency is reversed. Here, mutual information is used to find the 'best' alignment between images and thereby measure the frequency offset. Time-resolved 3D images of pyruvate/lactate/urea were acquired with 5 s temporal resolution over a 1 min duration in rats (N = 6). For each rat, a second injection was performed with the demodulation frequency purposely mis-set by +35 Hz, to test the correction for erroneous shifts in the images. Overall, the shift induced by the 35 Hz frequency offset was 5.9 ± 0.6 mm (mean ± standard deviation). This agrees well with the expected 5.7 mm shift based on the 2.02 ms delay between k-space lines (giving 30.9 Hz per pixel). The 0.6 mm standard deviation in the correction corresponds to a frequency-detection accuracy of 4 Hz. A method was presented for ensuring the spatial registration between (13)C metabolic images and conventional anatomical images when long echo-planar readouts are used. The frequency correction method was shown to have an accuracy of 4 Hz. Summing the spatially corrected frames gave a signal-to-noise ratio (SNR) improvement factor of 2 or greater, compared with the highest single frame. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Spatial orientation of semicircular canals and afferent sensitivity vectors in pigeons

    NASA Technical Reports Server (NTRS)

    Dickman, J. D.

    1996-01-01

    Rotational head motion in vertebrates is detected by the semicircular canal system, whose innervating primary afferent fibers carry information about movement in specific head planes. The semicircular canals have been qualitatively examined over a number of years, and the canal planes have been quantitatively characterized in several animal species. The present study first determined the geometric relationship between individual semicircular canals and between the canals and the stereotactic head planes in pigeons. Stereotactic measurements of multiple points along the circumference of the bony canals were taken, and the measured points fitted with a three-dimensional planar surface. Direction normals to the plane's surface were calculated and used to define angles between semicircular canal pairs. Because of the unusual shape of the anterior semicircular canals in pigeons, two planes, a major and a minor, were fitted to the canal's course. Calculated angle values for all canals indicated that the horizontal and posterior semicircular canals are nearly orthogonal, but the anterior canals have substantial deviations from orthogonality with other canal planes. Next, the responses of the afferent fibers that innervate each of the semicircular canals to 0.5 Hz sinusoidal rotation about an earth-vertical axis were obtained. The head orientation relative to the rotation axis was systematically varied so that directions of maximum sensitivity for each canal afferent could be determined. These sensitivity vectors were then compared with the canal plane direction normals. The afferents that innervated specific semicircular canals formed homogeneous clusters of sensitivity vectors in different head planes. The horizontal and posterior afferents had average sensitivity vectors that were largely co-incident with the innervated canal plane direction normals. Anterior canal afferents, however, appeared to synthesize contributions from the major and minor plane components of the bony canal structure to produce a resultant sensitivity vector that was positioned between the canal planes. Calculated angles between the average canal afferent sensitivity vectors revealed that direction orthogonality is preserved at the afferent signal level, even though deviations from canal plane orthogonality exist.

  11. Variance reduction for Fokker–Planck based particle Monte Carlo schemes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorji, M. Hossein, E-mail: gorjih@ifd.mavt.ethz.ch; Andric, Nemanja; Jenny, Patrick

    Recently, Fokker–Planck based particle Monte Carlo schemes have been proposed and evaluated for simulations of rarefied gas flows [1–3]. In this paper, the variance reduction for particle Monte Carlo simulations based on the Fokker–Planck model is considered. First, deviational based schemes were derived and reviewed, and it is shown that these deviational methods are not appropriate for practical Fokker–Planck based rarefied gas flow simulations. This is due to the fact that the deviational schemes considered in this study lead either to instabilities in the case of two-weight methods or to large statistical errors if the direct sampling method is applied.more » Motivated by this conclusion, we developed a novel scheme based on correlated stochastic processes. The main idea here is to synthesize an additional stochastic process with a known solution, which is simultaneously solved together with the main one. By correlating the two processes, the statistical errors can dramatically be reduced; especially for low Mach numbers. To assess the methods, homogeneous relaxation, planar Couette and lid-driven cavity flows were considered. For these test cases, it could be demonstrated that variance reduction based on parallel processes is very robust and effective.« less

  12. Improved Bond Strength of Cyanoacrylate Adhesives Through Nanostructured Chromium Adhesion Layers

    NASA Astrophysics Data System (ADS)

    Gobble, Kyle; Stark, Amelia; Stagon, Stephen P.

    2016-09-01

    The performance of many consumer products suffers due to weak and inconsistent bonds formed to low surface energy polymer materials, such as polyolefin-based high-density polyethylene (HDPE), with adhesives, such as cyanoacrylate. In this letter, we present an industrially relevant means of increasing bond shear strength and consistency through vacuum metallization of chromium thin films and nanorods, using HDPE as a prototype material and cyanoacrylate as a prototype adhesive. For the as received HDPE surfaces, unmodified bond shear strength is shown to be only 0.20 MPa with a standard deviation of 14 %. When Cr metallization layers are added onto the HDPE at thicknesses of 50 nm or less, nanorod-structured coatings outperform continuous films and have a maximum bond shear strength of 0.96 MPa with a standard deviation of 7 %. When the metallization layer is greater than 50 nm thick, continuous films demonstrate greater performance than nanorod coatings and have a maximum shear strength of 1.03 MPa with a standard deviation of 6 %. Further, when the combination of surface roughening with P400 grit sandpaper and metallization is used, 100-nm-thick nanorod coatings show a tenfold increase in shear strength over the baseline, reaching a maximum of 2.03 MPa with a standard deviation of only 3 %. The substantial increase in shear strength through metallization, and the combination of roughening with metallization, may have wide-reaching implications in consumer products which utilize low surface energy plastics.

  13. Photoelectrochemical studies of InGaN/GaN MQW photoanodes

    NASA Astrophysics Data System (ADS)

    Butson, Joshua; Reddy Narangari, Parvathala; Krishna Karuturi, Siva; Yew, Rowena; Lysevych, Mykhaylo; Tan, Hark Hoe; Jagadish, Chennupati

    2018-01-01

    The research interest in photoelectrochemical (PEC) water splitting is ever growing due to its potential to contribute towards clean and portable energy. However, the lack of low energy band gap materials with high photocorrosion resistance is the primary setback inhibiting this technology from commercialisation. The ternary alloy InGaN shows promise to meet the photoelectrode material requirements due to its high chemical stability and band gap tunability. The band gap of InGaN can be modulated from the UV to IR regions by adjusting the In concentration so as to absorb the maximum portion of the solar spectrum. This paper reports on the influence of In concentration on the PEC properties of planar and nanopillar (NP) InGaN/GaN multi-quantum well (MQW) photoanodes, where NPs were fabricated using a top-down approach. Results show that changing the In concentration, while having a minor effect on the PEC performance of planar MQWs, has an enormous impact on the PEC performance of NP MQWs, with large variations in the photocurrent density observed. Planar photoanodes containing MQWs generate marginally lower photocurrents compared to photoanodes without MQWs when illuminated with sunlight. NP MQWs with 30% In generated the highest photocurrent density of 1.6 mA cm-2, 4 times greater than that of its planar counterpart and 1.8 times greater than that of the NP photoanode with no MQWs. The InGaN/GaN MQWs also slightly influenced the onset potential of both the planar and NP photoanodes. Micro-photoluminescence, diffuse reflectance spectroscopy and IPCE measurements are used to explain these results.

  14. Integrated optimization of nonlinear R/C frames with reliability constraints

    NASA Technical Reports Server (NTRS)

    Soeiro, Alfredo; Hoit, Marc

    1989-01-01

    A structural optimization algorithm was researched including global displacements as decision variables. The algorithm was applied to planar reinforced concrete frames with nonlinear material behavior submitted to static loading. The flexural performance of the elements was evaluated as a function of the actual stress-strain diagrams of the materials. Formation of rotational hinges with strain hardening were allowed and the equilibrium constraints were updated accordingly. The adequacy of the frames was guaranteed by imposing as constraints required reliability indices for the members, maximum global displacements for the structure and a maximum system probability of failure.

  15. 1.5  kW efficient CW Nd:YAG planar waveguide MOPA laser.

    PubMed

    Wang, Juntao; Wu, Zhenhai; Su, Hua; Zhou, Tangjian; Lei, Jun; Lv, Wenqiang; He, Jing; Xu, Liu; Chen, Yuejian; Wang, Dan; Tong, Lixin; Hu, Hao; Gao, Qingsong; Tang, Chun

    2017-08-15

    In this Letter, we report a 1064 nm continuous wave Nd:YAG planar waveguide laser with an output power of 1544 W based on the structure of the master oscillator power amplification. A fiber laser is used as the master oscillator, and diode laser arrays are used as the pump source of the waveguide laser amplifier. The dimension of the waveguide is 1  mm (T)×10  mm (W)×60  mm (L), and the dual end oblique pumping is adopted with different angles. After a single-pass amplification, the power is scaled from 323 to 1544 W with the pump power of 2480 W, leading to an optical-to-optical efficiency of 49%. At the maximum output, the beam quality M 2 are measured to be 2.8 and 7.0 in the guided direction and the unguided direction, respectively. To the best of our knowledge, this is the highest output power of a Nd:YAG planar waveguide laser to date.

  16. Planar waveguide microlenses for nonblocking photonic switches and optical interconnects

    NASA Astrophysics Data System (ADS)

    Glebov, Alexei L.; Huang, Lidu; Lee, Michael; Aoki, Shigenori; Yokouchi, Kishio

    2004-09-01

    Different types of planar waveguide microlenses are fabricated with PLC technologies from a variety of optical materials such as silica, photo-definable epoxy resins, and a number of other optical polymers. Hybrid microlenses are also fabricated in which the base of the lens, with a double concave gap, is formed from silica and the gap is filled with an optical polymer. The optimized lens structures provide the maximum coupling efficiencies between the input and output channels at distances up to 100 mm with a minimum channel pitch of 0.5-0.7 mm. Experimental and theoretical studies provide results on collimation and focusing properties of single and double microlenses made of silica, polymer, and silica/polymer. The evaluation of the temperature and wavelength effects on the collimation characteristics of the lenses demonstrate that the single lenses are more stable and, thus, more suitable for operations under varying conditions. Examples of the planar waveguide microlens applications are presented. In one application the microlens arrays are integrated in fast electrooptic photonic switching modules. In the other application the microlenses are embedded in the backplanes with nonblocking optical interconnects.

  17. Correlation between Extraocular Muscle Size Measured by Computed Tomography and the Vertical Angle of Deviation in Thyroid Eye Disease

    PubMed Central

    Lee, Ju-Yeun; Bae, Kunho; Park, Kyung-Ah; Lyu, In Jeong; Oh, Sei Yeul

    2016-01-01

    The aim of this study was to investigate extraocular muscle (EOM) volume and cross-sectional area using computed tomography (CT), and to determine the relationship between EOM size and the vertical angle of deviation in thyroid eye disease (TED). Twenty-nine TED patients (58 orbits) with vertical strabismus were enrolled in the study. All patients underwent complete ophthalmic examination including prism, alternate cover, and Krimsky tests. Orbital CT scans were also performed on each patient. Digital image analysis was used to quantify superior rectus (SR) and inferior rectus (IR) muscle cross-sectional areas and volumes. Measurements were compared with those of controls. The correlation between muscle size and degree of vertical angle deviation was evaluated. The mean vertical angle of deviation was 26.2 ± 4.1 prism diopters. The TED group had a greater maximum cross-sectional area and EOM volume in the SR and IR than the control group (all p<0.001). Area and volume of the IR were correlated with the angle of deviation, but the SR alone did not show a significant correlation. The maximum cross-sectional area and volume of [Right IR + Left SR − Right SR − Left IR] was strongly correlated with the vertical angle of deviation (P<0.001). Quantitative CT of the orbit with evaluation of the area and volume of EOMs may be helpful in anticipating and monitoring vertical strabismus in TED patients. PMID:26820406

  18. Correlation between Extraocular Muscle Size Measured by Computed Tomography and the Vertical Angle of Deviation in Thyroid Eye Disease.

    PubMed

    Lee, Ju-Yeun; Bae, Kunho; Park, Kyung-Ah; Lyu, In Jeong; Oh, Sei Yeul

    2016-01-01

    The aim of this study was to investigate extraocular muscle (EOM) volume and cross-sectional area using computed tomography (CT), and to determine the relationship between EOM size and the vertical angle of deviation in thyroid eye disease (TED). Twenty-nine TED patients (58 orbits) with vertical strabismus were enrolled in the study. All patients underwent complete ophthalmic examination including prism, alternate cover, and Krimsky tests. Orbital CT scans were also performed on each patient. Digital image analysis was used to quantify superior rectus (SR) and inferior rectus (IR) muscle cross-sectional areas and volumes. Measurements were compared with those of controls. The correlation between muscle size and degree of vertical angle deviation was evaluated. The mean vertical angle of deviation was 26.2 ± 4.1 prism diopters. The TED group had a greater maximum cross-sectional area and EOM volume in the SR and IR than the control group (all p<0.001). Area and volume of the IR were correlated with the angle of deviation, but the SR alone did not show a significant correlation. The maximum cross-sectional area and volume of [Right IR + Left SR - Right SR - Left IR] was strongly correlated with the vertical angle of deviation (P<0.001). Quantitative CT of the orbit with evaluation of the area and volume of EOMs may be helpful in anticipating and monitoring vertical strabismus in TED patients.

  19. Analytical quality goals derived from the total deviation from patients' homeostatic set points, with a margin for analytical errors.

    PubMed

    Bolann, B J; Asberg, A

    2004-01-01

    The deviation of test results from patients' homeostatic set points in steady-state conditions may complicate interpretation of the results and the comparison of results with clinical decision limits. In this study the total deviation from the homeostatic set point is defined as the maximum absolute deviation for 95% of measurements, and we present analytical quality requirements that prevent analytical error from increasing this deviation to more than about 12% above the value caused by biology alone. These quality requirements are: 1) The stable systematic error should be approximately 0, and 2) a systematic error that will be detected by the control program with 90% probability, should not be larger than half the value of the combined analytical and intra-individual standard deviation. As a result, when the most common control rules are used, the analytical standard deviation may be up to 0.15 times the intra-individual standard deviation. Analytical improvements beyond these requirements have little impact on the interpretability of measurement results.

  20. Development of a solenoid actuated planar valveless micropump with single and multiple inlet-outlet arrangements

    NASA Astrophysics Data System (ADS)

    Kumar, N.; George, D.; Sajeesh, P.; Manivannan, P. V.; Sen, A. K.

    2016-07-01

    We report a planar solenoid actuated valveless micropump with multiple inlet-outlet configurations. The self-priming characteristics of the multiple inlet-multiple outlet micropump are studied. The filling dynamics of the micropump chamber during start-up and the effects of fluid viscosity, voltage and frequency on the dynamics are investigated. Numerical simulations for multiple inlet-multiple outlet micropumps are carried out using fluid structure algorithm. With DI water and at 5.0 Vp-p, 20 Hz frequency, the two inlet-two outlet micropump provides a maximum flow rate of 336 μl min-1 and maximum back pressure of 441 Pa. Performance characteristics of the two inlet-two outlet micropump are studied for aqueous fluids of different viscosity. Transport of biological cell lines and diluted blood samples are demonstrated; the flow rate-frequency characteristics are studied. Viability of cells during pumping with multiple inlet multiple outlet configuration is also studied in this work, which shows 100% of cells are viable. Application of the proposed micropump for simultaneous pumping, mixing and distribution of fluids is demonstrated. The proposed integrated, standalone and portable micropump is suitable for drug delivery, lab-on-chip and micro-total-analysis applications.

  1. Minimum Interference Planar Geometric Topology in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Nguyen, Trac N.; Huynh, Dung T.

    The approach of using topology control to reduce interference in wireless sensor networks has attracted attention of several researchers. There are at least two definitions of interference in the literature. In a wireless sensor network the interference at a node may be caused by an edge that is transmitting data [15], or it occurs because the node itself is within the transmission range of another [3], [1], [6]. In this paper we show that the problem of assigning power to nodes in the plane to yield a planar geometric graph whose nodes have bounded interference is NP-complete under both interference definitions. Our results provide a rigorous proof for a theorem in [15] whose proof is unconvincing. They also address one of the open issues raised in [6] where Halldórsson and Tokuyama were concerned with the receiver model of node interference, and derived an O(sqrt {Δ}) upper bound for the maximum node interference of a wireless ad hoc network in the plane (Δ is the maximum interference of the so-called uniform radius network). The question as to whether this problem is NP-complete in the 2-dimensional case was left open.

  2. 7-Chloro-5-(2-ethoxy­phen­yl)-1-methyl-3-propyl-2,6-dihydro-1H-pyrazolo[4,3-d]pyrimidine

    PubMed Central

    Zhou, Ming-Qiu; Zhu, Kai; Lv, Xiao-Ping; Han, Ping-Fang; Wei, Ping

    2009-01-01

    In the title compound, C17H21ClN4O, the benzene ring is oriented at dihedral angles of 1.59 (3) and 1.27 (3)° with respect to the pyrimidine and pyrazole rings, while the dihedral angle between the pyrimidine and pyrazole rings is 0.83 (3)°. An intra­molecular N—H⋯O hydrogen bond results in the formation of a planar (r.m.s. deviation 0.004 Å) six-membered ring. PMID:21577789

  3. 2-Amino-4,6-dimethyl­pyrimidin-1-ium chloride

    PubMed Central

    Hu, Hui-Ling; Yeh, Chun-Wei

    2012-01-01

    In the title compound, C6H10N3 +·Cl−, the cation is essentially planar with an r.m.s. deviations of the fitted atoms of 0.008 Å. In the crystal, adjacent ions are linked by weak N—H⋯Cl hydrogen bonds involving the pyrimidine and amine N atoms, forming a three-dimensional network. C—H⋯π inter­actions between the methyl and pyrimidine groups and π–π stacking [centroid–centroid distance = 3.474 (1) Å] between parallel pyrimidine ring systems are also observed. PMID:23476204

  4. N-(2-Allyl-4-eth­oxy-2H-indazol-5-yl)-4-methyl­benzene­sulfonamide

    PubMed Central

    Chicha, Hakima; Rakib, El Mostapha; Bouissane, Latifa; Viale, Maurizio; Saadi, Mohamed; El Ammari, Lahcen

    2014-01-01

    The indazole ring system of the title compound, C19H21N3O3S, is almost planar (r.m.s. deviation = 0.0192 Å) and forms dihedral angles of 77.99 (15) and 83.9 (3)° with the benzene ring and allyl group, respectively. In the crystal, centrosymmetrically related mol­ecules are connected by pairs of N—H⋯O hydrogen bonds into dimers, which are further linked by C—H⋯O hydrogen bonds, forming columns parallel to the b axis. PMID:24860413

  5. Hexaaqua­cobalt(II) bis­[4-(pyridin-2-yl­meth­oxy)benzoate] dihydrate

    PubMed Central

    Zhang, Li-Wei; Gao, Shan; Ng, Seik Weng

    2011-01-01

    The CoII atom in the title salt, [Co(H2O)6](C13H10NO3)2·2H2O, lies on a center of inversion in an octa­hedron of water mol­ecules. The cations, anions and uncoordinated water mol­ecules are linked by O—H⋯O and O—H⋯N hydrogen bonds into a three-dimensional network. The anion is essentially planar, with an r.m.s. deviation of all non-H atoms of 0.066 Å. PMID:22219767

  6. Benzil bis-(ketazine).

    PubMed

    Patra, Goutam Kumar; Mukherjee, Anindita; Ng, Seik Weng

    2009-07-04

    1,1',2,2'-tetra-phenyl-2,2'-azinodiethanone), C(28)H(20)N(2)O(2), was obtained by the reaction of benzil monohydrazone with chromium(III) nitrate. The dibenzyl-idene hydrazine unit is nearly planar (r.m.s. deviation = 0.073 Å) and the two benzoyl units are oriented almost perpendicular to it [dihedral angle = 87.81 (2), 87.81 (2)°]. The mol-ecules are linked into chains along the c axis by C-H⋯O hydrogen bonds and the chains are cross-linked via C-H⋯π inter-actions involving the benzoyl phenyl rings.

  7. Intelligent mapping of alluvial aquifer characteristics in the Otago region, New Zealand

    NASA Astrophysics Data System (ADS)

    Friedel, Michael; Rawlinson, Zara; Westerhoff, Rogier

    2015-04-01

    We adopt a hybrid approach to map the 3D hydrostratigraphy of an alluvial aquifer using big data collected in the Ettrick basin, Otago New Zealand. First, a subset (1%) of the 18 million regional helicopter frequency-domain electromagnetic (HEM) sounding measurements (300 Hz, Horizontal co-planar; 3300 Hz, vertical co-planar; 8200 Hz, horizontal co-planar; 40 kHz, horizontal co-planar; 137 kHz horizontal coplanar) and their numerically-inverted 1D resistivity (50¬-100 Ω-m) profiles are randomly split. For example, 50% of these data are used for training an unsupervised machine-learning (ML) network, and 50% of these data are used for performance at independent locations. The remaining set of HEM measurements are then presented to the vetted ML network to estimate regional resistivity structure which is compared to previously inverted resistivity. Second, about 50 borehole autocorrelation functions are computed based on cross-component correlations of quantized borehole locations sampled for lithology and HEM sounding data. Third, an unsupervised ML network is trained and performance tested using sparse borehole lithology (fractions of sand, silt, clay, mudstone, schist) and hydraulic properties (storage, hydraulic conductivity), and those HEM sounding data occurring within a radius defined by the maximum borehole autocorrelation distances. Fourth, this ML network is then used together with independent HEM sounding measurements to map the spatial distribution of physical aquifer properties and hydraulic properties across the basin.

  8. Plasma Deposited SiO2 for Planar Self-Aligned Gate Metal-Insulator-Semiconductor Field Effect Transistors on Semi-Insulating InP

    NASA Technical Reports Server (NTRS)

    Tabory, Charles N.; Young, Paul G.; Smith, Edwyn D.; Alterovitz, Samuel A.

    1994-01-01

    Metal-insulator-semiconductor (MIS) field effect transistors were fabricated on InP substrates using a planar self-aligned gate process. A 700-1000 A gate insulator of Si02 doped with phosphorus was deposited by a direct plasma enhanced chemical vapor deposition at 400 mTorr, 275 C, 5 W, and power density of 8.5 MW/sq cm. High frequency capacitance-voltage measurements were taken on MIS capacitors which have been subjected to a 700 C anneal and an interface state density of lxl0(exp 11)/eV/cq cm was found. Current-voltage measurements of the capacitors show a breakdown voltage of 107 V/cm and a insulator resistivity of 10(exp 14) omega cm. Transistors were fabricated on semi-insulating InP using a standard planar self-aligned gate process in which the gate insulator was subjected to an ion implantation activation anneal of 700 C. MIS field effect transistors gave a maximum extrinsic transconductance of 23 mS/mm for a gate length of 3 microns. The drain current drift saturated at 87.5% of the initial current, while reaching to within 1% of the saturated value after only 1x10(exp 3). This is the first reported viable planar InP self-aligned gate transistor process reported to date.

  9. Three-level mixing model for nuclear chiral rotation: Role of the planar component

    NASA Astrophysics Data System (ADS)

    Chen, Q. B.; Starosta, K.; Koike, T.

    2018-04-01

    Three- and two-level mixing models are proposed to understand the doubling of states at the same spin and parity in triaxially deformed atomic nuclei with odd numbers of protons and neutrons. The particle-rotor model for such nuclei is solved using the newly proposed basis which couples angular momenta of two valence nucleons and the rotating triaxial mean field into left-handed |L > , right-handed |R > , and planar |P > configurations. The presence and impact of the planar component is investigated as a function of the total spin for mass A ≈130 nuclei with the valence h11 /2 proton particle, valence h11 /2 neutron hole, and the maximum difference between principal axes allowed by the quadrupole deformation of the mean field. It is concluded that at each spin value the higher energy member of a doublet of states is built on the antisymmetric combination of |L > and |R > and is free of the |P > component, indicating that it is of pure chiral geometry. For the lower energy member of the doublet, the contribution of the |P > component to the eigenfunction first decreases and then increases as a function of the total spin. This trend as well as the energy splitting between the doublet states are both determined by the Hamiltonian matrix elements between the planar (|P > ) and nonplanar (|L > and |R > ) subspaces of the full Hilbert space.

  10. Application of the planar-scanning technique to the near-field dosimetry of millimeter-wave radiators.

    PubMed

    Zhao, Jianxun; Lu, Hongmin; Deng, Jun

    2015-02-01

    The planar-scanning technique was applied to the experimental measurement of the electric field and power flux density (PFD) in the exposure area close to the millimeter-wave (MMW) radiator. In the near-field region, the field and PFD were calculated from the plane-wave spectrum of the field sampled on a scan plane far from the radiator. The measurement resolution was improved by reducing the spatial interval between the field samples to a fraction of half the wavelength and implementing multiple iterations of the fast Fourier transform. With the reference to the results from the numerical calculation, an experimental evaluation of the planar-scanning measurement was made for a 50 GHz radiator. Placing the probe 1 to 3 wavelengths from the aperture of the radiator, the direct measurement gave the near-field data with significant differences from the numerical results. The planar-scanning measurement placed the probe 9 wavelengths away from the aperture and effectively reduced the maximum and averaged differences in the near-field data by 70.6% and 65.5%, respectively. Applied to the dosimetry of an open-ended waveguide and a choke ring antenna for 60 GHz exposure, the technique proved useful to the measurement of the PFD in the near-field exposure area of MMW radiators. © 2015 Wiley Periodicals, Inc.

  11. SU-F-I-02: Comparative Analysis and Constancy Check of Image Quality Parameters for Three Linear Accelerators Per TG 142 Protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altundal, Y; Pokhrel, D; Jiang, H

    Purpose: To compare image quality parameters and assessing the image stability of three different linear accelerators (linac) for 2D and 3D imaging modalities: planar kV, MV images and cone-beam CT (CBCT). Methods: QCkV1, QC-3 and Cathpan-600 phantoms were utilized to acquire kV, MV and CBCT images respectively on monthly basis per TG142 QA protocol for over 2 years on 21Ex, NovalisTx and TrueBeam linacs. DICOM images were analyzed with the help of QA analysis software: PIPsPro from Standard Imaging. For planar kV and MV images, planar spatial resolution, contrast to noise ratio (CNR) and noise; for CBCT, HU values weremore » collected and analyzed. Results: Two years of monthly QA measurements were analyzed for the planar and CBCT images. Values were normalized to the mean and the standard deviations (STD) are presented. For the kV planar radiographic images the STD of spatial resolution for f30, f40, f50, CNR and noise for 21Ex are 0.006, 0.011, 0.013, 0.046, 0.026; Novalis-Tx are 0.009, 0.016, 0.016, 0.067, 0.053 ; TrueBeam are 0.007, 0.005, 0.009, 0.017, 0.016 respectively. For the MV planar radiographic images, the STD of spatial resolution for f30, f40, f50, CNR and noise for 21Ex are 0.009, 0.010, 0.008, 0.023, 0.023; for Novalix-Tx are 0.012, 0.010, 0.008, 0.029, 0.023 and for TrueBeam are 0.010, 0.010, 0.007, 0.022, 0.022 respectively. For the CBCT images, HU constancies of Air, Polystyrene, Teflon, PMP, LDPE and Delrin for 21Ex are 0.014, 0.070, 0.031, 0.053, 0.076, 0.087; for Novalis Tx are 0.019, 0.047, 0.035, 0.059, 0.077, 0.087 and for TrueBeam are 0.011, 0.044, 0.025, 0.044, 0.056, 0.020 respectively. Conclusion: These Imaging QA results demonstrated that the TrueBeam, performed better in terms of image quality stability for both kV planer and CBCT images as well as EPID MV images, however other two linacs were also satisfied TG142 guidelines.« less

  12. Beam deviation method as a diagnostic tool for the plasma focus.

    PubMed

    Schmidt, H; Rückle, B

    1978-04-15

    The application of an optical method for density measurements in cylindrical plasmas is described. The angular deviation of a probing light beam sent through a plasma is proportional to the maximum of the density in the plasma column. The deviation does not depend on the plasma dimensions; however, it is influenced to a certain degree by the density profile. The method is successfully applied to the investigation of a dense plasma focus with a time resolution of 2 nsec and a spatial resolution (in axial direction) of 2 mm.

  13. The linear sizes tolerances and fits system modernization

    NASA Astrophysics Data System (ADS)

    Glukhov, V. I.; Grinevich, V. A.; Shalay, V. V.

    2018-04-01

    The study is carried out on the urgent topic for technical products quality providing in the tolerancing process of the component parts. The aim of the paper is to develop alternatives for improving the system linear sizes tolerances and dimensional fits in the international standard ISO 286-1. The tasks of the work are, firstly, to classify as linear sizes the elements additionally linear coordinating sizes that determine the detail elements location and, secondly, to justify the basic deviation of the tolerance interval for the element's linear size. The geometrical modeling method of real details elements, the analytical and experimental methods are used in the research. It is shown that the linear coordinates are the dimensional basis of the elements linear sizes. To standardize the accuracy of linear coordinating sizes in all accuracy classes, it is sufficient to select in the standardized tolerance system only one tolerance interval with symmetrical deviations: Js for internal dimensional elements (holes) and js for external elements (shafts). The main deviation of this coordinating tolerance is the average zero deviation, which coincides with the nominal value of the coordinating size. Other intervals of the tolerance system are remained for normalizing the accuracy of the elements linear sizes with a fundamental change in the basic deviation of all tolerance intervals is the maximum deviation corresponding to the limit of the element material: EI is the lower tolerance for the of the internal elements (holes) sizes and es is the upper tolerance deviation for the outer elements (shafts) sizes. It is the sizes of the material maximum that are involved in the of the dimensional elements mating of the shafts and holes and determine the fits type.

  14. Cholesteric pitch transitions induced by mechanical strain.

    PubMed

    Lelidis, I; Barbero, G; Alexe-Ionescu, A L

    2013-02-01

    We investigate thickness and surface anchoring strength influence on pitch transitions in a planar cholesteric liquid crystal layer. The cholesteric-nematic transition is also investigated. We assume planar boundary conditions, with strong anchoring strength at one interface and weak anchoring strength at the other. The surface anchoring energy we consider to describe the deviation of the surface twist angle from the easy axis induced by a bulk deformation is a parabolic potential or Rapini and Papoular periodic potential, respectively. We show that under strain, all pitch transitions take place at a critical thickness that is equal to the quarter of the natural cholesteric pitch. The latter result does not depend on the anchoring strength, the particular surface potential, or material properties. The twist angle on the limiting surface characterized by weak anchoring varies with strain either by slipping and or in a discontinuous manner according to the thickness of the sample. The position of the bifurcation point depends only on the ratio of the extrapolation length over the layer thickness, but its value is model dependent. Multistability and multiplicity of the transition are discussed.

  15. Velocity and Reactive Scalar Dissipation Spectra in Turbulent Premixed Flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolla, Hemanth; Zhao, Xin-Yu; Chen, Jacqueline H.

    Dissipation spectra of velocity and reactive scalars—temperature and fuel mass fraction—in turbulent premixed flames are studied using direct numerical simulation data of a temporally evolving lean hydrogen-air premixed planar jet (PTJ) flame and a statistically stationary planar lean methane-air (SP) flame. Furthermore, the equivalence ratio in both cases was 0.7, the pressure 1 atm while the unburned temperature was 700 K for the hydrogen-air PTJ case and 300 K for methane-air SP case, that resulted in data sets with a density ratio of 3 and 5, respectively. The turbulent Reynolds numbers for the cases ranged from 200 to 428.4, themore » Damköhler number from 3.1 to 29.1, and the Karlovitz number from 0.1 to 4.5. The dissipation spectra collapse when normalized by the respective Favre-averaged dissipation rates. But, the normalized dissipation spectra in all the cases deviate noticeably from those predicted by classical scaling laws for constant-density turbulent flows and bear a clear influence of the chemical reactions on the dissipative range of the energy cascade.« less

  16. Shock tube Multiphase Experiments

    NASA Astrophysics Data System (ADS)

    Middlebrooks, John; Allen, Roy; Paudel, Manoj; Young, Calvin; Musick, Ben; McFarland, Jacob

    2017-11-01

    Shock driven multiphase instabilities (SDMI) are unique physical phenomena that have far-reaching practical applications in engineering and science. The instability is present in high energy explosions, scramjet combustors, and supernovae events. The SDMI arises when a multiphase interface is impulsively accelerated by the passage of a shockwave. It is similar in development to the Richtmyer-Meshkov (RM) instability however, particle-to-gas coupling is the driving mechanism of the SDMI. As particle effects such as lag and phase change become more prominent, the SDMI's development begins to significantly deviate from the RM instability. We have developed an experiment for studying the SDMI in our shock tube facility. In our experiments, a multiphase interface is created using a laminar jet and flowed into the shock tube where it is accelerated by the passage of a planar shockwave. The interface development is captured using CCD cameras synchronized with planar laser illumination. This talk will give an overview of new experiments conducted to examine the development of a shocked cylindrical multiphase interface. The effects of Atwood number, particle size, and a second acceleration (reshock) of the interface will be discussed.

  17. Velocity and Reactive Scalar Dissipation Spectra in Turbulent Premixed Flames

    DOE PAGES

    Kolla, Hemanth; Zhao, Xin-Yu; Chen, Jacqueline H.; ...

    2016-06-09

    Dissipation spectra of velocity and reactive scalars—temperature and fuel mass fraction—in turbulent premixed flames are studied using direct numerical simulation data of a temporally evolving lean hydrogen-air premixed planar jet (PTJ) flame and a statistically stationary planar lean methane-air (SP) flame. Furthermore, the equivalence ratio in both cases was 0.7, the pressure 1 atm while the unburned temperature was 700 K for the hydrogen-air PTJ case and 300 K for methane-air SP case, that resulted in data sets with a density ratio of 3 and 5, respectively. The turbulent Reynolds numbers for the cases ranged from 200 to 428.4, themore » Damköhler number from 3.1 to 29.1, and the Karlovitz number from 0.1 to 4.5. The dissipation spectra collapse when normalized by the respective Favre-averaged dissipation rates. But, the normalized dissipation spectra in all the cases deviate noticeably from those predicted by classical scaling laws for constant-density turbulent flows and bear a clear influence of the chemical reactions on the dissipative range of the energy cascade.« less

  18. Rapid assessment of mid-infrared refractive index anisotropy using a prism coupler: chemical vapor deposited ZnS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Hong; Lipschultz, Kristen A.; Anheier, Norman C.

    2012-04-01

    A state-of-the-art mid-infrared prism coupler was used to study the refractive index properties of forward-looking-infrared (FLIR) grade zinc sulfide samples prepared with unique planar grain orientations and locations with respect to the CVD growth axis. This study was motivated by prior photoluminescence and x-ray diffraction measurements that suggested refractive index may vary according to grain orientation. Measurements were conducted to provide optical dispersion and thermal index (dn/dT) data at discrete laser wavelengths between 0.633 and 10.591 {mu}m at two temperature set points (30 C and 90 C). Refractive index measurements between samples exhibited an average standard deviation comparable to themore » uncertainty of the prism coupler measurement (0.0004 refractive index units), suggesting that the variation in refractive index as a function of planar grain orientation and CVD deposition time is negligible, and should have no impact on subsequent optical designs. Measured dispersion data at mid-infrared wavelengths was found to agree well with prior published measurements.« less

  19. Accelerated echo planar J-resolved spectroscopic imaging in prostate cancer: a pilot validation of non-linear reconstruction using total variation and maximum entropy.

    PubMed

    Nagarajan, Rajakumar; Iqbal, Zohaib; Burns, Brian; Wilson, Neil E; Sarma, Manoj K; Margolis, Daniel A; Reiter, Robert E; Raman, Steven S; Thomas, M Albert

    2015-11-01

    The overlap of metabolites is a major limitation in one-dimensional (1D) spectral-based single-voxel MRS and multivoxel-based MRSI. By combining echo planar spectroscopic imaging (EPSI) with a two-dimensional (2D) J-resolved spectroscopic (JPRESS) sequence, 2D spectra can be recorded in multiple locations in a single slice of prostate using four-dimensional (4D) echo planar J-resolved spectroscopic imaging (EP-JRESI). The goal of the present work was to validate two different non-linear reconstruction methods independently using compressed sensing-based 4D EP-JRESI in prostate cancer (PCa): maximum entropy (MaxEnt) and total variation (TV). Twenty-two patients with PCa with a mean age of 63.8 years (range, 46-79 years) were investigated in this study. A 4D non-uniformly undersampled (NUS) EP-JRESI sequence was implemented on a Siemens 3-T MRI scanner. The NUS data were reconstructed using two non-linear reconstruction methods, namely MaxEnt and TV. Using both TV and MaxEnt reconstruction methods, the following observations were made in cancerous compared with non-cancerous locations: (i) higher mean (choline + creatine)/citrate metabolite ratios; (ii) increased levels of (choline + creatine)/spermine and (choline + creatine)/myo-inositol; and (iii) decreased levels of (choline + creatine)/(glutamine + glutamate). We have shown that it is possible to accelerate the 4D EP-JRESI sequence by four times and that the data can be reliably reconstructed using the TV and MaxEnt methods. The total acquisition duration was less than 13 min and we were able to detect and quantify several metabolites. Copyright © 2015 John Wiley & Sons, Ltd.

  20. A 3-Axis Miniature Magnetic Sensor Based on a Planar Fluxgate Magnetometer with an Orthogonal Fluxguide

    PubMed Central

    Lu, Chih-Cheng; Huang, Jeff

    2015-01-01

    A new class of tri-axial miniature magnetometer consisting of a planar fluxgate structure with an orthogonal ferromagnetic fluxguide centrally situated over the magnetic cores is presented. The magnetic sensor possesses a cruciform ferromagnetic core placed diagonally upon the square excitation coil under which two pairs of pick-up coils for in-plane field detection are allocated. Effective principles and analysis of the magnetometer for 3-D field vectors are described and verified by numerically electromagnetic simulation for the excitation and magnetization of the ferromagnetic cores. The sensor is operated by applying the second-harmonic detection technique that can verify V-B relationship and device responsivity. Experimental characterization of the miniature fluxgate device demonstrates satisfactory spatial magnetic field detection results in terms of responsivity and noise spectrum. As a result, at an excitation frequency of 50 kHz, a maximum in-plane responsivity of 122.4 V/T appears and a maximum out-of-plane responsivity of 11.6 V/T is obtained as well. The minimum field noise spectra are found to be 0.11 nT/√Hz and 6.29 nT/√Hz, respectively, in X- and Z-axis at 1 Hz under the same excitation frequency. Compared with the previous tri-axis fluxgate devices, this planar magnetic sensor with an orthogonal fluxguide provides beneficial enhancement in both sensory functionality and manufacturing simplicity. More importantly, this novel device concept is considered highly suitable for the extension to a silicon sensor made by the current CMOS-MEMS technologies, thus emphasizing its emerging applications of field detection in portable industrial electronics. PMID:26102496

  1. Interplay effect on a 6-MV flattening-filter-free linear accelerator with high dose rate and fast multi-leaf collimator motion treating breast and lung phantoms.

    PubMed

    Netherton, Tucker; Li, Yuting; Nitsch, Paige; Shaitelman, Simona; Balter, Peter; Gao, Song; Klopp, Ann; Muruganandham, Manickam; Court, Laurence

    2018-06-01

    Using a new linear accelerator with high dose rate (800 MU/min), fast MLC motions (5.0 cm/s), fast gantry rotation (15 s/rotation), and 1 cm wide MLCs, we aimed to quantify the effects of complexity, arc number, and fractionation on interplay for breast and lung treatments under target motion. To study lung interplay, eight VMAT plans (1-6 arcs) and four-nine-field sliding-window IMRT plans varying in complexity were created. For the breast plans, four-four-field sliding-window IMRT plans were created. Using the Halcyon 1.0 linear accelerator, each plan was delivered five times each under sinusoidal breathing motion to a phantom with 20 implanted MOSFET detectors; MOSFET dose (cGy), delivery time, and MU/cGy values were recorded. Maximum and mean dose deviations were calculated from MOSFET data. The number of MOSFETs with at least 19 of 20 detectors agreeing with their expected dose within 5% per fraction was calculated across 10 6 iterations to model dose deviation as function of fraction number for all plan variants. To put interplay plans into clinical context, additional IMRT and VMAT plans were created and delivered for the sites of head and neck, prostate, whole brain, breast, pelvis, and lung. Average modulation and interplay effect were compared to those from conventional linear accelerators, as reported from previous studies. The mean beam modulation for plans created for the Halcyon 1.0 linear accelerator was 2.9 MU/cGy (two- to four-field IMRT breast plans), 6.2 MU/cGy (at least five-field IMRT), and 3.6 MU/cGy (four-arc VMAT). To achieve treatment plan objectives, Halcyon 1.0 VMAT plans require more arcs and modulation than VMAT on conventional linear accelerators. Maximum and mean dose deviations increased with increasing plan complexity under tumor motion for breast and lung treatments. Concerning VMAT plans under motion, maximum, and mean dose deviations were higher for one arc than for two arcs regardless of plan complexity. For plan variants with maximum dose deviations greater than 3.7%, dose deviation as a function of fraction number was protracted. For treatments on the Halcyon 1.0 linear accelerator, the convergence of dose deviation with fraction number happened more slowly than reported for conventional linear accelerators. However, if plan complexity is reduced for IMRT and if tumor motion is less than ~10-mm, interplay is greatly reduced. To minimize dose deviations across multiple fractions for dynamic targets, we recommend limiting treatment plan complexity and avoiding one-arc VMAT on the Halcyon 1.0 linear accelerator when interplay is a concern. © 2018 American Association of Physicists in Medicine.

  2. Error Estimates of the Ares I Computed Turbulent Ascent Longitudinal Aerodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Ghaffari, Farhad

    2012-01-01

    Numerical predictions of the longitudinal aerodynamic characteristics for the Ares I class of vehicles, along with the associated error estimate derived from an iterative convergence grid refinement, are presented. Computational results are based on an unstructured grid, Reynolds-averaged Navier-Stokes analysis. The validity of the approach to compute the associated error estimates, derived from a base grid to an extrapolated infinite-size grid, was first demonstrated on a sub-scaled wind tunnel model at representative ascent flow conditions for which the experimental data existed. Such analysis at the transonic flow conditions revealed a maximum deviation of about 23% between the computed longitudinal aerodynamic coefficients with the base grid and the measured data across the entire roll angles. This maximum deviation from the wind tunnel data was associated with the computed normal force coefficient at the transonic flow condition and was reduced to approximately 16% based on the infinite-size grid. However, all the computed aerodynamic coefficients with the base grid at the supersonic flow conditions showed a maximum deviation of only about 8% with that level being improved to approximately 5% for the infinite-size grid. The results and the error estimates based on the established procedure are also presented for the flight flow conditions.

  3. Bias and Efficiency in Structural Equation Modeling: Maximum Likelihood versus Robust Methods

    ERIC Educational Resources Information Center

    Zhong, Xiaoling; Yuan, Ke-Hai

    2011-01-01

    In the structural equation modeling literature, the normal-distribution-based maximum likelihood (ML) method is most widely used, partly because the resulting estimator is claimed to be asymptotically unbiased and most efficient. However, this may not hold when data deviate from normal distribution. Outlying cases or nonnormally distributed data,…

  4. Geometric and boundary element method simulations of acoustic reflections from rough, finite, or non-planar surfaces

    NASA Astrophysics Data System (ADS)

    Rathsam, Jonathan

    This dissertation seeks to advance the current state of computer-based sound field simulations for room acoustics. The first part of the dissertation assesses the reliability of geometric sound-field simulations, which are approximate in nature. The second part of the dissertation uses the rigorous boundary element method (BEM) to learn more about reflections from finite reflectors: planar and non-planar. Acoustical designers commonly use geometric simulations to predict sound fields quickly. Geometric simulation of reflections from rough surfaces is still under refinement. The first project in this dissertation investigates the scattering coefficient, which quantifies the degree of diffuse reflection from rough surfaces. The main result is that predicted reverberation time varies inversely with scattering coefficient if the sound field is nondiffuse. Additional results include a flow chart that enables acoustical designers to gauge how sensitive predicted results are to their choice of scattering coefficient. Geometric acoustics is a high-frequency approximation to wave acoustics. At low frequencies, more pronounced wave phenomena cause deviations between real-world values and geometric predictions. Acoustical designers encounter the limits of geometric acoustics in particular when simulating the low frequency response from finite suspended reflector panels. This dissertation uses the rigorous BEM to develop an improved low-frequency radiation model for smooth, finite reflectors. The improved low frequency model is suggested in two forms for implementation in geometric models. Although BEM simulations require more computation time than geometric simulations, BEM results are highly accurate. The final section of this dissertation uses the BEM to investigate the sound field around non-planar reflectors. The author has added convex edges rounded away from the source side of finite, smooth reflectors to minimize coloration of reflections caused by interference from boundary waves. Although the coloration could not be fully eliminated, the convex edge increases the sound energy reflected into previously nonspecular zones. This excess reflected energy is marginally audible using a standard of 20 dB below direct sound energy. The convex-edged panel is recommended for use when designers want to extend reflected energy spatially beyond the specular reflection zone of a planar panel.

  5. Patient-specific 3D models created by 3D imaging system or bi-planar imaging coupled with Moiré-Fringe projections: a comparative study of accuracy and reliability on spinal curvatures and vertebral rotation data.

    PubMed

    Hocquelet, Arnaud; Cornelis, François; Jirot, Anna; Castaings, Laurent; de Sèze, Mathieu; Hauger, Olivier

    2016-10-01

    The aim of this study is to compare the accuracy and reliability of spinal curvatures and vertebral rotation data based on patient-specific 3D models created by 3D imaging system or by bi-planar imaging coupled with Moiré-Fringe projections. Sixty-two consecutive patients from a single institution were prospectively included. For each patient, frontal and sagittal calibrated low-dose bi-planar X-rays were performed and coupled simultaneously with an optical Moiré back surface-based technology. The 3D reconstructions of spine and pelvis were performed independently by one radiologist and one technician in radiology using two different semi-automatic methods using 3D radio-imaging system (method 1) or bi-planar imaging coupled with Moiré projections (method 2). Both methods were compared using Bland-Altman analysis, and reliability using intraclass correlation coefficient (ICC). ICC showed good to very good agreement. Between the two techniques, the maximum 95 % prediction limits was -4.9° degrees for the measurements of spinal coronal curves and less than 5° for other parameters. Inter-rater reliability was excellent for all parameters across both methods, except for axial rotation with method 2 for which ICC was fair. Method 1 was faster for reconstruction time than method 2 for both readers (13.4 vs. 20.7 min and 10.6 vs. 13.9 min; p = 0.0001). While a lower accuracy was observed for the evaluation of the axial rotation, bi-planar imaging coupled with Moiré-Fringe projections may be an accurate and reliable tool to perform 3D reconstructions of the spine and pelvis.

  6. Well-Defined Nanostructured, Single-Crystalline TiO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells.

    PubMed

    Choi, Jongmin; Song, Seulki; Hörantner, Maximilian T; Snaith, Henry J; Park, Taiho

    2016-06-28

    An electron transporting layer (ETL) plays an important role in extracting electrons from a perovskite layer and blocking recombination between electrons in the fluorine-doped tin oxide (FTO) and holes in the perovskite layers, especially in planar perovskite solar cells. Dense TiO2 ETLs prepared by a solution-processed spin-coating method (S-TiO2) are mainly used in devices due to their ease of fabrication. Herein, we found that fatal morphological defects at the S-TiO2 interface due to a rough FTO surface, including an irregular film thickness, discontinuous areas, and poor physical contact between the S-TiO2 and the FTO layers, were inevitable and lowered the charge transport properties through the planar perovskite solar cells. The effects of the morphological defects were mitigated in this work using a TiO2 ETL produced from sputtering and anodization. This method produced a well-defined nanostructured TiO2 ETL with an excellent transmittance, single-crystalline properties, a uniform film thickness, a large effective area, and defect-free physical contact with a rough substrate that provided outstanding electron extraction and hole blocking in a planar perovskite solar cell. In planar perovskite devices, anodized TiO2 ETL (A-TiO2) increased the power conversion efficiency by 22% (from 12.5 to 15.2%), and the stabilized maximum power output efficiency increased by 44% (from 8.9 to 12.8%) compared with S-TiO2. This work highlights the importance of the ETL geometry for maximizing device performance and provides insights into achieving ideal ETL morphologies that remedy the drawbacks observed in conventional spin-coated ETLs.

  7. Qualitative computer aided evaluation of dental impressions in vivo.

    PubMed

    Luthardt, Ralph G; Koch, Rainer; Rudolph, Heike; Walter, Michael H

    2006-01-01

    Clinical investigations dealing with the precision of different impression techniques are rare. Objective of the present study was to develop and evaluate a procedure for the qualitative analysis of the three-dimensional impression precision based on an established in-vitro procedure. The zero hypothesis to be tested was that the precision of impressions does not differ depending on the impression technique used (single-step, monophase and two-step-techniques) and on clinical variables. Digital surface data of patient's teeth prepared for crowns were gathered from standardized manufactured master casts after impressions with three different techniques were taken in a randomized order. Data-sets were analyzed for each patient in comparison with the one-step impression chosen as the reference. The qualitative analysis was limited to data-points within the 99.5%-range. Based on the color-coded representation areas with maximum deviations were determined (preparation margin and the mantle and occlusal surface). To qualitatively analyze the precision of the impression techniques, the hypothesis was tested in linear models for repeated measures factors (p < 0.05). For the positive 99.5% deviations no variables with significant influence were determined in the statistical analysis. In contrast, the impression technique and the position of the preparation margin significantly influenced the negative 99.5% deviations. The influence of clinical parameter on the deviations between impression techniques can be determined reliably using the 99.5 percentile of the deviations. An analysis regarding the areas with maximum deviations showed high clinical relevance. The preparation margin was pointed out as the weak spot of impression taking.

  8. Chaotic Dynamics in the Planar Gravitational Many-Body Problem with Rigid Body Rotations

    NASA Astrophysics Data System (ADS)

    Kwiecinski, James A.; Kovacs, Attila; Krause, Andrew L.; Planella, Ferran Brosa; van Gorder, Robert A.

    The discovery of Pluto’s small moons in the last decade has brought attention to the dynamics of the dwarf planet’s satellites. With such systems in mind, we study a planar N-body system in which all the bodies are point masses, except for a single rigid body. We then present a reduced model consisting of a planar N-body problem with the rigid body treated as a 1D continuum (i.e. the body is treated as a rod with an arbitrary mass distribution). Such a model provides a good approximation to highly asymmetric geometries, such as the recently observed interstellar asteroid ‘Oumuamua, but is also amenable to analysis. We analytically demonstrate the existence of homoclinic chaos in the case where one of the orbits is nearly circular by way of the Melnikov method, and give numerical evidence for chaos when the orbits are more complicated. We show that the extent of chaos in parameter space is strongly tied to the deviations from a purely circular orbit. These results suggest that chaos is ubiquitous in many-body problems when one or more of the rigid bodies exhibits nonspherical and highly asymmetric geometries. The excitation of chaotic rotations does not appear to require tidal dissipation, obliquity variation, or orbital resonance. Such dynamics give a possible explanation for routes to chaotic dynamics observed in N-body systems such as the Pluto system where some of the bodies are highly nonspherical.

  9. Magnetic resonance fingerprinting using echo-planar imaging: Joint quantification of T1 and T2∗ relaxation times.

    PubMed

    Rieger, Benedikt; Zimmer, Fabian; Zapp, Jascha; Weingärtner, Sebastian; Schad, Lothar R

    2017-11-01

    To develop an implementation of the magnetic resonance fingerprinting (MRF) paradigm for quantitative imaging using echo-planar imaging (EPI) for simultaneous assessment of T 1 and T2∗. The proposed MRF method (MRF-EPI) is based on the acquisition of 160 gradient-spoiled EPI images with rapid, parallel-imaging accelerated, Cartesian readout and a measurement time of 10 s per slice. Contrast variation is induced using an initial inversion pulse, and varying the flip angles, echo times, and repetition times throughout the sequence. Joint quantification of T 1 and T2∗ is performed using dictionary matching with integrated B1+ correction. The quantification accuracy of the method was validated in phantom scans and in vivo in 6 healthy subjects. Joint T 1 and T2∗ parameter maps acquired with MRF-EPI in phantoms are in good agreement with reference measurements, showing deviations under 5% and 4% for T 1 and T2∗, respectively. In vivo baseline images were visually free of artifacts. In vivo relaxation times are in good agreement with gold-standard techniques (deviation T 1 : 4 ± 2%, T2∗: 4 ± 5%). The visual quality was comparable to the in vivo gold standard, despite substantially shortened scan times. The proposed MRF-EPI method provides fast and accurate T 1 and T2∗ quantification. This approach offers a rapid supplement to the non-Cartesian MRF portfolio, with potentially increased usability and robustness. Magn Reson Med 78:1724-1733, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  10. Bubble Dynamics and Resulting Noise from Traveling Bubble Cavitation.

    DTIC Science & Technology

    1982-04-13

    proportional to the gas content. The subjectivity of visual cavitation determination is evidenced by the maximum standard deviation. As mentioned before...bubble radii at the maximum radius position on the model. The point on the model where the bubble will be at its maximum volume was determined by...48 3.7 Recording Bubble Dynamics . • . * . . . . 52 3.8 Measurement of Gas Nuclei in Water 0 • 52 3 TABLE OF CONTENTS (continued) Paqe

  11. Planar shock reflection on a wedged concave reflector

    NASA Astrophysics Data System (ADS)

    Yu, Fan-Ming; Sheu, Kuen-Dong

    2001-04-01

    The investigation of shock reflection and shock diffraction phenomena upon a wedged concave reflector produced by a planar incident shock wave has been done in the shock tube facility of Institute of Aeronautics and Astronautics, National Cheng- Kung University. The experiment proceeds upon three wedged concave reflectors models the upper and lower wedge angles arrangement of them are (50 degrees, 50 degrees) - 35 degrees, 35 degrees) and (50 degrees, 35 degrees), respectively. They were tested at Mach numbers of 1.2 - 1.65 and 2.0. On the first reflector, following the regular reflection on the 50 degree-wedged surface by the incident shock wave, a Mach shock diffraction behavior has been observed as shock moves outward from the apex of the reflector. On the apex of the reflector, it behaviors as a sector of the blast shock moving on a diverging channel. On the shadowgraph pictures it has been observed there exists a pattern of gas dynamics focus upon the second reflector. The Mach reflection from the 35 degree- wedged surface as being generated by the planar incident shock wave, on which the overlapping of the two triple points from both wedged surface offers the focusing mechanism. The shock interference, which proceeds by the Mach shock reflection and the regular shock diffraction from the reflector, generates a very complicate rolling-up of slip lines system. On the third reflector, the mixed shock interference behavior has been observed of which two diffraction shocks from concave 50 degree-wedged surface and 35 degree-wedged surface interfere with each other. The measurement of the peak pressure along a ray from the model apex parallel to incident shock direction indicates that the measured maximum pressure rising is larger near the apex of the reflector. Considering the measured maximum pressure increment due to the reflection shocks indicate that the wave strength upon large apex angle reflector is greater than it is upon small apex angle reflector. However, as considering the measured maximum pressure increment following the diffraction shocks, the results show that due to the focusing process upon (35 degree, 35 degree) reflector, it is of the largest increment.

  12. A molecular dynamics and ab initio analysis of the electronic structure of single-walled carbon nanotubes adhered to a substrate

    NASA Astrophysics Data System (ADS)

    Van Der Geest, A. G.; Lu, Z.; Lusk, M. T.; Dunn, M. L.

    2011-04-01

    Single-wall nanotubes can adhere to planar surfaces via van der Waals forces, and this causes the tubes to deform. We use classical molecular dynamics to estimate this deformation and density functional theory to quantify its impact on electronic band structure. For (n,0) tubes, adhesion causes the maximum bandgap to rise more rapidly with diameter, but the value of the maximum is not affected. The influence of adhesion forces on bandgap was found to correlate with that associated with lateral, uniaxial compression for moderate values of adhesion energy and compressive distortion.

  13. Computed tomography-based evaluation of template (NobelGuide™)-guided implant positions: a prospective radiological study.

    PubMed

    Vasak, Christoph; Watzak, Georg; Gahleitner, André; Strbac, Georg; Schemper, Michael; Zechner, Werner

    2011-10-01

    This prospective study was intended to evaluate the overall deviation in a clinical treatment setting to provide for quantification of the potential impairment of treatment safety and reliability with computer-assisted, template-guided transgingival implantation. The patient population enrolled (male/female=10/8) presented with partially dentate and edentulous maxillae and mandibles. Overall, 86 implants were placed by two experienced dental surgeons strictly following the NobelGuide™ protocol for template-guided implantation. All patients had a postoperative computed tomography (CT) with identical settings to the preoperative examination. Using the triple scan technique, pre- and postoperative CT data were merged in the Procera planning software, a newly developed procedure - initially presented in 2007 allowing measurement of the deviations at implant shoulder and apex. The deviations measured were an average of 0.43 mm (bucco-lingual), 0.46 mm (mesio-distal) and 0.53 mm (depth) at the level of the implant shoulder and slightly higher at the implant apex with an average of 0.7 mm (bucco-lingual), 0.63 mm (mesio-distal) and 0.52 mm (depth). The maximum deviation of 2.02 mm was encountered in the corono-apical direction. Significantly lower deviations were seen for implants in the anterior region vs. the posterior tooth region (P<0.01, 0.31 vs. 0.5 mm), and deviations were also significantly lower in the mandible than in the maxilla (P=0.04, 0.36 vs. 0.45 mm) in the mesio-distal direction. Moreover, a significant correlation between deviation and mucosal thickness was seen and a learning effect was found over the time period of performance of the surgical procedures. Template-guided implantation will ensure reliable transfer of preoperative computer-assisted planning into surgical practice. With regard to the required verification of treatment reliability of an implantation system with flapless access, all maximum deviations measured in this clinical study were within the safety margins recommended by the planning software. © 2011 John Wiley & Sons A/S.

  14. Experimental study of multichromatic terahertz wave propagation through planar micro-channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Young-Min -Min; Northern Illinois Univ., Dekalb, IL; Fermi National Accelerator Lab.

    2012-04-10

    Previous theoretical and numerical studies [Y. M. Shin and L. R. Barnett, Appl. Phys. Lett. 92, 091501 (2008) and Y. M. Shin et al., Appl. Phys. Lett. 93, 221504 (2008)] have reported that a planar micro-channel with an asymmetric corrugation array supports strongly confined propagation of broadband THz plasmonic waves. The highly broad spectral response is experimentally demonstrated in the near-THz regime of 0.19-0.265 THz. Signal reflection and transmission tests on the three designed micro-channels including directional couplers resulted in a full-width-half-maximum bandwidth of ~ 50-60GHz with an insertion loss of approximately -5 dB, which is in good agreement withmore » simulation data. As a result, these micro-structures can be utilized for free electron beam and electronic/optic integrated devices« less

  15. Antipodal hotspot pairs on the earth

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Caldeira, Ken

    1992-01-01

    The results of statistical analyses performed on three published hotspot distributions suggest that significantly more hotspots occur as nearly antipodal pairs than is anticipated from a random distribution, or from their association with geoid highs and divergent plate margins. The observed number of antipodal hotspot pairs depends on the maximum allowable deviation from exact antipodality. At a maximum deviation of not greater than 700 km, 26 to 37 percent of hotspots form antipodal pairs in the published lists examined here, significantly more than would be expected from the general hotspot distribution. Two possible mechanisms that might create such a distribution include: (1) symmetry in the generation of mantle plumes, and (2) melting related to antipodal focusing of seismic energy from large-body impacts.

  16. The assessment of body sway and the choice of the stability parameter(s).

    PubMed

    Raymakers, J A; Samson, M M; Verhaar, H J J

    2005-01-01

    This methodological study aims at comparison of the practical usefulness of several parameters of body sway derived from recordings of the center of pressure (CoP) with the aid of a static force platform as proposed in the literature. These included: mean displacement velocity, maximal range of movement along x- and y-co-ordinates, movement area, planar deviation, phase plane parameter of Riley and the parameters of the diffusion stabilogram according to Collins. They were compared in over 850 experiments in a group of young healthy subjects (n = 10, age 21-45 years), a group of elderly healthy (n = 38, age 61-78 years) and two groups of elderly subjects (n = 10 and n = 21, age 65-89 years) with stability problems under different conditions known to interfere with stability as compared to standing with open eyes fixing a visual anchoring point: closing the eyes, standing on plastic foam in stead of a firm surface and performing a cognitive task: the modified stroop test. A force platform (Kistler) was used and co-ordinates of the body's center of pressure were recorded during 60 s of quiet barefoot standing with a sampling frequency of 10 Hz. In general, the results show important overlapping among groups and test conditions. Mean displacement velocity shows the most consistent differences between test situations, health conditions and age ranges, but is not affected by an extra cognitive task in healthy old people. Mean maximal sideways sway range is different among groups and test conditions except for the cognitive task in young and elderly subjects. Standardised displacement parameters such as standard deviations of displacements and planar deviation discriminate less well than the actual range of motion or the velocity. The critical time interval derived from the diffusion stabilogram according to Collins et al. seems to add a specific type of information since it shows significant influence from addition of a cognitive task in old subjects standing on a firm surface but not when standing on plastic foam. The critical time interval shows no consistent relation to any other parameter. The influence of cognitive activity on balance merits further exploration. A new parameter, sum of maximal deviation time (SDT) was proposed showing complete discrimination between frail elderly and other old subjects when obtained while visual input was suppressed. It was concluded that mean displacement velocity seems to be the most informative parameter in most situations.

  17. Validation of nuclear magnetic resonance structures of proteins and nucleic acids: hydrogen geometry and nomenclature.

    PubMed

    Doreleijers, J F; Vriend, G; Raves, M L; Kaptein, R

    1999-11-15

    A statistical analysis is reported of 1,200 of the 1,404 nuclear magnetic resonance (NMR)-derived protein and nucleic acid structures deposited in the Protein Data Bank (PDB) before 1999. Excluded from this analysis were the entries not yet fully validated by the PDB and the more than 100 entries that contained < 95% of the expected hydrogens. The aim was to assess the geometry of the hydrogens in the remaining structures and to provide a check on their nomenclature. Deviations in bond lengths, bond angles, improper dihedral angles, and planarity with respect to estimated values were checked. More than 100 entries showed anomalous protonation states for some of their amino acids. Approximately 250,000 (1.7%) atom names differed from the consensus PDB nomenclature. Most of the inconsistencies are due to swapped prochiral labeling. Large deviations from the expected geometry exist for a considerable number of entries, many of which are average structures. The most common causes for these deviations seem to be poor minimization of average structures and an improper balance between force-field constraints for experimental and holonomic data. Some specific geometric outliers are related to the refinement programs used. A number of recommendations for biomolecular databases, modeling programs, and authors submitting biomolecular structures are given.

  18. The use of spatial dose gradients and probability density function to evaluate the effect of internal organ motion for prostate IMRT treatment planning

    NASA Astrophysics Data System (ADS)

    Jiang, Runqing; Barnett, Rob B.; Chow, James C. L.; Chen, Jeff Z. Y.

    2007-03-01

    The aim of this study is to investigate the effects of internal organ motion on IMRT treatment planning of prostate patients using a spatial dose gradient and probability density function. Spatial dose distributions were generated from a Pinnacle3 planning system using a co-planar, five-field intensity modulated radiation therapy (IMRT) technique. Five plans were created for each patient using equally spaced beams but shifting the angular displacement of the beam by 15° increments. Dose profiles taken through the isocentre in anterior-posterior (A-P), right-left (R-L) and superior-inferior (S-I) directions for IMRT plans were analysed by exporting RTOG file data from Pinnacle. The convolution of the 'static' dose distribution D0(x, y, z) and probability density function (PDF), denoted as P(x, y, z), was used to analyse the combined effect of repositioning error and internal organ motion. Organ motion leads to an enlarged beam penumbra. The amount of percentage mean dose deviation (PMDD) depends on the dose gradient and organ motion probability density function. Organ motion dose sensitivity was defined by the rate of change in PMDD with standard deviation of motion PDF and was found to increase with the maximum dose gradient in anterior, posterior, left and right directions. Due to common inferior and superior field borders of the field segments, the sharpest dose gradient will occur in the inferior or both superior and inferior penumbrae. Thus, prostate motion in the S-I direction produces the highest dose difference. The PMDD is within 2.5% when standard deviation is less than 5 mm, but the PMDD is over 2.5% in the inferior direction when standard deviation is higher than 5 mm in the inferior direction. Verification of prostate organ motion in the inferior directions is essential. The margin of the planning target volume (PTV) significantly impacts on the confidence of tumour control probability (TCP) and level of normal tissue complication probability (NTCP). Smaller margins help to reduce the dose to normal tissues, but may compromise the dose coverage of the PTV. Lower rectal NTCP can be achieved by either a smaller margin or a steeper dose gradient between PTV and rectum. With the same DVH control points, the rectum has lower complication in the seven-beam technique used in this study because of the steeper dose gradient between the target volume and rectum. The relationship between dose gradient and rectal complication can be used to evaluate IMRT treatment planning. The dose gradient analysis is a powerful tool to improve IMRT treatment plans and can be used for QA checking of treatment plans for prostate patients.

  19. The use of spatial dose gradients and probability density function to evaluate the effect of internal organ motion for prostate IMRT treatment planning.

    PubMed

    Jiang, Runqing; Barnett, Rob B; Chow, James C L; Chen, Jeff Z Y

    2007-03-07

    The aim of this study is to investigate the effects of internal organ motion on IMRT treatment planning of prostate patients using a spatial dose gradient and probability density function. Spatial dose distributions were generated from a Pinnacle3 planning system using a co-planar, five-field intensity modulated radiation therapy (IMRT) technique. Five plans were created for each patient using equally spaced beams but shifting the angular displacement of the beam by 15 degree increments. Dose profiles taken through the isocentre in anterior-posterior (A-P), right-left (R-L) and superior-inferior (S-I) directions for IMRT plans were analysed by exporting RTOG file data from Pinnacle. The convolution of the 'static' dose distribution D0(x, y, z) and probability density function (PDF), denoted as P(x, y, z), was used to analyse the combined effect of repositioning error and internal organ motion. Organ motion leads to an enlarged beam penumbra. The amount of percentage mean dose deviation (PMDD) depends on the dose gradient and organ motion probability density function. Organ motion dose sensitivity was defined by the rate of change in PMDD with standard deviation of motion PDF and was found to increase with the maximum dose gradient in anterior, posterior, left and right directions. Due to common inferior and superior field borders of the field segments, the sharpest dose gradient will occur in the inferior or both superior and inferior penumbrae. Thus, prostate motion in the S-I direction produces the highest dose difference. The PMDD is within 2.5% when standard deviation is less than 5 mm, but the PMDD is over 2.5% in the inferior direction when standard deviation is higher than 5 mm in the inferior direction. Verification of prostate organ motion in the inferior directions is essential. The margin of the planning target volume (PTV) significantly impacts on the confidence of tumour control probability (TCP) and level of normal tissue complication probability (NTCP). Smaller margins help to reduce the dose to normal tissues, but may compromise the dose coverage of the PTV. Lower rectal NTCP can be achieved by either a smaller margin or a steeper dose gradient between PTV and rectum. With the same DVH control points, the rectum has lower complication in the seven-beam technique used in this study because of the steeper dose gradient between the target volume and rectum. The relationship between dose gradient and rectal complication can be used to evaluate IMRT treatment planning. The dose gradient analysis is a powerful tool to improve IMRT treatment plans and can be used for QA checking of treatment plans for prostate patients.

  20. Discretisation Schemes for Level Sets of Planar Gaussian Fields

    NASA Astrophysics Data System (ADS)

    Beliaev, D.; Muirhead, S.

    2018-01-01

    Smooth random Gaussian functions play an important role in mathematical physics, a main example being the random plane wave model conjectured by Berry to give a universal description of high-energy eigenfunctions of the Laplacian on generic compact manifolds. Our work is motivated by questions about the geometry of such random functions, in particular relating to the structure of their nodal and level sets. We study four discretisation schemes that extract information about level sets of planar Gaussian fields. Each scheme recovers information up to a different level of precision, and each requires a maximum mesh-size in order to be valid with high probability. The first two schemes are generalisations and enhancements of similar schemes that have appeared in the literature (Beffara and Gayet in Publ Math IHES, 2017. https://doi.org/10.1007/s10240-017-0093-0; Mischaikow and Wanner in Ann Appl Probab 17:980-1018, 2007); these give complete topological information about the level sets on either a local or global scale. As an application, we improve the results in Beffara and Gayet (2017) on Russo-Seymour-Welsh estimates for the nodal set of positively-correlated planar Gaussian fields. The third and fourth schemes are, to the best of our knowledge, completely new. The third scheme is specific to the nodal set of the random plane wave, and provides global topological information about the nodal set up to `visible ambiguities'. The fourth scheme gives a way to approximate the mean number of excursion domains of planar Gaussian fields.

  1. 6-[3-(p-Tolyl­sulfonyl­amino)­prop­yl]diquino­thia­zine1

    PubMed Central

    Jeleń, Małgorzata; Shkurenko, Aleksander; Suwińska, Kinga; Pluta, Krystian; Morak-Młodawska, Beata

    2013-01-01

    In the title mol­ecule {systematic name: N-[3-(diquino[3,2-b;2′,3′-e][1,4]thia­zin-6-yl)prop­yl]-4-methyl­benzene­sulfon­amide}, C28H24N4O2S2, the penta­cyclic system is relatively planar [maximum deviation from the mean plane = 0.242 (1) Å]. The dihedral angle between two quinoline ring systems is 8.23 (2)° and that between the two halves of the 1,4-thia­zine ring is 5.68 (3)°. The conformation adopted by the 3-(p-tolyl­sulfonyl­amino)­propyl substituent allows for the formation of an intra­molecular N—H⋯N hydrogen bond and places the benzene ring of this substituent above one of the quinoline fragments of the penta­cyclic system. In the crystal, mol­ecules are arranged via π–π stacking inter­actions into (0-11) layers [centroid–centroid distances = 3.981 (1)–4.320 (1) Å for the rings in the penta­cyclic system and 3.645 (1) Å for the tolyl benzene rings]. In addition, mol­ecules are involved in weak C—H⋯O, which connect the layers, and C—H⋯S hydrogen bonds. The title compound shows promising anti­cancer activity against renal cancer cell line UO-31. PMID:23795128

  2. A critical assessment of two types of personal UV dosimeters.

    PubMed

    Seckmeyer, Gunther; Klingebiel, Marcus; Riechelmann, Stefan; Lohse, Insa; McKenzie, Richard L; Liley, J Ben; Allen, Martin W; Siani, Anna-Maria; Casale, Giuseppe R

    2012-01-01

    Doses of erythemally weighted irradiances derived from polysulphone (PS) and electronic ultraviolet (EUV) dosimeters have been compared with measurements obtained using a reference spectroradiometer. PS dosimeters showed mean absolute deviations of 26% with a maximum deviation of 44%, the calibrated EUV dosimeters showed mean absolute deviations of 15% (maximum 33%) around noon during several test days in the northern hemisphere autumn. In the case of EUV dosimeters, measurements with various cut-off filters showed that part of the deviation from the CIE erythema action spectrum was due to a small, but significant sensitivity to visible radiation that varies between devices and which may be avoided by careful preselection. Usually the method of calibrating UV sensors by direct comparison to a reference instrument leads to reliable results. However, in some circumstances the quality of measurements made with simple sensors may be over-estimated. In the extreme case, a simple pyranometer can be used as a UV instrument, providing acceptable results for cloudless skies, but very poor results under cloudy conditions. It is concluded that while UV dosimeters are useful for their design purpose, namely to estimate personal UV exposures, they should not be regarded as an inexpensive replacement for meteorological grade instruments. © 2011 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2011 The American Society of Photobiology.

  3. In-Plane Correlations in a Polymer-Supported Lipid Membrane Measured by Off-Specular Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Jablin, Michael S.; Zhernenkov, Mikhail; Toperverg, Boris P.; Dubey, Manish; Smith, Hillary L.; Vidyasagar, Ajay; Toomey, Ryan; Hurd, Alan J.; Majewski, Jaroslaw

    2011-04-01

    Polymer-supported single lipid bilayers are models to study configurations of cell membranes. We used off-specular neutron scattering to quantify in-plane height-height correlations of interfacial fluctuations of such a lipid bilayer. As temperature decreased from 37°C to 25°C, the polymer swells and the polymer-supported lipid membrane deviates from its initially nearly planar structure. A correlation length characteristic of capillary waves changes from 30μm at 37°C to 11μm at 25°C, while the membrane bending rigidity remains roughly constant in this temperature range.

  4. Plateau borders of smectic liquid crystalline films

    NASA Astrophysics Data System (ADS)

    Trittel, Torsten; Aldred, Ruth; Stannarius, Ralf

    2011-06-01

    We investigate the geometrical properties of Plateau borders in an arrangement of connected smectic A free standing films. The geometry is chosen such that a circular Plateau border surrounds a planar smectic film and connects it with two smectic catenoids. It is demonstrated that, similar to soap films, the smectic film geometry can be described by a negative line tension of the circular contact region. Thus, the equilibrium angle between the films depends upon the liquid content in this region, and with increasing liquid content, deviations from Plateau's rule are observed. The experimental results are qualitatively comparable to soap films. A possible origin of slight quantitative differences is discussed.

  5. Benzil bis­(ketazine)

    PubMed Central

    Patra, Goutam Kumar; Mukherjee, Anindita; Ng, Seik Weng

    2009-01-01

    The title compound (systematic name: 1,1′,2,2′-tetra­phenyl-2,2′-azinodiethanone), C28H20N2O2, was obtained by the reaction of benzil monohydrazone with chromium(III) nitrate. The dibenzyl­idene hydrazine unit is nearly planar (r.m.s. deviation = 0.073 Å) and the two benzoyl units are oriented almost perpendicular to it [dihedral angle = 87.81 (2), 87.81 (2)°]. The mol­ecules are linked into chains along the c axis by C—H⋯O hydrogen bonds and the chains are cross-linked via C—H⋯π inter­actions involving the benzoyl phenyl rings. PMID:21583456

  6. Electronic properties of prismatic modifications of single-wall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Tomilin, O. B.; Muryumin, E. E.; Rodionova, E. V.; Ryskina, N. P.

    2018-01-01

    The article shows the possibility of target modifying the prismatic single-walled carbon nanotubes (SWCNTs) by regular chemisorption of fluorine atoms in the graphene surface. It is shown that the electronic properties of prismatic SWCNT modifications are determined by the interaction of π- and ρ(in-plane)-electron conjugation in the carbon-conjugated subsystems (tracks) formed in the faces. The contributions of π- and ρ(in-plane)-electron conjugation depend on the structural characteristics of the tracks. It was found that the minimum of degree deviation of the track from the plane of the prism face and the maximum of the track width ensure the maximum contribution of the π-electron conjugation, and the band gap of the prismatic modifications of the SWCNT tends to the band gap of the hydrocarbon analog of the carbon track. It is established that the maximum of degree deviation of the track from the plane of the prism face and the maximum of track width ensure the maximum contribution of the ρ(in-plane) electron interface, and the band gap of the prismatic modifications of the SWCNT tends to the band gap of the unmodified carbon nanotube. The calculation of the model systems has been carried out using an ab initio Hartree-Fock method in the 3-21G basis.

  7. Low Frequency Acoustic Intensity Propagation Modeling in Shallow Water Waveguides

    DTIC Science & Technology

    2016-06-01

    REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of...release; distribution is unlimited 12b. DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) Three popular numerical techniques are employed to...planar interfacial two-fluid transmission and reflection are used to benchmark the commercial software package COMSOL. Canonical Pekeris-type

  8. Matching Extension in Regular Graphs

    DTIC Science & Technology

    1989-01-01

    Plummer, Matching Theory, Ann. Discrete Math . 29, North- Holland, Amsterdam, 1986. [101 , The matching structure of graphs: some recent re- sults...maximums d’un graphe, These, Dr. troisieme cycle, Univ. Grenoble, 1978. [12 ] D. Naddef and W.R. Pulleyblank, Matching in regular graphs, Discrete Math . 34...1981, 283-291. [13 1 M.D. Plummer, On n-extendable graphs, Discrete Math . 31, 1980, 201-210. . [ 141 ,Matching extension in planar graphs IV

  9. A compact, low jitter, nanosecond rise time, high voltage pulse generator with variable amplitude.

    PubMed

    Mao, Jiubing; Wang, Xin; Tang, Dan; Lv, Huayi; Li, Chengxin; Shao, Yanhua; Qin, Lan

    2012-07-01

    In this paper, a compact, low jitter, nanosecond rise time, command triggered, high peak power, gas-switch pulse generator system is developed for high energy physics experiment. The main components of the system are a high voltage capacitor, the spark gap switch and R = 50 Ω load resistance built into a structure to obtain a fast high power pulse. The pulse drive unit, comprised of a vacuum planar triode and a stack of avalanche transistors, is command triggered by a single or multiple TTL (transistor-transistor logic) level pulses generated by a trigger pulse control unit implemented using the 555 timer circuit. The control unit also accepts user input TTL trigger signal. The vacuum planar triode in the pulse driving unit that close the first stage switches is applied to drive the spark gap reducing jitter. By adjusting the charge voltage of a high voltage capacitor charging power supply, the pulse amplitude varies from 5 kV to 10 kV, with a rise time of <3 ns and the maximum peak current up to 200 A (into 50 Ω). The jitter of the pulse generator system is less than 1 ns. The maximum pulse repetition rate is set at 10 Hz that limited only by the gas-switch and available capacitor recovery time.

  10. Evaluation of the geomorphometric results and residual values of a robust plane fitting method applied to different DTMs of various scales and accuracy

    NASA Astrophysics Data System (ADS)

    Koma, Zsófia; Székely, Balázs; Dorninger, Peter; Kovács, Gábor

    2013-04-01

    Due to the need for quantitative analysis of various geomorphological landforms, the importance of fast and effective automatic processing of the different kind of digital terrain models (DTMs) is increasing. The robust plane fitting (segmentation) method, developed at the Institute of Photogrammetry and Remote Sensing at Vienna University of Technology, allows the processing of large 3D point clouds (containing millions of points), performs automatic detection of the planar elements of the surface via parameter estimation, and provides a considerable data reduction for the modeled area. Its geoscientific application allows the modeling of different landforms with the fitted planes as planar facets. In our study we aim to analyze the accuracy of the resulting set of fitted planes in terms of accuracy, model reliability and dependence on the input parameters. To this end we used DTMs of different scales and accuracy: (1) artificially generated 3D point cloud model with different magnitudes of error; (2) LiDAR data with 0.1 m error; (3) SRTM (Shuttle Radar Topography Mission) DTM database with 5 m accuracy; (4) DTM data from HRSC (High Resolution Stereo Camera) of the planet Mars with 10 m error. The analysis of the simulated 3D point cloud with normally distributed errors comprised different kinds of statistical tests (for example Chi-square and Kolmogorov-Smirnov tests) applied on the residual values and evaluation of dependence of the residual values on the input parameters. These tests have been repeated on the real data supplemented with the categorization of the segmentation result depending on the input parameters, model reliability and the geomorphological meaning of the fitted planes. The simulation results show that for the artificially generated data with normally distributed errors the null hypothesis can be accepted based on the residual value distribution being also normal, but in case of the test on the real data the residual value distribution is often mixed or unknown. The residual values are found to be dependent on two input parameters (standard deviation and maximum point-plane distance both defining distance thresholds for assigning points to a segment) mainly and the curvature of the surface affected mostly the distributions. The results of the analysis helped to decide which parameter set is the best for further modelling and provides the highest accuracy. With these results in mind the success of quasi-automatic modelling of the planar (for example plateau-like) features became more successful and often provided more accuracy. These studies were carried out partly in the framework of TMIS.ascrea project (Nr. 2001978) financed by the Austrian Research Promotion Agency (FFG); the contribution of ZsK was partly funded by Campus Hungary Internship TÁMOP-424B1.

  11. The mare: a 1000-pound guinea pig for study of the ovulatory follicular wave in women.

    PubMed

    Ginther, O J

    2012-03-15

    The mare is a good comparative model for study of ovarian follicles in women, owing to striking similarities in follicular waves and the mechanism for selection of a dominant follicle. Commonality in follicle dynamics between mares and women include: (1) a ratio of 2.2:1 (mare:woman) in diameter of the largest follicle at wave emergence when the wave-stimulating FSH surge reaches maximum, in diameter increase of the two largest follicles between emergence and the beginning of deviation between the future dominant and subordinate follicles, in diameter of each of the two largest follicles at the beginning of deviation, and in maximum diameter of the preovulatory follicle; (2) emergence of the future ovulatory follicle before the largest subordinate follicle; (3) a mean interval of 1 day between emergence of individual follicles of the wave; (4) percentage increase in diameter of follicles for the 3 days before deviation; (5) deviation 3 or 4 days after emergence; (6) 25% incidence of a major anovulatory follicular wave emerging before the ovulatory wave; (7) 40% incidence of a predeviation follicle preceding the ovulatory wave; (8) small but significant increase in estradiol and LH before deviation; (9) cooperative roles of FSH and insulin-like growth factor 1 and its proteases in the deviation process; (10) age-related effects on the follicles and oocytes; (11) approximate 37-hour interval between administration of hCG and ovulation; and (12) similar gray-scale and color-Doppler ultrasound changes in the preovulatory follicle. In conclusion, the mare may be the premier nonprimate model for study of follicle dynamics in women. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. How much does geometry of seismic sources matter in tsunami modeling? A sensitivity analysis for the Calabrian subduction interface

    NASA Astrophysics Data System (ADS)

    Tonini, R.; Maesano, F. E.; Tiberti, M. M.; Romano, F.; Scala, A.; Lorito, S.; Volpe, M.; Basili, R.

    2017-12-01

    The geometry of seismogenic sources could be one of the most important factors concurring to control the generation and the propagation of earthquake-generated tsunamis and their effects on the coasts. Since the majority of potentially tsunamigenic earthquakes occur offshore, the corresponding faults are generally poorly constrained and, consequently, their geometry is often oversimplified as a planar fault. The rupture area of mega-thrust earthquakes in subduction zones, where most of the greatest tsunamis have occurred, extends for tens to hundreds of kilometers both down dip and along strike, and generally deviates from the planar geometry. Therefore, the larger the earthquake size is, the weaker the planar fault assumption become. In this work, we present a sensitivity analysis aimed to explore the effects on modeled tsunamis generated by seismic sources with different degrees of geometric complexities. We focused on the Calabrian subduction zone, located in the Mediterranean Sea, which is characterized by the convergence between the African and European plates, with rates of up to 5 mm/yr. This subduction zone has been considered to have generated some past large earthquakes and tsunamis, despite it shows only in-slab significant seismic activity below 40 km depth and no relevant seismicity in the shallower portion of the interface. Our analysis is performed by defining and modeling an exhaustive set of tsunami scenarios located in the Calabrian subduction and using different models of the subduction interface with increasing geometrical complexity, from a planar surface to a highly detailed 3D surface. The latter was obtained from the interpretation of a dense network of seismic reflection profiles coupled with the analysis of the seismicity distribution. The more relevant effects due to the inclusion of 3D complexities in the seismic source geometry are finally highlighted in terms of the resulting tsunami impact.

  13. Repetitive flash x-ray generator having a high-durability diode driven by a two-cable-type line pulser

    NASA Astrophysics Data System (ADS)

    Shikoda, A.; Sato, E.; Sagae, M.; Oizumi, T.; Tamakawa, Y.; Yanagisawa, T.

    1994-04-01

    The fundamental studies of a repetitive soft flash x-ray generator having a high-durability diode for high-speed radiography in biomedical and technological fields are described. This generator consisted of the following essential components: a constant negative high-voltage power supply, a line-type high-voltage pulser with two 10 m coaxial-cable condensers, each with a capacity of 1.0 nF, a thyratron pulser as a trigger device, an oil-diffusion pump, and a flash x-ray tube. The x-ray tube was of a diode type which was evacuated by an oil-diffusion pump with a pressure of approximately 6.7×10-3 Pa and was composed of a planar tungsten anode, a planar ferrite cathode, and a polymethylmethacrylate tube body. The space between the anode and cathode electrodes (AC space) could be regulated from the outside of the tube. The two cable condensers were charged from -40 to -60 kV by a power supply, and the output voltage was about -1.5 times the charged voltage. Both the first peak voltage and current increased according to increases in the charged voltage, and the maximum values of the voltage and current were about 90 kV and 0.72 kA, respectively. The pulse widths had values of less than 100 ns, and the maximum x-ray intensity was approximately 1.1 μC/kg at 0.5 m per pulse. The repetition rate was less than 54 Hz, and the maximum focal spot size was about 2.0×2.5 mm.

  14. Thermal management improvement of an air-cooled high-power lithium-ion battery by embedding metal foam

    NASA Astrophysics Data System (ADS)

    Mohammadian, Shahabeddin K.; Rassoulinejad-Mousavi, Seyed Moein; Zhang, Yuwen

    2015-11-01

    Effect of embedding aluminum porous metal foam inside the flow channels of an air-cooled Li-ion battery module was studied to improve its thermal management. Four different cases of metal foam insert were examined using three-dimensional transient numerical simulations. The effects of permeability and porosity of the porous medium as well as state of charge were investigated on the standard deviation of the temperature field and maximum temperature inside the battery in all four cases. Compared to the case of no porous insert, embedding aluminum metal foam in the air flow channel significantly improved the thermal management of Li-ion battery cell. The results also indicated that, decreasing the porosity of the porous structure decreases both standard deviation of the temperature field and maximum temperature inside the battery. Moreover, increasing the permeability of the metal foam drops the maximum temperature inside the battery while decreasing this property leads to improving the temperature uniformity. Our results suggested that, among the all studied cases, desirable temperature uniformity and maximum temperature were achieved when two-third and the entire air flow channel is filled with aluminum metal foam, respectively.

  15. Influence of a MoOx interlayer on the open-circuit voltage in organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Zou, Yunlong; Holmes, Russell J.

    2013-07-01

    Metal-oxides have been used as interlayers at the anode-organic interface in organic photovoltaic cells (OPVs) to increase the open-circuit voltage (VOC). We examine the role of MoOx in determining the maximum VOC in a planar heterojunction OPV and find that the interlayer strongly affects the temperature dependence of VOC. Boron subphthalocyanine chloride (SubPc)-C60 OPVs that contain no interlayer show a maximum VOC of 1.2 V at low temperature, while those with MoOx show no saturation, reaching VOC > 1.4 V. We propose that the MoOx-SubPc interface forms a Schottky junction that provides an additional contribution to VOC at low temperature.

  16. Cohesive Energy-Lattice Constant and Bulk Modulus-Lattice Constant Relationships: Alkali Halides, Ag Halides, Tl Halides

    NASA Technical Reports Server (NTRS)

    Schlosser, Herbert

    1992-01-01

    In this note we present two expressions relating the cohesive energy, E(sub coh), and the zero pressure isothermal bulk modulus, B(sub 0), of the alkali halides. Ag halides and TI halides, with the nearest neighbor distances, d(sub nn). First, we show that the product E(sub coh)d(sub 0) within families of halide crystals with common crystal structure is to a good approximation constant, with maximum rms deviation of plus or minus 2%. Secondly, we demonstrate that within families of halide crystals with a common cation and common crystal structure the product B(sub 0)d(sup 3.5)(sub nn) is a good approximation constant, with maximum rms deviation of plus or minus 1.36%.

  17. Don’t get caught out! A rare case of a calcified urachal remnant mimicking a bladder calculus

    PubMed Central

    Rodrigues, Jonathan Carl Luis; Gandhi, Sanjay

    2013-01-01

    Computer tomography through the kidneys, ureters and bladder (CT KUB) is the mainstay investigation of suspected renal tract calculi. However, several pathologies other than renal tract calculi can cause apparent urinary bladder calcification. We describe the case of a 45 year old man who presented with left sided renal colic. Prone CT KUB performed on admission revealed a calcified urachal remnant mimicking a urinary bladder calculus in the dependent portion of the urinary bladder, confirmed by reviewing the multi-planar reformatted images. This is the first reported case in the literature of this phenomenon. We discuss the importance of using multi-planar reformatted images (MPR) and maximum intensity projection images (MIP), as well as careful review of previous imaging, in making the correct diagnosis. We also discuss the differential diagnoses that should be considered when presented with urinary bladder calcification. PMID:23705044

  18. Axial Structure of High-Vacuum Planar Magnetron Discharge Space

    NASA Astrophysics Data System (ADS)

    Miura, Tsutomu

    1999-09-01

    The spatial structure of high-vacuum planar magnetron discharge is theoretically investigated taking into account the electron confinement. The boundary xes of the electron confinement region depends on BA with Ea/BA as the parameter (BA: the magnetic flux density at the anode, Ea: the average electric field strength). The location at which the frequency of ionization events takes the maximum is expressed as CnNxiep (CnN: a factor related to the electron density distribution, xiep: the distance of the location from the cathode at which the ionization is most efficient). With increasing Ea and BA at a fixed Ea/BA, the density of the confined energetic electrons increases. With increasing Ea, the region where ionization is efficient shifts to the cathode side to give a high efficiency of the magnet. The boundary xes as determined by the probe method agreed with the theoretical prediction.

  19. Side chain engineering of poly-thiophene and its impact on crystalline silicon based hybrid solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zellmeier, M.; Rappich, J.; Nickel, N. H.

    The influence of ether groups in the side chain of spin coated regioregular polythiophene derivatives on the polymer layer formation and the hybrid solar cell properties was investigated using electrical, optical, and X-ray diffraction experiments. The polymer layers are of high crystallinity but the polymer with 3 ether groups in the side chain (P3TOT) did not show any vibrational fine structure in the UV-Vis spectrum. The presence of ether groups in the side chains leads to better adhesion resulting in thinner and more homogeneous polymer layers. This, in turn, enhances the electronic properties of the planar c-Si/poly-thiophene hybrid solar cell.more » We find that the power conversion efficiency increases with the number of ether groups in the side chains, and a maximum power conversion efficiency of η = 9.6% is achieved even in simple planar structures.« less

  20. Effect of Steel Galvanization on the Microstructure and Mechanical Performances of Planar Magnetic Pulse Welds of Aluminum and Steel

    NASA Astrophysics Data System (ADS)

    Avettand-Fènoël, M.-N.; Khalil, C.; Taillard, R.; Racineux, G.

    2018-07-01

    For the first time, planar joints between pure aluminum and galvanized or uncoated DP450 steel joints have been developed via magnetic pulse welding. Both present a wavy interface. The microstructure of the interfacial zone differs according to the joint. With uncoated steel, the interface is composed of discrete 2.5- µm-thick FeAl3 intermetallic compounds and Fe penetration lamellae, whereas the interface of the pure Al-galvanized steel joint is bilayered and composed of a 10-nm-thick (Al)Zn solid solution and a few micrometers thick aggregate of Al- and Zn-based grains, arranged from the Al side to the Zn coating. Even if the nature of the interfacial zone differs with or without the steel coating, both welds present rather similar maximum tensile forces and ductility in shear lap testing.

  1. The Nike KrF laser facility: Performance and initial target experiments

    NASA Astrophysics Data System (ADS)

    Obenschain, S. P.; Bodner, S. E.; Colombant, D.; Gerber, K.; Lehmberg, R. H.; McLean, E. A.; Mostovych, A. N.; Pronko, M. S.; Pawley, C. J.; Schmitt, A. J.; Sethian, J. D.; Serlin, V.; Stamper, J. A.; Sullivan, C. A.; Dahlburg, J. P.; Gardner, J. H.; Chan, Y.; Deniz, A. V.; Hardgrove, J.; Lehecka, T.; Klapisch, M.

    1996-05-01

    Krypton-fluoride (KrF) lasers are of interest to laser fusion because they have both the large bandwidth capability (≳THz) desired for rapid beam smoothing and the short laser wavelength (1/4 μm) needed for good laser-target coupling. Nike is a recently completed 56-beam KrF laser and target facility at the Naval Research Laboratory. Because of its bandwidth of 1 THz FWHM (full width at half-maximum), Nike produces more uniform focal distributions than any other high-energy ultraviolet laser. Nike was designed to study the hydrodynamic instability of ablatively accelerated planar targets. First results show that Nike has spatially uniform ablation pressures (Δp/p<2%). Targets have been accelerated for distances sufficient to study hydrodynamic instability while maintaining good planarity. In this review we present the performance of the Nike laser in producing uniform illumination, and its performance in correspondingly uniform acceleration of targets.

  2. Planar waveguide concentrator used with a seasonal tracker.

    PubMed

    Bouchard, Sébastien; Thibault, Simon

    2012-10-01

    Solar concentrators offer good promise for reducing the cost of solar power. Planar waveguides equipped with a microlens slab have already been proposed as an excellent approach to produce medium to high concentration levels. Instead, we suggest the use of a cylindrical microlens array to get useful concentration without tracking during the day. To use only a seasonal tracking system and get the highest possible concentration, cylindrical microlenses are placed in the east-west orientation. Our new design has an acceptance angle in the north-south direction of ±9° and ±54° in the east-west axis. Simulation of our optimized system achieves a 4.6× average concentration level from 8:30 to 16:30 with a maximum of 8.1× and 80% optical efficiency. The low-cost advantage of waveguide-based solar concentrators could support their use in roof-mounted solar panels and eliminate the need for an expensive and heavy active tracker.

  3. A 5 meter range non-planar CMUT array for Automotive Collision Avoidance

    NASA Astrophysics Data System (ADS)

    Hernandez Aguirre, Jonathan

    A discretized hyperbolic paraboloid geometry capacitive micromachined ultrasonic transducer (CMUT) array has been designed and fabricated for automotive collision avoidance. The array is designed to operate at 40 kHz, beamwidth of 40° with a maximum sidelobe intensity of -10dB. An SOI based fabrication technology has been used for the 5x5 array with 5 sensing surfaces along each x and y axis and 7 elevation levels. An assembly and packaging technique has been developed to realize the non-planar geometry in a PGA-68 package. A highly accurate mathematical method has been presented for analytical characterization of capacitive micromachined ultrasonic transducers (CMUTs) built with square diaphragms. The method uses a new two-dimensional polynomial function to more accurately predict the deflection curve of a multilayer square diaphragm subject to both mechanical and electrostatic pressure and a new capacitance model that takes into account the contribution of the fringing field capacitances.

  4. A planar nano-positioner driven by shear piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Dong, W.; Li, H.; Du, Z.

    2016-08-01

    A planar nano-positioner driven by the shear piezoelectric actuators is proposed in this paper based on inertial sliding theory. The performance of the nano-positioner actuated by different driving signals is analyzed and discussed, e.g. the resolution and the average velocity which depend on the frequency, the amplitude and the wave form of the driving curves. Based on the proposed design, a prototype system of the nano-positioner is developed by using a capacitive sensor as the measurement device. The experiment results show that the proposed nano-positioner is capable of outputting two-dimensional motions within an area of 10 mm × 10 mm at a maximum speed of 0.25 mm/s. The corresponding resolution can be as small as 21 nm. The methodology outlined in this paper can be employed and extended to shear piezoelectric actuators involved in high precision positioning systems.

  5. Strain induced plasmon tuning in planar square-shaped aluminum nanoparticles array

    NASA Astrophysics Data System (ADS)

    Mokkath, Junais Habeeb

    2018-06-01

    Metal nanoparticle aggregate is an exciting platform for manipulating light-matter interactions at the nanoscale, thanks to the optically driven free electrons couple electrically across the inter-particle gap region. We use time dependent density functional theory calculations to investigate the optical response modulations in planar square-shaped aluminum nanoparticles array via morphology deformation (varying the inter-particle gap distance in the range of 2-20 Å) separately along one and two directions. We report the surprising observation that irrespective of the different morphology deformations, there exists a unique inter-particle gap distance of 12 Å for which, a maximum optical field enhancement can be achieved. We remark that plasmonic interaction between metal nanoparticles in an aggregate is controlled to a large extent by the size of the inter-particle gap distance. We believe that our quantum mechanical calculations will inspire and contribute to the design, control, and exploitation of aluminum based plasmonic devices.

  6. Effect of Steel Galvanization on the Microstructure and Mechanical Performances of Planar Magnetic Pulse Welds of Aluminum and Steel

    NASA Astrophysics Data System (ADS)

    Avettand-Fènoël, M.-N.; Khalil, C.; Taillard, R.; Racineux, G.

    2018-05-01

    For the first time, planar joints between pure aluminum and galvanized or uncoated DP450 steel joints have been developed via magnetic pulse welding. Both present a wavy interface. The microstructure of the interfacial zone differs according to the joint. With uncoated steel, the interface is composed of discrete 2.5-µm-thick FeAl3 intermetallic compounds and Fe penetration lamellae, whereas the interface of the pure Al-galvanized steel joint is bilayered and composed of a 10-nm-thick (Al)Zn solid solution and a few micrometers thick aggregate of Al- and Zn-based grains, arranged from the Al side to the Zn coating. Even if the nature of the interfacial zone differs with or without the steel coating, both welds present rather similar maximum tensile forces and ductility in shear lap testing.

  7. The crystal structures of two isomers of 5-(phenyl-iso-thia-zol-yl)-1,3,4-oxa-thia-zol-2-one.

    PubMed

    Zhu, Shuguang; Schriver, Melbourne J; Hendsbee, Arthur D; Masuda, Jason D

    2017-11-01

    The syntheses and crystal structures of two isomers of phenyl iso-thia-zolyl oxa-thia-zolone, C 11 H 6 N 2 O 2 S 2 , are described [systematic names: 5-(3-phenyl-iso-thia-zol-5-yl)-1,3,4-oxa-thia-zol-2-one, (I), and 5-(3-phenyl-iso-thia-zol-4-yl)-1,3,4-oxa-thia-zol-2-one, (II)]. There are two almost planar (r.m.s. deviations = 0.032 and 0.063 Å) mol-ecules of isomer (I) in the asymmetric unit, which form centrosymmetric tetra-mers linked by strong S⋯N [3.072 (2) Å] and S⋯O contacts [3.089 (1) Å]. The tetra-mers are π-stacked parallel to the a -axis direction. The single mol-ecule in the asymmetric unit of isomer (II) is twisted into a non-planar conformation by steric repulsion [dihedral angles between the central iso-thia-zolyl ring and the pendant oxa-thia-zolone and phenyl rings are 13.27 (6) and 61.18 (7)°, respectively], which disrupts the π-conjugation between the heteroaromatic iso-thia-zoloyl ring and the non-aromatic oxa-thia-zolone heterocycle. In the crystal of isomer (II), the strong S⋯O [3.020 (1) Å] and S⋯C contacts [3.299 (2) Å] and the non-planar structure of the mol-ecule lead to a form of π-stacking not observed in isomer (I) or other oxa-thia-zolone derivatives.

  8. A Uranyl Peroxide Dimer in the Gas Phase

    DOE PAGES

    Dau, Phuong D.; Dau, Phuong V.; Rao, Linfeng; ...

    2017-03-14

    For this study, the gas-phase uranyl peroxide dimer, [(UO 2) 2(O2)(L) 2] 2+ where L = 2,2'-trifluoroethylazanediyl)bis(N,N'-dimethylacetamide), was synthesized by electrospray ionization of a solution of UO 2 2+ and L. Collision-induced dissociation of this dimer resulted in endothermic O atom elimination to give [(UO 2) 2(O)(L) 2] 2+, which was found to spontaneously react with water via exothermic hydrolytic chemisorption to yield [(UO 2) 2(OH) 2(L) 2] 2+. Density functional theory computations of the energies for the gas-phase reactions are in accord with observations. The structures of the observed uranyl dimer were computed, with that of the peroxide ofmore » particular interest, as a basis to evaluate the formation of condensed phase uranyl peroxides with bent structures. The computed dihedral angle in [(UO 2) 2(O 2)(L) 2] 2+ is 145°, indicating a substantial deviation from the planar structure with a dihedral angle of 180°. Energies needed to induce bending in the most elementary gas-phase uranyl peroxide complex, [(UO 2) 2(O 2)] 2+, were computed. It was found that bending from the lowest-energy planar structure to dihedral angles up to 140° required energies of <10 kJ/mol. The gas-phase results demonstrate the inherent stability of the uranyl peroxide moiety and support the notion that the uranyl-peroxide-uranyl structural unit is intrinsically planar, with only minor energy perturbations needed to form the bent structures found in studtite and uranyl peroxide nanostructures.« less

  9. Synthesis, X-ray crystallography, and computational analysis of 1-azafenestranes.

    PubMed

    Denmark, Scott E; Montgomery, Justin I; Kramps, Laurenz A

    2006-09-06

    The tandem [4+2]/[3+2] cycloaddition of nitroalkenes has been employed in the synthesis of 1-azafenestranes, molecules of theoretical interest because of planarizing distortion of their central carbon atoms. The synthesis of c,c,c,c-[5.5.5.5]-1-azafenestrane was completed in good yield from a substituted nitrocyclopentene, and its borane adduct was analyzed through X-ray crystallography, which showed a moderate distortion from ideal tetrahedral geometry. The syntheses of two members of the [4.5.5.5] family of 1-azafenestranes are also reported, including one with a trans fusion at a bicyclic ring junction which brings about considerable planarization of one of the central angles (16.8 degrees deviation from tetrahedral geometry). While investigating the [4.5.5.5]-1-azafenestranes, a novel dyotropic rearrangement that converts nitroso acetals into tetracyclic aminals was discovered. Through conformational analysis, a means to prevent this molecular reorganization was formulated and realized experimentally with the use of a bulky vinyl ether in the key [4+2] cycloaddition reaction. Finally, DFT calculations on relative strain energy for the 1-azafenestranes, as well as their predicted central angles, are disclosed.

  10. Hair cell tufts and afferent innervation of the bullfrog crista ampullaris

    NASA Technical Reports Server (NTRS)

    Myers, Steven F.; Lewis, Edwin R.

    1990-01-01

    Within the bullfrog semicircular canal crista, hair cell tuft types were defined and mapped with the aid of scanning electron microscopy. Dye-filled planar afferent axons had mean distal axonal diameters of 1.6-4.9 microns, highly branched arbors, and contacted 11-24 hair cells. Dye-filled isthmus afferent axons had mean distal axonal diameters of 1.8-7.9 microns, with either small or large field arbors contacting 4-9 or 25-31 hair cells. The estimated mean number of contacts per innervated hair cell was 2.2 for planar and 1.3 for isthmus afferent neurons. Data on evoked afferent responses were available only for isthmus units that were observed to respond to our microrotational stimuli. Of 21 such afferent neurons, eight were successfully dye-filled. Within this sample, high-gain units had large field arbors and lower-gain units had small field arbors. The sensitivity of each afferent neuron was analyzed in terms of noise equivalent input (NEI), the stimulus amplitude for which the afferent response amplitude is just equivalent to the rms deviation of the instantaneous spike rate. NEI for isthmus units varied from 0.63 to 8.2 deg/s; the mean was 3.2 deg/s.

  11. Planar solid-phase microextraction-ion mobility spectrometry: a diethoxydiphenylsilane-based coating for the detection of explosives and explosive taggants.

    PubMed

    Mattarozzi, M; Bianchi, F; Bisceglie, F; Careri, M; Mangia, A; Mori, G; Gregori, A

    2011-03-01

    A novel diethoxydiphenylsilane-based coating for planar solid-phase microextraction was developed using sol-gel technology and used for ion mobility spectrometric detection of the explosives 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and of the explosive taggant ethylene glycol dinitrate. The trap was characterized in terms of coating thickness, morphology, inter-batch repeatability, and extraction efficiency. An average thickness of 143 ± 13 μm with a uniform distribution of the coating was obtained. Good performances of the developed procedure in terms of both intra-batch and inter-batch repeatability with relative standard deviations <7% were obtained. Experimental design and desirability function were used to find the optimal conditions for simultaneous headspace extraction of the investigated compounds: the optimal values were found in correspondence of a time and a temperature of extraction of 45 min and 40 °C, respectively. Detection and quantitation limits in low nanogram levels were achieved proving the superior extraction capability of the developed coating, obtaining ion mobility spectrometric responses at least two times higher than those achieved using commercial teflon and paper traps.

  12. GaAs digital dynamic IC's for applications up to 10 GHz

    NASA Astrophysics Data System (ADS)

    Rocchi, M.; Gabillard, B.

    1983-06-01

    To evaluate the potentiality of GaAs MESFET's as transmitting gates, dynamic TT-bar flip-flops have been fabricated using a self-aligned planar process. The maximum operating frequency is 10.2 GHz, which is the best speed performance ever reported for a digital circuit. The performance of the transmitting gates within the circuits are discussed in detail. Speed improvement and topological simplification of fully static LSI subsystems are investigated.

  13. ALTERED PHALANX FORCE DIRECTION DURING POWER GRIP FOLLOWING STROKE

    PubMed Central

    Enders, Leah R.

    2015-01-01

    Many stroke survivors with severe impairment can grasp only with a power grip. Yet, little knowledge is available on altered power grip after stroke, other than reduced power grip strength. This study characterized stroke survivors’ static power grip during 100% and 50% maximum grip. Each phalanx force’s angular deviation from the normal direction and its contribution to total normal force was compared for 11 stroke survivors and 11 age-matched controls. Muscle activities and skin coefficient of friction (COF) were additionally compared for another 20 stroke and 13 age-matched control subjects. The main finding was that stroke survivors gripped with a 34% greater phalanx force angular deviation of 19±2° compared to controls of 14±1° (p<.05). Stroke survivors’ phalanx force angular deviation was closer to the 23° threshold of slippage between the phalanx and grip surface, which may explain increased likelihood of object dropping in stroke survivors. In addition, this altered phalanx force direction decreases normal grip force by tilting the force vector, indicating a partial role of phalanx force angular deviation in reduced grip strength post stroke. Greater phalanx force angular deviation may biomechanically result from more severe underactivation of stroke survivors’ first dorsal interosseous (FDI) and extensor digitorum communis (EDC) muscles compared to their flexor digitorum superficialis (FDS) or somatosensory deficit. While stroke survivors’ maximum power grip strength was approximately half of the controls’, the distribution of their remaining strength over the fingers and phalanges did not differ, indicating evenly distributed grip force reduction over the entire hand. PMID:25795079

  14. SU-E-T-133: Dosimetric Impact of Scan Orientation Relative to Target Motion During Spot Scanning Proton Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoker, J; Summers, P; Li, X

    2014-06-01

    Purpose: This study seeks to evaluate the dosimetric effects of intra-fraction motion during spot scanning proton beam therapy as a function of beam-scan orientation and target motion amplitude. Method: Multiple 4DCT scans were collected of a dynamic anthropomorphic phantom mimicking respiration amplitudes of 0 (static), 0.5, 1.0, and 1.5 cm. A spot-scanning treatment plan was developed on the maximum intensity projection image set, using an inverse-planning approach. Dynamic phantom motion was continuous throughout treatment plan delivery.The target nodule was designed to accommodate film and thermoluminescent dosimeters (TLD). Film and TLDs were uniquely labeled by location within the target. The phantommore » was localized on the treatment table using the clinically available orthogonal kV on-board imaging device. Film inserts provided data for dose uniformity; TLDs provided a 3% precision estimate of absolute dose. An inhouse script was developed to modify the delivery order of the beam spots, to orient the scanning direction parallel or perpendicular to target motion.TLD detector characterization and analysis was performed by the Imaging and Radiation Oncology Core group (IROC)-Houston. Film inserts, exhibiting a spatial resolution of 1mm, were analyzed to determine dose homogeneity within the radiation target. Results: Parallel scanning and target motions exhibited reduced target dose heterogeneity, relative to perpendicular scanning orientation. The average percent deviation in absolute dose for the motion deliveries relative to the static delivery was 4.9±1.1% for parallel scanning, and 11.7±3.5% (p<<0.05) for perpendicularly oriented scanning. Individual delivery dose deviations were not necessarily correlated to amplitude of motion for either scan orientation. Conclusions: Results demonstrate a quantifiable difference in dose heterogeneity as a function of scan orientation, more so than target amplitude. Comparison to the analyzed planar dose of a single field hint that multiple-field delivery alters intra-fraction beam-target motion synchronization and may mitigate heterogeneity, though further study is warranted.« less

  15. The response of ionization chambers to relativistic heavy nuclei

    NASA Technical Reports Server (NTRS)

    Newport, B. J.; Stone, E. C.; Waddington, C. J.; Binns, W. R.; Fixsen, D. J.; Garrard, T. L.; Grimm, G.; Israel, M. H.; Klarmann, J.

    1985-01-01

    The LBL Bevalac for the Heavy Nuclei Experiment on HEAO-3, compared the response of a set of laboratory ionization chambers to beams of 26Fe, 36Kr, 54Xe, 67 Ho, and 79Au nuclei at maximum energies ranging from 1666 MeV/amu for Fe to 1049 MeV/amu for Au. The response of these chambers shows a significant deviation from the expected energy dependence, but only a slight deviation from Z sq scaling.

  16. Toward maximum transmittance into absorption layers in solar cells: investigation of lossy-film-induced mismatches between reflectance and transmittance extrema.

    PubMed

    Chang, Yin-Jung; Lai, Chi-Sheng

    2013-09-01

    The mismatch in film thickness and incident angle between reflectance and transmittance extrema due to the presence of lossy film(s) is investigated toward the maximum transmittance design in the active region of solar cells. Using a planar air/lossy film/silicon double-interface geometry illustrates important and quite opposite mismatch behaviors associated with TE and TM waves. In a typical thin-film CIGS solar cell, mismatches contributed by TM waves in general dominate. The angular mismatch is at least 10° in about 37%-53% of the spectrum, depending on the thickness combination of all lossy interlayers. The largest thickness mismatch of a specific interlayer generally increases with the thickness of the layer itself. Antireflection coating designs for solar cells should therefore be optimized in terms of the maximum transmittance into the active region, even if the corresponding reflectance is not at its minimum.

  17. Large-stroke convex micromirror actuated by electromagnetic force for optical power control.

    PubMed

    Hossain, Md Mahabub; Bin, Wu; Kong, Seong Ho

    2015-11-02

    This paper contributes a novel design and the corresponding fabrication process to research on the unique topic of micro-electro-mechanical systems (MEMS) deformable convex micromirror used for focusing-power control. In this design, the shape of a thin planar metal-coated polymer-membrane mirror is controlled electromagnetically by using the repulsive force between two magnets, a permanent magnet and a coil solenoid, installed in an actuator system. The 5 mm effective aperture of a large-stroke micromirror showed a maximum center displacement of 30.08 µm, which enabled control of optical power across a wide range that could extend up to around 20 diopters. Specifically, utilizing the maximum optical power of 20 diopter by applying a maximum controlling current of 0.8 A yielded consumption of at most 2 W of electrical power. It was also demonstrated that this micromirror could easily be integrated in miniature tunable optical imaging systems.

  18. Crystal structure of triaquamaleatostrontium(II) monohydrate, [Sr(C{sub 4}H{sub 2}O{sub 4})(OH{sub 2}{sub 3}) {center_dot}] H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diaz de Delgado, G.; Parra, P.P.; Briceno, A.

    1995-05-01

    (Sr(C{sub 4}H{sub 2}O{sub 4})(OH{sub 2}{sub 3}) {center_dot} H{sub 2}O is monoclinic, P2{sub 1}/n, with a = 11.476(2), b = 7.027(1), c = 12.344(2) {angstrom}, {beta} = 115.74(3){degrees}, V= 896.67 {angstrom}{sup 3}, Z = 4. The Sr atom is surrounded by nine oxygen atoms which come from four different maleate anions and three water molecules. The Sr-O distances range from 2.546(2) to 2.808(2) {angstrom}. The C-O distances are equal within the standard deviation 1.263(3) to 1.258(3) {angstrom}). In the maleate anion, the planes that contain the carboxylate groups form an angle of 74.44(9){degrees}. Both carboxylate groups deviate significantly from planarity. Themore » different coordination modes of the carboxylate group and the extensive hydrogen bonding present are responsible for the polymeric nature of the structure.« less

  19. The implication of non-cyclic intrafractional longitudinal motion in SBRT by TomoTherapy

    NASA Astrophysics Data System (ADS)

    Yang, Wensha; Van Ausdal, Ray; Read, Paul; Larner, James; Benedict, Stan; Sheng, Ke

    2009-05-01

    To determine the dosimetric impact of non-cyclic longitudinal intrafractional motion, TomoTherapy plans with different field sizes were interrupted during a phantom delivery, and a displacement between -5 mm and 5 mm was induced prior to the delivery of the completion procedure. The planar dose was measured by film and a cylindrical phantom, and under-dosed or over-dosed volume was observed for either positive or negative displacement. For a 2.5 cm field, there was a 4% deviation for every mm of motion and for a 1 cm field, the deviation was 8% per mm. The dimension of the under/over-dosed area was independent of the motion but dependent on the field size. The results have significant implication in small-field high-dose treatments (i.e. stereotactic body radiation therapy (SBRT)) that deliver doses in only a few fractions. Our studies demonstrate that a small longitudinal motion may cause a dose error that is difficult to compensate; however, dividing a SBRT fraction into smaller passes is helpful to reduce such adverse effects.

  20. Stagnation point properties for non-continuum gaseous jet impinging at a flat plate surface from a planar exit

    NASA Astrophysics Data System (ADS)

    Cai, Chunpei

    2013-10-01

    In this paper, we investigate highly rarefied gaseous jet flows out of a planar exit and impinging at a normally set flat plate. Especially, we concentrate on the plate center stagnation point pressure and heat flux coefficients. For a specular reflective plate, the stagnation point pressure coefficient can be represented using two non-dimensional factors: the characteristic gas exit speed ratio S0 and the geometry ratio of H/L, where H is the planar exit semi-height and L is the center-to-center distance from the exit to the plate. For a diffuse reflective plate, the stagnation point pressure and heat flux coefficients involve an extra factor of T0/Tw, i.e., the ratio of exit gas temperature to the plate wall temperature. These results allow us to develop four diagrams, from which we can conveniently obtain the pressure and heat flux coefficients for the stagnation impingement point, at the collisionless flow limit. After normalization with these maximum coefficients, the pressure and heat flux coefficient distributions along the surface essentially degenerate to almost identical curves. As a result, with known plate surface pressure coefficient distributions and these diagrams, we can conveniently construct the heat flux coefficient distributions along the plate surface, and vice versa.

  1. [A plane-based hand-eye calibration method for surgical robots].

    PubMed

    Zeng, Bowei; Meng, Fanle; Ding, Hui; Liu, Wenbo; Wu, Di; Wang, Guangzhi

    2017-04-01

    In order to calibrate the hand-eye transformation of the surgical robot and laser range finder (LRF), a calibration algorithm based on a planar template was designed. A mathematical model of the planar template had been given and the approach to address the equations had been derived. Aiming at the problems of the measurement error in a practical system, we proposed a new algorithm for selecting coplanar data. This algorithm can effectively eliminate considerable measurement error data to improve the calibration accuracy. Furthermore, three orthogonal planes were used to improve the calibration accuracy, in which a nonlinear optimization for hand-eye calibration was used. With the purpose of verifying the calibration precision, we used the LRF to measure some fixed points in different directions and a cuboid's surfaces. Experimental results indicated that the precision of a single planar template method was (1.37±0.24) mm, and that of the three orthogonal planes method was (0.37±0.05) mm. Moreover, the mean FRE of three-dimensional (3D) points was 0.24 mm and mean TRE was 0.26 mm. The maximum angle measurement error was 0.4 degree. Experimental results show that the method presented in this paper is effective with high accuracy and can meet the requirements of surgical robot precise location.

  2. Bioinspired wingtip devices: a pathway to improve aerodynamic performance during low Reynolds number flight.

    PubMed

    Lynch, Michael; Mandadzhiev, Boris; Wissa, Aimy

    2018-03-20

    Birds are highly capable and maneuverable fliers, traits not currently shared with current small unmanned aerial vehicles. They are able to achieve these flight capabilities by adapting the shape of their wings during flight in a variety of complex manners. One feature of bird wings, the primary feathers, separate to form wingtip gaps at the distal end of the wing. This paper presents bio-inspired wingtip devices with varying wingtip gap sizes, defined as the chordwise distance between wingtip devices, for operation in low Reynolds number conditions of Re  =  100 000, where many bird species operate. Lift and drag data was measured for planar and nonplanar wingtip devices with the total wingtip gap size ranging from 0% to 40% of the wing's mean chord. For a planar wing with a gap size of 20%, the mean coefficient of lift in the pre-stall region is increased by 7.25%, and the maximum coefficient of lift is increased by 5.6% compared to a configuration with no gaps. The nonplanar wingtip device was shown to reduce the induced drag. The effect of wingtip gap sizes is shown to be independent of the planarity/nonplanarity of the wingtip device, thereby allowing designers to decouple the wingtip parameters to tune the desired lift and drag produced.

  3. Cell adhesion and guidance by micropost-array chemical sensors

    NASA Astrophysics Data System (ADS)

    Pantano, Paul; Quah, Soo-Kim; Danowski, Kristine L.

    2002-06-01

    An array of ~50,000 individual polymeric micropost sensors was patterned across a glass coverslip by a photoimprint lithographic technique. Individual micropost sensors were ~3-micrometers tall and ~8-micrometers wide. The O2-sensitive micropost array sensors (MPASs) comprised a ruthenium complex encapsulated in a gas permeable photopolymerizable siloxane. The pH-sensitive MPASs comprised a fluorescein conjugate encapsulated in a photocrosslinkable poly(vinyl alcohol)-based polymer. PO2 and pH were quantitated by acquiring MPAS luminescence images with an epifluorescence microscope/charge coupled device imaging system. O2-sensitive MPASs displayed linear Stern-Volmer quenching behavior with a maximum Io/I of ~8.6. pH-sensitive MPASs displayed sigmoidal calibration curves with a pKa of ~5.8. The adhesion of undifferentiated rat pheochromocytoma (PC12) cells across these two polymeric surface types was investigated. The greatest PC12 cell proliferation and adhesion occurred across the poly(vinyl alcohol)-based micropost arrays relative to planar poly(vinyl alcohol)-based surfaces and both patterned and planar siloxane surfaces. An additional advantage of the patterned MPAS layers relative to planar sensing layers was the ability to direct the growth of biological cells. Preliminary data is presented whereby nerve growth factor-differentiated PC12 cells grew neurite-like processes that extended along paths defined by the micropost architecture.

  4. Piperidine-1-carboximidamide

    PubMed Central

    Tiritiris, Ioannis

    2012-01-01

    In the title compound, C6H13N3, the C=N and C—N bond lengths in the CN3 unit are 1.3090 (17), and 1.3640 (17) (C–NH2) and 1.3773 (16) Å, indicating double- and single-bond character, respectively. The N—C—N angles are 116.82 (12), 119.08 (11) and 124.09 (11)°, showing a deviation of the CN3 plane from an ideal trigonal–planar geometry. The piperidine ring is in a chair conformation. In the crystal, mol­ecules are linked by N—H⋯N hydrogen bonds, forming a two-dimensional network along the ac plane. PMID:23284550

  5. Structure of 7-hy-droxy-3-(2-meth-oxy-phen-yl)-2-tri-fluoro-meth-yl-4H-chromen-4-one.

    PubMed

    Low, John Nicolson; Gomes, Ligia R; Gaspar, Alexandra; Borges, Fernanda

    2017-07-01

    Herein, the synthesis and crystal structure of 7-hy-droxy-3-(2-meth-oxy-phen-yl)-2-tri-fluoro-meth-yl-4 H -chromen-4-one, C 17 H 11 F 3 O 4 , are reported. This isoflavone is used as a starting material in the preparation an array of potent and competitive FPR antagonists. The pyran ring significantly deviates from planarity and the dihedral angle between the benzo-pyran mean plane and that of the exocyclic benzene ring is 88.18 (4)°. In the crystal, O-H⋯O hydrogen bonds connect the mol-ecules into C (8) chains propagating in the [010] direction.

  6. N-(3-Chloro-4-eth-oxy-1-methyl-1H-indazol-5-yl)-4-meth-oxy-benzene-sulfonamide.

    PubMed

    Chicha, Hakima; Rakib, El Mostapha; Hannioui, Abdellah; Saadi, Mohamed; El Ammari, Lahcen

    2014-06-01

    The indazole ring system of the title compound, C17H18ClN3O4S, is almost planar (r.m.s. deviation = 0.0113 Å) and forms dihedral angles of 32.22 (8) and 57.5 (3)° with the benzene ring and the mean plane through the 4-eth-oxy group, respectively. In the crystal, mol-ecules are connected by pairs of N-H⋯O hydrogen bonds into inversion dimers, which are further linked by π-π inter-actions between the diazole rings [inter-centroid distance = 3.4946 (11) Å], forming chains parallel to [101].

  7. Time-dependent perpendicular fluctuations in the driven lattice Lorentz gas

    NASA Astrophysics Data System (ADS)

    Leitmann, Sebastian; Schwab, Thomas; Franosch, Thomas

    2018-02-01

    We present results for the fluctuations of the displacement of a tracer particle on a planar lattice pulled by a step force in the presence of impenetrable, immobile obstacles. The fluctuations perpendicular to the applied force are evaluated exactly in first order of the obstacle density for arbitrarily strong pulling and all times. The complex time-dependent behavior is analyzed in terms of the diffusion coefficient, local exponent, and the non-Skellam parameter, which quantifies deviations from the dynamics on the lattice in the absence of obstacles. The non-Skellam parameter along the force is analyzed in terms of an asymptotic model and reveals a power-law growth for intermediate times.

  8. Torrejon AB, Madrid, Spain. revised uniform summary of surface weather observations (RUSSWO). parts a-f. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1978-10-03

    This report is a six-part statistical summary of surface weather observations for Torrejon AB, Madrid Spain. It contains the following parts: (A) Weather Conditions; Atmospheric Phenomena; (B) Precipitation, Snowfall and Snow Depth (daily amounts and extreme values); (C) Surface winds; (D) Ceiling Versus Visibility; Sky Cover; (E) Psychrometric Summaries (daily maximum and minimum temperatures, extreme maximum and minimum temperatures, psychrometric summary of wet-bulb temperature depression versus dry-bulb temperature, means and standard deviations of dry-bulb, wet-bulb and dew-point temperatures and relative humidity); and (F) Pressure Summary (means, standard, deviations, and observation counts of station pressure and sea-level pressure). Data in thismore » report are presented in tabular form, in most cases in percentage frequency of occurrence or cumulative percentage frequency of occurrence tables.« less

  9. Ultraviolet out-of-band radiation studies in laser tin plasma sources

    NASA Astrophysics Data System (ADS)

    Parchamy, Homaira; Szilagyi, John; Masnavi, Majid; Richardson, Martin

    2017-11-01

    Out-of-band long wavelength emission measurements from high power, high-repetition-rate extreme-ultra-violet lithography (EUVL) laser plasma sources are imperative to estimating heat deposition in EUV mirrors, and the impact of short wavelength light transported through the imaging system to the wafer surface. This paper reports a series of experiments conducted to measure the absolute spectral irradiances of laser-plasmas produced from planar tin targets over the wavelength region of 124 to 164 nm by 1.06 μm wavelength, 10 ns full-width-at-half-maximum Gaussian laser pulses. The use of spherical targets is relevant to the EUVL source scenario. Although plasmas produced from planar surfaces evolve differently, there is a close similarity to the evolution of current from 10.6 μm CO2 laser EUVL sources, which use a pre-pulse from a lower energy solid-state laser to melt and reform an initial spherical droplet into a thin planar disc target. The maximum of radiation conversion efficiency in the 124-164 nm wavelength band (1%/2πsr) occurs at the laser intensity of 1010 W cm-2. A developed collisional-radiative model reveals the strong experimental spectra that originate mainly from the 4d105p2-4d105s5p, 4d105p-4d105s resonance lines, and 4d95p-4d95s unresolved transition arrays from Sn III, Sn IV, and Sn V ions, respectively. The calculated conversion efficiencies using a 2D radiation-hydrodynamics model are in agreement with the measurements. The model predicts the out-of-band (100-400 nm) radiation conversion efficiencies generated by both 1.06 and 10.6 μm pulses. The 10.6 μm laser pulse produces a higher conversion efficiency (12%/2πsr) at the lower laser intensity of 109 W cm-2.

  10. Optimum reentry trajectories of a lifting vehicle

    NASA Technical Reports Server (NTRS)

    Chern, J. S.; Vinh, N. X.

    1980-01-01

    Research results are presented of an investigation of the optimum maneuvers of advanced shuttle type spacecraft during reentry. The equations are formulated by means of modified Chapman variables resulting in a general set of equations for flight analysis which are exact for reentry and for flight in a vacuum. Four planar flight typical optimum manuevers are investigated. For three-dimensional flight the optimum trajectory for maximum cross range is discussed in detail. Techniques for calculating reentry footprints are presented.

  11. Claw-Free Maximal Planar Graphs

    DTIC Science & Technology

    1989-01-01

    1976, 212-223. 110] M.D. Plummer, On n-extendable graphs, Discrete Math . 31, 1980, 201-210. 1111 , A theorem on matchings in the plane, Graph Theory...in Memory of G.A. Dirac, Ann. Discrete Math . 41, North-Holland, Amsterdam, 1989, 347-354. 1121 N. Sbihi, Algorithme de recherche d’un stable de...cardinalitA maximum dans un graphe sans 6toile, Discrete Math . 29, 1980, 53-76. 1131 D. Sumner, On Tutte’s factorization theorem, Graphs and Combinatorics

  12. Multi-Vendor Implementation and Comparison of Volumetric Whole-Brain Echo-Planar MR Spectroscopic Imaging

    PubMed Central

    Sabati, Mohammad; Sheriff, Sulaiman; Gu, Meng; Wei, Juan; Zhu, Henry; Barker, Peter B.; Spielman, Daniel M.; Alger, Jeffry R.; Maudsley, Andrew A.

    2014-01-01

    Purpose To assess volumetric proton MR spectroscopic imaging of the human brain on multi-vendor MRI instruments. Methods Echo-planar spectroscopic imaging (EPSI) was developed on instruments from three manufacturers, with matched specifications and acquisition protocols that accounted for differences in sampling performance, RF power, and data formats. Inter-site reproducibility was evaluated for signal-normalized maps of N-acetylaspartate (NAA), Creatine (Cre) and Choline using phantom and human subject measurements. Comparative analyses included metrics for spectral quality, spatial coverage, and mean values in atlas-registered brain regions. Results Inter-site differences for phantom measurements were under 1.7% for individual metabolites and 0.2% for ratio measurements. Spatial uniformity ranged from 79% to 91%. The human studies found differences of mean values in the temporal lobe, but good agreement in other white-matter regions, with maximum differences relative to their mean of under 3.2%. For NAA/Cre, the maximum difference was 1.8%. In grey-matter a significant difference was observed for frontal lobe NAA. Primary causes of inter-site differences were attributed to shim quality, B0 drift, and accuracy of RF excitation. Correlation coefficients for measurements at each site were over 0.60, indicating good reliability. Conclusion A volumetric intensity-normalized MRSI acquisition can be implemented in a comparable manner across multi-vendor MR instruments. PMID:25354190

  13. Multivendor implementation and comparison of volumetric whole-brain echo-planar MR spectroscopic imaging.

    PubMed

    Sabati, Mohammad; Sheriff, Sulaiman; Gu, Meng; Wei, Juan; Zhu, Henry; Barker, Peter B; Spielman, Daniel M; Alger, Jeffry R; Maudsley, Andrew A

    2015-11-01

    To assess volumetric proton MR spectroscopic imaging (MRSI) of the human brain on multivendor MRI instruments. Echo-planar spectroscopic imaging was developed on instruments from three manufacturers, with matched specifications and acquisition protocols that accounted for differences in sampling performance, radiofrequency (RF) power, and data formats. Intersite reproducibility was evaluated for signal-normalized maps of N-acetylaspartate (NAA), creatine (Cre), and choline using phantom and human subject measurements. Comparative analyses included metrics for spectral quality, spatial coverage, and mean values in atlas-registered brain regions. Intersite differences for phantom measurements were less than 1.7% for individual metabolites and less than 0.2% for ratio measurements. Spatial uniformity ranged from 79% to 91%. The human studies found differences of mean values in the temporal lobe, but good agreement in other white matter regions, with maximum differences relative to their mean of under 3.2%. For NAA/Cre, the maximum difference was 1.8%. In gray matter, a significant difference was observed for frontal lobe NAA. Primary causes of intersite differences were attributed to shim quality, B0 drift, and accuracy of RF excitation. Correlation coefficients for measurements at each site were over 0.60, indicating good reliability. A volumetric intensity-normalized MRSI acquisition can be implemented in a comparable manner across multivendor MR instruments. © 2014 Wiley Periodicals, Inc.

  14. Multilayer MgB{sub 2} superconducting quantum interference filter magnetometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galan, Elias; Melbourne, Thomas; Davidson, Bruce A.

    2016-04-25

    We report two types of all-MgB{sub 2} superconductive quantum interference filter (SQIF) magnetometers that can measure absolute magnetic fields with high sensitivity. In one configuration, the SQIFs were made of 20 multilayer nonplanar all-MgB{sub 2} superconducting quantum interference devices (SQUIDs) connected in parallel with loop areas ranging in size from 0.4 to 3.6 μm{sup 2}. These devices are sensitive to magnetic fields parallel to the substrate and show a single antipeak from 3 to 16 K with a maximum transfer function of ∼16 V/T at 3 K and a field noise of ∼110 pT/Hz{sup 1/2} above 100 Hz at 10 K. In a second configuration, themore » SQIFs were made with 16 planar SQUIDs connected in parallel with loop areas ranging in size from 4 μm{sup 2} to 25 μm{sup 2} and are sensitive to the magnetic fields perpendicular to the substrate. The planar SQIF shows a single antipeak from 10 to 22 K with a maximum transfer function of 7800 V/T at 10 K and a field noise of ∼70 pT/Hz{sup 1/2} above 100 Hz at 20 K.« less

  15. Resistivity of a simple metal from room temperature to 10 to the 6th K

    NASA Astrophysics Data System (ADS)

    Milchberg, H. M.; Freeman, R. R.; Davey, S. C.; More, R. M.

    1988-11-01

    The resistivity of nearly solid-density Al was measured as a function of temperature over 4 orders of magnitude above ambient by observing the self-reflection of an intense, less than 0.5 psec, 308-nm light pulse incident on a planar Al target. As an increasing function of electron temperature, the resistivity is observed initially to increase, reach a maximum which is relatively constant over an extended temperature range, and then decrease at the highest temperatures. The broad maximum is interpreted as resistivity saturation, a condition in which the mean free path of the conduction electrons reaches a minimum value as a function of temperature, regardless of the extent of any further disorder in the material.

  16. The response of ionization chambers to relativistic heavy nuclei

    NASA Technical Reports Server (NTRS)

    Newport, B. J.; Stone, E. C.; Waddington, C. J.; Binns, W. R.; Fixsen, D. J.; Garrard, T. L.; Grimm, G.; Israel, M. H.; Klarmann, J.

    1985-01-01

    As part of a recent calibration at the LBL Bevalac for the Heavy Nuclei Experiment on HEAO-3, the response of a set of laboratory ionization chambers were compared to beams of 26Fe, 36 Kr, 54Xe, 67 Ho, and 79 Au nuclei at maximum energies ranging from 1666 MeV/amu for Fe to 1049 MeV/amu for Au. The response of these chambers shows a significant deviation from the expected energy dependence, but only a slight deviation from Z squared scaling.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siman, W.; Mikell, J. K.; Kappadath, S. C., E-mail

    Purpose: To develop a practical background compensation (BC) technique to improve quantitative {sup 90}Y-bremsstrahlung single-photon emission computed tomography (SPECT)/computed tomography (CT) using a commercially available imaging system. Methods: All images were acquired using medium-energy collimation in six energy windows (EWs), ranging from 70 to 410 keV. The EWs were determined based on the signal-to-background ratio in planar images of an acrylic phantom of different thicknesses (2–16 cm) positioned below a {sup 90}Y source and set at different distances (15–35 cm) from a gamma camera. The authors adapted the widely used EW-based scatter-correction technique by modeling the BC as scaled images.more » The BC EW was determined empirically in SPECT/CT studies using an IEC phantom based on the sphere activity recovery and residual activity in the cold lung insert. The scaling factor was calculated from 20 clinical planar {sup 90}Y images. Reconstruction parameters were optimized in the same SPECT images for improved image quantification and contrast. A count-to-activity calibration factor was calculated from 30 clinical {sup 90}Y images. Results: The authors found that the most appropriate imaging EW range was 90–125 keV. BC was modeled as 0.53× images in the EW of 310–410 keV. The background-compensated clinical images had higher image contrast than uncompensated images. The maximum deviation of their SPECT calibration in clinical studies was lowest (<10%) for SPECT with attenuation correction (AC) and SPECT with AC + BC. Using the proposed SPECT-with-AC + BC reconstruction protocol, the authors found that the recovery coefficient of a 37-mm sphere (in a 10-mm volume of interest) increased from 39% to 90% and that the residual activity in the lung insert decreased from 44% to 14% over that of SPECT images with AC alone. Conclusions: The proposed EW-based BC model was developed for {sup 90}Y bremsstrahlung imaging. SPECT with AC + BC gave improved lesion detectability and activity quantification compared to SPECT with AC only. The proposed methodology can readily be used to tailor {sup 90}Y SPECT/CT acquisition and reconstruction protocols with different SPECT/CT systems for quantification and improved image quality in clinical settings.« less

  18. A New Online Calibration Method Based on Lord's Bias-Correction.

    PubMed

    He, Yinhong; Chen, Ping; Li, Yong; Zhang, Shumei

    2017-09-01

    Online calibration technique has been widely employed to calibrate new items due to its advantages. Method A is the simplest online calibration method and has attracted many attentions from researchers recently. However, a key assumption of Method A is that it treats person-parameter estimates θ ^ s (obtained by maximum likelihood estimation [MLE]) as their true values θ s , thus the deviation of the estimated θ ^ s from their true values might yield inaccurate item calibration when the deviation is nonignorable. To improve the performance of Method A, a new method, MLE-LBCI-Method A, is proposed. This new method combines a modified Lord's bias-correction method (named as maximum likelihood estimation-Lord's bias-correction with iteration [MLE-LBCI]) with the original Method A in an effort to correct the deviation of θ ^ s which may adversely affect the item calibration precision. Two simulation studies were carried out to explore the performance of both MLE-LBCI and MLE-LBCI-Method A under several scenarios. Simulation results showed that MLE-LBCI could make a significant improvement over the ML ability estimates, and MLE-LBCI-Method A did outperform Method A in almost all experimental conditions.

  19. Evaluation of methods for measuring particulate matter emissions from gas turbines.

    PubMed

    Petzold, Andreas; Marsh, Richard; Johnson, Mark; Miller, Michael; Sevcenco, Yura; Delhaye, David; Ibrahim, Amir; Williams, Paul; Bauer, Heidi; Crayford, Andrew; Bachalo, William D; Raper, David

    2011-04-15

    The project SAMPLE evaluated methods for measuring particle properties in the exhaust of aircraft engines with respect to the development of standardized operation procedures for particulate matter measurement in aviation industry. Filter-based off-line mass methods included gravimetry and chemical analysis of carbonaceous species by combustion methods. Online mass methods were based on light absorption measurement or used size distribution measurements obtained from an electrical mobility analyzer approach. Number concentrations were determined using different condensation particle counters (CPC). Total mass from filter-based methods balanced gravimetric mass within 8% error. Carbonaceous matter accounted for 70% of gravimetric mass while the remaining 30% were attributed to hydrated sulfate and noncarbonaceous organic matter fractions. Online methods were closely correlated over the entire range of emission levels studied in the tests. Elemental carbon from combustion methods and black carbon from optical methods deviated by maximum 5% with respect to mass for low to medium emission levels, whereas for high emission levels a systematic deviation between online methods and filter based methods was found which is attributed to sampling effects. CPC based instruments proved highly reproducible for number concentration measurements with a maximum interinstrument standard deviation of 7.5%.

  20. Improved thermal conductivity of TiO2-SiO2 hybrid nanofluid in ethylene glycol and water mixture

    NASA Astrophysics Data System (ADS)

    Hamid, K. A.; Azmi, W. H.; Nabil, M. F.; Mamat, R.

    2017-10-01

    The need to study hybrid nanofluid properties such as thermal conductivity has increased recently in order to provide better understanding on nanofluid thermal properties and behaviour. Due to its ability to improve heat transfer compared to conventional heat transfer fluids, nanofluids as a new coolant fluid are widely investigated. This paper presents the thermal conductivity of TiO2-SiO2 nanoparticles dispersed in ethylene glycol (EG)-water. The TiO2-SiO2 hybrid nanofluids is measured for its thermal conductivity using KD2 Pro Thermal Properties Analyzer for concentration ranging from 0.5% to 3.0% and temperature of 30, 50 and 70°C. The results show that the increasing in concentration and temperature lead to enhancement in thermal conductivity at range of concentration studied. The maximum enhancement is found to be 22.1% at concentration 3.0% and temperature 70°C. A new equation is proposed based on the experiment data and found to be in good agreement where the average deviation (AD), standard deviation (SD) and maximum deviation (MD) are 1.67%, 1.66% and 5.13%, respectively.

  1. Identification of "ever-cropped" land (1984-2010) using Landsat annual maximum NDVI image composites: Southwestern Kansas case study.

    PubMed

    Maxwell, Susan K; Sylvester, Kenneth M

    2012-06-01

    A time series of 230 intra- and inter-annual Landsat Thematic Mapper images was used to identify land that was ever cropped during the years 1984 through 2010 for a five county region in southwestern Kansas. Annual maximum Normalized Difference Vegetation Index (NDVI) image composites (NDVI(ann-max)) were used to evaluate the inter-annual dynamics of cropped and non-cropped land. Three feature images were derived from the 27-year NDVI(ann-max) image time series and used in the classification: 1) maximum NDVI value that occurred over the entire 27 year time span (NDVI(max)), 2) standard deviation of the annual maximum NDVI values for all years (NDVI(sd)), and 3) standard deviation of the annual maximum NDVI values for years 1984-1986 (NDVI(sd84-86)) to improve Conservation Reserve Program land discrimination.Results of the classification were compared to three reference data sets: County-level USDA Census records (1982-2007) and two digital land cover maps (Kansas 2005 and USGS Trends Program maps (1986-2000)). Area of ever-cropped land for the five counties was on average 11.8 % higher than the area estimated from Census records. Overall agreement between the ever-cropped land map and the 2005 Kansas map was 91.9% and 97.2% for the Trends maps. Converting the intra-annual Landsat data set to a single annual maximum NDVI image composite considerably reduced the data set size, eliminated clouds and cloud-shadow affects, yet maintained information important for discriminating cropped land. Our results suggest that Landsat annual maximum NDVI image composites will be useful for characterizing land use and land cover change for many applications.

  2. Visualization of a Capsule Entry Vehicle Reaction-Control System (RCS) Thruster

    NASA Technical Reports Server (NTRS)

    Danehy, P. M.; Wilkes, J. A.; Brauckmann, G. J.; Alderfer, D. W.; Jones, S. B.; Patry, D. P.

    2006-01-01

    Planar laser-induced fluorescence (PLIF) was used to visualize the reaction control system (RCS) jet flow emanating from the aft-body of an Apollo-geometry capsule test article in the NASA Langley Research Center 31-Inch Mach 10 Air wind tunnel. The RCS jet was oriented normal to the aft surface of the model and had a nominal Mach number of 2.94. The composition of the jet gas by mass was 95% nitrogen (N2) and 5% nitric oxide (NO). The RCS jet flowrate varied between zero and 0.5 standard liters per minute and the angle of attack and tunnel stagnation pressure were also varied. PLIF was used to excite the NO molecules for flow visualization. These flow visualization images were processed to determine the trajectory and to quantify the flapping of the RCS jet. The spatial resolution of the jet trajectory measurement was about 1 mm and the single-shot precision of the measurement was estimated to be 0.02 mm in the far field of the jet plume. The jet flapping, measured by the standard deviation of the jet centerline position was as large as 0.9 mm, while the jet was 1.5-4 mm in diameter (full width at half maximum). Schlieren flow visualization images were obtained for comparison with the PLIF. Surface pressures were also measured and presented. Virtual Diagnostics Interface (VIDI) technology developed at NASA Langley was used to superimpose and visualize the data sets. The measurements demonstrate some of the capabilities of the PLIF method while providing a test case for computational fluid dynamics (CFD) validation.

  3. In situ measurements of plasma properties during gas-condensation of Cu nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koten, M. A., E-mail: mark.koten@gmail.com; Shield, J. E.; Voeller, S. A.

    2016-03-21

    Since the mean, standard deviation, and modality of nanoparticle size distributions can vary greatly between similar input conditions (e.g., power and gas flow rate), plasma diagnostics were carried out in situ using a double-sided, planar Langmuir probe to determine the effect the plasma has on the heating of clusters and their final size distributions. The formation of Cu nanoparticles was analyzed using cluster-plasma physics, which relates the processes of condensation and evaporation to internal plasma properties (e.g., electron temperature and density). Monitoring these plasma properties while depositing Cu nanoparticles with different size distributions revealed a negative correlation between average particlemore » size and electron temperature. Furthermore, the modality of the size distributions also correlated with the modality of the electron energy distributions. It was found that the maximum cluster temperature reached during plasma heating and the material's evaporation point regulates the growth process inside the plasma. In the case of Cu, size distributions with average sizes of 8.2, 17.3, and 24.9 nm in diameter were monitored with the Langmuir probe, and from the measurements made, the cluster temperatures for each deposition were calculated to be 1028, 1009, and 863 K. These values are then compared with the onset evaporation temperature of particles of this size, which was estimated to be 1059, 1068, and 1071 K. Thus, when the cluster temperature is too close to the evaporation temperature, less particle growth occurs, resulting in the formation of smaller particles.« less

  4. Effect of visuospatial neglect on spatial navigation and heading after stroke.

    PubMed

    Aravind, Gayatri; Lamontagne, Anouk

    2017-06-09

    Visuospatial neglect (VSN) impairs the control of locomotor heading in post-stroke individuals, which may affect their ability to safely avoid moving objects while walking. We aimed to compare VSN+ and VSN- stroke individuals in terms of changes in heading and head orientation in space while avoiding obstacles approaching from different directions and reorienting toward the final target. Stroke participants with VSN (VSN+) and without VSN (VSN-) walked in a virtual environment avoiding obstacles that approached contralesionally, head-on or ipsilesionally. Measures of obstacle avoidance (onset-of-heading change, maximum mediolateral deviation) and target alignment (heading and head-rotation errors with respect to target) were compared across groups and obstacle directions. In total, 26 participants with right-hemisphere stroke participated (13 VSN+ and 13 VSN-; 24 males; mean age 60.3 years, range 48 to 72 years). A larger proportion of VSN+ (75%) than VSN- (38%) participants collided with contralesional and head-on obstacles. For VSN- participants, deviating to the same side as the obstacle was a safe strategy to avoid diagonal obstacles and deviating to the opposite-side led to occasional collisions. VSN+ participants deviated ipsilesionally, displaying same-side and opposite-side strategies for ipsilesional and contralesional obstacles, respectively. Overall, VSN+ participants showed greater distances at onset-of-heading change, smaller maximum mediolateral deviation and larger errors in target alignment as compared with VSN- participants. The ipsilesional bias arising from VSN influences the modulation of heading in response to obstacles and, along with the adoption of the "riskier" strategies, contribute to the higher number colliders and poor goal-directed walking abilities in stroke survivors with VSN. Future research should focus on developing assessment and training tools for complex locomotor tasks such as obstacle avoidance in this population. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Statistical characteristics of falling-film flows: A synergistic approach at the crossroads of direct numerical simulations and experiments

    NASA Astrophysics Data System (ADS)

    Charogiannis, Alexandros; Denner, Fabian; van Wachem, Berend G. M.; Kalliadasis, Serafim; Markides, Christos N.

    2017-12-01

    We scrutinize the statistical characteristics of liquid films flowing over an inclined planar surface based on film height and velocity measurements that are recovered simultaneously by application of planar laser-induced fluorescence (PLIF) and particle tracking velocimetry (PTV), respectively. Our experiments are complemented by direct numerical simulations (DNSs) of liquid films simulated for different conditions so as to expand the parameter space of our investigation. Our statistical analysis builds upon a Reynolds-like decomposition of the time-varying flow rate that was presented in our previous research effort on falling films in [Charogiannis et al., Phys. Rev. Fluids 2, 014002 (2017), 10.1103/PhysRevFluids.2.014002], and which reveals that the dimensionless ratio of the unsteady term to the mean flow rate increases linearly with the product of the coefficients of variation of the film height and bulk velocity, as well as with the ratio of the Nusselt height to the mean film height, both at the same upstream PLIF/PTV measurement location. Based on relations that are derived to describe these results, a methodology for predicting the mass-transfer capability (through the mean and standard deviation of the bulk flow speed) of these flows is developed in terms of the mean and standard deviation of the film thickness and the mean flow rate, which are considerably easier to obtain experimentally than velocity profiles. The errors associated with these predictions are estimated at ≈1.5 % and 8% respectively in the experiments and at <1 % and <2 % respectively in the DNSs. Beyond the generation of these relations for the prediction of important film flow characteristics based on simple flow information, the data provided can be used to design improved heat- and mass-transfer equipment reactors or other process operation units which exploit film flows, but also to develop and validate multiphase flow models in other physical and technological settings.

  6. Design and performance evaluation of an interferometric controlled planar nanopositioning system

    NASA Astrophysics Data System (ADS)

    Hesse, S.; Schäffel, C.; Mohr, H.-U.; Katzschmann, M.; Büchner, H.-J.

    2012-07-01

    High technology applications for example in the semiconductor or the optical industry require positioning systems providing repeatability and uncertainty in the range of nanometers together with x-, y-travel ranges of several hundreds of millimeters. We contribute in this research by investigating the applicability of integrated planar direct drives for the realization of nanopositioning- and nanomeasuring machines (NPM/NMM). The paper introduces the concept of planar integrated direct drives and explains the engineering design of the realized system for a 100 mm circular travel range in x and y. It presents the drive system parameters and the arrangement and interaction of the main components. The results of the initial operation are presented with a special focus on the question how the closed loop system can be taken into operation with a free floating slider. The evaluation of the positioning performance leads to the result that a 2D servo error of less than exy = 1.3 nm is achieved at arbitrary positions within the travel range. As a result of repeated step response tests, the positioning resolution is 0.5 nm. The measurement of the coincidental z-movement of the aerostatically supported slider yields a z-vibration with a standard deviation of σz = 0.45 nm. Regarding the drive system these results represent the limit of what can be reached with this setup as the measured error motions are in the range of the noise of the fixed environment setup. By measuring the characteristics of the aerostatic slider support at the fully assembled system the present air bearing stiffness is determined and based on a FEM-simulation of the slider eigenfrequencies the influence on the force transfer behavior is expected to be only marginal.

  7. The Laplace method for probability measures in Banach spaces

    NASA Astrophysics Data System (ADS)

    Piterbarg, V. I.; Fatalov, V. R.

    1995-12-01

    Contents §1. Introduction Chapter I. Asymptotic analysis of continual integrals in Banach space, depending on a large parameter §2. The large deviation principle and logarithmic asymptotics of continual integrals §3. Exact asymptotics of Gaussian integrals in Banach spaces: the Laplace method 3.1. The Laplace method for Gaussian integrals taken over the whole Hilbert space: isolated minimum points ([167], I) 3.2. The Laplace method for Gaussian integrals in Hilbert space: the manifold of minimum points ([167], II) 3.3. The Laplace method for Gaussian integrals in Banach space ([90], [174], [176]) 3.4. Exact asymptotics of large deviations of Gaussian norms §4. The Laplace method for distributions of sums of independent random elements with values in Banach space 4.1. The case of a non-degenerate minimum point ([137], I) 4.2. A degenerate isolated minimum point and the manifold of minimum points ([137], II) §5. Further examples 5.1. The Laplace method for the local time functional of a Markov symmetric process ([217]) 5.2. The Laplace method for diffusion processes, a finite number of non-degenerate minimum points ([116]) 5.3. Asymptotics of large deviations for Brownian motion in the Hölder norm 5.4. Non-asymptotic expansion of a strong stable law in Hilbert space ([41]) Chapter II. The double sum method - a version of the Laplace method in the space of continuous functions §6. Pickands' method of double sums 6.1. General situations 6.2. Asymptotics of the distribution of the maximum of a Gaussian stationary process 6.3. Asymptotics of the probability of a large excursion of a Gaussian non-stationary process §7. Probabilities of large deviations of trajectories of Gaussian fields 7.1. Homogeneous fields and fields with constant dispersion 7.2. Finitely many maximum points of dispersion 7.3. Manifold of maximum points of dispersion 7.4. Asymptotics of distributions of maxima of Wiener fields §8. Exact asymptotics of large deviations of the norm of Gaussian vectors and processes with values in the spaces L_k^p and l^2. Gaussian fields with the set of parameters in Hilbert space 8.1 Exact asymptotics of the distribution of the l_k^p-norm of a Gaussian finite-dimensional vector with dependent coordinates, p > 1 8.2. Exact asymptotics of probabilities of high excursions of trajectories of processes of type \\chi^2 8.3. Asymptotics of the probabilities of large deviations of Gaussian processes with a set of parameters in Hilbert space [74] 8.4. Asymptotics of distributions of maxima of the norms of l^2-valued Gaussian processes 8.5. Exact asymptotics of large deviations for the l^2-valued Ornstein-Uhlenbeck process Bibliography

  8. Optimizing for Large Planar Fractures in Multistage Horizontal Wells in Enhanced Geothermal Systems Using a Coupled Fluid and Geomechanics Simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Xiexiaomen; Tutuncu, Azra; Eustes, Alfred

    Enhanced Geothermal Systems (EGS) could potentially use technological advancements in coupled implementation of horizontal drilling and multistage hydraulic fracturing techniques in tight oil and shale gas reservoirs along with improvements in reservoir simulation techniques to design and create EGS reservoirs. In this study, a commercial hydraulic fracture simulation package, Mangrove by Schlumberger, was used in an EGS model with largely distributed pre-existing natural fractures to model fracture propagation during the creation of a complex fracture network. The main goal of this study is to investigate optimum treatment parameters in creating multiple large, planar fractures to hydraulically connect a horizontal injectionmore » well and a horizontal production well that are 10,000 ft. deep and spaced 500 ft. apart from each other. A matrix of simulations for this study was carried out to determine the influence of reservoir and treatment parameters on preventing (or aiding) the creation of large planar fractures. The reservoir parameters investigated during the matrix simulations include the in-situ stress state and properties of the natural fracture set such as the primary and secondary fracture orientation, average fracture length, and average fracture spacing. The treatment parameters investigated during the simulations were fluid viscosity, proppant concentration, pump rate, and pump volume. A final simulation with optimized design parameters was performed. The optimized design simulation indicated that high fluid viscosity, high proppant concentration, large pump volume and pump rate tend to minimize the complexity of the created fracture network. Additionally, a reservoir with 'friendly' formation characteristics such as large stress anisotropy, natural fractures set parallel to the maximum horizontal principal stress (SHmax), and large natural fracture spacing also promote the creation of large planar fractures while minimizing fracture complexity.« less

  9. Long-term growth rates and effects of bleaching in Acropora hyacinthus

    NASA Astrophysics Data System (ADS)

    Gold, Zachary; Palumbi, Stephen R.

    2018-03-01

    Understanding the response of coral growth to natural variation in the environment, as well as to acute temperature stress under current and future climate change conditions, is critical to predicting the future health of coral reef ecosystems. As such, ecological surveys are beginning to focus on corals that live in high thermal stress environments to understand how future coral populations may adapt to climate change. We investigated the relationship between coral growth, thermal microhabitat, symbionts type, and thermal acclimatization of four species of the Acropora hyacinthus complex in back-reef lagoons in American Samoa. Coral growth was measured from August 2010 to April 2016 using horizontal planar area of coral colonies derived from photographs and in situ maximum width measurements. Despite marked intraspecific variation, we found that planar colony growth rates were significantly different among cryptic species. The highly heat tolerant A. hyacinthus variant "HE" increased in area an average of 2.9% month-1 (0.03 cm average mean radial extension month-1). By contrast, the three less tolerant species averaged 6.1% (0.07 cm average mean radial extension month-1). Planar growth rates were 40% higher on average in corals harboring Clade C versus Clade D symbiont types, although marked inter-colony variation in growth rendered this difference nonsignificant. Planar growth rates for all four species dropped to near zero following a 2015 bleaching event, independent of the visually estimated percent area of bleaching. Within 1 yr, growth rates recovered to previous levels, confirming previous studies that found sublethal effects of thermal stress on coral growth. Long-term studies of individual coral colonies provide an important tool to measure impacts of environmental change and allow integration of coral physiology, genetics, symbionts, and microclimate on reef growth patterns.

  10. Dual-mode nonlinear instability analysis of a confined planar liquid sheet sandwiched between two gas streams of unequal velocities and prediction of droplet size and velocity distribution using maximum entropy formulation

    NASA Astrophysics Data System (ADS)

    Dasgupta, Debayan; Nath, Sujit; Bhanja, Dipankar

    2018-04-01

    Twin fluid atomizers utilize the kinetic energy of high speed gases to disintegrate a liquid sheet into fine uniform droplets. Quite often, the gas streams are injected at unequal velocities to enhance the aerodynamic interaction between the liquid sheet and surrounding atmosphere. In order to improve the mixing characteristics, practical atomizers confine the gas flows within ducts. Though the liquid sheet coming out of an injector is usually annular in shape, it can be considered to be planar as the mean radius of curvature is much larger than the sheet thickness. There are numerous studies on breakup of the planar liquid sheet, but none of them considered the simultaneous effects of confinement and unequal gas velocities on the spray characteristics. The present study performs a nonlinear temporal analysis of instabilities in the planar liquid sheet, produced by two co-flowing gas streams moving with unequal velocities within two solid walls. The results show that the para-sinuous mode dominates the breakup process at all flow conditions over the para-varicose mode of breakup. The sheet pattern is strongly influenced by gas velocities, particularly for the para-varicose mode. Spray characteristics are influenced by both gas velocity and proximity to the confining wall, but the former has a much more pronounced effect on droplet size. An increase in the difference between gas velocities at two interfaces drastically shifts the droplet size distribution toward finer droplets. Moreover, asymmetry in gas phase velocities affects the droplet velocity distribution more, only at low liquid Weber numbers for the input conditions chosen in the present study.

  11. The Effects of Data Gaps on the Calculated Monthly Mean Maximum and Minimum Temperatures in the Continental United States: A Spatial and Temporal Study.

    NASA Astrophysics Data System (ADS)

    Stooksbury, David E.; Idso, Craig D.; Hubbard, Kenneth G.

    1999-05-01

    Gaps in otherwise regularly scheduled observations are often referred to as missing data. This paper explores the spatial and temporal impacts that data gaps in the recorded daily maximum and minimum temperatures have on the calculated monthly mean maximum and minimum temperatures. For this analysis 138 climate stations from the United States Historical Climatology Network Daily Temperature and Precipitation Data set were selected. The selected stations had no missing maximum or minimum temperature values during the period 1951-80. The monthly mean maximum and minimum temperatures were calculated for each station for each month. For each month 1-10 consecutive days of data from each station were randomly removed. This was performed 30 times for each simulated gap period. The spatial and temporal impact of the 1-10-day data gaps were compared. The influence of data gaps is most pronounced in the continental regions during the winter and least pronounced in the southeast during the summer. In the north central plains, 10-day data gaps during January produce a standard deviation value greater than 2°C about the `true' mean. In the southeast, 10-day data gaps in July produce a standard deviation value less than 0.5°C about the mean. The results of this study will be of value in climate variability and climate trend research as well as climate assessment and impact studies.

  12. Grasp and index finger reach zone during one-handed smartphone rear interaction: effects of task type, phone width and hand length.

    PubMed

    Lee, Songil; Kyung, Gyouhyung; Lee, Jungyong; Moon, Seung Ki; Park, Kyoung Jong

    2016-11-01

    Recently, some smartphones have introduced index finger interaction functions on the rear surface. The current study investigated the effects of task type, phone width, and hand length on grasp, index finger reach zone, discomfort, and muscle activation during such interaction. We considered five interaction tasks (neutral, comfortable, maximum, vertical, and horizontal strokes), two device widths (60 and 90 mm) and three hand lengths. Horizontal (vertical) strokes deviated from the horizontal axis in the range from -10.8° to -13.5° (81.6-88.4°). Maximum strokes appeared to be excessive as these caused 43.8% greater discomfort than did neutral strokes. The 90-mm width also appeared to be excessive as it resulted in 12.3% increased discomfort relative to the 60-mm width. The small-hand group reported 11.9-18.2% higher discomfort ratings, and the percent maximum voluntary exertion of their flexor digitorum superficialis muscle, pertaining to index finger flexion, was also 6.4% higher. These findings should be considered to make smartphone rear interaction more comfortable. Practitioner Summary: Among neutral, comfortable, maximum, horizontal, and vertical index finger strokes on smartphone rear surfaces, maximum vs. neutral strokes caused 43.8% greater discomfort. Horizontal (vertical) strokes deviated from the horizontal (vertical) axis. Discomfort increased by 12.3% with 90-mm- vs. 60-mm-wide devices. Rear interaction regions of five commercialised smartphones should be lowered 20 to 30 mm for more comfortable rear interaction.

  13. Dispersion y dinamica poblacional

    USDA-ARS?s Scientific Manuscript database

    Dispersal behavior of fruit flies is appetitive. Measures of dispersion involve two different parameter: the maximum distance and the standard distance. Standard distance is a parameter that describes the probalility of dispersion and is mathematically equivalent to the standard deviation around ...

  14. Evaluation of a Test Article in the Salmonella typhimurium/Escherichia coli Plate Incorporation Mutation Assay in the Presence and Absence of Induced Rat Liver S-9. Test Article: N,N,N’,N’-tetramethyl ethanediamine (TMEDA)

    DTIC Science & Technology

    2008-06-12

    15 14 15 STANDARD DEVIATION (:1:) 3 5 4 4 4 MINIMUM VALUE 9 12 11 8 10 MAXIMUM VALUE 20 33 23 29 24 N" 56 19 14 38 28 IMm ~ ~ CORN Oil l:W...AVERAGE 9 9 10 8 9 STANDARD DEVIATION (:1:) 3 3 4 2 3 MINIMUM VAlUE 2 6 3 5 4 MAXIMUM VAlUE 20 16 23 12 15 N" 65 21 14 33 29 E.COLI DMSO ~ CORN ...21 33 25 21 23 N* 66 19 14 38 28 :wm ~ ACET CORN Oil !L!! SAUNE AVERAGE 9 10 10 9 8 STANDARD DEVlA.11ON (:I:) 3 3 4 3 2 MINIMUM VAWS . 4 6 6 6 3

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    He Yongzhou; Zhang Jidong; Zhou Qiaogen

    Two in-vacuum undulators IVU25s and one elliptically polarized undulator EPU100 have been developed for SSRF. Two IVU25s with the same hybrid design contain about 640 Sm{sub 2}Co{sub 17} magnet blocks and the dimension of blocks is 65 Wx25 Hx9 D. The EPU100 of the APPLE-II type contains about 690 NdFeB magnet blocks with the dimension of 35 Wx35 Hx25 D. This paper describes the magnetic measurements of these magnet blocks with the Helmholtz coil measurement system for IVU25 magnet blocks and the Hall probe measurement system for EPU100 magnet blocks. The measured maximum magnetic moment deviation and the maximum anglemore » deviation are less than {+-}1.0% and 1.1 deg. respectively both for Sm{sub 2}Co{sub 17} blocks and NdFeB blocks and satisfy the specifications of undulators.« less

  16. Highly selective surface-wave resonators for terahertz frequency range formed by metallic Bragg gratings

    NASA Astrophysics Data System (ADS)

    Ginzburg, N. S.; Malkin, A. M.; Sergeev, A. S.; Fil'chenkov, S. E.; Zaslavsky, V. Yu.

    2018-04-01

    In the frame of the quasi-optical approach we solve the diffraction problem and describe surface modes confined at a metallic plate with a shallow grating of finite length. We prove that such planar grating can form a highly selective surface-wave Bragg resonator. For a given material conductivity and grating length, we find the optimum corrugation depth that provides the maximum value of Q factor. These results are applicable for developing resonators for terahertz frequency bands.

  17. Efficient room-temperature source of polarized single photons

    DOEpatents

    Lukishova, Svetlana G.; Boyd, Robert W.; Stroud, Carlos R.

    2007-08-07

    An efficient technique for producing deterministically polarized single photons uses liquid-crystal hosts of either monomeric or oligomeric/polymeric form to preferentially align the single emitters for maximum excitation efficiency. Deterministic molecular alignment also provides deterministically polarized output photons; using planar-aligned cholesteric liquid crystal hosts as 1-D photonic-band-gap microcavities tunable to the emitter fluorescence band to increase source efficiency, using liquid crystal technology to prevent emitter bleaching. Emitters comprise soluble dyes, inorganic nanocrystals or trivalent rare-earth chelates.

  18. Optical property modification of PMMA by ion-beam implantation

    NASA Astrophysics Data System (ADS)

    Hong, Wan; Woo, Hyung-Joo; Choi, Han-Woo; Kim, Young-Suk; Kim, Gi-dong

    2001-01-01

    Polymeric waveguides were fabricated by proton implantation on poly(methyl methacrylate) (PMMA). Depth profiles of the refractive indices of modified regions were obtained and were found to be in good agreement with the stopping power curve of protons in PMMA. It means that the waveguides are formed at the depths where the stopping power is the maximum value. Light losses for 635 nm wavelength were measured using planar waveguides to verify if the transmittance is enough for the application of the technique to optical devices.

  19. Space charge effect in spectrometers of ion mobility increment with planar drift chamber.

    PubMed

    Elistratov, A A; Sherbakov, L A

    2007-01-01

    The effect of space charge on the ion beam in a spectrometer of ion mobility increment with the planar drift chamber has been investigated. A model for the drift of ions under a non-uniform high-frequency electric field(1-3) has been developed recently. We have amplified this model by taking space charge effect into account. The ion peak shape taking into consideration the space charge effect is obtained. The output current saturation effect limiting the rise of the ion peak with increasing ion density at the input of the drift chamber of a spectrometer is observed. We show that the saturation effect is caused by the following phenomenon. The maximum possible output ion density exists, depending on the ion type (constant ion mobility, k(0)) and the time of the motion of ions through the drift chamber. At the same time, the ion density does not depend on the parameters of the drift chamber.

  20. Limit cycles in planar piecewise linear differential systems with nonregular separation line

    NASA Astrophysics Data System (ADS)

    Cardin, Pedro Toniol; Torregrosa, Joan

    2016-12-01

    In this paper we deal with planar piecewise linear differential systems defined in two zones. We consider the case when the two linear zones are angular sectors of angles α and 2 π - α, respectively, for α ∈(0 , π) . We study the problem of determining lower bounds for the number of isolated periodic orbits in such systems using Melnikov functions. These limit cycles appear studying higher order piecewise linear perturbations of a linear center. It is proved that the maximum number of limit cycles that can appear up to a sixth order perturbation is five. Moreover, for these values of α, we prove the existence of systems with four limit cycles up to fifth order and, for α = π / 2, we provide an explicit example with five up to sixth order. In general, the nonregular separation line increases the number of periodic orbits in comparison with the case where the two zones are separated by a straight line.

  1. Electric generator using a triangular diamagnetic levitating rotor system.

    PubMed

    Ho, Joe Nhut; Wang, Wei-Chih

    2009-02-01

    This paper describes a feasibility study of creating a small low friction and low maintenance generator using a diamagnetically stabilized levitating rotor. The planar rotor described in this paper uses a triangular configuration of magnets that generates emf by passing over coils placed below the rotor. Equations were developed to predict the generated emf from coils with two different coil geometries. Additionally, this paper provides a method for estimating optimal coil size and position for the planar rotor presented for both segmental arc and circular coils to obtain maximum power output. Experiments demonstrated that the emf generated in the coils matches well with the predicted wave forms for each case, and the optimization theory gives good prediction to outcome of induced waveforms. For the segmental arc coil design, the induced emf was 1.7 mV at a radial frequency of 21.8 rad/s. For the circular coil design, the emf was 1.25 mV at a radial frequency of 28.1 rad/s.

  2. Conversion of electromagnetic energy in Z-pinch process of single planar wire arrays at 1.5 MA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liangping, Wang; Mo, Li; Juanjuan, Han

    The electromagnetic energy conversion in the Z-pinch process of single planar wire arrays was studied on Qiangguang generator (1.5 MA, 100 ns). Electrical diagnostics were established to monitor the voltage of the cathode-anode gap and the load current for calculating the electromagnetic energy. Lumped-element circuit model of wire arrays was employed to analyze the electromagnetic energy conversion. Inductance as well as resistance of a wire array during the Z-pinch process was also investigated. Experimental data indicate that the electromagnetic energy is mainly converted to magnetic energy and kinetic energy and ohmic heating energy can be neglected before the final stagnation. Themore » kinetic energy can be responsible for the x-ray radiation before the peak power. After the stagnation, the electromagnetic energy coupled by the load continues increasing and the resistance of the load achieves its maximum of 0.6–1.0 Ω in about 10–20 ns.« less

  3. Theoretical investigation of confocal microscopy using an elliptically polarized cylindrical vector laser beam: Visualization of quantum emitters near interfaces

    NASA Astrophysics Data System (ADS)

    Boichenko, Stepan

    2018-04-01

    We theoretically study laser-scanning confocal fluorescence microscopy using elliptically polarized cylindrical vector excitation light as a tool for visualization of arbitrarily oriented single quantum dipole emitters located (1) near planar surfaces enhancing fluorescence, (2) in a thin supported polymer film, (3) in a freestanding polymer film, and (4) in a dielectric planar microcavity. It is shown analytically that by using a tightly focused azimuthally polarized beam, it is possible to exclude completely the orientational dependence of the image intensity maximum of a quantum emitter that absorbs light as a pair of incoherent independent linear dipoles. For linear dipole quantum emitters, the orientational independence degree higher than 0.9 can normally be achieved (this quantity equal to 1 corresponds to completely excluded orientational dependence) if the collection efficiency of the microscope objective and the emitter's total quantum yield are not strongly orientationally dependent. Thus, the visualization of arbitrarily oriented single quantum emitters by means of the studied technique can be performed quite efficiently.

  4. Flexible planar microfluidic chip employing a light emitting diode and a PIN-photodiode for portable flow cytometers.

    PubMed

    Kettlitz, Siegfried W; Valouch, Sebastian; Sittel, Wiebke; Lemmer, Uli

    2012-01-07

    Detection of fluorescence particles is a key method of flow cytometry. We evaluate the performance of a design for a microfluidic fluorescence particle detection device. Due to the planar design with low layer thicknesses, we avoid optical components such as lenses or dichroic mirrors and substitute them with a shadow mask and colored film filters. A commercially available LED is used as the light source and a PIN-photodiode as detector. This design approach reduces component cost and power consumption and enables supplying the device with power from a standard USB port. From evaluation of this design, we obtain a maximum particle detection frequency of up to 600 particles per second at a sensitivity of better than 4.7 × 10(5) MESF (molecules of equivalent soluble fluorochrome) measured with particles for FITC sensitivity calibration. Lowering the flow rate increases the instrument sensitivity by an order of magnitude enabling the detection of particles with 4.5 × 10(4) MESF.

  5. Gain determination of optical active doped planar waveguides

    NASA Astrophysics Data System (ADS)

    Šmejcký, J.; Jeřábek, V.; Nekvindová, P.

    2017-12-01

    This paper summarizes the results of the gain transmission characteristics measurement carried out on the new ion exchange Ag+ - Na+ optical Er3+ and Yb3+ doped active planar waveguides realized on a silica based glass substrates. The results were used for optimization of the precursor concentration in the glass substrates. The gain measurements were performed by the time domain method using a pulse generator, as well as broadband measurement method using supercontinuum optical source in the wavelength domain. Both methods were compared and the results were graphically processed. It has been confirmed that pulse method is useful as it provides a very accurate measurement of the gain - pumping power characteristics for one wavelength. In the case of radiation spectral characteristics, our measurement exactly determined the maximum gain wavelength bandwidth of the active waveguide. The spectral characteristics of the pumped and unpumped waveguides were compared. The gain parameters of the reported silica-based glasses can be compared with the phosphate-based parameters, typically used for optical active devices application.

  6. A study of phase explosion of metal using high power Nd:YAG laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoh, Jack J.; Lee, H. H.; Choi, J. H.

    2007-12-12

    The interaction of high-power pulsed-laser beam with metal targets in air from 1.06 {mu}m, 5 ns, 3 J/pulse max, Nd:YAG pulsed laser is investigated together with hydrodynamic theories of laser-supported detonation (LSD) wave and multi-material reactive Euler equations. The high speed blast wave generated by the laser ablation of metal reaches maximum velocity of several thousand meters per second. The apparently similar flow conditions to those of reactive shock wave allow one to apply the equations of motion for energetic materials and to understand the explosive behavior of metal vaporization upon laser ablation. The characteristic time at which planar tomore » spherical wave transition occurs is confirmed at low (20 mJ/pulse) to higher (200 mJ/pulse) beam intensities. The flow structure behind the leading shock wave during the early planar shock state is confirmed by the high-resolution multi-material hydrocode originally developed for shock compression of condensed matter.« less

  7. Design and test of a simple fast electromagnetic inductive gas valve for planar pulsed inductive plasma thruster

    NASA Astrophysics Data System (ADS)

    Guo, Dawei; Cheng, Mousen; Li, Xiaokang

    2017-10-01

    In support of our planar pulsed inductive plasma thruster research, a fast electromagnetic inductive valve for a gas propellant injection system has been built and tested. A new and important design feature is the use of a conical diaphragm as the action part, which greatly contributes to the virtue of simplicity for adopting the resultant force of the diaphragm deformation as the closing force. An optical transmission technique is adopted to measure the opening and closing characters of the valve while the gas throughput is determined by measuring the pressure change per pulse in a test chamber with a capacitance manometer. The experimental results revealed that the delay time before the valve reaction is less than 40 μs, and the valve pulse width is no longer than 160 μs full width at half maximum. The valve delivers 0-2.5 mg of argon gas per pulse varied by adjusting the drive voltage and gas pressure.

  8. Design and test of a simple fast electromagnetic inductive gas valve for planar pulsed inductive plasma thruster.

    PubMed

    Guo, Dawei; Cheng, Mousen; Li, Xiaokang

    2017-10-01

    In support of our planar pulsed inductive plasma thruster research, a fast electromagnetic inductive valve for a gas propellant injection system has been built and tested. A new and important design feature is the use of a conical diaphragm as the action part, which greatly contributes to the virtue of simplicity for adopting the resultant force of the diaphragm deformation as the closing force. An optical transmission technique is adopted to measure the opening and closing characters of the valve while the gas throughput is determined by measuring the pressure change per pulse in a test chamber with a capacitance manometer. The experimental results revealed that the delay time before the valve reaction is less than 40 μs, and the valve pulse width is no longer than 160 μs full width at half maximum. The valve delivers 0-2.5 mg of argon gas per pulse varied by adjusting the drive voltage and gas pressure.

  9. Magnetization Processes in Ribbons of Soft Magnetic Amorphous Alloys

    NASA Astrophysics Data System (ADS)

    Skulkina, N. A.; Ivanov, O. A.; Mazeeva, A. K.; Kuznetsov, P. A.; Stepanova, E. A.; Blinova, O. V.; Mikhalitsyna, E. A.

    2018-02-01

    Using iron-based (Fe-B-Si-C; Fe-Ni-Si-B) and cobalt-based (Co-Fe-Ni-Cr-Mn-Si-B) soft magnetic alloys as examples, we have studied the dependences of the remanence measured using minor hysteresis loops on the maximum induction. The different degrees of stabilization of the 180° and 90° domain walls allows these dependences to be used to analyze the magnetization processes that occur in the rapidly quenched soft magnetic alloys. It has been established from the B r( B m) dependences that, in the ribbons of soft magnetic amorphous alloys, the processes of the rotation of the magnetization oriented perpendicular to the ribbon plane start before the end of the processes of the displacement of the walls of domains with planar magnetization. After the end of the magnetization rotation processes, the magnetization processes can be interpreted as the displacement of the domain walls with a planar magnetization accompanied by a decrease in their number and a transition to a bistable state.

  10. High-performance tandem organic light-emitting diodes based on a buffer-modified p/n-type planar organic heterojunction as charge generation layer

    NASA Astrophysics Data System (ADS)

    Wu, Yukun; Sun, Ying; Qin, Houyun; Hu, Shoucheng; Wu, Qingyang; Zhao, Yi

    2017-04-01

    High-performance tandem organic light-emitting diodes (TOLEDs) were realized using a buffer-modified p/n-type planar organic heterojunction (OHJ) as charge generation layer (CGL) consisting of common organic materials, and the configuration of this p/n-type CGL was "LiF/N,N'-diphenyl-N,N'-bis(1-napthyl)-1,1'-biphenyl-4,4'-diamine (NPB)/4,7-diphenyl-1,10-phenanthroline (Bphen)/molybdenum oxide (MoOx)". The optimized TOLED exhibited a maximum current efficiency of 77.6 cd/A without any out-coupling techniques, and the efficiency roll-off was greatly improved compared to the single-unit OLED. The working mechanism of the p/n-type CGL was discussed in detail. It is found that the NPB/Bphen heterojunction generated enough charges under a forward applied voltage and the carrier extraction was a tunneling process. These results could provide a new method to fabricate high-performance TOLEDs.

  11. Robotic radiosurgery system patient-specific QA for extracranial treatments using the planar ion chamber array and the cylindrical diode array.

    PubMed

    Lin, Mu-Han; Veltchev, Iavor; Koren, Sion; Ma, Charlie; Li, Jinsgeng

    2015-07-08

    Robotic radiosurgery system has been increasingly employed for extracranial treatments. This work is aimed to study the feasibility of a cylindrical diode array and a planar ion chamber array for patient-specific QA with this robotic radiosurgery system and compare their performance. Fiducial markers were implanted in both systems to enable image-based setup. An in-house program was developed to postprocess the movie file of the measurements and apply the beam-by-beam angular corrections for both systems. The impact of noncoplanar delivery was then assessed by evaluating the angles created by the incident beams with respect to the two detector arrangements and cross-comparing the planned dose distribution to the measured ones with/without the angular corrections. The sensitivity of detecting the translational (1-3 mm) and the rotational (1°-3°) delivery errors were also evaluated for both systems. Six extracranial patient plans (PTV 7-137 cm³) were measured with these two systems and compared with the calculated doses. The plan dose distributions were calculated with ray-tracing and the Monte Carlo (MC) method, respectively. With 0.8 by 0.8 mm² diodes, the output factors measured with the cylindrical diode array agree better with the commissioning data. The maximum angular correction for a given beam is 8.2% for the planar ion chamber array and 2.4% for the cylindrical diode array. The two systems demonstrate a comparable sensitivity of detecting the translational targeting errors, while the cylindrical diode array is more sensitive to the rotational targeting error. The MC method is necessary for dose calculations in the cylindrical diode array phantom because the ray-tracing algorithm fails to handle the high-Z diodes and the acrylic phantom. For all the patient plans, the cylindrical diode array/ planar ion chamber array demonstrate 100% / > 92% (3%/3 mm) and > 96% / ~ 80% (2%/2 mm) passing rates. The feasibility of using both systems for robotic radiosurgery system patient-specific QA has been demonstrated. For gamma evaluation, 2%/2 mm criteria for cylindrical diode array and 3%/3 mm criteria for planar ion chamber array are suggested. The customized angular correction is necessary as proven by the improved passing rate, especially with the planar ion chamber array system.

  12. Rapid and cost-effective determination of acrylamide in coffee by planar chromatography and fluorescence detection after derivatization with dansulfinic acid.

    PubMed

    Alpmann, Alexander; Morlock, Gertrud

    2009-01-01

    A new method has been developed for the determination of acrylamide in ground coffee by planar chromatography using prechromatographic in situ derivatization with dansulfinic acid. After pressurized fluid extraction of acrylamide from the coffee samples, the extracts were passed through activated carbon and concentrated. These extracts were applied onto a silica gel 60 HPTLC plate and oversprayed with dansulfinic acid. By heating the plate, acrylamide was derivatized into the fluorescent product dansylpropanamide. The chromatographic separation with ethyl acetate-tert.-butyl methyl ether (8 + 2, v/v) mobile phase was followed by densitometric quantification at 254/>400 nm using a 4 point calibration via the standard addition method over the whole system for which acrylamide was added at different concentrations at the beginning of the extraction process. The method was validated for commercial coffee. The linearity over the whole procedure showed determination coefficients between 0.9995 and 0.9825 (n = 6). Limit of quantitation at a signal-to-noise ratio of 10 was determined to be 48 microg/kg. The within-run precision (relative standard deviation, n = 6) of the chromatographic method was 3%. Commercial coffee samples analyzed showed acrylamide contents between 52 and 191 microg/kg, which was in correlation with amounts reported in previous publications.

  13. Identification of Instability Modes of Transition in Underexpanded Jets

    NASA Technical Reports Server (NTRS)

    Inman, Jennifer A.; Danehy, Paul M.; Nowak, Robert J.; Alderfer, David W.

    2008-01-01

    A series of experiments into the behavior of underexpanded jet flows has been conducted at NASA Langley Research Center. Two nozzles supplied with high-pressure gas were used to generate axisymmetric underexpanded jets exhausting into a low-pressure chamber. These nozzles had exit Mach numbers of 1 and 2.6, though this paper will present cases involving only the supersonic nozzle. Reynolds numbers based on nozzle exit conditions ranged from about 300 to 22,000, and nozzle exit-to-ambient jet pressure ratios ranged from about 1 to 25. For the majority of cases, the jet fluid was a mixture of 99.5% nitrogen seeded with 0.5% nitric oxide (NO). Planar laser-induced fluorescence (PLIF) of NO is used to visualize the flow, visualizing planar slices of the flow rather than path integrated measurements. In addition to revealing the size and location of flow structures, PLIF images were also used to identify unsteady jet behavior in order to quantify the conditions governing the transition to turbulent flow. Flow structures that contribute to the growth of flow instabilities have been identified, and relationships between Reynolds number and transition location are presented. By highlighting deviations from mean flow properties, PLIF images are shown to aide in the identification and characterization of flow instabilities and the resulting process of transition to turbulence.

  14. Structure and Optical Bandgap Relationship of π-Conjugated Systems

    PubMed Central

    Botelho, André Leitão; Shin, Yongwoo; Liu, Jiakai; Lin, Xi

    2014-01-01

    In bulk heterojunction photovoltaic systems both the open-circuit voltage as well as the short-circuit current, and hence the power conversion efficiency, are dependent on the optical bandgap of the electron-donor material. While first-principles methods are computationally intensive, simpler model Hamiltonian approaches typically suffer from one or more flaws: inability to optimize the geometries for their own input; absence of general, transferable parameters; and poor performance for non-planar systems. We introduce a set of new and revised parameters for the adapted Su-Schrieffer-Heeger (aSSH) Hamiltonian, which is capable of optimizing geometries, along with rules for applying them to any -conjugated system containing C, N, O, or S, including non-planar systems. The predicted optical bandgaps show excellent agreement to UV-vis spectroscopy data points from literature, with a coefficient of determination , a mean error of −0.05 eV, and a mean absolute deviation of 0.16 eV. We use the model to gain insights from PEDOT, fused thiophene polymers, poly-isothianaphthene, copolymers, and pentacene as sources of design rules in the search for low bandgap materials. Using the model as an in-silico design tool, a copolymer of benzodithiophenes along with a small-molecule derivative of pentacene are proposed as optimal donor materials for organic photovoltaics. PMID:24497944

  15. Distortion correction of echo planar images applying the concept of finite rate of innovation to point spread function mapping (FRIP).

    PubMed

    Nunes, Rita G; Hajnal, Joseph V

    2018-06-01

    Point spread function (PSF) mapping enables estimating the displacement fields required for distortion correction of echo planar images. Recently, a highly accelerated approach was introduced for estimating displacements from the phase slope of under-sampled PSF mapping data. Sampling schemes with varying spacing were proposed requiring stepwise phase unwrapping. To avoid unwrapping errors, an alternative approach applying the concept of finite rate of innovation to PSF mapping (FRIP) is introduced, using a pattern search strategy to locate the PSF peak, and the two methods are compared. Fully sampled PSF data was acquired in six subjects at 3.0 T, and distortion maps were estimated after retrospective under-sampling. The two methods were compared for both previously published and newly optimized sampling patterns. Prospectively under-sampled data were also acquired. Shift maps were estimated and deviations relative to the fully sampled reference map were calculated. The best performance was achieved when using FRIP with a previously proposed sampling scheme. The two methods were comparable for the remaining schemes. The displacement field errors tended to be lower as the number of samples or their spacing increased. A robust method for estimating the position of the PSF peak has been introduced.

  16. Toward 1-mm depth precision with a solid state full-field range imaging system

    NASA Astrophysics Data System (ADS)

    Dorrington, Adrian A.; Carnegie, Dale A.; Cree, Michael J.

    2006-02-01

    Previously, we demonstrated a novel heterodyne based solid-state full-field range-finding imaging system. This system is comprised of modulated LED illumination, a modulated image intensifier, and a digital video camera. A 10 MHz drive is provided with 1 Hz difference between the LEDs and image intensifier. A sequence of images of the resulting beating intensifier output are captured and processed to determine phase and hence distance to the object for each pixel. In a previous publication, we detailed results showing a one-sigma precision of 15 mm to 30 mm (depending on signal strength). Furthermore, we identified the limitations of the system and potential improvements that were expected to result in a range precision in the order of 1 mm. These primarily include increasing the operating frequency and improving optical coupling and sensitivity. In this paper, we report on the implementation of these improvements and the new system characteristics. We also comment on the factors that are important for high precision image ranging and present configuration strategies for best performance. Ranging with sub-millimeter precision is demonstrated by imaging a planar surface and calculating the deviations from a planar fit. The results are also illustrated graphically by imaging a garden gnome.

  17. Accuracy of maximum likelihood estimates of a two-state model in single-molecule FRET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopich, Irina V.

    2015-01-21

    Photon sequences from single-molecule Förster resonance energy transfer (FRET) experiments can be analyzed using a maximum likelihood method. Parameters of the underlying kinetic model (FRET efficiencies of the states and transition rates between conformational states) are obtained by maximizing the appropriate likelihood function. In addition, the errors (uncertainties) of the extracted parameters can be obtained from the curvature of the likelihood function at the maximum. We study the standard deviations of the parameters of a two-state model obtained from photon sequences with recorded colors and arrival times. The standard deviations can be obtained analytically in a special case when themore » FRET efficiencies of the states are 0 and 1 and in the limiting cases of fast and slow conformational dynamics. These results are compared with the results of numerical simulations. The accuracy and, therefore, the ability to predict model parameters depend on how fast the transition rates are compared to the photon count rate. In the limit of slow transitions, the key parameters that determine the accuracy are the number of transitions between the states and the number of independent photon sequences. In the fast transition limit, the accuracy is determined by the small fraction of photons that are correlated with their neighbors. The relative standard deviation of the relaxation rate has a “chevron” shape as a function of the transition rate in the log-log scale. The location of the minimum of this function dramatically depends on how well the FRET efficiencies of the states are separated.« less

  18. Accuracy of maximum likelihood estimates of a two-state model in single-molecule FRET

    PubMed Central

    Gopich, Irina V.

    2015-01-01

    Photon sequences from single-molecule Förster resonance energy transfer (FRET) experiments can be analyzed using a maximum likelihood method. Parameters of the underlying kinetic model (FRET efficiencies of the states and transition rates between conformational states) are obtained by maximizing the appropriate likelihood function. In addition, the errors (uncertainties) of the extracted parameters can be obtained from the curvature of the likelihood function at the maximum. We study the standard deviations of the parameters of a two-state model obtained from photon sequences with recorded colors and arrival times. The standard deviations can be obtained analytically in a special case when the FRET efficiencies of the states are 0 and 1 and in the limiting cases of fast and slow conformational dynamics. These results are compared with the results of numerical simulations. The accuracy and, therefore, the ability to predict model parameters depend on how fast the transition rates are compared to the photon count rate. In the limit of slow transitions, the key parameters that determine the accuracy are the number of transitions between the states and the number of independent photon sequences. In the fast transition limit, the accuracy is determined by the small fraction of photons that are correlated with their neighbors. The relative standard deviation of the relaxation rate has a “chevron” shape as a function of the transition rate in the log-log scale. The location of the minimum of this function dramatically depends on how well the FRET efficiencies of the states are separated. PMID:25612692

  19. Power-Smoothing Scheme of a DFIG Using the Adaptive Gain Depending on the Rotor Speed and Frequency Deviation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hyewon; Hwang, Min; Muljadi, Eduard

    In an electric power grid that has a high penetration level of wind, the power fluctuation of a large-scale wind power plant (WPP) caused by varying wind speeds deteriorates the system frequency regulation. This paper proposes a power-smoothing scheme of a doubly-fed induction generator (DFIG) that significantly mitigates the system frequency fluctuation while preventing over-deceleration of the rotor speed. The proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combination with the maximum power point tracking control loop. To improve the power-smoothing capability while preventing over-deceleration of the rotor speed, the gain ofmore » the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. In conclusion, the simulation results based on the IEEE 14-bus system clearly demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WPP under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less

  20. Power-Smoothing Scheme of a DFIG Using the Adaptive Gain Depending on the Rotor Speed and Frequency Deviation

    DOE PAGES

    Lee, Hyewon; Hwang, Min; Muljadi, Eduard; ...

    2017-04-18

    In an electric power grid that has a high penetration level of wind, the power fluctuation of a large-scale wind power plant (WPP) caused by varying wind speeds deteriorates the system frequency regulation. This paper proposes a power-smoothing scheme of a doubly-fed induction generator (DFIG) that significantly mitigates the system frequency fluctuation while preventing over-deceleration of the rotor speed. The proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combination with the maximum power point tracking control loop. To improve the power-smoothing capability while preventing over-deceleration of the rotor speed, the gain ofmore » the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. In conclusion, the simulation results based on the IEEE 14-bus system clearly demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WPP under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less

  1. Geomorphological control on variably saturated hillslope hydrology and slope instability

    USGS Publications Warehouse

    Giuseppe, Formetta; Simoni, Silvia; Godt, Jonathan W.; Lu, Ning; Rigon, Riccardo

    2016-01-01

    In steep topography, the processes governing variably saturated subsurface hydrologic response and the interparticle stresses leading to shallow landslide initiation are physically linked. However, these processes are usually analyzed separately. Here, we take a combined approach, simultaneously analyzing the influence of topography on both hillslope hydrology and the effective stress fields within the hillslope itself. Clearly, runoff and saturated groundwater flow are dominated by gravity and, ultimately, by topography. Less clear is how landscape morphology influences flows in the vadose zone, where transient fluxes are usually taken to be vertical. We aim to assess and quantify the impact of topography on both saturated and unsaturated hillslope hydrology and its effects on shallow slope stability. Three real hillslope morphologies (concave, convex, and planar) are analyzed using a 3-D, physically based, distributed model coupled with a module for computation of the probability of failure, based on the infinite slope assumption. The results of the analyses, which included parameter uncertainty analysis of the results themselves, show that convex and planar slopes are more stable than concave slopes. Specifically, under the same initial, boundary, and infiltration conditions, the percentage of unstable areas ranges from 1.3% for the planar hillslope, 21% for convex, to a maximum value of 33% for the concave morphology. The results are supported by a sensitivity analysis carried out to examine the effect of initial conditions and rainfall intensity.

  2. Planar seismic source characterization models developed for probabilistic seismic hazard assessment of Istanbul

    NASA Astrophysics Data System (ADS)

    Gülerce, Zeynep; Buğra Soyman, Kadir; Güner, Barış; Kaymakci, Nuretdin

    2017-12-01

    This contribution provides an updated planar seismic source characterization (SSC) model to be used in the probabilistic seismic hazard assessment (PSHA) for Istanbul. It defines planar rupture systems for the four main segments of the North Anatolian fault zone (NAFZ) that are critical for the PSHA of Istanbul: segments covering the rupture zones of the 1999 Kocaeli and Düzce earthquakes, central Marmara, and Ganos/Saros segments. In each rupture system, the source geometry is defined in terms of fault length, fault width, fault plane attitude, and segmentation points. Activity rates and the magnitude recurrence models for each rupture system are established by considering geological and geodetic constraints and are tested based on the observed seismicity that is associated with the rupture system. Uncertainty in the SSC model parameters (e.g., b value, maximum magnitude, slip rate, weights of the rupture scenarios) is considered, whereas the uncertainty in the fault geometry is not included in the logic tree. To acknowledge the effect of earthquakes that are not associated with the defined rupture systems on the hazard, a background zone is introduced and the seismicity rates in the background zone are calculated using smoothed-seismicity approach. The state-of-the-art SSC model presented here is the first fully documented and ready-to-use fault-based SSC model developed for the PSHA of Istanbul.

  3. OH PLIF Visualization of the UVa Supersonic Combustion Experiment: Configuration A

    NASA Technical Reports Server (NTRS)

    Johansen, Craig T.; McRae, Colin D.; Danehy, Paul M.; Gallo, Emanuela; Cantu, Luca Maria Luigi; Magnotti, Gaetano; Cutler, Andrew D.; Rockwell, Robert D.; Goyne, Christopher P.; McDaniel, James C.

    2012-01-01

    Hydroxyl radical (OH) planar laser-induced fluorescence (PLIF) measurements were performed in the University of Virginia s dual-mode scramjet experiment. The test section was set up in configuration A, which includes a Mach 2 nozzle, combustor, and extender section. Hydrogen fuel was injected through an unswept compression ramp at two different equivalence ratios. Through the translation of the optical system and the use of two separate camera views, the entire optical range of the combustor was accessed. Single-shot, average, and standard deviation images of the OH PLIF signal are presented at several streamwise locations. The results show the development of a highly turbulent flame structure and provide an experimental database to be used for numerical model assessment.

  4. Mechanism of equivalent electric dipole oscillation for high-order harmonic generation from grating-structured solid-surface by femtosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Song, Hai-Ying; Liu, H. Y.; Liu, Shi-Bing

    2017-07-01

    We theoretically study high-order harmonic generation (HHG) from relativistically driven overdense plasma targets with rectangularly grating-structured surfaces by femtosecond laser pulses. Our particle-in-cell (PIC) simulations show that, under the conditions of low laser intensity and plasma density, the harmonics emit principally along small angles deviating from the target surface. Further investigation of the surface electron dynamics reveals that the electron bunches are formed by the interaction between the laser field and the target surface, giving rise to the oscillation of equivalent electric-dipole (OEED), which enhances specific harmonic orders. Our work helps understand the mechanism of harmonic emissions from grating targets and the distinction from the planar harmonic scheme.

  5. 5-Bromo-N-methyl­pyrimidin-2-amine

    PubMed Central

    Yang, Qi; Xu, Ning; Zhu, Kai; Lv, Xiaoping; Han, Ping-fang

    2012-01-01

    In the title mol­ecule, C5H6BrN3, the pyrimidine ring is essentially planar, with an r.m.s. deviation of 0.007 Å. The Br and N atoms substituted to the pyrimidine ring are coplanar with the ring [displacements = 0.032 (1) and 0.009 (5) Å, respectively], while the methyl C atom lies 0.100 (15) Å from this plane with a dihedral angle between the pyrimidine ring and the methyl­amine group of 4.5 (3)°. In the crystal, C—H⋯N, C—H⋯Br and N—H⋯N hydrogen bonds link the mol­ecules into a two-dimensional network in the (011) plane. PMID:22259398

  6. OH PLIF Visualization of the UVa Supersonic Combustion Experiment: Configuration A

    NASA Technical Reports Server (NTRS)

    Johansen, Craig T.; McRae, Colin D.; Danehy, Paul M.; Gallo, Emanuela C. A.; Cantu, Luca M. L.; Magnotti, Gaetano; Cutler, Andrew D.; Rockwell, Robert D., Jr.; Goyne, Chris P.; McDaniel, James C.

    2013-01-01

    Hydroxyl radical (OH) planar laser-induced fluorescence (PLIF) measurements were performed in the University of Virginia supersonic combustion experiment. The test section was set up in configuration A, which includes a Mach 2 nozzle, combustor, and extender section. Hydrogen fuel was injected through an unswept compression ramp at two different equivalence ratios. Through the translation of the optical system and the use of two separate camera views, the entire optically accessible range of the combustor was imaged. Single-shot, average, and standard deviation images of the OH PLIF signal are presented at several streamwise locations. The results show the development of a highly turbulent flame structure and provide an experimental database to be used for numerical model assessment.

  7. N-(3-Chloro-4-eth­oxy-1-methyl-1H-indazol-5-yl)-4-meth­oxy­benzene­sulfonamide

    PubMed Central

    Chicha, Hakima; Rakib, El Mostapha; Hannioui, Abdellah; Saadi, Mohamed; El Ammari, Lahcen

    2014-01-01

    The indazole ring system of the title compound, C17H18ClN3O4S, is almost planar (r.m.s. deviation = 0.0113 Å) and forms dihedral angles of 32.22 (8) and 57.5 (3)° with the benzene ring and the mean plane through the 4-eth­oxy group, respectively. In the crystal, mol­ecules are connected by pairs of N—H⋯O hydrogen bonds into inversion dimers, which are further linked by π–π inter­actions between the diazole rings [inter­centroid distance = 3.4946 (11) Å], forming chains parallel to [101]. PMID:24940259

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    N, Rekha T.; Rajkumar, Beulah J. M., E-mail: beulah-rajkumar@yahoo.co.in

    Charge transfer properties of pentacene adsorbed on silver is investigated using DFT methods. Optimized geometry of pentacene after adsorption on silver indicates distortion in hexagonal structure of the ring close to the silver cluster and deviations in co-planarity of carbon atoms due to the variations in bond angles and dihedral angles. Theoretically simulated absorption spectrum has a symmetric surface plasmon resonance peak around 486nm corresponding to the transfer of charge from HOMO-2 to LUMO. Theoretical SERS confirms the process of adsorption, tilted orientation of pentacene on silver surface and the charge transfers reported. Localization of electron density arising from redistributionmore » of electrostatic potential together with a reduced bandgap of pentacene after adsorption on silver suggests its utility in the design of electro active organic semiconducting devices.« less

  9. Experimental Investigation of Unsteady Shock Wave Turbulent Boundary Layer Interactions About a Blunt Fin

    NASA Technical Reports Server (NTRS)

    Barnhart, Paul J.; Greber, Isaac

    1997-01-01

    A series of experiments were performed to investigate the effects of Mach number variation on the characteristics of the unsteady shock wave/turbulent boundary layer interaction generated by a blunt fin. A single blunt fin hemicylindrical leading edge diameter size was used in all of the experiments which covered the Mach number range from 2.0 to 5.0. The measurements in this investigation included surface flow visualization, static and dynamic pressure measurements, both on centerline and off-centerline of the blunt fin axis. Surface flow visualization and static pressure measurements showed that the spatial extent of the shock wave/turbulent boundary layer interaction increased with increasing Mach number. The maximum static pressure, normalized by the incoming static pressure, measured at the peak location in the separated flow region ahead of the blunt fin was found to increase with increasing Mach number. The mean and standard deviations of the fluctuating pressure signals from the dynamic pressure transducers were found to collapse to self-similar distributions as a function of the distance perpendicular to the separation line. The standard deviation of the pressure signals showed initial peaked distribution, with the maximum standard deviation point corresponding to the location of the separation line at Mach number 3.0 to 5.0. At Mach 2.0 the maximum standard deviation point was found to occur significantly upstream of the separation line. The intermittency distributions of the separation shock wave motion were found to be self-similar profiles for all Mach numbers. The intermittent region length was found to increase with Mach number and decrease with interaction sweepback angle. For Mach numbers 3.0 to 5.0 the separation line was found to correspond to high intermittencies or equivalently to the downstream locus of the separation shock wave motion. The Mach 2.0 tests, however, showed that the intermittent region occurs significantly upstream of the separation line. Power spectral densities measured in the intermittent regions were found to have self-similar frequency distributions when compared as functions of a Strouhal number for all Mach numbers and interaction sweepback angles. The maximum zero-crossing frequencies were found to correspond with the peak frequencies in the power spectra measured in the intermittent region.

  10. Experimental shock metamorphism of maximum microcline

    NASA Technical Reports Server (NTRS)

    Robertson, P. B.

    1975-01-01

    A series of recovery experiments are conducted to study the behavior of single-crystal perthitic maximum microcline shock-loaded to a peak pressure of 417 kbar. Microcline is found to deform in a manner similar to quartz and other alkali feldspars. It is observed that shock-induced cleavages occur initially at or slightly below the Hugoniot elastic limit (60-85 kbar), that shock-induced rather than thermal disordering begins above the Hugoniot elastic limit, and that all types of planar elements form parallel to crystallographic planes of low Miller indices. When increasing pressure, it is found that bulk density, refractive indices, and birefringence of the recovered material decrease and approach diaplectic glass values, whereas disappearance and weakening of reflections in Debye-Sherrer patterns are due to disordering of the feldspar lattice.

  11. Experimental investigation of inlet-combustor isolators for a dual-mode scramjet at a Mach number of 4

    NASA Technical Reports Server (NTRS)

    Emami, Saied; Trexler, Carl A.; Auslender, Aaron H.; Weidner, John P.

    1995-01-01

    This report details experimentally derived operational characteristics of numerous two-dimensional planar inlet-combustor isolator configurations at a Mach number of 4. Variations in geometry included (1) inlet cowl length; (2) inlet cowl rotation angle; (3) isolator length; and (4) utilization of a rearward-facing isolator step. To obtain inlet-isolator maximum pressure-rise data relevant to ramjet-engine combustion operation, configurations were mechanically back pressured. Results demonstrated that the combined inlet-isolator maximum back-pressure capability increases as a function of isolator length and contraction ratio, and that the initiation of unstart is nearly independent of inlet cowl length, inlet cowl contraction ratio, and mass capture. Additionally, data are presented quantifying the initiation of inlet unstarts and the corresponding unstart pressure levels.

  12. Enhanced response of a proteinase K-based conductometric biosensor using nanoparticles.

    PubMed

    Nouira, Wided; Maaref, Abderrazak; Elaissari, Hamid; Vocanson, Francis; Siadat, Maryam; Jaffrezic-Renault, Nicole

    2014-07-23

    Proteinases are involved in a multitude of important physiological processes, such as protein metabolism. For this reason, a conductometric enzyme biosensor based on proteinase K was developed using two types of nanoparticles (gold and magnetic). The enzyme was directly adsorbed on negatively charged nanoparticles and then deposited and cross-linked on a planar interdigitated electrode (IDE). The biosensor was characterized with bovine serum albumin (BSA) as a standard protein. Higher sensitivity was obtained using gold nanoparticles. The linear range for BSA determination was then from 0.5 to 10 mg/L with a maximum response of 154 µs. These results are greater than that found without any nanoparticles (maximum response of 10 µs). The limit of detection (LOD) was 0.3 mg/L. An inter-sensor reproducibility of 3.5% was obtained.

  13. Periodic Trojan-type orbits in the earth-sun system

    NASA Technical Reports Server (NTRS)

    Weissman, P. R.; Wetherill, G. W.

    1974-01-01

    Periodic orbits about the triangular equilibrium points are found for the planar restricted three-body problem using the earth-sun system. The maximum semimajor axis for tadpole orbits ranges from the infinitesimal orbit at 1.000 AU to the near-limiting orbit at 1.00285 AU. Horseshoe orbits are found for 1.0029 to 1.0080 AU, larger horseshoes being unstable because of close approaches to the earth. Using stability tests devised by Rabe (1961, 1962), the limit of stability for nonperiodic orbits is found to occur for maximum semimajor axes near 1.0020 AU. In addition, near-periodic tadpole orbits appear to be stable against perturbations by Jupiter and Venus for periods of at least 10,000 yr. The possibility that minor planets actually exist in such orbits is considered.

  14. Multichannel infrared fiber optic radiometer for controlled microwave heating

    NASA Astrophysics Data System (ADS)

    Drizlikh, S.; Zur, Albert; Katzir, Abraham

    1990-07-01

    An infrared fiberoptic multichannel radiometer was used for monitoring and controlling the temperature of samples in a microwave heating system. The temperature of water samples was maintained at about 40 °C, with a standard deviation of +/- 0.2°C and a maximum deviation of +/- 0.5°C. The temperature was monitored on the same time at several points on the surface and inside the sample. This novel controlled system is reliable and precise. Such system would be very useful for medical applications such as hypothermia and hyperthermi a.

  15. Highly sensitive biochemical sensor utilizing Bragg grating in submicron Si/SiO2 waveguides

    NASA Astrophysics Data System (ADS)

    Tripathi, Saurabh Mani; Kumar, Arun; Meunier, Jean-Pierre; Marin, Emmanuel

    2009-05-01

    We present a novel highly sensitive biochemical sensor based on a Bragg grating written in the cladding region of a submicron planar Si/SiO2 waveguide. Owing to the high refractive index contrast at the Si/SiO2 boundary the TM modal power is relatively high in low refractive index sensing region, leading to higher sensitivity in this configuration [1]. Waveguide parameters have been optimized to obtain maximum modal power in the sensing region (PSe) and an optimum core width corresponding to maximum sensitivity is found to exist while operating in TM mode configuration, as has been shown in Fig. 1. It has been found that operating in TM mode configuration at optimum core width the structure exhibits extremely high sensitivity, ~ 5×10-6 RIU - 1.35×10-6 RIU for the ambient refractive indices between 1.33 - 1.63. Such high sensitivities are typically attainable for Surface Plasmon Polariton (SPP) based biosensors and is much higher than any non SPP based sensors. Being free from any metallic layer or bulky prism the structure is easy to realize. Owing to its simple structure and small dimensions the proposed sensor can be integrated with planar lightwave circuits and could be used in handy lab-on-a-chip devices. The device may find application in highly sensitive biological/chemical sensing areas in civil and defense sectors where analyzing the samples at the point of need is required rather than sending it to some centralized laboratory.

  16. Transient, polarity-dependent dielectric response in a twisted nematic liquid crystal under very low frequency excitation.

    PubMed

    Krishnamurthy, K S

    2015-09-01

    The electric Freedericksz transition is a second-order quadratic effect, which, in a planarly aligned nematic liquid crystal layer, manifests above a threshold field as a homogeneous symmetric distortion with maximum director-tilt in the midplane. We find that, upon excitation by a low frequency (<0.2Hz) square-wave field, the instability becomes spatially and temporally varying. This is demonstrated using calamitic liquid crystals, initially in the 90°-twisted planar configuration. The distortion occurs close to the negative electrode following each polarity switch and, for low-voltage amplitudes, decays completely in time. We use the elastically favorable geometry of Brochard-Leger walls to establish the location of maximum distortion. Thus, at successive polarity changes, the direction of extension of both annular and open walls switches between the alignment directions at the two substrates. For high voltages, this direction is largely along the midplane director, while remaining marginally oscillatory. These results are broadly understood by taking into account the time-varying and inhomogeneous field conditions that prevail soon after the polarity reverses. Polarity dependence of the instability is traced to the formation of intrinsic double layers that lead to an asymmetry in field distribution in the presence of an external bias. Momentary field elevation near the negative electrode following a voltage sign reversal leads to locally enhanced dielectric and gradient flexoelectric torques, which accounts for the surface-like phenomenon observed at low voltages. These spatiotemporal effects, also found earlier for other instabilities, are generic in nature.

  17. Research on material removal accuracy analysis and correction of removal function during ion beam figuring

    NASA Astrophysics Data System (ADS)

    Wu, Weibin; Dai, Yifan; Zhou, Lin; Xu, Mingjin

    2016-09-01

    Material removal accuracy has a direct impact on the machining precision and efficiency of ion beam figuring. By analyzing the factors suppressing the improvement of material removal accuracy, we conclude that correcting the removal function deviation and reducing the removal material amount during each iterative process could help to improve material removal accuracy. Removal function correcting principle can effectively compensate removal function deviation between actual figuring and simulated processes, while experiments indicate that material removal accuracy decreases with a long machining time, so a small amount of removal material in each iterative process is suggested. However, more clamping and measuring steps will be introduced in this way, which will also generate machining errors and suppress the improvement of material removal accuracy. On this account, a free-measurement iterative process method is put forward to improve material removal accuracy and figuring efficiency by using less measuring and clamping steps. Finally, an experiment on a φ 100-mm Zerodur planar is preformed, which shows that, in similar figuring time, three free-measurement iterative processes could improve the material removal accuracy and the surface error convergence rate by 62.5% and 17.6%, respectively, compared with a single iterative process.

  18. GENERAL P, TYPE-I S, AND TYPE-II S WAVES IN ANELASTIC SOLIDS; INHOMOGENEOUS WAVE FIELDS IN LOW-LOSS SOLIDS.

    USGS Publications Warehouse

    Borcherdt, Roger D.; Wennerberg, Leif

    1985-01-01

    The physical characteristics for general plane-wave radiation fields in an arbitrary linear viscoelastic solid are derived. Expressions for the characteristics of inhomogeneous wave fields, derived in terms of those for homogeneous fields, are utilized to specify the characteristics and a set of reference curves for general P and S wave fields in arbitrary viscoelastic solids as a function of wave inhomogeneity and intrinsic material absorption. The expressions show that an increase in inhomogeneity of the wave fields cause the velocity to decrease, the fractional-energy loss (Q** minus **1) to increase, the deviation of maximum energy flow with respect to phase propagation to increase, and the elliptical particle motions for P and type-I S waves to approach circularity. Q** minus **1 for inhomogeneous type-I S waves is shown to be greater than that for type-II S waves, with the deviation first increasing then decreasing with inhomogeneity. The mean energy densities (kinetic, potential, and total), the mean rate of energy dissipation, the mean energy flux, and Q** minus **1 for inhomogeneous waves are shown to be greater than corresponding characteristics for homogeneous waves, with the deviations increasing as the inhomogeneity is increased for waves of fixed maximum displacement amplitude.

  19. Accurate cell counts in live mouse embryos using optical quadrature and differential interference contrast microscopy

    NASA Astrophysics Data System (ADS)

    Warger, William C., II; Newmark, Judith A.; Zhao, Bing; Warner, Carol M.; DiMarzio, Charles A.

    2006-02-01

    Present imaging techniques used in in vitro fertilization (IVF) clinics are unable to produce accurate cell counts in developing embryos past the eight-cell stage. We have developed a method that has produced accurate cell counts in live mouse embryos ranging from 13-25 cells by combining Differential Interference Contrast (DIC) and Optical Quadrature Microscopy. Optical Quadrature Microscopy is an interferometric imaging modality that measures the amplitude and phase of the signal beam that travels through the embryo. The phase is transformed into an image of optical path length difference, which is used to determine the maximum optical path length deviation of a single cell. DIC microscopy gives distinct cell boundaries for cells within the focal plane when other cells do not lie in the path to the objective. Fitting an ellipse to the boundary of a single cell in the DIC image and combining it with the maximum optical path length deviation of a single cell creates an ellipsoidal model cell of optical path length deviation. Subtracting the model cell from the Optical Quadrature image will either show the optical path length deviation of the culture medium or reveal another cell underneath. Once all the boundaries are used in the DIC image, the subtracted Optical Quadrature image is analyzed to determine the cell boundaries of the remaining cells. The final cell count is produced when no more cells can be subtracted. We have produced exact cell counts on 5 samples, which have been validated by Epi-Fluorescence images of Hoechst stained nuclei.

  20. Experimental Verification of the Streamline Curvature Numerical Analysis Method Applied to the Flow through an Axial Flow Fan.

    DTIC Science & Technology

    1980-05-28

    Total Deviation Angles and Measured Inlet Axial Velocity . . . . 55 ix LIST OF FIGURES (Continued) Figure Page 19 Points Defining Blade Sections of...distance from leading edge to point of maximum camber along chord line ar tip vortex core radius AVR axial velocity ratio (Vx /V x c chord length CL tip...yaw ceoefficient d longitudinal distance from leading edge to tip vortex calculation point G distance from chord line to maximum camber point K cascade

  1. Implementation of a dose gradient method into optimization of dose distribution in prostate cancer 3D-CRT plans

    PubMed Central

    Giżyńska, Marta K.; Kukołowicz, Paweł F.; Kordowski, Paweł

    2014-01-01

    Aim The aim of this work is to present a method of beam weight and wedge angle optimization for patients with prostate cancer. Background 3D-CRT is usually realized with forward planning based on a trial and error method. Several authors have published a few methods of beam weight optimization applicable to the 3D-CRT. Still, none on these methods is in common use. Materials and methods Optimization is based on the assumption that the best plan is achieved if dose gradient at ICRU point is equal to zero. Our optimization algorithm requires beam quality index, depth of maximum dose, profiles of wedged fields and maximum dose to femoral heads. The method was tested for 10 patients with prostate cancer, treated with the 3-field technique. Optimized plans were compared with plans prepared by 12 experienced planners. Dose standard deviation in target volume, and minimum and maximum doses were analyzed. Results The quality of plans obtained with the proposed optimization algorithms was comparable to that prepared by experienced planners. Mean difference in target dose standard deviation was 0.1% in favor of the plans prepared by planners for optimization of beam weights and wedge angles. Introducing a correction factor for patient body outline for dose gradient at ICRU point improved dose distribution homogeneity. On average, a 0.1% lower standard deviation was achieved with the optimization algorithm. No significant difference in mean dose–volume histogram for the rectum was observed. Conclusions Optimization shortens very much time planning. The average planning time was 5 min and less than a minute for forward and computer optimization, respectively. PMID:25337411

  2. Maximum Entropy, Word-Frequency, Chinese Characters, and Multiple Meanings

    PubMed Central

    Yan, Xiaoyong; Minnhagen, Petter

    2015-01-01

    The word-frequency distribution of a text written by an author is well accounted for by a maximum entropy distribution, the RGF (random group formation)-prediction. The RGF-distribution is completely determined by the a priori values of the total number of words in the text (M), the number of distinct words (N) and the number of repetitions of the most common word (kmax). It is here shown that this maximum entropy prediction also describes a text written in Chinese characters. In particular it is shown that although the same Chinese text written in words and Chinese characters have quite differently shaped distributions, they are nevertheless both well predicted by their respective three a priori characteristic values. It is pointed out that this is analogous to the change in the shape of the distribution when translating a given text to another language. Another consequence of the RGF-prediction is that taking a part of a long text will change the input parameters (M, N, kmax) and consequently also the shape of the frequency distribution. This is explicitly confirmed for texts written in Chinese characters. Since the RGF-prediction has no system-specific information beyond the three a priori values (M, N, kmax), any specific language characteristic has to be sought in systematic deviations from the RGF-prediction and the measured frequencies. One such systematic deviation is identified and, through a statistical information theoretical argument and an extended RGF-model, it is proposed that this deviation is caused by multiple meanings of Chinese characters. The effect is stronger for Chinese characters than for Chinese words. The relation between Zipf’s law, the Simon-model for texts and the present results are discussed. PMID:25955175

  3. Social smile reproducibility using 3-D stereophotogrammetry and reverse engineering technology.

    PubMed

    Dindaroğlu, Furkan; Duran, Gökhan Serhat; Görgülü, Serkan; Yetkiner, Enver

    2016-05-01

    To assess the range of social smile reproducibility using 3-D stereophotogrammetry and reverse engineering technology. Social smile images of white adolescents (N  =  15, mean age  =  15.4 ±1.5 years; range  =  14-17 years) were obtained using 3dMDFlex (3dMD, Atlanta, Ga). Each participant was asked to produce 16 social smiles at 3-minute intervals. All images were obtained in natural head position. Alignment of images, segmentation of smile area, and 3-D deviation analysis were carried out using Geomagic Control software (3D Systems Inc, Cary, NC). A single image was taken as a reference, and the remaining 15 images were compared with the reference image to evaluate positive and negative deviations. The differences between the mean deviation limits of participants with the highest and the lowest deviations and the total mean deviations were evaluated using Bland-Altman Plots. Minimum and maximum deviations of a single image from the reference image were 0.34 and 2.69 mm, respectively. Lowest deviation between two images was within 0.5 mm and 1.54 mm among all participants (mean, 0.96 ± 0.21 mm), and the highest deviation was between 0.41 mm and 2.69 mm (mean, 1.53 ± 0.46 mm). For a single patient, when all alignments were considered together, the mean deviation was between 0.32 ± 0.10 mm and 0.59 ± 0.24 mm. Mean deviation for one image was between 0.14 and 1.21 mm. The range of reproducibility of the social smile presented individual variability, but this variation was not clinically significant or detectable under routine clinical observation.

  4. River gradient anomalies reveal recent tectonic movements when assuming an exponential gradient decrease along a river course

    NASA Astrophysics Data System (ADS)

    Žibret, Gorazd; Žibret, Lea

    2017-03-01

    High resolution digital models, combined with GIS or other terrain modelling software, allow many new possibilities in geoscience. In this paper we develop, describe and test a novel method, the GLA method, to detect active tectonic uplift or subsidence along river courses. It is a modification of Hack's SL-index method in order to overcome the disadvantages of the latter. The core assumption of the GLA method is that over geological time river profiles quickly adjust to follow an exponential decrease in elevation along the river course. Any large deviation can be attributed to active tectonic movement, or to disturbances in erosion/sedimentation processes caused by an anthropogenic structure (e.g. artificial dam). During the testing phase, the locations of identified deviations were compared to the locations of faults, identified on a 1:100,000 geological map. Results show that higher magnitude deviations are found within a maximum radius of 200 m from the fault, and the majority of detected deviations within a maximum radius of 600 m from faults or thrusts. However, these results are not the best that could be obtained because the geological map that was used (and the only one available for the area) is not of the appropriate scale, and was therefore not precise enough. Comparison of deviation magnitudes against PSInSAR measurements of vertical displacements in the vicinity revealed that in spite of the very few suitable points available, a good correlation between both independent methods was obtained (R2 = 0.68 for the E research area and R2 = 0.69 for the W research area). The GLA method was applied to the three test sites where previous studies have shown active tectonic movements. It shows that deviations occur at the intersections between active faults and river courses, as well as also correctly detected active uplift, attributed to the increased sedimentation rate above an artificial hydropower dam, and an increased erosion rate below. The method gives promising results, and it is acknowledged that the GLA method needs to be tested in other locations around the world.

  5. SU-F-T-640: Feasibility of Using a Commercially Available Surface Guided Radiotherapy System with An Open-Face SRS Immobilization System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinsky, B; Patel, R; Roeske, J

    Purpose: To evaluate the inherent accuracy of using a surface guided radiotherapy system (SGRT) in the setup and monitoring of patients receiving stereotactic radiosurgery with an open-face SRS immobilization system. Methods: An anthropomorphic head phantom was set up using the Qfix Encompass SRS Immobilization System on a Varian Edge with OSMS and Varian TrueBeam with AlignRT. The phantom was positioned at 0° gantry and couch. A reference image was acquired using the SGRT system and an ROI was created over the mask opening. The couch and gantry were rotated to different combinations focusing on clinically used SRS gantry/couch combinations andmore » those blocking the SGRT cameras. Perceived surface deviation by the SGRT system from the reference image was recorded. A Winston-Lutz test was performed on couch angles tested and used to exclude couch walkout. The deviation magnitude was calculated using translational values and rotational raw values were recorded. Results: The maximum couch walkouts were: 0.4mm (Edge) and 0.5mm (TB). Solely rotating the gantry resulted in a median couch deviation of 0.2mm and range of 0.1–0.3mm for both linacs. Only rotating the couch (0° gantry) resulted in median deviations of 0.6mm and 0.5mm with ranges of 0.3–1.0mm and 0.3–0.7mm for the Edge and TB, respectively. Combining gantry and couch rotations, the median deviations were 0.7mm and 0.9mm with ranges of 0.3–1.1mm and 0.2–1.9mm for the Edge and TB, respectively. Including all combinations, rotation, roll, and pitch median deviations ranged from 0.1–0.3° with pitch demonstrating consistently higher values and a maximum deviation of 1.0° (both linacs). Conclusion: SGRT is a reliable monitoring tool, though taking into account system fluctuations, 1mm is too restrictive a site tolerance to use with the Qfix Encompass mask. Gantry rotation has little effect on system fluctuation even with camera blockage, whereas couch rotation has a larger effect.« less

  6. Control of a three-dimensional turbulent shear layer by means of oblique vortices

    NASA Astrophysics Data System (ADS)

    Jürgens, Werner; Kaltenbach, Hans-Jakob

    2018-04-01

    The effect of local forcing on the separated, three-dimensional shear layer downstream of a backward-facing step is investigated by means of large-eddy simulation for a Reynolds number based on the step height of 10,700. The step edge is either oriented normal to the approaching turbulent boundary layer or swept at an angle of 40°. Oblique vortices with different orientation and spacing are generated by wavelike suction and blowing of fluid through an edge parallel slot. The vortices exhibit a complex three-dimensional structure, but they can be characterized by a wavevector in a horizontal section plane. In order to determine the step-normal component of the wavevector, a method is developed based on phase averages. The dependence of the wavevector on the forcing parameters can be described in terms of a dispersion relation, the structure of which indicates that the disturbances are mainly convected through the fluid. The introduced vortices reduce the size of the recirculation region by up to 38%. In both the planar and the swept case, the most efficient of the studied forcings consists of vortices which propagate in a direction that deviates by more than 50° from the step normal. These vortices exhibit a spacing in the order of 2.5 step heights. The upstream shift of the reattachment line can be explained by increased mixing and momentum transport inside the shear layer which is reflected in high levels of the Reynolds shear stress -ρ \\overline{u'v'}. The position of the maximum of the coherent shear stress is found to depend linearly on the wavelength, similar to two-dimensional free shear layers.

  7. Determination of linear defect depths from eddy currents disturbances

    NASA Astrophysics Data System (ADS)

    Ramos, Helena Geirinhas; Rocha, Tiago; Pasadas, Dário; Ribeiro, Artur Lopes

    2014-02-01

    One of the still open problems in the inspection research concerns the determination of the maximum depth to which a surface defect goes. Eddy current testing being one of the most sensitive well established inspection methods, able to detect and characterize different type of defects in conductive materials, is an adequate technique to solve this problem. This paper reports a study concerning the disturbances in the magnetic field and in the lines of current due to a machined linear defect having different depths in order to extract relevant information that allows the determination of the defect characteristics. The image of the eddy currents (EC) is paramount to understand the physical phenomena involved. The EC images for this study are generated using a commercial finite element model (FLUX). The excitation used produces a uniform magnetic field on the plate under test in the absence of defects and the disturbances due to the defects are compared with those obtained from experimental measurements. In order to increase the limited penetration depth of the method giant magnetoresistors (GMR) are used to lower the working frequency. The geometry of the excitation planar coil produces a uniform magnetic field on an area of around the GMR sensor, inducing a uniform eddy current distribution on the plate. In the presence of defects in the material surface, the lines of currents inside the material are deviated from their uniform direction and the magnetic field produced by these currents is sensed by the GMR sensor. Besides the theoretical study of the electromagnetic system, the paper describes the experiments that have been carried out to support the theory and conclusions are drawn for cracks having different depths.

  8. Modeling the Deflection of Polarized Electrons with Energies in the Range 3.35-14 GeV in a Bent Silicon Crystal

    NASA Astrophysics Data System (ADS)

    Koshcheev, V. P.; Shtanov, Yu. N.; Morgun, D. A.; Panina, T. A.

    2018-04-01

    The evolution of the magnetic moment of a relativistic particle is described with the help of the Bargmann-Michel-Telegdi equation in the planar channels of a bent silicon crystal with allowance for multiple scatteringboth along and transverse to the (111) atomic plane, which consists of <110> chains. Results of numerical simulations demonstrate a strong dependence of the degree of depolarization of the electron beam on the energy since at the energies 3.35 and 4.2 GeV the maximum in the distribution over rotation angles of the electron spin is absent, and at energies from 6.3 to 14 GeV the position of the maximum is in line with the theoretical estimate obtained using the formula of V. L. Lyuboshits.

  9. System and method of vehicle operating condition management

    DOEpatents

    Sujan, Vivek A.; Vajapeyazula, Phani; Follen, Kenneth; Wu, An; Moffett, Barty L.

    2015-10-20

    A vehicle operating condition profile can be determined over a given route while also considering imposed constraints such as deviation from time targets, deviation from maximum governed speed limits, etc. Given current vehicle speed, engine state and transmission state, the present disclosure optimally manages the engine map and transmission to provide a recommended vehicle operating condition that optimizes fuel consumption in transitioning from one vehicle state to a target state. Exemplary embodiments provide for offline and online optimizations relative to fuel consumption. The benefit is increased freight efficiency in transporting cargo from source to destination by minimizing fuel consumption and maintaining drivability.

  10. A product Pearson-type VII density distribution

    NASA Astrophysics Data System (ADS)

    Nadarajah, Saralees; Kotz, Samuel

    2008-01-01

    The Pearson-type VII distributions (containing the Student's t distributions) are becoming increasing prominent and are being considered as competitors to the normal distribution. Motivated by real examples in decision sciences, Bayesian statistics, probability theory and Physics, a new Pearson-type VII distribution is introduced by taking the product of two Pearson-type VII pdfs. Various structural properties of this distribution are derived, including its cdf, moments, mean deviation about the mean, mean deviation about the median, entropy, asymptotic distribution of the extreme order statistics, maximum likelihood estimates and the Fisher information matrix. Finally, an application to a Bayesian testing problem is illustrated.

  11. Diagnostics for insufficiencies of posterior calculations in Bayesian signal inference.

    PubMed

    Dorn, Sebastian; Oppermann, Niels; Ensslin, Torsten A

    2013-11-01

    We present an error-diagnostic validation method for posterior distributions in Bayesian signal inference, an advancement of a previous work. It transfers deviations from the correct posterior into characteristic deviations from a uniform distribution of a quantity constructed for this purpose. We show that this method is able to reveal and discriminate several kinds of numerical and approximation errors, as well as their impact on the posterior distribution. For this we present four typical analytical examples of posteriors with incorrect variance, skewness, position of the maximum, or normalization. We show further how this test can be applied to multidimensional signals.

  12. Machine-Specific Magnetic Resonance Imaging Quality Control Procedures for Stereotactic Radiosurgery Treatment Planning

    PubMed Central

    Taghizadeh, Somayeh; Yang, Claus Chunli; R. Kanakamedala, Madhava; Morris, Bart; Vijayakumar, Srinivasan

    2017-01-01

    Purpose Magnetic resonance (MR) images are necessary for accurate contouring of intracranial targets, determination of gross target volume and evaluation of organs at risk during stereotactic radiosurgery (SRS) treatment planning procedures. Many centers use magnetic resonance imaging (MRI) simulators or regular diagnostic MRI machines for SRS treatment planning; while both types of machine require two stages of quality control (QC), both machine- and patient-specific, before use for SRS, no accepted guidelines for such QC currently exist. This article describes appropriate machine-specific QC procedures for SRS applications. Methods and materials We describe the adaptation of American College of Radiology (ACR)-recommended QC tests using an ACR MRI phantom for SRS treatment planning. In addition, commercial Quasar MRID3D and Quasar GRID3D phantoms were used to evaluate the effects of static magnetic field (B0) inhomogeneity, gradient nonlinearity, and a Leksell G frame (SRS frame) and its accessories on geometrical distortion in MR images. Results QC procedures found in-plane distortions (Maximum = 3.5 mm, Mean = 0.91 mm, Standard deviation = 0.67 mm, >2.5 mm (%) = 2) in X-direction (Maximum = 2.51 mm, Mean = 0.52 mm, Standard deviation = 0.39 mm, > 2.5 mm (%) = 0) and in Y-direction (Maximum = 13. 1 mm , Mean = 2.38 mm, Standard deviation = 2.45 mm, > 2.5 mm (%) = 34) in Z-direction and < 1 mm distortion at a head-sized region of interest. MR images acquired using a Leksell G frame and localization devices showed a mean absolute deviation of 2.3 mm from isocenter. The results of modified ACR tests were all within recommended limits, and baseline measurements have been defined for regular weekly QC tests. Conclusions With appropriate QC procedures in place, it is possible to routinely obtain clinically useful MR images suitable for SRS treatment planning purposes. MRI examination for SRS planning can benefit from the improved localization and planning possible with the superior image quality and soft tissue contrast achieved under optimal conditions. PMID:29487771

  13. Machine-Specific Magnetic Resonance Imaging Quality Control Procedures for Stereotactic Radiosurgery Treatment Planning.

    PubMed

    Fatemi, Ali; Taghizadeh, Somayeh; Yang, Claus Chunli; R Kanakamedala, Madhava; Morris, Bart; Vijayakumar, Srinivasan

    2017-12-18

    Purpose Magnetic resonance (MR) images are necessary for accurate contouring of intracranial targets, determination of gross target volume and evaluation of organs at risk during stereotactic radiosurgery (SRS) treatment planning procedures. Many centers use magnetic resonance imaging (MRI) simulators or regular diagnostic MRI machines for SRS treatment planning; while both types of machine require two stages of quality control (QC), both machine- and patient-specific, before use for SRS, no accepted guidelines for such QC currently exist. This article describes appropriate machine-specific QC procedures for SRS applications. Methods and materials We describe the adaptation of American College of Radiology (ACR)-recommended QC tests using an ACR MRI phantom for SRS treatment planning. In addition, commercial Quasar MRID 3D and Quasar GRID 3D phantoms were used to evaluate the effects of static magnetic field (B 0 ) inhomogeneity, gradient nonlinearity, and a Leksell G frame (SRS frame) and its accessories on geometrical distortion in MR images. Results QC procedures found in-plane distortions (Maximum = 3.5 mm, Mean = 0.91 mm, Standard deviation = 0.67 mm, >2.5 mm (%) = 2) in X-direction (Maximum = 2.51 mm, Mean = 0.52 mm, Standard deviation = 0.39 mm, > 2.5 mm (%) = 0) and in Y-direction (Maximum = 13. 1 mm , Mean = 2.38 mm, Standard deviation = 2.45 mm, > 2.5 mm (%) = 34) in Z-direction and < 1 mm distortion at a head-sized region of interest. MR images acquired using a Leksell G frame and localization devices showed a mean absolute deviation of 2.3 mm from isocenter. The results of modified ACR tests were all within recommended limits, and baseline measurements have been defined for regular weekly QC tests. Conclusions With appropriate QC procedures in place, it is possible to routinely obtain clinically useful MR images suitable for SRS treatment planning purposes. MRI examination for SRS planning can benefit from the improved localization and planning possible with the superior image quality and soft tissue contrast achieved under optimal conditions.

  14. 2-Amino-5-chloro-pyrimidin-1-ium hydrogen maleate.

    PubMed

    Fun, Hoong-Kun; Hemamalini, Madhukar; Rajakannan, Venkatachalam

    2012-01-01

    In the title salt, C(4)H(5)ClN(3) (+)·C(4)H(3)O(4) (-), the 2-amino-5-chloro-pyrimidinium cation is protonated at one of its pyrimidine N atoms. In the roughly planar (r.m.s. deviation = 0.026 Å) hydrogen malate anion, an intra-molecular O-H⋯O hydrogen bond generates an S(7) ring. In the crystal, the protonated N atom and the 2-amino group of the cation are hydrogen bonded to the carboxyl-ate O atoms of the anion via a pair of N-H⋯O hydrogen bonds, forming an R(2) (2)(8) ring motif. The ion pairs are connected via further N-H⋯O hydrogen bonds and a short C-H⋯O inter-action, forming layers lying parallel to the bc plane.

  15. Charge transfer properties of pentacene adsorbed on silver: DFT study

    NASA Astrophysics Data System (ADS)

    N, Rekha T.; Rajkumar, Beulah J. M.

    2015-06-01

    Charge transfer properties of pentacene adsorbed on silver is investigated using DFT methods. Optimized geometry of pentacene after adsorption on silver indicates distortion in hexagonal structure of the ring close to the silver cluster and deviations in co-planarity of carbon atoms due to the variations in bond angles and dihedral angles. Theoretically simulated absorption spectrum has a symmetric surface plasmon resonance peak around 486nm corresponding to the transfer of charge from HOMO-2 to LUMO. Theoretical SERS confirms the process of adsorption, tilted orientation of pentacene on silver surface and the charge transfers reported. Localization of electron density arising from redistribution of electrostatic potential together with a reduced bandgap of pentacene after adsorption on silver suggests its utility in the design of electro active organic semiconducting devices.

  16. Processing and optical properties of Nd3+-doped SiO2-TiO2-Al2O3 planar waveguides

    NASA Astrophysics Data System (ADS)

    Xiang, Qing; Zhou, Yan; Ooi, Boon Siew; Lam, Yee Loy; Chan, Yuen Chuen; Kam, Chan Hin

    2000-05-01

    We report here the processing and optical characterization of Nd3+-doped SiO2-TiO2-Al2O3 planar waveguides deposited on SOS substrates by the sol-gel route combined with spin-coating and rapid thermal annealing. The recipes used for preparing the solutions by sol-gel route are in mole ratio of 93SiO2:20AlO1.5: x ErO1.5. In order to verify the residual OH content in the films, FTIR spectra were measured and the morphology of the material by the XRD analysis. Five 2-layer films annealed at a maximum temperature of 500 degrees C, 700 degrees C, 900 degrees, 1000 degrees C, 1100 degrees C respectively were fabricated on silicon. The FTIR and XRD curves show that annealing at 1050 degrees C for 15s effectively removes the OH in the materia and keeps the material amorphous. The propagation loss of the planar waveguides was measured by using the method based on scattering in measurements and the result was obtained to be 1.54dB/cm. The fluorescence spectra were measured with 514nm wavelength of Ar+ laser by directly shining the pump beam on the film instead of prism coupling. The results show that the 1 mole Nd3+ content recipe has the strongest emission efficiency among the four samples investigated.

  17. Effects of doping concentration ratio on electrical characterization in pseudomorphic HEMT-based MMIC switches for ICT system

    NASA Astrophysics Data System (ADS)

    Mun, Jae-Kyoung; Oh, Jung-Hun; Sung, Ho-Kun; Wang, Cong

    2015-12-01

    The effects of the doping concentration ratios between upper and lower silicon planar-doping layers on the DC and RF characteristics of the double planar doped pseudomorphic high electron mobility transistors (pHEMTs) are investigated. From the device simulation, an increase of maximum extrinsic transconductance and a decrease of total on- and off-state capacitances are observed, as well as an increase of the upper to lower planar-doping concentration ratios (UTLPDR), which give rise to an enhancement of the switching speed and isolation characteristics. On the basis of simulation results, two types of pHEMTs are fabricated with two different UTLPDRs of 4:1 and 1:2. After applying these two types' pHEMTs, single-pole-double-throw (SPDT) transmitter/receiver monolithic microwave integrated circuit (MMIC) switches are also designed and fabricated. The SPDT MMIC switch with a 4:1 UTLPDR shows an insertion loss of 0.58 dB, isolation of 40.2 dB, and switching speed of 100 ns, respectively, which correspondingly indicate a 0.23 dB lower insertion loss, 2.90 dB higher isolation and 2.5 times faster switching speed than those of 1:2 UTLPDR at frequency range of 2-6 GHz. From the simulation results and comparative studies, we propose that the UTLPDR must be greater than 4:1 for the best switching performance. With the abovementioned excellent performances, the proposed switch would be quite promising in the application of information and communications technology system.

  18. Variability of medial and posterior offset in patients with fourth-generation stemmed shoulder arthroplasty.

    PubMed

    Irlenbusch, Ulrich; Berth, Alexander; Blatter, Georges; Zenz, Peter

    2012-03-01

    Most anthropometric data on the proximal humerus has been obtained from deceased healthy individuals with no deformities. Endoprostheses are implanted for primary and secondary osteoarthritis, rheumatoid arthritis,humeral-head necrosis, fracture sequelae and other humeral-head deformities. This indicates that pathologicoanatomical variability may be greater than previously assumed. We therefore investigated a group of patients with typical shoulder replacement diagnoses, including posttraumatic and rheumatic deformities. One hundred and twenty-two patients with a double eccentrically adjustable shaft endoprosthesis served as a specific dimension gauge to determine in vivo the individual humeral-head rotation centres from the position of the adjustable prosthesis taper and the eccentric head. All prosthesis heads were positioned eccentrically.The entire adjustment range of the prosthesis of 12 mm medial/lateral and 6 mm dorsal/ventral was required. Mean values for effective offset were 5.84 mm mediolaterally[standard deviation (SD) 1.95, minimum +2, maximum +11]and 1.71 mm anteroposteriorly (SD 1.71, minimum −3,maximum 3 mm), averaging 5.16 mm (SD 1.76, minimum +2,maximum + 10). The posterior offset averaged 1.85 mm(SD 1.85, minimum −1, maximum + 6 mm). In summary, variability of the combined medial and dorsal offset of the humeral-head rotational centre determined in patients with typical underlying diagnoses in shoulder replacement was not greater than that recorded in the literature for healthy deceased patients.The range of deviation is substantial and shows the need for an adjustable prosthetic system.

  19. Shear thinning effects on blood flow in straight and curved tubes

    NASA Astrophysics Data System (ADS)

    Cherry, Erica M.; Eaton, John K.

    2013-07-01

    Simulations were performed to determine the magnitude and types of errors one can expect when approximating blood in large arteries as a Newtonian fluid, particularly in the presence of secondary flows. This was accomplished by running steady simulations of blood flow in straight and curved tubes using both Newtonian and shear-thinning viscosity models. In the shear-thinning simulations, the viscosity was modeled as a shear rate-dependent function fit to experimental data. Simulations in straight tubes were modeled after physiologically relevant arterial flows, and flow parameters for the curved tube simulations were chosen to examine a variety of secondary flow strengths. The diameters ranged from 1 mm to 10 mm and the Reynolds numbers from 24 to 1500. Pressure and velocity data are reported for all simulations. In the straight tube simulations, the shear-thinning flows had flattened velocity profiles and higher pressure gradients compared to the Newtonian simulations. In the curved tube flows, the shear-thinning simulations tended to have blunted axial velocity profiles, decreased secondary flow strengths, and decreased axial vorticity compared to the Newtonian simulations. The cross-sectionally averaged pressure drops in the curved tubes were higher in the shear-thinning flows at low Reynolds number but lower at high Reynolds number. The maximum deviation in secondary flow magnitude averaged over the cross sectional area was 19% of the maximum secondary flow and the maximum deviation in axial vorticity was 25% of the maximum vorticity.

  20. Weibull Modulus Estimated by the Non-linear Least Squares Method: A Solution to Deviation Occurring in Traditional Weibull Estimation

    NASA Astrophysics Data System (ADS)

    Li, T.; Griffiths, W. D.; Chen, J.

    2017-11-01

    The Maximum Likelihood method and the Linear Least Squares (LLS) method have been widely used to estimate Weibull parameters for reliability of brittle and metal materials. In the last 30 years, many researchers focused on the bias of Weibull modulus estimation, and some improvements have been achieved, especially in the case of the LLS method. However, there is a shortcoming in these methods for a specific type of data, where the lower tail deviates dramatically from the well-known linear fit in a classic LLS Weibull analysis. This deviation can be commonly found from the measured properties of materials, and previous applications of the LLS method on this kind of dataset present an unreliable linear regression. This deviation was previously thought to be due to physical flaws ( i.e., defects) contained in materials. However, this paper demonstrates that this deviation can also be caused by the linear transformation of the Weibull function, occurring in the traditional LLS method. Accordingly, it may not be appropriate to carry out a Weibull analysis according to the linearized Weibull function, and the Non-linear Least Squares method (Non-LS) is instead recommended for the Weibull modulus estimation of casting properties.

  1. Effect of Spring-in Deviation on Fatigue Life of Composite Elevator Assembly

    NASA Astrophysics Data System (ADS)

    Wang, Hua

    2017-12-01

    The spring-in deviation results in the extra stresses around the joints of the composite C-beam and metallic parts when they are assembled together. These extra stresses affect the composite elevator's fatigue life, which should be explored with the fatigue experimentation. The paper presents the experimental investigation on the effect of spring-in deviation on the fatigue life of the composite elevator assembly. The investigation seeks to build the relationship between the spring-in and the fatigue life in order to determine the spring-in threshold during the course of assembling. The phenomenological model of the composite C-beam is constructed to predict the stresses around the joints. Based on the predicted spring-in induced stresses around the joints, pre-stresses are precisely added to the fatigue specimen when conducting the fatigue experiment. At last, the relationship curve of the spring-in on the composite C-beam's fatigue life is obtained from the experimental data. Giving the fatigue life accepting limits, the maximum accepting spring-in deviation during the course of assembling could be obtained from the relationship curve. The reported work will enhance the understanding of assembling the composites with spring-in deviation in the civil aircraft industry.

  2. Correlation between dynamic contrast-enhanced perfusion MRI relative cerebral blood volume and vascular endothelial growth factor expression in meningiomas.

    PubMed

    Ginat, Daniel T; Mangla, Rajiv; Yeaney, Gabrielle; Schaefer, Pamela W; Wang, Henry

    2012-08-01

    To determine whether there is a correlation between vascular endothelial growth factor (VEGF) expression and cerebral blood flow (CBV) measurements in dynamic contrast-enhanced susceptibility perfusion magnetic resonance imaging (MRI) and to correlate the perfusion characteristics in high- versus low-grade meningiomas. A total of 48 (24 high-grade and 24 low-grade) meningiomas with available dynamic susceptibility-weighted MRI were retrospectively reviewed for maximum CBV and semiquantitative VEGF immunoreactivity. Correlation between normalized CBV and VEGF was made using the Spearman rank test and comparison between CBV in high- versus low-grade meningiomas was made using the Wilcoxon test. There was a significant (P = .01) correlation between normalized maximum CBV and VEGF scores with a Spearman correlation coefficient of 0.37. In addition, there was a significant (P < .01) difference in normalized maximum CBV ratios between high-grade meningiomas (mean 12.6; standard deviation 5.2) and low-grade meningiomas (mean 8.2; standard deviation 5.2). The data suggest that CBV accurately reflects VEGF expression and tumor grade in meningiomas. Perfusion-weighted MRI can potentially serve as a useful biomarker for meningiomas, pending prospective studies. Copyright © 2012 AUR. Published by Elsevier Inc. All rights reserved.

  3. Oxysterols in cosmetics-Determination by planar solid phase extraction and gas chromatography-mass spectrometry.

    PubMed

    Schrack, S; Hohl, C; Schwack, W

    2016-11-18

    Sterol oxidation products (SOPs) are linked to several toxicological effects. Therefore, investigation of potential dietary uptake sources particularly food of animal origin has been a key issue for these compounds. For the simultaneous determination of oxysterols from cholesterol, phytosterols, dihydrolanosterol and lanosterol in complex cosmetic matrices, planar solid phase extraction (pSPE) was applied as clean-up tool. SOPs were first separated from more non-polar and polar matrix constituents by normal phase thin-layer chromatography and then focussed into one target zone. Zone extraction was performed with the TLC-MS interface, followed by gas chromatography-mass spectrometry analysis. pSPE showed to be effective for cleaning up cosmetic samples as sample extracts were free of interferences, and gas chromatographic columns did not show any signs of overloading. Recoveries were between 86 and 113% with relative standard deviations of below 10% (n=6). Results of our market survey in 2016 showed that some cosmetics with ingredients of plant origin contained phytosterol oxidation products (POPs) in the low ppm range and therefore in line with levels reported for food. In lanolin containing products, total SOPs levels (cholesterol oxidation products (COPs), lanosterol oxidation products (LOPs), dihydrolanosterol oxidation products (DOPs)) being in the low percent range exceeded reported levels for food by several orders of magnitudes. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Two-Stage Design Method for Enhanced Inductive Energy Transmission with Q-Constrained Planar Square Loops.

    PubMed

    Eteng, Akaa Agbaeze; Abdul Rahim, Sharul Kamal; Leow, Chee Yen; Chew, Beng Wah; Vandenbosch, Guy A E

    2016-01-01

    Q-factor constraints are usually imposed on conductor loops employed as proximity range High Frequency Radio Frequency Identification (HF-RFID) reader antennas to ensure adequate data bandwidth. However, pairing such low Q-factor loops in inductive energy transmission links restricts the link transmission performance. The contribution of this paper is to assess the improvement that is reached with a two-stage design method, concerning the transmission performance of a planar square loop relative to an initial design, without compromise to a Q-factor constraint. The first stage of the synthesis flow is analytical in approach, and determines the number and spacing of turns by which coupling between similar paired square loops can be enhanced with low deviation from the Q-factor limit presented by an initial design. The second stage applies full-wave electromagnetic simulations to determine more appropriate turn spacing and widths to match the Q-factor constraint, and achieve improved coupling relative to the initial design. Evaluating the design method in a test scenario yielded a more than 5% increase in link transmission efficiency, as well as an improvement in the link fractional bandwidth by more than 3%, without violating the loop Q-factor limit. These transmission performance enhancements are indicative of a potential for modifying proximity HF-RFID reader antennas for efficient inductive energy transfer and data telemetry links.

  5. Alternans and Spiral Breakup in an Excitable Reaction-Diffusion System: A Simulation Study

    PubMed Central

    Gani, M. Osman; Ogawa, Toshiyuki

    2014-01-01

    The determination of the mechanisms of spiral breakup in excitable media is still an open problem for researchers. In the context of cardiac electrophysiological activities, spiral breakup exhibits complex spatiotemporal pattern known as ventricular fibrillation. The latter is the major cause of sudden cardiac deaths all over the world. In this paper, we numerically study the instability of periodic planar traveling wave solution in two dimensions. The emergence of stable spiral pattern is observed in the considered model. This pattern occurs when the heart is malfunctioning (i.e., ventricular tachycardia). We show that the spiral wave breakup is a consequence of the transverse instability of the planar traveling wave solutions. The alternans, that is, the oscillation of pulse widths, is observed in our simulation results. Moreover, we calculate the widths of spiral pulses numerically and observe that the stable spiral pattern bifurcates to an oscillatory wave pattern in a one-parameter family of solutions. The spiral breakup occurs far below the bifurcation when the maximum and the minimum excited states become more distinct, and hence the alternans becomes more pronounced. PMID:27379274

  6. Alternans and Spiral Breakup in an Excitable Reaction-Diffusion System: A Simulation Study.

    PubMed

    Gani, M Osman; Ogawa, Toshiyuki

    2014-01-01

    The determination of the mechanisms of spiral breakup in excitable media is still an open problem for researchers. In the context of cardiac electrophysiological activities, spiral breakup exhibits complex spatiotemporal pattern known as ventricular fibrillation. The latter is the major cause of sudden cardiac deaths all over the world. In this paper, we numerically study the instability of periodic planar traveling wave solution in two dimensions. The emergence of stable spiral pattern is observed in the considered model. This pattern occurs when the heart is malfunctioning (i.e., ventricular tachycardia). We show that the spiral wave breakup is a consequence of the transverse instability of the planar traveling wave solutions. The alternans, that is, the oscillation of pulse widths, is observed in our simulation results. Moreover, we calculate the widths of spiral pulses numerically and observe that the stable spiral pattern bifurcates to an oscillatory wave pattern in a one-parameter family of solutions. The spiral breakup occurs far below the bifurcation when the maximum and the minimum excited states become more distinct, and hence the alternans becomes more pronounced.

  7. Robust, low-noise, polarization-maintaining mode-locked Er-fiber laser with a planar lightwave circuit (PLC) device as a multi-functional element.

    PubMed

    Kim, Chur; Kwon, Dohyeon; Kim, Dohyun; Choi, Sun Young; Cha, Sang Jun; Choi, Ki Sun; Yeom, Dong-Il; Rotermund, Fabian; Kim, Jungwon

    2017-04-15

    We demonstrate a new planar lightwave circuit (PLC)-based device, integrated with a 980/1550 wavelength division multiplexer, an evanescent-field-interaction-based saturable absorber, and an output tap coupler, which can be employed as a multi-functional element in mode-locked fiber lasers. Using this multi-functional PLC device, we demonstrate a simple, robust, low-noise, and polarization-maintaining mode-locked Er-fiber laser. The measured full-width at half-maximum bandwidth is 6 nm centered at 1555 nm, corresponding to 217 fs transform-limited pulse duration. The measured RIN and timing jitter are 0.22% [10 Hz-10 MHz] and 6.6 fs [10 kHz-1 MHz], respectively. Our results show that the non-gain section of mode-locked fiber lasers can be easily implemented as a single PLC chip that can be manufactured by a wafer-scale fabrication process. The use of PLC processes in mode-locked lasers has the potential for higher manufacturability of low-cost and robust fiber and waveguide lasers.

  8. Flexible printed circuit board actuators

    NASA Astrophysics Data System (ADS)

    Lee, Junseok; Cha, Youngsu

    2017-12-01

    Out-of-plane actuators are made possible by the breaking of planar symmetry. In this paper, we present a thin-film out-of-plane electrostatic actuator for a flexible printed circuit board (FPCB) that can be fabricated with a single step of the conventional manufacturing process. No other components are required for actuation except a single sheet of the FPCB, and it works based on the planar asymmetry resulting from asymmetrically patterned top and bottom electrodes on each side of the polyimide film. With the structural asymmetry, the application of a high voltage in the order of kilovolts results in the asymmetry of the electric fields and the body force density, which generates the bending moment that leads to macroscopic deformations. We applied the finite element method to examine the asymmetry induced by the difference in the electrodes. In the experiment, the displacement responses to step input and square wave input of various frequencies were analyzed. It was found that our actuator constitutes an underdamped system, exhibiting resonance characteristics. The maximum oscillatory amplitude was determined at resonance, and the relationship between the displacement and the applied voltage was investigated.

  9. Boron ion beam generation utilizing lanthanum hexaboride cathodes: Comparison of vacuum arc and planar magnetron glow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolaev, A. G.; Vizir, A. V.; Yushkov, G. Yu., E-mail: gyushkov@mail.ru

    Boron ion beams are widely used for semiconductor ion implantation and for surface modification for improving the operating parameters and increasing the lifetime of machine parts and tools. For the latter application, the purity requirements of boron ion beams are not as stringent as for semiconductor technology, and a composite cathode of lanthanum hexaboride may be suitable for the production of boron ions. We have explored the use of two different approaches to boron plasma production: vacuum arc and planar high power impulse magnetron in self-sputtering mode. For the arc discharge, the boron plasma is generated at cathode spots, whereasmore » for the magnetron discharge, the main process is sputtering of cathode material. We present here the results of comparative test experiments for both kinds of discharge, aimed at determining the optimal discharge parameters for maximum yield of boron ions. For both discharges, the extracted ion beam current reaches hundreds of milliamps and the fraction of boron ions in the total extracted ion beam is as high as 80%.« less

  10. Microheterogeneity in binary mixtures of water with CH3OH and CD3OH: ATR-IR spectroscopic, chemometric and DFT studies

    NASA Astrophysics Data System (ADS)

    Tomza, Paweł; Wrzeszcz, Władysław; Mazurek, Sylwester; Szostak, Roman; Czarnecki, Mirosław Antoni

    2018-05-01

    Here we report ATR-IR spectroscopic study on the separation at a molecular level (microheterogeneity) and the degree of deviation of H2O/CH3OH and H2O/CD3OH mixtures from the ideal mixture. Of particular interest is the effect of isotopic substitution in methyl group on molecular structure and interactions in both mixtures. To obtain comprehensive information from the multivariate data we applied the excess molar absorptivity spectra together with two-dimensional correlation analysis (2DCOS) and chemometric methods. In addition, the experimental results were compared and discussed with the structures of various model clusters obtained from theoretical (DFT) calculations. Our results evidence the presence of separation at a molecular level and deviation from the ideal mixture for both mixtures. The experimental and theoretical results show that the maximum of these deviations appears at equimolar mixture. Both mixtures consist of three kinds of species: homoclusters of water and methanol and mixed clusters (heteroclusters). The heteroclusters exist in the whole range of mole fractions with the maximum close to the equimolar mixture. At this mixture composition near 55-60% of molecules are involved in heteroclusters. In contrast, the homoclusters of water occur in a limited range of mole fractions (XME < 0.85-0.9). Upon mixing the molecules of methanol form weaker hydrogen bonding as compared with the pure alcohol. In contrast, the molecules of water in the mixture are involved in stronger hydrogen bonding than those in bulk water. All these results indicate that both mixtures have similar degree of deviation from the ideal mixture.

  11. Microheterogeneity in binary mixtures of water with CH3OH and CD3OH: ATR-IR spectroscopic, chemometric and DFT studies.

    PubMed

    Tomza, Paweł; Wrzeszcz, Władysław; Mazurek, Sylwester; Szostak, Roman; Czarnecki, Mirosław Antoni

    2018-05-15

    Here we report ATR-IR spectroscopic study on the separation at a molecular level (microheterogeneity) and the degree of deviation of H 2 O/CH 3 OH and H 2 O/CD 3 OH mixtures from the ideal mixture. Of particular interest is the effect of isotopic substitution in methyl group on molecular structure and interactions in both mixtures. To obtain comprehensive information from the multivariate data we applied the excess molar absorptivity spectra together with two-dimensional correlation analysis (2DCOS) and chemometric methods. In addition, the experimental results were compared and discussed with the structures of various model clusters obtained from theoretical (DFT) calculations. Our results evidence the presence of separation at a molecular level and deviation from the ideal mixture for both mixtures. The experimental and theoretical results show that the maximum of these deviations appears at equimolar mixture. Both mixtures consist of three kinds of species: homoclusters of water and methanol and mixed clusters (heteroclusters). The heteroclusters exist in the whole range of mole fractions with the maximum close to the equimolar mixture. At this mixture composition near 55-60% of molecules are involved in heteroclusters. In contrast, the homoclusters of water occur in a limited range of mole fractions (X ME  < 0.85-0.9). Upon mixing the molecules of methanol form weaker hydrogen bonding as compared with the pure alcohol. In contrast, the molecules of water in the mixture are involved in stronger hydrogen bonding than those in bulk water. All these results indicate that both mixtures have similar degree of deviation from the ideal mixture. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. [Estimation of Maximum Entrance Skin Dose during Cerebral Angiography].

    PubMed

    Kawauchi, Satoru; Moritake, Takashi; Hayakawa, Mikito; Hamada, Yusuke; Sakuma, Hideyuki; Yoda, Shogo; Satoh, Masayuki; Sun, Lue; Koguchi, Yasuhiro; Akahane, Keiichi; Chida, Koichi; Matsumaru, Yuji

    2015-09-01

    Using radio-photoluminescence glass dosimeter, we measured the entrance skin dose (ESD) in 46 cases and analyzed the correlations between maximum ESD and angiographic parameters [total fluoroscopic time (TFT); number of digital subtraction angiography (DSA) frames, air kerma at the interventional reference point (AK), and dose-area product (DAP)] to estimate the maximum ESD in real time. Mean (± standard deviation) maximum ESD, dose of the right lens, and dose of the left lens were 431.2 ± 135.8 mGy, 33.6 ± 15.5 mGy, and 58.5 ± 35.0 mGy, respectively. Correlation coefficients (r) between maximum ESD and TFT, number of DSA frames, AK, and DAP were r=0.379 (P<0.01), r=0.702 (P<0.001), r=0.825 (P<0.001), and r=0.709 (P<0.001), respectively. AK was identified as the most useful parameter for real-time prediction of maximum ESD. This study should contribute to the development of new diagnostic reference levels in our country.

  13. SU-F-T-571: Objective Assessment of 3D Dosimetry for Flattened and Flattened Filter Free Stereotactic Rotational Delivery Using 729-Array Detector with Octavius 4D Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vikraman, S; Arun, C; Jain, K Sandeep

    2016-06-15

    Purpose: The purpose of this study was to assess the potential of 3D dosimetry for flattened and flattened filter free stereotactic rotational delivery in high definition MLC using 729-detector array with Octavius 4D phantom Methods: Twenty rapid arc plans were assessed for this study. For each patient two plans for 6X and 6FFF photon beams were generated with same prescription and critical organ constraints in Eclipse TPS version 13.0 using high definition MLC. Verification plans were generated in scanned Octavius 4D phantom in TPS. 3D dose measurements were collected from 729-ion chamber detector array in Octavius 4D phantom using verisoftmore » software v 6.0. TPS calculated dose was compared with measured 3D dose in verisoft using the following gamma analysis parameters such as 3D volumetric, 3D planar and 2D global gamma in transverse, sagittal and coronal planes for 3mm/3% and 2mm/2% distance to agreement criteria.Passing rate and arithmetic mean of global gamma were analysed for 2D and 3D global gamma in all planes. Results: The average number of dose points passing rate for 2D global gamma with 3mm/3% criteria in transverse, sagittal and coronal planes was 99.06%±2.89%, 98.8%±0.88% and 99.06%±91%, respectively. For 2mm/2% criteria 97.86%±2.26%, 94.49± 2.64% and 94.34%±2.9% was observed. In 3D planar global gamma with 3mm/3% was 99.53%±0.49%, 98.93%±1.03% and 99.29%±1.29%, for 2mm 2% criteria was 97.50%±2.24%, 94.5%±2.5% and 95.38%±4.5%. The maximum arithmetic mean gamma deviation of 0.505%±0.13% was observed in coronal plane for 2D global gamma with 2mm/2% criteria. The 3D volumetric gamma passing rate was observed as 99.61%±0.433% for 3mm /3% and 95.91%±2.51% for 2mm/2%. Conclusion: The objective assessment of 3D dosimetry have demonstrated that the rotational delivery accuracy for flattened and flattened filter free stereotactic plans can be verified by using Octavius system comprising with 729 ion chamber array and Octavius 4D phantom.« less

  14. Automated construction of an intraoperative high-dose-rate treatment plan library for the Varian brachytherapy treatment planning system.

    PubMed

    Deufel, Christopher L; Furutani, Keith M; Dahl, Robert A; Haddock, Michael G

    2016-01-01

    The ability to create treatment plans for intraoperative high-dose-rate (IOHDR) brachytherapy is limited by lack of imaging and time constraints. An automated method for creation of a library of high-dose-rate brachytherapy plans that can be used with standard planar applicators in the intraoperative setting is highly desirable. Nonnegative least squares algebraic methods were used to identify dwell time values for flat, rectangular planar applicators. The planar applicators ranged in length and width from 2 cm to 25 cm. Plans were optimized to deliver an absorbed dose of 10 Gy to three different depths from the patient surface: 0 cm, 0.5 cm, and 1.0 cm. Software was written to calculate the optimized dwell times and insert dwell times and positions into a .XML plan template that can be imported into the Varian brachytherapy treatment planning system. The user may import the .XML template into the treatment planning system in the intraoperative setting to match the patient applicator size and prescribed treatment depth. A total of 1587 library plans were created for IOHDR brachytherapy. Median plan generation time was approximately 1 minute per plan. Plan dose was typically 100% ± 1% (mean, standard deviation) of the prescribed dose over the entire length and width of the applicator. Plan uniformity was best for prescription depths of 0 cm and 0.5 cm from the patient surface. An IOHDR plan library may be created using automated methods. Thousands of plan templates may be optimized and prepared in a few hours to accommodate different applicator sizes and treatment depths and reduce treatment planning time. The automated method also enforces dwell time symmetry for symmetrical applicator geometries, which simplifies quality assurance. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  15. WE-DE-201-05: Evaluation of a Windowless Extrapolation Chamber Design and Monte Carlo Based Corrections for the Calibration of Ophthalmic Applicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, J; Culberson, W; DeWerd, L

    Purpose: To test the validity of a windowless extrapolation chamber used to measure surface dose rate from planar ophthalmic applicators and to compare different Monte Carlo based codes for deriving correction factors. Methods: Dose rate measurements were performed using a windowless, planar extrapolation chamber with a {sup 90}Sr/{sup 90}Y Tracerlab RA-1 ophthalmic applicator previously calibrated at the National Institute of Standards and Technology (NIST). Capacitance measurements were performed to estimate the initial air gap width between the source face and collecting electrode. Current was measured as a function of air gap, and Bragg-Gray cavity theory was used to calculate themore » absorbed dose rate to water. To determine correction factors for backscatter, divergence, and attenuation from the Mylar entrance window found in the NIST extrapolation chamber, both EGSnrc Monte Carlo user code and Monte Carlo N-Particle Transport Code (MCNP) were utilized. Simulation results were compared with experimental current readings from the windowless extrapolation chamber as a function of air gap. Additionally, measured dose rate values were compared with the expected result from the NIST source calibration to test the validity of the windowless chamber design. Results: Better agreement was seen between EGSnrc simulated dose results and experimental current readings at very small air gaps (<100 µm) for the windowless extrapolation chamber, while MCNP results demonstrated divergence at these small gap widths. Three separate dose rate measurements were performed with the RA-1 applicator. The average observed difference from the expected result based on the NIST calibration was −1.88% with a statistical standard deviation of 0.39% (k=1). Conclusion: EGSnrc user code will be used during future work to derive correction factors for extrapolation chamber measurements. Additionally, experiment results suggest that an entrance window is not needed in order for an extrapolation chamber to provide accurate dose rate measurements for a planar ophthalmic applicator.« less

  16. SU-E-T-135: Investigation of Commercial-Grade Flatbed Scanners and a Medical- Grade Scanner for Radiochromic EBT Film Dosimetry.

    PubMed

    Syh, J; Patel, B; Syh, J; Wu, H; Rosen, L; Durci, M; Katz, S; Sibata, C

    2012-06-01

    To evaluate the characteristics of commercial-grade flatbed scanners and medical-grade scanners for radiochromic EBT film dosimetry. Performance aspects of a Vidar Dosimetry Pro Advantage (Red), Epson 750 Pro, Microtek ArtixScan 1800f, and Microtek ScanMaker 8700 scanner for EBT2 Gafchromic film were evaluated in the categories of repeatability, maximum distinguishable optical density (OD) differentiation, OD variance, and dose curve characteristics. OD step film by Stouffer Industries containing 31 steps ranging from 0.05 to 3.62 OD was used. EBT films were irradiated with dose ranging from 20 to 600 cGy in 6×6 cm 2 field sizes and analyzed 24 hours later using RIT113 and Tomotherapy Film Analyzer software. Scans were performed in transmissive mode, landscape orientation, 16-bit image. The mean and standard deviation Analog to Digital (A/D) scanner value was measured by selecting a 3×3 mm 2 uniform area in the central region of each OD step from a total of 20 scans performed over several weeks. Repeatability was determined from the variance of OD step 0.38. Maximum distinguishable OD was defined as the last OD step whose range of A/D values does not overlap with its neighboring step. Repeatability uncertainty ranged from 0.1% for Vidar to 4% for Epson. Average standard deviation of OD steps ranged from 0.21% for Vidar to 6.4% for ArtixScan 1800f. Maximum distinguishable optical density ranged from 3.38 for Vidar to 1.32 for ScanMaker 8700. A/D range of each OD step corresponds to a dose range. Dose ranges of OD steps varied from 1% for Vidar to 20% for ScanMaker 8700. The Vidar exhibited a dose curve that utilized a broader range of OD values than the other scanners. Vidar exhibited higher maximum distinguishable OD, smaller variance in repeatability, smaller A/D value deviation per OD step, and a shallower dose curve with respect to OD. © 2012 American Association of Physicists in Medicine.

  17. A systematic method of interconnection optimization for dense-array concentrator photovoltaic system.

    PubMed

    Siaw, Fei-Lu; Chong, Kok-Keong

    2013-01-01

    This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV) systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells' voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%.

  18. Disc piezoelectric ceramic transformers.

    PubMed

    Erhart, Jirií; Půlpán, Petr; Doleček, Roman; Psota, Pavel; Lédl, Vít

    2013-08-01

    In this contribution, we present our study on disc-shaped and homogeneously poled piezoelectric ceramic transformers working in planar-extensional vibration modes. Transformers are designed with electrodes divided into wedge, axisymmetrical ring-dot, moonie, smile, or yin-yang segments. Transformation ratio, efficiency, and input and output impedances were measured for low-power signals. Transformer efficiency and transformation ratio were measured as a function of frequency and impedance load in the secondary circuit. Optimum impedance for the maximum efficiency has been found. Maximum efficiency and no-load transformation ratio can reach almost 100% and 52 for the fundamental resonance of ring-dot transformers and 98% and 67 for the second resonance of 2-segment wedge transformers. Maximum efficiency was reached at optimum impedance, which is in the range from 500 Ω to 10 kΩ, depending on the electrode pattern and size. Fundamental vibration mode and its overtones were further studied using frequency-modulated digital holographic interferometry and by the finite element method. Complementary information has been obtained by the infrared camera visualization of surface temperature profiles at higher driving power.

  19. A Systematic Method of Interconnection Optimization for Dense-Array Concentrator Photovoltaic System

    PubMed Central

    Siaw, Fei-Lu

    2013-01-01

    This paper presents a new systematic approach to analyze all possible array configurations in order to determine the most optimal dense-array configuration for concentrator photovoltaic (CPV) systems. The proposed method is fast, simple, reasonably accurate, and very useful as a preliminary study before constructing a dense-array CPV panel. Using measured flux distribution data, each CPV cells' voltage and current values at three critical points which are at short-circuit, open-circuit, and maximum power point are determined. From there, an algorithm groups the cells into basic modules. The next step is I-V curve prediction, to find the maximum output power of each array configuration. As a case study, twenty different I-V predictions are made for a prototype of nonimaging planar concentrator, and the array configuration that yields the highest output power is determined. The result is then verified by assembling and testing of an actual dense-array on the prototype. It was found that the I-V curve closely resembles simulated I-V prediction, and measured maximum output power varies by only 1.34%. PMID:24453823

  20. The effect of systematic set-up deviations on the absorbed dose distribution for left-sided breast cancer treated with respiratory gating

    NASA Astrophysics Data System (ADS)

    Edvardsson, A.; Ceberg, S.

    2013-06-01

    The aim of this study was 1) to investigate interfraction set-up uncertainties for patients treated with respiratory gating for left-sided breast cancer, 2) to investigate the effect of the inter-fraction set-up on the absorbed dose-distribution for the target and organs at risk (OARs) and 3) optimize the set-up correction strategy. By acquiring multiple set-up images the systematic set-up deviation was evaluated. The effect of the systematic set-up deviation on the absorbed dose distribution was evaluated by 1) simulation in the treatment planning system and 2) measurements with a biplanar diode array. The set-up deviations could be decreased using a no action level correction strategy. Not using the clinically implemented adaptive maximum likelihood factor for the gating patients resulted in better set-up. When the uncorrected set-up deviations were simulated the average mean absorbed dose was increased from 1.38 to 2.21 Gy for the heart, 4.17 to 8.86 Gy to the left anterior descending coronary artery and 5.80 to 7.64 Gy to the left lung. Respiratory gating can induce systematic set-up deviations which would result in increased mean absorbed dose to the OARs if not corrected for and should therefore be corrected for by an appropriate correction strategy.

  1. Tunable antireflection from conformal Al-doped ZnO films on nanofaceted Si templates

    PubMed Central

    2014-01-01

    Photon harvesting by reducing reflection loss is the basis of photovoltaic devices. Here, we show the efficacy of Al-doped ZnO (AZO) overlayer on ion beam-synthesized nanofaceted silicon for suppressing reflection loss. In particular, we demonstrate thickness-dependent tunable antireflection (AR) from conformally grown AZO layer, showing a systematic shift in the reflection minima from ultraviolet to visible to near-infrared ranges with increasing thickness. Tunable AR property is understood in light of depth-dependent refractive index of nanofaceted silicon and AZO overlayer. This improved AR property significantly increases the fill factor of such textured heterostructures, which reaches its maximum for 60-nm AZO compared to the ones based on planar silicon. This thickness matches with the one that shows the maximum reduction in surface reflectance. PACS 81.07.-b; 42.79.Wc; 81.16.Rf; 81.15.Cd PMID:24808799

  2. Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling.

    PubMed

    Kehr, S C; Liu, Y M; Martin, L W; Yu, P; Gajek, M; Yang, S-Y; Yang, C-H; Wenzel, M T; Jacob, R; von Ribbeck, H-G; Helm, M; Zhang, X; Eng, L M; Ramesh, R

    2011-01-01

    A planar slab of negative-index material works as a superlens with sub-diffraction-limited resolution, as propagating waves are focused and, moreover, evanescent waves are reconstructed in the image plane. Here we demonstrate a superlens for electric evanescent fields with low losses using perovskites in the mid-infrared regime. The combination of near-field microscopy with a tunable free-electron laser allows us to address precisely the polariton modes, which are critical for super-resolution imaging. We spectrally study the lateral and vertical distributions of evanescent waves around the image plane of such a lens, and achieve imaging resolution of λ/14 at the superlensing wavelength. Interestingly, at certain distances between the probe and sample surface, we observe a maximum of these evanescent fields. Comparisons with numerical simulations indicate that this maximum originates from an enhanced coupling between probe and object, which might be applicable for multifunctional circuits, infrared spectroscopy and thermal sensors.

  3. Change in mean temperature as a predictor of extreme temperature change in the Asia-Pacific region

    NASA Astrophysics Data System (ADS)

    Griffiths, G. M.; Chambers, L. E.; Haylock, M. R.; Manton, M. J.; Nicholls, N.; Baek, H.-J.; Choi, Y.; della-Marta, P. M.; Gosai, A.; Iga, N.; Lata, R.; Laurent, V.; Maitrepierre, L.; Nakamigawa, H.; Ouprasitwong, N.; Solofa, D.; Tahani, L.; Thuy, D. T.; Tibig, L.; Trewin, B.; Vediapan, K.; Zhai, P.

    2005-08-01

    Trends (1961-2003) in daily maximum and minimum temperatures, extremes and variance were found to be spatially coherent across the Asia-Pacific region. The majority of stations exhibited significant trends: increases in mean maximum and mean minimum temperature, decreases in cold nights and cool days, and increases in warm nights. No station showed a significant increase in cold days or cold nights, but a few sites showed significant decreases in hot days and warm nights. Significant decreases were observed in both maximum and minimum temperature standard deviation in China, Korea and some stations in Japan (probably reflecting urbanization effects), but also for some Thailand and coastal Australian sites. The South Pacific convergence zone (SPCZ) region between Fiji and the Solomon Islands showed a significant increase in maximum temperature variability.Correlations between mean temperature and the frequency of extreme temperatures were strongest in the tropical Pacific Ocean from French Polynesia to Papua New Guinea, Malaysia, the Philippines, Thailand and southern Japan. Correlations were weaker at continental or higher latitude locations, which may partly reflect urbanization.For non-urban stations, the dominant distribution change for both maximum and minimum temperature involved a change in the mean, impacting on one or both extremes, with no change in standard deviation. This occurred from French Polynesia to Papua New Guinea (except for maximum temperature changes near the SPCZ), in Malaysia, the Philippines, and several outlying Japanese islands. For urbanized stations the dominant change was a change in the mean and variance, impacting on one or both extremes. This result was particularly evident for minimum temperature.The results presented here, for non-urban tropical and maritime locations in the Asia-Pacific region, support the hypothesis that changes in mean temperature may be used to predict changes in extreme temperatures. At urbanized or higher latitude locations, changes in variance should be incorporated.

  4. Strain tensor selection and the elastic theory of incompatible thin sheets.

    PubMed

    Oshri, Oz; Diamant, Haim

    2017-05-01

    The existing theory of incompatible elastic sheets uses the deviation of the surface metric from a reference metric to define the strain tensor [Efrati et al., J. Mech. Phys. Solids 57, 762 (2009)JMPSA80022-509610.1016/j.jmps.2008.12.004]. For a class of simple axisymmetric problems we examine an alternative formulation, defining the strain based on deviations of distances (rather than distances squared) from their rest values. While the two formulations converge in the limit of small slopes and in the limit of an incompressible sheet, for other cases they are found not to be equivalent. The alternative formulation offers several features which are absent in the existing theory. (a) In the case of planar deformations of flat incompatible sheets, it yields linear, exactly solvable, equations of equilibrium. (b) When reduced to uniaxial (one-dimensional) deformations, it coincides with the theory of extensible elastica; in particular, for a uniaxially bent sheet it yields an unstrained cylindrical configuration. (c) It gives a simple criterion determining whether an isometric immersion of an incompatible sheet is at mechanical equilibrium with respect to normal forces. For a reference metric of constant positive Gaussian curvature, a spherical cap is found to satisfy this criterion except in an arbitrarily narrow boundary layer.

  5. Strain tensor selection and the elastic theory of incompatible thin sheets

    NASA Astrophysics Data System (ADS)

    Oshri, Oz; Diamant, Haim

    2017-05-01

    The existing theory of incompatible elastic sheets uses the deviation of the surface metric from a reference metric to define the strain tensor [Efrati et al., J. Mech. Phys. Solids 57, 762 (2009), 10.1016/j.jmps.2008.12.004]. For a class of simple axisymmetric problems we examine an alternative formulation, defining the strain based on deviations of distances (rather than distances squared) from their rest values. While the two formulations converge in the limit of small slopes and in the limit of an incompressible sheet, for other cases they are found not to be equivalent. The alternative formulation offers several features which are absent in the existing theory. (a) In the case of planar deformations of flat incompatible sheets, it yields linear, exactly solvable, equations of equilibrium. (b) When reduced to uniaxial (one-dimensional) deformations, it coincides with the theory of extensible elastica; in particular, for a uniaxially bent sheet it yields an unstrained cylindrical configuration. (c) It gives a simple criterion determining whether an isometric immersion of an incompatible sheet is at mechanical equilibrium with respect to normal forces. For a reference metric of constant positive Gaussian curvature, a spherical cap is found to satisfy this criterion except in an arbitrarily narrow boundary layer.

  6. Assessment of Geometrical Accuracy of Multimodal Images Used for Treatment Planning in Stereotactic Radiotherapy and Radiosurgery: CT, MRI and PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Garduno, O. A.; Larraga-Gutierrez, J. M.; Celis, M. A.

    2006-09-08

    An acrylic phantom was designed and constructed to assess the geometrical accuracy of CT, MRI and PET images for stereotactic radiotherapy (SRT) and radiosurgery (SRS) applications. The phantom was suited for each image modality with a specific tracer and compared with CT images to measure the radial deviation between the reference marks in the phantom. It was found that for MRI the maximum mean deviation is 1.9 {+-} 0.2 mm compared to 2.4 {+-} 0.3 mm reported for PET. These results will be used for margin outlining in SRS and SRT treatment planning.

  7. Real-gas effects associated with one-dimensional transonic flow of cryogenic nitrogen

    NASA Technical Reports Server (NTRS)

    Adcock, J. B.

    1976-01-01

    Real gas solutions for one-dimensional isentropic and normal-shock flows of nitrogen were obtained for a wide range of temperatures and pressures. These calculations are compared to ideal gas solutions and are presented in tables. For temperatures (300 K and below) and pressures (1 to 10 atm) that cover those anticipated for transonic cryogenic tunnels, the solutions are analyzed to obtain indications of the magnitude of inviscid flow simulation errors. For these ranges, the maximum deviation of the various isentropic and normal shock parameters from the ideal values is about 1 percent or less, and for most wind tunnel investigations this deviation would be insignificant.

  8. Inguinal pain syndrome. The influence of intraoperative local administration of 0.5% bupivacaine on postoperative pain control following Lichtenstein hernioplasty. A prospective case-control study.

    PubMed

    Cybułka, Bartosz

    2017-04-30

    With current technological advancement and availability of synthetic materials used in inguinal hernia repair, a recurrence after first intervention is not a common and important adverse event. On the other hand, however, some patients complain about chronic pain of the operated site after surgeries using a polypropylene mesh. Many patients are constrained to a prolonged use of analgesics and increased frequency of control visits, which may eventually result in loss of trust in the operator. Every surgical intervention is associated with the risk of immediate or delayed complications. Genitofemoral neuralgia is associated with dysfunction of peripheral nerves passing through the inguinal canal or the surrounding tissue and it is a chronic, troublesome and undesired complication of an inguinal hernia repair. The possibility of minimizing chronic inguinal pain by proper management during herniorraphy should be considered in all cases of an inguinal canal reconstruction. The aim of the study was to investigate whether an intraoperative injection of 0.5% bupivacaine into the operated site (preemptive analgesia) has an influence on the postoperative pain assessed on the day of operation as well as the 1st and 2nd postoperative day after Lichtenstein hernioplasty of an inguinal, scrotal or recurrent hernia. In the studied population, we attempted to identify risk factors affecting pain level after surgical repair of an inguinal, scrotal or recurrent hernia. During the period between December 2015 and May 2016, 133 patients with preoperative diagnosis of an inguinal (81.95%, n=109), scrotal (13.53%, n=18) or recurrent hernia (4.51%, n=6) underwent an elective intervention and were randomly allocated to the group, which intraoperatively received 20 mL of 0.5% bupivacaine locally in selected anatomical points of the inguinal canal. In the group with preoperative diagnosis of an inguinal hernia, this intervention was applied in 56.88% of cases (n=62). In the case of scrotal or recurrent hernia, a similar intervention was applied in 41.67% (n=10) of patients. During the hospital stay, pain was assessed four times a day using the NRS numeric scale. All patients received preoperative antibiotic prophylaxis, and, during observation, analgesics and low-molecular-weight heparin were used. In the studied group, risk factor were identified, which affect the pain level associated with surgical treatment of an inguinal hernia. Mean pain level score according to the NRS scale (0-10) for an inguinal hernia was 4.17 on day 0 (standard deviation 2.22; minimum 0; maximum 10). On day 1 - 2.86 (standard deviation 1.86; minimum 0; maximum 8). On day 2 - 0.84 (standard deviation 1.21; minimum 0; maximum 5). The values of those parameters for a scrotal and recurrent hernia were as follows: on day 0 - 3.67 (standard deviation 1.76; minimum 0; maximum 7). On day 1 - 3.79 (standard deviation 1.67; minimum 0; maximum 7). On day 2 - 2.25 (standard deviation 1.54; minimum 0; maximum 4). Intraoperative application of 20 mL 0.5% bupivacaine did not reduce the postoperative pain on the postoperative day 0, 1, 2. Among independent risk factors exacerbating pain, the following variables were identified: local complications of the operated site including edema, ecchymosis and hematoma of the inguinal region. More frequent dressing changes were directly correlated with an increased pain sensation. Postoperative urethral catheterization due to urinary retention was associated with an increased pain immediately after surgery. In the case of intraoperative diagnosis of concurrent direct and indirect hernia (so-called pantaloon hernia), less intense pain was observed on postoperative day 0. Other parameters such as age, sex, duration of operation, duration of hospitalization and wound drainage did not influence the pain sensation. Local injection of an analgesic into the operated site was not associated with the reduction of pain assessed on postoperative day 0, 1 and 2 after an isolated inguinal, scrotal or recurrent hernia repair. Pathologies of the operated site such as edema, ecchymosis or hematoma were associated with an increased pain sensations on observation. Also, postoperative urinary retention and urethral catheterization increased the pain sensation after an inguinal hernia repair. A lack of wound complications significantly decreased the pain sensation during the immediate postoperative period after hernia repair.

  9. Mathematical simulation for compensation capacities area of pipeline routes in ship systems

    NASA Astrophysics Data System (ADS)

    Ngo, G. V.; Sakhno, K. N.

    2018-05-01

    In this paper, the authors considered the problem of manufacturability’s enhancement of ship systems pipeline at the designing stage. The analysis of arrangements and possibilities for compensation of deviations for pipeline routes has been carried out. The task was set to produce the “fit pipe” together with the rest of the pipes in the route. It was proposed to compensate for deviations by movement of the pipeline route during pipe installation and to calculate maximum values of these displacements in the analyzed path. Theoretical bases of deviation compensation for pipeline routes using rotations of parallel section pairs of pipes are assembled. Mathematical and graphical simulations of compensation area capacities of pipeline routes with various configurations are completed. Prerequisites have been created for creating an automated program that will allow one to determine values of the compensatory capacities area for pipeline routes and to assign quantities of necessary allowances.

  10. Migration in the shearing sheet and estimates for young open cluster migration

    NASA Astrophysics Data System (ADS)

    Quillen, Alice C.; Nolting, Eric; Minchev, Ivan; De Silva, Gayandhi; Chiappini, Cristina

    2018-04-01

    Using tracer particles embedded in self-gravitating shearing sheet N-body simulations, we investigate the distance in guiding centre radius that stars or star clusters can migrate in a few orbital periods. The standard deviations of guiding centre distributions and maximum migration distances depend on the Toomre or critical wavelength and the contrast in mass surface density caused by spiral structure. Comparison between our simulations and estimated guiding radii for a few young supersolar metallicity open clusters, including NGC 6583, suggests that the contrast in mass surface density in the solar neighbourhood has standard deviation (in the surface density distribution) divided by mean of about 1/4 and larger than measured using COBE data by Drimmel and Spergel. Our estimate is consistent with a standard deviation of ˜0.07 dex in the metallicities measured from high-quality spectroscopic data for 38 young open clusters (<1 Gyr) with mean galactocentric radius 7-9 kpc.

  11. Evolution of a Planar Wake in Adverse Pressure Gradient

    NASA Technical Reports Server (NTRS)

    Driver, David M.; Mateer, George G.

    2016-01-01

    In the interest of improving the predictability of high-lift systems at maximum lift conditions, a series of fundamental experiments were conducted to study the effects of adverse pressure gradient on a wake flow. Mean and fluctuating velocities were measured with a two-component laser-Doppler velocimeter. Data were obtained for several cases of adverse pressure gradient, producing flows ranging from no reversed flow to massively reversed flow. While the turbulent Reynolds stresses increase with increasing size of the reversed flow region, the gradient of Reynolds stress does not. Computations using various turbulence models were unable to reproduce the reversed flow.

  12. Accelerated simulations of aromatic polymers: application to polyether ether ketone (PEEK)

    NASA Astrophysics Data System (ADS)

    Broadbent, Richard J.; Spencer, James S.; Mostofi, Arash A.; Sutton, Adrian P.

    2014-10-01

    For aromatic polymers, the out-of-plane oscillations of aromatic groups limit the maximum accessible time step in a molecular dynamics simulation. We present a systematic approach to removing such high-frequency oscillations from planar groups along aromatic polymer backbones, while preserving the dynamical properties of the system. We consider, as an example, the industrially important polymer, polyether ether ketone (PEEK), and show that this coarse graining technique maintains excellent agreement with the fully flexible all-atom and all-atom rigid bond models whilst allowing the time step to increase fivefold to 5 fs.

  13. Design and Simulation of Scanner Wrapped by Flexible Microcoil Embedded in Polymer Film for Single-Optical Endoscope Application

    NASA Astrophysics Data System (ADS)

    Zhao, Mengyuan; Yang, Zhuoqing; Xiang, Xiaojian; Sun, Bin; Ding, Guifu; Zhao, Xiaolin

    2018-03-01

    A single optic fiber scanner with large scanning angle, based on novel electromagnetic driven, is presented. The cylinder magnet and weight are fixed on the fiber, and vibrate under its second-order frequency by driving racetrack coils on the tube. The flexible driving coil is fabricated by uncomplicated planar MEMS technology on polyimide film, and wrapped on the tube. The electromagnetic and mechanical properties of the endoscope system are studied. Experimental results show that the maximum of the second resonant scanning angle is 9.47°.

  14. Modelling of the internal dynamics and density in a tens of joules plasma focus device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquez, Ariel; Gonzalez, Jose; Tarifeno-Saldivia, Ariel

    2012-01-15

    Using MHD theory, coupled differential equations were generated using a lumped parameter model to describe the internal behaviour of the pinch compression phase in plasma focus discharges. In order to provide these equations with appropriate initial conditions, the modelling of previous phases was included by describing the plasma sheath as planar shockwaves. The equations were solved numerically, and the results were contrasted against experimental measurements performed on the device PF-50J. The model is able to predict satisfactorily the timing and the radial electron density profile at the maximum compression.

  15. Welding deviation detection algorithm based on extremum of molten pool image contour

    NASA Astrophysics Data System (ADS)

    Zou, Yong; Jiang, Lipei; Li, Yunhua; Xue, Long; Huang, Junfen; Huang, Jiqiang

    2016-01-01

    The welding deviation detection is the basis of robotic tracking welding, but the on-line real-time measurement of welding deviation is still not well solved by the existing methods. There is plenty of information in the gas metal arc welding(GMAW) molten pool images that is very important for the control of welding seam tracking. The physical meaning for the curvature extremum of molten pool contour is revealed by researching the molten pool images, that is, the deviation information points of welding wire center and the molten tip center are the maxima and the local maxima of the contour curvature, and the horizontal welding deviation is the position difference of these two extremum points. A new method of weld deviation detection is presented, including the process of preprocessing molten pool images, extracting and segmenting the contours, obtaining the contour extremum points, and calculating the welding deviation, etc. Extracting the contours is the premise, segmenting the contour lines is the foundation, and obtaining the contour extremum points is the key. The contour images can be extracted with the method of discrete dyadic wavelet transform, which is divided into two sub contours including welding wire and molten tip separately. The curvature value of each point of the two sub contour lines is calculated based on the approximate curvature formula of multi-points for plane curve, and the two points of the curvature extremum are the characteristics needed for the welding deviation calculation. The results of the tests and analyses show that the maximum error of the obtained on-line welding deviation is 2 pixels(0.16 mm), and the algorithm is stable enough to meet the requirements of the pipeline in real-time control at a speed of less than 500 mm/min. The method can be applied to the on-line automatic welding deviation detection.

  16. (E)-1-(2,4-Di-nitro-phen-yl)-2-(3-eth-oxy-4-hy-droxy-benzyl-idene)hydrazine.

    PubMed

    Fun, Hoong-Kun; Chantrapromma, Suchada; Ruanwas, Pumsak; Kobkeatthawin, Thawanrat; Chidan Kumar, C S

    2014-01-01

    The mol-ecule of the title hydrazine derivative, C15H14N4O6, is essentially planar, the dihedral angle between the substituted benzene rings being 2.25 (9)°. The eth-oxy and hy-droxy groups are almost coplanar with their bound benzene ring [r.m.s. deviation = 0.0153 (2) Å for the ten non-H atoms]. Intra-molecular N-H⋯O and O-H⋯Oeth-oxy hydrogen bonds generate S(6) and S(5) ring motifs, respectively. In the crystal, mol-ecules are linked by O-H⋯Onitro hydrogen bonds into chains propagating in [010]. Weak aromatic π-π inter-actions, with centroid-centroid distances of 3.8192 (19) and 4.0491 (19) Å, are also observed.

  17. Study of Ionospheric TEC from GPS observations and comparisons with IRI and SPIM model predictions in the low latitude anomaly Indian subcontinental region

    NASA Astrophysics Data System (ADS)

    Panda, S. K.; Gedam, S. S.; Rajaram, G.

    2015-04-01

    The present study investigates variation of the ionospheric total electron content (TEC) in the low latitude Indian sub-continental region from the GPS observations and its comparison with the global ionosphere maps (GIMs), standard international reference ionosphere (IRI 2012), and the standard plasmasphere-ionosphere model (SPIM) for the period from November 2011 to October 2012 that corresponds to the progressive phase towards the midst of the solar cycle-24. Observations during quiet period show diurnal maximum of TEC occurring around 14:00-16:00 IST, with relatively broader and longer duration of local maximum at Bangalore and behave reversely towards Delhi. The secondary maximum of TEC was markedly noticeable at Bangalore during the months of March and September, and only in the month of September at Hyderabad and Mumbai. However, the relatively higher TEC during December month than the June is ascribed to the winter anomaly which is more prevalent during the high solar activity periods. The prevailing instability in latitudes of anomaly crest during January 2012 is possibly due to the seasonal variation of lunar tidal effects, modulating the EEJ strength at the equator. The studies covered the period of a strong geomagnetic storm during 6-11 March 2012 (SYM-H: -149 nT) which resulted in positive deviation of GPS-TEC at Bangalore (↑ 20%), Hyderabad (↑ 22%), and Lucknow (↑ 94%) compared to the mean quiet days level. The relatively large deviation of TEC at Lucknow could be attributed to the poleward shifting of the anomaly crest, manifested by enhanced fountain effect at the equator. Studies confirm excellent agreement (80-85%) of GPS-TEC with IGS-GIM at Bangalore and Hyderabad with the exception of the night-time hours (Deviations >50%). However relatively larger deviation of GPS-TEC from GIM-TEC at Delhi could be due to the unavailability of IGS stations in the proximity of the position. Predictions of the SPIM model (extension of IRI up to GPS altitude) exhibit much higher deviation from the in situ GPS observations as well as GIM and IRI outputs during quiet periods. Correspondingly, either of the models (IRI and SPIM) did not respond well to the arrival of the sudden storm commencements (SSCs) during the storm period (6-11 March 2012). When SPIM is used instead of IRI, the overestimation from GPS-TECs are further exaggerated by 13-18% (December solstice), 27-37% (March equinox), 15-31% (June solstice), and 20-32% (September equinox) during peak hours of the period. We attribute the relatively more deviation of the SPIM than the IRI model possibly due to its plasmaspheric extension to the IRI model by adding the Russian SMI model of high latitude characteristics. Hence, we emphasize the further improvement in the model with due consideration of the driving forces at play in the region, for reliable predictions of the low latitude ionosphere.

  18. Modeling failure in brittle porous ceramics

    NASA Astrophysics Data System (ADS)

    Keles, Ozgur

    Brittle porous materials (BPMs) are used for battery, fuel cell, catalyst, membrane, filter, bone graft, and pharmacy applications due to the multi-functionality of their underlying porosity. However, in spite of its technological benefits the effects of porosity on BPM fracture strength and Weibull statistics are not fully understood--limiting a wider use. In this context, classical fracture mechanics was combined with two-dimensional finite element simulations not only to account for pore-pore stress interactions, but also to numerically quantify the relationship between the local pore volume fraction and fracture statistics. Simulations show that even the microstructures with the same porosity level and size of pores differ substantially in fracture strength. The maximum reliability of BPMs was shown to be limited by the underlying pore--pore interactions. Fracture strength of BMPs decreases at a faster rate under biaxial loading than under uniaxial loading. Three different types of deviation from classic Weibull behavior are identified: P-type corresponding to a positive lower tail deviation, N-type corresponding to a negative lower tail deviation, and S-type corresponding to both positive upper and lower tail deviations. Pore-pore interactions result in either P-type or N-type deviation in the limit of low porosity, whereas S-type behavior occurs when clusters of low and high fracture strengths coexist in a fracture data.

  19. In vivo carbon-edited detection with proton echo-planar spectroscopic imaging (ICED PEPSI): [3,4-(13)CH(2)]glutamate/glutamine tomography in rat brain.

    PubMed

    Hyder, F; Renken, R; Rothman, D L

    1999-12-01

    A method for in vivo carbon-edited detection with proton echo-planar spectroscopic imaging (ICED PEPSI) is described. This method is composed of an echo-planar based acquisition implemented with (13)C-(1)H J editing spectroscopy and is intended for high temporal and spatial resolution in vivo spectroscopic imaging of (13)C turnover, from D-[1,6-(13)C]glucose to glutamate and glutamine, in the brain. At a static magnetic field strength of 7 T, both in vitro and in vivo chemical shift imaging data are presented with a spatial resolution of 8 microL (i.e., 1.25 x 1.25 x 5.00 mm(3)) and a maximum spectral bandwidth of 5.2 ppm in (1)H. Chemical shift imaging data acquired every 11 minutes allowed detection of regional [4-(13)CH(2)]glutamate turnover in rat brain. The [4-(13)CH(2)]glutamate turnover curves, which can be converted to tricarboxylic acid cycle fluxes, showed that the tricarboxylic acid cycle flux (V(TCA)) in pure gray and white matter can range from 1.2 +/- 0.2 to 0.5 +/- 0.1 micromol/g/min, respectively, for morphine-anesthetized rats. The mean cortical V(TCA) from 32 voxels of 1.0 +/- 0.3 micromol/g/min (N = 3) is in excellent agreement with previous localized measurements that have demonstrated that V(TCA) can range from 0.9-1.1 micromol/g/min under identical anesthetized conditions. Magn Reson Med 42:997-1003, 1999. Copyright 1999 Wiley-Liss, Inc.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levegruen, Sabine, E-mail: sabine.levegruen@uni-due.de; Poettgen, Christoph; Abu Jawad, Jehad

    Purpose: To evaluate megavoltage computed tomography (MVCT)-based image guidance with helical tomotherapy in patients with vertebral tumors by analyzing factors influencing interobserver variability, considered as quality criterion of image guidance. Methods and Materials: Five radiation oncologists retrospectively registered 103 MVCTs in 10 patients to planning kilovoltage CTs by rigid transformations in 4 df. Interobserver variabilities were quantified using the standard deviations (SDs) of the distributions of the correction vector components about the observers' fraction mean. To assess intraobserver variabilities, registrations were repeated after {>=}4 weeks. Residual deviations after setup correction due to uncorrectable rotational errors and elastic deformations were determinedmore » at 3 craniocaudal target positions. To differentiate observer-related variations in minimizing these residual deviations across the 3-dimensional MVCT from image resolution effects, 2-dimensional registrations were performed in 30 single transverse and sagittal MVCT slices. Axial and longitudinal MVCT image resolutions were quantified. For comparison, image resolution of kilovoltage cone-beam CTs (CBCTs) and interobserver variability in registrations of 43 CBCTs were determined. Results: Axial MVCT image resolution is 3.9 lp/cm. Longitudinal MVCT resolution amounts to 6.3 mm, assessed as full-width at half-maximum of thin objects in MVCTs with finest pitch. Longitudinal CBCT resolution is better (full-width at half-maximum, 2.5 mm for CBCTs with 1-mm slices). In MVCT registrations, interobserver variability in the craniocaudal direction (SD 1.23 mm) is significantly larger than in the lateral and ventrodorsal directions (SD 0.84 and 0.91 mm, respectively) and significantly larger compared with CBCT alignments (SD 1.04 mm). Intraobserver variabilities are significantly smaller than corresponding interobserver variabilities (variance ratio [VR] 1.8-3.1). Compared with 3-dimensional registrations, 2-dimensional registrations have significantly smaller interobserver variability in the lateral and ventrodorsal directions (VR 3.8 and 2.8, respectively) but not in the craniocaudal direction (VR 0.75). Conclusion: Tomotherapy image guidance precision is affected by image resolution and residual deviations after setup correction. Eliminating the effect of residual deviations yields small interobserver variabilities with submillimeter precision in the axial plane. In contrast, interobserver variability in the craniocaudal direction is dominated by the poorer longitudinal MVCT image resolution. Residual deviations after image guidance exist and need to be considered when dose gradients ultimately achievable with image guided radiation therapy techniques are analyzed.« less

  1. Megavoltage computed tomography image guidance with helical tomotherapy in patients with vertebral tumors: analysis of factors influencing interobserver variability.

    PubMed

    Levegrün, Sabine; Pöttgen, Christoph; Jawad, Jehad Abu; Berkovic, Katharina; Hepp, Rodrigo; Stuschke, Martin

    2013-02-01

    To evaluate megavoltage computed tomography (MVCT)-based image guidance with helical tomotherapy in patients with vertebral tumors by analyzing factors influencing interobserver variability, considered as quality criterion of image guidance. Five radiation oncologists retrospectively registered 103 MVCTs in 10 patients to planning kilovoltage CTs by rigid transformations in 4 df. Interobserver variabilities were quantified using the standard deviations (SDs) of the distributions of the correction vector components about the observers' fraction mean. To assess intraobserver variabilities, registrations were repeated after ≥4 weeks. Residual deviations after setup correction due to uncorrectable rotational errors and elastic deformations were determined at 3 craniocaudal target positions. To differentiate observer-related variations in minimizing these residual deviations across the 3-dimensional MVCT from image resolution effects, 2-dimensional registrations were performed in 30 single transverse and sagittal MVCT slices. Axial and longitudinal MVCT image resolutions were quantified. For comparison, image resolution of kilovoltage cone-beam CTs (CBCTs) and interobserver variability in registrations of 43 CBCTs were determined. Axial MVCT image resolution is 3.9 lp/cm. Longitudinal MVCT resolution amounts to 6.3 mm, assessed as full-width at half-maximum of thin objects in MVCTs with finest pitch. Longitudinal CBCT resolution is better (full-width at half-maximum, 2.5 mm for CBCTs with 1-mm slices). In MVCT registrations, interobserver variability in the craniocaudal direction (SD 1.23 mm) is significantly larger than in the lateral and ventrodorsal directions (SD 0.84 and 0.91 mm, respectively) and significantly larger compared with CBCT alignments (SD 1.04 mm). Intraobserver variabilities are significantly smaller than corresponding interobserver variabilities (variance ratio [VR] 1.8-3.1). Compared with 3-dimensional registrations, 2-dimensional registrations have significantly smaller interobserver variability in the lateral and ventrodorsal directions (VR 3.8 and 2.8, respectively) but not in the craniocaudal direction (VR 0.75). Tomotherapy image guidance precision is affected by image resolution and residual deviations after setup correction. Eliminating the effect of residual deviations yields small interobserver variabilities with submillimeter precision in the axial plane. In contrast, interobserver variability in the craniocaudal direction is dominated by the poorer longitudinal MVCT image resolution. Residual deviations after image guidance exist and need to be considered when dose gradients ultimately achievable with image guided radiation therapy techniques are analyzed. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Band-aid for information loss from black holes

    NASA Astrophysics Data System (ADS)

    Israel, Werner; Yun, Zinkoo

    2010-12-01

    We summarize, simplify and extend recent work showing that small deviations from exact thermality in Hawking radiation, first uncovered by Kraus and Wilczek, have the capacity to carry off the maximum information content of a black hole. This goes a considerable way toward resolving a long-standing “information loss paradox.”

  3. Reversible solid oxide fuel cell for natural gas/renewable hybrid power generation systems

    NASA Astrophysics Data System (ADS)

    Luo, Yu; Shi, Yixiang; Zheng, Yi; Cai, Ningsheng

    2017-02-01

    Renewable energy (RE) is expected to be the major part of the future energy. Presently, the intermittence and fluctuation of RE lead to the limitation of its penetration. Reversible solid oxide fuel cell (RSOFC) as the energy storage device can effectively store the renewable energy and build a bidirectional connection with natural gas (NG). In this paper, the energy storage strategy was designed to improve the RE penetration and dynamic operation stability in a distributed system coupling wind generators, internal combustion engine, RSOFC and lithium-ion batteries. By compromising the relative deviation of power supply and demand, RE penetration, system efficiency and capacity requirement, the strategy that no more than 36% of the maximum wind power output is directly supplied to users and the other is stored by the combination of battery and reversible solid oxide fuel cell is optimal for the distributed system. In the case, the RE penetration reached 56.9% and the system efficiency reached 55.2%. The maximum relative deviation of power supply and demand is also lower than 4%, which is significantly superior to that in the wind curtailment case.

  4. Fabrication of setup for high temperature thermal conductivity measurement.

    PubMed

    Patel, Ashutosh; Pandey, Sudhir K

    2017-01-01

    In this work, we report the fabrication of an experimental setup for high temperature thermal conductivity (κ) measurement. It can characterize samples with various dimensions and shapes. Steady state based axial heat flow technique is used for κ measurement. Heat loss is measured using parallel thermal conductance technique. Simple design, lightweight, and small size sample holder is developed by using a thin heater and limited components. Low heat loss value is achieved by using very low thermal conductive insulator block with small cross-sectional area. Power delivered to the heater is measured accurately by using 4-wire technique and for this, the heater is developed with 4 wires. This setup is validated by using Bi 0.36 Sb 1.45 Te 3 , polycrystalline bismuth, gadolinium, and alumina samples. The data obtained for these samples are found to be in good agreement with the reported data. The maximum deviation of 6% in the value κ is observed. This maximum deviation is observed with the gadolinium sample. We also report the thermal conductivity of polycrystalline tellurium from 320 K to 550 K and the nonmonotonous behavior of κ with temperature is observed.

  5. Expected distributions of root-mean-square positional deviations in proteins.

    PubMed

    Pitera, Jed W

    2014-06-19

    The atom positional root-mean-square deviation (RMSD) is a standard tool for comparing the similarity of two molecular structures. It is used to characterize the quality of biomolecular simulations, to cluster conformations, and as a reaction coordinate for conformational changes. This work presents an approximate analytic form for the expected distribution of RMSD values for a protein or polymer fluctuating about a stable native structure. The mean and maximum of the expected distribution are independent of chain length for long chains and linearly proportional to the average atom positional root-mean-square fluctuations (RMSF). To approximate the RMSD distribution for random-coil or unfolded ensembles, numerical distributions of RMSD were generated for ensembles of self-avoiding and non-self-avoiding random walks. In both cases, for all reference structures tested for chains more than three monomers long, the distributions have a maximum distant from the origin with a power-law dependence on chain length. The purely entropic nature of this result implies that care must be taken when interpreting stable high-RMSD regions of the free-energy landscape as "intermediates" or well-defined stable states.

  6. Long-term changes (1980-2003) in total ozone time series over Northern Hemisphere midlatitudes

    NASA Astrophysics Data System (ADS)

    Białek, Małgorzata

    2006-03-01

    Long-term changes in total ozone time series for Arosa, Belsk, Boulder and Sapporo stations are examined. For each station we analyze time series of the following statistical characteristics of the distribution of daily ozone data: seasonal mean, standard deviation, maximum and minimum of total daily ozone values for all seasons. The iterative statistical model is proposed to estimate trends and long-term changes in the statistical distribution of the daily total ozone data. The trends are calculated for the period 1980-2003. We observe lessening of negative trends in the seasonal means as compared to those calculated by WMO for 1980-2000. We discuss a possibility of a change of the distribution shape of ozone daily data using the Kolmogorov-Smirnov test and comparing trend values in the seasonal mean, standard deviation, maximum and minimum time series for the selected stations and seasons. The distribution shift toward lower values without a change in the distribution shape is suggested with the following exceptions: the spreading of the distribution toward lower values for Belsk during winter and no decisive result for Sapporo and Boulder in summer.

  7. Trajectory Optimization of Electric Aircraft Subject to Subsystem Thermal Constraints

    NASA Technical Reports Server (NTRS)

    Falck, Robert D.; Chin, Jeffrey C.; Schnulo, Sydney L.; Burt, Jonathan M.; Gray, Justin S.

    2017-01-01

    Electric aircraft pose a unique design challenge in that they lack a simple way to reject waste heat from the power train. While conventional aircraft reject most of their excess heat in the exhaust stream, for electric aircraft this is not an option. To examine the implications of this challenge on electric aircraft design and performance, we developed a model of the electric subsystems for the NASA X-57 electric testbed aircraft. We then coupled this model with a model of simple 2D aircraft dynamics and used a Legendre-Gauss-Lobatto collocation optimal control approach to find optimal trajectories for the aircraft with and without thermal constraints. The results show that the X-57 heat rejection systems are well designed for maximum-range and maximum-efficiency flight, without the need to deviate from an optimal trajectory. Stressing the thermal constraints by reducing the cooling capacity or requiring faster flight has a minimal impact on performance, as the trajectory optimization technique is able to find flight paths which honor the thermal constraints with relatively minor deviations from the nominal optimal trajectory.

  8. Implementation of small field radiotherapy dosimetry for spinal metastase case

    NASA Astrophysics Data System (ADS)

    Rofikoh, Wibowo, W. E.; Pawiro, S. A.

    2017-07-01

    The main objective of this study was to know dose profile of small field radiotherapy in the spinal metastase case with source axis distance (SAD) techniques. In addition, we evaluated and compared the dose planning of stereotactic body radiation therapy (SBRT) and conventional techniques to measurements with Exradin A16 and Gafchromic EBT3 film dosimeters. The results showed that film EBT3 had a highest precision and accuracy with the average of the standard deviation of ±1.7 and maximum discrepancy of 2.6 %. In addition, the average value of Full Wave Half Maximum (FWHM) and its largest deviation in small field size of 0.8 x 0.8 cm2 are 0.82 cm and 16.3 % respectively, while it was found around 2.36 cm and 3 % for the field size of 2.4 x 2.4 cm2. The comparison between penumbra width and the collimation was around of 37.1 % for the field size of 0.8 x 0.8 cm2, while it was found of 12.4 % for the field size of 2.4 x 2.4 cm2.

  9. The turbulence structure of katabatic flows below and above wind-speed maximum

    NASA Astrophysics Data System (ADS)

    Grachev, Andrey; Leo, Laura; Di Sabatino, Silvana; Fernando, Harindra; Pardyjak, Eric; Fairall, Christopher

    2015-04-01

    Measurements of atmospheric small-scale turbulence made over the complex-terrain at the US Army Dugway Proving Grounds in Utah during the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program are used to describe the turbulence structure of katabatic flows. Turbulent and mean meteorological data were continuously measured at multiple levels (up to seven) on four towers deployed along East lower slope (2-4 degrees) of Granite Mountain. The multi-level, multi-tower observations obtained during a 30-day long MATERHORN-Fall field campaign in September-October 2102 allow studying temporal and spatial structure of nocturnal slope flows in detail. In this study, we focus on the various statistics (fluxes, variances, spectra, cospectra, etc.) of the small-scale turbulence of katabatic winds. Observed vertical profiles of velocity, turbulent fluxes, and other quantities show steep gradients near the surface but in the layer above the slope jet these variables vary with height more slowly than near the surface. It is found that vertical momentum flux and horizontal heat (buoyancy) flux in a slope-following coordinate system change their sign below and above the wind maximum of a katabatic flow. The vertical momentum flux is directed downward (upward) whereas the horizontal heat flux is downslope (upslope) below (above) the wind maximum. Our study, therefore, suggests that a position of the jet speed maximum can be derived from linear interpolation between positive and negative values of the momentum flux (or the horizontal heat flux) and determination of a height where a flux becomes zero. It is shown that the standard deviations of all wind speed components (and therefore the turbulent kinetic energy) and the dissipation rate of turbulent kinetic energy have a local minimum, whereas the standard deviation of air temperature has an absolute maximum at the height of wind speed maximum. We report several cases when the destructive effect of vertical heat (buoyancy) flux is completely cancelled by the generation of turbulence due to the horizontal heat (buoyancy) flux. Turbulence in the layer above the wind-speed maximum is decoupled from the surface and it is consistent with the classical local z-less predictions for stably stratified boundary layer.

  10. The effect of time in use on the display performance of the iPad.

    PubMed

    Caffery, Liam J; Manthey, Kenneth L; Sim, Lawrence H

    2016-07-01

    The aim of this study was to evaluate changes to the luminance, luminance uniformity and conformance to the digital imaging and communication in medicine greyscale standard display function (GSDF) as a function of time in use for the iPad. Luminance measurements of the American Association of Physicists in Medicine (AAPM) Group 18 task group (TG18) luminance uniformity and luminance test patterns (TG18-UNL and TG18-LN8) were performed using a calibrated near-range luminance meter. Nine sets of measurements were taken, where the time in use of the iPad ranged from 0 to 2500 h. The maximum luminance (Lmax) of the display decreased (367-338 cdm(-2)) as a function of time. The minimum luminance remained constant. The maximum non-uniformity coefficient was 11%. Luminance uniformity decreased slightly as a function of time in use. The conformance of the iPad deviated from the GSDF curve at commencement of use. Deviation did not increase as a function of time in use. This study has demonstrated that the iPad display exhibits luminance degradation typical of liquid crystal displays. The Lmax of the iPad fell below the American College of Radiology-AAPM-Society of Imaging Informatics in Medicine recommendations for primary displays (>350 cdm(-2)) at approximately 1000 h in use. The Lmax recommendation for secondary displays (>250 cdm(-2)) was exceeded during the entire study. The maximum non-uniformity coefficient did not exceed the recommendations for either primary or secondary displays. The deviation from the GSDF exceeded the recommendations of the TG18 for use as either a primary or secondary display. The brightness, uniformity and contrast response are reasonably stable over the useful lifetime of the device; however, the device fails to meet the contrast response standard for either a primary or secondary display.

  11. SU-G-JeP2-03: Automatic Quantification of MLC Positional Accuracy in An MRI Guided Radiotherapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X; Studenski, M; Yang, F

    Purpose: MRI-guided-radiotherapy (MRIGRT) systems lack many features of traditional Linac based RT systems and specialized tests need to be developed to evaluate MLC performance. This work describes automatic tools for the analysis of positional accuracy of an MLC equipped MRIGRT system. Methods: This MLC analysis tool was developed for the MRIdian™ RT system which has three Co-60 equipped treatment heads each with a double focused MLC containing 30 leaf pairs, leaf thickness is 1.05cm defined at isocenter (SAD 105 cm). For MLC positional analysis a picket fence test was performed using a 25.4cm × 25.4cm Gafchromic™ RTQA2 film placed betweenmore » 5cm solidwater and a 30cm × 30cm × 1cm jigwire phantom with seven embedded parallel metal strips 4cm apart. A plan was generated to deliver 2Gy per field and seven 23.1cm × 2cm fields centered over each wire in the phantom. For each leaf pair the center of the radiation profile was determined by fitting the horizontal profile with a Gaussian model and determining the center of the FWHM. This was compared with the metal strip location to determine any deviation. The following metrics were used to evaluate the deviations per gantry angle including maximum, minimum, mean, Kurtosis, and skewness. Results: The identified maximum/mean leaf deviations are, 1.32/0.55 mm for gantry 0°, 1.59/0.76 mm for gantry 90°, and 1.19/0.39 mm for gantry 270°. The percentage of leaf deviation less than 1mm are 90.0% at 0°, 74.6% at 90°, and 97.0% at 270°. Kurtosis/skewness of the leaf deviation are 2.41/0.14 at 0°, 2.53/0.23 at 90°, 3.33/0.83 at 270°, respectively. Conclusion: This work presents an automatic tool for evaluation of the MLC position accuracy of the MRIdian™ radiotherapy system which can be used to benchmark the performance of the MLC system for each treatment head and track the results longitudinally.« less

  12. Geometrical Design of a Scalable Overlapping Planar Spiral Coil Array to Generate a Homogeneous Magnetic Field.

    PubMed

    Jow, Uei-Ming; Ghovanloo, Maysam

    2012-12-21

    We present a design methodology for an overlapping hexagonal planar spiral coil (hex-PSC) array, optimized for creation of a homogenous magnetic field for wireless power transmission to randomly moving objects. The modular hex-PSC array has been implemented in the form of three parallel conductive layers, for which an iterative optimization procedure defines the PSC geometries. Since the overlapping hex-PSCs in different layers have different characteristics, the worst case coil-coupling condition should be designed to provide the maximum power transfer efficiency (PTE) in order to minimize the spatial received power fluctuations. In the worst case, the transmitter (Tx) hex-PSC is overlapped by six PSCs and surrounded by six other adjacent PSCs. Using a receiver (Rx) coil, 20 mm in radius, at the coupling distance of 78 mm and maximum lateral misalignment of 49.1 mm (1/√3 of the PSC radius) we can receive power at a PTE of 19.6% from the worst case PSC. Furthermore, we have studied the effects of Rx coil tilting and concluded that the PTE degrades significantly when θ > 60°. Solutions are: 1) activating two adjacent overlapping hex-PSCs simultaneously with out-of-phase excitations to create horizontal magnetic flux and 2) inclusion of a small energy storage element in the Rx module to maintain power in the worst case scenarios. In order to verify the proposed design methodology, we have developed the EnerCage system, which aims to power up biological instruments attached to or implanted in freely behaving small animal subjects' bodies in long-term electrophysiology experiments within large experimental arenas.

  13. A flexible, planar energy harvesting device for scavenging road side waste mechanical energy via the synergistic piezoelectric response of K0.5Na0.5NbO3-BaTiO3/PVDF composite films.

    PubMed

    Vivekananthan, Venkateswaran; Alluri, Nagamalleswara Rao; Purusothaman, Yuvasree; Chandrasekhar, Arunkumar; Kim, Sang-Jae

    2017-10-12

    Flexible, planar composite piezoelectric nanogenerators (C-PNGs) were developed to harness waste mechanical energy using cost-effective composite films (CFs) prepared via a probe-sonication technique. CFs, made up of highly crystalline, randomly oriented lead free piezoelectric nanoparticles (1 - x)K 0.5 Na 0.5 NbO 3 -xBaTiO 3 , where x = 0.02, 0.04, 0.06, or 0.08 [designated as KNN-xBTO], were impregnated in a polyvinylidene fluoride (PVDF) matrix. The KNN piezoelectric properties were tuned via the substitution of BTO nanoparticles, without altering the orthorhombic phase. A C-PNG device (x ≈ 0.02) generates a maximum open circuit voltage ≈160 V, and the instantaneous area power density is ≈14 mW m -2 upon a low mechanical force ≈0.4 N. The effects of BTO concentration in the KNN lattice, electrical poling effects, the fixed weight ratio of nanoparticles in the PVDF matrix, switching polarity tests, and load resistance analysis of C-PNG devices were investigated with constant mechanical force. Furthermore, the experimentally demonstrated C-PNG device output is sufficient to drive commercial blue light emitting diodes. The C-PNG device was placed on a road side, and the maximum energy generation and stability under real time harsh conditions, such as vehicle motion (motorcycle and bicycle) and human walking, were tested. C-PNG generates a peak-to-peak output voltage ≈16 V, when motorcycle forward/backward motion acts on it. This result indicates that the C-PNG device is a potential candidate to power road side sensors, speed tachometers, light indicators, etc. on highways.

  14. Quality assurance of proton beams using a multilayer ionization chamber system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhanesar, Sandeep; Sahoo, Narayan; Kerr, Matthew

    2013-09-15

    Purpose: The measurement of percentage depth-dose (PDD) distributions for the quality assurance of clinical proton beams is most commonly performed with a computerized water tank dosimetry system with ionization chamber, commonly referred to as water tank. Although the accuracy and reproducibility of this method is well established, it can be time-consuming if a large number of measurements are required. In this work the authors evaluate the linearity, reproducibility, sensitivity to field size, accuracy, and time-savings of another system: the Zebra, a multilayer ionization chamber system.Methods: The Zebra, consisting of 180 parallel-plate ionization chambers with 2 mm resolution, was used tomore » measure depth-dose distributions. The measurements were performed for scattered and scanned proton pencil beams of multiple energies delivered by the Hitachi PROBEAT synchrotron-based delivery system. For scattered beams, the Zebra-measured depth-dose distributions were compared with those measured with the water tank. The principal descriptors extracted for comparisons were: range, the depth of the distal 90% dose; spread-out Bragg peak (SOBP) length, the region between the proximal 95% and distal 90% dose; and distal-dose fall off (DDF), the region between the distal 80% and 20% dose. For scanned beams, the Zebra-measured ranges were compared with those acquired using a Bragg peak chamber during commissioning.Results: The Zebra demonstrated better than 1% reproducibility and monitor unit linearity. The response of the Zebra was found to be sensitive to radiation field sizes greater than 12.5 × 12.5 cm; hence, the measurements used to determine accuracy were performed using a field size of 10 × 10 cm. For the scattered proton beams, PDD distributions showed 1.5% agreement within the SOBP, and 3.8% outside. Range values agreed within −0.1 ± 0.4 mm, with a maximum deviation of 1.2 mm. SOBP length values agreed within 0 ± 2 mm, with a maximum deviation of 6 mm. DDF values agreed within 0.3 ± 0.1 mm, with a maximum deviation of 0.6 mm. For the scanned proton pencil beams, Zebra and Bragg peak chamber range values demonstrated agreement of 0.0 ± 0.3 mm with a maximum deviation of 1.3 mm. The setup and measurement time for all Zebra measurements was 3 and 20 times less, respectively, compared to the water tank measurements.Conclusions: Our investigation shows that the Zebra can be useful not only for fast but also for accurate measurements of the depth-dose distributions of both scattered and scanned proton beams. The analysis of a large set of measurements shows that the commonly assessed beam quality parameters obtained with the Zebra are within the acceptable variations specified by the manufacturer for our delivery system.« less

  15. Solid-state membrane module

    DOEpatents

    Hinklin, Thomas Ray; Lewinsohn, Charles Arthur

    2015-06-30

    A module for separating oxygen from an oxygen-containing gaseous mixture comprising planar solid-state membrane units, each membrane unit comprising planar dense mixed conducting oxides layers, planar channel-free porous support layers, and one or more planar intermediate support layers comprising at least one channeled porous support layer. The porosity of the planar channeled porous support layers is less than the porosity of the planar channel-free porous support layers.

  16. Gold leaf: From gilding to the fabrication of disposable, wearable and low-cost electrodes.

    PubMed

    Santos, Mauro Sérgio Ferreira; Ameku, Wilson Akira; Gutz, Ivano Gebhardt Rolf; Paixão, Thiago Regis Longo Cesar

    2018-03-01

    Gold is among the most used materials in electrocatalysis. Despite this, this noble metal is still too expensive to be used in the fabrication of low cost and disposable devices. In the present work, gold-leaf sheets, usually employed in decorative crafts and wedding candies, is introduced as an inexpensive source of gold. Planar-disc and nanoband gold electrodes were simply and easily manufactured by combining gold leaf and polyimide tape. The planar disc electrode exhibited electrochemical behavior similar to that of a commercial gold electrode in 0.2molL -1 H 2 SO 4 ; cyclic voltammetry of a 1mmolL -1 solution of potassium ferricyanide (K 3 [Fe(CN) 6 ]) in 0.2molL -1 KNO 3 , using this novel electrode, displayed an 80mV difference between the oxidation and reduction peak potentials. The electrode also delivers promising prospects for the development of wearable devices. When submitted to severe mechanical deformation, this electrode exhibited neither loss of electrical contact nor significant variation in electrode response, even after fifteen bending and/or folding cycles. The thickness of the gold-leaf sheet facilitates the production of nanoband electrodes with behavior similar to that of ultramicroelectrodes. The electrode surface is easily renewed by cutting a thin slice off its end with a razor blade; this process led to limiting currents that were reproducible, presenting a relative standard deviation (RSD) of 3.8% (n = 5). Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Re-186 and Sm-153 dosimetry based on scintigraphic imaging data in skeletal metastasis palliative treatment and Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Andreou, M.; Lagopati, N.; Lyra, M.

    2011-09-01

    Optimum treatment planning of patients suffering from painful skeletal metastases requires accurate calculations concerning absorbed dose in metastatic lesions and critical organs, such as red marrow. Delivering high doses to tumor cells while limiting radiation dose to normal tissue, is the key for successful palliation treatment. The aim of this study is to compare the dosimetric calculations, obtained by Monte Carlo (MC) simulation and the MIRDOSE model, in therapeutic schemes of skeleton metastatic lesions, with Rhenium-186 (Sn) -HEDP and Samarium-153 -EDTMP. A bolus injection of 1295 MBq (35mCi) Re-186- HEDP was infused in 11 patients with multiple skeletal metastases. The administered dose for the 8 patients who received Sm-153 was 1 mCi /kg. Planar scintigraphic images for the two groups of patients were obtained, 24 h, 48 h and 72 h post injection, by an Elscint Apex SPX gamma camera. The images were processed, utilizing ROI quantitative methods, to determine residence times and radionuclide uptakes. Dosimetric calculations were performed using the patient specific scintigraphic data by the MIRDOSE3 code of MIRD. Also, MCNPX was employed, simulating the distribution of the radioisotope in the ROI and calculating the absorbed doses in the metastatic lesion, and in critical organs. Summarizing, there is a good agreement between the results, derived from the two pathways, the patient specific and the mathematical, with a deviation of less than 9% for planar scintigraphic data compared to MC, for both radiopharmaceuticals.

  18. Network-Cognizant Design of Decentralized Volt/VAR Controllers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Kyri A; Bernstein, Andrey; Zhao, Changhong

    This paper considers the problem of designing decentralized Volt/VAR controllers for distributed energy resources (DERs). The voltage-reactive power characteristics of individual DERs are obtained by solving a convex optimization problem, where given performance objectives (e.g., minimization of the voltage deviations from a given profile) are specified and stability constraints are enforced. The resultant Volt/VAR characteristics are network-cognizant, in the sense that they embed information on the location of the DERs and, consequently, on the effect of reactive-power adjustments on the voltages throughout the feeder. Bounds on the maximum voltage deviation incurred by the controllers are analytically established. Numerical results aremore » reported to corroborate the technical findings.« less

  19. Multiple Optical Traps with a Single-Beam Optical Tweezer Utilizing Surface Micromachined Planar Curved Grating

    NASA Astrophysics Data System (ADS)

    Kuo, Ju-Nan; Chen, Kuan-Yu

    2010-11-01

    In this paper, we present a single-beam optical tweezer integrated with a planar curved diffraction grating for microbead manipulation. Various curvatures of the surface micromachined planar curved grating are systematically investigated. The planar curved grating was fabricated using multiuser micro-electro-mechanical-system (MEMS) processes (MUMPs). The angular separation and the number of diffracted orders were determined. Experimental results indicate that the diffraction patterns and curvature of the planar curved grating are closely related. As the curvature of the planar curved grating increases, the vertical diffraction angle increases, resulting in the strip patterns of the planar curved grating. A single-beam optical tweezer integrated with a planar curved diffraction grating was developed. We demonstrate a technique for creating multiple optical traps from a single laser beam using the developed planar curved grating. The strip patterns of the planar curved grating that resulted from diffraction were used to trap one row of polystyrene beads.

  20. Estimating the brain pathological age of Alzheimer’s disease patients from MR image data based on the separability distance criterion

    NASA Astrophysics Data System (ADS)

    Li, Yongming; Li, Fan; Wang, Pin; Zhu, Xueru; Liu, Shujun; Qiu, Mingguo; Zhang, Jingna; Zeng, Xiaoping

    2016-10-01

    Traditional age estimation methods are based on the same idea that uses the real age as the training label. However, these methods ignore that there is a deviation between the real age and the brain age due to accelerated brain aging. This paper considers this deviation and searches for it by maximizing the separability distance value rather than by minimizing the difference between the estimated brain age and the real age. Firstly, set the search range of the deviation as the deviation candidates according to prior knowledge. Secondly, use the support vector regression (SVR) as the age estimation model to minimize the difference between the estimated age and the real age plus deviation rather than the real age itself. Thirdly, design the fitness function based on the separability distance criterion. Fourthly, conduct age estimation on the validation dataset using the trained age estimation model, put the estimated age into the fitness function, and obtain the fitness value of the deviation candidate. Fifthly, repeat the iteration until all the deviation candidates are involved and get the optimal deviation with maximum fitness values. The real age plus the optimal deviation is taken as the brain pathological age. The experimental results showed that the separability was apparently improved. For normal control-Alzheimer’s disease (NC-AD), normal control-mild cognition impairment (NC-MCI), and MCI-AD, the average improvements were 0.178 (35.11%), 0.033 (14.47%), and 0.017 (39.53%), respectively. For NC-MCI-AD, the average improvement was 0.2287 (64.22%). The estimated brain pathological age could be not only more helpful to the classification of AD but also more precisely reflect accelerated brain aging. In conclusion, this paper offers a new method for brain age estimation that can distinguish different states of AD and can better reflect the extent of accelerated aging.

  1. Stress anisotropy analysis and its effect on unconventional resource development in Montney play, Kakwa, Canada

    NASA Astrophysics Data System (ADS)

    Tak, Heewon; Choi, Jaewon; Jo, Sohyun; Hwang, Sukyeon

    2017-04-01

    Stress anisotropy analysis is important for estimating both stress regime and fracture geometry for the efficient development of unconventional resources. Despite being within the same play, different areas can have different stress regimes, which can affect drilling decisions. The Montney play is located in Canada between British Columbia and Alberta. In British Columbia it is known for its ductile shale and high horizontal stress anisotropy because of the Rocky Mountains; however, in Alberta, it has different geological characteristics with some studies finding weak horizontal stress anisotropy. Therefore, we studied the horizontal stress anisotropy using full azimuth seismic and well data in the Kakwa area in order to establish a drilling plan. Minimal horizontal anisotropy was discovered within the area and the direction of maximum horizontal anisotropy corresponded with the regional scale (i.e., NE-SW). The induced fractures were assumed to have a normal stress regime because of the large depth (> 3000 m). Additionally, because of the very high brittleness (Young's modulus > 9) and relatively weak horizontal stress anisotropy, the fracture geometry in the Kakwa area was estimated as complex or complex planar, as opposed to simply planar.

  2. Design and simulation of origami structures with smooth folds

    PubMed Central

    Peraza Hernandez, E. A.; Lagoudas, D. C.

    2017-01-01

    Origami has enabled new approaches to the fabrication and functionality of multiple structures. Current methods for origami design are restricted to the idealization of folds as creases of zeroth-order geometric continuity. Such an idealization is not proper for origami structures of non-negligible fold thickness or maximum curvature at the folds restricted by material limitations. For such structures, folds are not properly represented as creases but rather as bent regions of higher-order geometric continuity. Such fold regions of arbitrary order of continuity are termed as smooth folds. This paper presents a method for solving the following origami design problem: given a goal shape represented as a polygonal mesh (termed as the goal mesh), find the geometry of a single planar sheet, its pattern of smooth folds, and the history of folding motion allowing the sheet to approximate the goal mesh. The parametrization of the planar sheet and the constraints that allow for a valid pattern of smooth folds are presented. The method is tested against various goal meshes having diverse geometries. The results show that every determined sheet approximates its corresponding goal mesh in a known folded configuration having fold angles obtained from the geometry of the goal mesh. PMID:28484322

  3. Highly sensitive three-dimensional interdigitated microelectrode for microparticle detection using electrical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Chang, Fu-Yu; Chen, Ming-Kun; Wang, Min-Haw; Jang, Ling-Sheng

    2016-02-01

    Cell impedance analysis is widely used for monitoring biological and medical reactions. In this study, a highly sensitive three-dimensional (3D) interdigitated microelectrode (IME) with a high aspect ratio on a polyimide (PI) flexible substrate was fabricated for microparticle detection (e.g. cell quantity detection) using electroforming and lithography technology. 3D finite element simulations were performed to compare the performance of the 3D IME (in terms of sensitivity and signal-to-noise ratio) to that of a planar IME for particles in the sensing area. Various quantities of particles were captured in Dulbecco’s modified Eagle medium and their impedances were measured. With the 3D IME, the particles were arranged in the gap, not on the electrode, avoiding the noise due to particle position. For the maximum particle quantities, the results show that the 3D IME has at least 5-fold higher sensitivity than that of the planar IME. The trends of impedance magnitude and phase due to particle quantity were verified using the equivalent circuit model. The impedance (1269 Ω) of 69 particles was used to estimate the particle quantity (68 particles) with 98.6% accuracy using a parabolic regression curve at 500 kHz.

  4. Design and simulation of origami structures with smooth folds.

    PubMed

    Peraza Hernandez, E A; Hartl, D J; Lagoudas, D C

    2017-04-01

    Origami has enabled new approaches to the fabrication and functionality of multiple structures. Current methods for origami design are restricted to the idealization of folds as creases of zeroth-order geometric continuity. Such an idealization is not proper for origami structures of non-negligible fold thickness or maximum curvature at the folds restricted by material limitations. For such structures, folds are not properly represented as creases but rather as bent regions of higher-order geometric continuity. Such fold regions of arbitrary order of continuity are termed as smooth folds . This paper presents a method for solving the following origami design problem: given a goal shape represented as a polygonal mesh (termed as the goal mesh ), find the geometry of a single planar sheet, its pattern of smooth folds, and the history of folding motion allowing the sheet to approximate the goal mesh. The parametrization of the planar sheet and the constraints that allow for a valid pattern of smooth folds are presented. The method is tested against various goal meshes having diverse geometries. The results show that every determined sheet approximates its corresponding goal mesh in a known folded configuration having fold angles obtained from the geometry of the goal mesh.

  5. Analysis and Optimization of Four-Coil Planar Magnetically Coupled Printed Spiral Resonators.

    PubMed

    Khan, Sadeque Reza; Choi, GoangSeog

    2016-08-03

    High-efficiency power transfer at a long distance can be efficiently established using resonance-based wireless techniques. In contrast to the conventional two-coil-based inductive links, this paper presents a magnetically coupled fully planar four-coil printed spiral resonator-based wireless power-transfer system that compensates the adverse effect of low coupling and improves efficiency by using high quality-factor coils. A conformal architecture is adopted to reduce the transmitter and receiver sizes. Both square architecture and circular architectures are analyzed and optimized to provide maximum efficiency at a certain operating distance. Furthermore, their performance is compared on the basis of the power-transfer efficiency and power delivered to the load. Square resonators can produce higher measured power-transfer efficiency (79.8%) than circular resonators (78.43%) when the distance between the transmitter and receiver coils is 10 mm of air medium at a resonant frequency of 13.56 MHz. On the other hand, circular coils can deliver higher power (443.5 mW) to the load than the square coils (396 mW) under the same medium properties. The performance of the proposed structures is investigated by simulation using a three-layer human-tissue medium and by experimentation.

  6. Irwin's conjecture: Crack shape adaptability in transversely isotropic solids

    NASA Astrophysics Data System (ADS)

    Laubie, Hadrien; Ulm, Franz-Josef

    2014-08-01

    The planar crack propagation problem of a flat elliptical crack embedded in a brittle elastic anisotropic solid is investigated. We introduce the concept of crack shape adaptability: the ability of three-dimensional planar cracks to shape with the mechanical properties of a cracked body. A criterion based on the principle of maximum dissipation is suggested in order to determine the most stable elliptical shape. This criterion is applied to the specific case of vertical cracks in transversely isotropic solids. It is shown that contrary to the isotropic case, the circular shape (i.e. penny-shaped cracks) is not the most stable one. Upon propagation, the crack first grows non-self-similarly before it reaches a stable shape. This stable shape can be approximated by an ellipse of an aspect ratio that varies with the degree of elastic anisotropy. By way of example, we apply the so-derived crack shape adaptability criterion to shale materials. For this class of materials it is shown that once the stable shape is reached, the crack propagates at a higher rate in the horizontal direction than in the vertical direction. We also comment on the possible implications of these findings for hydraulic fracturing operations.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branch, Shirmir D.; Lines, Amanda M.; Lynch, John

    The electrochemical and spectroelectrochemical applications of an optically transparent thin film electrode chip are investigated. The working electrode is composed of indium tin oxide (ITO); the counter and quasi-reference electrodes are composed of platinum. The stability of the platinum quasi-reference electrode is modified by coating it with a planar, solid state Ag/AgCl layer. The Ag/AgCl reference is characterized with scanning electron microscopy and energy-dispersive X-ray spectroscopy. Open circuit potential measurements indicate that the potential of the planar Ag/AgCl electrode varies a maximum of 20 mV over four days. Cyclic voltammetry measurements show that the electrode chip is comparable to amore » standard electrochemical cell. Randles-Sevcik analysis of 10 mM K3[Fe(CN)6] in 0.1 M KCl using the electrode chip shows a diffusion coefficient of 1.59 × 10-6 cm2/s, in comparison to the standard electrochemical cell value of 2.38 × 10-6 cm2/s. By using the electrode chip in an optically transparent thin layer electrode (OTTLE), the spectroelectrochemical modulation of [Ru(bpy)3]2+ florescence was demonstrated, achieving a detection limit of 36 nM.« less

  8. Fatigue design of a mechanically biocompatible lattice for a proof-of-concept femoral stem.

    PubMed

    Arabnejad Khanoki, Sajad; Pasini, Damiano

    2013-06-01

    A methodology is proposed to design a spatially periodic microarchitectured material for a two-dimensional femoral implant under walking gait conditions. The material is composed of a graded lattice with controlled property distribution that minimizes concurrently bone resorption and interface failure. The periodic microstructure of the material is designed for fatigue fracture caused by cyclic loadings on the hip joint as a result of walking. The bulk material of the lattice is Ti6AL4V and its microstructure is assumed free of defects. The Soderberg diagram is used for the fatigue design under multiaxial loadings. Two cell topologies, square and Kagome, are chosen to obtain optimized property gradients for a two-dimensional implant. Asymptotic homogenization (AH) theory is used to address the multiscale mechanics of the implant as well as to capture the stress and strain distribution at both the macro and the microscale. The microstress distribution found with AH is also compared with that obtained from a detailed finite element analysis. For the maximum value of the von Mises stress, we observe a deviation of 18.6% in unit cells close to the implant boundary, where the AH assumption of spatial periodicity of the fluctuating fields ceases to hold. In the second part of the paper, the metrics of bone resorption and interface shear stress are used to benchmark the graded cellular implant with existing prostheses made of fully dense titanium implant. The results show that the amount of initial postoperative bone loss for square and Kagome lattice implants decreases, respectively, by 53.8% and 58%. In addition, the maximum shear interface failure at the distal end is significantly reduced by about 79%. A set of proof-of-concepts of planar implants have been fabricated via Electron Beam Melting (EBM) to demonstrate the manufacturability of Ti6AL4V into graded lattices with alternative cell size. Optical microscopy has been used to measure the morphological parameters of the cellular microstructure, including cell wall thickness and pore size, and compared them with the nominal values. No sign of fracture or incomplete cell walls was observed, an assessment that shows the satisfactory metallurgical bond of cell walls and the structural integrity of the implants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. 26 CFR 31.3402(h)(4)-1 - Other methods.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 15 2013-04-01 2013-04-01 false Other methods. 31.3402(h)(4)-1 Section 31.3402... Collection of Income Tax at Source § 31.3402(h)(4)-1 Other methods. (a) Maximum permissible deviations. An employer may use any other method of withholding under which the employer will deduct and withhold upon...

  10. 26 CFR 31.3402(h)(4)-1 - Other methods.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 15 2010-04-01 2010-04-01 false Other methods. 31.3402(h)(4)-1 Section 31.3402... Collection of Income Tax at Source § 31.3402(h)(4)-1 Other methods. (a) Maximum permissible deviations. An employer may use any other method of withholding under which the employer will deduct and withhold upon...

  11. 26 CFR 31.3402(h)(4)-1 - Other methods.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 15 2011-04-01 2011-04-01 false Other methods. 31.3402(h)(4)-1 Section 31.3402... Collection of Income Tax at Source § 31.3402(h)(4)-1 Other methods. (a) Maximum permissible deviations. An employer may use any other method of withholding under which the employer will deduct and withhold upon...

  12. 26 CFR 31.3402(h)(4)-1 - Other methods.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 15 2012-04-01 2012-04-01 false Other methods. 31.3402(h)(4)-1 Section 31.3402... Collection of Income Tax at Source § 31.3402(h)(4)-1 Other methods. (a) Maximum permissible deviations. An employer may use any other method of withholding under which the employer will deduct and withhold upon...

  13. 26 CFR 31.3402(h)(4)-1 - Other methods.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 15 2014-04-01 2014-04-01 false Other methods. 31.3402(h)(4)-1 Section 31.3402... Collection of Income Tax at Source § 31.3402(h)(4)-1 Other methods. (a) Maximum permissible deviations. An employer may use any other method of withholding under which the employer will deduct and withhold upon...

  14. 17 CFR 229.512 - (Item 512) Undertakings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... INSTRUCTIONS FOR FILING FORMS UNDER SECURITIES ACT OF 1933, SECURITIES EXCHANGE ACT OF 1934 AND ENERGY POLICY... deviation from the low or high end of the estimated maximum offering range may be reflected in the form of... the registration statement is on Form S-8 (§ 239.16b of this chapter), and the information required to...

  15. 17 CFR 229.512 - (Item 512) Undertakings.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... INSTRUCTIONS FOR FILING FORMS UNDER SECURITIES ACT OF 1933, SECURITIES EXCHANGE ACT OF 1934 AND ENERGY POLICY... deviation from the low or high end of the estimated maximum offering range may be reflected in the form of... the registration statement is on Form S-8 (§ 239.16b of this chapter), and the information required to...

  16. 17 CFR 229.512 - (Item 512) Undertakings.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... INSTRUCTIONS FOR FILING FORMS UNDER SECURITIES ACT OF 1933, SECURITIES EXCHANGE ACT OF 1934 AND ENERGY POLICY... deviation from the low or high end of the estimated maximum offering range may be reflected in the form of... the registration statement is on Form S-8 (§ 239.16b of this chapter), and the information required to...

  17. Method for directional hydraulic fracturing

    DOEpatents

    Swanson, David E.; Daly, Daniel W.

    1994-01-01

    A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.

  18. Frame-mounted wire management device

    DOEpatents

    Grushkowitz, Tyler; Fischer, Kevin; Danning, Matthew

    2016-09-20

    A wire management device is disclosed. The device comprises a clip comprising an upper planar member and a lower planar member, each planar member having an inner and outer surface, wherein the inner surface of the upper planar member includes a post extending toward the inner surface of the lower planar member, a stem extending from the outer surface of the lower planar member, the stem including two outwardly-extending flanges, each of the first and second outwardly-extending flanges including an edge portion extending toward the outer surface of the lower planar member, and a transverse passage extending along the outer surface of the lower planar member, the transverse passage extending across the stem, wherein the stem has a recessed portion along the transverse passage.

  19. SU-E-T-217: Comprehensive Dosimetric Evaluation On 3D-CRT, IMRT and Non-Coplanar Arc Treatment for Prone Accelerated Partial Breast Irradiation (APBI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, T; Yan, Y; Ramirez, E

    2015-06-15

    Purpose: Accelerated partial breast irradiation (APBI) is an effective treatment for early stage breast-cancer. Irradiation in a prone position can mitigate breast motion and spare heart and lung. In this study, a comprehensive study is performed to evaluate various treatment techniques for prone APBI treatment including: 3D-CRT, IMRT, co-planar and non-coplanar partial arcs treatment. Methods: In this treatment planning study, a left breast patient treated in prone position in our clinic was imported into Varian Eclipse TPS. Six beams tangential to chest wall were used in both 3D-CRT and IMRT plans. These six beams were coplanar in a transactional planemore » achieved by both gantry and couch rotation. A 60-beam IMRT plan was also created to explore the maximum benefit of co-planar IMRT. Within deliverable couch rotation range (±30°), partial arc treatment plans with one and up to ten couch positions were generated for comparison. For each plan, 30Gy in 6 fractions was prescribed to 95% PTV volume. Critical dosimetric parameters, such as conformity index, mean, maximum, and volume dose of organ at risk, are evaluated. Results: The conformity indexes (CI) are 3.53, 3.17, 2.21 and 1.08 respectively to 3D-CRT, 6-beam IMRT, 60-beam IMRT, and two-partial-arcs coplanar plans. However, arc plans increase heart dose. CI for non-coplanar arc plans decreases from 1.19 to 1.10 when increases couch positions. Maximum dose in ipsilateral lung (1.98 to 1.13 Gy), and heart (0.62 to 0.43 Gy) are steadily decreased with the increased number of non-coplanar arcs. Conclusions: The dosimetric evaluation results show that partial arc plans have improved CIs compared to conventional 3D-CRT and IMRT plans. Increasing number of partial arcs decreases lung and heart dose. The dosimetric benefit obtained from non-coplanar arcs should be considered with treatment delivery time.« less

  20. Estimating potency for the Emax-model without attaining maximal effects.

    PubMed

    Schoemaker, R C; van Gerven, J M; Cohen, A F

    1998-10-01

    The most widely applied model relating drug concentrations to effects is the Emax model. In practice, concentration-effect relationships often deviate from a simple linear relationship but without reaching a clear maximum because a further increase in concentration might be associated with unacceptable or distorting side effects. The parameters for the Emax model can only be estimated with reasonable precision if the curve shows sign of reaching a maximum, otherwise both EC50 and Emax estimates may be extremely imprecise. This paper provides a solution by introducing a new parameter (S0) equal to Emax/EC50 that can be used to characterize potency adequately even if there are no signs of a clear maximum. Simulations are presented to investigate the nature of the new parameter and published examples are used as illustration.

  1. Fluid-driven fracture propagation in heterogeneous media: Probability distributions of fracture trajectories

    NASA Astrophysics Data System (ADS)

    Santillán, David; Mosquera, Juan-Carlos; Cueto-Felgueroso, Luis

    2017-11-01

    Hydraulic fracture trajectories in rocks and other materials are highly affected by spatial heterogeneity in their mechanical properties. Understanding the complexity and structure of fluid-driven fractures and their deviation from the predictions of homogenized theories is a practical problem in engineering and geoscience. We conduct a Monte Carlo simulation study to characterize the influence of heterogeneous mechanical properties on the trajectories of hydraulic fractures propagating in elastic media. We generate a large number of random fields of mechanical properties and simulate pressure-driven fracture propagation using a phase-field model. We model the mechanical response of the material as that of an elastic isotropic material with heterogeneous Young modulus and Griffith energy release rate, assuming that fractures propagate in the toughness-dominated regime. Our study shows that the variance and the spatial covariance of the mechanical properties are controlling factors in the tortuousness of the fracture paths. We characterize the deviation of fracture paths from the homogenous case statistically, and conclude that the maximum deviation grows linearly with the distance from the injection point. Additionally, fracture path deviations seem to be normally distributed, suggesting that fracture propagation in the toughness-dominated regime may be described as a random walk.

  2. Analysis of Power Planning Deviation Influence on the Non-fossil Energy Development Goal

    NASA Astrophysics Data System (ADS)

    Xu, Wei-ting; Li, Ting; Ye, Qiang; Mi, Zhu; Ying, Liu; Tao, Yu-xuan

    2017-05-01

    Due to the international circumstances changes and domestic economic restructuring, the policies and planning of energy development have been adjusting in recent years, especially in energy power industry. Under these influences, the Chinese energy development goal “non-fossil energy accounts for 15% of the primary energy consumption” which planned to be realized in 2020 becomes uncertain. To ensure the goal can be achieved, a new energy power planning scheme is provided. Based on this planning scheme, the sensitivity analysis method and the maximum deviation method are proposed to quantify the influence of planning deviation on the target percentage. At the same time, the energy replacement is provided to fill the deviation. Research results shows that the main influence factors of target percentage is the hydro and nuclear power develop scale and their output channel construction. If the hydro and nuclear power capacity can’t reach their target scale, wind and solar power capacity can fill the vacancy instead. But if the vacancy of hydropower exceeds 58GW, or vacancy of nuclear power exceeds 27GW, the “15% goal” would be very difficult to achieve. Accelerating the construction of the hydropower output transmission lines helps to guarantee the "15% goal".

  3. Accuracy of computer-guided surgery for dental implant placement in fully edentulous patients: A systematic review

    PubMed Central

    Marlière, Daniel Amaral Alves; Demétrio, Maurício Silva; Picinini, Leonardo Santos; De Oliveira, Rodrigo Guerra; Chaves Netto, Henrique Duque De Miranda

    2018-01-01

    Assess clinical studies regarding accuracy between virtual planning of computer-guided surgery and actual outcomes of dental implant placements in total edentulous alveolar ridges. A PubMed search was performed to identify only clinical studies published between 2011 and 2016, searching the following combinations of keywords: “Accuracy AND Computer-Assisted Surgery AND Dental Implants.” Study designs were identified using the terms: Case Reports, Clinical study, Randomized Controlled Trial, Systematic Reviews, Meta-Analysis, humans. Level of agreement between the authors in the study selection process was substantial (k = 0.767), and the study eligibility was considered excellent (k = 0.863). Seven articles were included in this review. They describe the use of bone and muco-supported guides, demonstrating angular deviations cervically and apically ranging from (minimum and maximum means), respectively, 1.85–8.4 (°), 0.17–2.17 (mm), and 0.77–2.86 (mm). Angular deviations obtained most inaccuracy in maxila. For cervical and apical deviations, accuracy was preponderantly lower in maxilla. Despite the similar deviations measurement approaches described, clinical relevance of this study may be useful to warn the surgeon that safety margins in clinical situations. PMID:29657542

  4. Fluid-driven fracture propagation in heterogeneous media: Probability distributions of fracture trajectories.

    PubMed

    Santillán, David; Mosquera, Juan-Carlos; Cueto-Felgueroso, Luis

    2017-11-01

    Hydraulic fracture trajectories in rocks and other materials are highly affected by spatial heterogeneity in their mechanical properties. Understanding the complexity and structure of fluid-driven fractures and their deviation from the predictions of homogenized theories is a practical problem in engineering and geoscience. We conduct a Monte Carlo simulation study to characterize the influence of heterogeneous mechanical properties on the trajectories of hydraulic fractures propagating in elastic media. We generate a large number of random fields of mechanical properties and simulate pressure-driven fracture propagation using a phase-field model. We model the mechanical response of the material as that of an elastic isotropic material with heterogeneous Young modulus and Griffith energy release rate, assuming that fractures propagate in the toughness-dominated regime. Our study shows that the variance and the spatial covariance of the mechanical properties are controlling factors in the tortuousness of the fracture paths. We characterize the deviation of fracture paths from the homogenous case statistically, and conclude that the maximum deviation grows linearly with the distance from the injection point. Additionally, fracture path deviations seem to be normally distributed, suggesting that fracture propagation in the toughness-dominated regime may be described as a random walk.

  5. MEMS earthworm: a thermally actuated peristaltic linear micromotor

    NASA Astrophysics Data System (ADS)

    Arthur, Craig; Ellerington, Neil; Hubbard, Ted; Kujath, Marek

    2011-03-01

    This paper examines the design, fabrication and testing of a bio-mimetic MEMS (micro-electro mechanical systems) earthworm motor with external actuators. The motor consists of a passive mobile shuttle with two flexible diamond-shaped segments; each segment is independently squeezed by a pair of stationary chevron-shaped thermal actuators. Applying a specific sequence of squeezes to the earthworm segments, the shuttle can be driven backward or forward. Unlike existing inchworm drives that use clamping and thrusting actuators, the earthworm actuators apply only clamping forces to the shuttle, and lateral thrust is produced by the shuttle's compliant geometry. The earthworm assembly is fabricated using the PolyMUMPs process with planar dimensions of 400 µm width by 800 µm length. The stationary actuators operate within the range of 4-9 V and provide a maximum shuttle range of motion of 350 µm (approximately half its size), a maximum shuttle speed of 17 mm s-1 at 10 kHz, and a maximum dc shuttle force of 80 µN. The shuttle speed was found to vary linearly with both input voltage and input frequency. The shuttle force was found to vary linearly with the actuator voltage.

  6. Delivering both sum and difference beam distributions to a planar monopulse antenna array

    DOEpatents

    Strassner, II, Bernd H.

    2015-12-22

    A planar monopulse radar apparatus includes a planar distribution matrix coupled to a planar antenna array having a linear configuration of antenna elements. The planar distribution matrix is responsive to first and second pluralities of weights applied thereto for providing both sum and difference beam distributions across the antenna array.

  7. Spread of risk across financial markets: better to invest in the peripheries

    NASA Astrophysics Data System (ADS)

    Pozzi, F.; Di Matteo, T.; Aste, T.

    2013-04-01

    Risk is not uniformly spread across financial markets and this fact can be exploited to reduce investment risk contributing to improve global financial stability. We discuss how, by extracting the dependency structure of financial equities, a network approach can be used to build a well-diversified portfolio that effectively reduces investment risk. We find that investments in stocks that occupy peripheral, poorly connected regions in financial filtered networks, namely Minimum Spanning Trees and Planar Maximally Filtered Graphs, are most successful in diversifying, improving the ratio between returns' average and standard deviation, reducing the likelihood of negative returns, while keeping profits in line with the general market average even for small baskets of stocks. On the contrary, investments in subsets of central, highly connected stocks are characterized by greater risk and worse performance. This methodology has the added advantage of visualizing portfolio choices directly over the graphic layout of the network.

  8. 3-[Bis(dimethyl­amino)­methyl­ene]-1,1-diphenyl­urea

    PubMed Central

    Tiritiris, Ioannis

    2012-01-01

    In the title compound, C18H22N4O, the C=N and C—N bond lengths in the CN3 unit are 1.3179 (11), 1.3551 (11) and 1.3737 (11) Å, indicating double- and single-bond character, respectively. The N—C—N angles are 115.91 (8), 118.20 (8) and 125.69 (8), showing a deviation of the CN3 plane from an ideal trigonal–planar geometry. The bonds between the N atoms and the terminal C-methyl groups all have values close to a typical single bond [1.4529 (12)–1.4624 (12) Å]. The dihedral angle between the phenyl rings is 79.63 (4)°. In the crystal, the mol­ecules are connected via weak C—H⋯O hydrogen bonds, generating chains along [100]. PMID:23284417

  9. N-(Diphenyl­carbamo­yl)-N,N′,N′,N′′,N′′-penta­methyl­guanidinium tetra­phenyl­borate

    PubMed Central

    Tiritiris, Ioannis

    2013-01-01

    In the title salt, C19H25N4O+·C24H20B−, the C=N and C—N bond lengths in the CN3 unit are 1.3327 (8)/1.3364 (9) and 1.3802 (9) Å, indicating double- and single-bond character, respectively. The N—C—N angles are 118.77 (6), 120.29 (6) and 120.81 (6)°, showing only a small deviation of the CN3 plane from an ideal trigonal-planar geometry. The bonds between the N atoms and the terminal methyl C atoms all have values close to a typical single bond [1.4636 (9)–1.4772 (9) Å]. The crystal packing is caused by electrostatic inter­actions between cations and anions. PMID:23476477

  10. Spread of risk across financial markets: better to invest in the peripheries

    PubMed Central

    Pozzi, F.; Di Matteo, T.; Aste, T.

    2013-01-01

    Risk is not uniformly spread across financial markets and this fact can be exploited to reduce investment risk contributing to improve global financial stability. We discuss how, by extracting the dependency structure of financial equities, a network approach can be used to build a well-diversified portfolio that effectively reduces investment risk. We find that investments in stocks that occupy peripheral, poorly connected regions in financial filtered networks, namely Minimum Spanning Trees and Planar Maximally Filtered Graphs, are most successful in diversifying, improving the ratio between returns' average and standard deviation, reducing the likelihood of negative returns, while keeping profits in line with the general market average even for small baskets of stocks. On the contrary, investments in subsets of central, highly connected stocks are characterized by greater risk and worse performance. This methodology has the added advantage of visualizing portfolio choices directly over the graphic layout of the network. PMID:23588852

  11. Low-Frequency Coherence Break in the Soft X-Ray State of GRS 1915+105

    NASA Technical Reports Server (NTRS)

    Ji, Jian-Feng; Zhang, Shuang-nan; Qu, Jin-Lu; Li, Ti-Pei

    2003-01-01

    We present results from the analysis of X-ray power density spectra and coherence when GRS 1915+105 is in soft states. We use three data sets that belong to mu, phi, and delta classes as found in the work of Belloni et al. We find that the power density spectra appear t o be complex, with several features between 0.01 and 10 Hz. The coherence deviates from unity above a characteristic frequency. We discuss our results from different models. The corona size in the sphere-disk model implied by this break frequency is on the order of 10(exp 4) GM/c(exp 2), which is unphysical. Our results are more consistent with the prediction of the model of a planar corona sustained by magnetic flares, in which the characteristic frequency is associated with the longest timescale of an individual flare, which is about 8 s.

  12. (E)-1-(2,4-Di­nitro­phen­yl)-2-(3-eth­oxy-4-hy­droxy­benzyl­idene)hydrazine

    PubMed Central

    Fun, Hoong-Kun; Chantrapromma, Suchada; Ruanwas, Pumsak; Kobkeatthawin, Thawanrat; Chidan Kumar, C. S.

    2014-01-01

    The mol­ecule of the title hydrazine derivative, C15H14N4O6, is essentially planar, the dihedral angle between the substituted benzene rings being 2.25 (9)°. The eth­oxy and hy­droxy groups are almost coplanar with their bound benzene ring [r.m.s. deviation = 0.0153 (2) Å for the ten non-H atoms]. Intra­molecular N—H⋯O and O—H⋯Oeth­oxy hydrogen bonds generate S(6) and S(5) ring motifs, respectively. In the crystal, mol­ecules are linked by O—H⋯Onitro hydrogen bonds into chains propagating in [010]. Weak aromatic π–π inter­actions, with centroid–centroid distances of 3.8192 (19) and 4.0491 (19) Å, are also observed. PMID:24527018

  13. An Anomaly in the Inglis-Teller Limits of the C VI Lyman and Balmer Series in Laser-Produced Plasmas

    NASA Astrophysics Data System (ADS)

    Elton, R.; Iglesias, E.; Griem, H.; Weaver, J.; Pien, G.; Mancini, R.

    2002-11-01

    Soft x-ray spectra from thin carbon layers heated by the OMEGA and NIKE lasers have been obtained with both spherical and planar targets, respectively, using a flat-field grazing incidence spectrograph equipped with a gated microchannel plate for temporal resolution. In both experiments, late-time (recombining) hydrogenic C VI spectra show an n-to-1 Lyman spectral series blending with the continuum at n=4, contrary to n=9 in the n-to-2 Balmer series. It appears unlikely that plasma inhomogeneities are the sole cause of this anomaly, given the difference in the experimental configurations. Other explanations for the line-to-continuum merging (other than the usual Stark-broadened Inglis-Teller effect) under consideration include non-thermal Doppler broadening, deviations from statistical sublevel population distributions, and opacity effects. Collisional-radiative and hydrodynamic modeling, including cascades, is employed to further understand this phenomenon.

  14. Crystal structure of N-(1-allyl-3-chloro-1H-indazol-5-yl)-4-methyl-benzene-sulfonamide.

    PubMed

    Chicha, Hakima; Rakib, El Mostapha; Chigr, Mohamed; Saadi, Mohamed; El Ammari, Lahcen

    2014-09-01

    The 3-chloro-1H-indazole system in the title mol-ecule, C17H16ClN3O2S, is almost planar, with the largest deviation from the mean plane being 0.029 (2) Å for one of the N atoms. This system is nearly perpendicular to the allyl chain, as indicated by the C-C-N-N torsion angle of -90.1 (6)° between them. The allyl group is split into two fragments, the major component has a site occupancy of 0.579 (7). The indazole system makes a dihedral angle of 47.53 (10)° with the plane through the benzene ring. In the crystal, mol-ecules are connected by N-H⋯O and C-H⋯O hydrogen bonds, forming a three-dimensional network.

  15. Crystal structure of N-(1-allyl-3-chloro-1H-indazol-5-yl)-4-methyl­benzene­sulfonamide

    PubMed Central

    Chicha, Hakima; Rakib, El Mostapha; Chigr, Mohamed; Saadi, Mohamed; El Ammari, Lahcen

    2014-01-01

    The 3-chloro-1H-indazole system in the title mol­ecule, C17H16ClN3O2S, is almost planar, with the largest deviation from the mean plane being 0.029 (2) Å for one of the N atoms. This system is nearly perpendicular to the allyl chain, as indicated by the C—C—N—N torsion angle of −90.1 (6)° between them. The allyl group is split into two fragments, the major component has a site occupancy of 0.579 (7). The indazole system makes a dihedral angle of 47.53 (10)° with the plane through the benzene ring. In the crystal, mol­ecules are connected by N—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network. PMID:25309215

  16. Experimental and calculated structural parameters of 5-trihalomethyl-4,5-dihydro-1 H-pyrazole derivatives, novel analgesic agents

    NASA Astrophysics Data System (ADS)

    Machado, Pablo; Campos, Patrick T.; Lima, Glauber R.; Rosa, Fernanda A.; Flores, Alex F. C.; Bonacorso, Helio G.; Zanatta, Nilo; Martins, Marcos A. P.

    2009-01-01

    The crystal structures of four novel analgesic agents, methyl 5-hydroxy-3- or 4-methyl-5-trichloro[trifluoro]methyl-4,5-dihydro-1 H-pyrazole-1-carboxylate, have been determined by X-ray diffractometry. The data demonstrated that the molecular packing was stabilized mainly by O sbnd H⋯O hydrogen bonds of the 5-hydroxy and 1-carboxymethyl groups. The 4,5-dihydro-1 H-pyrazole rings were obtained as almost planar structures showing RMS deviation at a range of 0.0052-0.0805 Å. Additionally, computational investigation using semi-empirical AM1 and PM3 methods were performed to find a correlation between experimental and calculated geometrical parameters. The data obtained suggest that the structural data furnished by the AM1 method is in better agreement with those experimentally determined for the above compounds.

  17. Analysis of complex environment effect on near-field emission

    NASA Astrophysics Data System (ADS)

    Ravelo, B.; Lalléchère, S.; Bonnet, P.; Paladian, F.

    2014-10-01

    The article is dealing with uncertainty analyses of radiofrequency circuits electromagnetic compatibility emission based on the near-field/near-field (NF/NF) transform combined with stochastic approach. By using 2D data corresponding to electromagnetic (EM) field (X=E or H) scanned in the observation plane placed at the position z0 above the circuit under test (CUT), the X field map was extracted. Then, uncertainty analyses were assessed via the statistical moments from X component. In addition, stochastic collocation based was considered and calculations were applied to planar EM NF radiated by the CUTs as Wilkinson power divider and a microstrip line operating at GHz levels. After Matlab implementation, the mean and standard deviation were assessed. The present study illustrates how the variations of environmental parameters may impact EM fields. The NF uncertainty methodology can be applied to any physical parameter effects in complex environment and useful for printed circuit board (PCBs) design guideline.

  18. Two-dimensional beam steering array using planar eight-element composite right/left-handed leaky-wave antennas

    NASA Astrophysics Data System (ADS)

    Sanada, Atsushi

    2008-08-01

    A two-dimensional beam steering array composed of an eight-element antenna array using composite right/left-handed leaky-wave antennas fed by an 8 × 8 Butler matrix network is designed at X-band. An eight-way beam switching in one direction by input port switching and a continuous beam steering in the other direction by frequency sweep are achieved. A wide range beam steering operation covering from -55 to +53 degrees by port switching and from -37 to +27 degrees by frequency sweep is demonstrated with the maximum gain of 9.2 dBi.

  19. Wide bandgap OPV polymers based on pyridinonedithiophene unit with efficiency >5%

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Alexander M.; Lu, Luyao; Manley, Eric F.

    2015-06-04

    We report the properties of a new series of wide band gap photovoltaic polymers based on the N-alkyl 2-pyridone dithiophene (PDT) unit. These polymers are effective bulk heterojunction solar cell materials when blended with phenyl-C 71-butyric acid methyl ester (PC 71BM). They achieve power conversion efficiencies (up to 5.33%) high for polymers having such large bandgaps, ca. 2.0 eV (optical) and 2.5 eV (electrochemical). As a result, grazing incidence wide-angle X-ray scattering (GIWAXS) reveals strong correlations between π–π stacking distance and regularity, polymer backbone planarity, optical absorption maximum energy, and photovoltaic efficiency.

  20. Vibrational Spectra and Density functional calculation of Organic Nonlinear Optic Crystal p-Amino Acetanilide

    NASA Astrophysics Data System (ADS)

    Saja, D.; Joe, I. Hubert; Jayakumar, V. S.

    2006-01-01

    The NIR-FT Raman, FT-IR spectral analysis of potential NLO material P-Amino Acetanilide is carried out by density functional computations. The optimized geometry shows that NH2 and NHCOCH3 groups substituted in para position of phenyl ring are non-planar which predicts maximum conjugation of molecule with donor and acceptor groups. Vibrational analysis reveals that simultaneous IR and Raman activation of the phenyl ring modes also provide evidence for the charge transfer interaction between the donors and the acceptor can make the molecule highly polarized and the intra molecular charge transfer interaction must be responsible for the NLO properties of PAA.

  1. A Study on Field Emission Characteristics of Planar Graphene Layers Obtained from a Highly Oriented Pyrolyzed Graphite Block

    PubMed Central

    2009-01-01

    This paper describes an experimental study on field emission characteristics of individual graphene layers for vacuum nanoelectronics. Graphene layers were prepared by mechanical exfoliation from a highly oriented pyrolyzed graphite block and placed on an insulating substrate, with the resulting field emission behavior investigated using a nanomanipulator operating inside a scanning electron microscope. A pair of tungsten tips controlled by the nanomanipulator enabled electric connection with the graphene layers without postfabrication. The maximum emitted current from the graphene layers was 170 nA and the turn-on voltage was 12.1 V. PMID:20596315

  2. Graphene-based plasmonic photodetector for photonic integrated circuits.

    PubMed

    Kim, Jin Tae; Yu, Young-Jun; Choi, Hongkyw; Choi, Choon-Gi

    2014-01-13

    We developed a planar-type graphene-based plasmonic photodetector (PD) for the development of all-graphene photonic-integrated-circuits (PICs). By configuring the graphene plasmonic waveguide and PD structure all-in-one, the proposed graphene PD detects horizontally incident light. The photocurrent profile with opposite polarity is the maximum at graphene-electrode interfaces due to a Schottky-like barrier effect at the interface. The photocurrent amplitude increases with an increase of the graphene-metal interface length. Obtaining time constants of less than 39.7 ms for the time response, we concluded that the proposed graphene PD could be exploited further for application in all graphene-based PICs.

  3. Mass balance, meteorology, area altitude distribution, glacier-surface altitude, ice motion, terminus position, and runoff at Gulkana Glacier, Alaska, 1996 balance year

    USGS Publications Warehouse

    March, Rod S.

    2003-01-01

    The 1996 measured winter snow, maximum winter snow, net, and annual balances in the Gulkana Glacier Basin were evaluated on the basis of meteorological, hydrological, and glaciological data. Averaged over the glacier, the measured winter snow balance was 0.87 meter on April 18, 1996, 1.1 standard deviation below the long-term average; the maximum winter snow balance, 1.06 meters, was reached on May 28, 1996; and the net balance (from August 30, 1995, to August 24, 1996) was -0.53 meter, 0.53 standard deviation below the long-term average. The annual balance (October 1, 1995, to September 30, 1996) was -0.37 meter. Area-averaged balances were reported using both the 1967 and 1993 area altitude distributions (the numbers previously given in this abstract use the 1993 area altitude distribution). Net balance was about 25 percent less negative using the 1993 area altitude distribution than the 1967 distribution. Annual average air temperature was 0.9 degree Celsius warmer than that recorded with the analog sensor used since 1966. Total precipitation catch for the year was 0.78 meter, 0.8 standard deviations below normal. The annual average wind speed was 3.5 meters per second in the first year of measuring wind speed. Annual runoff averaged 1.50 meters over the basin, 1.0 standard deviation below the long-term average. Glacier-surface altitude and ice-motion changes measured at three index sites document seasonal ice-speed and glacier-thickness changes. Both showed a continuation of a slowing and thinning trend present in the 1990s. The glacier terminus and lower ablation area were defined for 1996 with a handheld Global Positioning System survey of 126 locations spread out over about 4 kilometers on the lower glacier margin. From 1949 to 1996, the terminus retreated about 1,650 meters for an average retreat rate of 35 meters per year.

  4. Prediction of hip joint load and translation using musculoskeletal modelling with force-dependent kinematics and experimental validation.

    PubMed

    Zhang, Xuan; Chen, Zhenxian; Wang, Ling; Yang, Wenjian; Li, Dichen; Jin, Zhongmin

    2015-07-01

    Musculoskeletal lower limb models are widely used to predict the resultant contact force in the hip joint as a non-invasive alternative to instrumented implants. Previous musculoskeletal models based on rigid body assumptions treated the hip joint as an ideal sphere with only three rotational degrees of freedom. An musculoskeletal model that considered force-dependent kinematics with three additional translational degrees of freedom was developed and validated in this study by comparing it with a previous experimental measurement. A 32-mm femoral head against a polyethylene cup was considered in the musculoskeletal model for calculating the contact forces. The changes in the main modelling parameters were found to have little influence on the hip joint forces (relative deviation of peak value < 10 BW%, mean trial deviation < 20 BW%). The centre of the hip joint translation was more sensitive to the changes in the main modelling parameters, especially muscle recruitment type (relative deviation of peak value < 20%, mean trial deviation < 0.02 mm). The predicted hip contact forces showed consistent profiles, compared with the experimental measurements, except in the lateral-medial direction. The ratio-average analysis, based on the Bland-Altman's plots, showed better limits of agreement in climbing stairs (mean limits of agreement: -2.0 to 6.3 in walking, mean limits of agreement: -0.5 to 3.1 in climbing stairs). Better agreement of the predicted hip contact forces was also found during the stance phase. The force-dependent kinematics approach underestimated the maximum hip contact force by a mean value of 6.68 ± 1.75% BW compared with the experimental measurements. The predicted maximum translations of the hip joint centres were 0.125 ± 0.03 mm in level walking and 0.123 ± 0.005 mm in climbing stairs. © IMechE 2015.

  5. Uncertainty quantification of CO₂ saturation estimated from electrical resistance tomography data at the Cranfield site

    DOE PAGES

    Yang, Xianjin; Chen, Xiao; Carrigan, Charles R.; ...

    2014-06-03

    A parametric bootstrap approach is presented for uncertainty quantification (UQ) of CO₂ saturation derived from electrical resistance tomography (ERT) data collected at the Cranfield, Mississippi (USA) carbon sequestration site. There are many sources of uncertainty in ERT-derived CO₂ saturation, but we focus on how the ERT observation errors propagate to the estimated CO₂ saturation in a nonlinear inversion process. Our UQ approach consists of three steps. We first estimated the observational errors from a large number of reciprocal ERT measurements. The second step was to invert the pre-injection baseline data and the resulting resistivity tomograph was used as the priormore » information for nonlinear inversion of time-lapse data. We assigned a 3% random noise to the baseline model. Finally, we used a parametric bootstrap method to obtain bootstrap CO₂ saturation samples by deterministically solving a nonlinear inverse problem many times with resampled data and resampled baseline models. Then the mean and standard deviation of CO₂ saturation were calculated from the bootstrap samples. We found that the maximum standard deviation of CO₂ saturation was around 6% with a corresponding maximum saturation of 30% for a data set collected 100 days after injection began. There was no apparent spatial correlation between the mean and standard deviation of CO₂ saturation but the standard deviation values increased with time as the saturation increased. The uncertainty in CO₂ saturation also depends on the ERT reciprocal error threshold used to identify and remove noisy data and inversion constraints such as temporal roughness. Five hundred realizations requiring 3.5 h on a single 12-core node were needed for the nonlinear Monte Carlo inversion to arrive at stationary variances while the Markov Chain Monte Carlo (MCMC) stochastic inverse approach may expend days for a global search. This indicates that UQ of 2D or 3D ERT inverse problems can be performed on a laptop or desktop PC.« less

  6. SU-E-T-554: Comparison of Electron Disequilibrium Factor in External Photon Beams for Different Models of Linear Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LIU, B; Zhu, T

    Purpose: The dose in the buildup region of a photon beam is usually determined by the transport of the primary secondary electrons and the contaminating electrons from accelerator head. This can be quantified by the electron disequilibrium factor, E, defined as the ratio between total dose and equilibrium dose (proportional to total kerma), E = 1 in regions beyond buildup region. Ecan be different among accelerators of different models and/or manufactures of the same machine. This study compares E in photon beams from different machine models/ Methods: Photon beam data such as fractional depth dose curve (FDD) and phantom scattermore » factors as a function of field size and phantom depth were measured for different Linac machines. E was extrapolated from these fractional depth dose data while taking into account inverse-square law. The ranges of secondary electron were chosen as 3 and 6 cm for 6 and 15 MV photon beams, respectively. The field sizes range from 2x2 to 40x40 cm{sup 2}. Results: The comparison indicates the standard deviations of electron contamination among different machines are about 2.4 - 3.3% at 5 mm depth for 6 MV and 1.2 - 3.9% at 1 cm depth for 15 MV for the same field size. The corresponding maximum deviations are 3.0 - 4.6% and 2 - 4% for 6 and 15 MV, respectively. Both standard and maximum deviations are independent of field sizes in the buildup region for 6 MV photons, and slightly decreasing with increasing field size at depths up to 1 cm for 15 MV photons. Conclusion: The deviations of electron disequilibrium factor for all studied Linacs are less than 3% beyond the depth of 0.5 cm for the photon beams for the full range of field sizes (2-40 cm) so long as they are from the same manufacturer.« less

  7. ROBUST: an interactive FORTRAN-77 package for exploratory data analysis using parametric, ROBUST and nonparametric location and scale estimates, data transformations, normality tests, and outlier assessment

    NASA Astrophysics Data System (ADS)

    Rock, N. M. S.

    ROBUST calculates 53 statistics, plus significance levels for 6 hypothesis tests, on each of up to 52 variables. These together allow the following properties of the data distribution for each variable to be examined in detail: (1) Location. Three means (arithmetic, geometric, harmonic) are calculated, together with the midrange and 19 high-performance robust L-, M-, and W-estimates of location (combined, adaptive, trimmed estimates, etc.) (2) Scale. The standard deviation is calculated along with the H-spread/2 (≈ semi-interquartile range), the mean and median absolute deviations from both mean and median, and a biweight scale estimator. The 23 location and 6 scale estimators programmed cover all possible degrees of robustness. (3) Normality: Distributions are tested against the null hypothesis that they are normal, using the 3rd (√ h1) and 4th ( b 2) moments, Geary's ratio (mean deviation/standard deviation), Filliben's probability plot correlation coefficient, and a more robust test based on the biweight scale estimator. These statistics collectively are sensitive to most usual departures from normality. (4) Presence of outliers. The maximum and minimum values are assessed individually or jointly using Grubbs' maximum Studentized residuals, Harvey's and Dixon's criteria, and the Studentized range. For a single input variable, outliers can be either winsorized or eliminated and all estimates recalculated iteratively as desired. The following data-transformations also can be applied: linear, log 10, generalized Box Cox power (including log, reciprocal, and square root), exponentiation, and standardization. For more than one variable, all results are tabulated in a single run of ROBUST. Further options are incorporated to assess ratios (of two variables) as well as discrete variables, and be concerned with missing data. Cumulative S-plots (for assessing normality graphically) also can be generated. The mutual consistency or inconsistency of all these measures helps to detect errors in data as well as to assess data-distributions themselves.

  8. Comparison of sequential planar 177Lu-DOTA-TATE dosimetry scans with 68Ga-DOTA-TATE PET/CT images in patients with metastasized neuroendocrine tumours undergoing peptide receptor radionuclide therapy.

    PubMed

    Sainz-Esteban, Aurora; Prasad, Vikas; Schuchardt, Christiane; Zachert, Carolin; Carril, José Manuel; Baum, Richard P

    2012-03-01

    The aim of the study was to compare sequential (177)Lu-DOTA-TATE planar scans ((177)Lu-DOTA-TATE) in patients with metastasized neuroendocrine tumours (NET) acquired during peptide receptor radionuclide therapy (PRRT) for dosimetry purposes with the pre-therapeutic (68)Ga-DOTA-TATE positron emission tomography (PET)/CT ((68)Ga-DOTA-TATE) maximum intensity projection (MIP) images obtained in the same patients concerning the sensitivity of the different methods. A total of 44 patients (59 ± 11 years old) with biopsy-proven NET underwent (68)Ga-DOTA-TATE and (177)Lu-DOTA-TATE imaging within 7.9 ± 7.5 days between the two examinations. (177)Lu-DOTA-TATE planar images were acquired at 0.5, 2, 24, 48 and 72 h post-injection; lesions were given a score from 0 to 4 depending on the uptake of the radiopharmaceutical (0 being lowest and 4 highest). The number of tumour lesions which were identified on (177)Lu-DOTA-TATE scans (in relation to the acquisition time after injection of the therapeutic dose as well as with regard to the body region) was compared to those detected on (68)Ga-DOTA-TATE studies obtained before PRRT. A total of 318 lesions were detected; 280 (88%) lesions were concordant. Among the discordant lesions, 29 were (68)Ga-DOTA-TATE positive and (177)Lu-DOTA-TATE negative, whereas 9 were (68)Ga-DOTA-TATE negative and (177)Lu-DOTA-TATE positive. The sensitivity, positive predictive value and accuracy for (177)Lu-DOTA-TATE as compared to (68)Ga-DOTA-TATE were 91, 97 and 88%, respectively. Significantly more lesions were seen on the delayed (72 h) (177)Lu-DOTA-TATE images (91%) as compared to the immediate (30 min) images (68%). The highest concordance was observed for bone metastases (97%) and the lowest for head/neck lesions (75%). Concordant lesions (n = 77; mean size 3.8 cm) were significantly larger than discordant lesions (n = 38; mean size 1.6 cm) (p < 0.05). No such significance was found for differences in maximum standardized uptake value (SUV(max)). However, concordant liver lesions with a score from 1 to 3 in the 72-h (177)Lu-DOTA-TATE scan had a lower SUV(max) (n = 23; mean 10.9) than those metastases with a score of 4 (n = 97; mean SUV(max) 18) (p < 0.05). Although (177)Lu-DOTA-TATE planar dosimetry scans exhibited a very good sensitivity for the detection of metastases, they failed to pick up 9% of lesions seen on the (68)Ga-DOTA-TATE PET/CT. Three-dimensional dosimetry using single photon emission computed tomography/CT could be applied to investigate this issue further. Delayed (72 h) images are most suitable for drawing regions of interest for dosimetric calculations.

  9. In vitro quantification of the performance of model-based mono-planar and bi-planar fluoroscopy for 3D joint kinematics estimation.

    PubMed

    Tersi, Luca; Barré, Arnaud; Fantozzi, Silvia; Stagni, Rita

    2013-03-01

    Model-based mono-planar and bi-planar 3D fluoroscopy methods can quantify intact joints kinematics with performance/cost trade-off. The aim of this study was to compare the performances of mono- and bi-planar setups to a marker-based gold-standard, during dynamic phantom knee acquisitions. Absolute pose errors for in-plane parameters were lower than 0.6 mm or 0.6° for both mono- and bi-planar setups. Mono-planar setups resulted critical in quantifying the out-of-plane translation (error < 6.5 mm), and bi-planar in quantifying the rotation along bone longitudinal axis (error < 1.3°). These errors propagated to joint angles and translations differently depending on the alignment of the anatomical axes and the fluoroscopic reference frames. Internal-external rotation was the least accurate angle both with mono- (error < 4.4°) and bi-planar (error < 1.7°) setups, due to bone longitudinal symmetries. Results highlighted that accuracy for mono-planar in-plane pose parameters is comparable to bi-planar, but with halved computational costs, halved segmentation time and halved ionizing radiation dose. Bi-planar analysis better compensated for the out-of-plane uncertainty that is differently propagated to relative kinematics depending on the setup. To take its full benefits, the motion task to be investigated should be designed to maintain the joint inside the visible volume introducing constraints with respect to mono-planar analysis.

  10. Active laser ranging with frequency transfer using frequency comb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hongyuan; Wei, Haoyun; Yang, Honglei

    2016-05-02

    A comb-based active laser ranging scheme is proposed for enhanced distance resolution and a common time standard for the entire system. Three frequency combs with different repetition rates are used as light sources at the two ends where the distance is measured. Pulse positions are determined through asynchronous optical sampling and type II second harmonic generation. Results show that the system achieves a maximum residual of 379.6 nm and a standard deviation of 92.9 nm with 2000 averages over 23.6 m. Moreover, as for the frequency transfer, an atom clock and an adjustable signal generator, synchronized to the atom clock, are used asmore » time standards for the two ends to appraise the frequency deviation introduced by the proposed system. The system achieves a residual fractional deviation of 1.3 × 10{sup −16} for 1 s, allowing precise frequency transfer between the two clocks at the two ends.« less

  11. [Semi-analysis algorithm to retrieve pigment concentrations in the red tide area of the East China Sea].

    PubMed

    Qiu, Zhong-Feng; Xi, Hong-Yan; He, Yi-Jun; Chen, Jay-Chung; Jian, Wei-Jun

    2006-08-01

    For the purpose of detecting and forecasting research of red tides to reduce the loss, a semi-analytic algorithm to retrieve chlorophyll-a concentrations was established in the area where red tides often brought out, according to the data collected during the red tides cruise in the East China Sea in April 2002. In the algorithm, empirical equations were made based on the coefficients from the in-situ data, including the optical properties of the research area. The in-situ data were used to validate the algorithm. The discrepancy of chlorophyll-a absorption coefficients and concentrations are mainly located in the region of 30%. The root mean deviation of the chlorophyll-a concentrations between the observed and the calculated is 0.24, the maximum relative deviation 40.93%, the mean relative deviation 18.83% and the correlation coefficient 0.83. The results show that the precision of the algorithm is high and the algorithm is fit for the research area.

  12. Objective Motion Cueing Criteria Investigation Based on Three Flight Tasks

    NASA Technical Reports Server (NTRS)

    Zaal, Petrus M. T.; Schroeder, Jeffery A.; Chung, William W.

    2015-01-01

    This paper intends to help establish fidelity criteria to accompany the simulator motion system diagnostic test specified by the International Civil Aviation Organization. Twelve air- line transport pilots flew three tasks in the NASA Vertical Motion Simulator under four different motion conditions. The experiment used three different hexapod motion configurations, each with a different tradeoff between motion filter gain and break frequency, and one large motion configuration that utilized as much of the simulator's motion space as possible. The motion condition significantly affected: 1) pilot motion fidelity ratings, and sink rate and lateral deviation at touchdown for the approach and landing task, 2) pilot motion fidelity ratings, roll deviations, maximum pitch rate, and number of stick shaker activations in the stall task, and 3) heading deviation after an engine failure in the takeoff task. Significant differences in pilot-vehicle performance were used to define initial objective motion cueing criteria boundaries. These initial fidelity boundaries show promise but need refinement.

  13. Rovibrational constants of the ground state and v8 = 1 state of 13C2HD3 by high-resolution FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Ng, L. L.; Tan, T. L.

    2016-06-01

    The Fourier transform infrared (FTIR) spectrum of the c-type ν8 band of 13C2HD3 was recorded for the first time at a unapodized resolution of 0.0063 cm-1 in the wavenumber region of 830-1000 cm-1. Through the fitting of a total of 1057 assigned infrared transitions using Watson's A-reduced Hamiltonian in the Ir representation, rovibrational constants for the upper state (v8 = 1) up to five quartic centrifugal distortion terms were derived for the first time with a root-mean-square (rms) deviation of 0.00073 cm-1. The band center of ν8 of 13C2HD3 was found to be 913.011021(55) cm-1. Ground state rovibrational constants up to five quartic terms of 13C2HD3 were also determined from a fit of 453 ground state combination-differences from the present infrared measurements with an rms deviation of 0.00072 cm-1 for the first time. The uncertainty of the measured infrared lines was estimated to be ±0.0012 cm-1. From the ground state rotational constants, the inertial defect of 13C2HD3 was calculated to be 0.06973(16) uÅ2, showing the high planarity of the molecule.

  14. Ion-damage-free planarization or shallow angle sectioning of solar cells for mapping grain orientation and nanoscale photovoltaic properties

    DOE PAGES

    Kutes, Yasemin; Luria, Justin; Sun, Yu; ...

    2017-04-11

    Ion beam milling is the most common modern method for preparing specific features for microscopic analysis, even though concomitant ion implantation and amorphization remain persistent challenges, particularly as they often modify materials properties of interest. Atomic force microscopy (AFM), on the other hand, can mechanically mill specific nanoscale regions in plan-view without chemical or high energy ion damage, due to its resolution, directionality, and fine load control. As an example, AFM-nanomilling (AFM-NM) is implemented for top-down planarization of polycrystalline CdTe thin film solar cells, with a resulting decrease in the root mean square (RMS) roughness by an order of magnitude,more » even better than for a low incidence FIB polished surface. Subsequently AFM-based property maps reveal a substantially stronger contrast, in this case of the short-circuit current or open circuit voltage during light exposure. Furthermore, electron back scattering diffraction (EBSD) imaging also becomes possible upon AFM-NM, enabling direct correlations between the local materials properties and the polycrystalline microstructure. Smooth shallow-angle cross-sections are demonstrated as well, based on targeted oblique milling. As expected, this reveals a gradual decrease in the average short-circuit current and maximum power as the underlying CdS and electrode layers are approached, but a relatively consistent open-circuit voltage through the diminishing thickness of the CdTe absorber. AFM-based nanomilling is therefore a powerful tool for material characterization, uniquely providing ion-damage free, selective area, planar smoothing or low-angle sectioning of specimens while preserving their functionality. This then enables novel, co-located advanced AFM measurements, EBSD analysis, and investigations by related techniques that are otherwise hindered by surface morphology or surface damage.« less

  15. High-Sensitivity Low-Noise Miniature Fluxgate Magnetometers Using a Flip Chip Conceptual Design

    PubMed Central

    Lu, Chih-Cheng; Huang, Jeff; Chiu, Po-Kai; Chiu, Shih-Liang; Jeng, Jen-Tzong

    2014-01-01

    This paper presents a novel class of miniature fluxgate magnetometers fabricated on a print circuit board (PCB) substrate and electrically connected to each other similar to the current “flip chip” concept in semiconductor package. This sensor is soldered together by reversely flipping a 5 cm × 3 cm PCB substrate to the other identical one which includes dual magnetic cores, planar pick-up coils, and 3-D excitation coils constructed by planar Cu interconnections patterned on PCB substrates. Principles and analysis of the fluxgate sensor are introduced first, and followed by FEA electromagnetic modeling and simulation for the proposed sensor. Comprehensive characteristic experiments of the miniature fluxgate device exhibit favorable results in terms of sensitivity (or “responsivity” for magnetometers) and field noise spectrum. The sensor is driven and characterized by employing the improved second-harmonic detection technique that enables linear V-B correlation and responsivity verification. In addition, the double magnitude of responsivity measured under very low frequency (1 Hz) magnetic fields is experimentally demonstrated. As a result, the maximum responsivity of 593 V/T occurs at 50 kHz of excitation frequency with the second harmonic wave of excitation; however, the minimum magnetic field noise is found to be 0.05 nT/Hz1/2 at 1 Hz under the same excitation. In comparison with other miniature planar fluxgates published to date, the fluxgate magnetic sensor with flip chip configuration offers advances in both device functionality and fabrication simplicity. More importantly, the novel design can be further extended to a silicon-based micro-fluxgate chip manufactured by emerging CMOS-MEMS technologies, thus enriching its potential range of applications in modern engineering and the consumer electronics market. PMID:25196107

  16. Ion-damage-free planarization or shallow angle sectioning of solar cells for mapping grain orientation and nanoscale photovoltaic properties

    NASA Astrophysics Data System (ADS)

    Kutes, Yasemin; Luria, Justin; Sun, Yu; Moore, Andrew; Aguirre, Brandon A.; Cruz-Campa, Jose L.; Aindow, Mark; Zubia, David; Huey, Bryan D.

    2017-05-01

    Ion beam milling is the most common modern method for preparing specific features for microscopic analysis, even though concomitant ion implantation and amorphization remain persistent challenges, particularly as they often modify materials properties of interest. Atomic force microscopy (AFM), on the other hand, can mechanically mill specific nanoscale regions in plan-view without chemical or high energy ion damage, due to its resolution, directionality, and fine load control. As an example, AFM-nanomilling (AFM-NM) is implemented for top-down planarization of polycrystalline CdTe thin film solar cells, with a resulting decrease in the root mean square (RMS) roughness by an order of magnitude, even better than for a low incidence FIB polished surface. Subsequent AFM-based property maps reveal a substantially stronger contrast, in this case of the short-circuit current or open circuit voltage during light exposure. Electron back scattering diffraction (EBSD) imaging also becomes possible upon AFM-NM, enabling direct correlations between the local materials properties and the polycrystalline microstructure. Smooth shallow-angle cross-sections are demonstrated as well, based on targeted oblique milling. As expected, this reveals a gradual decrease in the average short-circuit current and maximum power as the underlying CdS and electrode layers are approached, but a relatively consistent open-circuit voltage through the diminishing thickness of the CdTe absorber. AFM-based nanomilling is therefore a powerful tool for material characterization, uniquely providing ion-damage free, selective area, planar smoothing or low-angle sectioning of specimens while preserving their functionality. This enables novel, co-located advanced AFM measurements, EBSD analysis, and investigations by related techniques that are otherwise hindered by surface morphology or surface damage.

  17. High-sensitivity low-noise miniature fluxgate magnetometers using a flip chip conceptual design.

    PubMed

    Lu, Chih-Cheng; Huang, Jeff; Chiu, Po-Kai; Chiu, Shih-Liang; Jeng, Jen-Tzong

    2014-07-30

    This paper presents a novel class of miniature fluxgate magnetometers fabricated on a print circuit board (PCB) substrate and electrically connected to each other similar to the current "flip chip" concept in semiconductor package. This sensor is soldered together by reversely flipping a 5 cm × 3 cm PCB substrate to the other identical one which includes dual magnetic cores, planar pick-up coils, and 3-D excitation coils constructed by planar Cu interconnections patterned on PCB substrates. Principles and analysis of the fluxgate sensor are introduced first, and followed by FEA electromagnetic modeling and simulation for the proposed sensor. Comprehensive characteristic experiments of the miniature fluxgate device exhibit favorable results in terms of sensitivity (or "responsivity" for magnetometers) and field noise spectrum. The sensor is driven and characterized by employing the improved second-harmonic detection technique that enables linear V-B correlation and responsivity verification. In addition, the double magnitude of responsivity measured under very low frequency (1 Hz) magnetic fields is experimentally demonstrated. As a result, the maximum responsivity of 593 V/T occurs at 50 kHz of excitation frequency with the second harmonic wave of excitation; however, the minimum magnetic field noise is found to be 0.05 nT/Hz(1/2) at 1 Hz under the same excitation. In comparison with other miniature planar fluxgates published to date, the fluxgate magnetic sensor with flip chip configuration offers advances in both device functionality and fabrication simplicity. More importantly, the novel design can be further extended to a silicon-based micro-fluxgate chip manufactured by emerging CMOS-MEMS technologies, thus enriching its potential range of applications in modern engineering and the consumer electronics market.

  18. A support-operator method for 3-D rupture dynamics

    NASA Astrophysics Data System (ADS)

    Ely, Geoffrey P.; Day, Steven M.; Minster, Jean-Bernard

    2009-06-01

    We present a numerical method to simulate spontaneous shear crack propagation within a heterogeneous, 3-D, viscoelastic medium. Wave motions are computed on a logically rectangular hexahedral mesh, using the generalized finite-difference method of Support Operators (SOM). This approach enables modelling of non-planar surfaces and non-planar fault ruptures. Our implementation, the Support Operator Rupture Dynamics (SORD) code, is highly scalable, enabling large-scale, multiprocessors calculations. The fault surface is modelled by coupled double nodes, where rupture occurs as dictated by the local stress conditions and a frictional failure law. The method successfully performs test problems developed for the Southern California Earthquake Center (SCEC)/U.S. Geological Survey (USGS) dynamic earthquake rupture code validation exercise, showing good agreement with semi-analytical boundary integral method results. We undertake further dynamic rupture tests to quantify numerical errors introduced by shear deformations to the hexahedral mesh. We generate a family of meshes distorted by simple shearing, in the along-strike direction, up to a maximum of 73°. For SCEC/USGS validation problem number 3, grid-induced errors increase with mesh shear angle, with the logarithm of error approximately proportional to angle over the range tested. At 73°, rms misfits are about 10 per cent for peak slip rate, and 0.5 per cent for both rupture time and total slip, indicating that the method (which, up to now, we have applied mainly to near-vertical strike-slip faulting) is also capable of handling geometries appropriate to low-angle surface-rupturing thrust earthquakes. Additionally, we demonstrate non-planar rupture effects, by modifying the test geometry to include, respectively, cylindrical curvature and sharp kinks.

  19. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display.

    PubMed

    Takahara, Taro; Imai, Yutaka; Yamashita, Tomohiro; Yasuda, Seiei; Nasu, Seiji; Van Cauteren, Marc

    2004-01-01

    To examine a new way of body diffusion weighted imaging (DWI) using the short TI inversion recovery-echo planar imaging (STIR-EPI) sequence and free breathing scanning (diffusion weighted whole body imaging with background body signal suppression; DWIBS) to obtain three-dimensional displays. 1) Apparent contrast-to-noise ratios (AppCNR) between lymph nodes and surrounding fat tissue were compared in three types of DWI with and without breath-holding, with variable lengths of scan time and slice thickness. 2) The STIR-EPI sequence and spin echo-echo planar imaging (SE-EPI) sequence with chemical shift selective (CHESS) pulse were compared in terms of their degree of fat suppression. 3) Eleven patients with neck, chest, and abdominal malignancy were scanned with DWIBS for evaluation of feasibility. Whole body imaging was done in a later stage of the study using the peripheral vascular coil. The AppCNR of 8 mm slice thickness images reconstructed from 4 mm slice thickness source images obtained in a free breathing scan of 430 sec were much better than 9 mm slice thickness breath-hold scans obtained in 25 sec. High resolution multi-planar reformat (MPR) and maximum intensity projection (MIP) images could be made from the data set of 4 mm slice thickness images. Fat suppression was much better in the STIR-EPI sequence than SE-EPI with CHESS pulse. The feasibility of DWIBS was showed in clinical scans of 11 patients. Whole body images were successfully obtained with adequate fat suppression. Three-dimensional DWIBS can be obtained with this technique, which may allow us to screen for malignancies in the whole body.

  20. Automating linear accelerator quality assurance.

    PubMed

    Eckhause, Tobias; Al-Hallaq, Hania; Ritter, Timothy; DeMarco, John; Farrey, Karl; Pawlicki, Todd; Kim, Gwe-Ya; Popple, Richard; Sharma, Vijeshwar; Perez, Mario; Park, SungYong; Booth, Jeremy T; Thorwarth, Ryan; Moran, Jean M

    2015-10-01

    The purpose of this study was 2-fold. One purpose was to develop an automated, streamlined quality assurance (QA) program for use by multiple centers. The second purpose was to evaluate machine performance over time for multiple centers using linear accelerator (Linac) log files and electronic portal images. The authors sought to evaluate variations in Linac performance to establish as a reference for other centers. The authors developed analytical software tools for a QA program using both log files and electronic portal imaging device (EPID) measurements. The first tool is a general analysis tool which can read and visually represent data in the log file. This tool, which can be used to automatically analyze patient treatment or QA log files, examines the files for Linac deviations which exceed thresholds. The second set of tools consists of a test suite of QA fields, a standard phantom, and software to collect information from the log files on deviations from the expected values. The test suite was designed to focus on the mechanical tests of the Linac to include jaw, MLC, and collimator positions during static, IMRT, and volumetric modulated arc therapy delivery. A consortium of eight institutions delivered the test suite at monthly or weekly intervals on each Linac using a standard phantom. The behavior of various components was analyzed for eight TrueBeam Linacs. For the EPID and trajectory log file analysis, all observed deviations which exceeded established thresholds for Linac behavior resulted in a beam hold off. In the absence of an interlock-triggering event, the maximum observed log file deviations between the expected and actual component positions (such as MLC leaves) varied from less than 1% to 26% of published tolerance thresholds. The maximum and standard deviations of the variations due to gantry sag, collimator angle, jaw position, and MLC positions are presented. Gantry sag among Linacs was 0.336 ± 0.072 mm. The standard deviation in MLC position, as determined by EPID measurements, across the consortium was 0.33 mm for IMRT fields. With respect to the log files, the deviations between expected and actual positions for parameters were small (<0.12 mm) for all Linacs. Considering both log files and EPID measurements, all parameters were well within published tolerance values. Variations in collimator angle, MLC position, and gantry sag were also evaluated for all Linacs. The performance of the TrueBeam Linac model was shown to be consistent based on automated analysis of trajectory log files and EPID images acquired during delivery of a standardized test suite. The results can be compared directly to tolerance thresholds. In addition, sharing of results from standard tests across institutions can facilitate the identification of QA process and Linac changes. These reference values are presented along with the standard deviation for common tests so that the test suite can be used by other centers to evaluate their Linac performance against those in this consortium.

  1. ESTIMATION OF EFFECTIVE SHEAR STRESS WORKING ON FLAT SHEET MEMBRANE USING FLUIDIZED MEDIA IN MBRs

    NASA Astrophysics Data System (ADS)

    Zaw, Hlwan Moe; Li, Tairi; Nagaoka, Hiroshi; Mishima, Iori

    This study was aimed at estimating effective shear stress working on flat sheet membrane by the addition of fluidized media in MBRs. In both of laboratory-scale aeration tanks with and without fluidized media, shear stress variations on membrane surface and water phase velocity variations were measured and MBR operation was conducted. For the evaluation of the effective shear stress working on membrane surface to mitigate membrane surface, simulation of trans-membrane pressure increase was conducted. It was shown that the time-averaged absolute value of shear stress was smaller in the reactor with fluidized media than without fluidized media. However, due to strong turbulence in the reactor with fluidized media caused by interaction between water-phase and media and also due to the direct interaction between membrane surface and fluidized media, standard deviation of shear stress on membrane surface was larger in the reactor with fluidized media than without media. Histograms of shear stress variation data were fitted well to normal distribution curves and mean plus three times of standard deviation was defined to be a maximum shear stress value. By applying the defined maximum shear stress to a membrane fouling model, trans-membrane pressure curve in the MBR experiment was simulated well by the fouling model indicting that the maximum shear stress, not time-averaged shear stress, can be regarded as an effective shear stress to prevent membrane fouling in submerged flat-sheet MBRs.

  2. Planoconcave optical microresonator sensors for photoacoustic imaging: pushing the limits of sensitivity (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Guggenheim, James A.; Zhang, Edward Z.; Beard, Paul C.

    2016-03-01

    Most photoacoustic scanners use piezoelectric detectors but these have two key limitations. Firstly, they are optically opaque, inhibiting backward mode operation. Secondly, it is difficult to achieve adequate detection sensitivity with the small element sizes needed to provide near-omnidirectional response as required for tomographic imaging. Planar Fabry-Perot (FP) ultrasound sensing etalons can overcome both of these limitations and have proved extremely effective for superficial (<1cm) imaging applications. To achieve small element sizes (<100μm), the etalon is illuminated with a focused laser beam. However, this has the disadvantage that beam walk-off due to the divergence of the beam fundamentally limits the etalon finesse and thus sensitivity - in essence, the problem is one of insufficient optical confinement. To overcome this, novel planoconcave micro-resonator sensors have been fabricated using precision ink-jet printed polymer domes with curvatures matching that of the laser wavefront. By providing near-perfect beam confinement, we show that it is possible to approach the maximum theoretical limit for finesse (f) imposed by the etalon mirror reflectivities (e.g. f=400 for R=99.2% in contrast to a typical planar sensor value of f<50). This yields an order of magnitude increase in sensitivity over a planar FP sensor with the same acoustic bandwidth. Furthermore by eliminating beam walk-off, viable sensors can be made with significantly greater thickness than planar FP sensors. This provides an additional sensitivity gain for deep tissue imaging applications such as breast imaging where detection bandwidths in the low MHz can be tolerated. For example, for a 250 μm thick planoconcave sensor with a -3dB bandwidth of 5MHz, the measured NEP was 4 Pa. This NEP is comparable to that provided by mm scale piezoelectric detectors used for breast imaging applications but with more uniform frequency response characteristics and an order-of-magnitude smaller element size. Following previous proof-of-concept work, several important advances towards practical application have been made. A family of sensors with bandwidths ranging from 3MHz to 20MHz have been fabricated and characterised. A novel interrogation scheme based on rapid wavelength sweeping has been implemented in order to avoid previously encountered instability problems due to self-heating. Finally, a prototype microresonator based photoacoustic scanner has been developed and applied to the problem of deep-tissue (>1cm) photoacoustic imaging in vivo. Imaging results for second generation microresonator sensors (with R = 99.5% and thickness up to ~800um) are compared to the best achievable with the planar FP sensors and piezoelectric receivers.

  3. On the variation of the Nimbus 7 total solar irradiance

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1992-01-01

    For the interval December 1978 to April 1991, the value of the mean total solar irradiance, as measured by the Nimbus-7 Earth Radiation Budget Experiment channel 10C, was 1,372.02 Wm(exp -2), having a standard deviation of 0.65 Wm(exp -2), a coefficient of variation (mean divided by the standard deviation) of 0.047 percent, and a normal deviate z (a measure of the randomness of the data) of -8.019 (inferring a highly significant non-random variation in the solar irradiance measurements, presumably related to the action of the solar cycle). Comparison of the 12-month moving average (also called the 13-month running mean) of solar irradiance to those of the usual descriptors of the solar cycle (i.e., sunspot number, 10.7-cm solar radio flux, and total corrected sunspot area) suggests possibly significant temporal differences. For example, solar irradiance is found to have been greatest on or before mid 1979 (leading solar maximum for cycle 21), lowest in early 1987 (lagging solar minimum for cycle 22), and was rising again through late 1990 (thus, lagging solar maximum for cycle 22), having last reported values below those that were seen in 1979 (even though cycles 21 and 22 were of comparable strength). Presuming a genuine correlation between solar irradiance and the solar cycle (in particular, sunspot number) one infers that the correlation is weak (having a coefficient of correlation r less than 0.84) and that major excursions (both as 'excesses' and 'deficits') have occurred (about every 2 to 3 years, perhaps suggesting a pulsating Sun).

  4. Orientation-Controllable ZnO Nanorod Array Using Imprinting Method for Maximum Light Utilization in Dye-Sensitized Solar Cells.

    PubMed

    Jeong, Huisu; Song, Hui; Lee, Ryeri; Pak, Yusin; Kumaresan, Yogeenth; Lee, Heon; Jung, Gun Young

    2015-12-01

    We present a holey titanium dioxide (TiO2) film combined with a periodically aligned ZnO nanorod layer (ZNL) for maximum light utilization in dye-sensitized solar cells (DSCs). Both the holey TiO2 film and the ZNL were simultaneously fabricated by imprint technique with a mold having vertically aligned ZnO nanorod (NR) array, which was transferred to the TiO2 film after imprinting. The orientation of the transferred ZNL such as laid, tilted, and standing ZnO NRs was dependent on the pitch and height of the ZnO NRs of the mold. The photoanode composed of the holey TiO2 film with the ZNL synergistically utilized the sunlight due to enhanced light scattering and absorption. The best power conversion efficiency of 8.5 % was achieved from the DSC with the standing ZNL, which represented a 33 % improvement compared to the reference cell with a planar TiO2.

  5. Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling

    PubMed Central

    Kehr, S.C.; Liu, Y.M.; Martin, L.W.; Yu, P.; Gajek, M.; Yang, S.-Y.; Yang, C.-H.; Wenzel, M.T.; Jacob, R.; von Ribbeck, H.-G.; Helm, M.; Zhang, X.; Eng, L.M.; Ramesh, R.

    2011-01-01

    A planar slab of negative-index material works as a superlens with sub-diffraction-limited resolution, as propagating waves are focused and, moreover, evanescent waves are reconstructed in the image plane. Here we demonstrate a superlens for electric evanescent fields with low losses using perovskites in the mid-infrared regime. The combination of near-field microscopy with a tunable free-electron laser allows us to address precisely the polariton modes, which are critical for super-resolution imaging. We spectrally study the lateral and vertical distributions of evanescent waves around the image plane of such a lens, and achieve imaging resolution of λ/14 at the superlensing wavelength. Interestingly, at certain distances between the probe and sample surface, we observe a maximum of these evanescent fields. Comparisons with numerical simulations indicate that this maximum originates from an enhanced coupling between probe and object, which might be applicable for multifunctional circuits, infrared spectroscopy and thermal sensors. PMID:21427720

  6. Maximum-entropy reconstruction method for moment-based solution of the Boltzmann equation

    NASA Astrophysics Data System (ADS)

    Summy, Dustin; Pullin, Dale

    2013-11-01

    We describe a method for a moment-based solution of the Boltzmann equation. This starts with moment equations for a 10 + 9 N , N = 0 , 1 , 2 . . . -moment representation. The partial-differential equations (PDEs) for these moments are unclosed, containing both higher-order moments and molecular-collision terms. These are evaluated using a maximum-entropy construction of the velocity distribution function f (c , x , t) , using the known moments, within a finite-box domain of single-particle-velocity (c) space. Use of a finite-domain alleviates known problems (Junk and Unterreiter, Continuum Mech. Thermodyn., 2002) concerning existence and uniqueness of the reconstruction. Unclosed moments are evaluated with quadrature while collision terms are calculated using a Monte-Carlo method. This allows integration of the moment PDEs in time. Illustrative examples will include zero-space- dimensional relaxation of f (c , t) from a Mott-Smith-like initial condition toward equilibrium and one-space dimensional, finite Knudsen number, planar Couette flow. Comparison with results using the direct-simulation Monte-Carlo method will be presented.

  7. A Direct Mapping of Max k-SAT and High Order Parity Checks to a Chimera Graph

    PubMed Central

    Chancellor, N.; Zohren, S.; Warburton, P. A.; Benjamin, S. C.; Roberts, S.

    2016-01-01

    We demonstrate a direct mapping of max k-SAT problems (and weighted max k-SAT) to a Chimera graph, which is the non-planar hardware graph of the devices built by D-Wave Systems Inc. We further show that this mapping can be used to map a similar class of maximum satisfiability problems where the clauses are replaced by parity checks over potentially large numbers of bits. The latter is of specific interest for applications in decoding for communication. We discuss an example in which the decoding of a turbo code, which has been demonstrated to perform near the Shannon limit, can be mapped to a Chimera graph. The weighted max k-SAT problem is the most general class of satisfiability problems, so our result effectively demonstrates how any satisfiability problem may be directly mapped to a Chimera graph. Our methods faithfully reproduce the low energy spectrum of the target problems, so therefore may also be used for maximum entropy inference. PMID:27857179

  8. Simulation-based estimation of mean and standard deviation for meta-analysis via Approximate Bayesian Computation (ABC).

    PubMed

    Kwon, Deukwoo; Reis, Isildinha M

    2015-08-12

    When conducting a meta-analysis of a continuous outcome, estimated means and standard deviations from the selected studies are required in order to obtain an overall estimate of the mean effect and its confidence interval. If these quantities are not directly reported in the publications, they must be estimated from other reported summary statistics, such as the median, the minimum, the maximum, and quartiles. We propose a simulation-based estimation approach using the Approximate Bayesian Computation (ABC) technique for estimating mean and standard deviation based on various sets of summary statistics found in published studies. We conduct a simulation study to compare the proposed ABC method with the existing methods of Hozo et al. (2005), Bland (2015), and Wan et al. (2014). In the estimation of the standard deviation, our ABC method performs better than the other methods when data are generated from skewed or heavy-tailed distributions. The corresponding average relative error (ARE) approaches zero as sample size increases. In data generated from the normal distribution, our ABC performs well. However, the Wan et al. method is best for estimating standard deviation under normal distribution. In the estimation of the mean, our ABC method is best regardless of assumed distribution. ABC is a flexible method for estimating the study-specific mean and standard deviation for meta-analysis, especially with underlying skewed or heavy-tailed distributions. The ABC method can be applied using other reported summary statistics such as the posterior mean and 95 % credible interval when Bayesian analysis has been employed.

  9. Context Aware Routing Management Architecture for Airborne Networks

    DTIC Science & Technology

    2012-03-22

    awareness, increased survivability, 2 higher operation tempo , greater lethality, improve speed of command and certain degree of self-synchronization [35...first two sets of experiments. This error model simulates deviations from predetermined routes as well as variations on signal strength for radio...routes computed using Maximum Concurrent Multi-Commodity flow algorithm are not susceptible to rapid topology variations induced by noise. 57 5

  10. A spiral-based volumetric acquisition for MR temperature imaging.

    PubMed

    Fielden, Samuel W; Feng, Xue; Zhao, Li; Miller, G Wilson; Geeslin, Matthew; Dallapiazza, Robert F; Elias, W Jeffrey; Wintermark, Max; Butts Pauly, Kim; Meyer, Craig H

    2018-06-01

    To develop a rapid pulse sequence for volumetric MR thermometry. Simulations were carried out to assess temperature deviation, focal spot distortion/blurring, and focal spot shift across a range of readout durations and maximum temperatures for Cartesian, spiral-out, and retraced spiral-in/out (RIO) trajectories. The RIO trajectory was applied for stack-of-spirals 3D imaging on a real-time imaging platform and preliminary evaluation was carried out compared to a standard 2D sequence in vivo using a swine brain model, comparing maximum and mean temperatures measured between the two methods, as well as the temporal standard deviation measured by the two methods. In simulations, low-bandwidth Cartesian trajectories showed substantial shift of the focal spot, whereas both spiral trajectories showed no shift while maintaining focal spot geometry. In vivo, the 3D sequence achieved real-time 4D monitoring of thermometry, with an update time of 2.9-3.3 s. Spiral imaging, and RIO imaging in particular, is an effective way to speed up volumetric MR thermometry. Magn Reson Med 79:3122-3127, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  11. Modeling the impact of bubbling bed hydrodynamics on tar yield and its fluctuations during biomass fast pyrolysis

    DOE PAGES

    Xiong, Qingang; Ramirez, Emilio; Pannala, Sreekanth; ...

    2015-10-09

    The impact of bubbling bed hydrodynamics on temporal variations in the exit tar yield for biomass fast pyrolysis was investigated using computational simulations of an experimental laboratory-scale reactor. A multi-fluid computational fluid dynamics model was employed to simulate the differential conservation equations in the reactor, and this was combined with a multi-component, multi-step pyrolysis kinetics scheme for biomass to account for chemical reactions. The predicted mean tar yields at the reactor exit appear to match corresponding experimental observations. Parametric studies predicted that increasing the fluidization velocity should improve the mean tar yield but increase its temporal variations. Increases in themore » mean tar yield coincide with reducing the diameter of sand particles or increasing the initial sand bed height. However, trends in tar yield variability are more complex than the trends in mean yield. The standard deviation in tar yield reaches a maximum with changes in sand particle size. As a result, the standard deviation in tar yield increases with the increases in initial bed height in freely bubbling state, while reaches a maximum in slugging state.« less

  12. Image dynamic range test and evaluation of Gaofen-2 dual cameras

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenhua; Gan, Fuping; Wei, Dandan

    2015-12-01

    In order to fully understand the dynamic range of Gaofen-2 satellite data and support the data processing, application and next satellites development, in this article, we evaluated the dynamic range by calculating some statistics such as maximum ,minimum, average and stand deviation of four images obtained at the same time by Gaofen-2 dual cameras in Beijing area; then the maximum ,minimum, average and stand deviation of each longitudinal overlap of PMS1,PMS2 were calculated respectively for the evaluation of each camera's dynamic range consistency; and these four statistics of each latitudinal overlap of PMS1,PMS2 were calculated respectively for the evaluation of the dynamic range consistency between PMS1 and PMS2 at last. The results suggest that there is a wide dynamic range of DN value in the image obtained by PMS1 and PMS2 which contains rich information of ground objects; in general, the consistency of dynamic range between the single camera images is in close agreement, but also a little difference, so do the dual cameras. The consistency of dynamic range between the single camera images is better than the dual cameras'.

  13. Alignment of multiradiation isocenters for megavoltage photon beam

    PubMed Central

    Zhang, Yin; Ding, Kai; Cowan, Garth; Tryggestad, Erik; Armour, Elwood

    2015-01-01

    The accurate measurement of the linear accelerator (linac) radiation isocenter is critical, especially for stereotactic treatment. Traditional quality assurance (QA) procedure focuses on the measurement of single radiation isocenter, usually of 6 megavoltage (MV) photon beams. Single radiation isocenter is also commonly assumed in treatment planning systems (TPS). Due to different flattening filters and bending magnet and steering parameters, the radiation isocenter of one energy mode can deviate from another if no special effort was devoted. We present the first experience of the multiradiation isocenters alignment on an Elekta linac, as well as its corresponding QA procedure and clinical impact. An 8 mm ball‐bearing (BB) phantom was placed at the 6 MV radiation isocenter using an Elekta isocenter search algorithm, based on portal images. The 3D radiation isocenter shifts of other photon energy modes relative to the 6 MV were determined. Beam profile scanning for different field sizes was used as an independent method to determine the 2D multiradiation isocenters alignment. To quantify the impact of radiation isocenter offset on targeting accuracy, the 10 MV radiation isocenter was manually offset from that for 6 MV by adjusting the bending magnet current. Because our table isocenter was mechanically aligned to the 6 MV radiation isocenter, the deviation of the table isocentric rotation from the "shifted" 10 MV radiation isocenter after bending magnet adjustment was assessed. Winston‐Lutz test was also performed to confirm the overall radiation isocenter positioning accuracy for all photon energies. The portal image method showed the radiation isocenter of the 10 MV flattening filter‐free mode deviated from others before beam parameter adjustment. After the adjustment, the deviation was greatly improved from 0.96 to 0.35 mm relative to the 6 MV radiation isocenter. The same finding was confirmed by the profile‐scanning method. The maximum deviation of the table isocentric rotation from the 10 MV radiation isocenter was observed to linearly increase with the offset between 6 and 10 MV radiation isocenter; 1 mm radiation isocenter offset can translate to almost 2 mm maximum deviation of the table isocentric rotation from the 10 MV radiation isocenter. The alignment of the multiradiation isocenters is particularly important for high‐precision radiotherapy. Our study provides the medical physics community with a quantitative measure of the multiradiation isocenters alignment. A routine QA method should be considered, to examine the radiation isocenters alignment during the linac acceptance. PACS number: 87.55.Qr, 87.56.bd, 87.56.Fc PMID:26699586

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chin-Cheng, E-mail: chen.ccc@gmail.com; Chang, Chang; Mah, Dennis

    Purpose: The spot characteristics for proton pencil beam scanning (PBS) were measured and analyzed over a 16 month period, which included one major site configuration update and six cyclotron interventions. The results provide a reference to establish the quality assurance (QA) frequency and tolerance for proton pencil beam scanning. Methods: A simple treatment plan was generated to produce an asymmetric 9-spot pattern distributed throughout a field of 16 × 18 cm for each of 18 proton energies (100.0–226.0 MeV). The delivered fluence distribution in air was measured using a phosphor screen based CCD camera at three planes perpendicular to themore » beam line axis (x-ray imaging isocenter and up/down stream 15.0 cm). The measured fluence distributions for each energy were analyzed using in-house programs which calculated the spot sizes and positional deviations of the Gaussian shaped spots. Results: Compared to the spot characteristic data installed into the treatment planning system, the 16-month averaged deviations of the measured spot sizes at the isocenter plane were 2.30% and 1.38% in the IEC gantry x and y directions, respectively. The maximum deviation was 12.87% while the minimum deviation was 0.003%, both at the upstream plane. After the collinearity of the proton and x-ray imaging system isocenters was optimized, the positional deviations of the spots were all within 1.5 mm for all three planes. During the site configuration update, spot positions were found to deviate by 6 mm until the tuning parameters file was properly restored. Conclusions: For this beam delivery system, it is recommended to perform a spot size and position check at least monthly and any time after a database update or cyclotron intervention occurs. A spot size deviation tolerance of <15% can be easily met with this delivery system. Deviations of spot positions were <2 mm at any plane up/down stream 15 cm from the isocenter.« less

  15. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range.

    PubMed

    Wan, Xiang; Wang, Wenqian; Liu, Jiming; Tong, Tiejun

    2014-12-19

    In systematic reviews and meta-analysis, researchers often pool the results of the sample mean and standard deviation from a set of similar clinical trials. A number of the trials, however, reported the study using the median, the minimum and maximum values, and/or the first and third quartiles. Hence, in order to combine results, one may have to estimate the sample mean and standard deviation for such trials. In this paper, we propose to improve the existing literature in several directions. First, we show that the sample standard deviation estimation in Hozo et al.'s method (BMC Med Res Methodol 5:13, 2005) has some serious limitations and is always less satisfactory in practice. Inspired by this, we propose a new estimation method by incorporating the sample size. Second, we systematically study the sample mean and standard deviation estimation problem under several other interesting settings where the interquartile range is also available for the trials. We demonstrate the performance of the proposed methods through simulation studies for the three frequently encountered scenarios, respectively. For the first two scenarios, our method greatly improves existing methods and provides a nearly unbiased estimate of the true sample standard deviation for normal data and a slightly biased estimate for skewed data. For the third scenario, our method still performs very well for both normal data and skewed data. Furthermore, we compare the estimators of the sample mean and standard deviation under all three scenarios and present some suggestions on which scenario is preferred in real-world applications. In this paper, we discuss different approximation methods in the estimation of the sample mean and standard deviation and propose some new estimation methods to improve the existing literature. We conclude our work with a summary table (an Excel spread sheet including all formulas) that serves as a comprehensive guidance for performing meta-analysis in different situations.

  16. Technical Note: Spot characteristic stability for proton pencil beam scanning.

    PubMed

    Chen, Chin-Cheng; Chang, Chang; Moyers, Michael F; Gao, Mingcheng; Mah, Dennis

    2016-02-01

    The spot characteristics for proton pencil beam scanning (PBS) were measured and analyzed over a 16 month period, which included one major site configuration update and six cyclotron interventions. The results provide a reference to establish the quality assurance (QA) frequency and tolerance for proton pencil beam scanning. A simple treatment plan was generated to produce an asymmetric 9-spot pattern distributed throughout a field of 16 × 18 cm for each of 18 proton energies (100.0-226.0 MeV). The delivered fluence distribution in air was measured using a phosphor screen based CCD camera at three planes perpendicular to the beam line axis (x-ray imaging isocenter and up/down stream 15.0 cm). The measured fluence distributions for each energy were analyzed using in-house programs which calculated the spot sizes and positional deviations of the Gaussian shaped spots. Compared to the spot characteristic data installed into the treatment planning system, the 16-month averaged deviations of the measured spot sizes at the isocenter plane were 2.30% and 1.38% in the IEC gantry x and y directions, respectively. The maximum deviation was 12.87% while the minimum deviation was 0.003%, both at the upstream plane. After the collinearity of the proton and x-ray imaging system isocenters was optimized, the positional deviations of the spots were all within 1.5 mm for all three planes. During the site configuration update, spot positions were found to deviate by 6 mm until the tuning parameters file was properly restored. For this beam delivery system, it is recommended to perform a spot size and position check at least monthly and any time after a database update or cyclotron intervention occurs. A spot size deviation tolerance of <15% can be easily met with this delivery system. Deviations of spot positions were <2 mm at any plane up/down stream 15 cm from the isocenter.

  17. Simulation of alnico coercivity

    DOE PAGES

    Ke, Liqin; Skomski, Ralph; Hoffmann, Todd D.; ...

    2017-07-10

    Micromagnetic simulations of alnico show substantial deviations from Stoner-Wohlfarth behavior due to the unique size and spatial distribution of the rod-like Fe-Co phase formed during spinodal decomposition in an external magnetic field. Furthemore, the maximum coercivity is limited by single-rod effects, especially deviations from ellipsoidal shape, and by interactions between the rods. In both the exchange interaction between connected rods and magnetostatic we consider the interaction between rods, and the results of our calculations show good agreement with recent experiments. Unlike systems dominated by magnetocrystalline anisotropy, coercivity in alnico is highly dependent on size, shape, and geometric distribution of themore » Fe-Co phase, all factors that can be tuned with appropriate chemistry and thermal-magnetic annealing.« less

  18. SU-F-P-37: Implementation of An End-To-End QA Test of the Radiation Therapy Imaging, Planning and Delivery Process to Identify and Correct Possible Sources of Deviation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salinas Aranda, F; Suarez, V; Arbiser, S

    2016-06-15

    Purpose: To implement an end-to-end QA test of the radiation therapy imaging, planning and delivery process, aimed to assess the dosimetric agreement accuracy between planned and delivered treatment, in order to identify and correct possible sources of deviation. To establish an internal standard for machine commissioning acceptance. Methods: A test involving all steps of the radiation therapy: imaging, planning and delivery process was designed. The test includes analysis of point dose and planar dose distributions agreement between TPS calculated and measured dose. An ad hoc 16 cm diameter PMMA phantom was constructed with one central and four peripheral bores thatmore » can accommodate calibrated electron density inserts. Using Varian Eclipse 10.0 and Elekta XiO 4.50 planning systems, IMRT, RapidArc and 3DCRT with hard and dynamic wedges plans were planned on the phantom and tested. An Exradin A1SL chamber is used with a Keithley 35617EBS electrometer for point dose measurements in the phantom. 2D dose distributions were acquired using MapCheck and Varian aS1000 EPID.Gamma analysis was performed for evaluation of 2D dose distribution agreement using MapCheck software and Varian Portal Dosimetry Application.Varian high energy Clinacs Trilogy, 2100C/CD, 2000CR and low energy 6X/EX where tested.TPS-CT# vs. electron density table were checked for CT-scanners used. Results: Calculated point doses were accurate to 0.127% SD: 0.93%, 0.507% SD: 0.82%, 0.246% SD: 1.39% and 0.012% SD: 0.01% for LoX-3DCRT, HiX-3DCRT, IMRT and RapidArc plans respectively. Planar doses pass gamma 3% 3mm in all cases and 2% 2mm for VMAT plans. Conclusion: Implementation of a simple and reliable quality assurance tool was accomplished. The end-to-end proved efficient, showing excellent agreement between planned and delivered dose evidencing strong consistency of the whole process from imaging through planning to delivery. This test can be used as a first step in beam model acceptance for clinical use.« less

  19. Combining tissue-phantom ratios to provide a beam-quality specifier for flattening filter free photon beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalaryd, Mårten, E-mail: Marten.Dalaryd@med.lu.se; Knöös, Tommy; Ceberg, Crister

    Purpose: There are currently several commercially available radiotherapy treatment units without a flattening filter in the beam line. Unflattened photon beams have an energy and lateral fluence distribution that is different from conventional beams and, thus, their attenuation properties differ. As a consequence, for flattening filter free (FFF) beams, the relationship between the beam-quality specifier TPR{sub 20,10} and the Spencer–Attix restricted water-to-air mass collision stopping-power ratios, (L{sup -}/ρ){sub air}{sup water}, may have to be refined in order to be used with equivalent accuracy as for beams with a flattening filter. The purpose of this work was twofold. First, to studymore » the relationship between TPR{sub 20,10} and (L{sup -}/ρ){sub air}{sup water} for FFF beams, where the flattening filter has been replaced by a metal plate as in most clinical FFF beams. Second, to investigate the potential of increasing the accuracy in determining (L{sup -}/ρ){sub air}{sup water} by adding another beam-quality metric, TPR{sub 10,5}. The relationship between (L{sup -}/ρ){sub air}{sup water} and %dd(10){sub x} for beams with and without a flattening filter was also included in this study. Methods: A total of 24 realistic photon beams (10 with and 14 without a flattening filter) from three different treatment units have been used to calculate (L{sup -}/ρ){sub air}{sup water}, TPR{sub 20,10}, and TPR{sub 10,5} using the EGSnrc Monte Carlo package. The relationship between (L{sup -}/ρ){sub air}{sup water} and the dual beam-quality specifier TPR{sub 20,10} and TPR{sub 10,5} was described by a simple bilinear equation. The relationship between the photon beam-quality specifier %dd(10){sub x} used in the AAPM’s TG-51 dosimetry protocol and (L{sup -}/ρ){sub air}{sup water} was also investigated for the beams used in this study, by calculating the photon component of the percentage depth dose at 10 cm depth with SSD 100 cm. Results: The calculated (L{sup -}/ρ){sub air}{sup water} for beams without a flattening filter was 0.3% lower, on average, than for beams with a flattening filter and comparable TPR{sub 20,10}. Using the relationship in IAEA, TRS-398 resulted in a root mean square deviation (RMSD) of 0.0028 with a maximum deviation of 0.0043 (0.39%) from Monte Carlo calculated values. For all beams in this study, the RMSD between the proposed model and the Monte Carlo calculated values was 0.0006 with a maximum deviation of 0.0013 (0.1%). Using an earlier proposed relationship [Xiong and Rogers, Med. Phys. 35, 2104–2109 (2008)] between %dd(10){sub x} and (L{sup -}/ρ){sub air}{sup water} gave a RMSD of 0.0018 with a maximum deviation of 0.0029 (0.26%) for all beams in this study (compared to RMSD 0.0015 and a maximum deviation of 0.0048 (0.47%) for the relationship used in AAPM TG-51 published by Almond et al. [Med. Phys. 26, 1847–1870 (1999)]). Conclusions: Using TPR{sub 20,10} as a beam-quality specifier, for the flattening filter free beams used in this study, gave a maximum difference of 0.39% between (L{sup -}/ρ){sub air}{sup water} predicted using IAEA TRS-398 and Monte Carlo calculations. An additional parameter for determining (L{sup -}/ρ){sub air}{sup water} has been presented. This parameter is easy to measure; it requires only an additional dose measurement at 5 cm depth with SSD 95 cm, and provides information for accurate determination of the (L{sup -}/ρ){sub air}{sup water} ratio for beams both with and without a flattening filter at the investigated energies.« less

  20. Analysis of ionospheric irregularities during total solar eclipse 2016 based on GNSS observation

    NASA Astrophysics Data System (ADS)

    Husin, A.; Jiyo; Anggarani, S.; Ekawati, S.; Dear, V.

    2016-11-01

    A total solar eclipse occurred over Indonesia in the morning hours on 9 March 2016. Ionisations in the ionosphere which is associated with the solar radiation during the total eclipse provided a good opportunity to study the ionospheric irregularities. Using global navigation satellite system (GNSS) data taken from dual-frequency receivers in Manado, we investigated and analysed the total electron content (TEC) perturbations with a time resolution of 60 s to reveal ionospheric irregularities during total eclipse. Result showed that TEC conditions based on IPP were decreased during solar eclipse on March 9, comparing with the neighbour day. The maximum percentage deviation (DTEC) from the average value during eclipse period, 00:00 - 02:40 UT reach -41.5%. The duration of maximum decrement in TEC occurs were around 2-30 minutes after the maximum obscuration.

Top