Sample records for planar optic display

  1. Ten inch Planar Optic Display

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beiser, L.; Veligdan, J.

    A Planar Optic Display (POD) is being built and tested for suitability as a high brightness replacement for the cathode ray tube, (CRT). The POD display technology utilizes a laminated optical waveguide structure which allows a projection type of display to be constructed in a thin (I to 2 inch) housing. Inherent in the optical waveguide is a black cladding matrix which gives the display a black appearance leading to very high contrast. A Digital Micromirror Device, (DMD) from Texas Instruments is used to create video images in conjunction with a 100 milliwatt green solid state laser. An anamorphic opticalmore » system is used to inject light into the POD to form a stigmatic image. In addition to the design of the POD screen, we discuss: image formation, image projection, and optical design constraints.« less

  2. Application of holographic elements in displays and planar illuminators

    NASA Astrophysics Data System (ADS)

    Putilin, Andrew; Gustomiasov, Igor

    2007-05-01

    Holographic Optical Elements (HOE's) on planar waveguides can be used to design the planar optics for backlit units, color selectors or filters, lenses for virtual reality displays. The several schemes for HOE recording are proposed to obtain planar stereo backlit unit and private eye displays light source. It is shown in the paper that the specific light transformation grating permits to construct efficient backlit units for display holograms and LCD. Several schemes of reflection/transmission backlit units and scattering films based on holographic optical elements are also proposed. The performance of the waveguide HOE can be optimized using the parameters of recording scheme and etching parameters. The schemes of HOE application are discussed and some experimental results are shown.

  3. Thin display optical projector

    DOEpatents

    Veligdan, James T.

    1999-01-01

    An optical system (20) projects light into a planar optical display (10). The display includes laminated optical waveguides (12) defining an inlet face (14) at one end and an outlet screen (16) at an opposite end. A first mirror (26) collimates light from a light source (18) along a first axis, and distributes the light along a second axis. A second mirror (28) collimates the light from the first mirror along the second axis to illuminate the inlet face and produce an image on the screen.

  4. A microdisplay-based HUD for automotive applications: Backplane design, planarization, and optical implementation

    NASA Astrophysics Data System (ADS)

    Schuck, Miller Harry

    Automotive head-up displays require compact, bright, and inexpensive imaging systems. In this thesis, a compact head-up display (HUD) utilizing liquid-crystal-on-silicon microdisplay technology is presented from concept to implementation. The thesis comprises three primary areas of HUD research: the specification, design and implementation of a compact HUD optical system, the development of a wafer planarization process to enhance reflective device brightness and light immunity and the design, fabrication and testing of an inexpensive 640 x 512 pixel active matrix backplane intended to meet the HUD requirements. The thesis addresses the HUD problem at three levels, the systems level, the device level, and the materials level. At the systems level, the optical design of an automotive HUD must meet several competing requirements, including high image brightness, compact packaging, video-rate performance, and low cost. An optical system design which meets the competing requirements has been developed utilizing a fully-reconfigurable reflective microdisplay. The design consists of two optical stages, the first a projector stage which magnifies the display, and a second stage which forms the virtual image eventually seen by the driver. A key component of the optical system is a diffraction grating/field lens which forms a large viewing eyebox while reducing the optical system complexity. Image quality biocular disparity and luminous efficacy were analyzed and results of the optical implementation are presented. At the device level, the automotive HUD requires a reconfigurable, video-rate, high resolution image source for applications such as navigation and night vision. The design of a 640 x 512 pixel active matrix backplane which meets the requirements of the HUD is described. The backplane was designed to produce digital field sequential color images at video rates utilizing fast switching liquid crystal as the modulation layer. The design methodology is discussed

  5. Multiview three-dimensional display with continuous motion parallax through planar aligned OLED microdisplays.

    PubMed

    Teng, Dongdong; Xiong, Yi; Liu, Lilin; Wang, Biao

    2015-03-09

    Existing multiview three-dimensional (3D) display technologies encounter discontinuous motion parallax problem, due to a limited number of stereo-images which are presented to corresponding sub-viewing zones (SVZs). This paper proposes a novel multiview 3D display system to obtain continuous motion parallax by using a group of planar aligned OLED microdisplays. Through blocking partial light-rays by baffles inserted between adjacent OLED microdisplays, transitional stereo-image assembled by two spatially complementary segments from adjacent stereo-images is presented to a complementary fusing zone (CFZ) which locates between two adjacent SVZs. For a moving observation point, the spatial ratio of the two complementary segments evolves gradually, resulting in continuously changing transitional stereo-images and thus overcoming the problem of discontinuous motion parallax. The proposed display system employs projection-type architecture, taking the merit of full display resolution, but at the same time having a thin optical structure, offering great potentials for portable or mobile 3D display applications. Experimentally, a prototype display system is demonstrated by 9 OLED microdisplays.

  6. Planar optical waveguides for optical panel having gradient refractive index core

    DOEpatents

    Veligdan, James T.

    2001-01-01

    An optical panel is disclosed. A plurality of stacked planar optical waveguides are used to guide light from an inlet face to an outlet face of an optical panel. Each of the optical waveguides comprises a planar sheet of core material having a central plane. The core material has an index of refraction which decreases as the distance from the central plane increases. The decrease in the index of refraction occurs gradually and continuously.

  7. Planar optical waveguides for optical panel having gradient refractive index core

    DOEpatents

    Veligdan, James T.

    2004-08-24

    An optical panel is disclosed. A plurality of stacked planar optical waveguides are used to guide light from an inlet face to an outlet face of an optical panel. Each of the optical waveguides comprises a planar sheet of core material having a central plane. The core material has an index of refraction which decreases as the distance from the central plane increases. The decrease in the index of refraction occurs gradually and continuously.

  8. Multiple Optical Traps with a Single-Beam Optical Tweezer Utilizing Surface Micromachined Planar Curved Grating

    NASA Astrophysics Data System (ADS)

    Kuo, Ju-Nan; Chen, Kuan-Yu

    2010-11-01

    In this paper, we present a single-beam optical tweezer integrated with a planar curved diffraction grating for microbead manipulation. Various curvatures of the surface micromachined planar curved grating are systematically investigated. The planar curved grating was fabricated using multiuser micro-electro-mechanical-system (MEMS) processes (MUMPs). The angular separation and the number of diffracted orders were determined. Experimental results indicate that the diffraction patterns and curvature of the planar curved grating are closely related. As the curvature of the planar curved grating increases, the vertical diffraction angle increases, resulting in the strip patterns of the planar curved grating. A single-beam optical tweezer integrated with a planar curved diffraction grating was developed. We demonstrate a technique for creating multiple optical traps from a single laser beam using the developed planar curved grating. The strip patterns of the planar curved grating that resulted from diffraction were used to trap one row of polystyrene beads.

  9. Planar optics with patterned chiral liquid crystals

    NASA Astrophysics Data System (ADS)

    Kobashi, Junji; Yoshida, Hiroyuki; Ozaki, Masanori

    2016-06-01

    Reflective metasurfaces based on metallic and dielectric nanoscatterers have attracted interest owing to their ability to control the phase of light. However, because such nanoscatterers require subwavelength features, the fabrication of elements that operate in the visible range is challenging. Here, we show that chiral liquid crystals with a self-organized helical structure enable metasurface-like, non-specular reflection in the visible region. The phase of light that is Bragg-reflected off the helical structure can be controlled over 0-2π depending on the spatial phase of the helical structure; thus planar elements with arbitrary reflected wavefronts can be created via orientation control. The circular polarization selectivity and external field tunability of Bragg reflection open a wide variety of potential applications for this family of functional devices, from optical isolators to wearable displays.

  10. [Optical Design of Miniature Infrared Gratings Spectrometer Based on Planar Waveguide].

    PubMed

    Li, Yang-yu; Fang, Yong-hua; Li, Da-cheng; Liu, Yang

    2015-03-01

    In order to miniaturize an infrared spectrometer, we analyze the current optical design of miniature spectrometers and propose a method for designing a miniature infrared gratings spectrometer based on planar waveguide. Common miniature spectrometer uses miniature optical elements to reduce the size of system, which also shrinks the effective aperture. So the performance of spectrometer has dropped. Miniaturization principle of planar waveguide spectrometer is different from the principle of common miniature spectrometer. In planar waveguide spectrometer, the propagation of light is limited in a thin planar waveguide, which looks like the whole optical system is squashed flat. In the direction parallel to the planar waveguide, the light through the slit is collimated, dispersed and focused. And a spectral image is formed in the detector plane. This propagation of light is similar to the light in common miniature spectrometer. In the direction perpendicular to the planar waveguide, light is multiple reflected by the upper and lower surfaces of the planar waveguide and propagates in the waveguide. So the size of corresponding optical element could be very small in the vertical direction, which can reduce the size of the optical system. And the performance of the spectrometer is still good. The design method of the planar waveguide spectrometer can be separated into two parts, Czerny-Turner structure design and planar waveguide structure design. First, by using aberration theory an aberration-corrected (spherical aberration, coma, focal curve) Czerny-Turner structure is obtained. The operation wavelength range and spectral resolution are also fixed. Then, by using geometrical optics theory a planar waveguide structure is designed for reducing the system size and correcting the astigmatism. The planar waveguide structure includes a planar waveguide and two cylindrical lenses. Finally, they are modeled together in optical design software and are optimized as a whole. An

  11. Polyplanar optical display

    NASA Astrophysics Data System (ADS)

    Veligdan, James T.; Beiser, Leo; Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard

    1997-07-01

    The polyplanar optical display (POD) is a unique display screen which can be use with any projection source. This display screen is 2 inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 100 milliwatt green solid state laser as its optical source. In order to produce real- time video, the laser light is being modulated by a digital light processing (DLP) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, we discuss the electronic interfacing to the DLP chip, the opto-mechanical design and viewing angle characteristics.

  12. Evanescent field refractometry in planar optical fiber.

    PubMed

    Holmes, Christopher; Jantzen, Alexander; Gray, Alan C; Gow, Paul C; Carpenter, Lewis G; Bannerman, Rex H S; Gates, James C; Smith, Peter G R

    2018-02-15

    This Letter demonstrates a refractometer in integrated optical fiber, a new optical platform that planarizes fiber using flame hydrolysis deposition (FHD). The unique advantage of the technology is survivability in harsh environments. The platform is mechanically robust, and can survive elevated temperatures approaching 1000°C and exposure to common solvents, including acetone, gasoline, and methanol. For the demonstrated refractometer, fabrication was achieved through wet etching an SMF-28 fiber to a diameter of 8 μm before FHD planarization. An external refractive index was monitored using fiber Bragg gratings (FBGs), written into the core of the planarized fiber. A direct comparison to alternative FBG refractometers is made, for which the developed platform is shown to have comparable sensitivity, with the added advantage of survivability in harsh environments.

  13. Development of integrated optical tracking sensor by planar optics

    NASA Astrophysics Data System (ADS)

    Kawano, Hiroyuki; Sasagawa, Tomohiro; Nishimae, Junichi; Sato, Yukio

    1999-03-01

    A compact and light weight optical tracking sensor for a large capacity flexible disk drive is demonstrated. The size of the optical element is no larger than 5.4 mm in length X 3.6 mm in width X 1.2 mm in height and the weight is only 18 mg. The application of the planar optical technique makes it possible to integrate all passive optical elements onto one transparent substrate. These features are useful for high- speed access, easy optical alignment, mass production, and miniaturization. The design and optical characteristics of the optical tracking sensor are described.

  14. Polyplanar optic display

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veligdan, J.; Biscardi, C.; Brewster, C.

    1997-07-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. This display screen is 2 inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 100 milliwatt green solid state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments, Inc.more » A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, the authors discuss the electronic interfacing to the DLP{trademark} chip, the opto-mechanical design and viewing angle characteristics.« less

  15. Mode structure of planar optical antennas on dielectric substrates

    DOE PAGES

    Word, Robert C.; Konenkamp, Rolf

    2016-08-08

    Here, we report a numerical study, supported by photoemission electron microscopy (PEEM), of sub-micron planar optical antennas on transparent substrate. We find these antennas generate intricate near-field spatial field distributions with odd and even numbers of nodes. We show that the field distributions are primarily superpositions of planar surface plasmon polariton modes confined to the metal/substrate interface. The mode structure provides opportunities for coherent switching and optical control in sub-micron volumes.

  16. Biocular vehicle display optical designs

    NASA Astrophysics Data System (ADS)

    Chu, H.; Carter, Tom

    2012-06-01

    Biocular vehicle display optics is a fast collimating lens (f / # < 0.9) that presents the image of the display at infinity to both eyes of the viewer. Each eye captures the scene independently and the brain merges the two images into one through the overlapping portions of the images. With the recent conversion from analog CRT based displays to lighter, more compact active-matrix organic light-emitting diodes (AMOLED) digital image sources, display optical designs have evolved to take advantage of the higher resolution AMOLED image sources. To maximize the field of view of the display optics and fully resolve the smaller pixels, the digital image source is pre-magnified by relay optics or a coherent taper fiber optics plate. Coherent taper fiber optics plates are used extensively to: 1. Convert plano focal planes to spherical focal planes in order to eliminate Petzval field curvature. This elimination enables faster lens speed and/or larger field of view of eye pieces, display optics. 2. Provide pre-magnification to lighten the work load of the optics to further increase the numerical aperture and/or field of view. 3. Improve light flux collection efficiency and field of view by collecting all the light emitted by the image source and guiding imaging light bundles toward the lens aperture stop. 4. Reduce complexity of the optical design and overall packaging volume by replacing pre-magnification optics with a compact taper fiber optics plate. This paper will review and compare the performance of biocular vehicle display designs without and with taper fiber optics plate.

  17. Development of Planar Optics for an Optical Tracking Sensor

    NASA Astrophysics Data System (ADS)

    Kawano, Hiroyuki; Sasagawa, Tomohiro

    1998-10-01

    An optical tracking sensor for large-capacity flexible disk drive (FDD) is demonstrated. The passive optics is compact and lightweight (5.4 mm length×3.6 mm width×1.2 mm height in size and 18 mg weight). It comprises all passive optical elements necessary for optical tracking, e.g., a focusing lens, a three-beam grating, an aperture and a beam splitter grating. Three beams were focused to a predetermined spot size of 13 µm at designed intervals of 110 µm on a disk surface and the reflected beams were successfully guided to photodiodes. This confirms that the application of the planar optical technique is very useful for realizing a compact and light optical sensor.

  18. Planar integrated optics, a new solution in optical instrumentation

    NASA Astrophysics Data System (ADS)

    Haguenauer, P.

    2017-11-01

    Planar integrated optics present an attractive solution for future instrumentation, both in ground and space based applications. The technologies used in the manufacturing of such components, supported by research laboratories as well as industries, are mature enough to provide complex devices.

  19. Magnetic switching of optical reflectivity in nanomagnet/micromirror suspensions: colloid displays as a potential alternative to liquid crystal displays.

    PubMed

    Bubenhofer, S B; Athanassiou, E K; Grass, R N; Koehler, F M; Rossier, M; Stark, W J

    2009-12-02

    Two-particle colloids containing nanomagnets and microscale mirrors can be prepared from iron oxide nanoparticles, microscale metal flakes and high-density liquids stabilizing the mirror suspension against sedimentation by matching the constituent's density. The free Brownian rotation of the micromirrors can be magnetically controlled through an anisotropic change in impulse transport arising from impacts of the magnetic nanoparticles onto the anisotropic flakes. The resulting rapid mirror orientation allows large changes in light transmission and switchable optical reflectivity. The preparation of a passive display was conceptually demonstrated through colloid confinement in a planar cavity over an array of individually addressable solenoids and resulted in 4 x 4 digit displays with a reaction time of less than 100 ms.

  20. Thin optical display panel

    DOEpatents

    Veligdan, James Thomas

    1997-01-01

    An optical display includes a plurality of optical waveguides each including a cladding bound core for guiding internal display light between first and second opposite ends by total internal reflection. The waveguides are stacked together to define a collective display thickness. Each of the cores includes a heterogeneous portion defining a light scattering site disposed longitudinally between the first and second ends. Adjacent ones of the sites are longitudinally offset from each other for forming a longitudinal internal image display over the display thickness upon scattering of internal display light thereagainst for generating a display image. In a preferred embodiment, the waveguides and scattering sites are transparent for transmitting therethrough an external image in superposition with the display image formed by scattering the internal light off the scattering sites for defining a heads up display.

  1. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths

    PubMed Central

    Yuan, Guanghui; Rogers, Edward T. F.; Roy, Tapashree; Adamo, Giorgio; Shen, Zexiang; Zheludev, Nikolay I.

    2014-01-01

    Planar optical lenses are fundamental elements of miniaturized photonic devices. However, conventional planar optical lenses are constrained by the diffraction limit in the optical far-field due to the band-limited wavevectors supported by free-space and loss of high-spatial-frequency evanescent components. As inspired by Einstein's radiation ‘needle stick', electromagnetic energy can be delivered into an arbitrarily small solid angle. Such sub-diffraction optical needles have been numerically investigated using diffractive optical elements (DOEs) together with specially polarized optical beams, but experimental demonstration is extremely difficult due to the bulky size of DOEs and the required alignment precision. Planar super-oscillatory lenses (SOLs) were proposed to overcome these constraints and demonstrated that sub-diffraction focal spots can actually be formed without any evanescent waves, making far-field, label-free super-resolution imaging possible. Here we extend the super-oscillation concept into the vectorial-field regime to work with circularly polarized light, and experimentally demonstrate, for the first time, a circularly polarized optical needle with sub-diffraction transverse spot size (0.45λ) and axial long depth of focus (DOF) of 15λ using a planar SOL at a violet wavelength of 405 nm. This sub-diffraction circularly polarized optical needle has potential applications in circular dichroism spectroscopy, super-resolution imaging, high-density optical storage, heat-assisted magnetic recording, nano-manufacturing and nano-metrology. PMID:25208611

  2. Observation of extraordinary optical activity in planar chiral photonic crystals.

    PubMed

    Konishi, Kuniaki; Bai, Benfeng; Meng, Xiangfeng; Karvinen, Petri; Turunen, Jari; Svirko, Yuri P; Kuwata-Gonokami, Makoto

    2008-05-12

    Control of light polarization is a key technology in modern photonics including application to optical manipulation of quantum information. The requisite is to obtain large rotation in isotropic media with small loss. We report on extraordinary optical activity in a planar dielectric on-waveguide photonic crystal structure, which has no in-plane birefringence and shows polarization rotation of more than 25 degrees for transmitted light. We demonstrate that in the planar chiral photonic crystal, the coupling of the normally incident light wave with low-loss waveguide and Fabry-Pérot resonance modes results in a dramatic enhancement of the optical activity.

  3. Laser-driven polyplanar optic display

    NASA Astrophysics Data System (ADS)

    Veligdan, James T.; Beiser, Leo; Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard

    1998-05-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. This display screen is 2 inches thick and has a matte-black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 200 milliwatt green solid- state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLPTM) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, we discuss the DLPTM chip, the opto-mechanical design and viewing angle characteristics.

  4. New-type planar field emission display with superaligned carbon nanotube yarn emitter.

    PubMed

    Liu, Peng; Wei, Yang; Liu, Kai; Liu, Liang; Jiang, Kaili; Fan, Shoushan

    2012-05-09

    With the superaligned carbon nanotube yarn as emitter, we have fabricated a 16 × 16 pixel field emission display prototype by adopting screen printing and laser cutting technologies. A planar diode field emission structure has been adopted. A very sharp carbon nanotube yarn tip emitter can be formed by laser cutting. Low voltage phosphor was coated on the anode electrodes also by screen printing. With a specially designed circuit, we have demonstrated the dynamic character display with the field emission display prototype. The emitter material and fabrication technologies in this paper are both easy to scale up to large areas.

  5. Integrated Optics for Planar imaging and Optical Signal Processing

    NASA Astrophysics Data System (ADS)

    Song, Qi

    Silicon photonics is a subject of growing interest with the potential of delivering planar electro-optical devices with chip scale integration. Silicon-on-insulator (SOI) technology has provided a marvelous platform for photonics industry because of its advantages in integration capability in CMOS circuit and countless nonlinearity applications in optical signal processing. This thesis is focused on the investigation of planar imaging techniques on SOI platform and potential applications in ultra-fast optical signal processing. In the first part, a general review and background introduction about integrated photonics circuit and planar imaging technique are provided. In chapter 2, planar imaging platform is realized by a silicon photodiode on SOI chip. Silicon photodiode on waveguide provides a high numerical aperture for an imaging transceiver pixel. An erbium doped Y2O3 particle is excited by 1550nm Laser and the fluorescent image is obtained with assistance of the scanning system. Fluorescence image is reconstructed by using image de-convolution technique. Under photovoltaic mode, we use an on-chip photodiode and an external PIN photodiode to realize similar resolution as 5μm. In chapter 3, a time stretching technique is developed to a spatial domain to realize a 2D imaging system as an ultrafast imaging tool. The system is evaluated based on theoretical calculation. The experimental results are shown for a verification of system capability to imaging a micron size particle or a finger print. Meanwhile, dynamic information for a moving object is also achieved by correlation algorithm. In chapter 4, the optical leaky wave antenna based on SOI waveguide has been utilized for imaging applications and extensive numerical studied has been conducted. and the theoretical explanation is supported by leaky wave theory. The highly directive radiation has been obtained from the broadside with 15.7 dB directivity and a 3dB beam width of ΔØ 3dB ≈ 1.65° in free space

  6. Design and investigation of properties of nanocrystalline diamond optical planar waveguides.

    PubMed

    Prajzler, Vaclav; Varga, Marian; Nekvindova, Pavla; Remes, Zdenek; Kromka, Alexander

    2013-04-08

    Diamond thin films have remarkable properties comparable with natural diamond. Because of these properties it is a very promising material for many various applications (sensors, heat sink, optical mirrors, chemical and radiation wear, cold cathodes, tissue engineering, etc.) In this paper we report about design, deposition and measurement of properties of optical planar waveguides fabricated from nanocrystalline diamond thin films. The nanocrystalline diamond planar waveguide was deposited by microwave plasma enhanced chemical vapor deposition and the structure of the deposited film was studied by scanning electron microscopy and Raman spectroscopy. The design of the presented planar waveguides was realized on the bases of modified dispersion equation and was schemed for 632.8 nm, 964 nm, 1 310 nm and 1 550 nm wavelengths. Waveguiding properties were examined by prism coupling technique and it was found that the diamond based planar optical element guided one fundamental mode for all measured wavelengths. Values of the refractive indices of our NCD thin film measured at various wavelengths were almost the same as those of natural diamond.

  7. Laser-driven polyplanar optic display

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veligdan, J.T.; Biscardi, C.; Brewster, C.

    1998-01-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. This display screen is 2 inches thick and has a matte-black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 200 milliwatt green solid-state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP) chip manufactured by Texas Instruments, Inc. A variablemore » astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, the authors discuss the DLP chip, the optomechanical design and viewing angle characteristics.« less

  8. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics.

    PubMed

    Cheng, Dewen; Wang, Yongtian; Xu, Chen; Song, Weitao; Jin, Guofan

    2014-08-25

    Small thickness and light weight are two important requirements for a see-through near-eye display which are achieved in this paper by using two advanced technologies: geometrical waveguide and freeform optics. A major problem associated with the geometrical waveguide is the stray light which can severely degrade the display quality. The causes and solutions to this problem are thoroughly studied. A mathematical model of the waveguide is established and a non-sequential ray tracing algorithm is developed, which enable us to carefully examine the stray light of the planar waveguide and explore a global searching method to find an optimum design with the least amount of stray light. A projection optics using freeform surfaces on a wedge shaped prism is also designed. The near-eye display integrating the projection optics and the waveguide has a field of view of 28°, an exit pupil diameter of 9.6mm and an exit pupil distance of 20mm. In our final design, the proportion of the stray light energy over the image output energy of the waveguide is reduced to 2%, the modulation transfer function values across the entire field of the eyepiece are above 0.5 at 30 line pairs/mm (lps/mm). A proof-of-concept prototype of the proposed geometrical waveguide near-eye display is developed and demonstrated.

  9. Planarized thick copper gate polycrystalline silicon thin film transistors for ultra-large AMOLED displays

    NASA Astrophysics Data System (ADS)

    Yun, Seung Jae; Lee, Yong Woo; Son, Se Wan; Byun, Chang Woo; Reddy, A. Mallikarjuna; Joo, Seung Ki

    2012-08-01

    A planarized thick copper (Cu) gate low temperature polycrystalline silicon (LTPS) thin film transistors (TFTs) is fabricated for ultra-large active-matrix organic light-emitting diode (AMOLED) displays. We introduce a damascene and chemical mechanical polishing process to embed a planarized Cu gate of 500 nm thickness into a trench and Si3N4/SiO2 multilayer gate insulator, to prevent the Cu gate from diffusing into the silicon (Si) layer at 550°C, and metal-induced lateral crystallization (MILC) technology to crystallize the amorphous Si layer. A poly-Si TFT with planarized thick Cu gate exhibits a field effect mobility of 5 cm2/Vs and a threshold voltage of -9 V, and a subthreshold swing (S) of 1.4 V/dec.

  10. Split image optical display

    DOEpatents

    Veligdan, James T.

    2005-05-31

    A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.

  11. Split image optical display

    DOEpatents

    Veligdan, James T [Manorville, NY

    2007-05-29

    A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.

  12. The hybrid photonic planar integrated receiver with a polymer optical waveguide

    NASA Astrophysics Data System (ADS)

    Busek, Karel; Jerábek, Vitezslav; Armas Arciniega, Julio; Prajzler, Václav

    2008-11-01

    This article describes design of the photonic receiver composed of the system polymer planar waveguides, InGaAs p-i-n photodiode and integrated HBT amplifier on a low loss composite substrate. The photonic receiver was the main part of the hybrid integrated microwave optoelectronic transceiver TRx (transciever TRx) for the optical networks PON (passive optical networks) with FTTH (fiber-to-the-home) topology. In this article are presented the research results of threedimensional field between output facet of a optical waveguide and p-i-n photodiode. In terms of our research, there was optimized the optical coupling among the facet waveguide and pi-n photodiode and the electrical coupling among p-i-n photodiode and input of HBT amplifier. The hybrid planar lightwave circuit (PLC) of the transceiver TRx will be composed from a two parts - polymer optical waveguide including VHGT filter section and a optoelectronic microwave section.

  13. Polyplanar optic display for cockpit application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veligdan, J.; Biscardi, C.; Brewster, C.

    1998-04-01

    The Polyplanar Optical Display (POD) is a high contrast display screen being developed for cockpit applications. This display screen is 2 inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a long lifetime, (10,000 hour), 200 mW green solid-state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments,more » Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design and speckle reduction, the authors discuss the electronic interfacing to the DLP{trademark} chip, the opto-mechanical design and viewing angle characteristics.« less

  14. Polyplanar optic display for cockpit application

    NASA Astrophysics Data System (ADS)

    Veligdan, James T.; Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Freibott, William C.

    1998-09-01

    The Polyplanar Optical Display (POD) is a high contrast display screen being developed for cockpit applications. This display screen is 2 inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a long lifetime, (10,000 hour), 200 mW green solid-state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLPTM) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design and speckle reduction, we discuss the electronic interfacing to the DLPTM chip, the opto-mechanical design and viewing angle characteristics.

  15. Optical sensor in planar configuration based on multimode interference

    NASA Astrophysics Data System (ADS)

    Blahut, Marek

    2017-08-01

    In the paper a numerical analysis of optical sensors based on multimode interference in planar one-dimensional step-index configuration is presented. The structure consists in single-mode input and output waveguides and multimode waveguide which guide only few modes. Material parameters discussed refer to a SU8 polymer waveguide on SiO2 substrate. The optical system described will be designed to the analysis of biological substances.

  16. Flow-graph approach for optical analysis of planar structures.

    PubMed

    Minkov, D

    1994-11-20

    The flow-graph approach (FGA) is applied to optical analysis of isotropic stratified planar structures (ISPS's) at inclined light incidence. Conditions for the presence of coherent and noncoherent light interaction within ISPS's are determined. Examples of the use of FGA for calculation of the transmission and the reflection of two-layer ISPS's for different types of light interaction are given. The advantages of the use of FGA for optical analysis of ISPS's are discussed.

  17. Planar waveguide microlenses for nonblocking photonic switches and optical interconnects

    NASA Astrophysics Data System (ADS)

    Glebov, Alexei L.; Huang, Lidu; Lee, Michael; Aoki, Shigenori; Yokouchi, Kishio

    2004-09-01

    Different types of planar waveguide microlenses are fabricated with PLC technologies from a variety of optical materials such as silica, photo-definable epoxy resins, and a number of other optical polymers. Hybrid microlenses are also fabricated in which the base of the lens, with a double concave gap, is formed from silica and the gap is filled with an optical polymer. The optimized lens structures provide the maximum coupling efficiencies between the input and output channels at distances up to 100 mm with a minimum channel pitch of 0.5-0.7 mm. Experimental and theoretical studies provide results on collimation and focusing properties of single and double microlenses made of silica, polymer, and silica/polymer. The evaluation of the temperature and wavelength effects on the collimation characteristics of the lenses demonstrate that the single lenses are more stable and, thus, more suitable for operations under varying conditions. Examples of the planar waveguide microlens applications are presented. In one application the microlens arrays are integrated in fast electrooptic photonic switching modules. In the other application the microlenses are embedded in the backplanes with nonblocking optical interconnects.

  18. Silicon Dioxide Planarization: Impacts on Optical Coatings for High Energy Laser

    NASA Astrophysics Data System (ADS)

    Day, Travis E.

    The work of this thesis is devoted to examining the impact of silicon dioxide (silica or SiO2) planarization on the optical properties and laser damage resistance of thin-film coatings. SiO2 planarization is a process to smooth out fluence limiting nodular defects within multilayer coatings for high-energy laser applications. Mitigating these defects will improve the power handling abilities and improve the lifetime of laser coatings. Presented here is a combination of work with the aim of evaluating the optical and laser damage properties of SiO2 planarization within single layers, bilayers, and multilayers. As compared to control (non-planarized) samples, a 2-3x increase in the thin-film absorption, which decreases with post-process annealing, was discovered for SiO2 planarized samples. This suggests that planarization creates oxygen-related defects which can be annealed out and little impurity implantation. Investigations of laser damage resistance were carried out at lambda = 1030nm and pulse durations of tau = 220ps and 9ps. The laser damage of single and bilayer coatings is known to be dependent on the substrate-coating interface and this is further evidenced within this thesis. This is because the effects of planarization are masked by the extrinsic laser damage processes within the single and bilayers. Slight change (< 15%) in the laser induced damage threshold (LIDT) at 220ps and 9ps was observed for planarized single and bilayers. Depending on coating design, post-process annealing was shown to increase the LIDT by 10% to 75% at 220ps and 10% to 45% at 9ps. Although the fused silica substrate surface LIDT was shown to follow the √tau pulse scaling law for pulses above 10ps, the single and bilayer coatings do not follow this pulse scaling. The divergence from the √tau pulse scaling on the coatings suggests a variation in the laser damage initiation mechanisms between 220ps and 9ps. Multilayer high-reflecting (HR) mirrors with varying planarization

  19. Optically reconfigurable patterning for control of the propagation characteristics of a planar waveguide

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Klittnick, A.; Clark, N. A.; Keller, P.

    2008-10-01

    We demonstrate an easily fabricated all-optical and freely reconfigurable method of controlling the propagating characteristics of the optic path within a planar waveguide with low insertion losses by employing the optical patterning of the refractive index of an erasable and rewriteable photosensitive liquid crystal polymer cladding layer.

  20. Design methodology for micro-discrete planar optics with minimum illumination loss for an extended source.

    PubMed

    Shim, Jongmyeong; Park, Changsu; Lee, Jinhyung; Kang, Shinill

    2016-08-08

    Recently, studies have examined techniques for modeling the light distribution of light-emitting diodes (LEDs) for various applications owing to their low power consumption, longevity, and light weight. The energy mapping technique, a design method that matches the energy distributions of an LED light source and target area, has been the focus of active research because of its design efficiency and accuracy. However, these studies have not considered the effects of the emitting area of the LED source. Therefore, there are limitations to the design accuracy for small, high-power applications with a short distance between the light source and optical system. A design method for compensating for the light distribution of an extended source after the initial optics design based on a point source was proposed to overcome such limits, but its time-consuming process and limited design accuracy with multiple iterations raised the need for a new design method that considers an extended source in the initial design stage. This study proposed a method for designing discrete planar optics that controls the light distribution and minimizes the optical loss with an extended source and verified the proposed method experimentally. First, the extended source was modeled theoretically, and a design method for discrete planar optics with the optimum groove angle through energy mapping was proposed. To verify the design method, design for the discrete planar optics was achieved for applications in illumination for LED flash. In addition, discrete planar optics for LED illuminance were designed and fabricated to create a uniform illuminance distribution. Optical characterization of these structures showed that the design was optimal; i.e., we plotted the optical losses as a function of the groove angle, and found a clear minimum. Simulations and measurements showed that an efficient optical design was achieved for an extended source.

  1. A planar chiral meta-surface for optical vortex generation and focusing

    PubMed Central

    Ma, Xiaoliang; Pu, Mingbo; Li, Xiong; Huang, Cheng; Wang, Yanqin; Pan, Wenbo; Zhao, Bo; Cui, Jianhua; Wang, Changtao; Zhao, ZeYu; Luo, Xiangang

    2015-01-01

    Data capacity is rapidly reaching its limit in modern optical communications. Optical vortex has been explored to enhance the data capacity for its extra degree of freedom of angular momentum. In traditional means, optical vortices are generated using space light modulators or spiral phase plates, which would sharply decrease the integration of optical communication systems. Here we experimentally demonstrate a planar chiral antenna array to produce optical vortex from a circularly polarized light. Furthermore, the antenna array has the ability to focus the incident light into point, which greatly increases the power intensity of the generated optical vortex. This chiral antenna array may have potential application in highly integrated optical communication systems. PMID:25988213

  2. Interactive display system having a matrix optical detector

    DOEpatents

    Veligdan, James T.; DeSanto, Leonard

    2007-01-23

    A display system includes a waveguide optical panel having an inlet face and an opposite outlet face. An image beam is projected across the inlet face laterally and transversely for display on the outlet face. An optical detector including a matrix of detector elements is optically aligned with the inlet face for detecting a corresponding lateral and transverse position of an inbound light spot on the outlet face.

  3. Polyplanar optical display electronics

    NASA Astrophysics Data System (ADS)

    DeSanto, Leonard; Biscardi, Cyrus

    1997-07-01

    The polyplanar optical display (POD) is a unique display screen which can be used with any projection source. The prototype ten inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a 100 milliwatt green solid- state laser at 532 nm as its light source. To produce real- time video, the laser light is being modulated by a digital light processing (DLP) chip manufactured by Texas Instruments. In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the digital micromirror device (DMD) circuit board is removed from the Texas Instruments DLP light engine assembly. Due to the compact architecture of the projection system within the display chassis, the DMD chip is operated remotely from the Texas Instruments circuit board. We discuss the operation of the DMD divorced from the light engine and the interfacing of the DMD board with various video formats including the format specific to the B-52 aircraft. A brief discussion of the electronics required to drive the laser is also presented.

  4. Optical absorption in planar graphene superlattice: The role of structural parameters

    NASA Astrophysics Data System (ADS)

    Azadi, L.; Shojaei, S.

    2018-04-01

    We theoretically studied the optically driven interband transitions in a planar graphene superlattices (PGSL) formed by patterning graphene sheet on laterally hetrostructured substrate as Sio2/hBN. A tunable optical transitions between minibands is observed based on engineering structural parameters. We derive analytically expression for optical absorption from two-band model. Considerable optical absorption is obtained for different ratios between widths of heterostructured substrate and is explained analytically from the view point of wavefunction engineering and miniband dispersion, in details. The role of different statuses of polarization as circular and linear are considered. Our study paves a way toward the control of optical properties of PGSLs to be implemented in optoelectronics devices.

  5. Micromachined mirrors for raster-scanning displays and optical fiber switches

    NASA Astrophysics Data System (ADS)

    Hagelin, Paul Merritt

    Micromachines and micro-optics have the potential to shrink the size and cost of free-space optical systems, enabling a new generation of high-performance, compact projection displays and telecommunications equipment. In raster-scanning displays and optical fiber switches, a free-space optical beam can interact with multiple tilt- up micromirrors fabricated on a single substrate. The size, rotation angle, and flatness of the mirror surfaces determine the number of pixels in a raster-display or ports in an optical switch. Single-chip and two-chip optical raster display systems demonstrate static mirror curvature correction, an integrated electronic driver board, and dynamic micromirror performance. Correction for curvature caused by a stress gradient in the micromirror leads to resolution of 102 by 119 pixels in the single-chip display. The optical design of the two-chip display features in-situ mirror curvature measurement and adjustable image magnification with a single output lens. An electronic driver board synchronizes modulation of the optical source with micromirror actuation for the display of images. Dynamic off-axis mirror motion is shown to have minimal influence on resolution. The confocal switch, a free-space optical fiber cross- connect, incorporates micromirrors having a design similar to the image-refresh scanner. Two micromirror arrays redirect optical beams from an input fiber array to the output fibers. The switch architecture supports simultaneous switching of multiple wavelength channels. A 2x2 switch configuration, using single-mode optical fiber at 1550 mn, is demonstrated with insertion loss of -4.2 dB and cross-talk of -50.5 dB. The micromirrors have sufficient size and angular range for scaling to a 32x32 cross-connect switch that has low insertion-loss and low cross-talk.

  6. Hybrid sol-gel planar optics for astronomy.

    PubMed

    Ghasempour, A; Leite, A M P; Reynaud, F; Marques, P V S; Garcia, P J V; Alexandre, D; Moreira, P J

    2009-02-02

    Hybrid sol-gel planar optics devices for astronomy are produced for the first time. This material system can operate from the visible (0.5 microm) up to the edge of astronomical J-band (1.4 microm). The design, fabrication and characterization results of a coaxial three beam combiner are given as an example. Fringe contrasts above 94% are obtained with a source with spectral bandwidth of 50 nm. These results demonstrate that hybrid sol-gel technology can produce devices with high quality, opening the possibility of rapid prototyping of new designs and concepts for astronomical applications.

  7. Polyplanar optical display electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSanto, L.; Biscardi, C.

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a 100 milliwatt green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by amore » Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments. In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMD{trademark}) circuit board is removed from the Texas Instruments DLP light engine assembly. Due to the compact architecture of the projection system within the display chassis, the DMD{trademark} chip is operated remotely from the Texas Instruments circuit board. The authors discuss the operation of the DMD{trademark} divorced from the light engine and the interfacing of the DMD{trademark} board with various video formats (CVBS, Y/C or S-video and RGB) including the format specific to the B-52 aircraft. A brief discussion of the electronics required to drive the laser is also presented.« less

  8. Optical coupling of bare optoelectronic components and flexographically printed polymer waveguides in planar optronic systems

    NASA Astrophysics Data System (ADS)

    Wang, Yixiao; Wolfer, Tim; Lange, Alex; Overmeyer, Ludger

    2016-05-01

    Large scale, planar optronic systems allowing spatially distributed functionalities can be well used in diverse sensor networks, such as for monitoring the environment by measuring various physical quantities in medicine or aeronautics. In these systems, mechanically flexible and optically transparent polymeric foils, e.g. polymethyl methacrylate (PMMA) and polyethylene terephthalate (PET), are employed as carrier materials. A benefit of using these materials is their low cost. The optical interconnections from light sources to light transmission structures in planar optronic systems occupy a pivotal position for the sensing functions. As light sources, we employ the optoelectronic components, such as edgeemitting laser diodes, in form of bare chips, since their extremely small structures facilitate a high integration compactness and ensure sufficient system flexibility. Flexographically printed polymer optical waveguides are deployed as light guiding structures for short-distance communication in planar optronic systems. Printing processes are utilized for this generation of waveguides to achieve a cost-efficient large scale and high-throughput production. In order to attain a high-functional optronic system for sensing applications, one of the most essential prerequisites is the high coupling efficiency between the light sources and the waveguides. Therefore, in this work, we focus on the multimode polymer waveguide with a parabolic cross-section and investigate its optical coupling with the bare laser diode. We establish the geometrical model of the alignment based on the previous works on the optodic bonding of bare laser diodes and the fabrication process of polymer waveguides with consideration of various parameters, such as the beam profile of the laser diode, the employed polymer properties of the waveguides as well as the carrier substrates etc. Accordingly, the optical coupling of the bare laser diodes and the polymer waveguides was simulated

  9. A compact eyetracked optical see-through head-mounted display

    NASA Astrophysics Data System (ADS)

    Hua, Hong; Gao, Chunyu

    2012-03-01

    An eye-tracked head-mounted display (ET-HMD) system is able to display virtual images as a classical HMD does, while additionally tracking the gaze direction of the user. There is ample evidence that a fully-integrated ETHMD system offers multi-fold benefits, not only to fundamental scientific research but also to emerging applications of such technology. For instance eyetracking capability in HMDs adds a very valuable tool and objective metric for scientists to quantitatively assess user interaction with 3D environments and investigate the effectiveness of various 3D visualization technologies for various specific tasks including training, education, and augmented cognition tasks. In this paper, we present an innovative optical approach to the design of an optical see-through ET-HMD system based on freeform optical technology and an innovative optical scheme that uniquely combines the display optics with the eye imaging optics. A preliminary design of the described ET-HMD system will be presented.

  10. Black optic display

    DOEpatents

    Veligdan, James T.

    1997-01-01

    An optical display includes a plurality of stacked optical waveguides having first and second opposite ends collectively defining an image input face and an image screen, respectively, with the screen being oblique to the input face. Each of the waveguides includes a transparent core bound by a cladding layer having a lower index of refraction for effecting internal reflection of image light transmitted into the input face to project an image on the screen, with each of the cladding layers including a cladding cap integrally joined thereto at the waveguide second ends. Each of the cores is beveled at the waveguide second end so that the cladding cap is viewable through the transparent core. Each of the cladding caps is black for absorbing external ambient light incident upon the screen for improving contrast of the image projected internally on the screen.

  11. Design and analysis of optical waveguide elements in planar geometry

    NASA Astrophysics Data System (ADS)

    Mirkov, Mirko Georgiev

    1998-10-01

    This dissertation presents the theoretical analysis and practical design considerations for planar optical waveguide devices. The analysis takes into account both transverse dimensions of the waveguides and is based on the supermode theory combined with the resonance method for determination of the propagation constants and field profiles of the supermodes. An improved accuracy has been achieved by including the corrections due to the fields in the corner regions of the waveguides using perturbation theory. The following two classes of devices have been analyzed in detail. Curved rectangular waveguides are a common element in an integrated optics circuit. The theoretical analysis in this work shows that some commonly used approximations for determination of the propagation constants of the quasi-modes of the bent waveguides are not necessary. Specifically the imaginary part of the mode propagation constant, which determines the power loss, is calculated exactly using the resonance method, combined with a two- dimensional optimization routine for determination of the real and the imaginary parts of the propagation constants. Subsequently, the results are corrected for the effects of the fields in the corner regions. The latter corrections have not been previously computed and are shown to be significant. Power splitters are another common element of an integrated optical circuit. A new 'bend-free' splitter is suggested and analyzed. The new splitter design consists of only straight parallel channels, which considerably simplify both the analysis and the fabrication of the device. It is shown that a single design parameter determines the power splitting ratio, which can take any given value. The intrinsic power loss in the proposed splitter is minimal, which makes it an attractive alternative to the conventional Y-splitters. The accurate methods of analysis of planar optical waveguides developed in the present work can easily be applied to other integrated optic

  12. Gain determination of optical active doped planar waveguides

    NASA Astrophysics Data System (ADS)

    Šmejcký, J.; Jeřábek, V.; Nekvindová, P.

    2017-12-01

    This paper summarizes the results of the gain transmission characteristics measurement carried out on the new ion exchange Ag+ - Na+ optical Er3+ and Yb3+ doped active planar waveguides realized on a silica based glass substrates. The results were used for optimization of the precursor concentration in the glass substrates. The gain measurements were performed by the time domain method using a pulse generator, as well as broadband measurement method using supercontinuum optical source in the wavelength domain. Both methods were compared and the results were graphically processed. It has been confirmed that pulse method is useful as it provides a very accurate measurement of the gain - pumping power characteristics for one wavelength. In the case of radiation spectral characteristics, our measurement exactly determined the maximum gain wavelength bandwidth of the active waveguide. The spectral characteristics of the pumped and unpumped waveguides were compared. The gain parameters of the reported silica-based glasses can be compared with the phosphate-based parameters, typically used for optical active devices application.

  13. Two solvable problems of planar geometrical optics.

    PubMed

    Borghero, Francesco; Bozis, George

    2006-12-01

    In the framework of geometrical optics we consider a two-dimensional transparent inhomogeneous isotropic medium (dispersive or not). We show that (i) for any family belonging to a certain class of planar monoparametric families of monochromatic light rays given in the form f(x,y)=c of any definite color and satisfying a differential condition, all the refractive index profiles n=n(x,y) allowing for the creation of the given family can be found analytically (inverse problem) and that (ii) for any member of a class of two-dimensional refractive index profiles n=n(x,y) satisfying a differential condition, all the compatible families of light rays can be found analytically (direct problem). We present appropriate examples.

  14. Ink-jet printed fluorescent materials as light sources for planar optical waveguides on polymer foils

    NASA Astrophysics Data System (ADS)

    Bollgruen, Patrick; Gleissner, Uwe; Wolfer, Tim; Megnin, Christof; Mager, Dario; Overmeyer, Ludger; Korvink, Jan G.; Hanemann, Thomas

    2016-10-01

    Polymer-based optical sensor networks on foils (planar optronic systems) are a promising research field, but it can be challenging to supply them with light. We present a solvent-free, ink-jet printable material system with optically active substances to create planar light sources for these networks. The ink is based on a UV-curable monomer, the fluorescent agents are EuDBMPhen or 9,10-diphenylantracene, which fluoresce at 612 or 430 nm, respectively. We demonstrate the application as light source by printing a small area of fluorescent material on an optical waveguide fabricated by flexographic printing on PMMA foil, resulting in a simple polymer-optical device fabricated entirely by additive deposition techniques. When excited by a 405-nm laser of 10 mW, the emitted light couples into the waveguide and appears at the end of the waveguide. In comparison to conventional light sources, the intensity is weak but could be detected with a photodiode power sensor. In return, the concept has the advantage of being completely independent of any electrical elements or external cable connections.

  15. Fiber optic engine for micro projection display.

    PubMed

    Arabi, Hesam Edin; An, Sohee; Oh, Kyunghwan

    2010-03-01

    A novel compact optical engine for a micro projector display is experimentally demonstrated, which is composed of RGB light sources, a tapered 3 x 1 Fiber Optic Color Synthesizer (FOCS) along with a fiberized ball-lens, and a two dimensional micro electromechanical scanning mirror. In the proposed optical engine, we successfully employed an all-fiber beam shaping technique combining optical fiber taper and fiberized ball lens that can render a narrow beam and enhance the resolution of the screened image in the far field. Optical performances of the proposed device assembly are investigated in terms of power loss, collimating strength of the collimator assembly, and color gamut of the output.

  16. A flexible optically re-writable color liquid crystal display

    NASA Astrophysics Data System (ADS)

    Zhang, Yihong; Sun, Jiatong; Liu, Yang; Shang, Jianhua; Liu, Hao; Liu, Huashan; Gong, Xiaohui; Chigrinov, Vladimir; Kowk, Hoi Sing

    2018-03-01

    It is very difficult to make a liquid crystal display (LCD) that is flexible. However, for an optically re-writable LCD (ORWLCD), only the spacers and the substrates need to be flexible because the driving unit and the display unit are separate and there are no electronics in the display part of ORWLCD. In this paper, three flexible-spacer methods are proposed to achieve this goal. A cholesteric liquid crystal colored mirror with a polarizer behind it is used as the colored reflective backboard of an ORWLCD. Polyethersulfone substrates and flexible spacers are used to make the optically re-writable cell insensitive to mechanical force.

  17. Planar dielectric waveguides in rotation are optical fibers: comparison with the classical model.

    PubMed

    Peña García, Antonio; Pérez-Ocón, Francisco; Jiménez, José Ramón

    2008-01-21

    A novel and simpler method to calculate the main parameters in fiber optics is presented. This method is based in a planar dielectric waveguide in rotation and, as an example, it is applied to calculate the turning points and the inner caustic in an optical fiber with a parabolic refractive index. It is shown that the solution found using this method agrees with the standard (and more complex) method, whose solutions for these points are also summarized in this paper.

  18. Electro-optical switching and memory display device

    DOEpatents

    Skotheim, T.A.; O'Grady, W.E.; Linkous, C.A.

    1983-12-29

    An electro-optical display device having a housing with wall means including one transparent wall and at least one other wall. Counter electrodes are positioned on the transparent wall and display electrodes are positioned on the other wall with both electrodes in electrically conductive relationship with an electrolyte. Circuits means are connected to the display and counter electrodes to apply different predetermined control potentials between them. The display electrodes are covered with a thin electrically conductive polymer film that is characterized according to the invention by having embedded in it pigment molecules as counter ions. The display device is operable to be switched to a plurality of different visual color states at an exceptionally rapid switching rate while each of the color states is characterized by possessing good color intensity and definition.

  19. Electro-optical switching and memory display device

    DOEpatents

    Skotheim, Terje A.; O'Grady, William E.; Linkous, Clovis A.

    1986-01-01

    An electro-optical display device having a housing with wall means including one transparent wall and at least one other wall. Counter electrodes are positioned on the transparent wall and display electrodes are positioned on the other wall with both electrodes in electrically conductive relationship with an electrolyte. Circuit means are connected to the display and counter electrodes to apply different predetermined control potentials between them. The display electrodes are covered with a thin electrically conductive polymer film that is characterized according to the invention by having embedded in it pigment molecules as counter ions. The display device is operable to be switched to a plurality of different visual color states at an exceptionally rapid switching rate while each of the color states is characterized by possessing good color intensity and definition.

  20. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2010-04-13

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  1. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2005-03-08

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  2. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2015-06-23

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  3. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C; Alivisatos, A. Paul

    2014-02-11

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  4. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, Paul A.

    2015-11-10

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  5. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon [Pinole, CA; Schlamp, Michael C [Plainsboro, NJ; Alivisatos, A Paul [Oakland, CA

    2011-09-27

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  6. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlam, Michael C; Alivisatos, A. Paul

    2014-03-25

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  7. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2017-06-06

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  8. Applied optics. Multiwavelength achromatic metasurfaces by dispersive phase compensation.

    PubMed

    Aieta, Francesco; Kats, Mikhail A; Genevet, Patrice; Capasso, Federico

    2015-03-20

    The replacement of bulk refractive optical elements with diffractive planar components enables the miniaturization of optical systems. However, diffractive optics suffers from large chromatic aberrations due to the dispersion of the phase accumulated by light during propagation. We show that this limitation can be overcome with an engineered wavelength-dependent phase shift imparted by a metasurface, and we demonstrate a design that deflects three wavelengths by the same angle. A planar lens without chromatic aberrations at three wavelengths is also presented. Our designs are based on low-loss dielectric resonators, which introduce a dense spectrum of optical modes to enable dispersive phase compensation. The suppression of chromatic aberrations in metasurface-based planar photonics will find applications in lightweight collimators for displays, as well as chromatically corrected imaging systems. Copyright © 2015, American Association for the Advancement of Science.

  9. Planar and finger-shaped optical tactile sensors for robotic applications

    NASA Technical Reports Server (NTRS)

    Begej, Stefan

    1988-01-01

    Progress is described regarding the development of optical tactile sensors specifically designed for application to dexterous robotics. These sensors operate on optical principles involving the frustration of total internal reflection at a waveguide/elastomer interface and produce a grey-scale tactile image that represents the normal (vertical) forces of contact. The first tactile sensor discussed is a compact, 32 x 32 planar sensor array intended for mounting on a parallel-jaw gripper. Optical fibers were employed to convey the tactile image to a CCD camera and microprocessor-based image analysis system. The second sensor had the shape and size of a human fingertip and was designed for a dexterous robotic hand. It contained 256 sensing sites (taxels) distributed in a dual-density pattern that included a tactile fovea near the tip measuring 13 x 13 mm and containing 169 taxels. The design and construction details of these tactile sensors are presented, in addition to photographs of tactile imprints.

  10. The use of optical waveguides in head up display (HUD) applications

    NASA Astrophysics Data System (ADS)

    Homan, Malcolm

    2013-06-01

    The application of optical waveguides to Head Up Displays (HUD) is an enabling technology which solves the critical issues of volume reduction (including cockpit intrusion) and mass reduction in an affordable product which retains the high performance optical capabilities associated with today's generation of digital display based HUDs. Improved operability and pilot comfort is achieved regardless of the installation by virtue of the intrinsic properties of optical waveguides and this has enabled BAE Systems Electronic Systems to develop two distinct product streams for glareshield and overhead HUD installations respectively. This paper addresses the design drivers behind the development of the next generation of Head Up Displays and their compatibility with evolving cockpit architectures and structures. The implementation of large scale optical waveguide combiners capable of matching and exceeding the display performances normally only associated with current digital display sourced HUDs has enabled BAE Systems Electronic Systems to solve the volume and installation challenges of the latest military and civil cockpits with it's LiteHUD® technology. Glareshield mounted waveguide based HUDs are compatible with the trend towards the addition of Large Area Displays (LAD) in place of the traditional multiple Head Down Displays (HDD) within military fast jet cockpits. They use an "indirect view" variant of the display which allows the amalgamation of high resolution digital display devices with the inherently small volume and low mass of the waveguide optics. This is then viewed using the more traditional technology of a conventional HUD combiner. This successful combination of technologies has resulted in the LPHUD product which is specifically designed by BAE Systems Electronic Systems to provide an ultra-low profile HUD which can be installed behind a LAD; still providing the level of performance that is at least equivalent to that of a conventional large volume

  11. Towards do-it-yourself planar optical components using plasmon-assisted etching.

    PubMed

    Chen, Hao; Bhuiya, Abdul M; Ding, Qing; Johnson, Harley T; Toussaint, Kimani C

    2016-01-27

    In recent years, the push to foster increased technological innovation and basic scientific and engineering interest from the broadest sectors of society has helped to accelerate the development of do-it-yourself (DIY) components, particularly those related to low-cost microcontroller boards. The attraction with DIY kits is the simplification of the intervening steps going from basic design to fabrication, albeit typically at the expense of quality. We present herein plasmon-assisted etching as an approach to extend the DIY theme to optics, specifically the table-top fabrication of planar optical components. By operating in the design space between metasurfaces and traditional flat optical components, we employ arrays of Au pillar-supported bowtie nanoantennas as a template structure. To demonstrate, we fabricate a Fresnel zone plate, diffraction grating and holographic mode converter--all using the same template. Applications to nanotweezers and fabricating heterogeneous nanoantennas are also shown.

  12. Towards do-it-yourself planar optical components using plasmon-assisted etching

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Bhuiya, Abdul M.; Ding, Qing; Johnson, Harley T.; Toussaint, Kimani C., Jr.

    2016-01-01

    In recent years, the push to foster increased technological innovation and basic scientific and engineering interest from the broadest sectors of society has helped to accelerate the development of do-it-yourself (DIY) components, particularly those related to low-cost microcontroller boards. The attraction with DIY kits is the simplification of the intervening steps going from basic design to fabrication, albeit typically at the expense of quality. We present herein plasmon-assisted etching as an approach to extend the DIY theme to optics, specifically the table-top fabrication of planar optical components. By operating in the design space between metasurfaces and traditional flat optical components, we employ arrays of Au pillar-supported bowtie nanoantennas as a template structure. To demonstrate, we fabricate a Fresnel zone plate, diffraction grating and holographic mode converter--all using the same template. Applications to nanotweezers and fabricating heterogeneous nanoantennas are also shown.

  13. Towards do-it-yourself planar optical components using plasmon-assisted etching

    PubMed Central

    Chen, Hao; Bhuiya, Abdul M.; Ding, Qing; Johnson, Harley T.; Toussaint Jr, Kimani C.

    2016-01-01

    In recent years, the push to foster increased technological innovation and basic scientific and engineering interest from the broadest sectors of society has helped to accelerate the development of do-it-yourself (DIY) components, particularly those related to low-cost microcontroller boards. The attraction with DIY kits is the simplification of the intervening steps going from basic design to fabrication, albeit typically at the expense of quality. We present herein plasmon-assisted etching as an approach to extend the DIY theme to optics, specifically the table-top fabrication of planar optical components. By operating in the design space between metasurfaces and traditional flat optical components, we employ arrays of Au pillar-supported bowtie nanoantennas as a template structure. To demonstrate, we fabricate a Fresnel zone plate, diffraction grating and holographic mode converter—all using the same template. Applications to nanotweezers and fabricating heterogeneous nanoantennas are also shown. PMID:26814026

  14. Electro-Optical Characterization of Bistable Smectic A Liquid Crystal Displays

    NASA Astrophysics Data System (ADS)

    Buyuktanir, Ebru Aylin

    My dissertation focuses the characterization and optimization of the electro-optical properties of smectic A (SmA) based liquid crystal (LC) displays. I present the development of robust and flexible bistable SmA LC displays utilizing polymer dispersed liquid crystal (PDLC) technology. The SmA PDLC displays produced on plastic substrates present electrically reversible memory, high contrast ratio, paper-like sunlight readability, and wide viewing angle characteristics. In order to optimize the SmA PDLC display, I investigated polymerization conditions, such as polymer concentration effect, polymerization temperature, and UV-light intensity variations. I characterized the electro-optical responses-such as static-response, time-response, threshold characteristics, and contrast ratio values' of the optimized SmA PDLC display and compared them to those of the pure SmA LC. The best electro-optical performance of SmA PDLC formulation was obtained using the combination of low mW/cm 2 and high mW/cm2 UV-light curing intensity. The contrast ratio of the optimum SmA PDLC at a 5o collection angle was 83% of that of the pure SmA material on plastic substrates. I fabricated 2.5 x 2.5 in., 4 x 4 in., and 6 x 6 in. sized monochrome flexible SmA PDLC displays, as well as red, yellow, and fluorescent dyes colored SmA PDLC displays on plastic substrates. The electro-optic performance of the bistable SmA LC display consisting of a patterned field-induced polymer wall infrastructure was also studied and compared to those of pure SmA material. I found that the contrast ratio of the SmA LC encapsulated between polymer walls was much greater than that of the SmA PDLC system, approaching the contrast ratio value of the pure SmA material. I also improved the electro-optical characteristics of bistable SmA LC displays by adding ferroparticles into the system. Finally, I illustrated the unique capabilities of polarized confocal Raman microscopy (CRM) to resolve the orientational order of Sm

  15. Optical see-through head-mounted display with occlusion capability

    NASA Astrophysics Data System (ADS)

    Gao, Chunyu; Lin, Yuxiang; Hua, Hong

    2013-05-01

    Lack of mutual occlusion capability between computer-rendered and real objects is one of fundamental problems for most existing optical see-through head-mounted displays (OST-HMD). Without the proper occlusion management, the virtual view through an OST-HMD appears "ghost-like", floating in the real world. To address this challenge, we have developed an innovative optical scheme that uniquely combines the eyepiece and see-through relay optics to achieve an occlusion-capable OST-HMD system with a very compelling form factor and high optical performances. The proposed display system was based on emerging freeform optical design technologies and was designed for highly efficient liquid crystal on silicon (LCoS) type spatial light modulator (SLM) and bright Organic LED (OLED) microdisplay. The proposed display technology was capable of working in both indoor and outdoor environments. Our current design offered a 1280x1024 color resolution based on 0.8" microdisplay and SLM. The MTF values for the majority of the fields at the cutoff frequency of 40lps/mm, which is determined by the pixel size of the microdisplay, are better than 15%. The design achieved a diagonal FOV of 40 degrees, 31.7 degrees horizontally and 25.6 degrees vertically, an exit pupil diameter of 8mm (non-vignetted), and an eye clearance of 18mm. The optics weights about 20 grams per eye. Our proposed occlusion capable OST-HMD system can easily find myriads of applications in various military and commercial sectors such as military training, gaming and entertainment.

  16. Spatial calibration of an optical see-through head mounted display

    PubMed Central

    Gilson, Stuart J.; Fitzgibbon, Andrew W.; Glennerster, Andrew

    2010-01-01

    We present here a method for calibrating an optical see-through Head Mounted Display (HMD) using techniques usually applied to camera calibration (photogrammetry). Using a camera placed inside the HMD to take pictures simultaneously of a tracked object and features in the HMD display, we could exploit established camera calibration techniques to recover both the intrinsic and extrinsic properties of the HMD (width, height, focal length, optic centre and principal ray of the display). Our method gives low re-projection errors and, unlike existing methods, involves no time-consuming and error-prone human measurements, nor any prior estimates about the HMD geometry. PMID:18599125

  17. Holographic optical assembly and photopolymerized joining of planar microspheres

    DOE PAGES

    Shaw, L. A.; Chizari, S.; Panas, R. M.; ...

    2016-07-27

    The aim of this research is to demonstrate a holographically driven photopolymerization process for joining colloidal particles to create planar microstructures fixed to a substrate, which can be monitored with real-time measurement. Holographic optical tweezers (HOT) have been used to arrange arrays of microparticles prior to this work; here we introduce a new photopolymerization process for rapidly joining simultaneously handled microspheres in a plane. Additionally, we demonstrate a new process control technique for efficiently identifying when particles have been successfully joined by measuring a sufficient reduction in the particles’ Brownian motion. Furthermore, this technique and our demonstrated joining approach enablemore » HOT technology to take critical steps toward automated additive fabrication of microstructures.« less

  18. Optical MEMS platform for low-cost on-chip integration of planar light circuits and optical switching

    NASA Astrophysics Data System (ADS)

    German, Kristine A.; Kubby, Joel; Chen, Jingkuang; Diehl, James; Feinberg, Kathleen; Gulvin, Peter; Herko, Larry; Jia, Nancy; Lin, Pinyen; Liu, Xueyuan; Ma, Jun; Meyers, John; Nystrom, Peter; Wang, Yao Rong

    2004-07-01

    Xerox Corporation has developed a technology platform for on-chip integration of latching MEMS optical waveguide switches and Planar Light Circuit (PLC) components using a Silicon On Insulator (SOI) based process. To illustrate the current state of this new technology platform, working prototypes of a Reconfigurable Optical Add/Drop Multiplexer (ROADM) and a l-router will be presented along with details of the integrated latching MEMS optical switches. On-chip integration of optical switches and PLCs can greatly reduce the size, manufacturing cost and operating cost of multi-component optical equipment. It is anticipated that low-cost, low-overhead optical network products will accelerate the migration of functions and services from high-cost long-haul markets to price sensitive markets, including networks for metropolitan areas and fiber to the home. Compared to the more common silica-on-silicon PLC technology, the high index of refraction of silicon waveguides created in the SOI device layer enables miniaturization of optical components, thereby increasing yield and decreasing cost projections. The latching SOI MEMS switches feature moving waveguides, and are advantaged across multiple attributes relative to alternative switching technologies, such as thermal optical switches and polymer switches. The SOI process employed was jointly developed under the auspice of the NIST APT program in partnership with Coventor, Corning IntelliSense Corp., and MicroScan Systems to enable fabrication of a broad range of free space and guided wave MicroOptoElectroMechanical Systems (MOEMS).

  19. Three-dimensional crossbar interconnection using planar-integrated free-space optics and digital mirror-device

    NASA Astrophysics Data System (ADS)

    Lohmann, U.; Jahns, J.; Limmer, S.; Fey, D.

    2011-01-01

    We consider the implementation of a dynamic crossbar interconnect using planar-integrated free-space optics (PIFSO) and a digital mirror-device™ (DMD). Because of the 3D nature of free-space optics, this approach is able to solve geometrical problems with crossings of the signal paths that occur in waveguide optical and electrical interconnection, especially for large number of connections. The DMD device allows one to route the signals dynamically. Due to the large number of individual mirror elements in the DMD, different optical path configurations are possible, thus offering the chance for optimizing the network configuration. The optimization is achieved by using an evolutionary algorithm for finding best values for a skewless parallel interconnection. Here, we present results and experimental examples for the use of the PIFSO/DMD-setup.

  20. Influence of plasmon destructive interferences on optical properties of gold planar quadrumers.

    PubMed

    Rahmani, M; Tahmasebi, T; Lin, Y; Lukiyanchuk, B; Liew, T Y F; Hong, M H

    2011-06-17

    Arrays of planar symmetric gold quadrumers consisting of a central nano-disc surrounded by three similar nano-discs belonging to the D(3h) point group were designed and fabricated. Since the geometrical configuration of quadrumers is the same as planar trigonal molecules, nano-discs can play the roles of artificial atoms to study the coupling trends among them. The plasmonic properties of the nano-disc structures are investigated by reflection spectrum measurement and finite-difference time-domain calculation with good agreement. Plasmon interaction among the nano-discs is also studied via a mass-spring coupled oscillator model. A pronounced Fano resonance (FR) is observed for the fabricated nano-discs with inter-disk gaps of around 18 nm during light irradiation at normal incidence. Although the obtained FR is independent of the excitation polarization, the near-field energy spatial distribution can be flexibly tuned by the polarization direction. This has potential applications in nano-lithography, optical switching and nonlinear spectroscopy.

  1. Enhanced sensitivity for optical loss measurement in planar thin-films (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yuan, Hua-Kang

    2016-09-01

    An organic-inorganic hybrid material benefits from processing advantages of organics and high refractive indices of inorganics. We focus on a titanium oxide hydrate system combined with common bulk polymers. In particular, we target thin-film structures of a few microns in thickness. Traditional Beer-Lambert approaches for measuring optical losses can only provide an upper limit estimate. This sensitivity is highly limited when considering the low-losses required for mid-range optical applications, on the order of 0.1 cm-1. For intensity based measurements, improving the sensitivity requires an increase in the optical path length. Instead, a new sensitive technique suitable for simple planar thin films is required. A number of systems were modelled to measure optical losses in films of 1 micron thick. The presented techniques utilise evanescent waves and total internal reflection to increase optical path length through the material. It was found that a new way of using prism coupling provides the greatest improvement in sensitivity. In keeping the requirements on the material simple, this method for measuring loss is well suited to any future developments of new materials in thin-film structures.

  2. Optical waveguide loop for planar trapping of blood cells and microspheres

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Balpreet S.; Hellesø, Olav G.

    2013-09-01

    The evanescent field from a waveguide can be used to trap and propel a particle. An optical waveguide loop with an intentional gap at the center is used for planar transport and stable trapping of particles. The waveguide acts as a conveyor belt to trap and deliver spheres towards the gap. At the gap, the counter-diverging light fields hold the sphere at a fixed position. Numerical simulation based on the finite element method was performed in three dimensions using a computer cluster. The field distribution and optical forces for rib and strip waveguide designs are compared and discussed. The optical force on a single particle was computed for various positions of the particle in the gap. Simulation predicted stable trapping of particles in the gap. Depending on the gap separation (2-50 μm) a single or multiple spheres and red blood cells were trapped at the gap. Waveguides were made of tantalum pentaoxide material. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip.

  3. Planar metasurface retroreflector

    NASA Astrophysics Data System (ADS)

    Arbabi, Amir; Arbabi, Ehsan; Horie, Yu; Kamali, Seyedeh Mahsa; Faraon, Andrei

    2017-07-01

    Metasurfaces are two-dimensional arrangements of subwavelength scatterers that control the propagation of optical waves. Here, we show that cascaded metasurfaces, each performing a predefined mathematical transformation, provide a new optical design framework that enables new functionalities not yet demonstrated with single metasurfaces. Specifically, we demonstrate that retroreflection can be achieved with two vertically stacked planar metasurfaces, the first performing a spatial Fourier transform and its inverse, and the second imparting a spatially varying momentum to the Fourier transform of the incident light. Using this concept, we fabricate and test a planar monolithic near-infrared retroreflector composed of two layers of silicon nanoposts, which reflects light along its incident direction with a normal incidence efficiency of 78% and a large half-power field of view of 60°. The metasurface retroreflector demonstrates the potential of cascaded metasurfaces for implementing novel high-performance components, and enables low-power and low-weight passive optical transmitters.

  4. Optical simulation of quantum algorithms using programmable liquid-crystal displays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puentes, Graciana; La Mela, Cecilia; Ledesma, Silvia

    2004-04-01

    We present a scheme to perform an all optical simulation of quantum algorithms and maps. The main components are lenses to efficiently implement the Fourier transform and programmable liquid-crystal displays to introduce space dependent phase changes on a classical optical beam. We show how to simulate Deutsch-Jozsa and Grover's quantum algorithms using essentially the same optical array programmed in two different ways.

  5. Optimization of the polyplanar optical display electronics for a monochrome B-52 display

    NASA Astrophysics Data System (ADS)

    DeSanto, Leonard

    1998-09-01

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten-inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a new 200 mW green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by a Digital Light Processing (DLPTM) chip manufactured by Texas Instruments (TI). In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMDTM) chip is operated remotely from the Texas Instruments circuit board. In order to achieve increased brightness a monochrome digitizing interface was investigated. The operation of the DMDTM divorced from the light engine and the interfacing of the DMDTM board with the RS-170 video format specific to the B-52 aircraft will be discussed, including the increased brightness of the monochrome digitizing interface. A brief description of the electronics required to drive the new 200 mW laser is also presented.

  6. Optical engineering challenges of the virtual retinal display

    NASA Astrophysics Data System (ADS)

    Kollin, Joel S.; Tidwell, Michael R.

    1995-08-01

    The Virtual Retinal Display (VRD) is a unique approach to developing a high-resolution head- mounted display currently under development at the University of Washington's Human Interface Technology (HIT) Laboratory. Rather than looking at a screen though a magnifier or optical relay system, the viewer of the VRD has a scanned beam of light enter the pupil of the eye and focused to a spot on the retina. This type of optical system is subject to different design constraints than a typical HMD. With the VRD it may be possible to realize higher resolution, greater color saturation, higher brightness and larger field-of-view than a traditional LCD or CRT screen-based system. In this paper the author will present the VRD approach and how it can provide these advantages. Issues to be resolved for the VRD to reach its full potential and some of the solutions developed at the HIT lab will also be discussed.

  7. Optimization of the polyplanar optical display electronics for a monochrome B-52 display

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSanto, L.

    The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. The prototype ten-inch display is two inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. In order to achieve a long lifetime, the new display uses a new 200 mW green solid-state laser (10,000 hr. life) at 532 nm as its light source. To produce real-time video, the laser light is being modulated by amore » Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments (TI). In order to use the solid-state laser as the light source and also fit within the constraints of the B-52 display, the Digital Micromirror Device (DMD{trademark}) chip is operated remotely from the Texas Instruments circuit board. In order to achieve increased brightness a monochrome digitizing interface was investigated. The operation of the DMD{trademark} divorced from the light engine and the interfacing of the DMD{trademark} board with the RS-170 video format specific to the B-52 aircraft will be discussed, including the increased brightness of the monochrome digitizing interface. A brief description of the electronics required to drive the new 200 mW laser is also presented.« less

  8. Fourier holographic display for augmented reality using holographic optical element

    NASA Astrophysics Data System (ADS)

    Li, Gang; Lee, Dukho; Jeong, Youngmo; Lee, Byoungho

    2016-03-01

    A method for realizing a three-dimensional see-through augmented reality in Fourier holographic display is proposed. A holographic optical element (HOE) with the function of Fourier lens is adopted in the system. The Fourier hologram configuration causes the real scene located behind the lens to be distorted. In the proposed method, since the HOE is transparent and it functions as the lens just for Bragg matched condition, there is not any distortion when people observe the real scene through the lens HOE (LHOE). Furthermore, two optical characteristics of the recording material are measured for confirming the feasibility of using LHOE in the proposed see-through augmented reality holographic display. The results are verified experimentally.

  9. Fundamental and practical limits of planar tracking solar concentrators.

    PubMed

    Grede, Alex J; Price, Jared S; Giebink, Noel C

    2016-12-26

    Planar microtracking provides an alternate paradigm for solar concentration that offers the possibility of realizing high-efficiency embedded concentrating photovoltaic systems in the form factor of standard photovoltaic panels. Here, we investigate the thermodynamic limit of planar tracking optical concentrators and establish that they can, in principal, achieve the sine limit of their orientationally-tracked counterparts provided that the receiver translates a minimum distance set by the field of view half-angle. We develop a phase space methodology to optimize practical planar tracking concentrators and apply it to the design of a two surface, catadioptric system that operates with > 90% optical efficiency over a 140° field of view at geometric gains exceeding 1000×. These results provide a reference point for subsequent developments in the field and indicate that planar microtracking can achieve the high optical concentration ratio required in commercial concentrating photovoltaic systems.

  10. Display system employing acousto-optic tunable filter

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor)

    1995-01-01

    An acousto-optic tunable filter (AOTF) is employed to generate a display by driving the AOTF with a RF electrical signal comprising modulated red, green, and blue video scan line signals and scanning the AOTF with a linearly polarized, pulsed light beam, resulting in encoding of color video columns (scan lines) of an input video image into vertical columns of the AOTF output beam. The AOTF is illuminated periodically as each acoustically-encoded scan line fills the cell aperture of the AOTF. A polarizing beam splitter removes the unused first order beam component of the AOTF output and, if desired, overlays a real world scene on the output plane. Resolutions as high as 30,000 lines are possible, providing holographic display capability.

  11. Display system employing acousto-optic tunable filter

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor)

    1993-01-01

    An acousto-optic tunable filter (AOTF) is employed to generate a display by driving the AOTF with a RF electrical signal comprising modulated red, green, and blue video scan line signals and scanning the AOTF with a linearly polarized, pulsed light beam, resulting in encoding of color video columns (scan lines) of an input video image into vertical columns of the AOTF output beam. The AOTF is illuminated periodically as each acoustically-encoded scan line fills the cell aperture of the AOTF. A polarizing beam splitter removes the unused first order beam component of the AOTF output and, if desired, overlays a real world scene on the output plane. Resolutions as high as 30,000 lines are possible, providing holographic display capability.

  12. Color waveguide transparent screen using lens array holographic optical element

    NASA Astrophysics Data System (ADS)

    Liu, Siqi; Sun, Peng; Wang, Chang; Zheng, Zhenrong

    2017-11-01

    A color transparent screen was designed in this paper, a planar glass was used as a waveguide structure and the lens array holographic optical element (HOE) was used as a display unit. The lens array HOE was exposed by two coherent beams. One was the reference wave which directly illuminated on the holographic material and the other was modulated by the micro lens array. The lens array HOE can display the images with see-through abilities. Unlike the conventional lens array HOE, a planar glass was adopted as the waveguide in the experiment. The projecting light was totally internal-reflected in the planar glass to eliminate the undesired zero-order diffracted light. By using waveguide, it also brings advantage of compact structure. Colorful display can be realized in our system as the holographic materials were capable for multi-wavelength display. In this paper, a color transparent screen utilizing the lens array HOE and waveguide were designed. Experiment results showed a circular display area on the transparent screen. The diameter of the area is 20 mm and it achieved the pixel resolution of 100 μm. This simple and effective method could be an alternative in the augment reality (AR) applications, such as transparent phone and television.

  13. Micro-Optic Color Separation Technology for Efficient Projection Displays

    NASA Technical Reports Server (NTRS)

    Gunning, W. J.; Boehmer, E.

    1997-01-01

    Phase 1 of this project focused on development of an overall optical concept which incorporated a single liquid crystal spatial light modulator. The system achieved full color by utilizing an echelon grating, which diffracted the incident light into three orders with different color spectra, in combination with a microlens array, which spatially separated RGB bands and directed the light of the appropriate wavelength to the appropriate color dot. Preliminary echelon grating designs were provided by MIT/LL and reviewed by Rockwell. Additional Rockwell activities included the Identification of microlens designs, light sources (ILC), and projection optics to fulfill the overall design requirements. An Internal subcontract was established with Rockwell's Collins Avionics and Communications Division (CACD) which specified the liquid crystal SLM (Sharp Model No. LQ 46EO2) and built the projection display baseline projector. Full Color projected video images were produced and shown at the 1995 HDS meeting in Washington. Analysis of the luminance performance of the projector and detailed parameter trade studies helped define the dependence of overall display efficiency on lamp collimation, and indicated that a lamp with very small arc dimension is required for the optical concept to be viable.

  14. Hybrid diffractive-refractive optical system design of head-mounted display for augmented reality

    NASA Astrophysics Data System (ADS)

    Zhang, Huijuan

    2005-02-01

    An optical see-through head-mounted display for augmented reality is designed in this paper. Considering the factors, such as the optical performance, the utilization ratios of energy of real world and virtual world, the feelings of users when he wears it and etc., a structure of the optical see-through is adopted. With the characteristics of the particular negative dispersive and the power of realizing random-phase modulation, the diffractive surface is helpful for optical system of reducing weight, simplifying structure and etc., and a diffractive surface is introduced in our optical system. The optical system with 25 mm eye relief, 12 mm exit pupil and 20° (H)x15.4° (V) field-of-view is designed. The utilization ratios of energy of real world and virtual world are 1/4 and 1/2, respectively. The angular resolution of display is 0.27 mrad and it less than that of the minimum of human eyes. The diameter of this system is less than 46mm, and it applies the binocular. This diffractive-refractive optical system of see-through head-mounted display not only satisfies the demands of user"s factors in structure, but also with high resolution, very small chromatic aberration and distortion, and satisfies the need of augmented reality. In the end, the parameters of the diffractive surface are discussed.

  15. Polymeric PLC-type thermo-optic optical attenuator fabricated by UV imprint technique

    NASA Astrophysics Data System (ADS)

    Kim, Jin Tae; Choi, Choon-Gi

    2006-01-01

    A planar lightwave circuit-type polymer thermo-optic optical attenuator was fabricated via a UV imprint technique. In order to reduce the step for filling of cores and minimize the detrimental residual slab waveguide, convex ridge-type micro cores for guidance of light were defined with an accuracy of ±0.5 μm on the under-clad by a single step of imprinting. The voltage-controlled polymer optical attenuator showed 30-dB attenuation with 80-mW electrical input power at a wavelength of 1.55 μm. The rise and fall times are less than 5 ms. It displays about 0.2- and 1-dB polarization dependence at 0- and 10-dB attenuations, respectively.

  16. Optical study of Erbium-doped-porous silicon based planar waveguides

    NASA Astrophysics Data System (ADS)

    Najar, A.; Ajlani, H.; Charrier, J.; Lorrain, N.; Haesaert, S.; Oueslati, M.; Haji, L.

    2007-06-01

    Planar waveguides were formed from porous silicon layers obtained on P + substrates. These waveguides were then doped by erbium using an electrochemical method. Erbium concentration in the range 2.2-2.5 at% was determined by energy dispersive X-ray (EDX) analysis performed on SEM cross sections. The refractive index of layers was studied before and after doping and thermal treatments. The photoluminescence of Er 3+ ions in the IR range and the decay curve of the 1.53 μm emission peak were studied as a function of the excitation power. The value of excited Er density was equal to 0.07%. Optical loss contributions were analyzed on these waveguides and the losses were equal to 1.1 dB/cm at 1.55 μm after doping.

  17. Apparent minification in an imaging display under reduced viewing conditions.

    PubMed

    Meehan, J W

    1993-01-01

    When extended outdoor scenes are imaged with magnification of 1 in optical, electronic, or computer-generated displays, scene features appear smaller and farther than in direct view. This has been shown to occur in various periscopic and camera-viewfinder displays outdoors in daylight. In four experiments it was found that apparent minification of the size of a planar object at a distance of 3-9 m indoors occurs in the viewfinder display of an SLR camera both in good light and in darkness with only the luminous object visible. The effect is robust and survives changes in the relationship between object luminance in the display and in direct view and occurs in the dark when subjects have no prior knowledge of room dimensions, object size or object distance. The results of a fifth experiment suggest that the effect is an instance of reduced visual size constancy consequent on elimination of cues for size, which include those for distance.

  18. Mechanically and optically reliable folding structure with a hyperelastic material for seamless foldable displays

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuk-Jun; Shim, HongShik; Kim, Sunkook; Choi, Woong; Chun, Youngtea; Kee, InSeo; Lee, SangYoon

    2011-04-01

    We report a mechanically and optically robust folding structure to realize a foldable active matrix organic-light-emitting-diode (AMOLED) display without a visible crease at the junction. A nonlinear stress analysis, based on a finite element method, provided an optimized design. The folding-unfolding test on the structure exhibited negligible deterioration of the relative brightness at the junction of the individual panels up to 105 cycles at a folding radius of 1 mm, indicating highly reliable mechanical and optical tolerances. These results demonstrate the feasibility of seamless foldable AMOLED displays, with potentially important technical implications on fabricating large size flexible displays.

  19. High-speed electro-optic polymers: mm-Wave applications and silica planar lightwave circuit integration

    NASA Astrophysics Data System (ADS)

    Chang, Daniel H.

    The development of high speed polymer electro-optic modulators has seen steady and significant progress in recent years, enabling novel applications in RF-Photonics. Two of these are described in this Thesis: an Opto-Electronic Oscillator (OEO), which is a hybrid RF and optical oscillator capable of high spectral purity, and Photonic Time-Stretch, which is a signal processing technique for waveform spectral shifting with application to photonically-assisted A/D conversion. In both cases, the operating frequencies achieved have been the highest demonstrated to date. Application of this promising material to more complicated devices, however, is stymied by insertion loss performance. Current loss figures, while acceptable for single modulators, are too high for large arrays of modulators or intrinsically long devices such as AWGs or photonic-RF phase shifters. This is especially frustrating in light of a key virtue which polymers possess as a photonic material: its photolithographic process-ability makes patterning complex devices possible. Indeed, the current ascendancy of silica-based waveguide devices can be attributed largely to the same reason. In this Thesis, we also demonstrate the first hybrid device composed of silica planar lightwave circuits (PLCs) and polymer planar waveguides. Our approach utilizes grayscale lithography to enable vertical coupling between polymer and silica layers, minimizing entanglement of their respective fabrication processes. We have achieved coupling excess loss figures on the order of 1dB. We believe this is the natural next step in the development of electro-optic polymer devices. The two technologies are highly complementary. Silica PLCs, with excellent propagation loss and fiber coupling, are ideally suited for long passive waveguiding. By endowing them with the high-speed phase shifting capability offered by polymers, active wideband photonic devices of increasing complexity and array size can be contemplated.

  20. New Insight into the Angle Insensitivity of Ultrathin Planar Optical Absorbers for Broadband Solar Energy Harvesting.

    PubMed

    Liu, Dong; Yu, Haitong; Duan, Yuanyuan; Li, Qiang; Xuan, Yimin

    2016-09-01

    Two challenging problems still remain for optical absorbers consisting of an ultrathin planar semiconductor film on top of an opaque metallic substrate. One is the angle-insensitive mechanism and the other is the system design needed for broadband solar energy harvesting. Here, first we theoretically demonstrates that the high refractive index, instead of the ultrathin feature as reported in previous studies, is the physical origin of the angle insensitivity for ultrathin planar optical absorbers. They exhibit omnidirectional resonance for TE polarization due to the high complex refractive index difference between the semiconductor and the air, while for TM polarization the angle insensitivity persists up to an incident angle related to the semiconductor refractive index. These findings were validated by fabricating and characterizing an 18 nm Ge/Ag absorber sample (representative of small band gap semiconductors for photovoltaic applications) and a 22 nm hematite/Ag sample (representative of large band gap semiconductors for photoelectrochemical applications). Then, we took advantage of angle insensitivity and designed a spectrum splitting configuration for broadband solar energy harvesting. The cascaded solar cell and unassisted solar water splitting systems have photovoltaic and photoelectrochemical cells that are also spectrum splitters, so an external spectrum splitting element is not needed.

  1. Planar Poincare chart - A planar graphic representation of the state of light polarization

    NASA Technical Reports Server (NTRS)

    Tedjojuwono, Ken K.; Hunter, William W., Jr.; Ocheltree, Stewart L.

    1989-01-01

    The planar Poincare chart, which represents the complete planar equivalence of the Poincare sphere, is proposed. The four sets of basic lines are drawn on two separate charts for the generalization and convenience of reading the scale. The chart indicates the rotation of the principal axes of linear birefringent material. The relationships between parameters of the two charts are given as 2xi-2phi (orientation angle of the major axis-ellipticity angle) pair and 2alpha-delta (angle of amplitude ratio-phase difference angle) pair. The results are useful for designing and analyzing polarization properties of optical components with birefringent properties.

  2. Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography

    PubMed Central

    Shen, Liangbo; Carrasco-Zevallos, Oscar; Keller, Brenton; Viehland, Christian; Waterman, Gar; Hahn, Paul S.; Kuo, Anthony N.; Toth, Cynthia A.; Izatt, Joseph A.

    2016-01-01

    Intra-operative optical coherence tomography (OCT) requires a display technology which allows surgeons to visualize OCT data without disrupting surgery. Previous research and commercial intrasurgical OCT systems have integrated heads-up display (HUD) systems into surgical microscopes to provide monoscopic viewing of OCT data through one microscope ocular. To take full advantage of our previously reported real-time volumetric microscope-integrated OCT (4D MIOCT) system, we describe a stereoscopic HUD which projects a stereo pair of OCT volume renderings into both oculars simultaneously. The stereoscopic HUD uses a novel optical design employing spatial multiplexing to project dual OCT volume renderings utilizing a single micro-display. The optical performance of the surgical microscope with the HUD was quantitatively characterized and the addition of the HUD was found not to substantially effect the resolution, field of view, or pincushion distortion of the operating microscope. In a pilot depth perception subject study, five ophthalmic surgeons completed a pre-set dexterity task with 50.0% (SD = 37.3%) higher success rate and in 35.0% (SD = 24.8%) less time on average with stereoscopic OCT vision compared to monoscopic OCT vision. Preliminary experience using the HUD in 40 vitreo-retinal human surgeries by five ophthalmic surgeons is reported, in which all surgeons reported that the HUD did not alter their normal view of surgery and that live surgical maneuvers were readily visible in displayed stereoscopic OCT volumes. PMID:27231616

  3. Numerical simulation and optimal design of Segmented Planar Imaging Detector for Electro-Optical Reconnaissance

    NASA Astrophysics Data System (ADS)

    Chu, Qiuhui; Shen, Yijie; Yuan, Meng; Gong, Mali

    2017-12-01

    Segmented Planar Imaging Detector for Electro-Optical Reconnaissance (SPIDER) is a cutting-edge electro-optical imaging technology to realize miniaturization and complanation of imaging systems. In this paper, the principle of SPIDER has been numerically demonstrated based on the partially coherent light theory, and a novel concept of adjustable baseline pairing SPIDER system has further been proposed. Based on the results of simulation, it is verified that the imaging quality could be effectively improved by adjusting the Nyquist sampling density, optimizing the baseline pairing method and increasing the spectral channel of demultiplexer. Therefore, an adjustable baseline pairing algorithm is established for further enhancing the image quality, and the optimal design procedure in SPIDER for arbitrary targets is also summarized. The SPIDER system with adjustable baseline pairing method can broaden its application and reduce cost under the same imaging quality.

  4. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics

    NASA Astrophysics Data System (ADS)

    Tsai, Meng-Che; Lee, Tsung-Xian

    2017-02-01

    Due to the worldwide portable devices and illumination technology trends, researches interest in laser diodes applications are booming in recent years. One of the popular and potential LDs applications is near-eye display used in VR/AR. An ideal near-eye display needs to provide high resolution, wide FOV imagery with compact magnifying optics, and long battery life for prolonged use. However, previous studies still cannot reach high light utilization efficiency in illumination and imaging optical systems which should be raised as possible to increase wear comfort. To meet these needs, a waveguide illumination system of near-eye display is presented in this paper. We focused on proposing a high efficiency RGB LDs light engine which could reduce power consumption and increase flexibility of mechanism design by using freeform TIR reflectors instead of beam splitters. By these structures, the total system efficiency of near-eye display is successfully increased, and the improved results in efficiency and fabrication tolerance of near-eye displays are shown in this paper.

  5. Fabrication of planar optical waveguides by 6.0 MeV silicon ion implantation in Nd-doped phosphate glasses

    NASA Astrophysics Data System (ADS)

    Shen, Xiao-Liang; Dai, Han-Qing; Zhang, Liao-Lin; Wang, Yue; Zhu, Qi-Feng; Guo, Hai-Tao; Li, Wei-Nan; Liu, Chun-Xiao

    2018-04-01

    We report the fabrication of a planar optical waveguide by silicon ion implantation into Nd-doped phosphate glass at an energy of 6.0 MeV and a dose of 5.0 × 1014 ions/cm2. The change in the surface morphology of the glass after the implantation can be clearly observed by scanning electron microscopy. The measurement of the dark mode spectrum of the waveguide is conducted using a prism coupler at 632.8 nm. The refractive index distribution of the waveguide is reconstructed by the reflectivity calculation method. The near-field optical intensity profile of the waveguide is measured using an end-face coupling system. The waveguide with good optical properties on the glass matrix may be valuable for the application of the Nd-doped phosphate glass in integrated optical devices.

  6. Organic light-emitting diodes from homoleptic square planar complexes

    DOEpatents

    Omary, Mohammad A

    2013-11-12

    Homoleptic square planar complexes [M(N.LAMBDA.N).sub.2], wherein two identical N.LAMBDA.N bidentate anionic ligands are coordinated to the M(II) metal center, including bidentate square planar complexes of triazolates, possess optical and electrical properties that make them useful for a wide variety of optical and electrical devices and applications. In particular, the complexes are useful for obtaining white or monochromatic organic light-emitting diodes ("OLEDs"). Improved white organic light emitting diode ("WOLED") designs have improved efficacy and/or color stability at high brightness in single- or two-emitter white or monochrome OLEDs that utilize homoleptic square planar complexes, including bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) ("Pt(ptp).sub.2").

  7. Planar Diffractive Lenses: Fundamentals, Functionalities, and Applications.

    PubMed

    Huang, Kun; Qin, Fei; Liu, Hong; Ye, Huapeng; Qiu, Cheng-Wei; Hong, Minghui; Luk'yanchuk, Boris; Teng, Jinghua

    2018-06-01

    Traditional objective lenses in modern microscopy, based on the refraction of light, are restricted by the Rayleigh diffraction limit. The existing methods to overcome this limit can be categorized into near-field (e.g., scanning near-field optical microscopy, superlens, microsphere lens) and far-field (e.g., stimulated emission depletion microscopy, photoactivated localization microscopy, stochastic optical reconstruction microscopy) approaches. However, they either operate in the challenging near-field mode or there is the need to label samples in biology. Recently, through manipulation of the diffraction of light with binary masks or gradient metasurfaces, some miniaturized and planar lenses have been reported with intriguing functionalities such as ultrahigh numerical aperture, large depth of focus, and subdiffraction-limit focusing in far-field, which provides a viable solution for the label-free superresolution imaging. Here, the recent advances in planar diffractive lenses (PDLs) are reviewed from a united theoretical account on diffraction-based focusing optics, and the underlying physics of nanofocusing via constructive or destructive interference is revealed. Various approaches of realizing PDLs are introduced in terms of their unique performances and interpreted by using optical aberration theory. Furthermore, a detailed tutorial about applying these planar lenses in nanoimaging is provided, followed by an outlook regarding future development toward practical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Lithographically-Scribed Planar Holographic Optical CDMA Devices and Systems

    DTIC Science & Technology

    2007-02-15

    operate with quite high refractive index contrast (order 0.5). Thin -filn filter devices are viewed as relatively low in chromatic dispersion. We have...stack consists of planar interfaces between materials of refractive index n, and n,. Let An = In2 - nil and n = (n, - n1)/2. The planar interfaces are... index ). It may be desirable to have a relatively large refractive index differential when diffractive elements are formed from cladding material at a

  9. Reverse-mode PSLC multi-plane optical see-through display for AR applications.

    PubMed

    Liu, Shuxin; Li, Yan; Zhou, Pengcheng; Chen, Quanming; Su, Yikai

    2018-02-05

    In this paper we propose an optical see-through multi-plane display with reverse-mode polymer-stabilized liquid crystal (PSLC). Our design solves the problem of accommodation-vergence conflict with correct focus cues. In the reverse mode PSLC system, power consumption could be reduced to ~1/(N-1) of that in a normal mode system if N planes are displayed. The PSLC films fabricated in our experiment exhibit a low saturation voltage ~20 V rms , a high transparent-state transmittance (92%), and a fast switching time within 2 ms and polarization insensitivity. A proof-of-concept two-plane color display prototype and a four-plane monocolor display prototype were implemented.

  10. Optical rotation compensation for a holographic 3D display with a 360 degree horizontal viewing zone.

    PubMed

    Sando, Yusuke; Barada, Daisuke; Yatagai, Toyohiko

    2016-10-20

    A method for a continuous optical rotation compensation in a time-division-based holographic three-dimensional (3D) display with a rotating mirror is presented. Since the coordinate system of wavefronts after the mirror reflection rotates about the optical axis along with the rotation angle, compensation or cancellation is absolutely necessary to fix the reconstructed 3D object. In this study, we address this problem by introducing an optical image rotator based on a right-angle prism that rotates synchronously with the rotating mirror. The optical and continuous compensation reduces the occurrence of duplicate images, which leads to the improvement of the quality of reconstructed images. The effect of the optical rotation compensation is experimentally verified and a demonstration of holographic 3D display with the optical rotation compensation is presented.

  11. Planar electroluminescent panel techniques

    NASA Technical Reports Server (NTRS)

    Kerr, C.; Kell, R. E.

    1973-01-01

    Investigations of planar electroluminescent multipurpose displays with latch-in memory are described. An 18 x 24 in. flat, thin address panel with elements spacing of 0.100 in. was constructed which demonstrated essentially uniform luminosity of 3-5 foot lamberts for each of its 43200 EL cells. A working model of a 4-bit EL-PC (electroluminescent photoconductive) electrooptical decoder was made which demonstrated the feasibility of this concept. A single-diagram electroluminescent display device with photoconductive-electroluminescent latch-in memory was constructed which demonstrated the conceptual soundness of this principle. Attempts to combine these principles in a single PEL multipurpose display with latch-in memory were unsuccessful and were judged to exceed the state-of-the-art for close-packed (0.10 in. centers) photoconductor-electroluminescent cell assembly.

  12. Liquid crystal true 3D displays for augmented reality applications

    NASA Astrophysics Data System (ADS)

    Li, Yan; Liu, Shuxin; Zhou, Pengcheng; Chen, Quanming; Su, Yikai

    2018-02-01

    Augmented reality (AR) technology, which integrates virtual computer-generated information into the real world scene, is believed to be the next-generation human-machine interface. However, most AR products adopt stereoscopic 3D display technique, which causes the accommodation-vergence conflict. To solve this problem, we have proposed two approaches. The first is a multi-planar volumetric display using fast switching polymer-stabilized liquid crystal (PSLC) films. By rapidly switching the films between scattering and transparent states while synchronizing with a high-speed projector, the 2D slices of a 3D volume could be displayed in time sequence. We delved into the research on developing high-performance PSLC films in both normal mode and reverse mode; moreover, we also realized the demonstration of four-depth AR images with correct accommodation cues. For the second approach, we realized a holographic AR display using digital blazed gratings and a 4f system to eliminate zero-order and higher-order noise. With a 4k liquid crystal on silicon device, we achieved a field of view (FOV) of 32 deg. Moreover, we designed a compact waveguidebased holographic 3D display. In the design, there are two holographic optical elements (HOEs), each of which functions as a diffractive grating and a Fresnel lens. Because of the grating effect, holographic 3D image light is coupled into and decoupled out of the waveguide by modifying incident angles. Because of the lens effect, the collimated zero order light is focused at a point, and got filtered out. The optical power of the second HOE also helps enlarge FOV.

  13. Planar microlens with front-face angle: design, fabrication, and characterization

    NASA Astrophysics Data System (ADS)

    Al Hafiz, Md. Abdullah; Michael, Aron; Kwok, Chee-Yee

    2016-07-01

    This paper studies the effect of microlens front-face angle on the performance of an optical system consisting of a planar-graded refractive index (GRIN) lens pair facing each other separated by a free-space region. The planar silica microlens pairs are designed to facilitate low-loss optical signal propagation in the free-space region between the opposing optical waveguides. The planar lens is fabricated from a 38-μm-thick fluorine-doped silica layer on a silicon substrate. It has a parabolic refractive index profile in the vertical direction, which is achieved by controlled fluorine incorporation in the silica film to collimate the optical beam in the vertical direction. Horizontal beam collimation is achieved by incorporating a horizontal curvature at the front face of the lens defined by deep oxide etch. A generalized 3×3 ABCDGH transformation matrix method has been derived to compute the coupling efficiency of such microlens pairs to take front-face angles that may be present due to fabrication variations or limitations and possible input/output optical fiber offset/tilt into considerations. Pairs of such planar GRIN lens with various free-space propagation distances between them ranging from 75 to 2500 μm and with front-face angles of 1.5 deg, 2 deg, and 4 deg have been fabricated and characterized. Beam propagation method simulations have been carried out to substantiate the theoretical and experimental results. The results indicate that the optical loss is reasonably low up to 1.5 deg of front-face angles and increases significantly with further increase in the front-face angle. Analysis shows that for a given system with specific microlens front-face angle, the optical loss can be significantly reduced by properly compensating the vertical position of the input and output fibers.

  14. Catadioptric planar compound eye with large field of view.

    PubMed

    Deng, Huaxia; Gao, Xicheng; Ma, Mengchao; Li, Yunyang; Li, Hang; Zhang, Jin; Zhong, Xiang

    2018-05-14

    The planar compound eye has the advantages of simple structure and no requirement for complex relay optical elements, but the field of view (FOV) is very difficult to expand. Overcoming the limitation of FOV, especially with simple structures, is a great challenge for the development of planar compound eyes. Different from the existing designs that only considering refraction, this article proposes a catadioptric planar compound eye based on the reflection and refraction to expand the FOV. In the proposed design, the incident light from a large angle is reflected into the lenslet array by two rotationally symmetric mirrors whose surface equations are optimized by mathematical and optical softwares. The FOV of the proposed catadioptric planar compound eye theoretically can reach 96.6°, which is much wider than the opening record of 70°. Moreover, no distortion of the imaging system can be obtained theoretically in this design. Simulation results show a linearity of better than 99% for the most of the incident angles. The verification experiments show that the FOV of the proposed device can reach 90.7° while the FOV of the corresponding planar compound eye without mirrors is 41.6°. The proposed catadioptric planar compound eye has the great potential in monitoring, detection and virtual reality since the FOV has been widen significantly.

  15. Optical microspectrometer

    DOEpatents

    Sweatt, William C.; Christenson, Todd R.

    2004-05-25

    An optical microspectrometer comprises a grism to disperse the spectra in a line object. A single optical microspectrometer can be used to sequentially scan a planar object, such as a dye-tagged microchip. Because the optical microspectrometer is very compact, multiple optical microspectrometers can be arrayed to provide simultaneous readout across the width of the planar object The optical microspectrometer can be fabricated with lithographic process, such as deep X-ray lithography (DXRL), with as few as two perpendicular exposures.

  16. Three-dimensional image display system using stereogram and holographic optical memory techniques

    NASA Astrophysics Data System (ADS)

    Kim, Cheol S.; Kim, Jung G.; Shin, Chang-Mok; Kim, Soo-Joong

    2001-09-01

    In this paper, we implemented a three dimensional image display system using stereogram and holographic optical memory techniques which can store many images and reconstruct them automatically. In this system, to store and reconstruct stereo images, incident angle of reference beam must be controlled in real time, so we used BPH (binary phase hologram) and LCD (liquid crystal display) for controlling reference beam. And input images are represented on the LCD without polarizer/analyzer for maintaining uniform beam intensities regardless of the brightness of input images. The input images and BPHs are edited using application software with having the same recording scheduled time interval in storing. The reconstructed stereo images are acquired by capturing the output images with CCD camera at the behind of the analyzer which transforms phase information into brightness information of images. The reference beams are acquired by Fourier transform of BPH which designed with SA (simulated annealing) algorithm, and represented on the LCD with the 0.05 seconds time interval using application software for reconstructing the stereo images. In output plane, we used a LCD shutter that is synchronized to a monitor that displays alternate left and right eye images for depth perception. We demonstrated optical experiment which store and reconstruct four stereo images in BaTiO3 repeatedly using holographic optical memory techniques.

  17. A green-color portable waveguide eyewear display system

    NASA Astrophysics Data System (ADS)

    Xia, Lingbo; Xu, Ke; Wu, Zhengming; Hu, Yingtian; Li, Zhenzhen; Wang, Yongtian; Liu, Juan

    2013-08-01

    Waveguide display systems are widely used in various display fields, especially in head mounted display. Comparing with the traditional head mounted display system, this device dramatically reduce the size and mass. However, there are still several fatal problems such as high scatting, the cumbersome design and chromatic aberration that should be solved. We designed and fabricated a monochromatic portable eyewear display system consist of a comfortable eyewear device and waveguide system with two holographic gratings located on the substrate symmetrically. We record the gratings on the photopolymer medium with high efficiency and wavelength sensitivity. The light emitting from the micro-display is diffracted by the grating and trapped in the glass substrate by total internal reflection. The relationship between the diffraction efficiency and exposure value is studied and analyzed, and we fabricated the gratings with appropriate diffraction efficiency in a optimization condition. To avoid the disturbance of the stray light, we optimize the waveguide system numerically and perform the optical experiments. With this system, people can both see through the waveguide to obtain the information outside and catch the information from the micro display. After considering the human body engineering and industrial production, we design the structure in a compact and portable way. It has the advantage of small-type configuration and economic acceptable. It is believe that this kind of planar waveguide system is a potentially replaceable choice for the portable devices in future mobile communications.

  18. Optical display for radar sensing

    NASA Astrophysics Data System (ADS)

    Szu, Harold; Hsu, Charles; Willey, Jefferson; Landa, Joseph; Hsieh, Minder; Larsen, Louis V.; Krzywicki, Alan T.; Tran, Binh Q.; Hoekstra, Philip; Dillard, John T.; Krapels, Keith A.; Wardlaw, Michael; Chu, Kai-Dee

    2015-05-01

    Boltzmann headstone S = kB Log W turns out to be the Rosette stone for Greek physics translation optical display of the microwave sensing hieroglyphics. The LHS is the molecular entropy S measuring the degree of uniformity scattering off the sensing cross sections. The RHS is the inverse relationship (equation) predicting the Planck radiation spectral distribution parameterized by the Kelvin temperature T. Use is made of the conservation energy law of the heat capacity of Reservoir (RV) change T Δ S = -ΔE equals to the internal energy change of black box (bb) subsystem. Moreover, an irreversible thermodynamics Δ S > 0 for collision mixing toward totally larger uniformity of heat death, asserted by Boltzmann, that derived the so-called Maxwell-Boltzmann canonical probability. Given the zero boundary condition black box, Planck solved a discrete standing wave eigenstates (equation). Together with the canonical partition function (equation) an average ensemble average of all possible internal energy yielded the celebrated Planck radiation spectral (equation) where the density of states (equation). In summary, given the multispectral sensing data (equation), we applied Lagrange Constraint Neural Network (LCNN) to solve the Blind Sources Separation (BSS) for a set of equivalent bb target temperatures. From the measurements of specific value, slopes and shapes we can fit a set of Kelvin temperatures T's for each bb targets. As a result, we could apply the analytical continuation for each entropy sources along the temperature-unique Planck spectral curves always toward the RGB color temperature display for any sensing probing frequency.

  19. Buffer layer between a planar optical concentrator and a solar cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solano, Manuel E.; Barber, Greg D.; Department of Chemistry, Pennsylvania State University, University Park, PA 16802

    2015-09-15

    The effect of inserting a buffer layer between a periodically multilayered isotropic dielectric (PMLID) material acting as a planar optical concentrator and a photovoltaic solar cell was theoretically investigated. The substitution of the photovoltaic material by a cheaper dielectric material in a large area of the structure could reduce the fabrication costs without significantly reducing the efficiency of the solar cell. Both crystalline silicon (c-Si) and gallium arsenide (GaAs) were considered as the photovoltaic material. We found that the buffer layer can act as an antireflection coating at the interface of the PMLID and the photovoltaic materials, and the structuremore » increases the spectrally averaged electron-hole pair density by 36% for c-Si and 38% for GaAs compared to the structure without buffer layer. Numerical evidence indicates that the optimal structure is robust with respect to small changes in the grating profile.« less

  20. The formation and optical properties of planar waveguide in laser crystal Nd:YGG by carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Zhao, Jin-Hua; Qin, Xi-Feng; Wang, Feng-Xiang; Jiao, Yang; Guan, Jing; Fu, Gang

    2017-10-01

    As one kind of prominent laser crystal, Nd:Y3Ga5O12 (Nd:YGG) crystal has outstanding performance on laser excitation at multi-wavelength which have shown promising applications in optical communication field. In addition, Nd:YGG crystal has potential applications in medical field due to its ability of emit the laser at 1110 nm. Optical waveguide structure with high quality could improve the efficiency of laser emission. In this work, we fabricated the optical planar waveguide on Nd:YGG crystal by medium mass ion implantation which was convinced an effective method to realize a waveguide structure with superior optical properties. The sample is implanted by C ions at energy of 5.0 MeV with the fluence of 1 × 1015 ions/cm2. We researched the optical propagation properties in the Nd:YGG waveguide by end-face coupling and prism coupling method. The Nd ions fluorescent properties are obtained by a confocal micro-luminescence measurement. The fluorescent properties of Nd ions obtained good reservation after C ion implantation. Our work has reference value for the application of Nd:YGG crystal in the field of optical communication.

  1. Planar photovoltaic solar concentrator module

    DOEpatents

    Chiang, Clement J.

    1992-01-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  2. Optical parameters of TN display with dichroic dye

    NASA Astrophysics Data System (ADS)

    Olifierczuk, Marek; Zielinski, Jerzy; Perkowski, Pawel

    2000-05-01

    The present work contain the studies on optical parameters (contrast ratio, viewing angle, birefringence and brightness) of twisted nematic display with black dichroic dye which is designed for an application in large-area information and advertising systems. The numerical optimization of display with a dye has been done. The absorption characteristic of the dye has been obtained. Birefringence of doped mixtures (Delta) n has been measured. The contrast ratio of doped mixtures has been measured in wide temperature range from -25 degree(s)C to +70 degree(s)C. The angle characteristics of contrast ratio for +20 degree(s)C have been obtained. In the work the detailed results describing the effect of a dye on temperature dependence of birefringence and contrast ratio, moreover, the effect of dye on the viewing angle for the first and second transmission minimum will be presented. Additionally, the dielectric characteristics of different mixtures will be shown.

  3. Optical gain measurements in porous silicon planar waveguides codoped by erbium and ytterbium ions at 1.53 μm

    NASA Astrophysics Data System (ADS)

    Najar, Adel; Charrier, Joël; Lorrain, Nathalie; Haji, Lazhar; Oueslati, Mehrezi

    2007-09-01

    The on-off optical gain measurements as a function of the pump power were performed on porous silicon planar waveguides codoped by erbium and ytterbium ions. These measurements were obtained for different ratios of Yb concentration to Er concentration. The highest value of the gain was reached when the Yb concentration is three times higher than that of Er at a moderate 980nm pump power value equal to 70mW. Optical losses measurements have been performed on these waveguides and were equal to 2.1dB/cm and an internal gain of about 6.4dB/cm was obtained.

  4. Development of a Flyable Acousto-Optic Laser Beam Deflection System for a Head Up Display of the Future.

    DTIC Science & Technology

    Rayleigh criteria). The system was designed for stroke writing but was demonstrated with lissajous writing. The acousto - optic deflectors employed...The report describes a laser display which is to be used in a Head-Up Display of the future. The uniqueness of the display is that it uses acousto ... optic components for the modulation and deflection of the laser beam. As a result, there are no moving parts, which increases the reliability and life

  5. Spectral behavior of integrated optics asymmetric y-junction used for optimizing a planar optics telescope beam combiner

    NASA Astrophysics Data System (ADS)

    Schanen-Duport, Isabelle; Persegol, Dominique; Collomb, Virginie; Minier, Vincent; Haguenauer, Pierre

    2017-11-01

    Astronomical aperture synthesis requires to combine beams coming from telescopes, with constraints on mechanical and thermal stability, accuracy on the measurement of the interferences visibility. One adapted way for solving the problem is integrated planar optics. A first two telescope beam combiner made by ion exchange technique on glass substrate and build with symmetric Y-junction provides laboratory white light interferograms simultaneously with photometric calibration. In order to increase the interferometric signal without loss of photometric output, we propose to replace symmetric Y-junctions by asymmetric ones. In this paper, we report the conception, the manufacturing and the characterization of asymmetric Y-junction realized by ion exchange on glass substrate. The specific application of astronomical interferometry required the characterization of such component in term of spectral behavior, so we report the simulation and the measurement of asymmetric Y-junction response versus wavelength.

  6. Light-Field Correction for Spatial Calibration of Optical See-Through Head-Mounted Displays.

    PubMed

    Itoh, Yuta; Klinker, Gudrun

    2015-04-01

    A critical requirement for AR applications with Optical See-Through Head-Mounted Displays (OST-HMD) is to project 3D information correctly into the current viewpoint of the user - more particularly, according to the user's eye position. Recently-proposed interaction-free calibration methods [16], [17] automatically estimate this projection by tracking the user's eye position, thereby freeing users from tedious manual calibrations. However, the method is still prone to contain systematic calibration errors. Such errors stem from eye-/HMD-related factors and are not represented in the conventional eye-HMD model used for HMD calibration. This paper investigates one of these factors - the fact that optical elements of OST-HMDs distort incoming world-light rays before they reach the eye, just as corrective glasses do. Any OST-HMD requires an optical element to display a virtual screen. Each such optical element has different distortions. Since users see a distorted world through the element, ignoring this distortion degenerates the projection quality. We propose a light-field correction method, based on a machine learning technique, which compensates the world-scene distortion caused by OST-HMD optics. We demonstrate that our method reduces the systematic error and significantly increases the calibration accuracy of the interaction-free calibration.

  7. Image Quality Analysis and Optical Performance Requirement for Micromirror-Based Lissajous Scanning Displays

    PubMed Central

    Du, Weiqi; Zhang, Gaofei; Ye, Liangchen

    2016-01-01

    Micromirror-based scanning displays have been the focus of a variety of applications. Lissajous scanning displays have advantages in terms of power consumption; however, the image quality is not good enough. The main reason for this is the varying size and the contrast ratio of pixels at different positions of the image. In this paper, the Lissajous scanning trajectory is analyzed and a new method based on the diamond pixel is introduced to Lissajous displays. The optical performance of micromirrors is discussed. A display system demonstrator is built, and tests of resolution and contrast ratio are conducted. The test results show that the new Lissajous scanning method can be used in displays by using diamond pixels and image quality remains stable at different positions. PMID:27187390

  8. Image Quality Analysis and Optical Performance Requirement for Micromirror-Based Lissajous Scanning Displays.

    PubMed

    Du, Weiqi; Zhang, Gaofei; Ye, Liangchen

    2016-05-11

    Micromirror-based scanning displays have been the focus of a variety of applications. Lissajous scanning displays have advantages in terms of power consumption; however, the image quality is not good enough. The main reason for this is the varying size and the contrast ratio of pixels at different positions of the image. In this paper, the Lissajous scanning trajectory is analyzed and a new method based on the diamond pixel is introduced to Lissajous displays. The optical performance of micromirrors is discussed. A display system demonstrator is built, and tests of resolution and contrast ratio are conducted. The test results show that the new Lissajous scanning method can be used in displays by using diamond pixels and image quality remains stable at different positions.

  9. Restocking the optical designers' toolbox for next-generation wearable displays (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Kress, Bernard C.

    2015-09-01

    Three years ago, industry and consumers learned that there was more to Head Mounted Displays (HMDs) than the long-lasting but steady market for defense or the market for gadget video player headsets: the first versions of Smart Glasses were introduced to the public. Since then, most major consumer electronics companies unveiled their own versions of Connected Glasses, Smart Glasses or Smart Eyewear, AR (Augmented Reality) and VR (Virtual Reality) headsets. This rush resulted in the build-up of a formidable zoo of optical technologies, each claiming to be best suited for the task on hand. Today, the question is not so much anymore "will the Smart Glass market happen?" but rather "which optical technologies will be best fitted for the various declinations of the existing wearable display market," one of the main declination being the Smart Glasses market.

  10. High efficient OLED displays prepared with the air-gapped bridges on quantum dot patterns for optical recycling

    PubMed Central

    Kim, Hyo-Jun; Shin, Min-Ho; Kim, Joo-Suc; Kim, Se-Eun; Kim, Young-Joo

    2017-01-01

    An optically efficient structure was proposed and fabricated to realize high brightness organic light emitting diode (OLED) displays based on a white OLED prepared with the air-gapped bridges on the quantum dot (QD) patterns. Compared with a conventional white OLED display, in our experiments, the optical intensity of the proposed OLED display shows the enhancement of 58.2% in the red color and 16.8% in the green color after applying the air-gapped bridge structure on QD patterns of 20 wt% concentration. This enhancement comes from the two facts that the QD patterns downconvert unnecessary blue or blue/green light to the required green or red light and the air-gapped bridges increase the color conversion efficiency of QDs by optical recycling using total internal reflection (TIR) at the interface. In addition, the color gamut of the proposed OLED display increases from 65.5 to 75.9% (NTSC x, y ratio) due to the narrow emission spectra of QDs. PMID:28211516

  11. High efficient OLED displays prepared with the air-gapped bridges on quantum dot patterns for optical recycling

    NASA Astrophysics Data System (ADS)

    Kim, Hyo-Jun; Shin, Min-Ho; Kim, Joo-Suc; Kim, Se-Eun; Kim, Young-Joo

    2017-02-01

    An optically efficient structure was proposed and fabricated to realize high brightness organic light emitting diode (OLED) displays based on a white OLED prepared with the air-gapped bridges on the quantum dot (QD) patterns. Compared with a conventional white OLED display, in our experiments, the optical intensity of the proposed OLED display shows the enhancement of 58.2% in the red color and 16.8% in the green color after applying the air-gapped bridge structure on QD patterns of 20 wt% concentration. This enhancement comes from the two facts that the QD patterns downconvert unnecessary blue or blue/green light to the required green or red light and the air-gapped bridges increase the color conversion efficiency of QDs by optical recycling using total internal reflection (TIR) at the interface. In addition, the color gamut of the proposed OLED display increases from 65.5 to 75.9% (NTSC x, y ratio) due to the narrow emission spectra of QDs.

  12. High efficient OLED displays prepared with the air-gapped bridges on quantum dot patterns for optical recycling.

    PubMed

    Kim, Hyo-Jun; Shin, Min-Ho; Kim, Joo-Suc; Kim, Se-Eun; Kim, Young-Joo

    2017-02-17

    An optically efficient structure was proposed and fabricated to realize high brightness organic light emitting diode (OLED) displays based on a white OLED prepared with the air-gapped bridges on the quantum dot (QD) patterns. Compared with a conventional white OLED display, in our experiments, the optical intensity of the proposed OLED display shows the enhancement of 58.2% in the red color and 16.8% in the green color after applying the air-gapped bridge structure on QD patterns of 20 wt% concentration. This enhancement comes from the two facts that the QD patterns downconvert unnecessary blue or blue/green light to the required green or red light and the air-gapped bridges increase the color conversion efficiency of QDs by optical recycling using total internal reflection (TIR) at the interface. In addition, the color gamut of the proposed OLED display increases from 65.5 to 75.9% (NTSC x, y ratio) due to the narrow emission spectra of QDs.

  13. Planar photovoltaic solar concentrator module

    DOEpatents

    Chiang, C.J.

    1992-12-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

  14. Optics of twisted nematic and supertwisted nematic liquid-crystal displays

    NASA Astrophysics Data System (ADS)

    Leenhouts, F.; Schadt, M.

    1986-11-01

    For the first time calculations of the off-state transmission of twisted nematic liquid-crystal displays (LCD's) are presented which exhibit twist angles greater than the conventional 90 °. The transmission has been calculated using a treatment introduced by Priestley. In addition, the CIE (Commission Internationale d'Eclairage) color coordinates were evaluated which, together with the brightness, determine the optical appearance of an LCD. The finite efficiency of the polarizers was taken into account. The results are compared with those obtained for conventional 90 ° twisted nematic LCD's. From the calculations follow the conditions required to obtain optimal contrast and steep electro-optical characteristics in 180 ° supertwisted LCD's designed for high information content applications.

  15. Recent progress in design and hybridization of planar grating-based transceivers

    NASA Astrophysics Data System (ADS)

    Bidnyk, S.; Pearson, M.; Balakrishnan, A.; Gao, M.

    2007-06-01

    We report on recent progress in simulations, physical layout, fabrication and hybridization of planar grating-based transceivers for passive optical networks (PONs). Until recently, PON transceivers have been manufactured using bulk micro-optical components. Today, advancements in modeling and simulation techniques has made it possible to design complex elements in the same silica-on silicon PLC platform and create an alternative platform for manufacturing of bi-directional transceivers. In our chips we simulated an integrated chip that monolithically combined planar reflective gratings and cascaded Mach-Zehnder interferometers. We used a combination of the finite element method and beam propagation method to model cascaded interferometers with enhanced coupling coefficients. Our simulations show that low-diffraction order planar reflective gratings, designed for small incidence and reflection angles, possess the required dispersion strength to meet the PON specifications. Subsequently, we created structures for passive alignment and hybridized photodetectors and lasers. We believe that advancements in simulation of planar lightwave circuits with embedded planar reflective gratings will result in displacement of the thin-film filters (TFFs) technology in many applications that require a high degree of monolithic and hybrid integration.

  16. Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles.

    PubMed

    Pennanen, Antti M; Toppari, J Jussi

    2013-01-14

    Coupling of light into a thin layer of high refractive index material by plasmonic nanoparticles has been widely studied for application in photovoltaic devices, such as thin-film solar cells. In numerous studies this coupling has been investigated through measurement of e.g. quantum efficiency or photocurrent enhancement. Here we present a direct optical measurement of light coupling into a waveguide by plasmonic nanoparticles. We investigate the coupling efficiency into the guided modes within the waveguide by illuminating the surface of a sample, consisting of a glass slide coated with a high refractive index planar waveguide and plasmonic nanoparticles, while directly measuring the intensity of the light emitted out of the waveguide edge. These experiments were complemented by transmittance and reflectance measurements. We show that the light coupling is strongly affected by thin-film interference, localized surface plasmon resonances of the nanoparticles and the illumination direction (front or rear).

  17. A novel method for correction of temporally- and spatially-variant optical distortion in planar particle image velocimetry

    DOE PAGES

    Zha, Kan; Busch, Stephen; Park, Cheolwoong; ...

    2016-06-24

    In-cylinder flow measurements are necessary to gain a fundamental understanding of swirl-supported, light-duty Diesel engine processes for high thermal efficiency and low emissions. Planar particle image velocimetry (PIV) can be used for non-intrusive, in situ measurement of swirl-plane velocity fields through a transparent piston. In order to keep the flow unchanged from all-metal engine operation, the geometry of the transparent piston must adapt the production-intent metal piston geometry. As a result, a temporally- and spatially-variant optical distortion is introduced to the particle images. Here, to ensure reliable measurement of particle displacements, this work documents a systematic exploration of optical distortionmore » quantification and a hybrid back-projection procedure that combines ray-tracing-based geometric and in situ manual back-projection approaches.« less

  18. Analytical one-dimensional model for laser-induced ultrasound in planar optically absorbing layer.

    PubMed

    Svanström, Erika; Linder, Tomas; Löfqvist, Torbjörn

    2014-03-01

    Ultrasound generated by means of laser-based photoacoustic principles are in common use today and applications can be found both in biomedical diagnostics, non-destructive testing and materials characterisation. For certain measurement applications it could be beneficial to shape the generated ultrasound regarding spectral properties and temporal profile. To address this, we studied the generation and propagation of laser-induced ultrasound in a planar, layered structure. We derived an analytical expression for the induced pressure wave, including different physical and optical properties of each layer. A Laplace transform approach was employed in analytically solving the resulting set of photoacoustic wave equations. The results correspond to simulations and were compared to experimental results. To enable the comparison between recorded voltage from the experiments and the calculated pressure we employed a system identification procedure based on physical properties of the ultrasonic transducer to convert the calculated acoustic pressure to voltages. We found reasonable agreement between experimentally obtained voltages and the voltages determined from the calculated acoustic pressure, for the samples studied. The system identification procedure was found to be unstable, however, possibly from violations of material isotropy assumptions by film adhesives and coatings in the experiment. The presented analytical model can serve as a basis when addressing the inverse problem of shaping an acoustic pulse from absorption of a laser pulse in a planar layered structure of elastic materials. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Fluorescence particle detection using microfluidics and planar optoelectronic elements

    NASA Astrophysics Data System (ADS)

    Kettlitz, Siegfried W.; Moosmann, Carola; Valouch, Sebastian; Lemmer, Uli

    2014-05-01

    Detection of fluorescent particles is an integral part of flow cytometry for analysis of selectively stained cells. Established flow cytometer designs achieve great sensitivity and throughput but require bulky and expensive components which prohibit mass production of small single-use point-of-care devices. The use of a combination of innovative technologies such as roll-to-roll printed microuidics with integrated optoelectronic components such as printed organic light emitting diodes and printed organic photodiodes enables tremendous opportunities in cost reduction, miniaturization and new application areas. In order to harvest these benefits, the optical setup requires a redesign to eliminate the need for lenses, dichroic mirrors and lasers. We investigate the influence of geometric parameters on the performance of a thin planar design which uses a high power LED as planar light source and a PIN-photodiode as planar detector. Due to the lack of focusing optics and inferior optical filters, the device sensitivity is not yet on par with commercial state of the art flow cytometer setups. From noise measurements, electronic and optical considerations we deduce possible pathways of improving the device performance. We identify that the sensitivity is either limited by dark noise for very short apertures or by noise from background light for long apertures. We calculate the corresponding crossover length. For the device design we conclude that a low device thickness, low particle velocity and short aperture length are necessary to obtain optimal sensitivity.

  20. The development of a colour liquid crystal display spatial light modulator and applications in polychromatic optical data processing

    NASA Astrophysics Data System (ADS)

    Aiken, John Charles

    The development of a colour Spatial Light Modulator (SLM) and its application to optical information processing is described. Whilst monochrome technology has been established for many years, this is not the case for colour where commercial systems are unavailable. A main aspect of this study is therefore, how the use of colour can add an additional dimension to optical information processing. A well established route to monochrome system development has been the use of (black and white) liquid crystal televisions (LCTV) as SLM, providing useful performance at a low-cost. This study is based on the unique use of a colour display removed from a LCTV and operated as a colour SLM. A significant development has been the replacement of the original TV electronics operating the display with enhanced drive electronics specially developed for this application. Through a computer interface colour images from a drawing package or video camera can now be readily displayed on the LCD as input to an optical system. A detailed evaluation of the colour LCD optical properties, indicates that the new drive electronics have considerably improved the operation of the display for use as a colour SLM. Applications are described employing the use of colour in Fourier plane filtering, image correlation and speckle metrology. The SLM (and optical system) developed demonstrates, how the addition of colour has greatly enhanced its capabilities to implement principles of optical data processing, conventionally performed monochromatically. The hybrid combination employed, combining colour optical data processing with electronic techniques has resulted in a capable development system. Further development of the system using current colour LCDs and the move towards a portable system, is considered in the study conclusion.

  1. Planar location of the simulative acoustic source based on fiber optic sensor array

    NASA Astrophysics Data System (ADS)

    Liang, Yi-Jun; Liu, Jun-feng; Zhang, Qiao-ping; Mu, Lin-lin

    2010-06-01

    A fiber optic sensor array which is structured by four Sagnac fiber optic sensors is proposed to detect and locate a simulative source of acoustic emission (AE). The sensing loops of Sagnac interferometer (SI) are regarded as point sensors as their small size. Based on the derived output light intensity expression of SI, the optimum work condition of the Sagnac fiber optic sensor is discussed through the simulation of MATLAB. Four sensors are respectively placed on a steel plate to structure the sensor array and the location algorithms are expatiated. When an impact is generated by an artificial AE source at any position of the plate, the AE signal will be detected by four sensors at different times. With the help of a single chip microcomputer (SCM) which can calculate the position of the AE source and display it on LED, we have implemented an intelligent detection and location.

  2. Optical panel system including stackable waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeSanto, Leonard; Veligdan, James T.

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, whereinmore » each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.« less

  3. Optical panel system including stackable waveguides

    DOEpatents

    DeSanto, Leonard; Veligdan, James T.

    2007-03-06

    An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.

  4. Inkjet-based adaptive planarization (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Singhal, Shrawan; Grigas, Michelle M.; Khusnatdinov, Niyaz; Sreenivasan, Srinivasan V.

    2017-03-01

    achieved by this technique is limited. Also, planarization over a large isolated topographical feature has been studied for the reverse-tone Jet-and-Flash Imprint Lithography process, also known as JFIL-R [4]. This relies on surface tension and capillary effects to smoothen a spin-coated Si containing film that can be etched to obtain a smooth profile. To meet the stringent requirement of planarity in submicron device technologies Chemical Mechanical Planarization (CMP) is the most widely used planarization technology [5], [6]. It uses a combination of abrasive laden chemical slurry and a mechanical pad for achieving planar profiles. The biggest concern with CMP is the dependence of material removal rate on the pattern density of material, leading to the formation of a step between the high density and low-density. The step shows up as a long-range thickness variation in the planarized film, similar in scale to pre-existing substrate topography that should have been polished away. Preventive techniques like dummy fill and patterned resist can be used to reduce the variation in pattern density. These techniques increase the complexity of the planarization process and significantly limit the device design flexibility. Contact Planarization (CP) has also been reported as an alternative to the CMP processing [7], [8]. A substrate is spin coated with a photo curable material and pre baked to remove residual solvent. An ultra-flat surface or an optical flat is pressed on the spin-coated wafer. The material is forced to reflow. Pressure is used to spread out material evenly and achieve global planarization. The substrate is then exposed to UV radiation to harden the photo curable material. Although attractive, this process is not adaptive as it does not account for differences in surface topography of the wafer and the optical flat, nor can it address all the parasitics that arise during the process itself. The optical flat leads to undesirable planarization of even the substrate

  5. Fort Meade demonstration test LEDS in freezer rooms, fiber optics in display cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Steven; Parker, Graham B.

    2008-10-25

    Demonstration projects at Fort George G. Meade, MD, substituted LED lighting for incandescent bulbs in commisary wal-in freezers and fiber optic lighting in reach-in display cases. The goal was to reduce energy consumption and the results were positive. Journal article published in Public Works Digest

  6. 2D-Visualization of metabolic activity with planar optical chemical sensors (optodes)

    NASA Astrophysics Data System (ADS)

    Meier, R. J.; Liebsch, G.

    2015-12-01

    Microbia plays an outstandingly important role in many hydrologic compartments, such as e.g. the benthic community in sediments, or biologically active microorganisms in the capillary fringe, in ground water, or soil. Oxygen, pH, and CO2 are key factors and indicators for microbial activity. They can be measured using optical chemical sensors. These sensors record changing fluorescence properties of specific indicator dyes. The signals can be measured in a non-contact mode, even through transparent walls, which is important for many lab-experiments. They can measure in closed (transparent) systems, without sampling or intruding into the sample. They do not consume the analytes while measuring, are fully reversible and able to measure in non-stirred solutions. These sensors can be applied as high precision fiberoptic sensors (for profiling), robust sensor spots, or as planar sensors for 2D visualization (imaging). Imaging enables to detect thousands of measurement spots at the same time and generate 2D analyte maps over a region of interest. It allows for comparing different regions within one recorded image, visualizing spatial analyte gradients, or more important to identify hot spots of metabolic activity. We present ready-to-use portable imaging systems for the analytes oxygen, pH, and CO2. They consist of a detector unit, planar sensor foils and a software for easy data recording and evaluation. Sensors foils for various analytes and measurement ranges enable visualizing metabolic activity or analyte changes in the desired range. Dynamics of metabolic activity can be detected in one shot or over long time periods. We demonstrate the potential of this analytical technique by presenting experiments on benthic disturbance-recovery dynamics in sediments and microbial degradation of organic material in the capillary fringe. We think this technique is a new tool to further understand how microbial and geochemical processes are linked in (not solely) hydrologic

  7. Next generation smart window display using transparent organic display and light blocking screen.

    PubMed

    Kim, Gyeong Woo; Lampande, Raju; Choe, Dong Cheol; Ko, Ik Jang; Park, Jin Hwan; Pode, Ramchandra; Kwon, Jang Hyuk

    2018-04-02

    Transparent organic light emitting diodes (TOLED) have widespread applications in the next-generation display devices particularly in the large size transparent window and interactive displays. Herein, we report high performance and stable attractive smart window displays using facile process. Advanced smart window display is realized by integrating the high performance light blocking screen and highly transparent white OLED panel. The full smart window display reveals a maximum transmittance as high as 64.2% at the wavelength of 600 nm and extremely good along with tunable ambient contrast ratio (171.94:1) compared to that of normal TOLED (4.54:1). Furthermore, the performance decisive light blocking screen has demonstrated an excellent optical and electrical characteristics such as i) high transmittance (85.56% at 562nm) at light-penetrating state, ii) superior absorbance (2.30 at 562nm) in light interrupting mode, iii) high optical contrast (85.50 at 562 nm), iv) high optical stability for more than 25,000 cycle of driving, v) fast switching time of 1.9 sec, and vi) low driving voltage of 1.7 V. The experimental results of smart window display are also validated using optical simulation. The proposed smart window display technology allows us to adjust the intensity of daylight entering the system quickly and conveniently.

  8. Planar/dpiX common military avionics AMLCDs: roadmap and production

    NASA Astrophysics Data System (ADS)

    Wanner, John; Gard, Allen; Roselle, Paul; Lewis, Alan

    2000-08-01

    This paper reviews the current production approach and status at Planar and dpiX utilizing a common design architecture within a family of cockpit AMLCD displays. The present status of low volume production requirements to support military applications, as well as the unique display formats and performance requirements dictated by the specific cockpit applications has resulted in a manufacturing approach requiring common TFT substrate design flexibility and the use of a common foundation for the assembly of AMLCD displays suitable for a variety of high performance military cockpits.

  9. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Specialised acousto-optical processor for input, display, and coherent-optical processing of multiparameter information from spaceborne telemetric systems

    NASA Astrophysics Data System (ADS)

    Bykovskii, Yurii A.; Eloev, E. N.; Kukharenko, K. L.; Panin, A. M.; Solodovnikov, N. P.; Torgashin, A. N.; Arestova, E. L.

    1995-10-01

    An acousto-optical system for input, display, and coherent-optical processing of information was implemented experimentally. The information transmission capacity, the structure of the information fluxes, and the efficiency of spaceborne telemetric systems were taken into account. The number of equivalent frequency-resolved channels corresponded to the structure of a telemetric frame of a two-step switch. The number of intensity levels of laser radiation corresponded to the scale of changes in the parameters. Use was made of the technology of a liquid optical contact between a wedge-shaped piezoelectric transducer made of lithium niobate and an anisotropic light-and-sound guide made of paratellurite with asymmetric scattering geometry. The simplest technique for optical filtering of multiparameter signals was analysed.

  10. Active learning in optics and photonics: Liquid Crystal Display in the do-it-yourself

    NASA Astrophysics Data System (ADS)

    Vauderwange, Oliver; Haiss, Ulrich; Wozniak, Peter; Israel, Kai; Curticapean, Dan

    2015-10-01

    Monitors are in the center of media productions and hold an important function as the main visual interface. Tablets and smartphones are becoming more and more important work tools in the media industry. As an extension to our lecture contents an intensive discussion of different display technologies and its applications is taking place now. The established LCD (Liquid Crystal Display) technology and the promising OLED (Organic Light Emitting Diode) technology are in the focus. The classic LCD is currently the most important display technology. The paper will present how the students should develop sense for display technologies besides the theoretical scientific basics. The workshop focuses increasingly on the technical aspects of the display technology and has the goal of deepening the students understanding of the functionality by building simple Liquid Crystal Displays by themselves. The authors will present their experience in the field of display technologies. A mixture of theoretical and practical lectures has the goal of a deeper understanding in the field of digital color representation and display technologies. The design and development of a suitable learning environment with the required infrastructure is crucial. The main focus of this paper is on the hands-on optics workshop "Liquid Crystal Display in the do-it-yourself".

  11. Process technologies of MPACVD planar waveguide devices and fiber attachment

    NASA Astrophysics Data System (ADS)

    Li, Cheng-Chung; Qian, Fan; Boudreau, Robert A.; Rowlette, John R., Sr.; Bowen, Terry P.

    1999-03-01

    Optical circuits based on low-loss glass waveguide on silicon are a practical and promising approach to integrate different functional components. Fiber attachment to planar waveguide provides a practical application for optical communications. Microwave Plasma Assisted Chemical Vapor Deposition (MPACVD) produces superior quality, low birefringence, low-loss, planar waveguides for integrated optical devices. Microwave plasma initiates the chemical vapor of SiCl4, GeCl4 and oxygen. A Ge-doped silica layer is thus deposited with a compatible high growth rate (i.e. 0.4 - 0.5 micrometer/min). Film properties are based on various parameters, such as chemical flow rates, chamber pressure and temperature, power level and injector design. The resultant refractive index can be varied between 1.46 (i.e. pure silica) and 1.60 (i.e. pure germania). Waveguides can be fabricated with any desired refractive index profile. Standard photolithography defines the waveguide pattern on a mask layer. The core layer is removed by plasma dry etch which has been investigated by both reactive ion etch (RIE) and inductively coupled plasma (ICP) etch. Etch rates of 3000 - 4000 angstrom/min have been achieved using ICP compared to typical etch rates of 200 - 300 angstrom/min using conventional RIE. Planar waveguides offer good mode matching to optical fiber. A polished fiber end can be glued to the end facet of waveguide with a very low optical coupling loss. In addition, anisotropic etching of silicon V- grooves provides a passive alignment capability. Epoxy and solder were used to fix the fiber within the guiding groove. Several designs of waveguide-fiber attachment will be discussed.

  12. Optical planar waveguides in photo-thermal-refractive glasses fabricated by single- or double-energy carbon ion implantation

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Shen, Xiao-Liang; Zheng, Rui-Lin; Guo, Hai-Tao; Lv, Peng; Liu, Chun-Xiao

    2018-01-01

    Ion implantation has demonstrated to be an efficient and reliable technique for the fabrication of optical waveguides in a diversity of transparent materials. Photo-thermal-refractive glass (PTR) is considered to be durable and stable holographic recording medium. Optical planar waveguide structures in the PTR glasses were formed, for the first time to our knowledge, by the C3+-ion implantation with single-energy (6.0 MeV) and double-energy (5.5+6.0 MeV), respectively. The process of the carbon ion implantation was simulated by the stopping and range of ions in matter code. The morphologies of the waveguides were recorded by a microscope operating in transmission mode. The guided beam distributions of the waveguides were measured by the end-face coupling technique. Comparing with the single-energy implantation, the double-energy implantation improves the light confinement for the dark-mode spectrum. The guiding properties suggest that the carbon-implanted PTR glass waveguides have potential for the manufacture of photonic devices.

  13. Two-dimensional complex source point solutions: application to propagationally invariant beams, optical fiber modes, planar waveguides, and plasmonic devices.

    PubMed

    Sheppard, Colin J R; Kou, Shan S; Lin, Jiao

    2014-12-01

    Highly convergent beam modes in two dimensions are considered based on rigorous solutions of the scalar wave (Helmholtz) equation, using the complex source point formalism. The modes are applicable to planar waveguide or surface plasmonic structures and nearly concentric microcavity resonator modes in two dimensions. A novel solution is that of a vortex beam, where the direction of propagation is in the plane of the vortex. The modes also can be used as a basis for the cross section of propagationally invariant beams in three dimensions and bow-tie-shaped optical fiber modes.

  14. Integrated optical tamper sensor with planar waveguide

    DOEpatents

    Carson, Richard F.; Casalnuovo, Stephen A.

    1993-01-01

    A monolithic optical tamper sensor, comprising an optical emitter and detector, connected by an optical waveguide and placed into the critical entry plane of an enclosed sensitive region, the tamper sensor having a myriad of scraps of a material optically absorbent at the wavelength of interest, such that when the absorbent material is in place on the waveguide, an unique optical signature can be recorded, but when entry is attempted into the enclosed sensitive region, the scraps of absorbent material will be displaced and the optical/electrical signature of the tamper sensor will change and that change can be recorded.

  15. Integrated optical tamper sensor with planar waveguide

    DOEpatents

    Carson, R.F.; Casalnuovo, S.A.

    1993-01-05

    A monolithic optical tamper sensor, comprising an optical emitter and detector, connected by an optical waveguide and placed into the critical entry plane of an enclosed sensitive region, the tamper sensor having a myriad of scraps of a material optically absorbent at the wavelength of interest, such that when the absorbent material is in place on the waveguide, an unique optical signature can be recorded, but when entry is attempted into the enclosed sensitive region, the scraps of absorbent material will be displaced and the optical/electrical signature of the tamper sensor will change and that change can be recorded.

  16. Toward photostable multiplex analyte detection on a single mode planar optical waveguide

    NASA Astrophysics Data System (ADS)

    Mukundan, Harshini; Xie, Hongzhi; Anderson, Aaron; Grace, W. Kevin; Martinez, Jennifer S.; Swanson, Basil

    2009-02-01

    We have developed a waveguide-based optical biosensor for the sensitive and specific detection of biomarkers associated with disease. Our technology combines the superior optical properties of single-mode planar waveguides, the robust nature of functionalized self-assembled monolayer sensing films and the specificity of fluorescence sandwich immunoassays to detect biomarkers in complex biological samples such as serum, urine and sputum. We have previously reported the adaptation of our technology to the detection of biomarkers associated with breast cancer and anthrax. However, these approaches primarily used phospholipid bilayers as the functional film and organic dyes (ex: AlexaFluors) as the fluorescence reporter. Organic dyes are easily photodegraded and are not amenable to multiplexing because of their narrow Stokes' shift. Here we have developed strategies for conjugation of the detector antibodies with quantum dots for use in a multiplex detection platform. We have previously evaluated dihydroxylipoic acid quantum dots for the detection of a breast cancer biomarker. In this manuscript, we investigate the detection of the Bacillus anthracis protective antigen using antibodies conjugated with polymer-coated quantum dots. Kinetics of binding on the waveguide-based biosensor is reported. We compare the sensitivity of quantum dot labeled antibodies to those labeled with AlexaFluor and demonstrate the photostability of the former in our assay platform. In addition, we compare sulfydryl labeling of the antibody in the hinge region to that of nonspecific amine labeling. This is but the first step in developing a multiplex assay for such biomarkers on our waveguide platform.

  17. Planar concentrators at the étendue limit

    NASA Astrophysics Data System (ADS)

    Winston, Roland; Gordon, Jeffrey M.

    2005-08-01

    Recently proposed aplanatic imaging designs are integrally combined with nonimaging flux boosters to produce an ultra-compact planar dielectric-filled concentrator that performs near the étendue limit. Such optical devices are attractive for high-efficiency multi-junction photovoltaics at high flux, with realistic power generation of 1 W from a 1 mm2 cell.

  18. Multi-projector auto-calibration and placement optimization for non-planar surfaces

    NASA Astrophysics Data System (ADS)

    Li, Dong; Xie, Jinghui; Zhao, Lu; Zhou, Lijing; Weng, Dongdong

    2015-10-01

    Non-planar projection has been widely applied in virtual reality and digital entertainment and exhibitions because of its flexible layout and immersive display effects. Compared with planar projection, a non-planar projection is more difficult to achieve because projector calibration and image distortion correction are difficult processes. This paper uses a cylindrical screen as an example to present a new method for automatically calibrating a multi-projector system in a non-planar environment without using 3D reconstruction. This method corrects the geometric calibration error caused by the screen's manufactured imperfections, such as an undulating surface or a slant in the vertical plane. In addition, based on actual projection demand, this paper presents the overall performance evaluation criteria for the multi-projector system. According to these criteria, we determined the optimal placement for the projectors. This method also extends to surfaces that can be parameterized, such as spheres, ellipsoids, and paraboloids, and demonstrates a broad applicability.

  19. Comparison of optical see-through head-mounted displays for surgical interventions with object-anchored 2D-display

    PubMed Central

    Barthel, Alexander; Johnson, Alex; Osgood, Greg; Kazanzides, Peter; Navab, Nassir; Fuerst, Bernhard

    2018-01-01

    Purpose Optical see-through head-mounted displays (OST-HMD) feature an unhindered and instantaneous view of the surgery site and can enable a mixed reality experience for surgeons during procedures. In this paper, we present a systematic approach to identify the criteria for evaluation of OST-HMD technologies for specific clinical scenarios, which benefit from using an object-anchored 2D-display visualizing medical information. Methods Criteria for evaluating the performance of OST-HMDs for visualization of medical information and its usage are identified and proposed. These include text readability, contrast perception, task load, frame rate, and system lag. We choose to compare three commercially available OST-HMDs, which are representatives of currently available head-mounted display technologies. A multi-user study and an offline experiment are conducted to evaluate their performance. Results Statistical analysis demonstrates that Microsoft HoloLens performs best among the three tested OST-HMDs, in terms of contrast perception, task load, and frame rate, while ODG R-7 offers similar text readability. The integration of indoor localization and fiducial tracking on the HoloLens provides significantly less system lag in a relatively motionless scenario. Conclusions With ever more OST-HMDs appearing on the market, the proposed criteria could be used in the evaluation of their suitability for mixed reality surgical intervention. Currently, Microsoft HoloLens may be more suitable than ODG R-7 and Epson Moverio BT-200 for clinical usability in terms of the evaluated criteria. To the best of our knowledge, this is the first paper that presents a methodology and conducts experiments to evaluate and compare OST-HMDs for their use as object-anchored 2D-display during interventions. PMID:28343301

  20. Comparison of optical see-through head-mounted displays for surgical interventions with object-anchored 2D-display.

    PubMed

    Qian, Long; Barthel, Alexander; Johnson, Alex; Osgood, Greg; Kazanzides, Peter; Navab, Nassir; Fuerst, Bernhard

    2017-06-01

    Optical see-through head-mounted displays (OST-HMD) feature an unhindered and instantaneous view of the surgery site and can enable a mixed reality experience for surgeons during procedures. In this paper, we present a systematic approach to identify the criteria for evaluation of OST-HMD technologies for specific clinical scenarios, which benefit from using an object-anchored 2D-display visualizing medical information. Criteria for evaluating the performance of OST-HMDs for visualization of medical information and its usage are identified and proposed. These include text readability, contrast perception, task load, frame rate, and system lag. We choose to compare three commercially available OST-HMDs, which are representatives of currently available head-mounted display technologies. A multi-user study and an offline experiment are conducted to evaluate their performance. Statistical analysis demonstrates that Microsoft HoloLens performs best among the three tested OST-HMDs, in terms of contrast perception, task load, and frame rate, while ODG R-7 offers similar text readability. The integration of indoor localization and fiducial tracking on the HoloLens provides significantly less system lag in a relatively motionless scenario. With ever more OST-HMDs appearing on the market, the proposed criteria could be used in the evaluation of their suitability for mixed reality surgical intervention. Currently, Microsoft HoloLens may be more suitable than ODG R-7 and Epson Moverio BT-200 for clinical usability in terms of the evaluated criteria. To the best of our knowledge, this is the first paper that presents a methodology and conducts experiments to evaluate and compare OST-HMDs for their use as object-anchored 2D-display during interventions.

  1. Response characterization of a fiber optic sensor array with dye-coated planar waveguide for detection of volatile organic compounds.

    PubMed

    Lee, Jae-Sung; Yoon, Na-Rae; Kang, Byoung-Ho; Lee, Sang-Won; Gopalan, Sai-Anand; Jeong, Hyun-Min; Lee, Seung-Ha; Kwon, Dae-Hyuk; Kang, Shin-Won

    2014-07-01

    We have developed a multi-array side-polished optical-fiber gas sensor for the detection of volatile organic compound (VOC) gases. The side-polished optical-fiber coupled with a polymer planar waveguide (PWG) provides high sensitivity to alterations in refractive index. The PWG was fabricated by coating a solvatochromic dye with poly(vinylpyrrolidone). To confirm the effectiveness of the sensor, five different sensing membranes were fabricated by coating the side-polished optical-fiber using the solvatochromic dyes Reinhardt's dye, Nile red, 4-aminophthalimide, 4-amino-N-methylphthalimide, and 4-(dimethylamino)cinnamaldehyde, which have different polarities that cause changes in the effective refractive index of the sensing membrane owing to evanescent field coupling. The fabricated gas detection system was tested with five types of VOC gases, namely acetic acid, benzene, dimethylamine, ethanol, and toluene at concentrations of 1, 2,…,10 ppb. Second-regression and principal component analyses showed that the response properties of the proposed VOC gas sensor were linearly shifted bathochromically, and each gas showed different response characteristics.

  2. Optical Head-Mounted Computer Display for Education, Research, and Documentation in Hand Surgery.

    PubMed

    Funk, Shawn; Lee, Donald H

    2016-01-01

    Intraoperative photography and capturing videos is important for the hand surgeon. Recently, optical head-mounted computer display has been introduced as a means of capturing photographs and videos. In this article, we discuss this new technology and review its potential use in hand surgery. Copyright © 2016 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  3. Transmutation of planar media singularities in a conformal cloak.

    PubMed

    Liu, Yichao; Mukhtar, Musawwadah; Ma, Yungui; Ong, C K

    2013-11-01

    Invisibility cloaking based on optical transformation involves materials singularity at the branch cut points. Many interesting optical devices, such as the Eaton lens, also require planar media index singularities in their implementation. We show a method to transmute two singularities simultaneously into harmless topological defects formed by anisotropic permittivity and permeability tensors. Numerical simulation is performed to verify the functionality of the transmuted conformal cloak consisting of two kissing Maxwell fish eyes.

  4. Integrated display scanner

    DOEpatents

    Veligdan, James T.

    2004-12-21

    A display scanner includes an optical panel having a plurality of stacked optical waveguides. The waveguides define an inlet face at one end and a screen at an opposite end, with each waveguide having a core laminated between cladding. A projector projects a scan beam of light into the panel inlet face for transmission from the screen as a scan line to scan a barcode. A light sensor at the inlet face detects a return beam reflected from the barcode into the screen. A decoder decodes the return beam detected by the sensor for reading the barcode. In an exemplary embodiment, the optical panel also displays a visual image thereon.

  5. Design principles for single standing nanowire solar cells: going beyond the planar efficiency limits.

    PubMed

    Zeng, Yang; Ye, Qinghao; Shen, Wenzhong

    2014-05-09

    Semiconductor nanowires (NWs) have long been used in photovoltaic applications but restricted to approaching the fundamental efficiency limits of the planar devices with less material. However, recent researches on standing NWs have started to reveal their potential of surpassing these limits when their unique optical property is utilized in novel manners. Here, we present a theoretical guideline for maximizing the conversion efficiency of a single standing NW cell based on a detailed study of its optical absorption mechanism. Under normal incidence, a standing NW behaves as a dielectric resonator antenna, and its optical cross-section shows its maximum when the lowest hybrid mode (HE11δ) is excited along with the presence of a back-reflector. The promotion of the cell efficiency beyond the planar limits is attributed to two effects: the built-in concentration caused by the enlarged optical cross-section, and the shifting of the absorption front resulted from the excited mode profile. By choosing an optimal NW radius to support the HE11δ mode within the main absorption spectrum, we demonstrate a relative conversion-efficiency enhancement of 33% above the planar cell limit on the exemplary a-Si solar cells. This work has provided a new basis for designing and analyzing standing NW based solar cells.

  6. Design principles for single standing nanowire solar cells: going beyond the planar efficiency limits

    PubMed Central

    Zeng, Yang; Ye, Qinghao; Shen, Wenzhong

    2014-01-01

    Semiconductor nanowires (NWs) have long been used in photovoltaic applications but restricted to approaching the fundamental efficiency limits of the planar devices with less material. However, recent researches on standing NWs have started to reveal their potential of surpassing these limits when their unique optical property is utilized in novel manners. Here, we present a theoretical guideline for maximizing the conversion efficiency of a single standing NW cell based on a detailed study of its optical absorption mechanism. Under normal incidence, a standing NW behaves as a dielectric resonator antenna, and its optical cross-section shows its maximum when the lowest hybrid mode (HE11δ) is excited along with the presence of a back-reflector. The promotion of the cell efficiency beyond the planar limits is attributed to two effects: the built-in concentration caused by the enlarged optical cross-section, and the shifting of the absorption front resulted from the excited mode profile. By choosing an optimal NW radius to support the HE11δ mode within the main absorption spectrum, we demonstrate a relative conversion-efficiency enhancement of 33% above the planar cell limit on the exemplary a-Si solar cells. This work has provided a new basis for designing and analyzing standing NW based solar cells. PMID:24810591

  7. Reflected wavefront manipulation based on ultrathin planar acoustic metasurfaces

    PubMed Central

    Li, Yong; Liang, Bin; Gu, Zhong-ming; Zou, Xin-ye; Cheng, Jian-chun

    2013-01-01

    The introduction of metasurfaces has renewed the Snell's law and opened up new degrees of freedom to tailor the optical wavefront at will. Here, we theoretically demonstrate that the generalized Snell's law can be achieved for reflected acoustic waves based on ultrathin planar acoustic metasurfaces. The metasurfaces are constructed with eight units of a solid structure to provide discrete phase shifts covering the full 2π span with steps of π/4 by coiling up the space. By careful selection of the phase profiles in the transverse direction of the metasurfaces, some fascinating wavefront engineering phenomena are demonstrated, such as anomalous reflections, conversion of propagating waves into surface waves, planar aberration-free lens and nondiffracting Bessel beam generated by planar acoustic axicon. Our results could open up a new avenue for acoustic wavefront engineering and manipulations. PMID:23986034

  8. Video display engineering and optimization system

    NASA Technical Reports Server (NTRS)

    Larimer, James (Inventor)

    1997-01-01

    A video display engineering and optimization CAD simulation system for designing a LCD display integrates models of a display device circuit, electro-optics, surface geometry, and physiological optics to model the system performance of a display. This CAD system permits system performance and design trade-offs to be evaluated without constructing a physical prototype of the device. The systems includes a series of modules which permit analysis of design trade-offs in terms of their visual impact on a viewer looking at a display.

  9. Crucial role of molecular planarity on the second order nonlinear optical property of pyridine based chalcone single crystals

    NASA Astrophysics Data System (ADS)

    Menezes, Anthoni Praveen; Jayarama, A.; Ng, Seik Weng

    2015-05-01

    An efficient nonlinear optical material 2E-3-(4-bromophenyl)-1-(pyridin-3-yl) prop-2-en-1-one (BPP) was synthesized and single crystals were grown using slow evaporation solution growth technique at room temperature. Grown crystal had prismatic morphology and its structure was confirmed by various spectroscopic studies, elemental analysis, and single crystal X-ray diffraction (XRD) technique. The single crystal XRD of the crystal showed that BPP crystallizes in monoclinic system with noncentrosymmetric space group P21 and the cell parameters are a = 5.6428(7) Å, b = 3.8637(6) Å, c = 26.411(2) Å, β = 97.568(11) deg and v = 575.82(12) Å3. The UV-Visible spectrum reveals that the crystal is optically transparent and has high optical energy band gap of 3.1 eV. The powder second harmonic generation efficiency (SHG) of BPP is 6.8 times that of KDP. From thermal analysis it is found that the crystal melts at 139 °C and decomposes at 264 °C. High optical transparency down to blue region, higher powder SHG efficiency and better thermal stability than that of urea makes this chalcone derivative a promising candidate for SHG applications. Furthermore, effect of molecular planarity on SHG efficiency and role of pyridine ring adjacent to carbonyl group in forming noncentrosymmetric crystal systems of chalcone family is also discussed.

  10. Optical switch

    DOEpatents

    Reedy, R.P.

    1985-01-18

    An optical switching device is provided whereby light from a first glass fiber or a second glass fiber may be selectively transmitted into a third glass fiber. Each glass fiber is provided with a focusing and collimating lens system. In one mode of operation, light from the first glass fiber is reflected by a planar mirror into the third glass fiber. In another mode of operation, light from the second glass fiber passes directly into the third glass fiber. The planar mirror is attached to a rotatable table which is rotated to provide the optical switching.

  11. Optical switch

    DOEpatents

    Reedy, R.P.

    1987-11-10

    An optical switching device is provided whereby light from a first glass fiber or a second glass fiber may be selectively transmitted into a third glass fiber. Each glass fiber is provided with a focusing and collimating lens system. In one mode of operation, light from the first glass fiber is reflected by a planar mirror into the third glass fiber. In another mode of operation, light from the second glass fiber passes directly into the third glass fiber. The planar mirror is attached to a rotatable table which is rotated to provide the optical switching. 3 figs.

  12. Arabidopsis AIP1-2 restricted by WER-mediated patterning modulates planar polarity

    PubMed Central

    Kiefer, Christian S.; Claes, Andrea R.; Nzayisenga, Jean-Claude; Pietra, Stefano; Stanislas, Thomas; Hüser, Anke; Ikeda, Yoshihisa; Grebe, Markus

    2015-01-01

    The coordination of cell polarity within the plane of the tissue layer (planar polarity) is crucial for the development of diverse multicellular organisms. Small Rac/Rho-family GTPases and the actin cytoskeleton contribute to planar polarity formation at sites of polarity establishment in animals and plants. Yet, upstream pathways coordinating planar polarity differ strikingly between kingdoms. In the root of Arabidopsis thaliana, a concentration gradient of the phytohormone auxin coordinates polar recruitment of Rho-of-plant (ROP) to sites of polar epidermal hair initiation. However, little is known about cytoskeletal components and interactions that contribute to this planar polarity or about their relation to the patterning machinery. Here, we show that ACTIN7 (ACT7) represents a main actin isoform required for planar polarity of root hair positioning, interacting with the negative modulator ACTIN-INTERACTING PROTEIN1-2 (AIP1-2). ACT7, AIP1-2 and their genetic interaction are required for coordinated planar polarity of ROP downstream of ethylene signalling. Strikingly, AIP1-2 displays hair cell file-enriched expression, restricted by WEREWOLF (WER)-dependent patterning and modified by ethylene and auxin action. Hence, our findings reveal AIP1-2, expressed under control of the WER-dependent patterning machinery and the ethylene signalling pathway, as a modulator of actin-mediated planar polarity. PMID:25428588

  13. Arabidopsis AIP1-2 restricted by WER-mediated patterning modulates planar polarity.

    PubMed

    Kiefer, Christian S; Claes, Andrea R; Nzayisenga, Jean-Claude; Pietra, Stefano; Stanislas, Thomas; Hüser, Anke; Ikeda, Yoshihisa; Grebe, Markus

    2015-01-01

    The coordination of cell polarity within the plane of the tissue layer (planar polarity) is crucial for the development of diverse multicellular organisms. Small Rac/Rho-family GTPases and the actin cytoskeleton contribute to planar polarity formation at sites of polarity establishment in animals and plants. Yet, upstream pathways coordinating planar polarity differ strikingly between kingdoms. In the root of Arabidopsis thaliana, a concentration gradient of the phytohormone auxin coordinates polar recruitment of Rho-of-plant (ROP) to sites of polar epidermal hair initiation. However, little is known about cytoskeletal components and interactions that contribute to this planar polarity or about their relation to the patterning machinery. Here, we show that ACTIN7 (ACT7) represents a main actin isoform required for planar polarity of root hair positioning, interacting with the negative modulator ACTIN-INTERACTING PROTEIN1-2 (AIP1-2). ACT7, AIP1-2 and their genetic interaction are required for coordinated planar polarity of ROP downstream of ethylene signalling. Strikingly, AIP1-2 displays hair cell file-enriched expression, restricted by WEREWOLF (WER)-dependent patterning and modified by ethylene and auxin action. Hence, our findings reveal AIP1-2, expressed under control of the WER-dependent patterning machinery and the ethylene signalling pathway, as a modulator of actin-mediated planar polarity. © 2015. Published by The Company of Biologists Ltd.

  14. Light ray field capture using focal plane sweeping and its optical reconstruction using 3D displays.

    PubMed

    Park, Jae-Hyeung; Lee, Sung-Keun; Jo, Na-Young; Kim, Hee-Jae; Kim, Yong-Soo; Lim, Hong-Gi

    2014-10-20

    We propose a method to capture light ray field of three-dimensional scene using focal plane sweeping. Multiple images are captured using a usual camera at different focal distances, spanning the three-dimensional scene. The captured images are then back-projected to four-dimensional spatio-angular space to obtain the light ray field. The obtained light ray field can be visualized either using digital processing or optical reconstruction using various three-dimensional display techniques including integral imaging, layered display, and holography.

  15. Touchscreen everywhere: on transferring a normal planar surface to a touch-sensitive display.

    PubMed

    Dai, Jingwen; Chung, Chi-Kit Ronald

    2014-08-01

    We address how a human-computer interface with small device size, large display, and touch-input facility can be made possible by a mere projector and camera. The realization is through the use of a properly embedded structured light sensing scheme that enables a regular light-colored table surface to serve the dual roles of both a projection screen and a touch-sensitive display surface. A random binary pattern is employed to code structured light in pixel accuracy, which is embedded into the regular projection display in a way that the user perceives only regular display but not the structured pattern hidden in the display. With the projection display on the table surface being imaged by a camera, the observed image data, plus the known projection content, can work together to probe the 3-D workspace immediately above the table surface, like deciding if there is a finger present and if the finger touches the table surface, and if so, at what position on the table surface the contact is made. All the decisions hinge upon a careful calibration of the projector-camera-table surface system, intelligent segmentation of the hand in the image data, and exploitation of the homography mapping existing between the projector's display panel and the camera's image plane. Extensive experimentation including evaluation of the display quality, hand segmentation accuracy, touch detection accuracy, trajectory tracking accuracy, multitouch capability and system efficiency are shown to illustrate the feasibility of the proposed realization.

  16. Resonance transparency with low-loss in toroidal planar metamaterial

    NASA Astrophysics Data System (ADS)

    Xiang, Tianyu; Lei, Tao; Hu, Sen; Chen, Jiao; Huang, Xiaojun; Yang, Helin

    2018-03-01

    A compact planar construction composed of asymmetric split ring resonators was designed with a low-loss, high Q-factor resonance transparency at microwave frequency. The singularity property of the proposed metamaterial owing to the enhanced toroidal dipole T is demonstrated via numerical and experimental methods. The transmission peak can reach up to 0.91 and the loss is perfectly repressed, which can be testified by radiated power, H-field distributions, and the imaginary parts of effective permittivity and permeability. The designed planar metamaterial may have numerous potential applications at microwave, terahertz, and optical frequency, e.g., for ultrasensitive sensing, slow-light devices, lasing spacers, even invisible information transfer.

  17. Improved polar display technique of the phase angle of optical interference

    NASA Astrophysics Data System (ADS)

    Umeda, N.; Shirai, H.; Takasaki, H.

    1984-02-01

    A technique which displays the fractional order of optical interference by the azimuthal angle of radial arm has been improved by using a digital electronic circuit such as phase-locked loop and D flip-flop. The phase quadrature reference signals of this system are derived by reforming a reference signal and shifting it by a quarter wavelength referring to its waveform. As the result the orthogonal phase relation of the two signals is not affected by the frequency of the signal. This system has been proven to operate properly over the frequency range of 200-600 kHz without readjusting the electric system.

  18. Optical waveguides in magneto-optical glasses fabricated by proton implantation

    NASA Astrophysics Data System (ADS)

    Liu, Chun-Xiao; Li, Yu-Wen; Zheng, Rui-Lin; Fu, Li-Li; Zhang, Liao-Lin; Guo, Hai-Tao; Zhou, Zhi-Guang; Li, Wei-Nan; Lin, She-Bao; Wei, Wei

    2016-11-01

    Planar waveguides in magneto-optical glasses (Tb3+-doped aluminum borosilicate glasses) have been produced by a 550-keV proton implantation at a dose of 4.0×1016 ions/cm2 for the first time to our knowledge. After annealing at 260 °C for 1.0 h, the dark-mode spectra and near-field intensity distributions are measured by the prism-coupling and end-face coupling methods. The damage profile, refractive index distribution and light propagation mode of the planar waveguide are numerically calculated by SRIM 2010, RCM and FD-BPM, respectively. The effects of implantation on the structural and optical properties are investigated by Raman and absorption spectra. It suggests that the proton-implanted Tb3+-doped aluminum borosilicate glass waveguide is a good candidate for a waveguide isolator in optical fiber communication and all-optical communication.

  19. Optical fiber head for providing lateral viewing

    DOEpatents

    Everett, Matthew J.; Colston, Billy W.; James, Dale L.; Brown, Steve; Da Silva, Luiz

    2002-01-01

    The head of an optical fiber comprising the sensing probe of an optical heterodyne sensing device includes a planar surface that intersects the perpendicular to axial centerline of the fiber at a polishing angle .theta.. The planar surface is coated with a reflective material so that light traveling axially through the fiber is reflected transverse to the fiber's axial centerline, and is emitted laterally through the side of the fiber. Alternatively, the planar surface can be left uncoated. The polishing angle .theta. must be no greater than 39.degree. or must be at least 51.degree.. The emitted light is reflected from adjacent biological tissue, collected by the head, and then processed to provide real-time images of the tissue. The method for forming the planar surface includes shearing the end of the optical fiber and applying the reflective material before removing the buffer that circumscribes the cladding and the core.

  20. Electrochemical planarization

    DOEpatents

    Bernhardt, A.F.; Contolini, R.J.

    1993-10-26

    In a process for fabricating planarized thin film metal interconnects for integrated circuit structures, a planarized metal layer is etched back to the underlying dielectric layer by electropolishing, ion milling or other procedure. Electropolishing reduces processing time from hours to minutes and allows batch processing of multiple wafers. The etched back planarized thin film interconnect is flush with the dielectric layer. 12 figures.

  1. EMU helmet mounted display

    NASA Technical Reports Server (NTRS)

    Marmolejo, Jose (Inventor); Smith, Stephen (Inventor); Plough, Alan (Inventor); Clarke, Robert (Inventor); Mclean, William (Inventor); Fournier, Joseph (Inventor)

    1990-01-01

    A helmet mounted display device is disclosed for projecting a display on a flat combiner surface located above the line of sight where the display is produced by two independent optical channels with independent LCD image generators. The display has a fully overlapped field of view on the combiner surface and the focus can be adjusted from a near field of four feet to infinity.

  2. Large depth of focus dynamic micro integral imaging for optical see-through augmented reality display using a focus-tunable lens.

    PubMed

    Shen, Xin; Javidi, Bahram

    2018-03-01

    We have developed a three-dimensional (3D) dynamic integral-imaging (InIm)-system-based optical see-through augmented reality display with enhanced depth range of a 3D augmented image. A focus-tunable lens is adopted in the 3D display unit to relay the elemental images with various positions to the micro lens array. Based on resolution priority integral imaging, multiple lenslet image planes are generated to enhance the depth range of the 3D image. The depth range is further increased by utilizing both the real and virtual 3D imaging fields. The 3D reconstructed image and the real-world scene are overlaid using an optical see-through display for augmented reality. The proposed system can significantly enhance the depth range of a 3D reconstructed image with high image quality in the micro InIm unit. This approach provides enhanced functionality for augmented information and adjusts the vergence-accommodation conflict of a traditional augmented reality display.

  3. Optical switch

    DOEpatents

    Reedy, Robert P.

    1987-01-01

    An optical switching device (10) is provided whereby light from a first glass fiber (16) or a second glass fiber (14) may be selectively transmitted into a third glass fiber (18). Each glass fiber is provided with a focusing and collimating lens system (26, 28, 30). In one mode of operation, light from the first glass fiber (16) is reflected by a planar mirror (36) into the third glass fiber (18). In another mode of operation, light from the second glass fiber (14) passes directly into the third glass fiber (18). The planar mirror (36) is attached to a rotatable table (32) which is rotated to provide the optical switching.

  4. Testing Instrument for Flight-Simulator Displays

    NASA Technical Reports Server (NTRS)

    Haines, Richard F.

    1987-01-01

    Displays for flight-training simulators rapidly aligned with aid of integrated optical instrument. Calibrations and tests such as aligning boresight of display with respect to user's eyes, checking and adjusting display horizon, checking image sharpness, measuring illuminance of displayed scenes, and measuring distance of optical focus of scene performed with single unit. New instrument combines all measurement devices in single, compact, integrated unit. Requires just one initial setup. Employs laser and produces narrow, collimated beam for greater measurement accuracy. Uses only one moving part, double right prism, to position laser beam.

  5. Single Fiber Star Couplers. [optical waveguides for spacecraft communication

    NASA Technical Reports Server (NTRS)

    Asawa, C. K.

    1979-01-01

    An ion exchange process was developed and used in the fabrication of state-of-the-art planar star couplers for distribution of optical radiation between optical fibers. An 8 x 8 planar transmission star coupler was packaged for evaluation purposes with sixteen fiber connectors and sixteen pigtails. Likewise a transmission star coupler and an eight-port reflection star coupler with eight-fiber ribbons rigidly attached to these couplers, and a planar coupler with silicon guides and a parallel channel guide with pigtails were also fabricated. Optical measurements of the transmission star couplers are included with a description of the manufacturing process.

  6. Micro optical fiber display switch based on the magnetohydrodynamic (MHD) principle

    NASA Astrophysics Data System (ADS)

    Lian, Kun; Heng, Khee-Hang

    2001-09-01

    This paper reports on a research effort to design, microfabricate and test an optical fiber display switch based on magneto hydrodynamic (MHD) principal. The switch is driven by the Lorentz force and can be used to turn on/off the light. The SU-8 photoresist and UV light source were used for prototype fabrication in order to lower the cost. With a magnetic field supplied by an external permanent magnet, and a plus electrical current supplied across the two inert sidewall electrodes, the distributed body force generated will produce a pressure difference on the fluid mercury in the switch chamber. By change the direction of current flow, the mercury can turn on or cut off the light pass in less than 10 ms. The major advantages of a MHD-based micro-switch are that it does not contain any solid moving parts and power consumption is much smaller comparing to the relay type switches. This switch can be manufactured by molding gin batch production and may have potential applications in extremely bright traffic control,, high intensity advertising display, and communication.

  7. All-dielectric planar chiral metasurface with gradient geometric phase.

    PubMed

    Ma, Zhijie; Li, Yi; Li, Yang; Gong, Yandong; Maier, Stefan A; Hong, Minghui

    2018-03-05

    Planar optical chirality of a metasurface measures its differential response between left and right circularly polarized (CP) lights and governs the asymmetric transmission of CP lights. In 2D ultra-thin plasmonic structures the circular dichroism is limited to 25% in theory and it requires high absorption loss. Here we propose and numerically demonstrate a planar chiral all-dielectric metasurface that exhibits giant circular dichroism and transmission asymmetry over 0.8 for circularly polarized lights with negligible loss, without bringing in bianisotropy or violating reciprocity. The metasurface consists of arrays of high refractive index germanium Z-shape resonators that break the in-plane mirror symmetry and induce cross-polarization conversion. Furthermore, at the transmission peak of one handedness, the transmitted light is efficiently converted into the opposite circular polarization state, with a designated geometric phase depending on the orientation angle of the optical element. In this way, the optical component sets before and after the metasurface to filter the light of certain circular polarization states are not needed and the metasurface can function under any linear polarization, in contrast to the conventional setup for geometry phase based metasurfaces. Anomalous transmission and two-dimensional holography based on the geometric phase chiral metasurface are numerically demonstrate as proofs of concept.

  8. Planar concentrators near the étendue limit.

    PubMed

    Winston, Roland; Gordon, Jeffrey M

    2005-10-01

    Recently proposed aplanatic imaging designs are integrally combined with nonimaging flux boosters to produce an ultracompact planar glass-filled concentrator that performs near the étendue limit. Such optical devices are attractive for high-efficiency multijunction photovoltaics at high flux, with realistic power generation of 1 W from a 1 mm2 cell. When deployed in reverse, our designs provide collimation even for high-numerical-aperture light sources.

  9. Planar concentrators near the étendue limit

    NASA Astrophysics Data System (ADS)

    Winston, Roland; Gordon, Jeffrey M.

    2005-10-01

    Recently proposed aplanatic imaging designs are integrally combined with nonimaging flux boosters to produce an ultracompact planar glass-filled concentrator that performs near the étendue limit. Such optical devices are attractive for high-efficiency multijunction photovoltaics at high flux, with realistic power generation of 1 W from a 1 mm² cell. When deployed in reverse, our designs provide collimation even for high-numerical-aperture light sources.

  10. Dichroic Liquid Crystal Displays

    NASA Astrophysics Data System (ADS)

    Bahadur, Birendra

    The following sections are included: * INTRODUCTION * DICHROIC DYES * Chemical Structure * Chemical and Photochemical Stability * THEORETICAL MODELLING * DEFECTS CAUSED BY PROLONGED LIGHT IRRADIATION * CHEMICAL STRUCTURE AND PHOTOSTABILITY * OTHER PARAMETERS AFFECTING PHOTOSTABILITY * CELL PREPARATION * DICHROIC PARAMETERS AND THEIR MEASUREMENTS * Order Parameter and Dichroic Ratio Of Dyes * Absorbance, Order Parameter and Dichroic Ratio Measurements * IMPACT OF DYE STRUCTURE AND LIQUID CRYSTAL HOST ON PHYSICAL PROPERTIES OF A DICHROIC MIXTURE * Order Parameter and Dichroic Ratio * EFFECT OF LENGTH OF DICHROIC DYES ON THE ORDER PARAMETER * EFFECT OF THE BREADTH OF DYE ON THE ORDER PARAMETER * EFFECT OF THE HOST ON THE ORDER PARAMETER * TEMPERATURE VARIATION OF THE ORDER PARAMETER OF DYES IN A LIQUID CRYSTAL HOST * IMPACT OF DYE CONCENTRATION ON THE ORDER PARAMETER * Temperature Range * Viscosity * Dielectric Constant and Anisotropy * Refractive Indices and Birefringence * solubility43,153-156 * Absorption Wavelength and Auxochromic Groups * Molecular Engineering of Dichroic Dyes * OPTICAL, ELECTRO-OPTICAL AND LIFE PARAMETERS * Colour And CIE Colour space120,160-166 * CIE 1931 COLOUR SPACE * CIE 1976 CHROMATICITY DIAGRAM * CIE UNIFORM COLOUR SPACES & COLOUR DIFFERENCE FORMULAE120,160-166 * Electro-Optical Parameters120 * LUMINANCE * CONTRAST AND CONTRAST RATIO * SWITCHING SPEED * Life Parameters and Failure Modes * DICHROIC MIXTURE FORMULATION * Monochrome Mixture * Black Mixture * ACHROMATIC BLACK MIXTURE FOR HEILMEIER DISPLAYS * Effect of Illuminant on Display Colour * Colour of the Field-On State * Effect of Dye Linewidth * Optimum Centroid Wavelengths * Effect of Dye Concentration * Mixture Formulation Using More Than Three Dyes * ACHROMATIC MIXTURE FOR WHITE-TAYLOR TYPE DISPLAYS * HEILMEIER DISPLAYS * Theoretical Modelling * Threshold Characteristic * Effects of Dye Concentration on Electro-optical Parameters * Effect of Cholesteric Doping * Effect of Alignment

  11. An Optically Isotropic Antiferroelectric Liquid Crystal (OI-AFLC) Display Mode Operating over a Wide Temperature Range using Ternary Bent-Core Liquid Crystal Mixtures

    DOE PAGES

    Bergquist, Leah; Zhang, Cuiyu; Ribeiro de Almeida, Roberta R.; ...

    2017-02-07

    Here, we report on the synthesis and characterization of bent-core liquid crystal (LC) compounds and the preparation of mixtures that provide an optically isotropic antiferroelectric (OI-AFLC) liquid crystal display mode over a very wide temperature interval and well below room temperature. From the collection of compounds synthesized during this study, we recognized that several ternary mixtures displayed a modulated SmC aP A phase down to below -40 °C and up to about 100 °C on both heating and cooling, as well as optical tilt angles in the transformed state of approximately 45° (optically isotropic state). The materials were fully characterizedmore » and their liquid crystal as well as electro-optical properties analyzed by polarized optical microscopy, differential scanning calorimetry, synchrotron X-ray diffraction, dielectric spectroscopy, and electro-optical tests.« less

  12. An Optically Isotropic Antiferroelectric Liquid Crystal (OI-AFLC) Display Mode Operating over a Wide Temperature Range using Ternary Bent-Core Liquid Crystal Mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergquist, Leah; Zhang, Cuiyu; Ribeiro de Almeida, Roberta R.

    Here, we report on the synthesis and characterization of bent-core liquid crystal (LC) compounds and the preparation of mixtures that provide an optically isotropic antiferroelectric (OI-AFLC) liquid crystal display mode over a very wide temperature interval and well below room temperature. From the collection of compounds synthesized during this study, we recognized that several ternary mixtures displayed a modulated SmC aP A phase down to below -40 °C and up to about 100 °C on both heating and cooling, as well as optical tilt angles in the transformed state of approximately 45° (optically isotropic state). The materials were fully characterizedmore » and their liquid crystal as well as electro-optical properties analyzed by polarized optical microscopy, differential scanning calorimetry, synchrotron X-ray diffraction, dielectric spectroscopy, and electro-optical tests.« less

  13. Ion-beam-induced planarization, densification, and exfoliation of low-density nanoporous silica

    NASA Astrophysics Data System (ADS)

    Kucheyev, S. O.; Shin, S. J.

    2017-09-01

    Planarization of low-density nanoporous solids is challenging. Here, we demonstrate that ion bombardment to doses of ˜1015 cm-2 results in significant smoothing of silica aerogels, yielding mirror-like surfaces after metallization. The surface smoothing efficiency scales with the ion energy loss component leading to local lattice heating. Planarization is accompanied by sub-surface monolith densification, resulting in surface exfoliation with increasing ion dose. These findings have implications for the fabrication of graded-density nanofoams, aerogel-based lightweight optical components, and meso-origami.

  14. Experimental evaluation of the optical quality of DMD SLM for its application as Fourier holograms displaying device

    NASA Astrophysics Data System (ADS)

    Molodtsov, D. Y.; Cheremkhin, P. A.; Krasnov, V. V.; Rodin, V. G.

    2016-04-01

    In this paper, the optical quality of micromirror DMD spatial light modulator (SLM) is evaluated and its applicability as an output device for holographic filters in dispersive correlators is analyzed. The possibility of using of DMD SLM extracted from consumer DLP-projector was experimentally evaluated by displaying of Fourier holograms. Software for displaying of holograms was developed. Experiments on holograms reconstruction was conducted with a different number of holograms pixels (and different placement on SLM). Reduction of number of pixels of output hologram (i.e. size of minimum resolvable element) led to improvement of reconstructed image quality. The evaluation shows that not every DMD-chip has acceptable optical quality for its application as display device for Fourier holograms. It was determined that major factor of reconstructed image quality degradation is a curvature of surface of SLM or its safety glass. Ranging hologram size allowed to estimate approximate size of sufficiently flat area of SLM matrix. For tested SLM it was about 1.5 mm. Further hologram size increase led to significant reconstructed image quality degradation. Developed and applied a technique allows to quickly estimate maximum size of holograms that can be displayed with specific SLM without significant degradation of reconstructed image. Additionally it allows to identify areas on the SLM with increased curvature of the surface.

  15. Planar-integrated single-crystalline perovskite photodetectors

    PubMed Central

    Saidaminov, Makhsud I.; Adinolfi, Valerio; Comin, Riccardo; Abdelhady, Ahmed L.; Peng, Wei; Dursun, Ibrahim; Yuan, Mingjian; Hoogland, Sjoerd; Sargent, Edward H.; Bakr, Osman M.

    2015-01-01

    Hybrid perovskites are promising semiconductors for optoelectronic applications. However, they suffer from morphological disorder that limits their optoelectronic properties and, ultimately, device performance. Recently, perovskite single crystals have been shown to overcome this problem and exhibit impressive improvements: low trap density, low intrinsic carrier concentration, high mobility, and long diffusion length that outperform perovskite-based thin films. These characteristics make the material ideal for realizing photodetection that is simultaneously fast and sensitive; unfortunately, these macroscopic single crystals cannot be grown on a planar substrate, curtailing their potential for optoelectronic integration. Here we produce large-area planar-integrated films made up of large perovskite single crystals. These crystalline films exhibit mobility and diffusion length comparable with those of single crystals. Using this technique, we produced a high-performance light detector showing high gain (above 104 electrons per photon) and high gain-bandwidth product (above 108 Hz) relative to other perovskite-based optical sensors. PMID:26548941

  16. Peptide Integrated Optics.

    PubMed

    Handelman, Amir; Lapshina, Nadezda; Apter, Boris; Rosenman, Gil

    2018-02-01

    Bio-nanophotonics is a wide field in which advanced optical materials, biomedicine, fundamental optics, and nanotechnology are combined and result in the development of biomedical optical chips. Silk fibers or synthetic bioabsorbable polymers are the main light-guiding components. In this work, an advanced concept of integrated bio-optics is proposed, which is based on bioinspired peptide optical materials exhibiting wide optical transparency, nonlinear and electrooptical properties, and effective passive and active waveguiding. Developed new technology combining bottom-up controlled deposition of peptide planar wafers of a large area and top-down focus ion beam lithography provides direct fabrication of peptide optical integrated circuits. Finding a deep modification of peptide optical properties by reconformation of biological secondary structure from native phase to β-sheet architecture is followed by the appearance of visible fluorescence and unexpected transition from a native passive optical waveguiding to an active one. Original biocompatibility, switchable regimes of waveguiding, and multifunctional nonlinear optical properties make these new peptide planar optical materials attractive for application in emerging technology of lab-on-biochips, combining biomedical photonic and electronic circuits toward medical diagnosis, light-activated therapy, and health monitoring. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Animated Displays IV: Linear Polarization.

    ERIC Educational Resources Information Center

    Chagnon, Paul

    1993-01-01

    Describes several demonstrations that can be easily reproduced to help students understand optical polarization. Displays and supplement text include polarization by reflection; polarization by scattering; liquid crystals; optical activity; calcite; birefringent plastics; retardation plates; photoelasticity; and the "Optical Barber…

  18. Thin planar package for cooling an array of edge-emitting laser diodes

    DOEpatents

    Mundinger, David C.; Benett, William J.

    1992-01-01

    A laser diode array is disclosed that includes a plurality of planar assemblies and active cooling of each assembly. The laser diode array may be operated in a long duty cycle, or in continuous operation. A laser diode bar and a microchannel heat sink are thermally coupled in a compact, thin planar assembly having the laser diode bar located proximate to one edge. In an array, a number of such thin planar assemblies are secured together in a stacked configuration, in close proximity so that the laser diodes are spaced closely. The cooling means includes a microchannel heat sink proximate to the laser diode bar to absorb heat generated by laser operation. To provide the coolant to the microchannels, each thin planar assembly comprises passageways that connect the microchannels to inlet and outlet corridors. Each inlet passageway may comprise a narrow slot that directs coolant into the microchannels and increases the velocity of flow therethrough. The corridors comprises holes extending through each of the assemblies in the array. The inlet and outlet corridors are connected to a conventional coolant circulation system. The laser diode array with active cooling has applications as an optical pump for high power solid state lasers, or by mating the diodes with fiber optic lenses. Further, the arrays can be useful in applications having space constraints and energy limitations, and in military and space applications. The arrays can be incorporated in equipment such as communications devices and active sensors.

  19. Total internal reflection-based planar waveguide solar concentrator with symmetric air prisms as couplers.

    PubMed

    Xie, Peng; Lin, Huichuan; Liu, Yong; Li, Baojun

    2014-10-20

    We present a waveguide coupling approach for planar waveguide solar concentrator. In this approach, total internal reflection (TIR)-based symmetric air prisms are used as couplers to increase the coupler reflectivity and to maximize the optical efficiency. The proposed concentrator consists of a line focusing cylindrical lens array over a planar waveguide. The TIR-based couplers are located at the focal line of each lens to couple the focused sunlight into the waveguide. The optical system was modeled and simulated with a commercial ray tracing software (Zemax). Results show that the system used with optimized TIR-based couplers can achieve 70% optical efficiency at 50 × geometrical concentration ratio, resulting in a flux concentration ratio of 35 without additional secondary concentrator. An acceptance angle of ± 7.5° is achieved in the x-z plane due to the use of cylindrical lens array as the primary concentrator.

  20. Display technologies for augmented reality

    NASA Astrophysics Data System (ADS)

    Lee, Byoungho; Lee, Seungjae; Jang, Changwon; Hong, Jong-Young; Li, Gang

    2018-02-01

    With the virtue of rapid progress in optics, sensors, and computer science, we are witnessing that commercial products or prototypes for augmented reality (AR) are penetrating into the consumer markets. AR is spotlighted as expected to provide much more immersive and realistic experience than ordinary displays. However, there are several barriers to be overcome for successful commercialization of AR. Here, we explore challenging and important topics for AR such as image combiners, enhancement of display performance, and focus cue reproduction. Image combiners are essential to integrate virtual images with real-world. Display performance (e.g. field of view and resolution) is important for more immersive experience and focus cue reproduction may mitigate visual fatigue caused by vergence-accommodation conflict. We also demonstrate emerging technologies to overcome these issues: index-matched anisotropic crystal lens (IMACL), retinal projection displays, and 3D display with focus cues. For image combiners, a novel optical element called IMACL provides relatively wide field of view. Retinal projection displays may enhance field of view and resolution of AR displays. Focus cues could be reconstructed via multi-layer displays and holographic displays. Experimental results of our prototypes are explained.

  1. A photophoretic-trap volumetric display

    NASA Astrophysics Data System (ADS)

    Smalley, D. E.; Nygaard, E.; Squire, K.; van Wagoner, J.; Rasmussen, J.; Gneiting, S.; Qaderi, K.; Goodsell, J.; Rogers, W.; Lindsey, M.; Costner, K.; Monk, A.; Pearson, M.; Haymore, B.; Peatross, J.

    2018-01-01

    Free-space volumetric displays, or displays that create luminous image points in space, are the technology that most closely resembles the three-dimensional displays of popular fiction. Such displays are capable of producing images in ‘thin air’ that are visible from almost any direction and are not subject to clipping. Clipping restricts the utility of all three-dimensional displays that modulate light at a two-dimensional surface with an edge boundary; these include holographic displays, nanophotonic arrays, plasmonic displays, lenticular or lenslet displays and all technologies in which the light scattering surface and the image point are physically separate. Here we present a free-space volumetric display based on photophoretic optical trapping that produces full-colour graphics in free space with ten-micrometre image points using persistence of vision. This display works by first isolating a cellulose particle in a photophoretic trap created by spherical and astigmatic aberrations. The trap and particle are then scanned through a display volume while being illuminated with red, green and blue light. The result is a three-dimensional image in free space with a large colour gamut, fine detail and low apparent speckle. This platform, named the Optical Trap Display, is capable of producing image geometries that are currently unobtainable with holographic and light-field technologies, such as long-throw projections, tall sandtables and ‘wrap-around’ displays.

  2. Collimated autostereoscopic displays for cockpit applications

    NASA Astrophysics Data System (ADS)

    Eichenlaub, Jesse B.

    1995-06-01

    The use of an autostereoscopic display (a display that produces stereoscopic images that the user can see without wearing special glasses) for cockpit applications is now under investigation at Wright Patterson Air Force Base. DTI reported on this display, built for testing in a simulator, at last year's conference. It is believed, based on testing performed at NASA's Langley Research Center, that collimating this type of display will accrue benefits to the user including a grater useful imaging volume and more accurate stereo perception. DTI has therefore investigated the feasibility of collimating an autostereoscopic display, and has experimentally demonstrated a proof of concept model of such a display. As in the case of conventional displays, a collimated autostereoscopic display utilizes an optical element located one focal length from the surface of the image forming device. The presence of this element must be taken into account when designing the optics used to create the autostereoscopic images. The major design issues associated with collimated 2D displays are also associated with collimated autostereoscopic displays.

  3. Simulation and display of macromolecular complexes

    NASA Technical Reports Server (NTRS)

    Nir, S.; Garduno, R.; Rein, R.; Macelroy, R. D.

    1977-01-01

    In association with an investigation of the interaction of proteins with DNA and RNA, an interactive computer program for building, manipulating, and displaying macromolecular complexes has been designed. The system provides perspective, planar, and stereoscopic views on the computer terminal display, as well as views for standard and nonstandard observer locations. The molecule or its parts may be rotated and/or translated in any direction; bond connections may be added or removed by the viewer. Molecular fragments may be juxtaposed in such a way that given bonds are aligned, and given planes and points coincide. Another subroutine provides for the duplication of a given unit such as a DNA or amino-acid base.

  4. Direct observation of backbone planarization via side-chain alignment in single bulky-substituted polythiophenes

    NASA Astrophysics Data System (ADS)

    Raithel, Dominic; Simine, Lena; Pickel, Sebastian; Schötz, Konstantin; Panzer, Fabian; Baderschneider, Sebastian; Schiefer, Daniel; Lohwasser, Ruth; Köhler, Jürgen; Thelakkat, Mukundan; Sommer, Michael; Köhler, Anna; Rossky, Peter J.; Hildner, Richard

    2018-03-01

    The backbone conformation of conjugated polymers affects, to a large extent, their optical and electronic properties. The usually flexible substituents provide solubility and influence the packing behavior of conjugated polymers in films or in bad solvents. However, the role of the side chains in determining and potentially controlling the backbone conformation, and thus the optical and electronic properties on the single polymer level, is currently under debate. Here, we investigate directly the impact of the side chains by studying the bulky-substituted poly(3-(2,5-dioctylphenyl)thiophene) (PDOPT) and the common poly(3-hexylthiophene) (P3HT), both with a defined molecular weight and high regioregularity, using low-temperature single-chain photoluminescence (PL) spectroscopy and quantum-classical simulations. Surprisingly, the optical transition energy of PDOPT is significantly (˜2,000 cm‑1 or 0.25 eV) red-shifted relative to P3HT despite a higher static and dynamic disorder in the former. We ascribe this red shift to a side-chain induced backbone planarization in PDOPT, supported by temperature-dependent ensemble PL spectroscopy. Our atomistic simulations reveal that the bulkier 2,5-dioctylphenyl side chains of PDOPT adopt a clear secondary helical structural motif and thus protect conjugation, i.e., enforce backbone planarity, whereas, for P3HT, this is not the case. These different degrees of planarity in both thiophenes do not result in different conjugation lengths, which we found to be similar. It is rather the stronger electronic coupling between the repeating units in the more planar PDOPT which gives rise to the observed spectral red shift as well as to a reduced calculated electron‑hole polarization.

  5. Microphotonic devices for compact planar lightwave circuits and sensor systems

    NASA Astrophysics Data System (ADS)

    Cardenas Gonzalez, Jaime

    2005-07-01

    Higher levels of integration in planar lightwave circuits and sensor systems can reduce fabrication costs and broaden viable applications for optical network and sensor systems. For example, increased integration and functionality can lead to sensor systems that are compact enough for easy transport, rugged enough for field applications, and sensitive enough even for laboratory applications. On the other hand, more functional and compact planar lightwave circuits can make optical networks components less expensive for the metro and access markets in urban areas and allow penetration of fiber to the home. Thus, there is an important area of opportunity for increased integration to provide low cost, compact solutions in both network components and sensor systems. In this dissertation, a novel splitting structure for microcantilever deflection detection is introduced. The splitting structure is designed so that its splitting ratio is dependent on the vertical position of the microcantilever. With this structure, microcantilevers sensitized to detect different analytes or biological agents can be integrated into an array on a single chip. Additionally, the integration of a depolarizer into the optoelectronic integrated circuit in an interferometric fiber optic gyroscope is presented as a means for cost reduction. The savings come in avoiding labor intensive fiber pigtailing steps by permitting batch fabrication of these components. In particular, this dissertation focuses on the design of the waveguides and polarization rotator, and the impact of imperfect components on the performance of the depolarizer. In the area of planar lightwave circuits, this dissertation presents the development of a fabrication process for single air interface bends (SAIBs). SAIBs can increase integration by reducing the area necessary to make a waveguide bend. Fabrication and measurement of a 45° SAIB with a bend efficiency of 93.4% for TM polarization and 92.7% for TE polarization are

  6. FIBER AND INTEGRATED OPTICS: Waveguide characteristics of real optical strip waveguides

    NASA Astrophysics Data System (ADS)

    Shmal'ko, A. V.; Frolov, V. V.

    1990-01-01

    A study is reported of the influence of the parameters of real thin-film optical strip waveguides on their waveguide characteristics (propagation constants, localization of the mode field, etc.) allowing for the presence of transition layers in a transverse cross section of the base planar waveguide, for the real geometry of this section (which is nearly trapezoidal), and for the thickness of the guiding strip. Analytic expressions are obtained for the optical confinement coefficient and the effective mode format of a weakly guiding symmetric strip waveguide. It is shown that the coefficient representing the fundamental E11x(y) mode is practically independent of the relative thickness t /h (h is the thickness of the base planar waveguide) of the guiding strip provided t /h>=0.5. The corrections to the normalized effective refractive indices of the base planar and strip waveguides are found in order to allow for the real geometry and for the refractive index profile in the strip waveguide.

  7. Planar waveguide sensor of ammonia

    NASA Astrophysics Data System (ADS)

    Rogoziński, Roman; Tyszkiewicz, Cuma; Karasiński, Paweł; Izydorczyk, Weronika

    2015-12-01

    The paper presents the concept of forming ammonia sensor based on a planar waveguide structure. It is an amplitude sensor produced on the basis of the multimode waveguide. The technological base for this kind of structure is the ion exchange method and the sol-gel method. The planar multimode waveguide of channel type is produced in glass substrate (soda-lime glass of Menzel-Glaser company) by the selective Ag+↔Na+ ion exchange. On the surface of the glass substrate a porous (~40%) silica layer is produced by the sol-gel method. This layer is sensitized to the presence of ammonia in the surrounding atmosphere by impregnation with Bromocresol Purple (BCP) dye. Therefore it constitutes a sensor layer. Spectrophotometric tests carried out showed about 50% reduction of cross-transmission changes of such sensor layer for a wave λ=593 nm caused by the presence of 25% ammonia water vapor in its ambience. The radiation source used in this type of sensor structure is a light emitting diode LED. The gradient channel waveguide is designed for frontal connection (optical glue) with a standard multimode telecommunications waveguide 62.5/125μm.

  8. Nonclassical-light generation in a photonic-band-gap nonlinear planar waveguide

    NASA Astrophysics Data System (ADS)

    Peřina, Jan, Jr.; Sibilia, Concita; Tricca, Daniela; Bertolotti, Mario

    2004-10-01

    The optical parametric process occurring in a photonic-band-gap planar waveguide is studied from the point of view of nonclassical-light generation. The nonlinearly interacting optical fields are described by the generalized superposition of coherent signals and noise using the method of operator linear corrections to a classical strong solution. Scattered backward-propagating fields are taken into account. Squeezed light as well as light with sub-Poissonian statistics can be obtained in two-mode fields under the specified conditions.

  9. Arabidopsis  SABRE and CLASP interact to stabilize cell division plane orientation and planar polarity

    PubMed Central

    Pietra, Stefano; Gustavsson, Anna; Kiefer, Christian; Kalmbach, Lothar; Hörstedt, Per; Ikeda, Yoshihisa; Stepanova, Anna N.; Alonso, Jose M.; Grebe, Markus

    2013-01-01

    The orientation of cell division and the coordination of cell polarity within the plane of the tissue layer (planar polarity) contribute to shape diverse multicellular organisms. The root of Arabidopsis thaliana displays regularly oriented cell divisions, cell elongation and planar polarity providing a plant model system to study these processes. Here we report that the SABRE protein, which shares similarity with proteins of unknown function throughout eukaryotes, has important roles in orienting cell division and planar polarity. SABRE localizes at the plasma membrane, endomembranes, mitotic spindle and cell plate. SABRE stabilizes the orientation of CLASP-labelled preprophase band microtubules predicting the cell division plane, and of cortical microtubules driving cell elongation. During planar polarity establishment, sabre is epistatic to clasp at directing polar membrane domains of Rho-of-plant GTPases. Our findings mechanistically link SABRE to CLASP-dependent microtubule organization, shedding new light on the function of SABRE-related proteins in eukaryotes. PMID:24240534

  10. Arabidopsis  SABRE and CLASP interact to stabilize cell division plane orientation and planar polarity.

    PubMed

    Pietra, Stefano; Gustavsson, Anna; Kiefer, Christian; Kalmbach, Lothar; Hörstedt, Per; Ikeda, Yoshihisa; Stepanova, Anna N; Alonso, Jose M; Grebe, Markus

    2013-01-01

    The orientation of cell division and the coordination of cell polarity within the plane of the tissue layer (planar polarity) contribute to shape diverse multicellular organisms. The root of Arabidopsis thaliana displays regularly oriented cell divisions, cell elongation and planar polarity providing a plant model system to study these processes. Here we report that the SABRE protein, which shares similarity with proteins of unknown function throughout eukaryotes, has important roles in orienting cell division and planar polarity. SABRE localizes at the plasma membrane, endomembranes, mitotic spindle and cell plate. SABRE stabilizes the orientation of CLASP-labelled preprophase band microtubules predicting the cell division plane, and of cortical microtubules driving cell elongation. During planar polarity establishment, sabre is epistatic to clasp at directing polar membrane domains of Rho-of-plant GTPases. Our findings mechanistically link SABRE to CLASP-dependent microtubule organization, shedding new light on the function of SABRE-related proteins in eukaryotes.

  11. Optical methods for enabling focus cues in head-mounted displays for virtual and augmented reality

    NASA Astrophysics Data System (ADS)

    Hua, Hong

    2017-05-01

    Developing head-mounted displays (HMD) that offer uncompromised optical pathways to both digital and physical worlds without encumbrance and discomfort confronts many grand challenges, both from technological perspectives and human factors. Among the many challenges, minimizing visual discomfort is one of the key obstacles. One of the key contributing factors to visual discomfort is the lack of the ability to render proper focus cues in HMDs to stimulate natural eye accommodation responses, which leads to the well-known accommodation-convergence cue discrepancy problem. In this paper, I will provide a summary on the various optical methods approaches toward enabling focus cues in HMDs for both virtual reality (VR) and augmented reality (AR).

  12. Free space and waveguide Talbot effect: phase relations and planar light circuit applications

    NASA Astrophysics Data System (ADS)

    Nikkhah, H.; Zheng, Q.; Hasan, I.; Abdul-Majid, S.; Hall, T. J.

    2012-10-01

    Optical fields that are periodic in the transverse plane self-image periodically as they propagate along the optical axis: a phenomenon known as the Talbot effect. A transfer matrix may be defined that relates the amplitude and phase of point sources placed on a particular grid at the input to their respective multiple images at an image plane. The free-space Talbot effect may be mapped to the waveguide Talbot effect. Applying this mapping to the transfer matrix enables the prediction of the phase and amplitude relations between the ports of a Multimode Interference (MMI) coupler- a planar waveguide device. The transfer matrix approach has not previously been applied to the free-space case and its mapping to the waveguide case provides greater clarity and physical insight into the phase relationships than previous treatments. The paper first introduces the underlying physics of the Talbot effect in free space with emphasis on the positions along the optical axis at which images occur; their multiplicity; and their relative phase relations determined by the Gauss Quadratic Sum of number theory. The analysis is then adapted to predict the phase relationships between the ports of an MMI. These phase relationships are critical to planar light circuit (PLC) applications such as 90° optical hybrids for coherent optical receiver front-ends, external optical I-Q modulators for coherent optical transmitters; and optical phased array switches. These applications are illustrated by results obtained from devices that have been fabricated and tested by the PTLab in Si micro-photonic integration platforms.

  13. Graphene photonics for resonator-enhanced electro-optic devices and all-optical interactions

    DOEpatents

    Englund, Dirk R.; Gan, Xuetao

    2017-03-21

    Techniques for coupling light into graphene using a planar photonic crystal having a resonant cavity characterized by a mode volume and a quality factor and at least one graphene layer positioned in proximity to the planar photonic crystal to at least partially overlap with an evanescent field of the resonant cavity. At least one mode of the resonant cavity can couple into the graphene layer via evanescent coupling. The optical properties of the graphene layer can be controlled, and characteristics of the graphene-cavity system can be detected. Coupling light into graphene can include electro-optic modulation of light, photodetection, saturable absorption, bistability, and autocorrelation.

  14. Three-Dimensional Large Screen Display Using Polymer-Dispersed Liquid-Crystal Light Valves and a Schlieren Optical System: Proposal and Basic Experiments

    NASA Astrophysics Data System (ADS)

    Takizawa, Kuniharu

    A novel three-dimensional (3-D) projection display used with polarized eyeglasses is proposed. It consists of polymer-dispersed liquid crystal-light valves that modulate the illuminated light based on light scattering, a polarization beam splitter, and a Schlieren projection system. The features of the proposed display include a 3-D image display with a single projector, half size and half power consumption compared with a conventional 3-D projector with polarized glasses. Measured electro-optic characteristics of a polymer-dispersed liquid-crystal cell inserted between crossed polarizers suggests that the proposed display achieves small cross talk and high-extinction ratio.

  15. Dynamic plasmonic colour display

    NASA Astrophysics Data System (ADS)

    Duan, Xiaoyang; Kamin, Simon; Liu, Na

    2017-02-01

    Plasmonic colour printing based on engineered metasurfaces has revolutionized colour display science due to its unprecedented subwavelength resolution and high-density optical data storage. However, advanced plasmonic displays with novel functionalities including dynamic multicolour printing, animations, and highly secure encryption have remained in their infancy. Here we demonstrate a dynamic plasmonic colour display technique that enables all the aforementioned functionalities using catalytic magnesium metasurfaces. Controlled hydrogenation and dehydrogenation of the constituent magnesium nanoparticles, which serve as dynamic pixels, allow for plasmonic colour printing, tuning, erasing and restoration of colour. Different dynamic pixels feature distinct colour transformation kinetics, enabling plasmonic animations. Through smart material processing, information encoded on selected pixels, which are indiscernible to both optical and scanning electron microscopies, can only be read out using hydrogen as a decoding key, suggesting a new generation of information encryption and anti-counterfeiting applications.

  16. Dynamic plasmonic colour display.

    PubMed

    Duan, Xiaoyang; Kamin, Simon; Liu, Na

    2017-02-24

    Plasmonic colour printing based on engineered metasurfaces has revolutionized colour display science due to its unprecedented subwavelength resolution and high-density optical data storage. However, advanced plasmonic displays with novel functionalities including dynamic multicolour printing, animations, and highly secure encryption have remained in their infancy. Here we demonstrate a dynamic plasmonic colour display technique that enables all the aforementioned functionalities using catalytic magnesium metasurfaces. Controlled hydrogenation and dehydrogenation of the constituent magnesium nanoparticles, which serve as dynamic pixels, allow for plasmonic colour printing, tuning, erasing and restoration of colour. Different dynamic pixels feature distinct colour transformation kinetics, enabling plasmonic animations. Through smart material processing, information encoded on selected pixels, which are indiscernible to both optical and scanning electron microscopies, can only be read out using hydrogen as a decoding key, suggesting a new generation of information encryption and anti-counterfeiting applications.

  17. Dynamic plasmonic colour display

    PubMed Central

    Duan, Xiaoyang; Kamin, Simon; Liu, Na

    2017-01-01

    Plasmonic colour printing based on engineered metasurfaces has revolutionized colour display science due to its unprecedented subwavelength resolution and high-density optical data storage. However, advanced plasmonic displays with novel functionalities including dynamic multicolour printing, animations, and highly secure encryption have remained in their infancy. Here we demonstrate a dynamic plasmonic colour display technique that enables all the aforementioned functionalities using catalytic magnesium metasurfaces. Controlled hydrogenation and dehydrogenation of the constituent magnesium nanoparticles, which serve as dynamic pixels, allow for plasmonic colour printing, tuning, erasing and restoration of colour. Different dynamic pixels feature distinct colour transformation kinetics, enabling plasmonic animations. Through smart material processing, information encoded on selected pixels, which are indiscernible to both optical and scanning electron microscopies, can only be read out using hydrogen as a decoding key, suggesting a new generation of information encryption and anti-counterfeiting applications. PMID:28232722

  18. Dimensional effects on the magnetic domains in planar magnetophotonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoyue

    2007-05-01

    The application of photonic crystal technology in magneto-optic media can yield significant improvements in polarization rotation efficiency and optical switching capability and an overall reduction in magneto-optic device dimensions. Resonant photonic crystal structures in planar ferrimagnetic film waveguides are of interest because they may lead to the development of on-chip magneto-optical switches and isolators for photonic device integration. In the present work, two different methods for the fabrication of on-chip waveguide magnetophotonic crystals, through electron beam lithography and focused ion beam milling, are discussed and demonstrated. A high precision photonic measurement system was set up for testing and analysis of the waveguide devices. The results obtained show photonic band gaps with resonant transmission in the gap, and enhanced magneto-optic rotation efficiency. The character of waveguide modes therein, birefringence effects, and structural variation effects were studied extensively and are presented in this thesis. Planar magnetization control produced by manipulation of the magnetic shape anisotropy in the photonic crystal micro-cavity was demonstrated in this work. By introducing strip structures into the resonant cavity formed on magnetic garnet films with in-plane anisotropy, a bi-stable magnetic state and an enhanced magnetic field reversal mechanism were demonstrated. This effect was extensively studied through experimental and micromagnetic simulation analysis of the polarization rotation hysteresis. The results discussed herein show that domain closure loops between the strips limit the magnification of the coercivity in the resonant cavity and that these limitations can be overcome by the formation of isolated single-domain magnetic microstrips in the cavity.

  19. Coupling Ideality of Integrated Planar High-Q Microresonators

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Martin H. P.; Liu, Junqiu; Geiselmann, Michael; Kippenberg, Tobias J.

    2017-02-01

    Chip-scale optical microresonators with integrated planar optical waveguides are useful building blocks for linear, nonlinear, and quantum-optical photonic devices alike. Loss reduction through improving fabrication processes results in several integrated microresonator platforms attaining quality (Q ) factors of several millions. Beyond the improvement of the quality factor, the ability to operate the microresonator with high coupling ideality in the overcoupled regime is of central importance. In this regime, the dominant source of loss constitutes the coupling to a single desired output channel, which is particularly important not only for quantum-optical applications such as the generation of squeezed light and correlated photon pairs but also for linear and nonlinear photonics. However, to date, the coupling ideality in integrated photonic microresonators is not well understood, in particular, design-dependent losses and their impact on the regime of high ideality. Here we investigate design-dependent parasitic losses described by the coupling ideality of the commonly employed microresonator design consisting of a microring-resonator waveguide side coupled to a straight bus waveguide, a system which is not properly described by the conventional input-output theory of open systems due to the presence of higher-order modes. By systematic characterization of multimode high-Q silicon nitride microresonator devices, we show that this design can suffer from low coupling ideality. By performing 3D simulations, we identify the coupling to higher-order bus waveguide modes as the dominant origin of parasitic losses which lead to the low coupling ideality. Using suitably designed bus waveguides, parasitic losses are mitigated with a nearly unity ideality and strong overcoupling (i.e., a ratio of external coupling to internal resonator loss rate >9 ) are demonstrated. Moreover, we find that different resonator modes can exchange power through the coupler, which, therefore

  20. Real-time label-free biosensing with integrated planar waveguide ring resonators

    NASA Astrophysics Data System (ADS)

    Sohlström, Hans; Gylfason, Kristinn B.; Hill, Daniel

    2010-05-01

    We review the use of planar integrated optical waveguide ring resonators for label free bio-sensing and present recent results from two European biosensor collaborations: SABIO and InTopSens. Planar waveguide ring resonators are attractive for label-free biosensing due to their small footprint, high Q-factors, and compatibility with on-chip optics and microfluidics. This enables integrated sensor arrays for compact labs-on-chip. One application of label-free sensor arrays is for point-of-care medical diagnostics. Bringing such powerful tools to the single medical practitioner is an important step towards personalized medicine, but requires addressing a number of issues: improving limit of detection, managing the influence of temperature, parallelization of the measurement for higher throughput and on-chip referencing, efficient light-coupling strategies to simplify alignment, and packaging of the optical chip and integration with microfluidics. From the SABIO project we report refractive index measurement and label-free biosensing in an 8-channel slotwaveguide ring resonator sensor array, within a compact cartridge with integrated microfluidics. The sensors show a volume sensing detection limit of 5 x 10-6 RIU and a surface sensing detection limit of 0.9 pg/mm2. From the InTopSens project we report early results on silicon-on-insulator racetrack resonators.

  1. Reflective afocal broadband adaptive optics scanning ophthalmoscope.

    PubMed

    Dubra, Alfredo; Sulai, Yusufu

    2011-06-01

    A broadband adaptive optics scanning ophthalmoscope (BAOSO) consisting of four afocal telescopes, formed by pairs of off-axis spherical mirrors in a non-planar arrangement, is presented. The non-planar folding of the telescopes is used to simultaneously reduce pupil and image plane astigmatism. The former improves the adaptive optics performance by reducing the root-mean-square (RMS) of the wavefront and the beam wandering due to optical scanning. The latter provides diffraction limited performance over a 3 diopter (D) vergence range. This vergence range allows for the use of any broadband light source(s) in the 450-850 nm wavelength range to simultaneously image any combination of retinal layers. Imaging modalities that could benefit from such a large vergence range are optical coherence tomography (OCT), multi- and hyper-spectral imaging, single- and multi-photon fluorescence. The benefits of the non-planar telescopes in the BAOSO are illustrated by resolving the human foveal photoreceptor mosaic in reflectance using two different superluminescent diodes with 680 and 796 nm peak wavelengths, reaching the eye with a vergence of 0.76 D relative to each other.

  2. A direct temporal domain approach for ultrafast optical signal processing and its implementation using planar lightwave circuits

    NASA Astrophysics Data System (ADS)

    Xia, Bing

    Ultrafast optical signal processing, which shares the same fundamental principles of electrical signal processing, can realize numerous important functionalities required in both academic research and industry. Due to the extremely fast processing speed, all-optical signal processing and pulse shaping have been widely used in ultrafast telecommunication networks, photonically-assisted RFlmicro-meter waveform generation, microscopy, biophotonics, and studies on transient and nonlinear properties of atoms and molecules. In this thesis, we investigate two types of optical spectrally-periodic (SP) filters that can be fabricated on planar lightwave circuits (PLC) to perform pulse repetition rate multiplication (PRRM) and arbitrary optical waveform generation (AOWG). First, we present a direct temporal domain approach for PRRM using SP filters. We show that the repetition rate of an input pulse train can be multiplied by a factor N using an optical filter with a free spectral range that does not need to be constrained to an integer multiple of N. Furthermore, the amplitude of each individual output pulse can be manipulated separately to form an arbitrary envelope at the output by optimizing the impulse response of the filter. Next, we use lattice-form Mach-Zehnder interferometers (LF-MZI) to implement the temporal domain approach for PRRM. The simulation results show that PRRM with uniform profiles, binary-code profiles and triangular profiles can be achieved. Three silica based LF-MZIs are designed and fabricated, which incorporate multi-mode interference (MMI) couplers and phase shifters. The experimental results show that 40 GHz pulse trains with a uniform envelope pattern, a binary code pattern "1011" and a binary code pattern "1101" are generated from a 10 GHz input pulse train. Finally, we investigate 2D ring resonator arrays (RRA) for ultraf ast optical signal processing. We design 2D RRAs to generate a pair of pulse trains with different binary-code patterns

  3. Giant optical activity in quasi-2D planar nanostructures

    NASA Astrophysics Data System (ADS)

    Kuwata-Gonokami, Makoto; Saito, Nobuyoshi; Ino, Yusuke; Konishi, Kuniaki; Kauranen, Martti; Jefimovs, Konstantins; Vallius, Tuomas; Turunen, Jari; Svirko, Yuri P.

    2006-01-01

    Planar chirality can lead to interesting polarization effects whose interpretation has invoked possible violation of reciprocity and time reversality. We show that a quasi-two-dimensional array consisting of gold nanoparticles with no symmetry plane and having sub-wavelength periodicity and thickness exhibits giant specific rotation (~10 4 °/mm) at normal incidence. The rotation is the same for light incident on the front and back sides of the sample. Such reciprocity manifests three-dimensionality of the structure arising from the asymmetry of light-plasmon coupling at the air-metal and substrate-metal interfaces of the structure. The structures thus enable nanoscale polarization control but violate no symmetry principle.

  4. Low-Cost Fiber Optic Pressure Sensor

    DOEpatents

    Sheem, Sang K.

    2004-05-18

    The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.

  5. Low-Cost Fiber Optic Pressure Sensor

    DOEpatents

    Sheem, Sang K.

    2003-07-22

    The size and cost of fabricating fiber optic pressure sensors is reduced by fabricating the membrane of the sensor in a non-planar shape. The design of the sensors may be made in such a way that the non-planar membrane becomes a part of an air-tight cavity, so as to make the membrane resilient due to the air-cushion effect of the air-tight cavity. Such non-planar membranes are easier to make and attach.

  6. Processing and optical properties of Nd3+-doped SiO2-TiO2-Al2O3 planar waveguides

    NASA Astrophysics Data System (ADS)

    Xiang, Qing; Zhou, Yan; Ooi, Boon Siew; Lam, Yee Loy; Chan, Yuen Chuen; Kam, Chan Hin

    2000-05-01

    We report here the processing and optical characterization of Nd3+-doped SiO2-TiO2-Al2O3 planar waveguides deposited on SOS substrates by the sol-gel route combined with spin-coating and rapid thermal annealing. The recipes used for preparing the solutions by sol-gel route are in mole ratio of 93SiO2:20AlO1.5: x ErO1.5. In order to verify the residual OH content in the films, FTIR spectra were measured and the morphology of the material by the XRD analysis. Five 2-layer films annealed at a maximum temperature of 500 degrees C, 700 degrees C, 900 degrees, 1000 degrees C, 1100 degrees C respectively were fabricated on silicon. The FTIR and XRD curves show that annealing at 1050 degrees C for 15s effectively removes the OH in the materia and keeps the material amorphous. The propagation loss of the planar waveguides was measured by using the method based on scattering in measurements and the result was obtained to be 1.54dB/cm. The fluorescence spectra were measured with 514nm wavelength of Ar+ laser by directly shining the pump beam on the film instead of prism coupling. The results show that the 1 mole Nd3+ content recipe has the strongest emission efficiency among the four samples investigated.

  7. Seamless tiled display system

    NASA Technical Reports Server (NTRS)

    Dubin, Matthew B. (Inventor); Larson, Brent D. (Inventor); Kolosowsky, Aleksandra (Inventor)

    2006-01-01

    A modular and scalable seamless tiled display apparatus includes multiple display devices, a screen, and multiple lens assemblies. Each display device is subdivided into multiple sections, and each section is configured to display a sectional image. One of the lens assemblies is optically coupled to each of the sections of each of the display devices to project the sectional image displayed on that section onto the screen. The multiple lens assemblies are configured to merge the projected sectional images to form a single tiled image. The projected sectional images may be merged on the screen by magnifying and shifting the images in an appropriate manner. The magnification and shifting of these images eliminates any visual effect on the tiled display that may result from dead-band regions defined between each pair of adjacent sections on each display device, and due to gaps between multiple display devices.

  8. Projection-type see-through holographic three-dimensional display

    NASA Astrophysics Data System (ADS)

    Wakunami, Koki; Hsieh, Po-Yuan; Oi, Ryutaro; Senoh, Takanori; Sasaki, Hisayuki; Ichihashi, Yasuyuki; Okui, Makoto; Huang, Yi-Pai; Yamamoto, Kenji

    2016-10-01

    Owing to the limited spatio-temporal resolution of display devices, dynamic holographic three-dimensional displays suffer from a critical trade-off between the display size and the visual angle. Here we show a projection-type holographic three-dimensional display, in which a digitally designed holographic optical element and a digital holographic projection technique are combined to increase both factors at the same time. In the experiment, the enlarged holographic image, which is twice as large as the original display device, projected on the screen of the digitally designed holographic optical element was concentrated at the target observation area so as to increase the visual angle, which is six times as large as that for a general holographic display. Because the display size and the visual angle can be designed independently, the proposed system will accelerate the adoption of holographic three-dimensional displays in industrial applications, such as digital signage, in-car head-up displays, smart-glasses and head-mounted displays.

  9. Emission Characteristics of Organic Light-Emitting Diodes and Organic Thin-Films with Planar and Corrugated Structures

    PubMed Central

    Wei, Mao-Kuo; Lin, Chii-Wann; Yang, Chih-Chung; Kiang, Yean-Woei; Lee, Jiun-Haw; Lin, Hoang-Yan

    2010-01-01

    In this paper, we review the emission characteristics from organic light-emitting diodes (OLEDs) and organic molecular thin films with planar and corrugated structures. In a planar thin film structure, light emission from OLEDs was strongly influenced by the interference effect. With suitable design of microcavity structure and layer thicknesses adjustment, optical characteristics can be engineered to achieve high optical intensity, suitable emission wavelength, and broad viewing angles. To increase the extraction efficiency from OLEDs and organic thin-films, corrugated structure with micro- and nano-scale were applied. Microstructures can effectively redirects the waveguiding light in the substrate outside the device. For nanostructures, it is also possible to couple out the organic and plasmonic modes, not only the substrate mode. PMID:20480033

  10. Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes

    PubMed Central

    Xu, Jixian; Buin, Andrei; Ip, Alexander H.; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey J.; Kanjanaboos, Pongsakorn; Sun, Jon-Paul; Lan, Xinzheng; Quan, Li Na; Kim, Dong Ha; Hill, Ian G.; Maksymovych, Peter; Sargent, Edward H.

    2015-01-01

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite–PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3− antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour. PMID:25953105

  11. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes

    NASA Astrophysics Data System (ADS)

    Xu, Jixian; Buin, Andrei; Ip, Alexander H.; Li, Wei; Voznyy, Oleksandr; Comin, Riccardo; Yuan, Mingjian; Jeon, Seokmin; Ning, Zhijun; McDowell, Jeffrey J.; Kanjanaboos, Pongsakorn; Sun, Jon-Paul; Lan, Xinzheng; Quan, Li Na; Kim, Dong Ha; Hill, Ian G.; Maksymovych, Peter; Sargent, Edward H.

    2015-05-01

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite-PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3- antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.

  12. Perovskite-Fullerene Hybrid Materials Eliminate Hysteresis In Planar Diodes

    DOE PAGES

    Xu, Jixian; Buin, Andrei; Ip, Alexander H.; ...

    2015-03-31

    Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite–PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3 antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solarmore » cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.« less

  13. Investigation of optical fibers for high-repetition-rate, ultraviolet planar laser-induced fluorescence of OH.

    PubMed

    Hsu, Paul S; Kulatilaka, Waruna D; Roy, Sukesh; Gord, James R

    2013-05-01

    We investigate the fundamental transmission characteristics of nanosecond-duration, 10 kHz repetition rate, ultraviolet (UV) laser pulses through state-of-the-art, UV-grade fused-silica fibers being used for hydroxyl radical (OH) planar laser-induced fluorescence (PLIF) imaging. Studied in particular are laser-induced damage thresholds (LIDTs), nonlinear absorption, and optical transmission stability during long-term UV irradiation. Solarization (photodegradation) effects are significantly enhanced when the fiber is exposed to high-repetition-rate, 283 nm UV irradiation. For 10 kHz laser pulses, two-photon absorption is strong and LIDTs are low, as compared to those of laser pulses propagating at 10 Hz. The fiber characterization results are utilized to perform single-laser-shot, OH-PLIF imaging in pulsating turbulent flames with a laser that operates at 10 kHz. The nearly spatially uniform output beam that exits a long multimode fiber becomes ideal for PLIF measurements. The proof-of-concept measurements show significant promise for extending the application of a fiber-coupled, high-speed OH-PLIF system to harsh environments such as combustor test beds, and potential system improvements are suggested.

  14. Cr:ZnSe planar waveguide mid-IR laser

    NASA Astrophysics Data System (ADS)

    Willimas, J. E.; Martyshkin, D. V.; Fedorov, V. V.; Moskalev, I. S.; Camata, R. P.; Mirov, S. B.

    2011-02-01

    Middle infrared (mid-IR) chromium-doped zinc selenide (Cr:ZnSe) bulk lasers have attracted a lot of attention due to their unique combination of optical and laser properties facilitating a wide range of potential scientific, industrial, and medical applications. Utilization of thin film waveguide geometry enabling good thermal management and control of beam quality is a viable pathway for compact chip-integrated optical laser design. Cr:ZnSe thin films are also promising as saturable absorbers and mode-lockers of the cavities of solid state lasers operating over 1.3-2.1 μm. We recently reported the first successful demonstration of mid-IR Cr:ZnSe planar waveguide lasing at 2.6 μm under gain-switched short-pulse (5 ns) 1.56 μm excitation as well as the passive Q-switching of the cavity of a fiber-pumped Er:YAG laser operating at 1645 nm using a highly doped Cr:ZnSe thin film. PLD grown Cr:ZnSe waveguide were fabricated on sapphire substrates (Cr:ZnSe/sapphire) with chromium concentration of 1018-1019 cm-3. Further development of mid-IR lasing in the Cr:ZnSe planar waveguide under continuous wave excitation were investigated. In addition, deposition of Cr:ZnSe-based thin film structures on n-type GaAs substrates were also investigated for possible mid-IR electroluminescence.

  15. Processing, Characteristics, and Optical Properties of Wet Chemically Derived Planar Dielectric Waveguides.

    NASA Astrophysics Data System (ADS)

    Weisenbach, Lori Ann

    An experimental study of the processing and attenuation characteristics of solution derived, thin film, planar waveguides was made. In this study, the densification and attenuation characteristics of a variety of compositions were compared. To insure that the effects measured reflected compositional differences and not processing artifacts, guidelines for the reproducible fabrication of optical quality layers, irrespective of composition, were established. A broad range of compositions were prepared and an effort was made to keep the various solution syntheses as simple and similar as possible. The densification and attenuation of binary SiO _2-TiO_2 compositions was measured, then compared to the densification and attenuation of SiO_2-TiO_2 -R_{rm x}O _{rm y} (where R = Al or Zn) ternary compositions. Film densification was not strongly dependent upon composition, and was successfully modelled using the Lorentz-Lorenz relation, assuming the open volume in the undensified films were filled with adsorbed water. The attenuation measured at 632.8 nm did not vary with composition, except for the Zn ternary samples. Waveguides with losses of <1dB/cm could be fabricated from all other compositions. Waveguide attenuation was measured for films of different thickness, and compared to modelled predictions. The attenuation increased as layer thickness decreased, suggesting the predominance of the surface scattering contribution. To confirm that absorption losses were negligible, the wavelength dependence of the waveguides was measured. The wavelength dependence varied with composition, suggesting the absorption varied with composition. Possible mechanisms of absorption in the waveguides were discussed; the interaction of the atmosphere with the film structure is proposed as the cause of the deterioration. Film development for the binary SiO_2 -TiO_2 films was also studied as a function of increased firing time at 500^ circC. Multiple firings at 500^ circC increased the film

  16. Learning planar Ising models

    DOE PAGES

    Johnson, Jason K.; Oyen, Diane Adele; Chertkov, Michael; ...

    2016-12-01

    Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus on the class of planar Ising models, for which exact inference is tractable using techniques of statistical physics. Based on these techniques and recent methods for planarity testing and planar embedding, we propose a greedy algorithm for learning the bestmore » planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. Finally, we demonstrate our method in simulations and for two applications: modeling senate voting records and identifying geo-chemical depth trends from Mars rover data.« less

  17. Learning planar Ising models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jason K.; Oyen, Diane Adele; Chertkov, Michael

    Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus on the class of planar Ising models, for which exact inference is tractable using techniques of statistical physics. Based on these techniques and recent methods for planarity testing and planar embedding, we propose a greedy algorithm for learning the bestmore » planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. Finally, we demonstrate our method in simulations and for two applications: modeling senate voting records and identifying geo-chemical depth trends from Mars rover data.« less

  18. Latest developments in a multi-user 3D display

    NASA Astrophysics Data System (ADS)

    Surman, Phil; Sexton, Ian; Bates, Richard; Lee, Wing Kai; Hopf, Klaus; Koukoulas, Triantaffilos

    2005-11-01

    De Montfort University, in conjunction with the Heinrich Hertz Institute, is developing a 3D display that is targeted specifically at the television market. It is capable of supplying 3D to several viewers who do not have to wear special glasses, and who are able to move freely over a room-sized area. The display consists of a single liquid crystal display that presents the same stereo pair to every viewer by employing spatial multiplexing. This presents a stereo pair on alternate pixel rows, with the conventional backlight replaced by novel steering optics controlled by the output of a head position tracker. Illumination is achieved using arrays of coaxial optical elements in conjunction with high-density white light emitting diode arrays. The operation of the steering and multiplexing optics in the prototype display are explained. The results obtained from a prototype built under the European Union-funded ATTEST 3D television project are described. The performance of this model was not optimum, but was sufficient to prove that the principle of operation is viable for a 3D television display. A second prototype, incorporating improvements based on experience gained, is currently under construction and this is also described. The prototype is capable of being developed into a display appropriate for a production model that will enable 3D television to come to market within the next ten years. With the current widespread usage of flat panel displays it is likely that customer preference will be for a hang-on-the-wall 3D display, and this challenge will be met by reconfiguring the optics and incorporating novel optical addressing techniques.

  19. Optical integrator for optical dark-soliton detection and pulse shaping.

    PubMed

    Ngo, Nam Quoc

    2006-09-10

    The design and analysis of an Nth-order optical integrator using the digital filter technique is presented. The optical integrator is synthesized using planar-waveguide technology. It is shown that a first-order optical integrator can be used as an optical dark-soliton detector by converting an optical dark-soliton pulse into an optical bell-shaped pulse for ease of detection. The optical integrators can generate an optical step function, staircase function, and paraboliclike functions from input optical Gaussian pulses. The optical integrators may be potentially used as basic building blocks of all-optical signal processing systems because the time integrals of signals may sometimes be required for further use or analysis. Furthermore, an optical integrator may be used for the shaping of optical pulses or in an optical feedback control system.

  20. Super long viewing distance light homogeneous emitting three-dimensional display

    NASA Astrophysics Data System (ADS)

    Liao, Hongen

    2015-04-01

    Three-dimensional (3D) display technology has continuously been attracting public attention with the progress in today's 3D television and mature display technologies. The primary characteristics of conventional glasses-free autostereoscopic displays, such as spatial resolution, image depths, and viewing angle, are often limited due to the use of optical lenses or optical gratings. We present a 3D display using MEMS-scanning-mechanism-based light homogeneous emitting (LHE) approach and demonstrate that the display can directly generate an autostereoscopic 3D image without the need for optical lenses or gratings. The generated 3D image has the advantages of non-aberration and a high-definition spatial resolution, making it the first to exhibit animated 3D images with image depth of six meters. Our LHE 3D display approach can be used to generate a natural flat-panel 3D display with super long viewing distance and alternative real-time image update.

  1. Reflective afocal broadband adaptive optics scanning ophthalmoscope

    PubMed Central

    Dubra, Alfredo; Sulai, Yusufu

    2011-01-01

    A broadband adaptive optics scanning ophthalmoscope (BAOSO) consisting of four afocal telescopes, formed by pairs of off-axis spherical mirrors in a non-planar arrangement, is presented. The non-planar folding of the telescopes is used to simultaneously reduce pupil and image plane astigmatism. The former improves the adaptive optics performance by reducing the root-mean-square (RMS) of the wavefront and the beam wandering due to optical scanning. The latter provides diffraction limited performance over a 3 diopter (D) vergence range. This vergence range allows for the use of any broadband light source(s) in the 450-850 nm wavelength range to simultaneously image any combination of retinal layers. Imaging modalities that could benefit from such a large vergence range are optical coherence tomography (OCT), multi- and hyper-spectral imaging, single- and multi-photon fluorescence. The benefits of the non-planar telescopes in the BAOSO are illustrated by resolving the human foveal photoreceptor mosaic in reflectance using two different superluminescent diodes with 680 and 796 nm peak wavelengths, reaching the eye with a vergence of 0.76 D relative to each other. PMID:21698035

  2. Graphene planar lightwave circuit sensors for chemical detection

    NASA Astrophysics Data System (ADS)

    Maliakal, Ashok; Husaini, Saima; Reith, Leslie; Bollond, Paul; Cabot, Steve; Sheehan, Paul; Hangartar, Sandra; Walton, Scott; Tamanaha, Cy

    2017-02-01

    Sensing devices based on Graphene Field Effect Transistors (G-FET) have been demonstrated by several groups to show excellent sensitivity for a variety of chemical agents. These devices are based on measuring changes in the electrical conductivity of graphene when exposed to various chemicals. However, because of its unique band structure, graphene also exhibits changes in its optical response upon chemical exposure. The conical intersection of the valence and conduction bands results in a low density of states near the Dirac point. At this point, chemical doping resulting from molecular binding to graphene can result in dramatic changes in graphene's optical absorption. Here we will discuss our recent work in developing a graphene planar lightwave circuit (PLC) sensor which exploits these optical and electronic properties of graphene to demonstrate chemical sensitivity. The devices are based on a strong evanescent coupling of graphene via electrically gated silicon nanowire waveguides. A strong response in the form of a reversible optical attenuation change of 6 dB is shown when these devices interact with toxic industrial chemicals such as iodine and ammonia. The optical transition can also be tuned to the optical c-band (1530-1565 nm) which enables these devices to operate at telecom wavelengths.

  3. Geometrical connection between catacaustics and kinematics of planar motion of a rigid solid.

    PubMed

    Bellver-Cebreros, Consuelo; Rodríguez-Danta, Marcelo

    2016-09-01

    Unnoticed and hidden optomechanical analogies between kinematics of planar motion of a rigid solid and catacaustics generated by mirror reflection on smooth profiles in geometrical optics are discussed. A concise and self-consistent theory is developed, which intends to explain and clarify many partial aspects covered by the literature.

  4. Head Mounted Display with a Roof Mirror Array Fold

    NASA Technical Reports Server (NTRS)

    Olczak, Eugene (Inventor)

    2014-01-01

    The present invention includes a head mounted display (HMD) worn by a user. The HMD includes a display projecting an image through an optical lens. The HMD also includes a one-dimensional retro reflective array receiving the image through the optical lens at a first angle with respect to the display and deflecting the image at a second angle different than the first angle with respect to the display. The one-dimensional retro reflective array reflects the image in order to project the image onto an eye of the user.

  5. Planar implantable sensor for in vivo measurement of cellular oxygen metabolism in brain tissue.

    PubMed

    Tsytsarev, Vassiliy; Akkentli, Fatih; Pumbo, Elena; Tang, Qinggong; Chen, Yu; Erzurumlu, Reha S; Papkovsky, Dmitri B

    2017-04-01

    Brain imaging methods are continually improving. Imaging of the cerebral cortex is widely used in both animal experiments and charting human brain function in health and disease. Among the animal models, the rodent cerebral cortex has been widely used because of patterned neural representation of the whiskers on the snout and relative ease of activating cortical tissue with whisker stimulation. We tested a new planar solid-state oxygen sensor comprising a polymeric film with a phosphorescent oxygen-sensitive coating on the working side, to monitor dynamics of oxygen metabolism in the cerebral cortex following sensory stimulation. Sensory stimulation led to changes in oxygenation and deoxygenation processes of activated areas in the barrel cortex. We demonstrate the possibility of dynamic mapping of relative changes in oxygenation in live mouse brain tissue with such a sensor. Oxygenation-based functional magnetic resonance imaging (fMRI) is very effective method for functional brain mapping but have high costs and limited spatial resolution. Optical imaging of intrinsic signal (IOS) does not provide the required sensitivity, and voltage-sensitive dye optical imaging (VSDi) has limited applicability due to significant toxicity of the voltage-sensitive dye. Our planar solid-state oxygen sensor imaging approach circumvents these limitations, providing a simple optical contrast agent with low toxicity and rapid application. The planar solid-state oxygen sensor described here can be used as a tool in visualization and real-time analysis of sensory-evoked neural activity in vivo. Further, this approach allows visualization of local neural activity with high temporal and spatial resolution. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Efficient high-power frequency doubling of distributed Bragg reflector tapered laser radiation in a periodically poled MgO-doped lithium niobate planar waveguide.

    PubMed

    Jedrzejczyk, Daniel; Güther, Reiner; Paschke, Katrin; Jeong, Woo-Jin; Lee, Han-Young; Erbert, Götz

    2011-02-01

    We report on efficient single-pass, high-power second-harmonic generation in a periodically poled MgO-doped LiNbO3 planar waveguide using a distributed Bragg reflector tapered diode laser as a pump source. A coupling efficiency into the planar waveguide of 73% was realized, and 1.07 W of visible laser light at 532 nm was generated. Corresponding optical and electro-optical conversion efficiencies of 26% and 8.4%, respectively, were achieved. Good agreement between the experimental data and the theoretical predictions was observed.

  7. Generalized fiber Fourier optics.

    PubMed

    Cincotti, Gabriella

    2011-06-15

    A twofold generalization of the optical schemes that perform the discrete Fourier transform (DFT) is given: new passive planar architectures are presented where the 2 × 2 3 dB couplers are replaced by M × M hybrids, reducing the number of required connections and phase shifters. Furthermore, the planar implementation of the discrete fractional Fourier transform (DFrFT) is also described, with a waveguide grating router (WGR) configuration and a properly modified slab coupler.

  8. Optical efficiency enhancement in white organic light-emitting diode display with high color gamut using patterned quantum dot film and long pass filter

    NASA Astrophysics Data System (ADS)

    Kim, Hyo-Jun; Shin, Min-Ho; Kim, Young-Joo

    2016-08-01

    A new structure for white organic light-emitting diode (OLED) displays with a patterned quantum dot (QD) film and a long pass filter (LPF) was proposed and evaluated to realize both a high color gamut and high optical efficiency. Since optical efficiency is a critical parameter in white OLED displays with a high color gamut, a red or green QD film as a color-converting component and an LPF as a light-recycling component are introduced to be adjusted via the characteristics of a color filter (CF). Compared with a conventional white OLED without both a QD film and the LPF, it was confirmed experimentally that the optical powers of red and green light in a new white OLED display were increased by 54.1 and 24.7% using a 30 wt % red QD film and a 20 wt % green QD film with the LPF, respectively. In addition, the white OLED with both a QD film and the LPF resulted in an increase in the color gamut from 98 to 107% (NTSC x,y ratio) due to the narrow emission linewidth of the QDs.

  9. Micromirror-based real image laser automotive head-up display

    NASA Astrophysics Data System (ADS)

    Fan, Chao; He, Siyuan

    2017-01-01

    This paper reports a micromirror-based real image laser automotive head-up display (HUD), which overcomes the limitations of the previous designs by: (1) implementing an advanced display approach which is able to display sharp corners while the previous designs can only display curved lines such as to improve the display fidelity and (2) Optimizing the optical configuration to significantly reduce the HUD module size. The optical design in the HUD is simulated to choose the off-the-shelf concave lens. The vibration test is conducted to verify that the micromirror can survive 5 g. The prototype of the HUD system is fabricated and tested.

  10. Efficient Planar Perovskite Solar Cells Using Passivated Tin Oxide as an Electron Transport Layer.

    PubMed

    Lee, Yonghui; Lee, Seunghwan; Seo, Gabseok; Paek, Sanghyun; Cho, Kyung Taek; Huckaba, Aron J; Calizzi, Marco; Choi, Dong-Won; Park, Jin-Seong; Lee, Dongwook; Lee, Hyo Joong; Asiri, Abdullah M; Nazeeruddin, Mohammad Khaja

    2018-06-01

    Planar perovskite solar cells using low-temperature atomic layer deposition (ALD) of the SnO 2 electron transporting layer (ETL), with excellent electron extraction and hole-blocking ability, offer significant advantages compared with high-temperature deposition methods. The optical, chemical, and electrical properties of the ALD SnO 2 layer and its influence on the device performance are investigated. It is found that surface passivation of SnO 2 is essential to reduce charge recombination at the perovskite and ETL interface and show that the fabricated planar perovskite solar cells exhibit high reproducibility, stability, and power conversion efficiency of 20%.

  11. Optical properties of Zn-diffused InP layers for the planar-type InGaAs/InP photodetectors

    NASA Astrophysics Data System (ADS)

    Chen, Guifeng; Wang, Mengxue; Yang, Wenxian; Tan, Ming; Wu, Yuanyuan; Dai, Pan; Huang, Yuyang; Lu, Shulong

    2017-12-01

    Zn diffusion into InP was carried out ex-situ using a new Zn diffusion technique with zinc phosphorus particles placed around InP materials as zinc source in a semi-closed chamber formed by a modified diffusion furnace. The optical characteristics of the Zn-diffused InP layer for the planar-type InGaAs/InP PIN photodetectors grown by molecular beam epitaxy (MBE) has been investigated by photoluminescence (PL) measurements. The temperature-dependent PL spectrum of Zn-diffused InP samples at different diffusion temperatures showed that band-to-acceptor transition dominates the PL emission, which indicates that Zn was commendably diffused into InP layer as the acceptor. High quality Zn-diffused InP layer with typically smooth surface was obtained at 580 °C for 10 min. Furthermore, more interstitial Zn atoms were activated to act as acceptors after a rapid annealing process. Based on the above Zn-diffusion technique, a 50 μm planar-type InGaAs/InP PIN photodector device was fabricated and exhibited a low dark current of 7.73 pA under a reverse bias potential of -5 V and a high breakdown voltage of larger than 41 V (I < 10 μA). In addition, a high responsivity of 0.81 A/W at 1.31 μm and 0.97 A/W at 1.55 μm was obtained in the developed PIN photodetector. Project supported by the Key R&D Program of Jiangsu Province (No. BE2016085) , the National Natural Science Foundation of China (Nos. 61674051), and the External Cooperation Program of BIC, Chinese Academy of Sciences (No. 121E32KYSB20160071).

  12. Predicting optical and thermal characteristics of transparent single-glazed domed skylights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laouadi, A.; Atif, M.R.

    1999-07-01

    Optical and thermal characteristics of domed skylights are important to solve the trade-off between daylighting and thermal design. However, there is a lack of daylighting and thermal design tools for domed skylights. Optical and thermal characteristics of transparent single-glazed hemispherical domed skylights under sun and sky light are evaluated based on an optical model for domed skylights. The optical model is based on tracing the beam and diffuse radiation transmission through the dome surface. A simple method is proposed to replace single-glazed hemispherical domed skylights by optically and thermally equivalent single-glazed planar skylights to accommodate limitations of energy computer programs.more » Under sunlight, single-glazed hemispherical domed skylights yield slightly lower equivalent solar transmittance and solar heat gain coefficient (SHGC) at near normal zenith angles than those of single-glazed planar skylights. However, single-glazed hemispherical domed skylights yield substantially higher equivalent solar transmittance and SHGC at high zenith angles and around the horizon. Under isotropic skylight, single-glazed hemispherical domed skylights yield slightly lower equivalent solar transmittance and SHGC than those of single-glazed planar skylights. Daily solar heat gains of single-glazed hemispherical domed skylights are higher than those of single-glazed horizontal planar skylights in both winter and summer. In summer, the solar heat gain of single-glazed hemispherical domed skylights can reach 3% to 9% higher than those of horizontal single-glazed planar skylights for latitudes varying between 0 and 55{degree} (north/south). In winter, however, the solar heat gains of single-glazed hemispherical domed skylights increase significantly with the increase of the site latitude and can reach 232% higher than those of horizontal single-glazed planar skylights, particularly for high latitude countries.« less

  13. Design and fabrication of planar structures with graded electromagnetic properties

    NASA Astrophysics Data System (ADS)

    Good, Brandon Lowell

    Successfully integrating electromagnetic properties in planar structures offers numerous benefits to the microwave and optical communities. This work aims at formulating new analytic and optimized design methods, creating new fabrication techniques for achieving those methods, and matching appropriate implementation of methods to fabrication techniques. The analytic method consists of modifying an approach that realizes perfect antireflective properties from graded profiles. This method is shown for all-dielectric and magneto-dielectric grading profiles. The optimized design methods are applied to transformer (discrete) or taper (continuous) designs. From these methods, a subtractive and an additive manufacturing technique were established and are described. The additive method, dry powder dot deposition, enables three dimensional varying electromagnetic properties in a structural composite. Combining the methods and fabrication is shown in two applied methodologies. The first uses dry powder dot deposition to design one dimensionally graded electromagnetic profiles in a planar fiberglass composite. The second method simultaneously applies antireflective properties and adjusts directivity through a slab through the use of subwavelength structures to achieve a flat antireflective lens. The end result of this work is a complete set of methods, formulations, and fabrication techniques to achieve integrated electromagnetic properties in planar structures.

  14. High-resolution imaging optomechatronics for precise liquid crystal display module bonding automated optical inspection

    NASA Astrophysics Data System (ADS)

    Ni, Guangming; Liu, Lin; Zhang, Jing; Liu, Juanxiu; Liu, Yong

    2018-01-01

    With the development of the liquid crystal display (LCD) module industry, LCD modules become more and more precise with larger sizes, which demands harsh imaging requirements for automated optical inspection (AOI). Here, we report a high-resolution and clearly focused imaging optomechatronics for precise LCD module bonding AOI inspection. It first presents and achieves high-resolution imaging for LCD module bonding AOI inspection using a line scan camera (LSC) triggered by a linear optical encoder, self-adaptive focusing for the whole large imaging region using LSC, and a laser displacement sensor, which reduces the requirements of machining, assembly, and motion control of AOI devices. Results show that this system can directly achieve clearly focused imaging for AOI inspection of large LCD module bonding with 0.8 μm image resolution, 2.65-mm scan imaging width, and no limited imaging width theoretically. All of these are significant for AOI inspection in the LCD module industry and other fields that require imaging large regions with high resolution.

  15. Holographic display system for restoration of sight to the blind

    PubMed Central

    Goetz, G A; Mandel, Y; Manivanh, R; Palanker, D V; Čižmár, T

    2013-01-01

    Objective We present a holographic near-the-eye display system enabling optical approaches for sight restoration to the blind, such as photovoltaic retinal prosthesis, optogenetic and other photoactivation techniques. We compare it with conventional LCD or DLP-based displays in terms of image quality, field of view, optical efficiency and safety. Approach We detail the optical configuration of the holographic display system and its characterization using a phase-only spatial light modulator. Main results We describe approaches to controlling the zero diffraction order and speckle related issues in holographic display systems and assess the image quality of such systems. We show that holographic techniques offer significant advantages in terms of peak irradiance and power efficiency, and enable designs that are inherently safer than LCD or DLP-based systems. We demonstrate the performance of our holographic display system in the assessment of cortical response to alternating gratings projected onto the retinas of rats. Significance We address the issues associated with the design of high brightness, near-the-eye display systems and propose solutions to the efficiency and safety challenges with an optical design which could be miniaturized and mounted onto goggles. PMID:24045579

  16. Planar laser-induced fluorescence imaging of OH in the exhaust of a bi-propellant thruster

    NASA Technical Reports Server (NTRS)

    Paul, Phillip H.; Clemens, N. T.; Makel, D. B.

    1992-01-01

    Planar laser-induced fluorescence imaging of the hydroxyl radical has been performed on the flow produced by the exhaust of a subscale H2/O2 fueled bi-propellant rocket engine. Measurements were made to test the feasibility of OH (0,0) and (3,0) excitation strategies by using injection seeded XeCl and KrF excimer lasers, respectively. The flow is produced with hydrogen and oxygen reacting at a combustor chamber pressure of 5 atm which then exhausts to the ambient. The hydroxyl concentration in the exhaust flow is approximately 8 percent. Fluorescence images obtained by pumping the Q1(3) transition in the (0,0) band exhibited very high signals but also showed the effect of laser beam absorption. To obtain images when pumping the P1(8) transition in the (3,0) band it was necessary to use exceptionally fast imaging optics and unacceptably high intensifier gains. The result was single-shot images which displayed a signal-to-noise ratio of order unity or less when measured on a per pixel basis.

  17. Planar laser-induced fluorescence imaging of OH in the exhaust of a bi-propellant thruster

    NASA Astrophysics Data System (ADS)

    Paul, Phillip H.; Clemens, N. T.; Makel, D. B.

    1992-09-01

    Planar laser-induced fluorescence imaging of the hydroxyl radical has been performed on the flow produced by the exhaust of a subscale H2/O2 fueled bi-propellant rocket engine. Measurements were made to test the feasibility of OH (0,0) and (3,0) excitation strategies by using injection seeded XeCl and KrF excimer lasers, respectively. The flow is produced with hydrogen and oxygen reacting at a combustor chamber pressure of 5 atm which then exhausts to the ambient. The hydroxyl concentration in the exhaust flow is approximately 8 percent. Fluorescence images obtained by pumping the Q1(3) transition in the (0,0) band exhibited very high signals but also showed the effect of laser beam absorption. To obtain images when pumping the P1(8) transition in the (3,0) band it was necessary to use exceptionally fast imaging optics and unacceptably high intensifier gains. The result was single-shot images which displayed a signal-to-noise ratio of order unity or less when measured on a per pixel basis.

  18. Multi-Dimensionality of Synthetic Vision Cockpit Displays: Prevention of Controlled-Flight-Into-Terrain

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, Jarvis J.; Bailey, Randall E.

    2006-01-01

    NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications that will help to eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. The paper describes experimental evaluation of a multi-mode 3-D exocentric synthetic vision navigation display concept for commercial aircraft. Experimental results showed the situation awareness benefits of 2-D and 3-D exocentric synthetic vision displays over traditional 2-D co-planar navigation and vertical situation displays. Conclusions and future research directions are discussed.

  19. Fiber-optic detector for real time dosimetry of a micro-planar x-ray beam

    PubMed Central

    Belley, Matthew D.; Stanton, Ian N.; Hadsell, Mike; Ger, Rachel; Langloss, Brian W.; Lu, Jianping; Zhou, Otto; Chang, Sha X.; Therien, Michael J.; Yoshizumi, Terry T.

    2015-01-01

    Purpose: Here, the authors describe a dosimetry measurement technique for microbeam radiation therapy using a nanoparticle-terminated fiber-optic dosimeter (nano-FOD). Methods: The nano-FOD was placed in the center of a 2 cm diameter mouse phantom to measure the deep tissue dose and lateral beam profile of a planar x-ray microbeam. Results: The continuous dose rate at the x-ray microbeam peak measured with the nano-FOD was 1.91 ± 0.06 cGy s−1, a value 2.7% higher than that determined via radiochromic film measurements (1.86 ± 0.15 cGy s−1). The nano-FOD-determined lateral beam full-width half max value of 420 μm exceeded that measured using radiochromic film (320 μm). Due to the 8° angle of the collimated microbeam and resulting volumetric effects within the scintillator, the profile measurements reported here are estimated to achieve a resolution of ∼0.1 mm; however, for a beam angle of 0°, the theoretical resolution would approach the thickness of the scintillator (∼0.01 mm). Conclusions: This work provides proof-of-concept data and demonstrates that the novel nano-FOD device can be used to perform real-time dosimetry in microbeam radiation therapy to measure the continuous dose rate at the x-ray microbeam peak as well as the lateral beam shape. PMID:25832087

  20. Anfo Response To Low-Stress Planar Impacts

    NASA Astrophysics Data System (ADS)

    Cooper, Marcia A.; Trott, Wayne M.; Schmitt, Robert G.; Short, Mark; Jackson, Scott I.

    2012-03-01

    Ammonium Nitrate plus Fuel Oil (ANFO) is a non-ideal explosive where the mixing behavior of the mm-diameter prills with the absorbed fuel oil is of critical importance for chemical energy release. The large-scale heterogeneity of ANFO establishes conditions uniquely suited for observation using the spatially- and temporally-resolved line-imaging ORVIS (Optically Recording Velocity Interferometer System) diagnostic. The first demonstration of transmitted wave profiles in ANFO from planar impacts using a single-stage gas gun is reported. Major observations including an extended compaction precursor, post-shock particle velocity variations and between-prill jetting are reported.

  1. Performance of Planar-Waveguide External Cavity Laser for Precision Measurements

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan; Krainak, Michael A.; Stolpner, Lew

    2010-01-01

    A 1542-nm planar-waveguide external cavity laser (PW-ECL) is shown to have a sufficiently low level of frequency and intensity noise to be suitable for precision measurement applications. The frequency noise and intensity noise of the PW-ECL was comparable or better than the nonplanar ring oscillator (NPRO) and fiber laser between 0.1 mHz to 100 kHz. Controllability of the PW-ECL was demonstrated by stabilizing its frequency to acetylene (13C2H2) at 10(exp -13) level of Allan deviation. The PW-ECL also has the advantage of the compactness of a standard butterfly package, low cost, and a simple design consisting of a semiconductor gain media coupled to a planar-waveguide Bragg reflector. These features would make the PW-ECL suitable for precision measurements, including compact optical frequency standards, space lidar, and space interferometry

  2. Broader color gamut of color-modulating optical coating display based on indium tin oxide and phase change materials.

    PubMed

    Ni, Zhigang; Mou, Shenghong; Zhou, Tong; Cheng, Zhiyuan

    2018-05-01

    A color-modulating optical coating display based on phase change materials (PCM) and indium tin oxide (ITO) is fabricated and analyzed. We demonstrate that altering the thickness of top-ITO in this PCM-based display device can effectively change color. The significant role of the top-ITO layer in the thin-film interference in this multilayer system is confirmed by experiment as well as simulation. The ternary-color modulation of devices with only 5 nano thin layer of phase change material is achieved. Furthermore, simulation work demonstrates that a stirringly broader color gamut can be obtained by introducing the control of the top-ITO thickness.

  3. Quasi-optical theory of relativistic surface-wave oscillators with one-dimensional and two-dimensional periodic planar structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ginzburg, N. S.; Zaslavsky, V. Yu.; Institute of Applied Physics of Russian Academy of Sciences, 46 Ulyanov St., Nizhny Novgorod 603950

    2013-11-15

    Within the framework of a quasi-optical approach, we develop 2D and 3D self-consistent theory of relativistic surface-wave oscillators. Presenting the radiation field as a sum of two counter-propagating wavebeams coupled on a shallow corrugated surface, we describe formation of an evanescent slow wave. Dispersion characteristics of the evanescent wave following from this method are in good compliance with those found from the direct cst simulations. Considering excitation of the slow wave by a sheet electron beam, we simulate linear and nonlinear stages of interaction, which allows us to determine oscillation threshold conditions, electron efficiency, and output coupling. The transition frommore » the model of surface-wave oscillator operating in the π-mode regime to the canonical model of relativistic backward wave oscillator is considered. We also described a modified scheme of planar relativistic surface-wave oscillators exploiting two-dimensional periodic gratings. Additional transverse propagating waves emerging on these gratings synchronize the emission from a wide sheet rectilinear electron beam allowing realization of a Cherenkov millimeter-wave oscillators with subgigawatt output power level.« less

  4. Manufacturing considerations for AMLCD cockpit displays

    NASA Astrophysics Data System (ADS)

    Luo, Fang-Chen

    1995-06-01

    AMLCD cockpit displays need to meet more stringent requirements compared with AMLCD commercial displays in areas such as environmental conditions, optical performance and device reliability. Special considerations are required for the manufacturing of AMLCD cockpit displays in each process step to address these issues. Some examples are: UV stable polarizers, wide-temperature LC material, strong LC glue seal, ESS test system, gray scale voltage EEPROM, etc.

  5. Volumetric, dashboard-mounted augmented display

    NASA Astrophysics Data System (ADS)

    Kessler, David; Grabowski, Christopher

    2017-11-01

    The optical design of a compact volumetric display for drivers is presented. The system displays a true volume image with realistic physical depth cues, such as focal accommodation, parallax and convergence. A large eyebox is achieved with a pupil expander. The windshield is used as the augmented reality combiner. A freeform windshield corrector is placed at the dashboard.

  6. Planar micromixer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiechtner, Gregory J; Singh, Anup K; Wiedenman, Boyd J

    2008-03-18

    The present embodiment describes a laminar-mixing embodiment that utilizes simple, three-dimensional injection. Also described is the use of the embodiment in combination with wide and shallow sections of channel to affect rapid mixing in microanalytical systems. The shallow channel sections are constructed using all planar micromachining techniques, including those based on isotropic etching. The planar construction enables design using minimum dispersion concepts that, in turn, enable simultaneous mixing and injection into subsequent chromatography channels.

  7. Transparent selective illumination means suitable for use in optically activated electrical switches and optically activated electrical switches constructed using same

    DOEpatents

    Wilcox, Russell B.

    1991-01-01

    A planar transparent light conducting means and an improved optically activated electrical switch made using the novel light conducting means are disclosed. The light conducting means further comprise light scattering means on one or more opposite planar surfaces thereof to transmit light from the light conducting means into adjacent media and reflective means on other surfaces of the light conducting means not containing the light scattering means. The optically activated electrical switch comprises at least two stacked photoconductive wafers, each having electrodes formed on both surfaces thereof, and separated by the planar transparent light conducting means. The light scattering means on the light conducting means face surfaces of the wafers not covered by the electrodes to transmit light from the light conducting means into the photoconductive wafers to uniformly illuminate and activate the switch.

  8. Characterising laser beams with liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Dudley, Angela; Naidoo, Darryl; Forbes, Andrew

    2016-02-01

    We show how one can determine the various properties of light, from the modal content of laser beams to decoding the information stored in optical fields carrying orbital angular momentum, by performing a modal decomposition. Although the modal decomposition of light has been known for a long time, applied mostly to pattern recognition, we illustrate how this technique can be implemented with the use of liquid-crystal displays. We show experimentally how liquid crystal displays can be used to infer the intensity, phase, wavefront, Poynting vector, and orbital angular momentum density of unknown optical fields. This measurement technique makes use of a single spatial light modulator (liquid crystal display), a Fourier transforming lens and detector (CCD or photo-diode). Such a diagnostic tool is extremely relevant to the real-time analysis of solid-state and fibre laser systems as well as mode division multiplexing as an emerging technology in optical communication.

  9. Diamond deposition using a planar radio frequency inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Bozeman, S. P.; Tucker, D. A.; Stoner, B. R.; Glass, J. T.; Hooke, W. M.

    1995-06-01

    A planar radio frequency inductively coupled plasma has been used to deposit diamond onto scratched silicon. This plasma source has been developed recently for use in large area semiconductor processing and holds promise as a method for scale up of diamond growth reactors. Deposition occurs in an annulus which coincides with the area of most intense optical emission from the plasma. Well-faceted diamond particles are produced when the substrate is immersed in the plasma.

  10. Enhanced optical properties of Si nanocrystals in planar microcavity

    NASA Astrophysics Data System (ADS)

    Toshikiyo, Kimiaki; Fujii, Minoru; Hayashi, Shinji

    2003-04-01

    The emission property of Si nanocrystals (nc-Si) in an optical microcavity was studied by photoluminescence (PL) and time resolved PL measurements. The PL from the microcavity was narrowed to the line width of 17 meV, enhanced by a factor of 20 compared to the same film without microcavity. The lifetime for nc-Si became shorter by putting the film in microcavity. This results could be well-explained by the redistribution of the optical modes in the cavity due to the presence of the optical resonator.

  11. Enantioselective synthesis of allylic esters via asymmetric allylic substitution with metal carboxylates using planar-chiral cyclopentadienyl ruthenium catalysts.

    PubMed

    Kanbayashi, Naoya; Onitsuka, Kiyotaka

    2010-02-03

    An asymmetric allylic substitution with sodium carboxylate using a planar-chiral cyclopentadienyl ruthenium complex has been developed. Optically active allylic esters were prepared in good yields with high regio- and enantioselectivities.

  12. Measurement of six-degree-of-freedom planar motions by using a multiprobe surface encoder

    NASA Astrophysics Data System (ADS)

    Li, Xinghui; Shimizu, Yuki; Ito, Takeshi; Cai, Yindi; Ito, So; Gao, Wei

    2014-12-01

    A multiprobe surface encoder for optical metrology of six-degree-of-freedom (six-DOF) planar motions is presented. The surface encoder is composed of an XY planar scale grating with identical microstructures in X- and Y-axes and an optical sensor head. In the optical sensor head, three paralleled laser beams were used as laser probes. After being divided by a beam splitter, the three laser probes were projected onto the scale grating and a reference grating with identical microstructures, respectively. For each probe, the first-order positive and negative diffraction beams along the X- and Y-directions from the scale grating and from the reference grating superimposed with each other and four pieces of interference signals were generated. Three-DOF translational motions of the scale grating Δx, Δy, and Δz can be obtained simultaneously from the interference signals of each probe. Three-DOF angular error motions θX, θY, and θZ can also be calculated simultaneously from differences of displacement output variations and the geometric relationship among the three probes. A prototype optical sensor head was designed, constructed, and evaluated. Experimental results verified that this surface encoder could provide measurement resolutions of subnanometer and better than 0.1 arc sec for three-DOF translational motions and three-DOF angular error motions, respectively.

  13. Hybridization of active and passive elements for planar photonic components and interconnects

    NASA Astrophysics Data System (ADS)

    Pearson, M.; Bidnyk, S.; Balakrishnan, A.

    2007-02-01

    The deployment of Passive Optical Networks (PON) for Fiber-to-the-Home (FTTH) applications currently represents the fastest growing sector of the telecommunication industry. Traditionally, FTTH transceivers have been manufactured using commodity bulk optics subcomponents, such as thin film filters (TFFs), micro-optic collimating lenses, TO-packaged lasers, and photodetectors. Assembling these subcomponents into a single housing requires active alignment and labor-intensive techniques. Today, the majority of cost reducing strategies using bulk subcomponents has been implemented making future reductions in the price of manufacturing FTTH transceivers unlikely. Future success of large scale deployments of FTTH depends on further cost reductions of transceivers. Realizing the necessity of a radically new packaging approach for assembly of photonic components and interconnects, we designed a novel way of hybridizing active and passive elements into a planar lightwave circuit (PLC) platform. In our approach, all the filtering components were monolithically integrated into the chip using advancements in planar reflective gratings. Subsequently, active components were passively hybridized with the chip using fully-automated high-capacity flip-chip bonders. In this approach, the assembly of the transceiver package required no active alignment and was readily suitable for large-scale production. This paper describes the monolithic integration of filters and hybridization of active components in both silica-on-silicon and silicon-on-insulator PLCs.

  14. Study of a direct visualization display tool for space applications

    NASA Astrophysics Data System (ADS)

    Pereira do Carmo, J.; Gordo, P. R.; Martins, M.; Rodrigues, F.; Teodoro, P.

    2017-11-01

    The study of a Direct Visualization Display Tool (DVDT) for space applications is reported. The review of novel technologies for a compact display tool is described. Several applications for this tool have been identified with the support of ESA astronauts and are presented. A baseline design is proposed. It consists mainly of OLEDs as image source; a specially designed optical prism as relay optics; a Personal Digital Assistant (PDA), with data acquisition card, as control unit; and voice control and simplified keyboard as interfaces. Optical analysis and the final estimated performance are reported. The system is able to display information (text, pictures or/and video) with SVGA resolution directly to the astronaut using a Field of View (FOV) of 20x14.5 degrees. The image delivery system is a monocular Head Mounted Display (HMD) that weights less than 100g. The HMD optical system has an eye pupil of 7mm and an eye relief distance of 30mm.

  15. Head-Mounted Display Technology for Low Vision Rehabilitation and Vision Enhancement

    PubMed Central

    Ehrlich, Joshua R.; Ojeda, Lauro V.; Wicker, Donna; Day, Sherry; Howson, Ashley; Lakshminarayanan, Vasudevan; Moroi, Sayoko E.

    2017-01-01

    Purpose To describe the various types of head-mounted display technology, their optical and human factors considerations, and their potential for use in low vision rehabilitation and vision enhancement. Design Expert perspective. Methods An overview of head-mounted display technology by an interdisciplinary team of experts drawing on key literature in the field. Results Head-mounted display technologies can be classified based on their display type and optical design. See-through displays such as retinal projection devices have the greatest potential for use as low vision aids. Devices vary by their relationship to the user’s eyes, field of view, illumination, resolution, color, stereopsis, effect on head motion and user interface. These optical and human factors considerations are important when selecting head-mounted displays for specific applications and patient groups. Conclusions Head-mounted display technologies may offer advantages over conventional low vision aids. Future research should compare head-mounted displays to commonly prescribed low vision aids in order to compare their effectiveness in addressing the impairments and rehabilitation goals of diverse patient populations. PMID:28048975

  16. Transparent selective illumination means suitable for use in optically activated electrical switches and optically activated electrical switches constructed using same

    DOEpatents

    Wilcox, R.B.

    1991-09-10

    A planar transparent light conducting means and an improved optically activated electrical switch made using the novel light conducting means are disclosed. The light conducting means further comprise light scattering means on one or more opposite planar surfaces thereof to transmit light from the light conducting means into adjacent media and reflective means on other surfaces of the light conducting means not containing the light scattering means. The optically activated electrical switch comprises at least two stacked photoconductive wafers, each having electrodes formed on both surfaces thereof, and separated by the planar transparent light conducting means. The light scattering means on the light conducting means face surfaces of the wafers not covered by the electrodes to transmit light from the light conducting means into the photoconductive wafers to uniformly illuminate and activate the switch. 11 figures.

  17. Increasing reconstruction quality of diffractive optical elements displayed with LC SLM

    NASA Astrophysics Data System (ADS)

    Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Rodin, Vladislav G.; Starikov, Sergey N.

    2015-03-01

    Phase liquid crystal (LC) spatial light modulators (SLM) are actively used in various applications. However, majority of scientific applications require stable phase modulation which might be hard to achieve with commercially available SLM due to its consumer origin. The use of digital voltage addressing scheme leads to phase temporal fluctuations, which results in lower diffraction efficiency and reconstruction quality of displayed diffractive optical elements (DOE). Due to high periodicity of fluctuations it should be possible to use knowledge of these fluctuations during DOE synthesis to minimize negative effect. We synthesized DOE using accurately measured phase fluctuations of phase LC SLM "HoloEye PLUTO VIS" to minimize its negative impact on displayed DOE reconstruction. Synthesis was conducted with versatile direct search with random trajectory (DSRT) method in the following way. Before DOE synthesis begun, two-dimensional dependency of SLM phase shift on addressed signal level and time from frame start was obtained. Then synthesis begins. First, initial phase distribution is created. Second, random trajectory of consecutive processing of all DOE elements is generated. Then iterative process begins. Each DOE element sequentially has its value changed to one that provides better value of objective criterion, e.g. lower deviation of reconstructed image from original one. If current element value provides best objective criterion value then it left unchanged. After all elements are processed, iteration repeats until stagnation is reached. It is demonstrated that application of SLM phase fluctuations knowledge in DOE synthesis with DSRT method leads to noticeable increase of DOE reconstruction quality.

  18. Optical characterization of display screens by speckle patterns

    NASA Astrophysics Data System (ADS)

    Pozo, Antonio M.; Castro, José J.; Rubiño, Manuel

    2013-10-01

    In recent years, flat-panel display (FPD) technology has undergone great development, and now FPDs appear in many devices. A significant element in FPD manufacturing is the display front surface. Manufacturers sell FPDs with different types of front surfaces, which can be matte (also called anti-glare) or glossy screens. Users who prefer glossy screens consider these displays to show more vivid colors compared with matte-screen displays. However, on the glossy screens, external light sources may cause unpleasant reflections that can be reduced by a matte treatment in the front surface. In this work, we present a method to characterize FPD screens using laser-speckle patterns. We characterize three FPDs: a Samsung XL2370 LCD monitor of 23 in. with matte screen, a Toshiba Satellite A100 LCD laptop of 15.4 in. with glossy screen, and a Grammata Papyre 6.1 electronic book reader of 6 in. with ePaper screen (E-ink technology). The results show great differences in speckle-contrast values for the three screens characterized and, therefore, this work shows the feasibility of this method for characterizing and comparing FPDs that have different types of front surfaces.

  19. Polymer planar waveguide Bragg gratings: fabrication, characterization, and sensing applications

    NASA Astrophysics Data System (ADS)

    Rosenberger, M.; Hessler, S.; Pauer, H.; Girschikofsky, M.; Roth, G. L.; Adelmann, B.; Woern, H.; Schmauss, B.; Hellmann, R.

    2017-02-01

    In this contribution, we give a comprehensive overview of the fabrication, characterization, and application of integrated planar waveguide Bragg gratings (PPBGs) in cyclo-olefin copolymers (COC). Starting with the measurement of the refractive index depth profile of integrated UV-written structures in COC by phase shifting Mach-Zehnder- Interferometry, we analyze the light propagation using numerical simulations. Furthermore, we show the rapid fabrication of humidity insensitive polymer waveguide Bragg gratings in cyclo-olefin copolymers and discuss the influence of the UV-dosage onto the spectral characteristics and the transmission behavior of the waveguide. Based on these measurements we exemplify that our Bragg gratings exhibit a reflectivity of over 99 % and are highly suitable for sensing applications. With regard to a negligible affinity to absorb water and in conjunction with high temperature stability these polymer devices are ideal for mechanical deformation sensing. Since planar structures are not limited to tensile but can also be applied for measuring compressive strain, we manufacture different functional devices and corroborate their applicability as optical sensors. Exemplarily, we highlight a temperature referenced PPBG sensor written into a femtosecond-laser cut tensile test geometry for tensile and compressive strain sensing. Furthermore, a flexible polymer planar shape sensor is presented.

  20. Optical gesture sensing and depth mapping technologies for head-mounted displays: an overview

    NASA Astrophysics Data System (ADS)

    Kress, Bernard; Lee, Johnny

    2013-05-01

    Head Mounted Displays (HMDs), and especially see-through HMDs have gained renewed interest in recent time, and for the first time outside the traditional military and defense realm, due to several high profile consumer electronics companies presenting their products to hit market. Consumer electronics HMDs have quite different requirements and constrains as their military counterparts. Voice comments are the de-facto interface for such devices, but when the voice recognition does not work (not connection to the cloud for example), trackpad and gesture sensing technologies have to be used to communicate information to the device. We review in this paper the various technologies developed today integrating optical gesture sensing in a small footprint, as well as the various related 3d depth mapping sensors.

  1. Body Temperature Controlled Optical and Thermal Information Storage Light Scattering Display with Fluorescence Effect and High Mechanical Strength.

    PubMed

    Chen, Si; Tong, Xiaoqian; He, Huiwen; Ma, Meng; Shi, Yanqin; Wang, Xu

    2017-04-05

    A kind of body temperature controlled optical and thermal information storage light scattering display based on super strong liquid crystalline physical gel with special "loofah-like gel network" was successfully prepared. Such liquid crystal (LC) gel was obtained by mixing a dendritic gelator (POSS-G1-BOC), an azobenzene compound (2Azo2), and a phosphor tethered liquid crystalline host (5CB), which could show its best contrast ratio at around human body temperature under UV light because of the phosphor's fluorescence effect. The gel also has quite strong mechanical strength, which could be used in wearable device field especially under sunlight, even under the forcing conditions as harsh as being centrifuged for 10 min at the speed of 2000 r/min. The whole production process of such a display is quite simple and could lead to displays at any size through noncontact writing. We believe it will have wide applications in the future.

  2. Non-planar chemical preconcentrator

    DOEpatents

    Manginell, Ronald P [Albuquerque, NM; Adkins, Douglas R [Albuquerque, NM; Sokolowski, Sara S [Albuquerque, NM; Lewis, Patrick R [Albuquerque, NM

    2006-10-10

    A non-planar chemical preconcentrator comprises a high-surface area, low mass, three-dimensional, flow-through sorption support structure that can be coated or packed with a sorptive material. The sorptive material can collect and concentrate a chemical analyte from a fluid stream and rapidly release it as a very narrow temporal plug for improved separations in a microanalytical system. The non-planar chemical preconcentrator retains most of the thermal and fabrication benefits of a planar preconcentrator, but has improved ruggedness and uptake, while reducing sorptive coating concerns and extending the range of collectible analytes.

  3. Autostereoscopic display technology for mobile 3DTV applications

    NASA Astrophysics Data System (ADS)

    Harrold, Jonathan; Woodgate, Graham J.

    2007-02-01

    Mobile TV is now a commercial reality, and an opportunity exists for the first mass market 3DTV products based on cell phone platforms with switchable 2D/3D autostereoscopic displays. Compared to conventional cell phones, TV phones need to operate for extended periods of time with the display running at full brightness, so the efficiency of the 3D optical system is key. The desire for increased viewing freedom to provide greater viewing comfort can be met by increasing the number of views presented. A four view lenticular display will have a brightness five times greater than the equivalent parallax barrier display. Therefore, lenticular displays are very strong candidates for cell phone 3DTV. Selection of Polarisation Activated Microlens TM architectures for LCD, OLED and reflective display applications is described. The technology delivers significant advantages especially for high pixel density panels and optimises device ruggedness while maintaining display brightness. A significant manufacturing breakthrough is described, enabling switchable microlenses to be fabricated using a simple coating process, which is also readily scalable to large TV panels. The 3D image performance of candidate 3DTV panels will also be compared using autostereoscopic display optical output simulations.

  4. Electro-optic characteristics of 4-domain vertical alignment nematic liquid crystal display with interdigital electrode

    NASA Astrophysics Data System (ADS)

    Hong, S. H.; Jeong, Y. H.; Kim, H. Y.; Cho, H. M.; Lee, W. G.; Lee, S. H.

    2000-06-01

    We have fabricated a vertically aligned 4-domain nematic liquid crystal display cell with thin film transistor. Unlike the conventional method constructing 4-domain, i.e., protrusion and surrounding electrode which needs additional processes, in this study the pixel design forming 4-domain with interdigital electrodes is suggested. In the device, one pixel is divided into two parts. One part has a horizontal electric field in the vertical direction and the other part has a horizontal one in the horizontal direction. Such fields in the horizontal and vertical direction drive the liquid crystal director to tilt down in four directions. In this article, the electro-optic characteristics of cells with 2 and 4 domain have been studied. The device with 4 domain shows faster response time than normal twisted-nematic and in-plane switching cells, wide viewing angle with optical compensation film, and more stable color characteristics than 2-domain vertical alignment cell with similar structure.

  5. Signed-negabinary-arithmetic-based optical computing by use of a single liquid-crystal-display panel.

    PubMed

    Datta, Asit K; Munshi, Soumika

    2002-03-10

    Based on the negabinary number representation, parallel one-step arithmetic operations (that is, addition and subtraction), logical operations, and matrix-vector multiplication on data have been optically implemented, by use of a two-dimensional spatial-encoding technique. For addition and subtraction, one of the operands in decimal form is converted into the unsigned negabinary form, whereas the other decimal number is represented in the signed negabinary form. The result of operation is obtained in the mixed negabinary form and is converted back into decimal. Matrix-vector multiplication for unsigned negabinary numbers is achieved through the convolution technique. Both of the operands for logical operation are converted to their signed negabinary forms. All operations are implemented by use of a unique optical architecture. The use of a single liquid-crystal-display panel to spatially encode the input data, operational kernels, and decoding masks have simplified the architecture as well as reduced the cost and complexity.

  6. Enjoyment of Euclidean Planar Triangles

    ERIC Educational Resources Information Center

    Srinivasan, V. K.

    2013-01-01

    This article adopts the following classification for a Euclidean planar [triangle]ABC, purely based on angles alone. A Euclidean planar triangle is said to be acute angled if all the three angles of the Euclidean planar [triangle]ABC are acute angles. It is said to be right angled at a specific vertex, say B, if the angle ?ABC is a right angle…

  7. Fiber-optic detector for real time dosimetry of a micro-planar x-ray beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belley, Matthew D.; Stanton, Ian N.; Langloss, Brian W.

    2015-04-15

    Purpose: Here, the authors describe a dosimetry measurement technique for microbeam radiation therapy using a nanoparticle-terminated fiber-optic dosimeter (nano-FOD). Methods: The nano-FOD was placed in the center of a 2 cm diameter mouse phantom to measure the deep tissue dose and lateral beam profile of a planar x-ray microbeam. Results: The continuous dose rate at the x-ray microbeam peak measured with the nano-FOD was 1.91 ± 0.06 cGy s{sup −1}, a value 2.7% higher than that determined via radiochromic film measurements (1.86 ± 0.15 cGy s{sup −1}). The nano-FOD-determined lateral beam full-width half max value of 420 μm exceeded thatmore » measured using radiochromic film (320 μm). Due to the 8° angle of the collimated microbeam and resulting volumetric effects within the scintillator, the profile measurements reported here are estimated to achieve a resolution of ∼0.1 mm; however, for a beam angle of 0°, the theoretical resolution would approach the thickness of the scintillator (∼0.01 mm). Conclusions: This work provides proof-of-concept data and demonstrates that the novel nano-FOD device can be used to perform real-time dosimetry in microbeam radiation therapy to measure the continuous dose rate at the x-ray microbeam peak as well as the lateral beam shape.« less

  8. Improved out-coupling efficiency of organic light emitting diodes fabricated on a TiO2 planarization layer with embedded Si oxide nanostructures

    NASA Astrophysics Data System (ADS)

    Sung, Young Hoon; Jung, Pil-Hoon; Han, Kyung-Hoon; Kim, Yang Doo; Kim, Jang-Joo; Lee, Heon

    2017-10-01

    In order to increase the out-coupling efficiency of organic light emitting diodes, conical Si oxide nanostructures were formed on a glass substrate using nanoimprint lithography with hydrogen silsesquioxane. Then, the substrate was planarized with TiO2 nanoparticles. Since TiO2 nanoparticles have a higher refractive index than Si oxide, the surface of substrate is physically flat, but optically undulated in a manner that enables optical scattering and suppression of total internal reflection. Subsequently, OLEDs formed on a substrate with nanostructured Si oxide and a TiO2 planarization layer exhibit a 25% increase in out-coupling efficiency by suppressing total internal reflection.

  9. Spectroscopic Measurements of Planar Foil Plasmas Driven by a MA LTD

    NASA Astrophysics Data System (ADS)

    Patel, Sonal; Yager-Elorriaga, David; Steiner, Adam; Jordan, Nick; Gilgenbach, Ronald; Lau, Y. Y.

    2014-10-01

    Planar foil ablation experiments are being conducted on the Linear Transformer Driver (LTD) at the University of Michigan. The experiment consists of a 400 nm-thick, Al planar foil and a current return post. An optical fiber is placed perpendicular to the magnetic field and linear polarizers are used to isolate the pi and sigma lines. The LTD is charged to +/-70 kV with approximately 400-500 kA passing through the foil. Laser shadowgraphy has previously imaged the plasma and measured anisotropy in the Magneto Rayleigh-Taylor (MRT) instability. Localized magnetic field measurements using Zeeman splitting during the current rise is expected to yield some insight into this anisotropy. Initial experiments use Na D lines of Al foils seeded with sodium to measure Zeeman splitting. Several ion lines are also currently being studied, such as Al III and C IV, to probe the higher temperature core plasma. In planned experiments, several lens-coupled optical fibers will be placed across the foil, and local magnetic field measurements will be taken to measure current division within the plasma. This work was supported by US DoE. S.G. Patel and A.M. Steiner supported by NPSC funded by Sandia. D.A. Yager supported by NSF fellowship Grant DGE 1256260.

  10. High-power 0.87-micron channel substrate planar lasers for spaceborne communications

    NASA Technical Reports Server (NTRS)

    Connolly, J. C.; Stewart, T. R.; Gilbert, D. B.; Slavin, S. E.; Carlin, D. B.

    1988-01-01

    High-power single-mode channeled-substrate planar AlGaAs diode lasers are being developed for reliable high-power operation for use as sources in spaceborne optical communication systems. The CSP laser structure has been optimized for operation at an emission wavelength of 870 nm. Such devices have exhibited output powers in excess of 80 mW CW at an operating temperature of 80 C.

  11. Future Directions for Astronomical Image Display

    NASA Technical Reports Server (NTRS)

    Mandel, Eric

    2000-01-01

    In the "Future Directions for Astronomical Image Displav" project, the Smithsonian Astrophysical Observatory (SAO) and the National Optical Astronomy Observatories (NOAO) evolved our existing image display program into fully extensible. cross-platform image display software. We also devised messaging software to support integration of image display into astronomical analysis systems. Finally, we migrated our software from reliance on Unix and the X Window System to a platform-independent architecture that utilizes the cross-platform Tcl/Tk technology.

  12. Controllable Planar Optical Focusing System

    NASA Technical Reports Server (NTRS)

    Arbabi, Amir (Inventor); Faraon, Andrei (Inventor)

    2016-01-01

    An optical device has a first metasurface disposed over a substrate. A high-contrast pattern of the first metasurface is operable for modifying, over a first phase profile, a phase front of an incident light beam. A second metasurface, is disposed over a plane parallel to the first metasurface with a second high-contrast pattern and operable for shaping, over a second phase profile, the modified phase front of the incident light beam into a converging spherical phase front. A spacer layer, in which the modified phase front of the incident light beam diffracts, is disposed in a controllably changeable separation between the first and second metasurfaces. Controllably changing the separation between the first and the second metasurfaces by a first distance correspondingly changes the position of the focus point of the converging spherical phase front by a second distance significantly greater than the first distance.

  13. Color moiré simulations in contact-type 3-D displays.

    PubMed

    Lee, B-R; Son, J-Y; Chernyshov, O O; Lee, H; Jeong, I-K

    2015-06-01

    A new method of color moiré fringe simulation in the contact-type 3-D displays is introduced. The method allows simulating color moirés appearing in the displays, which cannot be approximated by conventional cosine approximation of a line grating. The color moirés are mainly introduced by the line width of the boundary lines between the elemental optics in and plate thickness of viewing zone forming optics. This is because the lines are hiding some parts of pixels under the viewing zone forming optics, and the plate thickness induces a virtual contraction of the pixels. The simulated color moiré fringes are closely matched with those appearing at the displays.

  14. Design and fabrication of N x N optical couplers based on organic polymer optical waveguides

    NASA Astrophysics Data System (ADS)

    Krchnavek, Robert R.; Rode, Daniel L.

    1994-08-01

    In this report, we examine the design and fabrication of a planar, 10x10 optical coupler utilizing photopolymerizable organic polymers. Background information on the theory of operation of the coupler culminating in a set of design equations is presented. The details of the material processing are described, including the preparation of monomer mixtures that result in single-mode polymer waveguides (lambda = 1300 nm) that have core dimensions approximately equal to those of single-mode fiber. This is necessary to insure high coupling efficiency between the planar device and optical fiber. A unique method of aligning and attaching optical fibers to the coupler is demonstrated. This method relies on patterned alignment ways, a transcision cut, and single-mode D-fiber. A theoretical analysis of the in situ monitoring technique used to fabricate the single-mode D-fiber is presented and compared favorably with the experimental results. Finally, the 10x10 coupler is characterized. We have measured an excess loss of approximately 8 dB.

  15. Theory of absorption integrated optical sensor of gaseous materials

    NASA Astrophysics Data System (ADS)

    Egorov, A. A.

    2010-10-01

    The eigen and noneigen (leaky) modes of a three-layer planar integrated optical waveguide are described. The dispersion relation of a three-layer planar waveguide and other dependences are derived, and the cutoff conditions are analyzed. The diagram of propagation constants of the guided and radiation modes of an irregular asymmetric three-layer waveguide and the dependence of the electric field amplitudes of radiation modes of substrate on vertical coordinate in a tantalum integrated optical waveguide are presented. The operating principles of an absorption integrated optical waveguide sensor are investigated. The dependences of sensitivity of an integrated optical waveguide sensor on the sensory cell length, the coupling efficiency of the laser radiation into the waveguide, the absorption cross-section of the studied material, and the level of additive statistical noise are investigated. Some of the prospective areas of application of integrated-optical waveguide sensors are outlined.

  16. 1.5  kW efficient CW Nd:YAG planar waveguide MOPA laser.

    PubMed

    Wang, Juntao; Wu, Zhenhai; Su, Hua; Zhou, Tangjian; Lei, Jun; Lv, Wenqiang; He, Jing; Xu, Liu; Chen, Yuejian; Wang, Dan; Tong, Lixin; Hu, Hao; Gao, Qingsong; Tang, Chun

    2017-08-15

    In this Letter, we report a 1064 nm continuous wave Nd:YAG planar waveguide laser with an output power of 1544 W based on the structure of the master oscillator power amplification. A fiber laser is used as the master oscillator, and diode laser arrays are used as the pump source of the waveguide laser amplifier. The dimension of the waveguide is 1  mm (T)×10  mm (W)×60  mm (L), and the dual end oblique pumping is adopted with different angles. After a single-pass amplification, the power is scaled from 323 to 1544 W with the pump power of 2480 W, leading to an optical-to-optical efficiency of 49%. At the maximum output, the beam quality M 2 are measured to be 2.8 and 7.0 in the guided direction and the unguided direction, respectively. To the best of our knowledge, this is the highest output power of a Nd:YAG planar waveguide laser to date.

  17. Measurement of fuel corrosion products using planar laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Wantuck, Paul J.; Sappey, Andrew D.; Butt, Darryl P.

    1993-01-01

    Characterizing the corrosion behavior of nuclear fuel material in a high-temperature hydrogen environment is critical for ascertaining the operational performance of proposed nuclear thermal propulsion (NTP) concepts. In this paper, we describe an experimental study undertaken to develop and test non-intrusive, laser-based diagnostics for ultimately measuring the distribution of key gas-phase corrosion products expected to evolve during the exposure of NTP fuel to hydrogen. A laser ablation technique is used to produce high temperature, vapor plumes from uranium-free zirconium carbide (ZrC) and niobium carbide (NbC) forms for probing by various optical diagnostics including planar laser-induced fluorescence (PLIF). We discuss the laser ablation technique, results of plume emission measurements, and we describe both the actual and proposed planar LIF schemes for imaging constituents of the ablated ZrC and NbC plumes. Envisioned testing of the laser technique in rf-heated, high temperature gas streams is also discussed.

  18. Three-dimensional display technologies

    PubMed Central

    Geng, Jason

    2014-01-01

    The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain’s power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies. PMID:25530827

  19. Integration and manufacture of multifunctional planar lightwave circuits

    NASA Astrophysics Data System (ADS)

    Lipscomb, George F.; Ticknor, Anthony J.; Stiller, Marc A.; Chen, Wenjie; Schroeter, Paul

    2001-11-01

    The demands of exponentially growing Internet traffic, coupled with the advent of Dense Wavelength Division Multiplexing (DWDM) fiber optic systems to meet those demands, have triggered a revolution in the telecommunications industry. This dramatic change has been built upon, and has driven, improvements in fiber optic component technology. The next generation of systems for the all optical network will require higher performance components coupled with dramatically lower costs. One approach to achieve significantly lower costs per function is to employ Planar Lightwave Circuits (PLC) to integrate multiple optical functions in a single package. PLCs are optical circuits laid out on a silicon wafer, and are made using tools and techniques developed to extremely high levels by the semi-conductor industry. In this way multiple components can be fabricated and interconnected at once, significantly reducing both the manufacturing and the packaging/assembly costs. Currently, the predominant commercial application of PLC technology is arrayed-waveguide gratings (AWG's) for multiplexing and demultiplexing multiple wavelength channels in a DWDM system. Although this is generally perceived as a single-function device, it can be performing the function of more than 100 discrete fiber-optic components and already represents a considerable degree of integration. Furthermore, programmable functions such as variable-optical attenuators (VOAs) and switches made with compatible PLC technology are now moving into commercial production. In this paper, we present results on the integration of active and passive functions together using PLC technology, e.g. a 40 channel AWG multiplexer with 40 individually controllable VOAs.

  20. Highly Reflective Multi-stable Electrofluidic Display Pixels

    NASA Astrophysics Data System (ADS)

    Yang, Shu

    Electronic papers (E-papers) refer to the displays that mimic the appearance of printed papers, but still owning the features of conventional electronic displays, such as the abilities of browsing websites and playing videos. The motivation of creating paper-like displays is inspired by the truths that reading on a paper caused least eye fatigue due to the paper's reflective and light diffusive nature, and, unlike the existing commercial displays, there is no cost of any form of energy for sustaining the displayed image. To achieve the equivalent visual effect of a paper print, an ideal E-paper has to be a highly reflective with good contrast ratio and full-color capability. To sustain the image with zero power consumption, the display pixels need to be bistable, which means the "on" and "off" states are both lowest energy states. Pixel can change its state only when sufficient external energy is given. There are many emerging technologies competing to demonstrate the first ideal E-paper device. However, none is able to achieve satisfactory visual effect, bistability and video speed at the same time. Challenges come from either the inherent physical/chemical properties or the fabrication process. Electrofluidic display is one of the most promising E-paper technologies. It has successfully demonstrated high reflectivity, brilliant color and video speed operation by moving colored pigment dispersion between visible and invisible places with electrowetting force. However, the pixel design did not allow the image bistability. Presented in this dissertation are the multi-stable electrofluidic display pixels that are able to sustain grayscale levels without any power consumption, while keeping the favorable features of the previous generation electrofluidic display. The pixel design, fabrication method using multiple layer dry film photoresist lamination, and physical/optical characterizations are discussed in details. Based on the pixel structure, the preliminary

  1. Analysis and design of planar and non-planar wings for induced drag minimization

    NASA Technical Reports Server (NTRS)

    Mortara, K.; Straussfogel, Dennis M.; Maughmer, Mark D.

    1991-01-01

    The goal of the work was to develop and validate computational tools to be used for the design of planar and non-planar wing geometries for minimum induced drag. Because of the iterative nature of the design problem, it is important that, in addition to being sufficiently accurate for the problem at hand, they are reasonably fast and computationally efficient. Toward this end, a method of predicting induced drag in the presence of a non-rigid wake is coupled with a panel method. The induced drag prediction technique is based on the Kutta-Joukowski law applied at the trailing edge. Until recently, the use of this method has not been fully explored and pressure integration and Trefftz-plane calculations favored. As is shown in this report, however, the Kutta-Joukowski method is able to give better results for a given amount of effort than the more common techniques, particularly when relaxed wakes and non-planar wing geometries are considered. Using these tools, a workable design method is in place which takes into account relaxed wakes and non-planar wing geometries. It is recommended that this method be used to design a wind-tunnel experiment to verify the predicted aerodynamic benefits of non-planar wing geometries.

  2. Organic crystal-binding peptides: morphology control and one-pot formation of protein-displaying organic crystals

    NASA Astrophysics Data System (ADS)

    Niide, Teppei; Ozawa, Kyohei; Nakazawa, Hikaru; Oliveira, Daniel; Kasai, Hitoshi; Onodera, Mari; Asano, Ryutaro; Kumagai, Izumi; Umetsu, Mitsuo

    2015-11-01

    Crystalline assemblies of fluorescent molecules have different functional properties than the constituent monomers, as well as unique optical characteristics that depend on the structure, size, and morphological homogeneity of the crystal particles. In this study, we selected peptides with affinity for the surface of perylene crystal particles by exposing a peptide-displaying phage library in aqueous solution to perylene crystals, eluting the surface-bound phages by means of acidic desorption or liquid-liquid extraction, and amplifying the obtained phages in Escherichia coli. One of the perylene-binding peptides, PeryBPb1: VQHNTKYSVVIR, selected by this biopanning procedure induced perylene molecules to form homogenous planar crystal nanoparticles by means of a poor solvent method, and fusion of the peptide to a fluorescent protein enabled one-pot formation of protein-immobilized crystalline nanoparticles. The nanoparticles were well-dispersed in aqueous solution, and Förster resonance energy transfer from the perylene crystals to the fluorescent protein was observed. Our results show that the crystal-binding peptide could be used for simultaneous control of perylene crystal morphology and dispersion and protein immobilization on the crystals.Crystalline assemblies of fluorescent molecules have different functional properties than the constituent monomers, as well as unique optical characteristics that depend on the structure, size, and morphological homogeneity of the crystal particles. In this study, we selected peptides with affinity for the surface of perylene crystal particles by exposing a peptide-displaying phage library in aqueous solution to perylene crystals, eluting the surface-bound phages by means of acidic desorption or liquid-liquid extraction, and amplifying the obtained phages in Escherichia coli. One of the perylene-binding peptides, PeryBPb1: VQHNTKYSVVIR, selected by this biopanning procedure induced perylene molecules to form homogenous planar

  3. Design and simulation of multifunctional optical devices using metasurfaces

    NASA Astrophysics Data System (ADS)

    Alyammahi, Saleimah

    In classical optics, optical components such as lenses and microscopes are unable to focus the light into deep subwavelength or nanometer scales due to the diffraction limit. However, recent developments in nanophotonics, have enabled researchers to control the light at subwavelength scales and overcome the diffraction limit. Using subwavelength structures, we can create a new class of optical materials with unusual optical responses or with new properties that are not attainable in nature. Such artificial materials can be created by structuring conventional materials on the subwavelength scale, giving rise to the unusual optical properties due to the electric and magnetic responses of each meta-atom. These materials are called metamaterials or engineered materials that exhibit exciting phenomena such as non-linear optical responses and negative refraction. Metasurfaces are two dimensional meta-atoms arranged as an array with subwavelength distances. Therefore, metasurfaces are planar, ultrathin version of metamaterials that offer fascinating possibilities of manipulating the wavefront of the optical fields. Recently, the control of light properties such as phase, amplitude, and polarization has been demonstrated by introducing abrupt phase change across a subwavelength scale. Phase discontinuities at the interface can be attained by engineered metasurfaces with new applications and functionalities that have not been realized with bulk or multilayer materials. In this work, high efficient, planar metasurfaces based on geometric phase are designed to realize various functionalities. The designs include metalenses, axicon lenses, vortex beam generators, and Bessel vortex beam generators. The capability of planar metasurfaces in focusing the incident beams and shaping the optical wavefront is numerically demonstrated. COMSOL simulations are used to prove the capability of these metasurfaces to transform the incident beams into complex beams that carry orbital angular

  4. Multi-clad black display panel

    DOEpatents

    Veligdan, James T.; Biscardi, Cyrus; Brewster, Calvin

    2002-01-01

    A multi-clad black display panel, and a method of making a multi-clad black display panel, are disclosed, wherein a plurality of waveguides, each of which includes a light-transmissive core placed between an opposing pair of transparent cladding layers and a black layer disposed between transparent cladding layers, are stacked together and sawed at an angle to produce a wedge-shaped optical panel having an inlet face and an outlet face.

  5. Automated optical inspection of liquid crystal display anisotropic conductive film bonding

    NASA Astrophysics Data System (ADS)

    Ni, Guangming; Du, Xiaohui; Liu, Lin; Zhang, Jing; Liu, Juanxiu; Liu, Yong

    2016-10-01

    Anisotropic conductive film (ACF) bonding is widely used in the liquid crystal display (LCD) industry. It implements circuit connection between screens and flexible printed circuits or integrated circuits. Conductive microspheres in ACF are key factors that influence LCD quality, because the conductive microspheres' quantity and shape deformation rate affect the interconnection resistance. Although this issue has been studied extensively by prior work, quick and accurate methods to inspect the quality of ACF bonding are still missing in the actual production process. We propose a method to inspect ACF bonding effectively by using automated optical inspection. The method has three steps. The first step is that it acquires images of the detection zones using a differential interference contrast (DIC) imaging system. The second step is that it identifies the conductive microspheres and their shape deformation rate using quantitative analysis of the characteristics of the DIC images. The final step is that it inspects ACF bonding using a back propagation trained neural network. The result shows that the miss rate is lower than 0.1%, and the false inspection rate is lower than 0.05%.

  6. Parabolic crossed planar polymeric x-ray lenses

    NASA Astrophysics Data System (ADS)

    Nazmov, V.; Reznikova, E.; Mohr, J.; Saile, V.; Vincze, L.; Vekemans, B.; Bohic, S.; Somogyi, A.

    2011-01-01

    The principles of design and manufacturing of the polymer planar x-ray lenses focusing in one and two directions, as well as the peculiarities of optical behaviors and the results of the lens test are reported in this paper. The methods of electron and deep x-ray lithography used in lens manufacturing allow the manufacture of ten or more x-ray lenses on one substrate; the lenses show focal lengths down to several centimeters for photon energies between 5 and 40 keV. The measured focus size was 105 nm for a linear lens with an intensity gain of about 407, and 300 × 770 nm for a crossed lens with an intensity gain of 6470.

  7. A planar lens based on the electrowetting of two immiscible liquids

    NASA Astrophysics Data System (ADS)

    Liu, Chao-Xuan; Park, Jihwan; Choi, Jin-Woo

    2008-03-01

    This paper reports the development and characterization of a planar liquid lens based on electrowetting. The working concept of electrowetting two immiscible liquids is demonstrated with measurement and characterization of contact angles with regard to externally applied electric voltages. Consequently, a planar liquid lens is designed and implemented based on this competitive electrowetting. A droplet of silicone oil confined in an aqueous solution (1% KCl) works as a liquid lens. Electrowetting then controls the shape of the confined silicone oil and the focal length of the liquid lens varies depending upon an applied dc voltage. A unique feature of this lens design is the double-ring planar electrodes beneath the hydrophobic substrate. While an outer ring electrode provides an initial boundary for the silicone oil droplet, an inner ring works as the actuation electrode for the lens. Further, the planar electrodes, instead of vertical or out-of-plane wall electrodes, facilitate the integration of liquid lenses into microfluidic systems. With the voltage applied in the range of 50-250 V, the confined silicone oil droplet changed its shape and the optical magnification of a 3 mm-diameter liquid lens was clearly demonstrated. Moreover, focal lengths of liquid lenses with diameters of 2 mm, 3 mm and 4 mm were characterized, respectively. The obtained results suggest that a larger lens diameter yields a longer focal length and a wider range of focal length change in response to voltage. The demonstrated liquid lens has a simple structure and is easy to fabricate.

  8. Fabrication of planar waveguide in KNSBN crystal by swift heavy ion beam irradiation

    NASA Astrophysics Data System (ADS)

    Guan, Jing; Wang, Lei; Qin, Xifeng

    2013-11-01

    We report on the fabrication of the planar waveguides in the KNSBN crystal by using 17 MeV C5+ ions at a fluence of 2 × 1014 ions/cm2. After implantation, near surface regions of the crystal, there has a positive extraordinary refractive index (ne) change and the light inside the waveguides can propagate in a non-leaky manner. The two-dimensional modal profiles of the planar waveguides, measured by using the end-coupling arrangement, are in good agreement with the reconstructed modal distributions. The propagation loss for C5+ irradiated waveguide is ∼0.8 dB/cm at 633 nm and ∼0.72 dB/cm at 1064 nm. The waveguide gives good confinement of waveguide modes, which exhibits acceptable guiding qualities for potential applications in integrated optics.

  9. Continuous planar phospholipid bilayer supported on porous silicon thin film reflector.

    PubMed

    Cunin, Frédérique; Milhiet, Pierre-Emmanuel; Anglin, Emily; Sailor, Michael J; Espenel, Cédric; Le Grimellec, Christian; Brunel, Daniel; Devoisselle, Jean-Marie

    2007-10-01

    Reconstituting artificial membranes for in vitro studies of cell barrier mechanisms and properties is of major interest in biology. Here, artificial membranes supported on porous silicon photonic crystal reflectors are prepared and investigated. The materials are of interest for label-free probing of supported membrane events such as protein binding, molecular recognition, and transport. The porous silicon substrates are prepared as multilayered films consisting of a periodically varying porosity, with pore dimensions of a few nanometers in size. Planar phospholipid bilayers are deposited on the topmost surface of the oxidized hydrophilic mesoporous silicon films. Atomic force microscopy provides evidence of continuous bilayer deposition at the surface, and optical measurements indicate that the lipids do not significantly infiltrate the porous region. The presence of the supported bilayer does not obstruct the optical spectrum from the porous silicon layer, suggesting that the composite structures can act as effective optical biosensors.

  10. Logic gates based all-optical binary half adder using triple core photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Uthayakumar, T.; Vasantha Jayakantha Raja, R.

    2018-06-01

    This study presents the implementation of an all-optical binary logic half adder by employing a triple core photonic crystal fiber (TPCF). The noteworthy feature of the present investigation is that an identical set of TPCF schemes, which demonstrated all-optical logic functions in our previous report, has revealed the ability to demonstrate the successful half adder operation. The control signal (CS) power defining the extinction ratios of the output ports for the considered symmetric planar and triangular TPCFs is evaluated through a numerical algorithm. Through suitable CS power and input combinations, the logic outputs are generated from extinction ratios to demonstrate the half adder operation. The results obtained display the significant influence of the input conditions on the delivery of half adder operation for different TPCF schemes considered. Furthermore, chloroform filled TPCF structures demonstrated the efficient low power half adder operation with a significant figure of merit, compared to that of the silica counterpart.

  11. Modern Display Technologies for Airborne Applications.

    DTIC Science & Technology

    1983-04-01

    the case of LED head-down direct view displays, this requires that special attention be paid to the optical filtering , the electrical drive/address...effectively attenuates the LED specular reflectance component, the colour and neutral density filtering attentuate the diffuse component and the... filter techniques are planned for use with video, multi- colour and advanced versions of numeric, alphanumeric and graphic displays; this technique

  12. Optimization of planar self-collimating photonic crystals.

    PubMed

    Rumpf, Raymond C; Pazos, Javier J

    2013-07-01

    Self-collimation in photonic crystals has received a lot of attention in the literature, partly due to recent interest in silicon photonics, yet no performance metrics have been proposed. This paper proposes a figure of merit (FOM) for self-collimation and outlines a methodical approach for calculating it. Performance metrics include bandwidth, angular acceptance, strength, and an overall FOM. Two key contributions of this work include the performance metrics and identifying that the optimum frequency for self-collimation is not at the inflection point. The FOM is used to optimize a planar photonic crystal composed of a square array of cylinders. Conclusions are drawn about how the refractive indices and fill fraction of the lattice impact each of the performance metrics. The optimization is demonstrated by simulating two spatially variant self-collimating photonic crystals, where one has a high FOM and the other has a low FOM. This work gives optical designers tremendous insight into how to design and optimize robust self-collimating photonic crystals, which promises many applications in silicon photonics and integrated optics.

  13. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1985-06-24

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping lase pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  14. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1985-08-23

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  15. Electro-optic crystal mosaics for the generation of terahertz radiation

    DOEpatents

    Carrig, Timothy J.; Taylor, Antoinette J.; Stewart, Kevin R.

    1996-01-01

    Apparatus for the generation of high energy terahertz radiation is presented and comprises laser means effective to produce subpicosecond optical pulses and a mosaic comprising a plurality of planar electro-optic crystals fastened together edge to edge in the form of a grid. The electro-optic crystals are in optical communication with the subpicosecond optical pulses, and behave as a single large electro-optic crystal, producing high energy terahertz radiation by way of optical rectification.

  16. Investigation for connecting waveguide in off-planar integrated circuits.

    PubMed

    Lin, Jie; Feng, Zhifang

    2017-09-01

    The transmission properties of a vertical waveguide connected by different devices in off-planar integrated circuits are designed, investigated, and analyzed in detail by the finite-difference time-domain method. The results show that both guide bandwidth and transmission efficiency can be adjusted effectively by shifting the vertical waveguide continuously. Surprisingly, the wide guide band (0.385[c/a]∼0.407[c/a]) and well transmission (-6  dB) are observed simultaneously in several directions when the vertical waveguide is located at a specific location. The results are very important for all-optical integrated circuits, especially in compact integration.

  17. Accommodative performance for chromatic displays.

    PubMed

    Lovasik, J V; Kergoat, H

    1988-01-01

    Over the past few years, video display units (VDUs) have been incorporated into many varieties of workplaces and occupational demands. The success of electro-optical displays in facilitating and improving job performance has spawned interest in extracting further advantage from VDUs by incorporating colour coding into such communication systems. However, concerns have been raised about the effect of chromatic stimuli on the visual comfort and task efficiency, because of the chromatic aberration inherent in the optics of the human eye. In this study, we used a computer aided laser speckle optometer system to measure the accommodative responses to brightness-matched chromatic letters displayed on a high-resolution RGB monitor. Twenty, visually normal, paid volunteers in a 22-35 year age category served as subjects. Stimuli were 14, 21, 28 minutes of arc letters presented in a 'monochromatic' (white, red, green or blue, on a black background) or 'multichromatic' (blue-red, blue-green, red-green, foreground-background combinations) mode at 40 and 80 cm viewing distances. The results demonstrated that while the accommodative responses were strongly influenced by the foreground-background colour combination, the group-averaged dioptric difference across colours was relatively small. Further, accommodative responses were not guided in any systematic fashion by the size of letters presented for fixation. Implications of these findings for display designs are discussed.

  18. Linear guided waves in a hyperbolic planar waveguide. Dispersion relations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyashko, E I; Maimistov, A I

    2015-11-30

    We have theoretically investigated waveguide modes propagating in a planar waveguide formed by a layer of an isotropic dielectric surrounded by hyperbolic media. The case, when the optical axis of hyperbolic media is perpendicular to the interface, is considered. Dispersion relations are derived for the cases of TE and TM waves. The differences in the characteristics of a hyperbolic and a conventional dielectric waveguide are found. In particular, it is shown that in hyperbolic waveguides for each TM mode there are two cut-off frequencies and the number of propagating modes is always limited. (metamaterials)

  19. Polymer planar lightwave circuit based hybrid-integrated coherent receiver for advanced modulation signals

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Han, Yang; Liang, Zhongcheng; Chen, Yongjin

    2012-11-01

    Applying coherent detection technique to advanced modulation formats makes it possible to electronically compensate the signal impairments. A key issue for a successful deployment of coherent detection technique is the availability of cost-efficient and compact integrated receivers, which are composed of an optical 90° hybrid mixer and four photodiodes (PDs). In this work, three different types of optical hybrids are fabricated with polymer planar lightwave circuit (PLC), and hybridly integrated with four vertical backside illuminated III-V PDs. Their performances, such as the insertion loss, the transmission imbalance, the polarization dependence and the phase deviation of 90° hybrid will be discussed.

  20. Planar polymer and glass graded index waveguides for data center applications

    NASA Astrophysics Data System (ADS)

    Pitwon, Richard; Yamauchi, Akira; Brusberg, Lars; Wang, Kai; Ishigure, Takaaki; Schröder, Henning; Neitz, Marcel; Worrall, Alex

    2016-03-01

    Embedded optical waveguide technology for optical printed circuit boards (OPCBs) has advanced considerably over the past decade both in terms of materials and achievable waveguide structures. Two distinct classes of planar graded index multimode waveguide have recently emerged based on polymer and glass materials. We report on the suitability of graded index polymer waveguides, fabricated using the Mosquito method, and graded index glass waveguides, fabricated using ion diffusion on thin glass foils, for deployment within future data center environments as part of an optically disaggregated architecture. To this end, we first characterize the wavelength dependent performance of different waveguide types to assess their suitability with respect to two dominant emerging multimode transceiver classes based on directly modulated 850 nm VCSELs and 1310 silicon photonics devices. Furthermore we connect the different waveguide types into an optically disaggregated data storage system and characterize their performance with respect to different common high speed data protocols used at the intra and inter rack level including 10 Gb Ethernet and Serial Attached SCSI.

  1. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, D.B.

    1989-03-21

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration. 6 figs.

  2. Optical characterization of display screens by speckle-contrast measurements

    NASA Astrophysics Data System (ADS)

    Pozo, Antonio M.; Castro, José J.; Rubiño, Manuel

    2012-10-01

    In recent years, the flat-panel display (FPD) technology has undergone great development. Currently, FPDs are present in many devices. A significant element in FPD manufacturing is the display front surface. Manufacturers sell FPDs with different types of front surface which can be matte (also called anti-glare) or glossy screens. Users who prefer glossy screens consider images shown in these types of displays to have more vivid colours compared with matte-screen displays. However, external light sources may cause unpleasant reflections on the glossy screens. These reflections can be reduced by a matte treatment in the front surface of FPDs. In this work, we present a method to characterize the front surface of FPDs using laser speckle patterns. We characterized three FPDs: a Samsung XL2370 LCD monitor of 23" with matte screen, a Toshiba Satellite A100 laptop of 15.4" with glossy screen, and a Papyre electronic book reader. The results show great differences in speckle contrast values for the three screens characterized and, therefore, this work shows the feasibility of this method for characterizing and comparing FPDs which have different types of front surfaces.

  3. Effects of planar and non-planar driver-side mirrors on age-related discomfort-glare responses

    PubMed Central

    Lockhart, Thurmon E.; Atsumi, Bunji; Ghosh, Arka; Mekaroonreung, Haruetai; Spaulding, Jeremy

    2010-01-01

    In this study, we evaluated subjective nighttime discomfort-glare responses on three different types of planar and non-planar driver-side mirrors on two age groups. Fifty-six individuals (28 young [18–35 years] and 28 old [65 years and over]) participated in this experiment. Subjective discomfort-glare rating scores on three different types of driver-side mirrors were assessed utilizing De Boer's rating scale in a controlled nighttime driving environment (laboratory ambient illuminant level—l lux with headlight turned off). Three driver-side mirrors included planar “flat mirror”: radius of curvature 242650.92 mm, reflectivity 0.60114, and surface reflectance 0.60568; “curved mirror”: radius of curvature 1433.3 mm, reflectivity 0.21652, and surface reflectance 0.58092; “blue mirror”: radius of curvature 1957.1 mm, reflectivity 0.25356, and surface reflectance 0.54585. The results indicated that with the same glare level (as measured by angle of incidence and illuminance in front of the eyes), older adults reported worse feelings of glare than their younger counterparts. Furthermore, the results indicated that both young and older adults reported worse feelings of glare for planar driver-side mirror than non-planar driver-side mirrors. These results suggest that older adults' criterion of discomfort-glare is more sensitive than their younger counterparts, and importantly, the non-planar driver-side mirrors can be beneficial in terms of reducing nighttime discomfort-glare for both the young and the elderly. PMID:20582252

  4. Illusion in reality: visual perception in displays

    NASA Astrophysics Data System (ADS)

    Kaufman, Lloyd; Kaufman, James H.

    2001-06-01

    Research into visual perception ultimately affects display design. Advance in display technology affects, in turn, our study of perception. Although this statement is too general to provide controversy, this paper present a real-life example that may prompt display engineers to make greater use of basic knowledge of visual perception, and encourage those who study perception to track more closely leading edge display technology. Our real-life example deals with an ancient problem, the moon illusion: why does the horizon moon appear so large while the elevated moon look so small. This was a puzzle for many centuries. Physical explanations, such as refraction by the atmosphere, are incorrect. The difference in apparent size may be classified as a misperception, so the answer must lie in the general principles of visual perception. The factors underlying the moon illusion must be the same factors as those that enable us to perceive the sizes of ordinary objects in visual space. Progress toward solving the problem has been irregular, since methods for actually measuring the illusion under a wide range of conditions were lacking. An advance in display technology made possible a serious and methodologically controlled study of the illusion. This technology was the first heads-up display. In this paper we will describe how the heads-up display concept made it possible to test several competing theories of the moon illusion, and how it led to an explanation that stood for nearly 40 years. We also consider the criticisms of that explanation and how the optics of the heads-up display also played a role in providing data for the critics. Finally, we will describe our own advance on the original methodology. This advance was motivated by previously unrelated principles of space perception. We used a stereoscopic heads up display to test alternative hypothesis about the illusion and to discrimate between two classes of mutually contradictory theories. At its core, the

  5. Advanced Three-Dimensional Display System

    NASA Technical Reports Server (NTRS)

    Geng, Jason

    2005-01-01

    A desktop-scale, computer-controlled display system, initially developed for NASA and now known as the VolumeViewer(TradeMark), generates three-dimensional (3D) images of 3D objects in a display volume. This system differs fundamentally from stereoscopic and holographic display systems: The images generated by this system are truly 3D in that they can be viewed from almost any angle, without the aid of special eyeglasses. It is possible to walk around the system while gazing at its display volume to see a displayed object from a changing perspective, and multiple observers standing at different positions around the display can view the object simultaneously from their individual perspectives, as though the displayed object were a real 3D object. At the time of writing this article, only partial information on the design and principle of operation of the system was available. It is known that the system includes a high-speed, silicon-backplane, ferroelectric-liquid-crystal spatial light modulator (SLM), multiple high-power lasers for projecting images in multiple colors, a rotating helix that serves as a moving screen for displaying voxels [volume cells or volume elements, in analogy to pixels (picture cells or picture elements) in two-dimensional (2D) images], and a host computer. The rotating helix and its motor drive are the only moving parts. Under control by the host computer, a stream of 2D image patterns is generated on the SLM and projected through optics onto the surface of the rotating helix. The system utilizes a parallel pixel/voxel-addressing scheme: All the pixels of the 2D pattern on the SLM are addressed simultaneously by laser beams. This parallel addressing scheme overcomes the difficulty of achieving both high resolution and a high frame rate in a raster scanning or serial addressing scheme. It has been reported that the structure of the system is simple and easy to build, that the optical design and alignment are not difficult, and that the

  6. Electro-optic crystal mosaics for the generation of terahertz radiation

    DOEpatents

    Carrig, T.J.; Taylor, A.J.; Stewart, K.R.

    1996-08-06

    Apparatus for the generation of high energy terahertz radiation is presented and comprises laser means effective to produce subpicosecond optical pulses and a mosaic comprising a plurality of planar electro-optic crystals fastened together edge to edge in the form of a grid. The electro-optic crystals are in optical communication with the subpicosecond optical pulses, and behave as a single large electro-optic crystal, producing high energy terahertz radiation by way of optical rectification. 5 figs.

  7. Combat vehicle crew helmet-mounted display: next generation high-resolution head-mounted display

    NASA Astrophysics Data System (ADS)

    Nelson, Scott A.

    1994-06-01

    The Combat Vehicle Crew Head-Mounted Display (CVC HMD) program is an ARPA-funded, US Army Natick Research, Development, and Engineering Center monitored effort to develop a high resolution, flat panel HMD for the M1 A2 Abrams main battle tank. CVC HMD is part of the ARPA High Definition Systems (HDS) thrust to develop and integrate small (24 micrometers square pels), high resolution (1280 X 1024 X 6-bit grey scale at 60 frame/sec) active matrix electroluminescent (AMEL) and active matrix liquid crystal displays (AMLCD) for head mounted and projection applications. The Honeywell designed CVC HMD is a next generation head-mounted display system that includes advanced flat panel image sources, advanced digital display driver electronics, high speed (> 1 Gbps) digital interconnect electronics, and light weight, high performance optical and mechanical designs. The resulting dramatic improvements in size, weight, power, and cost have already led to program spin offs for both military and commercial applications.

  8. Integration of planar transformer and/or planar inductor with power switches in power converter

    DOEpatents

    Chen, Kanghua; Ahmed, Sayeed; Zhu, Lizhi

    2007-10-30

    A power converter integrates at least one planar transformer comprising a multi-layer transformer substrate and/or at least one planar inductor comprising a multi-layer inductor substrate with a number of power semiconductor switches physically and thermally coupled to a heat sink via one or more multi-layer switch substrates.

  9. Strain induced plasmon tuning in planar square-shaped aluminum nanoparticles array

    NASA Astrophysics Data System (ADS)

    Mokkath, Junais Habeeb

    2018-06-01

    Metal nanoparticle aggregate is an exciting platform for manipulating light-matter interactions at the nanoscale, thanks to the optically driven free electrons couple electrically across the inter-particle gap region. We use time dependent density functional theory calculations to investigate the optical response modulations in planar square-shaped aluminum nanoparticles array via morphology deformation (varying the inter-particle gap distance in the range of 2-20 Å) separately along one and two directions. We report the surprising observation that irrespective of the different morphology deformations, there exists a unique inter-particle gap distance of 12 Å for which, a maximum optical field enhancement can be achieved. We remark that plasmonic interaction between metal nanoparticles in an aggregate is controlled to a large extent by the size of the inter-particle gap distance. We believe that our quantum mechanical calculations will inspire and contribute to the design, control, and exploitation of aluminum based plasmonic devices.

  10. In vitro quantification of the performance of model-based mono-planar and bi-planar fluoroscopy for 3D joint kinematics estimation.

    PubMed

    Tersi, Luca; Barré, Arnaud; Fantozzi, Silvia; Stagni, Rita

    2013-03-01

    Model-based mono-planar and bi-planar 3D fluoroscopy methods can quantify intact joints kinematics with performance/cost trade-off. The aim of this study was to compare the performances of mono- and bi-planar setups to a marker-based gold-standard, during dynamic phantom knee acquisitions. Absolute pose errors for in-plane parameters were lower than 0.6 mm or 0.6° for both mono- and bi-planar setups. Mono-planar setups resulted critical in quantifying the out-of-plane translation (error < 6.5 mm), and bi-planar in quantifying the rotation along bone longitudinal axis (error < 1.3°). These errors propagated to joint angles and translations differently depending on the alignment of the anatomical axes and the fluoroscopic reference frames. Internal-external rotation was the least accurate angle both with mono- (error < 4.4°) and bi-planar (error < 1.7°) setups, due to bone longitudinal symmetries. Results highlighted that accuracy for mono-planar in-plane pose parameters is comparable to bi-planar, but with halved computational costs, halved segmentation time and halved ionizing radiation dose. Bi-planar analysis better compensated for the out-of-plane uncertainty that is differently propagated to relative kinematics depending on the setup. To take its full benefits, the motion task to be investigated should be designed to maintain the joint inside the visible volume introducing constraints with respect to mono-planar analysis.

  11. Method and apparatus for an optical function generator for seamless tiled displays

    NASA Technical Reports Server (NTRS)

    Johnson, Michael (Inventor); Chen, Chung-Jen (Inventor)

    2004-01-01

    Producing seamless tiled images from multiple displays includes measuring a luminance profile of each of the displays, computing a desired luminance profile for each of the displays, and determining a spatial gradient profile of each of the displays based on the measured luminance profile and the computed desired luminance profile. The determined spatial gradient profile is applied to a spatial filter to be inserted into each of the displays to produce the seamless tiled display image.

  12. High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter

    NASA Astrophysics Data System (ADS)

    Shimizu, Makoto; Kohiyama, Asaka; Yugami, Hiroo

    2015-01-01

    We demonstrate a high-efficiency solar-thermophotovoltaic system (STPV) using a monolithic, planar, and spectrally selective absorber/emitter. A complete STPV system using gallium antimonide (GaSb) cells was designed and fabricated to conduct power generation tests. To produce a high-efficiency STPV, it is important to match the thermal radiation spectrum with the sensitive region of the GaSb cells. Therefore, to reach high temperatures with low incident power, a planar absorber/emitter is incorporated for controlling the thermal radiation spectrum. This multilayer coating consists of thin-film tungsten sandwiched by yttria-stabilized zirconia. The system efficiency is estimated to be 16% when accounting for the optical properties of the fabricated absorber/emitter. Power generation tests using a high-concentration solar simulator show that the absorber/emitter temperature peaks at 1640 K with an incident power density of 45 W/cm2, which can be easily obtained by low-cost optics such as Fresnel lenses. The conversion efficiency became 23%, exceeding the Shockley-Queisser limit for GaSb, with a bandgap of 0.67 eV. Furthermore, a total system efficiency of 8% was obtained with the view factor between the emitter and the cell assumed to be 1.

  13. Thin Crystal Film Polarizer for Display Application

    NASA Astrophysics Data System (ADS)

    Paukshto, Michael

    2003-03-01

    Optiva Inc. has pioneered the development of nano-thin crystalline film (TCF) optical coatings for use in information displays and other applications. TCF is a material based on water-based dichroic dye solutions. Disk-like dye molecules aggregate in a ``plane-to-plane" manner; this self-assembly results in formation of highly anisometric rod-like stacks. These stacks have an aspect ratio of approximately 200:1. At a certain threshold of dye concentration, a nematic ordering of the rod-like stacks appears. Such a system acquires polarizing properties according to the following mechanism. Flow-induced alignment is known to occur in the lyotropic systems in a shear flow. In our case, the material undergoes shear alignment while being coated onto a glass or plastic substrate. In the coated thin film, the long molecular stacks are oriented in the flow direction parallel to the flow direction and substrate plane. The planes of the dye molecules are perpendicular to the substrate plane with the optical transition oscillators lying in the molecule plane. After the coating, as the thin film dries, crystallization occurs due to water evaporation. In a dry film, the molecular planes maintain their orthogonal orientation with respect to the substrate surface. TCF is known to possess properties of an E-mode polarizer. TCF technology has now migrated out of the R stage into manufacturing and is currently being incorporated into new display products. This presentation will provide an overview of TCF technology. The first part of the presentation will describe material structure, optical properties and characterization, material processing and associated coating equipment. This will be followed by a presentation on optical modeling and simulation of display performance with TCF components. Comparisons of display performance will be made for exemplar configurations of a variety of LCDs, including TN, STN and AMLCD designs in both transmissive and reflective modes.

  14. Simultaneous multi-beam planar array IR (pair) spectroscopy

    DOEpatents

    Elmore, Douglas L.; Rabolt, John F.; Tsao, Mei-Wei

    2005-09-13

    An apparatus and method capable of providing spatially multiplexed IR spectral information simultaneously in real-time for multiple samples or multiple spatial areas of one sample using IR absorption phenomena requires no moving parts or Fourier Transform during operation, and self-compensates for background spectra and degradation of component performance over time. IR spectral information and chemical analysis of the samples is determined by using one or more IR sources, sampling accessories for positioning the samples, optically dispersive elements, a focal plane array (FPA) arranged to detect the dispersed light beams, and a processor and display to control the FPA, and display an IR spectrograph. Fiber-optic coupling can be used to allow remote sensing. Portability, reliability, and ruggedness is enhanced due to the no-moving part construction. Applications include determining time-resolved orientation and characteristics of materials, including polymer monolayers. Orthogonal polarizers may be used to determine certain material characteristics.

  15. Luneburg lens and optical matrix algebra research

    NASA Technical Reports Server (NTRS)

    Wood, V. E.; Busch, J. R.; Verber, C. M.; Caulfield, H. J.

    1984-01-01

    Planar, as opposed to channelized, integrated optical circuits (IOCs) were stressed as the basis for computational devices. Both fully-parallel and systolic architectures are considered and the tradeoffs between the two device types are discussed. The Kalman filter approach is a most important computational method for many NASA problems. This approach to deriving a best-fit estimate for the state vector describing a large system leads to matrix sizes which are beyond the predicted capacities of planar IOCs. This problem is overcome by matrix partitioning, and several architectures for accomplishing this are described. The Luneburg lens work has involved development of lens design techniques, design of mask arrangements for producing lenses of desired shape, investigation of optical and chemical properties of arsenic trisulfide films, deposition of lenses both by thermal evaporation and by RF sputtering, optical testing of these lenses, modification of lens properties through ultraviolet irradiation, and comparison of measured lens properties with those expected from ray trace analyses.

  16. Fabricating binary optics: An overview of binary optics process technology

    NASA Technical Reports Server (NTRS)

    Stern, Margaret B.

    1993-01-01

    A review of binary optics processing technology is presented. Pattern replication techniques have been optimized to generate high-quality efficient microoptics in visible and infrared materials. High resolution optical photolithography and precision alignment is used to fabricate maximally efficient fused silica diffractive microlenses at lambda = 633 nm. The degradation in optical efficiency of four-phase-level fused silica microlenses resulting from an intentional 0.35 micron translational error has been systematically measured as a function of lens speed (F/2 - F/60). Novel processes necessary for high sag refractive IR microoptics arrays, including deep anisotropic Si-etching, planarization of deep topography and multilayer resist techniques, are described. Initial results are presented for monolithic integration of photonic and microoptic systems.

  17. Stepped inlet optical panel

    DOEpatents

    Veligdan, James T.

    2001-01-01

    An optical panel includes stacked optical waveguides having stepped inlet facets collectively defining an inlet face for receiving image light, and having beveled outlet faces collectively defining a display screen for displaying the image light channeled through the waveguides by internal reflection.

  18. Optical design and testing: introduction.

    PubMed

    Liang, Chao-Wen; Koshel, John; Sasian, Jose; Breault, Robert; Wang, Yongtian; Fang, Yi Chin

    2014-10-10

    Optical design and testing has numerous applications in industrial, military, consumer, and medical settings. Assembling a complete imaging or nonimage optical system may require the integration of optics, mechatronics, lighting technology, optimization, ray tracing, aberration analysis, image processing, tolerance compensation, and display rendering. This issue features original research ranging from the optical design of image and nonimage optical stimuli for human perception, optics applications, bio-optics applications, 3D display, solar energy system, opto-mechatronics to novel imaging or nonimage modalities in visible and infrared spectral imaging, modulation transfer function measurement, and innovative interferometry.

  19. Photonic devices on planar and curved substrates and methods for fabrication thereof

    DOEpatents

    Bartl, Michael H.; Barhoum, Moussa; Riassetto, David

    2016-08-02

    A versatile and rapid sol-gel technique for the fabrication of high quality one-dimensional photonic bandgap materials. For example, silica/titania multi-layer materials may be fabricated by a sol-gel chemistry route combined with dip-coating onto planar or curved substrate. A shock-cooling step immediately following the thin film heat-treatment process is introduced. This step was found important in the prevention of film crack formation--especially in silica/titania alternating stack materials with a high number of layers. The versatility of this sol-gel method is demonstrated by the fabrication of various Bragg stack-type materials with fine-tuned optical properties by tailoring the number and sequence of alternating layers, the film thickness and the effective refractive index of the deposited thin films. Measured optical properties show good agreement with theoretical simulations confirming the high quality of these sol-gel fabricated optical materials.

  20. Optical application of electrowetting

    NASA Astrophysics Data System (ADS)

    He, Mei; Peng, Runling; Chen, Jiabi

    2017-02-01

    Since electrowetting has been proposed, researchers began to apply eletrowetting into different fields, such as lab-on-chip systems, display technologies, printings and optics etc. This paper mainly introduced structure, theory and application of optical devices based on electrowetting. The optical devices include liquid optical prism, liquid optical lens and display. The paper introduced their principle, specific application and many advantages in optical applications. When they are applied to optical system, production and experiment, they can reduce mechanical moving parts, simplify the structure, operate easily, decrease manufacturing cost and energy consumption, improve working efficiency, and so on. We learn and research them in detail that will contribute to research and develop optical eletrowetting in the future.

  1. Phyllotactic arrangements of optical elements

    NASA Astrophysics Data System (ADS)

    Horacek, M.; Meluzin, P.; Kratky, S.; Matejka, M.; Kolarik, V.

    2017-05-01

    Phyllotaxy studies arrangements of biological entities, e.g. a placement of seeds in the flower head. Vogel (1979) presented a phyllotactic model based on series of seeds ordered along a primary spiral. This arrangement allows each seed to occupy the same area within a circular flower head. Recently, a similar arrangement of diffraction primitives forming a planar relief diffractive structure was presented. The planar relief structure was used for benchmarking and testing purposes of the electron beam writer patterning process. This contribution presents the analysis of local periods and azimuths of optical phyllotactic arrangements. Two kinds of network characteristic triangles are introduced. If the discussed planar structure has appropriate size and density, diffraction of the incoming light creates characteristic a phyllotactic diffraction pattern. Algorithms enabling the analysis of such behavior were developed and they were validated by fabricated samples of relief structures. Combined and higher diffraction orders are also analyzed. Different approaches enabling the creation of phyllotactic diffractive patterns are proposed. E-beam lithography is a flexible technology for various diffraction gratings origination. The e-beam patterning typically allows for the creation of optical diffraction gratings in the first diffraction order. Nevertheless, this technology enables also more complex grating to be prepared, e.g. blazed gratings and zero order gratings. Moreover, the mentioned kinds of gratings can be combined within one planar relief structure. The practical part of the presented work deals with the nano patterning of such structures by using two different types of the e-beam pattern generators.

  2. Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including early detection of cancers

    DOEpatents

    Martinez, Jennifer S [Santa Fe, NM; Swanson, Basil I [Los Alamos, NM; Shively, John E [Arcadia, CA; Li, Lin [Monrovia, CA

    2009-06-02

    An assay element is described including recognition ligands adapted for binding to carcinoembryonic antigen (CEA) bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of CEA is described including injecting a possible CEA-containing sample into a sensor cell including the assay element, maintaining the sample within the sensor cell for time sufficient for binding to occur between CEA present within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

  3. Development of a bacteriophage displayed peptide library and biosensor

    NASA Astrophysics Data System (ADS)

    Chin, Robert C.; Salazar, Noe; Mayo, Michael W.; Villavicencio, Victor I.; Taylor, Richard B.; Chambers, James P.; Valdes, James J.

    1996-04-01

    A miniaturized, handheld biosensor for identification of hazardous biowarfare agents with high specificity is being developed. An innovative biological recognition system based on bacteriophage displayed peptide receptors will be utilized in conjunction with the miniature biosensor technology being developed. A bacteriophage library has been constructed to provide the artificial receptors. The library can contain millions of bacteriophage with randomly displayed peptide sequences in the phage outer protein coat which act as binding sites for the agents of interest. This library will be used to 'bio-pan' for phages that bind to a number of toxins and infectious agents and can, thus, provide an endless supply of low cost, reliable, specific, and stable artificial receptors. The biosensor instrument will utilize evanescent wave, planar waveguide, far-red dyes, diode laser and miniature circuit technologies for performance and portability.

  4. Liquid crystal light valve technologies for display applications

    NASA Astrophysics Data System (ADS)

    Kikuchi, Hiroshi; Takizawa, Kuniharu

    2001-11-01

    The liquid crystal (LC) light valve, which is a spatial light modulator that uses LC material, is a very important device in the area of display development, image processing, optical computing, holograms, etc. In particular, there have been dramatic developments in the past few years in the application of the LC light valve to projectors and other display technologies. Various LC operating modes have been developed, including thin film transistors, MOS-FETs and other active matrix drive techniques to meet the requirements for higher resolution, and substantial improvements have been achieved in the performance of optical systems, resulting in brighter display images. Given this background, the number of applications for the LC light valve has greatly increased. The resolution has increased from QVGA (320 x 240) to QXGA (2048 x 1536) or even super- high resolution of eight million pixels. In the area of optical output, projectors of 600 to 13,000 lm are now available, and they are used for presentations, home theatres, electronic cinema and other diverse applications. Projectors using the LC light valve can display high- resolution images on large screens. They are now expected to be developed further as part of hyper-reality visual systems. This paper provides an overview of the needs for large-screen displays, human factors related to visual effects, the way in which LC light valves are applied to projectors, improvements in moving picture quality, and the results of the latest studies that have been made to increase the quality of images and moving images or pictures.

  5. Planar CoB18- Cluster: a New Motif for - and Metallo-Borophenes

    NASA Astrophysics Data System (ADS)

    Chen, Teng-Teng; Jian, Tian; Lopez, Gary; Li, Wan-Lu; Chen, Xin; Li, Jun; Wang, Lai-Sheng

    2016-06-01

    -centered-2-electron (19c-2e) π bond, 10 π electrons in total. This perfectly planar structure reveals the viability of creating a new class of hetero-borophenes and metallo-borophenes by doping metal atoms into the plane of monolayer boron atoms. This gives a new approach to design perspective hetero-borophenes and metallo-borophenes materials with tunable chemical, magnetic and optical properties.

  6. NCAP projection displays: key issues for commercialization

    NASA Astrophysics Data System (ADS)

    Tomita, Akira; Jones, Philip J.

    1992-06-01

    Recently there has been much interest in a new polymer nematic dispersion technology, often called as NCAP, PDLC, PNLC, LCPC, etc., since projection displays using this technology have been shown to produce much brighter display images than projectors using conventional twisted nematic (TN) lightvalves. For commercializing projection displays based on this polymer nematic dispersion technology, the new materials must not only meet various electro- optic requirements, e.g., operational voltage, `off-state'' scattering angle, voltage holding ratio and hysteresis, but must also be stable over the lifetime of the product. This paper reports recent progress in the development of NCAP based projection displays and discusses some of the key commercialization issues.

  7. Laser printed glass planar lightwave circuits with integrated fiber alignment structures

    NASA Astrophysics Data System (ADS)

    Desmet, A.; Radosavljevic, A.; Missinne, J.; Van Thourhout, D.; Van Steenberge, G.

    2018-02-01

    Femtosecond laser inscription allows straightforward manufacturing of glass planar lightwave circuits such as waveguides, interferometers, directional couplers, resonators and more complex structures. Fiber alignment structures are needed to facilitate communication with the glass planar lightwave circuit. In this study, a technique is described to create optical waveguides and alignment structures in the same laser exposure step. Using an industrial ytterbium-doped 1030 nm fiber laser pulses of 400 fs were focused into glass with a 0.4 NA objective causing permanent alteration of the material. Depending on laser parameters this modification allows direct writing of waveguides or the creation of channels after exposing the irradiated volumes to an etchant such as KOH. Writing of channels and waveguides with different laser powers, frequencies, polarisations, stage translation speeds and scan densities were investigated in fused silica and borosilicate glass. Waveguides with controlled dimensions were created, as well as etched U-grooves with a diameter of 126 μm and a sidewall roughness Ra of 255 nm. Cut back measurements were performed giving a waveguide propagation loss of 1.1 dB/cm in borosilicate glass. A coupling loss of 0.7 dB was measured for a transition between the waveguide and standard single mode fiber at 1550 nm, using index matching liquid. The described technique eliminates active alignment requirements and is useful for many applications such as microfluidic sensing, PLCs, fan-out connectors for multicore fibers and quantum optical networks.

  8. Interactive display system having a scaled virtual target zone

    DOEpatents

    Veligdan, James T.; DeSanto, Leonard

    2006-06-13

    A display system includes a waveguide optical panel having an inlet face and an opposite outlet face. A projector and imaging device cooperate with the panel for projecting a video image thereon. An optical detector bridges at least a portion of the waveguides for detecting a location on the outlet face within a target zone of an inbound light spot. A controller is operatively coupled to the imaging device and detector for displaying a cursor on the outlet face corresponding with the detected location of the spot within the target zone.

  9. Improved Design of Optical MEMS Using the SUMMiT Fabrication Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalicek, M.A.; Comtois, J.H.; Barron, C.C.

    This paper describes the design and fabrication of optical Microelectromechanical Systems (MEMS) devices using the Sandia Ultra planar Multilevel MEMS Technology (SUMMiT) fabrication process. This state of the art process, offered by Sandia National Laboratories, provides unique and very advantageous features which make it ideal for optical devices. This enabling process permits the development of micromirror devices with near ideal characteristics which have previously been unrealizable in standard polysilicon processes. This paper describes such characteristics as elevated address electrodes, individual address wiring beneath the device, planarized mirror surfaces, unique post-process metallization, and the best active surface area to date.

  10. Non-binary Colour Modulation for Display Device Based on Phase Change Materials.

    PubMed

    Ji, Hong-Kai; Tong, Hao; Qian, Hang; Hui, Ya-Juan; Liu, Nian; Yan, Peng; Miao, Xiang-Shui

    2016-12-19

    A reflective-type display device based on phase change materials is attractive because of its ultrafast response time and high resolution compared with a conventional display device. This paper proposes and demonstrates a unique display device in which multicolour changing can be achieved on a single device by the selective crystallization of double layer phase change materials. The optical contrast is optimized by the availability of a variety of film thicknesses of two phase change layers. The device exhibits a low sensitivity to the angle of incidence, which is important for display and colour consistency. The non-binary colour rendering on a single device is demonstrated for the first time using optical excitation. The device shows the potential for ultrafast display applications.

  11. Development and Evaluation of 2-D and 3-D Exocentric Synthetic Vision Navigation Display Concepts for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, J. J., III; Bailey, Randall E.; Sweeters, Jason L.

    2005-01-01

    NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications that will help to eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. The paper describes experimental evaluation of a multi-mode 3-D exocentric synthetic vision navigation display concept for commercial aircraft. Experimental results evinced the situation awareness benefits of 2-D and 3-D exocentric synthetic vision displays over traditional 2-D co-planar navigation and vertical situation displays. Conclusions and future research directions are discussed.

  12. New ultraportable display technology and applications

    NASA Astrophysics Data System (ADS)

    Alvelda, Phillip; Lewis, Nancy D.

    1998-08-01

    MicroDisplay devices are based on a combination of technologies rooted in the extreme integration capability of conventionally fabricated CMOS active-matrix liquid crystal display substrates. Customized diffraction grating and optical distortion correction technology for lens-system compensation allow the elimination of many lenses and systems-level components. The MicroDisplay Corporation's miniature integrated information display technology is rapidly leading to many new defense and commercial applications. There are no moving parts in MicroDisplay substrates, and the fabrication of the color generating gratings, already part of the CMOS circuit fabrication process, is effectively cost and manufacturing process-free. The entire suite of the MicroDisplay Corporation's technologies was devised to create a line of application- specific integrated circuit single-chip display systems with integrated computing, memory, and communication circuitry. Next-generation portable communication, computer, and consumer electronic devices such as truly portable monitor and TV projectors, eyeglass and head mounted displays, pagers and Personal Communication Services hand-sets, and wristwatch-mounted video phones are among the may target commercial markets for MicroDisplay technology. Defense applications range from Maintenance and Repair support, to night-vision systems, to portable projectors for mobile command and control centers.

  13. Large core plastic planar optical splitter fabricated by 3D printing technology

    NASA Astrophysics Data System (ADS)

    Prajzler, Václav; Kulha, Pavel; Knietel, Marian; Enser, Herbert

    2017-10-01

    We report on the design, fabrication and optical properties of large core multimode optical polymer splitter fabricated using fill up core polymer in substrate that was made by 3D printing technology. The splitter was designed by the beam propagation method intended for assembling large core waveguide fibers with 735 μm diameter. Waveguide core layers were made of optically clear liquid adhesive, and Veroclear polymer was used as substrate and cover layers. Measurement of optical losses proved that the insertion optical loss was lower than 6.8 dB in the visible spectrum.

  14. Direct Visualization of Planar Assembly of Plasmonic Nanoparticles Adjacent to Electrodes in Oscillatory Electric Fields.

    PubMed

    Ferrick, Adam; Wang, Mei; Woehl, Taylor J

    2018-05-29

    Electric field-directed assembly of colloidal nanoparticles (NPs) has been widely adopted for fabricating functional thin films and nanostructured surfaces. While first-order electrokinetic effects on NPs are well-understood in terms of classical models, effects of second-order electrokinetics that involve induced surface charge are still poorly understood. Induced charge electroosmotic phenomena, such as electrohydrodynamic (EHD) flow, have long been implicated in electric field-directed NP assembly with little experimental basis. Here, we use in situ dark-field optical microscopy and plasmonic NPs to directly observe the dynamics of planar assembly of colloidal NPs adjacent to a planar electrode in low-frequency (<1 kHz) oscillatory electric fields. We exploit the change in plasmonic NP color resulting from interparticle plasmonic coupling to visualize the assembly dynamics and assembly structure of silver NPs. Planar assembly of NPs is unexpected because of strong electrostatic repulsion between NPs and indicates that there are strong attractive interparticle forces oriented perpendicular to the electric field direction. A parametric investigation of the voltage- and frequency-dependent phase behavior reveals that planar NP assembly occurs over a narrow frequency range below which irreversible ballistic deposition occurs. Two key experimental observations are consistent with EHD flow-induced NP assembly: (1) NPs remain mobile during assembly and (2) electron microscopy observations reveal randomly close-packed planar assemblies, consistent with strong interparticle attraction. We interpret planar assembly in terms of EHD fluid flow and develop a scaling model that qualitatively agrees with the measured phase regions. Our results are the first direct in situ observations of EHD flow-induced NP assembly and shed light on long-standing unresolved questions concerning the formation of NP superlattices during electric field-induced NP deposition.

  15. Loop Mirror Laser Neural Network with a Fast Liquid-Crystal Display

    NASA Astrophysics Data System (ADS)

    Mos, Evert C.; Schleipen, Jean J. H. B.; de Waardt, Huug; Khoe, Djan G. D.

    1999-07-01

    In our laser neural network (LNN) all-optical threshold action is obtained by application of controlled optical feedback to a laser diode. Here an extended experimental LNN is presented with as many as 32 neurons and 12 inputs. In the setup we use a fast liquid-crystal display to implement an optical matrix vector multiplier. This display, based on ferroelectric liquid-crystal material, enables us to present 125 training examples s to the LNN. To maximize the optical feedback efficiency of the setup, a loop mirror is introduced. We use a -rule learning algorithm to train the network to perform a number of functions toward the application area of telecommunication data switching.

  16. Light budget and optimization strategies for display applications of dichroic nematic droplet/polymer films

    NASA Astrophysics Data System (ADS)

    Drzaic, Paul S.

    1991-06-01

    A detailed light budget is performed on reflective displays made from nematic droplet/polymer (NCAP) films incorporating dichroic dyes. It is shown that the radiance of these displays can be modeled using a simple scheme involving the convolution of the transmission spectra of the various components of the display. Comparisons are made between the relative importance of these optical elements in the display. It is shown that first-surface reflection (glare) is an important factor in reducing the optical performance of these displays, but that the effect of glare can be minimized through the proper choice of dye concentration.

  17. Boeing Displays Process Action team

    NASA Astrophysics Data System (ADS)

    Wright, R. Nick; Jacobsen, Alan R.

    2000-08-01

    Boeing uses Active Matrix Liquid Crystal Display (AMLCD) technology in a wide variety of its aerospace products, including military, commercial, and space applications. With the demise of Optical Imaging Systems (OIS) in September 1998, the source of on-shore custom AMLCD products has become very tenuous. Reliance on off-shore sources of AMLCD glass for aerospace products is also difficult when the average life of a display product is often less than one-tenth the 30 or more years expected from aerospace platforms. Boeing is addressing this problem through the development of a Displays Process Action Team that gathers input from all display users across the spectrum of our aircraft products. By consolidating requirements, developing common interface standards, working with our suppliers and constantly monitoring custom sources as well as commercially available products, Boeing is minimizing the impact (current and future) of the uncertain AMLCD avionics supply picture.

  18. A Smart Spoofing Face Detector by Display Features Analysis.

    PubMed

    Lai, ChinLun; Tai, ChiuYuan

    2016-07-21

    In this paper, a smart face liveness detector is proposed to prevent the biometric system from being "deceived" by the video or picture of a valid user that the counterfeiter took with a high definition handheld device (e.g., iPad with retina display). By analyzing the characteristics of the display platform and using an expert decision-making core, we can effectively detect whether a spoofing action comes from a fake face displayed in the high definition display by verifying the chromaticity regions in the captured face. That is, a live or spoof face can be distinguished precisely by the designed optical image sensor. To sum up, by the proposed method/system, a normal optical image sensor can be upgraded to a powerful version to detect the spoofing actions. The experimental results prove that the proposed detection system can achieve very high detection rate compared to the existing methods and thus be practical to implement directly in the authentication systems.

  19. Measurement techniques of LC display systems

    NASA Astrophysics Data System (ADS)

    Kosmowski, Bogdan B.; Becker, Michael E.; Neumeier, Juergen

    1993-10-01

    The strong increase of applications of liquid crystal displays in various areas (measuring, medical equipment, automotive, telecommunication, office, etc.) has forced the demand for the adequate specification of the LCDs performances. The optical, electro-optical and spectral properties of LCDs are strongly dependent on viewing direction, electrical driving conditions, illumination and temperature. All these quantities have to be precisely controlled, when one of them is varied, the resulting optical response of the object is recorded. In this paper we present measuring methods proposed for LCD panels and the computer controlled measuring system (DMS) for their evaluation.

  20. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, David B.

    1987-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  1. Planarization of metal films for multilevel interconnects

    DOEpatents

    Tuckerman, David B.

    1989-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is anarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  2. Optimized micromirror arrays for adaptive optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michalicek, M. Adrian

    This paper describes the design, layout, fabrication, and surface characterization of highly optimized surface micromachined micromirror devices. Design considerations and fabrication capabilities are presented. These devices are fabricated in the state-of-the-art, four-level, planarized, ultra-low-stress polysilicon process available at Sandia National Laboratories known as the Sandia Ultra-planar Multi-level MEMS Technology (SUMMiT). This enabling process permits the development of micromirror devices with near-ideal characteristics that have previously been unrealizable in standard three-layer polysilicon processes. The reduced 1 {mu}m minimum feature sizes and 0.1 {mu}m mask resolution make it possible to produce dense wiring patterns and irregularly shaped flexures. Likewise, mirror surfaces canmore » be uniquely distributed and segmented in advanced patterns and often irregular shapes in order to minimize wavefront error across the pupil. The ultra-low-stress polysilicon and planarized upper layer allow designers to make larger and more complex micromirrors of varying shape and surface area within an array while maintaining uniform performance of optical surfaces. Powerful layout functions of the AutoCAD editor simplify the design of advanced micromirror arrays and make it possible to optimize devices according to the capabilities of the fabrication process. Micromirrors fabricated in this process have demonstrated a surface variance across the array from only 2{endash}3 nm to a worst case of roughly 25 nm while boasting active surface areas of 98{percent} or better. Combining the process planarization with a {open_quotes}planarized-by-design{close_quotes} approach will produce micromirror array surfaces that are limited in flatness only by the surface deposition roughness of the structural material. Ultimately, the combination of advanced process and layout capabilities have permitted the fabrication of highly optimized micromirror arrays for adaptive

  3. Contact planarization of ensemble nanowires

    NASA Astrophysics Data System (ADS)

    Chia, A. C. E.; LaPierre, R. R.

    2011-06-01

    The viability of four organic polymers (S1808, SC200, SU8 and Cyclotene) as filling materials to achieve planarization of ensemble nanowire arrays is reported. Analysis of the porosity, surface roughness and thermal stability of each filling material was performed. Sonication was used as an effective method to remove the tops of the nanowires (NWs) to achieve complete planarization. Ensemble nanowire devices were fully fabricated and I-V measurements confirmed that Cyclotene effectively planarizes the NWs while still serving the role as an insulating layer between the top and bottom contacts. These processes and analysis can be easily implemented into future characterization and fabrication of ensemble NWs for optoelectronic device applications.

  4. Contact planarization of ensemble nanowires.

    PubMed

    Chia, A C E; LaPierre, R R

    2011-06-17

    The viability of four organic polymers (S1808, SC200, SU8 and Cyclotene) as filling materials to achieve planarization of ensemble nanowire arrays is reported. Analysis of the porosity, surface roughness and thermal stability of each filling material was performed. Sonication was used as an effective method to remove the tops of the nanowires (NWs) to achieve complete planarization. Ensemble nanowire devices were fully fabricated and I-V measurements confirmed that Cyclotene effectively planarizes the NWs while still serving the role as an insulating layer between the top and bottom contacts. These processes and analysis can be easily implemented into future characterization and fabrication of ensemble NWs for optoelectronic device applications.

  5. Free-standing GaN grating couplers and rib waveguide for planar photonics at telecommunication wavelength

    NASA Astrophysics Data System (ADS)

    Liu, Qifa; Wang, Wei

    2018-01-01

    Gallium Nitride (GaN) free-standing planar photonic device at telecommunication wavelength based on GaN-on-silicon platform was presented. The free-standing structure was realized by particular double-side fabrication process, which combining GaN front patterning, Si substrate back releasing and GaN slab etching. The actual device parameters were identified via the physical characterizations employing scanning electron microscope (SEM), atomic force microscope (AFM) and reflectance spectra testing. High coupling efficiency and good light confinement properties of the gratings and rib waveguide at telecommunication wavelength range were verified by finite element method (FEM) simulation. This work illustrates the potential of new GaN photonic structure which will enable new functions for planar photonics in communication and sensing applications, and is favorable for the realization of integrated optical circuit.

  6. Distance Perception of Stereoscopically Presented Virtual Objects Optically Superimposed on Physical Objects by a Head-Mounted See-Through Display

    NASA Technical Reports Server (NTRS)

    Ellis, Stephen R.; Bucher, Urs J.; Statler, Irving C. (Technical Monitor)

    1994-01-01

    The influence of physically presented background stimuli on the perceived depth of optically overlaid, stereoscopic virtual images has been studied using headmounted stereoscopic, virtual image displays. These displays allow presentation of physically unrealizable stimulus combinations. Positioning of an opaque physical object either at the initial perceived depth of the virtual image or at a position substantially in front of the virtual image, causes the virtual image to perceptually move closer to the observer. In the case of objects positioned substantially in front of the virtual image, subjects often perceive the opaque object to become transparent. Evidence is presented that the apparent change of position caused by interposition of the physical object is not due to occlusion cues. According, it may have an alternative cause such as variation in the binocular vengeance position of the eyes caused by introduction of the physical object. This effect may complicate design of overlaid virtual image displays for near objects and appears to be related to the relative conspicuousness of the overlaid virtual image and the background. Consequently, it may be related to earlier analyses of John Foley which modeled open-loop pointing errors to stereoscopically presented points of light in terms of errors in determination of a reference point for interpretation of observed retinal disparities. Implications for the design of see-through displays for manufacturing will be discussed.

  7. Engineering of head-mounted projective displays.

    PubMed

    Hua, H; Girardot, A; Gao, C; Rolland, J P

    2000-08-01

    Head-mounted projective displays (HMPD's) are a novel type of head-mounted display. A HMPD consists of a miniature projection lens mounted upon the user's head and retroreflective sheeting material placed strategically in the environment. First, the imaging concept of a HMPD is reviewed and its potential advantages and disadvantages are discussed. The design and a bench prototype implementation are then presented. Finally, the effects of retroreflective materials on the imaging properties and the optical properties of HMPD's are comprehensively investigated.

  8. New Planar Wire Array Experiments on the LTD Generator at U Michigan

    NASA Astrophysics Data System (ADS)

    Weller, M. E.; Safronova, A. S.; Kantsyrev, V. L.; Shrestha, I.; Shlyaptseva, V. V.; Cooper, M. C.; Lorance, M. Y.; Stafford, A.; Petkov, E. E.; Jordan, N. M.; Patel, S. G.; Steiner, A. M.; Yager-Elorriaga, D. A.; Gilgenbach, R. M.

    2014-10-01

    Experiments on planar wire array z-pinches have been carried out on the MAIZE Linear Transformer Driver (LTD) generator at the University of Michigan (UM) for the first time. Specifically, Al (Al 5056, 95% Al, 5% Mg) double planar wire arrays (DPWAs) comprising six wires in each plane with interplanar gaps of 3.0 mm and 6.0 mm and interwire gaps of 0.7 mm and 1.0 mm were imploded with x-ray time-integrated spectra indicating electron temperatures of over 450 eV for K-shell Al and Mg, while producing mostly optically thin lines. In addition to x-ray time-integrated spectra, the diagnostics included x-ray time-integrated pinhole cameras, two silicon diodes, and shadowgraphy, which are analyzed and compared. The MAIZE LTD is capable of supplying up 1.0 MA, 100 kV pulses with 100 ns rise time into a matched load. However, for these experiments the LTD was charged to +-70 kV resulting in up to 0.5 MA with a current rise time of approximately 150 ns. Future experiments and the importance of studying planar wire arrays on LTD devices are discussed. This work supported by NNSA under DOE Cooperative Agreement DE-NA0001984. S. Patel & A. Steiner supported by Sandia. D. Yager-Elorriaga supported by NSF GF.

  9. Planar solar concentrator featuring alignment-free total-internal-reflection collectors and an innovative compound tracker.

    PubMed

    Teng, Tun-Chien; Lai, Wei-Che

    2014-12-15

    This study proposed a planar solar concentrator featuring alignment-free total-internal-reflection (TIR) collectors and an innovative compound tracker. The compound tracker, combining a mechanical single-axis tracker and scrollable prism sheets, can achieve a performance on a par with dual-axis tracking while reducing the cost of the tracking system and increasing its robustness. The alignment-free TIR collectors are assembled on the waveguide without requiring alignment, so the planar concentrator is relatively easily manufactured and markedly increases the feasibility for use in large concentrators. Further, the identical TIR collector is applicable to various-sized waveguide slab without requiring modification, which facilitates flexibility regarding the size of the waveguide slab. In the simulation model, the thickness of the slab was 2 mm, and its maximal length reached 6 m. With an average angular tolerance of ±0.6°, and after considering both the Fresnel loss and the angular spread of the sun, the simulation indicates that the waveguide concentrator of a 1000-mm length provides the optical efficiencies of 62-77% at the irradiance concentrations of 387-688, and the one of a 2000-mm length provides the optical efficiencies of 52-64.5% at the irradiance concentrations of 645-1148. Alternatively, if a 100-mm horizontally staggered waveguide slab is collocated with the alignment-free TIR collectors, the optical efficiency would be greatly improved up to 91.5% at an irradiance concentration of 1098 (C(geo) = 1200X).

  10. Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays.

    PubMed

    Padmanaban, Nitish; Konrad, Robert; Stramer, Tal; Cooper, Emily A; Wetzstein, Gordon

    2017-02-28

    From the desktop to the laptop to the mobile device, personal computing platforms evolve over time. Moving forward, wearable computing is widely expected to be integral to consumer electronics and beyond. The primary interface between a wearable computer and a user is often a near-eye display. However, current generation near-eye displays suffer from multiple limitations: they are unable to provide fully natural visual cues and comfortable viewing experiences for all users. At their core, many of the issues with near-eye displays are caused by limitations in conventional optics. Current displays cannot reproduce the changes in focus that accompany natural vision, and they cannot support users with uncorrected refractive errors. With two prototype near-eye displays, we show how these issues can be overcome using display modes that adapt to the user via computational optics. By using focus-tunable lenses, mechanically actuated displays, and mobile gaze-tracking technology, these displays can be tailored to correct common refractive errors and provide natural focus cues by dynamically updating the system based on where a user looks in a virtual scene. Indeed, the opportunities afforded by recent advances in computational optics open up the possibility of creating a computing platform in which some users may experience better quality vision in the virtual world than in the real one.

  11. Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays

    PubMed Central

    Padmanaban, Nitish; Konrad, Robert; Stramer, Tal; Wetzstein, Gordon

    2017-01-01

    From the desktop to the laptop to the mobile device, personal computing platforms evolve over time. Moving forward, wearable computing is widely expected to be integral to consumer electronics and beyond. The primary interface between a wearable computer and a user is often a near-eye display. However, current generation near-eye displays suffer from multiple limitations: they are unable to provide fully natural visual cues and comfortable viewing experiences for all users. At their core, many of the issues with near-eye displays are caused by limitations in conventional optics. Current displays cannot reproduce the changes in focus that accompany natural vision, and they cannot support users with uncorrected refractive errors. With two prototype near-eye displays, we show how these issues can be overcome using display modes that adapt to the user via computational optics. By using focus-tunable lenses, mechanically actuated displays, and mobile gaze-tracking technology, these displays can be tailored to correct common refractive errors and provide natural focus cues by dynamically updating the system based on where a user looks in a virtual scene. Indeed, the opportunities afforded by recent advances in computational optics open up the possibility of creating a computing platform in which some users may experience better quality vision in the virtual world than in the real one. PMID:28193871

  12. Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays

    NASA Astrophysics Data System (ADS)

    Padmanaban, Nitish; Konrad, Robert; Stramer, Tal; Cooper, Emily A.; Wetzstein, Gordon

    2017-02-01

    From the desktop to the laptop to the mobile device, personal computing platforms evolve over time. Moving forward, wearable computing is widely expected to be integral to consumer electronics and beyond. The primary interface between a wearable computer and a user is often a near-eye display. However, current generation near-eye displays suffer from multiple limitations: they are unable to provide fully natural visual cues and comfortable viewing experiences for all users. At their core, many of the issues with near-eye displays are caused by limitations in conventional optics. Current displays cannot reproduce the changes in focus that accompany natural vision, and they cannot support users with uncorrected refractive errors. With two prototype near-eye displays, we show how these issues can be overcome using display modes that adapt to the user via computational optics. By using focus-tunable lenses, mechanically actuated displays, and mobile gaze-tracking technology, these displays can be tailored to correct common refractive errors and provide natural focus cues by dynamically updating the system based on where a user looks in a virtual scene. Indeed, the opportunities afforded by recent advances in computational optics open up the possibility of creating a computing platform in which some users may experience better quality vision in the virtual world than in the real one.

  13. Passively aligned multichannel fiber-pigtailing of planar integrated optical waveguides

    NASA Astrophysics Data System (ADS)

    Kremmel, Johannes; Lamprecht, Tobias; Crameri, Nino; Michler, Markus

    2017-02-01

    A silicon device to simplify the coupling of multiple single-mode fibers to embedded single-mode waveguides has been developed. The silicon device features alignment structures that enable a passive alignment of fibers to integrated waveguides. For passive alignment, precisely machined V-grooves on a silicon device are used and the planar lightwave circuit board features high-precision structures acting as a mechanical stop. The approach has been tested for up to eight fiber-to-waveguide connections. The alignment approach, the design, and the fabrication of the silicon device as well as the assembly process are presented. The characterization of the fiber-to-waveguide link reveals total coupling losses of (0.45±0.20 dB) per coupling interface, which is significantly lower than the values reported in earlier works. Subsequent climate tests reveal that the coupling losses remain stable during thermal cycling but increases significantly during an 85°C/85 Rh-test. All applied fabrication and bonding steps have been performed using standard MOEMS fabrication and packaging processes.

  14. Polysilicon planarization and plug recess etching in a decoupled plasma source chamber using two endpoint techniques

    NASA Astrophysics Data System (ADS)

    Kaplita, George A.; Schmitz, Stefan; Ranade, Rajiv; Mathad, Gangadhara S.

    1999-09-01

    The planarization and recessing of polysilicon to form a plug are processes of increasing importance in silicon IC fabrication. While this technology has been developed and applied to DRAM technology using Trench Storage Capacitors, the need for such processes in other IC applications (i.e. polysilicon studs) has increased. Both planarization and recess processes usually have stringent requirements on etch rate, recess uniformity, and selectivity to underlying films. Additionally, both processes generally must be isotropic, yet must not expand any seams that might be present in the polysilicon fill. These processes should also be insensitive to changes in exposed silicon area (pattern factor) on the wafer. A SF6 plasma process in a polysilicon DPS (Decoupled Plasma Source) reactor has demonstrated the capability of achieving the above process requirements for both planarization and recess etch. The SF6 process in the decoupled plasma source reactor exhibited less sensitivity to pattern factor than in other types of reactors. Control of these planarization and recess processes requires two endpoint systems to work sequentially in the same recipe: one for monitoring the endpoint when blanket polysilicon (100% Si loading) is being planarized and one for monitoring the recess depth while the plug is being recessed (less than 10% Si loading). The planarization process employs an optical emission endpoint system (OES). An interferometric endpoint system (IEP), capable of monitoring lateral interference, is used for determining the recess depth. The ability of using either or both systems is required to make these plug processes manufacturable. Measuring the recess depth resulting from the recess process can be difficult, costly and time- consuming. An Atomic Force Microscope (AFM) can greatly alleviate these problems and can serve as a critical tool in the development of recess processes.

  15. Distributed rendering for multiview parallax displays

    NASA Astrophysics Data System (ADS)

    Annen, T.; Matusik, W.; Pfister, H.; Seidel, H.-P.; Zwicker, M.

    2006-02-01

    3D display technology holds great promise for the future of television, virtual reality, entertainment, and visualization. Multiview parallax displays deliver stereoscopic views without glasses to arbitrary positions within the viewing zone. These systems must include a high-performance and scalable 3D rendering subsystem in order to generate multiple views at real-time frame rates. This paper describes a distributed rendering system for large-scale multiview parallax displays built with a network of PCs, commodity graphics accelerators, multiple projectors, and multiview screens. The main challenge is to render various perspective views of the scene and assign rendering tasks effectively. In this paper we investigate two different approaches: Optical multiplexing for lenticular screens and software multiplexing for parallax-barrier displays. We describe the construction of large-scale multi-projector 3D display systems using lenticular and parallax-barrier technology. We have developed different distributed rendering algorithms using the Chromium stream-processing framework and evaluate the trade-offs and performance bottlenecks. Our results show that Chromium is well suited for interactive rendering on multiview parallax displays.

  16. Scanning laser beam displays based on a 2D MEMS

    NASA Astrophysics Data System (ADS)

    Niesten, Maarten; Masood, Taha; Miller, Josh; Tauscher, Jason

    2010-05-01

    The combination of laser light sources and MEMS technology enables a range of display systems such as ultra small projectors for mobile devices, head-up displays for vehicles, wearable near-eye displays and projection systems for 3D imaging. Images are created by scanning red, green and blue lasers horizontally and vertically with a single two-dimensional MEMS. Due to the excellent beam quality of laser beams, the optical designs are efficient and compact. In addition, the laser illumination enables saturated display colors that are desirable for augmented reality applications where a virtual image is used. With this technology, the smallest projector engine for high volume manufacturing to date has been developed. This projector module has a height of 7 mm and a volume of 5 cc. The resolution of this projector is WVGA. No additional projection optics is required, resulting in an infinite focus depth. Unlike with micro-display projection displays, an increase in resolution will not lead to an increase in size or a decrease in efficiency. Therefore future projectors can be developed that combine a higher resolution in an even smaller and thinner form factor with increased efficiencies that will lead to lower power consumption.

  17. 'Green mice' display limitations in enhanced green fluorescent protein expression in retina and optic nerve cells.

    PubMed

    Caminos, Elena; Vaquero, Cecilia F; García-Olmo, Dolores C

    2014-12-01

    Characterization of retinal cells, cell transplants and gene therapies may be helped by pre-labeled retinal cells, such as those transfected with vectors for green fluorescent protein expression. The aim of this study was to analyze retinal cells and optic nerve components from transgenic green mice (GM) with the 'enhanced' green fluorescent protein (EGFP) gene under the control of the CAG promoter (a chicken β-actin promoter and a cytomegalovirus enhancer). The structural analysis and electroretinography recordings showed a normal, healthy retina. Surprisingly, EGFP expression was not ubiquitously located in the retina and optic nerve. Epithelial cells, photoreceptors and bipolar cells presented high green fluorescence levels. In contrast, horizontal cells, specific amacrine cells and ganglion cells exhibited a null EGFP expression level. The synaptic terminals of rod bipolar cells displayed a high green fluorescence level when animals were kept in the dark. Immature retinas exhibited different EGFP expression patterns to those noted in adults. Axons and glial cells in the optic nerve revealed a specific regional EGFP expression pattern, which correlated with the presence of myelin. These results suggest that EGFP expression might be related to the activity of both the CAG promoter and β-actin in mature retinal neurons and oligodendrocytes. Moreover, EGFP expression might be regulated by light in both immature and adult animals. Since GM are used in numerous retina bioassays, it is essential to know the differential EGFP expression in order to select cells of interest for each study.

  18. Non-planar microfabricated gas chromatography column

    DOEpatents

    Lewis, Patrick R.; Wheeler, David R.

    2007-09-25

    A non-planar microfabricated gas chromatography column comprises a planar substrate having a plurality of through holes, a top lid and a bottom lid bonded to opposite surfaces of the planar substrate, and inlet and outlet ports for injection of a sample gas and elution of separated analytes. A plurality of such planar substrates can be aligned and stacked to provide a longer column length having a small footprint. Furthermore, two or more separate channels can enable multi-channel or multi-dimensional gas chromatography. The through holes preferably have a circular cross section and can be coated with a stationary phase material or packed with a porous packing material. Importantly, uniform stationary phase coatings can be obtained and band broadening can be minimized with the circular channels. A heating or cooling element can be disposed on at least one of the lids to enable temperature programming of the column.

  19. Interference Phenomenon with Mobile Displays

    ERIC Educational Resources Information Center

    Trantham, Kenneth

    2015-01-01

    A simple experiment is presented in which the spacing and geometric pattern of pixels in mobile displays is measured. The technique is based on optical constructive interference. While the experiment is another opportunity to demonstrate wave interference from a grating-like structure, this can also be used to demonstrate concepts of solid state…

  20. Emissive and reflective properties of curved displays in relation to image quality

    NASA Astrophysics Data System (ADS)

    Boher, Pierre; Leroux, Thierry; Bignon, Thibault; Collomb-Patton, Véronique; Blanc, Pierre; Sandré-Chardonnal, Etienne

    2016-03-01

    Different aspects of the characterization of curved displays are presented. The limit of validity of viewing angle measurements without angular distortion on such displays using goniometer or Fourier optics viewing angle instrument is given. If the condition cannot be fulfilled the measurement can be corrected using a general angular distortion formula as demonstrated experimentally using a Samsung Galaxy S6 edge phone display. The reflective properties of the display are characterized by measuring the spectral BRDF using a multispectral Fourier optics viewing angle system. The surface of a curved OLED TV has been measured. The BDRF patterns show a mirror like behavior with and additional strong diffraction along the pixels lines and columns that affect the quality of the display when observed with parasitic lighting. These diffraction effects are very common on OLED surfaces. We finally introduce a commercial ray tracing software that can use directly the measured emissive and reflective properties of the display to make realistic simulation under any lighting environment.

  1. GRIN planar waveguide concentrator used with a single axis tracker.

    PubMed

    Bouchard, Sébastien; Thibault, Simon

    2014-03-10

    It is generally accepted that small to medium level concentrators could be used as cost-competitive replacements for tracked solar panels. The objective is to design a system that can reach a good level of sun concentration with only one sun-tracking axis and is cheap to fabricate. As the most critical parameter for all concentrator designs, optical efficiency needed improvement to reduce the cost of power produced by our system. By using a graded-index planar waveguide with an index profile similar to SELFOC fiber, the ray's path can be controlled. Also, the concentrator can be fabricated in a single block, which reduces Fresnel reflections. Overall, the optical efficiency can be improved by as much as 33% compared to the same system made with a homogeneous waveguide. Furthermore, the ability to cost-effectively fabricate the concentrator by molding can be preserved, making it possible to reduce the cost of the solar power produced.

  2. GRIN planar waveguide concentrator used with a single axis tracker.

    PubMed

    Bouchard, Sébastien; Thibault, Simon

    2014-03-10

    It is generally accepted that small to medium level concentrators could be used as cost-competitive replacements for tracked solar panels. The objective is to design a system that can reach a good level of sun concentration with only one sun-tracking axis and is cheap to fabricate. As the most critical parameter for all concentrator designs, optical efficiency needed improvement to reduce the cost of power produced by our system. By using a graded-index planar waveguide with an index profile similar to SELFOC fiber, the ray’s path can be controlled. Also, the concentrator can be fabricated in a single block, which reduces Fresnel reflections. Overall, the optical efficiency can be improved by as much as 33% compared to the same system made with a homogeneous waveguide. Furthermore, the ability to cost-effectively fabricate the concentrator by molding can be preserved, making it possible to reduce the cost of the solar power produced.

  3. Design and simulation of a planar micro-optic free-space receiver

    NASA Astrophysics Data System (ADS)

    Nadler, Brett R.; Hallas, Justin M.; Karp, Jason H.; Ford, Joseph E.

    2017-11-01

    We propose a compact directional optical receiver for free-space communications, where a microlens array and micro-optic structures selectively couple light from a narrow incidence angle into a thin slab waveguide and then to an edge-mounted detector. A small lateral translation of the lenslet array controls the coupled input angle, enabling the receiver to select the transmitter source direction. We present the optical design and simulation of a 10mm x 10mm aperture receiver using a 30μm thick silicon waveguide able to couple up to 2.5Gbps modulated input to a 10mm x 30μm wide detector.

  4. FILTSoft: A computational tool for microstrip planar filter design

    NASA Astrophysics Data System (ADS)

    Elsayed, M. H.; Abidin, Z. Z.; Dahlan, S. H.; Cholan N., A.; Ngu, Xavier T. I.; Majid, H. A.

    2017-09-01

    Filters are key component of any communication system to control spectrum and suppress interferences. Designing a filter involves long process as well as good understanding of the basic hardware technology. Hence this paper introduces an automated design tool based on Matlab-GUI, called the FILTSoft (acronym for Filter Design Software) to ease the process. FILTSoft is a user friendly filter design tool to aid, guide and expedite calculations from lumped elements level to microstrip structure. Users just have to provide the required filter specifications as well as the material description. FILTSoft will calculate and display the lumped element details, the planar filter structure, and the expected filter's response. An example of a lowpass filter design was calculated using FILTSoft and the results were validated through prototype measurement for comparison purposes.

  5. Chi 3 dispersion in planar tantalum pentoxide waveguides in the telecommunications window.

    PubMed

    Chen, Ruiqi Y; Charlton, Martin D B; Lagoudakis, Pavlos G

    2009-04-01

    We report on the dispersion of the third-order nonlinear susceptibility (chi(3) or "Chi 3") in planar Ta2O5 waveguides in the telecommunications spectral window. We utilize the observation of third-harmonic generation under ultrashort pulsed excitation as a reference-free characterization method of chi(3) and obtain a large nonlinear coefficient, 2x10(-13) esu, at 1550 nm. Our observation of efficient third-harmonic generation in Ta2O5 waveguides in the telecoms window reveals the potential of this material system in high-speed integrated nonlinear optical switches.

  6. Liftings and stresses for planar periodic frameworks

    PubMed Central

    Borcea, Ciprian; Streinu, Ileana

    2015-01-01

    We formulate and prove a periodic analog of Maxwell’s theorem relating stressed planar frameworks and their liftings to polyhedral surfaces with spherical topology. We use our lifting theorem to prove deformation and rigidity-theoretic properties for planar periodic pseudo-triangulations, generalizing features known for their finite counterparts. These properties are then applied to questions originating in mathematical crystallography and materials science, concerning planar periodic auxetic structures and ultrarigid periodic frameworks. PMID:26973370

  7. Silicon microelectronic field-emissive devices for advanced display technology

    NASA Astrophysics Data System (ADS)

    Morse, J. D.

    1993-03-01

    Field-emission displays (FED's) offer the potential advantages of high luminous efficiency, low power consumption, and low cost compared to AMLCD or CRT technologies. An LLNL team has developed silicon-point field emitters for vacuum triode structures and has also used thin-film processing techniques to demonstrate planar edge-emitter configurations. LLNL is interested in contributing its experience in this and other FED-related technologies to collaborations for commercial FED development. At LLNL, FED development is supported by computational capabilities in charge transport and surface/interface modeling in order to develop smaller, low-work-function field emitters using a variety of materials and coatings. Thin-film processing, microfabrication, and diagnostic/test labs permit experimental exploration of emitter and resistor structures. High field standoff technology is an area of long-standing expertise that guides development of low-cost spacers for FEDS. Vacuum sealing facilities are available to complete the FED production engineering process. Drivers constitute a significant fraction of the cost of any flat-panel display. LLNL has an advanced packaging group that can provide chip-on-glass technologies and three-dimensional interconnect generation permitting driver placement on either the front or the back of the display substrate.

  8. Analysis and design of planar and non-planar wings for induced drag minimization

    NASA Technical Reports Server (NTRS)

    Mortara, Karl W.; Straussfogel, Dennis M.; Maughmer, Mark D.

    1992-01-01

    The goal of the work reported herein is to develop and validate computational tools to be used for the design of planar and non-planar wing geometries for minimum induced drag. Because of the iterative nature of the design problem, it is important that, in addition to being sufficiently accurate for the problem at hand, these tools need to be reasonably fast and computationally efficient. Toward this end, a method of predicting induced drag in the presence of a free wake has been coupled with a panel method. The induced drag prediction technique is based on the application of the Kutta-Joukowski law at the trailing edge. Until now, the use of this method has not been fully explored and pressure integration and Trefftz-plane calculations favored. As is shown in this report, however, the Kutta-Joukowski method is able to give better results for a given amount of effort than the more commonly used techniques, particularly when relaxed wakes and non-planar wing geometries are considered. Using these methods, it is demonstrated that a reduction in induced drag can be achieved through non-planar wing geometries. It remains to determine what overall drag reductions are possible when the induced drag reduction is traded-off against increased wetted area. With the design methodology that is described herein, such trade studies can be performed in which the non-linear effects of the free wake are taken into account.

  9. Optical profiles of cathode ray tube and liquid crystal display monitors: implication in cutaneous phototoxicity in photodynamic therapy

    PubMed Central

    Lei, Tim C.; Pendyala, Srinivas; Scherrer, Larry; Li, Buhong; Glazner, Gregory F.; Huang, Zheng

    2016-01-01

    Recent clinical reports suggest that overexposure to light emissions generated from cathode ray tube (CRT) and liquid crystal display (LCD) color monitors after topical or systemic administration of a photosensitizer could cause noticeable skin phototoxicity. In this study, we examined the light emission profiles (optical irradiance, spectral irradiance) of CRT and LCD monitors under simulated movie and video game modes. Results suggest that peak emissions and integrated fluence generated from monitors are clinically relevant and therefore prolonged exposure to these light sources at a close distance should be avoided after the administration of a photosensitizer or phototoxic drug. PMID:23669681

  10. Real-time flight test data distribution and display

    NASA Technical Reports Server (NTRS)

    Nesel, Michael C.; Hammons, Kevin R.

    1988-01-01

    Enhancements to the real-time processing and display systems of the NASA Western Aeronautical Test Range are described. Display processing has been moved out of the telemetry and radar acquisition processing systems super-minicomputers into user/client interactive graphic workstations. Real-time data is provided to the workstations by way of Ethernet. Future enhancement plans include use of fiber optic cable to replace the Ethernet.

  11. Molecular filter based planar Doppler velocimetry

    NASA Astrophysics Data System (ADS)

    Elliott, Gregory S.; Beutner, Thomas J.

    1999-11-01

    Molecular filter based diagnostics are continuing to gain popularity as a research tool for investigations in areas of aerodynamics, fluid mechanics, and combustion. This class of diagnostics has gone by many terms including Filtered Rayleigh Scattering, Doppler Global Velocimetry, and Planar Doppler Velocimetry. The majority of this article reviews recent advances in Planar Doppler Velocimetry in measuring up to three velocity components over a planar region in a flowfield. The history of the development of these techniques is given with a description of typical systems, components, and levels of uncertainty in the measurement. Current trends indicate that uncertainties on the order of 1 m/s are possible with these techniques. A comprehensive review is also given on the application of Planar Doppler Velocimetry to laboratory flows, supersonic flows, and large scale subsonic wind tunnels. The article concludes with a description of future trends, which may simplify the technique, followed by a description of techniques which allow multi-property measurements (i.e. velocity, density, temperature, and pressure) simultaneously.

  12. Direct Electrical Probing of Periodic Modulation of Zinc-Dopant Distributions in Planar Gallium Arsenide Nanowires.

    PubMed

    Choi, Wonsik; Seabron, Eric; Mohseni, Parsian K; Kim, Jeong Dong; Gokus, Tobias; Cernescu, Adrian; Pochet, Pascal; Johnson, Harley T; Wilson, William L; Li, Xiuling

    2017-02-28

    Selective lateral epitaxial (SLE) semiconductor nanowires (NWs), with their perfect in-plane epitaxial alignment, ability to form lateral complex p-n junctions in situ, and compatibility with planar processing, are a distinctive platform for next-generation device development. However, the incorporation and distribution of impurity dopants in these planar NWs via the vapor-liquid-solid growth mechanism remain relatively unexplored. Here, we present a detailed study of SLE planar GaAs NWs containing multiple alternating axial segments doped with Si and Zn impurities by metalorganic chemical vapor deposition. The dopant profile of the lateral multi-p-n junction GaAs NWs was imaged simultaneously with nanowire topography using scanning microwave impedance microscopy and correlated with infrared scattering-type near-field optical microscopy. Our results provide unambiguous evidence that Zn dopants in the periodically twinned and topologically corrugated p-type segments are preferentially segregated at twin plane boundaries, while Si impurity atoms are uniformly distributed within the n-type segments of the NWs. These results are further supported by microwave impedance modulation microscopy. The density functional theory based modeling shows that the presence of Zn dopant atoms reduces the formation energy of these twin planes, and the effect becomes significantly stronger with a slight increase of Zn concentration. This implies that the twin formation is expected to appear when a threshold planar concentration of Zn is achieved, making the onset and twin periodicity dependent on both Zn concentration and nanowire diameter, in perfect agreement with our experimental observations.

  13. Optical Addressing of Multi-Colour Photochromic Material Mixture for Volumetric Display

    NASA Astrophysics Data System (ADS)

    Hirayama, Ryuji; Shiraki, Atsushi; Naruse, Makoto; Nakamura, Shinichiro; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2016-08-01

    This is the first study to demonstrate that colour transformations in the volume of a photochromic material (PM) are induced at the intersections of two control light channels, one controlling PM colouration and the other controlling decolouration. Thus, PM colouration is induced by position selectivity, and therefore, a dynamic volumetric display may be realised using these two control lights. Moreover, a mixture of multiple PM types with different absorption properties exhibits different colours depending on the control light spectrum. Particularly, the spectrum management of the control light allows colour-selective colouration besides position selectivity. Therefore, a PM-based, full-colour volumetric display is realised. We experimentally construct a mixture of two PM types and validate the operating principles of such a volumetric display system. Our system is constructed simply by mixing multiple PM types; therefore, the display hardware structure is extremely simple, and the minimum size of a volume element can be as small as the size of a molecule. Volumetric displays can provide natural three-dimensional (3D) perception; therefore, the potential uses of our system include high-definition 3D visualisation for medical applications, architectural design, human-computer interactions, advertising, and entertainment.

  14. Optical Addressing of Multi-Colour Photochromic Material Mixture for Volumetric Display.

    PubMed

    Hirayama, Ryuji; Shiraki, Atsushi; Naruse, Makoto; Nakamura, Shinichiro; Nakayama, Hirotaka; Kakue, Takashi; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2016-08-16

    This is the first study to demonstrate that colour transformations in the volume of a photochromic material (PM) are induced at the intersections of two control light channels, one controlling PM colouration and the other controlling decolouration. Thus, PM colouration is induced by position selectivity, and therefore, a dynamic volumetric display may be realised using these two control lights. Moreover, a mixture of multiple PM types with different absorption properties exhibits different colours depending on the control light spectrum. Particularly, the spectrum management of the control light allows colour-selective colouration besides position selectivity. Therefore, a PM-based, full-colour volumetric display is realised. We experimentally construct a mixture of two PM types and validate the operating principles of such a volumetric display system. Our system is constructed simply by mixing multiple PM types; therefore, the display hardware structure is extremely simple, and the minimum size of a volume element can be as small as the size of a molecule. Volumetric displays can provide natural three-dimensional (3D) perception; therefore, the potential uses of our system include high-definition 3D visualisation for medical applications, architectural design, human-computer interactions, advertising, and entertainment.

  15. 1.5-μm high-average power laser amplifier using a Er,Yb:glass planar waveguide for coherent Doppler lidar

    NASA Astrophysics Data System (ADS)

    Sakimura, Takeshi; Watanabe, Yojiro; Ando, Toshiyuki; Kameyama, Shumpei; Asaka, Kimio; Tanaka, Hisamichi; Yanagisawa, Takayuki; Hirano, Yoshihito; Inokuchi, Hamaki

    2012-11-01

    We have developed a 1.5-μm eye-safe wavelength high average power laser amplifier using an Er,Yb:glass planar waveguide for coherent Doppler LIDAR. Large cooling surface of the planar waveguide enabled high average power pumping for Er,Yb:glass which has low thermal fracture limit. Nonlinear effects are suppressed by the large beam size which is designed by the waveguide thickness and the beam width of the planar direction. Multi-bounce optical path configuration and high-intensity pumping provide high-gain and high-efficient operation using three-level laser material. With pulsed operation, the maximum pulse energy of 1.9 mJ was achieved at the repetition rate of 4 kHz. Output average power of the amplified signal was 7.6W with the amplified gain of more than 20dB. This amplifier is suitable for coherent Doppler LIDAR to enhance the measurable range.

  16. Transparent active matrix organic light-emitting diode displays driven by nanowire transistor circuitry.

    PubMed

    Ju, Sanghyun; Li, Jianfeng; Liu, Jun; Chen, Po-Chiang; Ha, Young-Geun; Ishikawa, Fumiaki; Chang, Hsiaokang; Zhou, Chongwu; Facchetti, Antonio; Janes, David B; Marks, Tobin J

    2008-04-01

    Optically transparent, mechanically flexible displays are attractive for next-generation visual technologies and portable electronics. In principle, organic light-emitting diodes (OLEDs) satisfy key requirements for this application-transparency, lightweight, flexibility, and low-temperature fabrication. However, to realize transparent, flexible active-matrix OLED (AMOLED) displays requires suitable thin-film transistor (TFT) drive electronics. Nanowire transistors (NWTs) are ideal candidates for this role due to their outstanding electrical characteristics, potential for compact size, fast switching, low-temperature fabrication, and transparency. Here we report the first demonstration of AMOLED displays driven exclusively by NW electronics and show that such displays can be optically transparent. The displays use pixel dimensions suitable for hand-held applications, exhibit 300 cd/m2 brightness, and are fabricated at temperatures suitable for integration on plastic substrates.

  17. Front and rear projection autostereoscopic 3D displays based on lenticular sheets

    NASA Astrophysics Data System (ADS)

    Wang, Qiong-Hua; Zang, Shang-Fei; Qi, Lin

    2015-03-01

    A front projection autostereoscopic display is proposed. The display is composed of eight projectors and a 3D-imageguided screen which having a lenticular sheet and a retro-reflective diffusion screen. Based on the optical multiplexing and de-multiplexing, the optical functions of the 3D-image-guided screen are parallax image interlacing and viewseparating, which is capable of reconstructing 3D images without quality degradation from the front direction. The operating principle, optical design calculation equations and correction method of parallax images are given. A prototype of the front projection autostereoscopic display is developed, which enhances the brightness and 3D perceptions, and improves space efficiency. The performance of this prototype is evaluated by measuring the luminance and crosstalk distribution along the horizontal direction at the optimum viewing distance. We also propose a rear projection autostereoscopic display. The display consists of eight projectors, a projection screen, and two lenticular sheets. The operation principle and calculation equations are described in detail and the parallax images are corrected by means of homography. A prototype of the rear projection autostereoscopic display is developed. The normalized luminance distributions of viewing zones from the measurement are given. Results agree well with the designed values. The prototype presents high resolution and high brightness 3D images. The research has potential applications in some commercial entertainments and movies for the realistic 3D perceptions.

  18. Cellular dye lasers: lasing thresholds and sensing in a planar resonator

    PubMed Central

    Humar, Matjaž; Gather, Malte C.; Yun, Seok-Hyun

    2015-01-01

    Biological cell lasers are promising novel building blocks of future biocompatible optical systems and offer new approaches to cellular sensing and cytometry in a microfluidic setting. Here, we demonstrate a simple method for providing optical gain by using a variety of standard fluorescent dyes. The dye gain medium can be located inside or outside a cell, or in both, which gives flexibility in experimental design and makes the method applicable to all cell types. Due to the higher refractive index of the cytoplasm compared to the surrounding medium, a cell acts as a convex lens in a planar Fabry-Perot cavity. Its effect on the stability of the laser cavity is analyzed and utilized to suppress lasing outside cells. The resonance modes depend on the shape and internal structure of the cell. As proof of concept, we show how the laser output modes are affected by the osmotic pressure. PMID:26480446

  19. Design of a single projector multiview 3D display system

    NASA Astrophysics Data System (ADS)

    Geng, Jason

    2014-03-01

    Multiview three-dimensional (3D) display is able to provide horizontal parallax to viewers with high-resolution and fullcolor images being presented to each view. Most multiview 3D display systems are designed and implemented using multiple projectors, each generating images for one view. Although this multi-projector design strategy is conceptually straightforward, implementation of such multi-projector design often leads to a very expensive system and complicated calibration procedures. Even for a multiview system with a moderate number of projectors (e.g., 32 or 64 projectors), the cost of a multi-projector 3D display system may become prohibitive due to the cost and complexity of integrating multiple projectors. In this article, we describe an optical design technique for a class of multiview 3D display systems that use only a single projector. In this single projector multiview (SPM) system design, multiple views for the 3D display are generated in a time-multiplex fashion by the single high speed projector with specially designed optical components, a scanning mirror, and a reflective mirror array. Images of all views are generated sequentially and projected via the specially design optical system from different viewing directions towards a 3D display screen. Therefore, the single projector is able to generate equivalent number of multiview images from multiple viewing directions, thus fulfilling the tasks of multiple projectors. An obvious advantage of the proposed SPM technique is the significant reduction of cost, size, and complexity, especially when the number of views is high. The SPM strategy also alleviates the time-consuming procedures for multi-projector calibration. The design method is flexible and scalable and can accommodate systems with different number of views.

  20. Aerial secure display by use of polarization-processing display with retarder film and retro-reflector

    NASA Astrophysics Data System (ADS)

    Ito, Shusei; Uchida, Keitaro; Mizushina, Haruki; Suyama, Shiro; Yamamoto, Hirotsugu

    2017-02-01

    Security is one of the big issues in automated teller machine (ATM). In ATM, two types of security have to be maintained. One is to secure displayed information. The other is to secure screen contamination. This paper gives a solution for these two security issues. In order to secure information against peeping at the screen, we utilize visual cryptography for displayed information and limit the viewing zone. Furthermore, an aerial information screen with aerial imaging by retro-reflection, named AIRR enables users to avoid direct touch on the information screen. The purpose of this paper is to propose an aerial secure display technique that ensures security of displayed information as well as security against contamination problem on screen touch. We have developed a polarization-processing display that is composed of a backlight, a polarizer, a background LCD panel, a gap, a half-wave retarder, and a foreground LCD panel. Polarization angle is rotated with the LCD panels. We have constructed a polarization encryption code set. Size of displayed images are designed to limit the viewing position. Furthermore, this polarization-processing display has been introduced into our aerial imaging optics, which employs a reflective polarizer and a retro-reflector covered with a quarter-wave retarder. Polarization-modulated light forms the real image over the reflective polarizer. We have successfully formed aerial information screen that shows the secret image with a limited viewing position. This is the first realization of aerial secure display by use of polarization-processing display with retarder-film and retro-reflector.

  1. Real-time acquisition and display of flow contrast using speckle variance optical coherence tomography in a graphics processing unit.

    PubMed

    Xu, Jing; Wong, Kevin; Jian, Yifan; Sarunic, Marinko V

    2014-02-01

    In this report, we describe a graphics processing unit (GPU)-accelerated processing platform for real-time acquisition and display of flow contrast images with Fourier domain optical coherence tomography (FDOCT) in mouse and human eyes in vivo. Motion contrast from blood flow is processed using the speckle variance OCT (svOCT) technique, which relies on the acquisition of multiple B-scan frames at the same location and tracking the change of the speckle pattern. Real-time mouse and human retinal imaging using two different custom-built OCT systems with processing and display performed on GPU are presented with an in-depth analysis of performance metrics. The display output included structural OCT data, en face projections of the intensity data, and the svOCT en face projections of retinal microvasculature; these results compare projections with and without speckle variance in the different retinal layers to reveal significant contrast improvements. As a demonstration, videos of real-time svOCT for in vivo human and mouse retinal imaging are included in our results. The capability of performing real-time svOCT imaging of the retinal vasculature may be a useful tool in a clinical environment for monitoring disease-related pathological changes in the microcirculation such as diabetic retinopathy.

  2. Optical See-Through Head Mounted Display Direct Linear Transformation Calibration Robustness in the Presence of User Alignment Noise

    NASA Technical Reports Server (NTRS)

    Axholt, Magnus; Skoglund, Martin; Peterson, Stephen D.; Cooper, Matthew D.; Schoen, Thomas B.; Gustafsson, Fredrik; Ynnerman, Anders; Ellis, Stephen R.

    2010-01-01

    Augmented Reality (AR) is a technique by which computer generated signals synthesize impressions that are made to coexist with the surrounding real world as perceived by the user. Human smell, taste, touch and hearing can all be augmented, but most commonly AR refers to the human vision being overlaid with information otherwise not readily available to the user. A correct calibration is important on an application level, ensuring that e.g. data labels are presented at correct locations, but also on a system level to enable display techniques such as stereoscopy to function properly [SOURCE]. Thus, vital to AR, calibration methodology is an important research area. While great achievements already have been made, there are some properties in current calibration methods for augmenting vision which do not translate from its traditional use in automated cameras calibration to its use with a human operator. This paper uses a Monte Carlo simulation of a standard direct linear transformation camera calibration to investigate how user introduced head orientation noise affects the parameter estimation during a calibration procedure of an optical see-through head mounted display.

  3. High-efficiency directional backlight design for an automotive display.

    PubMed

    Chen, Bo-Tsuen; Pan, Jui-Wen

    2018-06-01

    We propose a high-efficiency directional backlight module (DBM) for automotive display applications. The DBM is composed of light sources, a light guide plate (LGP), and an optically patterned plate (OPP). The LGP has a collimator on the input surface that serves to control the angle of the light emitted to be in the horizontal direction. The OPP has an inverse prism to adjust the light emission angle in the vertical direction. The DBM has a simple structure and high optical efficiency. Compared with conventional backlight systems, the DBM has higher optical efficiency and a suitable viewing angle. This is an improvement in normalized on-axis luminous intensity of 2.6 times and a twofold improvement in optical efficiency. The viewing angles are 100° in the horizontal direction and 35° in the vertical direction. The angle of the half-luminous intensity is 72° in the horizontal direction and 20° in the vertical direction. The uniformity of the illuminance reaches 82%. The DBM is suitable for use in the center information displays of automobiles.

  4. Recirculating planar magnetrons: simulations and experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franzi, Matthew; Gilgenbach, Ronald; French, David

    2011-07-01

    The Recirculating Planar Magnetron (RPM) is a novel crossed-field device whose geometry is expected to reduce thermal load, enhance current yield as well as ease the geometric limitations in scaling to high RF frequencies as compared to the conventional cylindrical magnetrons. The RPM has two different adaptations: A. Axial B field and radial E field; B. Radial B field and axial E field. The preliminary configuration (A) to be used in experiments at the University of Michigan consists of two parallel planar sections which join on either end by cylindrical regions to form a concentric extruded ellipse. Similar to conventionalmore » magnetrons, a voltage across the AK gap in conjunction with an axial magnetic field provides the electrons with an ExB drift. The device is named RPM because the drifting electrons recirculate from one planar region to the other. The drifting electrons interact with the resonantly tuned slow wave structure on the anode causing spoke formation. These electron spokes drive a RF electric field in the cavities from which RF power may be extracted to Waveguides. The RPM may be designed in either a conventional configuration with the anode on the outside, for simplified extraction, or as an inverted magnetron with the anode at the inner conductor, for fast start-up. Currently, experiments at the Pulsed Power and Microwave Laboratory at the University of Michigan are in the setup and design phase. A conventional RPM with planar cavities is to be installed on the Michigan Electron Long Beam Accelerator (MELBA) and is anticipated to operate at -200kV, 0.2T with a beam current of 1-10 kA at 1GHz. The conventional RPM consists of 12 identical planar cavities, 6 on each planar side, with simulated quality factor of 20.« less

  5. Catenary optics for achromatic generation of perfect optical angular momentum

    PubMed Central

    Pu, Mingbo; Li, Xiong; Ma, Xiaoliang; Wang, Yanqin; Zhao, Zeyu; Wang, Changtao; Hu, Chenggang; Gao, Ping; Huang, Cheng; Ren, Haoran; Li, Xiangping; Qin, Fei; Yang, Jing; Gu, Min; Hong, Minghui; Luo, Xiangang

    2015-01-01

    The catenary is the curve that a free-hanging chain assumes under its own weight, and thought to be a “true mathematical and mechanical form” in architecture by Robert Hooke in the 1670s, with nevertheless no significant phenomena observed in optics. We show that the optical catenary can serve as a unique building block of metasurfaces to produce continuous and linear phase shift covering [0, 2π], a mission that is extremely difficult if not impossible for state-of-the-art technology. Via catenary arrays, planar optical devices are designed and experimentally characterized to generate various kinds of beams carrying orbital angular momentum (OAM). These devices can operate in an ultra-broadband spectrum because the anisotropic modes associated with the spin-orbit interaction are almost independent of the incident light frequency. By combining the optical and topological characteristics, our approach would allow the complete control of photons within a single nanometric layer. PMID:26601283

  6. Catenary optics for achromatic generation of perfect optical angular momentum.

    PubMed

    Pu, Mingbo; Li, Xiong; Ma, Xiaoliang; Wang, Yanqin; Zhao, Zeyu; Wang, Changtao; Hu, Chenggang; Gao, Ping; Huang, Cheng; Ren, Haoran; Li, Xiangping; Qin, Fei; Yang, Jing; Gu, Min; Hong, Minghui; Luo, Xiangang

    2015-10-01

    The catenary is the curve that a free-hanging chain assumes under its own weight, and thought to be a "true mathematical and mechanical form" in architecture by Robert Hooke in the 1670s, with nevertheless no significant phenomena observed in optics. We show that the optical catenary can serve as a unique building block of metasurfaces to produce continuous and linear phase shift covering [0, 2π], a mission that is extremely difficult if not impossible for state-of-the-art technology. Via catenary arrays, planar optical devices are designed and experimentally characterized to generate various kinds of beams carrying orbital angular momentum (OAM). These devices can operate in an ultra-broadband spectrum because the anisotropic modes associated with the spin-orbit interaction are almost independent of the incident light frequency. By combining the optical and topological characteristics, our approach would allow the complete control of photons within a single nanometric layer.

  7. Optical Fiber Sensing Using Quantum Dots

    PubMed Central

    Jorge, Pedro; Martins, Manuel António; Trindade, Tito; Santos, José Luís; Farahi, Faramarz

    2007-01-01

    Recent advances in the application of semiconductor nanocrystals, or quantum dots, as biochemical sensors are reviewed. Quantum dots have unique optical properties that make them promising alternatives to traditional dyes in many luminescence based bioanalytical techniques. An overview of the more relevant progresses in the application of quantum dots as biochemical probes is addressed. Special focus will be given to configurations where the sensing dots are incorporated in solid membranes and immobilized in optical fibers or planar waveguide platforms. PMID:28903308

  8. Planar Laser Imaging of Sprays for Liquid Rocket Studies

    NASA Technical Reports Server (NTRS)

    Lee, W.; Pal, S.; Ryan, H. M.; Strakey, P. A.; Santoro, Robert J.

    1990-01-01

    A planar laser imaging technique which incorporates an optical polarization ratio technique for droplet size measurement was studied. A series of pressure atomized water sprays were studied with this technique and compared with measurements obtained using a Phase Doppler Particle Analyzer. In particular, the effects of assuming a logarithmic normal distribution function for the droplet size distribution within a spray was evaluated. Reasonable agreement between the instrument was obtained for the geometric mean diameter of the droplet distribution. However, comparisons based on the Sauter mean diameter show larger discrepancies, essentially because of uncertainties in the appropriate standard deviation to be applied for the polarization ratio technique. Comparisons were also made between single laser pulse (temporally resolved) measurements with multiple laser pulse visualizations of the spray.

  9. Enumeration of spanning trees in planar unclustered networks

    NASA Astrophysics Data System (ADS)

    Xiao, Yuzhi; Zhao, Haixing; Hu, Guona; Ma, Xiujuan

    2014-07-01

    Among a variety of subgraphs, spanning trees are one of the most important and fundamental categories. They are relevant to diverse aspects of networks, including reliability, transport, self-organized criticality, loop-erased random walks and so on. In this paper, we introduce a family of modular, self-similar planar networks with zero clustering. Relevant properties of this family are comparable to those networks associated with technological systems having low clustering, like power grids, some electronic circuits, the Internet and some biological systems. So, it is very significant to research on spanning trees of planar networks. However, for a large network, evaluating the relevant determinant is intractable. In this paper, we propose a fairly generic linear algorithm for counting the number of spanning trees of a planar network. Using the algorithm, we derive analytically the exact numbers of spanning trees in planar networks. Our result shows that the computational complexity is O(t) , which is better than that of the matrix tree theorem with O(m2t2) , where t is the number of steps and m is the girth of the planar network. We also obtain the entropy for the spanning trees of a given planar network. We find that the entropy of spanning trees in the studied network is small, which is in sharp contrast to the previous result for planar networks with the same average degree. We also determine an upper bound and a lower bound for the numbers of spanning trees in the family of planar networks by the algorithm. As another application of the algorithm, we give a formula for the number of spanning trees in an outerplanar network with small-world features.

  10. Investigation of Carbon-Polymer Structures with Embedded Fiber-Optic Bragg Gratings

    NASA Technical Reports Server (NTRS)

    Grant, Joseph; Kaul, R.; Taylor, S.; Myers, G.; Sharma, A.

    2003-01-01

    Several Bragg-grating sensors fabricated within the same optical fiber are buried within multiple-ply carbon-epoxy planar and cylindrical structures. Effect of different orientation of fiber-sensors with respect to carbon fibers in the composite structure is investigated. This is done for both fabric and uni-tape material samples. Response of planar structures to axial and transverse strain up to 1 millistrain is investigated with distributed Bragg-grating sensors. Material properties like Young's Modulus and Poisson ratio is measured. A comparison is made between response measured by sensors in different ply-layers and those bonded on the surface. The results from buried fiber- sensors do not completely agree with surface bonded conventional strain gauges. A plausible explanation is given for observed differences. The planar structures are subjected to impacts with energies up to 10 ft-lb. Effect of this impact on the material stiffness is also investigated with buried fiber-optic Bragg sensors. The strain response of such optical sensors is also measured for cylindrical carbon-epoxy composite structures. The sensors are buried within the walls of the cylinder as well as surface bonded in both the axial as well as hoop directions. The response of these fiber-optic sensors is investigated by pressurizing the cylinder up to its burst pressure of around 1500 psi. This is done at both room temperature as well as cryogenic temperatures. The recorded response is compared with that from a conventional strain gauge.

  11. Dual-view-zone tabletop 3D display system based on integral imaging.

    PubMed

    He, Min-Yang; Zhang, Han-Le; Deng, Huan; Li, Xiao-Wei; Li, Da-Hai; Wang, Qiong-Hua

    2018-02-01

    In this paper, we propose a dual-view-zone tabletop 3D display system based on integral imaging by using a multiplexed holographic optical element (MHOE) that has the optical properties of two sets of microlens arrays. The MHOE is recorded by a reference beam using the single-exposure method. The reference beam records the wavefronts of a microlens array from two different directions. Thus, when the display beam is projected on the MHOE, two wavefronts with the different directions will be rebuilt and the 3D virtual images can be reconstructed in two viewing zones. The MHOE has angle and wavelength selectivity. Under the conditions of the matched wavelength and the angle of the display beam, the diffraction efficiency of the MHOE is greatest. Because the unmatched light just passes through the MHOE, the MHOE has the advantage of a see-through display. The experimental results confirm the feasibility of the dual-view-zone tabletop 3D display system.

  12. Equivalent isotropic scattering formulation for transient short-pulse radiative transfer in anisotropic scattering planar media.

    PubMed

    Guo, Z; Kumar, S

    2000-08-20

    An isotropic scaling formulation is evaluated for transient radiative transfer in a one-dimensional planar slab subject to collimated and/or diffuse irradiation. The Monte Carlo method is used to implement the equivalent scattering and exact simulations of the transient short-pulse radiation transport through forward and backward anisotropic scattering planar media. The scaled equivalent isotropic scattering results are compared with predictions of anisotropic scattering in various problems. It is found that the equivalent isotropic scaling law is not appropriate for backward-scattering media in transient radiative transfer. Even for an optically diffuse medium, the differences in temporal transmittance and reflectance profiles between predictions of backward anisotropic scattering and equivalent isotropic scattering are large. Additionally, for both forward and backward anisotropic scattering media, the transient equivalent isotropic results are strongly affected by the change of photon flight time, owing to the change of flight direction associated with the isotropic scaling technique.

  13. Optical coupler

    DOEpatents

    Majewski, Stanislaw; Weisenberger, Andrew G.

    2004-06-15

    In a camera or similar radiation sensitive device comprising a pixilated scintillation layer, a light guide and an array of position sensitive photomultiplier tubes, wherein there exists so-called dead space between adjacent photomultiplier tubes the improvement comprising a two part light guide comprising a first planar light spreading layer or portion having a first surface that addresses the scintillation layer and optically coupled thereto at a second surface that addresses the photomultiplier tubes, a second layer or portion comprising an array of trapezoidal light collectors defining gaps that span said dead space and are individually optically coupled to individual position sensitive photomultiplier tubes. According to a preferred embodiment, coupling of the trapezoidal light collectors to the position sensitive photomultiplier tubes is accomplished using an optical grease having about the same refractive index as the material of construction of the two part light guide.

  14. Vertical viewing angle enhancement for the 360  degree integral-floating display using an anamorphic optic system.

    PubMed

    Erdenebat, Munkh-Uchral; Kwon, Ki-Chul; Yoo, Kwan-Hee; Baasantseren, Ganbat; Park, Jae-Hyeung; Kim, Eun-Soo; Kim, Nam

    2014-04-15

    We propose a 360 degree integral-floating display with an enhanced vertical viewing angle. The system projects two-dimensional elemental image arrays via a high-speed digital micromirror device projector and reconstructs them into 3D perspectives with a lens array. Double floating lenses relate initial 3D perspectives to the center of a vertically curved convex mirror. The anamorphic optic system tailors the initial 3D perspectives horizontally and vertically disperse light rays more widely. By the proposed method, the entire 3D image provides both monocular and binocular depth cues, a full-parallax demonstration with high-angular ray density and an enhanced vertical viewing angle.

  15. True 3D display and BeoWulf connectivity

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz P.; Kostrzewski, Andrew A.; Kupiec, Stephen A.; Yu, Kevin H.; Aye, Tin M.; Savant, Gajendra D.

    2003-09-01

    We propose a novel true 3-D display based on holographic optics, called HAD (Holographic Autostereoscopic Display), or Holographic Inverse Look-around and Autostereoscopic Reality (HILAR), its latest generation. It does not require goggles, unlike the state of the art 3-D system which do not work without goggles, and has a table-like 360° look-around capability. Also, novel 3-D image-rendering software, based on Beowulf PC cluster hardware is discussed.

  16. Hewlett-Packard's Approaches to Full Color Reflective Displays

    NASA Astrophysics Data System (ADS)

    Gibson, Gary

    2012-02-01

    Reflective displays are desirable in applications requiring low power or daylight readability. However, commercial reflective displays are currently either monochrome or capable of only dim color gamuts. Low cost, high-quality color technology would be rapidly adopted in existing reflective display markets and would enable new solutions in areas such as retail pricing and outdoor digital signage. Technical breakthroughs are required to enable bright color gamuts at reasonable cost. Pixel architectures that rely on pure reflection from a single layer of side-by-side primary-color sub-pixels use only a fraction of the display area to reflect incident light of a given color and are, therefore, unacceptably dark. Reflective devices employing stacked color primaries offer the possibility of a somewhat brighter color gamut but can be more complex to manufacture. In this talk, we describe HP's successes in addressing these fundamental challenges and creating both high performance stacked-primary reflective color displays as well as inexpensive single layer prototypes that provide good color. Our stacked displays utilize a combination of careful light management techniques, proprietary high-contrast electro-optic shutters, and highly transparent active-matrix TFT arrays based on transparent metal oxides. They also offer the possibility of relatively low cost manufacturing through roll-to-roll processing on plastic webs. To create even lower cost color displays with acceptable brightness, we have developed means for utilizing photoluminescence to make more efficient use of ambient light in a single layer device. Existing reflective displays create a desired color by reflecting a portion of the incident spectrum while absorbing undesired wavelengths. We have developed methods for converting the otherwise-wasted absorbed light to desired wavelengths via tailored photoluminescent composites. Here we describe a single active layer prototype display that utilizes these materials

  17. Improving School Lighting for Video Display Units.

    ERIC Educational Resources Information Center

    Parker-Jenkins, Marie; Parker-Jenkins, William

    1985-01-01

    Provides information to identify and implement the key characteristics which contribute to an efficient and comfortable visual display unit (VDU) lighting installation. Areas addressed include VDU lighting requirements, glare, lighting controls, VDU environment, lighting retrofit, optical filters, and lighting recommendations. A checklist to…

  18. Electro-Optic Modulator Based on Organic Planar Waveguide Integrated with Prism Coupler

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S.

    2002-01-01

    The objectives of the project, as they were formulated in the proposal, are the following: (1) Design and development of novel electro-optic modulator using single crystalline film of highly efficient electro-optic organic material integrated with prism coupler; (2) Experimental characterization of the figures-of-merit of the modulator. It is expected to perform with an extinction ratio of 10 dB at a driving signal of 5 V; (3) Conclusions on feasibility of the modulator as an element of data communication systems of future generations. The accomplishments of the project are the following: (1) The design of the electro-optic modulator based on a single crystalline film of organic material NPP has been explored; (2) The evaluation of the figures-of-merit of the electro-optic modulator has been performed; (3) Based on the results of characterization of the figures-of-merit, the conclusion was made that the modulator based on a thin film of NPP is feasible and has a great potential of being used in optic communication with a modulation bandwidth of up to 100 GHz and a driving voltage of the order of 3 to 5 V.

  19. Passive method of eliminating accommodation/convergence disparity in stereoscopic head-mounted displays

    NASA Astrophysics Data System (ADS)

    Eichenlaub, Jesse B.

    2005-03-01

    The difference in accommodation and convergence distance experienced when viewing stereoscopic displays has long been recognized as a source of visual discomfort. It is especially problematic in head mounted virtual reality and enhanced reality displays, where images must often be displayed across a large depth range or superimposed on real objects. DTI has demonstrated a novel method of creating stereoscopic images in which the focus and fixation distances are closely matched for all parts of the scene from close distances to infinity. The method is passive in the sense that it does not rely on eye tracking, moving parts, variable focus optics, vibrating optics, or feedback loops. The method uses a rapidly changing illumination pattern in combination with a high speed microdisplay to create cones of light that converge at different distances to form the voxels of a high resolution space filling image. A bench model display was built and a series of visual tests were performed in order to demonstrate the concept and investigate both its capabilities and limitations. Results proved conclusively that real optical images were being formed and that observers had to change their focus to read text or see objects at different distances

  20. Low- and high-index sol-gel films for planar and channel-doped waveguides

    NASA Astrophysics Data System (ADS)

    Canva, Michael; Chaput, Frederic; Lahlil, Khalid; Rachet, Vincent; Goudket, Helene; Boilot, Jean-Pierre; Levy, Yves

    2001-11-01

    In view of realizing integrated optic components based on effects such as electro-optic, chi(2):chi(2) cascading, stimulated emission,... one has to first synthesize materials with the proper functionality; this may be achieved by doping solid state matrices by the appropriate organic chromophores. Second, and as important, these materials have to be properly structured into the final optical guiding structures. We shall report on issues related to the realization of chromophore-doped planar waveguides as well as channel waveguides. These structures were realized by either photo-transformation such as photo- chromism and photo-bleaching or reactive ion etching technique, starting with chromophore doped sol-gel materials at high loading contents for which optical index may be controlled via the local dopant concentration. With these materials and techniques, waveguides and components characterized by propagation losses of the order of a cm-1, measured off the edge of the absorption band of the doping species, were fabricated. In order to be also able to study and use waveguide functionalized with low concentration of chromophore species, we developed new sol-gel materials of high optical index, yet low temperature processed. These new films are under study to evaluate their potential as host for organic doped waveguides devices.

  1. Reflective and transflective liquid crystal displays

    NASA Astrophysics Data System (ADS)

    Zhou, Fushan

    Recently transflective liquid crystal displays (LCD) received a lot of attention. A transflective display has a transmissive mode and a reflective mode. It combines the high contrast, high brightness of the transmissive mode with energy-saving of reflective mode and has good performance in various illumination conditions. However, state-of-the-art transflective displays have problems such as different electro-optical properties, difficulty in compatibility and optimization of both modes, low efficiency of light utilization, and complexity in structure. This dissertation focuses on finding new designs of transflective displays that address those problems. One way to do this is to study film compensation of LCD. We first studied film compensation of bistable twisted nematic (BTN) LCD. Starting form the reduced (3x3) Mueller matrices, we derived and simplified the conditions that film compensated BTN can be optimized. Based on these relations, electro-optical properties of some particular configurations, and designs of transflective BTN with high brightness and contrast were given. To confirm and get a better understanding of the results, we use the Poincare sphere to analyze film compensated BTN. The key to this approach is the existence of "fixed points". Compared with the matrix approach, this approach is more simple, elegant, and efficient. We then generalized the Poincare sphere approach to a universal approach of LCD. We applied the universal approach to film compensation of ECB and IPS, and the design of achromatic birefringent filters. We also give two more new designs of transflective displays. In the first design, a dichroic mirror is used to split the visible spectrum into two parts used in transmissive and reflective modes, respectively. Both modes can be optimized. It has a simple structure and good light utilization. A design for a full-color transflective display with good performance is also given. In the second design, each pixel is divided into two

  2. Color difference threshold of chromostereopsis induced by flat display emission.

    PubMed

    Ozolinsh, Maris; Muizniece, Kristine

    2015-01-01

    The study of chromostereopsis has gained attention in the backdrop of the use of computer displays in daily life. In this context, we analyze the illusory depth sense using planar color images presented on a computer screen. We determine the color difference threshold required to induce an illusory sense of depth psychometrically using a constant stimuli paradigm. Isoluminant stimuli are presented on a computer screen, which stimuli are aligned along the blue-red line in the computer display CIE xyY color space. Stereo disparity is generated by increasing the color difference between the central and surrounding areas of the stimuli with both areas consisting of random dots on a black background. The observed altering of illusory depth sense, thus also stereo disparity is validated using the "center-of-gravity" model. The induced illusory sense of the depth effect undergoes color reversal upon varying the binocular lateral eye pupil covering conditions (lateral or medial). Analysis of the retinal image point spread function for the display red and blue pixel radiation validates the altering of chromostereopsis retinal disparity achieved by increasing the color difference, and also the chromostereopsis color reversal caused by varying the eye pupil covering conditions.

  3. Graphene based resonance structure to enhance the optical pressure between two planar surfaces.

    PubMed

    Hassanzadeh, Abdollah; Azami, Darya

    2015-12-28

    To enhance the optical pressure on a thin dielectric sample, a resonance structure using graphene layers coated over a metal film on a high index prism sputtered with MgF2 was theoretically analyzed. The number of graphene layers and the thicknesses of metal and MgF2 films were optimized to achieve the highest optical pressure on the sample. Effects of three different types of metals on the optical pressure were investigated numerically. In addition, simulations were carried out for samples with various thicknesses. Our numerical results show that the optical pressure increased by more than five orders of magnitude compared to the conventional metal-film-base resonance structure. The highest optical pressure was obtained for 10 layers of graphene deposited on 29-nm thick Au film and 650 nm thickness of MgF2 at 633nm wavelength, The proposed graphene based resonance structure can open new possibilities for optical tweezers, nanomechnical devices and surface plasmon based sensing and imaging techniques.

  4. Technical errors in planar bone scanning.

    PubMed

    Naddaf, Sleiman Y; Collier, B David; Elgazzar, Abdelhamid H; Khalil, Magdy M

    2004-09-01

    Optimal technique for planar bone scanning improves image quality, which in turn improves diagnostic efficacy. Because planar bone scanning is one of the most frequently performed nuclear medicine examinations, maintaining high standards for this examination is a daily concern for most nuclear medicine departments. Although some problems such as patient motion are frequently encountered, the degraded images produced by many other deviations from optimal technique are rarely seen in clinical practice and therefore may be difficult to recognize. The objectives of this article are to list optimal techniques for 3-phase and whole-body bone scanning, to describe and illustrate a selection of deviations from these optimal techniques for planar bone scanning, and to explain how to minimize or avoid such technical errors.

  5. NCAP projection displays

    NASA Astrophysics Data System (ADS)

    Havens, John R.; Ishioka, J.; Jones, Philip J.; Lau, Aldrich; Tomita, Akira; Asano, A.; Konuma, Nobuhiro; Sato, Kazuhiko; Takemoto, Iwao

    1997-05-01

    Projectors based on polymer-eNCAPsulated liquid crystals can provide bright displays suitable for use in conference rooms with normal lighting. Contrast is generated by light scattering among the droplets, rather than by light absorption with crossed polarizers. We have demonstrated a full-color, compact projector showing 1200 ANSI lumens with 200 watts of lamp power - a light efficiency of 6 lumens/watt. This projector is based on low-voltage NCAP material, highly reflective CMOS die, and matched illumination and projection optics. We will review each of these areas and discuss the integrated system performance.

  6. Multi-view line-scan inspection system using planar mirrors

    NASA Astrophysics Data System (ADS)

    Holländer, Bransilav; Štolc, Svorad; Huber-Mörk, Reinhold

    2013-04-01

    We demonstrate the design, setup, and results for a line-scan stereo image acquisition system using a single area- scan sensor, single lens and two planar mirrors attached to the acquisition device. The acquired object is moving relatively to the acquisition device and is observed under three different angles at the same time. Depending on the specific configuration it is possible to observe the object under a straight view (i.e., looking along the optical axis) and two skewed views. The relative motion between an object and the acquisition device automatically fulfills the epipolar constraint in stereo vision. The choice of lines to be extracted from the CMOS sensor depends on various factors such as the number, position and size of the mirrors, the optical and sensor configuration, or other application-specific parameters like desired depth resolution. The acquisition setup presented in this paper is suitable for the inspection of a printed matter, small parts or security features such as optical variable devices and holograms. The image processing pipeline applied to the extracted sensor lines is explained in detail. The effective depth resolution achieved by the presented system, assembled from only off-the-shelf components, is approximately equal to the spatial resolution and can be smoothly controlled by changing positions and angles of the mirrors. Actual performance of the device is demonstrated on a 3D-printed ground-truth object as well as two real-world examples: (i) the EUR-100 banknote - a high-quality printed matter and (ii) the hologram at the EUR-50 banknote { an optical variable device.

  7. Electro-optical tunable birefringent filter

    DOEpatents

    Levinton, Fred M [Princeton, NJ

    2012-01-31

    An electrically tunable Lyot type filter is a Lyot that include one or more filter elements. Each filter element may have a planar, solid crystal comprised of a material that exhibits birefringence and is electro-optically active. Transparent electrodes may be coated on each face of the crystal. An input linear light polarizer may be located on one side of the crystal and oriented at 45 degrees to the optical axis of the birefringent crystal. An output linear light polarizer may be located on the other side of the crystal and oriented at -45 degrees with respect to the optical axis of the birefringent crystal. When an electric voltage is applied between the electrodes, the retardation of the crystal changes and so does the spectral transmission of the optical filter.

  8. Optical keyboard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veligdan, James T.; Feichtner, John D.; Phillips, Thomas E.

    2001-01-01

    An optical keyboard includes an optical panel having optical waveguides stacked together. First ends of the waveguides define an inlet face, and opposite ends thereof define a screen. A projector transmits a light beam outbound through the waveguides for display on the screen as a keyboard image. A light sensor is optically aligned with the inlet face for sensing an inbound light beam channeled through the waveguides from the screen upon covering one key of the keyboard image.

  9. High Speed All-Optical Data Distribution Network

    NASA Astrophysics Data System (ADS)

    Braun, Steve; Hodara, Henri

    2017-11-01

    This article describes the performance and capabilities of an all-optical network featuring low latency, high speed file transfer between serially connected optical nodes. A basic component of the network is a network interface card (NIC) implemented through a unique planar lightwave circuit (PLC) that performs add/drop data and optical signal amplification. The network uses a linear bus topology with nodes in a "T" configuration, as described in the text. The signal is sent optically (hence, no latency) to all nodes via wavelength division multiplexing (WDM), with each node receiver tuned to wavelength of choice via an optical de-multiplexer. Each "T" node routes a portion of the signal to/from the bus through optical couplers, embedded in the network interface card (NIC), to each of the 1 through n computers.

  10. Oil defect detection of electrowetting display

    NASA Astrophysics Data System (ADS)

    Chiang, Hou-Chi; Tsai, Yu-Hsiang; Yan, Yung-Jhe; Huang, Ting-Wei; Mang, Ou-Yang

    2015-08-01

    In recent years, transparent display is an emerging topic in display technologies. Apply in many fields just like mobile device, shopping or advertising window, and etc. Electrowetting Display (EWD) is one kind of potential transparent display technology advantages of high transmittance, fast response time, high contrast and rich color with pigment based oil system. In mass production process of Electrowetting Display, oil defects should be found by Automated Optical Inspection (AOI) detection system. It is useful in determination of panel defects for quality control. According to the research of our group, we proposed a mechanism of AOI detection system detecting the different kinds of oil defects. This mechanism can detect different kinds of oil defect caused by oil overflow or material deteriorated after oil coating or driving. We had experiment our mechanism with a 6-inch Electrowetting Display panel from ITRI, using an Epson V750 scanner with 1200 dpi resolution. Two AOI algorithms were developed, which were high speed method and high precision method. In high precision method, oil jumping or non-recovered can be detected successfully. This mechanism of AOI detection system can be used to evaluate the oil uniformity in EWD panel process. In the future, our AOI detection system can be used in quality control of panel manufacturing for mass production.

  11. Multifocal planes head-mounted displays.

    PubMed

    Rolland, J P; Krueger, M W; Goon, A

    2000-07-01

    Stereoscopic head-mounted displays (HMD's) provide an effective capability to create dynamic virtual environments. For a user of such environments, virtual objects would be displayed ideally at the appropriate distances, and natural concordant accommodation and convergence would be provided. Under such image display conditions, the user perceives these objects as if they were objects in a real environment. Current HMD technology requires convergent eye movements. However, it is currently limited by fixed visual accommodation, which is inconsistent with real-world vision. A prototype multiplanar volumetric projection display based on a stack of laminated planes was built for medical visualization as discussed in a paper presented at a 1999 Advanced Research Projects Agency workshop (Sullivan, Advanced Research Projects Agency, Arlington, Va., 1999). We show how such technology can be engineered to create a set of virtual planes appropriately configured in visual space to suppress conflicts of convergence and accommodation in HMD's. Although some scanning mechanism could be employed to create a set of desirable planes from a two-dimensional conventional display, multiplanar technology accomplishes such function with no moving parts. Based on optical principles and human vision, we present a comprehensive investigation of the engineering specification of multiplanar technology for integration in HMD's. Using selected human visual acuity and stereoacuity criteria, we show that the display requires at most 27 equally spaced planes, which is within the capability of current research and development display devices, located within a maximal 26-mm-wide stack. We further show that the necessary in-plane resolution is of the order of 5 microm.

  12. Ultrabright Head Mounted Displays Using LED-Illuminated LCOS

    DTIC Science & Technology

    2006-01-01

    light-piping systems using surface features," in Nonimaging Optics and Efficient Illumination Systems II; Roland Winston , R. John Koshel, eds...Jay Morreale, ed. pp. 1078-1080 (Society for Information Display, San Jose, CA, 2002). 4 Roland Winston , Juan C. Mifiano, and Pablo Benitez, Nonimaging ...ferroelectric liquid-crystal-on-silicon microdisplay and a red-green-blue LED. With an 8x viewing optic giving a 35 degree diagonal field of view, the

  13. Synthesis of square-planar aluminum(III) complexes.

    PubMed

    Thompson, Emily J; Myers, Thomas W; Berben, Louise A

    2014-12-15

    The synthesis of two four-coordinate and square planar (SP) complexes of aluminum(III) is presented. Reaction of a phenyl-substituted bis(imino)pyridine ligand that is reduced by two electrons, Na2((Ph)I2P(2-)), with AlCl3 afforded five-coordinate [((Ph)I2P(2-))Al(THF)Cl] (1). Square-planar [((Ph)I2P(2-))AlCl] (2) was obtained by performing the same reaction in diethyl ether followed by lyphilization of 2 from benzene. The four-coordinate geometry index for 2, τ4, is 0.22, where 0 would be a perfectly square-planar molecule. The analogous aluminum hydride complex, [((Ph)I2P(2-))AlH] (3), is also square-planar, and was characterized crystallographically and has τ4=0.13. Both 2 and 3 are Lewis acidic and bind 2,6-lutidine. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Stress measurements of planar dielectric elastomer actuators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osmani, Bekim; Aeby, Elise A.; Müller, Bert

    Dielectric elastomer actuator (DEA) micro- and nano-structures are referred to artificial muscles because of their specific continuous power and adequate time response. The bending measurement of an asymmetric, planar DEA is described. The asymmetric cantilevers consist of 1 or 5 μm-thin DEAs deposited on polyethylene naphthalate (PEN) substrates 16, 25, 38, or 50 μm thick. The application of a voltage to the DEA electrodes generates an electrostatic pressure in the sandwiched silicone elastomer layer, which causes the underlying PEN substrate to bend. Optical beam deflection enables the detection of the bending angle vs. applied voltage. Bending radii as large asmore » 850 m were reproducibly detected. DEA tests with electric fields of up to 80 V/μm showed limitations in electrode’s conductivity and structure failures. The actuation measurement is essential for the quantitative characterization of nanometer-thin, low-voltage, single- and multi-layer DEAs, as foreseen for artificial sphincters to efficiently treat severe urinary and fecal incontinence.« less

  15. Measuring the bending of asymmetric planar EAP structures

    NASA Astrophysics Data System (ADS)

    Weiss, Florian M.; Zhao, Xue; Thalmann, Peter; Deyhle, Hans; Urwyler, Prabitha; Kovacs, Gabor; Müller, Bert

    2013-04-01

    The geometric characterization of low-voltage dielectric electro-active polymer (EAP) structures, comprised of nanometer thickness but areas of square centimeters, for applications such as artificial sphincters requires methods with nanometer precision. Direct optical detection is usually restricted to sub-micrometer resolution because of the wavelength of the light applied. Therefore, we propose to take advantage of the cantilever bending system with optical readout revealing a sub-micrometer resolution at the deflection of the free end. It is demonstrated that this approach allows us to detect bending of rather conventional planar asymmetric, dielectric EAP-structures applying voltages well below 10 V. For this purpose, we built 100 μm-thin silicone films between 50 nm-thin silver layers on a 25 μm-thin polyetheretherketone (PEEK) substrate. The increase of the applied voltage in steps of 50 V until 1 kV resulted in a cantilever bending that exhibits only in restricted ranges the expected square dependence. The mean laser beam displacement on the detector corresponded to 6 nm per volt. The apparatus will therefore become a powerful mean to analyze and thereby improve low-voltage dielectric EAP-structures to realize nanometer-thin layers for stack actuators to be incorporated into artificial sphincter systems for treating severe urinary and fecal incontinence.

  16. Cascaded all-optical operations in a hybrid integrated 80-Gb/s logic circuit.

    PubMed

    LeGrange, J D; Dinu, M; Sochor, T; Bollond, P; Kasper, A; Cabot, S; Johnson, G S; Kang, I; Grant, A; Kay, J; Jaques, J

    2014-06-02

    We demonstrate logic functionalities in a high-speed all-optical logic circuit based on differential Mach-Zehnder interferometers with semiconductor optical amplifiers as the nonlinear optical elements. The circuit, implemented by hybrid integration of the semiconductor optical amplifiers on a planar lightwave circuit platform fabricated in silica glass, can be flexibly configured to realize a variety of Boolean logic gates. We present both simulations and experimental demonstrations of cascaded all-optical operations for 80-Gb/s on-off keyed data.

  17. High-yield, ultrafast, surface plasmon-enhanced, Au nanorod optical field electron emitter arrays.

    PubMed

    Hobbs, Richard G; Yang, Yujia; Fallahi, Arya; Keathley, Philip D; De Leo, Eva; Kärtner, Franz X; Graves, William S; Berggren, Karl K

    2014-11-25

    Here we demonstrate the design, fabrication, and characterization of ultrafast, surface-plasmon enhanced Au nanorod optical field emitter arrays. We present a quantitative study of electron emission from Au nanorod arrays fabricated by high-resolution electron-beam lithography and excited by 35 fs pulses of 800 nm light. We present accurate models for both the optical field enhancement of Au nanorods within high-density arrays, and electron emission from those nanorods. We have also studied the effects of surface plasmon damping induced by metallic interface layers at the substrate/nanorod interface on near-field enhancement and electron emission. We have identified the peak optical field at which the electron emission mechanism transitions from a 3-photon absorption mechanism to strong-field tunneling emission. Moreover, we have investigated the effects of nanorod array density on nanorod charge yield, including measurement of space-charge effects. The Au nanorod photocathodes presented in this work display 100-1000 times higher conversion efficiency relative to previously reported UV triggered emission from planar Au photocathodes. Consequently, the Au nanorod arrays triggered by ultrafast pulses of 800 nm light in this work may outperform equivalent UV-triggered Au photocathodes, while also offering nanostructuring of the electron pulse produced from such a cathode, which is of interest for X-ray free-electron laser (XFEL) development where nanostructured electron pulses may facilitate more efficient and brighter XFEL radiation.

  18. FIBER AND INTEGRATED OPTICS: Reflection of electromagnetic radiation from a multilayer waveguide structure with an absorbing metal layer

    NASA Astrophysics Data System (ADS)

    Chernushich, A. P.; Shkerdin, G. N.; Shukin, Yu M.

    1992-10-01

    The angular distribution of the reflection coefficient of an asymmetric multilayer planar structure containing a thin metal film and a planar optical waveguide has been found by accurate numerical calculations. There are resonances in the reflection coefficient associated with hybrid modes of the structure. The cases of strong and weak coupling of the surface polariton modes with the waveguide modes are discussed. The results of the numerical analysis agree with solutions of Maxwell's equations for a multilayer planar structure.

  19. Piezo Voltage Controlled Planar Hall Effect Devices

    PubMed Central

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K. W.; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-01-01

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials. PMID:27329068

  20. Piezo Voltage Controlled Planar Hall Effect Devices.

    PubMed

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K W; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-22

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  1. Multiple Beam Optical Processing

    DTIC Science & Technology

    1989-12-01

    the interference of multiple reflections between the two mirrors. The most promising optical bistable devices, at present, are very thin, solid Fabry...MEDIUM b) R - Ir ,, PMASE SHIFTr Figure 1.3 (a) Nonlinear Fabry-Perot etalon consisting of solid material with parallel surfaces with coatings of...instead of the solid planar structure [2.10]. Voids between columns cause an Inhomogeneous broadening and an exponential extension (Urbach tail) of the

  2. A head-mounted compressive three-dimensional display system with polarization-dependent focus switching

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Kun; Moon, Seokil; Lee, Byounghyo; Jeong, Youngmo; Lee, Byoungho

    2016-10-01

    A head-mounted compressive three-dimensional (3D) display system is proposed by combining polarization beam splitter (PBS), fast switching polarization rotator and micro display with high pixel density. According to the polarization state of the image controlled by polarization rotator, optical path of image in the PBS can be divided into transmitted and reflected components. Since optical paths of each image are spatially separated, it is possible to independently focus both images at different depth positions. Transmitted p-polarized and reflected s-polarized images can be focused by convex lens and mirror, respectively. When the focal lengths of the convex lens and mirror are properly determined, two image planes can be located in intended positions. The geometrical relationship is easily modulated by replacement of the components. The fast switching of polarization realizes the real-time operation of multi-focal image planes with a single display panel. Since it is possible to conserve the device characteristic of single panel, the high image quality, reliability and uniformity can be retained. For generating 3D images, layer images for compressive light field display between two image planes are calculated. Since the display panel with high pixel density is adopted, high quality 3D images are reconstructed. In addition, image degradation by diffraction between physically stacked display panels can be mitigated. Simple optical configuration of the proposed system is implemented and the feasibility of the proposed method is verified through experiments.

  3. Ultra-high contrast retinal display system for single photoreceptor psychophysics

    PubMed Central

    Domdei, Niklas; Domdei, Lennart; Reiniger, Jenny L.; Linden, Michael; Holz, Frank G.; Roorda, Austin; Harmening, Wolf M.

    2017-01-01

    Due to the enormous dynamic range of human photoreceptors in response to light, studying their visual function in the intact retina challenges the stimulation hardware, specifically with regard to the displayable luminance contrast. The adaptive optics scanning laser ophthalmoscope (AOSLO) is an optical platform that focuses light to extremely small retinal extents, approaching the size of single photoreceptor cells. However, the current light modulation techniques produce spurious visible backgrounds which fundamentally limit experimental options. To remove unwanted background light and to improve contrast for high dynamic range visual stimulation in an AOSLO, we cascaded two commercial fiber-coupled acousto-optic modulators (AOMs) and measured their combined optical contrast. By compensating for zero-point differences in the individual AOMs, we demonstrate a multiplicative extinction ratio in the cascade that was in accordance with the extinction ratios of both single AOMs. When latency differences in the AOM response functions were individually corrected, single switch events as short as 50 ns with radiant power contrasts up to 1:1010 were achieved. This is the highest visual contrast reported for any display system so far. We show psychophysically that this contrast ratio is sufficient to stimulate single foveal photoreceptor cells with small and bright enough visible targets that do not contain a detectable background. Background-free stimulation will enable photoreceptor testing with custom adaptation lights. Furthermore, a larger dynamic range in displayable light levels can drive photoreceptor responses in cones as well as in rods. PMID:29359094

  4. Advanced freeform optics enabling ultra-compact VR headsets

    NASA Astrophysics Data System (ADS)

    Benitez, Pablo; Miñano, Juan C.; Zamora, Pablo; Grabovičkić, Dejan; Buljan, Marina; Narasimhan, Bharathwaj; Gorospe, Jorge; López, Jesús; Nikolić, Milena; Sánchez, Eduardo; Lastres, Carmen; Mohedano, Ruben

    2017-06-01

    We present novel advanced optical designs with a dramatically smaller display to eye distance, excellent image quality and a large field of view (FOV). This enables headsets to be much more compact, typically occupying about a fourth of the volume of a conventional headset with the same FOV. The design strategy of these optics is based on a multichannel approach, which reduces the distance from the eye to the display and the display size itself. Unlike conventional microlens arrays, which are also multichannel devices, our designs use freeform optical surfaces to produce excellent imaging quality in the entire field of view, even when operating at very oblique incidences. We present two families of compact solutions that use different types of lenslets: (1) refractive designs, whose lenslets are composed typically of two refractive surfaces each; and (2) light-folding designs that use prism-like three-surface lenslets, in which rays undergo refraction, reflection, total internal reflection and refraction again. The number of lenslets is not fixed, so different configurations may arise, adaptable for flat or curved displays with different aspect ratios. In the refractive designs the distance between the optics and the display decreases with the number of lenslets, allowing for displaying a light-field when the lenslet becomes significantly small than the eye pupil. On the other hand, the correlation between number of lenslets and the optics to display distance is broken in light-folding designs, since their geometry permits achieving a very short display to eye distance with even a small number of lenslets.

  5. Review and analysis of avionic helmet-mounted displays

    NASA Astrophysics Data System (ADS)

    Li, Hua; Zhang, Xin; Shi, Guangwei; Qu, Hemeng; Wu, Yanxiong; Zhang, Jianping

    2013-11-01

    With the development of new concepts and principles over the past century, helmet-mounted displays (HMDs) have been widely applied. This paper presents a review of avionic HMDs and shows some areas of active and intensive research. This review is focused on the optical design aspects and is divided into three sections to explore new optical design methods, which include an off-axis design, design with freeform optical surface, and design with holographic optical waveguide technology. Building on the fundamentals of optical design and engineering, the principles section primarily expounds on the five optical system parameters, which include weight, field of view, modulation transfer function, exit pupil size, and eye relief. We summarized the previous design works using new components to achieve compact and lightweight HMDs. Moreover, the paper presents a partial summary of the more notable experimental, prototype, fielded, and future HMD fixed-wing and rotary-wing programs.

  6. Temporal waveguides for optical pulses

    DOE PAGES

    Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.

    2016-05-12

    Here we discuss, temporal total internal reflection (TIR), in analogy to the conventional TIR of an optical beam at a dielectric interface, is the total reflection of an optical pulse inside a dispersive medium at a temporal boundary across which the refractive index changes. A pair of such boundaries separated in time acts as the temporal analog of planar dielectric waveguides. We study the propagation of optical pulses inside such temporal waveguides, both analytically and numerically, and show that the waveguide supports a finite number of temporal modes. We also discuss how a single-mode temporal waveguide can be created inmore » practice. In contrast with the spatial case, the confinement can occur even when the central region has a lower refractive index.« less

  7. Planar Imaging of Hydroxyl in a High Temperature, High Pressure Combustion Facility

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Locke, Randy J.; Anderson, Robert C.; Ockunzzi, Kelly A.

    1995-01-01

    An optically accessible flame tube combustor is described which has high temperature, pressure, and air flow capabilities. The windows in the combustor measure 3.8 cm axially by 5.1 cm radially, providing 67 percent optical access to the square cross section flow chamber. The instrumentation allows one to examine combusting flows and combustor subcomponents, such as fuel injectors and air swirlers. These internal combustor subcomponents have previously been studied only with physical probes, such as temperature and species rakes. Planar laser-induced fluorescence (PLIF) images of OH have been obtained from this lean burning combustor burning Jet-A fuel. These images were obtained using various laser excitation lines of the OH A yields X (1,0) band for two fuel injector configurations with pressures ranging from 1013 kPa (10 atm) to 1419 kPa (14 atm), and equivalence ratios from 0.41 to 0. 59. Non-uniformities in the combusting flow, attributed to differences in fuel injector configuration, are revealed by these images.

  8. Dielectric Covered Planar Antennas

    NASA Technical Reports Server (NTRS)

    Llombart Juan, Nuria (Inventor); Lee, Choonsup (Inventor); Chattopadhyay, Goutam (Inventor); Gill, John J. (Inventor); Skalare, Anders J. (Inventor); Siegel, Peter H. (Inventor)

    2014-01-01

    An antenna element suitable for integrated arrays at terahertz frequencies is disclosed. The antenna element comprises an extended spherical (e.g. hemispherical) semiconductor lens, e.g. silicon, antenna fed by a leaky wave waveguide feed. The extended spherical lens comprises a substantially spherical lens adjacent a substantially planar lens extension. A couple of TE/TM leaky wave modes are excited in a resonant cavity formed between a ground plane and the substantially planar lens extension by a waveguide block coupled to the ground plane. Due to these modes, the primary feed radiates inside the lens with a directive pattern that illuminates a small sector of the lens. The antenna structure is compatible with known semiconductor fabrication technology and enables production of large format imaging arrays.

  9. Planar optical waveguide based sandwich assay sensors and processes for the detection of biological targets including protein markers, pathogens and cellular debris

    DOEpatents

    Martinez, Jennifer S [Santa Fe, NM; Swanson, Basil I [Los Alamos, NM; Grace, Karen M [Los Alamos, NM; Grace, Wynne K [Los Alamos, NM; Shreve, Andrew P [Santa Fe, NM

    2009-06-02

    An assay element is described including recognition ligands bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of a biological target is described including injecting a biological target-containing sample into a sensor cell including the assay element, with the recognition ligands adapted for binding to selected biological targets, maintaining the sample within the sensor cell for time sufficient for binding to occur between selected biological targets within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting the fluorescent-label in any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.

  10. Design of integrated eye tracker-display device for head mounted systems

    NASA Astrophysics Data System (ADS)

    David, Y.; Apter, B.; Thirer, N.; Baal-Zedaka, I.; Efron, U.

    2009-08-01

    We propose an Eye Tracker/Display system, based on a novel, dual function device termed ETD, which allows sharing the optical paths of the Eye tracker and the display and on-chip processing. The proposed ETD design is based on a CMOS chip combining a Liquid-Crystal-on-Silicon (LCoS) micro-display technology with near infrared (NIR) Active Pixel Sensor imager. The ET operation allows capturing the Near IR (NIR) light, back-reflected from the eye's retina. The retinal image is then used for the detection of the current direction of eye's gaze. The design of the eye tracking imager is based on the "deep p-well" pixel technology, providing low crosstalk while shielding the active pixel circuitry, which serves the imaging and the display drivers, from the photo charges generated in the substrate. The use of the ETD in the HMD Design enables a very compact design suitable for Smart Goggle applications. A preliminary optical, electronic and digital design of the goggle and its associated ETD chip and digital control, are presented.

  11. Chaotic non-planar vibrations of the thin elastica. Part I: Experimental observation of planar instability

    NASA Astrophysics Data System (ADS)

    Cusumano, J. P.; Moon, F. C.

    1995-01-01

    In this two-part paper, the results of an investigation into the non-linear dynamics of a flexible cantilevered rod (the elastica) with a thin rectangular cross-section are presented. An experimental examination of the dynamics of the elastica over a broad parameter range forms the core of Part I. In Part II, the experimental work is related to a theoretical study of the mechanics of the elastica, and the study of a two-degree-of-freedom model obtained by modal projection. The experimental system used in this investigation is a rod with clamped-free boundary conditions, forced by sinusoidally displacing the clamped end. Planar periodic motions of the driven elastica are shown to lose stability at distinct resonant wedges, and the resulting motions are shown in general to be non-planar, chaotic, bending-torsion oscillations. Non-planar motions in all resonances exhibit energy cascading and dynamic two-well phenomena, and a family of asymmetric, bending-torsion non-linear modes is discovered. Correlation dimension calculations are used to estimate the number of active degrees of freedom in the system.

  12. Nano-Filament Field Emission Cathode Development Final Report CRADA No. TSB-0731-93

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernhardt, Tony; Fahlen, Ted

    At the time the CRADA was established, Silicon Video Corporation, of Cupertino, CA was a one-year-old rapidly growing start-up company. SVC was developing flat panel displays (FPDs) to replace Cathode Ray Terminals (CRTs) for personal computers, work stations and televisions. They planned to base their products on low cost and energy efficient field emission technology. It was universally recognized that the display was both the dominant cost item and differentiating feature of many products such as laptop computers and hand-held electronics and that control of the display technology through U.S. sources was essential to success in these markets. The purposemore » of this CRADA project was to determine if electrochemical planarization would be a viable, inexpensive alternative to current optical polishing techniques for planarizing the surface of a ceramic backplate of a thin film display.« less

  13. Automatic optical inspection of regular grid patterns with an inspection camera used below the Shannon-Nyquist criterion for optical resolution

    NASA Astrophysics Data System (ADS)

    Ferreira, Flávio P.; Forte, Paulo M. F.; Felgueiras, Paulo E. R.; Bret, Boris P. J.; Belsley, Michael S.; Nunes-Pereira, Eduardo J.

    2017-02-01

    An Automatic Optical Inspection (AOI) system for optical inspection of imaging devices used in automotive industry using an inspecting optics of lower spatial resolution than the device under inspection is described. This system is robust and with no moving parts. The cycle time is small. Its main advantage is that it is capable of detecting and quantifying defects in regular patterns, working below the Shannon-Nyquist criterion for optical resolution, using a single low resolution image sensor. It is easily scalable, which is an important advantage in industrial applications, since the same inspecting sensor can be reused for increasingly higher spatial resolutions of the devices to be inspected. The optical inspection is implemented with a notch multi-band Fourier filter, making the procedure especially fitted for regular patterns, like the ones that can be produced in image displays and Head Up Displays (HUDs). The regular patterns are used in production line only, for inspection purposes. For image displays, functional defects are detected at the level of a sub-image display grid element unit. Functional defects are the ones impairing the function of the display, and are preferred in AOI to the direct geometric imaging, since those are the ones directly related with the end-user experience. The shift in emphasis from geometric imaging to functional imaging is critical, since it is this that allows quantitative inspection, below Shannon-Nyquist. For HUDs, the functional detect detection addresses defects resulting from the combined effect of the image display and the image forming optics.

  14. Displays, memories, and signal processing: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Articles on electronics systems and techniques were presented. The first section is on displays and other electro-optical systems; the second section is devoted to signal processing. The third section presented several new memory devices for digital equipment, including articles on holographic memories. The latest patent information available is also given.

  15. Wide Angle, Color, Holographic Infinity Optics Display. Final Report.

    ERIC Educational Resources Information Center

    Magarinos, Jose R.; Coleman, Daniel J.

    The project described demonstrated not only the feasibility of producing a holographic compound spherical beamspliter mirror with full color response, but the performance and color capabilities of such a beamsplitter when incorporated into a Pancake Window Display system as a replacement for the classical glass spherical beamsplitter. This…

  16. Recent patents on electrophoretic displays and materials.

    PubMed

    Christophersen, Marc; Phlips, Bernard F

    2010-11-01

    Electrophoretic displays (EPDs) have made their way into consumer products. EPDs enable displays that offer the look and form of a printed page, often called "electronic paper". We will review recent apparatus and method patents for EPD devices and their fabrication. A brief introduction into the basic display operation and history of EPDs is given, while pointing out the technological challenges and difficulties for inventors. Recently, the majority of scientific publications and patenting activity has been directed to micro-segmented EPDs. These devices exhibit high optical reflectance and contrast, wide viewing angle, and high image resolution. Micro-segmented EPDs can also be integrated with flexible transistors technologies into flexible displays. Typical particles size ranges from 200 nm to 2 micrometer. Currently one very active area of patenting is the development of full-color EPDs. We summarize the recent patenting activity for EPDs and provide comments on perceiving factors driving intellectual property protection for EPD technologies.

  17. The frequency-dependent directivity of a planar fabry-perot polymer film ultrasound sensor.

    PubMed

    Cox, Benjamin T; Beard, Paul C

    2007-02-01

    A model of the frequency-dependent directivity of a planar, optically-addressed, Fabry-Perot (FP), polymer film ultrasound sensor is described and validated against experimental directivity measurements made over a frequency range of 1 to 15 MHz and angles from normal incidence to 80 degrees. The model may be used, for example, as a predictive tool to improve sensor design, or to provide a noise-free response function that could be deconvolved from sound-field measurements in order to improve accuracy in high-frequency metrology and imaging applications. The specific question of whether effective element sizes as small as the optical-diffraction limit can be achieved was investigated. For a polymer film sensor with a FP cavity of thickness d, the minimum effective element radius was found to be about 0.9 d, and that an illumination spot radius of less than d/4 is required to achieve it.

  18. Integrated-optical directional coupler biosensor

    NASA Astrophysics Data System (ADS)

    Luff, B. J.; Harris, R. D.; Wilkinson, J. S.; Wilson, R.; Schiffrin, D. J.

    1996-04-01

    We present measurements of biomolecular binding reactions, using a new type of integrated-optical biosensor based on a planar directional coupler structure. The device is fabricated by Ag+ - Na+ ion exchange in glass, and definition of the sensing region is achieved by use of transparent fluoropolymer isolation layers formed by thermal evaporation. The suitability of the sensor for application to the detection of environmental pollutants is considered.

  19. Helicopter Electro-Optical System Display Requirements. 1. The Effects of CRT Display Size, System Gamma Function, and Terrain Type on Pilots’ Required Display Luminance

    DTIC Science & Technology

    1980-03-01

    full-color terrain model designed to 6 ,. .. ., CINE MA ICiINE h MRO FILM To’ N U Ix v M C CTMIRROR MONITOR FRESNEL REAR- PROJECTION SCREEN Z...ments of NOE flight, recorded on videotape. One segment was filmed at the Hunter-Liggett, Calif., ntilitary reservation, and the other segment was... filmed near Fort Rucker, Ala. The tapes were viewed by each participant pilot on the 13-cm and the 26-cm CRT displays. They could attenuate the display

  20. Interactive display system having a digital micromirror imaging device

    DOEpatents

    Veligdan, James T.; DeSanto, Leonard; Kaull, Lisa; Brewster, Calvin

    2006-04-11

    A display system includes a waveguide optical panel having an inlet face and an opposite outlet face. A projector cooperates with a digital imaging device, e.g. a digital micromirror imaging device, for projecting an image through the panel for display on the outlet face. The imaging device includes an array of mirrors tiltable between opposite display and divert positions. The display positions reflect an image light beam from the projector through the panel for display on the outlet face. The divert positions divert the image light beam away from the panel, and are additionally used for reflecting a probe light beam through the panel toward the outlet face. Covering a spot on the panel, e.g. with a finger, reflects the probe light beam back through the panel toward the inlet face for detection thereat and providing interactive capability.

  1. Viewpoint Dependent Imaging: An Interactive Stereoscopic Display

    NASA Astrophysics Data System (ADS)

    Fisher, Scott

    1983-04-01

    Design and implementation of a viewpoint Dependent imaging system is described. The resultant display is an interactive, lifesize, stereoscopic image. that becomes a window into a three dimensional visual environment. As the user physically changes his viewpoint of the represented data in relation to the display surface, the image is continuously updated. The changing viewpoints are retrieved from a comprehensive, stereoscopic image array stored on computer controlled, optical videodisc and fluidly presented. in coordination with the viewer's, movements as detected by a body-tracking device. This imaging system is an attempt to more closely represent an observers interactive perceptual experience of the visual world by presenting sensory information cues not offered by traditional media technologies: binocular parallax, motion parallax, and motion perspective. Unlike holographic imaging, this display requires, relatively low bandwidth.

  2. High Brightness and Color Contrast Displays Constructed from Nematic Droplet/Polymer Films Incorporating Pleochroic Dyes

    NASA Astrophysics Data System (ADS)

    Drzaic, Paul S.; Wiley, Richard C.; McCoy, James A.

    1989-07-01

    A new class of high-brightness, high color contrast reflective-mode displays can be constructed from nematic droplet/polymer (NCAP) films. In these films, a high order parameter pleochroic dye can be dissolved in the nematic, leading to a film with both controllable absorbance and scattering. The physics behind the operation of these films is discussed. The intrinsic optical order parameter of a guest-host mixture is related to the performance of the NCAP film. It is shown that the scattering effects inherent in these films can be used to amplify the effects of the controllable dye absorbance, leading to excellent optical performance for a reflective-mode display. A typical construction of a display cell is given, and examples of applications are discussed. Touch switches may easily be fabricated within the display, so that an integrated control/display module can be constructed.

  3. Defect Analysis of Roll-to-Roll SAIL Manufactured Flexible Display Backplanes

    DTIC Science & Technology

    2011-01-01

    tenting defect through the SAIL process Figure 5: Flexible backplane electrical tester Figure 6: R2R optical inspection system Figure 7: TEM of TFT ...Analysis of Roll-to-Roll SAIL Manufactured Flexible Display...Marcia Almanza-Workman, Robert A. Garcia, HanJun Kim, Ohseung Kwon, Frank Jeffrey HP Laboratories HPL-2011-35 SAIL, flexible displays, roll-to-roll HP

  4. Design of the first optical system for real-time tomographic holography (RTTH)

    NASA Astrophysics Data System (ADS)

    Galeotti, John M.; Siegel, Mel; Rallison, Richard D.; Stetten, George

    2008-08-01

    The design of the first Real-Time-Tomographic-Holography (RTTH) optical system for augmented-reality applications is presented. RTTH places a viewpoint-independent real-time (RT) virtual image (VI) of an object into its actual location, enabling natural hand-eye coordination to guide invasive procedures, without requiring tracking or a head-mounted device. The VI is viewed through a narrow-band Holographic Optical Element (HOE) with built-in power that generates the largest possible near-field, in-situ VI from a small display chip without noticeable parallax error or obscuring direct view of the physical world. Rigidly fixed upon a medical-ultrasound probe, RTTH could show the scan in its actual location inside the patient, because the VI would move with the probe. We designed the image source along with the system-optics, allowing us to ignore both planer geometric distortions and field curvature, respectively compensated by using RT pre-processing software and attaching a custom-surfaced fiber-optic-faceplate (FOFP) to our image source. Focus in our fast, non-axial system was achieved by placing correcting lenses near the FOFP and custom-optically-fabricating our volume-phase HOE using a recording beam that was specially shaped by extra lenses. By simultaneously simulating and optimizing the system's playback performance across variations in both the total playback and HOE-recording optical systems, we derived and built a design that projects a 104x112 mm planar VI 1 m from the HOE using a laser-illuminated 19x16 mm LCD+FOFP image-source. The VI appeared fixed in space and well focused. Viewpoint-induced location errors were <3 mm, and unexpected first-order astigmatism produced 3 cm (3% of 1 m) ambiguity in depth, typically unnoticed by human observers.

  5. Analysis and design of planar waveguide elements for use in filters and sensors

    NASA Astrophysics Data System (ADS)

    Chen, Guangzhou

    In this dissertation we present both theoretical analysis and practical design considerations for planar optical waveguide devices. The analysis takes into account both transverse dimensions of the waveguides and is based on supermode theory combined with the resonance method for the determination of the propagation constants and field profiles of the supermodes. An improved accuracy has been achieved by including corrections due to the fields in the corner regions of the waveguides using perturbation theory. We analyze in detail two particular devices, an optical filter/combiner and an optical sensor. An optical wavelength filter/combiner is a common element in an integrated optical circuit. A new "bend free" filter/combiner is proposed and analyzed. The new wavelength filter consists of only straight parallel channels, which considerably simplify both the analysis and fabrication of the device. We show in detail how the operation of the device depends upon each of the design parameters. The intrinsic power loss in the proposed filter/combiner is minimized. The optical sensor is another important device and the sensitivity of measurement is an important issue in its design. Two operating mechanisms used in prior optical sensors are evanescent wave sensing or surface plasmon excitation. In this dissertation, we present a sensor with a directional coupler structure in which a measurand to be detected is interfaced with one side of the cladding. The analysis shows that it is possible to make a high resolution device by adjusting the design parameters. The dimensions and materials used in an optimized design are presented.

  6. Flatland Photonics: Circumventing Diffraction with Planar Plasmonic Architectures

    NASA Astrophysics Data System (ADS)

    Dionne, Jennifer Anne

    On subwavelength scales, photon-matter interactions are limited by diffraction. The diffraction limit restricts the size of optical devices and the resolution of conventional microscopes to wavelength-scale dimensions, severely hampering our ability to control and probe subwavelength-scale optical phenomena. Circumventing diffraction is now a principle focus of integrated nanophotonics. Surface plasmons provide a particularly promising approach to sub-diffraction-limited photonics. Surface plasmons are hybrid electron-photon modes confined to the interface between conductors and transparent materials. Combining the high localization of electronic waves with the propagation properties of optical waves, plasmons can achieve extremely small mode wavelengths and large local electromagnetic field intensities. Through their unique dispersion, surface plasmons provide access to an enormous phase space of refractive indices and propagation constants that can be readily tuned with material or geometry. In this thesis, we explore both the theory and applications of dispersion in planar plasmonic architectures. Particular attention is given to the modes of metallic core and plasmon slot waveguides, which can span positive, near-zero, and even negative indices. We demonstrate how such basic plasmonic geometries can be used to develop a suite of passive and active plasmonic components, including subwavelength waveguides, color filters, negative index metamaterials, and optical MOS field effect modulators. Positive index modes are probed by near- and far-field techniques, revealing plasmon wavelengths as small as one-tenth of the excitation wavelength. Negative index modes are characterized through direct visualization of negative refraction. By fabricating prisms comprised of gold, silicon nitride, and silver multilayers, we achieve the first experimental demonstration of a negative index material at visible frequencies, with potential applications for sub

  7. 4 channel × 10 Gb/s bidirectional optical subassembly using silicon optical bench with precise passive optical alignment.

    PubMed

    Kang, Eun Kyu; Lee, Yong Woo; Ravindran, Sooraj; Lee, Jun Ki; Choi, Hee Ju; Ju, Gun Wu; Min, Jung Wook; Song, Young Min; Sohn, Ik-Bu; Lee, Yong Tak

    2016-05-16

    We demonstrate an advanced structure for optical interconnect consisting of 4 channel × 10 Gb/s bidirectional optical subassembly (BOSA) formed using silicon optical bench (SiOB) with tapered fiber guiding holes (TFGHs) for precise and passive optical alignment of vertical-cavity surface-emitting laser (VCSEL)-to-multi mode fiber (MMF) and MMF-to-photodiode (PD). The co-planar waveguide (CPW) transmission line (Tline) was formed on the backside of silicon substrate to reduce the insertion loss of electrical data signal. The 4 channel VCSEL and PD array are attached at the end of CPW Tline using a flip-chip bonder and solder pad. The 12-channel ribbon fiber is simply inserted into the TFGHs of SiOB and is passively aligned to the VCSEL and PD in which no additional coupling optics are required. The fabricated BOSA shows high coupling efficiency and good performance with the clearly open eye patterns and a very low bit error rate of less than 10-12 order at a data rate of 10 Gb/s with a PRBS pattern of 231-1.

  8. Metasurface optical antireflection coating

    DOE PAGES

    Zhang, Boyang; Hendrickson, Joshua; Nader, Nima; ...

    2014-12-15

    Light reflection at the boundary of two different media is one of the fundamental phenomena in optics, and reduction of reflection is highly desirable in many optical systems. Traditionally, optical antireflection has been accomplished using single- or multiple-layer dielectric films and graded index surface structures in various wavelength ranges. However, these approaches either impose strict requirements on the refractive index matching and film thickness, or involve complicated fabrication processes and non-planar surfaces that are challenging for device integration. Here, we demonstrate an antireflection coating strategy, both experimentally and numerically, by using metasurfaces with designer optical properties in the mid-wave infrared.more » Our results show that the metasurface antireflection is capable of eliminating reflection and enhancing transmission over a broad spectral band and a wide incidence angle range. In conclusion, the demonstrated antireflection technique has no requirement on the choice of materials and is scalable to other wavelengths.« less

  9. Three-dimensional modeling of light rays on the surface of a slanted lenticular array for autostereoscopic displays.

    PubMed

    Jung, Sung-Min; Kang, In-Byeong

    2013-08-10

    In this paper, we developed an optical model describing the behavior of light at the surface of a slanted lenticular array for autostereoscopic displays in three dimensions and simulated the optical characteristics of autostereoscopic displays using the Monte Carlo method under actual design conditions. The behavior of light is analyzed by light rays for selected inclination and azimuthal angles; numerical aberrations and conditions of total internal reflection for the lenticular array were found. The intensity and the three-dimensional crosstalk distributions calculated from our model coincide very well with those from conventional design software, and our model shows highly enhanced calculation speed that is 67 times faster than that of the conventional software. From the results, we think that the optical model is very useful for predicting the optical characteristics of autostereoscopic displays with enhanced calculation speed.

  10. Optical parametric osicllators with improved beam quality

    DOEpatents

    Smith, Arlee V.; Alford, William J.

    2003-11-11

    An optical parametric oscillator (OPO) having an optical pump, which generates a pump beam at a pump frequency greater than a desired signal frequency, a nonlinear optical medium oriented so that a signal wave at the desired signal frequency and a corresponding idler wave are produced when the pump beam (wave) propagates through the nonlinear optical medium, resulting in beam walk off of the signal and idler waves, and an optical cavity which directs the signal wave to repeatedly pass through the nonlinear optical medium, said optical cavity comprising an equivalently even number of non-planar mirrors that produce image rotation on each pass through the nonlinear optical medium. Utilizing beam walk off where the signal wave and said idler wave have nonparallel Poynting vectors in the nonlinear medium and image rotation, a correlation zone of distance equal to approximately .rho.L.sub.crystal is created which, through multiple passes through the nonlinear medium, improves the beam quality of the OPO output.

  11. Electro-optical backplane demonstrator with integrated multimode gradient-index thin glass waveguide panel

    NASA Astrophysics Data System (ADS)

    Schröder, Henning; Brusberg, Lars; Pitwon, Richard; Whalley, Simon; Wang, Kai; Miller, Allen; Herbst, Christian; Weber, Daniel; Lang, Klaus-Dieter

    2015-03-01

    Optical interconnects for data transmission at board level offer increased energy efficiency, system density, and bandwidth scalability compared to purely copper driven systems. We present recent results on manufacturing of electrooptical printed circuit board (PCB) with integrated planar glass waveguides. The graded index multi-mode waveguides are patterned inside commercially available thin-glass panels by performing a specific ion-exchange process. The glass waveguide panel is embedded within the layer stack-up of a PCB using proven industrial processes. This paper describes the design, manufacture, assembly and characterization of the first electro-optical backplane demonstrator based on integrated planar glass waveguides. The electro-optical backplane in question is created by laminating the glass waveguide panel into a conventional multi-layer electronic printed circuit board stack-up. High precision ferrule mounts are automatically assembled, which will enable MT compliant connectors to be plugged accurately to the embedded waveguide interfaces on the glass panel edges. The demonstration platform comprises a standardized sub-rack chassis and five pluggable test cards each housing optical engines and pluggable optical connectors. The test cards support a variety of different data interfaces and can support data rates of up to 32 Gb/s per channel.

  12. 3D Display Using Conjugated Multiband Bandpass Filters

    NASA Technical Reports Server (NTRS)

    Bae, Youngsam; White, Victor E.; Shcheglov, Kirill

    2012-01-01

    Stereoscopic display techniques are based on the principle of displaying two views, with a slightly different perspective, in such a way that the left eye views only by the left eye, and the right eye views only by the right eye. However, one of the major challenges in optical devices is crosstalk between the two channels. Crosstalk is due to the optical devices not completely blocking the wrong-side image, so the left eye sees a little bit of the right image and the right eye sees a little bit of the left image. This results in eyestrain and headaches. A pair of interference filters worn as an optical device can solve the problem. The device consists of a pair of multiband bandpass filters that are conjugated. The term "conjugated" describes the passband regions of one filter not overlapping with those of the other, but the regions are interdigitated. Along with the glasses, a 3D display produces colors composed of primary colors (basis for producing colors) having the spectral bands the same as the passbands of the filters. More specifically, the primary colors producing one viewpoint will be made up of the passbands of one filter, and those of the other viewpoint will be made up of the passbands of the conjugated filter. Thus, the primary colors of one filter would be seen by the eye that has the matching multiband filter. The inherent characteristic of the interference filter will allow little or no transmission of the wrong side of the stereoscopic images.

  13. Comparison of performance of computer display monitors for radiological diagnosis; "diagnostic" high brightness monochrome LCD, 3MP vs "clinical review" colour LCD, 2MP.

    PubMed

    Sim, L; Manthey, K; Stuckey, S

    2007-06-01

    A study to compare performance of the following display monitors for application as PACS CR diagnostic workstations is described. 1. Diagnostic quality, 3 Mega Pixel, 21 inch monochrome LCD monitors--Planar C3i. 2. Clinical review quality, 2 Mega Pixel, 21 inch colour LCD monitors--Planar PX212. Two sets of seventy radiological studies were presented to four senior radiologists on two occasions, using different displays on each occasion. The clinical condition used for this investigation was to query for the presence of a solitary pulmonary nodule. Receiver Operating Characteristic (ROC) curves were constructed for diagnostic performance for each presentation. Areas under the ROC curves (AUC) for diagnosis using different monitors were compared and the following results obtained: Monochrome AUC = 0.813 +/- 0.02, Colour AUC = 0.801 +/- 0.021. These results indicate that there is no statistically significant difference in the performance of these monitor types at a 95% confidence level.

  14. FIBER AND INTEGRATED OPTICS: Optimization of optical film waveguides

    NASA Astrophysics Data System (ADS)

    Adamson, P. V.

    1990-10-01

    Theoretical investigations were made of the possibility of optimization of the effective thickness, of the optical confinement factor Γ1, and of the birefringence of a planar dielectric waveguide as a function of the waveguide parameter V and the waveguide asymmetry. For a given value of V it is possible to ensure higher values of Γ1, for an asymmetric waveguide than for a symmetric one. An approximate expression is proposed for the factor Γ1, of an asymmetric waveguide directly in terms of its thickness and the refractive indices of the layers.

  15. Proven high-performance display solution

    NASA Astrophysics Data System (ADS)

    Johnson, Rick J.; Shaw, James E.; Mosier, Don; Liss, Raymond L.; Prouty, Todd D.; Davis, Josh; Marzen, Vincent P.; Deloy, Christian T.

    2002-08-01

    Rockwell Collins serves both the military and the commercial segments by exploiting the common elements of these applications. Rockwell Collins has created a liquid crystal display family capable of 100:1 contrast ratio, 40:1 high ambient contrast, 0.25% specular reflectance, 0.1% diffuse reflectance, enhanced color stability over +/- 55H, 0-30V field of view, 300 fL with 10K:1 dimming range, color NVIS B compliance while exceeding environmental performance requirements though ruggedization. In order to meet the full range of display requirements at a system level, all the components must be understood and managed to meet the end solution of the final system. This paper details Rockwell Collins' optical performance using an avionics grade panel, third generation custom compensation, and solid state backlight.

  16. Planarization of metal films for multilevel interconnects by pulsed laser heating

    DOEpatents

    Tuckerman, David B.

    1987-01-01

    In the fabrication of multilevel integrated circuits, each metal layer is planarized by heating to momentarily melt the layer. The layer is melted by sweeping laser pulses of suitable width, typically about 1 microsecond duration, over the layer in small increments. The planarization of each metal layer eliminates irregular and discontinuous conditions between successive layers. The planarization method is particularly applicable to circuits having ground or power planes and allows for multilevel interconnects. Dielectric layers can also be planarized to produce a fully planar multilevel interconnect structure. The method is useful for the fabrication of VLSI circuits, particularly for wafer-scale integration.

  17. Planned development of a 3D computer based on free-space optical interconnects

    NASA Astrophysics Data System (ADS)

    Neff, John A.; Guarino, David R.

    1994-05-01

    Free-space optical interconnection has the potential to provide upwards of a million data channels between planes of electronic circuits. This may result in the planar board and backplane structures of today giving away to 3-D stacks of wafers or multi-chip modules interconnected via channels running perpendicular to the processor planes, thereby eliminating much of the packaging overhead. Three-dimensional packaging is very appealing for tightly coupled fine-grained parallel computing where the need for massive numbers of interconnections is severely taxing the capabilities of the planar structures. This paper describes a coordinated effort by four research organizations to demonstrate an operational fine-grained parallel computer that achieves global connectivity through the use of free space optical interconnects.

  18. Wide-view transflective liquid crystal display for mobile applications

    NASA Astrophysics Data System (ADS)

    Kim, Hyang Yul; Ge, Zhibing; Wu, Shin-Tson; Lee, Seung Hee

    2007-12-01

    A high optical efficiency and wide-view transflective liquid crystal display based on fringe-field switching structure is proposed. The transmissive part has a homogenous liquid crystal (LC) alignment and is driven by a fringe electric field, which exhibits excellent electro-optic characteristics. The reflective part has a hybrid LC alignment with quarter-wave phase retardation and is also driven by a fringe electric field. Consequently, the transmissive and reflective parts have similar gamma curves.

  19. Design optimization of integrated BiDi triplexer optical filter based on planar lightwave circuit.

    PubMed

    Xu, Chenglin; Hong, Xiaobin; Huang, Wei-Ping

    2006-05-29

    Design optimization of a novel integrated bi-directional (BiDi) triplexer filter based on planar lightwave circuit (PLC) for fiber-to-the premise (FTTP) applications is described. A multi-mode interference (MMI) device is used to filter the up-stream 1310nm signal from the down-stream 1490nm and 1555nm signals. An array waveguide grating (AWG) device performs the dense WDM function by further separating the two down-stream signals. The MMI and AWG are built on the same substrate with monolithic integration. The design is validated by simulation, which shows excellent performance in terms of filter spectral characteristics (e.g., bandwidth, cross-talk, etc.) as well as insertion loss.

  20. Design optimization of integrated BiDi triplexer optical filter based on planar lightwave circuit

    NASA Astrophysics Data System (ADS)

    Xu, Chenglin; Hong, Xiaobin; Huang, Wei-Ping

    2006-05-01

    Design optimization of a novel integrated bi-directional (BiDi) triplexer filter based on planar lightwave circuit (PLC) for fiber-to-the premise (FTTP) applications is described. A multi-mode interference (MMI) device is used to filter the up-stream 1310nm signal from the down-stream 1490nm and 1555nm signals. An array waveguide grating (AWG) device performs the dense WDM function by further separating the two down-stream signals. The MMI and AWG are built on the same substrate with monolithic integration. The design is validated by simulation, which shows excellent performance in terms of filter spectral characteristics (e.g., bandwidth, cross-talk, etc.) as well as insertion loss.

  1. Development of a surgical navigation system based on augmented reality using an optical see-through head-mounted display.

    PubMed

    Chen, Xiaojun; Xu, Lu; Wang, Yiping; Wang, Huixiang; Wang, Fang; Zeng, Xiangsen; Wang, Qiugen; Egger, Jan

    2015-06-01

    The surgical navigation system has experienced tremendous development over the past decades for minimizing the risks and improving the precision of the surgery. Nowadays, Augmented Reality (AR)-based surgical navigation is a promising technology for clinical applications. In the AR system, virtual and actual reality are mixed, offering real-time, high-quality visualization of an extensive variety of information to the users (Moussa et al., 2012) [1]. For example, virtual anatomical structures such as soft tissues, blood vessels and nerves can be integrated with the real-world scenario in real time. In this study, an AR-based surgical navigation system (AR-SNS) is developed using an optical see-through HMD (head-mounted display), aiming at improving the safety and reliability of the surgery. With the use of this system, including the calibration of instruments, registration, and the calibration of HMD, the 3D virtual critical anatomical structures in the head-mounted display are aligned with the actual structures of patient in real-world scenario during the intra-operative motion tracking process. The accuracy verification experiment demonstrated that the mean distance and angular errors were respectively 0.809±0.05mm and 1.038°±0.05°, which was sufficient to meet the clinical requirements. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Design of a projection display screen with vanishing color shift for rear-projection HDTV

    NASA Astrophysics Data System (ADS)

    Liu, Xiu; Zhu, Jin-lin

    1996-09-01

    Using bi-convex cylinder lens with matrix structure, the transmissive projection display screen with high contrast and wider viewing angle has been widely used in large rear projection TV and video projectors, it obtained a inhere color shift and puzzled the designer of display screen for RGB projection tube in-line adjustment. Based on the method of light beam racing, the general software of designing projection display screen has been developed and the computer model of vanishing color shift for rear projection HDTV has bee completed. This paper discussed the practical designing method to vanish the defect of color shift and mentioned the relations between the primary optical parameters of display screen and relative geometry sizes of lens' surface. The distributions of optical gain to viewing angle and the influences on engineering design are briefly analyzed.

  3. Optical switch based on thermocapillarity

    NASA Astrophysics Data System (ADS)

    Sakata, Tomomi; Makihara, Mitsuhiro; Togo, Hiroyoshi; Shimokawa, Fusao; Kaneko, Kazumasa

    2001-11-01

    Space-division optical switches are essential for the protection, optical cross-connects (OXCs), and optical add/drop multiplexers (OADMs) needed in future fiber-optic communication networks. For applications in these areas, we proposed a thermocapillarity switch called oil-latching interfacial-tension variation effect (OLIVE) switch. An OLIVE switch is a micro-mechanical optical switch fabricated on planar lightwave circuits (PLC) using micro-electro-mechanical systems (MEMS) technology. It consists of a crossing waveguide that has a groove at each crossing point and a pair of microheaters. The groove is partially filled with the refractive-index-matching liquid, and optical signals are switched according to the liquid's position in the groove, i.e., whether it is passing straight through the groove or reflecting at the sidewall of the groove. The liquid is driven by thermocapillarity and latched by capillarity. Using the total internal reflection to switch the optical path, the OLIVE switch exhibits excellent optical characteristics, such as high transparency (insertion loss: < 2 dB), high extinction ratio (> 50 dB), and low crosstalk (< -50 dB). Moreover, since this switch has a simple structure and bi-stability, it has wide variety of applications in wavelength division multiplexing (WDM) networks.

  4. High-resolution laser-projection display system using a grating electromechanical system (GEMS)

    NASA Astrophysics Data System (ADS)

    Brazas, John C.; Kowarz, Marek W.

    2004-01-01

    Eastman Kodak Company has developed a diffractive-MEMS spatial-light modulator for use in printing and display applications, the grating electromechanical system (GEMS). This modulator contains a linear array of pixels capable of high-speed digital operation, high optical contrast, and good efficiency. The device operation is based on deflection of electromechanical ribbons suspended above a silicon substrate by a series of intermediate supports. When electrostatically actuated, the ribbons conform to the supporting substructure to produce a surface-relief phase grating over a wide active region. The device is designed to be binary, switching between a reflective mirror state having suspended ribbons and a diffractive grating state having ribbons in contact with substrate features. Switching times of less than 50 nanoseconds with sub-nanosecond jitter are made possible by reliable contact-mode operation. The GEMS device can be used as a high-speed digital-optical modulator for a laser-projection display system by collecting the diffracted orders and taking advantage of the low jitter. A color channel is created using a linear array of individually addressable GEMS pixels. A two-dimensional image is produced by sweeping the line image of the array, created by the projection optics, across the display screen. Gray levels in the image are formed using pulse-width modulation (PWM). A high-resolution projection display was developed using three 1080-pixel devices illuminated by red, green, and blue laser-color primaries. The result is an HDTV-format display capable of producing stunning still and motion images with very wide color gamut.

  5. LCoS-SLM technology based on Digital Electro-optics Platform and using in dynamic optics for application development

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Wei; Wang, Chen; Lyu, Bo-Han; Chu, Chen-Hsien

    2017-08-01

    Digital Electro-optics Platform is the main concept of Jasper Display Corp. (JDC) to develop various applications. These applications are based on our X-on-Silicon technologies, for example, X-on-Silicon technologies could be used on Liquid Crystal on Silicon (LCoS), Micro Light-Emitting Diode on Silicon (μLEDoS), Organic Light-Emitting Diode on Silicon (OLEDoS), and Cell on Silicon (CELLoS), etc. LCoS technology is applied to Spatial Light Modulator (SLM), Dynamic Optics, Wavelength Selective Switch (WSS), Holographic Display, Microscopy, Bio-tech, 3D Printing and Adaptive Optics, etc. In addition, μLEDoS technology is applied to Augmented Reality (AR), Head Up Display (HUD), Head-mounted Display (HMD), and Wearable Devices. Liquid Crystal on Silicon - Spatial Light Modulator (LCoSSLM) based on JDC's On-Silicon technology for both amplitude and phase modulation, have an expanding role in several optical areas where light control on a pixel-by-pixel basis is critical for optimum system performance. Combination of the advantage of hardware and software, we can establish a "dynamic optics" for the above applications or more. Moreover, through the software operation, we can control the light more flexible and easily as programmable light processor.

  6. Future of photorefractive based holographic 3D display

    NASA Astrophysics Data System (ADS)

    Blanche, P.-A.; Bablumian, A.; Voorakaranam, R.; Christenson, C.; Lemieux, D.; Thomas, J.; Norwood, R. A.; Yamamoto, M.; Peyghambarian, N.

    2010-02-01

    The very first demonstration of our refreshable holographic display based on photorefractive polymer was published in Nature early 20081. Based on the unique properties of a new organic photorefractive material and the holographic stereography technique, this display addressed a gap between large static holograms printed in permanent media (photopolymers) and small real time holographic systems like the MIT holovideo. Applications range from medical imaging to refreshable maps and advertisement. Here we are presenting several technical solutions for improving the performance parameters of the initial display from an optical point of view. Full color holograms can be generated thanks to angular multiplexing, the recording time can be reduced from minutes to seconds with a pulsed laser, and full parallax hologram can be recorded in a reasonable time thanks to parallel writing. We also discuss the future of such a display and the possibility of video rate.

  7. Wavy Architecture Thin-Film Transistor for Ultrahigh Resolution Flexible Displays.

    PubMed

    Hanna, Amir Nabil; Kutbee, Arwa Talal; Subedi, Ram Chandra; Ooi, Boon; Hussain, Muhammad Mustafa

    2018-01-01

    A novel wavy-shaped thin-film-transistor (TFT) architecture, capable of achieving 70% higher drive current per unit chip area when compared with planar conventional TFT architectures, is reported for flexible display application. The transistor, due to its atypical architecture, does not alter the turn-on voltage or the OFF current values, leading to higher performance without compromising static power consumption. The concept behind this architecture is expanding the transistor's width vertically through grooved trenches in a structural layer deposited on a flexible substrate. Operation of zinc oxide (ZnO)-based TFTs is shown down to a bending radius of 5 mm with no degradation in the electrical performance or cracks in the gate stack. Finally, flexible low-power LEDs driven by the respective currents of the novel wavy, and conventional coplanar architectures are demonstrated, where the novel architecture is able to drive the LED at 2 × the output power, 3 versus 1.5 mW, which demonstrates the potential use for ultrahigh resolution displays in an area efficient manner. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A look at 15 years of planar thallium-201 imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaul, S.

    1989-09-01

    Extensive experience has been accumulated over the past 15 years regarding planar thallium-201 imaging. Quantitation of technically superior images provides a high sensitivity and specificity for the detection of CAD. In addition, planar thallium-201 images provide very important prognostic information in different clinical situations. Although single photon emission computerized tomography offers potential theoretical advantages over planar imaging, because of the problems involved in reconstruction, specifically the creation of artifacts, it may not be the ideal imaging modality in all situations. Good quality planar thallium-201 imaging still has an important role in clinical cardiology today. 144 references.

  9. INTEGRATED AND FIBER OPTICS: Electrodiffusion of Cs+ ions into glass from molten CsNO3. Planar waveguides

    NASA Astrophysics Data System (ADS)

    Galechyan, M. G.; Dianov, Evgenii M.; Lyndin, N. M.; Tishchenko, A. V.

    1989-02-01

    A new method for electrodiffusion of Cs+ ions from molten CsNO3 into glass was developed. A study was made of the dependences of the parameters of the refractive index profile of planar waveguides on the conditions during diffusion. These waveguides were characterized by low losses (less than 0.2 dB/cm) in a wide spectral range and they were stable under heating to 300 °C.

  10. Large Screen Display Technology Survey.

    DTIC Science & Technology

    1984-07-01

    gadolinium gallium garnet ). The film is etched to form small light sensitive cells. The area between the cells is covered with a metal film to block the light...Failures MTTR - Mean-Time-To-Repair Nd:YAG - Noedymium: Yttrium Aluminum Garnet Nematic - A term used to describe one of the states of certain liquid...valve within a display, projection or optical processing system. It uses garnet films grown on non-magnetic substrates (Figure 10). The garnet films can

  11. Planar waveguide concentrator used with a seasonal tracker.

    PubMed

    Bouchard, Sébastien; Thibault, Simon

    2012-10-01

    Solar concentrators offer good promise for reducing the cost of solar power. Planar waveguides equipped with a microlens slab have already been proposed as an excellent approach to produce medium to high concentration levels. Instead, we suggest the use of a cylindrical microlens array to get useful concentration without tracking during the day. To use only a seasonal tracking system and get the highest possible concentration, cylindrical microlenses are placed in the east-west orientation. Our new design has an acceptance angle in the north-south direction of ±9° and ±54° in the east-west axis. Simulation of our optimized system achieves a 4.6× average concentration level from 8:30 to 16:30 with a maximum of 8.1× and 80% optical efficiency. The low-cost advantage of waveguide-based solar concentrators could support their use in roof-mounted solar panels and eliminate the need for an expensive and heavy active tracker.

  12. Viewing zone duplication of multi-projection 3D display system using uniaxial crystal.

    PubMed

    Lee, Chang-Kun; Park, Soon-Gi; Moon, Seokil; Lee, Byoungho

    2016-04-18

    We propose a novel multiplexing technique for increasing the viewing zone of a multi-view based multi-projection 3D display system by employing double refraction in uniaxial crystal. When linearly polarized images from projector pass through the uniaxial crystal, two possible optical paths exist according to the polarization states of image. Therefore, the optical paths of the image could be changed, and the viewing zone is shifted in a lateral direction. The polarization modulation of the image from a single projection unit enables us to generate two viewing zones at different positions. For realizing full-color images at each viewing zone, a polarization-based temporal multiplexing technique is adopted with a conventional polarization switching device of liquid crystal (LC) display. Through experiments, a prototype of a ten-view multi-projection 3D display system presenting full-colored view images is implemented by combining five laser scanning projectors, an optically clear calcite (CaCO3) crystal, and an LC polarization rotator. For each time sequence of temporal multiplexing, the luminance distribution of the proposed system is measured and analyzed.

  13. Light Redirective Display Panel And A Method Of Making A Light Redirective Display Panel

    DOEpatents

    Veligdan, James T.

    2005-07-26

    An optical display panel which provides improved light intensity at a viewing angle by redirecting light emitting from the viewing screen, and a method of making a light redirective display panel, are disclosed. The panel includes an inlet face at one end for receiving light, and an outlet screen at an opposite end for displaying the light. The inlet face is defined at one end of a transparent body, which body may be formed by a plurality of waveguides, and the outlet screen is defined at an opposite end of the body. The screen includes light redirective elements at the outlet screen for re-directing light emitting from the outlet screen. The method includes stacking a plurality of glass sheets, with a layer of adhesive or epoxy between each sheet, curing the adhesive to form a stack, placing the stack against a saw and cutting the stack at two opposite ends to form a wedge-shaped panel having an inlet face and an outlet face, and forming at the outlet face a plurality of light redirective elements which direct light incident on the outlet face into a controlled light cone.

  14. Light redirective display panel and a method of making a light redirective display panel

    DOEpatents

    Veligdan, James T.

    2002-01-01

    An optical display panel which provides improved light intensity at a viewing angle by redirecting light emitting from the viewing screen, and a method of making a light redirective display panel, are disclosed. The panel includes an inlet face at one end for receiving light, and an outlet screen at an opposite end for displaying the light. The inlet face is defined at one end of a transparent body, which body may be formed by a plurality of waveguides, and the outlet screen is defined at an opposite end of the body. The screen includes light redirective elements at the outlet screen for re-directing light emitting from the outlet screen. The method includes stacking a plurality of glass sheets, with a layer of adhesive or epoxy between each sheet, curing the adhesive to form a stack, placing the stack against a saw and cutting the stack at two opposite ends to form a wedge-shaped panel having an inlet face and an outlet face, and forming at the outlet face a plurality of light redirective elements which direct light incident on the outlet face into a controlled light cone.

  15. Unsymmetrical squaraines for nonlinear optical materials

    NASA Technical Reports Server (NTRS)

    Marder, Seth R. (Inventor); Chen, Chin-Ti (Inventor); Cheng, Lap-Tak (Inventor)

    1996-01-01

    Compositions for use in non-linear optical devices. The compositions have first molecular electronic hyperpolarizability (.beta.) either positive or negative in sign and therefore display second order non-linear optical properties when incorporated into non-linear optical devices.

  16. Planar zeros in gauge theories and gravity

    NASA Astrophysics Data System (ADS)

    Jiménez, Diego Medrano; Vera, Agustín Sabio; Vázquez-Mozo, Miguel Á.

    2016-09-01

    Planar zeros are studied in the context of the five-point scattering amplitude for gauge bosons and gravitons. In the case of gauge theories, it is found that planar zeros are determined by an algebraic curve in the projective plane spanned by the three stereographic coordinates labelling the direction of the outgoing momenta. This curve depends on the values of six independent color structures. Considering the gauge group SU( N) with N = 2 , 3 , 5 and fixed color indices, the class of curves obtained gets broader by increasing the rank of the group. For the five-graviton scattering, on the other hand, we show that the amplitude vanishes whenever the process is planar, without imposing further kinematic conditions. A rationale for this result is provided using color-kinematics duality.

  17. Acousto-optic laser projection systems for displaying TV information

    NASA Astrophysics Data System (ADS)

    Gulyaev, Yu V.; Kazaryan, M. A.; Mokrushin, Yu M.; Shakin, O. V.

    2015-04-01

    This review addresses various approaches to television projection imaging on large screens using lasers. Results are presented of theoretical and experimental studies of an acousto-optic projection system operating on the principle of projecting an image of an entire amplitude-modulated television line in a single laser pulse. We consider characteristic features of image formation in such a system and the requirements for its individual components. Particular attention is paid to nonlinear distortions of the image signal, which show up most severely at low modulation signal frequencies. We discuss the feasibility of improving the process efficiency and image quality using acousto-optic modulators and pulsed lasers. Real-time projectors with pulsed line imaging can be used for controlling high-intensity laser radiation.

  18. 4D megahertz optical coherence tomography (OCT): imaging and live display beyond 1 gigavoxel/sec (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huber, Robert A.; Draxinger, Wolfgang; Wieser, Wolfgang; Kolb, Jan Philip; Pfeiffer, Tom; Karpf, Sebastian N.; Eibl, Matthias; Klein, Thomas

    2016-03-01

    Over the last 20 years, optical coherence tomography (OCT) has become a valuable diagnostic tool in ophthalmology with several 10,000 devices sold today. Other applications, like intravascular OCT in cardiology and gastro-intestinal imaging will follow. OCT provides 3-dimensional image data with microscopic resolution of biological tissue in vivo. In most applications, off-line processing of the acquired OCT-data is sufficient. However, for OCT applications like OCT aided surgical microscopes, for functional OCT imaging of tissue after a stimulus, or for interactive endoscopy an OCT engine capable of acquiring, processing and displaying large and high quality 3D OCT data sets at video rate is highly desired. We developed such a prototype OCT engine and demonstrate live OCT with 25 volumes per second at a size of 320x320x320 pixels. The computer processing load of more than 1.5 TFLOPS was handled by a GTX 690 graphics processing unit with more than 3000 stream processors operating in parallel. In the talk, we will describe the optics and electronics hardware as well as the software of the system in detail and analyze current limitations. The talk also focuses on new OCT applications, where such a system improves diagnosis and monitoring of medical procedures. The additional acquisition of hyperspectral stimulated Raman signals with the system will be discussed.

  19. Influence of pump-field scattering on nonclassical-light generation in a photonic-band-gap nonlinear planar waveguide

    NASA Astrophysics Data System (ADS)

    Peřina, Jan, Jr.; Sibilia, Concita; Tricca, Daniela; Bertolotti, Mario

    2005-04-01

    Optical parametric process occurring in a nonlinear planar waveguide can serve as a source of light with nonclassical properties. The properties of the generated fields are substantially modified by scattering of the nonlinearly interacting fields in a photonic-band-gap structure inside the waveguide. A general quantum model of linear operator amplitude corrections to the amplitude mean values and its numerical analysis provide conditions for efficient squeezed-light generation as well as generation of light with sub-Poissonian photon-number statistics. The destructive influence of phase mismatch of the nonlinear interaction can fully be compensated using a suitable photonic-band-gap structure inside the waveguide. Also an increase of the signal-to-noise ratio of the incident optical field can be reached in the waveguide.

  20. Optical chirp z-transform processor with a simplified architecture.

    PubMed

    Ngo, Nam Quoc

    2014-12-29

    Using a simplified chirp z-transform (CZT) algorithm based on the discrete-time convolution method, this paper presents the synthesis of a simplified architecture of a reconfigurable optical chirp z-transform (OCZT) processor based on the silica-based planar lightwave circuit (PLC) technology. In the simplified architecture of the reconfigurable OCZT, the required number of optical components is small and there are no waveguide crossings which make fabrication easy. The design of a novel type of optical discrete Fourier transform (ODFT) processor as a special case of the synthesized OCZT is then presented to demonstrate its effectiveness. The designed ODFT can be potentially used as an optical demultiplexer at the receiver of an optical fiber orthogonal frequency division multiplexing (OFDM) transmission system.