Science.gov

Sample records for planar optic display

  1. Flat panel planar optic display

    SciTech Connect

    Veligdan, J.T.

    1994-11-01

    A prototype 10 inch flat panel Planar Optic Display, (POD), screen has been constructed and tested. This display screen is comprised of hundreds of planar optic class sheets bonded together with a cladding layer between each sheet where each glass sheet represents a vertical line of resolution. The display is 9 inches wide by 5 inches high and approximately 1 inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  2. 10-inch planar optic display

    NASA Astrophysics Data System (ADS)

    Beiser, Leo; Veligdan, James T.

    1996-05-01

    A planar optic display (POD) is being built and tested for suitability as a high brightness replacement for the cathode ray tube, (CRT). The POD display technology utilizes a laminated optical waveguide structure which allows a projection type of display to be constructed in a thin (1 to 2 inch) housing. Inherent in the optical waveguide is a black cladding matrix which gives the display a black appearance leading to very high contrast. A digital micromirror device, (DMD) from Texas Instruments is used to create video images in conjunction with a 100 milliwatt green solid state laser. An anamorphic optical system is used to inject light into the POD to form a stigmatic image. In addition to the design of the POD screen, we discuss: image formation, image projection, and optical design constraints.

  3. Ten inch Planar Optic Display

    SciTech Connect

    Beiser, L.; Veligdan, J.

    1996-04-01

    A Planar Optic Display (POD) is being built and tested for suitability as a high brightness replacement for the cathode ray tube, (CRT). The POD display technology utilizes a laminated optical waveguide structure which allows a projection type of display to be constructed in a thin (I to 2 inch) housing. Inherent in the optical waveguide is a black cladding matrix which gives the display a black appearance leading to very high contrast. A Digital Micromirror Device, (DMD) from Texas Instruments is used to create video images in conjunction with a 100 milliwatt green solid state laser. An anamorphic optical system is used to inject light into the POD to form a stigmatic image. In addition to the design of the POD screen, we discuss: image formation, image projection, and optical design constraints.

  4. Flat panel planar optic display. Revision 4/95

    SciTech Connect

    Veligdan, J.T.

    1995-05-01

    A prototype 10 inch flat panel Planar Optic display, (POD), screen has been constructed and tested. This display screen is comprised of hundreds of planar optic glass sheets bonded together with a cladding layer between each sheet where each glass sheet represents a vertical line of resolution. The display is 9 inches wide by 5 inches high and approximately 1 inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  5. Thin display optical projector

    DOEpatents

    Veligdan, James T.

    1999-01-01

    An optical system (20) projects light into a planar optical display (10). The display includes laminated optical waveguides (12) defining an inlet face (14) at one end and an outlet screen (16) at an opposite end. A first mirror (26) collimates light from a light source (18) along a first axis, and distributes the light along a second axis. A second mirror (28) collimates the light from the first mirror along the second axis to illuminate the inlet face and produce an image on the screen.

  6. Planar waveguide optical immunosensors

    NASA Astrophysics Data System (ADS)

    Choquette, Steven J.; Locascio-Brown, Laurie E.; Durst, Richard A.

    1991-03-01

    Monoclonal antibodies were covalently bonded to the surfaces of planar waveguides to confer immunoreacth''ity. Silver-ion diffused waveguides were used to measure theophylline concentrations in a fluorescence immunoassay and silicon nitride waveguides were used to detect theophylline in an absorbance-based immunoassay. Liposomes were employed in both assays as the optically detectable label in a competitive reaction to monitor antigen-antibody complexation. Regeneration of the active antibody site will be discussed.

  7. Polyplanar optic display

    SciTech Connect

    Veligdan, J.; Biscardi, C.; Brewster, C.; DeSanto, L.; Beiser, L.

    1997-07-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. This display screen is 2 inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 100 milliwatt green solid state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, the authors discuss the electronic interfacing to the DLP{trademark} chip, the opto-mechanical design and viewing angle characteristics.

  8. Split image optical display

    DOEpatents

    Veligdan, James T.

    2007-05-29

    A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.

  9. Split image optical display

    DOEpatents

    Veligdan, James T.

    2005-05-31

    A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.

  10. Polyplanar optical display electronics

    SciTech Connect

    DeSanto, L.; Biscardi, C.

    1997-07-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a 100 milliwatt green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments. In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMD{trademark}) circuit board is removed from the Texas Instruments DLP light engine assembly. Due to the compact architecture of the projection system within the display chassis, the DMD{trademark} chip is operated remotely from the Texas Instruments circuit board. The authors discuss the operation of the DMD{trademark} divorced from the light engine and the interfacing of the DMD{trademark} board with various video formats (CVBS, Y/C or S-video and RGB) including the format specific to the B-52 aircraft. A brief discussion of the electronics required to drive the laser is also presented.

  11. Black optic display

    DOEpatents

    Veligdan, James T.

    1997-01-01

    An optical display includes a plurality of stacked optical waveguides having first and second opposite ends collectively defining an image input face and an image screen, respectively, with the screen being oblique to the input face. Each of the waveguides includes a transparent core bound by a cladding layer having a lower index of refraction for effecting internal reflection of image light transmitted into the input face to project an image on the screen, with each of the cladding layers including a cladding cap integrally joined thereto at the waveguide second ends. Each of the cores is beveled at the waveguide second end so that the cladding cap is viewable through the transparent core. Each of the cladding caps is black for absorbing external ambient light incident upon the screen for improving contrast of the image projected internally on the screen.

  12. The planar parabolic optical antenna.

    PubMed

    Schoen, David T; Coenen, Toon; García de Abajo, F Javier; Brongersma, Mark L; Polman, Albert

    2013-01-01

    One of the simplest and most common structures used for directing light in macroscale applications is the parabolic reflector. Parabolic reflectors are ubiquitous in many technologies, from satellite dishes to hand-held flashlights. Today, there is a growing interest in the use of ultracompact metallic structures for manipulating light on the wavelength scale. Significant progress has been made in scaling radiowave antennas to the nanoscale for operation in the visible range, but similar scaling of parabolic reflectors employing ray-optics concepts has not yet been accomplished because of the difficulty in fabricating nanoscale three-dimensional surfaces. Here, we demonstrate that plasmon physics can be employed to realize a resonant elliptical cavity functioning as an essentially planar nanometallic structure that serves as a broadband unidirectional parabolic antenna at optical frequencies.

  13. Planar optics with patterned chiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Kobashi, Junji; Yoshida, Hiroyuki; Ozaki, Masanori

    2016-06-01

    Reflective metasurfaces based on metallic and dielectric nanoscatterers have attracted interest owing to their ability to control the phase of light. However, because such nanoscatterers require subwavelength features, the fabrication of elements that operate in the visible range is challenging. Here, we show that chiral liquid crystals with a self-organized helical structure enable metasurface-like, non-specular reflection in the visible region. The phase of light that is Bragg-reflected off the helical structure can be controlled over 0-2π depending on the spatial phase of the helical structure; thus planar elements with arbitrary reflected wavefronts can be created via orientation control. The circular polarization selectivity and external field tunability of Bragg reflection open a wide variety of potential applications for this family of functional devices, from optical isolators to wearable displays.

  14. Alignment algorithms for planar optical waveguides

    NASA Astrophysics Data System (ADS)

    Zheng, Yu; Duan, Ji-an

    2012-10-01

    Planar optical waveguides are the key elements in a modern, high-speed optical network. An important problem facing the optical fiber communication system is optical-axis alignment and coupling between waveguide chips and transmission fibers. The advantages and disadvantages of the various algorithms used for the optical-axis alignment, namely, hill-climbing, pattern search, and genetic algorithm are analyzed. A new optical-axis alignment for planar optical waveguides is presented which is a composite of a genetic algorithm and a pattern search algorithm. Experiments have proved the proposed alignment's feasibility; compared with hill climbing, the search process can reduce the number of movements by 88% and reduce the search time by 83%. Moreover, the search success rate in the experiment can reach 100%.

  15. Electron-optical systems for planar gyrotrons

    NASA Astrophysics Data System (ADS)

    Manuilov, V. N.; Zaslavsky, V. Yu.; Ginzburg, N. S.; Glyavin, M. Yu.; Kuftin, A. N.; Zotova, I. V.

    2014-02-01

    The methodology of designing an electron-optical system (EOS) that forms sheet helical electron beams (HEBs) for high-power gyrotrons is developed. As an example, we consider the EOS for a 140-GHz gyrotron operated at the first harmonic of the cyclotron frequency with an accelerating voltage of 50 kV, a beam current of 30 A, and a magnetic field compression of 36. A planar geometry of the magnetron-injection gun (MIG) is suggested. The adiabatic theory of MIGs modified for the planar geometry of EOS is used for preliminary estimations of MIG parameters. Numerical simulation of the HEB properties based on the CST STUDIO SUITE 3D code is performed to find the optimal configuration of a planar MIG. The accuracy of the calculated data is discussed. The main factors that affect the HEB quality are considered. It is shown that a sheet HEB with a pitch-factor of 1.3 and velocity spread not exceeding 25%-30% can be formed; this is quite acceptable for high-efficiency operation of modern gyrotrons. Calculation of the beam-wave interaction with the obtained HEB parameters proved that a high output power with a sufficiently good efficiency of about 20% can be reached. Simulations show the feasibility of the experimental implementation of a novel planar EOS and its use in short-wave planar gyrotrons. The developed technique can be used for the study and optimization of planar gyrotrons of different frequency bands and power levels.

  16. Electron-optical systems for planar gyrotrons

    SciTech Connect

    Manuilov, V. N.; Zaslavsky, V. Yu.; Ginzburg, N. S.; Glyavin, M. Yu.; Kuftin, A. N.; Zotova, I. V.

    2014-02-15

    The methodology of designing an electron-optical system (EOS) that forms sheet helical electron beams (HEBs) for high-power gyrotrons is developed. As an example, we consider the EOS for a 140-GHz gyrotron operated at the first harmonic of the cyclotron frequency with an accelerating voltage of 50 kV, a beam current of 30 A, and a magnetic field compression of 36. A planar geometry of the magnetron-injection gun (MIG) is suggested. The adiabatic theory of MIGs modified for the planar geometry of EOS is used for preliminary estimations of MIG parameters. Numerical simulation of the HEB properties based on the CST STUDIO SUITE 3D code is performed to find the optimal configuration of a planar MIG. The accuracy of the calculated data is discussed. The main factors that affect the HEB quality are considered. It is shown that a sheet HEB with a pitch-factor of 1.3 and velocity spread not exceeding 25%–30% can be formed; this is quite acceptable for high-efficiency operation of modern gyrotrons. Calculation of the beam-wave interaction with the obtained HEB parameters proved that a high output power with a sufficiently good efficiency of about 20% can be reached. Simulations show the feasibility of the experimental implementation of a novel planar EOS and its use in short-wave planar gyrotrons. The developed technique can be used for the study and optimization of planar gyrotrons of different frequency bands and power levels.

  17. Optical display for radar sensing

    NASA Astrophysics Data System (ADS)

    Szu, Harold; Hsu, Charles; Willey, Jefferson; Landa, Joseph; Hsieh, Minder; Larsen, Louis V.; Krzywicki, Alan T.; Tran, Binh Q.; Hoekstra, Philip; Dillard, John T.; Krapels, Keith A.; Wardlaw, Michael; Chu, Kai-Dee

    2015-05-01

    Boltzmann headstone S = kB Log W turns out to be the Rosette stone for Greek physics translation optical display of the microwave sensing hieroglyphics. The LHS is the molecular entropy S measuring the degree of uniformity scattering off the sensing cross sections. The RHS is the inverse relationship (equation) predicting the Planck radiation spectral distribution parameterized by the Kelvin temperature T. Use is made of the conservation energy law of the heat capacity of Reservoir (RV) change T Δ S = -ΔE equals to the internal energy change of black box (bb) subsystem. Moreover, an irreversible thermodynamics Δ S > 0 for collision mixing toward totally larger uniformity of heat death, asserted by Boltzmann, that derived the so-called Maxwell-Boltzmann canonical probability. Given the zero boundary condition black box, Planck solved a discrete standing wave eigenstates (equation). Together with the canonical partition function (equation) an average ensemble average of all possible internal energy yielded the celebrated Planck radiation spectral (equation) where the density of states (equation). In summary, given the multispectral sensing data (equation), we applied Lagrange Constraint Neural Network (LCNN) to solve the Blind Sources Separation (BSS) for a set of equivalent bb target temperatures. From the measurements of specific value, slopes and shapes we can fit a set of Kelvin temperatures T's for each bb targets. As a result, we could apply the analytical continuation for each entropy sources along the temperature-unique Planck spectral curves always toward the RGB color temperature display for any sensing probing frequency.

  18. Multiview three-dimensional display with continuous motion parallax through planar aligned OLED microdisplays.

    PubMed

    Teng, Dongdong; Xiong, Yi; Liu, Lilin; Wang, Biao

    2015-03-01

    Existing multiview three-dimensional (3D) display technologies encounter discontinuous motion parallax problem, due to a limited number of stereo-images which are presented to corresponding sub-viewing zones (SVZs). This paper proposes a novel multiview 3D display system to obtain continuous motion parallax by using a group of planar aligned OLED microdisplays. Through blocking partial light-rays by baffles inserted between adjacent OLED microdisplays, transitional stereo-image assembled by two spatially complementary segments from adjacent stereo-images is presented to a complementary fusing zone (CFZ) which locates between two adjacent SVZs. For a moving observation point, the spatial ratio of the two complementary segments evolves gradually, resulting in continuously changing transitional stereo-images and thus overcoming the problem of discontinuous motion parallax. The proposed display system employs projection-type architecture, taking the merit of full display resolution, but at the same time having a thin optical structure, offering great potentials for portable or mobile 3D display applications. Experimentally, a prototype display system is demonstrated by 9 OLED microdisplays.

  19. Optical magnetism and optical activity in nonchiral planar plasmonic metamaterials.

    PubMed

    Li, Guozhou; Li, Qiang; Yang, Lizhen; Wu, Lijun

    2016-07-01

    We investigate optical magnetism and optical activity in a simple planar metamolecule composed of double U-shaped metal split ring resonators (SRRs) twisted by 90° with respect to one another. Compared to a single SRR, the resonant energy levels are split and strong magnetic response can be observed due to inductive and conductive coupling. More interestingly, the nonchiral structures exhibit strong optical gyrotropy (1100°/λ) under oblique incidence, benefiting from the strong electromagnetic coupling. A chiral molecule model is proposed to shed light on the physical origin of optical activity. These artificial chiral metamaterials could be utilized to control the polarization of light and promise applications in enantiomer sensing-based medicine, biology, and drug development.

  20. Laser-driven polyplanar optic display

    SciTech Connect

    Veligdan, J.T.; Biscardi, C.; Brewster, C.; DeSanto, L.; Beiser, L.

    1998-01-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. This display screen is 2 inches thick and has a matte-black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 200 milliwatt green solid-state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, the authors discuss the DLP chip, the optomechanical design and viewing angle characteristics.

  1. Polyplanar optic display for cockpit application

    SciTech Connect

    Veligdan, J.; Biscardi, C.; Brewster, C.; DeSanto, L.; Freibott, W.

    1998-04-01

    The Polyplanar Optical Display (POD) is a high contrast display screen being developed for cockpit applications. This display screen is 2 inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a long lifetime, (10,000 hour), 200 mW green solid-state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design and speckle reduction, the authors discuss the electronic interfacing to the DLP{trademark} chip, the opto-mechanical design and viewing angle characteristics.

  2. Multiple Optical Traps with a Single-Beam Optical Tweezer Utilizing Surface Micromachined Planar Curved Grating

    NASA Astrophysics Data System (ADS)

    Kuo, Ju-Nan; Chen, Kuan-Yu

    2010-11-01

    In this paper, we present a single-beam optical tweezer integrated with a planar curved diffraction grating for microbead manipulation. Various curvatures of the surface micromachined planar curved grating are systematically investigated. The planar curved grating was fabricated using multiuser micro-electro-mechanical-system (MEMS) processes (MUMPs). The angular separation and the number of diffracted orders were determined. Experimental results indicate that the diffraction patterns and curvature of the planar curved grating are closely related. As the curvature of the planar curved grating increases, the vertical diffraction angle increases, resulting in the strip patterns of the planar curved grating. A single-beam optical tweezer integrated with a planar curved diffraction grating was developed. We demonstrate a technique for creating multiple optical traps from a single laser beam using the developed planar curved grating. The strip patterns of the planar curved grating that resulted from diffraction were used to trap one row of polystyrene beads.

  3. Mode structure of planar optical antennas on dielectric substrates.

    PubMed

    Word, Robert C; Könenkamp, Rolf

    2016-08-01

    We report a numerical study, supported by photoemission electron microscopy (PEEM), of sub-micron planar optical antennas on transparent substrate. We find these antennas generate intricate near-field spatial field distributions with odd and even numbers of nodes. We show that the field distributions are primarily superpositions of planar surface plasmon polariton modes confined to the metal/substrate interface. The mode structure provides opportunities for coherent switching and optical control in sub-micron volumes. PMID:27505835

  4. Mode structure of planar optical antennas on dielectric substrates.

    PubMed

    Word, Robert C; Könenkamp, Rolf

    2016-08-01

    We report a numerical study, supported by photoemission electron microscopy (PEEM), of sub-micron planar optical antennas on transparent substrate. We find these antennas generate intricate near-field spatial field distributions with odd and even numbers of nodes. We show that the field distributions are primarily superpositions of planar surface plasmon polariton modes confined to the metal/substrate interface. The mode structure provides opportunities for coherent switching and optical control in sub-micron volumes.

  5. Evolution Of Map Display Optical Systems

    NASA Astrophysics Data System (ADS)

    Boot, Alan

    1983-06-01

    It is now over 20 years since Ferranti plc introduced optically projected map displays into operational aircraft navigation systems. Then, as now, it was the function of the display to present an image of a topographical map to a pilot or navigator with his present position clearly identified. Then, as now, the map image was projected from a reduced image stored on colour micro film. Then, as now, the fundamental design problems are the same.In the exposed environment of an aircraft cockpit where brightness levels may vary from those associated with direct sunlight on the one hand, to starlight on the other, how does one design an optical system with sufficient luminance, contrast and resolution where in the daytime sunlight may fall on the display or in the pilot's eyes, and at night time the display luminance must not detract from the pilot's ability to pick up external clues? This paper traces the development of Ferranti plc optically projected map displays from the early V Bomber and the ill-fated TSR2 displays to the Harrier and Concorde displays. It then goes on to the development of combined map and electronic displays (COMED), showing how an earlier design, as fitted to Tornado, has been developed into the current COMED design which is fitted to the F-18 and Jaguar aircraft. In each of the above display systems particular features of optical design interest are identified and their impact on the design as a whole are discussed. The use of prisms both for optical rotation and translation, techniques for the maximisation of luminance, the problems associated with contrast enhancement, particularly with polarising filters in the presence of optically active materials, the use of aerial image combining systems and the impact of the pilot interface on the system parameter are all included.Perhaps the most interesting result in considering the evolution of map displays has not been so much the designer's solutions in overcoming the various design problems but

  6. Advanced rotorcraft helmet display sighting system optics

    NASA Astrophysics Data System (ADS)

    Raynal, Francois; Chen, Muh-Fa

    2002-08-01

    Kaiser Electronics' Advanced Rotorcraft Helmet Display Sighting System is a Biocular Helmet Mounted Display (HMD) for Rotary Wing Aviators. Advanced Rotorcraft HMDs requires low head supported weight, low center of mass offsets, low peripheral obstructions of the visual field, large exit pupils, large eye relief, wide field of view (FOV), high resolution, low luning, sun light readability with high contrast and low prismatic deviations. Compliance with these safety, user acceptance and optical performance requirements is challenging. The optical design presented in this paper provides an excellent balance of these different and conflicting requirements. The Advanced Rotorcraft HMD optical design is a pupil forming off axis catadioptric system that incorporates a transmissive SXGA Active Matrix liquid Crystal Display (AMLCD), an LED array backlight and a diopter adjustment mechanism.

  7. Holographic optical element for visual display applications.

    PubMed

    McCauley, D G; Simpson, C E; Murbach, W J

    1973-02-01

    Off-axis and off-bisector reflection-type holographic visual display elements have been recorded in dichromated gelatin deposited on planar or spherical shell substrates of glass or Plexiglas. A procedure for bonding gelatin to Plexiglas is given. Holographic elements are recorded at the argon wavelength of 514.5 nm and reconstructed with spectral lines from a low pressure mercury arc lamp. Measured image characteristics for a flat substrate hologram agree with ray-tracing calculations. A swelling of the gelatin by approximately 6.6% after processing does not perceptibly affect the dispersion, astigmatism, or distortion in the image, that is, the grating equation depends on the spacing between the fringes on the surface of the gelatin and is not affected by the swelling or shrinking. However, the Bragg equation depends on the distance normal to the fringe planes and is affected by thickness changes of the gelatin. Therefore, this thickness change is taken as an independent parameter and used to adjust the wavelength for maximum diffraction efficiency, without affecting the image angle. Data reveal a near linear relationship between the dichromate concentration of 0.5-10% used to photosensitive the gelatin and the display wavelength of maximum diffraction efficiency. Lateral dispersion is 0.12 +/- 0.01 degrees / nanometer for both planar and spherical shell substrate elements recorded in quite similar geometry, but their astigmatisms are not alike. PMID:20125273

  8. Optically responsive liquid crystal microfibers for display and nondisplay applications

    NASA Astrophysics Data System (ADS)

    Buyuktanir, Ebru A.; West, John L.; Frey, Margaret W.

    2011-03-01

    We demonstrate the fabrication and characterization of optically-tunable and stimuli-responsive electrospun microfibers endowed with liquid crystal (LC) functionality. The highly flexible LC microfibers are electrospun from a solution of 4- pentyl-4'-cyanobiphenyl (5CB) and polylactic acid (PLA) in chloroform/acetone solvent. In the electrospinning process, the low molecular weight 5CB phase-separates and self-assembles to form a planarly aligned nematic core within a PLA shell. Most importantly, the orientation of LC domains and, therefore, the optical properties of the 5CB/PLA fibers can be tuned by application of an external electric field. These properties of LC fibers may, in turn, be utilized to fabricate a variety of photonic textiles, and ultimately may introduce an entirely new manufacturing process where weaving will reach well beyond the roll-to-roll manufacturing envisioned for the currently emerging flexible displays printed on flexible plastic substrates.

  9. Integrated optical tamper sensor with planar waveguide

    DOEpatents

    Carson, Richard F.; Casalnuovo, Stephen A.

    1993-01-01

    A monolithic optical tamper sensor, comprising an optical emitter and detector, connected by an optical waveguide and placed into the critical entry plane of an enclosed sensitive region, the tamper sensor having a myriad of scraps of a material optically absorbent at the wavelength of interest, such that when the absorbent material is in place on the waveguide, an unique optical signature can be recorded, but when entry is attempted into the enclosed sensitive region, the scraps of absorbent material will be displaced and the optical/electrical signature of the tamper sensor will change and that change can be recorded.

  10. Integrated optical tamper sensor with planar waveguide

    DOEpatents

    Carson, R.F.; Casalnuovo, S.A.

    1993-01-05

    A monolithic optical tamper sensor, comprising an optical emitter and detector, connected by an optical waveguide and placed into the critical entry plane of an enclosed sensitive region, the tamper sensor having a myriad of scraps of a material optically absorbent at the wavelength of interest, such that when the absorbent material is in place on the waveguide, an unique optical signature can be recorded, but when entry is attempted into the enclosed sensitive region, the scraps of absorbent material will be displaced and the optical/electrical signature of the tamper sensor will change and that change can be recorded.

  11. Optical planar waveguide for cell counting

    NASA Astrophysics Data System (ADS)

    LeBlanc, John; Mueller, Andrew J.; Prinz, Adrian; Butte, Manish J.

    2012-01-01

    Low cost counting of cells has medical applications in screening, military medicine, disaster medicine, and rural healthcare. In this report, we present a shallow, buried, planar waveguide fabricated by potassium ion exchange in glass that enables low-cost and rapid counting of metal-tagged objects that lie in the evanescent field of the waveguide. Laser light transmitted through the waveguide was attenuated proportionately to the presence of metal-coated microstructures fabricated from photoresist. This technology enables the low-cost enumeration of cells from blood, urine, or other biofluids.

  12. Planar optical waveguides for optical panel having gradient refractive index core

    DOEpatents

    Veligdan, James T.

    2004-08-24

    An optical panel is disclosed. A plurality of stacked planar optical waveguides are used to guide light from an inlet face to an outlet face of an optical panel. Each of the optical waveguides comprises a planar sheet of core material having a central plane. The core material has an index of refraction which decreases as the distance from the central plane increases. The decrease in the index of refraction occurs gradually and continuously.

  13. Planar optical waveguides for optical panel having gradient refractive index core

    DOEpatents

    Veligdan, James T.

    2001-01-01

    An optical panel is disclosed. A plurality of stacked planar optical waveguides are used to guide light from an inlet face to an outlet face of an optical panel. Each of the optical waveguides comprises a planar sheet of core material having a central plane. The core material has an index of refraction which decreases as the distance from the central plane increases. The decrease in the index of refraction occurs gradually and continuously.

  14. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers.

    PubMed

    Zhao, Y; Belkin, M A; Alù, A

    2012-05-29

    Optical metamaterials are usually based on planarized, complex-shaped, resonant nano-inclusions. Three-dimensional geometries may provide a wider set of functionalities, including broadband chirality to manipulate circular polarization at the nanoscale, but their fabrication becomes challenging as their dimensions get smaller. Here we introduce a new paradigm for the realization of optical metamaterials, showing that three-dimensional effects may be obtained without complicated inclusions, but instead by tailoring the relative orientation within the lattice. We apply this concept to realize planarized, broadband bianisotropic metamaterials as stacked nanorod arrays with a tailored rotational twist. Because of the coupling among closely spaced twisted plasmonic metasurfaces, metamaterials realized with conventional lithography may effectively operate as three-dimensional helical structures with broadband bianisotropic optical response. The proposed concept is also shown to relax alignment requirements common in three-dimensional metamaterial designs. The realized sample constitutes an ultrathin, broadband circular polarizer that may be directly integrated within nanophotonic systems.

  15. Spatial and planar optical circuit for flexible ROADM

    NASA Astrophysics Data System (ADS)

    Shikama, Kota; Ikuma, Yuichiro; Suzuki, Kenya; Takahashi, Tetsuo

    2016-02-01

    A high port count wavelength selective switch (HPC-WSS) is a key component when constructing colorless, directionless, and contentionless ROADM because it provides increased flexibility and scalability. We have been developing HPC-WSSs by combining a waveguide-based optical frontend and free-space optics, which we call a spatial and planar optical circuit (SPOC) platform. In this paper, we present an HPC-WSS and a low-loss transponder aggregator based on a SPOC platform, and we also describe the reliability of the frontend, which is a key enabler for the SPOC platform.

  16. Three-dimensional planar-integrated optics: a comparative view with free-space optics

    NASA Astrophysics Data System (ADS)

    Lee, El-Hang; Song, Seok Ho

    2000-04-01

    This paper reports on the viability, effectiveness, versatility, and the utility of the concept of the planar integrated optical interconnection scheme with respect to the concept of the free-space interconnection scheme in realizing multiple integration of various micro/nano- photonic devices and components for applications in optical interconnection, optical circuits, optical switching, optical communication and information processing. Several planar optics schemes to detect parallel optical packet addresses in WDM switching networks, to perform a space- variant processing such as fractional correlation, and to construct multistage interconnection networks, have been successfully demonstrated in the 3D glass blocks. Using a gradient-index (GRIN) substrate as a signal propagation medium in the planar optics is a unique advantage, when compared to the free-space optics. We have demonstrated the GRIN-substrate concept by using six 1/4-pitch GRIN rod lenses and a vertical cavity surface emitting laser (VCSEL). The GRIN planar optics can be further extended to the use of 2D array of VCSEL microlasers and modulators in making massively parallel interconnects. A critical comparison between the planar integrated optics scheme and the free- space integrated scheme is given in terms of physics, engineering and technological concept.

  17. Micro biochemical sensor based on SOI planar optical waveguide

    NASA Astrophysics Data System (ADS)

    Du, Yang; Dong, Ying

    2014-02-01

    A novel biochemical sensor based on planar optical waveguide is presented in this paper. The features of the sensor are as follows, the planar optical waveguide is made of SOI (Silicon-On-Insulator) material, a Mach Zehnder (M-Z) Interferometer structure is adopted as the sensing part, the sensor chip is fabricated using CMOS compatible technology and the size of the sensor chip is on the micron scale. Compared with the traditional biochemical sensors, this new type of sensor has such notable advantages as miniaturization, integration, high sensitivity and strong anti-interference capability, which provide the sensor with potential applications where traditional biochemical sensors cannot be used. At first, the benefits of SOI material comparing to other optical waveguide materials were analyzed in this paper. Then, according to the optical waveguide mode theory, M-Z interferometer waveguide was designed for the single mode behavior. By theoretical analysis of the radiation loss in the Y-junction of the planar waveguide interferometer, the relationship between the branch angle and the radiation loss was obtained. The power transfer function and the parametric equation of sensitivity of the M-Z interferometer were obtained through analysis of the waveguide structure. At last, the resolution of the effective refractive index and the characteristics of sensitivity of the sensor based on SOI M-Z Interferometer waveguide were simulated and analyzed by utilizing MATLAB software. As a result, the sensitivity of SOI M-Z Interferometer sensor can reach the order of 10-7 magnitude.

  18. Integrating optical glucose sensing into a planar waveguide sensor structure

    NASA Astrophysics Data System (ADS)

    Dutta, Aradhana; Deka, Bidyut; Sahu, Partha P.

    2013-06-01

    A device for glucose monitoring in people with diabetes is a clinical and research priority in the recent years for its accurate self management. An extensive theoretical design and development of an optical sensor is carried out incorporating planar waveguide structure in an endeavor to measure slight changes of glucose concentration. The sensor is simple and highly sensitive and has the potential to be used for online monitoring of blood glucose levels for the diabetic patients in the near future.

  19. Improved spatiotemporal-multiplexing super-multiview display based on planar aligned OLED microdisplays.

    PubMed

    Teng, Dongdong; Pang, Zhiyong; Zhang, Yueli; Wu, Dong; Wang, Jiahui; Liu, Lilin; Wang, Biao

    2015-08-24

    Through gating spectrum plane of multiple planar aligned OLED microdisplays by a timely sequential manner, a super-multiview (SMV) three-dimensional (3D) display based on spatiotemporal-multiplexing was developed in our previous paper. But an upper limit of the allowable sub-viewing-zones (SVZs) for an OLED microdisplay did exist in the previous system, even if microdisplays with very high frame rates could be commercially available. In this manuscript, an improved spatiotemporal-multiplexing SMV displays system is developed, which removes the above limitation through controllable fusing of light beams from adjacent OLED microdisplays. The employment of a liquid-crystal panel as the gating-aperture array allows the improved system to accommodate multiple rows of OLED microdisplays for denser SVZs. Experimentally, a prototype system is demonstrated by 24 OLED microdisplays, resulting in 120 SVZs with an interval small to 1.07mm.

  20. Embedded planar glass waveguide optical interconnect for data centre applications

    NASA Astrophysics Data System (ADS)

    Pitwon, Richard; Schröder, Henning; Brusberg, Lars; Graham-Jones, Jasper; Wang, Kai

    2013-02-01

    Electro-optical printed circuit boards (EOCB) based on planar multimode polymer channels are limited by dispersion in the step-index waveguide structures and increased optical absorption at the longer telecom wavelengths [1]. We present a promising technology for large panel EOCB based on holohedrally integrated glass foils. The planar multimode glass waveguides patterned into these glass foils have a graded-index structure, thereby giving rise to a larger bandwidthlength product compared to their polymer waveguide counterparts and lower absorbtion at the longer telecom wavelengths. This will allow glass waveguide based EOCBs to support the future bandwidth requirements inherent to large scale data centre and high performance computer subsystems while not incurring the same dispersion driven penalties on interconnect length or loss dependence on wavelength. To this end glass foil structuring technologies have been developed that are compatible with industrial PCB manufacturing processes. Established processes as well as new approaches were analysed for their eligibility and have been applied to the EOCB process. In addition a connector system has been designed, which would allow optical pluggability to glass waveguide EOCBs.

  1. Giant optical forces in planar dielectric photonic metamaterials.

    PubMed

    Zhang, Jianfa; MacDonald, Kevin F; Zheludev, Nikolay I

    2014-08-15

    We demonstrate that resonant optical forces generated within all-dielectric planar photonic metamaterials at near-infrared illumination wavelengths can be an order of magnitude larger than in corresponding plasmonic metamaterials, reaching levels many tens of times greater than the force resulting from radiation pressure. This is made possible by the dielectric structures' freedom from Joule losses and the consequent ability to sustain Fano-resonances with high quality factors that are unachievable in plasmonic nanostructures. Dielectric nano-optomechanical metamaterials can thus provide a functional platform for a range of novel dynamically controlled and self-adaptive nonlinear, tunable/switchable photonic metamaterials.

  2. Periodically multilayered planar optical concentrator for photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Solano, Manuel E.; Faryad, Muhammad; Monk, Peter B.; Mallouk, Thomas E.; Lakhtakia, Akhlesh

    2013-11-01

    A planar optical concentrator comprising a periodic multilayered isotropic dielectric material backed by a metallic surface-relief grating was theoretically examined for silicon photovoltaics. The concentrator was optimized using a differential evolution algorithm for solar-spectrum-integrated power-flux density. Further optimization was carried out for tolerance to variations in the incidence angle, spatial dimensions, and dielectric properties. The average electron-hole pair density in a silicon solar cell can be doubled, and the material costs substantially diminished by this concentrator, whose efficacy is due to the excitation of waveguide modes and multiple surface-plasmon-polariton waves in a broad spectral regime.

  3. Integrated planar optical waveguide interferometer biosensors: a comparative review.

    PubMed

    Kozma, Peter; Kehl, Florian; Ehrentreich-Förster, Eva; Stamm, Christoph; Bier, Frank F

    2014-08-15

    Integrated planar optical waveguide interferometer biosensors are advantageous combinations of evanescent field sensing and optical phase difference measurement methods. By probing the near surface region of a sensor area with the evanescent field, any change of the refractive index of the probed volume induces a phase shift of the guided mode compared to a reference field typically of a mode propagating through the reference arm of the same waveguide structure. The interfering fields of these modes produce an interference signal detected at the sensor׳s output, whose alteration is proportional to the refractive index change. This signal can be recorded, processed and related to e.g. the concentration of an analyte in the solution of interest. Although this sensing principle is relatively simple, studies about integrated planar optical waveguide interferometer biosensors can mostly be found in the literature covering the past twenty years. During these two decades, several members of this sensor family have been introduced, which have remarkably advantageous properties. These entail label-free and non-destructive detection, outstandingly good sensitivity and detection limit, cost-effective and simple production, ability of multiplexing and miniaturization. Furthermore, these properties lead to low reagent consumption, short analysis time and open prospects for point-of-care applications. The present review collects the most relevant developments of the past twenty years categorizing them into two main groups, such as common- and double path waveguide interferometers. In addition, it tries to maintain the historical order as it is possible and it compares the diverse sensor designs in order to reveal not only the development of this field in time, but to contrast the advantages and disadvantages of the different approaches and sensor families, as well.

  4. Optical activity in planar chiral metamaterials: Theoretical study

    SciTech Connect

    Bai, Benfeng; Svirko, Yuri; Turunen, Jari; Vallius, Tuomas

    2007-08-15

    A thorough theoretical study of the optical activity in planar chiral metamaterial (PCM) structures, made of both dielectric and metallic media, is conducted by the analysis of gammadion-shaped nanoparticle arrays. The general polarization properties are first analyzed from an effective-medium perspective, by analogy with natural optical activity, and then verified by rigorous numerical simulation, some of which are corroborated by previous experimental results. The numerical analysis suggests that giant polarization rotation (tens of degrees) may be achieved in the PCM structures with a thickness of only hundreds of nanometers. The artificial optical activity arises from circular birefringence induced by the structural chirality and is enhanced by the guided-mode or surface-plasmon resonances taking place in the structures. There are two polarization conversion types in the dielectric PCMs, whereas only one type in the metallic ones. Many intriguing features of the polarization property of PCMs are also revealed and explained: the polarization effect is reciprocal and vanishes in the symmetrically layered structures; the effect occurs only in the transmitted field, but not in the reflected field; and the polarization spectra of two enantiomeric PCM structures are mirror symmetric to each other. These remarkable properties pave the way for the PCMs to be used as polarization elements in new-generation integrated optical systems.

  5. Interactive display system having a matrix optical detector

    DOEpatents

    Veligdan, James T.; DeSanto, Leonard

    2007-01-23

    A display system includes a waveguide optical panel having an inlet face and an opposite outlet face. An image beam is projected across the inlet face laterally and transversely for display on the outlet face. An optical detector including a matrix of detector elements is optically aligned with the inlet face for detecting a corresponding lateral and transverse position of an inbound light spot on the outlet face.

  6. Depiction of large angles of view in perspective flight guidance displays through the use of non-planar projections

    NASA Astrophysics Data System (ADS)

    Sindlinger, Andreas; Klingauf, Uwe

    2009-05-01

    Next to flight and system status or sensor data, synthetic vision systems visualize information stored in databases on board of the aircraft in an intuitive manner on flight deck displays. For example, through the three-dimensional depiction of terrain or traffic information on the primary flight display, the pilot's overall situational awareness can be optimized. Today's implementations typically create the image using a perspective projection onto a planar image plane. Commonly, azimuthal angles of view between 30° and about 90° are used for this projection, which significantly limits the peripheral viewing area. Using larger angles of view for the perspective projection leads to a steady increase of compression in the image center and stretches at the image borders. These problems of the depiction of large angles of view have been resolved through the use of a non-planar projection, which projects the image onto a non-planar surface. In order to depict this curved surface on the planar display plane, another projection has to be executed. The non-planar projection allows the depiction of objects on the PFD without length distortions for large angles of view. By depicting large angles of view in synthetic vision systems, elements of the peripheral viewing area can be visualized. Aircraft flying abeam the own aircraft or topographic features like mountain valleys located next to the current aircraft position can be presented to the pilot on the primary flight display. Test flights in a research simulator revealed a strong acceptance of the non-planar projection by the study group of professional pilots.

  7. Holographic optical assembly and photopolymerized joining of planar microspheres.

    PubMed

    Shaw, L A; Chizari, S; Panas, R M; Shusteff, M; Spadaccini, C M; Hopkins, J B

    2016-08-01

    The aim of this research is to demonstrate a holographically driven photopolymerization process for joining colloidal particles to create planar microstructures fixed to a substrate, which can be monitored with real-time measurement. Holographic optical tweezers (HOT) have been used to arrange arrays of microparticles prior to this work; here we introduce a new photopolymerization process for rapidly joining simultaneously handled microspheres in a plane. Additionally, we demonstrate a new process control technique for efficiently identifying when particles have been successfully joined by measuring a sufficient reduction in the particles' Brownian motion. This technique and our demonstrated joining approach enable HOT technology to take critical steps toward automated additive fabrication of microstructures. PMID:27472621

  8. Holographic optical assembly and photopolymerized joining of planar microspheres

    DOE PAGES

    Shaw, L. A.; Chizari, S.; Panas, R. M.; Shusteff, M.; Spadaccini, C. M.; Hopkins, J. B.

    2016-07-27

    The aim of this research is to demonstrate a holographically driven photopolymerization process for joining colloidal particles to create planar microstructures fixed to a substrate, which can be monitored with real-time measurement. Holographic optical tweezers (HOT) have been used to arrange arrays of microparticles prior to this work; here we introduce a new photopolymerization process for rapidly joining simultaneously handled microspheres in a plane. Additionally, we demonstrate a new process control technique for efficiently identifying when particles have been successfully joined by measuring a sufficient reduction in the particles’ Brownian motion. Furthermore, this technique and our demonstrated joining approach enablemore » HOT technology to take critical steps toward automated additive fabrication of microstructures.« less

  9. Planar integrated polymer-based optical strain sensor

    NASA Astrophysics Data System (ADS)

    Kelb, Christian; Reithmeier, Eduard; Roth, Bernhard

    2014-03-01

    In this work we present a new type of optical strain sensor that can be manufactured by MEMS typical processes such as photolithography or by hot embossing. Such sensors can be of interest for a range of new applications in structural health monitoring for buildings and aircraft, process control and life science. The approach aims at high sensitivity and dynamic range for 1D and 2D sensing of mechanical strain and can also be extended to quantities such as pressure, force, and humidity. The sensor consists of an array of planar polymer-based multimode waveguides whose output light is guided through a measurement area and focused onto a second array of smaller detection waveguides by using micro-optical elements. Strain induced in the measurement area varies the distance between the two waveguide arrays, thus, changing the coupling efficiency. This, in turn, leads to a variation in output intensity or wavelength which is monitored. We performed extensive optical simulations in order to identify the optimal sensor layout with regard to either resolution or measurement range or both. Since the initial approach relies on manufacturing polymer waveguides with cross sections between 20×20 μm2 and 100×100 μm2 the simulations were carried out using raytracing models. For the readout of the sensor a simple fitting algorithm is proposed.

  10. Ultrafast Optical Beam Deflection in a Planar Waveguide for High Dynamic Range Recording at Picosecond Resolution

    SciTech Connect

    Sarantos, C H; Heebner, J E

    2008-07-02

    We report the latest performance of an ultrafast, all-optical beam deflector based on a prism array imprinted in a planar waveguide. The deflector enables single-shot, high dynamic range optical recording with picosecond resolution.

  11. Three-dimensional display utilizing a diffractive optical element and an active matrix liquid crystal display

    NASA Astrophysics Data System (ADS)

    Nordin, Gregory P.; Jones, Michael W.; Kulick, Jeffrey H.; Lindquist, Robert G.; Kowel, Stephen T.

    1996-12-01

    We describe the design, construction, and performance of the first real-time autostereoscopic 3D display based on the partial pixel 3D display architecture. The primary optical components of the 3D display are an active-matrix liquid crystal display and a diffractive optical element (DOE). The display operates at video frame rates and is driven with a conventional VGA signal. 3D animations with horizontal motion parallax are readily viewable as sets of stereo images. Formation of the virtual viewing slits by diffraction from the partial pixel apertures is experimentally verified. The measured contrast and perceived brightness of the display are excellent, but there are minor flaws in image quality due to secondary images. The source of these images and how they may be eliminated is discussed. The effects of manufacturing-related systematic errors in the DOE are also analyzed.

  12. Photorefractive materials for optical storage and display

    NASA Technical Reports Server (NTRS)

    Shah, R. R.; Kim, D. M.; Rabson, T. A.; Tittel, F. K.

    1976-01-01

    Real-time data storage and processing using optical techniques have been considered in recent years. Of particular interest are photosensitive electro-optic crystals which permit volume storage in the form of phase holograms, by means of a charge transfer process. A survey of the state of the art of such holographic memories is presented. The physical mechanism responsible for the formation of phase holograms in such crystals is discussed. Attention is focused on various aspects of materials characterization, development and utilization. Experimental reversible holographic read-write memory systems with fast random access and high storage capacity employing this new class of photosensitive materials have already been demonstrated.

  13. Optical properties of planar nematic liquid crystals samples which are parallel oriented by nanofibers

    NASA Astrophysics Data System (ADS)

    Yusuf, Yusril; Kusumasari, Ervanggis Minggar; Ula, Nur Mufidatul; Jahidah, Khannah; Triyana, Kuwat; Sosiati, Harini; Harsojo

    2016-04-01

    Optical properties of two nematic liquid crystals, i.e., 4-methoxybenzylidene-4-butylaniline (MBBA) and 4-cyano-4'-pentylbiphenyl (5 CB) which are parallel oriented by nanofibers has been successfully performed. Planar samples of liquid crystals were made using polyvinyl alcohol (PVA) nanofiber from electrospinning process. Electrospinning method was modified using copper (Cu) as gap collector. These planar samples area are 15 mm x 25 mm. Optical characteristic of these samples were studied by using optical polarizing microscope. The optical intensity changes by a rotationof crossed polarizers is observed. The sinusoidal intensity change was observedin these samples as such as in the planar sample prepared by the rubbing method.

  14. Electro-optics display research, test, and evaluation laboratory program

    NASA Astrophysics Data System (ADS)

    Karim, Mohammad A.; Moon, Donald L.

    1993-06-01

    The goal of the research effort is to analyze and develop a model to characterize overall electro-optical display systems of particular interest to U.S. Army Center for Night Vision and Electro-Optics at Ft. Belvoir, Virginia. The main thrust of the research reported herein is to implement accepted standards for evaluating displays, take an active role in forming new measurement standards, and provide unbiased evaluation of displays in use or contemplated for military missions. Measurement parameters include display brightness, contrast, resolution, chromatic range, frequency response, angular field-of-view, reliability, and sensitivity to environment. Another important facet of this research is to determine image dynamics involving the response time between sensor input and the reaction of the observer for influencing what display improvements, such as variable acuity displays, color, contrast, or brightness lead to significant improvement in performance.

  15. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C; Alivisatos, A. Paul

    2014-02-11

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  16. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlam, Michael C; Alivisatos, A. Paul

    2014-03-25

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  17. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2010-04-13

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  18. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, Paul A.

    2015-11-10

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  19. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    SciTech Connect

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2015-06-23

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  20. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2011-09-27

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  1. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    SciTech Connect

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2005-03-08

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  2. Optical projection display systems integrated with three-color-mixing waveguides and grating-light-valve devices.

    PubMed

    Kuo, Ju-Nan; Wu, Hui-Wen; Lee, Gwo-Bin

    2006-07-24

    An integrated optical projection display technique utilizing three-color-mixing waveguides and grating-light-valve devices is demonstrated. This new projection display system comprises an optical lens, a microscanner, a grating light valve, and a 3x1 planar waveguide device. The planar waveguide device is fabricated using a SU-8 negative photoresist process, which is suitable material for rapid prototyping of integrated optical circuits. It works as a three-color-mixer and is successfully used for color image generation. The intensity of color for each pixel in the display picture is tuned by groups of movable ribbons comprising a grating light valve and image generating diffraction gratings. This study also demonstrates a surface-micromachined optical scanner using four stress-actuated polysilicon plates to raise a horizontal mirror. The electrostatically driven mirror can be used for scanning projection display applications. Experimental data show that the optical scanner has a mirror scanning angle up to +/-15(o) using an operating voltage of 25 V. A sub-millisecond switching time (<900 mus) and an optical insertion loss of 0.85 dB is achieved for multi-mode waveguides. The development of the proposed integrated optical system could be promising for an image generation system.

  3. Flat or curved thin optical display panel

    DOEpatents

    Veligdan, J.T.

    1995-01-10

    An optical panel includes a plurality of waveguides stacked together, with each waveguide having a first end and an opposite second end. The first ends collectively define a first face, and the second ends collectively define a second face of the panel. The second face is disposed at an acute face angle relative to the waveguides to provide a panel which is relatively thin compared to the height of the second face. In an exemplary embodiment for use in a projection TV, the first face is substantially smaller in height than the second face and receives a TV image, with the second face defining a screen for viewing the image enlarged. 7 figures.

  4. Orthogonal and secondary concentration in planar micro-optic solar collectors.

    PubMed

    Karp, Jason H; Tremblay, Eric J; Hallas, Justin M; Ford, Joseph E

    2011-07-01

    Planar micro-optic concentrators are passive optical structures which combine a lens array with faceted microstructures to couple sunlight into a planar slab waveguide. Guided rays propagate within the slab to edge-mounted photovoltaic cells. This paper provides analysis and preliminary experiments describing modifications and additions to the geometry which increase concentration ratios along both the vertical and orthogonal waveguide axes. We present simulated results for a 900x concentrator with 85% optical efficiency, measured results for small-scale experimental systems and briefly discuss implementations using low-cost fabrication on continuous planar waveguides.

  5. Midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. IV. Optical displays.

    PubMed

    Sassen, Kenneth; Zhu, Jiang; Benson, Sally

    2003-01-20

    In this fourth of a series of papers that describe long-term cloud research at the Facility for Atmospheric Remote Sensing at Salt Lake City, Utah, an approximately 10-year record of polarization lidar and photographic observations is analyzed to characterize the occurrence of optical displays in our local varieties of midlatitude cirrus clouds. The frequencies of occurrence of various types of halo, arc, and corona displays are evaluated according to their appearance and longevity over nominal 1-h observation periods and to the meteorological source of the cirrus. We find that complex halo-arc displays are rare at our locale and that even the so-called common 22 degree halo occurs infrequently as a complete long-lived ring. For example, only approximately 6% of the 1561-h daytime cirrus periods have bright and prolonged 22 degree halos, although a total of 37.3% have some indications of this halo, even if they are brief and fragmentary. Other fairly frequent features are the 22 degree upper tangent arc (8.6%), 22 degree parhelia (8.5%), and solar corona (7.2%). Of the optical displays observed, 83.6% are refraction based, only 1.9% are due to reflection phenomena, and a surprising 15.4% are caused by diffraction. Complex halo-arc displays are disproportionally associated with cirrus formed in tropical or subtropical airflow and also contain more horizontally oriented planar ice crystals. Lidar linear depolarization ratios from a subset of vivid displays show significant differences between halo- and the corona-producing cirrus, reflecting the effects of particle shape. Halos are associated with relatively warm cirrus that contain randomly and horizontally oriented planar ice crystals, whereas the colder corona cirrus produce much stronger depolarization from crystals too small to be uniformly oriented. Comparisons are made with available information from other locales, and we attempt to explain the geographical differences in terms of basic cirrus cloud processes.

  6. Flat or curved thin optical display panel

    DOEpatents

    Veligdan, James T.

    1995-01-10

    An optical panel 10 includes a plurality of waveguides 12 stacked together, with each waveguide 12 having a first end 12a and an opposite second end 12b. The first ends 12a collectively define a first face 16, and the second ends 12b collectively define a second face 18 of the panel 10. The second face 18 is disposed at an acute face angle relative to the waveguides 12 to provide a panel 10 which is relatively thin compared to the height of the second face. In an exemplary embodiment for use in a projection TV, the first face 16 is substantially smaller in height than the second face 18 and receives a TV image, with the second face 18 defining a screen for viewing the image enlarged.

  7. [Optical Design of Miniature Infrared Gratings Spectrometer Based on Planar Waveguide].

    PubMed

    Li, Yang-yu; Fang, Yong-hua; Li, Da-cheng; Liu, Yang

    2015-03-01

    In order to miniaturize an infrared spectrometer, we analyze the current optical design of miniature spectrometers and propose a method for designing a miniature infrared gratings spectrometer based on planar waveguide. Common miniature spectrometer uses miniature optical elements to reduce the size of system, which also shrinks the effective aperture. So the performance of spectrometer has dropped. Miniaturization principle of planar waveguide spectrometer is different from the principle of common miniature spectrometer. In planar waveguide spectrometer, the propagation of light is limited in a thin planar waveguide, which looks like the whole optical system is squashed flat. In the direction parallel to the planar waveguide, the light through the slit is collimated, dispersed and focused. And a spectral image is formed in the detector plane. This propagation of light is similar to the light in common miniature spectrometer. In the direction perpendicular to the planar waveguide, light is multiple reflected by the upper and lower surfaces of the planar waveguide and propagates in the waveguide. So the size of corresponding optical element could be very small in the vertical direction, which can reduce the size of the optical system. And the performance of the spectrometer is still good. The design method of the planar waveguide spectrometer can be separated into two parts, Czerny-Turner structure design and planar waveguide structure design. First, by using aberration theory an aberration-corrected (spherical aberration, coma, focal curve) Czerny-Turner structure is obtained. The operation wavelength range and spectral resolution are also fixed. Then, by using geometrical optics theory a planar waveguide structure is designed for reducing the system size and correcting the astigmatism. The planar waveguide structure includes a planar waveguide and two cylindrical lenses. Finally, they are modeled together in optical design software and are optimized as a whole. An

  8. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics.

    PubMed

    Cheng, Dewen; Wang, Yongtian; Xu, Chen; Song, Weitao; Jin, Guofan

    2014-08-25

    Small thickness and light weight are two important requirements for a see-through near-eye display which are achieved in this paper by using two advanced technologies: geometrical waveguide and freeform optics. A major problem associated with the geometrical waveguide is the stray light which can severely degrade the display quality. The causes and solutions to this problem are thoroughly studied. A mathematical model of the waveguide is established and a non-sequential ray tracing algorithm is developed, which enable us to carefully examine the stray light of the planar waveguide and explore a global searching method to find an optimum design with the least amount of stray light. A projection optics using freeform surfaces on a wedge shaped prism is also designed. The near-eye display integrating the projection optics and the waveguide has a field of view of 28°, an exit pupil diameter of 9.6mm and an exit pupil distance of 20mm. In our final design, the proportion of the stray light energy over the image output energy of the waveguide is reduced to 2%, the modulation transfer function values across the entire field of the eyepiece are above 0.5 at 30 line pairs/mm (lps/mm). A proof-of-concept prototype of the proposed geometrical waveguide near-eye display is developed and demonstrated.

  9. Optically Addressed Spatial Light Modulators for 3d Display

    NASA Astrophysics Data System (ADS)

    Collings, N.

    An optically addressed spatial light modulator (OASLM) records the image on a write beam and transfers it to a read beam. Some example application areas are: image transduction; optical correlation; adaptive optics; and optical neural networks. Current interest in OASLMs has been generated by the work of Qinetiq on 3D display. This work is based on Active tiling, where an image can be recorded in one part of the device and is memorised, whilst the remainder of the device is updated with images. This paper will explain this system and survey the technological alternatives for this application.

  10. Electro-optical switching and memory display device

    DOEpatents

    Skotheim, T.A.; O'Grady, W.E.; Linkous, C.A.

    1983-12-29

    An electro-optical display device having a housing with wall means including one transparent wall and at least one other wall. Counter electrodes are positioned on the transparent wall and display electrodes are positioned on the other wall with both electrodes in electrically conductive relationship with an electrolyte. Circuits means are connected to the display and counter electrodes to apply different predetermined control potentials between them. The display electrodes are covered with a thin electrically conductive polymer film that is characterized according to the invention by having embedded in it pigment molecules as counter ions. The display device is operable to be switched to a plurality of different visual color states at an exceptionally rapid switching rate while each of the color states is characterized by possessing good color intensity and definition.

  11. Electro-optical switching and memory display device

    DOEpatents

    Skotheim, Terje A.; O'Grady, William E.; Linkous, Clovis A.

    1986-01-01

    An electro-optical display device having a housing with wall means including one transparent wall and at least one other wall. Counter electrodes are positioned on the transparent wall and display electrodes are positioned on the other wall with both electrodes in electrically conductive relationship with an electrolyte. Circuit means are connected to the display and counter electrodes to apply different predetermined control potentials between them. The display electrodes are covered with a thin electrically conductive polymer film that is characterized according to the invention by having embedded in it pigment molecules as counter ions. The display device is operable to be switched to a plurality of different visual color states at an exceptionally rapid switching rate while each of the color states is characterized by possessing good color intensity and definition.

  12. Diffractive optics for compact flat panel displays. Final report

    SciTech Connect

    Sweeney, D.; DeLong, K.

    1997-04-29

    Three years ago LLNL developed a practical method to dramatically reduce the chromatic aberration in single element diffractive imaging lenses. High efficiency, achromatic imaging lenses have been fabricated for human vision correction. This LDRD supported research in applying our new methods to develop a unique, diffraction-based optical interface with solid state, microelectronic imaging devices. Advances in microelectronics have led to smaller, more efficient components for optical systems. There have, however, been no equivalent advances in the imaging optics associated with these devices. The goal of this project was to replace the bulky, refractive optics in typical head-mounted displays with micro-thin diffractive optics to directly image flat-panel displays into the eye. To visualize the system think of the lenses of someone`s eyeglasses becoming flat-panel displays. To realize this embodiment, we needed to solve the problems of large chromatic aberrations and low efficiency that are associated with diffraction. We have developed a graceful tradeoff between chromatic aberrations and the diffractive optic thickness. It turns out that by doubling the thickness of a micro-thin diffractive lens we obtain nearly a two-times improvement in chromatic performance. Since the human eye will tolerate one diopter of chromatic aberration, we are able to achieve an achromatic image with a diffractive lens that is only 20 microns thick, versus 3 mm thickness for the comparable refractive lens. Molds for the diffractive lenses are diamond turned with sub-micron accuracy; the final lenses are cast from these molds using various polymers. We thus retain both the micro- thin nature of the diffractive optics and the achromatic image quality of refractive optics. During the first year of funding we successfully extended our earlier technology from 1 cm diameter optics required for vision applications up to the 5 cm diameter optics required for this application. 3 refs., 6 figs.

  13. Optimization of the polyplanar optical display electronics for a monochrome B-52 display

    SciTech Connect

    DeSanto, L.

    1998-04-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten-inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a new 200 mW green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments (TI). In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMD{trademark}) chip is operated remotely from the Texas Instruments circuit board. In order to achieve increased brightness a monochrome digitizing interface was investigated. The operation of the DMD{trademark} divorced from the light engine and the interfacing of the DMD{trademark} board with the RS-170 video format specific to the B-52 aircraft will be discussed, including the increased brightness of the monochrome digitizing interface. A brief description of the electronics required to drive the new 200 mW laser is also presented.

  14. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths

    PubMed Central

    Yuan, Guanghui; Rogers, Edward T. F.; Roy, Tapashree; Adamo, Giorgio; Shen, Zexiang; Zheludev, Nikolay I.

    2014-01-01

    Planar optical lenses are fundamental elements of miniaturized photonic devices. However, conventional planar optical lenses are constrained by the diffraction limit in the optical far-field due to the band-limited wavevectors supported by free-space and loss of high-spatial-frequency evanescent components. As inspired by Einstein's radiation ‘needle stick', electromagnetic energy can be delivered into an arbitrarily small solid angle. Such sub-diffraction optical needles have been numerically investigated using diffractive optical elements (DOEs) together with specially polarized optical beams, but experimental demonstration is extremely difficult due to the bulky size of DOEs and the required alignment precision. Planar super-oscillatory lenses (SOLs) were proposed to overcome these constraints and demonstrated that sub-diffraction focal spots can actually be formed without any evanescent waves, making far-field, label-free super-resolution imaging possible. Here we extend the super-oscillation concept into the vectorial-field regime to work with circularly polarized light, and experimentally demonstrate, for the first time, a circularly polarized optical needle with sub-diffraction transverse spot size (0.45λ) and axial long depth of focus (DOF) of 15λ using a planar SOL at a violet wavelength of 405 nm. This sub-diffraction circularly polarized optical needle has potential applications in circular dichroism spectroscopy, super-resolution imaging, high-density optical storage, heat-assisted magnetic recording, nano-manufacturing and nano-metrology. PMID:25208611

  15. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths.

    PubMed

    Yuan, Guanghui; Rogers, Edward T F; Roy, Tapashree; Adamo, Giorgio; Shen, Zexiang; Zheludev, Nikolay I

    2014-01-01

    Planar optical lenses are fundamental elements of miniaturized photonic devices. However, conventional planar optical lenses are constrained by the diffraction limit in the optical far-field due to the band-limited wavevectors supported by free-space and loss of high-spatial-frequency evanescent components. As inspired by Einstein's radiation 'needle stick', electromagnetic energy can be delivered into an arbitrarily small solid angle. Such sub-diffraction optical needles have been numerically investigated using diffractive optical elements (DOEs) together with specially polarized optical beams, but experimental demonstration is extremely difficult due to the bulky size of DOEs and the required alignment precision. Planar super-oscillatory lenses (SOLs) were proposed to overcome these constraints and demonstrated that sub-diffraction focal spots can actually be formed without any evanescent waves, making far-field, label-free super-resolution imaging possible. Here we extend the super-oscillation concept into the vectorial-field regime to work with circularly polarized light, and experimentally demonstrate, for the first time, a circularly polarized optical needle with sub-diffraction transverse spot size (0.45λ) and axial long depth of focus (DOF) of 15λ using a planar SOL at a violet wavelength of 405 nm. This sub-diffraction circularly polarized optical needle has potential applications in circular dichroism spectroscopy, super-resolution imaging, high-density optical storage, heat-assisted magnetic recording, nano-manufacturing and nano-metrology.

  16. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths

    NASA Astrophysics Data System (ADS)

    Yuan, Guanghui; Rogers, Edward T. F.; Roy, Tapashree; Adamo, Giorgio; Shen, Zexiang; Zheludev, Nikolay I.

    2014-09-01

    Planar optical lenses are fundamental elements of miniaturized photonic devices. However, conventional planar optical lenses are constrained by the diffraction limit in the optical far-field due to the band-limited wavevectors supported by free-space and loss of high-spatial-frequency evanescent components. As inspired by Einstein's radiation `needle stick', electromagnetic energy can be delivered into an arbitrarily small solid angle. Such sub-diffraction optical needles have been numerically investigated using diffractive optical elements (DOEs) together with specially polarized optical beams, but experimental demonstration is extremely difficult due to the bulky size of DOEs and the required alignment precision. Planar super-oscillatory lenses (SOLs) were proposed to overcome these constraints and demonstrated that sub-diffraction focal spots can actually be formed without any evanescent waves, making far-field, label-free super-resolution imaging possible. Here we extend the super-oscillation concept into the vectorial-field regime to work with circularly polarized light, and experimentally demonstrate, for the first time, a circularly polarized optical needle with sub-diffraction transverse spot size (0.45λ) and axial long depth of focus (DOF) of 15λ using a planar SOL at a violet wavelength of 405 nm. This sub-diffraction circularly polarized optical needle has potential applications in circular dichroism spectroscopy, super-resolution imaging, high-density optical storage, heat-assisted magnetic recording, nano-manufacturing and nano-metrology.

  17. Touchscreen everywhere: on transferring a normal planar surface to a touch-sensitive display.

    PubMed

    Dai, Jingwen; Chung, Chi-Kit Ronald

    2014-08-01

    We address how a human-computer interface with small device size, large display, and touch-input facility can be made possible by a mere projector and camera. The realization is through the use of a properly embedded structured light sensing scheme that enables a regular light-colored table surface to serve the dual roles of both a projection screen and a touch-sensitive display surface. A random binary pattern is employed to code structured light in pixel accuracy, which is embedded into the regular projection display in a way that the user perceives only regular display but not the structured pattern hidden in the display. With the projection display on the table surface being imaged by a camera, the observed image data, plus the known projection content, can work together to probe the 3-D workspace immediately above the table surface, like deciding if there is a finger present and if the finger touches the table surface, and if so, at what position on the table surface the contact is made. All the decisions hinge upon a careful calibration of the projector-camera-table surface system, intelligent segmentation of the hand in the image data, and exploitation of the homography mapping existing between the projector's display panel and the camera's image plane. Extensive experimentation including evaluation of the display quality, hand segmentation accuracy, touch detection accuracy, trajectory tracking accuracy, multitouch capability and system efficiency are shown to illustrate the feasibility of the proposed realization.

  18. Planarization coating for polyimide substrates used in roll-to-roll fabrication of active matrix backplanes for flexible displays

    NASA Astrophysics Data System (ADS)

    Almanza-Workman, A. Marcia; Jeans, Albert; Braymen, Steve; Elder, Richard E.; Garcia, Robert A.; de la Fuente Vornbrock, Alejandro; Hauschildt, Jason; Holland, Edward; Jackson, Warren; Jam, Mehrban; Jeffrey, Frank; Junge, Kelly; Kim, Han-Jun; Kwon, Ohseung; Larson, Don; Luo, Hao; Maltabes, John; Mei, Ping; Perlov, Craig; Smith, Mark; Stieler, Dan; Taussig, Carl P.; Trovinger, Steve; Zhao, Lihua

    2012-03-01

    Good surface quality of plastic substrates is essential to reduce pixel defects during roll-to-roll fabrication of flexible display active matrix backplanes. Standard polyimide substrates have a high density of "bumps" from fillers and belt marks and other defects from dust and surface scratching. Some of these defects could be the source of shunts in dielectrics. The gate dielectric must prevent shorts between the source/drain and the gate in the transistors, resist shorts in the hold capacitor and stop shorts in the data/gate line crossovers in active matrix backplanes fabricated by self-aligned imprint lithography (SAIL) roll-to-roll processes. Otherwise data and gate lines will become shorted creating line or pixel defects. In this paper, we discuss the development of a proprietary UV curable planarization material that can be coated by roll-to-roll processes. This material was engineered to have low shrinkage, excellent adhesion to polyimide, high dry etch resistance, and great chemical and thermal stability. Results from PECVD deposition of an amorphous silicon stack on the planarized polyimide and compatibility with roll-to-roll processes to fabricate active matrix backplanes are also discussed. The effect of the planarization on defects in the stack, shunts in the dielectric and curvature of finished arrays will also be described.

  19. Light coupling between LD and optical fiber using high NA planar microlens

    NASA Astrophysics Data System (ADS)

    Oikawa, M.; Nemoto, H.; Hamanaka, K.; Kishimoto, T.

    1990-05-01

    Light coupling between a laser diode (LD) and an optical fiber using the planar microlens is described. Two classes of high numerical aperture (NA) planar microlens are prepared in order to accept light power from the LD effectively. The first is the coupled planar microlens, while the second is the planar microlens with a swelled structure. The minimum coupling loss between LD and single mode fiber was -5.3 dB using the planar microlens with swelled structure, including 0.71 dB of Fresnel loss. With the help of a swelled structure prepared by an ion exchange process, the numerical aperture is enlarged up to 0.57. The light coupling characteristics of microlenses are presented.

  20. Super multi-view three-dimensional display through spatial-spectrum time-multiplexing of planar aligned OLED microdisplays.

    PubMed

    Teng, Dongdong; Liu, Lilin; Wang, Biao

    2014-12-15

    Existing super multi-view (SMV) technologies depend on ultra-high resolution two-dimensional (2D) display panel or large number of 2D display panels to obtain dense sub-viewing-zones for constructing more natural three-dimensional (3D) display by pure spatial-multiplexing. Through gating the spatial-spectrum of each OLED microdisplay, the present work proposes a new SMV technology combining time- and spatial-multiplexing based on planar-aligned OLED microdisplays. The inherent light emission characteristics of OLED, i.e. large divergence angle, guarantees a homogeneous light intensity distribution on the spectrum plane, which is a necessary condition for successful time multiplexing. The developed system bears with low requirements on the number of 2D display panels. The factors influencing the lateral display resolution limit are discussed and the optimum value is deduced. Experimentally, a prototype system with 60 sub-viewing-zones is demonstrated by 12 OLED microdisplays. The horizontal interval between adjacent sub-viewing-zones is 1.6mm.

  1. A planar chiral meta-surface for optical vortex generation and focusing.

    PubMed

    Ma, Xiaoliang; Pu, Mingbo; Li, Xiong; Huang, Cheng; Wang, Yanqin; Pan, Wenbo; Zhao, Bo; Cui, Jianhua; Wang, Changtao; Zhao, ZeYu; Luo, Xiangang

    2015-01-01

    Data capacity is rapidly reaching its limit in modern optical communications. Optical vortex has been explored to enhance the data capacity for its extra degree of freedom of angular momentum. In traditional means, optical vortices are generated using space light modulators or spiral phase plates, which would sharply decrease the integration of optical communication systems. Here we experimentally demonstrate a planar chiral antenna array to produce optical vortex from a circularly polarized light. Furthermore, the antenna array has the ability to focus the incident light into point, which greatly increases the power intensity of the generated optical vortex. This chiral antenna array may have potential application in highly integrated optical communication systems.

  2. Optical characterization and measurements of autostereoscopic 3D displays

    NASA Astrophysics Data System (ADS)

    Salmimaa, Marja; Järvenpää, Toni

    2008-04-01

    3D or autostereoscopic display technologies offer attractive solutions for enriching the multimedia experience. However, both characterization and comparison of 3D displays have been challenging when the definitions for the consistent measurement methods have been lacking and displays with similar specifications may appear quite different. Earlier we have investigated how the optical properties of autostereoscopic (3D) displays can be objectively measured and what are the main characteristics defining the perceived image quality. In this paper the discussion is extended to cover the viewing freedom (VF) and the definition for the optimum viewing distance (OVD) is elaborated. VF is the volume inside which the eyes have to be to see an acceptable 3D image. Characteristics limiting the VF space are proposed to be 3D crosstalk, luminance difference and color difference. Since the 3D crosstalk can be presumed to be dominating the quality of the end user experience and in our approach is forming the basis for the calculations of the other optical parameters, the reliability of the 3D crosstalk measurements is investigated. Furthermore the effect on the derived VF definition is evaluated. We have performed comparison 3D crosstalk measurements with different measurement device apertures and the effect of different measurement geometry on the results on actual 3D displays is reported.

  3. Fourier holographic display for augmented reality using holographic optical element

    NASA Astrophysics Data System (ADS)

    Li, Gang; Lee, Dukho; Jeong, Youngmo; Lee, Byoungho

    2016-03-01

    A method for realizing a three-dimensional see-through augmented reality in Fourier holographic display is proposed. A holographic optical element (HOE) with the function of Fourier lens is adopted in the system. The Fourier hologram configuration causes the real scene located behind the lens to be distorted. In the proposed method, since the HOE is transparent and it functions as the lens just for Bragg matched condition, there is not any distortion when people observe the real scene through the lens HOE (LHOE). Furthermore, two optical characteristics of the recording material are measured for confirming the feasibility of using LHOE in the proposed see-through augmented reality holographic display. The results are verified experimentally.

  4. Trigonal Planar [HgSe3](4-) Unit: A New Kind of Basic Functional Group in IR Nonlinear Optical Materials with Large Susceptibility and Physicochemical Stability.

    PubMed

    Li, Chao; Yin, Wenlong; Gong, Pifu; Li, Xiaoshuang; Zhou, Molin; Mar, Arthur; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng; Chen, Chuangtian

    2016-05-18

    A new mercury selenide BaHgSe2 was synthesized. This air-stable compound displays a large nonlinear optical (NLO) response and melts congruently. The structure contains chains of corner-sharing [HgSe3](4-) anions in the form of trigonal planar units, which may serve as a new kind of basic functional group in IR NLO materials to confer large NLO susceptibilities and physicochemical stability. Such trigonal planar units may inspire a path to finding new classes of IR NLO materials of practical utility that are totally different from traditional chalcopyrite materials.

  5. Trigonal Planar [HgSe3](4-) Unit: A New Kind of Basic Functional Group in IR Nonlinear Optical Materials with Large Susceptibility and Physicochemical Stability.

    PubMed

    Li, Chao; Yin, Wenlong; Gong, Pifu; Li, Xiaoshuang; Zhou, Molin; Mar, Arthur; Lin, Zheshuai; Yao, Jiyong; Wu, Yicheng; Chen, Chuangtian

    2016-05-18

    A new mercury selenide BaHgSe2 was synthesized. This air-stable compound displays a large nonlinear optical (NLO) response and melts congruently. The structure contains chains of corner-sharing [HgSe3](4-) anions in the form of trigonal planar units, which may serve as a new kind of basic functional group in IR NLO materials to confer large NLO susceptibilities and physicochemical stability. Such trigonal planar units may inspire a path to finding new classes of IR NLO materials of practical utility that are totally different from traditional chalcopyrite materials. PMID:27140482

  6. Repetitive formation of optically-observable planar lipid bilayers by rotating chambers on a microaperture.

    PubMed

    Tomoike, Fumiaki; Tonooka, Taishi; Osaki, Toshihisa; Takeuchi, Shoji

    2016-07-01

    Optical observation of a planar lipid bilayer is an effective method of lipid bilayer characterization. However, previous methods for optically observable lipid bilayer formation are unsuitable for repetitive formation of lipid bilayers. In this paper, we propose a system that facilitates repetitive formation of horizontal lipid bilayers via mechanical rotation of the rotating part. We show that multiple bilayers can be observed within a short period, and that the electrical and optical characteristics of a bilayer can be analyzed simultaneously. PMID:27256329

  7. Planar optical waveguides fabricated by Ag+/K+-Na+ ion exchange in soda lime glass

    NASA Astrophysics Data System (ADS)

    Marzuki, Ahmad; Gregorius, Seran Daton; Widhianingsih, Ika; Lestari, Siti; Suryawan, Joko

    2015-12-01

    This paper reports the optical properties of the optical planar waveguides in a soda lime glass fabricated by ion exchange. Planar waveguide fabrication was carried out by immersing the soda lime glass in molten 100 % AgNO3 bath for different duration (ranging from 15 minutes to 735 minutes) and at temperature of 280°C. The results show that the surface refractive index values of the ion exchanged glasses are independent of both the ion exchange duration and temperature. The number of modes and the effective diffusion depth, however, increase with increasing the duration of ion exchange process.

  8. The hybrid photonic planar integrated receiver with a polymer optical waveguide

    NASA Astrophysics Data System (ADS)

    Busek, Karel; Jerábek, Vitezslav; Armas Arciniega, Julio; Prajzler, Václav

    2008-11-01

    This article describes design of the photonic receiver composed of the system polymer planar waveguides, InGaAs p-i-n photodiode and integrated HBT amplifier on a low loss composite substrate. The photonic receiver was the main part of the hybrid integrated microwave optoelectronic transceiver TRx (transciever TRx) for the optical networks PON (passive optical networks) with FTTH (fiber-to-the-home) topology. In this article are presented the research results of threedimensional field between output facet of a optical waveguide and p-i-n photodiode. In terms of our research, there was optimized the optical coupling among the facet waveguide and pi-n photodiode and the electrical coupling among p-i-n photodiode and input of HBT amplifier. The hybrid planar lightwave circuit (PLC) of the transceiver TRx will be composed from a two parts - polymer optical waveguide including VHGT filter section and a optoelectronic microwave section.

  9. Design methodology for micro-discrete planar optics with minimum illumination loss for an extended source.

    PubMed

    Shim, Jongmyeong; Park, Changsu; Lee, Jinhyung; Kang, Shinill

    2016-08-01

    Recently, studies have examined techniques for modeling the light distribution of light-emitting diodes (LEDs) for various applications owing to their low power consumption, longevity, and light weight. The energy mapping technique, a design method that matches the energy distributions of an LED light source and target area, has been the focus of active research because of its design efficiency and accuracy. However, these studies have not considered the effects of the emitting area of the LED source. Therefore, there are limitations to the design accuracy for small, high-power applications with a short distance between the light source and optical system. A design method for compensating for the light distribution of an extended source after the initial optics design based on a point source was proposed to overcome such limits, but its time-consuming process and limited design accuracy with multiple iterations raised the need for a new design method that considers an extended source in the initial design stage. This study proposed a method for designing discrete planar optics that controls the light distribution and minimizes the optical loss with an extended source and verified the proposed method experimentally. First, the extended source was modeled theoretically, and a design method for discrete planar optics with the optimum groove angle through energy mapping was proposed. To verify the design method, design for the discrete planar optics was achieved for applications in illumination for LED flash. In addition, discrete planar optics for LED illuminance were designed and fabricated to create a uniform illuminance distribution. Optical characterization of these structures showed that the design was optimal; i.e., we plotted the optical losses as a function of the groove angle, and found a clear minimum. Simulations and measurements showed that an efficient optical design was achieved for an extended source.

  10. Design methodology for micro-discrete planar optics with minimum illumination loss for an extended source.

    PubMed

    Shim, Jongmyeong; Park, Changsu; Lee, Jinhyung; Kang, Shinill

    2016-08-01

    Recently, studies have examined techniques for modeling the light distribution of light-emitting diodes (LEDs) for various applications owing to their low power consumption, longevity, and light weight. The energy mapping technique, a design method that matches the energy distributions of an LED light source and target area, has been the focus of active research because of its design efficiency and accuracy. However, these studies have not considered the effects of the emitting area of the LED source. Therefore, there are limitations to the design accuracy for small, high-power applications with a short distance between the light source and optical system. A design method for compensating for the light distribution of an extended source after the initial optics design based on a point source was proposed to overcome such limits, but its time-consuming process and limited design accuracy with multiple iterations raised the need for a new design method that considers an extended source in the initial design stage. This study proposed a method for designing discrete planar optics that controls the light distribution and minimizes the optical loss with an extended source and verified the proposed method experimentally. First, the extended source was modeled theoretically, and a design method for discrete planar optics with the optimum groove angle through energy mapping was proposed. To verify the design method, design for the discrete planar optics was achieved for applications in illumination for LED flash. In addition, discrete planar optics for LED illuminance were designed and fabricated to create a uniform illuminance distribution. Optical characterization of these structures showed that the design was optimal; i.e., we plotted the optical losses as a function of the groove angle, and found a clear minimum. Simulations and measurements showed that an efficient optical design was achieved for an extended source. PMID:27505823

  11. Micro-Optic Color Separation Technology for Efficient Projection Displays

    NASA Technical Reports Server (NTRS)

    Gunning, W. J.; Boehmer, E.

    1997-01-01

    Phase 1 of this project focused on development of an overall optical concept which incorporated a single liquid crystal spatial light modulator. The system achieved full color by utilizing an echelon grating, which diffracted the incident light into three orders with different color spectra, in combination with a microlens array, which spatially separated RGB bands and directed the light of the appropriate wavelength to the appropriate color dot. Preliminary echelon grating designs were provided by MIT/LL and reviewed by Rockwell. Additional Rockwell activities included the Identification of microlens designs, light sources (ILC), and projection optics to fulfill the overall design requirements. An Internal subcontract was established with Rockwell's Collins Avionics and Communications Division (CACD) which specified the liquid crystal SLM (Sharp Model No. LQ 46EO2) and built the projection display baseline projector. Full Color projected video images were produced and shown at the 1995 HDS meeting in Washington. Analysis of the luminance performance of the projector and detailed parameter trade studies helped define the dependence of overall display efficiency on lamp collimation, and indicated that a lamp with very small arc dimension is required for the optical concept to be viable.

  12. Display system employing acousto-optic tunable filter

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor)

    1995-01-01

    An acousto-optic tunable filter (AOTF) is employed to generate a display by driving the AOTF with a RF electrical signal comprising modulated red, green, and blue video scan line signals and scanning the AOTF with a linearly polarized, pulsed light beam, resulting in encoding of color video columns (scan lines) of an input video image into vertical columns of the AOTF output beam. The AOTF is illuminated periodically as each acoustically-encoded scan line fills the cell aperture of the AOTF. A polarizing beam splitter removes the unused first order beam component of the AOTF output and, if desired, overlays a real world scene on the output plane. Resolutions as high as 30,000 lines are possible, providing holographic display capability.

  13. Display system employing acousto-optic tunable filter

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor)

    1993-01-01

    An acousto-optic tunable filter (AOTF) is employed to generate a display by driving the AOTF with a RF electrical signal comprising modulated red, green, and blue video scan line signals and scanning the AOTF with a linearly polarized, pulsed light beam, resulting in encoding of color video columns (scan lines) of an input video image into vertical columns of the AOTF output beam. The AOTF is illuminated periodically as each acoustically-encoded scan line fills the cell aperture of the AOTF. A polarizing beam splitter removes the unused first order beam component of the AOTF output and, if desired, overlays a real world scene on the output plane. Resolutions as high as 30,000 lines are possible, providing holographic display capability.

  14. Optical parameters of TN display with dichroic dye

    NASA Astrophysics Data System (ADS)

    Olifierczuk, Marek; Zielinski, Jerzy; Perkowski, Pawel

    2000-05-01

    The present work contain the studies on optical parameters (contrast ratio, viewing angle, birefringence and brightness) of twisted nematic display with black dichroic dye which is designed for an application in large-area information and advertising systems. The numerical optimization of display with a dye has been done. The absorption characteristic of the dye has been obtained. Birefringence of doped mixtures (Delta) n has been measured. The contrast ratio of doped mixtures has been measured in wide temperature range from -25 degree(s)C to +70 degree(s)C. The angle characteristics of contrast ratio for +20 degree(s)C have been obtained. In the work the detailed results describing the effect of a dye on temperature dependence of birefringence and contrast ratio, moreover, the effect of dye on the viewing angle for the first and second transmission minimum will be presented. Additionally, the dielectric characteristics of different mixtures will be shown.

  15. Ray-based optical design tool for freeform optics: coma full-field display.

    PubMed

    Bauer, Aaron; Rolland, Jannick P; Thompson, Kevin P

    2016-01-11

    The field of optical fabrication has progressed to a point where manufacturing optical quality freeform surfaces is no longer prohibitive. However, to stimulate the development of freeform systems, optical designers must be provided with the necessary tools. Full-field displays are an example of such a tool. Identifying the field dependence of the dominant aberrations of a freeform system is critical for a controlled optimization and with the help of full-field displays, this can be accomplished. Of specific interest is coma, an often system-limiting aberration and an aberration that has recently been directly addressed with freeform surfaces. In this research, we utilize nodal aberration theory to develop a ray-based method to generate a coma full-field display that circumvents wavefront fitting errors that can affect Zernike polynomial-based full-field displays for highly aberrated freeform starting designs.

  16. Antimirror Reflection of a Bounded Planar Optical Waveguide: the String Model

    NASA Astrophysics Data System (ADS)

    Shapochkin, P. Yu.; Kapitonov, Yu. V.; Kozlov, G. G.

    2016-03-01

    The effect of antimirror reflection from a bounded planar optical waveguide is considered. Earlier, it was used for observing the slow light in a Bragg waveguide. Using the proposed theory of this effect, experimentally observed spectral (Gaussian line shape) and angular (Lorentzian angular distribution) properties of the radiation scattered by the bounded waveguide in the antimirror direction are interpreted.

  17. Planar dielectric waveguides in rotation are optical fibers: comparison with the classical model.

    PubMed

    Peña García, Antonio; Pérez-Ocón, Francisco; Jiménez, José Ramón

    2008-01-21

    A novel and simpler method to calculate the main parameters in fiber optics is presented. This method is based in a planar dielectric waveguide in rotation and, as an example, it is applied to calculate the turning points and the inner caustic in an optical fiber with a parabolic refractive index. It is shown that the solution found using this method agrees with the standard (and more complex) method, whose solutions for these points are also summarized in this paper.

  18. Planar dielectric waveguides in rotation are optical fibers: comparison with the classical model.

    PubMed

    Peña García, Antonio; Pérez-Ocón, Francisco; Jiménez, José Ramón

    2008-01-21

    A novel and simpler method to calculate the main parameters in fiber optics is presented. This method is based in a planar dielectric waveguide in rotation and, as an example, it is applied to calculate the turning points and the inner caustic in an optical fiber with a parabolic refractive index. It is shown that the solution found using this method agrees with the standard (and more complex) method, whose solutions for these points are also summarized in this paper. PMID:18542167

  19. Eye Tracker Development On The Fiber Optic Helmet Mounted Display

    NASA Astrophysics Data System (ADS)

    Robinson, Richard M.; Thomas, Melvin L.; Wetzel, Paul A.

    1989-09-01

    To achieve the full potential of an area-of-interest (A0I) display requires that a high resolution area be accurately aligned with the direction of gaze. Two methods of eye position measurement with the Fiber Optic Helmet Mounted Display (FOHMD) have been developed and are described. This paper describes requirements necessary for successful eye tracking in aircraft simulators and introduces two approaches to monitoring eye position. In order to measure eye position over a wide field of view with sufficient accuracy, the oculometer must be able to measure various types of eye movements and also provide sufficient information to distinguish between eye movements and associated artifacts such as eye blinks and any anomalies introduced by spurious reflections or movement of the oculometer optics relative to the eye. In addition, the device must take into account variations in pupil size caused by changes in scene brightness and distinguish between pupil image displacements caused by actual eye movements or helmet slip. Under development are two oculometers that monitor both the center of the pupillary image and the corneal reflection and which possess both high temporal and spatial resolution.

  20. A novel planar ion funnel design for miniature ion optics

    SciTech Connect

    Chaudhary, A.; Amerom, Friso H. W. van; Short, R. T.

    2014-10-01

    The novel planar ion funnel (PIF) design presented in this article emphasizes simple fabrication, assembly, and operation, making it amenable to extreme miniaturization. Simulations performed in SIMION 8.0 indicate that ion focusing can be achieved by using a gradient of electrostatic potentials on concentric metal rings in a plane. A prototype was fabricated on a 35 × 35 mm custom-designed printed circuit board (PCB) with a center hole for ions to pass through and a series of concentric circular metal rings of increasing diameter on the front side of the PCB. Metal vias on the PCB electrically connected each metal ring to a resistive potential divider that was soldered on the back of the PCB. The PIF was tested at 5.5 × 10⁻⁶ Torr in a vacuum test setup that was equipped with a broad-beam ion source on the front and a micro channel plate (MCP) ion detector on the back of the PIF. The ion current recorded on the MCP anode during testing indicated a 23× increase in the ion transmission through the PIF when electric potentials were applied to the rings. These preliminary results demonstrate the functionality of a 2D ion funnel design with a much smaller footprint and simpler driving electronics than conventional 3D ion funnels. Future directions to improve the design and a possible micromachining approach to fabrication are discussed in the conclusions.

  1. A novel planar ion funnel design for miniature ion optics.

    PubMed

    Chaudhary, A; van Amerom, Friso H W; Short, R T

    2014-10-01

    The novel planar ion funnel (PIF) design presented in this article emphasizes simple fabrication, assembly, and operation, making it amenable to extreme miniaturization. Simulations performed in SIMION 8.0 indicate that ion focusing can be achieved by using a gradient of electrostatic potentials on concentric metal rings in a plane. A prototype was fabricated on a 35 × 35 mm custom-designed printed circuit board (PCB) with a center hole for ions to pass through and a series of concentric circular metal rings of increasing diameter on the front side of the PCB. Metal vias on the PCB electrically connected each metal ring to a resistive potential divider that was soldered on the back of the PCB. The PIF was tested at 5.5 × 10(-6) Torr in a vacuum test setup that was equipped with a broad-beam ion source on the front and a micro channel plate (MCP) ion detector on the back of the PIF. The ion current recorded on the MCP anode during testing indicated a 23× increase in the ion transmission through the PIF when electric potentials were applied to the rings. These preliminary results demonstrate the functionality of a 2D ion funnel design with a much smaller footprint and simpler driving electronics than conventional 3D ion funnels. Future directions to improve the design and a possible micromachining approach to fabrication are discussed in the conclusions.

  2. A novel planar ion funnel design for miniature ion optics

    NASA Astrophysics Data System (ADS)

    Chaudhary, A.; van Amerom, Friso H. W.; Short, R. T.

    2014-10-01

    The novel planar ion funnel (PIF) design presented in this article emphasizes simple fabrication, assembly, and operation, making it amenable to extreme miniaturization. Simulations performed in SIMION 8.0 indicate that ion focusing can be achieved by using a gradient of electrostatic potentials on concentric metal rings in a plane. A prototype was fabricated on a 35 × 35 mm custom-designed printed circuit board (PCB) with a center hole for ions to pass through and a series of concentric circular metal rings of increasing diameter on the front side of the PCB. Metal vias on the PCB electrically connected each metal ring to a resistive potential divider that was soldered on the back of the PCB. The PIF was tested at 5.5 × 10-6 Torr in a vacuum test setup that was equipped with a broad-beam ion source on the front and a micro channel plate (MCP) ion detector on the back of the PIF. The ion current recorded on the MCP anode during testing indicated a 23× increase in the ion transmission through the PIF when electric potentials were applied to the rings. These preliminary results demonstrate the functionality of a 2D ion funnel design with a much smaller footprint and simpler driving electronics than conventional 3D ion funnels. Future directions to improve the design and a possible micromachining approach to fabrication are discussed in the conclusions.

  3. Optical coupling of bare optoelectronic components and flexographically printed polymer waveguides in planar optronic systems

    NASA Astrophysics Data System (ADS)

    Wang, Yixiao; Wolfer, Tim; Lange, Alex; Overmeyer, Ludger

    2016-05-01

    Large scale, planar optronic systems allowing spatially distributed functionalities can be well used in diverse sensor networks, such as for monitoring the environment by measuring various physical quantities in medicine or aeronautics. In these systems, mechanically flexible and optically transparent polymeric foils, e.g. polymethyl methacrylate (PMMA) and polyethylene terephthalate (PET), are employed as carrier materials. A benefit of using these materials is their low cost. The optical interconnections from light sources to light transmission structures in planar optronic systems occupy a pivotal position for the sensing functions. As light sources, we employ the optoelectronic components, such as edgeemitting laser diodes, in form of bare chips, since their extremely small structures facilitate a high integration compactness and ensure sufficient system flexibility. Flexographically printed polymer optical waveguides are deployed as light guiding structures for short-distance communication in planar optronic systems. Printing processes are utilized for this generation of waveguides to achieve a cost-efficient large scale and high-throughput production. In order to attain a high-functional optronic system for sensing applications, one of the most essential prerequisites is the high coupling efficiency between the light sources and the waveguides. Therefore, in this work, we focus on the multimode polymer waveguide with a parabolic cross-section and investigate its optical coupling with the bare laser diode. We establish the geometrical model of the alignment based on the previous works on the optodic bonding of bare laser diodes and the fabrication process of polymer waveguides with consideration of various parameters, such as the beam profile of the laser diode, the employed polymer properties of the waveguides as well as the carrier substrates etc. Accordingly, the optical coupling of the bare laser diodes and the polymer waveguides was simulated

  4. Design and investigation of properties of nanocrystalline diamond optical planar waveguides.

    PubMed

    Prajzler, Vaclav; Varga, Marian; Nekvindova, Pavla; Remes, Zdenek; Kromka, Alexander

    2013-04-01

    Diamond thin films have remarkable properties comparable with natural diamond. Because of these properties it is a very promising material for many various applications (sensors, heat sink, optical mirrors, chemical and radiation wear, cold cathodes, tissue engineering, etc.) In this paper we report about design, deposition and measurement of properties of optical planar waveguides fabricated from nanocrystalline diamond thin films. The nanocrystalline diamond planar waveguide was deposited by microwave plasma enhanced chemical vapor deposition and the structure of the deposited film was studied by scanning electron microscopy and Raman spectroscopy. The design of the presented planar waveguides was realized on the bases of modified dispersion equation and was schemed for 632.8 nm, 964 nm, 1 310 nm and 1 550 nm wavelengths. Waveguiding properties were examined by prism coupling technique and it was found that the diamond based planar optical element guided one fundamental mode for all measured wavelengths. Values of the refractive indices of our NCD thin film measured at various wavelengths were almost the same as those of natural diamond.

  5. Optical Focusing by Planar Lenses Based on Nano-scale Metallic Slits in Visible Regime

    NASA Astrophysics Data System (ADS)

    Feng, Di; Zhang, Chunxi

    A kind of planar metallic lenses is proposed to realize optical focusing in the visible wavelength through a metallic film with nano-scale slit arrays, which have the same depth but tuning widths. Due to the subwavelength and aperiodic nature of planar metallic lenses, we present the rigorous electromagnetic analysis by using two dimensional finite difference time domain method. The electromagnetic wave transports through the tuning slits in the form of surface plasmon polaritons, and gets the required phase retardations to focusing at the focal plane. We analyze the focusing characteristics of planar dielectric lens and metallic lens with tuning widths that are obtained by generalizing the relevant phase delay, for different incidence polarization waves (TM polarized case and TE polarized case). The computational calculation results show that, extraordinary optical transmission of surface plasmon polaritions through non uniform nano-scale metallic slits is observed, and it has contributions to the optical focusing, but cannot increase the focal energy compared with dielectric planar lens with the same profile, and the metallic lenses are more sensitive to the polarization of incidence wave than that of dielectric lenses. The influence of metallic lenses' thickness on the focal characteristics has been analyzed also.

  6. Design and investigation of properties of nanocrystalline diamond optical planar waveguides.

    PubMed

    Prajzler, Vaclav; Varga, Marian; Nekvindova, Pavla; Remes, Zdenek; Kromka, Alexander

    2013-04-01

    Diamond thin films have remarkable properties comparable with natural diamond. Because of these properties it is a very promising material for many various applications (sensors, heat sink, optical mirrors, chemical and radiation wear, cold cathodes, tissue engineering, etc.) In this paper we report about design, deposition and measurement of properties of optical planar waveguides fabricated from nanocrystalline diamond thin films. The nanocrystalline diamond planar waveguide was deposited by microwave plasma enhanced chemical vapor deposition and the structure of the deposited film was studied by scanning electron microscopy and Raman spectroscopy. The design of the presented planar waveguides was realized on the bases of modified dispersion equation and was schemed for 632.8 nm, 964 nm, 1 310 nm and 1 550 nm wavelengths. Waveguiding properties were examined by prism coupling technique and it was found that the diamond based planar optical element guided one fundamental mode for all measured wavelengths. Values of the refractive indices of our NCD thin film measured at various wavelengths were almost the same as those of natural diamond. PMID:23571931

  7. Design and simulation of planar electro-optic switches in ferroelectrics

    NASA Astrophysics Data System (ADS)

    Krishnamurthi, Mahesh; Tian, Lili; Gopalan, Venkatraman

    2008-08-01

    Conceptual design and numerical simulation of two polarization dependent planar optical switches based on the electro-optic effect in ferroelectrics operating at 1.55 μm wavelength are presented. The first design is a 3×3 optical switch based entirely on electro-optic beam steering (prism) elements and ion-exchanged lenses for collimation. The second design is a 1×N optical switch based on a combination of electro-optic beam steering and electro-optic focusing (lens) elements. The scalability of this device has been improved by compensating the in-plane divergence of the laser. Analytical expressions for the dependence of scalability are presented.

  8. A planar chiral meta-surface for optical vortex generation and focusing

    PubMed Central

    Ma, Xiaoliang; Pu, Mingbo; Li, Xiong; Huang, Cheng; Wang, Yanqin; Pan, Wenbo; Zhao, Bo; Cui, Jianhua; Wang, Changtao; Zhao, ZeYu; Luo, Xiangang

    2015-01-01

    Data capacity is rapidly reaching its limit in modern optical communications. Optical vortex has been explored to enhance the data capacity for its extra degree of freedom of angular momentum. In traditional means, optical vortices are generated using space light modulators or spiral phase plates, which would sharply decrease the integration of optical communication systems. Here we experimentally demonstrate a planar chiral antenna array to produce optical vortex from a circularly polarized light. Furthermore, the antenna array has the ability to focus the incident light into point, which greatly increases the power intensity of the generated optical vortex. This chiral antenna array may have potential application in highly integrated optical communication systems. PMID:25988213

  9. Liquid crystals for optical non-display applications

    NASA Astrophysics Data System (ADS)

    Lavrentovich, Oleg D.

    2012-10-01

    Liquid crystals (LCs) demonstrate a number of unusual physical properties and effects that so far has been explored mainly for LC display (LCD) applications. This presentation discusses aspects of LCs that lead to the new opportunities in non-LCD applications, such as biosensors, micro- and opto-fluidics, switchable metamaterials. A LC is a unique medium for colloidal particles as it responds to the presence of inclusions by altering the orientation of LC molecules and thus the optic axis. The effect can be used in real-time sensing of microbes, as the molecular reorientation is easily detectable by optical means. Symmetry breaking associated with director distortions around inclusions in LCs enables a new mechanism of nonlinear electrophoresis. In the liquid-crystal enabled electrophoresis (LCEEP), the velocity of particle grows with the square of the applied field. The feature allows one to use an AC driving, to create steady flows and to move uncharged particle. The trajectory of particle is not necessarily parallel to the electric field and can be controlled by the director configuration. A gradient electric field can be used to align metallic nanorods into ordered LC-like birefringent structures with spatially varying refractive index; the latter represents a switchable medium for transformation optics.

  10. Simulation of bended planar waveguides for optical bus-couplers

    NASA Astrophysics Data System (ADS)

    Lorenz, Lukas; Nieweglowski, Krzysztof; Wolter, Klaus-Jürgen; Bock, Karlheinz

    2016-04-01

    In our work an optical bus-coupler is proposed, which enables easy bidirectional connection between two waveguides without interrupting the bus using a core-to-core coupling principle. With bended waveguides the coupling ratio can be tuned by adjusting the overlap area of the two cores. In order to ensure large overlap areas at short coupling lengths, the waveguides have rectangular cross sections. To examine the feasibility of this coupling concept a simulation was performed, which is presented in this paper. Due to multimode waveguides, used in short range data communication, a non-sequential ray tracing simulation is reasonable. Simulations revealed that the bending of the waveguide causes a redistribution of the energy within the core. Small radii push the main energy to the outer region of the core increasing the coupling efficiency. On the other hand, at excessive lowered bend radii additional losses occur (due to a coupling into the cladding), which is why an optimum has to be found. Based on the simulation results it is possible to derive requirements and design rules for the coupling element.

  11. Low drive voltage electro-optic Bragg deflector using a periodically poled lithium niobate planar waveguide.

    PubMed

    Mhaouech, I; Coda, V; Montemezzani, G; Chauvet, M; Guilbert, L

    2016-09-15

    An electro-optic Bragg light deflector is demonstrated in a thinned, periodically poled lithium niobate planar waveguide confined between two silica layers on a silicon substrate. More than 97% of diffraction efficiency is obtained with an operating wavelength of 633 nm for the two orthogonal light polarizations with a drive voltage of about 5 V. The temporal electric drift and the response time of the component are also studied.

  12. Low drive voltage electro-optic Bragg deflector using a periodically poled lithium niobate planar waveguide.

    PubMed

    Mhaouech, I; Coda, V; Montemezzani, G; Chauvet, M; Guilbert, L

    2016-09-15

    An electro-optic Bragg light deflector is demonstrated in a thinned, periodically poled lithium niobate planar waveguide confined between two silica layers on a silicon substrate. More than 97% of diffraction efficiency is obtained with an operating wavelength of 633 nm for the two orthogonal light polarizations with a drive voltage of about 5 V. The temporal electric drift and the response time of the component are also studied. PMID:27628350

  13. High-quality-factor planar optical cavities with laterally stopped, slowed, or reversed light.

    PubMed

    Byrnes, Steven J; Khorasaninejad, Mohammadreza; Capasso, Federico

    2016-08-01

    In a planar optical cavity, the resonance frequencies increase as a function of in-plane wavevector according to a standard textbook formula. This has well-known consequences in many different areas of optics, from the shifts of etalon peaks at non-normal angles, to the properties of transverse modes in laser diodes, to the effective mass of microcavity photons, and so on. However, this standard formula is valid only when the reflection phase of each cavity mirror is approximately independent of angle. There is a certain type of mirror-a subwavelength dielectric grating near a guided mode resonance-with not only a strongly angle-dependent reflection phase, but also very high reflectance and low losses. Simulations show that by using such mirrors, high-quality-factor planar cavities can be designed that break all these textbook rules, leading to resonant modes that are slow, stopped or even backward-propagating in the in-plane direction. In particular, we demonstrate experimentally high-Q planar cavities whose resonance frequency is independent of in-plane wavevector-i.e., the resonant modes have zero in-plane group velocity, for one polarization but both in-plane directions. We discuss potential applications in various fields including lasers, quantum optics, and exciton-polariton condensation. PMID:27505803

  14. Optical pulse compression of ultrashort laser pulses in an argon-filled planar waveguide.

    PubMed

    Nurhuda, Muhammad; Suda, Akira; Bohman, Samuel; Yamaguchi, Shigeru; Midorikawa, Katsumi

    2006-10-13

    We investigate the possibility of optical pulse compression of high energy ultrashort laser pulses in an argon-filled planar waveguide, based on two level coupled mode theory and the full 3D nonlinear Schrödinger equation. We derive general expressions for controlling the spatial beam profile and the extent of the spectral broadening. The analysis and simulations suggest that the proposed method should be appropriate for optical pulse compression of ultrashort laser pulses with energies as high as 600 mJ.

  15. Optical planar waveguide in magnesium aluminate spinel crystal using oxygen ion implantation

    NASA Astrophysics Data System (ADS)

    Song, Hong-Lian; Yu, Xiao-Fei; Zhang, Lian; Wang, Tie-Jun; Qiao, Mei; Liu, Peng; Zhao, Jin-Hua; Wang, Xue-Lin

    2015-07-01

    A planar optical waveguide in MgAl2O4 crystal sample was fabricated using 6.0 MeV oxygen ion implantation at a fluence of 1.5 × 1015 ions/cm2 at room temperature. The optical modes were measured at a wavelength of 633 nm using a model 2010 prism coupler. The near-field intensity files in the visible band were measured and simulated with end-face coupling and FD-BPM methods, respectively. The absorption spectra show that the implantation process has almost no effect on the visible and near-infrared band absorption.

  16. Experimental verification of a broadband planar focusing antenna based on transformation optics

    NASA Astrophysics Data System (ADS)

    Lei Mei, Zhong; Bai, Jing; Cui, Tie Jun

    2011-06-01

    It is experimentally verified that a two-dimensional planar focusing antenna based on gradient-index metamaterials has a similar performance as that of its parabolic counterpart. The antenna is designed using quasi-conformal transformation optics, and is realized with non-resonant I-shaped metamaterial unit cells. It is shown that the antenna has a broad bandwidth and very low loss. Near-field distributions of the antenna are measured and far-field radiation patterns are calculated from the measured data, which have good agreement with the full-wave simulations. Using all-dielectric metamaterials, the design can be scaled down to find applications at optical frequencies.

  17. Integrated optical interconnection for polymeric planar lightwave circuit device using roll-to-roll ultraviolet imprint

    NASA Astrophysics Data System (ADS)

    Cho, Sang Uk; Kang, Ho Ju; Chang, Sunghwan; Choi, Doo-sun; Kim, Chang-Seok; Jeong, Myung Yung

    2014-08-01

    We propose an integrated structure that combines chip and fiber array blocks for optical interconnection with a polymeric planar lightwave circuit (PLC) device using the roll-to-roll imprint process. The fiber array blocks and PLC chip of the integrated structure are fabricated on the same substrate, and the alignments in the three spatial directions were established with the insertion of an optical fiber. The characteristics of the integrated structure were evaluated by fabricating a 1×2 optical splitter device. The structure had an insertion loss of 3.9 dB, and the optical uniformity of the channel was 0.1 dB, indicating that the same performance for an active alignment can be expected.

  18. Accelerated aging of tunable thermo-optic polymer planar waveguide devices made of fluorinated acrylates

    NASA Astrophysics Data System (ADS)

    Poga, Constantina; Maxfield, MacRae; Shacklette, Lawrence W.; Blomquist, Robert; Boudoughian, George K.

    2000-11-01

    Planar wave guide device components, made from photocurable fluoroacrylates, demonstrated stability under conditions that exceed those needed to operate planar polymer thermo- optic switches. Fluoroacrylate polymers exhibited negligible decomposition at 200 degree(s)C. Insertion loss and polarization-dependent loss showed no increase at temperatures up to 257 degree(s)C. The reflected spectrum of a Bragg grating showed no monotonic change in (lambda) B, width, or strength in 105 days at 125 degree(s)C. Humidity changes from 0 to 90%RH caused a reversible blue shift in (lambda) B of only 0.00004. Light flux of 130mW exhibited no impact on n, (delta) n, or IL. Heaters showed no degradation at 85 degree(s)C/85%RH. Bonding to substrate, heaters, and pigtails remained intact throughout the testing.

  19. Optical design and optimization of planar curved LED end-lit light bar.

    PubMed

    Yu, Jyh-Cheng; Chen, Zhi-Yao; Kao, Bang-De

    2014-10-10

    This study investigates the optical design of planar curved LED end-lit light bars using v cuts as light-diverting structures. The application of LEDs in automotive lighting has become popular, especially in signal lamps and daytime running lamps. Most designs adopt a direct back light using arrays of LEDs with diffusive coupling optics, which often causes problems such as low uniformity, glaring, and excessive LEDs. Edge-lit LED light guides in automotive applications share a similar principle with the light-guide plates in back-light models of LCD but with much more complicated geometry. However, related literature on the optical design of nonrectangular light-guide plates is very limited. This study addresses the design of planar curved LED end-lit light bars and the optimization scheme for illuminance uniformity. V cuts are used as the optical coupling features, and the lead angles of the v cuts are varied to achieve optimum axial luminous intensity. This study presents a solution to reduce the illuminance difference between the inner and the outer portions of curved light bars by introducing gradual taper v cuts across the curved section. A line graph with preselected anchor points is proposed to define the size distribution of evenly spaced v cuts along the light bar. A fuzzy optimization scheme is then applied to iterate the anchor size to achieve illuminance uniformity. The designs of a planar curve light bar with a rectangular cross section and a light-guide ring with a circular cross section are presented to illustrate the design scheme.

  20. Planar and finger-shaped optical tactile sensors for robotic applications

    NASA Technical Reports Server (NTRS)

    Begej, Stefan

    1988-01-01

    Progress is described regarding the development of optical tactile sensors specifically designed for application to dexterous robotics. These sensors operate on optical principles involving the frustration of total internal reflection at a waveguide/elastomer interface and produce a grey-scale tactile image that represents the normal (vertical) forces of contact. The first tactile sensor discussed is a compact, 32 x 32 planar sensor array intended for mounting on a parallel-jaw gripper. Optical fibers were employed to convey the tactile image to a CCD camera and microprocessor-based image analysis system. The second sensor had the shape and size of a human fingertip and was designed for a dexterous robotic hand. It contained 256 sensing sites (taxels) distributed in a dual-density pattern that included a tactile fovea near the tip measuring 13 x 13 mm and containing 169 taxels. The design and construction details of these tactile sensors are presented, in addition to photographs of tactile imprints.

  1. Towards do-it-yourself planar optical components using plasmon-assisted etching

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Bhuiya, Abdul M.; Ding, Qing; Johnson, Harley T.; Toussaint, Kimani C., Jr.

    2016-01-01

    In recent years, the push to foster increased technological innovation and basic scientific and engineering interest from the broadest sectors of society has helped to accelerate the development of do-it-yourself (DIY) components, particularly those related to low-cost microcontroller boards. The attraction with DIY kits is the simplification of the intervening steps going from basic design to fabrication, albeit typically at the expense of quality. We present herein plasmon-assisted etching as an approach to extend the DIY theme to optics, specifically the table-top fabrication of planar optical components. By operating in the design space between metasurfaces and traditional flat optical components, we employ arrays of Au pillar-supported bowtie nanoantennas as a template structure. To demonstrate, we fabricate a Fresnel zone plate, diffraction grating and holographic mode converter--all using the same template. Applications to nanotweezers and fabricating heterogeneous nanoantennas are also shown.

  2. Sol-gel derived optical waveguide films: technological platform for development of planar evanescent wave sensors

    NASA Astrophysics Data System (ADS)

    Karasiński, Paweł

    2015-12-01

    Plane evanescent wave sensors are being developed for over thirty years. However, their full development is somehow limited by the lack of relatively cheap and stable waveguide layers of high refractive index, low optical losses and at the same time resistance to the impact of chemical substances. The paper involves waveguide layers SiO2:TiO2 of high refractive index (˜1.81) satisfying these criteria, fabricated via sol-gel method and dip-coating technique. The parameters of the waveguide layers SiO2:TiO2 were determined using elipsometric and spectrophotometric methods. The presented waveguide layers have excellent optical properties and are suitable for the application in the planar evanescent wave sensors technology. For the best waveguide SiO2:TiO2 layers, the obtained level of optical loss was below 0.2 dB/cm.

  3. Focusing far-field nanoscale optical needles by planar nanostructured metasurfaces

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Wang, Tong; Yang, Shuming; Jiang, Zhuangde

    2016-08-01

    Far-field nanoscale optical needles are obtained using water-immersed planar nanostructured metasurfaces illuminated with a 193 nm deep ultra-violet laser. The method is based on the vectorial angular spectrum theory and an established nonlinear optimization model. For a 50 μm-diameter metasurface with a linearly polarized beam (x-polarized), an optical needle with 12.4λ0 length has been produced at a mid-focal distance of 14.5 μm. The transverse beam sizes are as small as 129 nm and 59.4 nm in the x and y directions, respectively. The design results are agreed well with the rigorous electromagnetic calculations using three-dimensional finite-difference time-domain (FDTD) method with a suggested 25 nm-thick aluminum coating film for the metasurface. These far-field nanoscale optical needles are potentially applied in the fields of nanolithography, nanoprinting, and nanoscopy.

  4. Towards do-it-yourself planar optical components using plasmon-assisted etching

    PubMed Central

    Chen, Hao; Bhuiya, Abdul M.; Ding, Qing; Johnson, Harley T.; Toussaint Jr, Kimani C.

    2016-01-01

    In recent years, the push to foster increased technological innovation and basic scientific and engineering interest from the broadest sectors of society has helped to accelerate the development of do-it-yourself (DIY) components, particularly those related to low-cost microcontroller boards. The attraction with DIY kits is the simplification of the intervening steps going from basic design to fabrication, albeit typically at the expense of quality. We present herein plasmon-assisted etching as an approach to extend the DIY theme to optics, specifically the table-top fabrication of planar optical components. By operating in the design space between metasurfaces and traditional flat optical components, we employ arrays of Au pillar-supported bowtie nanoantennas as a template structure. To demonstrate, we fabricate a Fresnel zone plate, diffraction grating and holographic mode converter—all using the same template. Applications to nanotweezers and fabricating heterogeneous nanoantennas are also shown. PMID:26814026

  5. Controllable design of super-oscillatory planar lenses for sub-diffraction-limit optical needles.

    PubMed

    Diao, Jinshuai; Yuan, Weizheng; Yu, Yiting; Zhu, Yechuan; Wu, Yan

    2016-02-01

    Sub-diffraction-limit optical needle can be created by a binary amplitude mask through tailoring the interference of diffraction beams. In this paper, a controllable design of super-oscillatory planar lenses to create sub-diffraction-limit optical needles with the tunable focal length and depth of focus (DOF) is presented. As a high-quality optical needle is influenced by various factors, we first propose a multi-objective and multi-constraint optimization model compromising all the main factors to achieve a needle with the prescribed characteristics. The optimizing procedure is self-designed using the Matlab programming language based on the genetic algorithm (GA) and fast Hankel transform algorithm. Numerical simulations show that the optical needles' properties can be controlled accurately. The optimized results are further validated by the theoretical calculation with the Rayleigh-Sommerfeld integral. The sub-diffraction-limit optical needles can be used in wide fields such as optical nanofabrication, super-resolution imaging, particle acceleration and high-density optical data storage. PMID:26906769

  6. A Multi-Functional Planar Lightwave Circuit for Optical Signal Processing Applications

    NASA Astrophysics Data System (ADS)

    Samadi, Payman

    Ultrafast optical signal processing is now a necessary tool in several domains of science and technology such as high-speed telecommunication, biomedicine, microscopy and radar systems. Optical arbitrary waveform generation is an optical signal processing function which has applications in optical telecommunication networks, sampling, and photonically-assisted RF waveform generation. Furthermore, performing optical signal processing in photonic integrated circuits is crucial for system integration and overcoming the speed limitations in electrical to optical conversion. In this thesis, we introduce a silica-based planar lightwave circuit which performs several optical signal processing functions. We start by reviewing the material system used to fabricate the device. We justify the choice of the material for our application and explain the fabrication process and the experiments to characterize the device. Then we introduce the fundamental theory of our device which is based on pulse repetition rate multiplication (PRRM) and shaping. We review the theory of direct time-domain approach to perform the PRRM and shaping. Experiments to measure the impulse response of the device, perform PRRM and polarization dependence characterization is shown as well. Three main applications of our device is presented next. First we use the PLC device with non-linear optics to generate multiple pulse trains at different wavelengths and different repetition rates. Second, we use the fundamental of the previous application to perform demultiplexing of optical time division multiplexed signals. Our approach is flexible in a sense that it can demultiplex any tributary channel of lower rate data, also it works for both amplitude and phase modulated data. Finally, using the second generation of our PLC device, we photonically generate radio frequency waveforms. We are able to generate various pulse shapes which are generally hard to generate using electronics at frequencies up to 80 GHz

  7. Solution to causality paradox upon total reflection in optical planar waveguide.

    PubMed

    Liu, Xiangmin; Cao, Zhuangqi; Zhu, Pengfei; Shen, Qishun

    2006-01-01

    A dispute about the existence of an additional time associated with the Goos-Hänchen shift has recently arisen. By analyzing light propagation in an optical planar waveguide with both the zigzag-ray model and the electromagnetic theory, we show in this paper that the Goos-Hänchen time really exists, and the total time delay upon total reflection is the sum of the group delay time and the Goos-Hänchen time. The causality paradox of total reflection of a TM wave upon an ideal nonabsorbing plasma mirror is also solved with the consideration of a negative Goos-Hänchen shift.

  8. New Insight into the Angle Insensitivity of Ultrathin Planar Optical Absorbers for Broadband Solar Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Yu, Haitong; Duan, Yuanyuan; Li, Qiang; Xuan, Yimin

    2016-09-01

    Two challenging problems still remain for optical absorbers consisting of an ultrathin planar semiconductor film on top of an opaque metallic substrate. One is the angle-insensitive mechanism and the other is the system design needed for broadband solar energy harvesting. Here, first we theoretically demonstrates that the high refractive index, instead of the ultrathin feature as reported in previous studies, is the physical origin of the angle insensitivity for ultrathin planar optical absorbers. They exhibit omnidirectional resonance for TE polarization due to the high complex refractive index difference between the semiconductor and the air, while for TM polarization the angle insensitivity persists up to an incident angle related to the semiconductor refractive index. These findings were validated by fabricating and characterizing an 18 nm Ge/Ag absorber sample (representative of small band gap semiconductors for photovoltaic applications) and a 22 nm hematite/Ag sample (representative of large band gap semiconductors for photoelectrochemical applications). Then, we took advantage of angle insensitivity and designed a spectrum splitting configuration for broadband solar energy harvesting. The cascaded solar cell and unassisted solar water splitting systems have photovoltaic and photoelectrochemical cells that are also spectrum splitters, so an external spectrum splitting element is not needed.

  9. New Insight into the Angle Insensitivity of Ultrathin Planar Optical Absorbers for Broadband Solar Energy Harvesting.

    PubMed

    Liu, Dong; Yu, Haitong; Duan, Yuanyuan; Li, Qiang; Xuan, Yimin

    2016-01-01

    Two challenging problems still remain for optical absorbers consisting of an ultrathin planar semiconductor film on top of an opaque metallic substrate. One is the angle-insensitive mechanism and the other is the system design needed for broadband solar energy harvesting. Here, first we theoretically demonstrates that the high refractive index, instead of the ultrathin feature as reported in previous studies, is the physical origin of the angle insensitivity for ultrathin planar optical absorbers. They exhibit omnidirectional resonance for TE polarization due to the high complex refractive index difference between the semiconductor and the air, while for TM polarization the angle insensitivity persists up to an incident angle related to the semiconductor refractive index. These findings were validated by fabricating and characterizing an 18 nm Ge/Ag absorber sample (representative of small band gap semiconductors for photovoltaic applications) and a 22 nm hematite/Ag sample (representative of large band gap semiconductors for photoelectrochemical applications). Then, we took advantage of angle insensitivity and designed a spectrum splitting configuration for broadband solar energy harvesting. The cascaded solar cell and unassisted solar water splitting systems have photovoltaic and photoelectrochemical cells that are also spectrum splitters, so an external spectrum splitting element is not needed. PMID:27582317

  10. New Insight into the Angle Insensitivity of Ultrathin Planar Optical Absorbers for Broadband Solar Energy Harvesting.

    PubMed

    Liu, Dong; Yu, Haitong; Duan, Yuanyuan; Li, Qiang; Xuan, Yimin

    2016-09-01

    Two challenging problems still remain for optical absorbers consisting of an ultrathin planar semiconductor film on top of an opaque metallic substrate. One is the angle-insensitive mechanism and the other is the system design needed for broadband solar energy harvesting. Here, first we theoretically demonstrates that the high refractive index, instead of the ultrathin feature as reported in previous studies, is the physical origin of the angle insensitivity for ultrathin planar optical absorbers. They exhibit omnidirectional resonance for TE polarization due to the high complex refractive index difference between the semiconductor and the air, while for TM polarization the angle insensitivity persists up to an incident angle related to the semiconductor refractive index. These findings were validated by fabricating and characterizing an 18 nm Ge/Ag absorber sample (representative of small band gap semiconductors for photovoltaic applications) and a 22 nm hematite/Ag sample (representative of large band gap semiconductors for photoelectrochemical applications). Then, we took advantage of angle insensitivity and designed a spectrum splitting configuration for broadband solar energy harvesting. The cascaded solar cell and unassisted solar water splitting systems have photovoltaic and photoelectrochemical cells that are also spectrum splitters, so an external spectrum splitting element is not needed.

  11. New Insight into the Angle Insensitivity of Ultrathin Planar Optical Absorbers for Broadband Solar Energy Harvesting

    PubMed Central

    Liu, Dong; Yu, Haitong; Duan, Yuanyuan; Li, Qiang; Xuan, Yimin

    2016-01-01

    Two challenging problems still remain for optical absorbers consisting of an ultrathin planar semiconductor film on top of an opaque metallic substrate. One is the angle-insensitive mechanism and the other is the system design needed for broadband solar energy harvesting. Here, first we theoretically demonstrates that the high refractive index, instead of the ultrathin feature as reported in previous studies, is the physical origin of the angle insensitivity for ultrathin planar optical absorbers. They exhibit omnidirectional resonance for TE polarization due to the high complex refractive index difference between the semiconductor and the air, while for TM polarization the angle insensitivity persists up to an incident angle related to the semiconductor refractive index. These findings were validated by fabricating and characterizing an 18 nm Ge/Ag absorber sample (representative of small band gap semiconductors for photovoltaic applications) and a 22 nm hematite/Ag sample (representative of large band gap semiconductors for photoelectrochemical applications). Then, we took advantage of angle insensitivity and designed a spectrum splitting configuration for broadband solar energy harvesting. The cascaded solar cell and unassisted solar water splitting systems have photovoltaic and photoelectrochemical cells that are also spectrum splitters, so an external spectrum splitting element is not needed. PMID:27582317

  12. Laser illuminated flat panel display

    SciTech Connect

    Veligdan, J.T.

    1995-12-31

    A 10 inch laser illuminated flat panel Planar Optic Display (POD) screen has been constructed and tested. This POD screen technology is an entirely new concept in display technology. Although the initial display is flat and made of glass, this technology lends itself to applications where a plastic display might be wrapped around the viewer. The display screen is comprised of hundreds of planar optical waveguides where each glass waveguide represents a vertical line of resolution. A black cladding layer, having a lower index of refraction, is placed between each waveguide layer. Since the cladding makes the screen surface black, the contrast is high. The prototype display is 9 inches wide by 5 inches high and approximately I inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  13. Towards optical optimization of planar monolithic perovskite/silicon-heterojunction tandem solar cells

    NASA Astrophysics Data System (ADS)

    Albrecht, Steve; Saliba, Michael; Correa-Baena, Juan-Pablo; Jäger, Klaus; Korte, Lars; Hagfeldt, Anders; Grätzel, Michael; Rech, Bernd

    2016-06-01

    Combining inorganic–organic perovskites and crystalline silicon into a monolithic tandem solar cell has recently attracted increased attention due to the high efficiency potential of this cell architecture. Promising results with published efficiencies above 21% have been reported so far. To further increase the device performance, optical optimizations enabling device related guidelines are highly necessary. Here we experimentally show the optical influence of the ITO thickness in the interconnecting layer and fabricate an efficient monolithic tandem cell with a reduced ITO layer thickness that shows slightly improved absorption within the silicon sub-cell and a stabilized power output of 17%. Furthermore we present detailed optical simulations on experimentally relevant planar tandem stacks to give practical guidelines to reach efficiencies above 25%. By optimizing the thickness of all functional and the perovskite absorber layers, together with the optimization of the perovskite band-gap, we present a tandem stack that can yield ca 17.5 mA cm‑ 2 current in both sub-cells at a perovskite band-gap of 1.73 eV including losses from reflection and parasitic absorption. Assuming that the higher band-gap of the perovskite absorber directly translates into a higher open circuit voltage, the perovskite sub-cell should be able to reach a value of 1.3 V. With that, realistic efficiencies above 28% are within reach for planar monolithic tandem cells in which the thickness of the perovskite top-cell and the perovskite band-gap are highly optimized. When applying light trapping schemes such as textured surfaces and by reducing the parasitic absorption of the functional layers, for example in spiro-OMeTAD, this monolithic tandem can overcome 30% power conversion efficiency.

  14. Optical characterization of display screens by speckle patterns

    NASA Astrophysics Data System (ADS)

    Pozo, Antonio M.; Castro, José J.; Rubiño, Manuel

    2013-10-01

    In recent years, flat-panel display (FPD) technology has undergone great development, and now FPDs appear in many devices. A significant element in FPD manufacturing is the display front surface. Manufacturers sell FPDs with different types of front surfaces, which can be matte (also called anti-glare) or glossy screens. Users who prefer glossy screens consider these displays to show more vivid colors compared with matte-screen displays. However, on the glossy screens, external light sources may cause unpleasant reflections that can be reduced by a matte treatment in the front surface. In this work, we present a method to characterize FPD screens using laser-speckle patterns. We characterize three FPDs: a Samsung XL2370 LCD monitor of 23 in. with matte screen, a Toshiba Satellite A100 LCD laptop of 15.4 in. with glossy screen, and a Grammata Papyre 6.1 electronic book reader of 6 in. with ePaper screen (E-ink technology). The results show great differences in speckle-contrast values for the three screens characterized and, therefore, this work shows the feasibility of this method for characterizing and comparing FPDs that have different types of front surfaces.

  15. Optical characterization of display screens by speckle-contrast measurements

    NASA Astrophysics Data System (ADS)

    Pozo, Antonio M.; Castro, José J.; Rubiño, Manuel

    2012-10-01

    In recent years, the flat-panel display (FPD) technology has undergone great development. Currently, FPDs are present in many devices. A significant element in FPD manufacturing is the display front surface. Manufacturers sell FPDs with different types of front surface which can be matte (also called anti-glare) or glossy screens. Users who prefer glossy screens consider images shown in these types of displays to have more vivid colours compared with matte-screen displays. However, external light sources may cause unpleasant reflections on the glossy screens. These reflections can be reduced by a matte treatment in the front surface of FPDs. In this work, we present a method to characterize the front surface of FPDs using laser speckle patterns. We characterized three FPDs: a Samsung XL2370 LCD monitor of 23" with matte screen, a Toshiba Satellite A100 laptop of 15.4" with glossy screen, and a Papyre electronic book reader. The results show great differences in speckle contrast values for the three screens characterized and, therefore, this work shows the feasibility of this method for characterizing and comparing FPDs which have different types of front surfaces.

  16. Wide Angle, Color, Holographic Infinity Optics Display. Final Report.

    ERIC Educational Resources Information Center

    Magarinos, Jose R.; Coleman, Daniel J.

    The project described demonstrated not only the feasibility of producing a holographic compound spherical beamspliter mirror with full color response, but the performance and color capabilities of such a beamsplitter when incorporated into a Pancake Window Display system as a replacement for the classical glass spherical beamsplitter. This…

  17. Design rules for phase-matched terahertz surface electromagnetic wave generation by optical rectification in a nonlinear planar waveguide.

    PubMed

    Musin, Roman R; Xing, Qirong; Li, Yanfeng; Hu, Minglie; Chai, Lu; Wang, Qingyue; Mikhailova, Yuliya M; Nazarov, Maksim M; Shkurinov, Alexander P; Zheltikov, Aleksei M

    2008-02-01

    The theory of guided waves in metal-dielectric planar multilayer structures is applied to reduce the loss and maximize optical nonlinearity for efficient terahertz-field generation in a surface electromagnetic wave by femtosecond laser pulses confined in a (chi)((2)) nonlinear planar waveguide. For typical parameters of thin-film polymer waveguides and metal-dielectric interfaces, the optimal size of the (chi)((2)) waveguide core providing the maximum efficiency of terahertz plasmon-field generation is shown to be less than the wavelength of the optical pump field.

  18. Planar lens integrated capillary action microfluidic immunoassay device for the optical detection of troponin I.

    PubMed

    Mohammed, Mazher-Iqbal; Desmulliez, Marc P Y

    2013-01-01

    Optical based analysis in microfluidic and lab-on-a-chip systems are currently considered the gold standard methodology for the determination of end point reactions for various chemical and biological reaction processes. Typically, assays are performed using bulky ancillary apparatus such as microscopes and complex optical excitation and detection systems. Such instrumentation negates many of the advantages offered by device miniaturisation, particularly with respect to overall portability. In this article, we present a CO2 laser ablation technique for rapidly prototyping on-chip planar lenses, in conjunction with capillary action based autonomous microfluidics, to create a miniaturised and fully integrated optical biosensing platform. The presented self-aligned on-chip optical components offer an efficient means to direct excitation light within microfluidics and to directly couple light from a LED source. The device has been used in conjunction with a miniaturised and bespoke fluorescence detection platform to create a complete, palm sized system (≈60 × 80 × 60 mm) capable of performing fluoro-immunoassays. The system has been applied to the detection of cardiac Troponin I, one of the gold standard biomarkers for the diagnosis of acute myocardial infarction, achieving a lower detection limit of 0.08 ng/ml, which is at the threshold of clinically applicable concentrations. The portable nature of the complete system and the biomarker detection capabilities demonstrate the potential of the devised instrumentation for use as a medical diagnostics device at the point of care.

  19. Planar lens integrated capillary action microfluidic immunoassay device for the optical detection of troponin I

    PubMed Central

    Mohammed, Mazher-Iqbal; Desmulliez, Marc P. Y.

    2013-01-01

    Optical based analysis in microfluidic and lab-on-a-chip systems are currently considered the gold standard methodology for the determination of end point reactions for various chemical and biological reaction processes. Typically, assays are performed using bulky ancillary apparatus such as microscopes and complex optical excitation and detection systems. Such instrumentation negates many of the advantages offered by device miniaturisation, particularly with respect to overall portability. In this article, we present a CO2 laser ablation technique for rapidly prototyping on-chip planar lenses, in conjunction with capillary action based autonomous microfluidics, to create a miniaturised and fully integrated optical biosensing platform. The presented self-aligned on-chip optical components offer an efficient means to direct excitation light within microfluidics and to directly couple light from a LED source. The device has been used in conjunction with a miniaturised and bespoke fluorescence detection platform to create a complete, palm sized system (≈60 × 80 × 60 mm) capable of performing fluoro-immunoassays. The system has been applied to the detection of cardiac Troponin I, one of the gold standard biomarkers for the diagnosis of acute myocardial infarction, achieving a lower detection limit of 0.08 ng/ml, which is at the threshold of clinically applicable concentrations. The portable nature of the complete system and the biomarker detection capabilities demonstrate the potential of the devised instrumentation for use as a medical diagnostics device at the point of care. PMID:24396546

  20. Fiber Optic Development For Use On The Fiber Optic Helmet Mounted Display

    NASA Astrophysics Data System (ADS)

    Thomas, Melvin L.; Siegmund, Walter P.; Antos, Steven E.; Robinson, Richard M.

    1989-09-01

    The Fiber Optic Helmet Mounted Display (FOHMD) developed by CAE for the US Air Force Human Resources Laboratory (AFHRL), requires very large format, coherant fiber optic cables. These cables must support the FOHMD's demanding modulation transfer function (MTF) requirements in full color and be flexible, durable, lightweight, and up to six feet long. These requirements have so constrained glass technology that conventional approaches are not capable of delivering the requisite performance. The cables currently used on FOHMD systems have alternating layers of inactive material to buffer linear arrays of multifibers so that a lighter weight 25 by 19 mm end size is achieved with 5 micron core size individual fibers. This skip-layer, multifiber approach delivers reasonable performance when using spectral multiplexing across the inactive layers. However, residual fixed pattern noise, broken multifibers, and inadequate resolution have reduced system performance. Because of the critical influence of the fiber optic cables on overall system performance, an alternative, but riskier process, is being explored. Several smaller experimental cables have been assembled using leachable, fused, multifibers arrayed in a hexagonal pattern. The inconspicuous mating of hexagonal elements should be possible now because of an order of magnitude improvement in cable drawing technology. Fused/leached fiber optic cables have the potential to provide image transmission capability equal to ten channels of the best available computer image generators. When coupled with chromatic enhancement to mask fixed pattern and broken fiber noise, the resulting MTF of the FOHMD optics would deliver a resolution equal to 1.5 arc minutes per pixel.

  1. Long-period-grating in a trench assisted planar optical waveguide.

    PubMed

    Ashok, Nandam; Rastogi, Vipul; Kumar, Ajeet

    2013-03-20

    We present long-period-grating in a planar optical waveguide that contains a low-index trench in the cladding region. The effect of the trench on transmission spectrum of the grating has been studied. The waveguide structure has been analyzed by the transfer matrix method and the output spectrum of the grating has been calculated by the coupled mode theory. Our numerical results show that position, strength, and width of the trench significantly affect the transmission spectrum of the grating. In particular, we show the appearance of triple resonance between a set of coupled modes and obtain an ultrawide band rejection in the output spectrum. We numerically demonstrate applications of the proposed structure in wideband rejection filters, refractive index sensors, and gain equalization of erbium-doped waveguide amplifiers.

  2. Buffer layer between a planar optical concentrator and a solar cell

    SciTech Connect

    Solano, Manuel E.; Barber, Greg D.; Lakhtakia, Akhlesh; Faryad, Muhammad; Monk, Peter B.; Mallouk, Thomas E.

    2015-09-15

    The effect of inserting a buffer layer between a periodically multilayered isotropic dielectric (PMLID) material acting as a planar optical concentrator and a photovoltaic solar cell was theoretically investigated. The substitution of the photovoltaic material by a cheaper dielectric material in a large area of the structure could reduce the fabrication costs without significantly reducing the efficiency of the solar cell. Both crystalline silicon (c-Si) and gallium arsenide (GaAs) were considered as the photovoltaic material. We found that the buffer layer can act as an antireflection coating at the interface of the PMLID and the photovoltaic materials, and the structure increases the spectrally averaged electron-hole pair density by 36% for c-Si and 38% for GaAs compared to the structure without buffer layer. Numerical evidence indicates that the optimal structure is robust with respect to small changes in the grating profile.

  3. Planar optical waveguides in Nd:BSO crystals fabricated by He and C ion implantation

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Guo, Sha-Sha; Zhao, Jin-Hua; Guan, Jing; Wang, Xue-Lin

    2011-01-01

    Planar optical waveguides in Nd:BSO crystals were fabricated by the implantation of 500 keV He ions and 6.0 MeV C ions at two different substrate temperatures. The guiding modes were measured by the prism-coupling method with a He-Ne beam at 633 nm. The intensity calculation method (ICM) and reflectivity calculation method (RCM) were used for reconstructing refractive index profiles. The near-field intensity distribution of the waveguide, formed by He and C ions implanted after annealing at 300 °C, was measured by the end-face coupling setup. It was in reasonable agreement with the intensity of the waveguide mode simulated by the finite-difference beam propagation method (FD-BPM). The absorption spectra of the sample with He ions implanted at fluences of 3 × 1016 ions/cm2 were measured using a spectrophotometer.

  4. Optical wave propagation in epitaxial Nd:Y2O3 planar waveguides.

    PubMed

    Li, Wei; Webster, Scott E; Kumaran, Raveen; Penson, Shawn; Tiedje, Thomas

    2010-02-01

    Optical wave propagation in neodymium-doped yttrium oxide (Nd:Y(2)O(3)) films grown on R-plane sapphire substrates by molecular beam epitaxy has been studied by the prism coupler method. The measurements yield propagation loss data, the refractive index, and the dispersion relation. The refractive index of the Nd:Y(2)O(3) at 632.8 nm is found to be 1.909, and the lowest propagation loss measured is 0.9 +/- 0.2 cm(-1) at 1046 nm with a polymethyl methacrylate top cladding layer on a film with 6 nm root mean square surface roughness. The loss measurements suggest that the majority loss of this planar waveguide sample is scatter from surface roughness that can be described by the model of Payne and Lacey [Opt. Quantum Electron. 26, 977 (1994)].

  5. Volumetric display system based on three-dimensional scanning of inclined optical image.

    PubMed

    Miyazaki, Daisuke; Shiba, Kensuke; Sotsuka, Koji; Matsushita, Kenji

    2006-12-25

    A volumetric display system based on three-dimensional (3D) scanning of an inclined image is reported. An optical image of a two-dimensional (2D) display, which is a vector-scan display monitor placed obliquely in an optical imaging system, is moved laterally by a galvanometric mirror scanner. Inclined cross-sectional images of a 3D object are displayed on the 2D display in accordance with the position of the image plane to form a 3D image. Three-dimensional images formed by this display system satisfy all the criteria for stereoscopic vision because they are real images formed in a 3D space. Experimental results of volumetric imaging from computed-tomography images and 3D animated images are presented.

  6. Optical planar waveguide in sodium-doped calcium barium niobate crystals by carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Zhao, Jin-Hua; Qin, Xi-Feng; Wang, Feng-Xiang; Fu, Gang; Wang, Hui-Lin; Wang, Xue-Lin

    2013-07-01

    There is great interest in niobate crystals which belong to the tetragonal tungsten bronze (TTB) families owing to their intriguing properties. As one representative of such crystals, CBN (calcium barium niobate) has attracted rapidly growing attention. Because it has a higher Curie temperature than SBN (strontium barium niobate), possesses outstanding ferroelectric and it possesses optical properties. In addition, doped with sodium, CBN will show a higher Curie temperature than pure CBN. We report on the fabrication and characterization of optical planar waveguide in x-cut sodium-doped calcium barium niobate crystal by using C ion implantation. The guided-mode properties at the wavelength of 633 and 1539 nm are investigated through prism-coupling measurements, respectively. By applying direct end-face coupling arrangement, the near-field optical intensity distribution of waveguide modes is measured at 633 nm. For comparison, the modal profile of the same guided mode is also numerically calculated by the finite difference beam-propagation method via computer software BeamPROP. The transmission spectra of the waveguide before and after ion implantation treatments were investigated also. Our experiment results reveal that the waveguide could propagate light with transverse magnetic polarized direction only and it is assumed that the polarization selectivity of CBN crystal may responsible for this phenomenon.

  7. Acousto-optic laser projection systems for displaying TV information

    NASA Astrophysics Data System (ADS)

    Gulyaev, Yu V.; Kazaryan, M. A.; Mokrushin, Yu M.; Shakin, O. V.

    2015-04-01

    This review addresses various approaches to television projection imaging on large screens using lasers. Results are presented of theoretical and experimental studies of an acousto-optic projection system operating on the principle of projecting an image of an entire amplitude-modulated television line in a single laser pulse. We consider characteristic features of image formation in such a system and the requirements for its individual components. Particular attention is paid to nonlinear distortions of the image signal, which show up most severely at low modulation signal frequencies. We discuss the feasibility of improving the process efficiency and image quality using acousto-optic modulators and pulsed lasers. Real-time projectors with pulsed line imaging can be used for controlling high-intensity laser radiation.

  8. Full optical characterization of autostereoscopic 3D displays using local viewing angle and imaging measurements

    NASA Astrophysics Data System (ADS)

    Boher, Pierre; Leroux, Thierry; Bignon, Thibault; Collomb-Patton, Véronique

    2012-03-01

    Two commercial auto-stereoscopic 3D displays are characterized a using Fourier optics viewing angle system and an imaging video-luminance-meter. One display has a fixed emissive configuration and the other adapts its emission to the observer position using head tracking. For a fixed emissive condition, three viewing angle measurements are performed at three positions (center, right and left). Qualified monocular and binocular viewing spaces in front of the display are deduced as well as the best working distance. The imaging system is then positioned at this working distance and crosstalk homogeneity on the entire surface of the display is measured. We show that the crosstalk is generally not optimized on all the surface of the display. Display aspect simulation using viewing angle measurements allows understanding better the origin of those crosstalk variations. Local imperfections like scratches and marks generally increase drastically the crosstalk, demonstrating that cleanliness requirements for this type of display are quite critical.

  9. Display system optics II; Proceedings of the Meeting, Orlando, FL, Mar. 30, 31, 1989

    SciTech Connect

    Assenheim, H.M.

    1989-01-01

    Papers on display system optics are presented covering topics such as human factors and night vision systems flight, a peripheral vision display, cockpit vertical situation displays, a prototype near-IR projection system, the effect of a helmet-mounted display on the operator, radial parallax binocular three-dimensional imaging, telepresence systems, and the cockpit man-machine interface. Additional topics include eye-centered interferometric laser projection, laser filters, thin film technologies in active matrix addressing systems of LCDs, supertwisted nematic LCD geometry with improved response times and characteristics, a full color active-matrix LCD in the cockpit environment, polysilicon active-matrix LCDs for cockpit applications, and a dynamic color model for a liquid crystal shutter display. Other topics include a flat fluorescent lamp for LCD back-lighting, holographic combiner design to obtain uniform symbol brightness at a head-up display video camera, vision restriction devices, passive binarization methods for image display and computer-generated holograms, a prismatic combiner for head-up displays, holographic optical elements, multifunction displays optimized for viewability, and technologies for brighter color CRT displays.

  10. An overview of micro-optical components and system technology: bulk, planar, and thin-film for laser initiated devices

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd

    2010-08-01

    There are a number of attractive micro optical elements or combinations of elements that are currently used or could be employed in optically initiated ordnance systems. When taking a broad-spectrum examination of optically initiated devices, the required key parameters become obviously straightforward for micro optics. Plainly stated, micro optics need to be simple, inexpensive, reliable, robust and compatible within their operational environment. This presentation focuses on the variety of optical elements and components available in the market place today that could be used to realize micro-optical beam shaping and delivery systems for optically initiated devices. A number of micro optical elements will be presented with specific bulk, planar optical and thin film optical devices, such as diffractive optics, micro prisms, axicons, waveguides, micro lenses, beam splitters and gratings. Further descriptions will be presented on the subject of coupling light from a laser beam into a multimode optical fiber. The use of micro optics for collimation of the laser source and conditioning of the laser beam to achieve the highest efficiency and matching the optical fiber NA will be explained. An emphasis on making these optical assemblies compact and rugged will be highlighted.

  11. Real-Time Radiometric Compensation for Optical See-Through Head-Mounted Displays.

    PubMed

    Langlotz, Tobias; Cook, Matthew; Regenbrecht, Holger

    2016-11-01

    Optical see-through head-mounted displays are currently seeing a transition out of research labs towards the consumer-oriented market. However, whilst availability has improved and prices have decreased, the technology has not matured much. Most commercially available optical see-through head mounted displays follow a similar principle and use an optical combiner blending the physical environment with digital information. This approach yields problems as the colors for the overlaid digital information can not be correctly reproduced. The perceived pixel colors are always a result of the displayed pixel color and the color of the current physical environment seen through the head-mounted display. In this paper we present an initial approach for mitigating the effect of color-blending in optical see-through head-mounted displays by introducing a real-time radiometric compensation. Our approach is based on a novel prototype for an optical see-through head-mounted display that allows the capture of the current environment as seen by the user's eye. We present three different algorithms using this prototype to compensate color blending in real-time and with pixel-accuracy. We demonstrate the benefits and performance as well as the results of a user study. We see application for all common Augmented Reality scenarios but also for other areas such as Diminished Reality or supporting color-blind people. PMID:27479973

  12. Optical simulation of quantum algorithms using programmable liquid-crystal displays

    SciTech Connect

    Puentes, Graciana; La Mela, Cecilia; Ledesma, Silvia; Iemmi, Claudio; Paz, Juan Pablo; Saraceno, Marcos

    2004-04-01

    We present a scheme to perform an all optical simulation of quantum algorithms and maps. The main components are lenses to efficiently implement the Fourier transform and programmable liquid-crystal displays to introduce space dependent phase changes on a classical optical beam. We show how to simulate Deutsch-Jozsa and Grover's quantum algorithms using essentially the same optical array programmed in two different ways.

  13. 2D-Visualization of metabolic activity with planar optical chemical sensors (optodes)

    NASA Astrophysics Data System (ADS)

    Meier, R. J.; Liebsch, G.

    2015-12-01

    Microbia plays an outstandingly important role in many hydrologic compartments, such as e.g. the benthic community in sediments, or biologically active microorganisms in the capillary fringe, in ground water, or soil. Oxygen, pH, and CO2 are key factors and indicators for microbial activity. They can be measured using optical chemical sensors. These sensors record changing fluorescence properties of specific indicator dyes. The signals can be measured in a non-contact mode, even through transparent walls, which is important for many lab-experiments. They can measure in closed (transparent) systems, without sampling or intruding into the sample. They do not consume the analytes while measuring, are fully reversible and able to measure in non-stirred solutions. These sensors can be applied as high precision fiberoptic sensors (for profiling), robust sensor spots, or as planar sensors for 2D visualization (imaging). Imaging enables to detect thousands of measurement spots at the same time and generate 2D analyte maps over a region of interest. It allows for comparing different regions within one recorded image, visualizing spatial analyte gradients, or more important to identify hot spots of metabolic activity. We present ready-to-use portable imaging systems for the analytes oxygen, pH, and CO2. They consist of a detector unit, planar sensor foils and a software for easy data recording and evaluation. Sensors foils for various analytes and measurement ranges enable visualizing metabolic activity or analyte changes in the desired range. Dynamics of metabolic activity can be detected in one shot or over long time periods. We demonstrate the potential of this analytical technique by presenting experiments on benthic disturbance-recovery dynamics in sediments and microbial degradation of organic material in the capillary fringe. We think this technique is a new tool to further understand how microbial and geochemical processes are linked in (not solely) hydrologic

  14. The use of optical waveguides in head up display (HUD) applications

    NASA Astrophysics Data System (ADS)

    Homan, Malcolm

    2013-06-01

    The application of optical waveguides to Head Up Displays (HUD) is an enabling technology which solves the critical issues of volume reduction (including cockpit intrusion) and mass reduction in an affordable product which retains the high performance optical capabilities associated with today's generation of digital display based HUDs. Improved operability and pilot comfort is achieved regardless of the installation by virtue of the intrinsic properties of optical waveguides and this has enabled BAE Systems Electronic Systems to develop two distinct product streams for glareshield and overhead HUD installations respectively. This paper addresses the design drivers behind the development of the next generation of Head Up Displays and their compatibility with evolving cockpit architectures and structures. The implementation of large scale optical waveguide combiners capable of matching and exceeding the display performances normally only associated with current digital display sourced HUDs has enabled BAE Systems Electronic Systems to solve the volume and installation challenges of the latest military and civil cockpits with it's LiteHUD® technology. Glareshield mounted waveguide based HUDs are compatible with the trend towards the addition of Large Area Displays (LAD) in place of the traditional multiple Head Down Displays (HDD) within military fast jet cockpits. They use an "indirect view" variant of the display which allows the amalgamation of high resolution digital display devices with the inherently small volume and low mass of the waveguide optics. This is then viewed using the more traditional technology of a conventional HUD combiner. This successful combination of technologies has resulted in the LPHUD product which is specifically designed by BAE Systems Electronic Systems to provide an ultra-low profile HUD which can be installed behind a LAD; still providing the level of performance that is at least equivalent to that of a conventional large volume

  15. A 3D integral imaging optical see-through head-mounted display.

    PubMed

    Hua, Hong; Javidi, Bahram

    2014-06-01

    An optical see-through head-mounted display (OST-HMD), which enables optical superposition of digital information onto the direct view of the physical world and maintains see-through vision to the real world, is a vital component in an augmented reality (AR) system. A key limitation of the state-of-the-art OST-HMD technology is the well-known accommodation-convergence mismatch problem caused by the fact that the image source in most of the existing AR displays is a 2D flat surface located at a fixed distance from the eye. In this paper, we present an innovative approach to OST-HMD designs by combining the recent advancement of freeform optical technology and microscopic integral imaging (micro-InI) method. A micro-InI unit creates a 3D image source for HMD viewing optics, instead of a typical 2D display surface, by reconstructing a miniature 3D scene from a large number of perspective images of the scene. By taking advantage of the emerging freeform optical technology, our approach will result in compact, lightweight, goggle-style AR display that is potentially less vulnerable to the accommodation-convergence discrepancy problem and visual fatigue. A proof-of-concept prototype system is demonstrated, which offers a goggle-like compact form factor, non-obstructive see-through field of view, and true 3D virtual display.

  16. 360-degree three-dimensional flat panel display using holographic optical elements

    NASA Astrophysics Data System (ADS)

    Yabu, Hirofumi; Takeuchi, Yusuke; Yoshimoto, Kayo; Takahashi, Hideya; Yamada, Kenji

    2015-03-01

    We proposed the 360-degree 3D display system which is composed of a flat panel display, a light control film, and holographic optical element (HOE). The HOE is a diffraction grating which is made by holography technique. HOE lens can be produced on the thin polygonal glass plate. The light control film and HOE lenses are used to control the direction of light from the flat panel display in our system. The size of proposed system depends on the size of the flat panel display is because other parts of proposed system are thin and placed on the screen of the flat panel display. HOE lenses and a light control film are used to control lights from multiple pixels of a flat panel display to multiple viewpoints. To display large 3D images and to increase viewpoints, we divided parallax images into striped images and distributed them on the display for multiple viewpoints. Therefore, observers can see the large 3D image around the system. To verify the effectiveness of the proposed system, we made the experimental system. To verify the effectiveness of the proposed system, we constructed the part of the proposed system. The experimental system is composed of the liquid crystal display (LCD), prototype HOE lenses, and light control films. We confirmed that experimental system can display two images to different viewpoints. This paper describes the configuration of the proposed system, and also describes the experimental result.

  17. A flexible modeling and calibration for the optical triangulation probe using a planar pattern

    NASA Astrophysics Data System (ADS)

    Lin, Yimin; Lu, Naiguang; Lou, Xiaoping

    2013-12-01

    The optical triangulation probe (OTP), which consists of a light spot projector and a camera, has found widespread applications for three-dimensional (3D) measurement and quality control of products in the industrial manufacturing. The OTP calibration is an extremely important issue, since the performances such as high accuracy and repeatability are crucially depended on the calibration results. This paper presents a flexible approach for modeling and calibration of the OTP, which only requires planar patterns observed from a few different orientations and light spots projected on the planes as well. For the calibration procedure, the structure parameters of the OTP are calculated, such as the camera extrinsic and intrinsic parameters which include the coefficients of the lens distortion, and the directional equation for the light axis of the projector. For the measuring procedure, the formulations of 3D computation are concisely described using the calibration results. Experimental tests of the real system confirm the suitable accuracy and repeatability. Furthermore, the technique proposed here is easily generalized for the OTP integration in robot arms or Coordinate Measuring Machines (CMMs).

  18. Holographic display for see-through augmented reality using mirror-lens holographic optical element.

    PubMed

    Li, Gang; Lee, Dukho; Jeong, Youngmo; Cho, Jaebum; Lee, Byoungho

    2016-06-01

    A holographic display system for realizing a three-dimensional optical see-through augmented reality (AR) is proposed. A multi-functional holographic optical element (HOE), which simultaneously performs the optical functions of a mirror and a lens, is adopted in the system. In the proposed method, a mirror that is used to guide the light source into a reflection type spatial light modulator (SLM) and a lens that functions as Fourier transforming optics are recorded on a single holographic recording material by utilizing an angular multiplexing technique of volume hologram. The HOE is transparent and performs the optical functions just for Bragg matched condition. Therefore, the real-world scenes that are usually distorted by a Fourier lens or an SLM in the conventional holographic display can be observed without visual disturbance by using the proposed mirror-lens HOE (MLHOE). Furthermore, to achieve an optimized optical recording condition of the MLHOE, the optical characteristics of the holographic material are measured. The proposed holographic AR display system is verified experimentally. PMID:27244395

  19. Hybrid diffractive-refractive optical system design of head-mounted display for augmented reality

    NASA Astrophysics Data System (ADS)

    Zhang, Huijuan

    2005-02-01

    An optical see-through head-mounted display for augmented reality is designed in this paper. Considering the factors, such as the optical performance, the utilization ratios of energy of real world and virtual world, the feelings of users when he wears it and etc., a structure of the optical see-through is adopted. With the characteristics of the particular negative dispersive and the power of realizing random-phase modulation, the diffractive surface is helpful for optical system of reducing weight, simplifying structure and etc., and a diffractive surface is introduced in our optical system. The optical system with 25 mm eye relief, 12 mm exit pupil and 20° (H)x15.4° (V) field-of-view is designed. The utilization ratios of energy of real world and virtual world are 1/4 and 1/2, respectively. The angular resolution of display is 0.27 mrad and it less than that of the minimum of human eyes. The diameter of this system is less than 46mm, and it applies the binocular. This diffractive-refractive optical system of see-through head-mounted display not only satisfies the demands of user"s factors in structure, but also with high resolution, very small chromatic aberration and distortion, and satisfies the need of augmented reality. In the end, the parameters of the diffractive surface are discussed.

  20. Optical waveguide technology and its application in head-mounted displays

    NASA Astrophysics Data System (ADS)

    Cameron, Alex

    2012-06-01

    Applying optical waveguide technology to head mounted display (HMD) solutions has the key goal of providing the user with improved tactical situational awareness by providing information and imagery in an easy to use form which also maintains compatibility with current night vision devices and also enables the integration of future night vision devices. The benefits of waveguide technology in HMDs have seen a number of alternative waveguide display technologies and configurations emerge for Head mounted Display applications. BAE System's presented one such technology in 2009 [1] and this is now in production for a range of Helmet Mounted Display products. This paper outlines the key design drivers for aviators Helmet Mounted Displays, provides an update of holographic Optical Waveguide Technology and its maturation into compact, lightweight Helmet Mounted Displays products for aviation and non-aviation applications. Waveguide displays have proved too be a radical enabling technology which allows higher performance display devices solutions to be created in a revolutionary way. It has also provided the user with see through daylight readable displays, offering the combination of very large eye box and excellent real world transmission in a compact format. Holographic Optical Waveguide is an optical technology which reduces size and mass whilst liberating the designer from many of the constraints inherent in conventional optical solutions. This technology is basically a way of moving light without the need for a complex arrangement of conventional lenses. BAE Systems has exploited this technology in the Q-SightTM family of scalable Helmet Mounted Displays; allowing the addition of capability as it is required in a flexible, low-cost way The basic monocular Q-SightTM architecture has been extended to offer wide field of view, monochrome and full colour HMD solution for rotary wing, fast jet and solider system applications. In its basic form Q-SightTM now offers plug

  1. Toward photostable multiplex analyte detection on a single mode planar optical waveguide

    SciTech Connect

    Mukundan, Harshini; Xei, Hongshi; Anderson, Aaron S; Grace, Wynne K; Martinez, Jennifer S; Swanson, Basil

    2009-01-01

    We have developed a waveguide-based optical biosensor for the sensitive and specific detection of biomarkers associated with disease. Our technology combines the superior optical properties of single-mode planar waveguides, the robust nature of functionalized self-assembled monolayer sensing films and the specificity of fluorescence sandwich immunoassays to detect biomarkers in complex biological samples such as serum, urine and sputum. We have previously reported the adaptation of our technology to the detection of biomarkers associated with breast cancer and anthrax. However, these approaches primarily used phospholipid bilayers as the functional film and organic dyes (ex: AlexaFluors) as the fluorescence reporter. Organic dyes are easily photodegraded and are not amenable to multiplexing because of their narrow Stokes' shift. Here we have developed strategies for conjugation of the detector antibodies with quantum dots for use in a multiplex detection platform. We have previously evaluated dihydroxylipoic acid quantum dots for the detection of a breast cancer biomarker. In this manuscript, we investigate the detection of the Bacillus anthracis protective antigen using antibodies conjugated with polymer-coated quantum dots. Kinetics of binding on the waveguide-based biosensor is reported. We compare the sensitivity of quantum dot labeled antibodies to those labeled with AlexaFluor and demonstrate the photostability of the former in our assay platform. In addition, we compare sulfydryl labeling of the antibody in the hinge region to that of nonspecific amine labeling. This is but the first step in developing a multiplex assay for such biomarkers on our waveguide platform.

  2. Toward photostable multiplex analyte detection on a single mode planar optical waveguide

    NASA Astrophysics Data System (ADS)

    Mukundan, Harshini; Xie, Hongzhi; Anderson, Aaron; Grace, W. Kevin; Martinez, Jennifer S.; Swanson, Basil

    2009-02-01

    We have developed a waveguide-based optical biosensor for the sensitive and specific detection of biomarkers associated with disease. Our technology combines the superior optical properties of single-mode planar waveguides, the robust nature of functionalized self-assembled monolayer sensing films and the specificity of fluorescence sandwich immunoassays to detect biomarkers in complex biological samples such as serum, urine and sputum. We have previously reported the adaptation of our technology to the detection of biomarkers associated with breast cancer and anthrax. However, these approaches primarily used phospholipid bilayers as the functional film and organic dyes (ex: AlexaFluors) as the fluorescence reporter. Organic dyes are easily photodegraded and are not amenable to multiplexing because of their narrow Stokes' shift. Here we have developed strategies for conjugation of the detector antibodies with quantum dots for use in a multiplex detection platform. We have previously evaluated dihydroxylipoic acid quantum dots for the detection of a breast cancer biomarker. In this manuscript, we investigate the detection of the Bacillus anthracis protective antigen using antibodies conjugated with polymer-coated quantum dots. Kinetics of binding on the waveguide-based biosensor is reported. We compare the sensitivity of quantum dot labeled antibodies to those labeled with AlexaFluor and demonstrate the photostability of the former in our assay platform. In addition, we compare sulfydryl labeling of the antibody in the hinge region to that of nonspecific amine labeling. This is but the first step in developing a multiplex assay for such biomarkers on our waveguide platform.

  3. Image Quality Analysis and Optical Performance Requirement for Micromirror-Based Lissajous Scanning Displays

    PubMed Central

    Du, Weiqi; Zhang, Gaofei; Ye, Liangchen

    2016-01-01

    Micromirror-based scanning displays have been the focus of a variety of applications. Lissajous scanning displays have advantages in terms of power consumption; however, the image quality is not good enough. The main reason for this is the varying size and the contrast ratio of pixels at different positions of the image. In this paper, the Lissajous scanning trajectory is analyzed and a new method based on the diamond pixel is introduced to Lissajous displays. The optical performance of micromirrors is discussed. A display system demonstrator is built, and tests of resolution and contrast ratio are conducted. The test results show that the new Lissajous scanning method can be used in displays by using diamond pixels and image quality remains stable at different positions. PMID:27187390

  4. Computed tomographic angiography of the superficial cerebral venous anastomosis based on volume rendering, multi-planar reconstruction, and integral imaging display.

    PubMed

    Fang, Qiong; Chen, Feng; Jiang, Anhong; Huang, Yanping; Deng, Xuefei

    2015-12-01

    As damage to the superficial cerebral venous anastomosis may create catastrophic complications even after successful surgery, it is important to visualize and determine the normal features of the venous anastomosis with computed tomographic angiography. A total of 90 patients underwent a 64-detector row helical CT scan of head. The superficial cerebral venous anastomosis was reconstructed by volume rendering, multi-planar reconstruction, and integral display algorithm. In particular, we examined the vein of Trolard, the vein of Labbe, and the vein of Sylvian, in order to analyze the venous anastomosis. The superficial cerebral venous anastomosis varied across different individuals, and in this study, six types of anastomosis were found. In 28 % of patients, no venous anastomosis was found in the unilateral cerebral hemisphere. The display rate of the vein of Trolard, the vein of Labbe, and the vein of Sylvian in contributing to venous anastomosis was 70, 80, and 91 %, respectively. The number of vein of Trolard and vein of Labbe on the left side was greater than that of those on the right side. We implemented the 64-detector row helical CT as a rapid and noninvasive method to investigate the superficial cerebral venous anastomosis in our group of patients. We performed substantial image processing for the visualization of the superficial cerebral venous anastomosis; this would not only enable the early diagnosis of cerebral venous disease, but also protect the cerebral vein during neurosurgical intervention.

  5. Fort Meade demonstration test LEDS in freezer rooms, fiber optics in display cases

    SciTech Connect

    Parker, Steven; Parker, Graham B.

    2008-10-25

    Demonstration projects at Fort George G. Meade, MD, substituted LED lighting for incandescent bulbs in commisary wal-in freezers and fiber optic lighting in reach-in display cases. The goal was to reduce energy consumption and the results were positive. Journal article published in Public Works Digest

  6. Modified Method of Increasing of Reconstruction Quality of Diffractive Optical Elements Displayed with LC SLM

    NASA Astrophysics Data System (ADS)

    Krasnov, V. V.; Cheremkhin, P. A.; Erkin, I. Yu.; Evtikhiev, N. N.; Starikov, R. S.; Starikov, S. N.

    Modified method of increasing of reconstruction quality of diffractive optical elements (DOE) displayed with liquid crystal (LC) spatial light modulators (SLM) is presented. Method is based on optimization of DOE synthesized with conventional method by application of direct search with random trajectory method while taking into account LC SLM phase fluctuations. Reduction of synthesis error up to 88% is achieved.

  7. A high-resolution optical see-through head-mounted display with eyetracking capability.

    PubMed

    Hua, Hong; Hu, Xinda; Gao, Chunyu

    2013-12-16

    A head-mounted display system with fully-integrated eyetracking capability offers multi-fold benefits, not only to fundamental scientific research but also to emerging applications of such technology. A key limitation of the state-of-the-art eyetracked head-mounted display (ET-HMD) technology is the lack of compactness and portability. In this paper, we present an innovative design of a high resolution optical see-through ET-HMD system based on freeform optical technology. A prototype system is demonstrated, which offers a goggle-like compact form factor, non-obstructive see-through field of view and true high-definition image resolution for the virtual display. The see-through view, via the combination of a freeform prism and corrector, achieved better than 0.5 arc minute of angular resolution for the central region of approximately 40-degrees to ensure minimal impacts on the see-through vision of an HMD user.

  8. Psychophysical Research in Development of a Fiber-optic Helmet Mounted Display

    NASA Technical Reports Server (NTRS)

    Kruk, R. V.; Longridge, T. M.

    1984-01-01

    The Fiber Optic Helmet Mounted Display (FOHMD) was conceived as an innovative solution to existing flight simulator display deficiencies. An initial (breadboard) version of the system was fabricated to permit experimentation which would help define design requirements for a more refined engineering prototype. A series of visual/human factors studies are being conducted at the USAF Human Resources Laboratory (AFHRL) Operations Training Division, Williams AFB, Arizona to determine the optimum fit of human observer operating characteristics and fiber optic helmet mounted display technology. Pilot performance within a variety of high resolution insert/binocular overlap combinations is being assessed in two classes of environment. The first two of four studies planned incorporate an air-to-air combat environment, whereas the second two studies will use a low level environment with air to ground weapons delivery.

  9. Automatic calibration of an optical see-through head-mounted display for augmented reality applications in computer-assisted interventions

    NASA Astrophysics Data System (ADS)

    Figl, Michael; Ede, Christopher; Birkfellner, Wolfgang; Hummel, Johann; Seemann, Rudolf; Bergmann, Helmar

    2004-05-01

    We are developing an optical see through head mounted display in which preoperative planning data provided by a computer aided surgery system is overlaid to the optical image of the patient. In order to cope with head movements of the surgeon the device has to be calibrated for a wide zoom and focus range. For such a calibration accurate and robust localization of a huge amount of calibration points is of utmost importance. Because of the negligible radial distortion of the optics in our device, we were able to use projective invariants for stable detection of the calibration fiducials on a planar grid. The pattern at the planar grid was designed using a different cross ratio for four consecutive points in x respectively y direction. For automated image processing we put a CCD camera behind the eye piece of the device. The resulting image was thresholded and segmented, after deleting the artefacts a Sobel edge detector was applied and the image was Hough transformed to detect the x and y axes. Then the world coordinates of fiducial points on the grid could be detected. A series of six camera calibrations with two zoom settings was done. The mean values of the errors for the two calibrations were 0.08 mm respectively 0.3 mm.

  10. Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography

    PubMed Central

    Shen, Liangbo; Carrasco-Zevallos, Oscar; Keller, Brenton; Viehland, Christian; Waterman, Gar; Hahn, Paul S.; Kuo, Anthony N.; Toth, Cynthia A.; Izatt, Joseph A.

    2016-01-01

    Intra-operative optical coherence tomography (OCT) requires a display technology which allows surgeons to visualize OCT data without disrupting surgery. Previous research and commercial intrasurgical OCT systems have integrated heads-up display (HUD) systems into surgical microscopes to provide monoscopic viewing of OCT data through one microscope ocular. To take full advantage of our previously reported real-time volumetric microscope-integrated OCT (4D MIOCT) system, we describe a stereoscopic HUD which projects a stereo pair of OCT volume renderings into both oculars simultaneously. The stereoscopic HUD uses a novel optical design employing spatial multiplexing to project dual OCT volume renderings utilizing a single micro-display. The optical performance of the surgical microscope with the HUD was quantitatively characterized and the addition of the HUD was found not to substantially effect the resolution, field of view, or pincushion distortion of the operating microscope. In a pilot depth perception subject study, five ophthalmic surgeons completed a pre-set dexterity task with 50.0% (SD = 37.3%) higher success rate and in 35.0% (SD = 24.8%) less time on average with stereoscopic OCT vision compared to monoscopic OCT vision. Preliminary experience using the HUD in 40 vitreo-retinal human surgeries by five ophthalmic surgeons is reported, in which all surgeons reported that the HUD did not alter their normal view of surgery and that live surgical maneuvers were readily visible in displayed stereoscopic OCT volumes. PMID:27231616

  11. Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography.

    PubMed

    Shen, Liangbo; Carrasco-Zevallos, Oscar; Keller, Brenton; Viehland, Christian; Waterman, Gar; Hahn, Paul S; Kuo, Anthony N; Toth, Cynthia A; Izatt, Joseph A

    2016-05-01

    Intra-operative optical coherence tomography (OCT) requires a display technology which allows surgeons to visualize OCT data without disrupting surgery. Previous research and commercial intrasurgical OCT systems have integrated heads-up display (HUD) systems into surgical microscopes to provide monoscopic viewing of OCT data through one microscope ocular. To take full advantage of our previously reported real-time volumetric microscope-integrated OCT (4D MIOCT) system, we describe a stereoscopic HUD which projects a stereo pair of OCT volume renderings into both oculars simultaneously. The stereoscopic HUD uses a novel optical design employing spatial multiplexing to project dual OCT volume renderings utilizing a single micro-display. The optical performance of the surgical microscope with the HUD was quantitatively characterized and the addition of the HUD was found not to substantially effect the resolution, field of view, or pincushion distortion of the operating microscope. In a pilot depth perception subject study, five ophthalmic surgeons completed a pre-set dexterity task with 50.0% (SD = 37.3%) higher success rate and in 35.0% (SD = 24.8%) less time on average with stereoscopic OCT vision compared to monoscopic OCT vision. Preliminary experience using the HUD in 40 vitreo-retinal human surgeries by five ophthalmic surgeons is reported, in which all surgeons reported that the HUD did not alter their normal view of surgery and that live surgical maneuvers were readily visible in displayed stereoscopic OCT volumes. PMID:27231616

  12. Spatial optical modulator (SOM): high-density diffractive laser projection display

    NASA Astrophysics Data System (ADS)

    Yun, SangKyeong; Song, JongHyeong; Yeo, InJae; Choi, YoonJoon; Yurlov, Victor; An, SeungDo; Park, HeungWoo; Yang, HaengSeok; Lee, YeongGyu; Han, KyuBum; Shyshkin, Ihar; Lapchuk, Anatoliy; Oh, KwanYoung; Ryu, SeungWon; Jang, JaeWook; Park, ChangSu; Kim, ChunGi; Kim, SunKi; Kim, EungJu; Woo, KiSuk; Yang, JeongSuong; Kim, EuiJoong; Kim, JooHong; Byun, SungHo; Lee, SeungWoo; Lim, OhkKun; Cheong, JongPil; Hwang, YoungNam; Byun, GiYoung; Kyoung, JeHong; Yoon, SangKee; Lee, JaeKwang; Lee, TaeWon; Hong, SeokKee; Hong, YoonShik; Park, DongHyun; Kang, JungChul; Shin, WooChul; Lee, SungIl; Oh, SungKyung; Song, ByungKi; Kim, HeeYeoun; Koh, ChongMann; Ryu, YungHo; Lee, HyunKee; Baek, YoungKi

    2007-02-01

    A new type of diffractive spatial optical modulators, named SOM, has been developed by Samsung Electro-Mechanics for laser projection display. It exhibit inherent advantages of fast response time and high-performance light modulation, suitable for high quality embedded laser projection displays. The calculated efficiency and contrast ratio are 75 % and 800:1 respectively in case of 0 th order, 67 % and 1000:1 respectively in case of +/-1st order. The response time is as fast as 0.7 μs. Also we get the displacement of 400 nm enough to display full color with single panel in VGA format, as being 10 V driven. Optical module with VGA was successfully demonstrated for its potential applications in mobile laser projection display such as cellular phone, digital still camera and note PC product. Electrical power consumption is less than 2 W, volume is less than 13 cc. Brightness is enough to watch TV and movie in the open air, being variable up to 6 lm. Even if it's optimal diagonal image size is 10 inch, image quality does not deteriorate in the range of 5 to 50 inch because of the merit of focus-free. Due to 100 % fill factor, the image is seamless so as to be unpleasant to see the every pixel's partition. High speed of response time can make full color display with 24-bit gray scale and cause no scan line artifact, better than any other devices.

  13. Slim-structured electro-floating display system based on the polarization-controlled optical path.

    PubMed

    Kim, Seung-Cheol; Park, Seong-Jin; Kim, Eun-Soo

    2016-04-18

    A new slim-type electro-floating display system based on the polarization-controlled optical path is proposed. In the proposed system, the optical path between the input plane and Fresnel lens can be made recursive by repetitive transmission and reflection of the input beam by employing a new polarization-based optical path controller (P-OPC), which is composed of two quaterwave plates, a half mirror and a reflective polarizer. Based on this P-OPC, the absolute optical path between the input plane and Fresnel lens, virtually representing the physical depth of the display system, can be reduced down to one third of its original path, which results in the same rate of decrease in the volume size of the display system. The operational principle of the proposed system is analyzed with the Jones matrix. In addition, to confirm the feasibility of the proposed system, experiments with test prototypes are carried out, and the results are comparatively discussed with those of the conventional system.

  14. Optical see-through head-mounted display with occlusion capability

    NASA Astrophysics Data System (ADS)

    Gao, Chunyu; Lin, Yuxiang; Hua, Hong

    2013-05-01

    Lack of mutual occlusion capability between computer-rendered and real objects is one of fundamental problems for most existing optical see-through head-mounted displays (OST-HMD). Without the proper occlusion management, the virtual view through an OST-HMD appears "ghost-like", floating in the real world. To address this challenge, we have developed an innovative optical scheme that uniquely combines the eyepiece and see-through relay optics to achieve an occlusion-capable OST-HMD system with a very compelling form factor and high optical performances. The proposed display system was based on emerging freeform optical design technologies and was designed for highly efficient liquid crystal on silicon (LCoS) type spatial light modulator (SLM) and bright Organic LED (OLED) microdisplay. The proposed display technology was capable of working in both indoor and outdoor environments. Our current design offered a 1280x1024 color resolution based on 0.8" microdisplay and SLM. The MTF values for the majority of the fields at the cutoff frequency of 40lps/mm, which is determined by the pixel size of the microdisplay, are better than 15%. The design achieved a diagonal FOV of 40 degrees, 31.7 degrees horizontally and 25.6 degrees vertically, an exit pupil diameter of 8mm (non-vignetted), and an eye clearance of 18mm. The optics weights about 20 grams per eye. Our proposed occlusion capable OST-HMD system can easily find myriads of applications in various military and commercial sectors such as military training, gaming and entertainment.

  15. Restocking the optical designers' toolbox for next-generation wearable displays (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Kress, Bernard C.

    2015-09-01

    Three years ago, industry and consumers learned that there was more to Head Mounted Displays (HMDs) than the long-lasting but steady market for defense or the market for gadget video player headsets: the first versions of Smart Glasses were introduced to the public. Since then, most major consumer electronics companies unveiled their own versions of Connected Glasses, Smart Glasses or Smart Eyewear, AR (Augmented Reality) and VR (Virtual Reality) headsets. This rush resulted in the build-up of a formidable zoo of optical technologies, each claiming to be best suited for the task on hand. Today, the question is not so much anymore "will the Smart Glass market happen?" but rather "which optical technologies will be best fitted for the various declinations of the existing wearable display market," one of the main declination being the Smart Glasses market.

  16. Eyetracked optical see-through head-mounted display as an AAC device

    NASA Astrophysics Data System (ADS)

    Hua, Hong; Hu, Xinda; Gao, Chunyu; Qin, Xiao

    2014-06-01

    An eye-tracked head-mounted display (ET-HMD) system is able to display virtual images as a classical headmounted display (HMD) does, while additionally tracking the gaze direction of the user. An HMD with fullyintegrated eyetracking capability offers multi-fold benefits, not only to fundamental scientific research but also to emerging applications of such technology. A key limitation of the state-of-the-art ET-HMD technology is the lack of compactness and portability. In this paper, we present an innovative design of a high resolution optical see-through ET-HMD system based on freeform optical technology. A prototype system is demonstrated, which offers a goggle-like compact form factor, non-obstructive see-through field of view, true high-definition image resolution for the virtual display, and better than 0.5 arc minute of angular resolution for the see-through view. We will demonstrate the application of the technology as an assistive and augmentative communication (AAC) device.

  17. Stereoscopic 3D display with dynamic optical correction for recovering from asthenopia

    NASA Astrophysics Data System (ADS)

    Shibata, Takashi; Kawai, Takashi; Otsuki, Masaki; Miyake, Nobuyuki; Yoshihara, Yoshihiro; Iwasaki, Tsuneto

    2005-03-01

    The purpose of this study was to consider a practical application of a newly developed stereoscopic 3-D display that solves the problem of discrepancy between accommodation and convergence. The display uses dynamic optical correction to reduce the discrepancy, and can present images as if they are actually remote objects. The authors thought the display may assist in recovery from asthenopia, which is often caused when the eyes focus on a nearby object for a long time, such as in VDT (Visual Display Terminal) work. In general, recovery from asthenopia, and especially accommodative asthenopia, is achieved by focusing on distant objects. In order to verify this hypothesis, the authors performed visual acuity tests using Landolt rings before and after presenting stereoscopic 3-D images, and evaluated the degree of recovery from asthenopia. The experiment led to three main conclusions: (1) Visual acuity rose after viewing stereoscopic 3-D images on the developed display. (2) Recovery from asthenopia was particularly effective for the dominant eye in comparison with the other eye. (3) Interviews with the subjects indicated that the Landolt rings were particularly clear after viewing the stereoscopic 3-D images.

  18. Examination of asthenopia recovery using stereoscopic 3D display with dynamic optical correction

    NASA Astrophysics Data System (ADS)

    Shibata, Takashi; Kawai, Takashi; Ohta, Keiji; Lee, JaeLin; Otsuki, Masaki; Miyake, Nobuyuki; Yoshihara, Yoshihiro; Iwasaki, Tsuneto

    2006-02-01

    A common cause of asthenopia is viewing objects from a short distance, as is the case when working at a VDT (Visual Display Terminal). In general, recovery from asthenopia, especially accommodative asthenopia, is aided by looking into the distance. The authors have developed a stereoscopic 3-D display with dynamic optical correction that may reduce asthenopia. The display does this by reducing the discrepancy between accommodation and convergence, thereby presenting images as if they were actually in the distance. The results of visual acuity tests given before and after presenting stereoscopic 3-D images with this display show a tendency towards less asthenopia. In this study, the authors developed a refraction feedback function that makes the viewer's distance vision more effective when viewing stereoscopic 3-D images on the this display. Using this function, refraction is fed back during viewing and the viewer gradually acquires distance vision. The results of the study suggest that stereoscopic 3-D images are more effective than 2-D images for recovery from asthenopia.

  19. Optical effects of F-16 Canopy-HUD (Head-Up Display) integration

    NASA Astrophysics Data System (ADS)

    Task, H. L.

    1983-12-01

    The F-16 heads-up display (HUD) provides the pilot with visual information in symbology form that is overlayed on the outside world scene in the forward viewing direction. This super-position of HUD symbology and outside world scene is done by using an optical combiner (beamsplitter) which is part of the HUD optical system. One of the critical items of information that is displayed on the HUD is the aiming reticle that is used for air-to-air and air-to-ground weapon aiming. In order to be effective, it is essential that the aiming reticle be accurately boresighted to the weapon system. This requires a careful integration of the optical characteristics of the HUD and the aircraft canopy. There are several optical parameters that can affect target acquisition and aiming accuracy that involve the canopy, the HUD, and interactions between the two. The primary parameter that affects aiming accuracy is angular deviation due to the windscreen and/or the HUD.

  20. Image formation of holographic three-dimensional display based on spatial light modulator in paraxial optical systems

    NASA Astrophysics Data System (ADS)

    Li, Junchang; Lin, Yu-Chih; Tu, Han-Yen; Gui, Jinbin; Li, Chongguang; Lou, Yuli; Cheng, Chau-Jern

    2015-10-01

    This work describes the image formation and properties of holographic three-dimensional (3-D) display based on spatial light modulators (SLMs) combined with optical imaging systems. Existing pixelated SLMs with periodic mesh structures affect the holographic reconstruction and display properties. According to a holographic 3-D display architecture based on SLM in paraxial optical systems, this study applied the ray matrix optics and scalar diffraction theory to regard the light wave emitting from the holographic plane to the image plane as an optical system composed of four matrix elements. The image quality and depth of field (DOF) of the holographic 3-D display system are investigated, and the relationship between the impulse response and the matrix elements of the holographic imaging system is derived. In addition, the imaging properties and DOF are explored and verified through optical experimentation.

  1. A novel method for correction of temporally- and spatially-variant optical distortion in planar particle image velocimetry

    DOE PAGES

    Zha, Kan; Busch, Stephen; Park, Cheolwoong; Miles, Paul C.

    2016-06-24

    In-cylinder flow measurements are necessary to gain a fundamental understanding of swirl-supported, light-duty Diesel engine processes for high thermal efficiency and low emissions. Planar particle image velocimetry (PIV) can be used for non-intrusive, in situ measurement of swirl-plane velocity fields through a transparent piston. In order to keep the flow unchanged from all-metal engine operation, the geometry of the transparent piston must adapt the production-intent metal piston geometry. As a result, a temporally- and spatially-variant optical distortion is introduced to the particle images. Here, to ensure reliable measurement of particle displacements, this work documents a systematic exploration of optical distortionmore » quantification and a hybrid back-projection procedure that combines ray-tracing-based geometric and in situ manual back-projection approaches.« less

  2. Planar-waveguide external cavity laser stabilization for an optical link with 10(-19) frequency stability.

    PubMed

    Clivati, Cecilia; Mura, Alberto; Calonico, Davide; Levi, Filippo; Costanzo, Giovanni A; Calosso, Claudio E; Godone, Aldo

    2011-12-01

    We stabilized the frequency of a compact planar-waveguide external cavity laser (ECL) on a Fabry-Perot cavity (FPC) through a Pound-Drever-Hall scheme. The residual frequency stability of the ECL is 10(-14), comparable to the stability achievable with a fiber laser (FL) locked to an FPC through the same scheme. We set up an optical link of 100 km, based on fiber spools, that reaches 10(-19) relative stability, and we show that its performances using the ECL or FL are comparable. Thus ECLs could serve as an excellent replacement for FLs in optical links where cost-effectiveness and robustness are important considerations. PMID:23443694

  3. Advanced rotorcraft helmet-mounted display sighting system (HMDSS) optical distortion correction methodology

    NASA Astrophysics Data System (ADS)

    Hebson, Robert T.; Lee, Louie

    2002-08-01

    Helmet Mounted Displays (HMDs) typically utilize off axis optical systems that result in distorted images. In order to minimize the weight on the pilot's head, a pixilated display, such as an Active Matrix liquid Crystal Display (AMLCD), is utilized as the imaging source. Pixelated displays based on AMLCDs cannot correct distortions or perform spatial transformations as easily as an analog CRT-based systems using electron beam deflection. An advanced rotorcraft HMDSS is a digital system where correcting the distortion within the digital domain is desired to eliminate the inaccuracies of converting to analog, correcting the distortion and converting back to digital. Other system requirements necessitate that the input video be rescaled to provide the proper image to the optical system in order to have the FLIR imagery overlay the real world as the pilot looks through the canopy. To optimize image resolution with minimum sensor size, the FLIR system scans in column mode. As this is not compatible with conventional AMLCD scanning, the FLIR video data must be converted to a row scan. This function, which normally results in additional frame delay, will also be described, together with methods for reducing the latency. The physical constrains of the helmet and the desire to use identical AMLCD devices meant that the devices are rotated between sides of the helmet. This rotation requires that the video image be scanned horizontally and vertically flipped creating another complexity in the design. Requirements for a helmet mounted image intensified television camera to be displayed as an image by itself or overlaid with symbology provided from external video creates additional complexity for distortion correction within the optical chain and will be discussed in this paper. All of these modes require that the video be manipulated in varying degrees of complexity. The enabling technology described in this paper is a complex integrated circuit that allows the user to

  4. Semi-parametric color reproduction method for optical see-through head-mounted displays.

    PubMed

    Itoh, Yuta; Dzitsiuk, Maksym; Amano, Toshiyuki; Klinker, Gudrun

    2015-11-01

    The fundamental issues in Augmented Reality (AR) are on how to naturally mediate the reality with virtual content as seen by users. In AR applications with Optical See-Through Head-Mounted Displays (OST-HMD), the issues often raise the problem of rendering color on the OST-HMD consistently to input colors. However, due to various display constraints and eye properties, it is still a challenging task to indistinguishably reproduce the colors on OST-HMDs. An approach to solve this problem is to pre-process the input color so that a user perceives the output color on the display to be the same as the input. We propose a color calibration method for OST-HMDs. We start from modeling the physical optics in the rendering and perception process between the HMD and the eye. We treat the color distortion as a semi-parametric model which separates the non-linear color distortion and the linear color shift. We demonstrate that calibrated images regain their original appearance on two OST-HMD setups with both synthetic and real datasets. Furthermore, we analyze the limitations of the proposed method and remaining problems of the color reproduction in OST-HMDs. We then discuss how to realize more practical color reproduction methods for future HMD-eye system.

  5. Goldstone mode of optical parametric oscillators in planar semiconductor microcavities in the strong-coupling regime

    SciTech Connect

    Wouters, Michiel; Carusotto, Iacopo

    2007-10-15

    We propose an experimental setup to probe the low-lying excitation modes of a parametrically oscillating planar cavity, in particular the soft Goldstone mode which appears as a consequence of the spontaneously broken U(1) symmetry of signal-idler phase rotations. A strong and narrow peak corresponding to the Goldstone mode is identified in the transmission spectrum of a weak probe beam incident on the cavity. When the U(1) symmetry is explicitly broken by an additional laser beam pinning the signal-idler phase, a gap opens in the dispersion and the Goldstone peak is dramatically suppressed. Quantitative predictions are given for the case of semiconductor planar cavities in the strong exciton-photon coupling regime.

  6. Giant Nonlinear Optical Activity of Achiral Origin in Planar Metasurfaces with Quadratic and Cubic Nonlinearities.

    PubMed

    Chen, Shumei; Zeuner, Franziska; Weismann, Martin; Reineke, Bernhard; Li, Guixin; Valev, Ventsislav Kolev; Cheah, Kok Wai; Panoiu, Nicolae Coriolan; Zentgraf, Thomas; Zhang, Shuang

    2016-04-20

    3D chirality is shown to be unnecessary for introducing strong circular dichroism for harmonic generations. Specifically, near-unity circular dichroism for both second-harmonic generation and third-harmonic generations is demonstrated on suitably designed ultrathin plasmonic metasurfaces with only 2D planar chirality. The study opens up new routes for designing chip-type biosensing platform, which may allow for highly sensitive detection of bio- and chemical molecules with weak chirality.

  7. Giant Nonlinear Optical Activity of Achiral Origin in Planar Metasurfaces with Quadratic and Cubic Nonlinearities.

    PubMed

    Chen, Shumei; Zeuner, Franziska; Weismann, Martin; Reineke, Bernhard; Li, Guixin; Valev, Ventsislav Kolev; Cheah, Kok Wai; Panoiu, Nicolae Coriolan; Zentgraf, Thomas; Zhang, Shuang

    2016-04-20

    3D chirality is shown to be unnecessary for introducing strong circular dichroism for harmonic generations. Specifically, near-unity circular dichroism for both second-harmonic generation and third-harmonic generations is demonstrated on suitably designed ultrathin plasmonic metasurfaces with only 2D planar chirality. The study opens up new routes for designing chip-type biosensing platform, which may allow for highly sensitive detection of bio- and chemical molecules with weak chirality. PMID:26914148

  8. Ultra-fast displaying Spectral Domain Optical Doppler Tomography system using a Graphics Processing Unit.

    PubMed

    Jeong, Hyosang; Cho, Nam Hyun; Jung, Unsang; Lee, Changho; Kim, Jeong-Yeon; Kim, Jeehyun

    2012-01-01

    We demonstrate an ultrafast displaying Spectral Domain Optical Doppler Tomography system using Graphics Processing Unit (GPU) computing. The calculation of FFT and the Doppler frequency shift is accelerated by the GPU. Our system can display processed OCT and ODT images simultaneously in real time at 120 fps for 1,024 pixels × 512 lateral A-scans. The computing time for the Doppler information was dependent on the size of the moving average window, but with a window size of 32 pixels the ODT computation time is only 8.3 ms, which is comparable to the data acquisition time. Also the phase noise decreases significantly with the window size. Since the performance of a real-time display for OCT/ODT is very important for clinical applications that need immediate diagnosis for screening or biopsy. Intraoperative surgery can take much benefit from the real-time display flow rate information from the technology. Moreover, the GPU is an attractive tool for clinical and commercial systems for functional OCT features as well. PMID:22969328

  9. Ultra-fast displaying Spectral Domain Optical Doppler Tomography system using a Graphics Processing Unit.

    PubMed

    Jeong, Hyosang; Cho, Nam Hyun; Jung, Unsang; Lee, Changho; Kim, Jeong-Yeon; Kim, Jeehyun

    2012-01-01

    We demonstrate an ultrafast displaying Spectral Domain Optical Doppler Tomography system using Graphics Processing Unit (GPU) computing. The calculation of FFT and the Doppler frequency shift is accelerated by the GPU. Our system can display processed OCT and ODT images simultaneously in real time at 120 fps for 1,024 pixels × 512 lateral A-scans. The computing time for the Doppler information was dependent on the size of the moving average window, but with a window size of 32 pixels the ODT computation time is only 8.3 ms, which is comparable to the data acquisition time. Also the phase noise decreases significantly with the window size. Since the performance of a real-time display for OCT/ODT is very important for clinical applications that need immediate diagnosis for screening or biopsy. Intraoperative surgery can take much benefit from the real-time display flow rate information from the technology. Moreover, the GPU is an attractive tool for clinical and commercial systems for functional OCT features as well.

  10. Volumetric display using a rotating prism sheet as an optical image scanner.

    PubMed

    Maeda, Yuki; Miyazaki, Daisuke; Mukai, Takaaki

    2013-01-01

    We developed a volumetric display that uses a rotating prism sheet as an optical scanner. A cross-sectional image of a three-dimensional (3D) object was moved laterally by the rotating prism sheet. A stack of the cross-sectional images constructed a 3D volume image that satisfies all requirements of stereoscopic vision. Since the mechanical load of the proposed scanning method was small, it is easy to enlarge the effective area of the scanner and its scanning area. We used a concave mirror to collimate rays emitted from each point to reduce the aberration caused at the prism sheet. A displayed 3D image had a size of 7 cm × 5 cm × 7 cm and a resolution of 1024 × 768 × 200 voxels.

  11. Hologram encoding strategies for non-Bayesian noise suppression in digital holography reconstructions and optical display

    NASA Astrophysics Data System (ADS)

    Bianco, V.; Memmolo, P.; Finizio, A.; Paturzo, M.; Ferraro, P.

    2016-03-01

    Here we first propose a fast, one-shot, non-Bayesian method which performs a numerical synthesis of a moving aperture in order to reduce the noise in Digital Holography without prior information on its statistics. Starting from one single hologram capture, multiple uncorrelated reconstructions are provided by random sparse resampling masks, which can be incoherently averaged. Thus, the problem of the setup complexity introduced by multiple recordings gets solved. Besides, at the scope of performing DH display using a SLM, it is highly required to operate directly on the hologram, in order to obtain its denoised version without losing the coherence between amplitude and phase information. We then move a step forward, showing a novel encoding formula allowing us to directly synthesize denoised holograms to be optically displayed by SLMs.

  12. Crucial role of molecular planarity on the second order nonlinear optical property of pyridine based chalcone single crystals

    NASA Astrophysics Data System (ADS)

    Menezes, Anthoni Praveen; Jayarama, A.; Ng, Seik Weng

    2015-05-01

    An efficient nonlinear optical material 2E-3-(4-bromophenyl)-1-(pyridin-3-yl) prop-2-en-1-one (BPP) was synthesized and single crystals were grown using slow evaporation solution growth technique at room temperature. Grown crystal had prismatic morphology and its structure was confirmed by various spectroscopic studies, elemental analysis, and single crystal X-ray diffraction (XRD) technique. The single crystal XRD of the crystal showed that BPP crystallizes in monoclinic system with noncentrosymmetric space group P21 and the cell parameters are a = 5.6428(7) Å, b = 3.8637(6) Å, c = 26.411(2) Å, β = 97.568(11) deg and v = 575.82(12) Å3. The UV-Visible spectrum reveals that the crystal is optically transparent and has high optical energy band gap of 3.1 eV. The powder second harmonic generation efficiency (SHG) of BPP is 6.8 times that of KDP. From thermal analysis it is found that the crystal melts at 139 °C and decomposes at 264 °C. High optical transparency down to blue region, higher powder SHG efficiency and better thermal stability than that of urea makes this chalcone derivative a promising candidate for SHG applications. Furthermore, effect of molecular planarity on SHG efficiency and role of pyridine ring adjacent to carbonyl group in forming noncentrosymmetric crystal systems of chalcone family is also discussed.

  13. A novel method for correction of temporally- and spatially-variant optical distortion in planar particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Zha, Kan; Busch, Stephen; Park, Cheolwoong; Miles, Paul C.

    2016-08-01

    In-cylinder flow measurements are necessary to gain a fundamental understanding of swirl-supported, light-duty Diesel engine processes for high thermal efficiency and low emissions. Planar particle image velocimetry (PIV) can be used for non-intrusive, in situ measurement of swirl-plane velocity fields through a transparent piston. In order to keep the flow unchanged from all-metal engine operation, the geometry of the transparent piston must adapt the production-intent metal piston geometry. As a result, a temporally- and spatially-variant optical distortion is introduced to the particle images. To ensure reliable measurement of particle displacements, this work documents a systematic exploration of optical distortion quantification and a hybrid back-projection procedure that combines ray-tracing-based geometric and in situ manual back-projection approaches. The proposed hybrid back-projection method for the first time provides a time-efficient and robust way to process planar PIV measurements conducted in an optical research engine with temporally- and spatially-varying optical distortion. This method is based upon geometric ray tracing and serves as a universal tool for the correction of optical distortion with an arbitrary but axisymmetric piston crown window geometry. Analytical analysis demonstrates that the ignorance of optical distortion change during the PIV laser temporal interval may induce a significant error in instantaneous velocity measurements. With the proposed digital dewarping method, this piston-motion-induced error can be eliminated. Uncertainty analysis with simulated particle images provides guidance on whether to back-project particle images or back-project velocity fields in order to minimize dewarping-induced uncertainties. The optimal implementation is piston-geometry-dependent. For regions with significant change in nominal magnification factor, it is recommended to apply the proposed back-projection approach to particle images prior to

  14. Advanced optical diagnostics of multiphase combustion flow field using OH planar laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Cho, Kevin Young-jin

    High-repetition-rate (5 kHz, 10 kHz) OH planar laser induced fluorescence (PLIF) was used to investigate the combustion of liquid, gelled, and solid propellants. For the liquid monomethyl hydrazine (MMH) droplet combustion experiment in N2O/N2 using 5 kHz OH PLIF and visible imaging system, the OH profile and the droplet diameter were measured. The N2O partial pressure was varied by 20% and 40%, and the total pressure was varied by 103, 172, 276, 414, 552 kPa. The OH location indicated that the oxidation flame front is between the visible dual flame fronts. The results showed thicker flame sheet and higher burning rate for increased N2O concentration for a given pressure. The burning rate increased with increased pressure at 20% partial pressure N2O, and the burning rate decreased with increased pressure at 40% partial pressure N2O. This work provides experimental data for validating chemical kinetics models. For the gelled droplet combustion experiment using a 5 kHz OH PLIF system, speeds and locations of fuel jets emanating from the burning gelled droplets were quantified for the first time. MMH was gelled with organic gellant HPC at 3 wt.% and 6 wt.%, and burned in air at 35, 103, 172, 276, and 414 kPa. Different types of interaction of vapor jets and flame front were distinguished for the first time. For high jet speed, local extinction of the flame was observed. By analyzing the jet speed statistics, it was concluded that pressure and jet speed had an inverse relationship and gellant concentration and jet speed had a direct relationship. This work provides more fundamental insight into the physics of gelled fuel droplet combustion. A 3D OH PLIF system was assembled and demonstrated using a 10 kHz OH PLIF system and a galvanometric scanning mirror. This is the first time that a reacting flow field was imaged with a 3D optical technique using OH PLIF. A 3D scan time of 1 ms was achieved, with ten slices generated per sweep with 1000 Hz scan rate. Alternatively

  15. Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit.

    PubMed

    Watanabe, Yuuki; Itagaki, Toshiki

    2009-01-01

    Fourier domain optical coherence tomography (FD-OCT) requires resampling of spectrally resolved depth information from wavelength to wave number, and the subsequent application of the inverse Fourier transform. The display rates of OCT images are much slower than the image acquisition rates due to processing speed limitations on most computers. We demonstrate a real-time display of processed OCT images using a linear-in-wave-number (linear-k) spectrometer and a graphics processing unit (GPU). We use the linear-k spectrometer with the combination of a diffractive grating with 1200 lines/mm and a F2 equilateral prism in the 840-nm spectral region to avoid calculating the resampling process. The calculations of the fast Fourier transform (FFT) are accelerated by the GPU with many stream processors, which realizes highly parallel processing. A display rate of 27.9 frames/sec for processed images (2048 FFT size x 1000 lateral A-scans) is achieved in our OCT system using a line scan CCD camera operated at 27.9 kHz. PMID:20059237

  16. Real-time display on Fourier domain optical coherence tomography system using a graphics processing unit

    NASA Astrophysics Data System (ADS)

    Watanabe, Yuuki; Itagaki, Toshiki

    2009-11-01

    Fourier domain optical coherence tomography (FD-OCT) requires resampling of spectrally resolved depth information from wavelength to wave number, and the subsequent application of the inverse Fourier transform. The display rates of OCT images are much slower than the image acquisition rates due to processing speed limitations on most computers. We demonstrate a real-time display of processed OCT images using a linear-in-wave-number (linear-k) spectrometer and a graphics processing unit (GPU). We use the linear-k spectrometer with the combination of a diffractive grating with 1200 lines/mm and a F2 equilateral prism in the 840-nm spectral region to avoid calculating the resampling process. The calculations of the fast Fourier transform (FFT) are accelerated by the GPU with many stream processors, which realizes highly parallel processing. A display rate of 27.9 frames/sec for processed images (2048 FFT size×1000 lateral A-scans) is achieved in our OCT system using a line scan CCD camera operated at 27.9 kHz.

  17. Response characterization of a fiber optic sensor array with dye-coated planar waveguide for detection of volatile organic compounds.

    PubMed

    Lee, Jae-Sung; Yoon, Na-Rae; Kang, Byoung-Ho; Lee, Sang-Won; Gopalan, Sai-Anand; Jeong, Hyun-Min; Lee, Seung-Ha; Kwon, Dae-Hyuk; Kang, Shin-Won

    2014-07-01

    We have developed a multi-array side-polished optical-fiber gas sensor for the detection of volatile organic compound (VOC) gases. The side-polished optical-fiber coupled with a polymer planar waveguide (PWG) provides high sensitivity to alterations in refractive index. The PWG was fabricated by coating a solvatochromic dye with poly(vinylpyrrolidone). To confirm the effectiveness of the sensor, five different sensing membranes were fabricated by coating the side-polished optical-fiber using the solvatochromic dyes Reinhardt's dye, Nile red, 4-aminophthalimide, 4-amino-N-methylphthalimide, and 4-(dimethylamino)cinnamaldehyde, which have different polarities that cause changes in the effective refractive index of the sensing membrane owing to evanescent field coupling. The fabricated gas detection system was tested with five types of VOC gases, namely acetic acid, benzene, dimethylamine, ethanol, and toluene at concentrations of 1, 2,…,10 ppb. Second-regression and principal component analyses showed that the response properties of the proposed VOC gas sensor were linearly shifted bathochromically, and each gas showed different response characteristics.

  18. Response Characterization of a Fiber Optic Sensor Array with Dye-Coated Planar Waveguide for Detection of Volatile Organic Compounds

    PubMed Central

    Lee, Jae-Sung; Yoon, Na-Rae; Kang, Byoung-Ho; Lee, Sang-Won; Gopalan, Sai-Anand; Jeong, Hyun-Min; Lee, Seung-Ha; Kwon, Dae-Hyuk; Kang, Shin-Won

    2014-01-01

    We have developed a multi-array side-polished optical-fiber gas sensor for the detection of volatile organic compound (VOC) gases. The side-polished optical-fiber coupled with a polymer planar waveguide (PWG) provides high sensitivity to alterations in refractive index. The PWG was fabricated by coating a solvatochromic dye with poly(vinylpyrrolidone). To confirm the effectiveness of the sensor, five different sensing membranes were fabricated by coating the side-polished optical-fiber using the solvatochromic dyes Reinhardt's dye, Nile red, 4-aminophthalimide, 4-amino-N-methylphthalimide, and 4-(dimethylamino)cinnamaldehyde, which have different polarities that cause changes in the effective refractive index of the sensing membrane owing to evanescent field coupling. The fabricated gas detection system was tested with five types of VOC gases, namely acetic acid, benzene, dimethylamine, ethanol, and toluene at concentrations of 1, 2,…,10 ppb. Second-regression and principal component analyses showed that the response properties of the proposed VOC gas sensor were linearly shifted bathochromically, and each gas showed different response characteristics. PMID:24988381

  19. Display glass for low-loss and high-density optical interconnects in electro-optical circuit boards with eight optical layers.

    PubMed

    Brusberg, Lars; Whalley, Simon; Herbst, Christian; Schröder, Henning

    2015-12-14

    Parallel optical interconnects on-board level requires low propagation loss in wavelength range between 850 and 1550 nm to be compatible with datacom and telecom optical engines. For highest integration density tight waveguide bends and a scalable number of optical layers should be manufacturable for 2D interfaces to optical fiber array connectors and photonic assembly I/O's. We developed a glass waveguide panel process for double-sided processing of commercial available display glass by applying a two-step thermal ion-exchange process for low-loss multi-mode graded-index waveguides. Multiple glass waveguide panels can be embedded between electrical layers. The generic concept enables fabrication of high-density integration (HDI) electro-optical circuit boards (EOCB) with high number of optical and electrical layers. Waveguides with high NA of 0.3 for low bend losses could be achieved in glass with propagation loss of 0.05 dB/cm for all key wavelengths. Four of those glass waveguide panels were embedded in an EOCB demonstrator with size of 280 x 233 mm² providing eight optical layers with 96 channels in an area of 2.8 x 1.5 mm². To the best of our knowledge it's the highest number of layers that has ever been demonstrated for an EOCB.

  20. Display glass for low-loss and high-density optical interconnects in electro-optical circuit boards with eight optical layers.

    PubMed

    Brusberg, Lars; Whalley, Simon; Herbst, Christian; Schröder, Henning

    2015-12-14

    Parallel optical interconnects on-board level requires low propagation loss in wavelength range between 850 and 1550 nm to be compatible with datacom and telecom optical engines. For highest integration density tight waveguide bends and a scalable number of optical layers should be manufacturable for 2D interfaces to optical fiber array connectors and photonic assembly I/O's. We developed a glass waveguide panel process for double-sided processing of commercial available display glass by applying a two-step thermal ion-exchange process for low-loss multi-mode graded-index waveguides. Multiple glass waveguide panels can be embedded between electrical layers. The generic concept enables fabrication of high-density integration (HDI) electro-optical circuit boards (EOCB) with high number of optical and electrical layers. Waveguides with high NA of 0.3 for low bend losses could be achieved in glass with propagation loss of 0.05 dB/cm for all key wavelengths. Four of those glass waveguide panels were embedded in an EOCB demonstrator with size of 280 x 233 mm² providing eight optical layers with 96 channels in an area of 2.8 x 1.5 mm². To the best of our knowledge it's the highest number of layers that has ever been demonstrated for an EOCB. PMID:26699042

  1. Optical gesture sensing and depth mapping technologies for head-mounted displays: an overview

    NASA Astrophysics Data System (ADS)

    Kress, Bernard; Lee, Johnny

    2013-05-01

    Head Mounted Displays (HMDs), and especially see-through HMDs have gained renewed interest in recent time, and for the first time outside the traditional military and defense realm, due to several high profile consumer electronics companies presenting their products to hit market. Consumer electronics HMDs have quite different requirements and constrains as their military counterparts. Voice comments are the de-facto interface for such devices, but when the voice recognition does not work (not connection to the cloud for example), trackpad and gesture sensing technologies have to be used to communicate information to the device. We review in this paper the various technologies developed today integrating optical gesture sensing in a small footprint, as well as the various related 3d depth mapping sensors.

  2. Electro-Optic Modulator Based on Organic Planar Waveguide Integrated with Prism Coupler

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S.

    2002-01-01

    The objectives of the project, as they were formulated in the proposal, are the following: (1) Design and development of novel electro-optic modulator using single crystalline film of highly efficient electro-optic organic material integrated with prism coupler; (2) Experimental characterization of the figures-of-merit of the modulator. It is expected to perform with an extinction ratio of 10 dB at a driving signal of 5 V; (3) Conclusions on feasibility of the modulator as an element of data communication systems of future generations. The accomplishments of the project are the following: (1) The design of the electro-optic modulator based on a single crystalline film of organic material NPP has been explored; (2) The evaluation of the figures-of-merit of the electro-optic modulator has been performed; (3) Based on the results of characterization of the figures-of-merit, the conclusion was made that the modulator based on a thin film of NPP is feasible and has a great potential of being used in optic communication with a modulation bandwidth of up to 100 GHz and a driving voltage of the order of 3 to 5 V.

  3. Backup Alignment Devices on Shuttle: Heads-Up Display or Crew Optical Alignment Sight

    NASA Technical Reports Server (NTRS)

    Chavez, Melissa A.

    2011-01-01

    NASA s Space Shuttle was built to withstand multiple failures while still keeping the crew and vehicle safe. Although the design of the Space Shuttle had a great deal of redundancy built into each system, there were often additional ways to keep systems in the best configuration if a failure were to occur. One such method was to use select pieces of hardware in a way for which they were not primarily intended. The primary function of the Heads-Up Display (HUD) was to provide the crew with a display of flight critical information during the entry phase. The primary function of the Crew Optical Alignment Sight (COAS) was to provide the crew an optical alignment capability for rendezvous and docking phases. An alignment device was required to keep the Inertial Measurement Units (IMUs) well aligned for a safe Entry; nominally this alignment device would be the two on-board Star Trackers. However, in the event of a Star Tracker failure, the HUD or COAS could also be used as a backup alignment device, but only if the device had been calibrated beforehand. Once the HUD or COAS was calibrated and verified then it was considered an adequate backup to the Star Trackers for entry IMU alignment. There were procedures in place and the astronauts were trained on how to accurately calibrate the HUD or COAS and how to use them as an alignment device. The calibration procedure for the HUD and COAS had been performed on many Shuttle missions. Many of the first calibrations performed were for data gathering purposes to determine which device was more accurate as a backup alignment device, HUD or COAS. Once this was determined, the following missions would frequently calibrate the HUD in order to be one step closer to having the device ready in case it was needed as a backup alignment device.

  4. Chiral optical response of planar and symmetric nanotrimers enabled by heteromaterial selection

    NASA Astrophysics Data System (ADS)

    Banzer, Peter; Woźniak, Paweł; Mick, Uwe; de Leon, Israel; Boyd, Robert W.

    2016-10-01

    Chirality is an intriguing property of certain molecules, materials or artificial nanostructures, which allows them to interact with the spin angular momentum of the impinging light field. Due to their chiral geometry, they can distinguish between left- and right-hand circular polarization states or convert them into each other. Here we introduce an approach towards optical chirality, which is observed in individual two-dimensional and geometrically mirror-symmetric nanostructures. In this scheme, the chiral optical response is induced by the chosen heterogeneous material composition of a particle assembly and the corresponding resonance behaviour of the constituents it is built from, which breaks the symmetry of the system. As a proof of principle, we investigate such a structure composed of individual silicon and gold nanoparticles both experimentally, as well as numerically. Our proposed concept constitutes an approach for designing two-dimensional chiral media tailored at the nanoscale, allowing for high tunability of their optical response.

  5. Chiral optical response of planar and symmetric nanotrimers enabled by heteromaterial selection

    PubMed Central

    Banzer, Peter; Woźniak, Paweł; Mick, Uwe; De Leon, Israel; Boyd, Robert W.

    2016-01-01

    Chirality is an intriguing property of certain molecules, materials or artificial nanostructures, which allows them to interact with the spin angular momentum of the impinging light field. Due to their chiral geometry, they can distinguish between left- and right-hand circular polarization states or convert them into each other. Here we introduce an approach towards optical chirality, which is observed in individual two-dimensional and geometrically mirror-symmetric nanostructures. In this scheme, the chiral optical response is induced by the chosen heterogeneous material composition of a particle assembly and the corresponding resonance behaviour of the constituents it is built from, which breaks the symmetry of the system. As a proof of principle, we investigate such a structure composed of individual silicon and gold nanoparticles both experimentally, as well as numerically. Our proposed concept constitutes an approach for designing two-dimensional chiral media tailored at the nanoscale, allowing for high tunability of their optical response. PMID:27734960

  6. Corneal-Imaging Calibration for Optical See-Through Head-Mounted Displays.

    PubMed

    Plopski, Alexander; Itoh, Yuta; Nitschke, Christian; Kiyokawa, Kiyoshi; Klinker, Gudrun; Takemura, Haruo

    2015-04-01

    In recent years optical see-through head-mounted displays (OST-HMDs) have moved from conceptual research to a market of mass-produced devices with new models and applications being released continuously. It remains challenging to deploy augmented reality (AR) applications that require consistent spatial visualization. Examples include maintenance, training and medical tasks, as the view of the attached scene camera is shifted from the user's view. A calibration step can compute the relationship between the HMD-screen and the user's eye to align the digital content. However, this alignment is only viable as long as the display does not move, an assumption that rarely holds for an extended period of time. As a consequence, continuous recalibration is necessary. Manual calibration methods are tedious and rarely support practical applications. Existing automated methods do not account for user-specific parameters and are error prone. We propose the combination of a pre-calibrated display with a per-frame estimation of the user's cornea position to estimate the individual eye center and continuously recalibrate the system. With this, we also obtain the gaze direction, which allows for instantaneous uncalibrated eye gaze tracking, without the need for additional hardware and complex illumination. Contrary to existing methods, we use simple image processing and do not rely on iris tracking, which is typically noisy and can be ambiguous. Evaluation with simulated and real data shows that our approach achieves a more accurate and stable eye pose estimation, which results in an improved and practical calibration with a largely improved distribution of projection error. PMID:26357098

  7. Micro optical fiber display switch based on the magnetohydrodynamic (MHD) principle

    NASA Astrophysics Data System (ADS)

    Lian, Kun; Heng, Khee-Hang

    2001-09-01

    This paper reports on a research effort to design, microfabricate and test an optical fiber display switch based on magneto hydrodynamic (MHD) principal. The switch is driven by the Lorentz force and can be used to turn on/off the light. The SU-8 photoresist and UV light source were used for prototype fabrication in order to lower the cost. With a magnetic field supplied by an external permanent magnet, and a plus electrical current supplied across the two inert sidewall electrodes, the distributed body force generated will produce a pressure difference on the fluid mercury in the switch chamber. By change the direction of current flow, the mercury can turn on or cut off the light pass in less than 10 ms. The major advantages of a MHD-based micro-switch are that it does not contain any solid moving parts and power consumption is much smaller comparing to the relay type switches. This switch can be manufactured by molding gin batch production and may have potential applications in extremely bright traffic control,, high intensity advertising display, and communication.

  8. Increasing reconstruction quality of diffractive optical elements displayed with LC SLM

    NASA Astrophysics Data System (ADS)

    Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Sergey N.

    2015-03-01

    Phase liquid crystal (LC) spatial light modulators (SLM) are actively used in various applications. However, majority of scientific applications require stable phase modulation which might be hard to achieve with commercially available SLM due to its consumer origin. The use of digital voltage addressing scheme leads to phase temporal fluctuations, which results in lower diffraction efficiency and reconstruction quality of displayed diffractive optical elements (DOE). Due to high periodicity of fluctuations it should be possible to use knowledge of these fluctuations during DOE synthesis to minimize negative effect. We synthesized DOE using accurately measured phase fluctuations of phase LC SLM "HoloEye PLUTO VIS" to minimize its negative impact on displayed DOE reconstruction. Synthesis was conducted with versatile direct search with random trajectory (DSRT) method in the following way. Before DOE synthesis begun, two-dimensional dependency of SLM phase shift on addressed signal level and time from frame start was obtained. Then synthesis begins. First, initial phase distribution is created. Second, random trajectory of consecutive processing of all DOE elements is generated. Then iterative process begins. Each DOE element sequentially has its value changed to one that provides better value of objective criterion, e.g. lower deviation of reconstructed image from original one. If current element value provides best objective criterion value then it left unchanged. After all elements are processed, iteration repeats until stagnation is reached. It is demonstrated that application of SLM phase fluctuations knowledge in DOE synthesis with DSRT method leads to noticeable increase of DOE reconstruction quality.

  9. Optical 3D Deformation Measurement Utilizing Non-planar Surface for the Development of an “Intelligent Tire”

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Ryosuke; Hiraoka, Naoki; Todoroki, Akira; Mizutani, Yoshihiro

    Intelligent tires, also known as smart tires, are equipped with sensors to monitor the strain of the interior surface and the rolling radius of tire, and are expected to improve the reliability of tires and tire control systems such as anti-lock braking systems (ABS). However, the high stiffness of an attached sensor like a strain gauge causes sensors to debond from the tire rubber. In the present study, a novel optical method is used for the concurrent monitoring of in-plane strain and out-of-plane displacement (rolling radius) utilizing the non-planar surface of the monitoring object. The optical method enables noncontact measurement of strain distribution. The in-plane strain and out-of-plane displacement are calculated by using image processing with an image of the interior surface of a tire that is taken with a single CCD camera fixed on the wheel rim. This new monitoring system is applied to an aluminum beam and a commercially available radial tire. As a result, the monitoring system provides concurrent measurement of in-plane strain, out-of-plane displacement and tire pressure, and is shown to be an effective monitoring system for intelligent tires.

  10. Method and apparatus for an optical function generator for seamless tiled displays

    NASA Technical Reports Server (NTRS)

    Johnson, Michael (Inventor); Chen, Chung-Jen (Inventor)

    2004-01-01

    Producing seamless tiled images from multiple displays includes measuring a luminance profile of each of the displays, computing a desired luminance profile for each of the displays, and determining a spatial gradient profile of each of the displays based on the measured luminance profile and the computed desired luminance profile. The determined spatial gradient profile is applied to a spatial filter to be inserted into each of the displays to produce the seamless tiled display image.

  11. Janus Suprabead Displays Derived from the Modified Photonic Crystals toward Temperature Magnetism and Optics Multiple Responses.

    PubMed

    Wang, Huanhuan; Yang, Shengyang; Yin, Su-Na; Chen, Li; Chen, Su

    2015-04-29

    The design and development of Janus suprabeads (JSs) with multiple responses are highly desirable in the fabrication of functional nanomaterials. In this work, we report a triphase microfluidic strategy for the construction of JSs with temperature-magnetism-optics triple responses. Initially, macromonomer poly(methacrylic acid) (PMAA) obtained via catalytic chain transfer polymerization (CCTP) was grafted onto the polystyrene (PS) colloidal photonic crystals (CPCs) surface. Because abundant carboxylic acid groups in PMAA could coordinate cadmium ions for in situ production of fluorescent CdS quantum dots (QDs) after introducing sulfur ions, the as-prepared JSs were endowed with favorable optical properties. Meanwhile, the as-prepared Cd(2+)/PS CPCs were employed as a template to build JSs with temperature-magnetism sensitivity via the introduction of magnetic Fe3O4 and hydrogels. Finally, the fluorescence pattern was easily performed by using chalcogenides as "ink" to write on the pad, in which in situ reaction mechanism was involved in the response. The multiple responsive JSs show promising applications in sensor, display, and anticounterfeit fields.

  12. Scanning pupil approach to aspheric surface slope error tolerancing in head-up display optics

    NASA Astrophysics Data System (ADS)

    Sivokon, V. P.

    2015-09-01

    We present a novel approach to tolerancing slope errors of aspheric surfaces in relay optics of typical avionics head-up displays (HUD). In these systems, a beamlet entering the pilot eye occupies only a tiny fraction of HUD entrance pupil/eyebox with a typical diameter of 125mm. Consequently the beam footprint on any HUD optical surface is a small fraction of its clear aperture. This presents challenges to HUD tolerancing which is typically based on parallax (angular difference in line of sight between left and right eyes) analysis. Aspheric surfaces manufactured by sub-aperture grinding/polishing techniques add another source of error - surface slope error. This type of error not only degrades image quality of observed HUD symbology but also leads to its "waviness" and "floating" especially noticeable when a pilot moves his head within the HUD eyebox. The suggested approach allows aspheric surface slope error tolerancing that ensures an acceptable level of symbology "waviness". A narrow beamlet is traced from a pilot eye position backwards through the HUD optics until it hits the light source. Due to the small beamlet size, slope error of the aspheric surface acts primarily as an overall tilt/wedge that deviates the beam and causes it to shift. The slope error is acceptable when this shift is not resolved by a pilot eye. The beamlet is scanned over entire eyebox and field of view and the slope error tolerance is established for several zones in the aspheric surface clear aperture. The procedure is then repeated for each aspheric surface.

  13. A physical optics based plane wave spectrum approach to the analysis of finite planar antennas

    NASA Astrophysics Data System (ADS)

    Garcia-Mueller, Pablo L.; Roederer, Antoine G.

    1992-08-01

    An efficient physical optics based method of analysis of antennas over finite ground planes is presented. The far field radiated by the current on the finite ground plane is expressed as the convolution integral of the far field of the antenna above the infinite ground plane with the Fourier transform of the polygonal ground plane shape. The convolution integral is simplified applying the sampling theorem.

  14. Planar germanium photodetectors on silicon substrates for silicon/germanium-based optical receivers

    NASA Astrophysics Data System (ADS)

    Oh, Jungwoo

    Operation of photodetectors at a wavelength of 1.3 mum has extensive application in the rapidly growing field of optical transmission systems. As optical networks spread deeper into the consumer market, it will become important to have low-cost, manufacturable optical components that can be integrated on a chip with other electrical components. Enhanced performance of many of these systems can be achieved by monolithically integrating the discrete optical devices in existing Si integrated circuits (ICs). The use of Ge is advantageous in terms of lower cost of fabrication and compatibility with Si integrated circuit technology. The high electron mobility and high optical absorption coefficient at 1.3 mum make Ge attractive for some telecommunication applications. In addition, Ge is promising for other applications such as microwave and millimeterwave photonic systems that require high photocurrent and high linearity. To this end, interdigitated Ge PIN photodetectors were fabricated on Si substrate using 10-mum-thick graded SiGe buffer layers. Their operation at 1.3 mum was successfully demonstrated. A 3-dB bandwidth of 3.8 GHz was obtained at low bias of -5 V and the external quantum efficiency at 1.3 mum was 49% without external bias. The SiGe buffer layers effectively relieved strain and resulted in high quality Ge epitaxial layers with a low threading dislocation density of ˜105 cm -2 and smooth surface morphology. A more practical approach was to directly deposit thin epitaxial layers of Ge on Si substrate. The challenge to this approach was to accommodate the lattice mismatch of 4% without significant degradation in the material quality. Our approach to overcome island formation was to grow the Ge layers at low temperature. Metal-Ge-metal photodetectors were fabricated on a Ge epitaxial layer directly grown on Si (100) substrate. Amorphous Ge was used to increase the Schottky barrier height, which resulted in a reduction of the dark current by more than two

  15. Development of polymer cholesteric liquid crystal flake technology for electro-optic devices and particle displays

    NASA Astrophysics Data System (ADS)

    Kosc, T. Z.; Marshall, K. L.; Trajkovska-Petkoska, A.; Coon, C. J.; Hasman, K.; Babcock, G. V.; Howe, R.; Leitch, M.; Jacobs, S. D.

    2007-02-01

    Liquid crystals have had a large presence in the display industry for several decades, and they continue to remain at the forefront of development as the industry delves into flexible displays and electronic paper. Among the emerging technologies trying to answer this call are polymer cholesteric liquid crystal (PCLC) flakes. The motion of PCLC flakes suspended in a host fluid is controlled with an electric field, whereby the flakes reorient to align parallel with the applied field. A PCLC device easily switches from a bright state, where light of a given wavelength and polarizationis selectively reflected, to a dark, non-reflective state. The device returns to a bright state when the flakes relax to their original orientation after removal of the applied field. Progress has been made in addressing several key device issues: the need to switch flakes back to a reflective state quickly, the development of bistability, the ability to produce flexible devices, and the necessity to produce both high brightness and a large contrast ratio. Improvements in the technology have been made by addressing the optical, mechanical, chemical, and electrical features and characteristics of the PCLC flake/fluid host system. The manufacture of "custom" flakes by the process of formation of specific flake shapes, the addition of dopants, or the formation of layered flake composites results in particles with improved reflectivity and response times along with the ability to respond to both AC and DC fields. Specially designed driving waveforms provide a new means for controlling flake motion. PCLC flake micro-encapsulation allows for the possibility of flexible and potentially bistable devices. Here we report on the wide variety of approaches toward improving PCLC flake devices and their results.

  16. Depth discrimination in diffuse optical transmission imaging by planar scanning off-axis fibers: initial applications to optical mammography.

    PubMed

    Kainerstorfer, Jana M; Yu, Yang; Weliwitigoda, Geethika; Anderson, Pamela G; Sassaroli, Angelo; Fantini, Sergio

    2013-01-01

    We present a method for depth discrimination in parallel-plate, transmission mode, diffuse optical imaging. The method is based on scanning a set of detector pairs, where the two detectors in each pair are separated by a distance δDi along direction δ D i within the x-y scanning plane. A given optical inhomogeneity appears shifted by αi δ D i (with 0≤ αi ≤1) in the images collected with the two detection fibers of the i-th pair. Such a spatial shift can be translated into a measurement of the depth z of the inhomogeneity, and the depth measurements based on each detector pair are combined into a specially designed weighted average. This depth assessment is demonstrated on tissue-like phantoms for simple inhomogeneities such as straight rods in single-rod or multiple-rod configurations, and for more complex curved structures which mimic blood vessels in the female breast. In these phantom tests, the method has recovered the depth of single inhomogeneities in the central position of the phantom to within 4 mm of their actual value, and within 7 mm for more superficial inhomogeneities, where the thickness of the phantom was 65 mm. The application of this method to more complex images, such as optical mammograms, requires a robust approach to identify corresponding structures in the images collected with the two detectors of a given pair. To this aim, we propose an approach based on the inner product of the skeleton images collected with the two detectors of each pair, and we present an application of this approach to optical in vivo images of the female breast. This depth discrimination method can enhance the spatial information content of 2D projection images of the breast by assessing the depth of detected structures, and by allowing for 3D localization of breast tumors.

  17. Improvement of quality of optical reconstruction of digital Fourier holograms displayed on phase-only SLM by its digital preprocessing

    NASA Astrophysics Data System (ADS)

    Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Porshneva, Liudmila A.; Rodin, Vladislav G.; Starikov, Sergey N.

    2014-10-01

    Digital holography is popular tool for research and practical applications in various fields of science and technology. Most widespread method of optical reconstruction implements digital hologram display on spatial light modulators (SLM). Optical reconstruction of digital holograms is used for remote display of static and dynamic 2D and 3D scenes, in optical information processing, metrology, interferometry, microscopy, etc. Holograms recorded with digital cameras are amplitude type. Therefore quality of its optical reconstruction with phase SLM is worse compared to amplitude SLM. However application of phase SLM can provide higher diffraction efficiency. To improve quality of optical reconstruction with phase SLM, method of SLM phase modulation depth reduction at digital hologram display is proposed. To our knowledge, this method was applied only in analog holography. Also two other methods of quality improvement are considered: hologram to kinoform conversion and holograms multiplexing. Numerical experiments on modelling of digital Fourier holograms recording and their optical reconstruction by phase SLM were performed. Method of SLM phase modulation depth reduction at digital holograms display was proposed and tested. SLM phase modulation depth ranged from 0 to 2π. Quantity of hologram phase levels equal to 256 corresponds to 2π phase modulation depth. To keep SLM settings while changing phase modulation depth hologram phase distribution was renormalized instead. Dependencies of reconstruction quality on hologram phase modulation depth were obtained. Best quality is achieved at 0.27π÷0.31π phase modulation depth. To reduce speckle noise, hologram multiplexing can be applied. Modeling of multiplex holograms optical reconstruction was conducted. Speckle noise reduction was achieved. For improvement of digital hologram optical reconstruction quality and diffraction efficiency hologram to kinoform conversion can be used. Firstly numerically reconstructed image

  18. Effects of Configuration of Optical Combiner on Near-Field Depth Perception in Optical See-Through Head-Mounted Displays.

    PubMed

    Lee, Sangyoon; Hua, Hong

    2016-04-01

    The ray-shift phenomenon means the apparent distance shift in the display image plane between virtual and physical objects. It is caused by the difference in the refraction of virtual display and see-through optical paths derived from optical combiners that are necessary to provide a see-through capability in optical see-through head-mounted displays. In this work, through a human-subject experiment, we investigated the effects of ray-shift phenomenon induced by the optical combiner on depth perception for near-field distances (40 cm-100 cm). In our experiment, we considered three different configurations of optical combiner: horizontal-tilt and vertical-tilt configurations (using plate beamsplitters horizontally and vertically tilted by 45°, respectively), and non-tilt configuration (using rectangular solid waveguides). Participants' depth perception errors in these configurations were compared with those in an ordinary condition (i.e., the condition where physical objects are directly shown without the displays) and theoretically estimated ones. According to the experimental results, the measured percentage depth perception errors were similar to the theoretically estimated ones, where the amount of estimated percentage depth errors was greater than 0.3%. Furthermore, the participants showed significantly larger depth perception errors in the horizontal-tilt configuration than in an ordinary condition, while no large errors were found in the vertical-tilt configuration. In the non-tilt configuration, the results were dependent on the thickness of optical combiner and target distance.

  19. Electrochemical planarization

    DOEpatents

    Bernhardt, A.F.; Contolini, R.J.

    1993-10-26

    In a process for fabricating planarized thin film metal interconnects for integrated circuit structures, a planarized metal layer is etched back to the underlying dielectric layer by electropolishing, ion milling or other procedure. Electropolishing reduces processing time from hours to minutes and allows batch processing of multiple wafers. The etched back planarized thin film interconnect is flush with the dielectric layer. 12 figures.

  20. Electrochemical planarization

    DOEpatents

    Bernhardt, Anthony F.; Contolini, Robert J.

    1993-01-01

    In a process for fabricating planarized thin film metal interconnects for integrated circuit structures, a planarized metal layer is etched back to the underlying dielectric layer by electropolishing, ion milling or other procedure. Electropolishing reduces processing time from hours to minutes and allows batch processing of multiple wafers. The etched back planarized thin film interconnect is flush with the dielectric layer.

  1. Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including early detection of cancers

    DOEpatents

    Martinez, Jennifer S.; Swanson, Basil I.; Shively, John E.; Li, Lin

    2009-06-02

    An assay element is described including recognition ligands adapted for binding to carcinoembryonic antigen (CEA) bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of CEA is described including injecting a possible CEA-containing sample into a sensor cell including the assay element, maintaining the sample within the sensor cell for time sufficient for binding to occur between CEA present within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

  2. Allylated cyclodextrins as effective affinity materials in chemical sensing of volatile aromatic hydrocarbons using an optical planar Bragg grating sensor.

    PubMed

    Girschikofsky, M; Rosenberger, M; Belle, S; Brutschy, M; Waldvogel, S R; Hellmann, R

    2013-08-12

    We report on the application of perallyl-substituted α-, β- and γ-cyclodextrins to an optical planar Bragg grating refractive index sensor for the effective sensitization of the sensor for airborne volatile aromatic hydrocarbons. Thereby, the emphasis of this work lies on the comparison of the different cyclodextrin types regarding their suitability as affinity material assessed by the sensors sensitivity and response behavior. The opto-chemical sensor device showed an immediate and quick response to the application of the investigated analytes benzene, toluene and m-xylene as well as a linear dependence on the concentration of those analytes. Studies on the sensors sensitivity depending on the applied cyclodextrin types revealed a generally higher sensitivity for the sensor sensitized with perallyl-substituted β-cyclodextrins. Here, the sensor systems detection limit was found to 60±4 ppm for benzene, 18±3 ppm for toluene and 3.8±0.5 ppm for m-xylene. The response time and recovery time were found to approximately 30s and 40s, respectively, depending on the applied cyclodextrin and the chosen analyte.

  3. Quantitative measurement and control of optical Moiré pattern in an autostereoscopic liquid crystal display system.

    PubMed

    Zhou, Yangui; Krebs, Peter; Fan, Hang; Liang, Haowen; Su, Jianbang; Wang, Jiahui; Zhou, Jianying

    2015-02-20

    A quantitative description of an optical moiré pattern produced in an autostereoscopic liquid crystal display system is proposed using a contrast sensitivity function. The numerical simulation, carried out in the spatial frequency domain, is applied to a directional backlit, spatially and temporally hybrid controlled display system. The moiré pattern produced from the superimposed binary optical components is examined systematically, and the results show that the visibility of the moiré pattern can be manipulated with proper grating settings. Good agreement between experiment and simulation demonstrates that the proposed theory can be applied as a design guideline to remove the moiré patterns occurring in an autostereoscopic display system. PMID:25968221

  4. Optical planar and channel waveguides in the new nonlinear crystal Ca4YO(BO3)3 (YCOB) fabricated by He+ implantation

    NASA Astrophysics Data System (ADS)

    Boudrioua, Azzedine; Vincent, Brice; Moretti, Paul; Tascu, Sorine; Jacquier, Bernard; Aka, Gérard

    2004-01-01

    We report the first study of optical planar and channel waveguides fabricated in the new nonlinear crystal Ca4YO(BO3)3 by use of MeV He+-implantations. The nx, ny, and nz refractive index modifications are studied. Losses in nonannealed YCOB waveguides measured with a CCD camera are found to be less than 2 dB cm-1. This work is the first step toward the investigation of frequency conversion within the obtained guiding structures.

  5. Optical planar and channel waveguides in the new nonlinear crystal Ca4YO(BO3)3 (YCOB) fabricated by He+ implantation.

    PubMed

    Boudrioua, Azzedine; Vincent, Brice; Moretti, Paul; Tascu, Sorine; Jacquier, Bernard; Aka, Gérard

    2004-01-10

    We report the first study of optical planar and channel waveguides fabricated in the new nonlinear crystal Ca4YO(BO3) by use of MeV He+-implantations. The nx, ny, and nz refractive index modifications are studied. Losses in nonannealed YCOB waveguides measured with a CCD camera are found to be less than 2 dB cm(-1). This work is the first step toward the investigation of frequency conversion within the obtained guiding structures.

  6. Study on compactness of planar waveguide based integrated optic couplers using tooth shaped grating assisted geometry

    NASA Astrophysics Data System (ADS)

    Deka, Bidyut; Dutta, Aradhana; Sahu, Partha P.

    2013-11-01

    The introduction of Photonic Integrated Devices (PID) for applications in high speed optical networks providing multiple services to more number of users is indispensable as this requires large scale integration (LSI) and the miniaturization of PID device components to microscale platform has attracted immense attention from the researchers and entrepreneurs. In this paper, we present a comparative study on compactness of basic PID components using tooth shaped grating assisted (TSGA) geometry. The basic PID components such as Directional Coupler (DC), two mode interference (TMI) coupler and multimode interference (MMI) coupler have been designed using TSGA geometry in the coupling region and the coupling characteristics for the same have been estimated using a mathematical model based on sinusoidal mode simple effective index method (SM-SEIM). The dependence of modal power in the coupling region on the waveguide separation gap and coupling gap refractive index has been studied. From the estimated dependences of beat length and access waveguide length on waveguide separation gap with permissible propagation loss ~0.15 dB/cm, it has been found that the grating assisted TMI coupler (GA-TMI) is ~0.5 times lower than that of grating assisted DC (GA-DC) and ~0.44 times lower than grating assisted MMI (GA-MMI) coupler. Further, it is seen that the device length including access waveguide length of GA-MMI coupler is less than that of GA-TMI coupler and GA-DC. The SM-SEIM based numerical results are then compared with beam propagation method (BPM) results obtained by using commercially available optiBPM software.

  7. Planar integrated optical waveguide used as a transducer to yield chemical information: detection of the activity of proteolytic enzymes e.g. serine-proteases

    NASA Astrophysics Data System (ADS)

    Zhylyak, Gleb; Ramoz-Perez, Victor; Linnhoff, Michael; Hug, Thomas; Citterio, Daniel; Spichiger-Keller, Ursula E.

    2005-03-01

    The paper shows the very first results of a feasibility study where the activity of proteolytic enzymes towards dye-labelled artificial substrates immobilized on the surface of planar optical Ta2O5 waveguide was investigated. Within this project, a chromophore label was developed, synthesized and attached to the carboxy-terminus of specific tripeptides. The goal was to develop a highly sensitive optical assay in order to monitor the activity of serine-proteases by cleavage of the amide bond between peptide and chromophore. On the one hand, a strategy was developed to immobilize the labeled tripeptide unto integrated planar waveguides. On the other hand, an instrument, the so-called "chip-reader" was developed to detect the biological process on the surface of the integrated planar optical waveguide. Surface characteristics were analyzed by XPS, TOF-SIMS and contact angle measurements. A comparison between the effectivity of ATR-photometry on chip using TE0 mode and photometry in transmission mode is discussed.

  8. Fiber-optic detector for real time dosimetry of a micro-planar x-ray beam

    SciTech Connect

    Belley, Matthew D.; Stanton, Ian N.; Langloss, Brian W.; Therien, Michael J.; Hadsell, Mike; Ger, Rachel; Lu, Jianping; Zhou, Otto; Chang, Sha X.; Yoshizumi, Terry T.

    2015-04-15

    Purpose: Here, the authors describe a dosimetry measurement technique for microbeam radiation therapy using a nanoparticle-terminated fiber-optic dosimeter (nano-FOD). Methods: The nano-FOD was placed in the center of a 2 cm diameter mouse phantom to measure the deep tissue dose and lateral beam profile of a planar x-ray microbeam. Results: The continuous dose rate at the x-ray microbeam peak measured with the nano-FOD was 1.91 ± 0.06 cGy s{sup −1}, a value 2.7% higher than that determined via radiochromic film measurements (1.86 ± 0.15 cGy s{sup −1}). The nano-FOD-determined lateral beam full-width half max value of 420 μm exceeded that measured using radiochromic film (320 μm). Due to the 8° angle of the collimated microbeam and resulting volumetric effects within the scintillator, the profile measurements reported here are estimated to achieve a resolution of ∼0.1 mm; however, for a beam angle of 0°, the theoretical resolution would approach the thickness of the scintillator (∼0.01 mm). Conclusions: This work provides proof-of-concept data and demonstrates that the novel nano-FOD device can be used to perform real-time dosimetry in microbeam radiation therapy to measure the continuous dose rate at the x-ray microbeam peak as well as the lateral beam shape.

  9. The application of holographic optical waveguide technology to the Q-Sight family of helmet-mounted displays

    NASA Astrophysics Data System (ADS)

    Cameron, Alex

    2009-05-01

    Traditionally head up displays and helmet mounted displays use a conventional arrangement of complex lenses to generate a display for the pilot from an image source such as a Cathode Ray Tube (CRT) or Liquid Crystal Display (LCD). These systems tend to be complex, comprising many components and they also add mass and adversely modify the centre of the gravity of the helmet. This has resulted in the development of the Holographic Optical Waveguide, a revolutionary new optical technology which dramatically reduces size and mass whilst liberating the designer from many of the constraints inherent in conventional optical solutions. This technology is basically a way of moving light without the need for a complex arrangement of conventional lenses. This is made possible by embedding within the substrate a specially designed hologram which has carefully tailored set of optical properties. The image (or light waves) is constrained to follow a path through the substrate. As these waves pass through the substrate the hologram is programmed to allow some energy to escape in a carefully controlled manner reforming the image that was injected into the substrate. At the same time the hologram design modifies the image geometry such that the user views it as a full size conformal image precisely overlaid on his outside world view. Furthermore this image is maintained over a very large exit-pupil giving the user great flexibility in the installation of the display onto a helmet. The image is formed conventionally from a reflective LCD illuminated with a high brightness LED. The Q-SightTM Helmet Mounted Display (HMD) which exploits this concept is part of a modular-family of Helmet Mounted Displays; allowing the addition of capability as required in a flexible, low-cost way. The basic monocular QSightTM architecture offers plug-and-play solutions into any cockpit with either Analog (stroke) or Digital Video Interface (DVI) connections. This offers a significant upgrade opportunity

  10. Prospective motion correction of 3D echo-planar imaging data for functional MRI using optical tracking.

    PubMed

    Todd, Nick; Josephs, Oliver; Callaghan, Martina F; Lutti, Antoine; Weiskopf, Nikolaus

    2015-06-01

    We evaluated the performance of an optical camera based prospective motion correction (PMC) system in improving the quality of 3D echo-planar imaging functional MRI data. An optical camera and external marker were used to dynamically track the head movement of subjects during fMRI scanning. PMC was performed by using the motion information to dynamically update the sequence's RF excitation and gradient waveforms such that the field-of-view was realigned to match the subject's head movement. Task-free fMRI experiments on five healthy volunteers followed a 2 × 2 × 3 factorial design with the following factors: PMC on or off; 3.0mm or 1.5mm isotropic resolution; and no, slow, or fast head movements. Visual and motor fMRI experiments were additionally performed on one of the volunteers at 1.5mm resolution comparing PMC on vs PMC off for no and slow head movements. Metrics were developed to quantify the amount of motion as it occurred relative to k-space data acquisition. The motion quantification metric collapsed the very rich camera tracking data into one scalar value for each image volume that was strongly predictive of motion-induced artifacts. The PMC system did not introduce extraneous artifacts for the no motion conditions and improved the time series temporal signal-to-noise by 30% to 40% for all combinations of low/high resolution and slow/fast head movement relative to the standard acquisition with no prospective correction. The numbers of activated voxels (p<0.001, uncorrected) in both task-based experiments were comparable for the no motion cases and increased by 78% and 330%, respectively, for PMC on versus PMC off in the slow motion cases. The PMC system is a robust solution to decrease the motion sensitivity of multi-shot 3D EPI sequences and thereby overcome one of the main roadblocks to their widespread use in fMRI studies.

  11. Prospective motion correction of 3D echo-planar imaging data for functional MRI using optical tracking

    PubMed Central

    Todd, Nick; Josephs, Oliver; Callaghan, Martina F.; Lutti, Antoine; Weiskopf, Nikolaus

    2015-01-01

    We evaluated the performance of an optical camera based prospective motion correction (PMC) system in improving the quality of 3D echo-planar imaging functional MRI data. An optical camera and external marker were used to dynamically track the head movement of subjects during fMRI scanning. PMC was performed by using the motion information to dynamically update the sequence's RF excitation and gradient waveforms such that the field-of-view was realigned to match the subject's head movement. Task-free fMRI experiments on five healthy volunteers followed a 2 × 2 × 3 factorial design with the following factors: PMC on or off; 3.0 mm or 1.5 mm isotropic resolution; and no, slow, or fast head movements. Visual and motor fMRI experiments were additionally performed on one of the volunteers at 1.5 mm resolution comparing PMC on vs PMC off for no and slow head movements. Metrics were developed to quantify the amount of motion as it occurred relative to k-space data acquisition. The motion quantification metric collapsed the very rich camera tracking data into one scalar value for each image volume that was strongly predictive of motion-induced artifacts. The PMC system did not introduce extraneous artifacts for the no motion conditions and improved the time series temporal signal-to-noise by 30% to 40% for all combinations of low/high resolution and slow/fast head movement relative to the standard acquisition with no prospective correction. The numbers of activated voxels (p < 0.001, uncorrected) in both task-based experiments were comparable for the no motion cases and increased by 78% and 330%, respectively, for PMC on versus PMC off in the slow motion cases. The PMC system is a robust solution to decrease the motion sensitivity of multi-shot 3D EPI sequences and thereby overcome one of the main roadblocks to their widespread use in fMRI studies. PMID:25783205

  12. Planar nanophotonic devices and integration technologies

    NASA Astrophysics Data System (ADS)

    De La Rue, Richard M.; Sorel, Marc; Samarelli, Antonio; Velha, Philippe; Strain, Michael; Johnson, Nigel P.; Sharp, Graham; Rahman, Faiz; Khokhar, Ali Z.; Macintyre, Douglas S.; McMeekin, Scott G.; Lahiri, Basudev

    2011-07-01

    Planar devices that can be categorised as having a nanophotonic dimension constitute an increasingly important area of photonics research. Device structures that come under the headings of photonic crystals, photonic wires and metamaterials are all of interest - and devices based on combinations of these conceptual approaches may also play an important role. Planar micro-/nano-photonic devices seem likely to be exploited across a wide spectrum of applications in optoelectronics and photonics. This spectrum includes the domains of display devices, biomedical sensing and sensing more generally, advanced fibre-optical communications systems - and even communications down to the local area network (LAN) level. This article will review both device concepts and the applications possibilities of the various different devices.

  13. Experimental evaluation of the optical quality of DMD SLM for its application as Fourier holograms displaying device

    NASA Astrophysics Data System (ADS)

    Molodtsov, D. Y.; Cheremkhin, P. A.; Krasnov, V. V.; Rodin, V. G.

    2016-04-01

    In this paper, the optical quality of micromirror DMD spatial light modulator (SLM) is evaluated and its applicability as an output device for holographic filters in dispersive correlators is analyzed. The possibility of using of DMD SLM extracted from consumer DLP-projector was experimentally evaluated by displaying of Fourier holograms. Software for displaying of holograms was developed. Experiments on holograms reconstruction was conducted with a different number of holograms pixels (and different placement on SLM). Reduction of number of pixels of output hologram (i.e. size of minimum resolvable element) led to improvement of reconstructed image quality. The evaluation shows that not every DMD-chip has acceptable optical quality for its application as display device for Fourier holograms. It was determined that major factor of reconstructed image quality degradation is a curvature of surface of SLM or its safety glass. Ranging hologram size allowed to estimate approximate size of sufficiently flat area of SLM matrix. For tested SLM it was about 1.5 mm. Further hologram size increase led to significant reconstructed image quality degradation. Developed and applied a technique allows to quickly estimate maximum size of holograms that can be displayed with specific SLM without significant degradation of reconstructed image. Additionally it allows to identify areas on the SLM with increased curvature of the surface.

  14. Precise prediction of optical responses of liquid-crystal display products using a behavioral model of liquid crystal

    NASA Astrophysics Data System (ADS)

    Park, Chansoo; Cho, Youngmin; Kim, Jong-Man; Kim, Jongbin; Lee, Seung-Woo

    2012-01-01

    We propose a precise circuit model to estimate transient optical responses of an active-matrix liquid crystal display (AMLCD). Liquid crystal (LC) molecules in the pixel is behaviorally modeled by using the first-order system that is described by Verilog-A. Capacitance-voltage (C-V) characteristics of a pixel determine the accuracy of the dynamic responses. Measuring C-V characteristics is impossible because pixels are driven by switching transistors in the AMLCD. We propose a method to obtain the C-V data from natural optical responses. Estimated optical responses based on the C-V data extracted by our proposal show more accurate results than those based on C-V data obtained by using transmittance-voltage data. It is demonstrated that our behavioral model enables us to predict very accurate transient responses, which makes it possible to design LCD products with lower costs.

  15. Space bandwidth product enhancement of holographic display using high-order diffraction guided by holographic optical element.

    PubMed

    Li, Gang; Jeong, Jinsoo; Lee, Dukho; Yeom, Jiwoon; Jang, Changwon; Lee, Seungjae; Lee, Byoungho

    2015-12-28

    A space bandwidth product (SBP) enhancement method for holographic display using high-order diffraction of a spatial light modulator (SLM) is proposed. Among numerous high order diffraction terms, the plus-minus first and the zeroth are adopted and guided by holographic optical elements (HOEs) to an identical direction with the same intensity. By using a set of electro-shutters synchronized with corresponding order component, the system acts as if three SLMs are tiled in the horizontal direction. To confirm the feasibility of using HOE as the guiding optics for the system, several optical characteristics of the recording material are measured before using them. Furthermore, a computer generated hologram algorithm is proposed for compensating the wavefront distortion caused by use of the HOE. The demonstrated system achieves a three-fold increase in SBP of a single SLM. The results are verified experimentally. PMID:26831985

  16. Optical Addressing of Multi-Colour Photochromic Material Mixture for Volumetric Display.

    PubMed

    Hirayama, Ryuji; Shiraki, Atsushi; Naruse, Makoto; Nakamura, Shinichiro; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2016-01-01

    This is the first study to demonstrate that colour transformations in the volume of a photochromic material (PM) are induced at the intersections of two control light channels, one controlling PM colouration and the other controlling decolouration. Thus, PM colouration is induced by position selectivity, and therefore, a dynamic volumetric display may be realised using these two control lights. Moreover, a mixture of multiple PM types with different absorption properties exhibits different colours depending on the control light spectrum. Particularly, the spectrum management of the control light allows colour-selective colouration besides position selectivity. Therefore, a PM-based, full-colour volumetric display is realised. We experimentally construct a mixture of two PM types and validate the operating principles of such a volumetric display system. Our system is constructed simply by mixing multiple PM types; therefore, the display hardware structure is extremely simple, and the minimum size of a volume element can be as small as the size of a molecule. Volumetric displays can provide natural three-dimensional (3D) perception; therefore, the potential uses of our system include high-definition 3D visualisation for medical applications, architectural design, human-computer interactions, advertising, and entertainment. PMID:27526780

  17. Optical Addressing of Multi-Colour Photochromic Material Mixture for Volumetric Display

    NASA Astrophysics Data System (ADS)

    Hirayama, Ryuji; Shiraki, Atsushi; Naruse, Makoto; Nakamura, Shinichiro; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2016-08-01

    This is the first study to demonstrate that colour transformations in the volume of a photochromic material (PM) are induced at the intersections of two control light channels, one controlling PM colouration and the other controlling decolouration. Thus, PM colouration is induced by position selectivity, and therefore, a dynamic volumetric display may be realised using these two control lights. Moreover, a mixture of multiple PM types with different absorption properties exhibits different colours depending on the control light spectrum. Particularly, the spectrum management of the control light allows colour-selective colouration besides position selectivity. Therefore, a PM-based, full-colour volumetric display is realised. We experimentally construct a mixture of two PM types and validate the operating principles of such a volumetric display system. Our system is constructed simply by mixing multiple PM types; therefore, the display hardware structure is extremely simple, and the minimum size of a volume element can be as small as the size of a molecule. Volumetric displays can provide natural three-dimensional (3D) perception; therefore, the potential uses of our system include high-definition 3D visualisation for medical applications, architectural design, human–computer interactions, advertising, and entertainment.

  18. Optical Addressing of Multi-Colour Photochromic Material Mixture for Volumetric Display

    PubMed Central

    Hirayama, Ryuji; Shiraki, Atsushi; Naruse, Makoto; Nakamura, Shinichiro; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2016-01-01

    This is the first study to demonstrate that colour transformations in the volume of a photochromic material (PM) are induced at the intersections of two control light channels, one controlling PM colouration and the other controlling decolouration. Thus, PM colouration is induced by position selectivity, and therefore, a dynamic volumetric display may be realised using these two control lights. Moreover, a mixture of multiple PM types with different absorption properties exhibits different colours depending on the control light spectrum. Particularly, the spectrum management of the control light allows colour-selective colouration besides position selectivity. Therefore, a PM-based, full-colour volumetric display is realised. We experimentally construct a mixture of two PM types and validate the operating principles of such a volumetric display system. Our system is constructed simply by mixing multiple PM types; therefore, the display hardware structure is extremely simple, and the minimum size of a volume element can be as small as the size of a molecule. Volumetric displays can provide natural three-dimensional (3D) perception; therefore, the potential uses of our system include high-definition 3D visualisation for medical applications, architectural design, human–computer interactions, advertising, and entertainment. PMID:27526780

  19. Optical Addressing of Multi-Colour Photochromic Material Mixture for Volumetric Display.

    PubMed

    Hirayama, Ryuji; Shiraki, Atsushi; Naruse, Makoto; Nakamura, Shinichiro; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2016-08-16

    This is the first study to demonstrate that colour transformations in the volume of a photochromic material (PM) are induced at the intersections of two control light channels, one controlling PM colouration and the other controlling decolouration. Thus, PM colouration is induced by position selectivity, and therefore, a dynamic volumetric display may be realised using these two control lights. Moreover, a mixture of multiple PM types with different absorption properties exhibits different colours depending on the control light spectrum. Particularly, the spectrum management of the control light allows colour-selective colouration besides position selectivity. Therefore, a PM-based, full-colour volumetric display is realised. We experimentally construct a mixture of two PM types and validate the operating principles of such a volumetric display system. Our system is constructed simply by mixing multiple PM types; therefore, the display hardware structure is extremely simple, and the minimum size of a volume element can be as small as the size of a molecule. Volumetric displays can provide natural three-dimensional (3D) perception; therefore, the potential uses of our system include high-definition 3D visualisation for medical applications, architectural design, human-computer interactions, advertising, and entertainment.

  20. A novel backlight unit for volume-holographic optical elements-based time-multiplexed three-dimensional displays

    NASA Astrophysics Data System (ADS)

    Kim, Byung-Mok; Hwang, Yong-Seok; Kim, Eun-Soo

    2015-11-01

    In volume-holographic optical elements (VHOEs)-based time-sequential three-dimensional (3-D) displays, two reference beams generated from a backlight unit (BLU) illuminate VHOEs, and from which object beams satisfying the Brag condition are then diffracted. These beams form a pair of alternating light fields for stereo 3-D view. Since this system operates based on diffraction optics, its performance highly depends on the degrees of collimation and uniformity of the reference beams. Thus, a new BLU system to generate uniformly-collimated reference beams for the VHOEs-based 3-D display is proposed by combined use of a light-guide-plate (LGP) grooved with an array of angle-variant flat-top prisms, and two LED light sources attached with reflection-type beam collimators. Simulation results with LightTools 7.1 show that the average full-width at half maximum (FWHM), backshift ratio and intensity uniformity of the LGP output beam of the proposed system have been significantly reduced down to 2.8° and 0.4%, and increased up to 90.9%, respectively, from the values of 51.8°, 26.5% and 24.5% of the conventional system. They represent 18.5-, 66.3- and 3.7-fold improvements of those values in the proposed system, respectively. These successful results confirm the feasibility of the proposed system in the practical VHOEs-based 3-D display.

  1. Planar micromixer

    DOEpatents

    Fiechtner, Gregory J.; Singh, Anup K.; Wiedenman, Boyd J.

    2008-03-18

    The present embodiment describes a laminar-mixing embodiment that utilizes simple, three-dimensional injection. Also described is the use of the embodiment in combination with wide and shallow sections of channel to affect rapid mixing in microanalytical systems. The shallow channel sections are constructed using all planar micromachining techniques, including those based on isotropic etching. The planar construction enables design using minimum dispersion concepts that, in turn, enable simultaneous mixing and injection into subsequent chromatography channels.

  2. Conducting polymers as driving electrodes for Polymer-Dispersed Liquid-Crystals display devices: on the electro-optical efficiency.

    PubMed

    Roussel, F; Chan-Yu-King, R; Buisine, J-M

    2003-07-01

    Intrinsically conducting polymer (ICP) thin films are used as driving electrodes for Polymer-Dispersed Liquid-Crystals (PDLC) display devices. In order to investigate the electro-optical efficiency of these organic electrodes, three different kinds of conducting polymers, i.e. polyaniline doped with 10-camphorsulfonic acid (PANI(HCSA)), polypyrrole doped with dodecylbenzenesulfonic acid (PPY(DBSA)), and polyethylenedioxythiophene doped with polystyrenesulfonate (PEDOT(PSS)), were prepared or purchased, and coated either on glass or plastic substrates. Optical absorption studies in the UV-Vis range of the conducting polymer-coated substrates were first performed showing the presence of conducting species for the three types of polymers. The electrical characteristics of the resulting films were measured with the four-probes technique. PANI(HCSA) exhibits a higher conductivity sigma approximately 122 S x cm(-1) (RS=1.2x10(3) Omega x (-1)) compared to PPY(DBSA) sigma approximately 2.6 S x cm(-1) (RS=150.7x10(3) Omega x (-1)), and PEDOT(PSS) sigma approximately 1.6 S x cm(-1) (RS=637.3x10(3) Omega x (-1)). It is also shown that for a given conducting polymer, its electrical conductivity decreases when a plastic substrate is used. These observations have been related to significant morphological changes observed by scanning electron microscopy (SEM). A mixture of Norland Optical Adhesive 65 and nematic liquid-crystal E7 in the weight ratio (35:65) was used as precursor of the PDLC material. Better electro-optical responses (transmission properties, drive voltages and switching times) of PDLC films were obtained for devices prepared with (PPY(DBSA))-based electrodes. The electro-optical performances of the PDLC display devices also depend on the nature of the ICP substrate used. PMID:15011049

  3. Conducting polymers as driving electrodes for Polymer-Dispersed Liquid-Crystals display devices: On the electro-optical efficiency

    NASA Astrophysics Data System (ADS)

    Roussel, F.; Chan-Yu-King, R.; Buisine, J.-M.

    2003-07-01

    Intrinsically conducting polymer (ICP) thin films are used as driving electrodes for Polymer-Dispersed Liquid-Crystals (PDLC) display devices. In order to investigate the electro-optical efficiency of these organic electrodes, three different kinds of conducting polymers, i.e. polyaniline doped with 10-camphorsulfonic acid (PANI(HCSA)), polypyrrole doped with dodecylbenzenesulfonic acid (PPY(DBSA)), and polyethylenedioxythiophene doped with polystyrenesulfonate (PEDOT(PSS)), were prepared or purchased, and coated either on glass or plastic substrates. Optical absorption studies in the UV-Vis range of the conducting polymer-coated substrates were first performed showing the presence of conducting species for the three types of polymers. The electrical characteristics of the resulting films were measured with the four-probes technique. PANI(HCSA) exhibits a higher conductivity σsim 122\\un{S\\cdot cm^{-1}} (R_S=1.2 ; 10^3; Ω\\cdotBox^{ -1}) compared to PPY(DBSA) σsim 2.6\\un{S\\cdot cm^{-1}} (R_S=150.7 ;10^3;Ω\\cdotBox^{-1}), and PEDOT(PSS) σsim 1.6\\un{S\\cdot cm^{-1}} (R_S=637.3 ; 10^3; Ω\\cdotBox^{-1}). It is also shown that for a given conducting polymer, its electrical conductivity decreases when a plastic substrate is used. These observations have been related to significant morphological changes observed by scanning electron microscopy (SEM). A mixture of Norland Optical Adhesive 65 and nematic liquid-crystal E7 in the weight ratio (\\chem{35:65}) was used as precursor of the PDLC material. Better electro-optical responses (transmission properties, drive voltages and switching times) of PDLC films were obtained for devices prepared with (PPY(DBSA))-based electrodes. The electro-optical performances of the PDLC display devices also depend on the nature of the ICP substrate used.

  4. Parallel aligned liquid crystal on silicon display based optical set-up for the generation of polarization spatial distributions

    NASA Astrophysics Data System (ADS)

    Estévez, Irene; Lizana, Angel; Zheng, Xuejie; Peinado, Alba; Ramírez, Claudio; Martínez, Jose Luis; Márquez, Andrés.; Moreno, Ignacio; Campos, Juan

    2015-06-01

    Liquid Crystals on Silicon (LCOS) displays are a type of LCDs that work in reflection. Such devices, due to the double pass that the light beam performs through the LC cells, lead to larger phase modulation than transmissive LCDs with the same thickness. By taking advantage of this modulation capability exhibited by LCOS displays, we propose a new experimental set-up which is able to provide customized state of polarization spatial distributions just by means of a single LCOS display. To this aim, a double reflection on different halves of the display is properly performed. This fact is achieved by including a compact optical system that steers the light and performs a proper polarization plane rotation. The set-up has been experimentally implemented and some experimental concerns are discussed. The suitability of the system is provided by generating different experimental spatial distributions of polarization. In this regard, well-known polarization distributions, as axial, azimuthal or spiral linear polarization patterns are here provided. Based on the excellent results obtained, the suitability of the system to generate different spatially variant distributions of polarization is validated.

  5. Three-dimensional study of planar optical antennas made of split-ring architecture outperforming dipole antennas for increased field localization.

    PubMed

    Kilic, Veli Tayfun; Erturk, Vakur B; Demir, Hilmi Volkan

    2012-01-15

    Optical antennas are of fundamental importance for the strongly localizing field beyond the diffraction limit. We report that planar optical antennas made of split-ring architecture are numerically found in three-dimensional simulations to outperform dipole antennas for the enhancement of localized field intensity inside their gap regions. The computational results (finite-difference time-domain) indicate that the resulting field localization, which is of the order of many thousandfold, in the case of the split-ring resonators is at least 2 times stronger than the one in the dipole antennas resonant at the same operating wavelength, while the two antenna types feature the same gap size and tip sharpness.

  6. Microbial surface displaying formate dehydrogenase and its application in optical detection of formate.

    PubMed

    Liu, Aihua; Feng, Ruirui; Liang, Bo

    2016-09-01

    In the present work, NAD(+)-dependent formate dehydrogenase (FDH), encoded by fdh gene from Candida boidinii was successfully displayed on Escherichia coli cell surface using ice nucleation protein (INP) from Pseudomonas borealis DL7 as an anchoring protein. Localization of matlose binding protein (MBP)-INP-FDH fusion protein on the E. coli cell surface was characterized by SDS-PAGE and enzymatic activity assay. FDH activity was monitored through the oxidation of formate catalyzed by cell-surface-displayed FDH with its cofactor NAD(+), and the production of NADH can be detected spectrometrically at 340nm. After induction for 24h in Luria-Bertani medium containing isopropyl-β-d-thiogalactopyranoside, over 80% of MBP-INP-FDH fusion protein present on the surface of E. coli cells. The cell-surface-displayed FDH showed optimal temperature of 50°C and optimal pH of 9.0. Additionally, the cell-surface-displayed FDH retained its original enzymatic activity after incubation at 4°C for one month with the half-life of 17days at 40°C and 38h at 50°C. The FDH activity could be inhibited to different extents by some transition metal ions and anions. Moreover, the E. coli cells expressing FDH showed different tolerance to solvents. The recombinant whole cell exhibited high formate specificity. Finally, the E. coli cell expressing FDH was used to assay formate with a wide linear range of 5-700μM and a low limit of detection of 2μM. It is anticipated that the genetically engineered cells may have a broad application in biosensors, biofuels and cofactor regeneration system. PMID:27444330

  7. Optical profiles of cathode ray tube and liquid crystal display monitors: implication in cutaneous phototoxicity in photodynamic therapy

    PubMed Central

    Lei, Tim C.; Pendyala, Srinivas; Scherrer, Larry; Li, Buhong; Glazner, Gregory F.; Huang, Zheng

    2016-01-01

    Recent clinical reports suggest that overexposure to light emissions generated from cathode ray tube (CRT) and liquid crystal display (LCD) color monitors after topical or systemic administration of a photosensitizer could cause noticeable skin phototoxicity. In this study, we examined the light emission profiles (optical irradiance, spectral irradiance) of CRT and LCD monitors under simulated movie and video game modes. Results suggest that peak emissions and integrated fluence generated from monitors are clinically relevant and therefore prolonged exposure to these light sources at a close distance should be avoided after the administration of a photosensitizer or phototoxic drug. PMID:23669681

  8. Optical profiles of cathode ray tube and liquid crystal display monitors: implication in cutaneous phototoxicity in photodynamic therapy.

    PubMed

    Lei, Tim C; Pendyala, Srinivas; Scherrer, Larry; Li, Buhong; Glazner, Gregory F; Huang, Zheng

    2013-04-20

    Recent clinical reports suggest that overexposure to light emissions generated from cathode ray tube (CRT) and liquid crystal display (LCD) color monitors after topical or systemic administration of a photosensitizer could cause noticeable skin phototoxicity. In this study, we examined the light emission profiles (optical irradiance, spectral irradiance) of CRT and LCD monitors under simulated movie and video game modes. Results suggest that peak emissions and integrated fluence generated from monitors are clinically relevant and therefore prolonged exposure to these light sources at a close distance should be avoided after the administration of a photosensitizer or phototoxic drug.

  9. Progress in updatable photorefractive polymer-based holographic displays via direct optical writing of computer-generated fringe patterns

    NASA Astrophysics Data System (ADS)

    Jolly, Sundeep; Barabas, James; Smalley, Daniel; Bove, V. Michael

    2013-03-01

    We have previously introduced an architecture for updatable photorefractive holographic display based around direct fringe writing of computer-generated holographic fringe patterns. In contrast to interference-based stereogram techniques for hologram exposure in photorefractive polymer (PRP) materials, the direct fringe writing architecture simplifies system design, reduces system footprint and cost, and offers greater affordances over the types of holographic images that can be recorded. In this paper, motivations and goals for employing a direct fringe writing architecture for photorefractive holographic imagers are reviewed, new methods for PRP exposure by micro-optical fields generated via spatial light modulation and telecentric optics are described, and resulting holographic images are presented and discussed. Experimental results are reviewed in the context of theoretical indicators for system performance.

  10. Design of a compact optical see-through head-worn display with mutual occlusion capability

    NASA Astrophysics Data System (ADS)

    Cakmakci, Ozan; Ha, Yonggang; Rolland, Jannick

    2005-08-01

    We present the first-order design details and preliminary lens design and performance analysis of a compact optical system that can achieve mutual occlusions. Mutual occlusion is the ability of real objects to occlude virtual objects and virtual objects to occlude real objects. Mutual occlusion is a desirable attribute for a certain class of augmented reality applications where realistic overlays based on the depth cue is important. Compactness is achieved through the use of polarization optics. First order layout of the system is similar to that of a Keplerian telescope operating at finite conjugates. Additionally, we require the image to lie on the plane of the object with unit magnification. We show that the same lens can be used as the objective and the eyepiece. The system is capable of having very close to zero distortion.

  11. In-flight evaluation of a fiber optic helmet-mounted display

    NASA Astrophysics Data System (ADS)

    Jennings, Sion A.; Gubbels, Arthur W.; Swail, Carl P.; Craig, Greg

    1998-08-01

    The National Research Council of Canada (NRC), in conjunction with the Canadian Department of National Defence (DND), is investigating the use of helmet-mounted displays (HMD) to improve pilot situational awareness in all-weather search and rescue helicopter operations. The National Research Council has installed a visually coupled HMD system in the NRC Bell 205 Airborne Simulator. Equipped with a full authority fly-by-wire control system, the Bell 205 has variable stability characteristics, which makes the airborne simulator the ideal platform for the integrated flight testing of HMDs in a simulated operational environment. This paper presents preliminary results from flight test of the NRC HMD. These results are in the form of numerical head tracker data, and subjective handling qualities ratings. Flight test results showed that the HMD degraded handling qualities due to reduced acuity, limited field-of-view, time delays in the sensor platform, and fatigue caused by excessive helmet inertia. Some evidence was found to support the hypothesis of an opto-kinetic cervical reflex whereby a pilot pitches and rolls his head in response to aircraft movements to maintain a level horizon in their field-of- view.

  12. 3D optical see-through head-mounted display based augmented reality system and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenliang; Weng, Dongdong; Liu, Yue; Xiang, Li

    2015-07-01

    The combination of health and entertainment becomes possible due to the development of wearable augmented reality equipment and corresponding application software. In this paper, we implemented a fast calibration extended from SPAAM for an optical see-through head-mounted display (OSTHMD) which was made in our lab. During the calibration, the tracking and recognition techniques upon natural targets were used, and the spatial corresponding points had been set in dispersed and well-distributed positions. We evaluated the precision of this calibration, in which the view angle ranged from 0 degree to 70 degrees. Relying on the results above, we calculated the position of human eyes relative to the world coordinate system and rendered 3D objects in real time with arbitrary complexity on OSTHMD, which accurately matched the real world. Finally, we gave the degree of satisfaction about our device in the combination of entertainment and prevention of cervical vertebra diseases through user feedbacks.

  13. Lateral optical confinement of channeled-substrate-planar lasers with GaAs/AlGaAs substrates

    NASA Technical Reports Server (NTRS)

    Evans, Gary A.; Butler, Jerome K.; Masin, Valerie J.

    1988-01-01

    A physical explanation of the lateral guiding mechanism in channeled-substrate-planar (CSP) lasers based on the amount of wavefront tilt of the transverse field outside the channel region is presented. Because of this inherent wavefront tilt, all CSP lasers will have a very slight asymmetry in their transverse far-field pattern. The nature of the guiding mechanism does not require light absorption by the substrate. Design curves showing the complex lateral effective index step as a function of n-clad thickness with the active layer as a parameter are also presented. Depending on the specific layer compositions and thicknesses, the CSP guiding mechanism can provide a positive lateral index step for substrates with mole fractions of AlAs ranging from 0 to higher than 0.2.

  14. Batch fabrication of optical actuators using nanotube-elastomer composites towards refreshable Braille displays

    NASA Astrophysics Data System (ADS)

    Camargo, C. J.; Campanella, H.; Marshall, J. E.; Torras, N.; Zinoviev, K.; Terentjev, E. M.; Esteve, J.

    2012-07-01

    This paper reports an opto-actuable device fabricated using micro-machined silicon moulds. The actuating component of the device is made from a composite material containing carbon nanotubes (CNTs) embedded in a liquid crystal elastomer (LCE) matrix. We demonstrate the fabrication of a patterned LCE-CNT film by a combination of mechanical stretching and thermal cross-linking. The resulting poly-domain LCE-CNT film contains ‘blister-shaped’ mono-domain regions, which reversibly change their shape under light irradiation and hence can be used as dynamic Braille dots. We demonstrate that blisters with diameters of 1.0 and 1.5 mm, and wall thickness 300 µm, will mechanically contract under irradiation by a laser diode with optical power up to 60 mW. The magnitude of this contraction was up to 40 µm, which is more than 10% of their height in the ‘rest’ state. The stabilization time of the material is less than 6 s for both actuation and recovery. We also carried out preliminary tests on the repeatability of this photo-actuation process, observing no material or performance degradation. This manufacturing approach establishes a starting point for the design and fabrication of wide-area tactile actuators, which are promising candidates for the development of new Braille reading applications for the visually impaired.

  15. Coupled thermal/structural analyses of laser powered glass sealing methods for fiber optic and flat panel display applications

    SciTech Connect

    Chambers, R.S.; Gianoulakis, S.E.

    1996-12-31

    Glasses are used extensively by the electronics industry for packaging and in components. Because glasses have such low fracture toughness, glass components must maintain low tensile stresses to avoid cracking and ensure product stability. Modeling is a key tool for developing designs with low tensile stresses. Thermoelastic analyses are ideal for modeling slow, oven controlled processes where the temperature varies uniformly. Many processing environments, however, involve rapid heating and cooling cycles that produce nonhomogeneous temperature fields causing the volume and stresses in the glass to relax at different rates. This structural relaxation is an important nonlinear material behavior that gives rise to a point-to-point variability in effective properties of the material. To accurately model such stresses, a thermal analysis must be coupled to a structural analysis that employs a viscoelastic model of glass. Laser sealing of glasses is an example of a process where thermal history is an important factor in determining the residual stress state. Recent needs to consider laser sealing methods for fiber optic connectors and flat panel displays have spurred the development of coupled, three-dimensional thermal and structural finite element codes. Analyses of the temperatures and stresses generated in a flat panel display during a laser sealing operation are presented, an the idiosyncrasies and importance of modeling coupled thermal/structural phenomena are discussed.

  16. Development of a surgical navigation system based on augmented reality using an optical see-through head-mounted display.

    PubMed

    Chen, Xiaojun; Xu, Lu; Wang, Yiping; Wang, Huixiang; Wang, Fang; Zeng, Xiangsen; Wang, Qiugen; Egger, Jan

    2015-06-01

    The surgical navigation system has experienced tremendous development over the past decades for minimizing the risks and improving the precision of the surgery. Nowadays, Augmented Reality (AR)-based surgical navigation is a promising technology for clinical applications. In the AR system, virtual and actual reality are mixed, offering real-time, high-quality visualization of an extensive variety of information to the users (Moussa et al., 2012) [1]. For example, virtual anatomical structures such as soft tissues, blood vessels and nerves can be integrated with the real-world scenario in real time. In this study, an AR-based surgical navigation system (AR-SNS) is developed using an optical see-through HMD (head-mounted display), aiming at improving the safety and reliability of the surgery. With the use of this system, including the calibration of instruments, registration, and the calibration of HMD, the 3D virtual critical anatomical structures in the head-mounted display are aligned with the actual structures of patient in real-world scenario during the intra-operative motion tracking process. The accuracy verification experiment demonstrated that the mean distance and angular errors were respectively 0.809±0.05mm and 1.038°±0.05°, which was sufficient to meet the clinical requirements.

  17. Optical processing of color images with incoherent illumination: orientation-selective edge enhancement using a modified liquid-crystal display.

    PubMed

    Fernández, Ariel; Alonso, Julia R; Flores, Jorge L; Ayubi, Gastón A; Di Martino, J Matías; Ferrari, José A

    2011-10-10

    We present a novel optical method for edge enhancement in color images based on the polarization properties of liquid-crystal displays (LCD). In principle, a LCD generates simultaneously two color-complementary, orthogonally polarized replicas of the digital image used as input. The currently viewed image in standard LCD monitors and cell phone's screens -which we will refer as the "positive image or true-color image"- is the one obtained by placing an analyzer in front of the LCD, in cross configuration to the back polarizer of the display. The orthogonally polarized replica of this image -the "negative image or complementary-color image"- is absorbed by the front polarizer. In order to generate the positive and negative replica with a slight displacement between them, we used a LCD monitor whose analyzer (originally a linear polarizer) was replaced by a calcite crystal acting as beam displacer. When both images are superimposed laterally displaced across the image plane, one obtains an image with enhanced first-order derivatives along a specific direction. The proposed technique works under incoherent illumination and does not require precise alignment, and thus, it could be potentially useful for processing large color images in real-time applications. Validation experiments are presented.

  18. Optical See-Through Head Mounted Display Direct Linear Transformation Calibration Robustness in the Presence of User Alignment Noise

    NASA Technical Reports Server (NTRS)

    Axholt, Magnus; Skoglund, Martin; Peterson, Stephen D.; Cooper, Matthew D.; Schoen, Thomas B.; Gustafsson, Fredrik; Ynnerman, Anders; Ellis, Stephen R.

    2010-01-01

    Augmented Reality (AR) is a technique by which computer generated signals synthesize impressions that are made to coexist with the surrounding real world as perceived by the user. Human smell, taste, touch and hearing can all be augmented, but most commonly AR refers to the human vision being overlaid with information otherwise not readily available to the user. A correct calibration is important on an application level, ensuring that e.g. data labels are presented at correct locations, but also on a system level to enable display techniques such as stereoscopy to function properly [SOURCE]. Thus, vital to AR, calibration methodology is an important research area. While great achievements already have been made, there are some properties in current calibration methods for augmenting vision which do not translate from its traditional use in automated cameras calibration to its use with a human operator. This paper uses a Monte Carlo simulation of a standard direct linear transformation camera calibration to investigate how user introduced head orientation noise affects the parameter estimation during a calibration procedure of an optical see-through head mounted display.

  19. Electrical and Optical Properties of Index-Matched Transparent Conducting Oxide Layers for Liquid Crystal on Si Projection Displays

    NASA Astrophysics Data System (ADS)

    Park, Cheol Young; Choi, Bum Ho; Lee, Jong Ho

    2013-06-01

    In this study, the characteristics of several kinds of index-matched transparent conducting oxide layers (TCO) were investigated for applications to liquid crystals on silicon (LCoS) projection displays. The purpose of exploring the characteristics of these materials is to find alternatives to currently used index-matched indium-doped tin oxide (ITO) layers, since index-matched ITO suffers from high production costs and materials shortages. Based on zinc oxide (ZnO) TCO layers, metal dopants such as Al, In, or Ga were added to improve the optical and electrical properties; 15 nm thick ZnO, aluminum-doped ZnO (AZO), indium-gallium-doped ZnO (IGZO), indium-doped ZnO (IZO), and gallium-doped ZnO (GZO) layers were sputtered on glass substrates using radio frequency (RF) and direct current (DC) magnetron sputtering. The measured transparency in the visible radiation range was above 94% for all prepared index-matched TCO layers. Among them, the transparency of AZO layers was the highest, reaching 97.5%. The sheet resistance of the TCO layers was around 100 Ω cm-2, with 82.6 Ω cm-2 being the lowest measured value obtained from a 15 nm thick AZO layer. Furthermore, the sheet resistance uniformity measured by samples with an area of 200×200 mm2 was below 5%. Atomic force microscopy measurement results show that the root-mean-square surface roughness values were lower than 0.01 nm in ZnO and AZO, and 0.128 and 0.261 in IGZO and GZO, respectively. The contact angle, which is another key factor in index-matched TCO-coated substrates, was around 25°, which meets the requirements for LCoS projection display panels. Among the tested TCO layers, AZO exhibited superior characteristics in terms of optical and electrical properties. Therefore, AZO represents an alternative to currently used index-matched ITO layers in LCoS projection displays.

  20. 4D megahertz optical coherence tomography (OCT): imaging and live display beyond 1 gigavoxel/sec (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huber, Robert A.; Draxinger, Wolfgang; Wieser, Wolfgang; Kolb, Jan Philip; Pfeiffer, Tom; Karpf, Sebastian N.; Eibl, Matthias; Klein, Thomas

    2016-03-01

    Over the last 20 years, optical coherence tomography (OCT) has become a valuable diagnostic tool in ophthalmology with several 10,000 devices sold today. Other applications, like intravascular OCT in cardiology and gastro-intestinal imaging will follow. OCT provides 3-dimensional image data with microscopic resolution of biological tissue in vivo. In most applications, off-line processing of the acquired OCT-data is sufficient. However, for OCT applications like OCT aided surgical microscopes, for functional OCT imaging of tissue after a stimulus, or for interactive endoscopy an OCT engine capable of acquiring, processing and displaying large and high quality 3D OCT data sets at video rate is highly desired. We developed such a prototype OCT engine and demonstrate live OCT with 25 volumes per second at a size of 320x320x320 pixels. The computer processing load of more than 1.5 TFLOPS was handled by a GTX 690 graphics processing unit with more than 3000 stream processors operating in parallel. In the talk, we will describe the optics and electronics hardware as well as the software of the system in detail and analyze current limitations. The talk also focuses on new OCT applications, where such a system improves diagnosis and monitoring of medical procedures. The additional acquisition of hyperspectral stimulated Raman signals with the system will be discussed.

  1. MARS: a mouse atlas registration system based on a planar x-ray projector and an optical camera

    NASA Astrophysics Data System (ADS)

    Wang, Hongkai; Stout, David B.; Taschereau, Richard; Gu, Zheng; Vu, Nam T.; Prout, David L.; Chatziioannou, Arion F.

    2012-10-01

    This paper introduces a mouse atlas registration system (MARS), composed of a stationary top-view x-ray projector and a side-view optical camera, coupled to a mouse atlas registration algorithm. This system uses the x-ray and optical images to guide a fully automatic co-registration of a mouse atlas with each subject, in order to provide anatomical reference for small animal molecular imaging systems such as positron emission tomography (PET). To facilitate the registration, a statistical atlas that accounts for inter-subject anatomical variations was constructed based on 83 organ-labeled mouse micro-computed tomography (CT) images. The statistical shape model and conditional Gaussian model techniques were used to register the atlas with the x-ray image and optical photo. The accuracy of the atlas registration was evaluated by comparing the registered atlas with the organ-labeled micro-CT images of the test subjects. The results showed excellent registration accuracy of the whole-body region, and good accuracy for the brain, liver, heart, lungs and kidneys. In its implementation, the MARS was integrated with a preclinical PET scanner to deliver combined PET/MARS imaging, and to facilitate atlas-assisted analysis of the preclinical PET images.

  2. Optical density measurement of thin-film transistor liquid crystal display by a monochrome light-emitting diode.

    PubMed

    Tzu, Fu-Ming; Chou, Jung-Hua

    2009-06-10

    A new method using a monochromatic light-emitting diode (LED) to measure the optical density (OD) of the black matrix of thin-film transistor liquid crystal display (LCD) is developed in this study. The measured results show that the average OD difference is within 1% between the proposed 3 W monochromatic LED and the currently adopted 100 W quartz halogen lamp. On the other hand, the monochromatic LED reduces the boosting time by 40% in establishing the baseline database. The 3sigma standard deviation of the OD of the test samples is from 0.1% to 0.6% for the LED, whereas it is from 0.5% to 1.2% for the halogen lamp. Using standard glass samples, the monochromatic LED demonstrates accuracy within 1.58%, better than that of the quartz halogen lamp. Therefore, it can substitute for the quartz halogen lamp currently used in the thin-film transistor LCD industry for OD measurement of the black matrix layer, as it is faster, is more accurate, is more reliable, and consumes less power. PMID:19516356

  3. Effects of dielectric relaxations and dual-frequency addressing on the electro-optics of guest-host liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Schadt, M.

    1982-10-01

    Nematic as well as phase-change guest-host liquid crystal displays are shown to be dual-frequency addressable by using liquid crystalline hosts with suitable static and dynamic dielectric properties, thus rendering them multiplexable. Positive as well as negative optical contrasts and fast turn-off times can be achieved.

  4. A 'quad-phantom' film dosimeter for use as a multi-planar verification tool for PRESAGE/optical-CT

    NASA Astrophysics Data System (ADS)

    Stunja, L.; Thomas, A.; Adamovics, J.; Deasy, J.; Oldham, M.

    2010-11-01

    Introduction: To develop and characterize the accuracy and reproducibility of a 'quad-phantom' dosimeter which will serve as an independent verification tool during commissioning of a PRESAGE/optical-CT 3D dosimetry system. Methods: A 16cm × 12cm cylindrical quad-phantom was constructed from four pieces of solid polyurethane mimicking the PRESAGE material. Films were placed and anchored in orthogonal planes and the quad-phantom was fastened tightly together and placed in a water-filled Styrofoam container for irradiation. A simple, two-field plan consisting of 6×6cm anterior-posterior and right-lateral 6MV photon beams (400cGy) was delivered three times (fresh films inserted for each) with a Varian Clinac 600C. Image registration was performed in the Computational Environment for Radiological Research (CERR) and dose profiles and gamma analysis was performed in CERR and MATLAB. Results & Discussion: Excellent reproducibility was observed during the irradiations, with ~2.3% standard deviation between all pixels. Using a 3%, 3mm gamma criteria, excellent dosimetric accuracy was observed, with 98.8% and 96.3% passing rates in the sagittal and axial planes, respectively. Conclusion: The preliminary results indicate that the quad-phantom can serve as a reproducible and accurate system for high resolution dosimetry in orthogonal planes and should serve as an effective verification tool for PRESAGE/optical-CT in more challenging clinical scenarios.

  5. A 'quad-phantom' film dosimeter for use as a multi-planar verification tool for PRESAGE/optical-CT.

    PubMed

    Stunja, L; Thomas, A; Adamovics, J; Deasy, J; Oldham, M

    2010-01-01

    INTRODUCTION: To develop and characterize the accuracy and reproducibility of a quad-phantom dosimeter which will serve as an independent verification tool during commissioning of a PRESAGE/optical-CT 3D dosimetry system. METHODS: A 16cm × 12cm cylindrical quad-phantom was constructed from four pieces of solid polyurethane mimicking the PRESAGE material. Films were placed and anchored in orthogonal planes and the quad-phantom was fastened tightly together and placed in a water-filled Styrofoam container for irradiation. A simple, two-field plan consisting of 6×6cm anterior-posterior and right-lateral 6MV photon beams (400cGy) was delivered three times (fresh films inserted for each) with a Varian Clinac 600C. Image registration was performed in the Computational Environment for Radiological Research (CERR) and dose profiles and gamma analysis was performed in CERR and MATLAB. RESULTS #ENTITYSTARTX00026; DISCUSSION: Excellent reproducibility was observed during the irradiations, with ~2.3% standard deviation between all pixels. Using a 3%, 3mm gamma criteria, excellent dosimetric accuracy was observed, with 98.8% and 96.3% passing rates in the sagittal and axial planes, respectively. CONCLUSION: The preliminary results indicate that the quad-phantom can serve as a reproducible and accurate system for high resolution dosimetry in orthogonal planes and should serve as an effective verification tool for PRESAGE/optical-CT in more challenging clinical scenarios.

  6. A 'quad-phantom' film dosimeter for use as a multi-planar verification tool for PRESAGE/optical-CT.

    PubMed

    Stunja, L; Thomas, A; Adamovics, J; Deasy, J; Oldham, M

    2010-01-01

    INTRODUCTION: To develop and characterize the accuracy and reproducibility of a quad-phantom dosimeter which will serve as an independent verification tool during commissioning of a PRESAGE/optical-CT 3D dosimetry system. METHODS: A 16cm × 12cm cylindrical quad-phantom was constructed from four pieces of solid polyurethane mimicking the PRESAGE material. Films were placed and anchored in orthogonal planes and the quad-phantom was fastened tightly together and placed in a water-filled Styrofoam container for irradiation. A simple, two-field plan consisting of 6×6cm anterior-posterior and right-lateral 6MV photon beams (400cGy) was delivered three times (fresh films inserted for each) with a Varian Clinac 600C. Image registration was performed in the Computational Environment for Radiological Research (CERR) and dose profiles and gamma analysis was performed in CERR and MATLAB. RESULTS #ENTITYSTARTX00026; DISCUSSION: Excellent reproducibility was observed during the irradiations, with ~2.3% standard deviation between all pixels. Using a 3%, 3mm gamma criteria, excellent dosimetric accuracy was observed, with 98.8% and 96.3% passing rates in the sagittal and axial planes, respectively. CONCLUSION: The preliminary results indicate that the quad-phantom can serve as a reproducible and accurate system for high resolution dosimetry in orthogonal planes and should serve as an effective verification tool for PRESAGE/optical-CT in more challenging clinical scenarios. PMID:21218141

  7. Flexible Bistable Cholesteric Reflective Displays

    NASA Astrophysics Data System (ADS)

    Yang, Deng-Ke

    2006-03-01

    Cholesteric liquid crystals (ChLCs) exhibit two stable states at zero field condition-the reflecting planar state and the nonreflecting focal conic state. ChLCs are an excellent candidate for inexpensive and rugged electronic books and papers. This paper will review the display cell structure,materials and drive schemes for flexible bistable cholesteric (Ch) reflective displays.

  8. Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including protein markers, pathogens and cellular debris

    DOEpatents

    Martinez, Jennifer S.; Swanson, Basil I.; Grace, Karen M.; Grace, Wynne K.; Shreve, Andrew P.

    2009-06-02

    An assay element is described including recognition ligands bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of a biological target is described including injecting a biological target-containing sample into a sensor cell including the assay element, with the recognition ligands adapted for binding to selected biological targets, maintaining the sample within the sensor cell for time sufficient for binding to occur between selected biological targets within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting the fluorescent-label in any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

  9. Quasi-optical theory of relativistic surface-wave oscillators with one-dimensional and two-dimensional periodic planar structures

    SciTech Connect

    Ginzburg, N. S.; Zaslavsky, V. Yu.; Malkin, A. M.; Sergeev, A. S.

    2013-11-15

    Within the framework of a quasi-optical approach, we develop 2D and 3D self-consistent theory of relativistic surface-wave oscillators. Presenting the radiation field as a sum of two counter-propagating wavebeams coupled on a shallow corrugated surface, we describe formation of an evanescent slow wave. Dispersion characteristics of the evanescent wave following from this method are in good compliance with those found from the direct cst simulations. Considering excitation of the slow wave by a sheet electron beam, we simulate linear and nonlinear stages of interaction, which allows us to determine oscillation threshold conditions, electron efficiency, and output coupling. The transition from the model of surface-wave oscillator operating in the π-mode regime to the canonical model of relativistic backward wave oscillator is considered. We also described a modified scheme of planar relativistic surface-wave oscillators exploiting two-dimensional periodic gratings. Additional transverse propagating waves emerging on these gratings synchronize the emission from a wide sheet rectilinear electron beam allowing realization of a Cherenkov millimeter-wave oscillators with subgigawatt output power level.

  10. Restoring in-phase emissions from non-planar radiating elements using a transformation optics based lens

    SciTech Connect

    Yi, Jianjia; Burokur, Shah Nawaz Lustrac, André de; Piau, Gérard-Pascal

    2015-07-13

    The broadband directive in-phase emission from an array of sources conformed cylindrically is numerically and experimentally reported. Such manipulation is achieved through the use of a lens designed by transformation optics concept. The all-dielectric lens prototype is realized through three-dimensional (3D) polyjet printing and presents a graded refractive index. A microstrip antenna array fabricated using standard lithography techniques and conformed on a cylindrical surface is used as TE-polarized wave launcher for the lens. To experimentally demonstrate the broadband focusing properties and in-phase directive emissions, both the far-field radiation patterns and the near-field distributions have been measured. Experimental measurements agreeing qualitatively with numerical simulations validate the proposed lens and open the way to inexpensive all-dielectric microwave lenses for beam forming and collimation.

  11. Restoring in-phase emissions from non-planar radiating elements using a transformation optics based lens

    NASA Astrophysics Data System (ADS)

    Yi, Jianjia; Burokur, Shah Nawaz; Piau, Gérard-Pascal; de Lustrac, André

    2015-07-01

    The broadband directive in-phase emission from an array of sources conformed cylindrically is numerically and experimentally reported. Such manipulation is achieved through the use of a lens designed by transformation optics concept. The all-dielectric lens prototype is realized through three-dimensional (3D) polyjet printing and presents a graded refractive index. A microstrip antenna array fabricated using standard lithography techniques and conformed on a cylindrical surface is used as TE-polarized wave launcher for the lens. To experimentally demonstrate the broadband focusing properties and in-phase directive emissions, both the far-field radiation patterns and the near-field distributions have been measured. Experimental measurements agreeing qualitatively with numerical simulations validate the proposed lens and open the way to inexpensive all-dielectric microwave lenses for beam forming and collimation.

  12. Optical measurements of the droplet size distribution in the case of fuel atomization in swirl nozzles and planar airblast diffusers

    NASA Technical Reports Server (NTRS)

    Kayser, A.

    1978-01-01

    The theoretical principles of optical methods for the determination of the particle sizes of sprays are considered and aspects of the experimental implementation of these principles are discussed. An experimental device for point-intensity measurements makes use of a helium-neon laser. The cross-sectional area of the laser beam is enlarged with the aid of a lens system to the size of the measurement cross-section. The intensity of the laser light scattered by the spray particles is measured as a function of light direction. Approaches which take into account the total energy of the diffractively scattered light are also discussed and an investigation is conducted regarding the measurement error sources. A description is presented of experimental results obtained in studies of a number of fuel nozzle sprays.

  13. Electrochromic display device

    NASA Astrophysics Data System (ADS)

    Nicholson, M. M.

    1984-07-01

    This invention relates to electrochromic devices. In one aspect it relates to electrically controllable display devices. In another aspect it relates to electrically tunable optical or light filters. In yet another aspect it relates to a chemical sensor device which employs a color changing film. There are many uses for electrically controllable display devices. A number of such devices have been in commercial use for some time. These display devices include liquid crystal displays, light emitting diode displays, plasma displays, and the like. Light emitting diode displays and plasma display panels both suffer from the fact that they are active. Light emissive devices which require substantial power for their operation, In addition, it is difficult to fabricate light emitting diode displays in a manner which renders them easily distinguishable under bright ambient illumination. Liquid crystal displays suffer from the disadvantage that they are operative only over a limited temperature range and have substantially no memory within the liquid crystal material.

  14. Planar ion microtraps

    NASA Astrophysics Data System (ADS)

    Brewer, R. G.; Devoe, R. G.; Kallenbach, R.

    1992-12-01

    Planar quadrupole ion traps have been analyzed through numerical and analytic solutions of Laplace's equation. These involve either one or more conducting rings or their analogs, a hole in one or more conducting sheets. The leading terms in the potential are harmonic, corresponding to the Paul trap, but with coefficients that reduce their efficiency and for some traps, the anharmonic terms can be suppressed to eighth-order. Stable ion trapping is predicted for all electrode configurations possessing radial and axial symmetry. A three-hole microtrap with an inner hole radius of 80 μm trapped from one to many (dense clouds) laser-cooled Ba+ ions where the two-ion distance is compressed to 1 μm, allowing new experiments in quantum optics. Also, arrays of traps for optical clocks are contemplated using photolithographic fabrication.

  15. EMU helmet mounted display

    NASA Technical Reports Server (NTRS)

    Marmolejo, Jose (Inventor); Smith, Stephen (Inventor); Plough, Alan (Inventor); Clarke, Robert (Inventor); Mclean, William (Inventor); Fournier, Joseph (Inventor)

    1990-01-01

    A helmet mounted display device is disclosed for projecting a display on a flat combiner surface located above the line of sight where the display is produced by two independent optical channels with independent LCD image generators. The display has a fully overlapped field of view on the combiner surface and the focus can be adjusted from a near field of four feet to infinity.

  16. A novel planar optical sensor for simultaneous monitoring of oxygen, carbon dioxide, pH and temperature.

    PubMed

    Borisov, Sergey M; Seifner, Roman; Klimant, Ingo

    2011-06-01

    The first quadruple luminescent sensor is presented which enables simultaneous detection of three chemical parameters and temperature. A multi-layer material is realized and combines two spectrally independent dually sensing systems. The first layer employs ethylcellulose containing the carbon dioxide sensing chemistry (fluorescent pH indicator 8-hydroxy-pyrene-1,3,6-trisulfonate (HPTS) and a lipophilic tetraalkylammonium base). The cross-linked polymeric beads stained with a phosphorescent iridium(III) complex are also dispersed in ethylcellulose and serve both for oxygen sensing and as a reference for HPTS. The second (pH/temperature) dually sensing system relies on the use of a pH-sensitive lipophilic seminaphthorhodafluor derivative and luminescent chromium(III)-activated yttrium aluminum borate particles (simultaneously acting as a temperature probe and as a reference for the pH indicator) which are embedded in polyurethane hydrogel layer. A silicone layer is used to spatially separate both dually sensing systems and to insure permeation selectivity for the CO(2)/O(2) layer. The CO(2)/O(2) and the pH/temperature layers are excitable with a blue and a red LED, respectively, and the emissions are isolated with help of optical filters. The measurements are performed at two modulation frequencies for each sensing system and the modified Dual Lifetime Referencing method is used to access the analytical information. The feasibility of the simultaneous four-parameter sensing is demonstrated. However, the practical applicability of the material may be compromised by its high complexity and by the performance of individual indicators.

  17. Stray light in cone beam optical computed tomography: I. Measurement and reduction strategies with planar diffuse source

    NASA Astrophysics Data System (ADS)

    Granton, Patrick V.; Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.

    2016-04-01

    Optical cone-beam computed tomographic (CBCT) scanning of 3D radiochromic dosimeters may provide a practical method for 3D dose verification in radiation therapy. However, in cone-beam geometry stray light contaminates the projection images, degrading the accuracy of reconstructed linear attenuation coefficients. Stray light was measured using a beam pass aperture array (BPA) and structured illumination methods. The stray-to-primary ray ratio (SPR) along the central axis was found to be 0.24 for a 5% gelatin hydrogel, representative of radiochromic hydrogels. The scanner was modified by moving the spectral filter from the detector to the source, changing the light’s spatial fluence pattern and lowering the acceptance angle by extending distance between the source and object. These modifications reduced the SPR significantly from 0.24 to 0.06. The accuracy of the reconstructed linear attenuation coefficients for uniform carbon black liquids was compared to independent spectrometer measurements. Reducing the stray light increased the range of accurate transmission readings. In order to evaluate scanner performance for the more challenging application to small field dosimetry, a carbon black finger gel phantom was prepared. Reconstructions of the phantom from CBCT and fan-beam CT scans were compared. The modified source resulted in improved agreement. Subtraction of residual stray light, measured with BPA or structured illumination from each projection further improved agreement. Structured illumination was superior to BPA for measuring stray light for the smaller 1.2 and 0.5 cm diameter phantom fingers. At the costs of doubling the scanner size and tripling the number of scans, CBCT reconstructions of low-scattering hydrogel dosimeters agreed with those of fan-beam CT scans.

  18. Seamless tiled display system

    NASA Technical Reports Server (NTRS)

    Dubin, Matthew B. (Inventor); Larson, Brent D. (Inventor); Kolosowsky, Aleksandra (Inventor)

    2006-01-01

    A modular and scalable seamless tiled display apparatus includes multiple display devices, a screen, and multiple lens assemblies. Each display device is subdivided into multiple sections, and each section is configured to display a sectional image. One of the lens assemblies is optically coupled to each of the sections of each of the display devices to project the sectional image displayed on that section onto the screen. The multiple lens assemblies are configured to merge the projected sectional images to form a single tiled image. The projected sectional images may be merged on the screen by magnifying and shifting the images in an appropriate manner. The magnification and shifting of these images eliminates any visual effect on the tiled display that may result from dead-band regions defined between each pair of adjacent sections on each display device, and due to gaps between multiple display devices.

  19. Rollable multicolor display using electrically induced blueshift of a cholesteric reactive mesogen mixture

    NASA Astrophysics Data System (ADS)

    Xianyu, Haiqing; Lin, Tsung-Hsien; Wu, Shin-Tson

    2006-08-01

    Electrically controllable blueshift of the reflection band in a planar cholesteric reactive mesogen cell is observed. The responsible mechanism is electric-field-induced Helfrich deformation [J. Chem. Phys. 55, 839 (1971)]. The modified director configuration can be solidified by photopolymerizing the reactive mesogens when a voltage is applied. The correlation between the director configuration and optical properties is validated by the scanning electron microscope photos and the transmission spectra of a planar and an undulated cholesteric film. With masked curing at different voltages, a rollable multicolor display is demonstrated.

  20. Planar photovoltaic solar concentrator module

    DOEpatents

    Chiang, Clement J.

    1992-01-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  1. Planar photovoltaic solar concentrator module

    DOEpatents

    Chiang, C.J.

    1992-12-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

  2. Optical efficiency enhancement in white organic light-emitting diode display with high color gamut using patterned quantum dot film and long pass filter

    NASA Astrophysics Data System (ADS)

    Kim, Hyo-Jun; Shin, Min-Ho; Kim, Young-Joo

    2016-08-01

    A new structure for white organic light-emitting diode (OLED) displays with a patterned quantum dot (QD) film and a long pass filter (LPF) was proposed and evaluated to realize both a high color gamut and high optical efficiency. Since optical efficiency is a critical parameter in white OLED displays with a high color gamut, a red or green QD film as a color-converting component and an LPF as a light-recycling component are introduced to be adjusted via the characteristics of a color filter (CF). Compared with a conventional white OLED without both a QD film and the LPF, it was confirmed experimentally that the optical powers of red and green light in a new white OLED display were increased by 54.1 and 24.7% using a 30 wt % red QD film and a 20 wt % green QD film with the LPF, respectively. In addition, the white OLED with both a QD film and the LPF resulted in an increase in the color gamut from 98 to 107% (NTSC x,y ratio) due to the narrow emission linewidth of the QDs.

  3. Real-time GPU-accelerated processing and volumetric display for wide-field laser-scanning optical-resolution photoacoustic microscopy

    PubMed Central

    Kang, Heesung; Lee, Sang-Won; Lee, Eun-Soo; Kim, Se-Hwa; Lee, Tae Geol

    2015-01-01

    Fast signal processing and real-time displays are essential for practical imaging modality in various fields of applications. However, the imaging speed in optical-resolution photoacoustic microscopy (OR-PAM), in particular, depends on factors such as the pulse repetition rate of the laser, scanning method, field of view (FOV), and signal processing time. In the past, efforts to increase acquisition speed either focused on developing new scanning methods or using lasers with higher pulse repetition rates. However, high-speed signal processing is also important for real-time volumetric display in OR-PAM. In this study, we carried out parallel signal processing using a graphics processing unit (GPU) to enable fast signal processing and wide-field real-time displays in laser-scanning OR-PAM. The average total GPU processing time for a B-mode PAM image was approximately 1.35 ms at a display speed of 480 fps when the data samples were acquired with 736 (axial) × 500 (lateral) points/B-mode-frame at a pulse repetition rate of 300 kHz. In addition, we successfully displayed maximum amplitude projection images of a mouse’s ear as volumetric images with an FOV of 3 mm × 3 mm (500 × 500 pixels) at 1.02 s, corresponding to 0.98 fps. PMID:26713184

  4. Display innovations through glass

    NASA Astrophysics Data System (ADS)

    Hamilton, Lori L.

    2016-03-01

    Prevailing trends in thin, lightweight, high-resolution, and added functionality, such as touch sensing, continue to drive innovation in the display market. While display volumes grow, so do consumers’ need for portability, enhanced optical performance, and mechanical reliability. Technical advancements in glass design and process have enabled display innovations in these areas while supporting industry growth. Opportunities for further innovation remain open for glass manufacturers to drive new applications, enhanced functionality, and increased demand.

  5. Virtual display design using waveguide hologram in conical mounting configuration

    NASA Astrophysics Data System (ADS)

    Yan, Zhanjun; Li, Wenqiang; Zhou, Yongjun; Kang, Mingwu; Zheng, Zhenrong

    2011-09-01

    An improved virtual display is proposed by using a waveguide holographic configuration with two total internal reflection holographic gratings in conical mounting and two volume hologram in classical mounting recorded on a single transparent planar waveguide. Using this compact configuration, efficiency can be dramatically improved and assembly is easy to be realized. The main principle and the method of intensity uniformity control are present in the paper. The analysis and simulation results are also explained. The virtual display system design shows good optical performance with 25 deg. field of view, a large pupil about 43 mm, little distortion less than 1%, and low aberration. The configuration can be used to a portable or wearable display.

  6. Optical simulation of in-plane-switching blue phase liquid crystal display using the finite-difference time-domain method

    NASA Astrophysics Data System (ADS)

    Dou, Hu; Ma, Hongmei; Sun, Yu-Bao

    2016-09-01

    The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display. Compared with the matrix optic methods and the refractive method, the finite-difference time-domain method, which is used to directly solve Maxwell’s equations, can consider the lateral variation of the refractive index and obtain an accurate convergence effect. The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage. The finite-difference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change. Project supported by the National Natural Science Foundation of China (Grant Nos. 11304074, 61475042, and 11274088), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2015202320 and GCC2014048), and the Key Subject Construction Project of Hebei Province University, China.

  7. Distance Perception of Stereoscopically Presented Virtual Objects Optically Superimposed on Physical Objects by a Head-Mounted See-Through Display

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Bucher, Urs J.; Statler, Irving C. (Technical Monitor)

    1994-01-01

    The influence of physically presented background stimuli on the perceived depth of optically overlaid, stereoscopic virtual images has been studied using headmounted stereoscopic, virtual image displays. These displays allow presentation of physically unrealizable stimulus combinations. Positioning of an opaque physical object either at the initial perceived depth of the virtual image or at a position substantially in front of the virtual image, causes the virtual image to perceptually move closer to the observer. In the case of objects positioned substantially in front of the virtual image, subjects often perceive the opaque object to become transparent. Evidence is presented that the apparent change of position caused by interposition of the physical object is not due to occlusion cues. According, it may have an alternative cause such as variation in the binocular vengeance position of the eyes caused by introduction of the physical object. This effect may complicate design of overlaid virtual image displays for near objects and appears to be related to the relative conspicuousness of the overlaid virtual image and the background. Consequently, it may be related to earlier analyses of John Foley which modeled open-loop pointing errors to stereoscopically presented points of light in terms of errors in determination of a reference point for interpretation of observed retinal disparities. Implications for the design of see-through displays for manufacturing will be discussed.

  8. Optical microspectrometer

    DOEpatents

    Sweatt, William C.; Christenson, Todd R.

    2004-05-25

    An optical microspectrometer comprises a grism to disperse the spectra in a line object. A single optical microspectrometer can be used to sequentially scan a planar object, such as a dye-tagged microchip. Because the optical microspectrometer is very compact, multiple optical microspectrometers can be arrayed to provide simultaneous readout across the width of the planar object The optical microspectrometer can be fabricated with lithographic process, such as deep X-ray lithography (DXRL), with as few as two perpendicular exposures.

  9. Integrated display scanner

    DOEpatents

    Veligdan, James T.

    2004-12-21

    A display scanner includes an optical panel having a plurality of stacked optical waveguides. The waveguides define an inlet face at one end and a screen at an opposite end, with each waveguide having a core laminated between cladding. A projector projects a scan beam of light into the panel inlet face for transmission from the screen as a scan line to scan a barcode. A light sensor at the inlet face detects a return beam reflected from the barcode into the screen. A decoder decodes the return beam detected by the sensor for reading the barcode. In an exemplary embodiment, the optical panel also displays a visual image thereon.

  10. A diffuser-based three-dimensional measurement of polarization-dependent scattering characteristics of optical films for 3D-display applications.

    PubMed

    Kim, Dae-Yeon; Seo, Jong-Wook

    2015-01-26

    We propose an accurate and easy-to-use three-dimensional measurement method using a diffuser plate to analyze the scattering characteristics of optical films. The far-field radiation pattern of light scattered by the optical film is obtained from the illuminance pattern created on the diffuser plate by the light. A mathematical model and calibration methods were described, and the results were compared with those obtained by a direct measurement using a luminance meter. The new method gave very precise three-dimensional polarization-dependent scattering characteristics of scattering polarizer films, and it can play an effective role in developing high performance polarization-selective screens for 3D display applications. PMID:25835866

  11. The impact of human factors, crashworthiness and optical performance design requirements on helmet-mounted display development from the 1970s to the present

    NASA Astrophysics Data System (ADS)

    Harding, Thomas H.; Rash, Clarence E.; McLean, William E.; Martin, John S.

    2015-05-01

    Driven by the operational needs of modern warfare, the helmet-mounted display (HMD) has matured from a revolutionary, but impractical, World War I era idea for an infantry marksman's helmet-mounted weapon delivery system to a sophisticated and ubiquitous display and targeting system that dominates current night warfighting operations. One of the most demanding applications for HMD designs has been in Army rotary-wing aviation, where HMDs offer greater direct access to visual information and increased situational awareness in an operational environment where information availability is critical on a second-to-second basis. However, over the past 40 years of extensive HMD development, a myriad of crashworthiness, optical, and human factors issues have both frustrated and challenged designers. While it may be difficult to attain a full consensus on which are the most important HMD design factors, certainly head-supported weight (HSW), exit pupil size, field-of-view, image resolution and physical eye relief have been among the most critical. A confounding factor has been the interrelationship between the many design issues, such as early attempts to use non-glass optical elements to lower HSW, but at the cost of image quality, and hence, pilot visual performance. This paper traces how the role of the demanding performance requirements placed on HMDs by the U.S. Army aviation community has impacted the progress of HMD designs towards the Holy Grail of HMD design: a wide field-of-view, high resolution, binocular, full-color, totally crashworthy system.

  12. Window defect planar mapping technique

    NASA Technical Reports Server (NTRS)

    Minton, F. R.; Minton, U. O. (Inventor)

    1976-01-01

    A method of planar mapping defects in a window having an edge surface and a planar surface. The method is comprised of steps for mounting the window on a support surface. Then a light sensitive paper is placed adjacent to the window surface. A light source is positioned adjacent to the window edge. The window is then illuminated with the source of light for a predetermined interval of time. Defects on the surface of the glass, as well as in the interior of the glass are detected by analyzing the developed light sensitive paper. The light source must be in the form of optical fibers or a light tube whose light transmitting ends are placed near the edge surface of the window.

  13. Optical transmission properties of a planar waveguide structure fabricated on Nd:Li6Y(BO3)3 by C ion irradiation

    NASA Astrophysics Data System (ADS)

    Yu, Xiao-fei; Liu, Tao; Zhang, Lian; Song, Hong-Lian; Zhou, Yu-Fan; Wang, Tie-Jun; Qiao, Mei; Wang, Xue-Lin

    2015-12-01

    We reported a planar waveguide structure on an Nd3+:Li6Y(BO3)3 sample fabricated using 6 MeV C ion irradiation at a fluence of 2.5 × 1015 ions/cm2. Guided modes were detected in the visible and near-infrared wavelength regions. The refractive index profiles were reconstructed based on the effective refractive index functions. The near-field light intensity files in the visible and near-infrared bands were measured using the end-face coupling method with different light sources.

  14. Optical display of magnified, real and orthoscopic 3-D object images by moving-direct-pixel-mapping in the scalable integral-imaging system

    NASA Astrophysics Data System (ADS)

    Zhang, Miao; Piao, Yongri; Kim, Eun-Soo

    2011-10-01

    In this paper, we proposed a novel approach for reconstruction of the magnified, real and orthoscopic three-dimensional (3-D) object images by using the moving-direct-pixel-mapping (MDPM) method in the MALT(moving-array-lenslet-technique)-based scalable integral-imaging system. In the proposed system, multiple sets of elemental image arrays (EIAs) are captured with the MALT, and these picked-up EIAs are computationally transformed into the depth-converted ones by using the proposed MDPM method. Then, these depth-converted EIAs are combined and interlaced together to form an enlarged EIA, from which a magnified, real and orthoscopic 3-D object images can be optically displayed without any degradation of resolution. Good experimental results finally confirmed the feasibility of the proposed method.

  15. Real-time display with large field of view on fourier domain optical coherence tomography at 1310 nm wavelength for dermatology

    NASA Astrophysics Data System (ADS)

    Xiao, Qing; Hou, Jue; Fu, Ling

    2012-06-01

    A Fourier domain optical coherence tomography (OCT) system with 1310 nm light was demonstrated to study inflammatory human skin and the skin coated with a moisturizer in vivo. By using a graphics processing unit (GPU), the display rate could reach 20 frames/s with 1000 A-scans contained in one image. The field of view (FOV) of the cross-sectional image is 7 mm in the lateral direction and the penetration depth is ˜1 mm in skin. The result shows that, in inflammatory skin, the epidermis became thicker and had a decreased scattering; furthermore, the region of the severe lesion present an uneven thickness of the epidermis compared with the peripheral area. For the result of a finger tip coated with the moisturizer, the antireflection effect was significant and the stratum corneum became more transparent. In this letter, we demonstrated that real-time display with a large FOV could enable screening of a large tissue area; thereby increasing the dermatologic diagnostic potential of the method by permitting a comparison of the lesion and the normal peripheral region.

  16. Electromagnetic inhomogeneous waves at planar boundaries: tutorial.

    PubMed

    Frezza, Fabrizio; Tedeschi, Nicola

    2015-08-01

    In this review paper, we summarize the fundamental properties of inhomogeneous waves at the planar interface between two media. We point out the main differences between the wave types: lateral waves, surface waves, and leaky waves. We analyze each kind of inhomogeneous wave, giving a quasi-optical description and explaining the physical origin of some of their properties.

  17. Animated Displays IV: Linear Polarization.

    ERIC Educational Resources Information Center

    Chagnon, Paul

    1993-01-01

    Describes several demonstrations that can be easily reproduced to help students understand optical polarization. Displays and supplement text include polarization by reflection; polarization by scattering; liquid crystals; optical activity; calcite; birefringent plastics; retardation plates; photoelasticity; and the "Optical Barber Pole." Contains…

  18. Optical smoothing of laser imprinting in planar-target experiments on OMEGA EP using multi-FM 1-D smoothing by spectral dispersion

    NASA Astrophysics Data System (ADS)

    Hohenberger, M.; Shvydky, A.; Marozas, J. A.; Fiksel, G.; Bonino, M. J.; Canning, D.; Collins, T. J. B.; Dorrer, C.; Kessler, T. J.; Kruschwitz, B. E.; McKenty, P. W.; Meyerhofer, D. D.; Regan, S. P.; Sangster, T. C.; Zuegel, J. D.

    2016-09-01

    Direct-drive ignition on the National Ignition Facility (NIF) requires single-beam smoothing to minimize imprinting of laser nonuniformities that can negatively affect implosion performance. One-dimensional, multi-FM smoothing by spectral dispersion (SSD) has been proposed to provide the required smoothing [Marozas et al., Bull. Am. Phys. Soc. 55, 294 (2010)]. A prototype multi-FM SSD system has been integrated into the NIF-like beamline of the OMEGA EP Laser System. Experiments have been performed to verify the smoothing performance by measuring Rayleigh-Taylor growth rates in planar targets of laser-imprinted and preimposed surface modulations. Multi-FM 1-D SSD has been observed to reduce imprint levels by ˜50% compared to the nominal OMEGA EP SSD system. The experimental results are in agreement with 2-D DRACO simulations using realistic, time-dependent far-field spot-intensity calculations that emulate the effect of SSD.

  19. Unique interactive projection display screen

    SciTech Connect

    Veligdan, J.T.

    1997-11-01

    Projection systems continue to be the best method to produce large (1 meter and larger) displays. However, in order to produce a large display, considerable volume is typically required. The Polyplanar Optic Display (POD) is a novel type of projection display screen, which for the first time, makes it possible to produce a large projection system that is self-contained and only inches thick. In addition, this display screen is matte black in appearance allowing it to be used in high ambient light conditions. This screen is also interactive and can be remotely controlled via an infrared optical pointer resulting in mouse-like control of the display. Furthermore, this display need not be flat since it can be made curved to wrap around a viewer as well as being flexible.

  20. Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing

    NASA Astrophysics Data System (ADS)

    Seddon, Angela B.; Abdel-Moneim, Nabil S.; Zhang, Lian; Pan, Wei J.; Furniss, David; Mellor, Christopher J.; Kohoutek, Tomas; Orava, Jiri; Wagner, Tomas; Benson, Trevor M.

    2014-07-01

    The versatility of hot embossing for shaping photonic components on-chip for mid-infrared (IR) integrated optics, using a hard mold, is demonstrated. Hot embossing via fiber-on-glass (FOG), thermally evaporated films, and radio frequency (RF)-sputtered films on glass are described. Mixed approaches of combined plasma etching and hot embossing increase the versatility still further for engineering optical circuits on a single platform. Application of these methodologies for fabricating molecular-sensing devices on-chip is discussed with a view to biomedical sensing. Future prospects for using photonic integration for the new field of mid-IR molecular sensing are appraised. Also, common methods of measuring waveguide optical loss are critically compared, regarding their susceptibility to artifacts which tend artificially to depress, or enhance, the waveguide optical loss.

  1. Dichroic Liquid Crystal Displays

    NASA Astrophysics Data System (ADS)

    Bahadur, Birendra

    The following sections are included: * INTRODUCTION * DICHROIC DYES * Chemical Structure * Chemical and Photochemical Stability * THEORETICAL MODELLING * DEFECTS CAUSED BY PROLONGED LIGHT IRRADIATION * CHEMICAL STRUCTURE AND PHOTOSTABILITY * OTHER PARAMETERS AFFECTING PHOTOSTABILITY * CELL PREPARATION * DICHROIC PARAMETERS AND THEIR MEASUREMENTS * Order Parameter and Dichroic Ratio Of Dyes * Absorbance, Order Parameter and Dichroic Ratio Measurements * IMPACT OF DYE STRUCTURE AND LIQUID CRYSTAL HOST ON PHYSICAL PROPERTIES OF A DICHROIC MIXTURE * Order Parameter and Dichroic Ratio * EFFECT OF LENGTH OF DICHROIC DYES ON THE ORDER PARAMETER * EFFECT OF THE BREADTH OF DYE ON THE ORDER PARAMETER * EFFECT OF THE HOST ON THE ORDER PARAMETER * TEMPERATURE VARIATION OF THE ORDER PARAMETER OF DYES IN A LIQUID CRYSTAL HOST * IMPACT OF DYE CONCENTRATION ON THE ORDER PARAMETER * Temperature Range * Viscosity * Dielectric Constant and Anisotropy * Refractive Indices and Birefringence * solubility43,153-156 * Absorption Wavelength and Auxochromic Groups * Molecular Engineering of Dichroic Dyes * OPTICAL, ELECTRO-OPTICAL AND LIFE PARAMETERS * Colour And CIE Colour space120,160-166 * CIE 1931 COLOUR SPACE * CIE 1976 CHROMATICITY DIAGRAM * CIE UNIFORM COLOUR SPACES & COLOUR DIFFERENCE FORMULAE120,160-166 * Electro-Optical Parameters120 * LUMINANCE * CONTRAST AND CONTRAST RATIO * SWITCHING SPEED * Life Parameters and Failure Modes * DICHROIC MIXTURE FORMULATION * Monochrome Mixture * Black Mixture * ACHROMATIC BLACK MIXTURE FOR HEILMEIER DISPLAYS * Effect of Illuminant on Display Colour * Colour of the Field-On State * Effect of Dye Linewidth * Optimum Centroid Wavelengths * Effect of Dye Concentration * Mixture Formulation Using More Than Three Dyes * ACHROMATIC MIXTURE FOR WHITE-TAYLOR TYPE DISPLAYS * HEILMEIER DISPLAYS * Theoretical Modelling * Threshold Characteristic * Effects of Dye Concentration on Electro-optical Parameters * Effect of Cholesteric Doping * Effect of Alignment

  2. Learning planar ising models

    SciTech Connect

    Johnson, Jason K; Chertkov, Michael; Netrapalli, Praneeth

    2010-11-12

    Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus our attention on the class of planar Ising models, for which inference is tractable using techniques of statistical physics [Kac and Ward; Kasteleyn]. Based on these techniques and recent methods for planarity testing and planar embedding [Chrobak and Payne], we propose a simple greedy algorithm for learning the best planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. We present the results of numerical experiments evaluating the performance of our algorithm.

  3. Optical smoothing of laser imprinting in planar-target experiments on OMEGA EP using multi-FM 1-D smoothing by spectral dispersion

    DOE PAGES

    Hohenberger, M.; Shvydky, A.; Marozas, J. A.; Fiksel, G.; Bonino, M. J.; Canning, D.; Collins, T. J. B.; Dorrer, C.; Kessler, T. J.; Kruschwitz, B. E.; et al

    2016-09-07

    Direct-drive ignition on the National Ignition Facility (NIF) requires single-beam smoothing to minimize imprinting of laser nonuniformities that can negatively affect implosion performance. One-dimensional, multi-FM smoothing by spectral dispersion (SSD) has been proposed to provide the required smoothing [J. A. Marozas, J. D. Zuegel, and T. J. B. Collins, Bull. Am. Phys. Soc. 55, 294 (2010)]. A prototype multi-FM SSD system has been integrated into the NIF-like beamline of the OMEGA EP Laser System. Experiments have been performed to verify the smoothing performance by measuring Rayleigh–Taylor growth rates in planar targets of laser-imprinted and preimposed surface modulations. Multi-FM 1-D SSDmore » has been observed to reduce imprint levels by ~50% compared to the nominal OMEGA EP SSD system. In conclusion, the experimental results are in agreement with 2-D DRACO simulations using realistic, time-dependent far-field spot-intensity calculations that emulate the effect of SSD.« less

  4. Multiplane binocular visual display system

    NASA Technical Reports Server (NTRS)

    Chase, W. D.

    1976-01-01

    Electro-optic system is interfaced with digital computer in flight simulator to generate simultaneous multiple-image planes in real time. System may have applications with other display and remote-control systems.

  5. A hybrid simulated method for analyzing the optical efficiency of a head-mounted display with a quasi-crystal OLED panel.

    PubMed

    Chang, Kao-Der; Li, Chang-Yi; Pan, Jui-Wen; Cheng, Kuei-Yuan

    2014-03-10

    Organic light emitting diodes (OLEDs) with a quasi-crystal (QC) structure are analyzed and applied in a head-mounted display (HMD) system in this study. We adopt a hybrid simulated method to evaluate the light extraction efficiency (LEE) and far-field pattern in the air, and study the relationship between them. The simulation results show that OLEDs implanted with the QC structure can provide a collimated far-field pattern to increase the brightness. Using this 10-fold QC arrangement the maxima LEE of the OLEDs can be increased by 1.20 times. Compared with conventional OLEDs, the viewing angle of the OLED panel decreases from 120 degrees to 26 degrees with an improvement in the optical efficiency of the HMD system by 2.66 times. Moreover, the normalized on-axis intensity in the pupil of the eyepiece can be enlarged up to 3.95 times which suggests that the OLED panel can save 74.68% energy while achieving the same on-axis intensity as conventional OLEDs.

  6. Low field driven latching-type Bi3Fe5O12/Gd3Ga5O12 magneto-optical display

    NASA Astrophysics Data System (ADS)

    Grishin, A. M.; Khartsev, S. I.; Bonetti, S.

    2006-06-01

    Series of heteroepitaxial all-garnet magneto-optical (MO) Bi3Fe5O12n/Gd3Ga5O12m (BIGn/GGGm, n =1, 2, 3, 4, 5 and m =1 and 2 are the numbers of unit cells) nanostructured multilayers have been sintered by pulsed laser deposition technique. Processing parameters and structure of grown films have been optimized to obtain perpendicular magnetic anisotropy and square hysteresis loop with low coercive and saturation magnetic fields. Regular alternating of lattice mismatched BIG and GGG atomic layers inhibited nucleation of misfit dislocations; thus a long range coherent compressive strain was preserved through the whole thickness of BIGn/GGGm multilayer stack. 2.5μm thick BIG3/GGG2 sample (1200 BIG and 800 GGG unit cells) at λ =678nm shows MO Faraday rotation ΘF=±1.4°, transmittance of 82%, attenuation α =3400dB/cm, squareness of magnetization loop (remnant-to-saturation magnetizations ratio) as high as 92%, and saturation and coercive fields as low as 56 and 25Oe, respectively. MO remanence (latching capability) enables application of nanostructured garnet as a magnetic relief replicator/visualizer and as a material for low power consuming displays.

  7. Experimental Realization of a Reflective Optical Limiter

    NASA Astrophysics Data System (ADS)

    Vella, Jarrett H.; Goldsmith, John H.; Browning, Andrew T.; Limberopoulos, Nicholaos I.; Vitebskiy, Ilya; Makri, Eleana; Kottos, Tsampikos

    2016-06-01

    Optical limiters transmit low-intensity light, while blocking laser radiation with excessively high irradiance or fluence. A typical optical limiter involves a nonlinear material which is transparent at low light intensity and becomes opaque when the light intensity exceeds a certain level. Most of the high-level radiation is absorbed by the nonlinear material causing irreversible damage. This fundamental problem could be solved if the state of the nonlinear material changed from transparent to highly reflective (not absorptive) when the intensity becomes too high. None of the known nonlinear optical materials display such a property. A solution can be provided by a nonlinear photonic structure. In this communication, we report the experimental realization of a reflective optical limiter. The design is based on a planar microcavity composed of alternating SiO2 and Si3N4 layers with a single GaAs defect layer in the middle. At low intensity, the planar microcavity displays a strong resonant transmission via a cavity mode. As the intensity increases, two-photon absorption in GaAs kicks in, initially resulting in the microcavity-enhanced light absorption. A further increase in light intensity, though, suppresses the cavity mode along with the resonant transmission; the entire planar microcavity turns highly reflective within a broad frequency range covering the entire photonic band gap. This seemingly counterintuitive behavior is a general feature of resonant transmission via a cavity mode with purely nonlinear absorption.

  8. Peripheral vision displays: The future

    NASA Technical Reports Server (NTRS)

    Assenhein, H. M.

    1984-01-01

    Several areas of research relating to peripheral vision displays used by aircraft pilots are outlined: fiber optics, display color, and holography. Various capacities and specifications of gas and solid state lasers are enumerated. These lasers are potential sources of green light for the peripheral vision displays. The relative radiance required for rod and cone vision at different wavelengths is presented graphically. Calculated and measured retinal sensitivities (foveal and peripheral) are given for wavelength produced by various lasers.

  9. Planar waveguide sensor of ammonia

    NASA Astrophysics Data System (ADS)

    Rogoziński, Roman; Tyszkiewicz, Cuma; Karasiński, Paweł; Izydorczyk, Weronika

    2015-12-01

    The paper presents the concept of forming ammonia sensor based on a planar waveguide structure. It is an amplitude sensor produced on the basis of the multimode waveguide. The technological base for this kind of structure is the ion exchange method and the sol-gel method. The planar multimode waveguide of channel type is produced in glass substrate (soda-lime glass of Menzel-Glaser company) by the selective Ag+↔Na+ ion exchange. On the surface of the glass substrate a porous (~40%) silica layer is produced by the sol-gel method. This layer is sensitized to the presence of ammonia in the surrounding atmosphere by impregnation with Bromocresol Purple (BCP) dye. Therefore it constitutes a sensor layer. Spectrophotometric tests carried out showed about 50% reduction of cross-transmission changes of such sensor layer for a wave λ=593 nm caused by the presence of 25% ammonia water vapor in its ambience. The radiation source used in this type of sensor structure is a light emitting diode LED. The gradient channel waveguide is designed for frontal connection (optical glue) with a standard multimode telecommunications waveguide 62.5/125μm.

  10. Enjoyment of Euclidean Planar Triangles

    ERIC Educational Resources Information Center

    Srinivasan, V. K.

    2013-01-01

    This article adopts the following classification for a Euclidean planar [triangle]ABC, purely based on angles alone. A Euclidean planar triangle is said to be acute angled if all the three angles of the Euclidean planar [triangle]ABC are acute angles. It is said to be right angled at a specific vertex, say B, if the angle ?ABC is a right angle…

  11. Tunable Optical Properties and Charge Separation in CH3NH3Sn(x)Pb(1-x)I3/TiO2-Based Planar Perovskites Cells.

    PubMed

    Feng, Hong-Jian; Paudel, Tula R; Tsymbal, Evgeny Y; Zeng, Xiao Cheng

    2015-07-01

    A sharp potential drop across the interface of the Pb-rich halide perovskites/TiO2 heterostructure is predicted from first-principles calculations, suggesting enhanced separation of photoinduced charge carriers in the perovskite-based photovoltaic solar cells. The potential drop appears to be associated with the charge accumulation at the polar interface. More importantly, on account of both the β phase structure of CH3NH3Sn(x)Pb(1-x)I3 for x < 0.5 and the α phase structure of CH3NH3Sn(x)Pb(1-x)I3 for x ≥ 0.5, the computed optical absorption spectra from time-dependent density functional theory (TD-DFT) are in very good agreement with the measured spectra from previous experiments. Our TD-DFT computation also confirms the experimental structures of the mixed Pb-Sn organometal halide perovskites. These computation results provide a highly sought answer to the question why the lead-based halide perovskites possess much higher power conversion efficiencies than the tin-based counterparts for solar-cell applications. PMID:26011597

  12. Dielectric Covered Planar Antennas

    NASA Technical Reports Server (NTRS)

    Llombart Juan, Nuria (Inventor); Lee, Choonsup (Inventor); Chattopadhyay, Goutam (Inventor); Gill, John J. (Inventor); Skalare, Anders J. (Inventor); Siegel, Peter H. (Inventor)

    2014-01-01

    An antenna element suitable for integrated arrays at terahertz frequencies is disclosed. The antenna element comprises an extended spherical (e.g. hemispherical) semiconductor lens, e.g. silicon, antenna fed by a leaky wave waveguide feed. The extended spherical lens comprises a substantially spherical lens adjacent a substantially planar lens extension. A couple of TE/TM leaky wave modes are excited in a resonant cavity formed between a ground plane and the substantially planar lens extension by a waveguide block coupled to the ground plane. Due to these modes, the primary feed radiates inside the lens with a directive pattern that illuminates a small sector of the lens. The antenna structure is compatible with known semiconductor fabrication technology and enables production of large format imaging arrays.

  13. Planar electrochemical device assembly

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2007-06-19

    A pre-fabricated electrochemical device having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films is bonded to a porous electrically conductive support. A second porous electrically conductive support may be bonded to a counter electrode of the electrochemical device. Multiple electrochemical devices may be bonded in parallel to a single porous support, such as a perforated sheet to provide a planar array. Planar arrays may be arranged in a stacked interconnected array. A method of making a supported electrochemical device is disclosed wherein the method includes a step of bonding a pre-fabricated electrochemical device layer to an existing porous metal or porous metal alloy layer.

  14. Planar electrochemical device assembly

    DOEpatents

    Jacobson; Craig P. , Visco; Steven J. , De Jonghe; Lutgard C.

    2010-11-09

    A pre-fabricated electrochemical device having a dense electrolyte disposed between an anode and a cathode preferably deposited as thin films is bonded to a porous electrically conductive support. A second porous electrically conductive support may be bonded to a counter electrode of the electrochemical device. Multiple electrochemical devices may be bonded in parallel to a single porous support, such as a perforated sheet to provide a planar array. Planar arrays may be arranged in a stacked interconnected array. A method of making a supported electrochemical device is disclosed wherein the method includes a step of bonding a pre-fabricated electrochemical device layer to an existing porous metal or porous metal alloy layer.

  15. Planar triode pulser socket

    DOEpatents

    Booth, R.

    1994-10-25

    A planar triode is mounted in a PC board orifice by means of a U-shaped capacitor housing and anode contact yoke removably attached to cathode leg extensions passing through and soldered to the cathode side of the PC board by means of a PC cathode pad. A pliant/flexible contact attached to the orifice make triode grid contact with a grid pad on the grid side of the PC board, permitting quick and easy replacement of bad triodes. 14 figs.

  16. Planar triode pulser socket

    DOEpatents

    Booth, Rex

    1994-01-01

    A planar triode is mounted in a PC board orifice by means of a U-shaped capacitor housing and anode contact yoke removably attached to cathode leg extensions passing through and soldered to the cathode side of the PC board by means of a PC cathode pad. A pliant/flexible contact attached to the orifice make triode grid contact with a grid pad on the grid side of the PC board, permitting quick and easy replacement of bad triodes.

  17. Advanced poly-LED displays

    NASA Astrophysics Data System (ADS)

    Childs, Mark; Nisato, Giovanni; Fish, D.; Giraldo, Andrea; Jenkins, A. J.; Johnson, Mark T.

    2003-05-01

    Philips have been actively developing polymer OLED (poly-LED) displays as a future display technology. Their emissive nature leads to a very attractive visual appearance, with wide viewing angle, high brightness and fast response speed. Whilst the first generation of poly-LED displays are likely to be passive-matrix driven, power reduction and resolution increase will lead to the use of active-matrix poly-LED displays. Philips Research have designed, fabricated and characterized five different designs of active-matrix polymer-LED display. Each of the five displays makes use of a distinct pixel programming- or pixel drive-technique, including current programming, threshold voltage measurement and photodiode feedback. It will be shown that hte simplest voltage-programmed current-source pixel suffers from potentially unacceptable brightness non-uniformity, and that advanced pixel circuits can provide a solution to this. Optical-feedback pixel circuits will be discussed, showing that they can be used to improve uniformity and compensate for image burn-in due to polymer-LED material degradation, improving display lifetime. Philips research has also been active in developing technologies required to implement poly-LED displays on flexible substrates, including materials, processing and testing methods. The fabrication of flexible passive-matrix poly-LED displays will be presented, as well as the ongoing work to assess the suitability of processing flexible next-generation poly-LED displays.

  18. Video display engineering and optimization system

    NASA Technical Reports Server (NTRS)

    Larimer, James (Inventor)

    1997-01-01

    A video display engineering and optimization CAD simulation system for designing a LCD display integrates models of a display device circuit, electro-optics, surface geometry, and physiological optics to model the system performance of a display. This CAD system permits system performance and design trade-offs to be evaluated without constructing a physical prototype of the device. The systems includes a series of modules which permit analysis of design trade-offs in terms of their visual impact on a viewer looking at a display.

  19. Dual-frequency cholesteric liquid crystal reflective display

    NASA Astrophysics Data System (ADS)

    Xu, Ming; Yang, Deng Ke

    1999-03-01

    We developed a bistable cholesteric reflective display using a dual frequency cholesteric liquid crystal. When a high frequency voltage is applied to the matrices, it exhibits a negative dielectric anisotropy and is switched to the planar texture which is Bragg reflecting. When a low frequency voltage is applied to the materials, it exhibits a positive dielectric anisotropy and is switched to the focal conic texture which is weakly scattering. Both the planar texture and the focal conic texture are stable at zero field, and therefore the material can be used to make multiplexed displays with passive matrix. This new display can be directly switched between the planar texture and the focal conic texture, and therefore is suitable for displaying dynamic images.

  20. Structure and electrical activity of planar defects in EFG ribbons

    NASA Technical Reports Server (NTRS)

    Ast, D. G.

    1979-01-01

    Optical, electron beam induced current (EBIC), and transmission electron microscopy were used to study the structure and electrical activity of planar defects in EFG silicon. What appears to be twin boundaries by both optical microscopy plus etching, and by EBIC are in reality systems of microtwins, some of which are only a few atomic lattice planes thick. The electrical activity of planar defects appears to be correlated with emission of dislocations especially at termination points. Impurity effects may also play a role. Twin boundaries per se appear not to be electrically active.

  1. Comparative performance analysis of mobile displays

    NASA Astrophysics Data System (ADS)

    Safaee-Rad, Reza; Aleksic, Milivoje

    2012-01-01

    Cell-phone display performance (in terms of color quality and optical efficiency) has become a critical factor in creating a positive user experience. As a result, there is a significant amount of effort by cell-phone OEMs to provide a more competitive display solution. This effort is focused on using different display technologies (with significantly different color characteristics) and more sophisticated display processors. In this paper, the results of a mobile-display comparative performance analysis are presented. Three cell-phones from major OEMs are selected and their display performances are measured and quantified. Comparative performance analysis is done using display characteristics such as display color gamut size, RGB-channels crosstalk, RGB tone responses, gray tracking performance, color accuracy, and optical efficiency.

  2. Large growth, planar Rayleigh-Taylor experiments on Nova

    NASA Astrophysics Data System (ADS)

    Remington, B. A.; Haan, S. W.; Glendinning, S. G.; Kilkenny, J. D.; Munro, D. H.; Wallace, R. J.

    1992-04-01

    A set of indirect-drive experiments to study large growth Rayleigh-Taylor instability using shaped laser pulses at the Nova laser facility has been conducted. Planar foils of fluorosilicone were accelerated by x-ray ablation. The foil trajectory was measured using edge-on radiography. In separate experiments using face-on radiography, contrast in optical depth was measured as a function of time, from which the evolution of 50 μm wavelength initially sinusoidal surface perturbations was deduced. Holding other parameters fixed, the amplitude of the initial perturbation was varied by up to a factor of 30 in separate shots. The foils with the smallest initial perturbation exhibited growth factors of 75 in contrast. Foils with large initial amplitude perturbation gave growth factors of 6 or less, and displayed the ``bubble-and-spike'' shape characteristic of the nonlinear Rayleigh-Taylor instability. Comparisons of two-dimensional computer simulations with both the measured foil trajectory and the perturbation growth show good agreement, provided that a suitable opacity model is chosen. In the linear regime the observed growth rates are 60%-75% of classical, the reduction attributed primarily to ablative stabilization. The observed onset of harmonic generation, signaling the transition into the nonlinear regime, is well predicted by third-order theory.

  3. Large growth, planar Rayleigh--Taylor experiments on Nova

    SciTech Connect

    Remington, B.A.; Haan, S.W.; Glendinning, S.G.; Kilkenny, J.D.; Munro, D.H.; Wallace, R.J. )

    1992-04-01

    A set of indirect-drive experiments to study large growth Rayleigh--Taylor instability using shaped laser pulses at the Nova laser facility has been conducted. Planar foils of fluorosilicone were accelerated by x-ray ablation. The foil trajectory was measured using edge-on radiography. In separate experiments using face-on radiography, contrast in optical depth was measured as a function of time, from which the evolution of 50 {mu}m wavelength initially sinusoidal surface perturbations was deduced. Holding other parameters fixed, the amplitude of the initial perturbation was varied by up to a factor of 30 in separate shots. The foils with the smallest initial perturbation exhibited growth factors of 75 in contrast. Foils with large initial amplitude perturbation gave growth factors of 6 or less, and displayed the bubble-and-spike'' shape characteristic of the nonlinear Rayleigh--Taylor instability. Comparisons of two-dimensional computer simulations with both the measured foil trajectory and the perturbation growth show good agreement, provided that a suitable opacity model is chosen. In the linear regime the observed growth rates are 60%--75% of classical, the reduction attributed primarily to ablative stabilization. The observed onset of harmonic generation, signaling the transition into the nonlinear regime, is well predicted by third-order theory.

  4. Holographic Helmet-Mounted Display Unit

    NASA Technical Reports Server (NTRS)

    Burley, James R., II; Larussa, Joseph A.

    1995-01-01

    Helmet-mounted display unit designed for use in testing innovative concepts for display of information to aircraft pilots. Operates in conjunction with computers generating graphical displays. Includes two ocular subunits containing miniature cathoderay tubes and optics providing 40 degrees vertical, 50 degrees horizontal field of view to each eye, with or without stereopsis. In future color application, each ocular subunit includes trichromatic holographic combiner tuned to red, green, and blue wavelengths of phosphors used in development of miniature color display devices.

  5. Planar Optical Sensors and Evanescent Wave Effects

    NASA Astrophysics Data System (ADS)

    Burke, Conor S.; Stránik, Ondrej; McEvoy, Helen M.; MacCraith, Brian D.

    Recent developments in microsystems technology have led to the widespread application of microfabrication techniques for the production of sensor platforms. These techniques have had a major impact on the development of so-called "Lab-on-a-Chip" devices. The major application areas for theses devices are biomedical diagnostics, industrial process monitoring, environmental monitoring, drug discovery, and defence. In the context of biomedical diagnostic applications, for example, such devices are intended to provide quantitative chemical or biochemical information on samples such as blood, sweat and saliva while using minimal sample volume.

  6. Planar oscillatory stirring apparatus

    NASA Technical Reports Server (NTRS)

    Wolf, M. F. (Inventor)

    1985-01-01

    The present invention is directed to an apparatus for stirring materials using planar orthogonal axes oscillations. The apparatus has a movable slide plate sandwiched between two fixed parallel support plates. Pressurized air is supplied to the movable slide plate which employs a tri-arm air bearing vent structure which allows the slide plate to float and to translate between the parallel support plates. The container having a material to be stirred is secured to the upper surface of the slide plate through an aperture in the upper support plate. A motor driven eccentric shaft loosely extends into a center hole bearing of the slide plate to cause the horizontal oscillations. Novelty lies in the combination of elements which exploits the discovery that low frequency, orthogonal oscillations applied horizontally to a Bridgman crucible provides a very rigorous stirring action, comparable with and more effective by an order of magnitude than the accelerated crucible rotation technique.

  7. Planar elliptic growth

    SciTech Connect

    Mineev, Mark

    2008-01-01

    The planar elliptic extension of the Laplacian growth is, after a proper parametrization, given in a form of a solution to the equation for areapreserving diffeomorphisms. The infinite set of conservation laws associated with such elliptic growth is interpreted in terms of potential theory, and the relations between two major forms of the elliptic growth are analyzed. The constants of integration for closed form solutions are identified as the singularities of the Schwarz function, which are located both inside and outside the moving contour. Well-posedness of the recovery of the elliptic operator governing the process from the continuum of interfaces parametrized by time is addressed and two examples of exact solutions of elliptic growth are presented.

  8. Optical panel system including stackable waveguides

    DOEpatents

    DeSanto, Leonard; Veligdan, James T.

    2007-03-06

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  9. Optical panel system including stackable waveguides

    SciTech Connect

    DeSanto, Leonard; Veligdan, James T.

    2007-11-20

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  10. Interference Phenomenon with Mobile Displays

    ERIC Educational Resources Information Center

    Trantham, Kenneth

    2015-01-01

    A simple experiment is presented in which the spacing and geometric pattern of pixels in mobile displays is measured. The technique is based on optical constructive interference. While the experiment is another opportunity to demonstrate wave interference from a grating-like structure, this can also be used to demonstrate concepts of solid state…

  11. Interference phenomenon with mobile displays

    NASA Astrophysics Data System (ADS)

    Trantham, Kenneth

    2015-07-01

    A simple experiment is presented in which the spacing and geometric pattern of pixels in mobile displays is measured. The technique is based on optical constructive interference. While the experiment is another opportunity to demonstrate wave interference from a grating-like structure, this can also be used to demonstrate concepts of solid state physics such as direct and reciprocal lattice vectors.

  12. Organic light-emitting diodes from homoleptic square planar complexes

    DOEpatents

    Omary, Mohammad A

    2013-11-12

    Homoleptic square planar complexes [M(N.LAMBDA.N).sub.2], wherein two identical N.LAMBDA.N bidentate anionic ligands are coordinated to the M(II) metal center, including bidentate square planar complexes of triazolates, possess optical and electrical properties that make them useful for a wide variety of optical and electrical devices and applications. In particular, the complexes are useful for obtaining white or monochromatic organic light-emitting diodes ("OLEDs"). Improved white organic light emitting diode ("WOLED") designs have improved efficacy and/or color stability at high brightness in single- or two-emitter white or monochrome OLEDs that utilize homoleptic square planar complexes, including bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) ("Pt(ptp).sub.2").

  13. Microstructured apertures in planar glass substrates for ion channel research.

    PubMed

    Fertig, Niels; George, Michael; Klau, Michèle; Meyer, Christine; Tilke, Armin; Sobotta, Constanze; Blick, Robert H; Behrends, Jan C

    2003-01-01

    We have developed planar glass chip devices for patch clamp recording. Glass has several key advantages as a substrate for planar patch clamp devices. It is a good dielectric, is well-known to interact strongly with cell membranes and is also a relatively in-expensive material. In addition, it is optically neutral. However, microstructuring processes for glass are less well established than those for silicon-based substrates. We have used ion-track etching techniques to produce micron-sized apertures into borosilicate and quartz-glass coverslips. These apertures, which can be easily produced in arrays, have been used for high resolution recording of single ion channels as well as for whole-cell current recordings from mammalian cell lines. An additional attractive application that is greatly facilitated by the combination of planar geometry with the optical neutrality of the substrate is single-molecule fluorescence recording with simultaneous single-channel measurements. PMID:12825296

  14. Planar electromagnetic band-gap structure based on graphene

    NASA Astrophysics Data System (ADS)

    Dong, Yanfei; Liu, Peiguo; Yin, Wen-Yan; Li, Gaosheng; Yi, Bo

    2015-06-01

    Electromagnetic band-gap structure with slow-wave effect is instrumental in effectively controlling electromagnetic wave propagation. In this paper, we theoretically analyze equivalent circuit model of electromagnetic band-gap structure based on graphene and evaluate its potential applications. Graphene electromagnetic band-gap based on parallel planar waveguide is investigated, which display good characteristics in dynamically adjusting the electromagnetic wave propagation in terahertz range. The same characteristics are retrieved in a spiral shape electromagnetic band-gap based on coplanar waveguide due to tunable conductivity of graphene. Various potential terahertz planar devices are expected to derive from the prototype structures.

  15. Testing Instrument for Flight-Simulator Displays

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.

    1987-01-01

    Displays for flight-training simulators rapidly aligned with aid of integrated optical instrument. Calibrations and tests such as aligning boresight of display with respect to user's eyes, checking and adjusting display horizon, checking image sharpness, measuring illuminance of displayed scenes, and measuring distance of optical focus of scene performed with single unit. New instrument combines all measurement devices in single, compact, integrated unit. Requires just one initial setup. Employs laser and produces narrow, collimated beam for greater measurement accuracy. Uses only one moving part, double right prism, to position laser beam.

  16. A Planar Dielectric-Filled-Parabolic-Feed Frequency Multiplier

    NASA Technical Reports Server (NTRS)

    Kim, M.; Smith, R. P.; Lubecke, V. M.; Martin, S. C.; Seigel, P. H.

    1996-01-01

    In this paper, we present a novel quasi-optical all-planar frequency doubler that could provide an alternative approach to conventional waveguide circuits for millimeter- and submillimeter-wave signal generation. By utilizing a quad-bridge-diode configuration, we are able to isolate the input and the output circuits without the use of complicated filter structures.

  17. Optical switch

    DOEpatents

    Reedy, Robert P.

    1987-01-01

    An optical switching device (10) is provided whereby light from a first glass fiber (16) or a second glass fiber (14) may be selectively transmitted into a third glass fiber (18). Each glass fiber is provided with a focusing and collimating lens system (26, 28, 30). In one mode of operation, light from the first glass fiber (16) is reflected by a planar mirror (36) into the third glass fiber (18). In another mode of operation, light from the second glass fiber (14) passes directly into the third glass fiber (18). The planar mirror (36) is attached to a rotatable table (32) which is rotated to provide the optical switching.

  18. Non-planar chemical preconcentrator

    DOEpatents

    Manginell, Ronald P.; Adkins, Douglas R.; Sokolowski, Sara S.; Lewis, Patrick R.

    2006-10-10

    A non-planar chemical preconcentrator comprises a high-surface area, low mass, three-dimensional, flow-through sorption support structure that can be coated or packed with a sorptive material. The sorptive material can collect and concentrate a chemical analyte from a fluid stream and rapidly release it as a very narrow temporal plug for improved separations in a microanalytical system. The non-planar chemical preconcentrator retains most of the thermal and fabrication benefits of a planar preconcentrator, but has improved ruggedness and uptake, while reducing sorptive coating concerns and extending the range of collectible analytes.

  19. Electrochemical planarization for microelectronic circuits

    SciTech Connect

    Contolini, R.J.; Mayer, S.T.; Bernhardt, A.F.

    1993-03-25

    The need for flatter and smoother surfaces (planarization) in microelectronic circuits increases as the number of metal levels in ultra large scale integrated (ULSI) circuits increases. At Lawrence Livermore National Laboratory, the authors have developed an electrochemical planarization process that fills vias and trenches with metal (without voids) and subsequently planarizes the surface. Use is made of plasma-enhanced chemical vapor deposition (PECVD) of SiO[sub 2] for the dielectric layers and electroplated copper for the metalization. This report describes the advantages of this process over existing techniques, possibilities for collaboration, and previous technology transfer.

  20. Electrochemical planarization for microelectronic circuits

    NASA Astrophysics Data System (ADS)

    Contolini, R. J.; Mayer, S. T.; Bernhardt, A. F.

    1993-03-01

    The need for flatter and smoother surfaces (planarization) in microelectronic circuits increases as the number of metal levels in ultra large scale integrated (ULSI) circuits increases. At Lawrence Livermore National Laboratory, the authors have developed an electrochemical planarization process that fills vias and trenches with metal (without voids) and subsequently planarizes the surface. Use is made of plasma-enhanced chemical vapor deposition (PECVD) of SiO2 for the dielectric layers and electroplated copper for the metalization. This report describes the advantages of this process over existing techniques, possibilities for collaboration, and previous technology transfer.

  1. Multiband Optical Absorption Controlled by Lattice Strain in Thin-Film display='inline'>LaCrO3

    SciTech Connect

    Sushko, Peter V.; Qiao, Liang; Bowden, Mark; Varga, Tamas; Exarhos, Gregory J.; Urban, Frank K.; Barton, David; Chambers, Scott A.

    2013-02-01

    Experimental measurements and ab initio modeling of the optical transitions in strained G-type antiferromagnetic LaCrO3 resolve two decades of debate regarding the magnitude of the optical band gap and the character of the corresponding transitions in this material. Using time-dependent density functional theory and accounting for thermal disorder effects, we demonstrate that the fourmost prominent low-energy absorption features are due to intra-Cr t2g {eg (2.4, 3.6 eV), inter-Crt2g {t2g (4.4 eV), and inter-ion O 2p { Cr 3d (from 5 eV) transitions and show that the excitation energies of the latter type can be strongly affected by the lattice strain.

  2. Polymer planar Bragg grating for sensing applications

    NASA Astrophysics Data System (ADS)

    Rosenberger, M.; Hartlaub, N.; Koller, G.; Belle, S.; Schmauss, B.; Hellmann, R.

    2013-05-01

    Bragg gratings have become indispensable as optical sensing elements and are already used for a variety of technical applications. Mainly silica fiber Bragg gratings (FBGs) have been extensively studied over the last decades and are nowadays commercially available. Bragg grating sensors consisting of other materials like polymers, however, have only recently come into the focus of fundamental and applied research. Polymers exhibit significantly different properties advantageous for many sensing applications and therefore provide a good alternative to silica based devices. In addition, polymer materials are inexpensive, simple to handle as well as available in various forms like liquid resists or bulk material. Accordingly, polymer integrated optics attract increasing interest and can serve as a substitute for optical fibers. We report on the fabrication of a planar Bragg grating sensor in bulk Polymethylmethacrylate (PMMA). The sensor consists of an optical waveguide and a Bragg grating, both written simultaneously into a PMMA chip by a single writing step, for which a phase mask covered by an amplitude mask is placed on top of the PMMA and exposed to the UV radiation of a KrF excimer laser. Depending on the phase mask period, different Bragg gratings reflecting in the telecommunication wavelength range are fabricated and characterized. Reflection and transmission measurements show a narrow reflection band and a high reflectivity of the polymer planar Bragg grating (PPBG). After connecting to a single mode fiber, the portable PPBG based sensor was evaluated for different measurands like humidity and strain. The sensor performance was compared to already existing sensing systems. Due to the obtained results as well as the rapid and cheap fabrication of the sensor chip, the PPBG qualifies for a low cost sensing element.

  3. Display formats manual

    NASA Technical Reports Server (NTRS)

    Runnels, R. L.

    1973-01-01

    The standards and procedures for the generation of operational display formats to be used in the Mission Control Center (MCC) display control system are presented. The required effort, forms, and fundamentals for the design, specifications, and production of display formats are identified. The principles of display design and system constraints controlling the creation of optimum operational displays for mission control are explained. The basic two types of MCC display systems for presenting information are described.

  4. Object Classification via Planar Abstraction

    NASA Astrophysics Data System (ADS)

    Oesau, Sven; Lafarge, Florent; Alliez, Pierre

    2016-06-01

    We present a supervised machine learning approach for classification of objects from sampled point data. The main idea consists in first abstracting the input object into planar parts at several scales, then discriminate between the different classes of objects solely through features derived from these planar shapes. Abstracting into planar shapes provides a means to both reduce the computational complexity and improve robustness to defects inherent to the acquisition process. Measuring statistical properties and relationships between planar shapes offers invariance to scale and orientation. A random forest is then used for solving the multiclass classification problem. We demonstrate the potential of our approach on a set of indoor objects from the Princeton shape benchmark and on objects acquired from indoor scenes and compare the performance of our method with other point-based shape descriptors.

  5. Process for forming planarized films

    DOEpatents

    Pang, Stella W.; Horn, Mark W.

    1991-01-01

    A planarization process and apparatus which employs plasma-enhanced chemical vapor deposition (PECVD) to form plarnarization films of dielectric or conductive carbonaceous material on step-like substrates.

  6. Hybrid imaging in planar scintigraphy: new implementations and historical precedents.

    PubMed

    Zuckier, Lionel S

    2012-01-01

    Fusion of tomographic radionuclide studies with anatomical examinations has become standard practice in positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging. Nonetheless, fusion of planar scintigraphic images with an anatomical modality remains distinctly uncommon, although methods to do so have appeared sporadically in the literature during the past 2 decades. In this article we review several techniques that have been used to combine planar scintigraphic images with radiographs and visual (photographic) images. Rigid or affine transformations have been performed to co-register the planar images with each other using custom, commercial, or public domain software. Display of the hybrid images has been achieved primarily with nonselective color-fusion methods. Promising efforts are underway to develop a technique of fusing planar lymphoscintigraphic images with CT topograms (scout images) obtained on the SPECT-CT camera in a manner that compensates for position-dependent variation in magnification that affects the CT scout. An advantage of this approach is that both of the component images are acquired on the same gantry, without need for repositioning of the patient. It is instructive to note that techniques of fusing rectilinear scans with radiographic and visual images were first developed more than 50 years ago. The revisiting of these methods after many decades reflects a fundamental need for spatial orientation in nuclear medicine that fusion imaging can also bring to planar scintigraphic studies.

  7. Conoscopic analysis of electric field driven planar aligned nematic liquid crystal.

    PubMed

    Ranjini, Radhakrishnan; Matham, Murukeshan Vadakke; Nguyen, Nam-Trung

    2014-05-01

    This paper illustrates the conoscopic observation of a molecular reconstruction occurring across a nematic liquid crystal (NLC) medium in the presence of an external electric field. Conoscopy is an optical interferometric method, employed to determine the orientation of an optic axis in uniaxial crystals. Here a planar aligned NLC medium is used, and the topological changes with respect to various applied voltages are monitored simultaneously. Homogenous planar alignment is obtained by providing suitable surface treatments to the ITO coated cell walls. The variation in the conoscopic interferometric patterns clearly demonstrates the transition from planar to homeotropic state through various intermediate states. PMID:24921859

  8. Planar Particle Imaging Doppler Velocimetry Developed

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    2000-01-01

    Two current techniques exist for the measurement of planar, three-component velocity fields. Both techniques require multiple views of the illumination plane in order to extract all three velocity components. Particle image velocimetry (PIV) is a high-resolution, high accuracy, planar velocimetry technique that provides valuable instantaneous velocity information in aeropropulsion test facilities. PIV can provide three-component flow-field measurements using a two-camera, stereo viewing configuration. Doppler global velocimetry (DGV) is another planar velocimetry technique that can provide three component flow-field measurements; however, it requires three detector systems that must be located at oblique angles from the measurement plane. The three-dimensional configurations of either technique require multiple (DGV) or at least large (stereo PIV) optical access ports in the facility in which the measurements are being conducted. Optical access is extremely limited in aeropropulsion test facilities. In many cases, only one optical access port is available. A hybrid measurement technique has been developed at the NASA Glenn Research Center, planar particle image and Doppler velocimetry (PPIDV), which combines elements from both the PIV and DGV techniques into a single detection system that can measure all three components of velocity across a planar region of a flow field through a single optical access port. In the standard PIV technique, a pulsed laser is used to illuminate the flow field at two closely spaced instances in time, which are recorded on a "frame-straddling" camera, yielding a pair of single-exposure image frames. The PIV camera is oriented perpendicular to the light sheet, and the processed PIV data yield the two-component velocity field in the plane of the light sheet. In the standard DGV technique, an injection-seeded Nd:YAG pulsed laser light sheet illuminates the seeded flow field, and three receiver systems are used to measure three components

  9. Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces

    PubMed Central

    Li, Yong; Liang, Bin; Gu, Zhong-ming; Zou, Xin-ye; Cheng, Jian-chun

    2013-01-01

    The introduction of metasurfaces has renewed the Snell's law and opened up new degrees of freedom to tailor the optical wavefront at will. Here, we theoretically demonstrate that the generalized Snell's law can be achieved for reflected acoustic waves based on ultrathin planar acoustic metasurfaces. The metasurfaces are constructed with eight units of a solid structure to provide discrete phase shifts covering the full 2π span with steps of π/4 by coiling up the space. By careful selection of the phase profiles in the transverse direction of the metasurfaces, some fascinating wavefront engineering phenomena are demonstrated, such as anomalous reflections, conversion of propagating waves into surface waves, planar aberration-free lens and nondiffracting Bessel beam generated by planar acoustic axicon. Our results could open up a new avenue for acoustic wavefront engineering and manipulations. PMID:23986034

  10. System status display information

    NASA Technical Reports Server (NTRS)

    Summers, L. G.; Erickson, J. B.

    1984-01-01

    The system Status Display is an electronic display system which provides the flight crew with enhanced capabilities for monitoring and managing aircraft systems. Guidelines for the design of the electronic system displays were established. The technical approach involved the application of a system engineering approach to the design of candidate displays and the evaluation of a Hernative concepts by part-task simulation. The system engineering and selection of candidate displays are covered.

  11. Dual Panal Planar Portal

    2000-12-01

    The D3P system is designed to provide a very fast imaging system in order to search for weapons on persons in an airport environment. The complete vision of the D3P system is to have two array systems facing each other. Version 2.3 of the software is designed to control and process data from a single panel. A second panel is expected to be added at a future date and the software will be modified atmore » that time to integrate the images from two panels at one time. The D3P software can be segmented into three specific tasks. The first task is data acquisition and scanner control. At the operator's request, this task commands the scanner to move and the radar transceiver-array to send data to the computer system in a known and well-ordered manner. The array is moved over the complete aperture in 1 to 2 seconds. At the completion of the array movement the second software task reconstructs the high-resolution image from the radar data utilizing the integrated DSP board. The third task displays the result to the computer screen for user review and analysis.« less

  12. Three-dimensional display technologies

    PubMed Central

    Geng, Jason

    2014-01-01

    The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain’s power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies. PMID:25530827

  13. Fluorescence particle detection using microfluidics and planar optoelectronic elements

    NASA Astrophysics Data System (ADS)

    Kettlitz, Siegfried W.; Moosmann, Carola; Valouch, Sebastian; Lemmer, Uli

    2014-05-01

    Detection of fluorescent particles is an integral part of flow cytometry for analysis of selectively stained cells. Established flow cytometer designs achieve great sensitivity and throughput but require bulky and expensive components which prohibit mass production of small single-use point-of-care devices. The use of a combination of innovative technologies such as roll-to-roll printed microuidics with integrated optoelectronic components such as printed organic light emitting diodes and printed organic photodiodes enables tremendous opportunities in cost reduction, miniaturization and new application areas. In order to harvest these benefits, the optical setup requires a redesign to eliminate the need for lenses, dichroic mirrors and lasers. We investigate the influence of geometric parameters on the performance of a thin planar design which uses a high power LED as planar light source and a PIN-photodiode as planar detector. Due to the lack of focusing optics and inferior optical filters, the device sensitivity is not yet on par with commercial state of the art flow cytometer setups. From noise measurements, electronic and optical considerations we deduce possible pathways of improving the device performance. We identify that the sensitivity is either limited by dark noise for very short apertures or by noise from background light for long apertures. We calculate the corresponding crossover length. For the device design we conclude that a low device thickness, low particle velocity and short aperture length are necessary to obtain optimal sensitivity.

  14. Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second

    PubMed Central

    Choi, Dong-hak; Hiro-Oka, Hideaki; Shimizu, Kimiya; Ohbayashi, Kohji

    2012-01-01

    An ultrafast frequency domain optical coherence tomography system was developed at A-scan rates between 2.5 and 10 MHz, a B-scan rate of 4 or 8 kHz, and volume-rates between 12 and 41 volumes/second. In the case of the worst duty ratio of 10%, the averaged A-scan rate was 1 MHz. Two optical demultiplexers at a center wavelength of 1310 nm were used for linear-k spectral dispersion and simultaneous differential signal detection at 320 wavelengths. The depth-range, sensitivity, sensitivity roll-off by 6 dB, and axial resolution were 4 mm, 97 dB, 6 mm, and 23 μm, respectively. Using FPGAs for FFT and a GPU for volume rendering, a real-time 4D display was demonstrated at a rate up to 41 volumes/second for an image size of 256 (axial) × 128 × 128 (lateral) voxels. PMID:23243560

  15. Electrooptical Properties of Dual-Frequency Cholesteric Liquid Crystal Reflective Display and Drive Scheme

    NASA Astrophysics Data System (ADS)

    Xu, Ming; Yang, Deng-Ke

    1999-12-01

    We developed a bistable cholesteric reflective display using a dual-frequency cholesteric liquid crystal. The material exhibits two stable states at zero field: Bragg reflecting planar texture and nonreflecting (weakly scattering) focal conic texture. It can be switched directly from the planar texture to the focal conic texture by a low-frequency voltage and back to the planar texture by a high-frequency voltage. We have designed a drive scheme for the display, which uses simultaneous application of both low- and high-frequency voltages and cumulative effect of the cholesteric liquid crystals.

  16. XVD Image Display Program

    NASA Technical Reports Server (NTRS)

    Deen, Robert G.; Andres, Paul M.; Mortensen, Helen B.; Parizher, Vadim; McAuley, Myche; Bartholomew, Paul

    2009-01-01

    The XVD [X-Windows VICAR (video image communication and retrieval) Display] computer program offers an interactive display of VICAR and PDS (planetary data systems) images. It is designed to efficiently display multiple-GB images and runs on Solaris, Linux, or Mac OS X systems using X-Windows.

  17. Screens and Displays.

    ERIC Educational Resources Information Center

    Edstrom, Malin

    1987-01-01

    Discusses the characteristics of different computer screen technologies including the possible harmful effects on health of cathode ray tube (CRT) terminals. CRT's are compared to other technologies including liquid crystal displays, plasma displays, electroluminiscence displays, and light emitting diodes. A chart comparing the different…

  18. Digital video display system

    NASA Technical Reports Server (NTRS)

    Zygielbaum, A. I.; Martin, W. L.; Engle, A.

    1973-01-01

    System displays image data in real time on 120,000-element raster scan with 2, 4, or 8 shades of grey. Designed for displaying planetary range Doppler data, system can be used for X-Y plotting, displaying alphanumerics, and providing image animation.

  19. Reconfigurable Photonic Capsules Containing Cholesteric Liquid Crystals with Planar Alignment.

    PubMed

    Lee, Sang Seok; Kim, Su Kyung; Won, Jong Chan; Kim, Yun Ho; Kim, Shin-Hyun

    2015-12-01

    Cholesteric liquid crystals (CLCs) reflect selected wavelengths of light owing to their periodic helical structures. The encapsulation of CLCs leads to photonic devices that can be easily processed and might be used as stand-alone microsensors. However, when CLCs are enclosed by polymeric membranes, they usually lose their planar alignment, leading to a deterioration of the optical performance. A microfluidics approach was employed to integrate an ultrathin alignment layer into microcapsules to separate the CLC core and the elastomeric solid membrane using triple-emulsion drops as the templates. The thinness of the alignment layer provides high lubrication resistance, preserving the layer integrity during elastic deformation of the membrane. The CLCs in the microcapsules can thus maintain their planar alignment, rendering the shape and optical properties highly reconfigurable.

  20. Planar omnidirectional reflectors in chalcogenide glass and polymer.

    PubMed

    Decorby, R; Nguyen, H; Dwivedi, P; Clement, T

    2005-08-01

    We have fabricated and tested planar reflectors exhibiting an omnidirectional stop band centered near 1750 nm wavelength. The reflectors are comprised of multiple layers of Ge33As12Se55 chalcogenide glass and polyamide-imide polymer. Glass layers were deposited by thermal evaporation and polymer layers were deposited by spin-casting. Thin film stacks of up to 13 layers showed good planarity and adhesion, which we attribute to the well-matched thermo-mechanical properties of the materials. The optical properties of the reflectors were tested in both transmission and reflection, and the results are in good agreement with theoretical predictions. Relatively low-temperature processing steps were employed, making these reflectors of interest for integrated optics.

  1. Elliptical dichroism: operating principle of planar chiral metamaterials.

    PubMed

    Zhukovsky, Sergei V; Novitsky, Andrey V; Galynsky, Vladimir M

    2009-07-01

    We employ a homogenization technique based on the Lorentz electronic theory to show that planar chiral structures (PCSs) can be described by an effective dielectric tensor similar to that of biaxial elliptically dichroic crystals. Such a crystal is shown to behave like a PCS insofar as it exhibits its characteristic optical properties, namely, corotating elliptical polarization eigenstates and asymmetric, direction-dependent transmission for left- or right-handed incident wave polarization.

  2. Elliptical dichroism: operating principle of planar chiral metamaterials.

    PubMed

    Zhukovsky, Sergei V; Novitsky, Andrey V; Galynsky, Vladimir M

    2009-07-01

    We employ a homogenization technique based on the Lorentz electronic theory to show that planar chiral structures (PCSs) can be described by an effective dielectric tensor similar to that of biaxial elliptically dichroic crystals. Such a crystal is shown to behave like a PCS insofar as it exhibits its characteristic optical properties, namely, corotating elliptical polarization eigenstates and asymmetric, direction-dependent transmission for left- or right-handed incident wave polarization. PMID:19571975

  3. Cytoplasmic bacteriophage display system

    DOEpatents

    Studier, F. William; Rosenberg, Alan H.

    1998-06-16

    Disclosed are display vectors comprising DNA encoding a portion of a structural protein from a cytoplasmic bacteriophage, joined covalently to a protein or peptide of interest. Exemplified are display vectors wherein the structural protein is the T7 bacteriophage capsid protein. More specifically, in the exemplified display vectors the C-terminal amino acid residue of the portion of the capsid protein is joined to the N-terminal residue of the protein or peptide of interest. The portion of the T7 capsid protein exemplified comprises an N-terminal portion corresponding to form 10B of the T7 capsid protein. The display vectors are useful for high copy number display or lower copy number display (with larger fusion). Compositions of the type described herein are useful in connection with methods for producing a virus displaying a protein or peptide of interest.

  4. Cytoplasmic bacteriophage display system

    DOEpatents

    Studier, F.W.; Rosenberg, A.H.

    1998-06-16

    Disclosed are display vectors comprising DNA encoding a portion of a structural protein from a cytoplasmic bacteriophage, joined covalently to a protein or peptide of interest. Exemplified are display vectors wherein the structural protein is the T7 bacteriophage capsid protein. More specifically, in the exemplified display vectors the C-terminal amino acid residue of the portion of the capsid protein is joined to the N-terminal residue of the protein or peptide of interest. The portion of the T7 capsid protein exemplified comprises an N-terminal portion corresponding to form 10B of the T7 capsid protein. The display vectors are useful for high copy number display or lower copy number display (with larger fusion). Compositions of the type described herein are useful in connection with methods for producing a virus displaying a protein or peptide of interest. 1 fig.

  5. Electro-optical properties of cholesteric liquid crystal devices and applications of dual frequency cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Xu, Ming

    2000-12-01

    The helical structure of cholesteric liquid crystals originates the optical property of Bragg reflection, employed in numerous devices. A typical cholesteric device consists of glass plates, electrodes, alignment layers and a cholesteric liquid crystal layer. We systematically studied the reflection from individual interfaces by measuring the reflection spectra under various polarization conditions and simulating the spectra using Berreman's 4 x 4 matrix method. The results demonstrate that device structures have significant effects on optical performance. We studied the optical behavior of various cholesteric textures. We report for the first time an anomalous reflection of the left circularly polarized light from imperfect planar textures with right-handed twist under normal incidence. We modeled the imperfect planar texture as a multi-domain structure and were able to simulate the reflection of the multi-domain planar texture. We also studied the optical properties of the gray scale states of the cholesteric reflective display. The results are very useful in the implementation of full color displays. We developed two types of devices utilizing dual frequency cholesteric liquid crystals, the dual frequency cholesteric light shutters and reflective displays. The advantages of these light shutters are their high on- state transmittance and low off-state transmittance. By designing and optimizing a 3-phased dual frequency drive scheme, we reduced the response time of the device from over 10 seconds to less than 50ms. The device is a good candidate for applications such as laser protection goggles. Unlike the conventional reflective display, the dual frequency one does not need a homeotropic state as an intermediate switching state. Thus it has the potential of reducing the drive voltage. We designed a dual frequency drive scheme to drive the display between various gray scale states directly, promising an easier implementation of gray scales.

  6. Compact beam expander based on planar structure to avoid inner focus

    NASA Astrophysics Data System (ADS)

    Sze, Jyh Rou; Wei, An Chi

    2016-10-01

    Based on the planar optical theory, compact beam expanders are proposed to miniaturize the dimension of an optical system. Both simulated and experimental results have demonstrated the designate functions of the proposed beam expanders. Such planar beam expanders (PBEs) consist of both parabolic mirrors which locate on the both sides of one substrate. The calculated results have showed that those PBEs, possessing thinner volume compared with the conventional beam expanders, are achromatic and aberration-free. To verify the optical performance of the designed PBEs, two of them were individually fabricated using the diamond grinding technique. The measured results have shown that the designate functions of the fabricated PBE have been achieved.

  7. Compact beam expander based on planar structure to avoid inner focus

    NASA Astrophysics Data System (ADS)

    Sze, Jyh Rou; Wei, An Chi

    2016-08-01

    Based on the planar optical theory, compact beam expanders are proposed to miniaturize the dimension of an optical system. Both simulated and experimental results have demonstrated the designate functions of the proposed beam expanders. Such planar beam expanders (PBEs) consist of both parabolic mirrors which locate on the both sides of one substrate. The calculated results have showed that those PBEs, possessing thinner volume compared with the conventional beam expanders, are achromatic and aberration-free. To verify the optical performance of the designed PBEs, two of them were individually fabricated using the diamond grinding technique. The measured results have shown that the designate functions of the fabricated PBE have been achieved.

  8. Displays for future intermediate UAV

    NASA Astrophysics Data System (ADS)

    Desjardins, Daniel; Metzler, James; Blakesley, David; Rister, Courtney; Nuhu, Abdul-Razak

    2008-04-01

    The Dedicated Autonomous Extended Duration Airborne Long-range Utility System (DAEDALUS) is a prototype Unmanned Aerial Vehicle (UAV) that won the 2007 AFRL Commander's Challenge. The purpose of the Commander's Challenge was to find an innovative solution to urgent warfighter needs by designing a UAV with increased persistence for tactical employment of sensors and communication systems. DAEDALUS was chosen as a winning prototype by AFRL, AFMC and SECAF. Follow-on units are intended to fill an intermediate role between currently fielded Tier I and Tier II UAV's. The UAV design discussed in this paper, including sensors and displays, will enter Phase II for Rapid Prototype Development with the intent of developing the design for eventual production. This paper will discuss the DAEDALUS UAV prototype system, with particular focus on its communications, to include the infrared sensor and electro-optical camera, but also displays, specifically man-portable.

  9. Compressive and tensile strain sensing using a polymer planar Bragg grating.

    PubMed

    Rosenberger, M; Hessler, S; Belle, S; Schmauss, B; Hellmann, R

    2014-03-10

    A polymer planar Bragg grating sensor is used for measuring both mechanical compressive and tensile strain. The planar waveguide with integrated Bragg grating is fabricated in bulk Polymethylmethacrylate in a single writing step using combined amplitude and phase mask technique. After butt coupling of a single-mode optical fiber the planar structure can be applied for measuring both mechanical tensile and compressive strain alongside the integrated waveguide without the need of further modifications. In this respect, we particularly report for the first time compressive strain measurements using a polymer Bragg grating. Furthermore, the sensitivity of the sensor against tensile and compressive strain, its reproducibility and hysteresis are investigated and discussed.

  10. Virtual acoustics displays

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Fisher, Scott S.; Stone, Philip K.; Foster, Scott H.

    1991-01-01

    The real time acoustic display capabilities are described which were developed for the Virtual Environment Workstation (VIEW) Project at NASA-Ames. The acoustic display is capable of generating localized acoustic cues in real time over headphones. An auditory symbology, a related collection of representational auditory 'objects' or 'icons', can be designed using ACE (Auditory Cue Editor), which links both discrete and continuously varying acoustic parameters with information or events in the display. During a given display scenario, the symbology can be dynamically coordinated in real time with 3-D visual objects, speech, and gestural displays. The types of displays feasible with the system range from simple warnings and alarms to the acoustic representation of multidimensional data or events.

  11. Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis In Planar Diodes

    SciTech Connect

    Xu, Jixian; Buin, Andrei; Ip, Alexander H.; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey; Kanjanaboos, Pongsakorn; Sun, Jon-Paul; Lan, Xinzheng; Quan, Li Na; Kim, Dong Ha; Hill, Ian; Maksymovych, Petro; Sargent, Edward H.

    2015-03-31

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite–PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3 antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.

  12. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes.

    PubMed

    Xu, Jixian; Buin, Andrei; Ip, Alexander H; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey J; Kanjanaboos, Pongsakorn; Sun, Jon-Paul; Lan, Xinzheng; Quan, Li Na; Kim, Dong Ha; Hill, Ian G; Maksymovych, Peter; Sargent, Edward H

    2015-05-08

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite-PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3(-) antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.

  13. Displaying Data As Movies

    NASA Technical Reports Server (NTRS)

    Moore, Judith G.

    1992-01-01

    NMSB Movie computer program displays large sets of data (more than million individual values). Presentation dynamic, rapidly displaying sequential image "frames" in main "movie" window. Any sequence of two-dimensional sets of data scaled between 0 and 255 (1-byte resolution) displayed as movie. Time- or slice-wise progression of data illustrated. Originally written to present data from three-dimensional ultrasonic scans of damaged aerospace composite materials, illustrates data acquired by thermal-analysis systems measuring rates of heating and cooling of various materials. Developed on Macintosh IIx computer with 8-bit color display adapter and 8 megabytes of memory using Symantec Corporation's Think C, version 4.0.

  14. Interactive holographic display

    NASA Astrophysics Data System (ADS)

    Son, Jung-Young; Lee, Beam-Ryeol; Kim, Jin-Woong; Chernyshov, Oleksii O.; Park, Min-Chul

    2014-06-01

    A holographic display which is capable of displaying floating holographic images is introduced. The display is for user interaction with the image on the display. It consists of two parts; multiplexed holographic image generation and a spherical mirror. The time multiplexed image from 2 X 10 DMD frames appeared on PDLC screen is imaged by the spherical mirror and becomes a floating image. This image is combined spatially with two layered TV images appearing behind. Since the floating holographic image has a real spatial position and depth, it allows a user to interact with the image.

  15. JAVA Stereo Display Toolkit

    NASA Technical Reports Server (NTRS)

    Edmonds, Karina

    2008-01-01

    This toolkit provides a common interface for displaying graphical user interface (GUI) components in stereo using either specialized stereo display hardware (e.g., liquid crystal shutter or polarized glasses) or anaglyph display (red/blue glasses) on standard workstation displays. An application using this toolkit will work without modification in either environment, allowing stereo software to reach a wider audience without sacrificing high-quality display on dedicated hardware. The toolkit is written in Java for use with the Swing GUI Toolkit and has cross-platform compatibility. It hooks into the graphics system, allowing any standard Swing component to be displayed in stereo. It uses the OpenGL graphics library to control the stereo hardware and to perform the rendering. It also supports anaglyph and special stereo hardware using the same API (application-program interface), and has the ability to simulate color stereo in anaglyph mode by combining the red band of the left image with the green/blue bands of the right image. This is a low-level toolkit that accomplishes simply the display of components (including the JadeDisplay image display component). It does not include higher-level functions such as disparity adjustment, 3D cursor, or overlays all of which can be built using this toolkit.

  16. Summing Planar Bosonic Open Strings

    SciTech Connect

    Bardakci, Korkut

    2006-02-16

    In earlier work, planar graphs of massless {phi}{sup 3} theory were summed with the help of the light cone world sheet picture and the mean field approximation. In the present article, the same methods are applied to the problem of summing planar bosonic open strings. They find that in the ground state of the system, string boundaries form a condensate on the world sheet, and a new string emerges from this summation. Its slope is always greater than the initial slope, and it remains non-zero even when the initial slope is set equal to zero. If they assume the initial string tends to a field a theory in the zero slope limit, this result provides evidence for string formation in field theory.

  17. Manufacturing of planar ceramic interconnects

    SciTech Connect

    Armstrong, B.L.; Coffey, G.W.; Meinhardt, K.D.; Armstrong, T.R.

    1996-12-31

    The fabrication of ceramic interconnects for solid oxide fuel cells (SOFC) and separator plates for electrochemical separation devices has been a perennial challenge facing developers. Electrochemical vapor deposition (EVD), plasma spraying, pressing, tape casting and tape calendering are processes that are typically utilized to fabricate separator plates or interconnects for the various SOFC designs and electrochemical separation devices. For sake of brevity and the selection of a planar fuel cell or gas separation device design, pressing will be the only fabrication technique discussed here. This paper reports on the effect of the characteristics of two doped lanthanum manganite powders used in the initial studies as a planar porous separator for a fuel cell cathode and as a dense interconnect for an oxygen generator.

  18. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1985-06-24

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping lase pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  19. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1985-08-23

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  20. Macroscopic resonances in planar geometry

    NASA Astrophysics Data System (ADS)

    Strutinsky, V.; Vydrug-Vlasenko, S.; Magner, A.

    1987-09-01

    Resonating response is a characteristic feature of free-particle system contained between two vibrating planar surfaces. Resonance frequencies and widths are determined by a mean period of motion of particles reflected from the walls. Resonances due to quasiperiodic macroscopic motion appear when the interaction among quasi-particles by means of perturbations of the common self-consistent field is included. They have finite widths corresponding to collisionless Landau dissipation. Possible relationship of this phenomenon to nuclear giant resonances is discussed.

  1. Compact planar microwave blocking filters

    NASA Technical Reports Server (NTRS)

    U-Yen, Kongpop (Inventor); Wollack, Edward J. (Inventor)

    2012-01-01

    A compact planar microwave blocking filter includes a dielectric substrate and a plurality of filter unit elements disposed on the substrate. The filter unit elements are interconnected in a symmetrical series cascade with filter unit elements being organized in the series based on physical size. In the filter, a first filter unit element of the plurality of filter unit elements includes a low impedance open-ended line configured to reduce the shunt capacitance of the filter.

  2. Optical keyboard

    DOEpatents

    Veligdan, James T.; Feichtner, John D.; Phillips, Thomas E.

    2001-01-01

    An optical keyboard includes an optical panel having optical waveguides stacked together. First ends of the waveguides define an inlet face, and opposite ends thereof define a screen. A projector transmits a light beam outbound through the waveguides for display on the screen as a keyboard image. A light sensor is optically aligned with the inlet face for sensing an inbound light beam channeled through the waveguides from the screen upon covering one key of the keyboard image.

  3. Polymer hybrid materials for planar optronic systems

    NASA Astrophysics Data System (ADS)

    Körner, Martin; Prucker, Oswald; Rühe, Jürgen

    2015-09-01

    Planar optronic systems made entirely from polymeric functional materials on polymeric foils are interesting architectures for monitoring and sensing applications. Key components in this regard are polymer hybrid materials with adjustable optical properties. These materials can then be processed into optical components such as waveguides for example by using embossing techniques. However, the resulting microstructures have often low mechanical or thermal stability which quickly leads to a degradation of the microstructures accompanied often by a complete loss of function. A simple and versatile way to increase the thermal and mechanical stability of polymers is to connect the individual chains to a polymer network by using thermally or photochemically reactive groups. Upon excitation, these groups form reactive intermediates such as radicals or nitrenes which then crosslink with adjacent C-H-groups through a C,H insertion reaction (CHic = C,H insertion based crosslinking). To generate waveguide structures a PDMS stamp is filled with the waveguide core material e.g. poly(methylmethacrylate) (PMMA), which is modified with a few mol% of the thermal crosslinker and hot embossed onto a foil substrate e.g. PMMA. In this one-step hot embossing process polymer ridge waveguides are formed and simultaneously the polymer becomes crosslinked. Due to the reaction across the boundary between waveguide and substrate it is also possible to combine initially incompatible polymers for the waveguide and the substrate foil. The thermomechanical properties of the obtained materials are studied.

  4. NMR planar microcoil for microanalysis

    NASA Astrophysics Data System (ADS)

    Sorli, B.; Chateaux, J. F.; Quiquerez, L.; Bouchet-Fakri, L.; Briguet, A.; Morin, P.

    2006-11-01

    This article deals with the analysis of small sample volume by using a planar microcoil and a micromachined cavity. This microcoil is used as a nuclear magnetic resonance (NMR) radio frequency detection coil in order to perform in vitro NMR analysis of the sample introduced into the microcavity. It is a real challenging task to develop microsystem for NMR spectrum extraction for smaller and smaller sample volume. Moreover, it is advantageous that these microsystems could be integrated in a Micro Total Analysing System (μ -TAS) as an analysing tool. In this paper, NMR theory, description, fabrication process and electrical characterization of planar microcoils receiver are described. Results obtained on NMR microspectroscopy experiments have been performed on water and ethanol, using a 1 mm diameter planar coil. This microcoil is tuned and matched at 85.13 MHz which is the Larmor frequency of proton in a 2 T magnetic field. This paper has been presented at “3e colloque interdisciplinaire en instrumentation (C2I 2004)”, École Normale Supérieure de Cachan, 29 30 janvier 2004.

  5. Cilia organize ependymal planar polarity

    PubMed Central

    Mirzadeh, Zaman; Han, Young-Goo; Soriano-Navarro, Mario; García-Verdugo, Jose Manuel; Alvarez-Buylla, Arturo

    2010-01-01

    Multi-ciliated epithelial cells, called ependymal cells, line the ventricles in the adult brain. Most ependymal cells are born prenatally and are derived from radial glia. Ependymal cells have a remarkable planar polarization that determines orientation of ciliary beating and propulsion of cerebrospinal fluid (CSF). Disruption of ependymal ciliary beating, by injury or disease, results in aberrant CSF circulation and hydrocephalus, a common disorder of the central nervous system. Very little is known about the mechanisms guiding ependymal planar polarity and whether this organization is acquired during ependymal cell development or is already present in radial glia. Here we show that basal bodies in ependymal cells in the lateral ventricle walls of adult mice are polarized in two ways: i) rotational; angle of individual basal bodies with respect to their long axis and ii) translational; the position of basal bodies on the apical surface of the cell. Conditional ablation of motile cilia disrupted rotational orientation, but translational polarity was largely preserved. In contrast, translational polarity was dramatically affected when radial glial primary cilia were ablated earlier in development. Remarkably, radial glia in the embryo have a translational polarity that predicts the orientation of mature ependymal cells. These results suggest that ependymal planar cell polarity is a multi-step process initially organized by primary cilia in radial glia and then refined by motile cilia in ependymal cells. PMID:20164345

  6. Arabidopsis  SABRE and CLASP interact to stabilize cell division plane orientation and planar polarity

    PubMed Central

    Pietra, Stefano; Gustavsson, Anna; Kiefer, Christian; Kalmbach, Lothar; Hörstedt, Per; Ikeda, Yoshihisa; Stepanova, Anna N.; Alonso, Jose M.; Grebe, Markus

    2013-01-01

    The orientation of cell division and the coordination of cell polarity within the plane of the tissue layer (planar polarity) contribute to shape diverse multicellular organisms. The root of Arabidopsis thaliana displays regularly oriented cell divisions, cell elongation and planar polarity providing a plant model system to study these processes. Here we report that the SABRE protein, which shares similarity with proteins of unknown function throughout eukaryotes, has important roles in orienting cell division and planar polarity. SABRE localizes at the plasma membrane, endomembranes, mitotic spindle and cell plate. SABRE stabilizes the orientation of CLASP-labelled preprophase band microtubules predicting the cell division plane, and of cortical microtubules driving cell elongation. During planar polarity establishment, sabre is epistatic to clasp at directing polar membrane domains of Rho-of-plant GTPases. Our findings mechanistically link SABRE to CLASP-dependent microtubule organization, shedding new light on the function of SABRE-related proteins in eukaryotes. PMID:24240534

  7. Two-dimensional Cu2Si monolayer with planar hexacoordinate copper and silicon bonding.

    PubMed

    Yang, Li-Ming; Bačić, Vladimir; Popov, Ivan A; Boldyrev, Alexander I; Heine, Thomas; Frauenheim, Thomas; Ganz, Eric

    2015-02-25

    Two-dimensional (2D) materials with planar hypercoordinate motifs are extremely rare due to the difficulty in stabilizing the planar hypercoordinate configurations in extended systems. Furthermore, such exotic motifs are often unstable. We predict a novel Cu2Si 2D monolayer featuring planar hexacoordinate copper and planar hexacoordinate silicon. This is a global minimum in 2D space which displays reduced dimensionality and rule-breaking chemical bonding. This system has been studied with density functional theory, including molecular dynamics simulations and electronic structure calculations. Bond order analysis and partitioning reveals 4c-2e σ bonds that stabilize the two-dimensional structure. We find that the system is quite stable during short annealing simulations up to 900 K, and predict that it is a nonmagnetic metal. This work opens up a new branch of hypercoordinate two-dimensional materials for study.

  8. Arabidopsis AIP1-2 restricted by WER-mediated patterning modulates planar polarity.

    PubMed

    Kiefer, Christian S; Claes, Andrea R; Nzayisenga, Jean-Claude; Pietra, Stefano; Stanislas, Thomas; Hüser, Anke; Ikeda, Yoshihisa; Grebe, Markus

    2015-01-01

    The coordination of cell polarity within the plane of the tissue layer (planar polarity) is crucial for the development of diverse multicellular organisms. Small Rac/Rho-family GTPases and the actin cytoskeleton contribute to planar polarity formation at sites of polarity establishment in animals and plants. Yet, upstream pathways coordinating planar polarity differ strikingly between kingdoms. In the root of Arabidopsis thaliana, a concentration gradient of the phytohormone auxin coordinates polar recruitment of Rho-of-plant (ROP) to sites of polar epidermal hair initiation. However, little is known about cytoskeletal components and interactions that contribute to this planar polarity or about their relation to the patterning machinery. Here, we show that ACTIN7 (ACT7) represents a main actin isoform required for planar polarity of root hair positioning, interacting with the negative modulator ACTIN-INTERACTING PROTEIN1-2 (AIP1-2). ACT7, AIP1-2 and their genetic interaction are required for coordinated planar polarity of ROP downstream of ethylene signalling. Strikingly, AIP1-2 displays hair cell file-enriched expression, restricted by WEREWOLF (WER)-dependent patterning and modified by ethylene and auxin action. Hence, our findings reveal AIP1-2, expressed under control of the WER-dependent patterning machinery and the ethylene signalling pathway, as a modulator of actin-mediated planar polarity.

  9. Arabidopsis AIP1-2 restricted by WER-mediated patterning modulates planar polarity

    PubMed Central

    Kiefer, Christian S.; Claes, Andrea R.; Nzayisenga, Jean-Claude; Pietra, Stefano; Stanislas, Thomas; Hüser, Anke; Ikeda, Yoshihisa; Grebe, Markus

    2015-01-01

    The coordination of cell polarity within the plane of the tissue layer (planar polarity) is crucial for the development of diverse multicellular organisms. Small Rac/Rho-family GTPases and the actin cytoskeleton contribute to planar polarity formation at sites of polarity establishment in animals and plants. Yet, upstream pathways coordinating planar polarity differ strikingly between kingdoms. In the root of Arabidopsis thaliana, a concentration gradient of the phytohormone auxin coordinates polar recruitment of Rho-of-plant (ROP) to sites of polar epidermal hair initiation. However, little is known about cytoskeletal components and interactions that contribute to this planar polarity or about their relation to the patterning machinery. Here, we show that ACTIN7 (ACT7) represents a main actin isoform required for planar polarity of root hair positioning, interacting with the negative modulator ACTIN-INTERACTING PROTEIN1-2 (AIP1-2). ACT7, AIP1-2 and their genetic interaction are required for coordinated planar polarity of ROP downstream of ethylene signalling. Strikingly, AIP1-2 displays hair cell file-enriched expression, restricted by WEREWOLF (WER)-dependent patterning and modified by ethylene and auxin action. Hence, our findings reveal AIP1-2, expressed under control of the WER-dependent patterning machinery and the ethylene signalling pathway, as a modulator of actin-mediated planar polarity. PMID:25428588

  10. Display and Presentation Boards.

    ERIC Educational Resources Information Center

    Midgley, Thomas Keith

    The use of display and presentation boards as tools to help teachers/trainers convey messages more clearly is briefly discussed, and 24 different types of display and presentation boards are described and illustrated; i.e., chalk, paste-up, hook-n-loop, electric, flannel, scroll, communication planning, acetate pocket, slot, pin-tack, preview,…

  11. Effective Monitor Display Design.

    ERIC Educational Resources Information Center

    Harrell, William

    1999-01-01

    Describes some of the factors that affect computer monitor display design and provides suggestions and insights into how screen displays can be designed more effectively. Topics include color, font choices, organizational structure of text, space outline, and general principles. (Author/LRW)

  12. Displaying Images Of Planets

    NASA Technical Reports Server (NTRS)

    Martin, Michael D.; Evans, Frank; Nakamura, Daniel I.

    1991-01-01

    Interactive Image Display Program (IMDISP) is interactive image-displaying utility program for IBM personal computer (PC, XT, and AT models) and compatibles. Magnifications, contrasts, and/or subsampling selected for whole or partial images. IMDISP developed for use with CD-ROM (Compact Disk Read-Only Memory) storage system. Written in C language (94 percent) and Assembler (6 percent).

  13. Displays enabling mobile multimedia

    NASA Astrophysics Data System (ADS)

    Kimmel, Jyrki

    2007-02-01

    With the rapid advances in telecommunications networks, mobile multimedia delivery to handsets is now a reality. While a truly immersive multimedia experience is still far ahead in the mobile world, significant advances have been made in the constituent audio-visual technologies to make this become possible. One of the critical components in multimedia delivery is the mobile handset display. While such alternatives as headset-style near-to-eye displays, autostereoscopic displays, mini-projectors, and roll-out flexible displays can deliver either a larger virtual screen size than the pocketable dimensions of the mobile device can offer, or an added degree of immersion by adding the illusion of the third dimension in the viewing experience, there are still challenges in the full deployment of such displays in real-life mobile communication terminals. Meanwhile, direct-view display technologies have developed steadily, and can provide a development platform for an even better viewing experience for multimedia in the near future. The paper presents an overview of the mobile display technology space with an emphasis on the advances and potential in developing direct-view displays further to meet the goal of enabling multimedia in the mobile domain.

  14. A production peripheral vision display system

    NASA Technical Reports Server (NTRS)

    Heinmiller, B.

    1984-01-01

    A small number of peripheral vision display systems in three significantly different configurations were evaluated in various aircraft and simulator situations. The use of these development systems enabled the gathering of much subjective and quantitative data regarding this concept of flight deck instrumentation. However, much was also learned about the limitations of this equipment which needs to be addressed prior to wide spread use. A program at Garrett Manufacturing Limited in which the peripheral vision display system is redesigned and transformed into a viable production avionics system is discussed. Modular design, interchangeable units, optical attenuators, and system fault detection are considered with respect to peripheral vision display systems.

  15. New ultraportable display technology and applications

    NASA Astrophysics Data System (ADS)

    Alvelda, Phillip; Lewis, Nancy D.

    1998-08-01

    MicroDisplay devices are based on a combination of technologies rooted in the extreme integration capability of conventionally fabricated CMOS active-matrix liquid crystal display substrates. Customized diffraction grating and optical distortion correction technology for lens-system compensation allow the elimination of many lenses and systems-level components. The MicroDisplay Corporation's miniature integrated information display technology is rapidly leading to many new defense and commercial applications. There are no moving parts in MicroDisplay substrates, and the fabrication of the color generating gratings, already part of the CMOS circuit fabrication process, is effectively cost and manufacturing process-free. The entire suite of the MicroDisplay Corporation's technologies was devised to create a line of application- specific integrated circuit single-chip display systems with integrated computing, memory, and communication circuitry. Next-generation portable communication, computer, and consumer electronic devices such as truly portable monitor and TV projectors, eyeglass and head mounted displays, pagers and Personal Communication Services hand-sets, and wristwatch-mounted video phones are among the may target commercial markets for MicroDisplay technology. Defense applications range from Maintenance and Repair support, to night-vision systems, to portable projectors for mobile command and control centers.

  16. System status display evaluation

    NASA Technical Reports Server (NTRS)

    Summers, Leland G.

    1988-01-01

    The System Status Display is an electronic display system which provides the crew with an enhanced capability for monitoring and managing the aircraft systems. A flight simulation in a fixed base cockpit simulator was used to evaluate alternative design concepts for this display system. The alternative concepts included pictorial versus alphanumeric text formats, multifunction versus dedicated controls, and integration of the procedures with the system status information versus paper checklists. Twelve pilots manually flew approach patterns with the different concepts. System malfunctions occurred which required the pilots to respond to the alert by reconfiguring the system. The pictorial display, the multifunction control interfaces collocated with the system display, and the procedures integrated with the status information all had shorter event processing times and lower subjective workloads.

  17. Leaky mode suppression in planar optical waveguides written in Er:TeO2-WO3 glass and CaF2 crystal via double energy implantation with MeV N+ ions

    NASA Astrophysics Data System (ADS)

    Bányász, I.; Zolnai, Z.; Fried, M.; Berneschi, S.; Pelli, S.; Nunzi-Conti, G.

    2014-05-01

    Ion implantation proved to be an universal technique for producing waveguides in most optical materials. Tellurite glasses are good hosts of rare-earth elements for the development of fibre and integrated optical amplifiers and lasers covering all the main telecommunication bands. Er3+-doped tellurite glasses are good candidates for the fabrication of broadband amplifiers in wavelength division multiplexing around 1.55 μm, as they exhibit large stimulated cross sections and broad emission bandwidth. Calcium fluoride is an excellent optical material, due to its perfect optical characteristics from UV wavelengths up to near IR. It has become a promising laser host material (doped with rare earth elements). Ion implantation was also applied to optical waveguide fabrication in CaF2 and other halide crystals. In the present work first single-energy implantations at 3.5 MeV at various fluences were applied. Waveguide operation up to 1.5 μm was observed in Er:Te glass, and up to 980 nm in CaF2. Then double-energy implantations at a fixed upper energy of 3.5 MeV and lower energies between 2.5 and 3.2 MeV were performed to suppress leaky modes by increasing barrier width.

  18. Defense display market assessment

    NASA Astrophysics Data System (ADS)

    Desjardins, Daniel D.; Hopper, Darrel G.

    1998-09-01

    This paper addresses the number, function and size of principal military displays and establishes a basis to determine the opportunities for technology insertion in the immediate future and into the next millennium. Principal military displays are defined as those occupying appreciable crewstation real-estate and/or those without which the platform could not carry out its intended mission. DoD 'office' applications are excluded from this study. The military displays market is specified by such parameters as active area and footprint size, and other characteristics such as luminance, gray scale, resolution, angle, color, video capability, and night vision imaging system (NVIS) compatibility. Funded, future acquisitions, planned and predicted crewstation modification kits, and form-fit upgrades are taken into account. This paper provides an overview of the DoD niche market, allowing both government and industry a necessary reference by which to meet DoD requirements for military displays in a timely and cost-effective manner. The aggregate DoD market for direct-view and large-area military displays is presently estimated to be in excess of 242,000. Miniature displays are those which must be magnified to be viewed, involve a significantly different manufacturing paradigm and are used in helmet mounted displays and thermal weapon sight applications. Some 114,000 miniature displays are presently included within Service weapon system acquisition plans. For vendor production planning purposes it is noted that foreign military sales could substantially increase these quantities. The vanishing vendor syndrome (VVS) for older display technologies continues to be a growing, pervasive problem throughout DoD, which consequently must leverage the more modern display technologies being developed for civil- commercial markets.

  19. Polymer based planar coupling of self-assembled bottle microresonators

    NASA Astrophysics Data System (ADS)

    Grimaldi, I. A.; Berneschi, S.; Testa, G.; Baldini, F.; Nunzi Conti, G.; Bernini, R.

    2014-12-01

    The investigation of a simple and self-assembling method for realizing polymeric micro-bottle resonators is reported. By dispensing precise amounts of SU-8 onto a cleaved optical fiber, employed as mechanical support, bottle microcavities with different shapes and diameters are fabricated. The balancing of surface energy between glass fiber and polymeric microresonator with surface tension of SU-8 confers different shape to these microstructures. Planar single-mode SU-8 based waveguide, realized on polymethylmethacrylate, is chosen for exciting the micro-bottle resonators by evanescent wave. The reliability of the fabrication process and the shape of the bottle microcavities are investigated through optical analysis. We observe whispering gallery modes in these resonant microstructures by a robust coupling with single mode planar waveguides around 1.5 μm wavelength. The resonance spectra of micro-bottle resonators and the spectral characteristics, such as Quality-factor (Q factor) and free spectral range, are evaluated for all the realized microstructures. SU-8 micro-bottle resonators show high Q-factors up to 3.8 × 104 and present a good mechanical stability. These features make these microcavities attractive for sensing and/or lasing applications in a planar platform.

  20. Confocal detection of planar homogeneous and heterogeneous immunosorbent assays

    NASA Astrophysics Data System (ADS)

    Ghafari, Homanaz; Zhou, Yanzhou; Ali, Selman; Hanley, Quentin S.

    2009-11-01

    Optically sectioned detection of fluorescence immunoassays using a confocal microscope enables the creation of both homo- and heterogeneous planar format assays. We report a set assays requiring optically sectioned detection using a model system and analysis procedures for separating signals of a surface layer from an overlying solution. A model sandwich assay with human immunoglobulin G as the target antigen is created on a glass substrate. The prepared surfaces are exposed to antigen and a FITC-labeled secondary antibody. The resulting preparations are either read directly to provide a homogeneous assay or after wash steps, giving a heterogeneous assay. The simplicity of the object shapes arising from the planar format makes the decomposition of analyte signals from the thin film bound to the surface and overlayer straightforward. Measured response functions of the thin film and overlayer fit well to the Cauchy-Lorentz and cumulative Cauchy-Lorentz functions, respectively, enabling the film and overlayer to be separated. Under the conditions used, the detection limits for the homogeneous and heterogeneous forms of the assay are 2.2 and 5.5 ng/ml, respectively. Planar format, confocally read fluorescence assays enable wash-free detection of antigens and should be applicable to a wide range of assays involving surface-bound species.

  1. Confocal detection of planar homogeneous and heterogeneous immunosorbent assays.

    PubMed

    Ghafari, Homanaz; Zhou, Yanzhou; Ali, Selman; Hanley, Quentin S

    2009-01-01

    Optically sectioned detection of fluorescence immunoassays using a confocal microscope enables the creation of both homo- and heterogeneous planar format assays. We report a set assays requiring optically sectioned detection using a model system and analysis procedures for separating signals of a surface layer from an overlying solution. A model sandwich assay with human immunoglobulin G as the target antigen is created on a glass substrate. The prepared surfaces are exposed to antigen and a FITC-labeled secondary antibody. The resulting preparations are either read directly to provide a homogeneous assay or after wash steps, giving a heterogeneous assay. The simplicity of the object shapes arising from the planar format makes the decomposition of analyte signals from the thin film bound to the surface and overlayer straightforward. Measured response functions of the thin film and overlayer fit well to the Cauchy-Lorentz and cumulative Cauchy-Lorentz functions, respectively, enabling the film and overlayer to be separated. Under the conditions used, the detection limits for the homogeneous and heterogeneous forms of the assay are 2.2 and 5.5 ng/ml, respectively. Planar format, confocally read fluorescence assays enable wash-free detection of antigens and should be applicable to a wide range of assays involving surface-bound species.

  2. Understanding the impact of media viscosity on dissolution of a highly water soluble drug within a USP 2 mini vessel dissolution apparatus using an optical planar induced fluorescence (PLIF) method.

    PubMed

    Stamatopoulos, Konstantinos; Batchelor, Hannah K; Alberini, Federico; Ramsay, John; Simmons, Mark J H

    2015-11-10

    In this study, planar induced fluorescence (PLIF) was used for the first time to evaluate variability in drug dissolution data using Rhodamine-6G doped tablets within small volume USP 2 apparatus. The results were compared with tablets contained theophylline (THE) drug for conventional dissolution analysis. The impact of hydrodynamics, sampling point, dissolution media viscosity and pH were investigated to note effects on release of these two actives from the hydrophilic matrix tablets. As expected mixing performance was poor with complex and reduced velocities at the bottom of the vessel close to the tablet surface; this mixing became even worse as the viscosity of the fluid increased. The sampling point for dissolution can affect the results due to in-homogenous mixing within the vessel; this effect is exacerbated with higher viscosity dissolution fluids. The dissolution profiles of RH-6G measured via PLIF and THE measured using UV analysis were not statistically different demonstrating that RH-6G is an appropriate probe to mimic the release profile of a highly soluble drug. A linear correlation was accomplished between the release data of the drug and the dye (R(2)>0.9). The dissolution profile of the dye, obtained with the analysis of the PLIF images, can be used in order to evaluate how the viscosity and the mixing performance of USP 2 mini vessel affect the interpretation of the dissolution data of the targeted drug.

  3. Photosensitivity in optical fiber and silica-on-substrate waveguides

    NASA Astrophysics Data System (ADS)

    Malo, Bernard; Bilodeau, Francois; Albert, Jacques; Johnson, Derwyn C.; Hill, Kenneth O.; Hibino, Yoshinori; Abe, Makoto

    1993-12-01

    Ultraviolet light irradiation of optical fibers or silica-on-silica channel optical waveguides photoinduces a permanent refractive index change in the core of the optical waveguide. The effect called `photosensitivity' provides a versatile photolithographic means for processing glass in the form of optical fiber or planar optical waveguides in order to fabricate optical waveguide devices that have applications in optical fiber communications and optical sensor systems. This paper reports on some recent experimental results on photosensitivity in optical fibers and planar optical waveguides and its use in the fabrication of optical waveguide devices.

  4. Heads up display for the Flight Simulator for Advanced Aircraft (FSAA)

    NASA Technical Reports Server (NTRS)

    Brocker, D. H.; Ganzler, B. C.

    1975-01-01

    A heads-up flight director display designed for a V/STOL lift-fan transport simulation study is described. The pilot's visual flight scene had the heads-up display optically superimposed over the usual out-the-window, video flight scene. The flight director display required the development and integration of a flexible, programmable display generator, graphics assembler, display driver, computer interface system, and special collimating optics for the pilot's flight scene. The optical overlay was realistic because both scenes appeared at optical infinity, and the flexibility of this display device establishes its value as a research tool for use in future flight simulation programs.

  5. Highly conformal fabrication of nanopatterns on non-planar surfaces

    NASA Astrophysics Data System (ADS)

    Massiot, Inès; Trompoukis, Christos; Lodewijks, Kristof; Depauw, Valérie; Dmitriev, Alexandre

    2016-06-01

    While the number of techniques for patterning materials at the nanoscale exponentially increases, only a handful of methods approach the conformal patterning of strongly non-planar surfaces. Here, using the direct surface self-assembly of colloids by electrostatics, we produce highly conformal bottom-up nanopatterns with a short-range order. We illustrate the potential of this approach by devising functional nanopatterns on highly non-planar substrates such as pyramid-textured silicon substrates and inherently rough polycrystalline films. We further produce functionalized polycrystalline thin-film silicon solar cells with enhanced optical performance. The perspective presented here to pattern essentially any surface at the nanoscale, in particular surfaces with high inherent roughness or with microscale features, opens new possibilities in a wide range of advanced technologies from affordable photovoltaics and optoelectronics to cellular engineering.

  6. Electrically tunable graded index planar lens based on graphene

    SciTech Connect

    Nasari, H. Abrishamian, M. S.

    2014-08-28

    The realization of electrically tunable beam focusing using a properly designed conductivity pattern along a strip on a background single graphene flake with operation in the terahertz regime is proposed and numerically investigated. The strip is illuminated with a guided surface plasmon polaritons (SPP) plane wave and the physical origin of the design procedure is evaluated from the phase of effective mode index of propagating SPP wave on graphene. Upon tuning a gate voltage between the graphene sheet and the substrate, the focus tuning is achieved. Finite- difference time-domain numerical technique is employed to explore the propagation characteristic of SPP wave and the performance parameters of the lens include the focal length, full-width half-maximum, and focusing efficiency. Such a one atom thick planar lens with the capability of electrical focus tuning besides the compatibility with current planar optoelectronic systems can find valuable potential applications in the field of transformational plasmon optics.

  7. Gardens on Display.

    ERIC Educational Resources Information Center

    Steinheimer, Margaret

    1998-01-01

    Discusses display gardens and their development by students. Presents guidelines for construction and size consideration and describes details of an outdoor garden, volcanic garden, and shoe box dioramas. (DDR)

  8. Military display performance parameters

    NASA Astrophysics Data System (ADS)

    Desjardins, Daniel D.; Meyer, Frederick

    2012-06-01

    The military display market is analyzed in terms of four of its segments: avionics, vetronics, dismounted soldier, and command and control. Requirements are summarized for a number of technology-driving parameters, to include luminance, night vision imaging system compatibility, gray levels, resolution, dimming range, viewing angle, video capability, altitude, temperature, shock and vibration, etc., for direct-view and virtual-view displays in cockpits and crew stations. Technical specifications are discussed for selected programs.

  9. Raster graphics display library

    NASA Technical Reports Server (NTRS)

    Grimsrud, Anders; Stephenson, Michael B.

    1987-01-01

    The Raster Graphics Display Library (RGDL) is a high level subroutine package that give the advanced raster graphics display capabilities needed. The RGDL uses FORTRAN source code routines to build subroutines modular enough to use as stand-alone routines in a black box type of environment. Six examples are presented which will teach the use of RGDL in the fastest, most complete way possible. Routines within the display library that are used to produce raster graphics are presented in alphabetical order, each on a separate page. Each user-callable routine is described by function and calling parameters. All common blocks that are used in the display library are listed and the use of each variable within each common block is discussed. A reference on the include files that are necessary to compile the display library is contained. Each include file and its purpose are listed. The link map for MOVIE.BYU version 6, a general purpose computer graphics display system that uses RGDL software, is also contained.

  10. Displays, memories, and signal processing: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Articles on electronics systems and techniques were presented. The first section is on displays and other electro-optical systems; the second section is devoted to signal processing. The third section presented several new memory devices for digital equipment, including articles on holographic memories. The latest patent information available is also given.

  11. Recent advances in planar tetracoordinate carbon chemistry.

    PubMed

    Merino, Gabriel; Méndez-Rojas, Miguel A; Vela, Alberto; Heine, Thomas

    2007-01-15

    We summarize our contributions on the quest of new planar tetracoordinate carbon entities (new carbon molecules with exotic chemical structures and strange bonding schemes). We give special emphasis on the rationalization why in this type of molecules the planar configuration is favored over the tetrahedral one. We will concentrate on the latter and will show that molecules containing planar tetracoordinate carbons have a stabilizing system of delocalized pi electrons, which shows similar properties as pi systems in aromatic molecules.

  12. Liftings and stresses for planar periodic frameworks

    PubMed Central

    Borcea, Ciprian; Streinu, Ileana

    2015-01-01

    We formulate and prove a periodic analog of Maxwell’s theorem relating stressed planar frameworks and their liftings to polyhedral surfaces with spherical topology. We use our lifting theorem to prove deformation and rigidity-theoretic properties for planar periodic pseudo-triangulations, generalizing features known for their finite counterparts. These properties are then applied to questions originating in mathematical crystallography and materials science, concerning planar periodic auxetic structures and ultrarigid periodic frameworks. PMID:26973370

  13. Rugged and drapable cholesteric liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Shiyanovskaya, Irina; Khan, Asad; Green, Seth; Magyar, Greg; Pishnyak, Oleg; Doane, J. W.

    2005-05-01

    We developed a novel technology for the fabrication of reflective cholesteric liquid crystal displays coatable on a single substrate using a layer-by-layer approach. Encapsulated cholesteric liquid crystals serving as an electro-optical layer and transparent conducting polymer films serving as electrodes are coated and printed on a variety of unconventional substrates, including ultra-thin plastic, paper, and textile materials to create conformable displays. The displays are capable of offering excellent electro-optical properties of the bulk cholesteric liquid crystals, including full-color, IR capability, bistability, low power, high brightness and contrast, combined with the ruggedness and pressure insensitivity of the liquid crystal droplets embedded in a polymer matrix. Durability of encapsulated cholesteric liquid crystals and single substrate approach allows for display flexing, folding, rolling and draping during image addressing without any image distortion. Our single substrate approach with natural cell-gap control significantly simplifies the fabrication process of the LCDs especially for large area displays. This paper will discuss the development, status, and merits of this novel display technology.

  14. Planar Hall effect bridge magnetic field sensors

    SciTech Connect

    Henriksen, A. D.; Dalslet, B. T.; Skieller, D. H.; Lee, K. H.; Okkels, F.; Hansen, M. F.

    2010-07-05

    Until now, the planar Hall effect has been studied in samples with cross-shaped Hall geometry. We demonstrate theoretically and experimentally that the planar Hall effect can be observed for an exchange-biased ferromagnetic material in a Wheatstone bridge topology and that the sensor signal can be significantly enhanced by a geometric factor. For the samples in the present study, we demonstrate an enhancement of the sensor output by a factor of about 100 compared to cross-shaped sensors. The presented construction opens a new design and application area of the planar Hall effect, which we term planar Hall effect bridge sensors.

  15. Planar Hall effect bridge magnetic field sensors

    NASA Astrophysics Data System (ADS)

    Henriksen, A. D.; Dalslet, B. T.; Skieller, D. H.; Lee, K. H.; Okkels, F.; Hansen, M. F.

    2010-07-01

    Until now, the planar Hall effect has been studied in samples with cross-shaped Hall geometry. We demonstrate theoretically and experimentally that the planar Hall effect can be observed for an exchange-biased ferromagnetic material in a Wheatstone bridge topology and that the sensor signal can be significantly enhanced by a geometric factor. For the samples in the present study, we demonstrate an enhancement of the sensor output by a factor of about 100 compared to cross-shaped sensors. The presented construction opens a new design and application area of the planar Hall effect, which we term planar Hall effect bridge sensors.

  16. Helical axis stellarator with noninterlocking planar coils

    DOEpatents

    Reiman, Allan; Boozer, Allen H.

    1987-01-01

    A helical axis stellarator using only noninterlocking planar, non-circular coils, generates magnetic fields having a magnetic well and large rotational transform with resultant large equilibrium beta.

  17. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, David B.

    1987-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  18. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, David B.

    1989-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  19. Stress measurements of planar dielectric elastomer actuators.

    PubMed

    Osmani, Bekim; Aeby, Elise A; Müller, Bert

    2016-05-01

    Dielectric elastomer actuator (DEA) micro- and nano-structures are referred to artificial muscles because of their specific continuous power and adequate time response. The bending measurement of an asymmetric, planar DEA is described. The asymmetric cantilevers consist of 1 or 5 μm-thin DEAs deposited on polyethylene naphthalate (PEN) substrates 16, 25, 38, or 50 μm thick. The application of a voltage to the DEA electrodes generates an electrostatic pressure in the sandwiched silicone elastomer layer, which causes the underlying PEN substrate to bend. Optical beam deflection enables the detection of the bending angle vs. applied voltage. Bending radii as large as 850 m were reproducibly detected. DEA tests with electric fields of up to 80 V/μm showed limitations in electrode's conductivity and structure failures. The actuation measurement is essential for the quantitative characterization of nanometer-thin, low-voltage, single- and multi-layer DEAs, as foreseen for artificial sphincters to efficiently treat severe urinary and fecal incontinence. PMID:27250436

  20. A Lightweight Innovative Helmet Airborne Display And Sight (HADAS)

    NASA Astrophysics Data System (ADS)

    Naor, Daniel; Arnon, Oded; Avnur, Arie

    1987-09-01

    The Helmet Airborne Display and Sight (HADAS) system under development, has succeeded in surmounting many of the problems experienced by current, as well as past helmet mounted display and sight designs for operation in fighter aircraft. The goal has been achieved by combination of holographic optical elements and fiber optics for the display function, as well as real-time image processing of the helmet location for the sight function. The integrated system can provide "all aspect head-up display" performance in the cockpit.

  1. Head Mounted Display with a Roof Mirror Array Fold

    NASA Technical Reports Server (NTRS)

    Olczak, Eugene (Inventor)

    2014-01-01

    The present invention includes a head mounted display (HMD) worn by a user. The HMD includes a display projecting an image through an optical lens. The HMD also includes a one-dimensional retro reflective array receiving the image through the optical lens at a first angle with respect to the display and deflecting the image at a second angle different than the first angle with respect to the display. The one-dimensional retro reflective array reflects the image in order to project the image onto an eye of the user.

  2. Phage and Yeast Display.

    PubMed

    Sheehan, Jared; Marasco, Wayne A

    2015-02-01

    Despite the availability of antimicrobial drugs, the continued development of microbial resistance--established through escape mutations and the emergence of resistant strains--limits their clinical utility. The discovery of novel, therapeutic, monoclonal antibodies (mAbs) offers viable clinical alternatives in the treatment and prophylaxis of infectious diseases. Human mAb-based therapies are typically nontoxic in patients and demonstrate high specificity for the intended microbial target. This specificity prevents negative impacts on the patient microbiome and avoids driving the resistance of nontarget species. The in vitro selection of human antibody fragment libraries displayed on phage or yeast surfaces represents a group of well-established technologies capable of generating human mAbs. The advantage of these forms of microbial display is the large repertoire of human antibody fragments present during a single selection campaign. Furthermore, the in vitro selection environments of microbial surface display allow for the rapid isolation of antibodies--and their encoding genes--against infectious pathogens and their toxins that are impractical within in vivo systems, such as murine hybridomas. This article focuses on the technologies of phage display and yeast display, as these strategies relate to the discovery of human mAbs for the treatment and vaccine development of infectious diseases. PMID:26104550

  3. Future Directions for Astronomical Image Display

    NASA Technical Reports Server (NTRS)

    Mandel, Eric

    1997-01-01

    In our "Future Directions for Astronomical Image Display" project, the Smithsonian Astrophysical Observatory (SAO) and the National Optical Astronomy Observatories (NOAO) will evolve our existing image display software into a fully extensible, cross-platform image display server that can run stand-alone or be integrated seamlessly into astronomical analysis systems. We will build a Plug-in Image Extension (PIE) server for astronomy, consisting of a modular image display engine that can be customized using "plug-in" technology. We will create plug-ins that reproduce all the current functionality of SAOtng. We also will devise a messaging system and a set of distributed, shared data objects to support integrating the PIE server into astronomical analysis systems. Finally, we will migrate our PIE server, plug-ins, and messaging software from Unix and the X Window System to a platform-independent architecture that utilizes cross-platform technology such as Tcl/Tk or Java.

  4. Recent patents on electrophoretic displays and materials.

    PubMed

    Christophersen, Marc; Phlips, Bernard F

    2010-11-01

    Electrophoretic displays (EPDs) have made their way into consumer products. EPDs enable displays that offer the look and form of a printed page, often called "electronic paper". We will review recent apparatus and method patents for EPD devices and their fabrication. A brief introduction into the basic display operation and history of EPDs is given, while pointing out the technological challenges and difficulties for inventors. Recently, the majority of scientific publications and patenting activity has been directed to micro-segmented EPDs. These devices exhibit high optical reflectance and contrast, wide viewing angle, and high image resolution. Micro-segmented EPDs can also be integrated with flexible transistors technologies into flexible displays. Typical particles size ranges from 200 nm to 2 micrometer. Currently one very active area of patenting is the development of full-color EPDs. We summarize the recent patenting activity for EPDs and provide comments on perceiving factors driving intellectual property protection for EPD technologies. PMID:20565384

  5. Electrokinetic pixels with biprimary inks for color displays and color-temperature-tunable smart windows.

    PubMed

    Mukherjee, S; Hsieh, W L; Smith, N; Goulding, M; Heikenfeld, J

    2015-06-10

    We report on the advanced implementation of the biprimary color system in applications where subtractive color is performed inside a single pixel to alter the magnitude and color of reflection (electronic paper displays) or the optical transmission and color temperature (smart windows). A novel device structure can switch between four states: clear, black, either of two complementary colors from RGB and CMY sets, and also mixed states between one of these four states. The device structure utilizes an electrokinetic pixel structure, which combines the spectral performance of in-plane electrophoretic devices with the improved switching speeds of vertical electrophoresis. The electrophoretic dispersions are dual-particle dual-colored and are controlled using two traditional planar electrokinetic electrodes on the front and back substrates, along with a third electrode conveniently located at the perimeter of each unit cell. Demonstrated performance includes contrast ratios reaching ~10∶1, reflectance of ~62%, and transparency of ~75%. For electronic paper displays, these results provide a pathway to double the reflective performance compared to the traditional RGBW color-filter approach. For smart windows, the technology provides not only control of shade (transmission) but also provides complete control over color temperature. Furthermore, this three-electrode device can be roll-to-roll fabricated without need for any alignment steps, requiring only a single micro-replication step followed by self-aligned contact printing of the third electrode. PMID:26192867

  6. Automated planar patch-clamp.

    PubMed

    Milligan, Carol J; Möller, Clemens

    2013-01-01

    Ion channels are integral membrane proteins that regulate the flow of ions across the plasma membrane and the membranes of intracellular organelles of both excitable and non-excitable cells. Ion channels are vital to a wide variety of biological processes and are prominent components of the nervous system and cardiovascular system, as well as controlling many metabolic functions. Furthermore, ion channels are known to be involved in many disease states and as such have become popular therapeutic targets. For many years now manual patch-clamping has been regarded as one of the best approaches for assaying ion channel function, through direct measurement of ion flow across these membrane proteins. Over the last decade there have been many remarkable breakthroughs in the development of technologies enabling the study of ion channels. One of these breakthroughs is the development of automated planar patch-clamp technology. Automated platforms have demonstrated the ability to generate high-quality data with high throughput capabilities, at great efficiency and reliability. Additional features such as simultaneous intracellular and extracellular perfusion of the cell membrane, current clamp operation, fast compound application, an increasing rate of parallelization, and more recently temperature control have been introduced. Furthermore, in addition to the well-established studies of over-expressed ion channel proteins in cell lines, new generations of planar patch-clamp systems have enabled successful studies of native and primary mammalian cells. This technology is becoming increasingly popular and extensively used both within areas of drug discovery as well as academic research. Many platforms have been developed including NPC-16 Patchliner(®) and SyncroPatch(®) 96 (Nanion Technologies GmbH, Munich), CytoPatch™ (Cytocentrics AG, Rostock), PatchXpress(®) 7000A, IonWorks(®) Quattro and IonWorks Barracuda™, (Molecular Devices, LLC); Dynaflow(®) HT (Cellectricon

  7. Crewstation display interface standardization

    NASA Astrophysics Data System (ADS)

    Hardy, Gregory J.

    1999-08-01

    Military sensors and crewstation displays are all moving to digital-based technologies, an epochal shift from the previous world of analog interfaces throughout the video chain. It is no longer possible to specify a sensor and display to the same interface specification such as the venerable RS-170 and RS- 343 standards without paying an unacceptable resolution penalty. Consequently a new standard is required to allow sensor and display manufacturers to easily design system interfaces without relying on cumbersome, costly and unique interface control documents. This paper presents one possible hardware and protocol standard based on FibreChannel technology, and solicits inputs into the standards setting process which is now in progress.

  8. EKG and ultrasonoscope display

    NASA Technical Reports Server (NTRS)

    Lee, Robert D. (Inventor)

    1979-01-01

    A system is disclosed which permits simultaneous display of an EKG waveform in real time in conjunction with a two-dimensional cross-sectional image of the heart, so that the EKG waveform can be directly compared with dimensional changes in the heart. The apparatus of the invention includes an ultrasonoscope for producing a C-scan cross-sectional image of the heart. An EKG monitor circuit along with EKG logic circuitry is combined with the ultrasonoscope circuitry to produce on the same oscilloscope screen a continuous vertical trace showing the EKG waveform simultaneously with the heart image. The logic circuitry controls the oscilloscope display such that the display of both heart and EKG waveforms occurs on a real time basis.

  9. Displays, deja vu.

    PubMed

    Huntoon, R B

    1985-02-01

    Developments in electronic displays and computers have enabled avionics designers to present the pilot with ever-increasing amounts of information in greater detail and with more accuracy. However, technicological developments have not always brought about enhancement of the pilot's role as aircraft systems manager. In fact, there is evidence that the new technology may add to the pilot's workload to the extent that his performance decreases. Recent articles and reports of research indicate that application of human factor principles and procedures to: (1) develop appropriate display formats, (2) consider the total avionics suite as an integrated system, and (3) simplify or summarize related data will significantly improve total aircraft performance. Indeed, development of the "chip" and new display techniques create an imperative demand for human factor considerations early in system design, ensuring that user evaluation, information integration, and simplification are intrinsic qualities of the system.

  10. Microphotonic devices for compact planar lightwave circuits and sensor systems

    NASA Astrophysics Data System (ADS)

    Cardenas Gonzalez, Jaime

    2005-07-01

    Higher levels of integration in planar lightwave circuits and sensor systems can reduce fabrication costs and broaden viable applications for optical network and sensor systems. For example, increased integration and functionality can lead to sensor systems that are compact enough for easy transport, rugged enough for field applications, and sensitive enough even for laboratory applications. On the other hand, more functional and compact planar lightwave circuits can make optical networks components less expensive for the metro and access markets in urban areas and allow penetration of fiber to the home. Thus, there is an important area of opportunity for increased integration to provide low cost, compact solutions in both network components and sensor systems. In this dissertation, a novel splitting structure for microcantilever deflection detection is introduced. The splitting structure is designed so that its splitting ratio is dependent on the vertical position of the microcantilever. With this structure, microcantilevers sensitized to detect different analytes or biological agents can be integrated into an array on a single chip. Additionally, the integration of a depolarizer into the optoelectronic integrated circuit in an interferometric fiber optic gyroscope is presented as a means for cost reduction. The savings come in avoiding labor intensive fiber pigtailing steps by permitting batch fabrication of these components. In particular, this dissertation focuses on the design of the waveguides and polarization rotator, and the impact of imperfect components on the performance of the depolarizer. In the area of planar lightwave circuits, this dissertation presents the development of a fabrication process for single air interface bends (SAIBs). SAIBs can increase integration by reducing the area necessary to make a waveguide bend. Fabrication and measurement of a 45° SAIB with a bend efficiency of 93.4% for TM polarization and 92.7% for TE polarization are

  11. A bioinspired planar superhydrophobic microboat

    NASA Astrophysics Data System (ADS)

    Yong, Jiale; Yang, Qing; Chen, Feng; Zhang, Dongshi; Du, Guangqing; Si, Jinhai; Yun, Feng; Hou, Xun

    2014-03-01

    In nature, a frog can easily rest on a lotus leaf even though the frog's weight is several times the weight of the lotus leaf. Inspired by the lotus leaf, we fabricated a planar superhydrophobic microboat (SMB) with a superhydrophobic upper surface on a PDMS sheet which was irradiated by a focused femtosecond laser. The SMB can not only float effortlessly over the water surface but can also hold up some heavy objects, exhibiting an excellent loading capacity. The water surface is curved near the edge of the upper surface and the SMB's upper edge is below the water level, greatly enhancing the displacement. Experimental results and theoretical analysis demonstrate that the superhydrophobicity on the edge of the upper surface is responsible for the SMB's large loading capacity. Here, we call it the ‘superhydrophobic edge effect’.

  12. The simplicity of planar networks

    NASA Astrophysics Data System (ADS)

    Viana, Matheus P.; Strano, Emanuele; Bordin, Patricia; Barthelemy, Marc

    2013-12-01

    Shortest paths are not always simple. In planar networks, they can be very different from those with the smallest number of turns - the simplest paths. The statistical comparison of the lengths of the shortest and simplest paths provides a non trivial and non local information about the spatial organization of these graphs. We define the simplicity index as the average ratio of these lengths and the simplicity profile characterizes the simplicity at different scales. We measure these metrics on artificial (roads, highways, railways) and natural networks (leaves, slime mould, insect wings) and show that there are fundamental differences in the organization of urban and biological systems, related to their function, navigation or distribution: straight lines are organized hierarchically in biological cases, and have random lengths and locations in urban systems. In the case of time evolving networks, the simplicity is able to reveal important structural changes during their evolution.

  13. Polymer optical motherboard technology

    NASA Astrophysics Data System (ADS)

    Keil, N.; Yao, H.; Zawadzki, C.; Grote, N.; Schell, M.

    2008-02-01

    In this paper, different hybridly integrated optical devices including optical multiplexer/ demultiplexer and optical transceivers are described. The devices were made using polymer planar light wave circuit (P2LC) technology. Laser diodes, photodiodes, and thin-film filters have been integrated. Key issues involved in this technology, in particular the coupling between laser diodes and polymer waveguides, and between waveguides and photodiodes and also fibers are discussed.

  14. Direct current planar excimer source

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Takano, N.; Schoenbach, K. H.; Guru, D.; McLaren, J.; Heberlein, J.; May, R.; Cooper, J. R.

    2007-07-01

    Excimer emission at 172 nm was observed from xenon discharges generated between a perforated anode, with opening dimensions in the sub-millimetre range, and a planar cathode. A thin dielectric layer 100-250 µm in thickness, with the same size opening as the anode, is aligned with the anode opening and used to separate the electrodes. Devices with this structure are referred to as cathode boundary layer (CBL) discharge or micro-hollow cathode discharge devices, depending on the surface structure of the cathode. The emission intensity and efficiency of these devices are pressure- and current-dependent. Typical power densities and internal efficiencies (ratio of excimer radiant power to electrical input power) are 0.5-1.5 W cm-2 and 3-5%, respectively. In the current range between normal and abnormal mode operation, the CBL discharge shows regularly arranged filaments (self-organization). Optimum emission of the excimer radiation is observed at the transition from the normal glow mode to self-organization. The resistive current-voltage characteristic in the self-organization region allows the operation of multiple CBL devices in parallel without individual ballast, but with an excimer emission slightly off the maximum value. The measured decrease of the excimer emission to about 10% of its initial value after approximately 250 h of continuous operation seems to be caused by the increasing contamination of xenon, through minor leaks in the discharge chamber and/or the outgassing of chamber components. Refilling the chamber with fresh gas after such an extended operation resulted in full recovery of the discharge with respect to excimer emission. The results suggest the possibility of generating extended lifetime, intense, large area, planar excimer sources using CBL discharges in sealed discharge chambers including getters.

  15. Positron Emission Mammotomography with Dual Planar Detectors

    SciTech Connect

    Mark Smith; Raymond Raylman; Stanislaw Majewski

    2003-06-29

    Positron emission mammography (PEM) is usually performed with two stationary planar detectors above and below a compressed breast. There is image blurring normal to the detectors due to the limited angular range of the lines of response. Positron emission mammotomography (PEM-T) with dual planar detectors rotating about the breast can obtain complete angular sampling and has the potential to improve activity estimation.

  16. Ordered chromatic number of planar maps

    SciTech Connect

    Simmons, G.J.

    1982-01-01

    In this paper it is shown that there exist planar maps and orderings of the regions of those maps foe which no finite number of colors will suffice for a parsimonious proper coloring. In particular, planar maps with 0(2/sup n/2/) regions are exhibited that require n colors for their proper ordered coloring.

  17. Improved double planar probe data analysis technique

    SciTech Connect

    Ghim, Young-chul; Hershkowitz, Noah

    2009-03-15

    Plasma electron number density and ion number density in a dc multidipole weakly collisional Ar plasma are measured with a single planar Langmuir probe and a double planar probe, respectively. A factor of two discrepancy between the two density measurements is resolved by applying Sheridan's empirical formula [T. E. Sheridan, Phys. Plasmas 7, 3084 (2000)] for sheath expansion to the double probe data.

  18. Anfo Response To Low-Stress Planar Impacts

    NASA Astrophysics Data System (ADS)

    Cooper, Marcia A.; Trott, Wayne M.; Schmitt, Robert G.; Short, Mark; Jackson, Scott I.

    2012-03-01

    Ammonium Nitrate plus Fuel Oil (ANFO) is a non-ideal explosive where the mixing behavior of the mm-diameter prills with the absorbed fuel oil is of critical importance for chemical energy release. The large-scale heterogeneity of ANFO establishes conditions uniquely suited for observation using the spatially- and temporally-resolved line-imaging ORVIS (Optically Recording Velocity Interferometer System) diagnostic. The first demonstration of transmitted wave profiles in ANFO from planar impacts using a single-stage gas gun is reported. Major observations including an extended compaction precursor, post-shock particle velocity variations and between-prill jetting are reported.

  19. Design and fabrication of planar structures with graded electromagnetic properties

    NASA Astrophysics Data System (ADS)

    Good, Brandon Lowell

    Successfully integrating electromagnetic properties in planar structures offers numerous benefits to the microwave and optical communities. This work aims at formulating new analytic and optimized design methods, creating new fabrication techniques for achieving those methods, and matching appropriate implementation of methods to fabrication techniques. The analytic method consists of modifying an approach that realizes perfect antireflective properties from graded profiles. This method is shown for all-dielectric and magneto-dielectric grading profiles. The optimized design methods are applied to transformer (discrete) or taper (continuous) designs. From these methods, a subtractive and an additive manufacturing technique were established and are described. The additive method, dry powder dot deposition, enables three dimensional varying electromagnetic properties in a structural composite. Combining the methods and fabrication is shown in two applied methodologies. The first uses dry powder dot deposition to design one dimensionally graded electromagnetic profiles in a planar fiberglass composite. The second method simultaneously applies antireflective properties and adjusts directivity through a slab through the use of subwavelength structures to achieve a flat antireflective lens. The end result of this work is a complete set of methods, formulations, and fabrication techniques to achieve integrated electromagnetic properties in planar structures.

  20. Drivers license display system

    NASA Astrophysics Data System (ADS)

    Prokoski, Francine J.

    1997-01-01

    Carjackings are only one of a growing class of law enforcement problems associated with increasingly violent crimes and accidents involving automobiles plays weapons, drugs and alcohol. Police traffic stops have become increasingly dangerous, with an officer having no information about a vehicle's potentially armed driver until approaching him. There are 15 million alcoholics in the US and 90 percent of them have drivers licenses. Many of them continue driving even after their licenses have ben revoked or suspended. There are thousands of unlicensed truck drivers in the country, and also thousands who routinely exceed safe operating periods without rest; often using drugs in an attempt to stay alert. MIKOS has developed the Drivers License Display Systems to reduce these and other related risks. Although every state requires the continuous display of vehicle registration information on every vehicle using public roads, no state yet requires the display of driver license information. The technology exists to provide that feature as an add-on to current vehicles for nominal cost. An initial voluntary market is expected to include: municipal, rental, and high value vehicles which are most likely to be mis-appropriated. It is anticipated that state regulations will eventually require such systems in the future, beginning with commercial vehicles, and then extending to high risk drivers and eventually all vehicles. The MIKOS system offers a dual-display approach which can be deployed now, and which will utilize all existing state licenses without requiring standardization.

  1. Refreshing Refreshable Braille Displays.

    PubMed

    Russomanno, Alexander; O'Modhrain, Sile; Gillespie, R Brent; Rodger, Matthew W M

    2015-01-01

    The increased access to books afforded to blind people via e-publishing has given them long-sought independence for both recreational and educational reading. In most cases, blind readers access materials using speech output. For some content such as highly technical texts, music, and graphics, speech is not an appropriate access modality as it does not promote deep understanding. Therefore blind braille readers often prefer electronic braille displays. But, these are prohibitively expensive. The search is on, therefore, for a low-cost refreshable display that would go beyond current technologies and deliver graphical content as well as text. And many solutions have been proposed, some of which reduce costs by restricting the number of characters that can be displayed, even down to a single braille cell. In this paper, we demonstrate that restricting tactile cues during braille reading leads to poorer performance in a letter recognition task. In particular, we show that lack of sliding contact between the fingertip and the braille reading surface results in more errors and that the number of errors increases as a function of presentation speed. These findings suggest that single cell displays which do not incorporate sliding contact are likely to be less effective for braille reading. PMID:25879973

  2. Christmas Light Display

    NASA Astrophysics Data System (ADS)

    Ross, Arthur; Renfro, Timothy

    2012-03-01

    The Digital Electronics class at McMurry University created a Christmas light display that toggles the power of different strands of lights, according to what frequencies are played in a song, as an example of an analog to digital circuit. This was accomplished using a BA3830S IC six-band audio filter and six solid-state relays.

  3. Refreshing Refreshable Braille Displays.

    PubMed

    Russomanno, Alexander; O'Modhrain, Sile; Gillespie, R Brent; Rodger, Matthew W M

    2015-01-01

    The increased access to books afforded to blind people via e-publishing has given them long-sought independence for both recreational and educational reading. In most cases, blind readers access materials using speech output. For some content such as highly technical texts, music, and graphics, speech is not an appropriate access modality as it does not promote deep understanding. Therefore blind braille readers often prefer electronic braille displays. But, these are prohibitively expensive. The search is on, therefore, for a low-cost refreshable display that would go beyond current technologies and deliver graphical content as well as text. And many solutions have been proposed, some of which reduce costs by restricting the number of characters that can be displayed, even down to a single braille cell. In this paper, we demonstrate that restricting tactile cues during braille reading leads to poorer performance in a letter recognition task. In particular, we show that lack of sliding contact between the fingertip and the braille reading surface results in more errors and that the number of errors increases as a function of presentation speed. These findings suggest that single cell displays which do not incorporate sliding contact are likely to be less effective for braille reading.

  4. Low-cost color LCD helmet display

    NASA Astrophysics Data System (ADS)

    Leinenwever, Roger; Best, Leonard G.; Ericksen, Bryce J.

    1992-10-01

    The goal of this helmet-mounted display (HMD) project was development and demonstration of a low-cost color display incorporating see-through optics. A full field-of-regard visual presentation was to be provided through the use of a head-tracker system and the HMD was to be suitable for use with low-cost cockpit trainers. The color imaging devices selected for the project are commercially available liquid crystal display (LCD) panels. The LCDs are 3.0 inch (diagonal) thin film transistor (TFT) types using a delta format for the red, green, blue (RGB) matrix. Fiber optic light panels mounted behind the LCDs provide a cool light source of greater than 3400 foot-lamberts (ft-L). Approximately 3 percent of the applied light source is emitted by the LCD image source. The video displayed is in a 3:4 format representing a 30 degree(s) vertical by 40 degree(s) horizontal biocular instantaneous field-of-view (IFOV) visual image from a graphic image generation system and is controlled in a full field of regard based on positional information from a head-tracker system. The optical elements of the HMD are designed as an exit pupil forming, see-through system and require the eye to be in a 15 mm volume for viewing the scene. The beam splitting function of the optics allows the user to see through the optics for reading cockpit instrumentation, while viewing outside the cockpit reveals the out-the-window (OTW) scene. The optic design allows for the IFOV to be displayed through a set of field lens, relay lens, folding mirror, beam splitter and spherical mirror system. The beam splitters and spherical mirrors for both optical paths are coated for approximately 50 percent transmission and reflectance. This approach, combined with the losses through the rest of the optical path, provides a theoretical maximum of 10.9 percent of the LCD image source intensity arriving at the eye. Initial tests of image intensity at the eye for a full white scene have measured at approximately 11 ft-L.

  5. Virtual acoustic displays

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.

    1991-01-01

    A 3D auditory display can potentially enhance information transfer by combining directional and iconic information in a quite naturalistic representation of dynamic objects in the interface. Another aspect of auditory spatial clues is that, in conjunction with other modalities, it can act as a potentiator of information in the display. For example, visual and auditory cues together can reinforce the information content of the display and provide a greater sense of presence or realism in a manner not readily achievable by either modality alone. This phenomenon will be particularly useful in telepresence applications, such as advanced teleconferencing environments, shared electronic workspaces, and monitoring telerobotic activities in remote or hazardous situations. Thus, the combination of direct spatial cues with good principles of iconic design could provide an extremely powerful and information-rich display which is also quite easy to use. An alternative approach, recently developed at ARC, generates externalized, 3D sound cues over headphones in realtime using digital signal processing. Here, the synthesis technique involves the digital generation of stimuli using Head-Related Transfer Functions (HRTF's) measured in the two ear-canals of individual subjects. Other similar approaches include an analog system developed by Loomis, et. al., (1990) and digital systems which make use of transforms derived from normative mannikins and simulations of room acoustics. Such an interface also requires the careful psychophysical evaluation of listener's ability to accurately localize the virtual or synthetic sound sources. From an applied standpoint, measurement of each potential listener's HRTF's may not be possible in practice. For experienced listeners, localization performance was only slightly degraded compared to a subject's inherent ability. Alternatively, even inexperienced listeners may be able to adapt to a particular set of HRTF's as long as they provide adequate

  6. Next-generation head-mounted display

    NASA Astrophysics Data System (ADS)

    McGuire, James P., Jr.

    2010-02-01

    Head Mounted Displays (HMDs) have been utilized by the military for various applications since the 1980's. In the 1990's, this technology migrated to the consumer market. Most of these early systems suffered the major drawback that they were "look-at" versus "see through" systems, which prevented the user from seeing their environment. This reduced the utility of the devices and could potentially lead to safety issues. This presentation discusses the optical design of a novel see-through High Definition display device with a 40 degree field of view.

  7. Transparent 3D display for augmented reality

    NASA Astrophysics Data System (ADS)

    Lee, Byoungho; Hong, Jisoo

    2012-11-01

    Two types of transparent three-dimensional display systems applicable for the augmented reality are demonstrated. One of them is a head-mounted-display-type implementation which utilizes the principle of the system adopting the concave floating lens to the virtual mode integral imaging. Such configuration has an advantage in that the threedimensional image can be displayed at sufficiently far distance resolving the accommodation conflict with the real world scene. Incorporating the convex half mirror, which shows a partial transparency, instead of the concave floating lens, makes it possible to implement the transparent three-dimensional display system. The other type is the projection-type implementation, which is more appropriate for the general use than the head-mounted-display-type implementation. Its imaging principle is based on the well-known reflection-type integral imaging. We realize the feature of transparent display by imposing the partial transparency to the array of concave mirror which is used for the screen of reflection-type integral imaging. Two types of configurations, relying on incoherent and coherent light sources, are both possible. For the incoherent configuration, we introduce the concave half mirror array, whereas the coherent one adopts the holographic optical element which replicates the functionality of the lenslet array. Though the projection-type implementation is beneficial than the head-mounted-display in principle, the present status of the technical advance of the spatial light modulator still does not provide the satisfactory visual quality of the displayed three-dimensional image. Hence we expect that the head-mounted-display-type and projection-type implementations will come up in the market in sequence.

  8. Optical Sensing Using Dark Mode Excitation in an Asymmetric Dimer Metamaterial

    PubMed Central

    Omaghali, Ndubuisi E. J.; Tkachenko, Volodymyr; Andreone, Antonello; Abbate, Giancarlo

    2014-01-01

    We study the presence of dark and bright modes in a planar metamaterial with a double rod unit cell introducing geometric asymmetry in rod lengths. The dark mode displays a Fano-type resonance with a sharp asymmetric profile, rendering it far more sensitive than the bright mode to slight variations of the dielectric environment. This peculiar feature may envisage the possible application of the asymmetric dimer metamaterial as an optical sensor for chemical or biological analysis, provided that the effect of material losses on the dark mode quality factor is properly taken into account. PMID:24368700

  9. Geometrical connection between catacaustics and kinematics of planar motion of a rigid solid.

    PubMed

    Bellver-Cebreros, Consuelo; Rodríguez-Danta, Marcelo

    2016-09-01

    Unnoticed and hidden optomechanical analogies between kinematics of planar motion of a rigid solid and catacaustics generated by mirror reflection on smooth profiles in geometrical optics are discussed. A concise and self-consistent theory is developed, which intends to explain and clarify many partial aspects covered by the literature. PMID:27607500

  10. Low-Cost Fiber Optic Pressure Sensor

    DOEpatents

    Sheem, Sang K.

    2004-05-18

    The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.

  11. Low-Cost Fiber Optic Pressure Sensor

    DOEpatents

    Sheem, Sang K.

    2003-07-22

    The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.

  12. Optical gas sensing responses in transparent conducting oxides with large free carrier density

    NASA Astrophysics Data System (ADS)

    Ohodnicki, P. R.; Andio, M.; Wang, C.

    2014-07-01

    Inherent advantages of optical-based sensing devices motivate a need for materials with useful optical responses that can be utilized as thin film functional sensor layers. Transparent conducting metal oxides with large electrical conductivities as typified by Al-doped ZnO (AZO) display attractive properties for high temperature optical gas sensing through strong optical transduction of responses conventionally monitored through changes in measured electrical resistivity. An enhanced optical sensing response in the near-infrared and ultraviolet/visible wavelength ranges is demonstrated experimentally and linked with characteristic modifications to the dielectric constant due to a relatively high concentration of free charge carriers. The impact of light scattering on the magnitude and wavelength dependence of the sensing response is also discussed highlighting the potential for tuning the optical sensing response by controlling the surface roughness of a continuous film or the average particle size of a nanoparticle-based film. The physics underpinning the optical sensing response for AZO films on planar substrates yields significant insight into the measured sensing response for optical fiber-based evanescent wave absorption spectroscopy sensors employing an AZO sensing layer. The physics of optical gas sensing discussed here provides a pathway towards development of sensing materials for extreme temperature optical gas sensing applications. As one example, preliminary results are presented for a Nb-doped TiO2 film with sufficient stability and relatively large sensing responses at sensing temperatures greater than 500 °C.

  13. The influence of impurities and planar defects on the infrared properties of silicon carbide films

    SciTech Connect

    Rajasekhara, S.; Ferreira, P. J.; Kovar, D.; Neuner, B. H. III; Shvets, G.; Zorman, C. A.; Jegenyes, N.; Ferro, G.

    2011-05-09

    Two cubic, single crystal silicon carbide (3C-SiC) films with similar thickness are shown to exhibit significantly different optical properties at mid-infrared wavelengths. Depth profiling by time-of-flight secondary ion mass spectroscopy indicates that these two films have substantially different n-type impurity concentrations that are responsible for the observed differences in optical absorption. The influence of impurities manifests as substantially different planar defect morphologies.

  14. Text File Display Program

    NASA Technical Reports Server (NTRS)

    Vavrus, J. L.

    1986-01-01

    LOOK program permits user to examine text file in pseudorandom access manner. Program provides user with way of rapidly examining contents of ASCII text file. LOOK opens text file for input only and accesses it in blockwise fashion. Handles text formatting and displays text lines on screen. User moves forward or backward in file by any number of lines or blocks. Provides ability to "scroll" text at various speeds in forward or backward directions.

  15. Microgap flat panel display

    DOEpatents

    Wuest, Craig R.

    1998-01-01

    A microgap flat panel display which includes a thin gas-filled display tube that utilizes switched X-Y "pixel" strips to trigger electron avalanches and activate a phosphor at a given location on a display screen. The panel utilizes the principal of electron multiplication in a gas subjected to a high electric field to provide sufficient electron current to activate standard luminescent phosphors located on an anode. The X-Y conductive strips of a few micron widths may for example, be deposited on opposite sides of a thin insulating substrate, or on one side of the adjacent substrates and function as a cathode. The X-Y strips are separated from the anode by a gap filled with a suitable gas. Electrical bias is selectively switched onto X and Y strips to activate a "pixel" in the region where these strips overlap. A small amount of a long-lived radioisotope is used to initiate an electron avalanche in the overlap region when bias is applied. The avalanche travels through the gas filled gap and activates a luminescent phosphor of a selected color. The bias is adjusted to give a proportional electron multiplication to control brightness for given pixel.

  16. Microgap flat panel display

    DOEpatents

    Wuest, C.R.

    1998-12-08

    A microgap flat panel display is disclosed which includes a thin gas-filled display tube that utilizes switched X-Y ``pixel`` strips to trigger electron avalanches and activate a phosphor at a given location on a display screen. The panel utilizes the principal of electron multiplication in a gas subjected to a high electric field to provide sufficient electron current to activate standard luminescent phosphors located on an anode. The X-Y conductive strips of a few micron widths may for example, be deposited on opposite sides of a thin insulating substrate, or on one side of the adjacent substrates and function as a cathode. The X-Y strips are separated from the anode by a gap filled with a suitable gas. Electrical bias is selectively switched onto X and Y strips to activate a ``pixel`` in the region where these strips overlap. A small amount of a long-lived radioisotope is used to initiate an electron avalanche in the overlap region when bias is applied. The avalanche travels through the gas filled gap and activates a luminescent phosphor of a selected color. The bias is adjusted to give a proportional electron multiplication to control brightness for given pixel. 6 figs.

  17. Attention-Seeking Displays

    PubMed Central

    Számadó, Szabolcs

    2015-01-01

    Animal communication abounds with extravagant displays. These signals are usually interpreted as costly signals of quality. However, there is another important function for these signals: to call the attention of the receiver to the signaller. While there is abundant empirical evidence to show the importance of this stage, it is not yet incorporated into standard signalling theory. Here I investigate a general model of signalling - based on a basic action-response game - that incorporates this searching stage. I show that giving attention-seeking displays and searching for them can be an ESS. This is a very general result and holds regardless whether only the high quality signallers or both high and low types give them. These signals need not be costly at the equilibrium and they need not be honest signals of any quality, as their function is not to signal quality but simply to call the attention of the potential receivers. These kind of displays are probably more common than their current weight in the literature would suggest. PMID:26287489

  18. Engine monitoring display study

    NASA Technical Reports Server (NTRS)

    Hornsby, Mary E.

    1992-01-01

    The current study is part of a larger NASA effort to develop displays for an engine-monitoring system to enable the crew to monitor engine parameter trends more effectively. The objective was to evaluate the operational utility of adding three types of information to the basic Boeing Engine Indicating and Crew Alerting System (EICAS) display formats: alphanumeric alerting messages for engine parameters whose values exceed caution or warning limits; alphanumeric messages to monitor engine parameters that deviate from expected values; and a graphic depiction of the range of expected values for current conditions. Ten training and line pilots each flew 15 simulated flight scenarios with five variants of the basic EICAS format; these variants included different combinations of the added information. The pilots detected engine problems more quickly when engine alerting messages were included in the display; adding a graphic depiction of the range of expected values did not affect detection speed. The pilots rated both types of alphanumeric messages (alert and monitor parameter) as more useful and easier to interpret than the graphic depiction. Integrating engine parameter messages into the EICAS alerting system appears to be both useful and preferred.

  19. Oil defect detection of electrowetting display

    NASA Astrophysics Data System (ADS)

    Chiang, Hou-Chi; Tsai, Yu-Hsiang; Yan, Yung-Jhe; Huang, Ting-Wei; Mang, Ou-Yang

    2015-08-01

    In recent years, transparent display is an emerging topic in display technologies. Apply in many fields just like mobile device, shopping or advertising window, and etc. Electrowetting Display (EWD) is one kind of potential transparent display technology advantages of high transmittance, fast response time, high contrast and rich color with pigment based oil system. In mass production process of Electrowetting Display, oil defects should be found by Automated Optical Inspection (AOI) detection system. It is useful in determination of panel defects for quality control. According to the research of our group, we proposed a mechanism of AOI detection system detecting the different kinds of oil defects. This mechanism can detect different kinds of oil defect caused by oil overflow or material deteriorated after oil coating or driving. We had experiment our mechanism with a 6-inch Electrowetting Display panel from ITRI, using an Epson V750 scanner with 1200 dpi resolution. Two AOI algorithms were developed, which were high speed method and high precision method. In high precision method, oil jumping or non-recovered can be detected successfully. This mechanism of AOI detection system can be used to evaluate the oil uniformity in EWD panel process. In the future, our AOI detection system can be used in quality control of panel manufacturing for mass production.

  20. Monitor selection criteria for stereoscopic displays

    NASA Astrophysics Data System (ADS)

    Meyer, Lhary

    1992-06-01

    Existing high-resolution monitors are optimized for display of non-stereoscopic images with field refresh rates of 60 to 80 hertz. Almost all existing graphics systems utilize refresh rates in this range. Stereoscopic field-sequential displays present alternate left and right images, with each eye seeing half the displayed fields by use of electronic shuttering systems. This image selection is accomplished by optical shutters that are alternately clear and opaque operating synchronously with the display. To maintain flicker-free display for each eye requires at least the doubling of the existing field rate. An idealized monitor for stereoscopic display adds several new demands on the performance of monitors that extend beyond existing requirements. Some of the new requirements may be contrary to existing needs, calling for engineering compromises to be considered. The paper addresses the electronic and perceptual requirements of stereoscopic monitors in the areas of scan ranges, phosphors, and interfaces. Success in utilizing existing commercial monitors and projectors and possible future directions are discussed.

  1. Photovoltaic performance improvement in planar P3HT/CdS solar cells induced by structural, optical and electrical property modification in thermal annealed P3HT thin films

    NASA Astrophysics Data System (ADS)

    Cortina-Marrero, Hugo Jorge; Martínez-Alonso, Claudia; Hechavarría-Difur, Liliana; Hu, Hailin

    2013-07-01

    Bilayer hybrid solar cells were prepared by solution deposition of CdS thin films on conductive glass substrates (ITO), followed by spin-coating or drop-casting poly (3-hexylthiophene) (P3HT) solution on a CdS surface. After a slow drying process, the P3HT films of different thicknesses (from 100 to 725 nm) were annealed at temperatures (T1) from 110 to 190 °C, called pre-metal contact annealing. Then carbon paint was collocated on top of P3HT and gold was evaporated. The whole structure was annealed for the second time, called post-metal contact annealing, at temperature (T2) between 110 and 190 °C. The continuous increase of the (1 0 0) crystalline plane and the optical absorption coefficient of P3HT films with annealing temperatures indicates the improvement of molecular order inside the polymer films induced by the thermal annealing process. The better ordered P3HT films lead to lower series resistance and higher fill factor in the corresponding solar cells, suggesting the enlargement of charge carrier mobility in annealed P3HT films. On the other hand, the photovoltaic performance is also affected by T2 temperature; a low T2 improves the ohmic contact between P3HT and the metal contact to benefit the charge carrier extraction, whereas a high T2 may deteriorate that union. The same observation was obtained in CdS/P3HT solar cells with P3HT films of different thicknesses. The best energy conversion efficiency of 0.44% was obtained in CdS/P3HT cells with 305 nm thick P3HT annealed at T1 = 190 °C and T2 = 110 °C for 10 min each.

  2. Piezo Voltage Controlled Planar Hall Effect Devices

    NASA Astrophysics Data System (ADS)

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K. W.; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-01

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  3. Piezo Voltage Controlled Planar Hall Effect Devices.

    PubMed

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K W; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-22

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  4. Electron Field Emission Characteristics of Planar Field Emission Array with Diamondlike Carbon Electron Emitters

    NASA Astrophysics Data System (ADS)

    Lin, Chin-Maw; Chang, Shoou-Jinn; Yokoyama, Meiso; Chuang, Feng-Yu; Tsai, Chun-Hui; Wang, Wen-Chun; Lin, I-Nan

    1999-02-01

    The electron emission characteristics of planar field emission arrays (FEAs), containing undoped and boron-doped diamondlike carbon (DLC) films as emitters, were investigated. The planar DLC FEAs require only 13.3 V/µm to turn on the electron field emission, whereas the boron-doped planar DLC FEAs requires an even lower electric field (9.8 V/µm) to trigger the electron emission. The boron-doped DLC films also possess an electron emission property highly superior to that of the undoped DLC films and exhibit a stable electron emission current of 938 µA under a 20 V/µm bias voltage, which corresponds to a high emission current density of (Je)B-DLC=128 mA/cm2. These superior properties suggest that the boron-doped DLC FEAs are potentially useful as electron emitters in flat panel displays.

  5. Planar doped barrier subharmonic mixers

    NASA Technical Reports Server (NTRS)

    Lee, T. H.; East, J. R.; Haddad, G. I.

    1992-01-01

    The Planar Doped Barrier (PDB) diode is a device consisting of a p(+) doping spike between two intrinsic layers and n(+) ohmic contacts. This device has the advantages of controllable barrier height, diode capacitance and forward to reverse current ratio. A symmetrically designed PDB has an anti-symmetric current vs. voltage characteristic and is ideal for use as millimeter wave subharmonic mixers. We have fabricated such devices with barrier heights of 0.3, 0.5 and 0.7 volts from GaAs and InGaAs using a multijunction honeycomb structure with junction diameters between one and ten microns. Initial RF measurements are encouraging. The 0.7 volt barrier height 4 micron GaAs devices were tested as subharmonic mixers at 202 GHz with an IF frequency of 1 GHz and had 18 dB of conversion loss. The estimated mismatch loss was 7 dB and was due to higher diode capacitance. The LO frequency was 100.5 GHz and the pump power was 8 mW.

  6. Stage Cylindrical Immersive Display

    NASA Technical Reports Server (NTRS)

    Abramyan, Lucy; Norris, Jeffrey S.; Powell, Mark W.; Mittman, David S.; Shams, Khawaja S.

    2011-01-01

    Panoramic images with a wide field of view intend to provide a better understanding of an environment by placing objects of the environment on one seamless image. However, understanding the sizes and relative positions of the objects in a panorama is not intuitive and prone to errors because the field of view is unnatural to human perception. Scientists are often faced with the difficult task of interpreting the sizes and relative positions of objects in an environment when viewing an image of the environment on computer monitors or prints. A panorama can display an object that appears to be to the right of the viewer when it is, in fact, behind the viewer. This misinterpretation can be very costly, especially when the environment is remote and/or only accessible by unmanned vehicles. A 270 cylindrical display has been developed that surrounds the viewer with carefully calibrated panoramic imagery that correctly engages their natural kinesthetic senses and provides a more accurate awareness of the environment. The cylindrical immersive display offers a more natural window to the environment than a standard cubic CAVE (Cave Automatic Virtual Environment), and the geometry allows multiple collocated users to simultaneously view data and share important decision-making tasks. A CAVE is an immersive virtual reality environment that allows one or more users to absorb themselves in a virtual environment. A common CAVE setup is a room-sized cube where the cube sides act as projection planes. By nature, all cubic CAVEs face a problem with edge matching at edges and corners of the display. Modern immersive displays have found ways to minimize seams by creating very tight edges, and rely on the user to ignore the seam. One significant deficiency of flat-walled CAVEs is that the sense of orientation and perspective within the scene is broken across adjacent walls. On any single wall, parallel lines properly converge at their vanishing point as they should, and the sense of

  7. GRIN planar waveguide concentrator used with a single axis tracker.

    PubMed

    Bouchard, Sébastien; Thibault, Simon

    2014-03-10

    It is generally accepted that small to medium level concentrators could be used as cost-competitive replacements for tracked solar panels. The objective is to design a system that can reach a good level of sun concentration with only one sun-tracking axis and is cheap to fabricate. As the most critical parameter for all concentrator designs, optical efficiency needed improvement to reduce the cost of power produced by our system. By using a graded-index planar waveguide with an index profile similar to SELFOC fiber, the ray’s path can be controlled. Also, the concentrator can be fabricated in a single block, which reduces Fresnel reflections. Overall, the optical efficiency can be improved by as much as 33% compared to the same system made with a homogeneous waveguide. Furthermore, the ability to cost-effectively fabricate the concentrator by molding can be preserved, making it possible to reduce the cost of the solar power produced.

  8. GRIN planar waveguide concentrator used with a single axis tracker.

    PubMed

    Bouchard, Sébastien; Thibault, Simon

    2014-03-10

    It is generally accepted that small to medium level concentrators could be used as cost-competitive replacements for tracked solar panels. The objective is to design a system that can reach a good level of sun concentration with only one sun-tracking axis and is cheap to fabricate. As the most critical parameter for all concentrator designs, optical efficiency needed improvement to reduce the cost of power produced by our system. By using a graded-index planar waveguide with an index profile similar to SELFOC fiber, the ray's path can be controlled. Also, the concentrator can be fabricated in a single block, which reduces Fresnel reflections. Overall, the optical efficiency can be improved by as much as 33% compared to the same system made with a homogeneous waveguide. Furthermore, the ability to cost-effectively fabricate the concentrator by molding can be preserved, making it possible to reduce the cost of the solar power produced.

  9. GRIN planar waveguide concentrator used with a single axis tracker.

    PubMed

    Bouchard, Sébastien; Thibault, Simon

    2014-03-10

    It is generally accepted that small to medium level concentrators could be used as cost-competitive replacements for tracked solar panels. The objective is to design a system that can reach a good level of sun concentration with only one sun-tracking axis and is cheap to fabricate. As the most critical parameter for all concentrator designs, optical efficiency needed improvement to reduce the cost of power produced by our system. By using a graded-index planar waveguide with an index profile similar to SELFOC fiber, the ray’s path can be controlled. Also, the concentrator can be fabricated in a single block, which reduces Fresnel reflections. Overall, the optical efficiency can be improved by as much as 33% compared to the same system made with a homogeneous waveguide. Furthermore, the ability to cost-effectively fabricate the concentrator by molding can be preserved, making it possible to reduce the cost of the solar power produced. PMID:24800280

  10. GRIN planar waveguide concentrator used with a single axis tracker.

    PubMed

    Bouchard, Sébastien; Thibault, Simon

    2014-03-10

    It is generally accepted that small to medium level concentrators could be used as cost-competitive replacements for tracked solar panels. The objective is to design a system that can reach a good level of sun concentration with only one sun-tracking axis and is cheap to fabricate. As the most critical parameter for all concentrator designs, optical efficiency needed improvement to reduce the cost of power produced by our system. By using a graded-index planar waveguide with an index profile similar to SELFOC fiber, the ray's path can be controlled. Also, the concentrator can be fabricated in a single block, which reduces Fresnel reflections. Overall, the optical efficiency can be improved by as much as 33% compared to the same system made with a homogeneous waveguide. Furthermore, the ability to cost-effectively fabricate the concentrator by molding can be preserved, making it possible to reduce the cost of the solar power produced. PMID:24922233

  11. Optical coupler

    DOEpatents

    Majewski, Stanislaw; Weisenberger, Andrew G.

    2004-06-15

    In a camera or similar radiation sensitive device comprising a pixilated scintillation layer, a light guide and an array of position sensitive photomultiplier tubes, wherein there exists so-called dead space between adjacent photomultiplier tubes the improvement comprising a two part light guide comprising a first planar light spreading layer or portion having a first surface that addresses the scintillation layer and optically coupled thereto at a second surface that addresses the photomultiplier tubes, a second layer or portion comprising an array of trapezoidal light collectors defining gaps that span said dead space and are individually optically coupled to individual position sensitive photomultiplier tubes. According to a preferred embodiment, coupling of the trapezoidal light collectors to the position sensitive photomultiplier tubes is accomplished using an optical grease having about the same refractive index as the material of construction of the two part light guide.

  12. Hybrid planar lightwave circuits for defense and aerospace applications

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Bidnyk, Serge; Yang, Shiquan; Balakrishnan, Ashok; Pearson, Matt; O'Keefe, Sean

    2010-04-01

    We present innovations in Planar Lightwave Circuits (PLCs) that make them ideally suited for use in advanced defense and aerospace applications. We discuss PLCs that contain no micro-optic components, no moving parts, pose no spark or fire hazard, are extremely small and lightweight, and are capable of transporting and processing a range of optical signals with exceptionally high performance. This PLC platform is designed for on-chip integration of active components such as lasers and detectors, along with transimpedance amplifiers and other electronics. These active components are hybridly integrated with our silica-on-silicon PLCs using fully-automated robotics and image recognition technology. This PLC approach has been successfully applied to the design and fabrication of multi-channel transceivers for aerospace applications. The chips contain hybrid DFB lasers and high-efficiency detectors, each capable of running over 10 Gb/s, with mixed digital and analog traffic multiplexed to a single optical fiber. This highlyintegrated functionality is combined onto a silicon chip smaller than 4 x 10 mm, weighing < 5 grams. These chip-based transceivers have been measured to withstand harsh g-forces, including sinusoidal vibrations with amplitude of 20 g acceleration, followed by mechanical shock of 500 g acceleration. The components operate over a wide range of temperatures, with no device failures after extreme temperature cycling through a range of > 125 degC, and more than 2,000 hours operating at 95 degC ambient air temperature. We believe that these recent advancements in planar lightwave circuits are poised to revolutionize optical communications and interconnects in the aerospace and defense industries.

  13. Non-planar microfabricated gas chromatography column

    DOEpatents

    Lewis, Patrick R.; Wheeler, David R.

    2007-09-25

    A non-planar microfabricated gas chromatography column comprises a planar substrate having a plurality of through holes, a top lid and a bottom lid bonded to opposite surfaces of the planar substrate, and inlet and outlet ports for injection of a sample gas and elution of separated analytes. A plurality of such planar substrates can be aligned and stacked to provide a longer column length having a small footprint. Furthermore, two or more separate channels can enable multi-channel or multi-dimensional gas chromatography. The through holes preferably have a circular cross section and can be coated with a stationary phase material or packed with a porous packing material. Importantly, uniform stationary phase coatings can be obtained and band broadening can be minimized with the circular channels. A heating or cooling element can be disposed on at least one of the lids to enable temperature programming of the column.

  14. Novel Planar and Integrated Microwave Antennas

    NASA Technical Reports Server (NTRS)

    Saed, Mohammad A.

    2000-01-01

    This project dealt with design, analysis, and testing of new types of planar and integrated antennas operating in the microwave frequency range. The following was accomplished during this project period:

  15. Non classical effects in planar waveguides

    NASA Technical Reports Server (NTRS)

    Bertolotti, M.; Jansky, J.; Perina, J.; Pernova, V.; Sibilia, C.

    1993-01-01

    The quantum description of light propagation inside a planar waveguide is given. In particular, the description describes the behavior of the field inside a directions coupler. Nonclassical effects are presented and discussed.

  16. Planar cell polarity of the kidney.

    PubMed

    Schnell, Ulrike; Carroll, Thomas J

    2016-05-01

    Planar cell polarity (PCP) or tissue polarity refers to the polarization of tissues perpendicular to the apical-basal axis. Most epithelia, including the vertebrate kidney, show signs of planar polarity. In the kidney, defects in planar polarity are attributed to several disease states including multiple forms of cystic kidney disease. Indeed, planar cell polarity has been shown to be essential for several cellular processes that appear to be necessary for establishing and maintaining tubule diameter. However, uncovering the genetic mechanisms underlying PCP in the kidney has been complicated as the roles of many of the main players are not conserved in flies and vice versa. Here, we review a number of cellular and molecular processes that can affect PCP of the kidney with a particular emphasis on the mechanisms that do not appear to be conserved in flies or that are not part of canonical determinants.

  17. Structure of The Planar Galilean Conformal Algebra

    NASA Astrophysics Data System (ADS)

    Gao, Shoulan; Liu, Dong; Pei, Yufeng

    2016-08-01

    In this paper, we compute the low-dimensional cohomology groups of the planar Galilean conformal algebra introduced by Bagchi and Goparkumar. Consequently we determine its derivations, central extensions, and automorphisms.

  18. On linear area embedding of planar graphs

    NASA Astrophysics Data System (ADS)

    Dolev, D.; Trickey, H.

    1981-09-01

    Planar embedding with minimal area of graphs on an integer grid is one of the major issues in VLSI. Valiant (V) gave an algorithm to construct a planar embedding for trees in linear area; he also proved that there are planar graphs that require quadratic area. An algorithm to embed outerplanar graphs in linear area is given. This algorithm is extended to work for every planar graph that has the following property: for every vertex there exists a path of length less than K to the exterior face, where K is a constant. Finally, finding a minimal embedding area is shown to be NP-complete for forests, and hence more general types of graphs.

  19. Landing Hazard Avoidance Display

    NASA Technical Reports Server (NTRS)

    Abernathy, Michael Franklin (Inventor); Hirsh, Robert L. (Inventor)

    2016-01-01

    Landing hazard avoidance displays can provide rapidly understood visual indications of where it is safe to land a vehicle and where it is unsafe to land a vehicle. Color coded maps can indicate zones in two dimensions relative to the vehicles position where it is safe to land. The map can be simply green (safe) and red (unsafe) areas with an indication of scale or can be a color coding of another map such as a surface map. The color coding can be determined in real time based on topological measurements and safety criteria to thereby adapt to dynamic, unknown, or partially known environments.

  20. The Planar Gauge in a New Formalism

    NASA Astrophysics Data System (ADS)

    Leibbrandt, George; Nyeo, Su-Long

    The main feature of the planar gauge, apart from the decoupling of ghosts, is the nontransversality of the Yang-Mills self-energy with the resulting appearance of a pincer diagram in the Ward identity. We employ the general prescription for axial-type gauges, recently developed by one of the authors, to check this Ward identity and derive BRS-invariant counterterms in the planar gauge.

  1. The planar gauge in a new formalism

    SciTech Connect

    Leibbrandt, G.; Nyeo, S.L.

    1988-09-01

    The main feature of the planar gauge, apart from the decoupling of ghosts, is the nontransversatility of the Yang-Mills self-energy with the resulting appearance of a pincer diagram in the Ward identity. The authors employ the general prescription for axial-type gauges, recently developed by one of the authors, to check this Ward identity and derive BRS-invariant counterterms in the planar gauge.

  2. Registration of heavy metal ions and pesticides with ATR planar waveguide enzyme sensors

    NASA Astrophysics Data System (ADS)

    Nabok, Alexei; Haron, Saharudin; Ray, Asim

    2004-11-01

    The proposed novel type of enzyme optical sensors is based on a combination of SiO2/Si3N4/SiO2 planar waveguide ATR (attenuated total reflection) transducer, fabricated by standard silicon planar technology, with the composite polyelectrolyte self-assembled coating containing both organic chromophores and enzyme molecules. Such devices were deployed to monitor typical industrial and agricultural water pollutants, such as heavy metal ions and pesticides, acting as inhibitors of enzyme reactions. The sensitivity of registration of these pollutants in the range of 1 ppb was achieved. The use of different enzymes in the sensitive membrane provides a background for pattern recognition of the above pollutants.

  3. A planar four-port channel drop filter in the three-dimensional woodpile photonic crystal

    SciTech Connect

    Stieler, Daniel; Barsic, Anthony; Biswas, Rana; Tuttle, Gary; Ho, Kai-Ming

    2009-04-01

    A compact planar channel four-port drop filter is developed experimentally and theoretically in the three-dimensional woodpile photonic crystal having a complete band gap. This consists of two waveguides separated by a defect in a single layer of the photonic crystal. Frequencies for channel dropping can be tuned throughout the band gap, by changing the size of the defect. Quality factors of {approx}1000 were measured. Simulations demonstrate directional energy transfer between the input and out put waveguides, through excitation of fields in the defect region. The planar nature of the filter is much more amenable to fabrication at optical length wavelengths.

  4. Skylab simulator visual displays and training for joint observing programs.

    PubMed

    Holt, A C; da Silva, A J

    1977-04-01

    The complexity of the Skylab Apollo Telescope Mount (ATM) experiment operations necessitated the use of high fidelity simulations of the onboard visual displays and pointing system for crew training. The displays which were simulated included the H-alpha displays, XUV monitor display, XUV/slit/white light display, x-ray image display, and the white light coronagraph display. The pointing simulation was achieved by projecting film sequences which were subsequently viewed by TV cameras. An optical system in front of the vidicons simulated the pointing, roll, and zoom capabilities of the ATM and sensing systems. The simulation enabled the Skylab crewmen to obtain valuable integrated training combining such tasks as target recognition and status assessment, complex and the time dependent pointing operations, malfunction analyses, and rapid responses to flare and other transient events.

  5. XrayOpticsConstants

    2005-06-20

    This application (XrayOpticsConstants) is a tool for displaying X-ray and Optical properties for a given material, x-ray photon energy, and in the case of a gas, pressure. The display includes fields such as the photo-electric absorption attenuation length, density, material composition, index of refraction, and emission properties (for scintillator materials).

  6. Stepped inlet optical panel

    DOEpatents

    Veligdan, James T.

    2001-01-01

    An optical panel includes stacked optical waveguides having stepped inlet facets collectively defining an inlet face for receiving image light, and having beveled outlet faces collectively defining a display screen for displaying the image light channeled through the waveguides by internal reflection.

  7. Polymer waveguide technology for flexible display applications

    NASA Astrophysics Data System (ADS)

    Okuda, Yuuto; Fujieda, Ichiro

    2012-03-01

    We consider applications of wave-guiding technologies for flexible displays. First, a flexible backlight can be constructed by guiding laser light through an optical fiber arranged in a spiral manner. The light leaks out via the grooves fabricated on the optical fiber. For uniform illumination, the probability of light extraction at each groove and the pitch of the grooves are adjusted. Second, a polymer waveguide with successive branches distributes the optical power from a laser to two-dimensional emission points on a plane. The division ratio at each branch is an important design parameter for uniform light output. At each branch and emission point, a mirror is placed for 90-degree optical path redirection. This constitutes a flexible backlight. Third, in a more technically demanding design, a mirror based on the micro-electro-mechanical systems technology scans a laser beam on the entrance surface of the waveguide and each emission point is addressed sequentially. An image can be displayed by intensity modulation of the laser light synchronized to this scanning action. The precision of the waveguide fabrication and the beam scanning accuracy would determine the display resolution. Finally, such a waveguide may be applied for concentrated photovoltaic applications. An array of lenses is stacked on the waveguide so that the optical power is focused on each mirror. The direction of the light propagation is reversed. Now the exit surface of the waveguide is coupled to solar cells. In all these cases, the polymer waveguide technology offers a cost advantage due to its feasibility for the roll-to-roll process.

  8. Latest development of display technologies

    NASA Astrophysics Data System (ADS)

    Gao, Hong-Yue; Yao, Qiu-Xiang; Liu, Pan; Zheng, Zhi-Qiang; Liu, Ji-Cheng; Zheng, Hua-Dong; Zeng, Chao; Yu, Ying-Jie; Sun, Tao; Zeng, Zhen-Xiang

    2016-09-01

    In this review we will focus on recent progress in the field of two-dimensional (2D) and three-dimensional (3D) display technologies. We present the current display materials and their applications, including organic light-emitting diodes (OLEDs), flexible OLEDs quantum dot light emitting diodes (QLEDs), active-matrix organic light emitting diodes (AMOLEDs), electronic paper (E-paper), curved displays, stereoscopic 3D displays, volumetric 3D displays, light field 3D displays, and holographic 3D displays. Conventional 2D display devices, such as liquid crystal devices (LCDs) often result in ambiguity in high-dimensional data images because of lacking true depth information. This review thus provides a detailed description of 3D display technologies.

  9. Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis In Planar Diodes

    DOE PAGES

    Xu, Jixian; Buin, Andrei; Ip, Alexander H.; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey; et al

    2015-03-31

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite–PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3 antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solarmore » cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.« less

  10. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes.

    PubMed

    Xu, Jixian; Buin, Andrei; Ip, Alexander H; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey J; Kanjanaboos, Pongsakorn; Sun, Jon-Paul; Lan, Xinzheng; Quan, Li Na; Kim, Dong Ha; Hill, Ian G; Maksymovych, Peter; Sargent, Edward H

    2015-01-01

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite-PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3(-) antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour. PMID:25953105

  11. Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes

    PubMed Central

    Xu, Jixian; Buin, Andrei; Ip, Alexander H.; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey J.; Kanjanaboos, Pongsakorn; Sun, Jon-Paul; Lan, Xinzheng; Quan, Li Na; Kim, Dong Ha; Hill, Ian G.; Maksymovych, Peter; Sargent, Edward H.

    2015-01-01

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite–PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3− antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour. PMID:25953105

  12. Holographic display system for restoration of sight to the blind

    NASA Astrophysics Data System (ADS)

    Goetz, G. A.; Mandel, Y.; Manivanh, R.; Palanker, D. V.; Čižmár, T.

    2013-10-01

    Objective. We present a holographic near-the-eye display system enabling optical approaches for sight restoration to the blind, such as photovoltaic retinal prosthesis, optogenetic and other photoactivation techniques. We compare it with conventional liquid crystal displays (LCD) or digital light processing (DLP)-based displays in terms of image quality, field of view, optical efficiency and safety. Approach. We detail the optical configuration of the holographic display system and its characterization using a phase-only spatial light modulator. Main results. We describe approaches to controlling the zero diffraction order and speckle related issues in holographic display systems and assess the image quality of such systems. We show that holographic techniques offer significant advantages in terms of peak irradiance and power efficiency, and enable designs that are inherently safer than LCD or DLP-based systems. We demonstrate the performance of our holographic display system in the assessment of cortical response to alternating gratings projected onto the retinas of rats. Significance. We address the issues associated with the design of high brightness, near-the-eye display systems and propose solutions to the efficiency and safety challenges with an optical design which could be miniaturized and mounted onto goggles.

  13. Liquid crystal displays with high brightness of visualization versus active displays

    NASA Astrophysics Data System (ADS)

    Olifierczuk, Marek; Zieliński, Jerzy

    2007-05-01

    Nowadays Liquid Crystal Displays (LCD) takes the very important place among different visualization devices. It's are used in many standard applications such as computer or video screens. In May 2006, 100" LCD TV monitor had been shown by LG. But beside of this main direction of display development, very interesting - because of insignificant electro-magnetic disturbances - is the possibility of it's applications in motorization and aviation. An example of it can be a glass cockpit of U2 , Boeing 777 or many different car dashboards. On this field beside LCD we have now many another display technologies, but interesting for us are 3 of them: FEDs (Field Emission Displays), OLEDs (Organic Light Emitting Diode), PLEDs (Polymer Light Emitting Diode). The leading position of LCD is a result of LCD unique advantages of flat form, weight, power consumption, and reliability, higher (than CRT) luminance, luminance uniformity, sunlight readability, wide dimming range, fault tolerance and a large active display area with a small border. The basis of starting our investigation was the comparison of passive LCD and the other technology, which can be theoretically used on motorization and aviation field. The following parameters are compared: contrast ratio, luminance level, temperature stability, life-time, operating temperature range, color performance, and depth, viewing cone, technology maturity, availability and cost. In our work an analysis of Liquid Crystal Displays used in specific applications is done. The possibilities of the applications such a display under high lighting level are presented. The presented results of this analysis are obtained from computer program worked by authors, which makes it possible to calculate the optical parameters of transmissive and reflective LCD working in quasi-real conditions. The base assumption of this program are shown. This program calculate the transmission and reflection coefficient of a display taking into account the

  14. Total internal reflection-based planar waveguide solar concentrator with symmetric air prisms as couplers.

    PubMed

    Xie, Peng; Lin, Huichuan; Liu, Yong; Li, Baojun

    2014-10-20

    We present a waveguide coupling approach for planar waveguide solar concentrator. In this approach, total internal reflection (TIR)-based symmetric air prisms are used as couplers to increase the coupler reflectivity and to maximize the optical efficiency. The proposed concentrator consists of a line focusing cylindrical lens array over a planar waveguide. The TIR-based couplers are located at the focal line of each lens to couple the focused sunlight into the waveguide. The optical system was modeled and simulated with a commercial ray tracing software (Zemax). Results show that the system used with optimized TIR-based couplers can achieve 70% optical efficiency at 50 × geometrical concentration ratio, resulting in a flux concentration ratio of 35 without additional secondary concentrator. An acceptance angle of ± 7.5° is achieved in the x-z plane due to the use of cylindrical lens array as the primary concentrator.

  15. Planar polarity genes and inhibition of supernumerary neurites.

    PubMed

    Colavita, Antonio

    2012-04-01

    Planar cell polarity (PCP) genes have recently emerged as important players in sculpting neuronal connections. The bipolar VC neurons display stereotypical differences in axon extension along the anterior-posterior (AP) body axis: VC1-3 and VC6 polarize along the AP axis while VC4 and VC5 polarize along the orthogonal left-right (LR) axis generated by the developing vulva. vang-1 and prkl-1, the worm orthologs of Van Gogh and Prickle, are required to restrict the polarity of neurite emergence to a specific tissue axis. vang-1 and prkl-1 loss results in ectopic VC4 and VC5 neurites extending inappropriately along the AP axis. Conversely, prkl-1 overexpression in VC neurons suppresses neurite formation. These findings suggest that a PCP-like pathway acts to silence or antagonize neuronal responses to polarity cues that would otherwise be permissive for neurite growth.

  16. Mechanisms of planar cell polarity establishment in Drosophila

    PubMed Central

    Carvajal-Gonzalez, Jose Maria

    2014-01-01

    Correct patterning and polarization of epithelial and mesenchymal cells are essential for morphogenesis and function of all organs and organisms. Epithelial cells are generally polarized in two axes: (a) the ubiquitous apical-basal axis and (b) polarity within the plane of the epithelium. The latter is generally referred to as planar cell polarity (PCP) and also is found in several contexts of mesenchymal cell patterning. In Drosophila, all adult structures display PCP features, and two conserved molecular systems (the Fat [Ft]/Dachsous [Ds] system and the Frizzled [Fz]/PCP pathway) that regulate this process have been identified. Although significant progress has been made in dissecting aspects of PCP signaling within cells, much remains to be discovered about the mechanisms of long-range and local PCP cell-cell interactions. Here, we discuss the current models based on Drosophila studies and incorporate recent insights into this long-standing cell and developmental biology problem. PMID:25580252

  17. Solvent-tuned dual emission: a structural and electronic interplay highlighting a novel planar ICT (OPICT).

    PubMed

    Chevreux, S; Paulino Neto, R; Allain, C; Nakatani, K; Jacques, P; Ciofini, I; Lemercier, G

    2015-03-28

    Displaying a dual emission, a Phen-PENMe2 compound can be foreseen as a new model for fundamental studies. It is based on an excited state cumulene-type structure, involving orthogonal π orbital (OPICT). In contrast to the "Twisted Intramolecular Charge Transfer" (TICT) emission, the OPICT emissive state is planar. This new compound is also a potential candidate for local ratiometric probes of medium polarity (mixture of solvents and biological systems) and white emission.

  18. Multifocal planes head-mounted displays.

    PubMed

    Rolland, J P; Krueger, M W; Goon, A

    2000-07-01

    Stereoscopic head-mounted displays (HMD's) provide an effective capability to create dynamic virtual environments. For a user of such environments, virtual objects would be displayed ideally at the appropriate distances, and natural concordant accommodation and convergence would be provided. Under such image display conditions, the user perceives these objects as if they were objects in a real environment. Current HMD technology requires convergent eye movements. However, it is currently limited by fixed visual accommodation, which is inconsistent with real-world vision. A prototype multiplanar volumetric projection display based on a stack of laminated planes was built for medical visualization as discussed in a paper presented at a 1999 Advanced Research Projects Agency workshop (Sullivan, Advanced Research Projects Agency, Arlington, Va., 1999). We show how such technology can be engineered to create a set of virtual planes appropriately configured in visual space to suppress conflicts of convergence and accommodation in HMD's. Although some scanning mechanism could be employed to create a set of desirable planes from a two-dimensional conventional display, multiplanar technology accomplishes such function with no moving parts. Based on optical principles and human vision, we present a comprehensive investigation of the engineering specification of multiplanar technology for integration in HMD's. Using selected human visual acuity and stereoacuity criteria, we show that the display requires at most 27 equally spaced planes, which is within the capability of current research and development display devices, located within a maximal 26-mm-wide stack. We further show that the necessary in-plane resolution is of the order of 5 microm.

  19. Numerical assessment of the differential interference in the ion exchange planar waveguides covered with ferronematic layer

    NASA Astrophysics Data System (ADS)

    Tyszkiewicz, C.; Pustelny, T.; Rogoziñski, R.

    2006-11-01

    This paper presents a numerical assessment of the differential interferometry phenomenon in a planar waveguide structure with a ferronematic cover layer. Planar waveguides were fabricated in BK-7 glass slabs utilizing the ion exchange method from a solution of the AgNO{3} in the NaNO{3}. Planar waveguides were coated with aligning polyimide resin layer that ensures the homeotropic alignment of the ferronematic layer. Ferronematic was composed of the nematic mixture and magnetite nanoparticles of mean diameter 12 nm. The differential interference is caused by the interaction of the magnetic field with the ferronematic layer. An influence of the optical and geometrical parameters of presented interferometer on a differential interferometry phenomenon is analysed.

  20. Stacked optical antennas

    NASA Astrophysics Data System (ADS)

    Pohl, Dieter W.; Rodrigo, Sergio G.; Novotny, Lukas

    2011-01-01

    We propose and analyze a stacked optical antenna (SOA). It is characterized by a stacked structure of its arms at the center, and an interstitial gap layer (IGL) in between, which plays the role of the feed gap. Because of its in-plane arrangement, the IGL can be fabricated by standard planar deposition techniques providing high accuracy and control. A SOA can be an enabling element for several technologies, in particular for optical detection, communication, and encryption besides applications in microscopy.