Sample records for planar shock loading

  1. Transient Two-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2004-01-01

    Two-dimensional planar and axisymmetric numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to develop a computational methodology to identify nozzle side load physics using simplified two-dimensional geometries, in order to come up with a computational strategy to eventually predict the three-dimensional side loads. The computational methodology is based on a multidimensional, finite-volume, viscous, chemically reacting, unstructured-grid, and pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system modeling. The side load physics captured in the low aspect-ratio, two-dimensional planar nozzle include the Coanda effect, afterburning wave, and the associated lip free-shock oscillation. Results of parametric studies indicate that equivalence ratio, combustion and ramp rate affect the side load physics. The side load physics inferred in the high aspect-ratio, axisymmetric nozzle study include the afterburning wave; transition from free-shock to restricted-shock separation, reverting back to free-shock separation, and transforming to restricted-shock separation again; and lip restricted-shock oscillation. The Mach disk loci and wall pressure history studies reconfirm that combustion and the associated thermodynamic properties affect the formation and duration of the asymmetric flow.

  2. Laser-launched flyer plate and confined laser ablation for shock wave loading: validation and applications.

    PubMed

    Paisley, Dennis L; Luo, Sheng-Nian; Greenfield, Scott R; Koskelo, Aaron C

    2008-02-01

    We present validation and some applications of two laser-driven shock wave loading techniques: laser-launched flyer plate and confined laser ablation. We characterize the flyer plate during flight and the dynamically loaded target with temporally and spatially resolved diagnostics. With transient imaging displacement interferometry, we demonstrate that the planarity (bow and tilt) of the loading induced by a spatially shaped laser pulse is within 2-7 mrad (with an average of 4+/-1 mrad), similar to that in conventional techniques including gas gun loading. Plasma heating of target is negligible, in particular, when a plasma shield is adopted. For flyer plate loading, supported shock waves can be achieved. Temporal shaping of the drive pulse in confined laser ablation allows for flexible loading, e.g., quasi-isentropic, Taylor-wave, and off-Hugoniot loading. These techniques can be utilized to investigate such dynamic responses of materials as Hugoniot elastic limit, plasticity, spall, shock roughness, equation of state, phase transition, and metallurgical characteristics of shock-recovered samples.

  3. An experimental study of fluctuating pressure loads beneath swept shock/boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Settles, Gary S.

    1991-01-01

    A database is established on the fluctuating pressure loads produced on aerodynamic surfaces beneath 3-D shock wave/boundary layer interactions. Such loads constitute a fundamental problem of critical concern to future supersonic and hypersonic flight vehicles. A turbulent boundary layer on a flat plate is subjected to interactions with swept planar shock waves generated by sharp fins. Fin angles from 5 to 25 deg at freestream Mach numbers between 2.5 and 4 produce a variety of interaction strengths from weak to very strong. Miniature Kulite pressure transducers mounted in the flat plate were used to measure interaction-induced wall pressure fluctuations. These data will be correlated with proposed new optical data on the fluctuations of the interaction structure, especially that of the lambda-shock system and its associated high-speed jet impingement.

  4. On the shock response of Pisum Sativum (a.k.a the Common Pea)

    NASA Astrophysics Data System (ADS)

    Leighs, James; Hazell, Paul; Appleby-Thomas, Gareth

    2011-06-01

    The high strain-rate response of biological and organic structures is of interest to numerous fields ranging from the food industry (dynamic pasteurisation) to astrobiology (e.g. the theory of panspermia, which suggests that planets could be `seeded' with life `piggy-backing' of interplanetary bodies). Consequently, knowledge of the damage mechanisms and viability of shocked organic material is of paramount importance. In this study a single-stage gas-gun has been employed to subject samples of Pisum Sativum (the Common Pea) to semi-planar shock loading, corresponding to impact pressures of up to c.3 GPa. The experimental approach adopted is discussed along with results from Manganin gauges embedded in the target capsule which show the loading history. Further, the viability of the shock-loaded peas was investigated via attempts at germination. Finally, microscopic examination of the impacted specimens allowed a qualitative assessment of damage mechanisms to be made.

  5. On the shock response of pisum sativum and lepidium sativum

    NASA Astrophysics Data System (ADS)

    Leighs, James Allen; Hazell, Paul; Appleby-Thomas, Gareth James

    2012-03-01

    The high strain-rate response of biological and organic structures is of interest to numerous fields ranging from the food industry to astrobiology. Consequently, knowledge of the damage mechanisms within, and the viability of shocked organic material are of significant importance. In this study, a single-stage gasgun has been employed to subject samples of Pisum sativum (common pea) and Lepidium sativum (curled cress) to planar shock loading. Impact pressures of up to ~11.5 GPa and ~0.5 GPa for pea and cress seed samples respectively have been reached. The development of the experimental approach is discussed and presented alongside results from modelled gauge traces showing the sample loading history. Viability of the shock-loaded pea and cress seeds was investigated via attempts at germination, which were unsuccessful with pea seeds but successful in all tests performed on cress seeds. This work suggests that organic structures could survive shockwaves that may be encountered during asteroid collisions.

  6. Tolerance of Artemia to static and shock pressure loading

    NASA Astrophysics Data System (ADS)

    Fitzmaurice, B. C.; Appleby-Thomas, G. J.; Painter, J. D.; Ono, F.; McMillan, P. F.; Hazael, R.; Meersman, F.

    2017-10-01

    Hydrostatic and hydrodynamic pressure loading has been applied to unicellular organisms for a number of years due to interest from food technology and extremophile communities. There is also an emerging interest in the response of multicellular organisms to high pressure conditions. Artemia salina is one such organism. Previous experiments have shown a marked difference in the hatching rate of these organisms after exposure to different magnitudes of pressure, with hydrostatic tests showing hatching rates at pressures up to several GPa, compared to dynamic loading that resulted in comparatively low survival rates at lower pressure magnitudes. In order to begin to investigate the origin of this difference, the work presented here has focussed on the response of Artemia salina to (quasi) one-dimensional shock loading. Such experiments were carried out using the plate-impact technique in order to create a planar shock front. Artemia cysts were investigated in this manner along with freshly hatched larvae (nauplii). The nauplii and cysts were observed post-shock using optical microscopy to detect motility or hatching, respectively. Hatching rates of 18% were recorded at pressures reaching 1.5 GPa, as determined with the aid of numerical models. Subjecting Artemia to quasi-one-dimensional shock loading offers a way to more thoroughly explore the shock pressure ranges these organisms can survive.

  7. Influence of sweeping detonation-wave loading on damage evolution during spallation loading of tantalum in both a planar and curved geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, George Thompson III; Hull, Lawrence Mark; Livescu, Veronica

    Widespread research over the past five decades has provided a wealth of experimental data and insight concerning the shock hardening, damage evolution, and the spallation response of materials subjected to square-topped shock-wave loading profiles. However, fewer quantitative studies have been conducted on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (unsupported shocks) loading on the shock hardening, damage evolution, or spallation response of materials. Systematic studies quantifying the effect of sweeping-detonation wave loading are yet sparser. In this study, the damage evolution and spallation response of Ta is shown to be critically dependent on the peak shock stress,more » the geometry of the sample (flat or curved plate geometry), and the shock obliquity during sweeping-detonation-wave shock loading. Sweepingwave loading in the flat-plate geometry is observed to: a) yield a lower spall strength than previously documented for 1-D supported-shock-wave loading, b) exhibit increased shock hardening as a function of increasing obliquity, and c) lead to an increased incidence of deformation twin formation with increasing shock obliquity. Sweeping-wave loading of a 10 cm radius curved Ta plate is observed to: a) lead to an increase in the shear stress as a function of increasing obliquity, b) display a more developed level of damage evolution, extensive voids and coalescence, and lower spall strength with obliquity in the curved plate than seen in the flat-plate sweeping-detonation wave loading for an equivalent HE loading, and c) no increased propensity for deformation twin formation with increasing obliquity as seen in the flat-plate geometry. The overall observations comparing and contrasting the flat versus curved sweeping-wave spall experiments with 1D loaded spallation behavior suggests a coupled influence of obliquity and geometry on dynamic shock-induced damage evolution and spall strength. Coupled experimental and modeling research to quantify the combined effects of sweeping-wave loading with increasingly complex sample geometries on the shockwave response of materials is clearly crucial to providing the basis for developing and thereafter validation of predictive modeling capability.« less

  8. Shock response of 7068 aluminium alloy

    NASA Astrophysics Data System (ADS)

    Chapman, David; Eakins, Daniel; Proud, William

    2013-06-01

    Aluminium alloys are widely employed throughout the aerospace and defence industries due to their high specific strength. Aluminium alloy 7068, often described as the ultimate aluminium alloy was developed by Kasier Aluminium in the mid-1990s and is the strongest aluminium commercially produced. There remains little published data on the response of this micro-structurally anisotropic alloy to dynamic loading. As part of an investigation of the high-rate mechanical properties of Al 7068, a series of plate-impact experiments using a novel meso-scale planar impact facility and a more conventional large bore gas gun were undertaken. The evolution of the elastic-plastic shock wave and spall strength as a function of sample thickness and specimen orientation were investigated using optical velocimetry (line-VISAR, PDV) techniques. Planar shock wave experiments were conducted on specimens several 100 microns to several millimetres thick cut from either parallel or perpendicular to the extrusion direction.

  9. Shock-induced deformation features in terrestrial peridot and lunar dunite

    NASA Technical Reports Server (NTRS)

    Snee, L. W.; Ahrens, T. J.

    1975-01-01

    Single crystals of terrestrial olivine were experimentally shock-loaded along the 010 line to peak pressures 280, 330, and 440 kbar, and the resulting deformation features were compared to those in olivine from lunar dunite 72415. Recovered fragments were examined to determine the orientation of the planar fractures. With increasing pressure the percentage of pinacoids and prisms decreases, whereas the percentage of bipyramids increases. The complexity of the distribution of bipyramids also increases with increasing pressure. Other shock-induced deformation features, including varying degrees of recrystallization, are found to depend on pressure, as observed by others. Lunar dunite 72415 was examined and found to contain olivine with well-developed shock-deformation features. The relative proportion of pinacoid, prism, and bipyramid planar fractures measured for olivine from 72415 indicates that this rock appears to have undergone shock pressure in the range 330-440 kbar. If this dunite was brought to the surface of the moon as a result of excavation of an Imbrium event-sized impact crater, the shock-pressure range experienced by the sample and the results of cratering calculations suggest that it could have originated no deeper than 50-150 km.

  10. Note: A contraction channel design for planar shock wave enhancement

    NASA Astrophysics Data System (ADS)

    Zhan, Dongwen; Li, Zhufei; Yang, Jianting; Zhu, Yujian; Yang, Jiming

    2018-05-01

    A two-dimensional contraction channel with a theoretically designed concave-oblique-convex wall profile is proposed to obtain a smooth planar-to-planar shock transition with shock intensity amplification that can easily overcome the limitations of a conventional shock tube. The concave segment of the wall profile, which is carefully determined based on shock dynamics theory, transforms the shock shape from an initial plane into a cylindrical arc. Then the level of shock enhancement is mainly contributed by the cylindrical shock convergence within the following oblique segment, after which the cylindrical shock is again "bent" back into a planar shape through the third section of the shock dynamically designed convex segment. A typical example is presented with a combination of experimental and numerical methods, where the shape of transmitted shock is almost planar and the post-shock flow has no obvious reflected waves. A quantitative investigation shows that the difference between the designed and experimental transmitted shock intensities is merely 1.4%. Thanks to its advantage that the wall profile design is insensitive to initial shock strength variations and high-temperature gas effects, this method exhibits attractive potential as an efficient approach to a certain, controllable, extreme condition of a strong shock wave with relatively uniform flow behind.

  11. Dynamic Loading Experiments In The Massive Exoplanet Regime

    NASA Astrophysics Data System (ADS)

    Swift, Damian; Hicks, D.; Eggert, J.; Milathianaki, D.; Rothman, S.; Rosen, P.; Collins, G.

    2010-10-01

    Exoplanets have been detected with masses and radii suggesting rocky and hydrogen-rich compositions up to 10 times the mass of the Earth and Jupiter, in similar volumes. The formation and evolution of such bodies, and the distribution and properties of brown dwarfs which are an important component of galactic structures, depend on the equation of state (EOS) and chemistry of constituent matter at pressures 2-200 TPa for Fe-rich and hydrogenic matter respectively. Electronic structure calculations can predict these properties, but experimental measurements are crucial to investigate their accuracy in this regime. Hohlraum-driven configurations at the National Ignition Facility can induce planar ramp or shock loading to 30 TPa, over volumes sufficient to enable percent accuracy in EOS measurements. We are designing configurations using convergent ramp and shock loading for EOS experiments to pressures in excess of 100 TPa.

  12. Dynamic Electromechanical Characterization of the Ferroelectric Ceramic PZT 95/5

    NASA Astrophysics Data System (ADS)

    Setchell, R. E.; Chhabildas, L. C.; Furnish, M. D.; Montgomery, S. T.; Holman, G. T.

    1997-07-01

    Shock-induced depoling of the ferroelectric ceramic PZT 95/5 has been utilized in a number of pulsed power applications. The dynamic behavior of the poled ceramic is complex, with nonlinear coupling between mechanical and electrical variables. Recent efforts to improve numerical simulations of this process have been limited by the scarcity of relevant experimental studies within the last twenty years. Consequently, we have initiated an extensive experimental study of the dynamic electromechanical behavior of this material. Samples of the poled ceramic are shocked to axial stresses from 0.5 to 5 GPa in planar impact experiments and observed with laser interferometry (VISAR) to obtain transmitted wave profiles. Current generation due to shock-induced depoling is observed using different external loads to vary electric field strengths within the samples. Experimental configurations either have the remanent polarization parallel to the direction of shock motion (axially poled) or perpendicular (normally poled). Initial experiments on unpoled samples utilized PVDF stress gauges as well as VISAR, and extended prior data on shock loading and release behavior. (Supported by the U. S. Department of Energy under contract DE-AC04-94AL85000). abstract.

  13. Birefringence and incipient plastic deformation in elastically overdriven [100] CaF2 under shock compression

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zhou, X. M.; Cai, Y.; Liu, C. L.; Luo, S. N.

    2018-04-01

    [100] CaF2 single crystals are shock-compressed via symmetric planar impact, and the flyer plate-target interface velocity histories are measured with a laser displacement interferometry. The shock loading is slightly above the Hugoniot elastic limit to investigate incipient plasticity and its kinetics, and its effects on optical properties and deformation inhomogeneity. Fringe patterns demonstrate different features in modulation of fringe amplitude, including birefringence and complicated modulations. The birefringence is attributed to local lattice rotation accompanying incipient plasticity. Spatially resolved measurements show inhomogeneity in deformation, birefringence, and fringe pattern evolutions, most likely caused by the inhomogeneity associated with lattice rotation and dislocation slip. Transiently overdriven elastic states are observed, and the incubation time for incipient plasticity decreases inversely with increasing overdrive by the elastic shock.

  14. Experimental shock metamorphism of maximum microcline

    NASA Technical Reports Server (NTRS)

    Robertson, P. B.

    1975-01-01

    A series of recovery experiments are conducted to study the behavior of single-crystal perthitic maximum microcline shock-loaded to a peak pressure of 417 kbar. Microcline is found to deform in a manner similar to quartz and other alkali feldspars. It is observed that shock-induced cleavages occur initially at or slightly below the Hugoniot elastic limit (60-85 kbar), that shock-induced rather than thermal disordering begins above the Hugoniot elastic limit, and that all types of planar elements form parallel to crystallographic planes of low Miller indices. When increasing pressure, it is found that bulk density, refractive indices, and birefringence of the recovered material decrease and approach diaplectic glass values, whereas disappearance and weakening of reflections in Debye-Sherrer patterns are due to disordering of the feldspar lattice.

  15. Hot spot initiation and chemical reaction in shocked polymeric bonded explosives

    NASA Astrophysics Data System (ADS)

    An, Qi; Zybin, Sergey; Jaramillo-Botero, Andres; Goddard, William; Materials; Process Simulation Center, Caltech Team

    2011-06-01

    A polymer bonded explosive (PBX) model based on PBXN-106 is studied via molecular dynamics (MD) simulations using reactive force field (ReaxFF) under shock loading conditions. Hotspot is observed when shock waves pass through the non-planar interface of explosives and elastomers. Adiabatic shear localization is proposed as the main mechanism of hotspot ignition in PBX for high velocity impact. Our simulation also shows that the coupling of shear localization and chemical reactions at hotspot region play important rules at stress relaxtion for explosives. The phenomenon that shock waves are obsorbed by elastomers is also observed in the MD simulations. This research received supports from ARO (W911NF-05-1-0345; W911NF-08-1-0124), ONR (N00014-05-1-0778), and Los Alamos National Laboratory (LANL).

  16. Properties and shock response of PMMA

    NASA Astrophysics Data System (ADS)

    Jordan, Jennifer L.; Casem, Daniel; Moy, Paul; Walter, Timothy

    2017-01-01

    Polymethylmethacrylate (PMMA) is used widely in shock experiments as a window material and in explosive characterization tests, e.g. gap tests, as a shock mitigation material. In order to simulate the complex loading present in a gap test, the constitutive response of the PMMA must be well understood. However, it is not clear what characterization must be done when the PMMA material is changed, e.g. changing supplier, and the Rohm and Haas Type II UVA PMMA, which was used for many of the calibration experiments, is no longer available. In this paper, we will present characterization results on legacy Rohm and Haas Type II UVA in comparison with a new PMMA grade proposed for use in gap tests. Planar shock experiments are performed to determine the compression and release response.

  17. Optical and TEM study of shock metamorphism from the Sedan test site

    NASA Technical Reports Server (NTRS)

    Gratz, A. J.

    1992-01-01

    Thus far, detailed petrologic studies of shock metamorphism have been performed on samples recovered from laboratory experiments and on a few natural impactites. The loading history of these samples is quite different: In particular, laboratory experiments spend only a short time (less than 1 microsec) at peak pressure, whereas natural impactites may have stress pulses from 0.1 - 1 ms. On the other hand, laboratory experiments have known stress histories; natural impactites do not. Natural samples are also subjected to thousands or millions of years of postshock annealing and/or weathering. A useful intermediate case is that of nuclear detonation. Stress pulses for these events can reach 0.1 ms or higher, and samples are obtained in pristine condition. All three types of loading produce stresses of hundreds of kilobars. Samples studied were taken from the Sedan nulcear test site, and consist of a coarse-grained granodiorite containing quartz, K-feldspar, cordierite, and hornblende. Samples were studied optically in this section, then were thinned with an ion mill and studied by transmission electron microscopy (TEM). Optically, quartz and K-feldspar displayed numerous sets of planar deformation features (PDF's) identical to the nondecorated PDF's seen in laboratory samples and many natural impactites. TEM study showed that the PDF's in quartz and feldspar corresponded to densely packed wide transformation lamellae identical to those described in laboratory studies. The transformation lamellae in both minerals were amorphous, with no sign of high-pressure phases. In the case of K-feldspar only, narrow sublamellae extended outward from some wide lamellae. Quartz, which was more abundant and studied more extensively, contained no shock-induced dislocations. Some planar features were also seen in cordierite, but could not be identified due to rapid beam damage. No shock defects were seen in hornblende in TEM. The shock-induced defects present at the Sedan site are very similar to those seen in shock recovery experiments, and also to those present at certain natural events (e.g., Meteor Crater). This suggests that shock deformation in quartz is not strongly dependent on shock pulse duration, and that laboratory recovery experiments are useful simulations of natural impact events.

  18. Universal hydrodynamic flow in holographic planar shock collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesler, Paul M.; Kilbertus, Niki; van der Schee, Wilke

    2015-11-20

    We study the collision of planar shock waves in AdS 5 as a function of shock profile. In the dual field theory the shock waves describe planar sheets of energy whose collision results in the formation of a plasma which behaves hydrodynamically at late times. We find that the post-collision stress tensor near the light cone exhibits transient non-universal behavior which depends on both the shock width and the precise functional form of the shock profile. However, over a large range of shock widths, including those which yield qualitative different behavior near the future light cone, and for different shockmore » profiles, we find universal behavior in the subsequent hydrodynamic evolution. In addition, we compute the rapidity distribution of produced particles and find it to be well described by a Gaussian.« less

  19. Shock-induced perturbation evolution in planar laser targets

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Kessler, T. J.; Schmitt, A. J.; Obenschain, S. P.; Metzler, N.; Oh, J.

    2013-10-01

    Experimental studies of hydrodynamic perturbation evolution triggered by a laser-driven shock wave in a planar target done on the KrF Nike laser facility are reported. The targets were made of solid plastic and/or plastic foam with single mode sinusoidal perturbation on the front or back surface or plastic/foam interface. Two specific cases are discussed. When a planar solid plastic target rippled at the front side is irradiated with a 350 ps long laser pulse, ablative Richtmyer-Meshkov (RM) oscillation of its areal mass modulation amplitude is detected while the laser is on, followed by observed strong oscillations of the areal mass in the unsupported shock flow after the laser pulse ends. When the target is rippled at the rear side, the nature of the perturbation evolution after the shock breakout is determined by the strength of the laser-driven shock wave. At pressure below 1 Mbar shock interaction with rear-surface ripples produces planar collimated jets manifesting the development of a classical RM instability in a weakly compressible shocked fluid. At shock pressure ~ 8 Mbar sufficient for vaporizing the shocked target material we observed instead the strong areal mass oscillations characteristic of a rippled centered rarefaction wave. Work supported by US DOE, Defense Programs.

  20. Dynamic structure of confined shocks undergoing sudden expansion

    NASA Astrophysics Data System (ADS)

    Abate, G.; Shyy, W.

    2002-01-01

    The gas dynamic phenomenon associated with a normal shock wave within a tube undergoing a sudden area expansion consists of highly transient flow and diffraction that give rise to turbulent, compressible, vortical flows. These interactions can occur at time scales typically ranging from micro- to milliseconds. In this article, we review recent experimental and numerical results to highlight the flow phenomena and main physical mechanisms associated with this geometry. The topics addressed include time-accurate shock and vortex locations, flowfield evolution and structure, wall-shock Mach number, two- vs. three-dimensional sudden expansions, and the effect of viscous dissipation on planar shock-front expansions. Between axisymmetric and planar geometries, the flow structure evolves very similarly early on in the sudden expansion process (i.e., within the first two shock tube diameters). Both numerical and experimental studies confirm that the trajectory of the vortex formed at the expansion corner is convected into the flowfield faster in the axisymmetric case than the planar case. The lateral propagation of the vortices correlates very well between axisymmetric and planar geometries. In regard to the rate of dissipation of turbulent kinetic energy (TKE) for a two-dimensional planar shock undergoing a sudden expansion within a confined chamber, calculations show that the solenoidal dissipation is confined to the region of high strain rates arising from the expansion corner. Furthermore, the dilatational dissipation is concentrated mainly at the curvature of the incident, reflected, and barrel shock fronts. The multiple physical mechanisms identified, including shock-strain rate interaction, baroclinic effect, vorticity generation, and different aspects of viscous dissipation, have produced individual and collective flow structures observed experimentally.

  1. A Experimental Study of Fluctuating Pressure Loads Beneath Swept Shock Wave/boundary Layer Interactions

    NASA Astrophysics Data System (ADS)

    Garg, Sanjay

    An experimental research program providing basic knowledge and establishing a database on the fluctuating pressure loads produced on aerodynamic surfaces beneath three-dimensional shock wave/boundary layer interactions is described. Such loads constitute a fundamental problem of critical concern to future supersonic and hypersonic flight vehicles. A turbulent boundary layer on a flat plate is subjected to interactions with swept planar shock waves generated by sharp fins. Fin angles from 10 ^circ to 20^circ at freestream Mach numbers of 3 and 4 produce a variety of interaction strengths from weak to very strong. Miniature pressure transducers flush-mounted in the flat plate have been used to measure interaction-induced wall pressure fluctuations. The distributions of properties of the pressure fluctuations, such as their rms level, amplitude distribution and power spectra, are also determined. Measurements have been made for the first time in the aft regions of these interactions, revealing fluctuating pressure levels as high as 155 dB, which places them in the category of significant aeroacoustic load generators. The fluctuations near the foot of the fin are dominated by low frequency (0-5 kHz) components, and are caused by a previously unrecognized random motion of the primary attachment line. This phenomenon is probably intimately linked to the unsteadiness of the separation shock at the start of the interaction. The characteristics of the pressure fluctuations are explained in light of the features of the interaction flowfield. In particular, physical mechanisms responsible for the generation of high levels of surface pressure fluctuations are proposed based on the results of the study. The unsteadiness of the flowfield of the surface is also examined via a novel, non-intrusive optical technique. Results show that the entire shock structure generated by the interaction undergoes relatively low-frequency oscillations.

  2. Shock Response of Lightweight Adobe Masonry

    NASA Astrophysics Data System (ADS)

    Sauer, C.; Bagusat, F.; Heine, A.; Riedel, W.

    2018-06-01

    The behavior of a low density and low-strength building material under shock loading is investigated. The considered material is lightweight adobe masonry characterized by a density of 1.2 g/cm3 and a quasi-static uniaxial compressive strength of 2.8 MPa. Planar-plate-impact (PPI) tests with velocities in between 295 and 950 m/s are performed in order to obtain Hugoniot data and to derive parameters for an equation of state (EOS) that captures the occurring phenomenology of porous compaction and subsequent unloading. The resulting EOS description is validated by comparing the experimental free surface velocity time curves with those obtained by numerical simulations of the performed PPI tests. The non-linear compression behavior, including the pore compaction mechanism, constitutes a main ingredient for modelling the response of adobe to blast and high-velocity impact loading. We hence present a modeling approach for lightweight adobe which can be applied to such high rate loading scenarios in future studies. In general, this work shows that PPI tests on lightweight and low-strength geological materials can be used to extract Hugoniot data despite significant material inhomogeneity. Furthermore, we demonstrate that a homogenous material model is able to numerically describe such a material under shock compression and release with a reasonable accuracy.

  3. Shock Response of Lightweight Adobe Masonry

    NASA Astrophysics Data System (ADS)

    Sauer, C.; Bagusat, F.; Heine, A.; Riedel, W.

    2018-04-01

    The behavior of a low density and low-strength building material under shock loading is investigated. The considered material is lightweight adobe masonry characterized by a density of 1.2 g/cm3 and a quasi-static uniaxial compressive strength of 2.8 MPa. Planar-plate-impact (PPI) tests with velocities in between 295 and 950 m/s are performed in order to obtain Hugoniot data and to derive parameters for an equation of state (EOS) that captures the occurring phenomenology of porous compaction and subsequent unloading. The resulting EOS description is validated by comparing the experimental free surface velocity time curves with those obtained by numerical simulations of the performed PPI tests. The non-linear compression behavior, including the pore compaction mechanism, constitutes a main ingredient for modelling the response of adobe to blast and high-velocity impact loading. We hence present a modeling approach for lightweight adobe which can be applied to such high rate loading scenarios in future studies. In general, this work shows that PPI tests on lightweight and low-strength geological materials can be used to extract Hugoniot data despite significant material inhomogeneity. Furthermore, we demonstrate that a homogenous material model is able to numerically describe such a material under shock compression and release with a reasonable accuracy.

  4. Ballistic properties of ejecta from a laser shock-loaded groove: smoothed particles hydrodynamics compared with experiments

    NASA Astrophysics Data System (ADS)

    Roland, Caroline; de Resseguier, Thibaut; Sollier, Arnaud; Lescoute, Emilien; Tangiang, Diouwel; Toulminet, Marc; Soulard, Laurent

    2017-06-01

    The interaction of a shock wave with a rough free surface may lead to micrometric material ejection of high velocity (km/s-order). This microjetting phenomenon is a key issue for many applications, such as industrial safety, pyrotechnics or inertial confinement fusion experiments. We have studied this process from single V-shaped grooves of various angles in copper and tin samples shock-loaded by a high energy laser. Experimental details are presented elsewhere in this conference [T. de Rességuier, C. Roland et al., abstract #000154]. As the Smoothed Particles Hydrodynamics formulation is well-suited for the high strains involved in jet expansion and for subsequent fragmentation, this mesh-free method was chosen to simulate microjetting. Computed predictions are compared to experimental results including jet tip and planar surface velocities, spall fracture, and size distribution of the fragments inferred from both fast shadowgraphy and post-recovery observations. Special focus is made on the dependence of the ballistic properties (velocity and mass distributions) of the ejecta on numerical parameters such as the initial inter-particular distance, the smoothing length and a random noise introduced to simulate inner irregularities of the material.

  5. Three sets of crystallographic sub-planar structures in quartz formed by tectonic deformation

    NASA Astrophysics Data System (ADS)

    Derez, Tine; Pennock, Gill; Drury, Martyn; Sintubin, Manuel

    2016-05-01

    In quartz, multiple sets of fine planar deformation microstructures that have specific crystallographic orientations parallel to planes with low Miller-Bravais indices are commonly considered as shock-induced planar deformation features (PDFs) diagnostic of shock metamorphism. Using polarized light microscopy, we demonstrate that up to three sets of tectonically induced sub-planar fine extinction bands (FEBs), sub-parallel to the basal, γ, ω, and π crystallographic planes, are common in vein quartz in low-grade tectonometamorphic settings. We conclude that the observation of multiple (2-3) sets of fine scale, closely spaced, crystallographically controlled, sub-planar microstructures is not sufficient to unambiguously distinguish PDFs from tectonic FEBs.

  6. A broadband proton backlighting platform to probe shock propagation in low-density systems

    DOE PAGES

    Sio, H.; Hua, R.; Ping, Y.; ...

    2017-01-17

    A proton backlighting platform has been developed for the study of strong shock propagation in low-density systems in planar geometry. Electric fields at the converging shock front in inertial confinement fusion implosions have been previously observed, demonstrating the presence of—and the need to understand—strong electric fields not modeled in standard radiation-hydrodynamic simulations. In this planar configuration, long-pulse ultraviolet lasers are used to drive a strong shock into a gas-cell target, while a short-pulse proton backlighter side-on radiographs the shock propagation. Finally, the capabilities of the platform are presented here. Future experiments will vary shock strength and gas fill, to probemore » shock conditions at different Z and T e.« less

  7. NPS Gas Gun for Planar Impact Studies

    NASA Astrophysics Data System (ADS)

    Cheong Ho, Chien; Hixson, Robert

    2009-11-01

    The Naval Postgraduate School (NPS) commissioned a Gas Gun for shock wave studies on 9^th October 2009, by performing the first experiment. The Gas Gun is the key element of NPS Shock Wave Research Program within the Physics Department, where well-characterized planar impacts are essential for obtaining high quality data, to characterize a solid material. This first experiment was very successful, and returned key data on the quality of the impact conditions created. The Gas Gun is designed by SANDIA NATIONAL LABORATORIES, and the NPS spent twelve months fabricating the components of the Gas Gun and six months assembling the Gas Gun. Three inch projectile are launched at velocities up to 0.5 km/s, creating high pressure and temperature states that can be used to characterize the fundamental response of relevant materials to dynamic loading. The projectile is launched from a `wrap around' gas breech where helium gas is pressurized to relatively low pressure. This gas is used to accelerate the projectile down a 3m barrel. Upon impact, the speed of the projectile and the flatness of the impact is measured, via a stepped circular pin array circuit. The next stage of development for the Gas Gun is to integrate a Velocity Interferometer System for Any Reflector (VISAR). The VISAR sees all the waves that flow through the target plate as a result of the impact. This is a key diagnostic for determining material properties under dynamic loading conditions.

  8. Plasma ion stratification by weak planar shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simakov, Andrei N.; Keenan, Brett D.; Taitano, William T.

    We derive fluid equations for describing steady-state planar shocks of a moderate strength (0 < M - 1 ≲ 1 with M the shock Mach number) propagating through an unmagnetized quasineutral collisional plasma comprising two separate ion species. In addition to the standard fluid shock quantities, such as the total mass density, mass-flow velocity, and electron and average ion temperatures, the equations describe shock stratification in terms of variations in the relative concentrations and temperatures of the two ion species along the shock propagation direction. We have solved these equations analytically for weak shocks (0 < M - 1 <

  9. Plasma ion stratification by weak planar shocks

    NASA Astrophysics Data System (ADS)

    Simakov, Andrei N.; Keenan, Brett D.; Taitano, William T.; Chacón, Luis

    2017-09-01

    We derive fluid equations for describing steady-state planar shocks of a moderate strength ( 0

  10. Plasma ion stratification by weak planar shocks

    DOE PAGES

    Simakov, Andrei N.; Keenan, Brett D.; Taitano, William T.; ...

    2017-08-01

    We derive fluid equations for describing steady-state planar shocks of a moderate strength (0 < M - 1 ≲ 1 with M the shock Mach number) propagating through an unmagnetized quasineutral collisional plasma comprising two separate ion species. In addition to the standard fluid shock quantities, such as the total mass density, mass-flow velocity, and electron and average ion temperatures, the equations describe shock stratification in terms of variations in the relative concentrations and temperatures of the two ion species along the shock propagation direction. We have solved these equations analytically for weak shocks (0 < M - 1 <

  11. A planar shock isolation system with high-static-low-dynamic-stiffness characteristic based on cables

    NASA Astrophysics Data System (ADS)

    Ma, Yanhui; He, Minghua; Shen, Wenhou; Ren, Gexue

    2015-12-01

    In this paper, a simple and designable shock isolation system with ideal high-static-low-dynamic-stiffness (HSLDS) is proposed, which is intended for the horizontal plane shock isolation application. In this system, the isolated object is suspended by several bearing cables and constrained by a number of uniformly distributed pretensioned cables in the horizontal plane, where the low dynamic stiffness of the system is main controlled by the pretension of the planar cables, whilst the high static stiffness is determined by the axial stiffness of the planar cables and their geometric settings. To obtain the HSLDS characteristic of the system, a brief theoretical description of the relationship between the restoring force and displacement is derived. By obtaining the three-order Taylor expansion with sufficient accuracy of the restoring force, influence of planar cable parameters on the low dynamic and high static stiffness is thus given, therefore, the required HSLDS isolator can be easily designed by adjusting the planar cable length, pretension and tensile stiffness. Finally, the isotropy characteristic of the restoring force of the system with different numbers of planar cables is investigated. To evaluate the performance of the system, a rigid isolated object and flexible cables coupling simulation model considering the contacts of the system is established by using multibody dynamics approach. In this model, flexible cables are simulated by 3-node cable element based on the absolute nodal coordinate formulation; the contact between cable and isolated object is simulated based on Hertz contact theory. Finally, the time-domain shock excitation is converted from the design shock spectrum on the basis of BV043/85 criterion. The design procedure of this isolator and some useful guidelines for choosing cable parameters are presented. In addition, a summary about the performance of the isolators with different numbers of cables shocking in an arbitrary direction is given in the conclusion.

  12. Experimental Study of Shock-Induced Compression and Vortex Generation in the Shock-Bubble Interaction

    NASA Astrophysics Data System (ADS)

    Ranjan, Devesh; Motl, Bradley; Niederhaus, John; Oakley, Jason; Anderson, Mark; Bonazza, Riccardo; Greenough, Jeffrey

    2006-11-01

    Results are presented from experiments studying the interaction of a planar shock wave of strength 1.4

  13. Shocked quartz in the cretaceous-tertiary boundary clays: Evidence for a global distribution

    USGS Publications Warehouse

    Bohor, B.F.; Modreski, P.J.; Foord, E.E.

    1987-01-01

    Shocked quartz grains displaying planar features were isolated from Cretaceous-Tertiary boundary days at five sites in Europe, a core from the north-central Pacific Ocean, and a site in New Zealand. At all of these sites, the planar features in the shocked quartz can be indexed to rational crystallographic planes of the quartz lattice. The grains display streaking indicative of shock in x-ray diffraction photographs and also show reduced refractive indices. These characteristic features of shocked quartz at several sites worldwide confirm that an impact event at the Cretaceous-Tertiary boundary distributed ejecta products in an earth-girdling dust cloud, as postulated by the Alvarez impact hypothesis.

  14. An Experimental Study of Nonstationary Instabilities of Planar Shock Waves in Ionizing Argon

    DTIC Science & Technology

    1980-08-01

    Distribution is unlimited. A. D. BLOSS Technioal Information Ottoer AN EPERIMeNTAL STUDY OF NONSTATIONARY INSTABILTIES OF PLANAR SHOCK WAVES IN IONIZIG...UTIAS hypervelocity shock tube are performed with the aid of a 23-cm dia aperture Mach-Zehnder interferometer. Details of the design and operation of...and the Q-switching, and normally is designed to be 900 us for optimal single-exposure photos. A different value of t = 500 us was used for some of the

  15. H2 emission from non-stationary magnetized bow shocks

    NASA Astrophysics Data System (ADS)

    Tram, L. N.; Lesaffre, P.; Cabrit, S.; Gusdorf, A.; Nhung, P. T.

    2018-01-01

    When a fast moving star or a protostellar jet hits an interstellar cloud, the surrounding gas gets heated and illuminated: a bow shock is born that delineates the wake of the impact. In such a process, the new molecules that are formed and excited in the gas phase become accessible to observations. In this paper, we revisit models of H2 emission in these bow shocks. We approximate the bow shock by a statistical distribution of planar shocks computed with a magnetized shock model. We improve on previous works by considering arbitrary bow shapes, a finite irradiation field and by including the age effect of non-stationary C-type shocks on the excitation diagram and line profiles of H2. We also examine the dependence of the line profiles on the shock velocity and on the viewing angle: we suggest that spectrally resolved observations may greatly help to probe the dynamics inside the bow shock. For reasonable bow shapes, our analysis shows that low-velocity shocks largely contribute to H2 excitation diagram. This can result in an observational bias towards low velocities when planar shocks are used to interpret H2 emission from an unresolved bow. We also report a large magnetization bias when the velocity of the planar model is set independently. Our 3D models reproduce excitation diagrams in BHR 71 and Orion bow shocks better than previous 1D models. Our 3D model is also able to reproduce the shape and width of the broad H2 1-0S(1) line profile in an Orion bow shock (Brand et al. 1989).

  16. Shock wave response of a zirconium-based bulk metallic glass and its composite

    NASA Astrophysics Data System (ADS)

    Zhuang, Shiming; Lu, Jun; Ravichandran, Guruswami

    2002-06-01

    A zirconium-based bulk metallic glass, Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit 1), and its composite, Zr56.3Ti13.8Cu6.9Ni5.6Nb5.0Be12.5 (beta-Vit), were subjected to planar impact loading. A surprisingly low amplitude elastic precursor and bulk wave, corresponding to the elastic response of the "frozen structure" of the intact metallic glasses, were observed to precede the rate-dependent large deformation shock wave. A concave downward curvature after the initial increase of the Us-Up shock Hugoniots suggests that a phase-change-like transition occurred during shock compression. Further, compression damage occurred due to the shear localization. The spalling in Vit 1 was induced by shear localization, while in beta-Vit, it was due to debonding of the beta-phase boundary from the matrix. The spall strengths at strain rate of 2 x106 s-1 were determined to be 2.35 and 2.11 GPa for Vit 1 and beta-Vit, respectively.

  17. Plasma Ion Stratification by Weak Planar Shocks

    NASA Astrophysics Data System (ADS)

    Simakov, A. N.; Keenan, B. D.; Taitano, W. T.; Chacón, L.

    2017-10-01

    We derive fluid equations for describing steady-state planar shocks of a moderate strength (0

  18. Astrophysical Connections to Collapsing Radiative Shock Experiments

    NASA Astrophysics Data System (ADS)

    Reighard, A. B.; Hansen, J. F.; Bouquet, S.; Koenig, M.

    2005-10-01

    Radiative shocks occur in many high-energy density explosions, but prove difficult to create in laboratory experiments or to fully model with astrophysical codes. Low astrophysical densities combined with powerful explosions provide ideal conditions for producing radiative shocks. Here we describe an experiment significant to astrophysical shocks, which produces a driven, planar radiative shock in low density Xe gas. Including radiation effects precludes scaling experiments directly to astrophysical conditions via Euler equations, as can be done in purely hydrodynamic experiments. We use optical depth considerations to make comparisons between the driven shock in xenon and specific astrophysical phenomena. This planar shock may be subject to thin shell instabilities similar to those affecting the evolution of astrophysical shocks. This research was sponsored by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Research Grants DE-FG52-03NA00064, DE-FG53-2005-NA26014, and other grants and contracts.

  19. On the residual yield stress of shocked metals

    NASA Astrophysics Data System (ADS)

    Chapman, David; Eakins, Daniel; Savinykh, Andrey; Garkushin, Gennady; Kanel, Gennady; Razorenov, Sergey

    2013-06-01

    The measurement of the free-surface velocity is commonly employed in planar shock-compression experiments. It is known that the peak free-surface velocity of a shocked elastic-plastic material should be slightly less than twice the particle velocity behind shock front; this difference being proportional to the yield stress. Precise measurement of the free-surface velocity can be a rich source of information on the effects of time and strain on material hardening or softening. With this objective, we performed comparative measurements of the free-surface velocity of shock loaded aluminium AD1 and magnesium alloy Ma2 samples of various thicknesses in the range 0.2 mm to 5 mm. We observed the expected hysteresis in the elastic-plastic compression-unloading cycle for both AD1 and Ma2; where qualitatively the peak free-surface velocity increased with increasing specimen thickness. However, the relative change in magnitude of hysteresis as function of specimen thickness observed for the Ma2 alloy was smaller than expected given the large observed change in precursor magnitude. We propose that softening due to multiplication of dislocations is relatively large in Ma2 and results in a smaller hysteresis in the elastic-plastic cycle.

  20. Emergence of power-law scalings in shock-driven mixing transition

    NASA Astrophysics Data System (ADS)

    Vorobieff, Peter; Wayne, Patrick; Olmstead, Dell; Simons, Dylan; Truman, C. Randall; Kumar, Sanjay

    2016-11-01

    We present an experimental study of transition to turbulence due to shock-driven instability evolving on an initially cylindrical, diffuse density interface between air and a mixture of sulfur hexafluoride (SF6) and acetone. The plane of the shock is at an initial angle θ with the axis of the heavy-gas cylinder. We present the cases of planar normal (θ = 0) and oblique (θ =20°) shock interaction with the initial conditions. Flow is visualized in two perpendicular planes with planar laser-induced fluorescence (PLIF) triggered in acetone with a pulsed ultraviolet laser. Statistics of the flow are characterized in terms of the second-order structure function of the PLIF intensity. As instabilities in the flow evolve, the structure functions begin to develop power-law scalings, at late times manifesting over a range of scales spanning more than two orders of magnitude. We discuss the effects of the initial conditions on the emergence of these scalings, comparing the fully three-dimensional case (oblique shock interaction) with the quasi-two-dimensional case (planar normal shock interaction). We also discuss the flow anisotropy apparent in statistical differences in data from the two visualization planes. This work is funded by NNSA Grant DE-NA0002913.

  1. Simulation of Ejecta Production and Mixing Process of Sn Sample under shock loading

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Chen, Dawei; Sun, Haiquan; Ma, Dongjun

    2017-06-01

    Ejection may occur when a strong shock wave release at the free surface of metal material and the ejecta of high-speed particulate matter will be formed and further mixed with the surrounding gas. Ejecta production and its mixing process has been one of the most difficult problems in shock physics remain unresolved, and have many important engineering applications in the imploding compression science. The present paper will introduce a methodology for the theoretical modeling and numerical simulation of the complex ejection and mixing process. The ejecta production is decoupled with the particle mixing process, and the ejecta state can be achieved by the direct numerical simulation for the evolution of initial defect on the metal surface. Then the particle mixing process can be simulated and resolved by a two phase gas-particle model which uses the aforementioned ejecta state as the initial condition. A preliminary ejecta experiment of planar Sn metal Sample has validated the feasibility of the proposed methodology.

  2. Shock-initiated Combustion of a Spherical Density Inhomogeneity

    NASA Astrophysics Data System (ADS)

    Haehn, Nicholas; Oakley, Jason; Rothamer, David; Anderson, Mark; Ranjan, Devesh; Bonazza, Riccardo

    2010-11-01

    A spherical density inhomogeneity is prepared using fuel and oxidizer at a stoichiometric ratio and Xe as a diluent that increases the overall density of the bubble mixture (55% Xe, 30% H2, 15% O2). The experiments are performed in the Wisconsin Shock Tube Laboratory in a 9.2 m vertical shock tube with a 25.4 cm x 25.4 cm square cross-section. An injector is used to generate a 5 cm diameter soap film bubble filled with the combustible mixture. The injector retracts flush into the side of the tube releasing the bubble into a state of free fall. The combustible bubble is accelerated by a planar shock wave in N2 (2.0 < M < 2.8). The mismatch of acoustic impedances results in shock-focusing at the downstream pole of the bubble. The shock focusing results in localized temperatures and pressures significantly larger than nominal conditions behind a planar shock wave, resulting in auto-ignition at the focus. Planar Mie scattering and chemiluminescence are used simultaneously to visualize the bubble morphology and combustion characteristics. During the combustion phase, both the span-wise and stream-wise lengths of the bubble are seen to increase compared to the non-combustible scenario. Additionally, smaller instabilities are observed on the upstream surface, which are absent in the non-combustible bubbles.

  3. Diffraction of a shock wave by a compression corner; regular and single Mach reflection

    NASA Technical Reports Server (NTRS)

    Vijayashankar, V. S.; Kutler, P.; Anderson, D.

    1976-01-01

    The two dimensional, time dependent Euler equations which govern the flow field resulting from the injection of a planar shock with a compression corner are solved with initial conditions that result in either regular reflection or single Mach reflection of the incident planar shock. The Euler equations which are hyperbolic are transformed to include the self similarity of the problem. A normalization procedure is employed to align the reflected shock and the Mach stem as computational boundaries to implement the shock fitting procedure. A special floating fitting scheme is developed in conjunction with the method of characteristics to fit the slip surface. The reflected shock, the Mach stem, and the slip surface are all treated as harp discontinuities, thus, resulting in a more accurate description of the inviscid flow field. The resulting numerical solutions are compared with available experimental data and existing first-order, shock-capturing numerical solutions.

  4. Hydrodynamic growth and decay of planar shock waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriz, A. R., E-mail: roberto.piriz@uclm.es; Sun, Y. B.; Tahir, N. A.

    2016-03-15

    A model for the hydrodynamic attenuation (growth and decay) of planar shocks is presented. The model is based on the approximate integration of the fluid conservation equations, and it does not require the heuristic assumptions used in some previous works. A key issue of the model is that the boundary condition on the piston surface is given by the retarded pressure, which takes into account the transit time of the sound waves between the piston and any position at the bulk of the shocked fluid. The model yields the shock pressure evolution for any given pressure pulse on the piston,more » as well as the evolution of the trajectories, velocities, and accelerations on the shock and piston surfaces. An asymptotic analytical solution is also found for the decay of the shock wave.« less

  5. A search for shocked quartz grains in the Allerød-Younger Dryas boundary layer

    NASA Astrophysics Data System (ADS)

    Hoesel, Annelies; Hoek, Wim Z.; Pennock, Gillian M.; Kaiser, Knut; Plümper, Oliver; Jankowski, Michal; Hamers, Maartje F.; Schlaak, Norbert; Küster, Mathias; Andronikov, Alexander V.; Drury, Martyn R.

    2015-03-01

    The Younger Dryas impact hypothesis suggests that multiple airbursts or extraterrestrial impacts occurring at the end of the Allerød interstadial resulted in the Younger Dryas cold period. So far, no reproducible, diagnostic evidence has, however, been reported. Quartz grains containing planar deformation features (known as shocked quartz grains), are considered a reliable indicator for the occurrence of an extraterrestrial impact when found in a geological setting. Although alleged shocked quartz grains have been reported at a possible Allerød-Younger Dryas boundary layer in Venezuela, the identification of shocked quartz in this layer is ambiguous. To test whether shocked quartz is indeed present in the proposed impact layer, we investigated the quartz fraction of multiple Allerød-Younger Dryas boundary layers from Europe and North America, where proposed impact markers have been reported. Grains were analyzed using a combination of light and electron microscopy techniques. All samples contained a variable amount of quartz grains with (sub)planar microstructures, often tectonic deformation lamellae. A total of one quartz grain containing planar deformation features was found in our samples. This shocked quartz grain comes from the Usselo palaeosol at Geldrop Aalsterhut, the Netherlands. Scanning electron microscopy cathodoluminescence imaging and transmission electron microscopy imaging, however, show that the planar deformation features in this grain are healed and thus likely to be older than the Allerød-Younger Dryas boundary. We suggest that this grain was possibly eroded from an older crater or distal ejecta layer and later redeposited in the European sandbelt. The single shocked quartz grain at this moment thus cannot be used to support the Younger Dryas impact hypothesis.

  6. Numerical modeling of the early interaction of a planar shock with a dense particle field

    NASA Astrophysics Data System (ADS)

    Regele, Jonathan; Blanquart, Guillaume

    2011-11-01

    Dense compressible multiphase flows are of interest for multiphase turbomachinary and energetic material detonations. Still, there is little understanding of the detailed interaction mechanisms between shock waves and dense (particle volume fraction αd > 0 . 001) particle fields. A recent experimental study [Wagner et al, AIAA Aero. Sci., Orlando, 2011-188] has focused on the impingement of a planar shock wave on a dense particle curtain. In the present work, numerical solutions of the Euler equations in one and two dimensions are performed for a planar shock wave impinging on a fixed particle curtain and are compared to the experimental data for early times. Comparison of the one- and two-dimensional results demonstrate that the one-dimensional description captures the large scale flow behavior, but is inadequate to capture all the details observed in the experiments. The two-dimensional solutions are shown to reproduce the experimentally observed flow structures and provide insight into how these details originate.

  7. Simultaneous measurements of concentration and velocity in the Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Reese, Dan; Ames, Alex; Noble, Chris; Oakley, Jason; Rothamer, David; Bonazza, Riccardo

    2017-11-01

    The Richtmyer-Meshkov instability (RMI) is studied experimentally in the Wisconsin Shock Tube Laboratory (WiSTL) using a broadband, shear layer initial condition at the interface between a helium-acetone mixture and argon. This interface (Atwood number A=0.7) is accelerated by either a M=1.6 or M=2.2 planar shock wave, and the development of the RMI is investigated through simultaneous planar laser-induced fluorescence (PLIF) and particle image velocimetry (PIV) measurements at the initial condition and four post-shock times. Three Reynolds stresses, the planar turbulent kinetic energy, the Taylor microscale are calculated from the concentration and velocity fields. The external Reynolds number is estimated from the Taylor scale and the velocity statistics. The results suggest that the flow transitions to fully developed turbulence by the third post-shock time for the high Mach number case, while it may not at the lower Mach number. The authors would like to acknowledge the support of the Department of Energy.

  8. Mineralogic evidence for an impact event at the cretaceous-tertiary boundary

    USGS Publications Warehouse

    Bohor, B.F.; Foord, E.E.; Modreski, P.J.; Triplehorn, Don M.

    1984-01-01

    A thin claystone layer found in nonmarine rocks at the palynological Cretaceous-Tertiary boundary in eastern Montana contains an anomalously high value of iridium. The nonclay fraction is mostly quartz with minor feldspar, and some of these grains display planar features. These planar features are related to specific crystallographic directions in the quartz lattice. The shocked quartz grains also exhibit asterism and have lowered refractive indices. All these mineralogical features are characteristic of shock metamorphism and are compelling evidence that the shocked grains are the product of a high velocity impact between a large extraterrestrial body and the earth. The shocked minerals represent silicic target material injected into the stratosphere by the impact of the projectile.

  9. Directional amorphization of boron carbide subjected to laser shock compression.

    PubMed

    Zhao, Shiteng; Kad, Bimal; Remington, Bruce A; LaSalvia, Jerry C; Wehrenberg, Christopher E; Behler, Kristopher D; Meyers, Marc A

    2016-10-25

    Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45∼50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B 4 C.

  10. Effect of Mesostructure and Fragmentation on Planar Shock Response of Dry Sand

    NASA Astrophysics Data System (ADS)

    Dwivedi, Sunil; Hatanpaa, Benjamin; Effs, Kijana; Ferri, Brian; Thadhani, Naresh

    2017-06-01

    The objective of the present work is to gain insight into the role of grain arrangements (mesostructure) and fragmentation on the shock response of dry sand under planar plate impact loading. Mesoscale simulations of the dry sand sample were carried out for initial porosities of 20% and 30% using CUBIT, LS-DYNA, and TECPLOT software. The mesostructure was varied as ordered (grains with edge contacts) and disordered (grains with point contacts) for the same porosity. The grain fragmentation was modeled by erosion method with erosion parameter of 0.5 and 0.75. The results show that computed Us-Up slope for 20% porosity with ordered mesostructure is negative at lower impact velocities and changes to positive when velocity is increased. However, the disordered mesostructure yields positive Us-Up slope at 20% porosity irrespective of the impact velocity. The Us-Up slope for 30% porous sand is positive irrespective of the mesostructure and impact velocity. More importantly, allowing grain fragmentation, the in-situ average longitudinal stress reduces from the computed Hugoniot stress by more than 25%. These results suggest the need for detailed simulations with varying mesostructure and more realistic fragmentation model as well experiments for a dry sand sample at lower porosities. Work supported by HDTRA-1-12-1-0004 and FA9550-12-1-0128 Grants.

  11. Criticality conditions of heterogeneous energetic materials under shock loading

    NASA Astrophysics Data System (ADS)

    Nassar, Anas; Rai, Nirmal Kumar; Sen, Oishik; Udaykumar, H. S.

    2017-06-01

    Shock interaction with the microstructural heterogeneities of energetic materials can lead to the formation of locally heated regions known as hot spots. These hot spots are the potential sites where chemical reaction may be initiated. However, the ability of a hot spot to initiate chemical reaction depends on its size, shape and strength (temperature). Previous study by Tarver et al. has shown that there exists a critical size and temperature for a given shape (spherical, cylindrical, and planar) of the hot spot above which reaction initiation is imminent. Tarver et al. assumed a constant temperature variation in the hot spot. However, the meso-scale simulations show that the temperature distribution within a hot spot formed from processes such as void collapse is seldom constant. Also, the shape of a hot spot can be arbitrary. This work is an attempt towards development of a critical hot spot curve which is a function of loading strength, duration and void morphology. To achieve the aforementioned goal, mesoscale simulations are conducted on porous HMX material. The process is repeated for different loading conditions and void sizes. The hot spots formed in the process are examined for criticality depending on whether they will ignite or not. The metamodel is used to obtain criticality curves and is compared with the critical hot spot curve of Tarver et al.

  12. Resolving Controversies Concerning the Kinetic Structure of Multi-Ion Plasma Shocks

    NASA Astrophysics Data System (ADS)

    Keenan, Brett; Simakov, Andrei; Chacon, Luis; Taitano, William

    2017-10-01

    Strong collisional shocks in multi-ion plasmas are featured in several high-energy-density environments, including Inertial Confinement Fusion (ICF) implosions. Yet, basic structural features of these shocks remain poorly understood (e.g., the shock width's dependence on the Mach number and the plasma ion composition, and temperature decoupling between ion species), causing controversies in the literature; even for stationary shocks in planar geometry [cf., Ref. and Ref.]. Using a LANL-developed, high-fidelity, 1D-2V Vlasov-Fokker-Planck code (iFP), as well as direct comparisons to multi-ion hydrodynamic simulations and semi-analytic predictions, we critically examine steady-state, planar shocks in two-ion species plasmas and put forward resolutions to these controversies. This work was supported by the Los Alamos National Laboratory LDRD Program, Metropolis Postdoctoral Fellowship for W.T.T., and used resources provided by the Los Alamos National Laboratory Institutional Computing Program.

  13. Interaction of rippled shock wave with flat fast-slow interface

    NASA Astrophysics Data System (ADS)

    Zhai, Zhigang; Liang, Yu; Liu, Lili; Ding, Juchun; Luo, Xisheng; Zou, Liyong

    2018-04-01

    The evolution of a flat air/sulfur-hexafluoride interface subjected to a rippled shock wave is investigated. Experimentally, the rippled shock wave is produced by diffracting a planar shock wave around solid cylinder(s), and the effects of the cylinder number and the spacing between cylinders on the interface evolution are considered. The flat interface is created by a soap film technique. The postshock flow and the evolution of the shocked interface are captured by a schlieren technique combined with a high-speed video camera. Numerical simulations are performed to provide more details of flows. The wave patterns of a planar shock wave diffracting around one cylinder or two cylinders are studied. The shock stability problem is analytically discussed, and the effects of the spacing between cylinders on shock stability are highlighted. The relationship between the amplitudes of the rippled shock wave and the shocked interface is determined in the single cylinder case. Subsequently, the interface morphologies and growth rates under different cases are obtained. The results show that the shock-shock interactions caused by multiple cylinders have significant influence on the interface evolution. Finally, a modified impulsive theory is proposed to predict the perturbation growth when multiple solid cylinders are present.

  14. Directional amorphization of boron carbide subjected to laser shock compression

    PubMed Central

    Zhao, Shiteng; Kad, Bimal; Remington, Bruce A.; LaSalvia, Jerry C.; Wehrenberg, Christopher E.; Behler, Kristopher D.; Meyers, Marc A.

    2016-01-01

    Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45∼50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B4C. PMID:27733513

  15. Directional amorphization of boron carbide subjected to laser shock compression

    DOE PAGES

    Zhao, Shiteng; Kad, Bimal; Remington, Bruce A.; ...

    2016-10-12

    Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. When using high-power pulsed-laser-driven shock compression, an unprecedented high strain rates can be achieved; we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45~50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. We also propose that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversionmore » calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B 4C.« less

  16. Planar shock reflection on a wedged concave reflector

    NASA Astrophysics Data System (ADS)

    Yu, Fan-Ming; Sheu, Kuen-Dong

    2001-04-01

    The investigation of shock reflection and shock diffraction phenomena upon a wedged concave reflector produced by a planar incident shock wave has been done in the shock tube facility of Institute of Aeronautics and Astronautics, National Cheng- Kung University. The experiment proceeds upon three wedged concave reflectors models the upper and lower wedge angles arrangement of them are (50 degrees, 50 degrees) - 35 degrees, 35 degrees) and (50 degrees, 35 degrees), respectively. They were tested at Mach numbers of 1.2 - 1.65 and 2.0. On the first reflector, following the regular reflection on the 50 degree-wedged surface by the incident shock wave, a Mach shock diffraction behavior has been observed as shock moves outward from the apex of the reflector. On the apex of the reflector, it behaviors as a sector of the blast shock moving on a diverging channel. On the shadowgraph pictures it has been observed there exists a pattern of gas dynamics focus upon the second reflector. The Mach reflection from the 35 degree- wedged surface as being generated by the planar incident shock wave, on which the overlapping of the two triple points from both wedged surface offers the focusing mechanism. The shock interference, which proceeds by the Mach shock reflection and the regular shock diffraction from the reflector, generates a very complicate rolling-up of slip lines system. On the third reflector, the mixed shock interference behavior has been observed of which two diffraction shocks from concave 50 degree-wedged surface and 35 degree-wedged surface interfere with each other. The measurement of the peak pressure along a ray from the model apex parallel to incident shock direction indicates that the measured maximum pressure rising is larger near the apex of the reflector. Considering the measured maximum pressure increment due to the reflection shocks indicate that the wave strength upon large apex angle reflector is greater than it is upon small apex angle reflector. However, as considering the measured maximum pressure increment following the diffraction shocks, the results show that due to the focusing process upon (35 degree, 35 degree) reflector, it is of the largest increment.

  17. Quartz-coesite-stishovite relations in shocked metaquartzites from the Vredefort impact structure, South Africa

    NASA Astrophysics Data System (ADS)

    Spray, John G.; Boonsue, Suporn

    2018-01-01

    Coesite and stishovite are developed in shock veins within metaquartzites beyond a radius of 30 km from the center of the 2.02 Ga Vredefort impact structure. This work focuses on deploying analytical field emission scanning electron microscopy, electron backscattered diffraction, and Raman spectrometry to better understand the temporal and spatial relations of these silica polymorphs. α-Quartz in the host metaquartzites, away from shock veins, exhibits planar features, Brazil twins, and decorated planar deformation features, indicating a primary (bulk) shock loading of >5 < 35 GPa. Within the shock veins, coesite forms anhedral grains, ranging in size from 0.5 to 4 μm, with an average of 1.25 μm. It occurs in clasts, where it displays a distinct jigsaw texture, indicative of partial reversion to a less dense SiO2 phase, now represented by microcrystalline quartz. It is also developed in the matrix of the shock veins, where it is typically of smaller size (<1 μm). Stishovite occurs as euhedral acicular crystals, typically <0.5 μm wide and up to 15 μm in length, associated with clast-matrix or shock vein margin-matrix interfaces. In this context, the needles occur as radiating or subparallel clusters, which grow into/over both coesite and what is now microcrystalline quartz. Stishovite also occurs as more blebby, subhedral to anhedral grains in the vein matrix (typically <1 μm). We propose a model for the evolution of the veins (1) precursory frictional melting in a microfault ( 1 mm wide) generates a molten matrix containing quartz clasts. This is followed by (2) arrival of the main shock front, which shocks to 35 GPa. This generates coesite in the clasts and in the matrix. (3) On initial shock release, the coesite partly reverts to a less dense SiO2 phase, which is now represented by microcrystalline quartz. (4) With continued release, stishovite forms euhedral needle clusters at solid-liquid interfaces and as anhedral crystals in the matrix. (5) With decreasing pressure-temperature, the matrix completes crystallization to yield a microcrystalline quasi-igneous texture comprising quartz-coesite-stishovite-kyanite-biotite-alkali feldspar and accessory phases. It is possible that the shock vein represents the locus of a thermal spike within the bulk shock, in which case there is no requirement for additional pressure (i.e., the bulk shock was ≃35 GPa). However, if that pressure was not realized from the main shock, then supplementary pressure excursions within the vein would have been required. These could have taken the form of localized reverberations from wave trapping, or implosion processes, including pore collapse, phase change-initiated volume reduction, and melt cavitation.

  18. The ortho:para-H_2 ratio in C- and J-type shocks

    NASA Astrophysics Data System (ADS)

    Wilgenbus, D.; Cabrit, S.; Pineau des Forêts, G.; Flower, D. R.

    2000-04-01

    We have computed extensive grids of models of both C- and J-type planar shock waves, propagating in dark, cold molecular clouds, in order to study systematically the behaviour of the ortho:para-H_2 ratio. Careful attention was paid to both macroscopic (dynamical) and microscopic (chemical reactions and collisional population transfer in H_2) aspects. We relate the predictions of the models to observational determinations of the ortho:para-H_2 ratio using both pure rotational lines and rovibrational lines. As an illustration, we consider ISO and ground-based H_2 observations of HH 54. Neither planar C-type nor planar J-type shocks appear able to account fully for these observations. Given the additional constraints provided by the observed ortho:para H_2 ratios, a C-type bowshock, or a C-type precursor followed by a J-type shock, remain as plausible models. Tables~2a-f and 4a-f are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

  19. Shock-driven transition to turbulence: Emergence of power-law scaling

    DOE PAGES

    Olmstead, D.; Wayne, P.; Simons, D.; ...

    2017-05-25

    Here, we consider two cases of interaction between a planar shock and a cylindrical density interface. In the first case (planar normal shock), the axis of the gas cylinder is parallel to the shock front and baroclinic vorticity deposited by the shock is predominantly two dimensional (directed along the axis of the cylinder). In the second case, the cylinder is tilted, resulting in an oblique shock interaction and a fully-three-dimensional shock-induced vorticity field. Furthermore, the statistical properties of the flow for both cases are analyzed based on images from two orthogonal visualization planes, using structure functions of the intensity mapsmore » of fluorescent tracer premixed with heavy gas. And at later times, these structure functions exhibit power-law-like behavior over a considerable range of scales. Manifestation of this behavior is remarkably consistent in terms of dimensionless time τ defined based on Richtmyer's linear theory within the range of Mach numbers from 1.1 to 2.0 and the range of gas cylinder tilt angles with respect to the plane of the shock front (0–30°).« less

  20. Experimental shock deformation in zircon: a transmission electron microscopic study

    NASA Astrophysics Data System (ADS)

    Leroux, H.; Reimold, W. U.; Koeberl, C.; Hornemann, U.; Doukhan, J.-C.

    1999-06-01

    In recent years, apparently shock-induced and, thus, impact-characteristic microdeformations, in the form of planar microdeformation features and so-called strawberry (granular) texture, have been observed in zircons in rocks from confirmed impact structures and from the K/ T boundary. The nature of the planar microdeformations in this mineral is, however, still unknown, and critical information is needed regarding the shock pressure range in which these deformation effects are produced. We experimentally shock deformed two series of thin zircon (ZrSiO 4) target plates, cut perpendicular to the c-axis, at shock pressures of 20, 40, and 60 GPa. The recovered samples were characterized by optical and scanning electron microscopy. In addition, one sample series was studied by transmission electron microscopy (TEM). Microdeformation effects observed at 20 GPa include pervasive micro-cleavage and dislocation patterns. Plastic deformation is indicated by a high density of straight dislocations in glide configuration. The dominant glide systems are <100>{010}. Micro-cleavages, induced by shear stresses during the compression stage, occur mostly in the {100} planes. The large density of dislocations at crack tips shows that plastic deformation was initiated by the micro-cracking processs. At 40 GPa, the sample was partly transformed from the zircon (z) to a scheelite (CaWO 4)-type (s) structure. Planar deformation features (PDFs) containing an amorphous phase of zircon composition are present in the not yet transformed zircon relics. The phase with scheelite structure, initiated in the {100} planes of zircon, consists of thin (0.1 to several μm) bands that crosscut the zircon matrix. The phase transformation is displacive (martensitic) and can be related by {100} z // {112} s and [001] z // <110> s. The scheelite structure phase is densely twinned, with twins in the (112) plane. The 60-GPa sample consists completely of the scheelite structure phase. Crosscutting and displacing relationships between twins and PDFs demonstrate that PDFs are formed in the zircon structure, i.e., before the phase transformation to the scheelite structure occurred, most likely at the shock front. Crystallographic orientations of optically visible planar features in zircon, in comparison with orientations of planar defects at the TEM scale, suggest that the optically visible features are more likely planar microfractures than PDFs.

  1. Dynamic electromechanical characterization of the ferroelectric ceramic PZT 95/5

    NASA Astrophysics Data System (ADS)

    Setchell, R. E.; Chhabildas, L. C.; Furnish, M. D.; Montgomery, S. T.; Holman, G. T.

    1998-07-01

    Shock-induced depoling of the ferroelectric ceramic PZT 95/5 has been utilized in pulsed power applications for many years. Recently, new design and certification requirements have generated a strong interest in numerically simulating the operation of pulsed power devices. Because of a scarcity of relevant experimental data obtained within the past twenty years, we have initiated an extensive experimental study of the dynamic behavior of this material in support of simulation efforts. The experiments performed to date have been limited to examining the behavior of unpoled material. Samples of PZT 95/5 have been shocked to axial stresses from 0.5 to 5.0 GPa in planar impact experiments. Impact face conditions have been recorded using PVDF stress gauges, and transmitted wave profiles have been recorded either at window interfaces or at a free surface using laser interferometry (VISAR). The results significantly extend the stresses examined in prior studies of unpoled material, and ensure that a comprehensive experimental characterization of the mechanical behavior under shock loading is available for continuing development of PZT 95/5 material models.

  2. High-temperature phase transformations: The properties of the phases under shock loading

    NASA Astrophysics Data System (ADS)

    Zaretsky, Eugene

    2012-03-01

    Introducing the temperature as a variable parameter in shock wave experiments extends essentially the scope of these investigations. The influence of the temperature variations on either high strain rate elastic-plastic response of solids or parameters of the shock induced phase transformations are not trivial and are not quite clear yet. The technique of VISAR-monitored planar impact experiments with the samples preheated up to 1400 K was developed and used for the studies of the effect of the preheating on the impact response and on the "dynamic" phase diagrams of pure metals (U, Ti, Fe, Co, Ag), and ionic compounds (KCl, KBr). The studies show that the increase of the shear strength of the shock-loaded metal with temperature (first reported by Kanel et al. 1996) is typical for pure FCC (Al, Ag, Cu) and some other (Sn, U) metals, and for the ionic crystals. In the metals with BCC lattice (Mo: Duffy and Ahrens 1994, Fe: Zaretsky 2009) such thermal hardening was not observed. It was found that when a pure element approaches the temperature of either a first or second order phase transition the result is a 50-100-% increase of the shear strength of the low-temperature phase. At the same time the presence of a small (~0.5 %) amount of impurities may lead to a five-fold decrease of the strength as it takes place in the vicinity of the Curie point of Ni. Applying the same technique to the study of shear stress relaxation (elastic precursor decay) near the transformation temperature may aid in understanding the mechanisms of these anomalies.

  3. Stress and Temperature Distributions of Individual Particles in a Shock Wave Propagating through Dry and Wet Sand Mixtures

    NASA Astrophysics Data System (ADS)

    Schumaker, Merit; Stewart, Sarah T.; Borg, John P.

    2015-06-01

    Determining stress and temperature distributions of dynamically compacted particles is of interest to the geophysical and astrological research communities. However, these particle interactions during a shock event are not easily observed in planar shock experiments; it is with the utilization of mesoscale simulations that these granular particle interactions can be unraveled. Unlike homogenous materials, the overall averaged hugoniot state for heterogeneous granular materials differs from the individual stress and temperature states of particles during a shock event. From planar shock experiments on dry and wet sand mixtures, simulations were constructed using CTH. A baseline dry sand simulation was also setup to be compared to sand grains that possessed water particles between grains. It is from these simulations that the distributions of stress and temperatures for individual sand and water particles are presented and compared in this document.

  4. An experimental investigation of the impingement of a planar shock wave on an axisymmetric body at Mach 3

    NASA Technical Reports Server (NTRS)

    Brosh, A.; Kussoy, M. I.

    1983-01-01

    An experimental study of the flow caused by a planar shock wave impinging obliquely on a cylinder is presented. The complex three dimensional shock wave and boundary layer interaction occurring in practical problems, such as the shock wave impingement from the shuttle nose on an external fuel tank, and store carriage interference on a supersonic tactical aircraft were investigated. A data base for numerical computations of complex flows was also investigated. The experimental techniques included pressure measurements and oil flow patterns on the surface of the cylinder, and shadowgraphs and total and static pressure surveys on the leeward and windward planes of symmetry. The complete data is presented in tabular form. The results reveal a highly complex flow field with two separation zones, regions of high crossflow, and multiple reflected shocks and expansion fans.

  5. Asymmetric twins in rhombohedral boron carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, Takeshi, E-mail: tfujita@wpi-aimr.tohoku.ac.jp; Guan, Pengfei; Madhav Reddy, K.

    2014-01-13

    Superhard materials consisting of light elements have recently received considerable attention because of their ultrahigh specific strength for a wide range of applications as structural and functional materials. However, the failure mechanisms of these materials subjected to high stresses and dynamic loading remain to be poorly known. We report asymmetric twins in a complex compound, boron carbide (B{sub 4}C), characterized by spherical-aberration-corrected transmission electron microscopy. The atomic structure of boron-rich icosahedra at rhombohedral vertices and cross-linked carbon-rich atomic chains can be clearly visualized, which reveals unusual asymmetric twins with detectable strains along the twin interfaces. This study offers atomic insightsmore » into the structure of twins in a complex material and has important implications in understanding the planar defect-related failure of superhard materials under high stresses and shock loading.« less

  6. Experimental investigation of the propagation of a planar shock wave through a two-phase gas-liquid medium

    NASA Astrophysics Data System (ADS)

    Chauvin, A.; Jourdan, G.; Daniel, E.; Houas, L.; Tosello, R.

    2011-11-01

    We conducted a series of shock tube experiments to study the influence of a cloud of water droplets on the propagation of a planar shock wave. In a vertically oriented shock tube, the cloud of droplets was released downwards into the air at atmospheric pressure while the shock wave propagated upwards. Two shock wave Mach numbers, 1.3 and 1.5, and three different heights of clouds, 150 mm, 400 mm, and 700 mm, were tested with an air-water volume fraction and a droplet diameter fixed at 1.2% and 500 μm, respectively. From high-speed visualization and pressure measurements, we analyzed the effect of water clouds on the propagation of the shock wave. It was shown that the pressure histories recorded in the two-phase gas-liquid mixture are different from those previously obtained in the gas-solid case. This different behavior is attributed to the process of atomization of the droplets, which is absent in the gas-solid medium. Finally, it was observed that the shock wave attenuation was dependent on the exchange surface crossed by the shock combined with the breakup criterion.

  7. Supersonic flow gradients at an overexpanded nozzle lip

    NASA Astrophysics Data System (ADS)

    Silnikov, M. V.; Chernyshov, M. V.

    2018-07-01

    The flowfield of a planar, overexpanded jet flow and an axisymmetric one are analyzed theoretically for a wide range of governing flow parameters (such as the nozzle divergence angle, the initial flow Mach number, the jet expansion ratio, and the ratio of specific heats). Significant differences are discovered between these parameters of the incident shock and the downstream flow for a planar jet and for an axisymmetric overexpanded jet flow. Incident shock curvature, shock strength variation, the geometrical curvature of the jet boundary, gradients of total and static pressure and Mach number, and flow vorticity parameters in post-shock flow are studied theoretically for non-separated nozzle flows. Flow parameters indicating zero and extrema values of these gradients are reported. Some theoretical results (such as concavities of incident shock and jet boundary, local decreases in the incident shock strength, increases and decreases in the static pressure, and the Mach number downstream of the incident shock) seem rather specific and non-evident at first sight. The theoretical results, achieved while using an inviscid flow model, are compared and confirmed with experimental data obtained by other authors.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olmstead, D.; Wayne, P.; Simons, D.

    Here, we consider two cases of interaction between a planar shock and a cylindrical density interface. In the first case (planar normal shock), the axis of the gas cylinder is parallel to the shock front and baroclinic vorticity deposited by the shock is predominantly two dimensional (directed along the axis of the cylinder). In the second case, the cylinder is tilted, resulting in an oblique shock interaction and a fully-three-dimensional shock-induced vorticity field. Furthermore, the statistical properties of the flow for both cases are analyzed based on images from two orthogonal visualization planes, using structure functions of the intensity mapsmore » of fluorescent tracer premixed with heavy gas. And at later times, these structure functions exhibit power-law-like behavior over a considerable range of scales. Manifestation of this behavior is remarkably consistent in terms of dimensionless time τ defined based on Richtmyer's linear theory within the range of Mach numbers from 1.1 to 2.0 and the range of gas cylinder tilt angles with respect to the plane of the shock front (0–30°).« less

  9. Complex flow morphologies in shock-accelerated gaseous flows

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Vorobieff, P.; Orlicz, G.; Palekar, A.; Tomkins, C.; Goodenough, C.; Marr-Lyon, M.; Prestridge, K. P.; Benjamin, R. F.

    2007-11-01

    A Mach 1.2 planar shock wave impulsively and simultaneously accelerates a row of three heavy gas (SF 6) cylinders surrounded by a lighter gas (air), producing pairs of vortex columns. The heavy gas cylinders (nozzle diameter D) are initially equidistant in the spanwise direction (center to center spacing S), with S/D=1.5. The interaction of the vortex columns is investigated with planar laser-induced fluorescence (PLIF) in the plane normal to the axes of the cylinders. Several distinct post-shock morphologies are observed, apparently due to rather small variations of the initial conditions. We report the variation of the streamwise and spanwise growth rates of the integral scales for these flow morphologies.

  10. Stress and temperature distributions of individual particles in a shock wave propagating through dry and wet sand mixtures

    NASA Astrophysics Data System (ADS)

    Schumaker, Merit G.; Kennedy, Gregory; Thadhani, Naresh; Hankin, Markos; Stewart, Sarah T.; Borg, John P.

    2017-01-01

    Determining stress and temperature distributions of dynamically compacted particles is of interest to the geophysical and astrological research communities. However, the researcher cannot easily observe particle interactions during a planar shock experiment. By using mesoscale simulations, we can unravel granular particle interactions. Unlike homogenous materials, the averaged Hugoniot state for heterogeneous granular materials differs from the individual stress and temperature states of particles during a shock event. From planar shock experiments for dry and water-saturated Oklahoma sand, we constructed simulations using Sandia National Laboratory code known as CTH and then compared these simulated results to the experimental results. This document compares and presents stress and temperature distributions from simulations, with a discussion on the difference between Hugoniot measurements and distribution peaks for dry and water-saturated sand.

  11. Experimental study on a heavy-gas cylinder accelerated by cylindrical converging shock waves

    NASA Astrophysics Data System (ADS)

    Si, T.; Zhai, Z.; Luo, X.; Yang, J.

    2014-01-01

    The Richtmyer-Meshkov instability behavior of a heavy-gas cylinder accelerated by a cylindrical converging shock wave is studied experimentally. A curved wall profile is well-designed based on the shock dynamics theory [Phys. Fluids, 22: 041701 (2010)] with an incident planar shock Mach number of 1.2 and a converging angle of in a mm square cross-section shock tube. The cylinder mixed with the glycol droplets flows vertically through the test section and is illuminated horizontally by a laser sheet. The images obtained only one per run by an ICCD (intensified charge coupled device) combined with a pulsed Nd:YAG laser are first presented and the complete evolution process of the cylinder is then captured in a single test shot by a high-speed video camera combined with a high-power continuous laser. In this way, both the developments of the first counter-rotating vortex pair and the second counter-rotating vortex pair with an opposite rotating direction from the first one are observed. The experimental results indicate that the phenomena induced by the converging shock wave and the reflected shock formed from the center of convergence are distinct from those found in the planar shock case.

  12. Color temperature measurement in laser-driven shock waves

    NASA Astrophysics Data System (ADS)

    Hall, T. A.; Benuzzi, A.; Batani, D.; Beretta, D.; Bossi, S.; Faral, B.; Koenig, M.; Krishnan, J.; Löautwer, Th.; Mahdieh, M.

    1997-06-01

    A simultaneous measurement of color temperature and shock velocity in laser-driven shocks is presented. The color temperature was measured from the target rear side emissivity, and the shock velocity by using stepped targets. A very good planarity of the shock was ensured by the phase zone plate smoothing technique. A simple model of the shock luminosity has been developed in order to estimate the shock temperature from the experimental rear side emissivity. Results have been compared to temperatures obtained from the shock velocity for a material of a known equation of state.

  13. Ion species stratification within strong shocks in two-ion plasmas

    DOE PAGES

    Keenan, Brett D.; Simakov, Andrei N.; Taitano, William T.; ...

    2018-03-01

    We report strong collisional shocks in multi-ion plasmas are featured in many environments, with Inertial Confinement Fusion (ICF) experiments being one prominent example. Recent work [Keenan et al., Phys. Rev. E 96, 053203 (2017)] answered in detail a number of outstanding questions concerning the kinetic structure of steady-state, planar plasma shocks, e.g., the shock width scaling by the Mach number, M. However, it did not discuss shock-driven ion-species stratification (e.g., relative concentration modification and temperature separation). These are important effects since many recent ICF experiments have evaded explanation by standard, single-fluid, radiation-hydrodynamic (rad-hydro) numerical simulations, and shock-driven fuel stratification likelymore » contributes to this discrepancy. Employing the state-of-the-art Vlasov-Fokker-Planck code, iFP, along with multi-ion hydro simulations and semi-analytics, we quantify the ion stratification by planar shocks with the arbitrary Mach number and the relative species concentration for two-ion plasmas in terms of ion mass and charge ratios. In particular, for strong shocks, we find that the structure of the ion temperature separation has a nearly universal character across ion mass and charge ratios. Lastly, we find that the shock fronts are enriched with the lighter ion species and the enrichment scales as M 4 for M»1.« less

  14. Ion species stratification within strong shocks in two-ion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keenan, Brett D.; Simakov, Andrei N.; Taitano, William T.

    We report strong collisional shocks in multi-ion plasmas are featured in many environments, with Inertial Confinement Fusion (ICF) experiments being one prominent example. Recent work [Keenan et al., Phys. Rev. E 96, 053203 (2017)] answered in detail a number of outstanding questions concerning the kinetic structure of steady-state, planar plasma shocks, e.g., the shock width scaling by the Mach number, M. However, it did not discuss shock-driven ion-species stratification (e.g., relative concentration modification and temperature separation). These are important effects since many recent ICF experiments have evaded explanation by standard, single-fluid, radiation-hydrodynamic (rad-hydro) numerical simulations, and shock-driven fuel stratification likelymore » contributes to this discrepancy. Employing the state-of-the-art Vlasov-Fokker-Planck code, iFP, along with multi-ion hydro simulations and semi-analytics, we quantify the ion stratification by planar shocks with the arbitrary Mach number and the relative species concentration for two-ion plasmas in terms of ion mass and charge ratios. In particular, for strong shocks, we find that the structure of the ion temperature separation has a nearly universal character across ion mass and charge ratios. Lastly, we find that the shock fronts are enriched with the lighter ion species and the enrichment scales as M 4 for M»1.« less

  15. Ion species stratification within strong shocks in two-ion plasmas

    NASA Astrophysics Data System (ADS)

    Keenan, Brett D.; Simakov, Andrei N.; Taitano, William T.; Chacón, Luis

    2018-03-01

    Strong collisional shocks in multi-ion plasmas are featured in many environments, with Inertial Confinement Fusion (ICF) experiments being one prominent example. Recent work [Keenan et al., Phys. Rev. E 96, 053203 (2017)] answered in detail a number of outstanding questions concerning the kinetic structure of steady-state, planar plasma shocks, e.g., the shock width scaling by the Mach number, M. However, it did not discuss shock-driven ion-species stratification (e.g., relative concentration modification and temperature separation). These are important effects since many recent ICF experiments have evaded explanation by standard, single-fluid, radiation-hydrodynamic (rad-hydro) numerical simulations, and shock-driven fuel stratification likely contributes to this discrepancy. Employing the state-of-the-art Vlasov-Fokker-Planck code, iFP, along with multi-ion hydro simulations and semi-analytics, we quantify the ion stratification by planar shocks with the arbitrary Mach number and the relative species concentration for two-ion plasmas in terms of ion mass and charge ratios. In particular, for strong shocks, we find that the structure of the ion temperature separation has a nearly universal character across ion mass and charge ratios. Additionally, we find that the shock fronts are enriched with the lighter ion species and the enrichment scales as M4 for M ≫ 1.

  16. Studies of Shock Wave Interaction with a Curtain of Massive Particles

    NASA Astrophysics Data System (ADS)

    Lingampally, Sumanth Reddy; Wayne, Patrick; Cooper, Sean; Izard, Ricardo Gonzalez; Jacobs, Gustaaf; Vorobieff, Peter

    2017-11-01

    Interaction of a shock wave with planar and perturbed curtain of massive particles is studied experimentally. To form the curtain, solid soda lime particles (30-50 micron diameter) are dropped from a hopper fitted with mesh sieves and vibrated with a motor. The curtain forms when the particles move through a rectangular slot in the top of the test section of the shock tube used in experiment. The curtain can be either planar or perturbed in the horizontal plane (parallel to the shock direction) based on the shape of the slot. This setup generates a particle curtain with a volume fraction varying between 2 and 8 percent along its vertical height. A laser illuminates the curtain in vertical and horizontal planes. When the diaphragm separating the driver and the driven section is ruptured, shock waves with Mach numbers ranging from 1 to 2, depending on the pressure, propagate down the driven section and into test section. The phenomena following the shock wave impingement on the particle curtain are captured using an Apogee Alta U42 camera. This work is supported by the National Science Foundation Grant 1603915/1603326.

  17. Planar blast scaling with condensed-phase explosives in a shock tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Scott L

    2011-01-25

    Blast waves are strong shock waves that result from large power density deposition into a fluid. The rapid energy release of high-explosive (HE) detonation provides sufficiently high power density for blast wave generation. Often it is desirable to quantify the energy released by such an event and to determine that energy relative to other reference explosives to derive an explosive-equivalence value. In this study, we use condensed-phase explosives to drive a blast wave in a shock tube. The explosive material and quantity were varied to produce blast waves of differing strengths. Pressure transducers at varying lengths measured the post-shock pressure,more » shock-wave arrival time and sidewall impulse associated with each test. Blast-scaling concepts in a one-dimensional geometry were then used to both determine the energy release associated with each test and to verify the scaling of the shock position versus time, overpressure versus distance, and impulse. Most blast scaling measurements to-date have been performed in a three-dimensional geometry such as a blast arena. Testing in a three-dimensional geometry can be challenging, however, as spherical shock-wave symmetry is required for good measurements. Additionally, the spherical wave strength decays rapidly with distance and it can be necessary to utilize larger (several kg) quantities of explosive to prevent significant decay from occurring before an idealized blast wave has formed. Such a mode of testing can be expensive, require large quantities of explosive, and be limited by both atmospheric conditions (such as rain) and by noise complaints from the population density near the test arena. Testing is possible in more compact geometries, however. Non-planar blast waves can be formed into a quasi-planar shape by confining the shock diffraction with the walls of a shock tube. Regardless of the initial form, the wave shape will begin to approximate a planar front after successive wave reflections from the tube walls. Such a technique has previously been used to obtain blast scaling measurements in the planar geometry with gaseous explosives and the condensed-phase explosive nitroguanidine. Recently, there has been much interest in the blast characterization of various non-ideal high explosive (NIHE) materials. With non-ideals, the detonation reaction zone is significantly larger (up to several cm for ANFO) than more ideal explosives. Wave curvature, induced by charge-geometry, can significantly affect the energy release associated with NIHEs. To measure maximum NIHE energy release accurately, it is desirable to minimize any such curvature and, if possible, to overdrive the detonation shock to ensure completion of chemical reactions ahead of the sonic locus associated with the reaction zone. This is achieved in the current study through use of a powerful booster HE and a charge geometry consisting of short cylindrical lengths of NIHE initiated along the charge centerline.« less

  18. Damping of hard excitations in strongly coupled $$ \\mathcal{N} $$ = 4 plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuini, John F.; Uhlemann, Christoph F.; Yaffe, Laurence G.

    2016-12-13

    The damping of high momentum excitations in strongly coupled maximally supersymmetric Yang-Mills plasma is studied. Previous calculations of the asymptotic behavior of the quasinormal mode spectrum are extended and clarified. We con rm that subleading corrections to the lightlike dispersion relation ω(q) = |q| have a universal |q| -1/3 form. Sufficiently narrow, weak planar shocks may be viewed as coherent superpositions of short wavelength quasinormal modes. The attenuation and evolution in profile of narrow planar shocks are examined as an application of our results.

  19. Numerical investigation of the interaction between a planar shock wave with square and triangular bubbles containing different gases

    NASA Astrophysics Data System (ADS)

    Igra, Dan; Igra, Ozer

    2018-05-01

    The interaction between a planar shock wave and square and triangular bubbles containing either SF6, He, Ar, or CO2 is studied numerically. It is shown that, due to the existing large differences in the molecular weight, the specific heat ratio, and the acoustic impedance between these gases, different wave patterns and pressure distribution inside the bubbles are developed during the interaction process. In the case of heavy gases, the velocity of the shock wave propagating along the bubble inner surface is always less than that of the incident shock wave and higher than that of the transmitted shock wave. However, in the case of the light gas (He), the fastest one is the transmitted shock wave and the slowest one is the incident shock wave. The largest pressure jump is witnessed in the SF6 case, while the smallest pressure jump is seen in the helium case. There are also pronounced differences in the deformation of the investigated bubbles; while triangular bubbles filled with either Ar, CO2, or SF6 were deformed to a crescent shape, the helium bubble is deformed to a trapezoidal shape with three pairs of vortices emanating from its surface.

  20. Spallation studies on shock loaded uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonks, D.L.; Hixson, R.; Gustavsen, R.L.

    1997-12-31

    Uranium samples at two different purity levels were used for spall strength measurements at three different stress levels. A 50 mm single-stage gas-gun was used to produce planar impact conditions using Z-cut quartz impactors. Samples of depleted uranium were taken from very high purity material and from material that had 300 ppm of carbon added. A pair of shots was done for each impact strength, one member of the pair with VISAR diagnostics and the second with soft recovery for metallographical examination. A series of increasing final stress states were chosen to effectively freeze the microstructural damage at three placesmore » in the development to full spall separation. This allowed determination of the dependence of spall mechanisms on stress level and sample purity. This report will discuss both the results of the metallurgical examination of soft recovered samples and the modeling of the free surface VISAR data. The micrographs taken from the recovered samples show brittle cracking as the spallation failure mechanism. Deformation induced twins are plentiful and obviously play a role in the spallation process. The twins are produced in the initial shock loading and, so, are present already before the fracture process begins. The 1 d characteristics code CHARADE has been used to model the free surface VISAR data.« less

  1. Dynamic Shock Response of an S2 Glass/SC15 Epoxy Woven Fabric Composite Material System

    NASA Astrophysics Data System (ADS)

    Key, Christopher; Alexander, Scott; Harstad, Eric; Schumacher, Shane

    2017-06-01

    The use of S2 glass/SC15 epoxy woven fabric composite materials for blast and ballistic protection has been an area of on-going research over the past decade. In order to accurately model this material system within potential applications under extreme loading conditions, a well characterized and well understood anisotropic equation of state (EOS) is needed. This work details both an experimental program and associated analytical modelling efforts which aim to provide better physical understanding of the anisotropic EOS behavior of this material. Experimental testing focused on planar shock impact tests loading the composite to peak pressures of 15 GPa in both the through-thickness and on-fiber orientation. Test results highlighted the anisotropic response of the material and provided a basis by which the associated numeric micromechanical investigation was compared. Results of the combined experimental and numerical modelling investigation provided insights into not only the constituent material influence on the composite response but also the importance of the geometrical configuration of the plain weave microstructure and the stochastic significance of the microstructural configuration. Sandia National Laboratories is a multi-mission laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  2. Planar and non-planar nucleus-acoustic shock structures in self-gravitating degenerate quantum plasma systems

    NASA Astrophysics Data System (ADS)

    Zaman, D. M. S.; Amina, M.; Dip, P. R.; Mamun, A. A.

    2017-11-01

    The basic properties of planar and non-planar (spherical and cylindrical) nucleus-acoustic (NA) shock structures (SSs) in a strongly coupled self-gravitating degenerate quantum plasma system (containing strongly coupled non-relativistically degenerate heavy nuclear species, weakly coupled non-relativistically degenerate light nuclear species, and inertialess non-/ultra-relativistically degenerate electrons) have been investigated. The generalized quantum hydrodynamic model and the reductive perturbation method have been used to derive the modified Burgers equation. It is shown that the strong correlation among heavy nuclear species acts as the source of dissipation and is responsible for the formation of the NA SSs with positive (negative) electrostatic (self-gravitational) potential. It is also observed that the effects of non-/ultra-relativistically degenerate electron pressure, dynamics of non-relativistically degenerate light nuclear species, spherical geometry, etc., significantly modify the basic features of the NA SSs. The applications of our results in astrophysical compact objects like white dwarfs and neutron stars are briefly discussed.

  3. Initial decay of flow properties of planar, cylindrical and spherical blast waves

    NASA Astrophysics Data System (ADS)

    Sadek, H. S. I.; Gottlieb, J. J.

    1983-10-01

    Analytical expressions are presented for the initial decay of all major flow properties just behind planar, cylindrical, and spherical shock wave fronts whose trajectories are known as a function of either distance versus time or shock overpressure versus distance. These expressions give the time and/or distance derivatives of the flow properties not only along constant time and distance lines but also along positive and negative characteristic lines and a fluid-particle path. Conventional continuity, momentum and energy equations for the nonstationary motion of an inviscid, non-heat conducting, compressible gas are used in their derivation, along with the equation of state of a perfect gas. All analytical expressions are validated by comparing the results to those obtained indirectly from known self-similar solutions for planar, cylindrical and spherical shock-wave flows generated both by a sudden energy release and by a moving piston. Futhermore, time derivatives of pressure and flow velocity are compared to experimental data from trinitrotoluene (TNT), pentolite, ammonium nitrate-fuel oil (ANFO) and propane-oxygen explosions, and good agreement is obtained.

  4. Impact-shocked zircons: discovery of shock-induced textures reflecting increasing degrees of shock metamorphism

    USGS Publications Warehouse

    Bohor, B.F.; Betterton, W.J.; Krogh, T.E.

    1993-01-01

    Textural effects specifically characteristic of shock metamorphism in zircons from impact environments have not been reported previously. However, planar deformation features (PDF) due to shock metamorphism are well documented in quartz and other mineral grains from these same environments. An etching technique was developed that allows SEM visualization of PDF and other probable shock-induced textural features, such as granular (polycrystalline) texture, in zircons from a variety of impact shock environments. These textural features in shocked zircons from K/T boundary distal ejecta form a series related to increasing degrees of shock that should correlate with proportionate resetting of the UPb isotopic system. ?? 1993.

  5. The effect of detonation wave incidence angle on the acceleration of flyers by explosives heavily laden with inert additives

    NASA Astrophysics Data System (ADS)

    Loiseau, Jason; Georges, William; Frost, David L.; Higgins, Andrew J.

    2017-01-01

    The incidence angle of a detonation wave in a conventional high explosive influences the acceleration and terminal velocity of a metal flyer by increasing the magnitude of the material velocity imparted by the transmitted shock wave as the detonation is tilted towards normal loading. For non-ideal explosives heavily loaded with inert additives, the detonation velocity is typically subsonic relative to the flyer sound speed, leading to shockless accelerations when the detonation is grazing. Further, in a grazing detonation the particles are initially accelerated in the direction of the detonation and only gain velocity normal to the initial orientation of the flyer at later times due to aerodynamic drag as the detonation products expand. If the detonation wave in a non-ideal explosive instead strikes the flyer at normal incidence, a shock is transmitted into the flyer and the first interaction between the particle additives and the flyer occurs due to the imparted material velocity from the passage of the detonation wave. Consequently, the effect of incidence angle and additive properties may play a more prominent role in the flyer acceleration. In the present study we experimentally compared normal detonation loadings to grazing loadings using a 3-mm-thick aluminum slapper to impact-initiate a planar detonation wave in non-ideal explosive-particle admixtures, which subsequently accelerated a second 6.4-mm-thick flyer. Flyer acceleration was measured with heterodyne laser velocimetry (PDV). The explosive mixtures considered were packed beds of glass or steel particles of varying sizes saturated with sensitized nitromethane, and gelled nitromethane mixed with glass microballoons. Results showed that the primary parameter controlling changes in flyer velocity was the presence of a transmitted shock, with additive density and particle size playing only secondary roles. These results are similar to the grazing detonation experiments, however under normal loading the largest, higher density particles yielded the highest terminal flyer velocity, whereas in the grazing experiments the larger, low density particles yielded the highest terminal velocity.

  6. Numerical analysis on interactions of vortex, shock wave, and exothermal reaction in a supersonic planar shear layer laden with droplets

    NASA Astrophysics Data System (ADS)

    Ren, Zhaoxin; Wang, Bing; Zheng, Longxi

    2018-03-01

    The analysis on the interactions of a large-scale shearing vortex, an incident oblique shock wave, and a chemical reaction in a planar shear layer is performed by numerical simulations. The reacting flows are obtained by directly solving the multi-species Navier-Stokes equations in the Eulerian frame, and the motions of individual point-mass fuel droplets are tracked in the Lagrangian frame considering the two-way coupling. The influences of shock strength and spray equivalence ratio on the shock-vortex interaction and the induced combustion are further studied. Under the present conditions, the incident shock is distorted by the vortex evolution to form the complicated waves including an incident shock wave, a multi-refracted wave, a reflected wave, and a transmitted wave. The local pressure and temperature are elevated by the shock impingement on the shearing vortex, which carries flammable mixtures. The chemical reaction is mostly accelerated by the refracted shock across the vortex. Two different exothermal reaction modes could be distinguished during the shock-vortex interaction as a thermal mode, due to the additional energy from the incident shock, and a local quasi detonation mode, due to the coupling of the refracted wave with reaction. The former mode detaches the flame and shock wave, whereas the latter mode tends to occur when the incident shock strength is higher and local equivalence ratio is higher approaching to the stoichiometric value. The numerical results illustrate that those two modes by shock-vortex interaction depend on the structure of the post-shock flame kernel, which may be located either in the vortex-braids of post-shock flows or in the shock-vortex interaction regime.

  7. Al 1s-2p absorption spectroscopy of shock-wave heating and compression in laser-driven planar foil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Regan, S. P.; Radha, P. B.

    Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (T{sub e}{approx}10-40 eV, {rho}{approx}3-11 g/cm{sup 3}) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10{sup 14}-10{sup 15} W/cm{sup 2} and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4-1.7 keV. The laser ablation process launches 10-70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectramore » were analyzed using the atomic physic code PRISMSPECT to infer T{sub e} and {rho} in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f=0.06 and f=0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f=0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.« less

  8. Al 1s-2p Absorption Spectroscopy of Shock-Wave Heating and Compression in Laser-Driven Planar Foil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawada, H.; Regan, S.P.; Radha, P.B.

    Time-resolved Al 1s-2p absorption spectroscopy is used to diagnose direct-drive, shock-wave heating and compression of planar targets having nearly Fermi-degenerate plasma conditions (Te ~ 10–40 eV, rho ~ 3–11 g/cm^3) on the OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. A planar plastic foil with a buried Al tracer layer was irradiated with peak intensities of 10^14–10^15 W/cm^2 and probed with the pseudocontinuum M-band emission from a point-source Sm backlighter in the range of 1.4–1.7 keV. The laser ablation process launches 10–70 Mbar shock waves into the CH/Al/CH target. The Al 1s-2p absorption spectra weremore » analyzed using the atomic physic code PRISMSPECT to infer Te and rho in the Al layer, assuming uniform plasma conditions during shock-wave heating, and to determine when the heat front penetrated the Al layer. The drive foils were simulated with the one-dimensional hydrodynamics code LILAC using a flux-limited (f =0.06 and f =0.1) and nonlocal thermal-transport model [V. N. Goncharov et al., Phys. Plasmas 13, 012702 (2006)]. The predictions of simulated shock-wave heating and the timing of heat-front penetration are compared to the observations. The experimental results for a wide variety of laser-drive conditions and buried depths have shown that the LILAC predictions using f = 0.06 and the nonlocal model accurately model the shock-wave heating and timing of the heat-front penetration while the shock is transiting the target. The observed discrepancy between the measured and simulated shock-wave heating at late times of the drive can be explained by the reduced radiative heating due to lateral heat flow in the corona.« less

  9. A study of planar Richtmyer-Meshkov instability in fluids with Mie-Grüneisen equations of state

    NASA Astrophysics Data System (ADS)

    Ward, G. M.; Pullin, D. I.

    2011-07-01

    We present a numerical comparison study of planar Richtmyer-Meshkov instability with the intention of exposing the role of the equation of state. Results for Richtmyer-Meshkov instability in fluids with Mie-Grüneisen equations of state derived from a linear shock-particle speed Hugoniot relationship (Jeanloz, J. Geophys. Res. 94, 5873, 1989; McQueen et al., High Velocity Impact Phenomena (1970), pp. 294-417; Menikoff and Plohr, Rev. Mod. Phys. 61(1), 75 1989) are compared to those from perfect gases under nondimensionally matched initial conditions at room temperature and pressure. The study was performed using Caltech's Adaptive Mesh Refinement, Object-oriented C++ (AMROC) (Deiterding, Adaptive Mesh Refinement: Theory and Applications (2005), Vol. 41, pp. 361-372; Deiterding, "Parallel adaptive simulation of multi-dimensional detonation structures," Ph.D. thesis (Brandenburgische Technische Universität Cottbus, September 2003)) framework with a low-dissipation, hybrid, center-difference, limiter patch solver (Ward and Pullin, J. Comput. Phys. 229, 2999 (2010)). Results for single and triple mode planar Richtmyer-Meshkov instability when a reflected shock wave occurs are first examined for mid-ocean ridge basalt (MORB) and molybdenum modeled by Mie-Grüneisen equations of state. The single mode case is examined for incident shock Mach numbers of 1.5 and 2.5. The planar triple mode case is studied using a single incident Mach number of 2.5 with initial corrugation wavenumbers related by k1=k2+k3. Comparison is then drawn to Richtmyer-Meshkov instability in perfect gases with matched nondimensional pressure jump across the incident shock, post-shock Atwood ratio, post-shock amplitude-to-wavelength ratio, and time nondimensionalized by Richtmyer's linear growth time constant prediction. Differences in start-up time and growth rate oscillations are observed across equations of state. Growth rate oscillation frequency is seen to correlate directly to the oscillation frequency for the transmitted and reflected shocks. For the single mode cases, further comparison is given for vorticity distribution and corrugation centerline shortly after shock interaction. Additionally, we examine single mode Richtmyer-Meshkov instability when a reflected expansion wave is present for incident Mach numbers of 1.5 and 2.5. Comparison to perfect gas solutions in such cases yields a higher degree of similarity in start-up time and growth rate oscillations. The formation of incipient weak waves in the heavy fluid driven by waves emanating from the perturbed transmitted shock is observed when an expansion wave is reflected.

  10. New Regimes of Implosions of Larger Sized Wire Arrays With and Without Modified Central Plane at 1.5-1.7 MA Zebra

    NASA Astrophysics Data System (ADS)

    Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Weller, M. E.; Shrestha, I.; Shlyaptseva, V. V.; Stafford, A.; Keim, S. F.; Petkov, E. E.; Lorance, M.; Chuvatin, A. S.; Coverdale, C. A.; Jones, B.

    2013-10-01

    The recent experiments at 1.5-1.7 MA on Zebra at UNR with larger sized planar wires arrays (compared to the wire loads at 1 MA current) have demonstrated higher linear radiation yield and electron temperatures as well as advantages of better diagnostics access to observable plasma regions. Such multi-planar wire arrays had two outer wire planes from mid-Z material to create a global magnetic field (gmf) and mid-Z plasma flow between them. Also, they included a modified central plane with a few Al wires at the edges to influence gmf and to create Al plasma flow in the perpendicular direction. The stationary shock waves which existed over tens of ns on shadow images and the early x-ray emissions before the PCD peak on time-gated spectra were observed. The most recent experiments with similar loads but without the central wires demonstrated a very different regime of implosion with asymmetrical jets and no precursor formation. This work was supported by NNSA under DOE Cooperative Agreement DE-NA0001984 and in part by DE-FC52-06NA27616. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  11. Shock tube Multiphase Experiments

    NASA Astrophysics Data System (ADS)

    Middlebrooks, John; Allen, Roy; Paudel, Manoj; Young, Calvin; Musick, Ben; McFarland, Jacob

    2017-11-01

    Shock driven multiphase instabilities (SDMI) are unique physical phenomena that have far-reaching practical applications in engineering and science. The instability is present in high energy explosions, scramjet combustors, and supernovae events. The SDMI arises when a multiphase interface is impulsively accelerated by the passage of a shockwave. It is similar in development to the Richtmyer-Meshkov (RM) instability however, particle-to-gas coupling is the driving mechanism of the SDMI. As particle effects such as lag and phase change become more prominent, the SDMI's development begins to significantly deviate from the RM instability. We have developed an experiment for studying the SDMI in our shock tube facility. In our experiments, a multiphase interface is created using a laminar jet and flowed into the shock tube where it is accelerated by the passage of a planar shockwave. The interface development is captured using CCD cameras synchronized with planar laser illumination. This talk will give an overview of new experiments conducted to examine the development of a shocked cylindrical multiphase interface. The effects of Atwood number, particle size, and a second acceleration (reshock) of the interface will be discussed.

  12. Shock metamorphism of Elephant Moraine A79001: Implications for olivine-ringwoodite transformation and the complex thermal history of heavily shocked Martian meteorites

    NASA Astrophysics Data System (ADS)

    Walton, Erin L.

    2013-04-01

    Lithology A of Martian meteorite Elephant Moraine (EET) A79001 contains fragments entrained within a 100 μm-thick shear-induced shock vein. These fragments, the shock vein matrix and walls of olivine along the vein, as well as shock deformation and transformation in rock-forming minerals in the bulk rock, were investigated using scanning electron microscopy, the electron microprobe and Raman spectroscopy. The presence of ringwoodite, the spinel-structured high-pressure (Mg,Fe)2SiO4 polymorph, has been confirmed in EETA79001 for the first time. Ringwoodite occurs within and around the shock vein, exhibiting granular and lamellar textures. In both textures ringwoodite consists of ˜500 nm size distinct grains. Ringwoodite lamellae are 115 nm to 1.3 μm wide. Planar fractures in olivine provided sites for heterogeneous nucleation of ringwoodite. Analyses performed on the largest grains (⩾1 μm) show that ringwoodite is consistently higher in iron (Fa27.4-32.4) relative to surrounding olivine (Fa25.1-267.7), implying that there was Fe-Mg exchange during their transformation, and therefore their growth was diffusion-controlled. In the shock environment, diffusion takes place dynamically, i.e., with concurrent deformation and grain size reduction. This results in enhanced diffusion rates (⩾10-8 m2/s) over nm - μm distances. Shock deformation in host rock minerals including strong mosaicism, pervasive fracturing, polysynthetic twinning (pyroxene only), extensive shock melting, local transformation of olivine to ringwoodite, and complete transformation of plagioclase to maskelynite in the bulk rock, indicate that EETA79001 was strongly shocked. The short shock duration (0.01 s) combined with a complex thermal history, resulted in crystallization of the 100 μm thick shock vein in EETA79001 during the pressure release, and partial back-transformation of ringwoodite to olivine. Based on the pressure stabilities of clinopyroxene + ringwoodite, crystallization at the shock vein margin began at ˜18 GPa. Olivine and clinopyroxene crystallized at <14 GPa closer to the shock vein center. These represent a minimum limit to the shock pressure loading experienced by EETA79001.

  13. Impact geologists, beware!

    NASA Astrophysics Data System (ADS)

    Melosh, H. J.

    2017-09-01

    Impact geologists have long assumed that shock metamorphic features, such as planar fractures and Planar Deformation Features (PDFs) in quartz are reliable indicators of an extraterrestrial impact. A new paper by Chen et al. (2017) now shows that such features might arise in terrestrial lightning strikes, thus raising the bar for identification of impact sites.

  14. rhoCentralRfFoam: An OpenFOAM solver for high speed chemically active flows - Simulation of planar detonations -

    NASA Astrophysics Data System (ADS)

    Gutiérrez Marcantoni, L. F.; Tamagno, J.; Elaskar, S.

    2017-10-01

    A new solver developed within the framework of OpenFOAM 2.3.0, called rhoCentralRfFoam which can be interpreted like an evolution of rhoCentralFoam, is presented. Its use, performing numerical simulations on initiation and propagation of planar detonation waves in combustible mixtures H2-Air and H2-O2-Ar, is described. Unsteady one dimensional (1D) Euler equations coupled with sources to take into account chemical activity, are numerically solved using the Kurganov, Noelle and Petrova second order scheme in a domain discretized with finite volumes. The computational code can work with any number of species and its corresponding reactions, but here it was tested with 13 chemically active species (one species inert), and 33 elementary reactions. A gaseous igniter which acts like a shock-tube driver, and powerful enough to generate a strong shock capable of triggering exothermic chemical reactions in fuel mixtures, is used to start planar detonations. The following main aspects of planar detonations are here, treated: induction time of combustible mixtures cited above and required mesh resolutions; convergence of overdriven detonations to Chapman-Jouguet states; detonation structure (ZND model); and the use of reflected shocks to determine induction times experimentally. The rhoCentralRfFoam code was verified comparing numerical results and it was validated, through analytical results and experimental data.

  15. Simulations of Turbulent Flows with Strong Shocks and Density Variations: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanjiva Lele

    2012-10-01

    The target of this SciDAC Science Application was to develop a new capability based on high-order and high-resolution schemes to simulate shock-turbulence interactions and multi-material mixing in planar and spherical geometries, and to study Rayleigh-Taylor and Richtmyer-Meshkov turbulent mixing. These fundamental problems have direct application in high-speed engineering flows, such as inertial confinement fusion (ICF) capsule implosions and scramjet combustion, and also in the natural occurrence of supernovae explosions. Another component of this project was the development of subgrid-scale (SGS) models for large-eddy simulations of flows involving shock-turbulence interaction and multi-material mixing, that were to be validated with the DNSmore » databases generated during the program. The numerical codes developed are designed for massively-parallel computer architectures, ensuring good scaling performance. Their algorithms were validated by means of a sequence of benchmark problems. The original multi-stage plan for this five-year project included the following milestones: 1) refinement of numerical algorithms for application to the shock-turbulence interaction problem and multi-material mixing (years 1-2); 2) direct numerical simulations (DNS) of canonical shock-turbulence interaction (years 2-3), targeted at improving our understanding of the physics behind the combined two phenomena and also at guiding the development of SGS models; 3) large-eddy simulations (LES) of shock-turbulence interaction (years 3-5), improving SGS models based on the DNS obtained in the previous phase; 4) DNS of planar/spherical RM multi-material mixing (years 3-5), also with the two-fold objective of gaining insight into the relevant physics of this instability and aiding in devising new modeling strategies for multi-material mixing; 5) LES of planar/spherical RM mixing (years 4-5), integrating the improved SGS and multi-material models developed in stages 3 and 5. This final report is outlined as follows. Section 2 shows an assessment of numerical algorithms that are best suited for the numerical simulation of compressible flows involving turbulence and shock phenomena. Sections 3 and 4 deal with the canonical shock-turbulence interaction problem, from the DNS and LES perspectives, respectively. Section 5 considers the shock-turbulence inter-action in spherical geometry, in particular, the interaction of a converging shock with isotropic turbulence as well as the problem of the blast wave. Section 6 describes the study of shock-accelerated mixing through planar and spherical Richtmyer-Meshkov mixing as well as the shock-curtain interaction problem In section 7 we acknowledge the different interactions between Stanford and other institutions participating in this SciDAC project, as well as several external collaborations made possible through it. Section 8 presents a list of publications and presentations that have been generated during the course of this SciDAC project. Finally, section 9 concludes this report with the list of personnel at Stanford University funded by this SciDAC project.« less

  16. A study of phase explosion of metal using high power Nd:YAG laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoh, Jack J.; Lee, H. H.; Choi, J. H.

    2007-12-12

    The interaction of high-power pulsed-laser beam with metal targets in air from 1.06 {mu}m, 5 ns, 3 J/pulse max, Nd:YAG pulsed laser is investigated together with hydrodynamic theories of laser-supported detonation (LSD) wave and multi-material reactive Euler equations. The high speed blast wave generated by the laser ablation of metal reaches maximum velocity of several thousand meters per second. The apparently similar flow conditions to those of reactive shock wave allow one to apply the equations of motion for energetic materials and to understand the explosive behavior of metal vaporization upon laser ablation. The characteristic time at which planar tomore » spherical wave transition occurs is confirmed at low (20 mJ/pulse) to higher (200 mJ/pulse) beam intensities. The flow structure behind the leading shock wave during the early planar shock state is confirmed by the high-resolution multi-material hydrocode originally developed for shock compression of condensed matter.« less

  17. Impact-shocked zircons: Discovery of shock-induced textures reflecting increasing degrees of shock metamorphism

    NASA Technical Reports Server (NTRS)

    Bohor, B. F.; Betterton, W. J.; Krogh, T. E.

    1993-01-01

    Textural effects specifically characteristic of shock metamorphism in zircons from impact environments have not been reported previously. However, planar deformation features (PDF) due to shock metamorphism are well documented in quartz and other mineral grains from these same environments. An etching technique was developed that allows scanning electron microscope (SEM) visualization of PDF and other probable shock-induced textural features, such as granular (polycrystalline) texture, in zircons from a variety of impact shock environments. These textural features in shocked zircons from K/T boundary distal ejecta form a series related to increasing degrees of shock that should correlate with proportionate resetting of the U-Pb isotopic system.

  18. Shock Isolation Elements Testing for High Input Loadings. Volume II. Foam Shock Isolation Elements.

    DTIC Science & Technology

    SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*EXPANDED PLASTICS, (*SHOCK(MECHANICS), REDUCTION), TEST METHODS, SHOCK WAVES, STRAIN(MECHANICS), LOADS(FORCES), MATHEMATICAL MODELS, NUCLEAR EXPLOSIONS, HARDENING.

  19. Gas density field imaging in shock dominated flows using planar laser scattering

    NASA Astrophysics Data System (ADS)

    Pickles, Joshua D.; Mettu, Balachandra R.; Subbareddy, Pramod K.; Narayanaswamy, Venkateswaran

    2018-07-01

    Planar laser scattering (PLS) imaging of ice particulates present in a supersonic stream is demonstrated to measure 2D gas density fields of shock dominated flows in low enthalpy test facilities. The technique involves mapping the PLS signal to gas density using a calibration curve that accounts for the seed particulate size distribution change across the shock wave. The PLS technique is demonstrated in a shock boundary layer interaction generated by a sharp fin placed on a cylindrical surface in Mach 2.5 flow. The shock structure generated in this configuration has complicating effects from the finite height of the fin as well as the 3D relief offered by the cylindrical surface, which result in steep spatial gradients as well as a wide range of density jumps across different locations of the shock structure. Instantaneous and mean PLS fields delineated the inviscid, separation, and reattachment shock structures at various downstream locations. The inviscid shock assumed increasingly larger curvature with downstream distance; concomitantly, the separation shock wrapped around the cylinder and the separation shock foot missed the cylinder surface entirely. The density fields obtained from the PLS technique were evaluated using RANS simulations of the same flowfield. Comparisons between the computed and measured density fields showed excellent agreement over the entire measurable region that encompassed the flow processed by inviscid, separation, and reattachment shocks away from viscous regions. The PLS approach demonstrated in this work is also shown to be largely independent of the seed particulates, which lends the extension of this approach to a wide range of test facilities.

  20. Designing high speed diagnostics

    NASA Astrophysics Data System (ADS)

    Veliz Carrillo, Gerardo; Martinez, Adam; Mula, Swathi; Prestridge, Kathy; Extreme Fluids Team Team

    2017-11-01

    Timing and firing for shock-driven flows is complex because of jitter in the shock tube mechanical drivers. Consequently, experiments require dynamic triggering of diagnostics from pressure transducers. We explain the design process and criteria for setting up re-shock experiments at the Los Alamos Vertical Shock Tube facility, and the requirements for particle image velocimetry and planar laser induced fluorescence measurements necessary for calculating Richtmeyer-Meshkov variable density turbulent statistics. Dynamic triggering of diagnostics allows for further investigation of the development of the Richtemeyer-Meshkov instability at both initial shock and re-shock. Thanks to the Los Alamos National Laboratory for funding our project.

  1. Transient Three-Dimensional Analysis of Side Load in Liquid Rocket Engine Nozzles

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2004-01-01

    Three-dimensional numerical investigations on the nozzle start-up side load physics were performed. The objective of this study is to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, and pressure-based computational fluid dynamics formulation, and a simulated inlet condition based on a system calculation. Finite-rate chemistry was used throughout the study so that combustion effect is always included, and the effect of wall cooling on side load physics is studied. The side load physics captured include the afterburning wave, transition from free- shock to restricted-shock separation, and lip Lambda shock oscillation. With the adiabatic nozzle, free-shock separation reappears after the transition from free-shock separation to restricted-shock separation, and the subsequent flow pattern of the simultaneous free-shock and restricted-shock separations creates a very asymmetric Mach disk flow. With the cooled nozzle, the more symmetric restricted-shock separation persisted throughout the start-up transient after the transition, leading to an overall lower side load than that of the adiabatic nozzle. The tepee structures corresponding to the maximum side load were addressed.

  2. An experimental study of the sources of fluctuating pressure loads beneath swept shock/boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Settles, G. S.; Garg, S.

    1993-01-01

    An experimental research program providing basic knowledge and establishing a database on the fluctuating pressure loads produced on aerodynamic surfaces beneath three dimensional shock wave/boundary layer interactions is described. Such loads constitute a fundamental problem of critical concern to future supersonic and hypersonic flight vehicles. A turbulent boundary layer on a flat plate is subjected to interactions with swept planar shock waves generated by sharp fins at angle of attack. Fin angles from 10 to 20 deg at freestream Mach numbers of 3 and 4 produce a variety of interaction strengths from weak to very strong. Miniature Kulite pressure transducers flush-mounted in the flat plate are used to measure interaction-induced wall pressure fluctuations. The distributions of properties of the pressure fluctuations, such as their ring levels, amplitude distributions, and power spectra, are also determined. Measurements were made for the first time in the aft regions of these interactions, revealing fluctuating pressure levels as high as 160 dB. These fluctuations are dominated by low frequency (0-5 kHz) signals. The maximum ring levels in the interactions show an increasing trend with increasing interaction strength. On the other hand, the maximum ring levels in the forward portion of the interactions decrease linearly with increasing interaction sweep back. These ring pressure distributions and spectra are correlated with the features of the interaction flowfield. The unsteadiness of the off-surface flowfield is studied using a new, non-intrusive technique based on the shadow graph method. The results indicate that the entire lambda-shock structure generated by the interaction undergoes relatively low-frequency oscillations. Some regions where particularly strong fluctuations are generated were identified. Fluctuating pressure measurements are also made along the line of symmetry of an axisymmetric jet impinging upon a flat plate at an angle. This flow was chosen as a simple analog to the impinging jet region found in the rear portion of the shock wave/boundary layer interactions under study. It is found that a sharp peak in ring pressure level exists at or near the mean stagnation point. It is suggested that the phenomena responsible for this peak may be active in the swept interactions as well, and may cause the extremely high fluctuating pressures observed in the impinging jet region in the present experimental program.

  3. Shock imprint and rolling direction influence upon the breaking tenacity for 2P armor steel

    NASA Astrophysics Data System (ADS)

    Zichil, V.; Coseru, A.; Schnakovszky, C.; Herghelegiu, E.; Radu, C.

    2016-08-01

    The state of art in present literature shows that the breaking tenacity of a material is influenced by the integrity of the structure. Since armors used in aviation and to protect military vehicles are frequently impact loaded, through the contact between armor sheet and projectiles, or other foreign bodies, the authors have proposed to study the dependence between the breaking tenacity of 2P armor steel depending on the direction of the rolling of the armor plate, of the geometry (spherical imprint, pyramidal and linear imprint) and the depth of the deformation that results after impact. Tests were conducted upon CT (ASTM E- 399) specimen type, using the critical factor of stress intensity during the state of planar strain.

  4. Shock metamorphism and impact melting in small impact craters on Earth: Evidence from Kamil crater, Egypt

    NASA Astrophysics Data System (ADS)

    Fazio, Agnese; Folco, Luigi; D'Orazio, Massimo; Frezzotti, Maria Luce; Cordier, Carole

    2014-12-01

    Kamil is a 45 m diameter impact crater identified in 2008 in southern Egypt. It was generated by the hypervelocity impact of the Gebel Kamil iron meteorite on a sedimentary target, namely layered sandstones with subhorizontal bedding. We have carried out a petrographic study of samples from the crater wall and ejecta deposits collected during our first geophysical campaign (February 2010) in order to investigate shock effects recorded in these rocks. Ejecta samples reveal a wide range of shock features common in quartz-rich target rocks. They have been divided into two categories, as a function of their abundance at thin section scale: (1) pervasive shock features (the most abundant), including fracturing, planar deformation features, and impact melt lapilli and bombs, and (2) localized shock features (the least abundant) including high-pressure phases and localized impact melting in the form of intergranular melt, melt veins, and melt films in shatter cones. In particular, Kamil crater is the smallest impact crater where shatter cones, coesite, stishovite, diamond, and melt veins have been reported. Based on experimental calibrations reported in the literature, pervasive shock features suggest that the maximum shock pressure was between 30 and 60 GPa. Using the planar impact approximation, we calculate a vertical component of the impact velocity of at least 3.5 km s-1. The wide range of shock features and their freshness make Kamil a natural laboratory for studying impact cratering and shock deformation processes in small impact structures.

  5. Self-gravito-acoustic shock structures in a self-gravitating, strongly coupled, multi-component, degenerate quantum plasma system

    NASA Astrophysics Data System (ADS)

    Mamun, A. A.

    2017-10-01

    The existence of self-gravito-acoustic (SGA) shock structures (SSs) associated with negative self-gravitational potential in a self-gravitating, strongly coupled, multi-component, degenerate quantum plasma (SGSCMCDQP) system is predicted for the first time. The modified Burgers (MB) equation, which is valid for both planar and non-planar (spherical) geometries, is derived analytically, and solved numerically. It is shown that the longitudinal viscous force acting on inertial plasma species of the plasma system is the source of dissipation and is responsible for the formation of these SGA SSs in the plasma system. The time evolution of these SGA SSs is also shown for different values (viz., 0.5, 1, and 2) of Γ, where Γ is the ratio of the nonlinear coefficient to the dissipative coefficient in the MB equation. The SGSCMCDQP model and the numerical analysis of the MB equation presented here are so general that they can be applied in any type of SGSCMCDQP systems like astrophysical compact objects having planar or non-planar (spherical) shape.

  6. Computer modeling of test particle acceleration at oblique shocks

    NASA Technical Reports Server (NTRS)

    Decker, Robert B.

    1988-01-01

    The present evaluation of the basic techniques and illustrative results of charged particle-modeling numerical codes suitable for particle acceleration at oblique, fast-mode collisionless shocks emphasizes the treatment of ions as test particles, calculating particle dynamics through numerical integration along exact phase-space orbits. Attention is given to the acceleration of particles at planar, infinitessimally thin shocks, as well as to plasma simulations in which low-energy ions are injected and accelerated at quasi-perpendicular shocks with internal structure.

  7. Instability of isolated planar shock waves

    DTIC Science & Technology

    2007-06-07

    Note that multi-mode perturbations can be treated by the inclusion of additional terms in Eq. (4), but owing to the linear independence of the... Volterra equation Figure 4 shows five examples of the evolution of the amplitude of a linear sinusoidal perturbation on a shock front obtained by...showing the evolution of the amplitude of a linear sinusoidal perturbation on a shock front obtained by numerically solving the Volterra equation in

  8. Transient Three-Dimensional Startup Side Load Analysis of a Regeneratively Cooled Nozzle

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2008-01-01

    The objective of this effort is to develop a computational methodology to capture the startup side load physics and to anchor the computed aerodynamic side loads with the available data from a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, a transient 5 s inlet history based on an engine system simulation, and a wall temperature distribution to reflect the effect of regenerative cooling. To understand the effect of regenerative wall cooling, two transient computations were performed using the boundary conditions of adiabatic and cooled walls, respectively. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with the pulsation of shocks across the lip, although the combustion wave is commonly eliminated with the sparklers during actual test. The test measured two side load events: a secondary and lower side load, followed by a primary and peak side load. Results from both wall boundary conditions captured the free-shock separation to restricted-shock separation transition with computed side loads matching the measured secondary side load. For the primary side load, the cooled wall transient produced restricted-shock pulsation across the nozzle lip with peak side load matching that of the test, while the adiabatic wall transient captured shock transitions and free-shock pulsation across the lip with computed peak side load 50% lower than that of the measurement. The computed dominant pulsation frequency of the cooled wall nozzle agrees with that of a separate test, while that of the adiabatic wall nozzle is more than 50% lower than that of the measurement. The computed teepee-like formation and the tangential motion of the shocks during lip pulsation also qualitatively agree with those of test observations. Moreover, a third transient computation was performed with a proportionately shortened 1 s sequence, and lower side loads were obtained with the higher ramp rate.

  9. Planar Reflection of Gaseous Detonations

    NASA Astrophysics Data System (ADS)

    Damazo, Jason Scott

    Pipes containing flammable gaseous mixtures may be subjected to internal detonation. When the detonation normally impinges on a closed end, a reflected shock wave is created to bring the flow back to rest. This study built on the work of Karnesky (2010) and examined deformation of thin-walled stainless steel tubes subjected to internal reflected gaseous detonations. A ripple pattern was observed in the tube wall for certain fill pressures, and a criterion was developed that predicted when the ripple pattern would form. A two-dimensional finite element analysis was performed using Johnson-Cook material properties; the pressure loading created by reflected gaseous detonations was accounted for with a previously developed pressure model. The residual plastic strain between experiments and computations was in good agreement. During the examination of detonation-driven deformation, discrepancies were discovered in our understanding of reflected gaseous detonation behavior. Previous models did not accurately describe the nature of the reflected shock wave, which motivated further experiments in a detonation tube with optical access. Pressure sensors and schlieren images were used to examine reflected shock behavior, and it was determined that the discrepancies were related to the reaction zone thickness extant behind the detonation front. During these experiments reflected shock bifurcation did not appear to occur, but the unfocused visualization system made certainty impossible. This prompted construction of a focused schlieren system that investigated possible shock wave-boundary layer interaction, and heat-flux gauges analyzed the boundary layer behind the detonation front. Using these data with an analytical boundary layer solution, it was determined that the strong thermal boundary layer present behind the detonation front inhibits the development of reflected shock wave bifurcation.

  10. Extended asymmetric hot region formation due to shockwave interactions following void collapse in shocked high explosive

    NASA Astrophysics Data System (ADS)

    Shan, Tzu-Ray; Wixom, Ryan R.; Thompson, Aidan P.

    2016-08-01

    In both continuum hydrodynamics simulations and also multimillion atom reactive molecular dynamics simulations of shockwave propagation in single crystal pentaerythritol tetranitrate (PETN) containing a cylindrical void, we observed the formation of an initial radially symmetric hot spot. By extending the simulation time to the nanosecond scale, however, we observed the transformation of the small symmetric hot spot into a longitudinally asymmetric hot region extending over a much larger volume. Performing reactive molecular dynamics shock simulations using the reactive force field (ReaxFF) as implemented in the LAMMPS molecular dynamics package, we showed that the longitudinally asymmetric hot region was formed by coalescence of the primary radially symmetric hot spot with a secondary triangular hot zone. We showed that the triangular hot zone coincided with a double-shocked region where the primary planar shockwave was overtaken by a secondary cylindrical shockwave. The secondary cylindrical shockwave originated in void collapse after the primary planar shockwave had passed over the void. A similar phenomenon was observed in continuum hydrodynamics shock simulations using the CTH hydrodynamics package. The formation and growth of extended asymmetric hot regions on nanosecond timescales has important implications for shock initiation thresholds in energetic materials.

  11. Microdeformation in Vredefort rocks; evidence for shock metamorphism

    NASA Technical Reports Server (NTRS)

    Reimold, W. U.; Andreoli, M. A. G.; Hart, R. J.

    1988-01-01

    Planar microdeformations in quartz from basement or collar rocks of the Vredefort Dome have been cited for years as the main microtextural evidence for shock metamorphism in this structure. In addition, Schreyer describes feldspar recrystallization in rocks from the center of the Dome as the result of transformation of diaplectic glass, and Lilly reported the sighting of mosaicism in quartz. These textural observations are widely believed to indicate either an impact or an internally produced shock origin for the Vredefort Dome. Two types of (mostly sub) planar microdeformations are displayed in quartz grains from Vredefort rocks: (1) fluid inclusion trails, and (2) straight optical discontinuities that sometimes resemble lamellae. Both types occur as single features or as single or multiple sets in quartz grains. Besides qualitative descriptions of cleavage and recrystallization in feldspar and kinkbands in mica, no further microtextural evidence for shock metamorphism at Vredefort has been reported to date. Some 150 thin sections of Vredefort basement rocks were re-examined for potential shock and other deformation effects in all rock-forming minerals. This included petrographic study of two drill cores from the immediate vicinity of the center of the Dome. Observations recorded throughout the granitic core are given along with conclusions.

  12. High-temperature phase transformations. The properties of the phases and their equilibrium under shock loading.

    NASA Astrophysics Data System (ADS)

    Zaretsky, Eugene

    2011-06-01

    Introducing the temperature as a variable parameter in shock wave experiments extends essentially the scope of these investigations. The influence of the temperature variations on either high strain rate elastic-plastic response of solids or parameters of the shock-induces phase transformations are not trivial and are not quite clear yet. The technique of VISAR-monitored planar impact experiments with the samples preheated up to 1400 K was developed and used for the studies of the effect of the preheating on the impact response and on the ``dynamic'' phase diagrams of pure metals (U, Ti, Fe, Co, Ag), and ionic compounds (KCl, KBr). The studies show that the increase of the shear strength of the shock-loaded metal with temperature (first reported by Kanel et al. 1996) is typical for pure FCC (Al, Ag, Cu) and some other (Sn, U) metals, and for the ionic crystals. In the metals with BCC lattice (Mo: Duffy and Ahrens 1994, Fe: Zaretsky 2009) such thermal hardening was not found. The abrupt strength anomalies (either yield or spall or both) were observed in a narrow vicinity of the temperature of any, polymorphic, magnetic, or melting, phase transformation. It was found that when a pure element approaches the phase boundary (the line of either first or second order phase transition) the result is a 50-100-% increase of the shear strength of the low-temperature phase. At the same time the presence of a small (~0.5%) amount of impurities may lead to a five-fold decrease of the strength as it takes place in the vicinity of the Curie point of Ni. The same technique being applied to the study of the shear stress relaxation (elastic precursor decay) near the transformation line may be useful for understanding the mechanisms responsible of these anomalies.

  13. The Rock Elm meteorite impact structure, Wisconsin: Geology and shock-metamorphic effects in quartz

    USGS Publications Warehouse

    French, B.M.; Cordua, W.S.; Plescia, J.B.

    2004-01-01

    The Rock Elm structure in southwest Wisconsin is an anomalous circular area of highly deformed rocks, ???6.5 km in diameter, located in a region of virtually horizontal undeformed sedimentary rocks. Shock-produced planar microstructures (PMs) have been identified in quartz grains in several lithologies associated with the structure: sandstones, quartzite pebbles, and breccia. Two distinct types of PMs are present: P1 features, which appear identical to planar fractures (PFs or cleavage), and P2 features, which are interpreted as possible incipient planar deformation features (PDFs). The latter are uniquely produced by the shock waves associated with meteorite impact events. Both types of PMs are oriented parallel to specific crystallographic planes in the quartz, most commonly to c(0001), ??112??2, and r/z101??1. The association of unusual, structurally deformed strata with distinct shock-produced microdeformation features in their quartz-bearing rocks establishes Rock Elm as a meteorite impact structure and supports the view that the presence of multiple parallel cleavages in quartz may be used independently as a criterion for meteorite impact. Preliminary paleontological studies indicate a minimum age of Middle Ordovician for the Rock Elm structure. A similar age estimate (450-400 Ma) is obtained independently by combining the results of studies of the general morphology of complex impact structures with estimated rates of sedimentation for the region. Such methods may be applicable to dating other old and deeply eroded impact structures formed in sedimentary target rocks.

  14. Transient Three-Dimensional Analysis of Nozzle Side Load in Regeneratively Cooled Engines

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2005-01-01

    Three-dimensional numerical investigations on the start-up side load physics for a regeneratively cooled, high-aspect-ratio nozzle were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system simulation. Computations were performed for both the adiabatic and cooled walls in order to understand the effect of boundary conditions. Finite-rate chemistry was used throughout the study so that combustion effect is always included. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with oscillation of shocks across the lip. Wall boundary conditions drastically affect the computed side load physics: the adiabatic nozzle prefers free-shock separation while the cooled nozzle favors restricted-shock separation, resulting in higher peak side load for the cooled nozzle than that of the adiabatic nozzle. By comparing the computed physics with those of test observations, it is concluded that cooled wall is a more realistic boundary condition, and the oscillation of the restricted-shock separation flow pattern across the lip along with its associated tangential shock motion are the dominant side load physics for a regeneratively cooled, high aspect-ratio rocket engine.

  15. Factors Affecting the Geo-effectiveness of Shocks and Sheaths at 1 AU

    PubMed Central

    Lugaz, N.; Farrugia, C. J.; Winslow, R. M.; Al-Haddad, N.; Kilpua, E. K. J.; Riley, P.

    2018-01-01

    We identify all fast-mode forward shocks, whose sheath regions resulted in a moderate (56 cases) or intense (38 cases) geomagnetic storm during 18.5 years from January 1997 to June 2015. We study their main properties, interplanetary causes and geo-effects. We find that half (49/94) such shocks are associated with interacting coronal mass ejections (CMEs), as they are either shocks propagating into a preceding CME (35 cases) or a shock propagating into the sheath region of a preceding shock (14 cases). About half (22/45) of the shocks driven by isolated transients and which have geo-effective sheaths compress pre-existing southward Bz. Most of the remaining sheaths appear to have planar structures with southward magnetic fields, including some with planar structures consistent with field line draping ahead of the magnetic ejecta. A typical (median) geo-effective shock-sheath structure drives a geomagnetic storm with peak Dst of −88 nT, pushes the subsolar magnetopause location to 6.3 RE, i.e. below geosynchronous orbit and is associated with substorms with a peak AL-index of −1350 nT. There are some important differences between sheaths associated with CME-CME interaction (stronger storms) and those associated with isolated CMEs (stronger compression of the magnetosphere). We detail six case studies of different types of geo-effective shock-sheaths, as well as two events for which there was no geomagnetic storm but other magnetospheric effects. Finally, we discuss our results in terms of space weather forecasting, and potential effects on Earth’s radiation belts. PMID:29629250

  16. Factors Affecting the Geo-effectiveness of Shocks and Sheaths at 1 AU.

    PubMed

    Lugaz, N; Farrugia, C J; Winslow, R M; Al-Haddad, N; Kilpua, E K J; Riley, P

    2016-11-01

    We identify all fast-mode forward shocks, whose sheath regions resulted in a moderate (56 cases) or intense (38 cases) geomagnetic storm during 18.5 years from January 1997 to June 2015. We study their main properties, interplanetary causes and geo-effects. We find that half (49/94) such shocks are associated with interacting coronal mass ejections (CMEs), as they are either shocks propagating into a preceding CME (35 cases) or a shock propagating into the sheath region of a preceding shock (14 cases). About half (22/45) of the shocks driven by isolated transients and which have geo-effective sheaths compress pre-existing southward B z . Most of the remaining sheaths appear to have planar structures with southward magnetic fields, including some with planar structures consistent with field line draping ahead of the magnetic ejecta. A typical (median) geo-effective shock-sheath structure drives a geomagnetic storm with peak Dst of -88 nT, pushes the subsolar magnetopause location to 6.3 R E , i.e. below geosynchronous orbit and is associated with substorms with a peak AL-index of -1350 nT. There are some important differences between sheaths associated with CME-CME interaction (stronger storms) and those associated with isolated CMEs (stronger compression of the magnetosphere). We detail six case studies of different types of geo-effective shock-sheaths, as well as two events for which there was no geomagnetic storm but other magnetospheric effects. Finally, we discuss our results in terms of space weather forecasting, and potential effects on Earth's radiation belts.

  17. Background Oriented Schlieren Implementation in a Jet-Surface Interaction Test

    NASA Technical Reports Server (NTRS)

    Clem, Michelle M.; Brown, Clifford A.; Fagan, Amy

    2013-01-01

    Many current and future aircraft designs rely on the wing or other aircraft surfaces to shield the engine noise from observers on the ground. However the available data regarding how a planar surface interacts with a jet to shield and/or enhance the jet noise are currently limited. Therefore, the Jet-Surface Interaction Tests supported by NASA's Fundamental Aeronautics Program's Fixed Wing Project were undertaken to supply experimental data covering a wide range of surface geometries and positions interacting with high-speed jet flows in order to support the development of noise prediction methods. Phase 1 of the Test was conducted in the Aero-Acoustic Propulsion Laboratory at NASA Glenn Research Center and consisted of validating noise prediction schemes for a round nozzle interacting with a planar surface. Phased array data and far-field acoustic data were collected for both the shielded and reflected sides of the surface. Phase 1 results showed that the broadband shock noise was greatly reduced by the surface when the jet was operated at the over-expanded condition, however, it was unclear whether this reduction was due a change in the shock cell structure by the surface. In the present study, Background Oriented Schlieren is implemented in Phase 2 of the Jet-Surface Interaction Tests to investigate whether the planar surface interacts with the high-speed jet ow to change the shock cell structure. Background Oriented Schlieren data are acquired for under-expanded, ideally-expanded, and over-expanded ow regimes for multiple axial and radial positions of the surface at three different plate lengths. These data are analyzed with far-field noise measurements to relate the shock cell structure to the broadband shock noise produced by a jet near a surface.

  18. On the propagation of decaying planar shock and blast waves through non-uniform channels

    NASA Astrophysics Data System (ADS)

    Peace, J. T.; Lu, F. K.

    2018-05-01

    The propagation of planar decaying shock and blast waves in non-uniform channels is investigated with the use of a two-equation approximation of the generalized CCW theory. The effects of flow non-uniformity for the cases of an arbitrary strength decaying shock and blast wave in the strong shock limit are considered. Unlike the original CCW theory, the two-equation approximation takes into account the effects of initial temporal flow gradients in the flow properties behind the shock as the shock encounters an area change. A generalized order-of-magnitude analysis is carried out to analyze under which conditions the classical area-Mach (A-M) relation and two-equation approximation are valid given a time constant of decay for the flow properties behind the shock. It is shown that the two-equation approximation extends the applicability of the CCW theory to problems where flow non-uniformity behind the shock is orders of magnitude above that for appropriate use of the A-M relation. The behavior of the two-equation solution is presented for converging and diverging channels and compared against the A-M relation. It is shown that the second-order approximation and A-M relation have good agreement for converging geometries, such that the influence of flow non-uniformity behind the shock is negligible compared to the effects of changing area. Alternatively, the two-equation approximation is shown to be strongly dependent on the initial magnitude of flow non-uniformity in diverging geometries. Further, in diverging geometries, the inclusion of flow non-uniformity yields shock solutions that tend toward an acoustic wave faster than that predicted by the A-M relation.

  19. Investigation of charge weight and shock factor effect on non-linear transient structural response of rectangular plates subjected to underwater explosion (UNDEX) shock loading

    NASA Astrophysics Data System (ADS)

    Demir, Ozgur; Sahin, Abdurrahman; Yilmaz, Tamer

    2012-09-01

    Underwater explosion induced shock loads are capable of causing considerable structural damage. Investigations of the underwater explosion (UNDEX) effects on structures have seen continuous developments because of security risks. Most of the earlier experimental investigations were performed by military since the World War I. Subsequently; Cole [1] established mathematical relations for modeling underwater explosion shock loading, which were the outcome of many experimental investigations This study predicts and establishes the transient responses of a panel structure to underwater explosion shock loads using non-linear finite element code Ls-Dyna. Accordingly, in this study a new MATLAB code has been developed for predicting shock loading profile for different weight of explosive and different shock factors. Numerical analysis was performed for various test conditions and results are compared with Ramajeyathilagam's experimental study [8].

  20. RF-MEMS Load Sensors with Enhanced Q-factor and Sensitivity in a Suspended Architecture.

    PubMed

    Melik, Rohat; Unal, Emre; Perkgoz, Nihan Kosku; Puttlitz, Christian; Demir, Hilmi Volkan

    2011-03-01

    In this paper, we present and demonstrate RF-MEMS load sensors designed and fabricated in a suspended architecture that increases their quality-factor (Q-factor), accompanied with an increased resonance frequency shift under load. The suspended architecture is obtained by removing silicon under the sensor. We compare two sensors that consist of 195 μm × 195 μm resonators, where all of the resonator features are of equal dimensions, but one's substrate is partially removed (suspended architecture) and the other's is not (planar architecture). The single suspended device has a resonance of 15.18 GHz with 102.06 Q-factor whereas the single planar device has the resonance at 15.01 GHz and an associated Q-factor of 93.81. For the single planar device, we measured a resonance frequency shift of 430 MHz with 3920 N of applied load, while we achieved a 780 MHz frequency shift in the single suspended device. In the planar triplet configuration (with three devices placed side by side on the same chip, with the two outmost ones serving as the receiver and the transmitter), we observed a 220 MHz frequency shift with 3920 N of applied load while we obtained a 340 MHz frequency shift in the suspended triplet device with 3920 N load applied. Thus, the single planar device exhibited a sensitivity level of 0.1097 MHz/N while the single suspended device led to an improved sensitivity of 0.1990 MHz/N. Similarly, with the planar triplet device having a sensitivity of 0.0561 MHz/N, the suspended triplet device yielded an enhanced sensitivity of 0.0867 MHz/N.

  1. Observations on the normal reflection of gaseous detonations

    NASA Astrophysics Data System (ADS)

    Damazo, J.; Shepherd, J. E.

    2017-09-01

    Experimental results are presented examining the behavior of the shock wave created when a gaseous detonation wave normally impinges upon a planar wall. Gaseous detonations are created in a 7.67-m-long, 280-mm-internal-diameter detonation tube instrumented with a test section of rectangular cross section enabling visualization of the region at the tube-end farthest from the point of detonation initiation. Dynamic pressure measurements and high-speed schlieren photography in the region of detonation reflection are used to examine the characteristics of the inbound detonation wave and outbound reflected shock wave. Data from a range of detonable fuel/oxidizer/diluent/initial pressure combinations are presented to examine the effect of cell-size and detonation regularity on detonation reflection. The reflected shock does not bifurcate in any case examined and instead remains nominally planar when interacting with the boundary layer that is created behind the incident wave. The trajectory of the reflected shock wave is examined in detail, and the wave speed is found to rapidly change close to the end-wall, an effect we attribute to the interaction of the reflected shock with the reaction zone behind the incident detonation wave. Far from the end-wall, the reflected shock wave speed is in reasonable agreement with the ideal model of reflection which neglects the presence of a finite-length reaction zone. The net far-field effect of the reaction zone is to displace the reflected shock trajectory from the predictions of the ideal model, explaining the apparent disagreement of the ideal reflection model with experimental reflected shock observations of previous studies.

  2. Evaluation of a cost-effective loads approach. [shock spectra/impedance method for Viking Orbiter

    NASA Technical Reports Server (NTRS)

    Garba, J. A.; Wada, B. K.; Bamford, R.; Trubert, M. R.

    1976-01-01

    A shock spectra/impedance method for loads predictions is used to estimate member loads for the Viking Orbiter, a 7800-lb interplanetary spacecraft that has been designed using transient loads analysis techniques. The transient loads analysis approach leads to a lightweight structure but requires complex and costly analyses. To reduce complexity and cost, a shock spectra/impedance method is currently being used to design the Mariner Jupiter Saturn spacecraft. This method has the advantage of using low-cost in-house loads analysis techniques and typically results in more conservative structural loads. The method is evaluated by comparing the increase in Viking member loads to the loads obtained by the transient loads analysis approach. An estimate of the weight penalty incurred by using this method is presented. The paper also compares the calculated flight loads from the transient loads analyses and the shock spectra/impedance method to measured flight data.

  3. Extended asymmetric hot region formation due to shockwave interactions following void collapse in shocked high explosive

    DOE PAGES

    Shan, Tzu -Ray; Wixom, Ryan R.; Thompson, Aidan P.

    2016-08-01

    In both continuum hydrodynamics simulations and also multimillion atom reactive molecular dynamics simulations of shockwave propagation in single crystal pentaerythritol tetranitrate (PETN) containing a cylindrical void, we observed the formation of an initial radially symmetric hot spot. By extending the simulation time to the nanosecond scale, however, we observed the transformation of the small symmetric hot spot into a longitudinally asymmetric hot region extending over a much larger volume. Performing reactive molecular dynamics shock simulations using the reactive force field (ReaxFF) as implemented in the LAMMPS molecular dynamics package, we showed that the longitudinally asymmetric hot region was formed bymore » coalescence of the primary radially symmetric hot spot with a secondary triangular hot zone. We showed that the triangular hot zone coincided with a double-shocked region where the primary planar shockwave was overtaken by a secondary cylindrical shockwave. The secondary cylindrical shockwave originated in void collapse after the primary planar shockwave had passed over the void. A similar phenomenon was observed in continuum hydrodynamics shock simulations using the CTH hydrodynamics package. Furthermore, the formation and growth of extended asymmetric hot regions on nanosecond timescales has important implications for shock initiation thresholds in energetic materials.« less

  4. 3D Plenoptic PIV Measurements of a Shock Wave Boundary Layer Interaction

    NASA Astrophysics Data System (ADS)

    Thurow, Brian; Bolton, Johnathan; Arora, Nishul; Alvi, Farrukh

    2016-11-01

    Plenoptic particle image velocimetry (PIV) is a relatively new technique that uses the computational refocusing capability of a single plenoptic camera and volume illumination with a double-pulsed light source to measure the instantaneous 3D/3C velocity field of a flow field seeded with particles. In this work, plenoptic PIV is used to perform volumetric velocity field measurements of a shock-wave turbulent boundary layer interaction (SBLI). Experiments were performed in a Mach 2.0 flow with the SBLI produced by an unswept fin at 15°angle of attack. The measurement volume was 38 x 25 x 32 mm3 and illuminated with a 400 mJ/pulse Nd:YAG laser with 1.7 microsecond inter-pulse time. Conventional planar PIV measurements along two planes within the volume are used for comparison. 3D visualizations of the fin generated shock and subsequent SBLI are presented. The growth of the shock foot and separation region with increasing distance from the fin tip is observed and agrees with observations made using planar PIV. Instantaneous images depict 3D fluctuations in the position of the shock foot from one image to the next. The authors acknowledge the support of the Air Force Office of Scientific Research.

  5. Extended asymmetric hot region formation due to shockwave interactions following void collapse in shocked high explosive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shan, Tzu -Ray; Wixom, Ryan R.; Thompson, Aidan P.

    In both continuum hydrodynamics simulations and also multimillion atom reactive molecular dynamics simulations of shockwave propagation in single crystal pentaerythritol tetranitrate (PETN) containing a cylindrical void, we observed the formation of an initial radially symmetric hot spot. By extending the simulation time to the nanosecond scale, however, we observed the transformation of the small symmetric hot spot into a longitudinally asymmetric hot region extending over a much larger volume. Performing reactive molecular dynamics shock simulations using the reactive force field (ReaxFF) as implemented in the LAMMPS molecular dynamics package, we showed that the longitudinally asymmetric hot region was formed bymore » coalescence of the primary radially symmetric hot spot with a secondary triangular hot zone. We showed that the triangular hot zone coincided with a double-shocked region where the primary planar shockwave was overtaken by a secondary cylindrical shockwave. The secondary cylindrical shockwave originated in void collapse after the primary planar shockwave had passed over the void. A similar phenomenon was observed in continuum hydrodynamics shock simulations using the CTH hydrodynamics package. Furthermore, the formation and growth of extended asymmetric hot regions on nanosecond timescales has important implications for shock initiation thresholds in energetic materials.« less

  6. A high-resolution Godunov method for compressible multi-material flow on overlapping grids

    NASA Astrophysics Data System (ADS)

    Banks, J. W.; Schwendeman, D. W.; Kapila, A. K.; Henshaw, W. D.

    2007-04-01

    A numerical method is described for inviscid, compressible, multi-material flow in two space dimensions. The flow is governed by the multi-material Euler equations with a general mixture equation of state. Composite overlapping grids are used to handle complex flow geometry and block-structured adaptive mesh refinement (AMR) is used to locally increase grid resolution near shocks and material interfaces. The discretization of the governing equations is based on a high-resolution Godunov method, but includes an energy correction designed to suppress numerical errors that develop near a material interface for standard, conservative shock-capturing schemes. The energy correction is constructed based on a uniform-pressure-velocity flow and is significant only near the captured interface. A variety of two-material flows are presented to verify the accuracy of the numerical approach and to illustrate its use. These flows assume an equation of state for the mixture based on the Jones-Wilkins-Lee (JWL) forms for the components. This equation of state includes a mixture of ideal gases as a special case. Flow problems considered include unsteady one-dimensional shock-interface collision, steady interaction of a planar interface and an oblique shock, planar shock interaction with a collection of gas-filled cylindrical inhomogeneities, and the impulsive motion of the two-component mixture in a rigid cylindrical vessel.

  7. Impact of High-Z Coatings on the Ablation Pressure of Laser Driven Targets.

    NASA Astrophysics Data System (ADS)

    Mostovych, Andrew; Oh, Jaechul; Schmitt, Andrew; Weaver, James

    2007-11-01

    Recent hydrodynamic experiments [1] with planar high-Z coated targets at the Naval Research Laboratory and spherical implosion experiments with high-Z coated shell targets [2] at the Omega facility all show significant improvement in target stability as a result of the high-Z coatings. For better understanding of the hydrodynamic processes it is important to know the changes in ablation pressure as a result of the high-Z layers. Using the Nike Laser, we have conducted new experiments to measure the change in shock speed of planar CH targets that are irradiated with and without the presence of a 200 Ang. gold high-Z coating. The evolution of shock propagation inside the targets is diagnosed with VISAR probing while average shock velocities are also measured by shock breakout detection from the stepped rear surface of the targets. We find that the high-Z layers produce a time dependent ablation pressure which is detected via the observation of non-steady shocks in the targets. Experimental results and comparisons to hydrodynamic simulations will be presented. Work supported by U. S. Department of Energy. [1] S.P. Obenschain et al., Phys. Plasmas 9, 2234 (2002). [2] A.N. Mostovych et al., APS Abstracts DPPFO3002M, (2005).

  8. On the Magnitude and Orientation of Stress during Shock Metamorphism: Understanding Peak Ring Formation by Combining Observations and Models.

    NASA Astrophysics Data System (ADS)

    Rae, A.; Poelchau, M.; Collins, G. S.; Timms, N.; Cavosie, A. J.; Lofi, J.; Salge, T.; Riller, U. P.; Ferrière, L.; Grieve, R. A. F.; Osinski, G.; Morgan, J. V.; Expedition 364 Science Party, I. I.

    2017-12-01

    Shock metamorphism occurs during the earliest moments after impact. The magnitude and orientation of shock leaves recordable signatures in rocks, which spatially vary across an impact structure. Consequently, observations of shock metamorphism can be used to understand deformation and its history within a shock wave, and to examine subsequent deformation during crater modification. IODP-ICDP Expedition 364 recovered nearly 600 m of shocked target rocks from the peak ring of the Chicxulub Crater. Samples from the expedition were used to measure the magnitude and orientation of shock in peak ring materials, and to determine the mechanism of peak-ring emplacement. Here, we present the results of petrographic analyses of the shocked granitic target rocks of the Chicxulub peak ring; using universal-stage optical microscopy, back-scattered electron images, and electron back-scatter diffraction. Deformation microstructures in quartz include planar deformation features (PDFs), feather features (FFs), which are unique to shock conditions, as well as planar fractures and crystal-plastic deformation bands. The assemblage of PDFs in quartz suggest that the peak-ring rocks experienced shock pressures of 15 GPa throughout the recovered drill core, and that the orientation of FFs are consistent with the present-day orientation of the maximum principal stress direction during shock is close to vertical. Numerical impact simulations of the impact event were run to determine the magnitude and orientation of principal stresses during shock and track those orientations throughout crater formation. Our results are remarkably consistent with the geological data, and accurately predict both the shock-pressure magnitudes, and the final near-vertical orientation of the direction of maximum principal stress in the shock wave. Furthermore, analysis of the state of stress throughout the impact event can be used to constrain the timing of fracture and fault orientations observed in the core. Our results quantitatively describe the deviatoric stress conditions of rocks in shock, which are consistent with observations of shock deformation. Our integrated analysis provides further support for the dynamic collapse model of peak-ring formation, and places dynamic constraints on the conditions of peak-ring formation.

  9. X-Ray Radiography of Laser-Driven Shocks for Inertial Confinement Fusion

    NASA Astrophysics Data System (ADS)

    Kar, A.; Radha, P. B.; Edgell, D. H.; Hu, S. X.; Boehly, T. R.; Goncharov, V. N.; Regan, S. P.; Shvydky, A.

    2017-10-01

    Side-on x-ray radiography of shock waves transiting through the planar plastic ablator and cryogenic fuel layer will be used to study shock timing, shock coalescence, shock breakout, and hydrodynamic mixing at the ablator-fuel interface. The injection of ablator material into the fuel can potentially compromise implosion target performance. The difference in refractive indices of the ablator and the fuel can be exploited to image shocks transiting the interface. An experiment to probe the ablator-fuel interface and a postprocessor to the hydrodynamic code DRACO that uses refraction enhanced imaging to view shocks are presented. The advantages of this technique to view shocks are explored and additional applications such as viewing the spatial location of multiple shocks, or the evolution of nonuniformity on shock fronts are discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  10. Existence and Stability of Viscoelastic Shock Profiles

    NASA Astrophysics Data System (ADS)

    Barker, Blake; Lewicka, Marta; Zumbrun, Kevin

    2011-05-01

    We investigate existence and stability of viscoelastic shock profiles for a class of planar models including the incompressible shear case studied by Antman and Malek-Madani. We establish that the resulting equations fall into the class of symmetrizable hyperbolic-parabolic systems, hence spectral stability implies linearized and nonlinear stability with sharp rates of decay. The new contributions are treatment of the compressible case, formulation of a rigorous nonlinear stability theory, including verification of stability of small-amplitude Lax shocks, and the systematic incorporation in our investigations of numerical Evans function computations determining stability of large-amplitude and nonclassical type shock profiles.

  11. Gaseous detonation initiation via wave implosion

    NASA Astrophysics Data System (ADS)

    Jackson, Scott Irving

    Efficient detonation initiation is a topic of intense interest to designers of pulse detonation engines. This experimental work is the first to detonate propane-air mixtures with an imploding detonation wave and to detonate a gas mixture with a non-reflected, imploding shock. In order to do this, a unique device has been developed that is capable of generating an imploding toroidal detonation wave inside of a tube from a single ignition point without any obstruction to the tube flow path. As part of this study, an initiator that creates a large-aspect-ratio planar detonation wave in gas-phase explosive from a single ignition point has also been developed. The effectiveness of our initiation devices has been evaluated. The minimum energy required by the imploding shock for initiation was determined to scale linearly with the induction zone length, indicating the presence of a planar initiation mode. The imploding toroidal detonation initiator was found to be more effective at detonation initiation than the imploding shock initiator, using a comparable energy input to that of current initiator tubes.

  12. Discovery of microscopic evidence for shock metamorphism at the Serpent Mound structure, south-central Ohio: Confirmation of an origin by impact

    USGS Publications Warehouse

    Carlton, R.W.; Koeberl, C.; Baranoski, M.T.; SchuMacHer, G.A.

    1998-01-01

    The origin of the Serpent Mound structure in south-central Ohio has been disputed for many years. Clearly, more evidence was needed to resolve the confusion concerning the origin of the Serpent Mound feature either by endogenic processes or by hypervelocity impact. A petrographic study of 21 samples taken from a core 903 m long drilled in the central uplift of the structure provides evidence of shock metamorphism in the form of multiple sets of planar deformation features in quartz grains, as well as the presence of clasts of altered impact-melt rock. Crystallographic orientations of the planar deformation features show maxima at the shock-characteristic planes of {101??3} and {101??2} and additional maxima at {101??1}, {213??1}, and {516??1}. Geochemical analyses of impact breccias show minor enrichments in the abundances of the siderophile elements Cr, Co, Ni, and Ir, indicating the presence of a minor meteoritic component.

  13. Shock tubes and waves; Proceedings of the Fourteenth International Symposium on Shock Tubes and Shock Waves, University of Sydney, Sydney, Australia, August 19-22, 1983

    NASA Astrophysics Data System (ADS)

    Archer, R. D.; Milton, B. E.

    Techniques and facilities are examined, taking into account compressor cascades research using a helium-driven shock tube, the suppression of shocks on transonic airfoils, methods of isentropically achieving superpressures, optimized performance of arc heated shock tubes, pressure losses in free piston driven shock tubes, large shock tubes designed for nuclear survivability testing, and power-series solutions of the gasdynamic equations for Mach reflection of a planar shock by a wedge. Other subjects considered are related to aerodynamics in shock tubes, shocks in dusty gases, chemical kinetics, and lasers, plasmas, and optical methods. Attention is given to vapor explosions and the blast at Mt. St. Helens, combustion reaction mechanisms from ignition delay times, the development and use of free piston wind tunnels, models for nonequilibrium flows in real shock tubes, air blast measuring techniques, finite difference computations of flow about supersonic lifting bodies, and the investigation of ionization relaxation in shock tubes.

  14. Hugoniot and refractive indices of bromoform under shock compression

    NASA Astrophysics Data System (ADS)

    Liu, Q. C.; Zeng, X. L.; Zhou, X. M.; Luo, S. N.

    2018-01-01

    We investigate physical properties of bromoform (liquid CHBr3) including compressibility and refractive index under dynamic extreme conditions of shock compression. Planar shock experiments are conducted along with high-speed laser interferometry. Our experiments and previous results establish a linear shock velocity-particle velocity relation for particle velocities below 1.77 km/s, as well as the Hugoniot and isentropic compression curves up to ˜21 GPa. Shock-state refractive indices of CHBr3 up to 2.3 GPa or ˜26% compression, as a function of density, can be described with a linear relation and follows the Gladstone-Dale relation. The velocity corrections for laser interferometry measurements at 1550 nm are also obtained.

  15. Shock wave interaction with L-shaped structures

    NASA Astrophysics Data System (ADS)

    Miller, Richard C.

    1993-12-01

    This study investigated the interaction of shock waves with L-shaped structures using the CTH hydrodynamics code developed by Sandia National Laboratories. Computer models of shock waves traveling through air were developed using techniques similar to shock tube experiments. Models of L-shaped buildings were used to determine overpressures achieved by the reflecting shock versus angle of incidence of the shock front. An L-shaped building model rotated 45 degrees to the planar shock front produced the highest reflected overpressure of 9.73 atmospheres in the corner joining the two wings, a value 9.5 times the incident overpressure of 1.02 atmospheres. The same L-shaped building was modeled with the two wings separated by 4.24 meters to simulate an open courtyard. This open area provided a relief path for the incident shock wave, creating a peak overpressure of only 4.86 atmospheres on the building's wall surfaces from the same 1.02 atmosphere overpressure incident shock wave.

  16. Estimating average shock pressures recorded by impactite samples based on universal stage investigations of planar deformation features in quartz - Sources of error and recommendations

    NASA Astrophysics Data System (ADS)

    Holm-Alwmark, S.; Ferrière, L.; Alwmark, C.; Poelchau, M. H.

    2018-01-01

    Planar deformation features (PDFs) in quartz are the most widely used indicator of shock metamorphism in terrestrial rocks. They can also be used for estimating average shock pressures that quartz-bearing rocks have been subjected to. Here we report on a number of observations and problems that we have encountered when performing universal stage measurements and crystallographically indexing of PDF orientations in quartz. These include a comparison between manual and automated methods of indexing PDFs, an evaluation of the new stereographic projection template, and observations regarding the PDF statistics related to the c-axis position and rhombohedral plane symmetry. We further discuss the implications that our findings have for shock barometry studies. Our study shows that the currently used stereographic projection template for indexing PDFs in quartz might induce an overestimation of rhombohedral planes with low Miller-Bravais indices. We suggest, based on a comparison of different shock barometry methods, that a unified method of assigning shock pressures to samples based on PDFs in quartz is necessary to allow comparison of data sets. This method needs to take into account not only the average number of PDF sets/grain but also the number of high Miller-Bravais index planes, both of which are important factors according to our study. Finally, we present a suggestion for such a method (which is valid for nonporous quartz-bearing rock types), which consists of assigning quartz grains into types (A-E) based on the PDF orientation pattern, and then calculation of a mean shock pressure for each sample.

  17. Planar laser-induced fluorescence measurements of high-enthalpy free jet flow with nitric oxide

    NASA Technical Reports Server (NTRS)

    Palmer, Jennifer L.; Mcmillin, Brian K.; Hanson, Ronald K.

    1992-01-01

    Planar laser-induced fluorescence (PLIF) measurements of property fields in a high-enthalpy, supersonic, underexpanded free jet generated in a reflection-type shock tunnel are reported. PLIF images showing velocity and temperature sensitivity are presented. The inferred radial velocity and relative rotational temperature fields are found to be in agreement with those predicted by a numerical simulation of the flowfield using the method of characteristics.

  18. Shock tubes and waves; Proceedings of the Sixteenth International Symposium, Rheinisch-Westfaelische Technische Hochschule, Aachen, Federal Republic of Germany, July 26-31, 1987

    NASA Astrophysics Data System (ADS)

    Groenig, Hans

    Topics discussed in this volume include shock wave structure, propagation, and interaction; shocks in condensed matter, dusty gases, and multiphase media; chemical processes and related combustion and detonation phenomena; shock wave reflection, diffraction, and focusing; computational fluid dynamic code development and shock wave application; blast and detonation waves; advanced shock tube technology and measuring technique; and shock wave applications. Papers are presented on dust explosions, the dynamics of shock waves in certain dense gases, studies of condensation kinetics behind incident shock waves, the autoignition mechanism of n-butane behind a reflected shock wave, and a numerical simulation of the focusing process of reflected shock waves. Attention is also given to the equilibrium shock tube flow of real gases, blast waves generated by planar detonations, modern diagnostic methods for high-speed flows, and interaction between induced waves and electric discharge in a very high repetition rate excimer laser.

  19. Transient three-dimensional startup side load analysis of a regeneratively cooled nozzle

    NASA Astrophysics Data System (ADS)

    Wang, Ten-See

    2009-07-01

    The objective of this effort is to develop a computational methodology to capture the side load physics and to anchor the computed aerodynamic side loads with the available data by simulating the startup transient of a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, and a transient inlet history based on an engine system simulation. Emphases were put on the effects of regenerative cooling on shock formation inside the nozzle, and ramp rate on side load reduction. The results show that three types of asymmetric shock physics incur strong side loads: the generation of combustion wave, shock transitions, and shock pulsations across the nozzle lip, albeit the combustion wave can be avoided with sparklers during hot-firing. Results from both regenerative cooled and adiabatic wall boundary conditions capture the early shock transitions with corresponding side loads matching the measured secondary side load. It is theorized that the first transition from free-shock separation to restricted-shock separation is caused by the Coanda effect. After which the regeneratively cooled wall enhances the Coanda effect such that the supersonic jet stays attached, while the hot adiabatic wall fights off the Coanda effect, and the supersonic jet becomes detached most of the time. As a result, the computed peak side load and dominant frequency due to shock pulsation across the nozzle lip associated with the regeneratively cooled wall boundary condition match those of the test, while those associated with the adiabatic wall boundary condition are much too low. Moreover, shorter ramp time results show that higher ramp rate has the potential in reducing the nozzle side loads.

  20. Deformation and spallation of a magnesium alloy under high strain rate loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, M.; Lu, L.; Li, C.

    2016-04-01

    We investigate deformation and damage of a magnesium alloy, AZ91, under high strain rate (similar to 10(5) s(-1)) loading via planar impact. The soft-recovered specimens are examined with electron back-scatter diffraction (EBSD). EBSD analysis reveals three types of twinning: {1012} extension, {10 (1) over bar1} contraction, and {10 (1) over bar1}-{10 (1) over bar2) double twinning, and their number density increases with increasing impact velocity. The extension twins dominate contraction and double twins in size and number. Dislocation densities of the recovered specimens are evaluated with x-ray diffraction, and increase with increasing impact velocity. X-ray tomography is used to resolvemore » three-dimensional microstructure of shock-recovered samples. The EBSD and tomography results demonstrate that the second phase, Mg17Al12, plays an important role in both deformation twinning and tensile cracking. Deformation twinning appears to be a common mechanism in deformation of magnesium alloys at low, medium and high strain rates, in addition to dislocation motion. (C) 2016 Elsevier B.V. All rights reserved.« less

  1. Molecular dynamics simulations of ejecta production from sinusoidal tin surfaces under supported and unsupported shocks

    NASA Astrophysics Data System (ADS)

    Wu, Bao; Wu, FengChao; Zhu, YinBo; Wang, Pei; He, AnMin; Wu, HengAn

    2018-04-01

    Micro-ejecta, an instability growth process, occurs at metal/vacuum or metal/gas interface when compressed shock wave releases from the free surface that contains surface defects. We present molecular dynamics (MD) simulations to investigate the ejecta production from tin surface shocked by supported and unsupported waves with pressures ranging from 8.5 to 60.8 GPa. It is found that the loading waveforms have little effect on spike velocity while remarkably affect the bubble velocity. The bubble velocity of unsupported shock loading remains nonzero constant value at late time as observed in experiments. Besides, the time evolution of ejected mass in the simulations is compared with the recently developed ejecta source model, indicating the suppressed ejection of unmelted or partial melted materials. Moreover, different reference positions are chosen to characterize the amount of ejecta under different loading waveforms. Compared with supported shock case, the ejected mass of unsupported shock case saturates at lower pressure. Through the analysis on unloading path, we find that the temperature of tin sample increases quickly from tensile stress state to zero pressure state, resulting in the melting of bulk tin under decaying shock. Thus, the unsupported wave loading exhibits a lower threshold pressure causing the solid-liquid phase transition on shock release than the supported shock loading.

  2. Molecular dynamics of shock loading of metals with defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belak, J.F.

    1997-12-31

    The finite rise time of shock waves in metals is commonly attributed to dissipative or viscous behavior of the metal. This viscous or plastic behavior is commonly attributed to the motion of defects such as dislocations. Despite this intuitive understanding, the experimental observation of defect motion or nucleation during shock loading has not been possible due to the short time scales involved. Molecular dynamics modeling with realistic interatomic potentials can provide some insight into defect motion during shock loading. However, until quite recently, the length scale required to accurately represent a metal with defects has been beyond the scope ofmore » even the most powerful supercomputers. Here, the author presents simulations of the shock response of single defects and indicate how simulation might provide some insight into the shock loading of metals.« less

  3. A High-Resolution Godunov Method for Compressible Multi-Material Flow on Overlapping Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banks, J W; Schwendeman, D W; Kapila, A K

    2006-02-13

    A numerical method is described for inviscid, compressible, multi-material flow in two space dimensions. The flow is governed by the multi-material Euler equations with a general mixture equation of state. Composite overlapping grids are used to handle complex flow geometry and block-structured adaptive mesh refinement (AMR) is used to locally increase grid resolution near shocks and material interfaces. The discretization of the governing equations is based on a high-resolution Godunov method, but includes an energy correction designed to suppress numerical errors that develop near a material interface for standard, conservative shock-capturing schemes. The energy correction is constructed based on amore » uniform pressure-velocity flow and is significant only near the captured interface. A variety of two-material flows are presented to verify the accuracy of the numerical approach and to illustrate its use. These flows assume an equation of state for the mixture based on Jones-Wilkins-Lee (JWL) forms for the components. This equation of state includes a mixture of ideal gases as a special case. Flow problems considered include unsteady one-dimensional shock-interface collision, steady interaction of an planar interface and an oblique shock, planar shock interaction with a collection of gas-filled cylindrical inhomogeneities, and the impulsive motion of the two-component mixture in a rigid cylindrical vessel.« less

  4. Experimental investigation on aero-optical aberration of shock wave/boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Ding, Haolin; Yi, Shihe; Fu, Jia; He, Lin

    2016-10-01

    After streaming through the flow field which including the expansion, shock wave, boundary, etc., the optical wave would be distorted by fluctuations in the density field. Interactions between laminar/turbulent boundary layer and shock wave contain large number complex flow structures, which offer a condition for studying the influences that different flow structures of the complex flow field have on the aero-optical aberrations. Interactions between laminar/turbulent boundary layer and shock wave are investigated in a Mach 3.0 supersonic wind tunnel, based on nanoparticle-tracer planar laser scattering (NPLS) system. Boundary layer separation/attachment, induced suppression waves, induced shock wave, expansion fan and boundary layer are presented by NPLS images. Its spatial resolution is 44.15 μm/pixel. Time resolution is 6ns. Based on the NPLS images, the density fields with high spatial-temporal resolution are obtained by the flow image calibration, and then the optical path difference (OPD) fluctuations of the original 532nm planar wavefront are calculated using Ray-tracing theory. According to the different flow structures in the flow field, four parts are selected, (1) Y=692 600pixel; (2) Y=600 400pixel; (3) Y=400 268pixel; (4) Y=268 0pixel. The aerooptical effects of different flow structures are quantitatively analyzed, the results indicate that: the compressive waves such as incident shock wave, induced shock wave, etc. rise the density, and then uplift the OPD curve, but this kind of shock are fixed in space position and intensity, the aero-optics induced by it can be regarded as constant; The induced shock waves are induced by the coherent structure of large size vortex in the interaction between turbulent boundary layer, its unsteady characteristic decides the induced waves unsteady characteristic; The space position and intensity of the induced shock wave are fixed in the interaction between turbulent boundary layer; The boundary layer aero-optics are induced by the coherent structure of large size vortex, which result in the fluctuation of OPD.

  5. Dynamic deformation of volcanic ejecta from the Toba caldera: possible relevance to Cretaceous/Tertiary boundary phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, N.L.; Officer, C.B.; Chesner, C.A.

    1986-05-01

    Plagioclase and biotite phenocrysts in ignimbrites erupted from the Toba caldera, Sumatra, show microstructures and textures indicative of shock stress levels higher than 10 GPa. Strong dynamic deformation has resulted in intense kinking in biotite and, with increasing shock intensity, the development of plagioclase of planar features, shock mosaicism, incipient recrystallization, and possible partial melting. Microstructures in quartz indicative of strong shock deformation are rare, however, and many shock lamellae, if formed, may have healed during post-shock residence in the hot ignimbrite; they might be preserved in ash falls. Peak shock stresses from explosive silicic volcanism and other endogenous processesmore » may be high and if so would obviate the need for extraterrestrial impacts to produce all dynamically deformed structures, possibly including shock features observed near the Cretaceous/Tertiary boundary. 38 references, 3 figures.« less

  6. Direct Numerical Simulation of Passive Scalar Mixing in Shock Turbulence Interaction

    NASA Astrophysics Data System (ADS)

    Gao, Xiangyu; Bermejo-Moreno, Ivan; Larsson, Johan

    2017-11-01

    Passive scalar mixing in the canonical shock-turbulence interaction configuration is investigated through shock-capturing Direct Numerical Simulations (DNS). Scalar fields with different Schmidt numbers are transported by an initially isotropic turbulent flow field passing across a nominally planar shock wave. A solution-adaptive hybrid numerical scheme on Cartesian structured grids is used, that combines a fifth-order WENO scheme near shocks and a sixth-order central-difference scheme away from shocks. The simulations target variations in the shock Mach number, M (from 1.5 to 3), turbulent Mach number, Mt (from 0.1 to 0.4, including wrinkled- and broken-shock regimes), and scalar Schmidt numbers, Sc (from 0.5 to 2), while keeping the Taylor microscale Reynolds number constant (Reλ 40). The effects on passive scalar statistics are investigated, including the streamwise evolution of scalar variance budgets, pdfs and spectra, in comparison with their temporal evolution in decaying isotropic turbulence.

  7. Numerical investigation of shock induced bubble collapse in water

    NASA Astrophysics Data System (ADS)

    Apazidis, N.

    2016-04-01

    A semi-conservative, stable, interphase-capturing numerical scheme for shock propagation in heterogeneous systems is applied to the problem of shock propagation in liquid-gas systems. The scheme is based on the volume-fraction formulation of the equations of motion for liquid and gas phases with separate equations of state. The semi-conservative formulation of the governing equations ensures the absence of spurious pressure oscillations at the material interphases between liquid and gas. Interaction of a planar shock in water with a single spherical bubble as well as twin adjacent bubbles is investigated. Several stages of the interaction process are considered, including focusing of the transmitted shock within the deformed bubble, creation of a water-hammer shock as well as generation of high-speed liquid jet in the later stages of the process.

  8. Some observations on mesh refinement schemes applied to shock wave phenomena

    NASA Technical Reports Server (NTRS)

    Quirk, James J.

    1995-01-01

    This workshop's double-wedge test problem is taken from one of a sequence of experiments which were performed in order to classify the various canonical interactions between a planar shock wave and a double wedge. Therefore to build up a reasonably broad picture of the performance of our mesh refinement algorithm we have simulated three of these experiments and not just the workshop case. Here, using the results from these simulations together with their experimental counterparts, we make some general observations concerning the development of mesh refinement schemes for shock wave phenomena.

  9. Investigation of the hysteresis phenomena in steady shock reflection using kinetic and continuum methods

    NASA Astrophysics Data System (ADS)

    Ivanov, M.; Zeitoun, D.; Vuillon, J.; Gimelshein, S.; Markelov, G.

    1996-05-01

    The problem of transition of planar shock waves over straight wedges in steady flows from regular to Mach reflection and back was numerically studied by the DSMC method for solving the Boltzmann equation and finite difference method with FCT algorithm for solving the Euler equations. It is shown that the transition from regular to Mach reflection takes place in accordance with detachment criterion while the opposite transition occurs at smaller angles. The hysteresis effect was observed at increasing and decreasing shock wave angle.

  10. Grain size dependence of dynamic mechanical behavior of AZ31B magnesium alloy sheet under compressive shock loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asgari, H., E-mail: hamed.asgari@usask.ca; Odeshi, A.G.; Szpunar, J.A.

    2015-08-15

    The effects of grain size on the dynamic deformation behavior of rolled AZ31B alloy at high strain rates were investigated. Rolled AZ31B alloy samples with grain sizes of 6, 18 and 37 μm, were subjected to shock loading tests using Split Hopkinson Pressure Bar at room temperature and at a strain rate of 1100 s{sup −} {sup 1}. It was found that a double-peak basal texture formed in the shock loaded samples. The strength and ductility of the alloy under the high strain-rate compressive loading increased with decreasing grain size. However, twinning fraction and strain hardening rate were found tomore » decrease with decreasing grain size. In addition, orientation imaging microscopy showed a higher contribution of double and contraction twins in the deformation process of the coarse-grained samples. Using transmission electron microscopy, pyramidal dislocations were detected in the shock loaded sample, proving the activation of pyramidal slip system under dynamic impact loading. - Highlights: • A double-peak basal texture developed in all shock loaded samples. • Both strength and ductility increased with decreasing grain size. • Twinning fraction and strain hardening rate decreased with decreasing grain size. • ‘g.b’ analysis confirmed the presence of dislocations in shock loaded alloy.« less

  11. Targeting Taxanes to Castration-Resistant Prostate Cancer Cells by Nanobubbles and Extracorporeal Shock Waves.

    PubMed

    Marano, Francesca; Rinella, Letizia; Argenziano, Monica; Cavalli, Roberta; Sassi, Francesca; D'Amelio, Patrizia; Battaglia, Antonino; Gontero, Paolo; Bosco, Ornella; Peluso, Rossella; Fortunati, Nicoletta; Frairia, Roberto; Catalano, Maria Graziella

    2016-01-01

    To target taxanes to castration-resistant prostate cancer cells, glycol-chitosan nanobubbles loaded with paclitaxel and docetaxel were constructed. The loaded nanobubbles were then combined with Extracorporeal Shock Waves, acoustic waves widely used in urology and orthopedics, with no side effects. Nanobubbles, with an average diameter of 353.3 ± 15.5 nm, entered two different castration-resistant prostate cancer cells (PC3 and DU145) as demonstrated by flow cytometry and immunofluorescence. The shock waves applied increased the amount of intracellular nanobubbles. Loading nanobubbles with paclitaxel and docetaxel and combining them with shock waves generated the highest cytotoxic effects, resulting in a paclitaxel GI50 reduction of about 55% and in a docetaxel GI50 reduction of about 45% respectively. Combined treatment also affected cell migration. Paclitaxel-loaded nanobubbles and shock waves reduced cell migration by more than 85% with respect to paclitaxel alone; whereas docetaxel-loaded nanobubbles and shock waves reduced cell migration by more than 82% with respect to docetaxel alone. The present data suggest that nanobubbles can act as a stable taxane reservoir in castration-resistant prostate cancer cells and shock waves can further increase drug release from nanobubbles leading to higher cytotoxic and anti-migration effect.

  12. Integrated microelectromechanical gyroscope under shock loads

    NASA Astrophysics Data System (ADS)

    Nesterenko, T. G.; Koleda, A. N.; Barbin, E. S.

    2018-01-01

    The paper presents a new design of a shock-proof two-axis microelectromechanical gyroscope. Without stoppers, the shock load enables the interaction between the silicon sensor elements. Stoppers were installed in the gyroscope to prevent the contact interaction between electrodes and spring elements with fixed part of the sensor. The contact of stoppers occurs along the plane, thereby preventing the system from serious contact stresses. The shock resistance of the gyroscope is improved by the increase in its eigenfrequency at which the contact interaction does not occur. It is shown that the shock load directed along one axis does not virtually cause the movement of sensing elements along the crosswise axes. Maximum stresses observed in the proposed gyroscope at any loading direction do not exceed the value allowable for silicon.

  13. Mineral shock signatures in rocks from Dhala (Mohar) impact structure, Shivpuri district, Madhya Pradesh, India

    NASA Astrophysics Data System (ADS)

    Roy, Madhuparna; Pandey, Pradeep; Kumar, Shailendra; Parihar, P. S.

    2017-12-01

    A concrete study combining optical microscopy, Raman spectroscopy and X-ray diffractometry, was carried out on subsurface samples of basement granite and melt breccia from Mohar (Dhala) impact structure, Shivpuri district, Madhya Pradesh, India. Optical microscopy reveals aberrations in the optical properties of quartz and feldspar in the form of planar deformation feature-like structures, lowered birefringence and mosaics in quartz, toasting, planar fractures and ladder texture in alkali feldspar and near-isotropism in bytownite. It also brings to light incidence of parisite, a radioactive rare mineral in shocked granite. Raman spectral pattern, peak positions, peak widths and multiplicity of peak groups of all minerals, suggest subtle structural/crystallographic deviations. XRD data further reveals minute deviations of unit cell parameters of quartz, alkali feldspar and plagioclase, with respect to standard α-quartz, high- and low albite and microcline. Reduced cell volumes in these minerals indicate compression due to pressure. The c0/a0 values indicate an inter-tetrahedral angle roughly between 120o and 144o, further pointing to a possible pressure maxima of around 12 GPa. The observed unit cell aberration of minerals may indicate an intermediate stage between crystalline and amorphous stages, thereby, signifying possible overprinting of decompression signatures over shock compression effects, from a shock recovery process.

  14. Minimization theory of induced drag subject to constraint conditions

    NASA Technical Reports Server (NTRS)

    Deyoung, J.

    1979-01-01

    Exact analytical solutions in terms of induced drag influence coefficients can be attained which define the spanwise loading with minimized induced drag, subject to specified constraint conditions, for any nonplanar wing shape or number of lift plus wing bending moment about a given wing span station. Example applications of the theory are made to a biplane, a wing in ground effect, a cruciform wing, a V-wing, a planar-wing winglet, and linked wingtips in formation flying. For minimal induced drag, the spanwise loading, relative to elliptic, is outboard for the biplane and is inboard for the wing in ground effect and for the planar-wing winglet. A spinoff of the triplane solution provides mathematically exact equations for downwash and sidewash about a planar vorticity sheet having an arbitrary loading distribution.

  15. ANIE: A mathematical algorithm for automated indexing of planar deformation features in quartz grains

    NASA Astrophysics Data System (ADS)

    Huber, Matthew S.; Ferriãre, Ludovic; Losiak, Anna; Koeberl, Christian

    2011-09-01

    Abstract- Planar deformation features (PDFs) in quartz, one of the most commonly used diagnostic indicators of shock metamorphism, are planes of amorphous material that follow crystallographic orientations, and can thus be distinguished from non-shock-induced fractures in quartz. The process of indexing data for PDFs from universal-stage measurements has traditionally been performed using a manual graphical method, a time-consuming process in which errors can easily be introduced. A mathematical method and computer algorithm, which we call the Automated Numerical Index Executor (ANIE) program for indexing PDFs, was produced, and is presented here. The ANIE program is more accurate and faster than the manual graphical determination of Miller-Bravais indices, as it allows control of the exact error used in the calculation and removal of human error from the process.

  16. The effects of electron thermal radiation on laser ablative shock waves from aluminum plasma into ambient air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sai Shiva, S.; Leela, Ch.; Prem Kiran, P., E-mail: premkiranuoh@gmail.com, E-mail: prem@uohyd.ac.in

    2016-05-15

    The effect of electron thermal radiation on 7 ns laser ablative shock waves from aluminum (Al) plasma into an ambient atmospheric air has been numerically investigated using a one-dimensional, three-temperature (electron, ion, and radiation) radiation hydrodynamic code MULTI. The governing equations in Lagrangian form are solved using an implicit scheme for planar, cylindrical, and spherical geometries. The shockwave velocities (V{sub sw}) obtained numerically are compared with our experimental values obtained over the intensity range of 2.0 × 10{sup 10} to 1.4 × 10{sup 11 }W/cm{sup 2}. It is observed that the numerically obtained V{sub sw} is significantly influenced by the thermal radiation effects which are foundmore » to be dominant in the initial stage up to 2 μs depending on the input laser energy. Also, the results are found to be sensitive to the co-ordinate geometry used in the simulation (planar, cylindrical, and spherical). Moreover, it is revealed that shock wave undergoes geometrical transitions from planar to cylindrical nature and from cylindrical to spherical nature with time during its propagation into an ambient atmospheric air. It is also observed that the spatio-temporal evolution of plasma electron and ion parameters such as temperature, specific energy, pressure, electron number density, and mass density were found to be modified significantly due to the effects of electron thermal radiation.« less

  17. Effect of transient sodium chloride shock loads on the performance of submerged membrane bioreactor.

    PubMed

    Yogalakshmi, K N; Joseph, Kurian

    2010-09-01

    Membrane bioreactor (MBR) is a promising technological option to meet water reuse demands. Though MBR provides effluent quality of reusable standard, its versatility to shock loads remains unexplored. The present study investigates the robustness of MBR under sodium chloride shock load (5-60 g/L) conditions. A bench scale aerobic submerged MBR (6L working volume) with polyethylene hollow fiber membrane module (pore size 0.4 microm) was operated with synthetic wastewater at steady state OLR of 3.6g COD/L/d and HRT of 8h. This resulted in 99% TSS removal and 95% COD and TKN removal. The COD removal during the salt shock load was in the range of 84-64%. The TSS removal showed maximum disturbance (88%) with a corresponding decrease in biomass MLVSS by 8% at 60 g/L shock. TKN removal was reduced due to inhibition of nitrification with increasing shock loads. It took about 4-9 days for the MBR to regain its steady state performance. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Studies of aerothermal loads generated in regions of shock/shock interaction in hypersonic flow

    NASA Technical Reports Server (NTRS)

    Holden, Michael S.; Moselle, John R.; Lee, Jinho

    1991-01-01

    Experimental studies were conducted to examine the aerothermal characteristics of shock/shock/boundary layer interaction regions generated by single and multiple incident shocks. The presented experimental studies were conducted over a Mach number range from 6 to 19 for a range of Reynolds numbers to obtain both laminar and turbulent interaction regions. Detailed heat transfer and pressure measurements were made for a range of interaction types and incident shock strengths over a transverse cylinder, with emphasis on the 3 and 4 type interaction regions. The measurements were compared with the simple Edney, Keyes, and Hains models for a range of interaction configurations and freestream conditions. The complex flowfields and aerothermal loads generated by multiple-shock impingement, while not generating as large peak loads, provide important test cases for code prediction. The detailed heat transfer and pressure measurements proved a good basis for evaluating the accuracy of simple prediction methods and detailed numerical solutions for laminar and transitional regions or shock/shock interactions.

  19. Effect of Shock Waves on Dielectric Properties of KDP Crystal

    NASA Astrophysics Data System (ADS)

    Sivakumar, A.; Suresh, S.; Pradeep, J. Anto; Balachandar, S.; Martin Britto Dhas, S. A.

    2018-05-01

    An alternative non-destructive approach is proposed and demonstrated for modifying electrical properties of crystal using shock-waves. The method alters dielectric properties of a potassium dihydrogen phosphate (KDP) crystal by loading shock-waves generated by a table-top shock tube. The experiment involves launching the shock-waves perpendicular to the (100) plane of the crystal using a pressure driven table-top shock tube with Mach number 1.9. Electrical properties of dielectric constant, dielectric loss, permittivity, impedance, AC conductivity, DC conductivity and capacitance as a function of spectrum of frequency from 1 Hz to 1 MHz are reported for both pre- and post-shock wave loaded conditions of the KDP crystal. The experimental results reveal that dielectric constant of KDP crystal is sensitive to the shock waves such that the value decreases for the shock-loaded KDP sample from 158 to 147. The advantage of the proposed approach is that it is an alternative to the conventional doping process for tailoring dielectric properties of this type of crystal.

  20. Computation of three-dimensional shock wave and boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Hung, C. M.

    1985-01-01

    Computations of the impingement of an oblique shock wave on a cylinder and a supersonic flow past a blunt fin mounted on a plate are used to study three dimensional shock wave and boundary layer interaction. In the impingement case, the problem of imposing a planar impinging shock as an outer boundary condition is discussed and the details of particle traces in windward and leeward symmetry planes and near the body surface are presented. In the blunt fin case, differences between two dimensional and three dimensional separation are discussed, and the existence of an unique high speed, low pressure region under the separated spiral vortex core is demonstrated. The accessibility of three dimensional separation is discussed.

  1. A Planar Quasi-Static Constraint Mode Tire Model

    DTIC Science & Technology

    2015-07-10

    strikes a balance between simple tire models that lack the fidelity to make accurate chassis load predictions and computationally intensive models that...strikes a balance between heuristic tire models (such as a linear point-follower) that lack the fidelity to make accurate chassis load predictions...UNCLASSIFIED: Distribution Statement A. Cleared for public release A PLANAR QUASI-STATIC CONSTRAINT MODE TIRE MODEL Rui Maa John B. Ferris

  2. Multi-planar bending properties of lumbar intervertebral joints following cyclic bending.

    PubMed

    Chow, Daniel H K; Luk, Keith D K; Holmes, Andrew D; Li, Xing-Fei; Tam, Steven C W

    2004-02-01

    To assess the changes in the multi-planar bending properties of intervertebral joints following cyclic bending along different directions. An in vitro biomechanical study using porcine lumbar motion segments. Repeated bending has been suggested as part of the etiology of gradual prolapse of the intervertebral disc, but the multi-planar changes in bending properties following cyclic loading have not been examined in detail. Porcine lumbar motion segments were subject to 1500 cycles of bending along directions of 0 degrees (flexion), 30 degrees, 60 degrees, or 90 degrees (right lateral bending). The multi-planar bending moments and hysteresis energies were recorded before loading and after various cycle numbers. Repeated bending at 30 degrees and 60 degrees resulted in greater decreases in mean bending moment and hysteresis energy than bending at 0 degrees or 90 degrees. No significant differences were seen between loading groups for the change in bending moment along the anterior testing directions, but significant differences were observed in the posterior and lateral testing directions, with bending at 30 degrees causing a significantly greater decrease in bending moment in the postero-lateral directions. The change in mechanical properties of porcine intervertebral joints due to cyclic bending depend on the direction of loading and the direction in which the properties are measured. Loading at 30 degrees provokes the most marked changes in bending moment and hysteresis energy.

  3. Evaluation of a cost-effective loads approach. [for Viking Orbiter light weight structural design

    NASA Technical Reports Server (NTRS)

    Garba, J. A.; Wada, B. K.; Bamford, R.; Trubert, M. R.

    1976-01-01

    A shock spectra/impedance method for loads prediction is used to estimate member loads for the Viking Orbiter, a 7800-lb interplanetary spacecraft that has been designed using transient loads analysis techniques. The transient loads analysis approach leads to a lightweight structure but requires complex and costly analyses. To reduce complexity and cost a shock spectra/impedance method is currently being used to design the Mariner Jupiter Saturn spacecraft. This method has the advantage of using low-cost in-house loads analysis techniques and typically results in more conservative structural loads. The method is evaluated by comparing the increase in Viking member loads to the loads obtained by the transient loads analysis approach. An estimate of the weight penalty incurred by using this method is presented. The paper also compares the calculated flight loads from the transient loads analyses and the shock spectra/impedance method to measured flight data.

  4. Conical Shock-Strength Determination on a Low-Sonic-Boom Aircraft Model by Doppler Global Velocimetry

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.; Meyers, James F.

    2011-01-01

    A nonintrusive technique Doppler global velocimetry (DGV) was used to determine conical shock strengths on a supersonic-cruise low-boom aircraft model. The work was performed at approximately Mach 2 in the Unitary Plan Wind Tunnel. Water is added to the wind tunnel flow circuit, generating small ice particles used as seed particles for the laser-based velocimetry. DGV generates two-dimensional (2-D) maps of three components of velocity that span the oblique shock. Shock strength (i.e. fractional pressure increase) is determined from observation of the flow deflection angle across the shock in combination with the standard shock relations. Although DGV had conveniently and accurately determined shock strengths from the homogenous velocity fields behind 2-D planar shocks, the inhomogeneous 3-D velocity fields behind the conical shocks presented additional challenges. Shock strength measurements for the near-field conical nose shock were demonstrated and compared with previously-published static pressure probe data for the same model in the same wind tunnel. Fair agreement was found between the two sets of results.

  5. A new apparatus to induce lysis of planktonic microbial cells by shock compression, cavitation and spray

    NASA Astrophysics Data System (ADS)

    Schiffer, A.; Gardner, M. N.; Lynn, R. H.; Tagarielli, V. L.

    2017-03-01

    Experiments were conducted on an aqueous growth medium containing cultures of Escherichia coli (E. coli) XL1-Blue, to investigate, in a single experiment, the effect of two types of dynamic mechanical loading on cellular integrity. A bespoke shock tube was used to subject separate portions of a planktonic bacterial culture to two different loading sequences: (i) shock compression followed by cavitation, and (ii) shock compression followed by spray. The apparatus allows the generation of an adjustable loading shock wave of magnitude up to 300 MPa in a sterile laboratory environment. Cultures of E. coli were tested with this apparatus and the spread-plate technique was used to measure the survivability after mechanical loading. The loading sequence (ii) gave higher mortality than (i), suggesting that the bacteria are more vulnerable to shear deformation and cavitation than to hydrostatic compression. We present the results of preliminary experiments and suggestions for further experimental work; we discuss the potential applications of this technique to sterilize large volumes of fluid samples.

  6. Head-on collision of normal shock waves with rigid porous materials

    NASA Astrophysics Data System (ADS)

    Levy, A.; Ben-Dor, G.; Skews, B. W.; Sorek, S.

    1993-08-01

    The head-on collision of a planar shock wave with a rigid porous material has been investigated experimentally in a 75 mm × 75 mm shock tube. The experimental study indicated that unlike the reflection from a flexible porous material (e.g., polyurethane foam) where the transmitted compression waves do not converge to a sharp shock wave, in the case of a rigid porous material (e.g., alumina) the transmitted compression waves do converge to a sharp shock wave, which decays as it propagates along the porous material. In addition to this major difference, many other differences were observed. They are outlined in the following sections. Based on these observations a suggestion modifying the phenomenology of the reflection/interaction process in the case a porous material with large permeability is proposed.

  7. About the preliminary design of the suspension spring and shock absorber

    NASA Astrophysics Data System (ADS)

    Preda, I.

    2016-08-01

    The aim of this paper is to give some recommendation for the design of main-spring and shock absorber of motor vehicle suspensions. Starting from a 2DoF model, the suspension parameters are transferred on the real vehicle on the base of planar schemes for the linkage. For the coil spring, the equations that must be fulfilled simultaneously permit to calculate three geometrical parameters. The indications presented for the shock absorber permit to obtain the damping coefficients in the compression and rebound strokes and to calculate the power dissipated during the vehicle oscillatory movement.

  8. Targeting Taxanes to Castration-Resistant Prostate Cancer Cells by Nanobubbles and Extracorporeal Shock Waves

    PubMed Central

    Argenziano, Monica; Cavalli, Roberta; Sassi, Francesca; D’Amelio, Patrizia; Battaglia, Antonino; Gontero, Paolo; Bosco, Ornella; Peluso, Rossella; Fortunati, Nicoletta; Frairia, Roberto; Catalano, Maria Graziella

    2016-01-01

    To target taxanes to castration-resistant prostate cancer cells, glycol-chitosan nanobubbles loaded with paclitaxel and docetaxel were constructed. The loaded nanobubbles were then combined with Extracorporeal Shock Waves, acoustic waves widely used in urology and orthopedics, with no side effects. Nanobubbles, with an average diameter of 353.3 ± 15.5 nm, entered two different castration-resistant prostate cancer cells (PC3 and DU145) as demonstrated by flow cytometry and immunofluorescence. The shock waves applied increased the amount of intracellular nanobubbles. Loading nanobubbles with paclitaxel and docetaxel and combining them with shock waves generated the highest cytotoxic effects, resulting in a paclitaxel GI50 reduction of about 55% and in a docetaxel GI50 reduction of about 45% respectively. Combined treatment also affected cell migration. Paclitaxel-loaded nanobubbles and shock waves reduced cell migration by more than 85% with respect to paclitaxel alone; whereas docetaxel-loaded nanobubbles and shock waves reduced cell migration by more than 82% with respect to docetaxel alone. The present data suggest that nanobubbles can act as a stable taxane reservoir in castration-resistant prostate cancer cells and shock waves can further increase drug release from nanobubbles leading to higher cytotoxic and anti-migration effect. PMID:28002459

  9. Radiation- and pair-loaded shocks

    NASA Astrophysics Data System (ADS)

    Lyutikov, Maxim

    2018-06-01

    We consider the structure of mildly relativistic shocks in dense media, taking into account the radiation and pair loading, and diffusive radiation energy transfer within the flow. For increasing shock velocity (increasing post-shock temperature), the first important effect is the efficient energy redistribution by radiation within the shock that leads to the appearance of an isothermal jump, whereby the flow reaches the final state through a discontinuous isothermal transition. The isothermal jump, on scales much smaller than the photon diffusion length, consists of a weak shock and a quick relaxation to the isothermal conditions. Highly radiation-dominated shocks do not form isothermal jump. Pair production can mildly increase the overall shock compression ratio to ≈10 (4 for matter-dominated shocks and 7 of the radiation-dominated shocks).

  10. Investigation of shock focusing in a cavity with incident shock diffracted by an obstacle

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Chen, X.; He, L.-M.; Rong, K.; Deiterding, R.

    2017-03-01

    Experiments and numerical simulations were carried out in order to investigate the focusing of a shock wave in a test section after the incident shock has been diffracted by an obstacle. A conventional shock tube was used to generate the planar shock. Incident shock Mach numbers of 1.4 and 2.1 were tested. A high-speed camera was employed to obtain schlieren photos of the flow field in the experiments. In the numerical simulations, a weighted essentially non-oscillatory (WENO) scheme of third-order accuracy supplemented with structured dynamic mesh adaptation was adopted to simulate the shock wave interaction. Good agreement between experiments and numerical results is observed. The configurations exhibit shock reflection phenomena, shock-vortex interaction and—in particular—shock focusing. The pressure history in the cavity apex was recorded and compared with the numerical results. A quantitative analysis of the numerically observed shock reflection configurations is also performed by employing a pseudo-steady shock transition boundary calculation technique. Regular reflection, single Mach reflection and transitional Mach reflection phenomena are observed and are found to correlate well with analytic predictions from shock reflection theory.

  11. Lateral ring metal elastic wheel absorbs shock loading

    NASA Technical Reports Server (NTRS)

    Galan, L.

    1966-01-01

    Lateral ring metal elastic wheel absorbs practically all shock loading when operated over extremely rough terrain and delivers only a negligible shock residue to associated suspension components. The wheel consists of a rigid aluminum assembly to which lateral titanium ring flexible elements with treads are attached.

  12. Development of a flyer design to perform plate impact shock-release-shock experiments on explosives

    NASA Astrophysics Data System (ADS)

    Finnegan, Simon; Ferguson, James; Millett, Jeremy; Goff, Michael

    2017-06-01

    A flyer design to generate a shock-release-shock loading history within a gas gun target was developed before being used to study the response of an HMX based explosive. The flyer consisted of two flyer plates separated by a vacuum gap. This created a rear free surface that, with correct material choice, allowed the target to release to close to ambient pressure between the initial shock and subsequent re-shock. The design was validated by impacting piezoelectric pin arrays to record the front flyer deformation. Shots were performed on PCTFE targets to record the shock states generated in an inert material prior to subjecting an HMX based explosive to the same loading. The response of the explosive to this loading history was recorded using magnetic particle velocity (PV) gauges embedded within the targets. The behavior during the run to detonation is compared with the response to sustained shocks at similar input pressures.

  13. Interaction of strong converging shock wave with SF6 gas bubble

    NASA Astrophysics Data System (ADS)

    Liang, Yu; Zhai, ZhiGang; Luo, XiSheng

    2018-06-01

    Interaction of a strong converging shock wave with an SF6 gas bubble is studied, focusing on the effects of shock intensity and shock shape on interface evolution. Experimentally, the converging shock wave is generated by shock dynamics theory and the gas bubble is created by soap film technique. The post-shock flow field is captured by a schlieren photography combined with a high-speed video camera. Besides, a three-dimensional program is adopted to provide more details of flow field. After the strong converging shock wave impact, a wide and pronged outward jet, which differs from that in planar shock or weak converging shock condition, is derived from the downstream interface pole. This specific phenomenon is considered to be closely associated with shock intensity and shock curvature. Disturbed by the gas bubble, the converging shocks approaching the convergence center have polygonal shapes, and the relationship between shock intensity and shock radius verifies the applicability of polygonal converging shock theory. Subsequently, the motion of upstream point is discussed, and a modified nonlinear theory considering rarefaction wave and high amplitude effects is proposed. In addition, the effects of shock shape on interface morphology and interface scales are elucidated. These results indicate that the shape as well as shock strength plays an important role in interface evolution.

  14. Effect of cathode thickness on the performance of planar Na-NiCl 2 battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xiaochuan; Chang, Hee Jung; Bonnett, Jeff F.

    Na-beta alumina batteries (NBBs) are one of the most promising technologies for renewable energy storage and grid applications. Commercial NBBs are typically constructed in tubular designs, primarily because of their ease of sealing. But, planar designs are considered superior to tubular counterparts in terms of power output, cell packing, ease of assembly, and thermal management. In this paper, the performance of planar NBBs has been evaluated at an intermediate temperature. In particular, planar Na-NiCl 2 cells with different cathode loadings and thicknesses have been studied at 190 °C. We investigated the effects of the cathode thickness, charging current, and dischargingmore » power output on the cell capacity and resistance. More than 60% of theoretical cell capacity was retained with constant discharging power levels of 200, 175, and 100 mW/cm 2 for 1x, 2x, and 3x cathode loadings, respectively. The cell resistance with 1x and 2x cathode loadings was dominated by ohmic resistance with discharging currents up to 105 mA/cm 2, while for 3x cathode loading, it was primarily dominated by ohmic resistance with currents less than 66.67 mA/cm 2 and by polarization resistance above 66.67 mA/cm 2.« less

  15. Effect of cathode thickness on the performance of planar Na-NiCl 2 battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xiaochuan; Chang, Hee Jung; Bonnett, Jeff F.

    Na-beta alumina batteries (NBBs) are one of the most promising technologies for renewable energy storage and grid applications. Commercial NBBs are typically constructed in tubular designs, primarily because of their ease of sealing. However, planar designs are considered superior to tubular designs in terms of power output, cell packing, ease of assembly, and thermal management. In this paper, the performance of planar NBBs has been evaluated at an intermediate temperature. In particular, planar Na-NiCl2 cells with different cathode loadings and thicknesses have been studied at 190oC. The effects of the cathode thickness, charging current, and discharging power output on themore » cell capacity and resistance have been investigated. More than 60% of theoretical cell capacity could be retained with constant discharging power levels of 600, 525, and 300 mW for 1x, 2x, and 3x cathode loadings, respectively. The cell resistance with 1x and 2x cathode loadings was dominated by ohmic resistance with discharging currents up to 105 mA/cm2, while for 3x cathode loading, it was primarily dominated by ohmic resistance with currents less than 66.7 mA/cm2 and by polarization resistance above 66.7 mA/cm2.« less

  16. Effect of cathode thickness on the performance of planar Na-NiCl 2 battery

    DOE PAGES

    Lu, Xiaochuan; Chang, Hee Jung; Bonnett, Jeff F.; ...

    2017-10-18

    Na-beta alumina batteries (NBBs) are one of the most promising technologies for renewable energy storage and grid applications. Commercial NBBs are typically constructed in tubular designs, primarily because of their ease of sealing. But, planar designs are considered superior to tubular counterparts in terms of power output, cell packing, ease of assembly, and thermal management. In this paper, the performance of planar NBBs has been evaluated at an intermediate temperature. In particular, planar Na-NiCl 2 cells with different cathode loadings and thicknesses have been studied at 190 °C. We investigated the effects of the cathode thickness, charging current, and dischargingmore » power output on the cell capacity and resistance. More than 60% of theoretical cell capacity was retained with constant discharging power levels of 200, 175, and 100 mW/cm 2 for 1x, 2x, and 3x cathode loadings, respectively. The cell resistance with 1x and 2x cathode loadings was dominated by ohmic resistance with discharging currents up to 105 mA/cm 2, while for 3x cathode loading, it was primarily dominated by ohmic resistance with currents less than 66.67 mA/cm 2 and by polarization resistance above 66.67 mA/cm 2.« less

  17. The effects of shockwave profile shape and shock obliquity on spallation in Cu and Ta: kinetic and stress-state effects on damage evolution(u)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, George T

    2010-12-14

    Widespread research over the past five decades has provided a wealth of experimental data and insight concerning shock hardening and the spallation response of materials subjected to square-topped shock-wave loading profiles. Less quantitative data have been gathered on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (or triangular-wave) loading profile shock loading on the shock hardening, damage evolution, or spallation response of materials. Explosive loading induces an impulse dubbed a 'Taylor Wave'. This is a significantly different loading history than that achieved by a square-topped impulse in terms of both the pulse duration at a fixed peak pressure,more » and a different unloading strain rate from the peak Hugoniot state achieved. The goal of this research is to quantify the influence of shockwave obliquity on the spallation response of copper and tantalum by subjecting plates of each material to HE-driven sweeping detonation-wave loading and quantify both the wave propagation and the post-mortem damage evolution. This talk will summarize our current understanding of damage evolution during sweeping detonation-wave spallation loading in Cu and Ta and show comparisons to modeling simulations. The spallation responses of Cu and Ta are both shown to be critically dependent on the shockwave profile and the stress-state of the shock. Based on variations in the specifics of the shock drive (pulse shape, peak stress, shock obliquity) and sample geometry in Cu and Ta, 'spall strength' varies by over a factor of two and the details of the mechanisms of the damage evolution is seen to vary. Simplistic models of spallation, such as P{sub min} based on 1-D square-top shock data lack the physics to capture the influence of kinetics on damage evolution such as that operative during sweeping detonation loading. Such considerations are important for the development of predictive models of damage evolution and spallation in metals and alloys.« less

  18. Experimental and Numerical Analyses of Dynamic Deformation and Failure in Marine Structures Subjected to Underwater Impulsive Loads

    DTIC Science & Technology

    2012-08-01

    based impulsive loading ......................................... 48 4.4 Computational modeling of USLS ...56 4.5 Underwater Shock Loading Simulator ( USLS ) ...................................................... 59 4.6 Concluding...42 Figure 4.1 Schematic of Underwater Shock Loading Simulator ( USLS ). A high-velocity projectile hits the flyer-plate and creates a stress

  19. Shock Reactivity of Non-Porous Mixtures of Manganese and Sulfur

    NASA Astrophysics Data System (ADS)

    Jetté, F. X.; Goroshin, S.; Higgins, A. J.

    2007-12-01

    Equimolar mixtures of manganese powder and sulfur were melt-cast into solid pellets in order to study the mechanism of shock-enhanced reactivity in non-porous heterogeneous mixtures. This mixture was selected due to the large exothermic heat release of the manganese-sulfur reaction (214 kJ/mol), which causes the reaction to be self-sustaining once initiated. The test samples were placed in planar recovery ampoules and a strong shock was delivered via the detonation of a charge of amine-sensitized nitromethane. Various shock strengths were achieved by placing different thicknesses of PMMA attenuator discs between the explosive charge and the ampoule. The results confirmed that shock-induced reactions can be produced in highly non-porous mixtures. Indeed, the critical shock pressure that caused ignition of the mixture in the ampoule was found to be in the range 2.2-3.0 GPa (pressures were estimated using LS-DYNA simulations of samples with 100% TMD).

  20. Distinguishing shocked from tectonically deformed quartz by the use of the SEM and chemical etching

    USGS Publications Warehouse

    Gratz, A.J.; Fisler, D.K.; Bohor, B.F.

    1996-01-01

    Multiple sets of crystallographically-oriented planar deformation features (PDFs) are generated by high-strain-rate shock waves at pressures of > 12 GPa in naturally shocked quartz samples. On surfaces, PDFs appear as narrow (50-500 nm) lamellae filled with amorphosed quartz (diaplectic glass) which can be etched with hydrofluoric acid or with hydrothermal alkaline solutions. In contrast, slow-strain-rate tectonic deformation pressure produces wider, semi-linear and widely spaced arrays of dislocation loops that are not glass filled. Etching samples with HF before examination in a scanning electron microscope (SEM) allows for unambiguous visual distinction between glass-filled PDFs and glass-free tectonic deformation arrays in quartz. This etching also reveals the internal 'pillaring' often characteristic of shock-induced PDFs. This technique is useful for easily distinguishing between shock and tectonic deformation in quartz, but does not replace optical techniques for characterizing the shock features.

  1. A midsummer-night's shock wave

    NASA Astrophysics Data System (ADS)

    Hargather, Michael; Liebner, Thomas; Settles, Gary

    2007-11-01

    The aerial pyrotechnic shells used in professional display fireworks explode a bursting charge at altitude in order to disperse the ``stars'' of the display. The shock wave from the bursting charge is heard on the ground as a loud report, though it has by then typically decayed to a mere sound wave. However, viewers seated near the standard safety borders can still be subjected to weak shock waves. These have been visualized using a large, portable, retro-reflective ``Edgerton'' shadowgraph technique and a high-speed digital video camera. Images recorded at 10,000 frames per second show essentially-planar shock waves from 10- and 15-cm firework shells impinging on viewers during the 2007 Central Pennsylvania July 4th Festival. The shock speed is not measurably above Mach 1, but we nonetheless conclude that, if one can sense a shock-like overpressure, then the wave motion is strong enough to be observed by density-sensitive optics.

  2. The role of magnetic loops in particle acceleration at nearly perpendicular shocks

    NASA Technical Reports Server (NTRS)

    Decker, R. B.

    1993-01-01

    The acceleration of superthermal ions is investigated when a planar shock that is on average nearly perpendicular propagates through a plasma in which the magnetic field is the superposition of a constant uniform component plus a random field of transverse hydromagnetic fluctuations. The importance of the broadband nature of the transverse magnetic fluctuations in mediating ion acceleration at nearly perpendicular shocks is pointed out. Specifically, the fluctuations are composed of short-wavelength components which scatter ions in pitch angle and long-wavelength components which are responsible for a spatial meandering of field lines about the mean field. At nearly perpendicular shocks the field line meandering produces a distribution of transient loops along the shock. As an application of this model, the acceleration of a superthermal monoenergetic population of seed protons at a perpendicular shock is investigated by integrating along the exact phase-space orbits.

  3. Heat-flow equation motivated by the ideal-gas shock wave.

    PubMed

    Holian, Brad Lee; Mareschal, Michel

    2010-08-01

    We present an equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, in order to model shockwave propagation in gases. Our approach is motivated by the observation of a disequilibrium among the three components of temperature, namely, the difference between the temperature component in the direction of a planar shock wave, versus those in the transverse directions. This difference is most prominent near the shock front. We test our heat-flow equation for the case of strong shock waves in the ideal gas, which has been studied in the past and compared to Navier-Stokes solutions. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations of hard spheres under strong shockwave conditions.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kittell, David Erik; Yarrington, Cole Davis

    Here, a physically-based form of the Mie–Grüneisen equation of state (EOS) is derived for calculating 1d planar shock temperatures, as well as hot spot temperature distributions from heterogeneous impact simulations. This form utilises a multi-term Einstein oscillator model for specific heat, and is completely algebraic in terms of temperature, volume, an integrating factor, and the cold curve energy. Moreover, any empirical relation for the reference pressure and energy may be substituted into the equations via the use of a generalised reference function. The complete EOS is then applied to calculations of the Hugoniot temperature and simulation of hydrodynamic pore collapsemore » using data for the secondary explosive, hexanitrostilbene (HNS). From these results, it is shown that the choice of EOS is even more significant for determining hot spot temperature distributions than planar shock states. The complete EOS is also compared to an alternative derivation assuming that specific heat is a function of temperature alone, i.e. cv(T). Temperature discrepancies on the order of 100–600 K were observed corresponding to the shock pressures required to initiate HNS (near 10 GPa). Overall, the results of this work will improve confidence in temperature predictions. By adopting this EOS, future work may be able to assign physical meaning to other thermally sensitive constitutive model parameters necessary to predict the shock initiation and detonation of heterogeneous explosives.« less

  5. Dynamic plasticity and failure of high-purity alumina under shock loading.

    PubMed

    Chen, M W; McCauley, J W; Dandekar, D P; Bourne, N K

    2006-08-01

    Most high-performance ceramics subjected to shock loading can withstand high failure strength and exhibit significant inelastic strain that cannot be achieved under conventional loading conditions. The transition point from elastic to inelastic response prior to failure during shock loading, known as the Hugoniot elastic limit (HEL), has been widely used as an important parameter in the characterization of the dynamic mechanical properties of ceramics. Nevertheless, the underlying micromechanisms that control HEL have been debated for many years. Here we show high-resolution electron microscopy of high-purity alumina, soft-recovered from shock-loading experiments. The change of deformation behaviour from dislocation activity in the vicinity of grain boundaries to deformation twinning has been observed as the impact pressures increase from below, to above HEL. The evolution of deformation modes leads to the conversion of material failure from an intergranular mode to transgranular cleavage, in which twinning interfaces serve as the preferred cleavage planes.

  6. Ignition Prediction of Pressed HMX based on Hotspot Analysis Under Shock Pulse Loading

    NASA Astrophysics Data System (ADS)

    Kim, Seokpum; Miller, Christopher; Horie, Yasuyuki; Molek, Christopher; Welle, Eric; Zhou, Min

    The ignition behavior of pressed HMX under shock pulse loading with a flyer is analyzed using a cohesive finite element method (CFEM) which accounts for large deformation, microcracking, frictional heating, and thermal conduction. The simulations account for the controlled loading of thin-flyer shock experiments with flyer velocities between 1.7 and 4.0 km/s. The study focuses on the computational prediction of ignition threshold using James criterion which involves loading intensity and energy imparted to the material. The predicted thresholds are in good agreement with measurements from shock experiments. In particular, it is found that grain size significantly affects the ignition sensitivity of the materials, with smaller sizes leading to lower energy thresholds required for ignition. In addition, significant stress attenuation is observed in high intensity pulse loading as compared to low intensity pulse loading, which affects density of hotspot distribution. The microstructure-performance relations obtained can be used to design explosives with tailored attributes and safety envelopes.

  7. Deciphering the kinetic structure of multi-ion plasma shocks

    DOE PAGES

    Keenan, Brett D.; Simakov, Andrei N.; Chacón, Luis; ...

    2017-11-15

    Here, strong collisional shocks in multi-ion plasmas are featured in many high-energy-density environments, including inertial confinement fusion implosions. However, their basic structure and its dependence on key parameters (e.g., the Mach number and the plasma ion composition) are poorly understood, and inconsistencies in that regard remain in the literature. In particular, the shock width's dependence on the Mach number has been hotly debated for decades. Using a high-fidelity Vlasov-Fokker-Planck code, iFP, and direct comparisons to multi-ion hydrodynamic simulations and semianalytic predictions, we resolve the structure of steady-state planar shocks in D- 3He plasmas. Additionally, we derive and confirm with kineticmore » simulations a quantitative description of the dependence of the shock width on the Mach number and initial ion concentration.« less

  8. Deciphering the kinetic structure of multi-ion plasma shocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keenan, Brett D.; Simakov, Andrei N.; Chacón, Luis

    Here, strong collisional shocks in multi-ion plasmas are featured in many high-energy-density environments, including inertial confinement fusion implosions. However, their basic structure and its dependence on key parameters (e.g., the Mach number and the plasma ion composition) are poorly understood, and inconsistencies in that regard remain in the literature. In particular, the shock width's dependence on the Mach number has been hotly debated for decades. Using a high-fidelity Vlasov-Fokker-Planck code, iFP, and direct comparisons to multi-ion hydrodynamic simulations and semianalytic predictions, we resolve the structure of steady-state planar shocks in D- 3He plasmas. Additionally, we derive and confirm with kineticmore » simulations a quantitative description of the dependence of the shock width on the Mach number and initial ion concentration.« less

  9. A new apparatus to induce lysis of planktonic microbial cells by shock compression, cavitation and spray

    PubMed Central

    Schiffer, A.; Gardner, M. N.; Lynn, R. H.

    2017-01-01

    Experiments were conducted on an aqueous growth medium containing cultures of Escherichia coli (E. coli) XL1-Blue, to investigate, in a single experiment, the effect of two types of dynamic mechanical loading on cellular integrity. A bespoke shock tube was used to subject separate portions of a planktonic bacterial culture to two different loading sequences: (i) shock compression followed by cavitation, and (ii) shock compression followed by spray. The apparatus allows the generation of an adjustable loading shock wave of magnitude up to 300 MPa in a sterile laboratory environment. Cultures of E. coli were tested with this apparatus and the spread-plate technique was used to measure the survivability after mechanical loading. The loading sequence (ii) gave higher mortality than (i), suggesting that the bacteria are more vulnerable to shear deformation and cavitation than to hydrostatic compression. We present the results of preliminary experiments and suggestions for further experimental work; we discuss the potential applications of this technique to sterilize large volumes of fluid samples. PMID:28405383

  10. A new apparatus to induce lysis of planktonic microbial cells by shock compression, cavitation and spray.

    PubMed

    Schiffer, A; Gardner, M N; Lynn, R H; Tagarielli, V L

    2017-03-01

    Experiments were conducted on an aqueous growth medium containing cultures of Escherichia coli ( E. coli ) XL1-Blue, to investigate, in a single experiment, the effect of two types of dynamic mechanical loading on cellular integrity. A bespoke shock tube was used to subject separate portions of a planktonic bacterial culture to two different loading sequences: (i) shock compression followed by cavitation, and (ii) shock compression followed by spray. The apparatus allows the generation of an adjustable loading shock wave of magnitude up to 300 MPa in a sterile laboratory environment. Cultures of E. coli were tested with this apparatus and the spread-plate technique was used to measure the survivability after mechanical loading. The loading sequence (ii) gave higher mortality than (i), suggesting that the bacteria are more vulnerable to shear deformation and cavitation than to hydrostatic compression. We present the results of preliminary experiments and suggestions for further experimental work; we discuss the potential applications of this technique to sterilize large volumes of fluid samples.

  11. Nitric Oxide PLIF Visualization of Simulated Fuel-Air Mixing in a Dual-Mode Scramjet

    NASA Technical Reports Server (NTRS)

    Cantu, Luca M. L.; Gallo, Emanuela C. A.; Cutler, Andrew D.; Bathel, Brett F.; Danehy, Paul M.; Rockwell, Robert D.; Goyne, Christopher P.; McDaniel, James C.

    2015-01-01

    Nitric oxide (NO) planar induced laser fluorescence (PLIF) measurements have been performed in a small scale scramjet combustor at the University of Virginia Aerospace Research Laboratory at nominal simulated Mach 5 flight. A mixture of NO and N2 was injected at the upstream end of the inlet isolator as a surrogate for ethylene fuel, and the mixing of this fuel simulant was studied with and without a shock train. The shock train was produced by an air throttle, which simulated the blockage effects of combustion downstream of the cavity flame holder. NO PLIF signal was imaged in a plane orthogonal to the freestream at the leading edge of the cavity. Instantaneous planar images were recorded and analyzed to identify the most uniform cases, which were achieved by varying the location of the fuel injection and shock train. This method was used to screen different possible fueling configurations to provide optimized test conditions for follow-on combustion measurements using ethylene fuel. A theoretical study of the selected NO rotational transitions was performed to obtain a LIF signal that is linear with NO mole fraction and approximately independent of pressure and temperature.

  12. Coupled pulsating and cellular structure in the propagation of globally planar detonations in free space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Wenhu; Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084; Gao, Yang, E-mail: gaoyang-00@mails.tsinghua.edu.cn

    The globally planar detonation in free space is numerically simulated, with particular interest to understand and quantify the emergence and evolution of the one-dimensional pulsating instability and the two-dimensional cellular structure which is inherently also affected by pulsating instability. It is found that the pulsation includes three stages: rapid decay of the overdrive, approach to the Chapman-Jouguet state and emergence of weak pulsations, and the formation of strong pulsations; while evolution of the cellular structure also exhibits distinct behavior at these three stages: no cell formation, formation of small-scale, irregular cells, and formation of regular cells of a larger scale.more » Furthermore, the average shock pressure in the detonation front consists of fine-scale oscillations reflecting the collision dynamics of the triple-shock structure and large-scale oscillations affected by the global pulsation. The common stages of evolution between the cellular structure and the pulsating behavior, as well as the existence of shock-front pressure oscillation, suggest highly correlated mechanisms between them. Detonations with period doubling, period quadrupling, and chaotic amplitudes were also observed and studied for progressively increasing activation energies.« less

  13. In vitro study of the mechanical effects of shock-wave lithotripsy.

    PubMed

    Howard, D; Sturtevant, B

    1997-01-01

    Impulsive stress in repeated shock waves administered during extracorporeal shock-wave lithotripsy (ESWL) causes injury to kidney tissue. In a study of the mechanical input of ESWL, the effects of focused shock waves on thin planar polymeric membranes immersed in a variety of tissue-mimicking fluids have been examined. A direct mechanism of failure by shock compression and an indirect mechanism by bubble collapse have been observed. Thin membranes are easily damaged by bubble collapse. After propagating through cavitation-free acoustically heterogeneous media (liquids mixed with hollow glass spheres, and tissue) shock waves cause membranes to fail in fatigue by a shearing mechanism. As is characteristic of dynamic fatigue, the failure stress increases with strain rate, determined by the amplitude and rise time of the attenuated shock wave. Shocks with large amplitude and short rise time (i.e., in uniform media) cause no damage. Thus the inhomogeneity of tissue is likely to contribute to injury in ESWL. A definition of dose is proposed which yields a criterion for damage based on measurable shock wave properties.

  14. Shock Isolation Elements Testing for High Input Loadings. Volume III. Mechanical Shock Isolation Elements.

    DTIC Science & Technology

    SHOCK ABSORBERS ), (*GUIDED MISSILE SILOS, SHOCK ABSORBERS ), (*SPRINGS, (*SHOCK(MECHANICS), REDUCTION), TORSION BARS, ELASTOMERS, DAMPING, EQUATIONS OF MOTION, MODEL TESTS, TEST METHODS, NUCLEAR EXPLOSIONS, HARDENING.

  15. Shock attenuation at the Slate Islands revisited

    NASA Technical Reports Server (NTRS)

    Wu, S.; Robertson, P. B.; Grieve, R. A. F.

    1993-01-01

    This study of a more extensive suite of Slate Islands samples confirms previous interpretations. It indicates clearly that recorded shock pressures, as determined by planar deformation feature orientations, increased towards the center. The 'shock center' is very close (considering the structural movements during cavity modification) to that from an independent determination from shatter cone orientations. Shock metamorphism at a higher level in breccia clasts than in the adjacent country rocks is evidence that the shock event preceded the formation of the breccia dikes. These observations, which are consistent with those at other impact structures, are all contrary to the interpretation by Sage that breccia dike formation by diatreme action was the source of the shock event. There is no plausible reason to consider the Slate Islands as anything but the emergent portion of the central uplift of a complex impact crater. It cannot be cited as an example of endogenic shock in arguments regarding evidence of impact in the terrestrial stratigraphic record.

  16. Surface instabilities in shock loaded granular media

    NASA Astrophysics Data System (ADS)

    Kandan, K.; Khaderi, S. N.; Wadley, H. N. G.; Deshpande, V. S.

    2017-12-01

    The initiation and growth of instabilities in granular materials loaded by air shock waves are investigated via shock-tube experiments and numerical calculations. Three types of granular media, dry sand, water-saturated sand and a granular solid comprising PTFE spheres were experimentally investigated by air shock loading slugs of these materials in a transparent shock tube. Under all shock pressures considered here, the free-standing dry sand slugs remained stable while the shock loaded surface of the water-saturated sand slug became unstable resulting in mixing of the shocked air and the granular material. By contrast, the PTFE slugs were stable at low pressures but displayed instabilities similar to the water-saturated sand slugs at higher shock pressures. The distal surfaces of the slugs remained stable under all conditions considered here. Eulerian fluid/solid interaction calculations, with the granular material modelled as a Drucker-Prager solid, reproduced the onset of the instabilities as seen in the experiments to a high level of accuracy. These calculations showed that the shock pressures to initiate instabilities increased with increasing material friction and decreasing yield strain. Moreover, the high Atwood number for this problem implied that fluid/solid interaction effects were small, and the initiation of the instability is adequately captured by directly applying a pressure on the slug surface. Lagrangian calculations with the directly applied pressures demonstrated that the instability was caused by spatial pressure gradients created by initial surface perturbations. Surface instabilities are also shown to exist in shock loaded rear-supported granular slugs: these experiments and calculations are used to infer the velocity that free-standing slugs need to acquire to initiate instabilities on their front surfaces. The results presented here, while in an idealised one-dimensional setting, provide physical understanding of the conditions required to initiate instabilities in a range of situations involving the explosive dispersion of particles.

  17. Energy absorption device for shock loading

    NASA Astrophysics Data System (ADS)

    Howard, C. D.; Lagrange, Donald E.; Beatty, David A.; Littman, David C.

    1995-02-01

    A shock energy absorbing device provides shock protection for the riser line employed to attach an aerodynamic deceleration device to a primary body during deployment of the system into an airstream. During deployment, for example, by dropping an unopened parachute and attached load or by rocket delivery of the unopened parachute and attached load, the parachute is made to open at a desired altitude whereupon very large shock tension forces are generated which are applied to the line. In order to protect the line from failing under these forces and to reduce the requirement for a bulky, heavy line, a shock absorber is provided in the form of a block having one or more breakable web portions formed therein and through which the riser line is threaded. Upon deployment of the system into an airstream, the shock tension forces operate to fracture some or all of the breakable web portions thereby dissipating the shock energy generated during deployment and protecting the riser line from failure.

  18. NO PLIF imaging in the CUBRC 48-inch shock tunnel

    NASA Astrophysics Data System (ADS)

    Jiang, N.; Bruzzese, J.; Patton, R.; Sutton, J.; Yentsch, R.; Gaitonde, D. V.; Lempert, W. R.; Miller, J. D.; Meyer, T. R.; Parker, R.; Wadham, T.; Holden, M.; Danehy, P. M.

    2012-12-01

    Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging is demonstrated at a 10-kHz repetition rate in the Calspan University at Buffalo Research Center's (CUBRC) 48-inch Mach 9 hypervelocity shock tunnel using a pulse burst laser-based high frame rate imaging system. Sequences of up to ten images are obtained internal to a supersonic combustor model, located within the shock tunnel, during a single ~10-millisecond duration run of the ground test facility. Comparison with a CFD simulation shows good overall qualitative agreement in the jet penetration and spreading observed with an average of forty individual PLIF images obtained during several facility runs.

  19. Shock wave-induced phase transition in RDX single crystals.

    PubMed

    Patterson, James E; Dreger, Zbigniew A; Gupta, Yogendra M

    2007-09-20

    The real-time, molecular-level response of oriented single crystals of hexahydro-1,3,5-trinitro-s-triazine (RDX) to shock compression was examined using Raman spectroscopy. Single crystals of [111], [210], or [100] orientation were shocked under stepwise loading to peak stresses from 3.0 to 5.5 GPa. Two types of measurements were performed: (i) high-resolution Raman spectroscopy to probe the material at peak stress and (ii) time-resolved Raman spectroscopy to monitor the evolution of molecular changes as the shock wave reverberated through the material. The frequency shift of the CH stretching modes under shock loading appeared to be similar for all three crystal orientations below 3.5 GPa. Significant spectral changes were observed in crystals shocked above 4.5 GPa. These changes were similar to those observed in static pressure measurements, indicating the occurrence of the alpha-gamma phase transition in shocked RDX crystals. No apparent orientation dependence in the molecular response of RDX to shock compression up to 5.5 GPa was observed. The phase transition had an incubation time of approximately 100 ns when RDX was shocked to 5.5 GPa peak stress. The observation of the alpha-gamma phase transition under shock wave loading is briefly discussed in connection with the onset of chemical decomposition in shocked RDX.

  20. Detrital shocked minerals: microstructural provenance indicators of impact craters

    NASA Astrophysics Data System (ADS)

    Cavosie, A. J.

    2014-12-01

    The study of detrital shocked minerals (DSMs) merges planetary science, sedimentology, mineralogy/crystallography, accessory mineral geochemistry, and geochronology, with the goal of identifying and determining provenance of shock metamorphosed sand grains. Diagnostic high-pressure impact-generated microstructures (planar fractures, planar deformation features) are readily identified on external grain surfaces using standard SEM imaging methods (BSE), and when found, unambiguously confirm an impact origin for a given sand grain. DSMs, including quartz, zircon, monazite, and apatite, have thus far been documented at the Vredefort Dome [1,2,3], Sudbury [4], Rock Elm [5], and Santa Fe [6,7] impact structures. DSMs have been identified in alluvium, colluvium, beach sand, and glacial deposits. Two main processes are recognized that imply the global siliciclastic record contains DSMs: they survive extreme distal transport, and they survive 'deep time' lithification. Distal transport: In South Africa, shocked minerals are preserved in alluvium from the Vaal River >750 km downstream from the Vredefort impact; SHRIMP U-Pb geochronology has confirmed the origin of detrital shocked zircon and monazite from shocked Vredefort bedrock [2]. Vredefort-derived shocked zircons have also been found at the mouth of the Orange River on the Atlantic coast, having travelled ~2000 km downriver from Vredefort [8]. Deep time preservation: Vredefort-derived shocked zircon and quartz has been documented in glacial diamictite from the 300 Myr-old Dwyka Group in South Africa. Shocked minerals were thus entrained and transported in Paleozoic ice sheets that passed over Vredefort [9]. An impact crater can thus be viewed as a unique 'point source', in some cases for billions of years [2,4]; DSMs thus have applications in studying eroded impact craters, sedimentary provenance, landscape evolution, and long-term sediment transport processes throughout the geologic record. This work was supported by NSF (EAR-1145118) and NASA Astrobiology [1] Cavosie et al. 2010 GSA Bulletin. [2] Erickson et al. 2013 GCA. [3] Erickson et al. 2013 Am. Min. [4] Thomson et al. 2014 GSA Bulletin. [5] Roig et al. 2013 LPSC. [6] Lugo and Cavosie 2014 LPSC. [7] Cavosie and Lugo, 2014 LPSC. [8] Montalvo and Cavosie, 2014 GSA. [9] Pincus et al. 2014 GSA.

  1. Structural Changes in Alloys of the Al-Cu-Mg System Under Ion Bombardment and Shock-Wave Loading

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, V. V.; Gushchina, N. V.; Romanov, I. Yu.; Kaigorodova, L. I.; Grigor'ev, A. N.; Pavlenko, A. V.; Plokhoi, V. V.

    2017-02-01

    To confirm the hypothesis on the shock-wave nature of long-range effects upon corpuscular irradiation of condensed media presumably caused by emission and propagation of post-cascade shock waves, comparative experiments on ion beam modification and mechanical shock-wave loading of specimens of VD1 and D16 alloys of the Al-Cu-Mg system are performed. Direct analogy between the processes of microstructural change of cold-deformed VD1 and D16 alloys under mechanical shock loading and irradiation by beams of accelerated Ar+ ions (E = 20-40 keV) with low fluences (1015-1016 cm-2) is established. This demonstrates the important role of the dynamic long-range effects that have not yet been considered in classical radiation physics of solids.

  2. Fragment size distribution statistics in dynamic fragmentation of laser shock-loaded tin

    NASA Astrophysics Data System (ADS)

    He, Weihua; Xin, Jianting; Zhao, Yongqiang; Chu, Genbai; Xi, Tao; Shui, Min; Lu, Feng; Gu, Yuqiu

    2017-06-01

    This work investigates the geometric statistics method to characterize the size distribution of tin fragments produced in the laser shock-loaded dynamic fragmentation process. In the shock experiments, the ejection of the tin sample with etched V-shape groove in the free surface are collected by the soft recovery technique. Subsequently, the produced fragments are automatically detected with the fine post-shot analysis techniques including the X-ray micro-tomography and the improved watershed method. To characterize the size distributions of the fragments, a theoretical random geometric statistics model based on Poisson mixtures is derived for dynamic heterogeneous fragmentation problem, which reveals linear combinational exponential distribution. The experimental data related to fragment size distributions of the laser shock-loaded tin sample are examined with the proposed theoretical model, and its fitting performance is compared with that of other state-of-the-art fragment size distribution models. The comparison results prove that our proposed model can provide far more reasonable fitting result for the laser shock-loaded tin.

  3. Dynamic loads on human and animal surrogates at different test locations in compressed-gas-driven shock tubes

    NASA Astrophysics Data System (ADS)

    Alay, E.; Skotak, M.; Misistia, A.; Chandra, N.

    2018-01-01

    Dynamic loads on specimens in live-fire conditions as well as at different locations within and outside compressed-gas-driven shock tubes are determined by both static and total blast overpressure-time pressure pulses. The biomechanical loading on the specimen is determined by surface pressures that combine the effects of static, dynamic, and reflected pressures and specimen geometry. Surface pressure is both space and time dependent; it varies as a function of size, shape, and external contour of the specimens. In this work, we used two sets of specimens: (1) anthropometric dummy head and (2) a surrogate rodent headform instrumented with pressure sensors and subjected them to blast waves in the interior and at the exit of the shock tube. We demonstrate in this work that while inside the shock tube the biomechanical loading as determined by various pressure measures closely aligns with live-fire data and shock wave theory, significant deviations are found when tests are performed outside.

  4. Simulation of Richtmyer-Meshkov flows for elastic-plastic solids in planar and converging geometries using an Eulerian framework

    NASA Astrophysics Data System (ADS)

    Lopez Ortega, Alejandro

    This thesis presents a numerical and analytical study of two problems of interest involving shock waves propagating through elastic-plastic media: the motion of converging (imploding) shocks and the Richtmyer-Meshkov (RM) instability. Since the stress conditions encountered in these cases normally produce large deformations in the materials, an Eulerian description, in which the spatial coordinates are fixed, is employed. This formulation enables a direct comparison of similarities and differences between the present study of phenomena driven by shock-loading in elastic-plastic solids, and in fluids, where they have been studied extensively. In the first application, Whitham's shock dynamics (WSD) theory is employed for obtaining an approximate description of the motion of an elastic-plastic material processed by a cylindrically/spherically converging shock. Comparison with numerical simulations of the full set of equations of motion reveal that WSD is an accurate tool for characterizing the evolution of converging shocks at all stages. The study of the Richtmyer-Meshkov flow (i.e., interaction between the interface separating two materials of different density and a shock wave incoming at an angle) in solids is performed by means of analytical models for purely elastic solids and numerical simulations when plasticity is included in the material model. To this effect, an updated version of a previously developed multi-material, level-set-based, Eulerian framework for solid mechanics is employed. The revised code includes the use of a multi-material HLLD Riemann problem for imposing material boundary conditions, and a new formulation of the equations of motion that makes use of the stretch tensor while avoiding the degeneracy of the stress tensor under rotation. Results reveal that the interface separating two elastic solids always behaves in a stable oscillatory or decaying oscillatory manner due to the existence of shear waves, which are able to transport the initial vorticity away from the interface. In the case of elastic-plastic materials, the interface behaves at first in an unstable manner similar to a fluid. Ejecta formation is appreciated under certain initial conditions while in other conditions, after an initial period of growth, the interface displays a quasi-stationary long-term behavior due to stress relaxation. The effect of secondary shock-interface interactions (re-shocks) in converging geometries is also studied. A turbulent mixing zone, similar to what is observed in gas--gas interfaces, is created, especially when materials with low strength driven by moderate to strong shocks are considered.

  5. Short-term effects of nanoscale Zero-Valent Iron (nZVI) and hydraulic shock during high-rate anammox wastewater treatment.

    PubMed

    Xu, Jia-Jia; Zhang, Zheng-Zhe; Ji, Zheng-Quan; Zhu, Ying-Hong; Qi, Si-Yu; Tang, Chong-Jian; Jin, Ren-Cun

    2018-06-01

    The stability and resilience of an anaerobic ammonium oxidation (anammox) system under transient nanoscale Zero-Valent Iron (nZVI) (50, 75 and 100 mg L -1 ), hydraulic shock (2-fold increase in flow rate) and their combination were studied in an up-flow anaerobic sludge blanket reactor. The response to the shock loads can be divided into three phases i.e. shock, inertial and recovery periods. The effects of the shock loads were directly proportional to the shock intensity. The effluent quality was gradually deteriorated after exposure to high nZVI level (100 mg L -1 ) for 2 h. The higher effluent sensitivity index and response caused by unit intensity of shock was observed under hydraulic and combined shocks. Notably, the specific anammox activity and the content of heme c were considerably reduced during the shock phase and the maximum loss rates were about 30.5% and 24.8%, respectively. Nevertheless, the extracellular polymeric substance amount in the shock phase was enhanced in varying degrees and variation tendency was disparate at all the tested shock loads. These results suggested that robustness of the anammox system was dependent on the magnitude shocks applied and the reactor resistance can be improved by reducing hydraulic retention time with the increase of nZVI concentration under these circumstances. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Anisotropic responses and initial decomposition of condensed-phase β-HMX under shock loadings via molecular dynamics simulations in conjunction with multiscale shock technique.

    PubMed

    Ge, Ni-Na; Wei, Yong-Kai; Song, Zhen-Fei; Chen, Xiang-Rong; Ji, Guang-Fu; Zhao, Feng; Wei, Dong-Qing

    2014-07-24

    Molecular dynamics simulations in conjunction with multiscale shock technique (MSST) are performed to study the initial chemical processes and the anisotropy of shock sensitivity of the condensed-phase HMX under shock loadings applied along the a, b, and c lattice vectors. A self-consistent charge density-functional tight-binding (SCC-DFTB) method was employed. Our results show that there is a difference between lattice vector a (or c) and lattice vector b in the response to a shock wave velocity of 11 km/s, which is investigated through reaction temperature and relative sliding rate between adjacent slipping planes. The response along lattice vectors a and c are similar to each other, whose reaction temperature is up to 7000 K, but quite different along lattice vector b, whose reaction temperature is only up to 4000 K. When compared with shock wave propagation along the lattice vectors a (18 Å/ps) and c (21 Å/ps), the relative sliding rate between adjacent slipping planes along lattice vector b is only 0.2 Å/ps. Thus, the small relative sliding rate between adjacent slipping planes results in the temperature and energy under shock loading increasing at a slower rate, which is the main reason leading to less sensitivity under shock wave compression along lattice vector b. In addition, the C-H bond dissociation is the primary pathway for HMX decomposition in early stages under high shock loading from various directions. Compared with the observation for shock velocities V(imp) = 10 and 11 km/s, the homolytic cleavage of N-NO2 bond was obviously suppressed with increasing pressure.

  7. Burnett-Cattaneo continuum theory for shock waves.

    PubMed

    Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon

    2011-02-01

    We model strong shock-wave propagation, both in the ideal gas and in the dense Lennard-Jones fluid, using a refinement of earlier work, which accounts for the cold compression in the early stages of the shock rise by a nonlinear, Burnett-like, strain-rate dependence of the thermal conductivity, and relaxation of kinetic-temperature components on the hot, compressed side of the shock front. The relaxation of the disequilibrium among the three components of the kinetic temperature, namely, the difference between the component in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, is accomplished at a much more quantitative level by a rigorous application of the Cattaneo-Maxwell relaxation equation to a reference solution, namely, the steady shock-wave solution of linear Navier-Stokes-Fourier theory, along with the nonlinear Burnett heat-flux term. Our new continuum theory is in nearly quantitative agreement with nonequilibrium molecular-dynamics simulations under strong shock-wave conditions, using relaxation parameters obtained from the reference solution. ©2011 American Physical Society

  8. Shock-induced CO2 loss from CaCO3: Implications for early planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.

    1984-01-01

    Recovered samples from shock recovery experiments on single crystal calcite were subjected to thermogravimetric analysis to determine the amount of post-shock CO2, the decarbonization interval and the activation energy, for the removal of remaining CO2 in shock-loaded calcite. Comparison of post-shock CO2 with that initially present determines shock-induced CO2 loss as a function of shock pressure. Incipient to complete CO2 loss occurs over a pressure range of approximately 10 to approximately 70 GPa. Optical and scanning electron microscopy reveal structural changes, which are related to the shock-loading. The occurrence of dark, diffuse areas, which can be resolved as highly vesicular areas as observed with a scanning electron microscope are interpreted as representing quenched partial melts, into which shock-released CO2 was injected. The experimental results are used to constrain models of shock-produced, primary CO2 atmospheres on the accreting terrestrial planets.

  9. Global Explicit Particle-in-cell Simulations of the Nonstationary Bow Shock and Magnetosphere

    NASA Astrophysics Data System (ADS)

    Yang, Zhongwei; Huang, Can; Liu, Ying D.; Parks, George K.; Wang, Rui; Lu, Quanming; Hu, Huidong

    2016-07-01

    We carry out two-dimensional global particle-in-cell simulations of the interaction between the solar wind and a dipole field to study the formation of the bow shock and magnetosphere. A self-reforming bow shock ahead of a dipole field is presented by using relatively high temporal-spatial resolutions. We find that (1) the bow shock and the magnetosphere are formed and reach a quasi-stable state after several ion cyclotron periods, and (2) under the B z southward solar wind condition, the bow shock undergoes a self-reformation for low β I and high M A . Simultaneously, a magnetic reconnection in the magnetotail is found. For high β I and low M A , the shock becomes quasi-stationary, and the magnetotail reconnection disappears. In addition, (3) the magnetopause deflects the magnetosheath plasmas. The sheath particles injected at the quasi-perpendicular region of the bow shock can be convected downstream of an oblique shock region. A fraction of these sheath particles can leak out from the magnetosheath at the wings of the bow shock. Hence, the downstream situation is more complicated than that for a planar shock produced in local simulations.

  10. Experimental verification of the vaporization's contribution to the shock waves generated by underwater electrical wire explosion under micro-second timescale pulsed discharge

    NASA Astrophysics Data System (ADS)

    Han, Ruoyu; Zhou, Haibin; Wu, Jiawei; Clayson, Thomas; Ren, Hang; Wu, Jian; Zhang, Yongmin; Qiu, Aici

    2017-06-01

    This paper studies pressure waves generated by exploding a copper wire in a water medium, demonstrating the significant contribution of the vaporization process to the formation of shock waves. A test platform including a pulsed current source, wire load, chamber, and diagnostic system was developed to study the shock wave and optical emission characteristics during the explosion process. In the experiment, a total of 500 J was discharged through a copper wire load 0.2 mm in diameter and 4 cm in length. A water gap was installed adjacent to the load so that the current was diverted away from the load after breakdown occurred across the water gap. This allows the electrical energy injection into the load to be interrupted at different times and at different stages of the wire explosion process. Experimental results indicate that when the load was bypassed before the beginning of the vaporization phase, the measured peak pressure was less than 2.5 MPa. By contrast, the peak pressure increased significantly to over 6.5 MPa when the water gap broke down after the beginning of the vaporization phase. It was also found that when bypassing the load after the voltage peak, similar shock waves were produced to those from a non-bypassed load. However, the total optical emission of these bypassed loads was at least an order of magnitude smaller. These results clearly demonstrate that the vaporization process is vital to the formation of shock waves and the energy deposited after the voltage collapse may only have a limited effect.

  11. Experimental Investigation of the Richtmyer-Meshkov Instability Through Simultaneous Measurements of Concentration and Velocity

    NASA Astrophysics Data System (ADS)

    Reese, Daniel; Ames, Alex; Noble, Chris; Oakley, Jason; Rothamer, Dave; Bonazza, Riccardo

    2016-11-01

    The present work investigates the evolution of the Richtmyer-Meshkov instability through simultaneous measurements of concentration and velocity. In the Wisconsin Shock Tube Laboratory at the University of Wisconsin, a broadband, shear-layer initial condition is created at the interface between helium and argon (Atwood number A = 0.7). The helium is seeded with acetone vapor for use in planar laser-induced fluorescence (PLIF), while each gas in the shear layer cross flow is seeded with particulate TiO2, which is used to track the flow and allow for the Mie scattering of light. Once impulsively accelerated by a M = 1.57 shock wave, the interface is imaged twice in close succession using a planar laser sheet containing both the second and fourth harmonic output (532 nm and 266 nm, respectively) of a dual-cavity Nd:YAG laser. Particle image pairs are captured on a dual-frame CCD camera, for use in particle image velocimetry (PIV), while PLIF images are corrected to show concentration. Velocity fields are obtained from particle images using the Insight 4G software package by TSI, and velocity field structure is investigated and compared against concentration images. Probability density functions (PDFs) and planar energy spectra (of both velocity fluctuations and concentration) are then calculated and results are discussed.

  12. Particle acceleration due to shocks in the interplanetary field: High time resolution data and simulation results

    NASA Technical Reports Server (NTRS)

    Kessel, R. L.; Armstrong, T. P.; Nuber, R.; Bandle, J.

    1985-01-01

    Data were examined from two experiments aboard the Explorer 50 (IMP 8) spacecraft. The Johns Hopkins University/Applied Lab Charged Particle Measurement Experiment (CPME) provides 10.12 second resolution ion and electron count rates as well as 5.5 minute or longer averages of the same, with data sampled in the ecliptic plane. The high time resolution of the data allows for an explicit, point by point, merging of the magnetic field and particle data and thus a close examination of the pre- and post-shock conditions and particle fluxes associated with large angle oblique shocks in the interplanetary field. A computer simulation has been developed wherein sample particle trajectories, taken from observed fluxes, are allowed to interact with a planar shock either forward or backward in time. One event, the 1974 Day 312 shock, is examined in detail.

  13. Planar Reflection of Detonations Waves

    NASA Astrophysics Data System (ADS)

    Damazo, Jason; Shepherd, Joseph

    2012-11-01

    An experimental study examining normally reflected gaseous detonation waves is undertaken so that the physics of reflected detonations may be understood. Focused schlieren visualization is used to describe the boundary layer development behind the incident detonation wave and the nature of the reflected shock wave. Reflected shock wave bifurcation-which has received extensive study as it pertains to shock tube performance-is predicted by classical bifurcation theory, but is not observed in the present study for undiluted hydrogen-oxygen and ethylene-oxygen detonation waves. Pressure and thermocouple gauges are installed in the floor of the detonation tube so as to examine both the wall pressure and heat flux. From the pressure results, we observe an inconsistency between the measured reflected shock speed and the measured reflected shock strength with one dimensional flow predictions confirming earlier experiments performed in our laboratory. This research is sponsored by the DHS through the University of Rhode Island, Center of Excellence for Explosives Detection.

  14. The way to zeros: The future of semiconductor device and chemical mechanical polishing technologies

    NASA Astrophysics Data System (ADS)

    Tsujimura, Manabu

    2016-06-01

    For the last 60 years, the development of cutting-edge semiconductor devices has strongly emphasized scaling; the effort to scale down current CMOS devices may well achieve the target of 5 nm nodes by 2020. Planarization by chemical mechanical polishing (CMP), is one technology essential for supporting scaling. This paper summarizes the history of CMP transitions in the planarization process as well as the changing degree of planarity required, and, finally, introduces innovative technologies to meet the requirements. The use of CMP was triggered by the replacement of local oxidation of silicon (LOCOS) as the element isolation technology by shallow trench isolation (STI) in the 1980s. Then, CMP’s use expanded to improving embedability of aluminum wiring, tungsten (W) contacts, Cu wiring, and, more recently, to its adoption in high-k metal gate (HKMG) and FinFET (FF) processes. Initially, the required degree of planarity was 50 nm, but now 0 nm is required. Further, zero defects on a post-CMP wafer is now the goal, and it is possible that zero psi CMP loading pressure will be required going forward. Soon, it seems, everything will have to be “zero” and perfect. Although the process is also chemical in nature, the CMP process is actually mechanical with a load added using slurry particles several tens of nm in diameter. Zero load in the loading process, zero nm planarity with no trace of processing, and zero residual foreign material, including the very slurry particles used in the process, are all required. This article will provide an overview of how to achieve these new requirements and what technologies should be employed.

  15. The structure of mass-loading shocks. [interaction of solar wind with cometary coma or local interstellar medium using two-fluid model

    NASA Technical Reports Server (NTRS)

    Zank, G. P.; Khabibrakhmanov, I. KH.; Story, T.

    1993-01-01

    A new two-fluid model which describes mass loading in the solar wind (e.g., the interaction of the solar wind with a cometary coma or the local interstellar medium) is presented. The self-consistent back-reaction of the mass-loaded ions is included through their effective scattering in low-frequency MHD turbulence and the invocation of a diffusive approximation. Such an approximation has the advantage of introducing self-consistent dissipation coefficients into the governing equations, thereby facilitating the investigation of the internal structure of shocks in mass-loading environments. To illustrate the utility of the new model, we consider the structure of cometary shocks in the hypersonic one-dimensional limit, finding that the incoming solar wind is slowed by both mass loading and the development of a large cometary ion pressure gradient. The shock is broadened and smoothed by the cometary ions with a thickness of the order of the cometary ion diffusion scale.

  16. Control characteristics for wrap-around fins on cruise missiles configurations

    NASA Technical Reports Server (NTRS)

    Sawyer, W. C.; Monta, W. J.; Carter, W. V.; Alexander, W. K.

    1981-01-01

    This paper presents selected results of a panel loads study conducted as part of the final phase of an extensive investigation of an air-breathing missile concept employing wrap-around aerodynamic surfaces. Typical results for M = 2.36 are presented for the fin load results, plus a brief review of basic results of the previously reported tests. Vapor screen results are also discussed. The present results indicate that the fin load characteristics are nearly identical for planar and curved fins having the same projected planform and would permit the use of planar-surface predictions for supersonic speeds in the preliminary design stages of missiles employing wrap-around curved fins.

  17. Fine woody fuel particle diameters for improved planar intersect fuel loading estimates in Southern Rocky Mountain ponderosa pine forests

    Treesearch

    Emma Vakili; Chad M. Hoffman; Robert E. Keane

    2016-01-01

    Fuel loading estimates from planar intersect sampling protocols for fine dead down woody surface fuels require an approximation of the mean squared diameter (d2) of 1-h (0-0.63 cm), 10-h (0.63-2.54 cm), and 100-h (2.54-7.62 cm) timelag size classes. The objective of this study is to determine d2 in ponderosa pine (Pinus ponderosa) forests of New Mexico and Colorado,...

  18. BARRINGER AWARD ADDRESS: Shock Metamorphism of Quartz in Nature and Experiment: A Review

    NASA Astrophysics Data System (ADS)

    Stoffler, D.

    1993-07-01

    Quartz as a widespread rock-forming mineral of the Earth's crust represents the most sensitive indicator of impact-induced shock waves and therefore provides an outstanding tool for the recognition of terrestrial impact formations and for the pressure calibration of shock metamorphosed rocks. This paper attempts to summarize the current knowledge in this field. Shocked quartz has been observed in quite variable spatial relations to impact craters: (1) in the crater basement, (2) in rock and mineral clasts of polymict breccias, and (3) in distal ejecta such as tektites and global air- fall beds (e.g., K/T boundary). Quartz displays a wide variety of shock- induced mechanical deformations and transformations [1,2]. Microscopically observable effects are multiple sets of planar fractures (PF) and planar deformation features (PDF) parallel to low indices crystallographic planes; mosaickism; reduced refractivity and birefringence; partial transformation to stishovite; increased optic axial angle; amorphization (diaplectic glass), partial transformation to coesite; and melting (lechatelierite). Additional effects at the atomic scale are well documented by TEM, X-ray diffraction and spectroscopy [3-7]. All types of shock effects observed so far in natural quartz have been reproduced by experimental shock waves in the laboratory and in large scale TNT and nuclear explosions. By means of sophisticated techniques the pressure dependence of shock effects has been calibrated with high precision. Threshold pressures at room temperature (given in GPa) for the onset of certain effects in single crystals and in nonporous quartzofeldpathic rocks are: 7.5 +- 2, 10 +- 2, 20 +- 2 (various PFs and PDFs), 12 +- 1 (stishovite), 25 +- 1 (reduced refractive index and density), ~30 (coesite), 34 +- 1 (total transformation to diaplectic glass), 50 +- 2 (melting and formation of lechatelierite) [8-12]. The type of shock effects, their paragenetic combination, and their formation pressure are strongly dependent on the physical and textural properties of the impacted quartz-bearing target. Porosity [13] and preshock temperature [9,12,14] are most effective. Both properties are lowering the threshold pressure for certain shock effects and they affect the orientation and type of planar deformation structures (PFs and PDFs). Upon thermometamorphism shocked quartz displays characteristic annealing effects useful for (limited) geothermometry. PDFs transform to "decorated planar features" due to recrystallization. These features persist up to the conditions of recrystallization of the primary quartz. Annealing of diaplectic glass leads to densification of the glass between 700 and 1200 degrees C and to complete recrystallization to alpha-quartz + alpha-cristobalite above 1200 degrees C [10]. In impact craters this transformation produces the characteristic "ballen" texture as observed in clasts of melt rocks. Stishovite and coesite decompose near 350 degrees C and above about 1150 degrees C, respectively. These annealing features provide important boundary conditions for interpreting the temperature-time history of impact formations. There is unequivocal evidence, strongly supported by TEM studies [3,4,8], that most of the shock effects discussed above and, certainly, the complete set cannot be produced by endogenic processes in near-surface environments of the Earth's crust where the strain rates are several orders of magnitude lower than those in impact processes, and the peak pressures exceed 5 GPa only in very special tectonic settings at great depth. References: [1] Stoffler D. (1972) Fortschr. Mineral., 49, 50-113, and references therein. [2] Stoffler D. (1974) Fortschr. Mineral., 51, 256-289. [3] Gratz A. J. et al. (1988) Phys. Chem. Mineral., 16, 221-233. [4] Goltrant O. et al. (1991) EPSL 106, 103-115. [5] Cygan R. T. et al. (1990) LPSC XX, 451-457. [6] Jakubith M. and Lehmann G. (1981) Phys. Chem. Mineral., 7, 165- 168. [7] Ashworth J. R. and Schneider H. (1985) Phys. Chem. Mineral., 11, 241- 249. [8] Stoffler D. (1984) J. Non-Cryst. Solids, 67, 465-502, and references therein. [9] Gratz A. J. (1992) Phys. Chem. Mineral., 19, 267-288, [10] Rehfeldt-Oskierski A. (1986) Ph.D. thesis, Univ. of Munster. [11] Grothues J. (1988) Diploma thesis, Univ. of Muenster [12] Langenhorst F. (1993), Ph.D. thesis, Univ. of Munster. [13] Kieffer S. W. et al. (1976) Contr. Mineral. Petrol., 59, 41-93, [14] Langenhorst F. (1992) Nature, 356, 507-509.

  19. Shock-darkening in ordinary chondrites: Determination of the pressure-temperature conditions by shock physics mesoscale modeling

    NASA Astrophysics Data System (ADS)

    Moreau, J.; Kohout, T.; Wünnemann, K.

    2017-11-01

    We determined the shock-darkening pressure range in ordinary chondrites using the iSALE shock physics code. We simulated planar shock waves on a mesoscale in a sample layer at different nominal pressures. Iron and troilite grains were resolved in a porous olivine matrix in the sample layer. We used equations of state (Tillotson EoS and ANEOS) and basic strength and thermal properties to describe the material phases. We used Lagrangian tracers to record the peak shock pressures in each material unit. The post-shock temperatures (and the fractions of the tracers experiencing temperatures above the melting point) for each material were estimated after the passage of the shock wave and after the reflections of the shock at grain boundaries in the heterogeneous materials. The results showed that shock-darkening, associated with troilite melt and the onset of olivine melt, happened between 40 and 50 GPa with 52 GPa being the pressure at which all tracers in the troilite material reach the melting point. We demonstrate the difficulties of shock heating in iron and also the importance of porosity. Material impedances, grain shapes, and the porosity models available in the iSALE code are discussed. We also discuss possible not-shock-related triggers for iron melt.

  20. Experimental Investigation of Shock Initiation in Mixtures of Manganese and Sulfur

    NASA Astrophysics Data System (ADS)

    Jetté, F. X.; Goroshin, S.; Higgins, A. J.

    2009-12-01

    Equimolar mixtures of manganese powder and sulfur at different starting densities were tested in two different types of steel recovery capsules in order to study the shock initiation phenomenon in Self-Propagating High-Temperature Synthesis (SHS) mixtures. Two different sizes of Mn particles were used for these experiments, <10 μm and -325 mesh (<44 μm). This mixture was selected due to the large exothermic heat release of the manganese-sulfur reaction (214 kJ/mol), which causes the reaction to be self-sustaining once initiated. The test samples were placed in planar recovery capsules and a strong shock was delivered via the detonation of a charge of amine-sensitized nitromethane. Various shock strengths were achieved by placing different thicknesses of PMMA attenuator discs between the explosive charge and the capsule. The results confirmed that shock-induced reactions can be produced in highly non-porous mixtures. It was also found that shock interactions with the side walls of the recovery capsule can play a significant role in the initiation.

  1. Experimental research on crossing shock wave boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Settles, G. S.; Garrison, T. J.

    1994-10-01

    An experimental research effort of the Penn State Gas Dynamics Laboratory on the subject of crossing shock wave boundary layer interactions is reported. This three year study was supported by AFOSR Grant 89-0315. A variety of experimental techniques were employed to study the above phenomena including planar laser scattering flowfield visualization, kerosene lampblack surface flow visualization, laser-interferometer skin friction surveys, wall static pressure measurements, and flowfield five-hole probe surveys. For a model configuration producing two intersecting shock waves, measurements were made for a range of oblique shock strengths at freestream Mach numbers of 3.0 and 3.85. Additionally, measurements were made at Mach 3.85 for a configuration producing three intersecting waves. The combined experimental dataset was used to formulate the first detailed flowfield models of the crossing-shock and triple-shock wave/boundary layer interactions. The structure of these interactions was found to be similar over a broad range of interaction strengths and is dominated by a large, separated, viscous flow region.

  2. The analytical solution of the problem of a shock focusing in a gas for one-dimensional case

    NASA Astrophysics Data System (ADS)

    Shestakovskaya, E. S.; Magazov, F. G.

    2018-03-01

    The analytical solution of the problem of an imploding shock wave in the vessel with an impermeable wall is constructed for the cases of planar, cylindrical and spherical symmetry. The negative velocity is set at the vessel boundary. The velocity of cold ideal gas is zero. At the initial time the shock spreads from this point into the center of symmetry. The boundary moves under the particular law which conforms to the movement of the shock. In Euler variables it moves but in Lagrangian variables its trajectory is a vertical line. Equations that determine the structure of the gas flow between the shock front and the boundary as a function of time and the Lagrangian coordinate as well as the dependence of the entropy on the shock wave velocity are obtained. Self-similar coefficients and corresponding critical values of self-similar coordinates were found for a wide range of adiabatic index. The problem is solved for Lagrangian coordinates.

  3. A physically-based Mie–Gruneisen equation of state to determine hot spot temperature distributions

    DOE PAGES

    Kittell, David Erik; Yarrington, Cole Davis

    2016-07-14

    Here, a physically-based form of the Mie–Grüneisen equation of state (EOS) is derived for calculating 1d planar shock temperatures, as well as hot spot temperature distributions from heterogeneous impact simulations. This form utilises a multi-term Einstein oscillator model for specific heat, and is completely algebraic in terms of temperature, volume, an integrating factor, and the cold curve energy. Moreover, any empirical relation for the reference pressure and energy may be substituted into the equations via the use of a generalised reference function. The complete EOS is then applied to calculations of the Hugoniot temperature and simulation of hydrodynamic pore collapsemore » using data for the secondary explosive, hexanitrostilbene (HNS). From these results, it is shown that the choice of EOS is even more significant for determining hot spot temperature distributions than planar shock states. The complete EOS is also compared to an alternative derivation assuming that specific heat is a function of temperature alone, i.e. cv(T). Temperature discrepancies on the order of 100–600 K were observed corresponding to the shock pressures required to initiate HNS (near 10 GPa). Overall, the results of this work will improve confidence in temperature predictions. By adopting this EOS, future work may be able to assign physical meaning to other thermally sensitive constitutive model parameters necessary to predict the shock initiation and detonation of heterogeneous explosives.« less

  4. Shock Loading of Granular Ni/Al Composites. Part 1. Mechanics of Loading

    DOE PAGES

    Cherukara, Mathew J.; Germann, Timothy C.; Kober, Edward M.; ...

    2014-10-16

    We present molecular dynamics simulations of the thermomechanical response under shock loading of a granular material consisting of laminated Ni/Al grains. We observe two regimes: At low piston velocities (up ≲ 1km/s), the shock wave is diffuse, and the width of the shock front decreases with increasing piston velocity. Beyond a critical shock strength, however, the width remains relatively constant at approximately the mean grain radius. This change in behavior follows from an evolution of the mechanism of compaction with increasing insult strength. Furthermore, the mechanism evolves from plastic deformation-mediated pore collapse for relatively weak shocks, to solid extrusion andmore » fluid ejecta filling pores ahead of the shock front at intermediate strengths, and finally to atomic jetting into the pore for very strong shocks (up ≳ 2 km/s). High-energy fluid ejecta into pores leads to the formation of flow vorticity and can result in a large fraction of the input energy localizing into translational kinetic energy components including the formation of hot spots. This has implications for the mechanical mixing of Ni and Al in these reactive composites.« less

  5. Laser-driven shock compression of gold foam in the terapascal pressure range

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Duan, Xiaoxi; Jiang, Shaoen; Wang, Zhebin; Sun, Liang; Liu, Hao; Yang, Weiming; Zhang, Huan; Ye, Qing; Wang, Peng; Li, Yulong; Yi, Lin; Dong, Suo

    2018-06-01

    Shock compression experiments are carried out on gold foam with an initial density of 3.2 g/cm3 through indirectly laser-driven shock waves at the SG-III prototype laser facility. The impedance-matching technique is applied to determine the equation-of-state (EOS) data of the shocked gold foam. A passive shock breakout diagnostic system is employed to obtain the shock velocities in both the standard material and gold foam. The gold foams are compressed to a maximum density of 20 g/cm3 under a shock pressure of about 2 TPa. The effects of the unsteadiness of shock waves on the EOS measurement are quantitatively analyzed and corrected. The correction of unsteady waves, as well as the good planarity of the shock waves and the low preheating of the gold foam, contributes high-confidence EOS data for the gold foam. The corrected experimental data are compared with the Hugoniot states from the SESAME library. The comparison suggests that the database is suitable for describing the states of gold foam with an initial density of 3.2 g/cm3 under a pressure of about 2 TPa.

  6. Areal Mass Oscillations in Planar Targets Due to Feedout: Theory and Simulations.

    NASA Astrophysics Data System (ADS)

    Velikovich, A. L.; Schmitt, A. J.; Karasik, M.; Obenschain, S. P.; Serlin, V.; Pawley, C. J.; Gardner, J. H.; Aglitskiy, Y.; Metzler, N.

    2001-10-01

    When a planar shock wave breaks out at a rippled rear surface of a laser-driven target, the lateral pressure gradient in a rippled rarefaction wave propagating back to the front surface causes a lateral mass redistribution that reverses the phase of mass variation. If the driving laser pulse has no foot, then the RT growth, starting when the rarefaction wave reaches the front surface, causes the second phase reversal of mass variation, and continues at the initial phase, as consistently observed in feedout experiments on Nike. A foot of the laser pulse can cause an early phase reversal of mass variation, making the strong shock wave driven by the main pulse interact with a density variation in a rippled rarefaction wave rather than with static rear surface ripples. Theory and simulations predict that this interaction can make the phase of mass variation reverse one or three times. Then the phase of the RT growing mode would be opposite to that of the initial mass variation.

  7. Characterization of Exoelectrogenic Bacteria Enterobacter Strains Isolated from a Microbial Fuel Cell Exposed to Copper Shock Load

    PubMed Central

    Feng, Cuijie; Li, Jiangwei; Qin, Dan; Chen, Lixiang; Zhao, Feng; Chen, Shaohua; Hu, Hongbo; Yu, Chang-Ping

    2014-01-01

    Microorganisms capable of generating electricity in microbial fuel cells (MFCs) have gained increasing interest. Here fourteen exoelectrogenic bacterial strains were isolated from the anodic biofilm in an MFC before and after copper (Cu) shock load by Hungate roll-tube technique with solid ferric (III) oxide as an electron acceptor and acetate as an electron donor. Phylogenetic analysis of the 16S rRNA gene sequences revealed that they were all closely related to Enterobacter ludwigii DSM 16688T within the Enterobacteriaceae family, although these isolated bacteria showed slightly different morphology before and after Cu shock load. Two representative strains R2B1 (before Cu shock load) and B4B2 (after Cu shock load) were chosen for further analysis. B4B2 is resistant to 200 mg L−1 of Cu(II) while R2B1 is not, which indicated the potential selection of the Cu shock load. Raman analysis revealed that both R2B1 and B4B2 contained c-type cytochromes. Cyclic voltammetry measurements revealed that strain R2B1 had the capacity to transfer electrons to electrodes. The experimental results demonstrated that strain R2B1 was capable of utilizing a wide range of substrates, including Luria-Bertani (LB) broth, cellulose, acetate, citrate, glucose, sucrose, glycerol and lactose to generate electricity, with the highest current density of 440 mA·m−2 generated from LB-fed MFC. Further experiments indicated that the bacterial cell density had potential correlation with the current density. PMID:25412475

  8. Deformation behavior and spall fracture of the Hadfield steel under shock-wave loading

    NASA Astrophysics Data System (ADS)

    Gnyusov, S. F.; Rotshtein, V. P.; Polevin, S. D.; Kitsanov, S. A.

    2011-03-01

    Comparative studies of regularities in plastic deformation and fracture of the Hadfield polycrystalline steel upon quasi-static tension, impact failure, and shock-wave loading with rear spall are performed. The SINUS-7 accelerator was used as a shock-wave generator. The electron beam parameters of the accelerator were the following: maximum electron energy was 1.35 MeV, pulse duration at half-maximum was 45 ns, maximum energy density on a target was 3.4·1010 W/cm2, shock-wave amplitude was ~20 GPa, and strain rate was ~106 s-1. It is established that the failure mechanism changes from ductile transgranular to mixed ductile-brittle intergranular one when going from quasi-static tensile and Charpy impact tests to shock-wave loading. It is demonstrated that a reason for the intergranular spallation is the strain localization near the grain boundaries containing a carbide interlayer.

  9. Characterizing shock waves in hydrogel using high speed imaging and a fiber-optic probe hydrophone

    NASA Astrophysics Data System (ADS)

    Anderson, Phillip A.; Betney, M. R.; Doyle, H. W.; Tully, B.; Ventikos, Y.; Hawker, N. A.; Roy, Ronald A.

    2017-05-01

    The impact of a stainless steel disk-shaped projectile launched by a single-stage light gas gun is used to generate planar shock waves with amplitudes on the order of 102MPa in a hydrogel target material. These shock waves are characterized using ultra-high-speed imaging as well as a fiber-optic probe hydrophone. Although the hydrogel equation of state (EOS) is unknown, the combination of these measurements with conservation of mass and momentum allows us to calculate pressure. It is also shown that although the hydrogel behaves similarly to water, the use of a water EOS underpredicts pressure amplitudes in the hydrogel by ˜10 % at the shock front. Further, the water EOS predicts pressures approximately 2% higher than those determined by conservation laws for a given value of the shock velocity. Shot to shot repeatability is controlled to within 10%, with the shock speed and pressure increasing as a function of the velocity of the projectile at impact. Thus the projectile velocity may be used as an adequate predictor of shock conditions in future work with a restricted suite of diagnostics.

  10. Shock Reactivity of Non-Porous Mixtures of Manganese and Sulfur

    NASA Astrophysics Data System (ADS)

    Jette, Francois-Xavier; Goroshin, Samuel; Higgins, Andrew

    2007-06-01

    Stoichiometric mixtures of manganese powder and sulfur were melt-cast into solid pellets in order to study the mechanism of shock-enhanced reactivity in non-porous heterogeneous mixtures. This mixture was selected due to the large exothermic heat release of the manganese-sulfur reaction (214 kJ/mol), which causes the reaction to be self-sustaining once initiated. The test samples were placed in planar recovery ampoules and a strong shock was delivered via the detonation of a charge of amine-sensitized nitromethane. Various shock strengths were achieved by placing different thicknesses of PMMA attenuator between the explosive charge and the ampoule. The results confirmed that shock-induced reactions can be produced in the absence of porosity. Indeed, the critical shock pressure that caused ignition of the mixture in the ampoule was found to be in the range 2.2 - 3.8 GPa (pressures were estimated using LS-DYNA simulations). In the cases where the shock was too weak to cause ignition in the ampoule, the sample was extracted and its ignition temperature was determined using a differential thermal analyzer.

  11. Embedded optical fibers for PDV measurements in shock-loaded, light and heavy water

    NASA Astrophysics Data System (ADS)

    Mercier, Patrick; Benier, Jacky; Frugier, Pierre-Antoine; Debruyne, Michel; Bolis, Cyril

    2011-06-01

    In order to study the shock-detonation transition, it is necessary to characterize the shock loading of a high explosive plane wave generator into a nitromethane cell. To eliminate the reactive behaviour, we replace the nitromethane by an inert liquid compound. Light water has been first employed; eventually heavy water has been chosen for its better infrared spectral properties. We present the PDV results of different submerged embedded optical fibers which sense the medium with two different approaches: a non-intrusive optical observation of phenomena coming in front of them (interface, shock wave) followed by the mechanical interaction with the shock wave.

  12. Development of sensitized pick coal interface detector system

    NASA Technical Reports Server (NTRS)

    Burchill, R. F.

    1979-01-01

    One approach for detection of the coal interface is measurement of the pick cutting hoads and shock through the use of pick strain gage load cells and accelerometers. The cutting drum of a long wall mining machine contains a number of cutting picks. In order to measure pick loads and shocks, one pick was instrumented and telementry used to transmit the signals from the drum to an instrument-type tape recorder. A data system using FM telemetry was designed to transfer cutting bit load and shock information from the drum of a longwall shearer coal mining machine to a chassis mounted data recorder.

  13. Anfo Response To Low-Stress Planar Impacts

    NASA Astrophysics Data System (ADS)

    Cooper, Marcia A.; Trott, Wayne M.; Schmitt, Robert G.; Short, Mark; Jackson, Scott I.

    2012-03-01

    Ammonium Nitrate plus Fuel Oil (ANFO) is a non-ideal explosive where the mixing behavior of the mm-diameter prills with the absorbed fuel oil is of critical importance for chemical energy release. The large-scale heterogeneity of ANFO establishes conditions uniquely suited for observation using the spatially- and temporally-resolved line-imaging ORVIS (Optically Recording Velocity Interferometer System) diagnostic. The first demonstration of transmitted wave profiles in ANFO from planar impacts using a single-stage gas gun is reported. Major observations including an extended compaction precursor, post-shock particle velocity variations and between-prill jetting are reported.

  14. Control and reduction of unsteady pressure loads in separated shock wave turbulent boundary layer interaction

    NASA Technical Reports Server (NTRS)

    Dolling, David S.; Barter, John W.

    1995-01-01

    The focus was on developing means of controlling and reducing unsteady pressure loads in separated shock wave turbulent boundary layer interactions. Section 1 describes how vortex generators can be used to effectively reduce loads in compression ramp interaction, while Section 2 focuses on the effects of 'boundary-layer separators' on the same interaction.

  15. The Shock and Vibration Bulletin. Part 3. Shock Testing, Shock Analysis

    DTIC Science & Technology

    1974-08-01

    APPROXIMATE TRANSFORMATION C.S. O’Hearne and J.W. Shipley, Martin Marietta Aerospace, Orlando, Florida LINEAR LUMPED-MASS MODELING TECHNIQUES FOR BLAST LOADED...Leppert, B.K. Wada, Jet Propulsion Laboratory, Pasadena, California, and R. Miyakawa, Martin - Marietta Aerospace, Denver, Colorado (assigned to the Jet...Wilmington, Delaware Vibration Testing and Analysis DEVELOPMENT OF SAM-D MISSILE RANDOM VIBRATION RESPONSE LOADS P.G. Hahn, Martin Marietta Aerospace

  16. Shock Location Dominated Transonic Flight Loads on the Active Aeroelastic Wing

    NASA Technical Reports Server (NTRS)

    Lokos, William A.; Lizotte, Andrew; Lindsley, Ned J.; Stauf, Rick

    2005-01-01

    During several Active Aeroelastic Wing research flights, the shadow of the over-wing shock could be observed because of natural lighting conditions. As the plane accelerated, the shock location moved aft, and as the shadow passed the aileron and trailing-edge flap hinge lines, their associated hinge moments were substantially affected. The observation of the dominant effect of shock location on aft control surface hinge moments led to this investigation. This report investigates the effect of over-wing shock location on wing loads through flight-measured data and analytical predictions. Wing-root and wing-fold bending moment and torque and leading- and trailing-edge hinge moments have been measured in flight using calibrated strain gages. These same loads have been predicted using a computational fluid dynamics code called the Euler Navier-Stokes Three Dimensional Aeroelastic Code. The computational fluid dynamics study was based on the elastically deformed shape estimated by a twist model, which in turn was derived from in-flight-measured wing deflections provided by a flight deflection measurement system. During level transonic flight, the shock location dominated the wing trailing-edge control surface hinge moments. The computational fluid dynamics analysis based on the shape provided by the flight deflection measurement system produced very similar results and substantially correlated with the measured loads data.

  17. Comparing Numerical Spall Simulations with a Nonlinear Spall Formation Model

    NASA Astrophysics Data System (ADS)

    Ong, L.; Melosh, H. J.

    2012-12-01

    Spallation accelerates lightly shocked ejecta fragments to speeds that can exceed the escape velocity of the parent body. We present high-resolution simulations of nonlinear shock interactions in the near surface. Initial results show the acceleration of near-surface material to velocities up to 1.8 times greater than the peak particle velocity in the detached shock, while experiencing little to no shock pressure. These simulations suggest a possible nonlinear spallation mechanism to produce the high-velocity, low show pressure meteorites from other planets. Here we pre-sent the numerical simulations that test the production of spall through nonlinear shock interactions in the near sur-face, and compare the results with a model proposed by Kamegai (1986 Lawrence Livermore National Laboratory Report). We simulate near-surface shock interactions using the SALES_2 hydrocode and the Murnaghan equation of state. We model the shock interactions in two geometries: rectangular and spherical. In the rectangular case, we model a planar shock approaching the surface at a constant angle phi. In the spherical case, the shock originates at a point below the surface of the domain and radiates spherically from that point. The angle of the shock front with the surface is dependent on the radial distance of the surface point from the shock origin. We model the target as a solid with a nonlinear Murnaghan equation of state. This idealized equation of state supports nonlinear shocks but is tem-perature independent. We track the maximum pressure and maximum velocity attained in every cell in our simula-tions and compare them to the Hugoniot equations that describe the material conditions in front of and behind the shock. Our simulations demonstrate that nonlinear shock interactions in the near surface produce lightly shocked high-velocity material for both planar and cylindrical shocks. The spall is the result of the free surface boundary condi-tion, which forces a pressure gradient from the peak shock pressure to the zero pressure boundary. The nonlinear shock interactions occur where the pressure contours curve to accommodate the free surface. The material within this spall zone is ejected at speeds up to 1.8 km s-1 for an imposed pulse of 1 km s-1. Where the ejection velocities are highest, the maximum pressure attained in each cell is effectively zero. We compare our simulation results with a model for nonlinear shock interactions proposed by Kamegai (1986). This model recognizes that the material behind the shock is compressed and has a higher soundspeed than the mate-rial in front of the shock. As the rarefaction wave moves behind the shock, its increased velocity through the com-pressed material combines with the residual particle velocity behind the shock to "catch up" with the shock. This occurs in the near surface where the sum of the compressed sound speed and the residual particle velocity is greater than or equal to the shock velocity. Initial results for the spherical shocks qualitatively match the volume described by this model, but differ significantly in the quantitative slope of the curve defining the region of interaction. We continue to test the Kamegai model with high-resolution numerical simulations of shock interactions to determine its potential application to planetary spallation.

  18. Geophysical anomalies and quartz microstructures, Eastern Warburton Basin, North-east South Australia: Tectonic or impact shock metamorphic origin?

    NASA Astrophysics Data System (ADS)

    Glikson, Andrew Y.; Uysal, I. Tonguç; Fitz Gerald, John D.; Saygin, Erdinc

    2013-03-01

    The Eastern Warburton Basin, Northeast South Australia, features major geophysical anomalies, including a magnetic high of near-200 nT centred on a 25 km-wide magnetic low (< 100 nT), interpreted in terms of a magmatic body below 6 km depth. A distinct seismic tomographic low velocity anomaly may reflect its thick (9.5 km) sedimentary section, high temperatures and possible deep fracturing. Scanning electron microscope (SEM) analyses of granites resolves microbreccia veins consisting of micron-scale particles injected into resorbed quartz grains. Planar and sub-planar elements in quartz grains (Qz/PE) occur in granites, volcanics and sediments of the > 30,000 km-large Eastern Warburton Basin. The Qz/PE include multiple intersecting planar to curved sub-planar elements with relic lamellae less than 2 μm wide with spacing of 4-5 μm. Qz/PE are commonly re-deformed, displaying bent and wavy patterns accompanied with fluid inclusions. U-stage measurements of a total of 243 planar sets in 157 quartz grains indicate dominance of ∏{10-12}, ω{10-13} and subsidiary §{11-22}, {22-41}, m{10-11} and x{51-61} planes. Transmission Electron Microscopy (TEM) analysis displays relic narrow ≤ 1 μm-wide lamellae and relic non-sub grain boundaries where crystal segments maintain optical continuity. Extensive sericite alteration of feldspar suggests hydrothermal alteration to a depth of 500 m below the unconformity which overlies the Qz/PE-bearing Warburton Basin terrain. The data are discussed in terms of (A) Tectonic-metamorphic deformation and (B) impact shock metamorphism producing planar deformation features (Qz/PDF). Deformed Qz/PE are compared to re-deformed Qz/PDFs in the Sudbury, Vredefort, Manicouagan and Charlevoix impact structures. A 4-5 km uplift of the Big Lake Granite Suite during 298-295 Ma is consistent with missing of upper Ordovician to Devonian strata and possible impact rebound. The occurrence of circular seismic tomography anomalies below the east Warburton Basin, the Poolowana Basin and the Woodleigh impact structure signifies a potential diagnostic nature of circular tomographic anomalies.

  19. The Link Between Shocks, Turbulence, and Magnetic Reconnection in Collisionless Plasmas

    NASA Technical Reports Server (NTRS)

    Karimabadi, H.; Roytershteyn, V.; Vu, H. X.; Omelchenko, Y. A.; Scudder, J.; Daughton, W.; Dimmock, A.; Nykyri, K.; Wan, M.; Sibeck, D.; hide

    2014-01-01

    Global hybrid (electron fluid, kinetic ions) and fully kinetic simulations of the magnetosphere have been used to show surprising interconnection between shocks, turbulence and magnetic reconnection. In particular collisionless shocks with their reflected ions that can get upstream before retransmission can generate previously unforeseen phenomena in the post shocked flows: (i) formation of reconnecting current sheets and magnetic islands with sizes up to tens of ion inertial length. (ii) Generation of large scale low frequency electromagnetic waves that are compressed and amplified as they cross the shock. These 'wavefronts' maintain their integrity for tens of ion cyclotron times but eventually disrupt and dissipate their energy. (iii) Rippling of the shock front, which can in turn lead to formation of fast collimated jets extending to hundreds of ion inertial lengths downstream of the shock. The jets, which have high dynamical pressure, 'stir' the downstream region, creating large scale disturbances such as vortices, sunward flows, and can trigger flux ropes along the magnetopause. This phenomenology closes the loop between shocks, turbulence and magnetic reconnection in ways previously unrealized. These interconnections appear generic for the collisionless plasmas typical of space, and are expected even at planar shocks, although they will also occur at curved shocks as occur at planets or around ejecta.

  20. GLOBAL EXPLICIT PARTICLE-IN-CELL SIMULATIONS OF THE NONSTATIONARY BOW SHOCK AND MAGNETOSPHERE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhongwei; Liu, Ying D.; Wang, Rui

    2016-07-01

    We carry out two-dimensional global particle-in-cell simulations of the interaction between the solar wind and a dipole field to study the formation of the bow shock and magnetosphere. A self-reforming bow shock ahead of a dipole field is presented by using relatively high temporal-spatial resolutions. We find that (1) the bow shock and the magnetosphere are formed and reach a quasi-stable state after several ion cyclotron periods, and (2) under the B{sub z} southward solar wind condition, the bow shock undergoes a self-reformation for low β{sub i} and high M{sub A}. Simultaneously, a magnetic reconnection in the magnetotail is found.more » For high β{sub i} and low M{sub A}, the shock becomes quasi-stationary, and the magnetotail reconnection disappears. In addition, (3) the magnetopause deflects the magnetosheath plasmas. The sheath particles injected at the quasi-perpendicular region of the bow shock can be convected downstream of an oblique shock region. A fraction of these sheath particles can leak out from the magnetosheath at the wings of the bow shock. Hence, the downstream situation is more complicated than that for a planar shock produced in local simulations.« less

  1. New data on the kinetics and governing factors of the spall fracture of metals

    NASA Astrophysics Data System (ADS)

    Kanel, G. I.; Razorenov, S. V.; Garkushin, G. V.; Savinykh, A. S.

    2018-01-01

    This paper presents two examples of significant departures from usual trends of varying the resistance to spall fracture (spall strength) with changing loading history, load duration and peak shock stress. In experiments with vanadium single crystals we observed an important decrease of spall strength when increasing the shock stress. This was interpreted in terms of disruption of the matter homogeneity as a result of its twinning at shock compression. In experiments with 12Kh18N10T austenitic stainless steel we observed a sharp increase of recorded spall strength value when short load pulses of a triangular profile were replaced by shock pulses of long duration having a trapezoidal shape. This anomaly is associated with formation of the deformation-induced martensitic phase.

  2. Ejection of spalled layers from laser shock-loaded metals

    NASA Astrophysics Data System (ADS)

    Lescoute, E.; De Rességuier, T.; Chevalier, J.-M.; Loison, D.; Cuq-Lelandais, J.-P.; Boustie, M.; Breil, J.; Maire, P.-H.; Schurtz, G.

    2010-11-01

    Dynamic fragmentation of shock-loaded metals is an issue of considerable importance for both basic science and a variety of technological applications, such as inertial confinement fusion, which involves high energy laser irradiation of thin metallic shells. In this context, we present an experimental and numerical study of debris ejection in laser shock-loaded metallic targets (aluminum, gold, and iron) where fragmentation is mainly governed by spall fracture occurring upon tensile loading due to wave interactions inside the sample. Experimental results consist of time-resolved velocity measurements, transverse optical shadowgraphy of ejected debris, and postshock observations of targets and fragments recovered within a transparent gel of low density. They are compared to numerical computations performed with a hydrodynamic code. A correct overall consistency is obtained.

  3. Pressure-induced metallization of condensed phase β-HMX under shock loadings via molecular dynamics simulations in conjunction with multi-scale shock technique.

    PubMed

    Ge, Ni-Na; Wei, Yong-Kai; Zhao, Feng; Chen, Xiang-Rong; Ji, Guang-Fu

    2014-07-01

    The electronic structure and initial decomposition in high explosive HMX under conditions of shock loading are examined. The simulation is performed using quantum molecular dynamics in conjunction with multi-scale shock technique (MSST). A self-consistent charge density-functional tight-binding (SCC-DFTB) method is adapted. The results show that the N-N-C angle has a drastic change under shock wave compression along lattice vector b at shock velocity 11 km/s, which is the main reason that leads to an insulator-to-metal transition for the HMX system. The metallization pressure (about 130 GPa) of condensed-phase HMX is predicted firstly. We also detect the formation of several key products of condensed-phase HMX decomposition, such as NO2, NO, N2, N2O, H2O, CO, and CO2, and all of them have been observed in previous experimental studies. Moreover, the initial decomposition products include H2 due to the C-H bond breaking as a primary reaction pathway at extreme condition, which presents a new insight into the initial decomposition mechanism of HMX under shock loading at the atomistic level.

  4. Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects

    NASA Astrophysics Data System (ADS)

    Courtney, Amy C.; Andrusiv, Lubov P.; Courtney, Michael W.

    2012-04-01

    This paper describes the development and characterization of modular, oxy-acetylene driven laboratory scale shock tubes. Such tools are needed to produce realistic blast waves in a laboratory setting. The pressure-time profiles measured at 1 MHz using high-speed piezoelectric pressure sensors have relevant durations and show a true shock front and exponential decay characteristic of free-field blast waves. Descriptions are included for shock tube diameters of 27-79 mm. A range of peak pressures from 204 kPa to 1187 kPa (with 0.5-5.6% standard error of the mean) were produced by selection of the driver section diameter and distance from the shock tube opening. The peak pressures varied predictably with distance from the shock tube opening while maintaining both a true blast wave profile and relevant pulse duration for distances up to about one diameter from the shock tube opening. This shock tube design provides a more realistic blast profile than current compression-driven shock tubes, and it does not have a large jet effect. In addition, operation does not require specialized personnel or facilities like most blast-driven shock tubes, which reduces operating costs and effort and permits greater throughput and accessibility. It is expected to be useful in assessing the response of various sensors to shock wave loading; assessing the reflection, transmission, and absorption properties of candidate armor materials; assessing material properties at high rates of loading; assessing the response of biological materials to shock wave exposure; and providing a means to validate numerical models of the interaction of shock waves with structures. All of these activities have been difficult to pursue in a laboratory setting due in part to lack of appropriate means to produce a realistic blast loading profile.

  5. Mechanical Properties of Shock Treated Aluminium Alloy Al 2024-T4

    NASA Astrophysics Data System (ADS)

    Joshi, K. D.; Mukhopadhyay, A. K.; Dey, A.; Rav, Amit S.; Biswas, S.; Gupta, Satish C.

    2012-07-01

    Plate impact experiment has been carried out on Al 2024-T4 alloy using single stage gas gun. The dynamic yield strength and spall strength of Al 2024-T4 sample has been determined to be 0.35 GPa and 1.43 GPa, respectively, from free surface velocity history measured using VISAR. The sample recovered after unloading from peak shock pressure of 4.4 GPa along with an unshocked sample is analyzed for mechanical properties using nano-indentation and scanning electron microscopy (SEM). The nano-indentation measurements reveal that the hardness and Young's modulus for unshocked sample remains unchanged as a function of load (equivalently depth), however, the same for shocked sample decreases monotonically with increase of load up to ~40 mN and on further increase of load it remains unchanged, suggesting the (i) increase in hardness of shock loaded sample; (ii) the increase in hardness is limited to certain depth, which in our case is 845.12 ± 43.16 nm.

  6. Experimental Study on Reaction Characteristics of PTFE/Ti/W Energetic Materials under Explosive Loading

    PubMed Central

    Li, Yan; Jiang, Chunlan; Wang, Zaicheng; Luo, Puguang

    2016-01-01

    Metal/fluoropolymer composites represent a new category of energetic structural materials that release energy through exothermic chemical reactions initiated under shock loading conditions. This paper describes an experiment designed to study the reaction characteristics of energetic materials with low porosity under explosive loading. Three PTFE (polytetrafluoroethylene)/Ti/W mixtures with different W contents are processed through pressing and sintering. An inert PTFE/W mixture without reactive Ti particles is also prepared to serve as a reference. Shock-induced chemical reactions are recorded by high-speed video through a narrow observation window. Related shock parameters are calculated based on experimental data, and differences in energy release are discussed. The results show that the reaction propagation of PTFE/Ti/W energetic materials with low porosity under explosive loading is not self-sustained. As propagation distance increases, the energy release gradually decreases. In addition, reaction failure distance in PTFE/Ti/W composites is inversely proportional to the W content. Porosity increased the failure distance due to higher shock temperature. PMID:28774056

  7. Examining the effects of microstructure and loading on the shock initiation of HMX with mesoscale simulations

    NASA Astrophysics Data System (ADS)

    Springer, H. Keo; Tarver, Craig; Bastea, Sorin

    2015-06-01

    We perform reactive mesoscale simulations to study shock initiation in HMX over a range of pore morphologies and sizes, porosities, and loading conditions in order to improve our understanding of structure-performance relationships. These relationships are important because they guide the development of advanced macroscale models incorporating hot spot mechanisms and the optimization of novel energetic material microstructures. Mesoscale simulations are performed using the multiphysics hydrocode, ALE3D. Spherical, elliptical, polygonal, and crack-like pore geometries 0.1, 1, 10, and 100 microns in size and 2, 5, 10, and 14% porosity are explored. Loading conditions are realized with shock pressures of 6, 10, 20, 38, and 50 GPa. A Cheetah-based tabular model, including temperature-dependent heat capacity, is used for the unreacted and the product equation-of-state. Also, in-line Cheetah is used to probe chemical species evolution. The influence of microstructure and shock loading on shock-to-detonation-transition run distance, reaction rate and product gas species evolution are discussed. This work performed under the auspices of the U.S. DOE by LLNL under Contract DE-AC52-07NA27344. This work is funded by the Joint DoD-DOE Munitions Program.

  8. Method and apparatus for determining pressure-induced frequency-shifts in shock-compressed materials

    DOEpatents

    Moore, David S.; Schmidt, Stephen C.

    1985-01-01

    A method and an apparatus for conducting coherent anti-Stokes Raman scattering spectroscopy in shock-compressed materials are disclosed. The apparatus includes a sample vessel having an optically transparent wall and an opposing optically reflective wall. Two coherent laser beams, a pump beam and a broadband Stokes beam, are directed through the window and focused on a portion of the sample. In the preferred embodiment, a projectile is fired from a high-pressure gas gun to impact the outside of the reflective wall, generating a planar shock wave which travels through the sample toward the window. The pump and Stokes beams result in the emission from the shock-compressed sample of a coherent anti-Stokes beam, which is emitted toward the approaching reflective wall of the vessel and reflected back through the window. The anti-Stokes beam is folded into a spectrometer for frequency analysis. The results of such analysis are useful for determining chemical and physical phenomena which occur during the shock-compression of the sample.

  9. Shock-turbulence interaction in core-collapse supernovae

    NASA Astrophysics Data System (ADS)

    Abdikamalov, Ernazar; Zhaksylykov, Azamat; Radice, David; Berdibek, Shapagat

    2016-10-01

    Nuclear shell burning in the final stages of the lives of massive stars is accompanied by strong turbulent convection. The resulting fluctuations aid supernova explosion by amplifying the non-radial flow in the post-shock region. In this work, we investigate the physical mechanism behind this amplification using a linear perturbation theory. We model the shock wave as a one-dimensional planar discontinuity and consider its interaction with vorticity and entropy perturbations in the upstream flow. We find that, as the perturbations cross the shock, their total turbulent kinetic energy is amplified by a factor of ˜2, while the average linear size of turbulent eddies decreases by about the same factor. These values are not sensitive to the parameters of the upstream turbulence and the nuclear dissociation efficiency at the shock. Finally, we discuss the implication of our results for the supernova explosion mechanism. We show that the upstream perturbations can decrease the critical neutrino luminosity for producing explosion by several per cent.

  10. Method and apparatus for determining pressure-induced frequency-shifts in shock-compressed materials

    DOEpatents

    Moore, D.S.; Schmidt, S.C.

    1983-12-16

    A method and an apparatus for conducting coherent anti-Stokes Raman scattering spectroscopy in shock-compressed materials are disclosed. The apparatus includes a sample vessel having an optically transparent wall and an opposing optically reflective wall. Two coherent laser beams, a pump beam and a broadband Stokes beam, are directed through the window and focused on a portion of the sample. In the preferred embodiment, a projectile is fired from a high-pressure gas gun to impact the outside of the reflective wall, generating a planar shock wave which travels through the sample toward the window. The pump and Stokes beams result in the emission from the shock-compressed sample of a coherent anti-Stokes beam, which is emitted toward the approaching reflective wall of the vessel and reflected back through the window. The anti-Stokes beam is folded into a spectrometer for frequency analysis. The results of such analysis are useful for determining chemical and physical phenomena which occur during the shock-compression of the sample.

  11. Test of a new heat-flow equation for dense-fluid shock waves.

    PubMed

    Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon

    2010-09-21

    Using a recently proposed equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, we model shockwave propagation in the dense Lennard-Jones fluid. Disequilibrium among the three components of temperature, namely, the difference between the kinetic temperature in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, gives rise to a new transport (equilibration) mechanism not seen in usual one-dimensional heat-flow situations. The modification of the heat-flow equation was tested earlier for the case of strong shock waves in the ideal gas, which had been studied in the past and compared to Navier-Stokes-Fourier solutions. Now, the Lennard-Jones fluid, whose equation of state and transport properties have been determined from independent calculations, allows us to study the case where potential, as well as kinetic contributions are important. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations under strong shock wave conditions, compared to Navier-Stokes.

  12. Ablative Rayleigh-Taylor and Richtmyer-Meshkov Instabilities in Laser-Accelerated Colliding Foils

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Metzler, N.; Karasik, M.; Serlin, V.; Weaver, J.; Obenschain, S. P.; Oh, J.; Schmitt, A. J.; Velikovich, A. L.; Zalesak, S. T.; Gardner, J. H.; Harding, E. C.

    2008-11-01

    In our experiments done on the Nike KrF laser, we study instability growth at shock-decelerated interfaces in planar colliding-foil experiments. We use streaked monochromatic (1.86 keV) x-ray face-on imaging diagnostics to measure the areal mass modulation growth caused by the instability. Higher x-ray energies up to 5.25 keV are used to follow the shock propagation as well as the 1D dynamics of the collision. While a laser-driven foil is accelerated towards the stationary low-density foam layer, an ablative RT instability develops. Having reached a high velocity, the foil hits the foam layer. The impact generates strong shocks in the plastic and in the foam. The reflected shock wave re-shocks the ablation front, its acceleration stops, and so does the observed RT growth. This is followed by areal mass oscillations due to the ablative RM instability and feedout mechanisms, of which the latter dominates.

  13. Dynamic evolutions of electron properties: A theoretical study for condensed-phase β-HMX under shock loading

    NASA Astrophysics Data System (ADS)

    He, Zheng-Hua; Chen, Jun; Wu, Qiang; Ji, Guang-Fu

    2017-11-01

    We present the density functional theory (DFT) calculations for microscopic electron properties of β-HMX under shock loading. The metallization pressure is determined to be within 30-55 GPa. The frontier molecular orbitals mainly localize on N-NO2 groups initially and disperse with pressure increase, while HOMO and LUMO orbitals trend to aggregate with each other. The deformation of N-NO2 groups and enhanced hydrogen-bonding interactions cause the electron delocalization and lower the band gap, inducing the reaction initiation finally. Our results show that using the electron properties can reliably predict the initial decomposition of energetic materials under shock loading.

  14. Modeling shock responses of plastic bonded explosives using material point method

    NASA Astrophysics Data System (ADS)

    Shang, Hailin; Zhao, Feng; Fu, Hua

    2017-01-01

    Shock responses of plastic bonded explosives are modeled using material point method as implemented in the Uintah Computational Framework. Two-dimensional simulation model was established based on the micrograph of PBX9501. Shock loading for the explosive was performed by a piston moving at a constant velocity. Unreactive simulation results indicate that under shock loading serious plastic strain appears on the boundary of HMX grains. Simultaneously, the plastic strain energy transforms to thermal energy, causing the temperature to rise rapidly on grain boundary areas. The influence of shock strength on the responses of explosive was also investigated by increasing the piston velocity. And the results show that with increasing shock strength, the distribution of plastic strain and temperature does not have significant changes, but their values increase obviously. Namely, the higher the shock strength is, the higher the temperature rise will be.

  15. Numerical Study of Richtmyer-Meshkov Instability with Re-Shock

    NASA Astrophysics Data System (ADS)

    Wong, Man Long; Livescu, Daniel; Lele, Sanjiva

    2017-11-01

    The interaction of a Mach 1.45 shock wave with a perturbed planar interface between two gases with an Atwood number 0.68 is studied through 2D and 3D shock-capturing adaptive mesh refinement (AMR) simulations with physical diffusive and viscous terms. The simulations have initial conditions similar to those in the actual experiment conducted by Poggi et al. [1998]. The development of the flow and evolution of mixing due to the interactions with the first shock and the re-shock are studied together with the sensitivity of various global parameters to the properties of the initial perturbation. Grid resolutions needed for fully resolved and 2D and 3D simulations are also evaluated. Simulations are conducted with an in-house AMR solver HAMeRS built on the SAMRAI library. The code utilizes the high-order localized dissipation weighted compact nonlinear scheme [Wong and Lele, 2017] for shock-capturing and different sensors including the wavelet sensor [Wong and Lele, 2016] to identify regions for grid refinement. First and third authors acknowledge the project sponsor LANL.

  16. Hugoniot measurements of double-shocked precompressed dense xenon plasmas

    NASA Astrophysics Data System (ADS)

    Zheng, J.; Chen, Q. F.; Gu, Y. J.; Chen, Z. Y.

    2012-12-01

    The current partially ionized plasmas models for xenon show substantial differences since the description of pressure and thermal ionization region becomes a formidable task, prompting the need for an improved understanding of dense xenon plasmas behavior at above 100 GPa. We performed double-shock compression experiments on dense xenon to determine accurately the Hugoniot up to 172 GPa using a time-resolved optical radiation method. The planar strong shock wave was produced using a flyer plate impactor accelerated up to ˜6 km/s with a two-stage light-gas gun. The time-resolved optical radiation histories were acquired by using a multiwavelength channel optical transience radiance pyrometer. Shock velocity was measured and mass velocity was determined by the impedance-matching methods. The experimental equation of state of dense xenon plasmas are compared with the self-consistent fluid variational calculations of dense xenon in the region of partial ionization over a wide range of pressures and temperatures.

  17. A comparison of five sampling techniques to estimate surface fuel loading in montane forests

    Treesearch

    Pamela G. Sikkink; Robert E. Keane

    2008-01-01

    Designing a fuel-sampling program that accurately and efficiently assesses fuel load at relevant spatial scales requires knowledge of each sample method's strengths and weaknesses.We obtained loading values for six fuel components using five fuel load sampling techniques at five locations in western Montana, USA. The techniques included fixed-area plots, planar...

  18. Shock Mitigation in Open-Celled TiNi Foams

    NASA Astrophysics Data System (ADS)

    Jardine, A. Peter

    2018-05-01

    High-energy shock events generated by impacts are effectively mitigated by Nitinol materials. Initial evidence of this capability was suggested by the dramatically superior cavitation-erosion performance of Nitinol coatings made by plasma spray processes, over steels and brasses. A fast acting hysteretic stress-strain response mechanism was proposed to explain this result, transforming the shock energy into heat. Extending this work to bulk TiNi, dynamic load characterization using Split Rod Hopkinson Bar techniques on solid porous TiNi confirmed that the mechanical response to high strain rates below 4200 s-1 were indeed hysteretic. This paper reports on dynamical load characterization on TiNi foams made by Self-Propagating High-Temperature Synthesis (SHS) using Split Rod Hopkinson Bar and gas-gun impact characterization to compare these foams to alternative materials. This work verified that SHS-derived TiNi foams were indeed hysteretic at strain rates from 180 to 2300 s-1. In addition, Shock Spectrum Analysis demonstrated that TiNi foams were very effective in mitigating the shock spectrum range below 5 kHz, and that increasing porosity increased the amount of shock attenuation in that spectral range. Finally under impact loading, 55% porous TiNi foams were a factor of 7 superior to steel and a factor of 4 better than Al 6061 or Cu in mitigating peak g-loads and this attenuation improved with bilayer structures of 57 and 73% porous TiNi foam article.

  19. Studies of the Codeposition of Cobalt Hydroxide and Nickel Hydroxide

    NASA Technical Reports Server (NTRS)

    Ho, C. H.; Murthy, M.; VanZee, J. W.

    1997-01-01

    Topics considered include: chemistry, experimental measurements, planar film model development, impregnation model development, results and conclusion. Also included: effect of cobalt concentration on deposition/loading; effect of current density on loading distribution.

  20. Amplification and attenuation of shock wave strength caused by homogeneous isotropic turbulence

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; Watanabe, T.; Nagata, K.; Sasoh, A.; Sakai, Y.; Hayase, T.

    2018-03-01

    We study the pressure increase across a planar shock wave with shock Mach numbers Ms of 1.1, 1.3, and 1.5 propagating through homogeneous isotropic turbulence at a low turbulent Mach number (Mt ˜ 10-4) based on direct numerical simulations (DNSs). Fluctuation in the pressure increase, Δp', on a given shock ray is induced by turbulence around the ray. A local amplification of the shock wave strength, measured with the pressure increase, is caused by the velocity fluctuation opposed to the shock wave propagating direction with a time delay, while the velocity in the opposite direction attenuates the shock wave strength. The turbulence effects on the shock wave are explained based on shock wave deformation due to turbulent shearing motions. The spatial distribution of Δp' on the shock wave has a characteristic length of the order of the integral scale of turbulence. The influence of turbulent velocity fluctuation at a given location on Δp' becomes most significant after the shock wave propagates from the location for a distance close to the integral length scale for all shock Mach numbers, demonstrating that the shock wave properties possess strong memory even during the propagation in turbulence. A lower shock Mach number Ms results in a smaller rms value of Δp', stronger influences on Δp' by turbulence far away from the shock ray, and a larger length scale in the spatial profile of Δp' on the shock wave. Relative intensity of Δp' increases with [Mt/(Ms-1 ) ] α, where DNS and experimental results yield α ≈ 0.73.

  1. Shock loading and release behavior of silicon nitride

    NASA Astrophysics Data System (ADS)

    Kawai, N.; Tsuru, T.; Hidaka, N.; Liu, X.; Mashimo, T.

    2017-01-01

    Shock-reshock and shock-release experiments were performed on silicon nitride ceramics above and below its phase transition pressure. Experimental results clearly show the occurrence of elastic-plastic transition and phase transition during initial shock loading. The HEL and phase transition stress are determined as 11.6 and 34.5 GPa, respectively. Below the phase transition stress, the reshock profile consists of the single shock with short rise time, while the release profile shows the gradual release followed by rapid one. Above phase transition stress, reshock and release behavior varies with the initial shock stress. In the case of reshock and release from about 40 GPa, the reshock structure is considerably dispersed, while the release structure shows rapid release. In the reshock profile from about 50 GPa, the formation of the shock wave with the small ramped precursor is observed. And, the release response from same shocked condition shows initial gradual release and subsequent quite rapid one. These results would provide the information about how phase transformation kinetics effects on the reshock and release behavior.

  2. Shock effects on hydrous minerals and implications for carbonaceous meteorites

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.; Lambert, P.

    1985-01-01

    The effect of shock loading over the pressure range of 29-59 GPa on the shock-recovered specimens of antigorite serpentine, Mg3Si2O5(OH)4, were investigated employing infrared (IR) spectroscopy, thermogravimetric analysis, and optical and scanning electron microscopy. With increasing shock pressure, there was an increase in H2O IR absorption peaks at the expense of OH peaks, while the changes in SiO bond vibration modes were identical to those seen for other, nonhydrous minerals. Thermogravimetric results on vented assembly samples showed linear relationships between the shock pressure and both the length of dehydration interval and the effective activation energy for releasing post-shock structural water. Optical and scanning electron microscopy revealed gas bubbles, which appeared to be injected into zones of partial melting, and vesicular dark veins distributed throughout the shocked samples. It is suggested that shock loading of hydrous minerals would release and redistribute free water in the regoliths of carbonaceous chondrite parent bodies, giving rise to observed hydrous alterations.

  3. Pre-strain effect on frequency-based impact energy dissipation through a silicone foam pad for shock mitigation [Pre-strain effect on the frequency response of shock mitigation through a silicone foam pad

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanborn, Brett; Song, Bo; Smith, Scott

    Silicone foams have been used in a variety of applications from gaskets to cushioning pads over a wide range of environments. Particularly, silicone foams are used as a shock mitigation material for shock and vibration applications. Understanding the shock mitigation response, particularly in the frequency domain, is critical for optimal designs to protect internal devices and components more effectively and efficiently. The silicone foams may be subjected to pre-strains during the assembly process which may consequently influence the frequency response with respect to shock mitigation performance. A Kolsky compression bar was modified with pre-compression capabilities to characterize the shock mitigationmore » response of silicone foam in the frequency domain to determine the effect of pre-strain. Lastly, a silicone sample was also intentionally subjected to repeated pre-strain and dynamic loadings to explore the effect of repeated loading on the frequency response of shock mitigation.« less

  4. Pre-strain effect on frequency-based impact energy dissipation through a silicone foam pad for shock mitigation [Pre-strain effect on the frequency response of shock mitigation through a silicone foam pad

    DOE PAGES

    Sanborn, Brett; Song, Bo; Smith, Scott

    2015-12-29

    Silicone foams have been used in a variety of applications from gaskets to cushioning pads over a wide range of environments. Particularly, silicone foams are used as a shock mitigation material for shock and vibration applications. Understanding the shock mitigation response, particularly in the frequency domain, is critical for optimal designs to protect internal devices and components more effectively and efficiently. The silicone foams may be subjected to pre-strains during the assembly process which may consequently influence the frequency response with respect to shock mitigation performance. A Kolsky compression bar was modified with pre-compression capabilities to characterize the shock mitigationmore » response of silicone foam in the frequency domain to determine the effect of pre-strain. Lastly, a silicone sample was also intentionally subjected to repeated pre-strain and dynamic loadings to explore the effect of repeated loading on the frequency response of shock mitigation.« less

  5. Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments.

    PubMed

    Rodriguez, George; Gilbertson, Steve M

    2017-01-27

    Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolves its spectral response, shows that 100-MHz-1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 µm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. Results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor.

  6. Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments

    PubMed Central

    Rodriguez, George; Gilbertson, Steve M.

    2017-01-01

    Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolves its spectral response, shows that 100-MHz–1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 μm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. Results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor. PMID:28134819

  7. Ultrafast Fiber Bragg Grating Interrogation for Sensing in Detonation and Shock Wave Experiments

    DOE PAGES

    Rodriguez, George; Gilbertson, Steve Michael

    2017-01-27

    Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolvesmore » its spectral response, shows that 100-MHz–1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 µm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. In conclusion, results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor.« less

  8. Heating a plasma by a broadband stream of fast electrons: Fast ignition, shock ignition, and Gbar shock wave applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gus’kov, S. Yu., E-mail: guskov@sci.lebedev.ru; Nicolai, Ph.; Ribeyre, X.

    2015-09-15

    An exact analytic solution is found for the steady-state distribution function of fast electrons with an arbitrary initial spectrum irradiating a planar low-Z plasma with an arbitrary density distribution. The solution is applied to study the heating of a material by fast electrons of different spectra such as a monoenergetic spectrum, a step-like distribution in a given energy range, and a Maxwellian spectrum, which is inherent in laser-produced fast electrons. The heating of shock- and fast-ignited precompressed inertial confinement fusion (ICF) targets as well as the heating of a target designed to generate a Gbar shock wave for equation ofmore » state (EOS) experiments by laser-produced fast electrons with a Maxwellian spectrum is investigated. A relation is established between the energies of two groups of Maxwellian fast electrons, which are responsible for generation of a shock wave and heating the upstream material (preheating). The minimum energy of the fast and shock igniting beams as well as of the beam for a Gbar shock wave generation increases with the spectral width of the electron distribution.« less

  9. Experimental Investigation of Shock Initiation in Mixtures of Manganese and Sulfur

    NASA Astrophysics Data System (ADS)

    Jette, Francois-Xavier; Goroshin, Sam; Higgins, Andrew

    2009-06-01

    Equimolar mixtures of manganese powder and sulfur at different initial densities were tested in two different types of steel recovery capsules in order to study the shock initiation phenomenon in SHS mixtures. This mixture composition was selected due to the large exothermic heat release of the manganese-sulfur reaction (214 kJ/mol), which causes the reaction to be self-sustaining once initiated. Two different sizes of Mn particles were used for these experiments, 1-5 μm and -325 mesh (44μm or less). The test samples were placed in planar recovery ampoules and a strong shock was delivered via the detonation of a charge of amine-sensitized nitromethane. Various shock strengths were achieved by placing different thicknesses of PMMA attenuator discs between the explosive charge and the ampoule. The results confirmed that shock-induced reactions can be produced in highly non-porous mixtures. It was also found that shock interactions with the side walls of the recovery capsule can play a significant role in the initiation, and that mixtures containing the larger Mn particles were very difficult to initiate in the absence of shock interactions with the capsule walls.

  10. A New Spin on an Old Technology: Piezoelectric Ejecta Diagnostics for Shock Environments

    NASA Astrophysics Data System (ADS)

    Vogan, W. S.; Anderson, W. W.; Grover, M.; King, N. S. P.; Lamoreaux, S. K.; Morley, K. B.; Rigg, P. A.; Stevens, G. D.; Turley, W. D.; Buttler, W. T.

    2006-07-01

    In our investigation of ejecta, or metal particulate emitted from a surface subjected to shock-loaded conditions, we have developed a shock experiment suitable for testing new ideas in piezoelectric mass and impact detectors. High-explosive (HE) shock loading of tin targets subjected to various machined and compressed finishes results in significant trends in ejecta characteristics of interest such as areal density and velocity. Our enhanced piezoelectric diagnostic, "piezo-pins" modified for shock mitigation, have proven levels of robustness and reliability suitable for effective operation in these ejecta milieux. These field tests address questions about ejecta production from surfaces of interest; experimental results are discussed and compared with those from complementary diagnostics such as x-ray and optical attenuation visualization techniques.

  11. Rocket Engine Nozzle Side Load Transient Analysis Methodology: A Practical Approach

    NASA Technical Reports Server (NTRS)

    Shi, John J.

    2005-01-01

    At the sea level, a phenomenon common with all rocket engines, especially for a highly over-expanded nozzle, during ignition and shutdown is that of flow separation as the plume fills and empties the nozzle, Since the flow will be separated randomly. it will generate side loads, i.e. non-axial forces. Since rocket engines are designed to produce axial thrust to power the vehicles, it is not desirable to be excited by non-axial input forcing functions, In the past, several engine failures were attributed to side loads. During the development stage, in order to design/size the rocket engine components and to reduce the risks, the local dynamic environments as well as dynamic interface loads have to be defined. The methodology developed here is the way to determine the peak loads and shock environments for new engine components. In the past it is not feasible to predict the shock environments, e.g. shock response spectra, from one engine to the other, because it is not scaleable. Therefore, the problem has been resolved and the shock environments can be defined in the early stage of new engine development. Additional information is included in the original extended abstract.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, George; Gilbertson, Steve Michael

    Chirped fiber Bragg grating (CFBG) sensors coupled to high speed interrogation systems are described as robust diagnostic approaches to monitoring shock wave and detonation front propagation tracking events for use in high energy density shock physics applications. Taking advantage of the linear distributed spatial encoding of the spectral band in single-mode CFBGs, embedded fiber systems and associated photonic interrogation methodologies are shown as an effective approach to sensing shock and detonation-driven loading processes along the CFBG length. Two approaches, one that detects spectral changes in the integrated spectrum of the CFBG and another coherent pulse interrogation approach that fully resolvesmore » its spectral response, shows that 100-MHz–1-GHz interrogation rates are possible with spatial resolution along the CFBG in the 50 µm to sub-millimeter range depending on the combination of CFBG parameters (i.e., length, chirp rate, spectrum) and interrogator design specifics. In conclusion, results from several dynamic tests are used to demonstrate the performance of these high speed systems for shock and detonation propagation tracking under strong and weak shock pressure loading: (1) linear detonation front tracking in the plastic bonded explosive (PBX) PBX-9501; (2) tracking of radial decaying shock with crossover to non-destructive CFBG response; (3) shock wave tracking along an aluminum cylinder wall under weak loading accompanied by dynamic strain effects in the CFBG sensor.« less

  13. Application of the Quadrupole Method for Simulation of Passive Thermography

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Zalameda, Joseph N.; Gregory, Elizabeth D.

    2017-01-01

    Passive thermography has been shown to be an effective method for in-situ and real time nondestructive evaluation (NDE) to measure damage growth in a composite structure during cyclic loading. The heat generation by subsurface flaw results in a measurable thermal profile at the surface. This paper models the heat generation as a planar subsurface source and calculates the resultant temperature profile at the surface using a three dimensional quadrupole. The results of the model are compared to finite element simulations of the same planar sources and experimental data acquired during cyclic loading of composite specimens.

  14. Influence of initial conditions on the flow patterns of a shock-accelerated thin fluid layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budzinski, J.M.; Benjamin, R.F.; Jacobs, J.W.

    1994-11-01

    Previous observations of three flow patterns generated by shock acceleration of a thin perturbed, fluid layer are now correlated with asymmetries in the initial conditions. Using a different diagnostic (planar laser Rayleigh scattering) than the previous experiments, upstream mushrooms, downstream mushrooms, and sinuous patterns are still observed. For each experiment the initial perturbation amplitude on one side of the layer can either be larger, smaller, or the same as the amplitude on the other side, as observed with two images per experiment, and these differences lead to the formation of the different patterns.

  15. Flow visualization studies of transverse fuel injection patterns in a nonreacting Mach 2 combustor

    NASA Technical Reports Server (NTRS)

    Mcdaniel, J. C.

    1987-01-01

    Planar visualization images are recorded of transverse jet mixing in a supersonic combustor flowfield, without chemical reaction, using laser-induced fluorescence from iodine molecules. Digital image processing and three-dimensional display enable complete representations of fuel penetration boundary and shock surfaces corresponding to several injection geometries and pressures.

  16. A platform for studying the Rayleigh-Taylor and Richtmyer-Meshkov instabilities in a planar geometry at high energy density at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Nagel, S. R.; Raman, K. S.; Huntington, C. M.; MacLaren, S. A.; Wang, P.; Barrios, M. A.; Baumann, T.; Bender, J. D.; Benedetti, L. R.; Doane, D. M.; Felker, S.; Fitzsimmons, P.; Flippo, K. A.; Holder, J. P.; Kaczala, D. N.; Perry, T. S.; Seugling, R. M.; Savage, L.; Zhou, Y.

    2017-07-01

    A new experimental platform has been developed at the National Ignition Facility (NIF) for studying the Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities in a planar geometry at high-energy-densities. The platform uses 60 beams of the NIF laser to drive an initially solid shock tube containing a pre-machined interface between dense and light materials. The strong shock turns the initially solid target into a plasma and the material boundary into a fluid interface with the imprinted initial condition. The interface evolves by action of the RT and RM instabilities, and the growth is imaged with backlit x-ray radiography. We present our first data involving sinusoidal interface perturbations driven from the heavy side to the light side. Late-time radiographic images show the initial conditions reaching the deeply nonlinear regime, and an evolution of fine structure consistent with a transition to turbulence. We show preliminary comparisons with post-shot numerical simulations and discuss the implications for future campaigns.

  17. Planar Laser-Induced Iodine Fluorescence Measurements in Rarefied Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    Cecil, Eric; McDaniel, James C.

    2005-01-01

    A planar laser-induced fluorescence (PLIF) technique is discussed and applied to measurement of time-averaged values of velocity and temperature in an I(sub 2)-seeded N(sub 2) hypersonic free jet facility. Using this technique, a low temperature, non-reacting, hypersonic flow over a simplified model of a reaction control system (RCS) was investigated. Data are presented of rarefied Mach 12 flow over a sharp leading edge flat plate at zero incidence, both with and without an interacting jet issuing from a nozzle built into the plate. The velocity profile in the boundary layer on the plate was resolved. The slip velocity along the plate, extrapolated from the velocity profile data, varied from nearly 100% down to 10% of the freestream value. These measurements are compared with results of a DSMC solution. The velocity variation along the centerline of a jet issuing from the plate was measured and found to match closely with the correlation of Ashkenas and Sherman. The velocity variation in the oblique shock terminating the jet was resolved sufficiently to measure the shock wave thickness.

  18. Shock response of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX): The C-N bond scission studied by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Yuan, Jiao-Nan; Wei, Yong-Kai; Zhang, Xiu-Qing; Chen, Xiang-Rong; Ji, Guang-Fu; Kotni, Meena Kumari; Wei, Dong-Qing

    2017-10-01

    The shock response has a great influence on the design, synthesis, and application of energetic materials in both industrial and military areas. Therefore, the initial decomposition mechanism of bond scission at the atomistic level of condensed-phase α-RDX under shock loading has been studied based on quantum molecular dynamics simulations in combination with a multi-scale shock technique. First, based on the frontier molecular orbital theory, our calculated result shows that the N-NO2 bond is the weakest bond in the α-RDX molecule in the ground state, which may be the initial bond for pyrolysis. Second, the changes of bonds under shock loading are investigated by the changes of structures, kinetic bond lengths, and Laplacian bond orders during the simulation. Also, the variation of thermodynamic properties with time in shocked α-RDX at 10 km/s along the lattice vector a for a timescale of up to 3.5 ps is presented. By analyzing the detailed structural changes of RDX under shock loading, we find that the shocked RDX crystal undergoes a process of compression and rotation, which leads to the C-N bond initial rupture. The time variation of dynamic bond lengths in a shocked RDX crystal is calculated, and the result indicates that the C-N bond is easier to rupture than other bonds. The Laplacian bond orders are used to predict the molecular reactivity and stability. The values of the calculated bond orders show that the C-N bonds are more sensitive than other bonds under shock loading. In a word, the C-N bond scission has been validated as the initial decomposition in a RDX crystal shocked at 10 km/s. Finally, the bond-length criterion has been used to identify individual molecules in the simulation. The distance thresholds up to which two particles are considered direct neighbors and assigned to the same cluster have been tested. The species and density numbers of the initial decomposition products are collected according to the trajectory.

  19. Shock absorber operates over wide range

    NASA Technical Reports Server (NTRS)

    Creasy, W. K.; Jones, J. C.

    1965-01-01

    Piston-type hydraulic shock absorber, with a metered damping system, operates over a wide range of kinetic energy loading rates. It is used for absorbing shock and vibration on mounted machinery and heavy earth-moving equipment.

  20. Shock formation and the ideal shape of ramp compression waves

    NASA Astrophysics Data System (ADS)

    Swift, Damian C.; Kraus, Richard G.; Loomis, Eric N.; Hicks, Damien G.; McNaney, James M.; Johnson, Randall P.

    2008-12-01

    We derive expressions for shock formation based on the local curvature of the flow characteristics during dynamic compression. Given a specific ramp adiabat, calculated for instance from the equation of state for a substance, the ideal nonlinear shape for an applied ramp loading history can be determined. We discuss the region affected by lateral release, which can be presented in compact form for the ideal loading history. Example calculations are given for representative metals and plastic ablators. Continuum dynamics (hydrocode) simulations were in good agreement with the algebraic forms. Example applications are presented for several classes of laser-loading experiment, identifying conditions where shocks are desired but not formed, and where long-duration ramps are desired.

  1. Dynamics of the aortic arch submitted to a shock loading: Parametric study with fluid-structure models.

    PubMed

    El Baroudi, A; Razafimahery, F; Rakotomanana, L

    2012-01-01

    This work aims to present some fluid-structure models for analyzing the dynamics of the aorta during a brusque loading. Indeed, various lesions may appear at the aortic arch during car crash or other accident such as brusque falling. Aortic stresses evolution are simulated during the shock at the cross section and along the aorta. One hot question was that if a brusque deceleration can generate tissue tearing, or a shock is necessary to provoke such a damage. Different constitutive laws of blood are then tested whereas the aorta is assumed linear and elastic. The overall shock model is inspired from an experimental jig. We show that the viscosity has strong influence on the stress and parietal moments and forces. The nonlinear viscosity has no significant additional effects for healthy aorta, but modifies the stress and parietal loadings for the stenotic aorta.

  2. Development of sensitized pick coal interface detector system

    NASA Technical Reports Server (NTRS)

    Burchill, R. F.

    1982-01-01

    One approach for detection of the coal interface is measurement of pick cutting loads and shock through the use of pick strain gage load cells and accelerometers. The cutting drum of a long wall mining machine contains a number of cutting picks. In order to measure pick loads and shocks, one pick was instrumented and telemetry used to transmit the signals from the drum to an instrument-type tape recorder. A data system using FM telemetry was designed to transfer cutting bit load and shock information from the drum of a longwall shearer coal mining machine to a chassis mounted data recorder. The design of components in the test data system were finalized, the required instruments were assembled, the instrument system was evaluated in an above-ground simulation test, and an underground test series to obtain tape recorded sensor data was conducted.

  3. Generalized Pseudo-Reaction Zone Model for Non-Ideal Explosives

    NASA Astrophysics Data System (ADS)

    Wescott, Bradley

    2007-06-01

    The pseudo-reaction zone model was proposed to improve engineering scale simulations when using Detonation Shock Dynamics with high explosives that have a slow reaction component. In this work an extension of the pseudo-reaction zone model is developed for non-ideal explosives that propagate well below their steady-planar Chapman-Jouguet velocity. A programmed burn method utilizing Detonation Shock Dynamics and a detonation velocity dependent pseudo-reaction rate has been developed for non-ideal explosives and applied to the explosive mixture of ammonium nitrate and fuel oil (ANFO). The pseudo-reaction rate is calibrated to the experimentally obtained normal detonation velocity---shock curvature relation. The generalized pseudo-reaction zone model proposed here predicts the cylinder expansion to within 1% by accounting for the slow reaction in ANFO.

  4. NO PLIF Imaging in the CUBRC 48 Inch Shock Tunnel

    NASA Technical Reports Server (NTRS)

    Jiang, N.; Bruzzese, J.; Patton, R.; Sutton J.; Lempert W.; Miller, J. D.; Meyer, T. R.; Parker, R.; Wadham, T.; Holden, M.; hide

    2011-01-01

    Nitric Oxide Planar Laser-Induced Fluorescence (NO PLIF) imaging is demonstrated at a 10 kHz repetition rate in the Calspan-University at Buffalo Research Center s (CUBRC) 48-inch Mach 9 hypervelocity shock tunnel using a pulse burst laser-based high frame rate imaging system. Sequences of up to ten images are obtained internal to a supersonic combustor model, located within the shock tunnel, during a single approx.10-millisecond duration run of the ground test facility. This represents over an order of magnitude improvement in data rate from previous PLIF-based diagnostic approaches. Comparison with a preliminary CFD simulation shows good overall qualitative agreement between the prediction of the mean NO density field and the observed PLIF image intensity, averaged over forty individual images obtained during several facility runs.

  5. Laser skin friction measurements and CFD comparison of weak-to-strong swept shock/boundary-layer interactions

    NASA Technical Reports Server (NTRS)

    Kim, K.-S.; Lee, Y.; Alvi, F. S.; Settles, G. S.; Horstman, C. C.

    1990-01-01

    A joint experimental and computational study of skin friction in weak-to-strong swept shock wave/turbulent boundary-layer interactions has been carried out. A planar shock wave is generated by a sharp fin at angles of attack alpha = 10 deg and 16 deg at M(infinity) = 3 and 16 and 20 deg at M(infinity) = 4. Measurements are made using the Laser Interferometer Skin Friction meter, which optically detects the rate of thinning of an oil film applied to the test surface. The results show a systematic rise in the peak c(f) at the rear part of the interaction, where the separated flow atttaches. For the stronget case studied, this peak is an order of magnitude higher than the incoming freestream c(f)level.

  6. Study of nonlinear electron-acoustic solitary and shock waves in a dissipative, nonplanar space plasma with superthermal hot electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jiu-Ning, E-mail: hanjiuning@126.com; He, Yong-Lin; Luo, Jun-Hua

    2014-01-15

    With the consideration of the superthermal electron distribution, we present a theoretical investigation about the nonlinear propagation of electron-acoustic solitary and shock waves in a dissipative, nonplanar non-Maxwellian plasma comprised of cold electrons, superthermal hot electrons, and stationary ions. The reductive perturbation technique is used to obtain a modified Korteweg-de Vries Burgers equation for nonlinear waves in this plasma. We discuss the effects of various plasma parameters on the time evolution of nonplanar solitary waves, the profile of shock waves, and the nonlinear structure induced by the collision between planar solitary waves. It is found that these parameters have significantmore » effects on the properties of nonlinear waves and collision-induced nonlinear structure.« less

  7. Nanotwin Formation in High-Manganese Austenitic Steels Under Explosive Shock Loading

    NASA Astrophysics Data System (ADS)

    Canadinc, D.; Uzer, B.; Elmadagli, M.; Guner, F.

    2018-04-01

    The micro-deformation mechanisms active in a high-manganese austenitic steel were investigated upon explosive shock loading. Single system of nanotwins forming within primary twins were shown to govern the deformation despite the elevated temperatures attained during testing. The benefits of nanotwin formation for potential armor materials were demonstrated.

  8. Experimental investigation of dynamic fragmentation of laser shock-loaded by soft recovery and X-ray radiography

    NASA Astrophysics Data System (ADS)

    Xin, Jianting; He, Weihua; Chu, Genbai; Gu, Yuqiu

    2017-06-01

    Dynamic fragmentation of metal under shock pressure is an important issue for both fundamental science and practical applications. And in recent decades, laser provides a promising shock loading technique for investigating the process of dynamic fragmentation under extreme condition application of high strain rate. Our group has performed experimental investigation of dynamic fragmentation under laser shock loading by soft recovery and X-ray radiography at SGC / ó prototype laser facility. The fragments under different loading pressures were recovered by PMP foam and analyzed by X-ray micro-tomography and the improved watershed method. The experiment result showed that the bilinear exponential distribution is more appropriate for representing the fragment size distribution. We also developed X-ray radiography technique. Owing to its inherent advantage over shadowgraph technique, X-ray radiography can potentially determine quantitatively material densities by measuring the X-ray transmission. Our group investigated dynamic process of microjetting by X-ray radiography technique, the recorded radiographic images show clear microjetting from the triangular grooves in the free surface of tin sample.

  9. PVDF Gauge Piezoelectric Response under Two-Stage Light Gas Gun Impact Loading

    NASA Astrophysics Data System (ADS)

    Bauer, Francois

    2002-07-01

    Stress gauges based on ferroelectric polymer (PVDF) studies under very high pressure shock compression have shown that the piezoelectric response exhibits a precise reproducible behavior up to 25 GPa. Shock pressure profiles obtained with "in situ" PVDF gauges in porous H.E. (Formex) in a detonation regime have been achieved. Observations of a fast superpressure of a few nanoseconds followed by a pressure release have raised the question of the loading path dependence of the piezoelectric response of PVDF at high shock pressure levels. Consequently, studies of the piezoelectric behavior of PVDF gauges under impact loading using a two-stage light gas gun have been conducted recently. Symmetric impact as well as non symmetric impact and reverse impact techniques have been achieved. Strong viscoplastic behavior of some materials is observed. In typical experiments, the piezoelectric response of PVDF at shock equilibrium could be determined. These results show that the PVDF response appears independent of the loading path up to 30 GPa. Accurate measurements in situ H.E. are also reported with very low inductance PVDF gauges.

  10. Estimating Fuel Bed Loadings in Masticated Areas

    Treesearch

    Sharon Hood; Ros Wu

    2006-01-01

    Masticated fuel treatments that chop small trees, shrubs, and dead woody material into smaller pieces to reduce fuel bed depth are used increasingly as a mechanical means to treat fuels. Fuel loading information is important to monitor changes in fuels. The commonly used planar intercept method however, may not correctly estimate fuel loadings because masticated fuels...

  11. Absolute Hugoniot measurements from a spherically convergent shock using x-ray radiography

    NASA Astrophysics Data System (ADS)

    Swift, Damian C.; Kritcher, Andrea L.; Hawreliak, James A.; Lazicki, Amy; MacPhee, Andrew; Bachmann, Benjamin; Döppner, Tilo; Nilsen, Joseph; Collins, Gilbert W.; Glenzer, Siegfried; Rothman, Stephen D.; Kraus, Dominik; Falcone, Roger W.

    2018-05-01

    The canonical high pressure equation of state measurement is to induce a shock wave in the sample material and measure two mechanical properties of the shocked material or shock wave. For accurate measurements, the experiment is normally designed to generate a planar shock which is as steady as possible in space and time, and a single state is measured. A converging shock strengthens as it propagates, so a range of shock pressures is induced in a single experiment. However, equation of state measurements must then account for spatial and temporal gradients. We have used x-ray radiography of spherically converging shocks to determine states along the shock Hugoniot. The radius-time history of the shock, and thus its speed, was measured by radiographing the position of the shock front as a function of time using an x-ray streak camera. The density profile of the shock was then inferred from the x-ray transmission at each instant of time. Simultaneous measurement of the density at the shock front and the shock speed determines an absolute mechanical Hugoniot state. The density profile was reconstructed using the known, unshocked density which strongly constrains the density jump at the shock front. The radiographic configuration and streak camera behavior were treated in detail to reduce systematic errors. Measurements were performed on the Omega and National Ignition Facility lasers, using a hohlraum to induce a spatially uniform drive over the outside of a solid, spherical sample and a laser-heated thermal plasma as an x-ray source for radiography. Absolute shock Hugoniot measurements were demonstrated for carbon-containing samples of different composition and initial density, up to temperatures at which K-shell ionization reduced the opacity behind the shock. Here we present the experimental method using measurements of polystyrene as an example.

  12. Molecular dynamics simulation of shock-wave loading of copper and titanium

    NASA Astrophysics Data System (ADS)

    Bolesta, A. V.; Fomin, V. M.

    2017-10-01

    At extreme pressures and temperatures common materials form new dense phases with compacted atomic arrangements. By classical molecular dynamics simulation we observe that FCC copper undergo phase transformation to BCC structure. The transition occurs under shock wave loading at the pressures above 80 GPa and corresponding temperatures above 2000 K. We calculate phase diagram, show that at these pressures and low temperature FCC phase of copper is still stable and discuss the thermodynamic reason for phase transformation at high temperature shock wave regime. Titanium forms new hexagonal phase at high pressure as well. We calculate the structure of shock wave in titanium and observe that shock front splits in three parts: elastic, plastic and phase transformation. The possibility of using a phase transition behind a shock wave with further unloading for designing nanocrystalline materials with a reduced grain size is also shown.

  13. Crack Growth Mechanisms under Anti-Plane Shear in Composite Laminates

    NASA Astrophysics Data System (ADS)

    Horner, Allison Lynne

    The research conducted for this dissertation focuses on determining the mechanisms associated with crack growth in polymer matrix composite laminates subjected to anti-plane shear (mode III) loading. For mode III split-beam test methods were proposed, and initial evaluations were conducted. A single test method was selected for further evaluation. Using this test method, it was determined that the apparent mode III delamination toughness, GIIIc , depended on geometry, which indicated a true material property was not being measured. Transverse sectioning and optical microscopy revealed an array of transverse matrix cracks, or echelon cracks, oriented at approximately 45° and intersecting the plane of the delamination. Subsequent investigations found the echelon array formed prior to the onset of planar delamination advance and that growth of the planar delamination is always coupled to echelon array formation in these specimens. The evolution of the fracture surfaces formed by the echelon array and planar delamination were studied, and it was found that the development was similar to crack growth in homogenous materials subjected to mode III or mixed mode I-III loading, although the composite laminate architecture constrained the fracture surface development differently than homogenous materials. It was also found that, for split-beam specimens such as those used herein, applying an anti-plane shear load results in twisting of the specimen's uncracked region which gives rise to a mixed-mode I-III load condition. This twisting has been related to the apparent mode III toughness as well as the orientation of the transverse matrix cracks. A finite element model was then developed to study the mechanisms of initial echelon array formation. From this, it is shown that an echelon array will develop, but will become self-limiting prior to the onset of planar delamination growth.

  14. X-ray diffraction from shock-loaded polycrystals.

    PubMed

    Swift, Damian C

    2008-01-01

    X-ray diffraction was demonstrated from shock-compressed polycrystalline metals on nanosecond time scales. Laser ablation was used to induce shock waves in polycrystalline foils of Be, 25-125 microm thick. A second laser pulse was used to generate a plasma x-ray source by irradiation of a Ti foil. The x-ray source was collimated to produce a beam of controllable diameter, which was directed at the Be sample. X-rays were diffracted from the sample, and detected using films and x-ray streak cameras. The diffraction angle was observed to change with shock pressure. The diffraction angles were consistent with the uniaxial (elastic) and isotropic (plastic) compressions expected for the loading conditions used. Polycrystalline diffraction will be used to measure the response of the crystal lattice to high shock pressures and through phase changes.

  15. Mechanical Characterization of the Human Lumbar Intervertebral Disc Subjected to Impact Loading Conditions

    NASA Astrophysics Data System (ADS)

    Jamison, David, IV

    Low back pain is a large and costly problem in the United States. Several working populations, such as miners, construction workers, forklift operators, and military personnel, have an increased risk and prevalence of low back pain compared to the general population. This is due to exposure to repeated, transient impact shocks, particularly while operating vehicles or other machinery. These shocks typically do not cause acute injury, but rather lead to pain and injury over time. The major focus in low back pain is often the intervertebral disc, due to its role as the major primary load-bearing component along the spinal column. The formation of a reliable standard for human lumbar disc exposure to repeated transient shock could potentially reduce injury risk for these working populations. The objective of this project, therefore, is to characterize the mechanical response of the lumbar intervertebral disc subjected to sub-traumatic impact loading conditions using both cadaveric and computational models, and to investigate the possible implications of this type of loading environment for low back pain. Axial, compressive impact loading events on Naval high speed boats were simulated in the laboratory and applied to human cadaveric specimen. Disc stiffness was higher and hysteresis was lower than quasi-static loading conditions. This indicates a shift in mechanical response when the disc is under impact loads and this behavior could be contributing to long-term back pain. Interstitial fluid loss and disc height changes were shown to affect disc impact mechanics in a creep study. Neutral zone increased, while energy dissipation and low-strain region stiffness decreased. This suggests that the disc has greater clinical instability during impact loading with progressive creep and fluid loss, indicating that time of day should be considered for working populations subjected to impact loads. A finite element model was developed and validated against cadaver specimen subjected to impacts in the laboratory. Analysis showed greater total von Mises stress and pore pressure in the components of the disc under transient shocks compared to static or quasi-static loading. These findings support the idea that impact shocks cause a change in mechanical response and are potentially damaging to the disc in the long term.

  16. Modeling of plasticity and fracture of metals at shock loading

    NASA Astrophysics Data System (ADS)

    Mayer, A. E.; Khishchenko, K. V.; Levashov, P. R.; Mayer, P. N.

    2013-05-01

    In this paper, we present a model of dislocation plasticity and fracture of metals, which in combination with the wide-range equation of state and the continuum mechanics equations is a necessary component for simulation of the shock-wave loading. We take into account immobilization of dislocations and nucleation of micro-voids in weakened zones of substance; this is distinguished feature of the present version of the model. Accounting of the dislocations immobilization provides a better description of the unloading wave structure, while the detailed consideration of processes in the weakened zones expands the domain of applicability of fracture model to higher strain rates. We compare our results with the experimental data for the shock loading of aluminum, copper, and nickel samples; the comparison indicates satisfactory description of the elastic precursor, unloading wave, and spall pulse. Using the model, we investigate intently the early stage of the shock formation in solids; it is found out that the elastic precursor is formed even for a strong shock wave, and initially the precursor has very large amplitude and propagation velocity.

  17. The α–ω phase transition in shock-loaded titanium

    DOE PAGES

    Jones, David R.; Morrow, Benjamin M.; Trujillo, Carl P.; ...

    2017-07-28

    Here, we present a series of experiments probing the martensitic α–ω (hexagonal close-packed to simple hexagonal) transition in titanium under shock-loading to peak stresses around 15 GPa. Gas-gun plate impact techniques were used to locate the α–ω transition stress with a laser-based velocimetry diagnostic. A change in the shock-wave profile at 10.1 GPa suggests the transition begins at this stress. A second experiment shock-loaded and then soft-recovered a similar titanium sample. We then analyzed this recovered material with electron-backscatter diffraction methods, revealing on average approximately 65% retained ω phase. Furthermore, based on careful analysis of the microstructure, we propose thatmore » the titanium never reached a full ω state, and that there was no observed phase-reversion from ω to α. Texture analysis suggests that any α titanium found in the recovered sample is the original α. The data show that both the α and ω phases are stable and can coexist even though the shock-wave presents as steady-state, at these stresses.« less

  18. Gas gun shock experiments with single-pulse x-ray phase contrast imaging and diffraction at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Luo, S. N.; Jensen, B. J.; Hooks, D. E.; Fezzaa, K.; Ramos, K. J.; Yeager, J. D.; Kwiatkowski, K.; Shimada, T.

    2012-07-01

    The highly transient nature of shock loading and pronounced microstructure effects on dynamic materials response call for in situ, temporally and spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray sources are advantageous for x-ray phase contrast imaging (PCI) and diffraction under dynamic loading, due to their high photon fluxes, high coherency, and high pulse repetition rates. The feasibility of bulk-scale gas gun shock experiments with dynamic x-ray PCI and diffraction measurements was investigated at the beamline 32ID-B of the Advanced Photon Source. The x-ray beam characteristics, experimental setup, x-ray diagnostics, and static and dynamic test results are described. We demonstrate ultrafast, multiframe, single-pulse PCI measurements with unprecedented temporal (<100 ps) and spatial (˜2 μm) resolutions for bulk-scale shock experiments, as well as single-pulse dynamic Laue diffraction. The results not only substantiate the potential of synchrotron-based experiments for addressing a variety of shock physics problems, but also allow us to identify the technical challenges related to image detection, x-ray source, and dynamic loading.

  19. Saqqar: A 34 km diameter impact structure in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Kenkmann, Thomas; Afifi, Abdulkader M.; Stewart, Simon A.; Poelchau, Michael H.; Cook, Douglas J.; Neville, Allen S.

    2015-11-01

    Here we present the first proof of an impact origin for the Saqqar circular structure in northwestern Saudi Arabia (Neville et al. ), with an apparent diameter of 34 km, centered at 29°35'N, 38°42'E. The structure is formed in Cambrian-Devonian siliciclastics and is unconformably overlain by undeformed Cretaceous and Paleogene sediments. The age of impact is not well constrained and lies somewhere between 410 and 70 Ma. The subsurface structure is constrained by 2-D reflection seismic profiles and six drilled wells. First-order structural features are a central uplift that rises approximately 2 km above regional datums, surrounded by a ring syncline. The crater rim is defined by circumferential normal faults. The central uplift and ring syncline correspond to a Bouguer gravity high and an annular ring-like low, respectively. The wells were drilled within the central uplift, the deepest among them exceed 2 km depth. Sandstone core samples from these wells show abundant indicators of a shock metamorphic overprint. Planar deformation features (PDFs) were measured with orientations along (0001), {101¯3}, and less frequently along {101¯1} and {101¯4}. Planar fractures (PFs) predominantly occur along (0001) and {101¯1}, and are locally associated with feather features (FFs). In addition, some shocked feldspar grains and strongly deformed mica flakes were found. The recorded shock pressure ranges between 5 and 15 GPa. The preserved level of shock and the absence of an allochthonous crater fill suggest that Saqqar was eroded by 1-2 km between the Devonian and Maastrichtian. The documentation of unequivocal shock features proves the formation of the Saqqar structure by a hypervelocity impact event.

  20. Microcomputed tomography and shock microdeformation studies on shatter cones

    NASA Astrophysics Data System (ADS)

    Zaag, Patrice Tristan; Reimold, Wolf Uwe; Hipsley, Christy Anna

    2016-08-01

    One of the aspects of impact cratering that are still not fully understood is the formation of shatter cones and related fracturing phenomena. Yet, shatter cones have been applied as an impact-diagnostic criterion for decades without the role of shock waves and target rock defects in their formation having been elucidated ever. We have tested the application of the nondestructive microcomputed tomography (μCT) method to visualize the interior of shatter cones in order to possibly resolve links between fracture patterns and shatter cone surface features (striations and intervening "valleys"). Shatter-coned samples from different impact sites and in different lithologies were investigated for their μCT suitability, with a shatter cone in sandstone from the Serra da Cangalha impact structure (Brazil) remaining as the most promising candidate because of the fracture resolution achieved. To validate the obtained CT data, the scanned specimen was cut into three orthogonal sets of thin sections. Scans with 13 μm resolution were obtained. μCT scans and microscopic analysis unraveled an orientation of subplanar fractures and related fluid inclusion trails, and planar fracture (PF) orientations in the interior of shatter cones. Planar deformation features (PDF) were observed predominantly near the shatter cone surface. Previously undescribed varieties of feather features (FF), in the form of lamellae emanating from curviplanar and curved fractures, as well as an "arrowhead"-like FF development with microlamellae originating from both sides of a PF, were observed. The timing of shatter cone formation was investigated by establishing temporal relations to the generation of various shock microscopic effects. Shatter cones are, thus, generated post- or syn-formation of PF, FF, subplanar fractures, and PDF. The earliest possible time for shatter cone formation is during the late stage of the compressional phase, that is, shock wave passage, of an impact event.

  1. Polysilicon planarization and plug recess etching in a decoupled plasma source chamber using two endpoint techniques

    NASA Astrophysics Data System (ADS)

    Kaplita, George A.; Schmitz, Stefan; Ranade, Rajiv; Mathad, Gangadhara S.

    1999-09-01

    The planarization and recessing of polysilicon to form a plug are processes of increasing importance in silicon IC fabrication. While this technology has been developed and applied to DRAM technology using Trench Storage Capacitors, the need for such processes in other IC applications (i.e. polysilicon studs) has increased. Both planarization and recess processes usually have stringent requirements on etch rate, recess uniformity, and selectivity to underlying films. Additionally, both processes generally must be isotropic, yet must not expand any seams that might be present in the polysilicon fill. These processes should also be insensitive to changes in exposed silicon area (pattern factor) on the wafer. A SF6 plasma process in a polysilicon DPS (Decoupled Plasma Source) reactor has demonstrated the capability of achieving the above process requirements for both planarization and recess etch. The SF6 process in the decoupled plasma source reactor exhibited less sensitivity to pattern factor than in other types of reactors. Control of these planarization and recess processes requires two endpoint systems to work sequentially in the same recipe: one for monitoring the endpoint when blanket polysilicon (100% Si loading) is being planarized and one for monitoring the recess depth while the plug is being recessed (less than 10% Si loading). The planarization process employs an optical emission endpoint system (OES). An interferometric endpoint system (IEP), capable of monitoring lateral interference, is used for determining the recess depth. The ability of using either or both systems is required to make these plug processes manufacturable. Measuring the recess depth resulting from the recess process can be difficult, costly and time- consuming. An Atomic Force Microscope (AFM) can greatly alleviate these problems and can serve as a critical tool in the development of recess processes.

  2. Rayleigh Taylor growth at an embedded interface driven by a radiative shock

    NASA Astrophysics Data System (ADS)

    Huntington, Channing

    2016-10-01

    Radiative shocks are those where the radiation generated by the shock influences the hydrodynamics of the matter in the system. Radiative shocks are common in astrophysics, including during type II supernovae, and have also been observed in the rebound phase of a compressed inertial confinement fusion (ICF) capsule. It is predicted that the radiative heating serves to stabilize hydrodynamic instabilities in these systems, but studying the effect is challenging. Only in recent experiments at the National Ignition Facility has the energy been available to drive a radiative shock across a planar, Rayleigh-Taylor unstable interface in solid-density materials. Because the generation of radiation at the shock front is a strong function of shock velocity (v8) , the RT growth rates in the presence of fast and slow shockas were directly compared. We observe reduced RT spike development when the driving shock is expected to be radiative. Both low drive (225 eV) hydrodynamic RT growth and high drive (325 eV), radiatively-stabilized growth rates are in good agreement with 2D models. This NIF Discovery Science result has important implications for our understanding of astrophysical radiative shocks, as well as the dynamics of ICF capsules. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei-long; Bassett, Will P.; Christensen, James M.

    The emission lifetimes of rhodamine 6G (R6G), were measured under shock compression to 9.1 GPa, with the dual intent of better understanding molecular photophysics in extreme environments and assessing the usefulness of fluorescence lifetime microscopy to measure spatially-dependent pressure distributions in shocked microstructured media. R6G was studied as free dye dissolved in poly-methyl methacrylate (PMMA), or dye encapsulated in silica microparticles suspended in PMMA. Thin layers of these materials in impedance-matched geometries were subjected to planar single-stage shocks created by laser-driven flyer plates. A synchronized femtosecond laser excited the dye at selected times relative to flyer plate arrival and themore » emission lifetimes were measured with a streak camera. Lifetimes decreased when shocks arrived. The lifetime decrease was attributed to a shock-induced enhancement of R6G nonradiative relaxation. At least part of the relaxation involved shock-enhanced intersystem crossing. For free dye in PMMA, the lifetime decrease during the shock was shown to be a linear function of shock pressure from 0-9 GPa, with a slope of -0.22 ns·GPa -1. Furthermore, the linear relationship makes it simple to convert lifetimes into pressures. Lifetime measurements in shocked microenvironments may be better than emission intensity measurements, since lifetimes are sensitive to the surrounding environment, but insensitive to intensity variations associated with the motion and optical properties of a dynamically changing structure.« less

  4. U-Pb isotopic systematics of shock-loaded and annealed baddeleyite: Implications for crystallization ages of Martian meteorite shergottites

    NASA Astrophysics Data System (ADS)

    Niihara, Takafumi; Kaiden, Hiroshi; Misawa, Keiji; Sekine, Toshimori; Mikouchi, Takashi

    2012-08-01

    Shock-recovery and annealing experiments on basalt-baddeleyite mixtures were undertaken to evaluate shock effects on U-Pb isotopic systematics of baddeleyite. Shock pressures up to 57 GPa caused fracturing of constituent phases, mosaicism of olivine, maskelynitization of plagioclase, and melting, but the phase transition from monoclinic baddeleyite structure to high-pressure/temperature polymorphs of ZrO2 was not confirmed. The U-Pb isotopic systems of the shock-loaded baddeleyite did not show a large-scale isotopic disturbance. The samples shock-recovered from 47 GPa were then employed for annealing experiments at 1000 or 1300 °C, indicating that the basalt-baddeleyite mixture was almost totally melted except olivine and baddeleyite. Fine-grained euhedral zircon crystallized from the melt was observed around the relict baddeleyite in the sample annealed at 1300 °C for 1 h. The U-Pb isotopic systems of baddeleyite showed isotopic disturbances: many data points for the samples annealed at 1000 °C plotted above the concordia. Both radiogenic lead loss/uranium gain and radiogenic lead gain/uranium loss were observed in the baddeleyite annealed at 1300 °C. Complete radiogenic lead loss due to shock metamorphism and subsequent annealing was not observed in the shock-loaded/annealed baddeleyites studied here. These results confirm that the U-Pb isotopic systematics of baddeleyite are durable for shock metamorphism. Since shergottites still preserve Fe-Mg and/or Ca zonings in major constituent phases (i.e. pyroxene and olivine), the shock effects observed in Martian baddeleyites seem to be less intense compared to that under the present experimental conditions. An implication is that the U-Pb systems of baddeleyite in shergottites will provide crystallization ages of Martian magmatic rocks.

  5. Relative Shock Effects in Mixed Powders of Calcite, Gypsum, and Quartz: A Calibration Scheme from Shock Experiments

    NASA Technical Reports Server (NTRS)

    Bell, Mary S.

    2009-01-01

    The shock behavior of calcite and gypsum is important in understanding the Cretaceous/Tertiary event and other terrestrial impacts that contain evaporite sediments in their targets. Most interest focuses on issues of devolatilization to quantify the production of CO2 or SO2 to better understand their role in generating a temporary atmosphere and its effects on climate and biota [e.g., papers in 1,2,3,4]. Devolatilization of carbonate is also important because the dispersion and fragmentation of ejecta is strongly controlled by the expansion of large volumes of gas during the impact process as well [5,6]. Shock recovery experiments for calcite yield seemingly conflicting results: early experimental devolatilization studies [7,8,9] suggested that calcite was substantially outgassed at 30 GPa (> 50%). However, the recent petrographic work of [10,11,12] presented evidence that essentially intact calcite is recovered from 60 GPa experiments. [13] reported results of shock experiments on anhydrite, gypsum, and mixtures of those phases with silica. Their observations indicate little or no devolatilization of anhydrite shocked to 42 GPa and that the fraction of sulfur, by mass, that degassed is approx.10(exp -2) of theoretical prediction. In another (preliminary) report of shock experiments on calcite, anhydrite, and gypsum, [14] observe calcite recrystallization when shock loaded at 61 GPa, only intensive plastic deformation in anhydrite shock loaded at 63 GPa, and gypsum converted to anhydrite when shock loaded at 56 GPa. [15] shock loaded anhydrite and quartz to a peak pressure of 60 GPa. All of the quartz grains were trans-formed to glass and the platy anhydrite grains were completely pseudomorphed by small crystallized anhydrite grains. However, no evidence of interaction between the two phases could be observed and they suggest that recrystallization of anhydrite grains is the result of a solid state transformation. [16] reanalyzed the calcite and anhydrite shock wave experiments of [17] using improved equations of state of porous materials and vaporized products. They determined the pressures for incipient and complete vaporization to be 32.5 and 122 GPa for anhydrite and 17.8 and 54.1 GPa for calcite, respectively, a factor of 2 to 3 lower than reported earlier by [17].

  6. Experimentally Shock-loaded Anhydrite: Unit-Cell Dimensions, Microstrain and Domain Size from X-Ray Diffraction

    NASA Technical Reports Server (NTRS)

    Skala, R.; Hoerz, F.

    2003-01-01

    Cretaceous Tertiary (K/T) boundary is traditionally associated with one of the most dramatic mass extinctions in the Earth history. A number of killing mechanisms have been suggested to contribute to the widespread extinctions of Cretaceous biota at this boundary, including severe, global deterioration of the atmosphere and hydrosphere from the shock-induced release of CO2 and SO(x) from carbonate- and sulfate-bearing target rocks, respectively. Recently carried out calculations revealed that the global warming caused by CO2 release was considerably less important than the cooling due to SO(x) gases release during the Chicxulub impact event. Considering apparent potential importance of the response of sulfates to the shock metamorphism, relative lack of the data on shock behavior of sulfates as well as some general difficulties encountered during thermodynamic modeling of the shock-induced CO2 loss from carbonates we subjected anhydrite to a series of shock experiments designed for complete recovery of the shocked material. We report here on the detail X-ray diffraction analysis of seven samples that were subjected to experimental shock-loading from 10 to 65 GPa.

  7. Treatment of phenolic wastewater in an anaerobic fixed bed reactor (AFBR) - recovery after shock loading.

    PubMed

    Bajaj, Mini; Gallert, Claudia; Winter, Josef

    2009-03-15

    An anaerobic fixed bed reactor (AFBR) was run for 550 days with a mixed microbial flora to stabilize synthetic wastewater that contained glucose and phenol as main carbon sources. The influent phenol concentration was gradually increased from 2 to 40 mmol/l within 221 days. The microbial flora was able to adapt to this high phenol concentration with an average of 94% phenol removal. Microbial adaptation at such a high phenol concentration is not reported elsewhere. The maximum phenol removal observed before the phenol shock load was 39.47 mmol/l or 3.7 g phenol/l at a hydraulic retention time (HRT) of 2.5 days and an organic loading rate (OLR) of 5.3 g/l.d which amounts to a phenol removal rate of ca. 15.8 mmol phenol/l.d. The chemical oxygen demand (COD) removal before exposing the reactor to a shock load corresponded with phenol removal. A shock load was induced in the reactor by increasing the phenol concentration from 40 to 50 mmol/l in the influent. The maximum phenol removal rate observed after shock load was 18 mmol/l.d at 5.7 g COD/l.d. But this was not a stable rate and a consistent drop in COD and phenol removal was observed for 1 week, followed by a sharp decline and production of fatty acids. Recovery of the reactor was possible only when no feed was provided to the reactor for 1 month and the phenol concentration was increased gradually. When glucose was omitted from the influent, unknown intermediates of anaerobic phenol metabolism were observed for some time.

  8. Embedded optical fibers for PDV measurements in shock-loaded, light and heavy water

    NASA Astrophysics Data System (ADS)

    Mercier, Patrick; Benier, Jacky; Frugier, Pierre Antoine; Debruyne, Michel; Bolis, Cyril

    2012-03-01

    In order to study the shock-detonation transition, we propose to characterize the shock loading of a high explosive plane wave generator into a nitromethane cell. To eliminate the reactive behaviour, we replace the nitromethane by an inert liquid compound. Light water (H2O) has been first employed; eventually heavy water (D2O) has been chosen for its better infrared spectral properties. We present the PDV results of different embedded optical fibers which sense the medium with two different approaches: a non intrusive optical observation of phenomena coming in front of them (interface, shock wave, detonation wave) followed by their mechanical interaction with the fiber.

  9. Impact buckling of thin bars in the elastic range hinged at both ends

    NASA Technical Reports Server (NTRS)

    Koning, Carel; Taub, Josef

    1934-01-01

    Following the development of the well-known differential equations of the problem and their resolution for failure in tension, the bending (transverse) oscillations of an originally not quite straight bar hinged at both ends and subjected to a constant longitudinal force (shock load) are analyzed. To this end the course of the bar form is expanded in a sinusoidal series, after which the investigation is carried through separately for the fundamental oscillation and the (n-1)the higher oscillations. The analysis of the fundamental oscillation distinguishes three cases: shock load lower, equal to, or higher than the Eulerian load. The investigation leads to functions which are proportional to the maximum stresses in time and space due to the shock stresses in buckling.

  10. A generalized modal shock spectra method for spacecraft loads analysis. [internal loads in a spacecraft structure subjected to a dynamic launch environment

    NASA Technical Reports Server (NTRS)

    Trubert, M.; Salama, M.

    1979-01-01

    Unlike an earlier shock spectra approach, generalization permits an accurate elastic interaction between the spacecraft and launch vehicle to obtain accurate bounds on the spacecraft response and structural loads. In addition, the modal response from a previous launch vehicle transient analysis with or without a dummy spacecraft - is exploited to define a modal impulse as a simple idealization of the actual forcing function. The idealized modal forcing function is then used to derive explicit expressions for an estimate of the bound on the spacecraft structural response and forces. Greater accuracy is achieved with the present method over the earlier shock spectra, while saving much computational effort over the transient analysis.

  11. Rocket Engine Nozzle Side Load Transient Analysis Methodology: A Practical Approach

    NASA Technical Reports Server (NTRS)

    Shi, John J.

    2005-01-01

    During the development stage, in order to design/to size the rocket engine components and to reduce the risks, the local dynamic environments as well as dynamic interface loads must be defined. There are two kinds of dynamic environment, i.e. shock transients and steady-state random and sinusoidal vibration environments. Usually, the steady-state random and sinusoidal vibration environments are scalable, but the shock environments are not scalable. In other words, based on similarities only random vibration environments can be defined for a new engine. The methodology covered in this paper provides a way to predict the shock environments and the dynamic loads for new engine systems and new engine components in the early stage of new engine development or engine nozzle modifications.

  12. Design of a Sample Recovery Assembly for Magnetic Ramp-Wave Loading

    NASA Astrophysics Data System (ADS)

    Chantrenne, S.; Wise, J. L.; Asay, J. R.; Kipp, M. E.; Hall, C. A.

    2009-06-01

    Characterization of material behavior under dynamic loading requires studies at strain rates ranging from quasi-static to the limiting values of shock compression. For completeness, these studies involve complementary time-resolved data, which define the mechanical constitutive properties, and microstructural data, which reveal physical mechanisms underlying the observed mechanical response. Well-preserved specimens must be recovered for microstructural investigations. Magnetically generated ramp waves produce strain rates lower than those associated with shock waves, but recovery methods have been lacking for this type of loading. We adapted existing shock recovery techniques for application to magnetic ramp loading using 2-D and 3-D ALEGRA MHD code calculations to optimize the recovery design for mitigation of undesired late-time processing of the sample due to edge effects and secondary stress waves. To assess the validity of our simulations, measurements of sample deformation were compared to wavecode predictions.

  13. Multiphase Modeling of Secondary Atomization in a Shock Environment

    NASA Astrophysics Data System (ADS)

    St. Clair, Jeffrey; McGrath, Thomas; Balachandar, Sivaramakrishnan

    2017-06-01

    Understanding and developing accurate modeling strategies for shock-particulate interaction remains a challenging and important topic, with application to energetic materials development, volcanic eruptions, and safety/risk assessment. This work presents computational modeling of compressible multiphase flows with shock-induced droplet atomization. Droplet size has a strong influence on the interphase momentum and heat transfer. A test case is presented that is sensitive to this, requiring the dynamic modeling of the secondary atomization process occurring when the shock impacts the droplets. An Eulerian-Eulerian computational model that treats all phases as compressible, is hyperbolic and satisfies the 2nd Law of Thermodynamics is applied. Four different breakup models are applied to the test case in which a planar shock wave encounters a cloud of water droplets. The numerical results are compared with both experimental and previously-generated modeling results. The effect of the drag relation used is also investigated. The computed results indicate the necessity of using a droplet breakup model for this application, and the relative accuracy of results obtained with the different droplet breakup and drag models is discussed.

  14. Absolute Hugoniot measurements for CH foams in the 2–9 Mbar range

    DOE PAGES

    Aglitskiy, Y.; Velikovich, A. L.; Karasik, M.; ...

    2018-03-19

    Absolute Hugoniot measurements for empty plastic foams at ~10% of solid polystyrene density and supporting rad-hydro simulation results are reported. Planar foam slabs, ~400 μm thick and ~500 μm wide, some of which were covered with a 10 μm solid plastic ablator, were directly driven by 4 ns long Nike krypton-fluoride 248 nm wavelength laser pulses that produced strong shock waves in the foam. The shock and mass velocities in our experiments were up to 104 km/s and 84 km/s, respectively, and the shock pressures up to ~9 Mbar. The motion of the shock and ablation fronts was recorded usingmore » side-on monochromatic x-ray imaging radiography. Here, the steadiness of the observed shock and ablation fronts within ~1% has been verified. The Hugoniot data inferred from our velocity measurements agree with the predictions of the SESAME and CALEOS equation-of-state models near the highest pressure ~9 Mbar and density compression ratio ~5. In the lower pressure range 2–5 Mbar, a lower shock density compression is observed than that predicted by the models. Possible causes for this discrepancy are discussed.« less

  15. Forsterite and Enstatite Shock Temperatures: Implications for Planetary Impact Melting

    NASA Astrophysics Data System (ADS)

    Davies, Erik; Root, Seth; Kraus, Rick; Spaulding, Dylan; Stewart, Sarah; Jacobsen, Stein; Mattsson, Thomas; Lemke, Ray

    2017-06-01

    We present experimental results on enstatite and forsterite to probe extreme conditions in the laboratory in order to examine melting and vaporization of rocky planet mantles upon shock and release. Flyer plate impact experiments are carried out on the Z-Machine at Sandia National Laboratory. Planar, supported shock waves are generated in single crystal samples, permitting observation of both compressed and released states. Shock velocity of the sample is measured using laser interferometry, and the pressure and particle velocity are derived through impedance matching to the aluminum flyer. Temperature of the shocked state is measured with a streaked visible spectrum and calibrated with a quartz standard, mounted downrange from the sample. Preliminary analysis shows that current equation of state models underestimate the entropy gain, which suggests that for shock pressures above 250 GPa, a higher degree of impact vaporization will be reached. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation for the U.S. DOE's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  16. Absolute Hugoniot measurements for CH foams in the 2-9 Mbar range

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Velikovich, A. L.; Karasik, M.; Schmitt, A. J.; Serlin, V.; Weaver, J. L.; Oh, J.; Obenschain, S. P.; Cochrane, K. R.

    2018-03-01

    Absolute Hugoniot measurements for empty plastic foams at ˜10% of solid polystyrene density and supporting rad-hydro simulation results are reported. Planar foam slabs, ˜400 μm thick and ˜500 μm wide, some of which were covered with a 10 μm solid plastic ablator, were directly driven by 4 ns long Nike krypton-fluoride 248 nm wavelength laser pulses that produced strong shock waves in the foam. The shock and mass velocities in our experiments were up to 104 km/s and 84 km/s, respectively, and the shock pressures up to ˜9 Mbar. The motion of the shock and ablation fronts was recorded using side-on monochromatic x-ray imaging radiography. The steadiness of the observed shock and ablation fronts within ˜1% has been verified. The Hugoniot data inferred from our velocity measurements agree with the predictions of the SESAME and CALEOS equation-of-state models near the highest pressure ˜9 Mbar and density compression ratio ˜5. In the lower pressure range 2-5 Mbar, a lower shock density compression is observed than that predicted by the models. Possible causes for this discrepancy are discussed.

  17. Refractive indices of CaF2 single crystals under elastic shock loading

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zhou, X. M.; Liu, C. L.; Luo, S. N.

    2017-07-01

    Refractive indices and Hugoniots of CaF2 single crystals are investigated by laser displacement interferometry under shock loading below 5 GPa. Birefringence is observed for the [110] loading. We obtain the Hugoniot equation of states for [100], [110] and [111], and refractive indices for these orientations with consideration of their polarization. The measured refractive indices are in reasonable agreement with predictions based on the piezo-optic theory, and are used to refine the elasto-optic coefficients.

  18. An exploratory investigation of cumulative shock fatigue.

    NASA Technical Reports Server (NTRS)

    Simonson, D.; Byrne, J. G.

    1972-01-01

    A simple device for producing cumulative shock loading in solids is described. The device uses a ballistic-impact-driven projectile to introduce high-stress waves into a solid. The impact time and load amplitude can be varied to produce fracture in one or several impacts in PMMA rods. The wavefront approached a square wave shape. Materials other than PMMA were loaded to failure to demonstrate the versatility of the device. Fracture morphologies observed with optical and scanning-electron microscopy are described.

  19. Wedge Experiment Modeling and Simulation for Reactive Flow Model Calibration

    NASA Astrophysics Data System (ADS)

    Maestas, Joseph T.; Dorgan, Robert J.; Sutherland, Gerrit T.

    2017-06-01

    Wedge experiments are a typical method for generating pop-plot data (run-to-detonation distance versus input shock pressure), which is used to assess an explosive material's initiation behavior. Such data can be utilized to calibrate reactive flow models by running hydrocode simulations and successively tweaking model parameters until a match between experiment is achieved. Typical simulations are performed in 1D and typically use a flyer impact to achieve the prescribed shock loading pressure. In this effort, a wedge experiment performed at the Army Research Lab (ARL) was modeled using CTH (SNL hydrocode) in 1D, 2D, and 3D space in order to determine if there was any justification in using simplified models. A simulation was also performed using the BCAT code (CTH companion tool) that assumes a plate impact shock loading. Results from the simulations were compared to experimental data and show that the shock imparted into an explosive specimen is accurately captured with 2D and 3D simulations, but changes significantly in 1D space and with the BCAT tool. The difference in shock profile is shown to only affect numerical predictions for large run distances. This is attributed to incorrectly capturing the energy fluence for detonation waves versus flat shock loading. Portions of this work were funded through the Joint Insensitive Munitions Technology Program.

  20. Effects of Alfvénic Drift on Diffusive Shock Acceleration at Weak Cluster Shocks

    NASA Astrophysics Data System (ADS)

    Kang, Hyesung; Ryu, Dongsu

    2018-03-01

    Non-detection of γ-ray emission from galaxy clusters has challenged diffusive shock acceleration (DSA) of cosmic-ray (CR) protons at weak collisionless shocks that are expected to form in the intracluster medium. As an effort to address this problem, we here explore possible roles of Alfvén waves self-excited via resonant streaming instability during the CR acceleration at parallel shocks. The mean drift of Alfvén waves may either increase or decrease the scattering center compression ratio, depending on the postshock cross-helicity, leading to either flatter or steeper CR spectra. We first examine such effects at planar shocks, based on the transport of Alfvén waves in the small amplitude limit. For the shock parameters relevant to cluster shocks, Alfvénic drift flattens the CR spectrum slightly, resulting in a small increase of the CR acceleration efficiency, η. We then consider two additional, physically motivated cases: (1) postshock waves are isotropized via MHD and plasma processes across the shock transition, and (2) postshock waves contain only forward waves propagating along with the flow due to a possible gradient of CR pressure behind the shock. In these cases, Alfvénic drift could reduce η by as much as a factor of five for weak cluster shocks. For the canonical parameters adopted here, we suggest η ∼ 10‑4–10‑2 for shocks with sonic Mach number M s ≈ 2–3. The possible reduction of η may help ease the tension between non-detection of γ-rays from galaxy clusters and DSA predictions.

  1. SIMULATION OF ENERGETIC PARTICLE TRANSPORT AND ACCELERATION AT SHOCK WAVES IN A FOCUSED TRANSPORT MODEL: IMPLICATIONS FOR MIXED SOLAR PARTICLE EVENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kartavykh, Y. Y.; Dröge, W.; Gedalin, M.

    2016-03-20

    We use numerical solutions of the focused transport equation obtained by an implicit stochastic differential equation scheme to study the evolution of the pitch-angle dependent distribution function of protons in the vicinity of shock waves. For a planar stationary parallel shock, the effects of anisotropic distribution functions, pitch-angle dependent spatial diffusion, and first-order Fermi acceleration at the shock are examined, including the timescales on which the energy spectrum approaches the predictions of diffusive shock acceleration theory. We then consider the case that a flare-accelerated population of ions is released close to the Sun simultaneously with a traveling interplanetary shock formore » which we assume a simplified geometry. We investigate the consequences of adiabatic focusing in the diverging magnetic field on the particle transport at the shock, and of the competing effects of acceleration at the shock and adiabatic energy losses in the expanding solar wind. We analyze the resulting intensities, anisotropies, and energy spectra as a function of time and find that our simulations can naturally reproduce the morphologies of so-called mixed particle events in which sometimes the prompt and sometimes the shock component is more prominent, by assuming parameter values which are typically observed for scattering mean free paths of ions in the inner heliosphere and energy spectra of the flare particles which are injected simultaneously with the release of the shock.« less

  2. Compaction shock dissipation in low density granular explosive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Pratap T.; Gonthier, Keith A., E-mail: gonthier@me.lsu.edu; Chakravarthy, Sunada

    The microstructure of granular explosives can affect dissipative heating within compaction shocks that can trigger combustion and initiate detonation. Because initiation occurs over distances that are much larger than the mean particle size, homogenized (macroscale) theories are often used to describe local thermodynamic states within and behind shocks that are regarded as the average manifestation of thermodynamic fields at the particle scale. In this paper, mesoscale modeling and simulation are used to examine how the initial packing density of granular HMX (C{sub 4}H{sub 8}N{sub 8}O{sub 8}) C{sub 4}H{sub 8}N{sub 8}O{sub 8} having a narrow particle size distribution influences dissipation withinmore » resolved, planar compaction shocks. The model tracks the evolution of thermomechanical fields within large ensembles of particles due to pore collapse. Effective shock profiles, obtained by averaging mesoscale fields over space and time, are compared with those given by an independent macroscale compaction theory that predicts the variation in effective thermomechanical fields within shocks due to an imbalance between the solid pressure and a configurational stress. Reducing packing density is shown to reduce the dissipation rate within shocks but increase the integrated dissipated work over shock rise times, which is indicative of enhanced sensitivity. In all cases, dissipated work is related to shock pressure by a density-dependent power law, and shock rise time is related to pressure by a power law having an exponent of negative one.« less

  3. Emission lifetimes of a fluorescent dye under shock compression

    DOE PAGES

    Liu, Wei-long; Bassett, Will P.; Christensen, James M.; ...

    2015-10-15

    The emission lifetimes of rhodamine 6G (R6G), were measured under shock compression to 9.1 GPa, with the dual intent of better understanding molecular photophysics in extreme environments and assessing the usefulness of fluorescence lifetime microscopy to measure spatially-dependent pressure distributions in shocked microstructured media. R6G was studied as free dye dissolved in poly-methyl methacrylate (PMMA), or dye encapsulated in silica microparticles suspended in PMMA. Thin layers of these materials in impedance-matched geometries were subjected to planar single-stage shocks created by laser-driven flyer plates. A synchronized femtosecond laser excited the dye at selected times relative to flyer plate arrival and themore » emission lifetimes were measured with a streak camera. Lifetimes decreased when shocks arrived. The lifetime decrease was attributed to a shock-induced enhancement of R6G nonradiative relaxation. At least part of the relaxation involved shock-enhanced intersystem crossing. For free dye in PMMA, the lifetime decrease during the shock was shown to be a linear function of shock pressure from 0-9 GPa, with a slope of -0.22 ns·GPa -1. Furthermore, the linear relationship makes it simple to convert lifetimes into pressures. Lifetime measurements in shocked microenvironments may be better than emission intensity measurements, since lifetimes are sensitive to the surrounding environment, but insensitive to intensity variations associated with the motion and optical properties of a dynamically changing structure.« less

  4. On the dynamics of a shock-bubble interaction

    NASA Technical Reports Server (NTRS)

    Quirk, James J.; Karni, Smadar

    1994-01-01

    We present a detailed numerical study of the interaction of a weak shock wave with an isolated cylindrical gas inhomogenity. Such interactions have been studied experimentally in an attempt to elucidate the mechanisms whereby shock waves propagating through random media enhance mixing. Our study concentrates on the early phases of the interaction process which are dominated by repeated refractions of acoustic fronts at the bubble interface. Specifically, we have reproduced two of the experiments performed by Haas and Sturtevant : M(sub s) = 1.22 planar shock wave, moving through air, impinges on a cylindrical bubble which contains either helium or Refrigerant 22. These flows are modelled using the two-dimensional, compressible Euler equations for a two component fluid (air-helium or air-Refrigerant 22). Although simulations of shock wave phenomena are now fairly commonplace, they are mostly restricted to single component flows. Unfortunately, multi-component extensions of successful single component schemes often suffer from spurious oscillations which are generated at material interfaces. Here we avoid such problems by employing a novel, nonconservative shock-capturing scheme. In addition, we have utilized a sophisticated adaptive mesh refinement algorithm which enables extremely high resolution simulations to be performed relatively cheaply. Thus we have been able to reproduce numerically all the intricate mechanisms that were observed experimentally (e.g., transitions from regular to irregular refraction, cusp formation and shock wave focusing, multi-shock and Mach shock structures, jet formation, etc.), and we can now present an updated description for the dynamics of a shock-bubble interaction.

  5. Liquid-surface entrainment induced by shocked air stream

    NASA Astrophysics Data System (ADS)

    Rodriguez, V.; Jourdan, G.; Marty, A.; Allou, A.; Parisse, J.-D.

    2018-02-01

    Recently, we experimentally studied, in a shock tube environment, shock waves propagating over horizontal free water layers having depths of 10, 20, and 30 mm for shock wave Mach numbers M_is equal to 1.1 and 1.4. The qualitative interaction process was observed by means of high-speed visualizations, and the pressures arising in the air and in the water layer were measured and interpreted in terms of the various incident and refracted shock waves in air and water; in particular, it was concluded that the compression wave in the water is driven by the planar shock wave in the air. Additional experiments have been conducted and the novel contributions of the present technical note are quantitative results regarding the liquid-surface entrainment. At low Mach number (M_is=1.1 ), we show that the velocity of the droplets ejected into the air is independent of the water depth, unlike the wavelength of initial ripples and the angle of ejection. When the shock wave strength increases (M_is=1.4 ), the dispersion of a very thin droplet mist and a single large wave take place. We show that the thickening of the water mist and the velocity of the subsequent large wave decreases with the water-layer depth.

  6. In situ observation of high-pressure phase transition in silicon carbide under shock loading using ultrafast x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Tracy, Sally June

    2017-06-01

    SiC is an important high-strength ceramic material used for a range of technological applications, including lightweight impact shielding and abrasives. SiC is also relevant to geology and planetary science. It may be a host of reduced carbon in the Earth's interior and also occurs in meteorites and impact sites. SiC has also been put forward as a possible major constituent in the proposed class of extra-solar planets known as carbon planets. Previous studies have used wave profile measurements to identify a phase transition under shock loading near 1 Mbar, but lattice-level structural information was not obtained. Here we present the behavior of silicon carbide under shock loading as investigated through a series of time-resolved pump-probe x-ray diffraction measurements up to 200 GPa. Our experiments were conducted at the Materials in Extreme Conditions beamline of the Linac Coherent Light Source. In situ x-ray diffraction data on shock-compressed SiC was collected using a free electron laser source combined with a pulsed high-energy laser. These measurements allow for the determination of time-dependent atomic arrangements, demonstrating that the wurtzite phase of SiC transforms directly to the B1 structure. Our measurements also reveal details of the material texture evolution under shock loading and release.

  7. Steady inviscid transonic flows over planar airfoils: A search for a simplified procedure

    NASA Technical Reports Server (NTRS)

    Magnus, R.; Yoshihara, H.

    1973-01-01

    A finite difference procedure based upon a system of unsteady equations in proper conservation form with either exact or small disturbance steady terms is used to calculate the steady flows over several classes of airfoils. The airfoil condition is fulfilled on a slab whose upstream extremity is a semi-circle overlaying the airfoil leading edge circle. The limitations of the small disturbance equations are demonstrated in an extreme example of a blunt-nosed, aft-cambered airfoil. The necessity of using the equations in proper conservation form to capture the shock properly is stressed. Ability of the steady relaxation procedures to capture the shock is briefly examined.

  8. A shock-layer theory based on thirteen-moment equations and DSMC calculations of rarefied hypersonic flows

    NASA Technical Reports Server (NTRS)

    Cheng, H. K.; Wong, Eric Y.; Dogra, V. K.

    1991-01-01

    Grad's thirteen-moment equations are applied to the flow behind a bow shock under the formalism of a thin shock layer. Comparison of this version of the theory with Direct Simulation Monte Carlo calculations of flows about a flat plate at finite attack angle has lent support to the approach as a useful extension of the continuum model for studying translational nonequilibrium in the shock layer. This paper reassesses the physical basis and limitations of the development with additional calculations and comparisons. The streamline correlation principle, which allows transformation of the 13-moment based system to one based on the Navier-Stokes equations, is extended to a three-dimensional formulation. The development yields a strip theory for planar lifting surfaces at finite incidences. Examples reveal that the lift-to-drag ratio is little influenced by planform geometry and varies with altitudes according to a 'bridging function' determined by correlated two-dimensional calculations.

  9. How Artificial Should the Treatment of a Plasma's Viscosity Be?

    NASA Astrophysics Data System (ADS)

    Whitney, K. G.; Velikovich, A. L.; Thornhill, J. W.; Davis, J.

    1999-11-01

    Electron viscosity dominates over ion viscosity and is important in describing the generation of shock fronts in highly ionizable plasmas. The sizes of shock front jumps in electron and ion temperature are determined from the magnitudes of the heat flow vector and pressure tensor, which, in turn, acquire non-negligible nonlinear contributions from the temperature and density gradients when these gradients are large. Thus, a consistent treatment of steep gradient formation in plasmas must come from investigations that include the effects of these nonlinear contributions to heat and momentum transport. Coefficients for each of five nonlinear contributions to the pressure tensor for an (r,z) Z-pinch geometry are presented and discussed in this talk. Hydrodynamic code calculations generally are not designed to provide a testbed for directly evaluating the kinetic energy dissipation that occurs at shock fronts; therefore, the strength of these nonlinear pressure tensor terms will be estimated by post-processing a Z-pinch hydrodynamics calculation and a steady-state planar shock wave calculation.

  10. Generating gradient germanium nanostructures by shock-induced amorphization and crystallization

    PubMed Central

    Zhao, Shiteng; Kad, Bimal; Wehrenberg, Christopher E.; Remington, Bruce A.; Hahn, Eric N.; More, Karren L.; Meyers, Marc A.

    2017-01-01

    Gradient nanostructures are attracting considerable interest due to their potential to obtain superior structural and functional properties of materials. Applying powerful laser-driven shocks (stresses of up to one-third million atmospheres, or 33 gigapascals) to germanium, we report here a complex gradient nanostructure consisting of, near the surface, nanocrystals with high density of nanotwins. Beyond there, the structure exhibits arrays of amorphous bands which are preceded by planar defects such as stacking faults generated by partial dislocations. At a lower shock stress, the surface region of the recovered target is completely amorphous. We propose that germanium undergoes amorphization above a threshold stress and that the deformation-generated heat leads to nanocrystallization. These experiments are corroborated by molecular dynamics simulations which show that supersonic partial dislocation bursts play a role in triggering the crystalline-to-amorphous transition. PMID:28847926

  11. Detonative propagation and accelerative expansion of the Crab Nebula shock front.

    PubMed

    Gao, Yang; Law, Chung K

    2011-10-21

    The accelerative expansion of the Crab Nebula's outer envelope is a mystery in dynamics, as a conventional expanding blast wave decelerates when bumping into the surrounding interstellar medium. Here we show that the strong relativistic pulsar wind bumping into its surrounding nebula induces energy-generating processes and initiates a detonation wave that propagates outward to form the current outer edge, namely, the shock front, of the nebula. The resulting detonation wave, with a reactive downstream, then provides the needed power to maintain propagation of the shock front. Furthermore, relaxation of the curvature-induced reduction of the propagation velocity from the initial state of formation to the asymptotic, planar state of Chapman-Jouguet propagation explains the observed accelerative expansion. Potential richness in incorporating reactive fronts in the description of various astronomical phenomena is expected. © 2011 American Physical Society

  12. Generating gradient germanium nanostructures by shock-induced amorphization and crystallization.

    PubMed

    Zhao, Shiteng; Kad, Bimal; Wehrenberg, Christopher E; Remington, Bruce A; Hahn, Eric N; More, Karren L; Meyers, Marc A

    2017-09-12

    Gradient nanostructures are attracting considerable interest due to their potential to obtain superior structural and functional properties of materials. Applying powerful laser-driven shocks (stresses of up to one-third million atmospheres, or 33 gigapascals) to germanium, we report here a complex gradient nanostructure consisting of, near the surface, nanocrystals with high density of nanotwins. Beyond there, the structure exhibits arrays of amorphous bands which are preceded by planar defects such as stacking faults generated by partial dislocations. At a lower shock stress, the surface region of the recovered target is completely amorphous. We propose that germanium undergoes amorphization above a threshold stress and that the deformation-generated heat leads to nanocrystallization. These experiments are corroborated by molecular dynamics simulations which show that supersonic partial dislocation bursts play a role in triggering the crystalline-to-amorphous transition.

  13. Experimental studies of shock-wave/wall-jet interaction in hypersonic flow

    NASA Technical Reports Server (NTRS)

    Holden, Michael S.; Rodriguez, Kathleen

    1994-01-01

    Experimental studies have been conducted to examine slot film cooling effectiveness and the interaction between the cooling film and an incident planar shock wave in turbulent hypersonic flow. The experimental studies were conducted in the 48-inch shock tunnel at Calspan at a freestream Mach number of close to 6.4 and at a Reynolds number of 35 x 10(exp 6) based on the length of the model at the injection point. The Mach 2.3 planar wall jet was generated from 40 transverse nozzles (with heights of both 0.080 inch and 0.120 inch), producing a film that extended the full width of the model. The nozzles were operated at pressures and velocities close to matching the freestream, as well as at conditions where the nozzle flows were over- and under-expanded. A two-dimensional shock generator was used to generate oblique shocks that deflected the flow through total turnings of 11, 16, and 21 degrees; the flows impinged downstream of the nozzle exits. Detailed measurements of heat transfer and pressure were made both ahead and downstream of the injection station, with the greatest concentration of measurements in the regions of shock-wave/boundary layer interaction. The major objectives of these experimental studies were to explore the effectiveness of film cooling in the presence of regions of shock-wave/boundary layer interaction and, more specifically, to determine how boundary layer separation and the large recompression heating rates were modified by film cooling. Detailed distributions of heat transfer and pressure were obtained in the incident shock/wall-jet interaction region for a series of shock strengths and impingement positions for each of the two nozzle heights. Measurements were also made to examine the effects of nozzle lip thickness on cooling effectiveness. The major conclusion from these studies was that the effect of the cooling film could be readily dispersed by relatively weak incident shocks, so the peak heating in the recompression region was not significantly reduced by even the largest levels of film cooling. For the case studies in the absence of film cooling, the interaction regions were unseparated. However, adding film cooling resulted in regions of boundary layer separation induced in the film cooling layer -- the size of which regions first increased and then decreased with increased film cooling. Surprisingly, the size of the separated regions and the magnitude of the recompression heating were not strongly influenced by the thickness of the cooling film, nor by the point of shock impingement relative to the exit plane of the nozzles. The lip thickness was found to have little effect on cooling effectiveness. Measurements with and in the absence of shock interaction were compared with the results of earlier experimental studies and correlated in terms of the major parameters controlling these flows.

  14. Experimental studies of shock-wave/wall-jet interaction in hypersonic flow, part A

    NASA Technical Reports Server (NTRS)

    Holden, Michael S.; Rodriguez, Kathleen

    1994-01-01

    Experimental studies have been conducted to examine slot film cooling effectiveness and the interaction between the cooling film and an incident planar shock wave in turbulent hypersonic flow. The experimental studies were conducted in the 48-inch shock tunnel at Calspan at a freestream Mach number of close to 6.4 and at a Reynolds number of 35 x 10(exp 6) based on the length of the model at the injection point. The Mach 2.3 planar wall jet was generated from 40 transverse nozzles (with heights of both 0.080 inch and 0.120 inch), producing a film that extended the full width of the model. The nozzles were operated at pressures and velocities close to matching the freestream, as well as at conditions where the nozzle flows were over- and under-expanded. A two-dimensional shock generator was used to generate oblique shocks that deflected the flow through total turnings of 11, 16, and 21 degrees; the flows impinged downstream of the nozzle exits. Detailed measurements of heat transfer and pressure were made both ahead and downstream of the injection station, with the greatest concentration of measurements in the regions of shock-wave/boundary layer interaction. The major objectives of these experimental studies were to explore the effectiveness of film cooling in the presence of regions of shock-wave/boundary layer interaction and, more specifically, to determine how boundary layer separation and the large recompression heating rates were modified by film cooling. Detailed distributions of heat transfer and pressure were obtained in the incident-shock/wall-jet interaction region for a series of shock strengths and impingement positions for each of the two nozzle heights. Measurements were also made to examine the effects of nozzle lip thickness on cooling effectiveness. The major conclusion from these studies was that the effect of the cooling film could be readily dispersed by relatively weak incident shocks, so the peak heating in the recompression region was not significantly reduced by even the largest levels of film cooling. For the case studies in the absence of film cooling, the interaction regions were unseparated. However, adding film cooling resulted in regions of boundary layer separation induced in the film cooling layer, the size of which regions first increased and then decreased with increased film cooling. Surprisingly, the size of the separated regions and the magnitude of the recompression heating were not strongly influenced by the thickness of the cooling film, nor by the point of shock impingement relative to the exit plane of the nozzles. The lip thickness was found to have little effect on cooling effectiveness. Measurements with and in the absence of shock interaction were compared with the results of earlier experimental studies and correlated in terms of the major parameters controlling these flows.

  15. Microstructural fingerprints of phase transitions in shock-loaded iron

    NASA Astrophysics Data System (ADS)

    Wang, S. J.; Sui, M. L.; Chen, Y. T.; Lu, Q. H.; Ma, E.; Pei, X. Y.; Li, Q. Z.; Hu, H. B.

    2013-01-01

    The complex structural transformation in crystals under static pressure or shock loading has been a subject of long-standing interest to materials scientists and physicists. The polymorphic transformation is of particular importance for iron (Fe), due to its technological and sociological significance in the development of human civilization, as well as its prominent presence in the earth's core. The martensitic transformation α-->ɛ (bcc-->hcp) in iron under shock-loading, due to its reversible and transient nature, requires non-trivial detective work to uncover its occurrence. Here we reveal refined microstructural fingerprints, needle-like colonies and three sets of {112}<111> twins with a threefold symmetry, with tell-tale features that are indicative of two sequential martensitic transformations in the reversible α-->ɛ phase transition, even though no ɛ is retained in the post-shock samples. The signature orientation relationships are consistent with previously-proposed transformation mechanisms, and the unique microstructural fingerprints enable a quantitative assessment of the volume fraction transformed.

  16. Response and representation of ductile damage under varying shock loading conditions in tantalum

    DOE PAGES

    Bronkhorst, C. A.; Gray, III, G. T.; Addessio, F. L.; ...

    2016-02-25

    The response of polycrystalline metals, which possess adequate mechanisms for plastic deformation under extreme loading conditions, is often accompanied by the formation of pores within the structure of the material. This large deformation process is broadly identified as progressive with nucleation, growth, coalescence, and failure the physical path taken over very short periods of time. These are well known to be complex processes strongly influenced by microstructure, loading path, and the loading profile, which remains a significant challenge to represent and predict numerically. In the current study, the influence of loading path on the damage evolution in high-purity tantalum ismore » presented. Tantalum samples were shock loaded to three different peak shock stresses using both symmetric impact, and two different composite flyer plate configurations such that upon unloading the three samples displayed nearly identical “pull-back” signals as measured via rear-surface velocimetry. While the “pull-back” signals observed were found to be similar in magnitude, the sample loaded to the highest peak stress nucleated a connected field of ductile fracture which resulted in complete separation, while the two lower peak stresses resulted in incipient damage. The damage evolution in the “soft” recovered tantalum samples was quantified using optical metallography, electron-back-scatter diffraction, and tomography. These experiments are examined numerically through the use of a model for shock-induced porosity evolution during damage. The model is shown to describe the response of the tantalum reasonably well under strongly loaded conditions but less well in the nucleation dominated regime. As a result, numerical results are also presented as a function of computational mesh density and discussed in the context of improved representation of the influence of material structure upon macro-scale models of ductile damage.« less

  17. Prefrontal inhibition of threat processing reduces working memory interference

    PubMed Central

    Clarke, Robert; Johnstone, Tom

    2013-01-01

    Bottom-up processes can interrupt ongoing cognitive processing in order to adaptively respond to emotional stimuli of high potential significance, such as those that threaten wellbeing. However it is vital that this interference can be modulated in certain contexts to focus on current tasks. Deficits in the ability to maintain the appropriate balance between cognitive and emotional demands can severely impact on day-to-day activities. This fMRI study examined this interaction between threat processing and cognition; 18 adult participants performed a visuospatial working memory (WM) task with two load conditions, in the presence and absence of anxiety induction by threat of electric shock. Threat of shock interfered with performance in the low cognitive load condition; however interference was eradicated under high load, consistent with engagement of emotion regulation mechanisms. Under low load the amygdala showed significant activation to threat of shock that was modulated by high cognitive load. A directed top-down control contrast identified two regions associated with top-down control; ventrolateral PFC and dorsal ACC. Dynamic causal modeling provided further evidence that under high cognitive load, top-down inhibition is exerted on the amygdala and its outputs to prefrontal regions. Additionally, we hypothesized that individual differences in a separate, non-emotional top-down control task would predict the recruitment of dorsal ACC and ventrolateral PFC during top-down control of threat. Consistent with this, performance on a separate dichotic listening task predicted dorsal ACC and ventrolateral PFC activation during high WM load under threat of shock, though activation in these regions did not directly correlate with WM performance. Together, the findings suggest that under high cognitive load and threat, top-down control is exerted by dACC and vlPFC to inhibit threat processing, thus enabling WM performance without threat-related interference. PMID:23750133

  18. A shock spectra and impedance method to determine a bound for spacecraft structural loads

    NASA Technical Reports Server (NTRS)

    Bamford, R.; Trubert, M.

    1974-01-01

    A method to determine a bound of structural loads for a spacecraft mounted on a launch vehicle is developed. The method utilizes the interface shock spectra and the relative impedance of the spacecraft and launch vehicle. The method is developed for single-degree-of-freedom models and then generalized to multidegree-of-freedom models.

  19. The influence of ZrO2/20%Y2O3 and Al2O3 deposited coatings to the behavior of an aluminum alloy subjected to mechanical shock

    NASA Astrophysics Data System (ADS)

    Pintilei, G. L.; Crismaru, V. I.; Abrudeanu, M.; Munteanu, C.; Luca, D.; Istrate, B.

    2015-10-01

    Aluminum alloys are used in the aerospace industry due to their good mechanical properties and their low density compared with the density of steels. Usually the parts made of aluminum alloys contribute to the structural frame of aircrafts and they must withstand static and variable mechanical loads and also mechanical loads applied in a very short time which determine different phenomenon's in the material behavior then static or fatigue loads. This paper analysis the resilience of a 2024 aluminum alloy subjected to shock loads and the way how a coating can improve its behavior. For improving the behavior two coatings were considered: Al2O3 with 99.5% purity and ZrO2/20%Y2O3. The coatings were deposited on the base material by plasma spraying. The samples with and without coating were subject to mechanical shock to determine the resilience of the materials and the cracks propagation was investigated using SEM analysis. To highlight the physical phenomenon's that appear in the samples during the mechanical shock, explicit finite element analysis were done using Ansys 14.5 software.

  20. Soft-sphere simulations of a planar shock interaction with a granular bed

    NASA Astrophysics Data System (ADS)

    Stewart, Cameron; Balachandar, S.; McGrath, Thomas P.

    2018-03-01

    Here we consider the problem of shock propagation through a layer of spherical particles. A point particle force model is used to capture the shock-induced aerodynamic force acting upon the particles. The discrete element method (DEM) code liggghts is used to implement the shock-induced force as well as to capture the collisional forces within the system. A volume-fraction-dependent drag correction is applied using Voronoi tessellation to calculate the volume of fluid around each individual particle. A statistically stationary frame is chosen so that spatial and temporal averaging can be performed to calculate ensemble-averaged macroscopic quantities, such as the granular temperature. A parametric study is carried out by varying the coefficient of restitution for three sets of multiphase shock conditions. A self-similar profile is obtained for the granular temperature that is dependent on the coefficient of restitution. A traveling wave structure is observed in the particle concentration downstream of the shock and this instability arises from the volume-fraction-dependent drag force. The intensity of the traveling wave increases significantly as inelastic collisions are introduced. Downstream of the shock, the variance in Voronoi volume fraction is shown to have a strong dependence upon the coefficient of restitution, indicating clustering of particles induced by collisional dissipation. Statistics of the Voronoi volume are computed upstream and downstream of the shock and compared to theoretical results for randomly distributed hard spheres.

  1. Experimental and numerical investigation of reactive shock-accelerated flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonazza, Riccardo

    2016-12-20

    The main goal of this program was to establish a qualitative and quantitative connection, based on the appropriate dimensionless parameters and scaling laws, between shock-induced distortion of astrophysical plasma density clumps and their earthbound analog in a shock tube. These objectives were pursued by carrying out laboratory experiments and numerical simulations to study the evolution of two gas bubbles accelerated by planar shock waves and compare the results to available astrophysical observations. The experiments were carried out in an vertical, downward-firing shock tube, 9.2 m long, with square internal cross section (25×25 cm 2). Specific goals were to quantify themore » effect of the shock strength (Mach number, M) and the density contrast between the bubble gas and its surroundings (usually quantified by the Atwood number, i.e. the dimensionless density difference between the two gases) upon some of the most important flow features (e.g. macroscopic properties; turbulence and mixing rates). The computational component of the work performed through this program was aimed at (a) studying the physics of multi-phase compressible flows in the context of astrophysics plasmas and (b) providing a computational connection between laboratory experiments and the astrophysical application of shock-bubble interactions. Throughout the study, we used the FLASH4.2 code to run hydrodynamical and magnetohydrodynamical simulations of shock bubble interactions on an adaptive mesh.« less

  2. Interaction of a weak shock wave with a discontinuous heavy-gas cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiansheng; Yang, Dangguo; Wu, Junqiang

    2015-06-15

    The interaction between a cylindrical inhomogeneity and a weak planar shock wave is investigated experimentally and numerically, and special attention is given to the wave patterns and vortex dynamics in this scenario. A soap-film technique is realized to generate a well-controlled discontinuous cylinder (SF{sub 6} surrounded by air) with no supports or wires in the shock-tube experiment. The symmetric evolving interfaces and few disturbance waves are observed in a high-speed schlieren photography. Numerical simulations are also carried out for a detailed analysis. The refracted shock wave inside the cylinder is perturbed by the diffracted shock waves and divided into threemore » branches. When these shock branches collide, the shock focusing occurs. A nonlinear model is then proposed to elucidate effects of the wave patterns on the evolution of the cylinder. A distinct vortex pair is gradually developing during the shock-cylinder interaction. The numerical results show that a low pressure region appears at the vortex core. Subsequently, the ambient fluid is entrained into the vortices which are expanding at the same time. Based on the relation between the vortex motion and the circulation, several theoretical models of circulation in the literature are then checked by the experimental and numerical results. Most of these theoretical circulation models provide a reasonably good prediction of the vortex motion in the present configuration.« less

  3. On the shock response of cubic metals

    NASA Astrophysics Data System (ADS)

    Bourne, N. K.; Gray, G. T.; Millett, J. C. F.

    2009-11-01

    The response of four cubic metals to shock loading is reviewed in order to understand the effects of microstructure on continuum response. Experiments are described that link defect generation and storage mechanisms at the mesoscale to observations in the bulk. Four materials were reviewed; these were fcc nickel, the ordered fcc intermetallic Ni3Al, the bcc metal tantalum, and two alloys based on the intermetallic phase TiAl; Ti-46.5Al-2Cr-2Nb and Ti-48Al-2Cr-2Nb-1B. The experiments described are in two groups: first, equation of state and shear strength measurements using Manganin stress gauges and, second, postshock microstructural examinations and measurement of changes in mechanical properties. The behaviors described are linked through the description of time dependent plasticity mechanisms to the final states achieved. Recovered targets displayed dislocation microstructures illustrating processes active during the shock-loading process. Reloading of previously shock-prestrained samples illustrated shock strengthening for the fcc metals Ni and Ni3Al while showing no such effect for bcc Ta and for the intermetallic TiAl. This difference in effective shock hardening has been related, on the one hand, to the fact that bcc metals have fewer available slip systems that can operate than fcc crystals and to the observation that the lower symmetry materials (Ta and TiAl) both possess high Peierls stress and thus have higher resistances to defect motion in the lattice under shock-loading conditions. These behaviors, compared between these four materials, illustrate the role of defect generation, transport, storage, and interaction in determining the response of materials to shock prestraining.

  4. A new class of high-G and long-duration shock testing machines

    NASA Astrophysics Data System (ADS)

    Rastegar, Jahangir

    2018-03-01

    Currently available methods and systems for testing components for survival and performance under shock loading suffer from several shortcomings for use to simulate high-G acceleration events with relatively long duration. Such events include most munitions firing and target impact, vehicular accidents, drops from relatively high heights, air drops, impact between machine components, and other similar events. In this paper, a new class of shock testing machines are presented that can be used to subject components to be tested to high-G acceleration pulses of prescribed amplitudes and relatively long durations. The machines provide for highly repeatable testing of components. The components are mounted on an open platform for ease of instrumentation and video recording of their dynamic behavior during shock loading tests.

  5. Transient Three-Dimensional Side Load Analysis of a Film Cooled Nozzle

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Guidos, Mike

    2008-01-01

    Transient three-dimensional numerical investigations on the side load physics for an engine encompassing a film cooled nozzle extension and a regeneratively cooled thrust chamber, were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Ultimately, the computational results will be provided to the nozzle designers for estimating of effect of the peak side load on the nozzle structure. Computations simulating engine startup at ambient pressures corresponding to sea level and three high altitudes were performed. In addition, computations for both engine startup and shutdown transients were also performed for a stub nozzle, operating at sea level. For engine with the full nozzle extension, computational result shows starting up at sea level, the peak side load occurs when the lambda shock steps into the turbine exhaust flow, while the side load caused by the transition from free-shock separation to restricted-shock separation comes at second; and the side loads decreasing rapidly and progressively as the ambient pressure decreases. For the stub nozzle operating at sea level, the computed side loads during both startup and shutdown becomes very small due to the much reduced flow area.

  6. Shock-absorbing caster wheel is simple and compact

    NASA Technical Reports Server (NTRS)

    Kindley, R. J.

    1968-01-01

    Compact shock-absorbing caster wheel mitigates or absorbs shock by a compressible tire which deforms into a cavity between its inner edge and the wheel hub. A tee-shaped annular ring embedded in the tire distributes loads more uniformly throughout both wheel and tire.

  7. Shock loading and release behavior of silicon nitride

    NASA Astrophysics Data System (ADS)

    Kawai, Nobuaki; Tsuru, Taiki; Hidaka, Naoto; Liu, Xun; Mashimo, Tsutomu

    2015-06-01

    Shock-reshock and shock-release experiments were performed on silicon nitride ceramics above and below its phase transition pressure. Experimental results clearly show the occurrence of elastic-plastic transition and phase transition during initial shock loading. The HEL and phase transition stress are determined as 11.6 GPa and 34.5 GPa, respectively. Below the phase transition point, the reshock profile consists of the single shock with short rise time, while the release profile shows the gradual release followed by more rapid one. Above the phase transition point, reshock and release behavior varies with the initial shock stress. In the case of reshock and release from about 40 GPa, the reshock structure is considerably dispersed, while the release structure shows rapid release. In the reshock profile from about 50 GPa, the formation of the shock wave with the small ramped precursor is observed. And, the release response from same condition shows initial gradual release and subsequent quite rapid one. These results would provide the information about how phase transformation kinetics effects on the reshock and release behavior.

  8. A Comparative Study of the Behaviour of Five Dense Glass Materials Under Shock Loading Conditions

    NASA Astrophysics Data System (ADS)

    Radford, Darren D.; Proud, William G.; Field, John E.

    2001-06-01

    Previous work at the Cavendish Laboratory on the properties of glasses under shock loading has demonstrated that the material response is highly dependent upon the composition of the glass. The shock response of glass materials with an open structure, such as borosilicate, exhibits a ramping behaviour in the longitudinal stress histories due to structural collapse. Glass materials with a “filled” microstructure, as in the case of Type-D, Extra Dense Flint (DEDF) do not exhibit a ramping behaviour and behave in a manner similar to polycrystalline ceramics [1]. The current investigation compares the behaviour of five such glasses (SF15, DEDF, LACA, SF57 and DEDF-927210) under shock loading conditions. It is observed that slight changes in material composition can have a large affect on the inelastic behaviour. Principal Hugoniot and shear strength data are presented for all of the materials for pressures ranging from 2 to 14 GPa. Evidence of the so-called failure-front [2] is presented via lateral stress histories measured using manganin stress gauges and confirmed with high-speed photography. 1. Bourne, N.K., Millett, J.C.F., and Field, J.E., “On the strength of shocked glasses” Proc. R. Soc. Lond. A 455 (1999) 1275-1282 2. Brar, N.S., “Failure Waves in Glass and Ceramics Under Shock Compression”, in "Shock Compression of Condensed Matter 1999", ed. M.D. Furnish, L.C. Chhabildas, and R.S. Hixson, American Institute of Physics, Woodbury, New York, (1999) 601-606

  9. The simulation of shock- and impact-driven flows with Mie-Gruneisen equations of state

    NASA Astrophysics Data System (ADS)

    Ward, Geoffrey M.

    An investigation of shock- and impact-driven flows with Mie-Gruneisen equation of state derived from a linear shock-particle speed Hugoniot relationship is presented. Cartesian mesh methods using structured adaptive refinement are applied to simulate several flows of interest in an Eulerian frame of reference. The flows central to the investigation include planar Richtmyer-Meshkov instability, the impact of a sphere with a plate, and an impact-driven Mach stem. First, for multicomponent shock-driven flows, a dimensionally unsplit, spatially high-order, hybrid, center-difference, limiter methodology is developed. Effective switching between center-difference and upwinding schemes is achieved by a set of robust tolerance and Lax-entropy-based criteria [49]. Oscillations that result from such a mixed stencil scheme are minimized by requiring that the upwinding method approaches the center-difference method in smooth regions. The solver is then applied to investigate planar Richtmyer-Meshkov instability in the context of an equation of state comparison. Comparisons of simulations with materials modeled by isotropic stress Mie-Gruneisen equations of state derived from a linear shock-particle speed Hugoniot relationship [36,52] to those of perfect gases are made with the intention of exposing the role of the equation of state. First, results for single- and triple-mode planar Richtmyer-Meshkov instability between mid-ocean ridge basalt (MORB) and molybdenum modeled by Mie-Gruneisen equations of state are presented for the case of a reflected shock. The single-mode case is explored for incident shock Mach numbers of 1.5 and 2.5. Additionally, examined is single-mode Richtmyer-Meshkov instability when a reflected expansion wave is present for incident Mach numbers of 1.5 and 2.5. Comparison to perfect gas solutions in such cases yields a higher degree of similarity in start-up time and growth rate oscillations. Vorticity distribution and corrugation centerline shortly after shock interaction is also examined. The formation of incipient weak shock waves in the heavy fluid driven by waves emanating from the perturbed transmitted shock is observed when an expansion wave is reflected. Next, the ghost fluid method [83] is explored for application to impact-driven flows with Mie-Gruneisen equations of state in a vacuum. Free surfaces are defined utilizing a level-set approach. The level-set is reinitialized to the signed distance function periodically by solution to a Hamilton-Jacobi differential equation in artificial time. Flux reconstruction along each Cartesian direction of the domain is performed by subdividing in a way that allows for robust treatment of grid-scale sized voids. Ghost cells in voided regions near the material-vacuum interface are determined from surface-normal Riemann problem solution. The method is then applied to several impact problems of interest. First, a one-dimensional impact problem is examined in Mie-Gruneisen aluminum with simple point erosion used to model separation by spallation under high tension. A similar three-dimensional axisymmetric simulation of two rods impacting is then performed without a model for spallation. Further results for three-dimensional axisymmetric simulation of a sphere hitting a plate are then presented. Finally, a brief investigation of the assumptions utilized in modeling solids as isotropic fluids is undertaken. An Eulerian solver approach to handling elastic and elastic-plastic solids is utilized for comparison to the simple fluid model assumption. First, in one dimension an impact problem is examined for elastic, elastic-plastic, and fluid equations of state for aluminum. The results demonstrate that in one dimension the fluid models the plastic shock structure of the flow well. Further investigation is made using a three-dimensional axisymmetric simulation of an impact problem involving a copper cylinder surrounded by aluminum. An aluminum slab impact drives a faster shock in the outer aluminum region yielding a Mach reflection in the copper. The results demonstrate similar plastic shock structures. Several differences are also notable that include a lack of roll-up instability at the material interface and slip-line emanating from the Mach stem's triple point. (Abstract shortened by UMI.)

  10. Thermographic Phosphor Measurements of Shock-Shock Interactions on a Swept Cylinder

    NASA Technical Reports Server (NTRS)

    Jones, Michelle L.; Berry, Scott A.

    2013-01-01

    The effects of fin leading-edge radius and sweep angle on peak heating rates due to shock-shock interactions were investigated in the NASA Langley Research Center 20-inch Mach 6 Air Tunnel. The fin model leading edges, which represent cylindrical leading edges or struts on hypersonic vehicles, were varied from 0.25 inches to 0.75 inches in radius. A 9deg wedge generated a planar oblique shock at 16.7deg to the flow that intersected the fin bow shock, producing a shock-shock interaction that impinged on the fin leading edge. The fin angle of attack was varied from 0deg (normal to the free-stream) to 15deg and 25deg swept forward. Global temperature data was obtained from the surface of the fused silica fins using phosphor thermography. Metal oil flow models with the same geometries as the fused silica models were used to visualize the streamline patterns for each angle of attack. High-speed zoom-schlieren videos were recorded to show the features and temporal unsteadiness of the shock-shock interactions. The temperature data were analyzed using one-dimensional semi-infinite as well as one- and two-dimensional finite-volume methods to determine the proper heat transfer analysis approach to minimize errors from lateral heat conduction due to the presence of strong surface temperature gradients induced by the shock interactions. The general trends in the leading-edge heat transfer behavior were similar for the three shock-shock interactions, respectively, between the test articles with varying leading-edge radius. The dimensional peak heat transfer coefficient augmentation increased with decreasing leading-edge radius. The dimensional peak heat transfer output from the two-dimensional code was about 20% higher than the value from a standard, semi-infinite onedimensional method.

  11. Experimental Investigation of Shock-Shock Interactions Over a 2-D Wedge at M=6

    NASA Technical Reports Server (NTRS)

    Jones, Michelle L.

    2013-01-01

    The effects of fin-leading-edge radius and sweep angle on peak heating rates due to shock-shock interactions were investigated in the NASA Langley Research Center 20-inch Mach 6 Air Tunnel. The fin model leading edges, which represent cylindrical leading edges or struts on hypersonic vehicles, were varied from 0.25 inches to 0.75 inches in radius. A 9deg wedge generated a planar oblique shock at 16.7deg to the flow that intersected the fin bow shock, producing a shock-shock interaction that impinged on the fin leading edge. The fin angle of attack was varied from 0deg (normal to the free-stream) to 15deg and 25deg swept forward. Global temperature data was obtained from the surface of the fused silica fins through phosphor thermography. Metal oil flow models with the same geometries as the fused silica models were used to visualize the streamline patterns for each angle of attack. High-speed zoom-schlieren videos were recorded to show the features and temporal unsteadiness of the shock-shock interactions. The temperature data were analyzed using one-dimensional semi-infinite as well as one- and two-dimensional finite-volume methods to determine the proper heat transfer analysis approach to minimize errors from lateral heat conduction due to the presence of strong surface temperature gradients induced by the shock interactions. The general trends in the leading-edge heat transfer behavior were similar for the three shock-shock interactions, respectively, between the test articles with varying leading-edge radius. The dimensional peak heat transfer coefficient augmentation increased with decreasing leading-edge radius. The dimensional peak heat transfer output from the two-dimensional code was about 20% higher than the value from a standard, semi-infinite one-dimensional method.

  12. Strength of shock-loaded single-crystal tantalum [100] determined using in situ broadband x-ray Laue diffraction.

    PubMed

    Comley, A J; Maddox, B R; Rudd, R E; Prisbrey, S T; Hawreliak, J A; Orlikowski, D A; Peterson, S C; Satcher, J H; Elsholz, A J; Park, H-S; Remington, B A; Bazin, N; Foster, J M; Graham, P; Park, N; Rosen, P A; Rothman, S R; Higginbotham, A; Suggit, M; Wark, J S

    2013-03-15

    The strength of shock-loaded single crystal tantalum [100] has been experimentally determined using in situ broadband x-ray Laue diffraction to measure the strain state of the compressed crystal, and elastic constants calculated from first principles. The inferred strength reaches 35 GPa at a shock pressure of 181 GPa and is in excellent agreement with a multiscale strength model [N. R. Barton et al., J. Appl. Phys. 109, 073501 (2011)], which employs a hierarchy of simulation methods over a range of length scales to calculate strength from first principles.

  13. Shock and vibration tests of uranium mononitride fuel pellets for a space power nuclear reactor

    NASA Technical Reports Server (NTRS)

    Adams, D. W.

    1972-01-01

    Shock and vibration tests were conducted on cylindrically shaped, depleted, uranium mononitride (UN) fuel pellets. The structural capabilities of the pellets were determined under exposure to shock and vibration loading which a nuclear reactor may encounter during launching into space. Various combinations of diametral and axial clearances between the pellets and their enclosing structures were tested. The results of these tests indicate that for present fabrication of UN pellets, a diametral clearance of 0.254 millimeter and an axial clearance of 0.025 millimeter are tolerable when subjected to launch-induced loads.

  14. (U) Influence of Compaction Model Form on Planar and Cylindrical Compaction Geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fredenburg, David A.; Carney, Theodore Clayton; Fichtl, Christopher Allen

    The dynamic compaction response of CeO 2 is examined within the frameworks of the Ramp and P-a compaction models. Hydrocode calculations simulating the dynamic response of CeO 2 at several distinct pressures within the compaction region are investigated in both planar and cylindrically convergent geometries. Findings suggest additional validation of the compaction models is warranted under complex loading configurations.

  15. Optical Absorption and Raman Spectroscopy of Multiple Shocked Liquid Benzene to 10 GPa

    NASA Astrophysics Data System (ADS)

    Root, S.

    2005-07-01

    Liquid benzene samples were multiply shocked to peak pressures ranging from 3 GPa to 10 GPa to examine physical and chemical changes in benzene. A xenon flashlamp was used to probe the visible spectrum of benzene for loses in transmitted light intensity caused by changes in the electronic structure (absorption) or a possible liquid to solid phase transition (scattering). Raman spectroscopy was used to corroborate transmission measurements by examining changes in the benzene vibrational modes. The C-C symmetric ring breathing mode (992 cm-1), C-H symmetric stretch (3061 cm-1), along with several weaker modes at 607 cm-1, 1178 cm-1, 1586 cm-1, and 1606 cm-1 were monitored during shock loading. An EOS was developed to calculate the temperature of the shock compressed benzene. The present work has demonstrated that liquid benzene remains unchanged during multiple shock loading up to 10 GPa. Work supported by ONR and DOE.

  16. The relationship between elastic constants and structure of shock waves in a zinc single crystal

    NASA Astrophysics Data System (ADS)

    Krivosheina, M. N.; Kobenko, S. V.; Tuch, E. V.

    2017-12-01

    The paper provides a 3D finite element simulation of shock-loaded anisotropic single crystals on the example of a Zn plate under impact using a mathematical model, which allows for anisotropy in hydrostatic stress and wave velocities in elastic and plastic ranges. The simulation results agree with experimental data, showing the absence of shock wave splitting into an elastic precursor and a plastic wave in Zn single crystals impacted in the [0001] direction. It is assumed that the absence of an elastic precursor under impact loading of a zinc single crystal along the [0001] direction is determined by the anomalously large ratio of the c/a-axes and close values of the propagation velocities of longitudinal and bulk elastic waves. It is shown that an increase in only one elastic constant along the [0001] direction results in shock wave splitting into an elastic precursor and a shock wave of "plastic" compression.

  17. Adaptive magnetorheological seat suspension for shock mitigation

    NASA Astrophysics Data System (ADS)

    Singh, Harinder J.; Wereley, Norman M.

    2013-04-01

    An adaptive magnetorheological seat suspension (AMSS) was analyzed for optimal protection of occupants from shock loads caused by the impact of a helicopter with the ground. The AMSS system consists of an adaptive linear stroke magnetorheological shock absorber (MRSA) integrated into the seat structure of a helicopter. The MRSA provides a large controllability yield force to accommodate a wide spectrum for shock mitigation. A multiple degrees-of-freedom nonlinear biodynamic model for a 50th percentile male occupant was integrated with the dynamics of MRSA and the governing equations of motion were investigated theoretically. The load-stroke profile of MRSA was optimized with the goal of minimizing the potential for injuries. The MRSA yield force and the shock absorber stroke limitations were the most crucial parameters for improved biodynamic response mitigation. An assessment of injuries based on established injury criteria for different body parts was carried out.

  18. On conductivity changes in shocked potassium chloride

    NASA Astrophysics Data System (ADS)

    Bourne, N. K.; Townsend, D.; Braithwaite, M.

    2005-06-01

    A previous work has reported that shock loading of ionic crystals produces an induced polarization and changes in electrical conductivity. However, previous measurements recorded an integrated electrical signal comprising the induced electrical field and that due to current flow. For this reason a differential system was designed to separate these effects that was adapted from that used in the investigation of the conductivity of hydrogen under shock. The measurement removes voltages produced in the shock-induced electrical field, allowing determination of those resulting from resistance changes. Although the mechanical response of potassium chloride to shock has been studied extensively, the electrical response is less studied. Here, experiments are reported in which it is shocked to various stresses in order to observe conductivity changes. The range of stresses induced includes several mechanical thresholds, including the elastic-plastic transition, the B1:B2 phase transformation, and the overdriving of the shock faster than the elastic wave. The behavior observed when single crystal and targets pressed from granular material (to close to full density) are shocked around each of these thresholds is presented. The effects of loading to a particular stress in a single step or in multiple steps are discussed.

  19. Mechanical response of lithium fluoride under off-principal dynamic shock-ramp loading

    DOE PAGES

    Seagle, Christopher T.; Davis, Jean-Paul; Knudson, Marcus D.

    2016-10-26

    Single crystal lithium fluoride (LiF), oriented [100], was shock loaded and subsequently shocklessly compressed in two experiments at the Z Machine. We employed velocimetry measurements in order to obtain an impactor velocity, shock transit times, and in-situ particle velocities for LiF samples up to ~1.8 mm thick. We also performed a dual thickness Lagrangian analysis on the in-situ velocimetry data to obtain the mechanical response along the loading path of these experiments. Finally, we observed an elastic response on one experiment during initial shockless compression from 100 GPa before yielding. The relatively large thickness differences utilized for the dual samplemore » analyses (up to ~1.8 mm) combined with a relative timing accuracy of ~0.2 ns resulted in an uncertainty of less than 1% on density and stress at ~200 GPa peak loading on one experiment and <4% on peak loading at ~330 GPa for another. The stress-density analyses from these experiments compare favorably with recent equation of state models for LiF.« less

  20. 14 CFR 27.475 - Tires and shock absorbers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Tires and shock absorbers. 27.475 Section 27.475 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 27.475 Tires and shock...

  1. A Consistent Wave Impact Load Model for Studying Structure, Equipment Ruggedness, Shock Isolation Seats, and Human Comfort in Small High Speed Craft

    DTIC Science & Technology

    2016-11-01

    acceleration at a cross-section was used as a measure of the wave impact load in units of g. Later developments included publication of the envelope...Republic, 4 – 7 October 2004. PICKFORD, E.V., MAHONE, R.R., WOLK, H.L. (1975). Slam/Shock Isolation Pedestal, United States Patent Number, 3,912,248, 14...accelerations. The rigid body peak acceleration is a measure of the impact load in units of g. In the following plots the data corresponds to head-sea

  2. A new shock wave assisted sandalwood oil extraction technique

    NASA Astrophysics Data System (ADS)

    Arunkumar, A. N.; Srinivasa, Y. B.; Ravikumar, G.; Shankaranarayana, K. H.; Rao, K. S.; Jagadeesh, G.

    A new shock wave assisted oil extraction technique from sandalwood has been developed in the Shock Waves Lab, IISc, Bangalore. The fragrant oil extracted from sandalwood finds variety of applications in medicine and perfumery industries. In the present method sandal wood specimens (2.5mm diameter and 25mm in length)are subjected to shock wave loading (over pressure 15 bar)in a constant area shock tube, before extracting the sandal oil using non-destructive oil extraction technique. The results from the study indicates that both the rate of extraction as well as the quantity of oil obtained from sandal wood samples exposed to shock waves are higher (15-40 percent) compared to non-destructive oil extraction technique. The compressive squeezing of the interior oil pockets in the sandalwood specimen due to shock wave loading appears to be the main reason for enhancement in the oil extraction rate. This is confirmed by the presence of warty structures in the cross-section and micro-fissures in the radial direction of the wood samples exposed to shock waves in the scanning electron microscopic investigation. In addition the gas chromatographic studies do not show any change in the q uality of sandal oil extracted from samples exposed to shock waves.

  3. Load concentration due to missing members in planar faces of a large space truss

    NASA Technical Reports Server (NTRS)

    Waltz, J. E.

    1979-01-01

    A large space structure with members missing was investigated using a finite element analysis. The particular structural configuration was the tetrahedral truss, with attention restricted to one of its planar faces. Initially the finite element model of a complete face was verified by comparing it with known results for some basic loadings. Then an analysis was made of the structure with members near the center removed. Some calculations were made on the influence of the mesh size of a structure containing a hexagonal hole, and an analysis was also made of a structure with a rigid hexagonal insert. In general, load concentration effects in these trusses were significantly lower than classical stress concentration effects in an infinitely wide isotropic plate with a circular rigid inclusion, although larger effects were obtained when a hole extended over several rings of elements.

  4. Mechanical behavior of nanostructured and ultrafine-grained materials under shock wave loadings. experimental data and results of computer simulation

    NASA Astrophysics Data System (ADS)

    Skripnyak, Vladimir

    2012-03-01

    Features of mechanical behavior of nanostructured and ultrafine-grained metals under quasistatic and shock wave loadings are discussed. Features of mechanical behavior of nanostructured and ultrafine grained metals over a wide range of strain rates are discussed. A constitutive model for mechanical behavior of metal alloys under shock wave loading including a grain size distribution, a precipitate hardening, and physical mechanisms of shear stress relaxation is presented. Strain rate sensitivity of the yield stress of face-centered-cubic, hexagonal close-packed metal alloys depends on grain size, whereas the Hugoniot elastic limits of ultrafine-grained copper, aluminum, and titanium alloys are close to values of coarse-grained counterparts. At quasi-static loading the yield strength and the tensile strength of titanium alloys with grain size from 300 to 500 nm are twice higher than at coarse-grained counterparts. But the spall strength of the UFG titanium alloys exceeds the value of coarse-grained counterparts only for 10 percents.

  5. ARC-1978-AC78-1071

    NASA Image and Video Library

    1978-11-24

    4' and 24' Shock Tubes - Electric Arc Shock Tube Facililty N-229 (East) The facility is used to investigate the effects of radiation and ionization during outer planetary entries as well as for air-blast simualtion which requires the strongest possible shock generation in air at loadings of 1 atm or greater.

  6. 14 CFR 27.475 - Tires and shock absorbers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tires and shock absorbers. 27.475 Section 27.475 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 27.475 Tires and shock absorbers. Unless otherwise prescribed...

  7. 14 CFR 29.475 - Tires and shock absorbers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tires and shock absorbers. 29.475 Section 29.475 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 29.475 Tires and shock absorbers. Unless otherwise...

  8. Stress loading from viscous flow in the lower crust and triggering of aftershocks following the 1994 Northridge, California, earthquake

    USGS Publications Warehouse

    Deng, J.; Hudnut, K.; Gurnis, M.; Hauksson, E.

    1999-01-01

    Following the M(w) 6.7 Northridge earthquake, significant postseismic displacements were resolved with GPS. Using a three-dimensional viscoelastic model, we suggest that this deformation is mainly driven by viscous flow in the lower crust. Such flow can transfer stress to the upper crust and load the rupture zone of the main shock at a decaying rate. Most aftershocks within the rupture zone, especially those that occurred after the first several weeks of the main shock, may have been triggered by continuous stress loading from viscous flow. The long-term decay time of aftershocks (about 2 years) approximately matches the decay of viscoelastic loading, and thus is controlled by the viscosity of the lower crust. Our model provides a physical interpretation of the observed correlation between aftershock decay rate and surface heat flow.Following the Mw 6.7 Northridge earthquake, significant postseismic displacements were resolved with GPS. Using a three-dimensional viscoelastic model, we suggest that this deformation is mainly driven by viscous flow in the lower crust. Such flow can transfer stress to the upper crust and load the rupture zone of the main shock at a decaying rate. Most aftershocks within the rupture zone, especially those that occurred after the first several weeks of the main shock, may have been triggered by continuous stress loading from viscous flow. The long-term decay time of aftershocks (about 2 years) approximately matches the decay of viscoelastic loading, and thus is controlled by the viscosity of the lower crust. Our model provides a physical interpretation of the observed correlation between aftershock decay rate and surface heat flow.

  9. Structural load testing and flexure analysis of the Route 701 Bridge in Louisa County, Virginia : supplemental report.

    DOT National Transportation Integrated Search

    2006-01-01

    A continuous slab bridge in Louisa County, Virginia, on Route 701 developed a planar horizontal crack along the length of all three spans. This project was designed to determine if the current 12-ton posted load restriction of the bridge (instituted ...

  10. Structural load testing and flexure analysis of the Route 701 Bridge in Louisa County, Virginia.

    DOT National Transportation Integrated Search

    2004-01-01

    A continuous slab bridge in Louisa County, Virginia, on Route 701 developed a planar horizontal crack along the length of all three spans. This project was designed to determine if the current load rating of the bridge could be raised and to document...

  11. Generating gradient germanium nanostructures by shock-induced amorphization and crystallization

    DOE PAGES

    Zhao, Shiteng; Kad, Bimal; Wehrenberg, Christopher E.; ...

    2017-08-28

    Gradient nanostructures are attracting considerable interest due to their potential to obtain superior structural and functional properties of materials. Applying powerful laser-driven shocks (stresses of up to one-third million atmospheres, or 33 gigapascals) to germanium, we report a complex gradient nanostructure consisting of, near the surface, nanocrystals with high density of nanotwins. Beyond there, the structure exhibits arrays of amorphous bands which are preceded by planar defects such as stacking faults generated by partial dislocations. At a lower shock stress, the surface region of the recovered target is completely amorphous. Here, we propose that germanium undergoes amorphization above a thresholdmore » stress and that the deformation-generated heat leads to nanocrystallization. These experiments are corroborated by molecular dynamics simulations which show that supersonic partial dislocation bursts play a role in triggering the crystalline-to-amorphous transition.« less

  12. Nonplanar electrostatic shock waves in dense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masood, W.; Rizvi, H.

    2010-02-15

    Two-dimensional quantum ion acoustic shock waves (QIASWs) are studied in an unmagnetized plasma consisting of electrons and ions. In this regard, a nonplanar quantum Kadomtsev-Petviashvili-Burgers (QKPB) equation is derived using the small amplitude perturbation expansion method. Using the tangent hyperbolic method, an analytical solution of the planar QKPB equation is obtained and subsequently used as the initial profile to numerically solve the nonplanar QKPB equation. It is observed that the increasing number density (and correspondingly the quantum Bohm potential) and kinematic viscosity affect the propagation characteristics of the QIASW. The temporal evolution of the nonplanar QIASW is investigated both inmore » Cartesian and polar planes and the results are discussed from the numerical stand point. The results of the present study may be applicable in the study of propagation of small amplitude localized electrostatic shock structures in dense astrophysical environments.« less

  13. 1 D analysis of Radiative Shock damping by lateral radiative losses.

    NASA Astrophysics Data System (ADS)

    Busquet, Michel; Colombier, Jean-Philippe; Stehle, Chantal

    2007-11-01

    It has been shown theoretically and experimentally [1] that the radiative precursor in front of a strong shock in hi-Z material is slowed down by lateral radiative losses. The 2D simulation showed that the shock front and the precursor front remain planar, with an increase of density and a decrease of temperature close to the walls. The damping of the precursor is obviously sensitive to the fraction of self-emitted radiation reflected by the walls (the albedo). In order to perform parametric studies we include the albedo controlled lateral radiative losses in the 1D hydro-code MULTI (created by Ramis et al [2]) both in terms of energy balance and of spectral diagnostic. [1] Gonzales et al, Laser Part. Beams 24, 1-6 (2006) ; Busquet et al, High Energy Density Physics (2007), doi: 10.1016/j.hedp.2007.01.002 [2] Ramis et al, Comp. Phys. Comm., 49 (1988), 475

  14. Petrography of shock features in the 1953 Manson 2-A drill core

    NASA Technical Reports Server (NTRS)

    Short, N. M.; Gold, D. P.

    1993-01-01

    Drilling of Nx core in late 1953 into an anomalous zone of disturbed rocks northwest of Manson, Iowa disclosed presence of extensive breccias including crystalline rocks brought to the surface from depths of 4 km or more. Hole 2-A penetrated breccias dominated by leucocratic igneous and metamorphic lithologies, later interpreted to be part of a general ringed peak complex within a 35 km wide impact structure produced about 65 Ma ago. Proof of this origin was given in 1966 by NMS through recognition of shock metamorphic features in 2-A materials during a cursory examination of samples provided by R.A. Hoppin, University of Iowa. A detailed study of this material now underway has revealed that most breccia clasts in 2-A show abundant and varied evidence of shock damage, including extensive planar deformation features (PDF) in quartz, K-feldspar, plagioclase, and a pyroxene and varying degrees of isotropization and incipient melting in feldspars.

  15. Structural characteristics of the shock-induced boundary layer separation extended to the leading edge

    NASA Astrophysics Data System (ADS)

    Tao, Y.; Liu, W. D.; Fan, X. Q.; Zhao, Y. L.

    2017-07-01

    For a better understanding of the local unstart of supersonic/hypersonic inlet, a series of experiments has been conducted to investigate the shock-induced boundary layer separation extended to the leading edge. Using the nanoparticle-based planar laser scattering, we recorded the fine structures of these interactions under different conditions and paid more attention to their structural characteristics. According to their features, these interactions could be divided into four types. Specifically, Type A wave pattern is similar to the classic shock wave/turbulent boundary layer interaction, and Type B wave configuration consists of an overall Mach reflection above the large scale separation bubble. Due to the gradual decrease in the size of the separation bubble, the separation bubble was replaced by several vortices (Type C wave pattern). Besides, for Type D wave configuration which exists in the local unstart inlet, there appears to be some flow spillage around the leading edge.

  16. Generating gradient germanium nanostructures by shock-induced amorphization and crystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Shiteng; Kad, Bimal; Wehrenberg, Christopher E.

    Gradient nanostructures are attracting considerable interest due to their potential to obtain superior structural and functional properties of materials. Applying powerful laser-driven shocks (stresses of up to one-third million atmospheres, or 33 gigapascals) to germanium, we report a complex gradient nanostructure consisting of, near the surface, nanocrystals with high density of nanotwins. Beyond there, the structure exhibits arrays of amorphous bands which are preceded by planar defects such as stacking faults generated by partial dislocations. At a lower shock stress, the surface region of the recovered target is completely amorphous. Here, we propose that germanium undergoes amorphization above a thresholdmore » stress and that the deformation-generated heat leads to nanocrystallization. These experiments are corroborated by molecular dynamics simulations which show that supersonic partial dislocation bursts play a role in triggering the crystalline-to-amorphous transition.« less

  17. Transition from regular to irregular reflection of cylindrical converging shock waves over convex obstacles

    NASA Astrophysics Data System (ADS)

    Vignati, F.; Guardone, A.

    2017-11-01

    An analytical model for the evolution of regular reflections of cylindrical converging shock waves over circular-arc obstacles is proposed. The model based on the new (local) parameter, the perceived wedge angle, which substitutes the (global) wedge angle of planar surfaces and accounts for the time-dependent curvature of both the shock and the obstacle at the reflection point, is introduced. The new model compares fairly well with numerical results. Results from numerical simulations of the regular to Mach transition—eventually occurring further downstream along the obstacle—point to the perceived wedge angle as the most significant parameter to identify regular to Mach transitions. Indeed, at the transition point, the value of the perceived wedge angle is between 39° and 42° for all investigated configurations, whereas, e.g., the absolute local wedge angle varies in between 10° and 45° in the same conditions.

  18. Effects of Initial Conditions on Shock Driven Flows

    NASA Astrophysics Data System (ADS)

    Martinez, Adam A.; Mula, Swathi M.; Charonko, John; Prestridge, Kathy

    2017-11-01

    The spatial and temporal evolution of shock-driven, variable density flows, such as the Richtmyer Meshkov (RM) instability, are strongly influenced by the initial conditions (IC's) of the flow at the time of interaction with shockwave. We study the effects of the IC's on the Vertical Shock Tube (VST) and on flows from Mach =1.2 to Mach =9. Experiments at the VST are of an Air-SF6 (At =0.6) multimode interface. Perturbations are generated using a shear layer with a flapper plate. Planar Laser Induced Fluorescence (PLIF) is used to characterize the IC's. New experiments are occurring using the Powder Gun driver at LANL Proton Radiography (pRad) facility. Mach number up to M =9 accelerate a Xenon-Helium (At =0.94) interface that is perturbed using a membrane supported by different sized grids. This presentation focuses on how to design and characterize different types of initial conditions for experiments.

  19. Numerical simulation of the fluid-structure interaction between air blast waves and soil structure

    NASA Astrophysics Data System (ADS)

    Umar, S.; Risby, M. S.; Albert, A. Luthfi; Norazman, M.; Ariffin, I.; Alias, Y. Muhamad

    2014-03-01

    Normally, an explosion threat on free field especially from high explosives is very dangerous due to the ground shocks generated that have high impulsive load. Nowadays, explosion threats do not only occur in the battlefield, but also in industries and urban areas. In industries such as oil and gas, explosion threats may occur on logistic transportation, maintenance, production, and distribution pipeline that are located underground to supply crude oil. Therefore, the appropriate blast resistances are a priority requirement that can be obtained through an assessment on the structural response, material strength and impact pattern of material due to ground shock. A highly impulsive load from ground shocks is a dynamic load due to its loading time which is faster than ground response time. Of late, almost all blast studies consider and analyze the ground shock in the fluid-structure interaction (FSI) because of its influence on the propagation and interaction of ground shock. Furthermore, analysis in the FSI integrates action of ground shock and reaction of ground on calculations of velocity, pressure and force. Therefore, this integration of the FSI has the capability to deliver the ground shock analysis on simulation to be closer to experimental investigation results. In this study, the FSI was implemented on AUTODYN computer code by using Euler-Godunov and the arbitrary Lagrangian-Eulerian (ALE). Euler-Godunov has the capability to deliver a structural computation on a 3D analysis, while ALE delivers an arbitrary calculation that is appropriate for a FSI analysis. In addition, ALE scheme delivers fine approach on little deformation analysis with an arbitrary motion, while the Euler-Godunov scheme delivers fine approach on a large deformation analysis. An integrated scheme based on Euler-Godunov and the arbitrary Lagrangian-Eulerian allows us to analyze the blast propagation waves and structural interaction simultaneously.

  20. Dynamic load synthesis for shock numerical simulation in space structure design

    NASA Astrophysics Data System (ADS)

    Monti, Riccardo; Gasbarri, Paolo

    2017-08-01

    Pyroshock loads are the most stressing environments that a space equipment experiences during its operating life from a mechanical point of view. In general, the mechanical designer considers the pyroshock analysis as a very demanding constraint. Unfortunately, due to the non-linear behaviour of the structure under such loads, only the experimental tests can demonstrate if it is able to withstand these dynamic loads. By taking all the previous considerations into account, some preliminary information about the design correctness could be done by performing ;ad-hoc; numerical simulations, for example via commercial finite element software (i.e. MSC Nastran). Usually these numerical tools face the shock solution in two ways: 1) a direct mode, by using a time dependent enforcement and by evaluating the time-response and space-response as well as the internal forces; 2) a modal basis approach, by considering a frequency dependent load and of course by evaluating internal forces in the frequency domain. This paper has the main aim to develop a numerical tool to synthetize the time dependent enforcement based on deterministic and/or genetic algorithm optimisers. In particular starting from a specified spectrum in terms of SRS (Shock Response Spectrum) a time dependent discrete function, typically an acceleration profile, will be obtained to force the equipment by simulating the shock event. The synthetizing time and the interface with standards numerical codes will be two of the main topics dealt with in the paper. In addition a congruity and consistency methodology will be presented to ensure that the identified time dependent loads fully match the specified spectrum.

  1. Unraveling shock-induced chemistry using ultrafast lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, David Steven

    The exquisite time synchronicity between shock and diagnostics needed to unravel chemical events occurring in picoseconds has been achieved using a shaped ultrafast laser pulse to both drive the shocks and interrogate the sample via a multiplicity of optical diagnostics. The shaped laser drive pulse can produce well-controlled shock states of sub-ns duration with sub-10 ps risetimes, sufficient for investigation offast reactions or phase transformations in a thin layer with picosecond time resolution. The shock state is characterized using ultrafast dynamic ellipsometry (UDE) in either planar or Gaussian spatial geometries, the latter allowing measurements of the equation of state ofmore » materials at a range of stresses in a single laser pulse. Time-resolved processes in materials are being interrogated using UDE, ultrafast infrared absorption, ultrafast UV/visible absorption, and femtosecond stimulated Raman spectroscopy. Using these tools we showed that chemistry in an energetic thin film starts only after an induction time of a few tens of ps, an observation that allows differentiation between proposed shock-induced reaction mechanisms. These tools are presently being applied to a variety of energetic and reactive sample systems, from nitromethane and carbon disulfide, to microengineered interfaces in tunable energetic mixtures. Recent results will be presented, and future trends outlined.« less

  2. Experimental and numerical investigations of shock wave propagation through a bifurcation

    NASA Astrophysics Data System (ADS)

    Marty, A.; Daniel, E.; Massoni, J.; Biamino, L.; Houas, L.; Leriche, D.; Jourdan, G.

    2018-02-01

    The propagation of a planar shock wave through a split channel is both experimentally and numerically studied. Experiments were conducted in a square cross-sectional shock tube having a main channel which splits into two symmetric secondary channels, for three different shock wave Mach numbers ranging from about 1.1 to 1.7. High-speed schlieren visualizations were used along with pressure measurements to analyze the main physical mechanisms that govern shock wave diffraction. It is shown that the flow behind the transmitted shock wave through the bifurcation resulted in a highly two-dimensional unsteady and non-uniform flow accompanied with significant pressure loss. In parallel, numerical simulations based on the solution of the Euler equations with a second-order Godunov scheme confirmed the experimental results with good agreement. Finally, a parametric study was carried out using numerical analysis where the angular displacement of the two channels that define the bifurcation was changed from 90° , 45° , 20° , and 0° . We found that the angular displacement does not significantly affect the overpressure experience in either of the two channels and that the area of the expansion region is the important variable affecting overpressure, the effect being, in the present case, a decrease of almost one half.

  3. Observed transition from Richtmyer-Meshkov jet formation through feedout oscillations to Rayleigh-Taylor instability in a laser target

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Karasik, M.; Velikovich, A. L.; Serlin, V.; Weaver, J. L.; Kessler, T. J.; Schmitt, A. J.; Obenschain, S. P.; Nikitin, S. P.; Metzler, N.; Oh, J.

    2012-10-01

    Experimental study of hydrodynamic perturbation evolution triggered by a laser-driven shock wave breakout at the free rippled rear surface of a plastic target is reported. We observed a transition between two qualitatively distinct types of perturbation evolution: jet formation at low shock pressure and areal mass oscillations at high shock pressure, which correspond respectively to high and low values of effective adiabatic index. The experiments were done on the KrF Nike laser facility with laser wavelength 248 nm and a 4 ns pulse. We varied the number of beams overlapped on the plastic target to change the ablative pressure driving the shock wave through the target: 36 beams produce pressure of ˜8 Mbar, whereas a single beam irradiation reduces the pressure to ˜0.7 Mbar. With the help of side-on monochromatic x-ray imaging, planar jets manifesting the development of the Richtmyer-Meshkov-type instability in a non-accelerated target are observed at sub-megabar shock pressure. As the shock pressure exceeds 1 Mbar, instead of jet formation an oscillatory rippled expansion wave is observed, followed by the ``feedout'' of the rear-surface perturbations to the ablation front and the development of the Rayleigh-Taylor instability, which breaks up the accelerated target.

  4. Traveling waves in Hall-magnetohydrodynamics and the ion-acoustic shock structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagstrom, George I.; Hameiri, Eliezer

    Hall-magnetohydrodynamics (HMHD) is a mixed hyperbolic-parabolic partial differential equation that describes the dynamics of an ideal two fluid plasma with massless electrons. We study the only shock wave family that exists in this system (the other discontinuities being contact discontinuities and not shocks). We study planar traveling wave solutions and we find solutions with discontinuities in the hydrodynamic variables, which arise due to the presence of real characteristics in Hall-MHD. We introduce a small viscosity into the equations and use the method of matched asymptotic expansions to show that solutions with a discontinuity satisfying the Rankine-Hugoniot conditions and also anmore » entropy condition have continuous shock structures. The lowest order inner equations reduce to the compressible Navier-Stokes equations, plus an equation which implies the constancy of the magnetic field inside the shock structure. We are able to show that the current is discontinuous across the shock, even as the magnetic field is continuous, and that the lowest order outer equations, which are the equations for traveling waves in inviscid Hall-MHD, are exactly integrable. We show that the inner and outer solutions match, which allows us to construct a family of uniformly valid continuous composite solutions that become discontinuous when the diffusivity vanishes.« less

  5. Do running speed and shoe cushioning influence impact loading and tibial shock in basketball players?

    PubMed Central

    Liebenberg, Jacobus; Woo, Jeonghyun; Park, Sang-Kyoon; Yoon, Suk-Hoon; Cheung, Roy Tsz-Hei; Ryu, Jiseon

    2018-01-01

    Background Tibial stress fracture (TSF) is a common injury in basketball players. This condition has been associated with high tibial shock and impact loading, which can be affected by running speed, footwear condition, and footstrike pattern. However, these relationships were established in runners but not in basketball players, with very little research done on impact loading and speed. Hence, this study compared tibial shock, impact loading, and foot strike pattern in basketball players running at different speeds with different shoe cushioning properties/performances. Methods Eighteen male collegiate basketball players performed straight running trials with different shoe cushioning (regular-, better-, and best-cushioning) and running speed conditions (3.0 m/s vs. 6.0 m/s) on a flat instrumented runway. Tri-axial accelerometer, force plate and motion capture system were used to determine tibial accelerations, vertical ground reaction forces and footstrike patterns in each condition, respectively. Comfort perception was indicated on a 150 mm Visual Analogue Scale. A 2 (speed) × 3 (footwear) repeated measures ANOVA was used to examine the main effects of shoe cushioning and running speeds. Results Greater tibial shock (P < 0.001; η2 = 0.80) and impact loading (P < 0.001; η2 = 0.73–0.87) were experienced at faster running speeds. Interestingly, shoes with regular-cushioning or best-cushioning resulted in greater tibial shock (P = 0.03; η2 = 0.39) and impact loading (P = 0.03; η2 = 0.38–0.68) than shoes with better-cushioning. Basketball players continued using a rearfoot strike during running, regardless of running speed and footwear cushioning conditions (P > 0.14; η2 = 0.13). Discussion There may be an optimal band of shoe cushioning for better protection against TSF. These findings may provide insights to formulate rehabilitation protocols for basketball players who are recovering from TSF. PMID:29770274

  6. High Strain Rate Deformation Mechanisms of Body Centered Cubic Material Subjected to Impact Loading

    NASA Astrophysics Data System (ADS)

    Visser, William

    Low carbon steel is the most common grade of structural steel used; it has carbon content of 0.05% to 0.25% and very low content of alloying elements. It is produced in great quantities and provides material properties that are acceptable for many engineering applications, particularly in the construction industry in which low carbon steel is widely used as the strengthening phase in civil structures. The overall goal of this dissertation was to investigate the deformation response of A572 grade 50 steel when subjected to impact loading. This steel has a 0.23% by weight carbon content and has less than 2% additional alloying elements. The deformation mechanisms of this steel under shock loading conditions include both dislocation motion and twin formation. The goal of this work was achieved by performing experimental, analytical and numerical research in three integrated tasks. The first is to determine the relationship between the evolution of deformation twins and the impact pressure. Secondly, a stress criterion for twin nucleation during high strain rate loading was developed which can account for the strain history or initial dislocation density. Lastly, a method was applied for separating the effects of dislocations and twins generated by shock loading in order to determine their role in controlling the flow stress of the material. In this regard, the contents of this work have been categorically organized. First, the active mechanisms in body centered cubic (BCC) low carbon steel during shock loading have been determined as being a composed of the competing mechanisms of dislocations and deformation twins. This has been determined through a series of shock loading tests of the as-received steel. The shock loading tests were done by plate impact experiments at several impact pressures ranging from 2GPa up to 13GPa using a single stage light gas gun. A relationship between twin volume fraction and impact pressure was determined and an analytical model was utilized to simulate the shock loading and twin evolution for these loading conditions. The second part of this research ties into the modeling efforts. Within the model for predicting twin volume fraction is a twin growth equation and a constant describing the stress at which the twin nucleation will occur. By using a constant value for the twin nucleation stress modeling efforts fail to accurately predict the growth and final twin volume fraction. A second shock loading experimental study combined with high strain rate compression tests using a split Hopkinson pressure bar were completed to determine a twin nucleation stress equation as a function of dislocation density. Steel specimens were subjected to cold rolling to 3% strain and subsequently impacted using the gas gun at different pressures. The increase in dislocation density due to pre-straining substantially increased the twin nucleation stress indicating that twin nucleation stress in dependent upon prior strain history. This has been explained in terms of the velocity and generation rates of both perfect and partial dislocations. An explicit form of the critical twin nucleation stress was developed and parameters were determined through plate impact tests and low temperature (77K) SHPB compression tests. The final component in studying deformation twin mechanisms in BCC steel extends the research to the post-impact mechanical properties and how the twin volume fraction affects the dynamic flow stress. Compression tests between 293K and 923K at an average strain rate of 4700 s-1 were completed on the as-received and 3% pre-strained steels in both the initial condition and after being impacted at pressures of 6GPa and 11GPa. Results of the experimental testing were used in a thermal activation model in order to distinguish separate components in the microstructure contributing to the enhanced flow stress caused by the shock loading. It has been shown that the dislocations generated from shock loading are equivalent to those produced under lower rate straining and the addition of deformation twins in the microstructure contribute to the athermal stress by adding to the long range barriers.

  7. Free radicals mediate postshock contractile impairment in cardiomyocytes.

    PubMed

    Tsai, Min-Shan; Sun, Shijie; Tang, Wanchun; Ristagno, Giuseppe; Chen, Wen-Jone; Weil, Max Harry

    2008-12-01

    Previous studies demonstrated myocardial dysfunction after electrical shock and indicated it may be related to free radicals. Whether the free radicals are generated after electrical shock has not been documented at the cellular level. This study was to investigate whether electrical shock generates intracellular free radicals inside cardiomyocytes and to evaluate whether reducing intracellular free radicals by pretreatment of ascorbic acid would reduce the contractile dysfunction after electrical shock. Randomized prospective animal study. University affiliated research laboratory. Sprague-Dawley rats. Cardiomyocytes isolated from adult male rats were divided into four groups: (1) electrical shock alone; (2) electrical shock pretreated with ascorbic acid; (3) pretreated with ascorbic acid alone; and (4) control. Ascorbic acid (0.2 mM) was administrated in the perfusate of the ascorbic acid + electrical shock and ascorbic acid groups. A 2-J electrical shock was delivered to the electrical shock and ascorbic acid + electrical shock groups. DCFH-DA-loaded cardiomyocytes showed increased intracellular free radicals after electrical shock. The contractions and Ca2+ transients were recorded optically with fura-2 loading. Within 4 mins after electrical shock in the electrical shock group, the length shortening decreased from 8.4% +/- 2.5% to 5.6% +/- 3.4% (p = 0.000) and the Ca2+ transient decreased from 1.15 +/- 0.13 au to 1.08 +/- 0.1 au (p = 0.038). Compared with control, a significant difference in length shortening (p = 0.001) but not Ca2+ transient (p = 0.052) was noted. In the presence of ascorbic acid, electrical shock did not affect length shortening and Ca2+ transient. Electrical shock generates free radicals inside the cardiomyocyte, and causes contractile impairment and associated decrease of Ca transient. Administering ascorbic acid may improve such damage by eliminating free radicals.

  8. Radiation sources with planar wire arrays and planar foils for inertial confinement fusion and high energy density physics research

    NASA Astrophysics Data System (ADS)

    Kantsyrev, V. L.; Chuvatin, A. S.; Safronova, A. S.; Rudakov, L. I.; Esaulov, A. A.; Velikovich, A. L.; Shrestha, I.; Astanovitsky, A.; Osborne, G. C.; Shlyaptseva, V. V.; Weller, M. E.; Keim, S.; Stafford, A.; Cooper, M.

    2014-03-01

    This article reports on the joint success of two independent lines of research, each of them being a multi-year international effort. One of these is the development of innovative sources, such as planar wire arrays (PWAs). PWAs turned out to be a prolific radiator, which act mainly as a resistor, even though the physical mechanism of efficient magnetic energy conversion into radiation still remains unclear. We review the results of our extensive studies of PWAs. We also report the new results of the experimental comparison PWAs with planar foil liners (another promising alternative to wire array loads at multi-mega-ampere generators). Pioneered at UNR, the PWA Z-pinch loads have later been tested at the Sandia National Laboratories (SNL) on the Saturn generator, on GIT-12 machine in Russia, and on the QiangGuang-1 generator in China, always successfully. Another of these is the drastic improvement in energy efficiency of pulsed-power systems, which started in early 1980s with Zucker's experiments at Naval Research Laboratory (NRL). Successful continuation of this approach was the Load Current Multiplier (LCM) proposed by Chuvatin in collaboration with Rudakov and Weber from NRL. The 100 ns LCM was integrated into the Zebra generator, which almost doubled the plasma load current, from 0.9 to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum radiation source for ICF, as jointly proposed by SNL and UNR [Jones et al., Phys. Rev. Lett. 104, 125001 (2010)]. The first successful proof-of-the-principle experimental implementation of new hohlraum concept at university-scale generator Zebra/LCM is demonstrated. A numerical simulation capability with VisRaD code (from PRISM Co.) established at UNR allowed for the study of hohlraum coupling physics and provides the possibility of optimization of a new hohlraum. Future studies are discussed.

  9. Interaction of a shock wave with multiple spheres suspended in different arrangements

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Te; Sui, Zhen-Zhen; Shi, Hong-Hui

    2018-03-01

    In this study, the unsteady drag force, Fd, drag coefficient, Cd, and the relevant dynamic behaviors of waves caused by the interaction between a planar incident shock wave and a multi-sphere model are investigated by using imbedded accelerometers and a high-speed Schlieren system. The shock wave is produced in a horizontal 200 mm inner diameter circular shock tube with a 2000 mm × 200 mm × 200 mm transparent test section. The time history of Cd is obtained based on band-block and low-pass Fast Fourier Transformation filtering combined with Savitzky-Golay polynomial smoothing for the measured acceleration. The effects of shock Mach number, Ms, geometry of multi-sphere model, nondimensional distance between sphere centers, H, and channel blockage are analyzed. We find that all time histories of Cd have a similar double-peak shaped main structure. It is due to wave reflection, diffraction, interference, and convergence at different positions of the spheres. The peak Fd increases, whereas the peak Cd decreases monotonically with increasing Ms. The increase of shock strength due to shock focusing by upstream spheres increases the peak Fd of downstream spheres. Both the increase in sphere number and the decrease in distance between spheres promote wave interference between neighboring spheres. As long as the wave interference times are shorter than the peak times, the peak Fd and Cd are higher compared to a single sphere.

  10. Study of self-generated electric field at shock front by broadband proton probing and soft X-ray emission

    NASA Astrophysics Data System (ADS)

    Hua, Rui; Sio, Hong; Wilks, Scott; McGuffey, Christopher; Bailly-Grandvaux, Mathieu; Heeter, Bob; Beg, Farhat; Collins, Gilbert; Ping, Yuan; MIT Collaboration; LLNL Collaboration; UCSD Collaboration

    2017-10-01

    Self-generated electric fields arise from gradients in the electron pressure at shock fronts. We report observations of such E-fields from experiments conducted on OMEGA EP. In the experiments, strong shock waves were generated in low density gas under a quasi-planar geometry and diagnosed by broadband proton radiography. The broad proton spectrum allows energy-dependent measurements of deflection from which one can quantitatively constrain the electrical potential and field thickness. Three UV beams delivering up to 6.4 kJ energy in 2ns were used for shock generation and a short laser pulse of energy up to 850 J, 10 ps duration, was used to accelerate the broadband proton beam for point-projection radiography. Observations show the existence of electric fields with potential 300 V at the front of a Mach 9 shock in helium gas. A Mach 16 shock is also studied, from which both the field thickness and electric potential are reproduced. Simultaneous spatially resolved soft-x-ray spectroscopy provided additional measurements of shock velocity, particle velocity and thermal emission. This work was performed under DOE contract DE-AC52-07NA27 344 with support from OFES Early Career program and LLNL LDRD program. This work has been partially supported by the University of California Office of the President Lab Fee Grant Number LFR-17-449059.

  11. A Study of SDT in an Ammonium Nitrate (NH4 NO3) Based Granular Explosive

    NASA Astrophysics Data System (ADS)

    Burns, Malcolm; Taylor, Peter

    2007-06-01

    In order to study the SDT process in a granular non ideal explosive (NIE) an experimental technique has been developed that allows the granular explosive to be shock initiated at a well controlled ``tap density''. The granular NIE was contained in a PMMA cone and a planar shock was delivered to the explosive through buffer plates of varying material. A combination of piezoelectric probes, ionization pins, PVDF stress gauges and a high speed framing camera were used to measure the input shock pressure and shock and detonation wave positions in the explosive. Four trials were performed to characterize the run to detonation distance versus pressure relationship (Pop plot) of the granular NH4 NO3 explosive. Input pressures ranged from close to the 4GPa predicted CJ pressure of the granular explosive down to 1.4 GPa, giving run distances up to 14mm for the lowest pressure. The data indicates a steady acceleration of the input shock to the detonation velocity, implying significant reaction growth at the shock front. This is in contrast to the behaviour of most high density pressed PBXs which show little growth in shock front velocity before transit to detonation. The experimentally observed initiation behaviour is compared to that predicted by a simple JWL++ reactive burn model for the granular NH4 NO3 explosive which has been fitted to other detonics experiments on this material.

  12. The Pneumatic Actuators As Vertical Dynamic Load Simulators On Medium Weighted Wheel Suspension Mechanism

    NASA Astrophysics Data System (ADS)

    Ka'ka, Simon; Himran, Syukri; Renreng, Ilyas; Sutresman, Onny

    2018-02-01

    Almost all of road damage can be caused by dynamic loads of vehicles that fluctuate according to the type of vehicle that passes through. This study aims to calculate the vertical dynamic load of the vehicle actually occurs on road construction by the mechanism of vehicle wheel suspension. Pneumatic cylinders driven by pressurized air directly load the spring and shock absorber installed on the wheels of the vehicle. The load fluctuations of the medium weight categorized vehicles are determined by the regulation of the amount of pressurized air that enters into the pneumatic cylinder chamber, pushing the piston and connecting rods. The displacement that occurs during compression on the spring and shock absorber, is substituted into the equation of vehicle dynamic load while taking into account the spring stiffness constant, and the fluid or damper gas coefficient. The results show that the magnitude of the displacement when the compression force works has significant influences to the amount of vertical dynamic load of the vehicle that overlies the road construction. The presence of dynamic load of vehicles that fluctuates and repeats, also affects on the reduction of road ability to receive the load. Experimental results using pneumatic actuators instead of real dynamic vehicle loads illustrate the characteristics of the relationship between work pressure and dynamic load. If the working pressure of P2 (bar) is greater, the vertical dynamic load Ft (N) that overloads the road structure is also greater. The associate graphs show that the shock absorber has a greater ability to reduce dynamic load vertically that burden the road structure when compared with the ability of screw spring.

  13. A sharp interface Cartesian grid method for viscous simulation of shocked particle-laden flows

    NASA Astrophysics Data System (ADS)

    Das, Pratik; Sen, Oishik; Jacobs, Gustaaf; Udaykumar, H. S.

    2017-09-01

    A Cartesian grid-based sharp interface method is presented for viscous simulations of shocked particle-laden flows. The moving solid-fluid interfaces are represented using level sets. A moving least-squares reconstruction is developed to apply the no-slip boundary condition at solid-fluid interfaces and to supply viscous stresses to the fluid. The algorithms developed in this paper are benchmarked against similarity solutions for the boundary layer over a fixed flat plate and against numerical solutions for moving interface problems such as shock-induced lift-off of a cylinder in a channel. The framework is extended to 3D and applied to calculate low Reynolds number steady supersonic flow over a sphere. Viscous simulation of the interaction of a particle cloud with an incident planar shock is demonstrated; the average drag on the particles and the vorticity field in the cloud are compared to the inviscid case to elucidate the effects of viscosity on momentum transfer between the particle and fluid phases. The methods developed will be useful for obtaining accurate momentum and heat transfer closure models for macro-scale shocked particulate flow applications such as blast waves and dust explosions.

  14. Experiments on the Richtmyer–Meshkov instability with an imposed, random initial perturbation

    DOE PAGES

    Jacobs, J. W.; Krivets, V. V.; Tsiklashvili, V.; ...

    2013-03-16

    A vertical shock tube is used to perform experiments on the Richtmyer–Meshkov instability with a three-dimensional random initial perturbation. A membraneless flat interface is formed by opposed gas flows in which the light and heavy gases enter the shock tube from the top and from the bottom of the shock tube driven section. An air/SF6 gas combination is used and a Mach number M = 1.2 incident shock wave impulsively accelerates the interface. Initial perturbations on the interface are created by vertically oscillating the gas column within the shock tube to produce Faraday waves on the interface resulting in amore » short wavelength, three-dimensional perturbation. Planar Mie scattering is used to visualize the flow in which light from a laser sheet is scattered by smoke seeded in the air, and image sequences are captured using three high-speed video cameras. Measurements of the integral penetration depth prior to reshock show two growth behaviors, both having power law growth with growth exponents in the range found in previous experiments and simulations. Following reshock, all experiments showvery consistent linear growth with a growth rate in good agreement with those found in previous studies.« less

  15. Experimental Shock Transformation of Gypsum to Anhydrite: A New Low Pressure Regime Shock Indicator

    NASA Technical Reports Server (NTRS)

    Bell, Mary S.; Zolensky, Michael E.

    2011-01-01

    The shock behavior of gypsum is important in understanding the Cretaceous/Paleogene event and other terrestrial impacts that contain evaporite sediments in their targets (e.g., Mars Exploration Rover Spirit detected sulfate at Gusev crater, [1]). Most interest focuses on issues of devolatilization to quantify the production of SO2 to better understand its role in generating a temporary atmosphere and its effects on climate and biota [2,3]. Kondo and Ahrens [4] measured induced radiation emitted from single crystal gypsum shocked to 30 and 40 GPa. They observed greybody emission spectra corresponding to temperatures in the range of 3,000 to 4,000 K that are a factor of 2 to 10 times greater than calculated pressure-density energy equation of state temperatures (Hugoniot) and are high enough to melt gypsum. Chen et al. [5] reported results of shock experiments on anhydrite, gypsum, and mixtures of these phases with silica. Their observations indicated little or no devolatilization of anhydrite shocked to 42 GPa and that the fraction of sulfur, by mass, that degassed is approx.10(exp -2) of theoretical prediction. In another report of shock experiments on calcite, anhydrite, and gypsum, Badjukov et al. [6] observed only intensive plastic deformation in anhydrite shock loaded at 63 GPa, and gypsum converted to anhydrite when shock loaded at 56 GPa but have not experimentally shocked gypsum in a step-wise manner to constrain possible incipient transformation effects. Schmitt and Hornemann [7] shock loaded anhydrite and quartz to a peak pressure of 60 GPa and report the platy anhydrite grains were completely pseudomorphed by small crystallized anhydrite grains. However, no evidence of interaction between the two phases could be observed and they suggested that recrystallization of anhydrite grains is the result of a solid-state transformation. They concluded that significant decomposition of anhydrite requires shock pressures higher than 60 GPa. Gupta et al. [8] reanalyzed the calcite and anhydrite shock wave experiments of Yang [9] using improved equations of state of porous materials and vaporized products. They determined the pressures for incipient and complete vaporization to be 32.5 and 122 GPa for anhydrite GPa which is a factor of 2 to 3 lower than reported earlier by Yang [9]. These studies are not in agreement regarding the onset of sulfate decomposition and documentation of shock effects in gypsum is incomplete.

  16. Integration of regenerative shock absorber into vehicle electric system

    NASA Astrophysics Data System (ADS)

    Zhang, Chongxiao; Li, Peng; Xing, Shaoxu; Kim, Junyoung; Yu, Liangyao; Zuo, Lei

    2014-03-01

    Regenerative/Energy harvesting shock absorbers have a great potential to increase fuel efficiency and provide suspension damping simultaneously. In recent years there's intensive work on this topic, but most researches focus on electricity extraction from vibration and harvesting efficiency improvement. The integration of electricity generated from regenerative shock absorbers into vehicle electric system, which is very important to realize the fuel efficiency benefit, has not been investigated. This paper is to study and demonstrate the integration of regenerative shock absorber with vehicle alternator, battery and in-vehicle electrical load together. In the presented system, the shock absorber is excited by a shaker and it converts kinetic energy into electricity. The harvested electricity flows into a DC/DC converter which realizes two functions: controlling the shock absorber's damping and regulating the output voltage. The damping is tuned by controlling shock absorber's output current, which is also the input current of DC/DC converter. By adjusting the duty cycles of switches in the converter, its input impedance together with input current can be adjusted according to dynamic damping requirements. An automotive lead-acid battery is charged by the DC/DC converter's output. To simulate the working condition of combustion engine, an AC motor is used to drive a truck alternator, which also charges the battery. Power resistors are used as battery's electrical load to simulate in-vehicle electrical devices. Experimental results show that the proposed integration strategy can effectively utilize the harvested electricity and power consumption of the AC motor is decreased accordingly. This proves the combustion engine's load reduction and fuel efficiency improvement.

  17. A piezoelectric shock-loading response simulator for piezoelectric-based device developers

    NASA Astrophysics Data System (ADS)

    Rastegar, J.; Feng, Z.

    2017-04-01

    Pulsed loading of piezoelectric transducers occurs in many applications, such as those in munitions firing, or when a mechanical system is subjected to impact type loading. In this paper, an electronic simulator that can be programmed to generate electrical charges that a piezoelectric transducer generates as it is subjected to various shock loading profiles is presented. The piezoelectric output simulator can provide close to realistic outputs so that the circuit designer can use it to test the developed system under close to realistic conditions without the need for the costly and time consuming process of performing actual tests. The design of the electronic simulator and results of its testing are presented.

  18. Numerical Simulations of Mass Loading in the Solar Wind Interaction with Venus

    NASA Technical Reports Server (NTRS)

    Murawski, K.; Steinolfson, R. S.

    1996-01-01

    Numerical simulations are performed in the framework of nonlinear two-dimensional magnetohydrodynamics to investigate the influence of mass loading on the solar wind interaction with Venus. The principal physical features of the interaction of the solar wind with the atmosphere of Venus are presented. The formation of the bow shock, the magnetic barrier, and the magnetotail are some typical features of the interaction. The deceleration of the solar wind due to the mass loading near Venus is an additional feature. The effect of the mass loading is to push the shock farther outward from the planet. The influence of different values of the magnetic field strength on plasma evolution is considered.

  19. Direct numerical simulation of shear localization and decomposition reactions in shock-loaded HMX crystal

    DOE PAGES

    Austin, Ryan A.; Barton, Nathan R.; Reaugh, John E.; ...

    2015-05-14

    A numerical model is developed to study the shock wave ignition of HMX crystal. The model accounts for the coupling between crystal thermal/mechanical responses and chemical reactions that are driven by the temperature field. This allows for the direct numerical simulation of decomposition reactions in the hot spots formed by shock/impact loading. The model is used to simulate intragranular pore collapse under shock wave loading. In a reference case: (i) shear-enabled micro-jetting is responsible for a modest extent of reaction in the pore collapse region, and (ii) shear banding is found to be an important mode of localization. The shearmore » bands, which are filled with molten HMX, grow out of the pore collapse region and serve as potential ignition sites. The model predictions of shear banding and reactivity are found to be quite sensitive to the respective flow strengths of the solid and liquid phases. In this regard, it is shown that reasonable assumptions of liquid-HMX viscosity can lead to chemical reactions within the shear bands on a nanosecond time scale.« less

  20. Waste Heat Approximation for Understanding Dynamic Compression in Nature and Experiments

    NASA Astrophysics Data System (ADS)

    Jeanloz, R.

    2015-12-01

    Energy dissipated during dynamic compression quantifies the residual heat left in a planet due to impact and accretion, as well as the deviation of a loading path from an ideal isentrope. Waste heat ignores the difference between the pressure-volume isentrope and Hugoniot in approximating the dissipated energy as the area between the Rayleigh line and Hugoniot (assumed given by a linear dependence of shock velocity on particle velocity). Strength and phase transformations are ignored: justifiably, when considering sufficiently high dynamic pressures and reversible transformations. Waste heat mis-estimates the dissipated energy by less than 10-20 percent for volume compressions under 30-60 percent. Specific waste heat (energy per mass) reaches 0.2-0.3 c02 at impact velocities 2-4 times the zero-pressure bulk sound velocity (c0), its maximum possible value being 0.5 c02. As larger impact velocities are implied for typical orbital velocities of Earth-like planets, and c02 ≈ 2-30 MJ/kg for rock, the specific waste heat due to accretion corresponds to temperature rises of about 3-15 x 103 K for rock: melting accompanies accretion even with only 20-30 percent waste heat retained. Impact sterilization is similarly quantified in terms of waste heat relative to the energy required to vaporize H2O (impact velocity of 7-8 km/s, or 4.5-5 c0, is sufficient). Waste heat also clarifies the relationship between shock, multi-shock and ramp loading experiments, as well as the effect of (static) pre-compression. Breaking a shock into 2 steps significantly reduces the dissipated energy, with minimum waste heat achieved for two equal volume compressions in succession. Breaking a shock into as few as 4 steps reduces the waste heat to within a few percent of zero, documenting how multi-shock loading approaches an isentrope. Pre-compression, being less dissipative than an initial shock to the same strain, further reduces waste heat. Multi-shock (i.e., high strain-rate) loading of pre-compressed samples may thus offer the closest approach to an isentrope, and therefore the most extreme compression at which matter can be studied at the "warm" temperatures of planetary interiors.

  1. Visualization and Analysis of a Hydrocarbon Premixed Flame a in Small Scale Scramjet Combustor

    NASA Astrophysics Data System (ADS)

    Cantu, Luca Maria Luigi

    Nitric oxide (NO) planar induced laser fluorescence (PLIF) measurements have been performed in a small scale scramjet combustor at the University of Virginia Aerospace Research Laboratory at nominal simulated Mach 5 flight enthalpy. A mixture of NO and N2 was injected at the upstream end of the inlet isolator as a surrogate for ethylene fuel, and the mixing of this fuel simulant was studied with and without a shock train. The shock train was produced by an air throttle, which simulated the blockage effects of combustion downstream of the cavity flame holder. NO PLIF signal was imaged in a plane orthogonal to the freestream at the leading edge of the cavity. Instantaneous planar images were recorded and analyzed to identify the most uniform cases, which were achieved by varying the location of the fuel injection and shock train. This method was used to screen different possible fueling configurations to provide optimized test conditions for follow-on combustion measurements using ethylene fuel. A theoretical study of the selected NO rotational transitions was performed to obtain a LIF signal that is linear with NO mole fraction and approximately independent of pressure and temperature. In the same facility, OH PLIF measurements were also performed; OH lines were carefully chosen to have fluorescent signal that is independent of pressure and temperature but linear with mole fraction. The OH PLIF signal was imaged in planes orthogonal to and parallel to the freestream flow at different equivalence ratios. Flameout limits were tested and identified. Instantaneous planar images were recorded and analyzed to compare the results with width increased dual-pump enhanced coherent anti-Stokes Raman spectroscopy (WIDECARS) measurements in the same facility and large eddy simulation/Reynolds average Navier-Stokes (LES/RANS) numerical simulations. The flame angle was found to be approximately 10 degrees for several different conditions, which is in agreement with numerical predictions and measurements using other techniques. Finally, a comparison between NO PLIF non-combustion cases and OH PLIF combustion cases is provided. The comparison reveals that the dominant effect of flame propagation is freestream turbulence rather than heat release and concentration gradients.

  2. Numerical simulations of non-spherical bubble collapse.

    PubMed

    Johnsen, Eric; Colonius, Tim

    2009-06-01

    A high-order accurate shock- and interface-capturing scheme is used to simulate the collapse of a gas bubble in water. In order to better understand the damage caused by collapsing bubbles, the dynamics of the shock-induced and Rayleigh collapse of a bubble near a planar rigid surface and in a free field are analysed. Collapse times, bubble displacements, interfacial velocities and surface pressures are quantified as a function of the pressure ratio driving the collapse and of the initial bubble stand-off distance from the wall; these quantities are compared to the available theory and experiments and show good agreement with the data for both the bubble dynamics and the propagation of the shock emitted upon the collapse. Non-spherical collapse involves the formation of a re-entrant jet directed towards the wall or in the direction of propagation of the incoming shock. In shock-induced collapse, very high jet velocities can be achieved, and the finite time for shock propagation through the bubble may be non-negligible compared to the collapse time for the pressure ratios of interest. Several types of shock waves are generated during the collapse, including precursor and water-hammer shocks that arise from the re-entrant jet formation and its impact upon the distal side of the bubble, respectively. The water-hammer shock can generate very high pressures on the wall, far exceeding those from the incident shock. The potential damage to the neighbouring surface is quantified by measuring the wall pressure. The range of stand-off distances and the surface area for which amplification of the incident shock due to bubble collapse occurs is determined.

  3. Numerical simulations of non-spherical bubble collapse

    PubMed Central

    JOHNSEN, ERIC; COLONIUS, TIM

    2009-01-01

    A high-order accurate shock- and interface-capturing scheme is used to simulate the collapse of a gas bubble in water. In order to better understand the damage caused by collapsing bubbles, the dynamics of the shock-induced and Rayleigh collapse of a bubble near a planar rigid surface and in a free field are analysed. Collapse times, bubble displacements, interfacial velocities and surface pressures are quantified as a function of the pressure ratio driving the collapse and of the initial bubble stand-off distance from the wall; these quantities are compared to the available theory and experiments and show good agreement with the data for both the bubble dynamics and the propagation of the shock emitted upon the collapse. Non-spherical collapse involves the formation of a re-entrant jet directed towards the wall or in the direction of propagation of the incoming shock. In shock-induced collapse, very high jet velocities can be achieved, and the finite time for shock propagation through the bubble may be non-negligible compared to the collapse time for the pressure ratios of interest. Several types of shock waves are generated during the collapse, including precursor and water-hammer shocks that arise from the re-entrant jet formation and its impact upon the distal side of the bubble, respectively. The water-hammer shock can generate very high pressures on the wall, far exceeding those from the incident shock. The potential damage to the neighbouring surface is quantified by measuring the wall pressure. The range of stand-off distances and the surface area for which amplification of the incident shock due to bubble collapse occurs is determined. PMID:19756233

  4. Transfer-Efficient Face Routing Using the Planar Graphs of Neighbors in High Density WSNs

    PubMed Central

    Kim, Sang-Ha

    2017-01-01

    Face routing has been adopted in wireless sensor networks (WSNs) where topological changes occur frequently or maintaining full network information is difficult. For message forwarding in networks, a planar graph is used to prevent looping, and because long edges are removed by planarization and the resulting planar graph is composed of short edges, and messages are forwarded along multiple nodes connected by them even though they can be forwarded directly. To solve this, face routing using information on all nodes within 2-hop range was adopted to forward messages directly to the farthest node within radio range. However, as the density of the nodes increases, network performance plunges because message transfer nodes receive and process increased node information. To deal with this problem, we propose a new face routing using the planar graphs of neighboring nodes to improve transfer efficiency. It forwards a message directly to the farthest neighbor and reduces loads and processing time by distributing network graph construction and planarization to the neighbors. It also decreases the amount of location information to be transmitted by sending information on the planar graph nodes rather than on all neighboring nodes. Simulation results show that it significantly improves transfer efficiency. PMID:29053623

  5. Global Aeroheating Measurements of Shock-Shock Interactions on a Swept Cylinder

    NASA Technical Reports Server (NTRS)

    Mason, Michelle L.; Berry, Scott A.

    2015-01-01

    The effects of fin leading-edge radius and sweep angle on peak heating rates due to shock-shock interactions were investigated in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel. The cylindrical leading-edge fin models, with radii varied from 0.25 to 0.75 inches, represent wings or struts on hypersonic vehicles. A 9deg wedge generated a planar oblique shock at 16.7deg. to the flow that intersected the fin bow shock, producing a shock-shock interaction that impinged on the fin leading edge. The fin sweep angle was varied from 0deg (normal to the free-stream) to 15deg and 25deg swept forward. These cases were chosen to explore three characterized shock-shock interaction types. Global temperature data were obtained from the surface of the fused silica fins using phosphor thermography. Metal oil flow models with the same geometries as the fused silica models were used to visualize the streamline patterns for each angle of attack. High-speed zoom-schlieren videos were recorded to show the features and any temporal unsteadiness of the shock-shock interactions. The temperature data were analyzed using a one-dimensional semi-infinite method, as well as one- and two-dimensional finite-volume methods. These results were compared to determine the proper heat transfer analysis approach to minimize errors from lateral heat conduction due to the presence of strong surface temperature gradients induced by the shock interactions. The general trends in the leading-edge heat transfer behavior were similar for each explored shock-shock interaction type regardless of the leading-edge radius. However, the dimensional peak heat transfer coefficient augmentation increased with decreasing leading-edge radius. The dimensional peak heat transfer output from the two-dimensional code was about 20% higher than the value from a standard, semi-infinite one-dimensional method.

  6. The Shock and Vibration Bulletin. Part 3. Acoustic and Vibration Testing, Impact and Blast

    DTIC Science & Technology

    1976-08-01

    Research Institute, San Antonio, Texas DESIGN OF A BLAST LOAD GENERATOR FOR OVERPRESSURE TESTING .................................. 261I P. Lieberman...Mathews and B. W. Duggin, Sandia Laboratories, Albuquerque, New Mexico ESTIMATION OF SHIP SHOCK PARAMETERS FOR CONSISTENT DESIGN AND TEST SPECIFICATION G. C...Seattle, Washington COMPONENT TESTING OF LIQUID SHOCK ISOLATORS AND ELASTOMERS IN SUPPORT OF RECENT SHOCK ISOLATION SYSTEM DESIGNS AJ.IP. Ashley, Boeing

  7. Thermal shock behavior of W-ZrC/Sc2O3 composites under two different transient events by electron and laser irradiation

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Yu; Luo, Lai-Ma; Zan, Xiang; Xu, Qiu; Tokunaga, Kazutoshi; Liu, Jia-Qin; Zhu, Xiao-Yong; Cheng, Ji-Gui; Wu, Yu-Cheng

    2018-02-01

    The transient thermal shock behaviors of W-ZrC/Sc2O3 composites with different ZrC contents were evaluated using transient thermal shock test by electron and laser beams. The effects of different ZrC doping contents on the surface morphology and thermal shock resistance of W-ZrC/Sc2O3 composites were then investigated. Similarity and difference between effects of electron and laser beam transient heat loading were also discussed in this study. Repeated heat loading resulted in thermal fatigue of the irradiated W-ZrC/Sc2O3 samples by thermal stress, leading to the rough surface morphologies with cracks. After different transient thermal tests, significant surface roughening, cracks, surface melting, and droplet ejection occurred. W-2vol.%Sc2O3 sample has superior thermal properties and greater resistance to surface modifications under transient thermal shock, and with the increasing ZrC content in W alloys, thermal shock resistance of W-Zr/Sc2O3 sample tends to be unsatisfied.

  8. Initial decomposition of the condensed-phase β-HMX under shock waves: molecular dynamics simulations.

    PubMed

    Ge, Ni-Na; Wei, Yong-Kai; Ji, Guang-Fu; Chen, Xiang-Rong; Zhao, Feng; Wei, Dong-Qing

    2012-11-26

    We have performed quantum-based multiscale simulations to study the initial chemical processes of condensed-phase octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) under shock wave loading. A self-consistent charge density-functional tight-binding (SCC-DFTB) method was employed. The results show that the initial decomposition of shocked HMX is triggered by the N-NO(2) bond breaking under the low velocity impact (8 km/s). As the shock velocity increases (11 km/s), the homolytic cleavage of the N-NO(2) bond is suppressed under high pressure, the C-H bond dissociation becomes the primary pathway for HMX decomposition in its early stages. It is accompanied by a five-membered ring formation and hydrogen transfer from the CH(2) group to the -NO(2) group. Our simulations suggest that the initial chemical processes of shocked HMX are dependent on the impact velocity, which gain new insights into the initial decomposition mechanism of HMX upon shock loading at the atomistic level, and have important implications for understanding and development of energetic materials.

  9. Ignition criterion for heterogeneous energetic materials based on hotspot size-temperature threshold

    NASA Astrophysics Data System (ADS)

    Barua, A.; Kim, S.; Horie, Y.; Zhou, M.

    2013-02-01

    A criterion for the ignition of granular explosives (GXs) and polymer-bonded explosives (PBXs) under shock and non-shock loading is developed. The formulation is based on integration of a quantification of the distributions of the sizes and locations of hotspots in loading events using a cohesive finite element method (CFEM) developed recently and the characterization by Tarver et al. [C. M. Tarver et al., "Critical conditions for impact- and shock-induced hot spots in solid explosives," J. Phys. Chem. 100, 5794-5799 (1996)] of the critical size-temperature threshold of hotspots required for chemical ignition of solid explosives. The criterion, along with the CFEM capability to quantify the thermal-mechanical behavior of GXs and PBXs, allows the critical impact velocity for ignition, time to ignition, and critical input energy at ignition to be determined as functions of material composition, microstructure, and loading conditions. The applicability of the relation between the critical input energy (E) and impact velocity of James [H. R. James, "An extension to the critical energy criterion used to predict shock initiation thresholds," Propellants, Explos., Pyrotech. 21, 8-13 (1996)] for shock loading is examined, leading to a modified interpretation, which is sensitive to microstructure and loading condition. As an application, numerical studies are undertaken to evaluate the ignition threshold of granular high melting point eXplosive, octahydro-1,3,5,7-tetranitro-1,2,3,5-tetrazocine (HMX) and HMX/Estane PBX under loading with impact velocities up to 350 ms-1 and strain rates up to 105 s-1. Results show that, for the GX, the time to criticality (tc) is strongly influenced by initial porosity, but is insensitive to grain size. Analyses also lead to a quantification of the differences between the responses of the GXs and PBXs in terms of critical impact velocity for ignition, time to ignition, and critical input energy at ignition. Since the framework permits explicit tracking of the influences of microstructure, loading, and mechanical constraints, the calculations also show the effects of stress wave reflection and confinement condition on the ignition behaviors of GXs and PBXs.

  10. Atomic-level deformation of CuxZr100-x metallic glasses under shock loading

    NASA Astrophysics Data System (ADS)

    Demaske, Brian J.; Wen, Peng; Phillpot, Simon R.; Spearot, Douglas E.

    2018-06-01

    Plastic deformation mechanisms in CuxZr100-x bulk metallic glasses (MGs) subjected to shock are investigated using molecular dynamics simulations. MGs with Cu compositions between 30 and 70 at. % subjected to shock waves generated via piston velocities that range from 0.125 to 2.0 km/s are considered. In agreement with prior studies, plastic deformation is initiated via formation of localized regions of high von Mises shear strain, known as shear transformation zones (STZs). At low impact velocities, but above the Hugoniot elastic limit, STZ nucleation is dispersed behind the shock front. As impact velocity is increased, STZ nucleation becomes more homogeneous, eventually leading to shock-induced melting, which is identified in this work via high atomic diffusivity. The shear stress necessary to initiate plastic deformation within the shock front is independent of composition at shock intensities near the elastic limit but increases with increasing Cu content at high shock intensities. By contrast, both the flow stress in the plastically deformed MG and the critical shock pressure associated with melting behind the shock front are found to increase with increasing Cu content over the entire range of impact velocities. The evolution of the short-range order in the MG samples during shock wave propagation is analyzed using a polydisperse Voronoi tessellation method. Cu-centered polyhedra with full icosahedral symmetry are found to be most resistant to change under shock loading independent of the MG composition. A saturation is observed in the involvement of select Cu-centered polyhedra in the plastic deformation processes at a piston velocity around 0.75 km/s.

  11. Spall fracture and strength of uranium, plutonium and their alloys under shock wave loading

    NASA Astrophysics Data System (ADS)

    Golubev, Vladimir

    2015-06-01

    Numerous results on studying the spall fracture phenomenon of uranium, two its alloys with molybdenum and zirconium, plutonium and its alloy with gallium under shock wave loading are presented in the paper. The majority of tests were conducted with the samples in the form of disks 4mm in thickness. They were loaded by the impact of aluminum plates 4mm thick through a copper screen serving as the cover or bottom part of a special container. The initial temperature of samples was changed in the range of -196 - 800 C degree for uranium and 40 - 315 C degree for plutonium. The character of spall failure of materials and the degree of damage for all tested samples were observed on the longitudinal metallographic sections of recovered samples. For a concrete test temperature, the impact velocity was sequentially changed and therefore the loading conditions corresponding to the consecutive transition from microdamage nucleation up to complete macroscopic spall fracture were determined. Numerical calculations of the conditions of shock wave loading and spall fracture of samples were performed in the elastoplastic approach. Several two- and three-dimensional effects of loading were taken into account. Some results obtained under conditions of intensive impulse irradiation and intensive explosive loading are presented too. The rather complete analysis and comparison of obtained results with the data of other researchers on the spall fracture of examined materials were conducted.

  12. High-Pressure Quasi-Isentropic Loading and Unloading of Interferometer Windows on the Veloce Pulsed Power Generator

    NASA Astrophysics Data System (ADS)

    Ao, Tommy; Asay, James; Knudson, Marcus; Davis, Jean-Paul

    2007-06-01

    The Isentropic Compression Experiment technique has proven to be a valuable complement to the well-established method of shock compression of condensed matter. However, whereas the high-pressure compression response of window materials has been studied extensively under shock loading, similar knowledge of these materials under ICE loading is limited. We present recent experimental results on the isentropic compression of the high-pressure windows sapphire and LiF. It has previously been observed that c-cut sapphire yields under shock loading at the HEL of ˜15-18GPa, and subsequently loses transparency at higher stresses. However, it will be shown that under isentropic ramp wave loading sapphire appears to remain elastic and transparent at stresses well above 20GPa [D.B. Hayes et al, JAP 94, 2331 (2003)]. LiF is another frequently used window material in isentropic loading and unloading experiments, yet the unloading response of LiF is usually neglected. Research is in progress to measure strength properties of LiF for ramp loading and unloading. It will be shown how the strength of LiF may influence wave profile analysis and thus inferred material strength. Sandia is a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Company, for the US DOE's NNSA under Contract No.DE-AC04-94AL85000.

  13. Modeling elastic wave propagation in kidney stones with application to shock wave lithotripsy.

    PubMed

    Cleveland, Robin O; Sapozhnikov, Oleg A

    2005-10-01

    A time-domain finite-difference solution to the equations of linear elasticity was used to model the propagation of lithotripsy waves in kidney stones. The model was used to determine the loading on the stone (principal stresses and strains and maximum shear stresses and strains) due to the impact of lithotripsy shock waves. The simulations show that the peak loading induced in kidney stones is generated by constructive interference from shear waves launched from the outer edge of the stone with other waves in the stone. Notably the shear wave induced loads were significantly larger than the loads generated by the classic Hopkinson or spall effect. For simulations where the diameter of the focal spot of the lithotripter was smaller than that of the stone the loading decreased by more than 50%. The constructive interference was also sensitive to shock rise time and it was found that the peak tensile stress reduced by 30% as rise time increased from 25 to 150 ns. These results demonstrate that shear waves likely play a critical role in stone comminution and that lithotripters with large focal widths and short rise times should be effective at generating high stresses inside kidney stones.

  14. Shock load analysis of rotor for rolling element bearings and gas foil bearings: A comparative study

    NASA Astrophysics Data System (ADS)

    Bhore, Skylab Paulas

    2018-04-01

    In this paper, a comparative study on the shock load analysis of rotor supported by rolling element bearings and gas foil journal bearings is presented. The rotor bearing system is modeled using finite element method. Timoshenko beam element with 4 degree of freedom at each node is used. The shock load is represented by half sine pulse and applied to the base of the rotor bearing system. The stiffness and damping coefficient of the bearings are incorporated in the model. The generalized equation of motion of rotor bearing system is solved by Newmark beta method and responses of rotor at bearing position are predicted. It is observed that the responses are sensitive to the direction of applied excitation and its magnitude and pulse duration. The amplitude of responses of rotor supported on gas foil bearings are significantly less than that of rolling element bearings.

  15. Mesoscale simulations of shockwave energy dissipation via chemical reactions.

    PubMed

    Antillon, Edwin; Strachan, Alejandro

    2015-02-28

    We use a particle-based mesoscale model that incorporates chemical reactions at a coarse-grained level to study the response of materials that undergo volume-reducing chemical reactions under shockwave-loading conditions. We find that such chemical reactions can attenuate the shockwave and characterize how the parameters of the chemical model affect this behavior. The simulations show that the magnitude of the volume collapse and velocity at which the chemistry propagates are critical to weaken the shock, whereas the energetics in the reactions play only a minor role. Shock loading results in transient states where the material is away from local equilibrium and, interestingly, chemical reactions can nucleate under such non-equilibrium states. Thus, the timescales for equilibration between the various degrees of freedom in the material affect the shock-induced chemistry and its ability to attenuate the propagating shock.

  16. Fuel Load (FL)

    Treesearch

    Duncan C. Lutes; Robert E. Keane

    2006-01-01

    The Fuel Load method (FL) is used to sample dead and down woody debris, determine depth of the duff/ litter profile, estimate the proportion of litter in the profile, and estimate total vegetative cover and dead vegetative cover. Down woody debris (DWD) is sampled using the planar intercept technique based on the methodology developed by Brown (1974). Pieces of dead...

  17. Bayesian techniques for surface fuel loading estimation

    Treesearch

    Kathy Gray; Robert Keane; Ryan Karpisz; Alyssa Pedersen; Rick Brown; Taylor Russell

    2016-01-01

    A study by Keane and Gray (2013) compared three sampling techniques for estimating surface fine woody fuels. Known amounts of fine woody fuel were distributed on a parking lot, and researchers estimated the loadings using different sampling techniques. An important result was that precise estimates of biomass required intensive sampling for both the planar intercept...

  18. Comparison of hydrodynamic simulations with two-shockwave drive target experiments

    NASA Astrophysics Data System (ADS)

    Karkhanis, Varad; Ramaprabhu, Praveen; Buttler, William

    2015-11-01

    We consider hydrodynamic continuum simulations to mimic ejecta generation in two-shockwave target experiments, where metallic surface is loaded by two successive shock waves. Time of second shock in simulations is determined to match experimental amplitudes at the arrival of the second shock. The negative Atwood number (A --> - 1) of ejecta simulations leads to two successive phase inversions of the interface corresponding to the passage of the shocks from heavy to light media in each instance. Metallic phase of ejecta (solid/liquid) depends on shock loading pressure in the experiment, and we find that hydrodynamic simulations quantify the liquid phase ejecta physics with a fair degree of accuracy, where RM instability is not suppressed by the strength effect. In particular, we find that our results of free surface velocity, maximum ejecta velocity, and maximum ejecta areal density are in excellent agreement with their experimental counterparts, as well as ejecta models. We also comment on the parametric space for hydrodynamic simulations in which they can be used to compare with the target experiments.

  19. Super-strengthening and stabilizing with carbon nanotube harnessed high density nanotwins in metals by shock loading

    PubMed Central

    Lin, Dong; Saei, Mojib; Suslov, Sergey; Jin, Shengyu; Cheng, Gary J.

    2015-01-01

    CNTs reinforced metal composites has great potential due to their superior properties, such as light weight, high strength, low thermal expansion and high thermal conductivity. The current strengthening mechanisms of CNT/metal composite mainly rely on CNTs’ interaction with dislocations and CNT’s intrinsic high strength. Here we demonstrated that laser shock loading the CNT/metal composite results in high density nanotwins, stacking fault, dislocation around the CNT/metal interface. The composites exhibit enhanced strength with excellent stability. The results are interpreted by both molecular dynamics simulation and experiments. It is found the shock wave interaction with CNTs induces a stress field, much higher than the applied shock pressure, surrounding the CNT/metal interface. As a result, nanotwins were nucleated under a shock pressure much lower than the critical values to generate twins in metals. This hybrid unique nanostructure not only enhances the strength, but also stabilize the strength, as the nanotwin boundaries around the CNTs help pin the dislocation movement. PMID:26493533

  20. Dynamic response of phenolic resin and its carbon-nanotube composites to shock wave loading

    DOE PAGES

    Arman, B.; An, Q.; Luo, S. N.; ...

    2011-01-04

    We investigate with nonreactive molecular dynamics simulations the dynamic response of phenolic resin and its carbon-nanotube (CNT) composites to shock wave compression. For phenolic resin, our simulations yield shock states in agreement with experiments on similar polymers except the “phase change” observed in experiments, indicating that such phase change is chemical in nature. The elastic–plastic transition is characterized by shear stress relaxation and atomic-level slip, and phenolic resin shows strong strain hardening. Shock loading of the CNT-resin composites is applied parallel or perpendicular to the CNT axis, and the composites demonstrate anisotropy in wave propagation, yield and CNT deformation. Themore » CNTs induce stress concentrations in the composites and may increase the yield strength. Our simulations indicate that the bulk shock response of the composites depends on the volume fraction, length ratio, impact cross-section, and geometry of the CNT components; the short CNTs in current simulations have insignificant effect on the bulk response of resin polymer.« less

  1. Observation of laser-driven shock propagation by nanosecond time-resolved Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Guoyang; Zheng, Xianxu; Song, Yunfei; Zeng, Yangyang; Guo, Wencan; Zhao, Jun; Yang, Yanqiang

    2015-01-01

    An improved nanosecond time-resolved Raman spectroscopy is performed to observe laser-driven shock propagation in the anthracene/epoxy glue layer. The digital delay instead of optical delay line is introduced for sake of unlimited time range of detection, which enables the ability to observe both shock loading and shock unloading that always lasts several hundred nanoseconds. In this experiment, the peak pressure of shock wave, the pressure distribution, and the position of shock front in gauge layer were determined by fitting Raman spectra of anthracene using the Raman peak shift simulation. And, the velocity of shock wave was calculated by the time-dependent position of shock front.

  2. Spade: An H Chondrite Impact-melt Breccia that Experienced Post-shock Annealing

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.; Jones, Rhian H.

    2006-01-01

    The low modal abundances of relict chondrules (1.8 Vol%) and of coarse (i.e. >= 2200 micron-size) isolated mafic silicate grains (1.8 Vol%) in Spade relative to mean H6 chondrites (11.4 and 9.8 vol%, respectively) show Spade to be a rock that has experienced a significant degree of melting. Various petrographic features (e.g., chromite-plagioclase assemblages, chromite veinlets, silicate darkening) indicate that melting was caused by shock. Plagioclase was melted during the shock event and flowed so that it partially to completely surrounded nearby mafic silicate grains. During crystallization, plagioclase developed igneous zoning. Low-Ca pyroxene that crystallized from the melt (or equilibrated with the melt at high temperatures) acquired relatively high amounts of CaO. Metallic Fe-Ni cooled rapidly below the Fe-Ni solws and transformed into martensite. Subsequent reheating of the rock caused transformation of martensite into abundant duplex plessite. Ambiguities exist in the shock stage assignment of Spade. The extensive silicate darkening, the occurrence of chromite-plagioclase assemblages, and the impact-melted characteristics of Spade are consistent with shock stage S6. Low shock (stage S2) is indicated by the undulose extinction and lack of planar fractures in olivine. This suggests that Spade reached a maximum prior shock level equivalent to stage S6 and then experienced post-shock annealing (probably to stage Sl). These events were followed by a less intense impact that produced the undulose extinction in the olivine, characteristic of shock stage S2. Annealing could have occurred if Spade were emplaced near impact melts beneath the crater floor or deposited in close proximity to hot debris within an ejecta blanket. Spade firmly establishes the case for post-shock annealing. This may have been a common process on ordinary chondrites (OC) asteroids.

  3. Creating a Driven, Collapsed Radiative Shock in the Laboratory

    NASA Astrophysics Data System (ADS)

    Reighard, Amy

    2006-10-01

    We report details of the first experimental campaign to create a driven, planar, radiatively collapsed in laboratory experiment. Radiation hydrodynamics experiments are challenging to realize in a laboratory setting, requiring high temperatures in a system of sufficient extent. The Omega laser at ˜10^15 W/cm^2 drives a thin slab of low-Z material at >100 km/s gas via laser ablation pressure. This slab initially shocks, then continues driving a shock through a cylindrical volume of Xe gas at 6 mg/cc. Simulations predict a collapsed layer in which the density reaches ˜45 times initial density. Side-on x-ray backlighting was the principal diagnostic. We have successfully imaged shocks with average velocities between 95-205 km/sec, with measured thicknesses of 45-150 μm in experiments lasting up to 20 ns and spanning up 2.5 mm in extent. Comparison of the shock position as a function of time from these experiments to 1D radiation hydrodynamic simulation results show some discrepancy, which will be explored. Optical depth before and behind the shock is important for meaningful comparison to these astrophysical systems. This shock is optically thin to emitted radiation in the unshocked region and optically thick to radiation in the shocked, dense region. We compare this system to collapsed shocks in astrophysical systems with similar optical depth profiles. An experiment using a Thomson scattering diagnostic across the shock front is also discussed. This research was sponsored by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Research Grants DE-FG52-03NA00064, DE-FG53-2005-NA26014, and other grants and contracts.

  4. Three-dimensional finite element analysis of the shear bond test.

    PubMed

    DeHoff, P H; Anusavice, K J; Wang, Z

    1995-03-01

    The purpose of this study was to use finite element analyses to model the planar shear bond test and to evaluate the effects of modulus values, bonding agent thickness, and loading conditions on the stress distribution in the dentin adjacent to the bonding agent-dentin interface. All calculations were performed with the ANSYS finite element program. The planar shear bond test was modeled as a cylinder of resin-based composite bonded to a cylindrical dentin substrate. The effects of material, geometry and loading variables were determined primarily by use of a three-dimensional structural element. Several runs were also made using an axisymmetric element with harmonic loading and a plane strain element to determine whether two-dimensional analyses yield valid results. Stress calculations using three-dimensional finite element analyses confirmed the presence of large stress concentration effects for all stress components at the bonding agent-dentin interface near the application of the load. The maximum vertical shear stress generally occurs approximately 0.3 mm below the loading site and then decreases sharply in all directions. The stresses reach relatively uniform conditions within about 0.5 mm of the loading site and then increase again as the lower region of the interface is approached. Calculations using various loading conditions indicated that a wire-loop method of loading leads to smaller stress concentration effects, but a shear bond strength determined by dividing a failure load by the cross-sectional area grossly underestimates the true interfacial bond strength. Most dental researchers are using tensile and shear bond tests to predict the effects of process and material variables on the clinical performance of bonding systems but no evidence has yet shown that bond strength is relevant to clinical performance. A critical factor in assessing the usefulness of bond tests is a thorough understanding of the stress states that cause failure in the bond test and then to assess whether these stress states also exist in the clinical situation. Finite element analyses can help to answer this question but much additional work is needed to identify the failure modes in service and to relate these failures to particular loading conditions. The present study represents only a first step in understanding the stress states in the planar shear bond test.

  5. [Shock absorption of mouthguard materials--influence of temperature conditions and shore hardness on shock absorption].

    PubMed

    Tomita, Takashi; Tsukimura, Naoki; Ohno, Shigeru; Umekawa, Yoshitada; Sawano, Muneyuki; Fujimoto, Toshiki; Takamura, Masaaki; Majima, Aiko; Katakura, Yuusuke; Kurata, Akemi; Ohyama, Tetsuo; Ishigami, Tomohiko

    2006-04-01

    To consider changes in the physical properties of mouthguard materials with the change of temperature, shock-absorbing examination and Shore hardness measurement of existing MG materials and other elastic materials were carried out. Both examinations were done under two temperature conditions: at room temperature (25 degrees C) and simulated intraoral temperature (37 degrees C). In addition, a comparative study of the relation between Shore hardness and shock absorption of the materials was made. A self-made drop impact machine was used for the shock-absorbing examination. The thickness of a sample was assumed to be 3 mm. The loading was applied by dropping 3 kinds of steel ball, phi 10 mm (4.0 g), phi 15 mm (13.7 g), and phi 20 mm (32.6 g) from a height of 60 cm. The shock absorption of all materials was compared by the maximum impact force. Shore hardness was measured based on the JIS standard. The shock absorption of each material showed a different tendency depending on the loading condition. Furthermore, the shock absorption of the same material showed different results depending on the temperature condition. Shore hardness measurements tended to show low values with the condition of 37 degrees C for all materials. From the relation between shock absorption and Shore hardness, it was confirmed that there is a correlation between hardness and the maximum impact force in the materials that showed shock absorption by elastic deformation. Some materials showed high shock absorption compared with existing MG materials.

  6. On the shock response of the magnesium alloy Elektron 675

    NASA Astrophysics Data System (ADS)

    Hazell, Paul; Appleby-Thomas, Gareth; Siviour, Clive; Wielewski, Euan

    2011-06-01

    Alloying elements such as aluminium, zinc or rare-earths allow precipitation hardening of magnesium (Mg). The low densities of such strengthened Mg alloys have led to their adoption as aerospace materials and (more recently) they are being considered as armour materials. Consequently, understanding their response to high-strain rate loading is becoming increasingly important. Here, the plate-impact technique was employed to measure longitudinal stress evolution in armour-grade wrought Mg-alloy Elektron 675 under 1D shock loading. The strength and spall behaviour was interrogated, with an estimate made of the material's Hugoniot elastic limit. Finally, electron backscatter diffraction (EBSD) techniques were employed to investigate post-shock microstructural changes.

  7. On the dynamic behavior of three readily available soft tissue simulants

    NASA Astrophysics Data System (ADS)

    Appleby-Thomas, G. J.; Hazell, P. J.; Wilgeroth, J. M.; Shepherd, C. J.; Wood, D. C.; Roberts, A.

    2011-04-01

    Plate-impact experiments have been employed to investigate the dynamic response of three readily available tissue simulants for ballistic purposes: gelatin, ballistic soap (both subdermal tissue simulants), and lard (adipose layers). All three materials exhibited linear Hugoniot equations-of-state in the US-uP plane. While gelatin behaved hydrodynamically under shock, soap and lard appeared to strengthen under increased loading. Interestingly, the simulants under test appeared to strengthen in a material-independent manner on shock arrival (tentatively attributed to a rearrangement of the amorphous molecular chains under loading). However, material-specific behavior was apparent behind the shock. This behavior appeared to correlate with microstructural complexity, suggesting a steric hindrance effect.

  8. Effect of particle momentum transfer on an oblique-shock-wave/laminar-boundary-layer interaction

    NASA Astrophysics Data System (ADS)

    Teh, E.-J.; Johansen, C. T.

    2016-11-01

    Numerical simulations of solid particles seeded into a supersonic flow containing an oblique shock wave reflection were performed. The momentum transfer mechanism between solid and gas phases in the shock-wave/boundary-layer interaction was studied by varying the particle size and mass loading. It was discovered that solid particles were capable of significant modulation of the flow field, including suppression of flow separation. The particle size controlled the rate of momentum transfer while the particle mass loading controlled the magnitude of momentum transfer. The seeding of micro- and nano-sized particles upstream of a supersonic/hypersonic air-breathing propulsion system is proposed as a flow control concept.

  9. Structural tests on a tile/strain isolation pad thermal protection system. [space shuttles

    NASA Technical Reports Server (NTRS)

    Williams, J. G.

    1980-01-01

    The aluminum skin of the space shuttle is covered by a thermal protection system (TPS) consisting of a low density ceramic tile bonded to a matted-felt material called strain insulation pad (SIP). The structural characteristics of the TPS were studied experimentally under selected extreme load conditions. Three basic types of loads were imposed: tension, eccentrically applied tension, and combined in-plane force and transverse pressure. For some tests, transverse pressure was applied rapidly to simulate a transient shock wave passing over the tile. The failure mode for all specimens involved separation of the tile from the SIP at the silicone rubber bond interface. An eccentrically applied tension load caused the tile to separate from the SIP at loads lower than experienced at failure for pure tension loading. Moderate in-plane as well as shock loading did not cause a measurable reduction in the TPS ultimate failure strength. A strong coupling, however, was exhibited between in-plane and transverse loads and displacements.

  10. Generalized Pseudo-Reaction Zone Model for Non-Ideal Explosives

    NASA Astrophysics Data System (ADS)

    Wescott, B. L.

    2007-12-01

    The pseudo-reaction zone model was proposed to improve engineering scale simulations with high explosives that have a slow reaction component. In this work an extension of the pseudo-reaction zone model is developed for non-ideal explosives that propagate well below the steady-planar Chapman-Jouguet velocity. A programmed burn method utilizing Detonation Shock Dynamics (DSD) and a detonation velocity dependent pseudo-reaction rate has been developed for non-ideal explosives and applied to the explosive mixture of ammonium nitrate and fuel oil (ANFO). The pseudo-reaction rate is calibrated to the experimentally obtained normal detonation velocity—shock curvature relation. Cylinder test simulations predict the proper expansion to within 1% even though significant reaction occurs as the cylinder expands.

  11. 1 D analysis of Radiative Shock damping by lateral radiative losses

    NASA Astrophysics Data System (ADS)

    Busquet, Michel; Audit, Edouard

    2008-11-01

    We have demonstrated the effect of the lateral radiative losses in radiative shocks propagative in layered quasi-planar atmospheres.[1,2] The damping of the precursor is sensitive to the fraction of self-emitted radiation reflected by the walls (called albedo) We have given recently an experimental determination of the wall albedo.[2] For parametric analysis of this effect, we implement lateral losses in the 1D hydro-rad code MULTI [3] and compared results with 2D simulations. [1] S.Leygnac, et al., Phys. Plasmas 13, 113301 (2006) [2] M.Busquet, et al, High Energy Density Plasmas 3, 8-11 (2007); M.Gonzalez, et al, Laser Part. Beams 24, 1-6 (2006) [3] Ramis et al, Comp. Phys. Comm., 49, 475 (1988)

  12. Turbulent mixing induced by Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Krivets, V. V.; Ferguson, K. J.; Jacobs, J. W.

    2017-01-01

    Richtmyer-Meshkov instability is studied in shock tube experiments with an Atwood number of 0.7. The interface is formed in a vertical shock tube using opposed gas flows, and three-dimensional random initial interface perturbations are generated by the vertical oscillation of gas column producing Faraday waves. Planar Laser Mie scattering is used for flow visualization and for measurements of the mixing process. Experimental image sequences are recorded at 6 kHz frequency and processed to obtain the time dependent variation of the integral mixing layer width. Measurements of the mixing layer width are compared with Mikaelian's [1] model in order to extract the growth exponent θ where a fairly wide range of values is found varying from θ ≈ 0.2 to 0.6.

  13. High strain rate deformation and fracture of the magnesium alloy Ma2-1 under shock wave loading

    NASA Astrophysics Data System (ADS)

    Garkushin, G. V.; Kanel', G. I.; Razorenov, S. V.

    2012-05-01

    This paper presents the results of measurements of the dynamic elastic limit and spall strength under shock wave loading of specimens of the magnesium alloy Ma2-1 with a thickness ranging from 0.25 to 10 mm at normal and elevated (to 550°C) temperatures. From the results of measurements of the decay of the elastic precursor of a shock compression wave, it has been found that the plastic strain rate behind the front of the elastic precursor decreases from 2 × 105 s-1 at a distance of 0.25 mm to 103 s-1 at a distance of 10 mm. The plastic strain rate in a shock wave is one order of magnitude higher than that in the elastic precursor at the same value of the shear stress. The spall strength of the alloy decreases as the solidus temperature is approached.

  14. Shock-Ramp Loading of Tin and Aluminum

    NASA Astrophysics Data System (ADS)

    Seagle, Christopher; Davis, Jean; Martin, Matthew; Hanshaw, Heath

    2013-06-01

    Equation of state properties for materials off the principle Hugoniot and isentrope are currently poorly constrained. The ability to directly probe regions of phase space between the Hugoniot and isentrope under dynamic loading will greatly improve our ability to constrain equation of state properties under a variety of conditions and study otherwise inaccessible phase transitions. We have developed a technique at Sandia's Z accelerator to send a steady shock wave through a material under test, and subsequently ramp compress from the Hugoniot state. The shock-ramp experimental platform results in a unique loading path and enables probing of equation of state properties in regions of phase space otherwise difficult to access in dynamic experiments. A two-point minimization technique has been developed for the analysis of shock-ramp velocity data. The technique correctly accounts for the ``initial'' Hugoniot density of the material under test before the ramp wave arrives. Elevated quasi-isentropes have been measured for solid aluminum up to 1.4 Mbar and liquid tin up to 1.1 Mbar using the shock ramp technique. These experiments and the analysis of the resulting velocity profiles will be discussed. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85.

  15. Design evolution of a low shock release nut

    NASA Technical Reports Server (NTRS)

    Otth, D. H.; Gordon, W.

    1976-01-01

    Design improvements and detailed functional analyses are reviewed to trace the development of a pyroactuated release device with segmented thread design from its intermediate design into one that reduces the levels of shock spectra generated during its operation by 50%. Comparisons of shock output and internal load distribution are presented, along with descriptions of mechanical operation for both designs. Results also show the potential areas where design development activity can gain further progress in lowering actuation shock levels.

  16. Critique of Sikkink and Keane's comparison of surface fuel sampling techniques

    Treesearch

    Clinton S. Wright; Roger D. Ottmar; Robert E. Vihnanek

    2010-01-01

    The 2008 paper of Sikkink and Keane compared several methods to estimate surface fuel loading in western Montana: two widely used inventory techniques (planar intersect and fixed-area plot) and three methods that employ photographs as visual guides (photo load, photoload macroplot and photo series). We feel, however, that their study design was inadequate to evaluate...

  17. Time-resolved Sensing of Meso-scale Shock Compression with Multilayer Photonic Crystal Structures

    NASA Astrophysics Data System (ADS)

    Scripka, David; Lee, Gyuhyon; Summers, Christopher J.; Thadhani, Naresh

    2017-06-01

    Multilayer Photonic Crystal structures can provide spatially and temporally resolved data needed to validate theoretical and computational models relevant for understanding shock compression in heterogeneous materials. Two classes of 1-D photonic crystal multilayer structures were studied: optical microcavities (OMC) and distributed Bragg reflectors (DBR). These 0.5 to 5 micron thick structures were composed of SiO2, Al2O3, Ag, and PMMA layers fabricated primarily via e-beam evaporation. The multilayers have unique spectral signatures inherently linked to their time-resolved physical states. By observing shock-induced changes in these signatures, an optically-based pressure sensor was developed. Results to date indicate that both OMCs and DBRs exhibit nanosecond-resolved spectral shifts of several to 10s of nanometers under laser-driven shock compression loads of 0-10 GPa, with the magnitude of the shift strongly correlating to the shock load magnitude. Additionally, spatially and temporally resolved spectral shifts under heterogeneous laser-driven shock compression created by partial beam blocking have been successfully demonstrated. These results illustrate the potential for multilayer structures to serve as meso-scale sensors, capturing temporal and spatial pressure profile evolutions in shock-compressed heterogeneous materials, and revealing meso-scale pressure distributions across a shocked surface. Supported by DTRA Grant HDTRA1-12-1-005 and DoD, AFOSR, National Defense Science and Eng. Graduate Fellowship, 32 CFR 168a.

  18. Energetics of the terrestrial bow shock

    NASA Astrophysics Data System (ADS)

    Hamrin, Maria; Gunell, Herbert; Norqvist, Patrik

    2017-04-01

    The solar wind is the primary energy source for the magnetospheric energy budget. Energy can enter through the magnetopause both as kinetic energy (plasma entering via e.g. magnetic reconnection and impulsive penetration) and as electromagnetic energy (e.g. by the conversion of solar wind kinetic energy into electromagnetic energy in magnetopause generators). However, energy is extracted from the solar wind already at the bow shock, before it encounters the terrestrial magnetopause. At the bow shock the supersonic solar wind is slowed down and heated, and the region near the bow shock is known to host many complex processes, including the accelerating of particles and the generation of waves. The processes at and near the bow shock can be discussed in terms of energetics: In a generator (load) process kinetic energy is converted to (from) electromagnetic energy. Bow shock regions where the solar wind is decelerated correspond to generators, while regions where particles are energized (accelerated and heated) correspond to loads. Recently, it has been suggested that currents from the bow shock generator should flow across the magnetosheath and connect to the magnetospause current systems [Siebert and Siscoe, 2002; Lopez et al., 2011]. In this study we use data from the Magnetospheric MultiScale (MMS) mission to investigate the energetics of the bow shock and the current closure, and we compare with the MHD simulations of Lopez et al., 2011.

  19. Prediction of Shock-Induced Cavitation in Water

    NASA Astrophysics Data System (ADS)

    Brundage, Aaron

    2013-06-01

    Fluid-structure interaction problems that require estimating the response of thin structures within fluids to shock loading has wide applicability. For example, these problems may include underwater explosions and the dynamic response of ships and submarines; and biological applications such as Traumatic Brain Injury (TBI) and wound ballistics. In all of these applications the process of cavitation, where small cavities with dissolved gases or vapor are formed as the local pressure drops below the vapor pressure due to shock hydrodynamics, can cause significant damage to the surrounding thin structures or membranes if these bubbles collapse, generating additional shock loading. Hence, a two-phase equation of state (EOS) with three distinct regions of compression, expansion, and tension was developed to model shock-induced cavitation. This EOS was evaluated by comparing data from pressure and temperature shock Hugoniot measurements for water up to 400 kbar, and data from ultrasonic pressure measurements in tension to -0.3 kbar, to simulated responses from CTH, an Eulerian, finite volume shock code. The new EOS model showed significant improvement over pre-existing CTH models such as the SESAME EOS for capturing cavitation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy/NNSA under contract DE-AC04-94AL85000.

  20. Behavior of the shape memory alloy NiTi during one-dimensional shock loading

    NASA Astrophysics Data System (ADS)

    Millett, J. C. F.; Bourne, N. K.; Gray, G. T., III

    2002-09-01

    The response of alloys based on the intermetallic compound NiTi to high-strain-rate and shock loading conditions has recently attracted attention. In particular, similarities between it, and other shape memory materials such as the alloy U-6%Nb in the propagation of the plastic wave in Taylor cylinders are of significant interest. In this article, the Hugoniot is measured using multiple manganin stress gauges, either embedded between plates of the NiTi alloy, or supported with blocks of polymethylmethacrylate. In this way, the shock stress, shock velocity, and details of the shock wave profile have been gathered. An inflection at lower stresses has been found in the Hugoniot curve (stress-particle velocity), and has been ascribed to the martensitic phase transformation that is characteristic of the shape memory effect in this alloy. In a similar way, the variation of shock velocity with particle velocity has been found to be nonlinear, contrary to other pure metal and alloy systems. Finally, a break in slope in the rising part of the shock profile has been identified as the Hugoniot elastic limit in NiTi. Conversion to the one-dimensional stress equivalent, and comparison to quasistatic data indicates that NiTi exhibits significant strain-rate sensitivity.

  1. Conversion of electromagnetic energy in Z-pinch process of single planar wire arrays at 1.5 MA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liangping, Wang; Mo, Li; Juanjuan, Han

    The electromagnetic energy conversion in the Z-pinch process of single planar wire arrays was studied on Qiangguang generator (1.5 MA, 100 ns). Electrical diagnostics were established to monitor the voltage of the cathode-anode gap and the load current for calculating the electromagnetic energy. Lumped-element circuit model of wire arrays was employed to analyze the electromagnetic energy conversion. Inductance as well as resistance of a wire array during the Z-pinch process was also investigated. Experimental data indicate that the electromagnetic energy is mainly converted to magnetic energy and kinetic energy and ohmic heating energy can be neglected before the final stagnation. Themore » kinetic energy can be responsible for the x-ray radiation before the peak power. After the stagnation, the electromagnetic energy coupled by the load continues increasing and the resistance of the load achieves its maximum of 0.6–1.0 Ω in about 10–20 ns.« less

  2. Study the fragment size distribution in dynamic fragmentation of laser shock loding tin

    NASA Astrophysics Data System (ADS)

    He, Weihua; Xin, Jianting; Chu, Genbai; Shui, Min; Xi, Tao; Zhao, Yongqiang; Gu, Yuqiu

    2017-06-01

    Characterizing the distribution of fragment size produced from dynamic fragmentation process is very important for fundamental science like predicting material dymanic response performance and for a variety of engineering applications. However, only a few data about fragment mass or size have been obtained due to its great challenge in its dynamic measurement. This paper would focus on investigating the fragment size distribution from the dynamic fragmentation of laser shock-loaded metal. Material ejection of tin sample with wedge shape groove in the free surface is collected with soft recovery technique. Via fine post-shot analysis techniques including X-ray micro-tomography and the improved watershed method, it is found that fragments can be well detected. To characterize their size distributions, a random geometric statistics method based on Poisson mixtures was derived for dynamic heterogeneous fragmentation problem, which leads to a linear combinational exponential distribution. Finally we examined the size distribution of laser shock-loaded tin with the derived model, and provided comparisons with other state-of-art models. The resulting comparisons prove that our proposed model can provide more reasonable fitting result for laser shock-loaded metal.

  3. The characteristics of void distribution in spalled high purity copper cylinder under sweeping detonation

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Jiang, Zhi; Chen, Jixinog; Guo, Zhaoliang; Tang, Tiegang; Hu, Haibo

    2018-03-01

    The effects of different peak compression stresses (2-5 GPa) on the spallation behaviour of high purity copper cylinder during sweeping detonation were examined by Electron Backscatter Diffraction Microscopy, Doppler Pins System and Optical Microscopy techniques. The velocity history of inner surface and the characteristics of void distributions in spalled copper cylinder were investigated. The results indicated that the spall strength of copper in these experiments was less than that revealed in previous reports concerning plate impact loading. The geometry of cylindrical copper and the obliquity of incident shock during sweeping detonation may be the main reasons. Different loading stresses seemed to be responsible for the characteristics of the resultant damage fields, and the maximum damage degree increased with increasing shock stress. Spall planes in different cross-sections of sample loaded with the same shock stress of 3.29 GPa were found, and the distance from the initiation end has little effect on the maximum damage degree (the maximum damage range from 12 to 14%), which means that the spallation behaviour was stable along the direction parallel to the detonation propagation direction under the same shock stress.

  4. The Embedded Atom Model and large-scale MD simulation of tin under shock loading

    NASA Astrophysics Data System (ADS)

    Sapozhnikov, F. A.; Ionov, G. V.; Dremov, V. V.; Soulard, L.; Durand, O.

    2014-05-01

    The goal of the work was to develop an interatomic potential, that can be used in large-scale classical MD simulations to predict tin properties near the melting curve, the melting curve itself, and the kinetics of melting and solidification when shock and ramp loading. According to phase diagram, shocked tin melts from bcc phase, and since the main objective was to investigate melting, the EAM was parameterized for bcc phase. The EAM was optimized using isothermal compression data (experimental at T=300 K and ab-initio at T=0 K for bcc, fcc, bct structures), experimental and QMD data on the Hugoniot and on the melting at elevated pressures. The Hugoniostat calculations centred at β-tin at ambient conditions showed that the calculated Hugoniot is in good agreement with experimental and QMD data above p-bct transition pressure. Calculations of overcooled liquid in pressure range corresponding to bcc phase showed crystallization into bcc phase. Since the principal Hugoniot of tin originates from the β-tin that is not described by this EAM the special initial state of bcc samples was constructed to perform large-scale MD simulations of shock loading.

  5. Calibration of PCB-132 Sensors in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Berridge, Dennis C.; Schneider, Steven P.

    2012-01-01

    While PCB-132 sensors have proven useful for measuring second-mode instability waves in many hypersonic wind tunnels, they are currently limited by their calibration. Until now, the factory calibration has been all that was available, which is a single-point calibration at an amplitude three orders of magnitude higher than a second-mode wave. In addition, little information has been available about the frequency response or spatial resolution of the sensors, which is important for measuring high-frequency instability waves. These shortcomings make it difficult to compare measurements at different conditions and between different sensors. If accurate quantitative measurements could be performed, comparisons of the growth and breakdown of instability waves could be made in different facilities, possibly leading to a method of predicting the amplitude at which the waves break down into turbulence, improving transition prediction. A method for calibrating the sensors is proposed using a newly-built shock tube at Purdue University. This shock tube, essentially a half-scale version of the 6-Inch shock tube at the Graduate Aerospace Laboratories at Caltech, has been designed to attain a moderate vacuum in the driven section. Low driven pressures should allow the creation of very weak, yet still relatively thin shock waves. It is expected that static pressure rises within the range of second-mode amplitudes should be possible. The shock tube has been designed to create clean, planar shock waves with a laminar boundary layer to allow for accurate calibrations. Stronger shock waves can be used to identify the frequency response of the sensors out to hundreds of kilohertz.

  6. Strength and fracture of uranium, plutonium and several their alloys under shock wave loading

    NASA Astrophysics Data System (ADS)

    Golubev, V. K.

    2012-08-01

    Results on studying the spall fracture of uranium, plutonium and several their alloys under shock wave loading are presented in the paper. The problems of influence of initial temperature in a range of - 196 - 800∘C and loading time on the spall strength and failure character of uranium and two its alloys with molybdenum and both molybdenum and zirconium were studied. The results for plutonium and its alloy with gallium were obtained at a normal temperature and in a temperature range of 40-315∘C, respectively. The majority of tests were conducted with the samples in the form of disks 4 mm in thickness. They were loaded by the impact of aluminum plates 4 mm thick through a copper screen 12 mm thick serving as the cover or bottom part of a special container. The character of spall failure of materials and the damage degree of samples were observed on the longitudinal metallographic sections of recovered samples. For a concrete test temperature, the impact velocity was sequentially changed and therefore the loading conditions corresponding to the consecutive transition from microdamage nucleation up to complete macroscopic spall fracture were determined. The conditions of shock wave loading were calculated using an elastic-plastic computer program. The comparison of obtained results with the data of other researchers on the spall fracture of examined materials was conducted.

  7. Elastic-plastic deformation of molybdenum single crystals shocked along [100

    DOE PAGES

    Mandal, A.; Gupta, Y. M.

    2017-01-24

    To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) – a body-centered cubic (BCC) metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ~0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ~3.6 GPa. Numerical simulations ofmore » the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}<111> and/or {112}<111> slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. As a result, the numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.« less

  8. Optoheterodyne Doppler measurements of the ballistic expansion of the products of the shock wave-induced surface destruction: Experiment and theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andriyash, A. V.; Astashkin, M. V.; Baranov, V. K.

    2016-06-15

    The results of optoheterodyne Doppler measurements of the ballistic expansion of the products of surface destruction under shock-wave loading are presented. The possibility of determining the physical characteristics of a rapidly flying dust cloud, including the microparticle velocities, the microparticle sizes, and the areal density of the dust cloud, is shown. A compact stand for performing experiments on shock-wave loading of metallic samples is described. Shock-wave loading is performed by a 100-µm-thick tantalum flyer plate accelerated to a velocity of 2.8 km/s. As the samples, lead plates having various thicknesses and the same surface roughness are used. At a shock-wavemore » pressure of 31.5 GPa, the destruction products are solid microparticles about 50 µm in size. At a pressure of 42 and 88 GPa, a liquid-drop dust cloud with a particle size of 10–15 µm is formed. To interpret the spectral data on the optoheterodyne Doppler measurements of the expansion of the surface destruction products (spalled fragments, dust microparticles), a transport equation for the function of mutual coherence of a multiply scattered field is used. The Doppler spectra of a backscattered signal are calculated with the model developed for the dust cloud that appears when a shock wave reaches the sample surface at the parameters that are typical of an experimental situation. Qualitative changes are found in the spectra, depending on the optical thickness of the dust cloud. The obtained theoretical results are in agreement with the experimental data.« less

  9. Real-time x-ray diffraction measurements of shocked polycrystalline tin and aluminum.

    PubMed

    Morgan, Dane V; Macy, Don; Stevens, Gerald

    2008-11-01

    A new, fast, single-pulse x-ray diffraction (XRD) diagnostic for determining phase transitions in shocked polycrystalline materials has been developed. The diagnostic consists of a 37-stage Marx bank high-voltage pulse generator coupled to a needle-and-washer electron beam diode via coaxial cable, producing line and bremsstrahlung x-ray emission in a 35 ns pulse. The characteristic K(alpha) lines from the selected anodes of silver and molybdenum are used to produce the diffraction patterns, with thin foil filters employed to remove the characteristic K(beta) line emission. The x-ray beam passes through a pinhole collimator and is incident on the sample with an approximately 3 x 6 mm(2) spot and 1 degrees full width half maximum angular divergence in a Bragg-reflecting geometry. For the experiments described in this report, the angle between the incident beam and the sample surface was 8.5 degrees . A Debye-Scherrer diffraction image was produced on a phosphor located 76 mm from the polycrystalline sample surface. The phosphor image was coupled to a charge-coupled device camera through a coherent fiber-optic bundle. Dynamic single-pulse XRD experiments were conducted with thin foil samples of tin, shock loaded with a 1 mm vitreous carbon back window. Detasheet high explosive with a 2-mm-thick aluminum buffer was used to shock the sample. Analysis of the dynamic shock-loaded tin XRD images revealed a phase transformation of the tin beta phase into an amorphous or liquid state. Identical experiments with shock-loaded aluminum indicated compression of the face-centered-cubic aluminum lattice with no phase transformation.

  10. Thermo-elastic-plastic analysis for elastic component under high temperature fatigue crack growth rate

    NASA Astrophysics Data System (ADS)

    Ali, Mohammed Ali Nasser

    The research project presents a fundamental understanding of the fatigue crack growth mechanisms of AISI 420 martensitic stainless steel, based on the comparison analysis between the theoretical and numerical modelling, incorporating research findings under isothermal fatigue loading for solid cylindrical specimen and the theoretical modelling with the numerical simulation for tubular specimen when subjected to cyclic mechanical loading superimposed by cyclic thermal shock.The experimental part of this research programme studied the fatigue stress-life data for three types of surface conditions specimen and the isothermal stress-controlled fatigue testing at 300 °C - 600 °C temperature range. It is observed that the highest strength is obtained for the polished specimen, while the machined specimen shows lower strength, and the lowest strength is the notched specimen due to the high effect of the stress concentration. The material behaviour at room and high temperatures shows an initial hardening, followed by slow extension until fully plastic saturation then followed by crack initiation and growth eventually reaching the failure of the specimen, resulting from the dynamic strain ageing occurred from the transformation of austenitic microstructure to martensite and also, the nucleation of precipitation at grain boundaries and the incremental temperature increase the fatigue crack growth rate with stress intensity factor however, the crack growth rate at 600 °C test temperature is less than 500 °C because of the creep-fatigue taking place.The theoretical modelling presents the crack growth analysis and stress and strain intensity factor approaches analysed in two case studies based on the addition of thermo-elastic-plastic stresses to the experimental fatigue applied loading. Case study one estimates the thermal stresses superimposed sinusoidal cyclic mechanical stress results in solid cylinder under isothermal fatigue simulation. Case study two estimates the transient thermal stresses superimposed on cyclic mechanical loading results in hollow cylinder under thermal shock in heating case and down shock cooling case. The combination of stress and strain intensity factor theoretical calculations with the experimental output recorded data shows a similar behaviour with increasing temperature, and there is a fair correlation between the profiles at the beginning and then divergence with increasing the crack length. The transient influence of high temperature in case two, giving a very high thermal shock stress as a heating or cooling effects, shifting up the combined stress, when applied a cyclic mechanical load in fraction of seconds, and the reputations of these shocks, causing a fast failure under high thermal shock stress superimposed with mechanical loading.Finally, the numerical modelling analyses three cases studied were solved due to the types of loading and types of specimen geometry by using finite element models constructed through the ANSYS Workbench version 13.0. The first case is a low cyclic fatigue case for a solid cylinder specimen simulated by applying a cyclic mechanical loading. The second is an isothermal fatigue case for solid cylinder specimen simulated by supplying different constant temperatures on the outer surface with cyclic mechanical loading, where the two cases are similar to the experimental tests and the third case, is a thermo-mechanical fatigue for a hollow cylinder model by simulating a thermal up-shock generated due to transient heating on the outer surface of the model or down shock cooling on the inner surface with the cyclic mechanical loading. The results show a good agreement with the experimental data in terms of alternative stress and life in the first case. In case two results show the strain intensity factor is increases with increasing temperature similar to the theoretical solution due to the influence of the modulus of elasticity and the difference in life estimation with the experimental output record is related to the input data made of theoretical physical properties and the experimental stress-life data.

  11. Experimental study of shock-accelerated inclined heavy gas cylinder

    DOE PAGES

    Olmstead, Dell; Wayne, Patrick; Yoo, Jae-Hwun; ...

    2017-05-23

    An experimental study examines shock acceleration with an initially diffuse cylindrical column of sulfur hexafluoride surrounded by air and inclined with respect to the shock front. Three-dimensional vorticity deposition produces flow patterns whose evolution is captured with planar laser-induced fluorescence in two planes. Both planes are thus parallel to the direction of the shock propagation. The first plane is vertical and passes through the axis of the column. The second visualization plane is normal to the first plane and passes through the centerline of the shock tube. Vortex formation in the vertical and centerline planes is initially characterized by differentmore » rates and morphologies due to differences in initial vorticity deposition. In the vertical plane, the vortex structure manifests a periodicity that varies with Mach number. The dominant wavelength in the vertical plane can be related to the geometry and compressibility of the initial conditions. At later times, the vortex interaction produces a complex and irregular three-dimensional pattern suggesting transition to turbulence. We present highly repeatable experimental data for Mach numbers 1.13, 1.4, 1.7, and 2.0 at column incline angles of 0, 20, and 30 degrees for about 50 nominal cylinder diameters (30 cm) of downstream travel.« less

  12. Generation of shock waves and formation of craters in a solid material irradiated by a short laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gus'kov, Sergei Yu; Borodziuk, S; Kasperczuk, A

    2004-11-30

    The results of investigations are presented which are concerned with laser radiation absorption in a target, the plasma state of its ablated material, the energy transfer to the solid target material, the characteristics of the shock wave and craters on the target surface. The investigation involved irradiation of a planar target by a subnanosecond plasma-producing laser pulse. The experiments were carried out with massive aluminium targets using the PALS iodine laser, whose pulse duration (0.4 ns) was much shorter than the shock wave attenuation and on-target crater formation times (50-200 ns). The investigations were conducted for a laser radiation energymore » of 100 J at two wavelengths of 0.438 and 1.315 {mu}m. For a given pulse energy, the irradiation intensity was varied in a broad range (10{sup 13}-10{sup 16} W cm{sup -2}) by varying the radius of the laser beam. The efficiency of laser radiation-to-shock energy transfer was determined as a function of the intensity and wavelength of laser radiation; also determined were the characteristics of the plasma plume and the shock wave propagating in the solid target, including the experimental conditions under which two-dimensional effects are highly significant. (invited paper)« less

  13. Absolute Hugoniot measurements for CH foams in the 1.5-8 Mbar range

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Velikovich, A. L.; Schmitt, A. J.; Karasik, M.; Serlin, V.; Weaver, J. L.; Oh, J.; Obenschain, S. P.

    2016-10-01

    We report the absolute Hugoniot measurements for dry CH foams at 10% of solid polystyrene density. The 400 μm thick, 500 μm wide planar foam slabs covered with a 10 μm solid plastic ablator were driven with 4 ns long Nike KrF laser pulses whose intensity was varied between 10 and 50 TW/cm2. The trajectories of the shock front and the ablative piston, as well as the rarefaction fan emerging after the shock breakout from the rear surface of the target were clearly observed using the side-on monochromatic x-ray imaging radiography. From these measurements the shock density compression ratio and the shock pressure are evaluated directly. The observed compression ratios varied between 4 and 8, and the corresponding shock pressures - between 1.5 and 8 Mbar. The data was simulated with the FASTRAD3D hydrocode, using standard models of inverse bremsstrahlung absorption, flux-limited thermal conduction, and multi-group radiation diffusion. The demonstrated diagnostics technique applied in a cryo experiment would make it possible to make the first absolute Hugoniot measurements for liquid deuterium or DT-wetted CH foams, which is relevant for designing the wetted-foam indirect-drive ignition targets for NIF. This work was supported by the US DOE/NNSA.

  14. Passage of a shock wave through inhomogeneous media and its impact on gas-bubble deformation.

    PubMed

    Nowakowski, A F; Ballil, A; Nicolleau, F C G A

    2015-08-01

    The paper investigates shock-induced vortical flows within inhomogeneous media of nonuniform thermodynamic properties. Numerical simulations are performed using a Eulerian type mathematical model for compressible multicomponent flow problems. The model, which accounts for pressure nonequilibrium and applies different equations of state for individual flow components, shows excellent capabilities for the resolution of interfaces separating compressible fluids as well as for capturing the baroclinic source of vorticity generation. The developed finite volume Godunov type computational approach is equipped with an approximate Riemann solver for calculating fluxes and handles numerically diffused zones at flow component interfaces. The computations are performed for various initial conditions and are compared with available experimental data. The initial conditions promoting a shock-bubble interaction process include weak to high planar shock waves with a Mach number ranging from 1.2 to 3 and isolated cylindrical bubble inhomogeneities of helium, argon, nitrogen, krypton, and sulphur hexafluoride. The numerical results reveal the characteristic features of the evolving flow topology. The impulsively generated flow perturbations are dominated by the reflection and refraction of the shock, the compression, and acceleration as well as the vorticity generation within the medium. The study is further extended to investigate the influence of the ratio of the heat capacities on the interface deformation.

  15. X-ray Scattering Measurement of the Heat Capacity Ratio in Shock Compressed Matter

    NASA Astrophysics Data System (ADS)

    Fortmann, C.; Lee, H. J.; Doeppner, Tilo; Kritcher, A. L.; Landen, O. L.; Falcone, R. W.; Glenzer, S. H.

    2011-10-01

    We developed accurate x-ray scattering techniques to measure properties of matter under extreme conditions of density and temperature in intense laser-solid interaction experiments. We report on novel applications of x-ray scattering to measure the heat-capacity ratio γ =cp /cv of a Be plasma which determines the equation of state of the system. Ultraintense laser radiation is focussed onto both sides of a Be foil, creating two counterpropagating planar shock waves that collide in the target center. A second set of lasers produces Zn He- α radiation of 8.9 keV energy that scatters from the shock-compressed matter. We observe temperatures of 10eV and 15eV and mass densities of 5g/cm3 and 11g/cm3 before and after the shock collision. Applying the Rankine-Hugoniot relations for counterpropagating shocks we then infer γ as a function of density using only the measured mass compression ratios. Our results agree with equation of state models and DFT simulations. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. We acknowledge support from the Alexander von Humboldt-Foundation.

  16. Transonic Shock-Wave/Boundary-Layer Interactions on an Oscillating Airfoil

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.; Malcolm, Gerald N.

    1980-01-01

    Unsteady aerodynamic loads were measured on an oscillating NACA 64A010 airfoil In the NASA Ames 11 by 11 ft Transonic Wind Tunnel. Data are presented to show the effect of the unsteady shock-wave/boundary-layer interaction on the fundamental frequency lift, moment, and pressure distributions. The data show that weak shock waves induce an unsteady pressure distribution that can be predicted quite well, while stronger shock waves cause complex frequency-dependent distributions due to flow separation. An experimental test of the principles of linearity and superposition showed that they hold for weak shock waves while flows with stronger shock waves cannot be superimposed.

  17. F-15B in flight with X-33 Thermal Protection Systems (TPS) on Flight Test Fixture

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In-flight photo of the NASA F-15B used in tests of the X-33 Thermal Protection System (TPS) materials. Flying at subsonic speeds, the F-15B tests measured the air loads on the proposed X-33 protective materials. In contrast, shock loads testing investigated the local impact of the supersonic shock wave itself on the TPS materials. Similar tests had been done in 1985 for the space shuttle tiles, using an F-104 aircraft.

  18. F-15B in flight with X-33 Thermal Protection Systems (TPS) on Flight Test Fixture

    NASA Image and Video Library

    1998-05-14

    In-flight photo of the NASA F-15B used in tests of the X-33 Thermal Protection System (TPS) materials. Flying at subsonic speeds, the F-15B tests measured the air loads on the proposed X-33 protective materials. In contrast, shock loads testing investigated the local impact of the supersonic shock wave itself on the TPS materials. Similar tests had been done in 1985 for the space shuttle tiles, using an F-104 aircraft.

  19. Mass-loss rates, ionization fractions, shock velocities, and magnetic fields of stellar jets

    NASA Technical Reports Server (NTRS)

    Hartigan, Patrick; Morse, Jon A.; Raymond, John

    1994-01-01

    In this paper we calculate emission-line ratios from a series of planar radiative shock models that cover a wide range of shock velocities, preshock densities, and magnetic fields. The models cover the initial conditions relevant to stellar jets, and we show how to estimate the ionization fractions and shock velocities in jets directly from observations of the strong emission lines in these flows. The ionization fractions in the HH 34, HH 47, and HH 111 jets are approximately 2%, considerably smaller than previous estimates, and the shock velocities are approximately 30 km/s. For each jet the ionization fractions were found from five different line ratios, and the estimates agree to within a factor of approximately 2. The scatter in the estimates of the shock velocities is also small (+/- 4 km/s). The low ionization fractions of stellar jets imply that the observed electron densities are much lower than the total densities, so the mass-loss rates in these flows are correspondingly higher (approximately greater than 2 x 10(exp -7) solar mass/yr). The mass-loss rates in jets are a significant fraction (1%-10%) of the disk accretion rates onto young stellar objects that drive the outflows. The momentum and energy supplied by the visible portion of a typical stellar jet are sufficient to drive a weak molecular outflow. Magnetic fields in stellar jets are difficult to measure because the line ratios from a radiative shock with a magnetic field resemble those of a lower velocity shock without a field. The observed line fluxes can in principle indicate the strength of the field if the geometry of the shocks in the jet is well known.

  20. Study on the shock interference in a wedged convergent-divergent channel

    NASA Astrophysics Data System (ADS)

    Yu, F. M.; Wang, C. Z.

    The investigation of shock reflection-to-diffraction phenomena upon a wedged convergent-divergent channel produced by a planar incident shock wave have been done in the shock tube facility of Institute of Aeronautics and Astronautics, National Cheng-Kung University. The experiment proceeds upon seven wedged convergent-divergent channels with the forward and rear wedge angles arrangement of them are (50°, 50°), (35°, 35°), (50°, 35°), (35°, 50°), (50°, 0°), (35°, 0°), and (90°, 0°), respectively. They were tested at Mach numbers of 1.1, 1.2, 1.3, 1.4, 1.5 and 1.6, respectively. On the first wedged channel, following the regular reflection on a 50°- wedged surface by the incident shock wave, shock diffraction with Mach stem has been observed as it moves to the downstream wedge surface. On the apex of the wedge, the secondary reflected shock behaviors as a sector of the blast shock moving toward the centerline of the channel. From the color schlieren pictures it has been observed that there exists a pattern of blast-wave-type high gas density gradient region near the wedge apex. Following the Mach reflection from the 35° -wedged surface on which only the Mach stem diffracted across the apex and following with a small region of disturbed acoustic wave front. The shock interference, which proceeds by the Mach reflection-to-diffraction generates a very complicate vortical flow structure. The measurement of the peak pressure along centerline of the channel downstream of the wedge apex indicates that it is larger near the apex and it decreases downstream. It is larger for larger convergent wedge angle and It is smaller for larger divergent wedge angle.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, Y.; Neal, C.; Salari, K.

    Propagation of a strong shock through a bed of particles results in complex wave dynamics such as a reflected shock, a transmitted shock, and highly unsteady flow inside the particle bed. In this paper we present three-dimensional numerical simulations of shock propagation in air over a random bed of particles. We assume the flow is inviscid and governed by the Euler equations of gas dynamics. Simulations are carried out by varying the volume fraction of the particle bed at a fixed shock Mach number. We compute the unsteady inviscid streamwise and transverse drag coefficients as a function of time formore » each particle in the random bed as a function of volume fraction. We show that (i) there are significant variations in the peak drag for the particles in the bed, (ii) the mean peak drag as a function of streamwise distance through the bed decreases with a slope that increases as the volume fraction increases, and (iii) the deviation from the mean peak drag does not correlate with local volume fraction. We also present the local Mach number and pressure contours for the different volume fractions to explain the various observed complex physical mechanisms occurring during the shock-particle interactions. Since the shock interaction with the random bed of particles leads to transmitted and reflected waves, we compute the average flow properties to characterize the strength of the transmitted and reflected shock waves and quantify the energy dissipation inside the particle bed. Finally, to better understand the complex wave dynamics in a random bed, we consider a simpler approximation of a planar shock propagating in a duct with a sudden area change. We obtain Riemann solutions to this problem, which are used to compare with fully resolved numerical simulations.« less

  2. Three-dimensional fracture instability of a displacement-weakening planar interface under locally peaked nonuniform loading

    NASA Astrophysics Data System (ADS)

    Uenishi, Koji

    2018-06-01

    We consider stability of fracture on a three-dimensional planar interface subjected to a loading stress that is locally peaked spatially, the level of which increases quasi-statically in time. Similar to the earlier study on the two-dimensional case (Uenishi and Rice, 2003; Rice and Uenishi, 2010), as the loading stress increases, a crack, or a region of displacement discontinuity (opening gap in tension or slip for shear fracture), develops on the interface where the stress is presumed to decrease according to a displacement-weakening constitutive relation. Upon reaching the instability point at which no further quasi-static solution for the extension of the crack on the interface exists, dynamic fracture follows. For the investigation of this instability point, we employ a dimensional analysis as well as an energy approach that gives a Rayleigh-Ritz approximation for the dependence of crack size and maximum displacement discontinuity on the level and quadratic shape of the loading stress distribution. We show that, if the linear displacement-weakening law is applied and the crack may be assumed of an elliptical form, the critical crack size at instability is independent of the curvature of the loading stress distribution and it is of the same order for all two- and three-dimensional cases.

  3. Strength and failure of a damaged material

    DOE PAGES

    Cerreta, Ellen K.; Gray III, George T.; Trujillo, Carl P.; ...

    2015-09-07

    Under complex, dynamic loading conditions, damage can occur within a material. Should this damage not lead to catastrophic failure, the material can continue to sustain further loading. But, little is understood about how to represent the mechanical response of a material that has experienced dynamic loading leading to incipient damage. We examine this effect in copper. Copper is shock loaded to impart an incipient state of damage to the material. Thereafter compression and tensile specimens were sectioned from the dynamically damaged specimen to quantify the subsequent properties of the material in the region of intense incipient damage and in regionsmore » far from the damage. Finally, we observed that enhanced yield stresses result from the damaged material even over material, which has simply been shock loaded and not damaged. These results are rationalized in terms of stored plastic work due to the damage process.« less

  4. Strength and failure of a damaged material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerreta, Ellen K.; Gray III, George T.; Trujillo, Carl P.

    Under complex, dynamic loading conditions, damage can occur within a material. Should this damage not lead to catastrophic failure, the material can continue to sustain further loading. But, little is understood about how to represent the mechanical response of a material that has experienced dynamic loading leading to incipient damage. We examine this effect in copper. Copper is shock loaded to impart an incipient state of damage to the material. Thereafter compression and tensile specimens were sectioned from the dynamically damaged specimen to quantify the subsequent properties of the material in the region of intense incipient damage and in regionsmore » far from the damage. Finally, we observed that enhanced yield stresses result from the damaged material even over material, which has simply been shock loaded and not damaged. These results are rationalized in terms of stored plastic work due to the damage process.« less

  5. Development of an Aerosol Loading Technique for Ignition Time Measurements in Shock Tubes

    DTIC Science & Technology

    2007-08-01

    authors do not follow the 200 word limit 14. SUBJECT TERMS Aerosol Shock Tube, Ignition Delay Time, n -Dodecane, Aerosol 17. SECURITY CLASSIFICATION...time measurements of n -dodecane/O2/argon mixtures. These measurements are found to be consistent with those made in our heated shock tube facility. (a...Papers published in peer-reviewed journals ( N /A for none) S. S. Vasu, D. F. Davidson, R. K. Hanson, “Shock Tube Measurements of Jet Fuel Ignition

  6. Calculation of reinforced-concrete frame strength under a simultaneous static cross section load and a column lateral impact

    NASA Astrophysics Data System (ADS)

    Belov, Nikolay; Yugov, Nikolay; Kopanitsa, Dmitry; Kopanitsa, Georgy; Yugov, Alexey; Kaparulin, Sergey; Plyaskin, Andrey; Kalichkina, Anna; Ustinov, Artyom

    2016-01-01

    When designing buildings with reinforced concrete that are planned to resist dynamic loads it is necessary to calculate this structural behavior under operational static and emergency impact and blast loads. Calculations of the structures under shock-wave loads can be performed by solving dynamic equations that do not consider static loads. Due to this fact the calculation of reinforced concrete frame under a simultaneous static and dynamic load in full 3d settings becomes a very non trivial and resource consuming problem. This problem can be split into two tasks. The first one is a shock-wave problem that can be solved using software package RANET-3, which allows solving the problem using finite elements method adapted for dynamic task. This method calculates strain-stress state of the material and its dynamic destruction, which is considered as growth and consolidation of micro defects under loading. On the second step the results of the first step are taken as input parameters for quasi static calculation of simultaneous static and dynamic load using finite elements method in AMP Civil Engineering-11.

  7. Neutron Resonance Spectrometry Shock Temperatures in Molybdenum

    NASA Astrophysics Data System (ADS)

    Swift, Damian; Seifter, Achim; Holtkamp, David; Yuan, Vincent; Clark, David; Buttler, William

    2007-06-01

    Neutron resonance spectrometry (NRS) has been used to measure the temperature in Mo during shock loading, giving temperatures higher than expected. The effect of plastic flow and non-ideal projectile behavior were assessed. Plastic flow was estimated to contribute a temperature rise of 55K compared with hydrodynamic flow, and 100-150K on release, consistent with pyrometry measurements. Simulations were performed of the HE flyer system used to induce the shock in the Mo sample. The simulations predicted that the flyer was slightly curved on impact. The resulting spatial variations in load, including radial components of velocity, were predicted to increase the apparent NRS temperature by 160K. These corrections are sufficient to reconcile the apparent temperatures deduced using NRS with the accepted properties of Mo.

  8. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources.

    PubMed

    Tang, M X; Zhang, Y Y; E, J C; Luo, S N

    2018-05-01

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic-plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.

  9. Unusual plasticity and strength of metals at ultra-short load durations

    NASA Astrophysics Data System (ADS)

    Kanel, G. I.; Zaretsky, E. B.; Razorenov, S. V.; Ashitkov, S. I.; Fortov, V. E.

    2017-08-01

    This paper briefly reviews recent experimental results on the temperature-rate dependences of flow and fracture stresses in metals under high strain rate conditions for pulsed shock-wave loads with durations from tens of picoseconds up to microseconds. In the experiments, ultimate (‘ideal’) values of the shear and tensile strengths have been approached and anomalous growth of the yield stress with temperature at high strain rates has been confirmed for some metals. New evidence is obtained for the intense dislocation multiplication immediately originating in the elastic precursor of a compression shock wave. It is found that under these conditions inclusions and other strengthening factors may have a softening effect. Novel and unexpected features are observed in the evolution of elastoplastic compression shock waves.

  10. Measurement and analysis of force-time outputs of pyrotechnic nuts

    NASA Technical Reports Server (NTRS)

    Neubert, V. H.

    1973-01-01

    The dynamic loadings produced by two standard pyrotechnic nuts were compared with loadings produced by four recently developed low-shock nuts. The nuts were manufactured by separate contractors. Each nut was given a number designation, the number having no special significance. The results show that the use of the Hopkinson bar to measure force-time outputs of the nuts at stud and housing sides aided greatly in understanding the events occurring in the nuts. Acceleration data appear to be dependable, for the most part, but of more limited value. The low-shock designs show considerable improvement over the standard designs above 4,000 Hz when the results are plotted in shock spectrum form. They involve some penalties with regard to weight and cost.

  11. Simulations of X-ray diffraction of shock-compressed single-crystal tantalum with synchrotron undulator sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, M. X.; Zhang, Y. Y.; E, J. C.

    Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic–plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of themore » diffraction patterns is discussed.« less

  12. THE FLOW AROUND A COSMIC STRING. I. HYDRODYNAMIC SOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beresnyak, Andrey; Nordita, KTH Royal Institute of Technology and Stockholm University, SE-10691

    2015-05-10

    Cosmic strings are linear topological defects which are hypothesized to be produced during inflation. Most searches for strings have relied on the string’s lensing of background galaxies or the cosmic microwave background. In this paper, I obtained a solution for the supersonic flow of collisional gas past the cosmic string which has two planar shocks with a shock compression ratio that depends on the angle defect of the string and its speed. The shocks result in the compression and heating of the gas and, given favorable conditions, particle acceleration. Gas heating and over-density in an unusual wedge shape can bemore » detected by observing the Hi line at high redshifts. Particle acceleration can occur in the present-day universe when the string crosses the hot gas contained in galaxy clusters and, since the consequences of such a collision persist for cosmological timescales, could be located by looking at unusual large-scale radio sources situated on a single spatial plane.« less

  13. The “2T” ion-electron semi-analytic shock solution for code-comparison with xRAGE: A report for FY16

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferguson, Jim Michael

    2016-10-05

    This report documents an effort to generate the semi-analytic "2T" ion-electron shock solution developed in the paper by Masser, Wohlbier, and Lowrie, and the initial attempts to understand how to use this solution as a code-verification tool for one of LANL's ASC codes, xRAGE. Most of the work so far has gone into generating the semi-analytic solution. Considerable effort will go into understanding how to write the xRAGE input deck that both matches the boundary conditions imposed by the solution, and also what physics models must be implemented within the semi-analytic solution itself to match the model assumptions inherit withinmore » xRAGE. Therefore, most of this report focuses on deriving the equations for the semi-analytic 1D-planar time-independent "2T" ion-electron shock solution, and is written in a style that is intended to provide clear guidance for anyone writing their own solver.« less

  14. Verification Test of the SURF and SURFplus Models in xRage: Part III Affect of Mesh Alignment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    The previous studies used an underdriven detonation wave in 1-dimension (steady ZND reaction zone profile followed by a scale-invariant rarefaction wave) for PBX 9502 as a verification test of the implementation of the SURF and SURFplus models in the xRage code. Since the SURF rate is a function of the lead shock pressure, the question arises as to the effect on accuracy of variations in the detected shock pressure due to the alignment of the shock front with the mesh. To study the effect of mesh alignment we simulate a cylindrically diverging detonation wave using a planar 2-D mesh. Themore » leading issue is the magnitude of azimuthal asymmetries in the numerical solution. The 2-D test case does not have an exact analytic solution. To quantify the accuracy, the 2-D solution along rays through the origin are compared to a highly resolved 1-D simulation in cylindrical geometry.« less

  15. Blast and Shock Mitigation Through the Use of Advanced Materials

    NASA Astrophysics Data System (ADS)

    Bartyczak, Susan; Edgerton, Lauren; Mock, Willis

    2017-06-01

    The dynamic response to low amplitude blast waves of four viscoelastic materials has been investigated: Dragonshield BCTM and three polyurea formulations (P1000, P650, and a P250/1000 blend). A 40-mm-bore gas gun was used as a shock tube to generate planar blast waves, ranging from 1 to 2 bars, that impacted instrumented target assemblies mounted on the gas gun muzzle. Each target assembly consisted of a viscoelastic material sample sandwiched between two gauge assemblies for measuring wave velocity and input/output stresses. Each gauge assembly consisted of one polyvinylidene fluoride (PVDF) stress gauge sandwiched between two 3.25 inch diameter 6061-T6 aluminum discs. Impedance matching techniques were used on the stress measurements to calculate the stresses on the front and back of the samples. The shock velocity-particle velocity relationship, stress-particle velocity relationship, and blast attenuation for each material were determined. The experimental technique, analysis methodology, and results will be presented.

  16. Detailed energy distributions in laser-produced plasmas of solid gold and foam gold planar targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Yunsong; Department of Engineering Physics, Tsinghua University, Beijing 100084; Zhang, Lu

    Foam gold was proposed to increase the laser to x-ray conversion efficiency due to its important applications. To understand the mechanism of x-ray enhancement, the detailed energy distributions and plasma profiles for laser-irradiated solid gold and foam gold targets were studied comparatively by hydrodynamic simulations using the code Multi-1D. It is confirmed that the radiation heat wave is subsonic for the normal solid gold target, while supersonic for the foam gold target. The shock wave, which is behind the supersonic radiation heat wave for the foam gold target, generates a plasma temperature gradient with high temperature near the shock wavemore » front to produce an additional net outward radiation for enhancement of the x-ray emission. Much larger inward plasma velocity is also driven by the shock wave as an initial plasma velocity for the laser deposition and electron thermal conduct zone, which decreases the expanding plasma kinetic energy loss and helps to increase the x-ray radiation.« less

  17. Quantification of non-ideal explosion violence with a shock tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Scott I; Hill, Larry G

    There is significant interest in quantifying the blast violence associated with various nonideal explosions. Such data is essential to evaluate the damage potential of both explosive cookoff and terrorist explosive scenarios. We present a technique designed to measure the source energy associated with a non-ideal, asymmetrical, and three-dimensional explosion. A tube is used to confine and focus energy from a blast event into a one-dimensional, quasi-planar shock front. During propagation along the length of the tube, the wave is allowed to shocksteepen into a more ideal form. Pressure transducers then measure the shock overpressure as a function of the distancemore » from the source. One-dimensional blast scaling theory allows calculation of the source energy from this data. This small-scale test method addresses cost and noise concerns as well as boosting and symmetry issues associated with large-scale, three-dimensional, blast arena tests. Results from both ideal explosives and non-ideal explosives are discussed.« less

  18. Simulations of the Richtmyer-Meshkov Instability with experimentally measured volumetric initial conditions

    NASA Astrophysics Data System (ADS)

    Ferguson, Kevin; Sewell, Everest; Krivets, Vitaliy; Greenough, Jeffrey; Jacobs, Jeffrey

    2016-11-01

    Initial conditions for the Richtmyer-Meshkov instability (RMI) are measured in three dimensions in the University of Arizona Vertical Shock Tube using a moving magnet galvanometer system. The resulting volumetric data is used as initial conditions for the simulation of the RMI using ARES at Lawrence-Livermore National Laboratory (LLNL). The heavy gas is sulfur hexafluoride (SF6), and the light gas is air. The perturbations are generated by harmonically oscillating the gasses vertically using two loudspeakers mounted to the shock tube which cause Faraday resonance, producing a random short wavelength perturbation on the interface. Planar Mie scattering is used to illuminate the flow field through the addition of propylene glycol particles seeded in the heavy gas. An M=1.2 shock impulsively accelerates the interface, initiating instability growth. Images of the initial condition and instability growth are captured at a rate of 6 kHz using high speed cameras. Comparisons between experimental and simulation results, mixing diagnostics, and mixing zone growth are presented.

  19. Analytical and numerical analysis of the slope of von Mises planar trusses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalina, M.; Frantík, P.

    2016-06-08

    In the present paper, there are presented post-critical stress states which will occur at loading by vertical shift of the top joint in the direction downwards. The formation of certain stress states depends on the size of the angle formed by a straight beam of the von Mises planar truss with horizontal plane. Numerical and analytical methods and their problems with finding the angle were described. The numerical solution applies the method of searching for a minimum of potential energy.

  20. Molecular dynamics simulation of shock induced ejection on fused silica surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Rui; Xiang, Meizhen; Jiang, Shengli

    2014-05-21

    Shock response and surface ejection behaviors of fused silica are studied by using non-equilibrium molecular dynamics combining with the Tersoff potential. First, bulk structure and Hugoniot curves of fused silica are calculated and compared with experimental results. Then, the dynamical process of surface ejection behavior is simulated under different loading velocities ranging from 3.5 to 5.0 km∕s, corresponding to shock wave velocities from 7.1 to 8.8 km∕s. The local atomistic shear strain parameter is used to describe the local plastic deformation under conditions of shock compression or releasing. Our result shows that the shear strain is localized in the bottom area ofmore » groove under the shock compression. Surface ejection is observed when the loading velocity exceeds 4.0 km∕s. Meanwhile, the temperature of the micro-jet is ∼5574.7 K, which is close to experiment measurement. Several kinds of structural defects including non-bridging oxygen are found in the bulk area of the sample after ejection.« less

  1. Visualization of the 3-dimensional flow around a model with the aid of a laser knife

    NASA Technical Reports Server (NTRS)

    Borovoy, V. Y.; Ivanov, V. V.; Orlov, A. A.; Kharchenko, V. N.

    1984-01-01

    A method for visualizing the three-dimensional flow around models of various shapes in a wind tunnel at a Mach number of 5 is described. A laser provides a planar light flux such that any plane through the model can be selectively illuminated. The shape of shock waves and separation regions is then determined by the intensity of light scattered by soot particles in the flow.

  2. Structural Dynamics of Electronic Systems

    NASA Astrophysics Data System (ADS)

    Suhir, E.

    2013-03-01

    The published work on analytical ("mathematical") and computer-aided, primarily finite-element-analysis (FEA) based, predictive modeling of the dynamic response of electronic systems to shocks and vibrations is reviewed. While understanding the physics of and the ability to predict the response of an electronic structure to dynamic loading has been always of significant importance in military, avionic, aeronautic, automotive and maritime electronics, during the last decade this problem has become especially important also in commercial, and, particularly, in portable electronics in connection with accelerated testing of various surface mount technology (SMT) systems on the board level. The emphasis of the review is on the nonlinear shock-excited vibrations of flexible printed circuit boards (PCBs) experiencing shock loading applied to their support contours during drop tests. At the end of the review we provide, as a suitable and useful illustration, the exact solution to a highly nonlinear problem of the dynamic response of a "flexible-and-heavy" PCB to an impact load applied to its support contour during drop testing.

  3. Quasi-isentropic Compression of Iron and Magnesium Oxide to 3 Mbar at the Omega Laser Facility

    NASA Astrophysics Data System (ADS)

    Wang, J.; Smith, R. F.; Coppari, F.; Eggert, J. H.; Boehly, T.; Collins, G.; Duffy, T. S.

    2011-12-01

    Developing a high-pressure, modest temperature ramp compression drive permits exploration of new regions of thermodynamic space, inaccessible through traditional methods of shock or static compression, and of particular relevance to material conditions found in planetary interiors both within and outside our solar system. Ramp compression is a developing technique that allows materials to be compressed along a quasi-isentropic path and provides the ability to study materials in the solid state to higher pressures than can be achieved with diamond anvil cell or shock wave methods. Iron and magnesium oxide are geologically important materials each representative of one of the two major interior regions (core and mantle) of terrestrial planets. An experimental platform for ramp loading of iron (Fe) and magnesium oxide (MgO), has been established and tested in experiments at the Omega Laser Facility, University of Rochester. Omega is a 60-beam ultraviolet (352 nm) neodymium glass laser which is capable of delivery kilojoules of energy in ~10 ns pulses onto targets of a few mm in dimension. In the current experiments, we used a composite ramped laser pulse involving typically 15 beams with total energy of 2.6-3.3 kJ. The laser beams were used to launch spatially planar ramp compression waves into Fe and MgO targets. Each target had four steps that were approximately 5-7 μm thick. Detection of the ramp wave arrival and its velocity at the free surface of each step was made using a VISAR velocity interferometer. Through the use of Lagrangian analysis on the measured wave profiles, stress-density states in iron and magnesium oxide have been determined to pressures of 291 GPa and 260 GPa respectively. For Fe, the α-ɛ transition of iron is overdriven by an initial shock pulse of ~90.1 GPa followed by ramp compression to the peak pressure. The results will be compared with shock compression and diamond anvil cell data for both materials.

    We acknowledge the Omega staff at LLE for their assistance, Micro/Nano fabrication laboratory staff at Princeton University and the Target Engineering Team at LLNL for fabrication and metrology of the targets used in these experiments. The research was supported by DOE under DE-FG52-09NA29037.

  4. Shock-induced kelyphite formation in the core of a complex impact crater

    NASA Astrophysics Data System (ADS)

    Deseta, Natalie; Boonsue, Suporn; Gibson, Roger L.; Spray, John G.

    2017-10-01

    We present a compositional and textural analysis of shock-induced microtextures in garnet porphyroblasts in migmatitic garnet-cordierite-biotite paragneisses from the centre of the Vredefort impact structure, South Africa. Detailed imaging and major element analysis of deformation features in, and adjacent to, the garnet porphyroblasts record a complex, heterogeneous distribution of shock effects at the microscale. As the most competent silicate mineral in the assemblage, with the highest Hugoniot Elastic Limit and a wide pressure-temperature stability field, the porphyroblastic garnet preserves a more diverse shock deformation response compared to minerals such as quartz and feldspar, which underwent more comprehensive shock metamorphism and subsequent annealing. The garnet porphyroblasts display pre-impact fractures that are overprinted by later intra-granular Hertzian and distinctive planar fractures associated with the impact event. Shock-induced strain localization occurred along internal slip planes and defects, including pre-existing fractures and inclusion boundaries in the garnet. Symplectitic (kelyphitic) coronas commonly enclose the garnet porphyroblasts, and inhabit intra-granular fractures. The kelyphite assemblage in fractures with open communication beyond garnet grain boundaries is characterized by orthopyroxene—cordierite—sapphirine. Conversely, the kelyphite assemblage in closed-off intra-granular fractures is highly variable, comprising spatially restricted combinations of a secondary garnet phase with a majoritic component, Al-rich orthopyroxene, sapphirine and cordierite. The impedance contrast between garnet porphyroblasts and their inclusions further facilitated the formation of shock-induced features (Al-rich orthopyroxene coronas). Together, the textural and mineralogical data suggest that these features provide a record of oscillatory shock perturbations initiated under confining pressure beneath the transient crater floor. This occurred as the shocked rock volume underwent post-shock expansion, forming the core of the central uplift, and was followed by variable textural re-equilibration. This study thus provides a microtextural and mineralogical perspective of the shock regime within confined crust immediately prior to and during central uplift formation.

  5. The shock/shear platform for planar radiation-hydrodynamics experiments on the National Ignition Facility

    DOE PAGES

    Doss, F. W.; Kline, J. L.; Flippo, K. A.; ...

    2015-04-17

    An indirectly-driven shock tube experiment fielded on the National Ignition Facility (NIF) was used to create a high-energy-density hydrodynamics platform at unprecedented scale. Scaling up a shear-induced mixing experiment previously fielded at OMEGA, the NIF shear platform drives 130 μm/ns shocks into a CH foam-filled shock tube (~ 60 mg/cc) with interior dimensions of 1.5 mm diameter and 5 mm length. The pulse-shaping capabilities of the NIF are used to extend the drive for >10 ns, and the large interior tube volumes are used to isolate physics-altering edge effects from the region of interest. The scaling of the experiment tomore » the NIF allows for considerable improvement in maximum driving time of hydrodynamics, in fidelity of physics under examination, and in diagnostic clarity. Details of the experimental platform and post-shot simulations used in the analysis of the platform-qualifying data are presented. Hydrodynamic scaling is used to compare shear data from OMEGA with that from NIF, suggesting a possible change in the dimensionality of the instability at late times from one platform to the other.« less

  6. The formation of reverse shocks in magnetized high energy density supersonic plasma flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebedev, S. V., E-mail: s.lebedev@imperial.ac.uk, E-mail: l.suttle10@imperial.ac.uk; Suttle, L.; Swadling, G. F.

    A new experimental platform was developed, based on the use of supersonic plasma flow from the ablation stage of an inverse wire array z-pinch, for studies of shocks in magnetized high energy density physics plasmas in a well-defined and diagnosable 1-D interaction geometry. The mechanism of flow generation ensures that the plasma flow (Re{sub M} ∼ 50, M{sub S} ∼ 5, M{sub A} ∼ 8, V{sub flow} ≈ 100 km/s) has a frozen-in magnetic field at a level sufficient to affect shocks formed by its interaction with obstacles. It is found that in addition to the expected accumulation of stagnated plasma in a thin layer at the surface ofmore » a planar obstacle, the presence of the magnetic field leads to the formation of an additional detached density jump in the upstream plasma, at a distance of ∼c/ω{sub pi} from the obstacle. Analysis of the data obtained with Thomson scattering, interferometry, and local magnetic probes suggests that the sub-shock develops due to the pile-up of the magnetic flux advected by the plasma flow.« less

  7. Swept shock/boundary layer interaction experiments in support of CFD code validation

    NASA Technical Reports Server (NTRS)

    Settles, G. S.; Lee, Y.

    1992-01-01

    Research on the topic of shock wave/turbulent boundary-layer interaction was carried out during the past three years at the Penn State Gas Dynamics Laboratory. This report describes the experimental research program which provides basic knowledge and establishes new data on heat transfer in swept shock wave/boundary-layer interactions. An equilibrium turbulent boundary-layer on a flat plate is subjected to impingement by swept planar shock waves generated by a sharp fin. Five different interactions with fin angle ranging from 10 deg to 20 deg at freestream Mach numbers of 3.0 and 4.0 produce a variety of interaction strengths from weak to very strong. A foil heater generates a uniform heat flux over the flat plate surface, and miniature thin-film-resistance sensors mounted on it are used to measure the local surface temperature. The heat convection equation is then solved for the heat transfer distribution within an interaction, yielding a total uncertainty of about +/- 10 percent. These experimental data are compared with the results of numerical Navier-Stokes solutions which employ a k-epsilon turbulence model. Finally, a simplified form of the peak heat transfer correlation for fin interactions is suggested.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandal, A.; Gupta, Y. M.

    To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) – a body-centered cubic (BCC) metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ~0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ~3.6 GPa. Numerical simulations ofmore » the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}<111> and/or {112}<111> slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. As a result, the numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.« less

  9. In Situ Observation of High-Pressure Phase Transitions in SiO2 Under Shock Loading Using Time Resolved X-Ray Diffraction

    NASA Astrophysics Data System (ADS)

    Tracy, S. J.; Turneaure, S.; Duffy, T. S.

    2016-12-01

    Quartz is one of the most abundant minerals in Earth's crust and serves as an archetype for silicate minerals generally. The shock metamorphism of silica is important for understanding and interpreting meteorite impact events. Shock compression of quartz is characterized by a phase transition occurring over a broad mixed-phase region ( 10-40 GPa). Despite decades of study, the nature of this transformation and the structure of the high-pressure phase remain poorly understood. In situ x-ray diffraction data on shock-compressed SiO2 was collected at the Dynamic Compression Sector at the Advanced Photon Source. The behavior both single crystal alpha-quartz and fused silica was investigated under dynamic loading through a series real-time synchrotron x-ray diffraction measurements during peak stresses up to 65 GPa. A two-stage light gas gun was used to accelerate LiF flyer plates that impacted the SiO2 samples resulting in a propagating step-like increase in pressure and temperature behind the shock front. Four consecutive x-ray frames, separated by 153 ns, were collected during the transient loading and unloading. These measurements allow for the determination of time-dependent atomic arrangements, demonstrating that both amorphous silica as well as crystalline alpha-quartz transform to stishovite above 36 GPa. These measurements reveal important information about the role of kinetics as well texture development and potential defect structures in the transformed material.

  10. Effective testing of personal protective equipment in blast loading conditions in shock tube: Comparison of three different testing locations

    PubMed Central

    Alay, Eren; Zheng, James Q.; Chandra, Namas

    2018-01-01

    We exposed a headform instrumented with 10 pressure sensors mounted flush with the surface to a shock wave with three nominal intensities: 70, 140 and 210 kPa. The headform was mounted on a Hybrid III neck, in a rigid configuration to eliminate motion and associated pressure variations. We evaluated the effect of the test location by placing the headform inside, at the end and outside of the shock tube. The shock wave intensity gradually decreases the further it travels in the shock tube and the end effect degrades shock wave characteristics, which makes comparison of the results obtained at three locations a difficult task. To resolve these issues, we developed a simple strategy of data reduction: the respective pressure parameters recorded by headform sensors were divided by their equivalents associated with the incident shock wave. As a result, we obtained a comprehensive set of non-dimensional parameters. These non-dimensional parameters (or amplification factors) allow for direct comparison of pressure waveform characteristic parameters generated by a range of incident shock waves differing in intensity and for the headform located in different locations. Using this approach, we found a correlation function which allows prediction of the peak pressure on the headform that depends only on the peak pressure of the incident shock wave (for specific sensor location on the headform), and itis independent on the headform location. We also found a similar relationship for the rise time. However, for the duration and impulse, comparable correlation functions do not exist. These findings using a headform with simplified geometry are baseline values and address a need for the development of standardized parameters for the evaluation of personal protective equipment (PPE) under shock wave loading. PMID:29894521

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heitkamp, M.A.; Adams, W.J.; Camel, V.

    Immobilized bacteria technology (IBT) utilizes inert biocarriers to support high concentrations of chemical-degrading bacteria in reactors designed to provide optimal conditions for microbial activity. This study evaluated IBT performance inpacked bed reactors (PBRs) using a porous inorganic biocarrier (diatomaceous earth), nonporous biocarriers (glass beads), and organic biocarriers having carbon adsorption properties (granular activated carbon) with different porosity. Each reactor was challenged with high chemical loading, acid, dryness, and heat shock conditions. Benchtop PBSs inoculated with a p-nitrophenol (PNP)-degrading Pseudomonas sp. and fed a synthetic waste containing 100 to 1,300 mg/L of PNP showed removal of PNP from effluents within 24more » h of start-up. Chemical loading studies showed maximum PNP removal rates of 6.45 to 7.35 kg/m[sup 3]/d for bacteria in PBRs containing diatomaceous earth beads, glass beads, and activated coconut carbon. A lower PNP removal rate of 1.47 kg/m[sup 3]/d was determined for the activated anthracite carbon, and this PBR responded more slowly to increases in chemical loading. The PBR containing bacteria immobilized on activated coconut carbon showed exceptional tolerance to acid shocking, drying, and heat shocking by maintaining PNP removal rates > 85% throughout the entire study. The other biocarriers showed nearly complete loss of PNP degradation during the perturbations, but all recovered high rates of PNP degradation (> 98% removal) within 48 h after an acid shock at pH2, within 8 d after an acid shock at pH 1.0, within 24 h after drying for 72 h, and within 48 h of heat shocking. The resiliency and high chemical removal efficiency demonstrated by immobilized bacteria in this study support the concept of using IBT for the biotreatment of industrial wastes..« less

  12. Slate Islands, Lake Superior, Canada: A mid-size, Complex Impact Structure

    NASA Technical Reports Server (NTRS)

    Dressler, B. O.; Sharpton, V. L.; Copeland, P.

    1999-01-01

    The target rocks of the 30-32-km diameter Slate Islands impact structure in northern Lake Superior, Canada, are Archean supracrustal and igneous rocks and supracrustal Proterozoic rocks. Shatter cones, pseudotachylites, impact glasses, and microscopic shock metamorphic features were formed during the contact and compression phase of the impact process, followed, during excavation and central uplift, by polymict, clastic matrix breccias in the uplifted target, and by allogenic fall-back breccias (suevite and bunte breccia). Monomict, autoclastic breccias were mainly observed on Mortimer Island and the other outlying islands of the archipelago and were probably generated relatively late in the impact process (central uplift and/or crater modification). The frequency of low index planar shock metamorphic features in quartz was correlated with results from shock experiments to estimate shock pressures experienced by the target rocks. The resulting shock attenuation plan across the archipelago is irregular, probably because the shock wave did not expand from a point or spherical source, and because of the destruction of an originally more regular shock attenuation plan during the central uplift and crater modification stages of the impact process. No impact melt rock bodies have been positively identified on the islands. An impact melt may be present in the annular trough around the islands, though and-based on a weighted mixture of target rocks-may have an intermediate-mafic composition. No such impact melt was found on the archipelago. An Ar-40-Ar-39 release spectrum of a pseudotachylite provides an age of about 436 Ma for the impact structure, substantiating age constraints based on various stratigraphic considerations.

  13. Astrophysically relevant radiatively cooled hypersonic bow shocks in nested wire arrays

    NASA Astrophysics Data System (ADS)

    Ampleford, David

    2009-11-01

    We have performed laboratory experiments which introduce obstructions into hypersonic plasma flows to study the formation of shocks. Astrophysical observations have demonstrated many examples of equivalent radiatively cooled bow shocks, for example the head of protostellar jets or supernova remnants passing through the interstellar medium or between discrete clumps in jets. Wire array z-pinches allow us to study quasi-planar radiatively cooled flows in the laboratory. The early stage of a wire array z-pinch implosion consists of a steady flow of the wire material towards the axis. Given a high rate of radiative cooling, these flows reach high sonic- Mach numbers, typically up to 5. The 2D nature of this configuration allows the insertion of obstacles into the flow, such as a concentric ``inner'' wire array, as has previously been studied for ICF research. Here we study the application of such a nested array to laboratory astrophysics where the inner wires act as obstructions perpendicular to the flow, and induce bow shocks. By varying the wire array material (W/Al), the significance of radiative cooling on these shocks can be controlled, and is shown to change the shock opening angle. As multiple obstructions are present, the experiments show the interaction of multiple bow shocks. It is also possible to introduce a magnetic field around the static object, increasing the opening angle of the shocks. Further experiments can be designed to control the flow density, magnetic field structure and obstruction locations. In collaboration with: S.V. Lebedev, M.E. Cuneo, C.A. Jennings, S.N. Bland, J.P. Chittenden, A. Ciardi, G.N. Hall, S.C. Bott, M. Sherlock, A. Frank, E. Blackman

  14. Shock interactions with heterogeneous energetic materials

    NASA Astrophysics Data System (ADS)

    Yarrington, Cole D.; Wixom, Ryan R.; Damm, David L.

    2018-03-01

    The complex physical phenomenon of shock wave interaction with material heterogeneities has significant importance and nevertheless remains little understood. In many materials, the observed macroscale response to shock loading is governed by characteristics of the microstructure. Yet, the majority of computational studies aimed at predicting phenomena affected by these processes, such as the initiation and propagation of detonation waves in explosives or shock propagation in geological materials, employ continuum material and reactive burn model treatment. In an effort to highlight the grain-scale processes that underlie the observable effects in an energetic system, a grain-scale model for hexanitrostilbene (HNS) has been developed. The measured microstructures were used to produce synthetic computational representations of the pore structure, and a density functional theory molecular dynamics derived equation of state (EOS) was used for the fully dense HNS matrix. The explicit inclusion of the microstructure along with a fully dense EOS resulted in close agreement with historical shock compression experiments. More recent experiments on the dynamic reaction threshold were also reproduced by inclusion of a global kinetics model. The complete model was shown to reproduce accurately the expected response of this heterogeneous material to shock loading. Mesoscale simulations were shown to provide a clear insight into the nature of threshold behavior and are a way to understand complex physical phenomena.

  15. Shock interactions with heterogeneous energetic materials

    DOE PAGES

    Yarrington, Cole D.; Wixom, Ryan R.; Damm, David L.

    2018-03-14

    The complex physical phenomenon of shock wave interaction with material heterogeneities has significant importance and nevertheless remains little understood. In many materials, the observed macroscale response to shock loading is governed by characteristics of the microstructure. Yet the majority of computational studies aimed at predicting phenomena affected by these processes, such as initiation and propagation of detonation waves in explosives, or shock propagation in geological materials, employ continuum material and reactive burn model treatment. In an effort to highlight the grain-scale processes that underlie the observable effects in an energetic system, a grain-scale model for hexanitrostilbene (HNS) has been developed.more » Measured microstructures were used to produce synthetic computational representations of the pore structure, and a density functional theory molecular dynamics (DFT-MD) derived equation of state (EOS) was used for the fully dense HNS matrix. The explicit inclusion of microstructure along with a fully-dense EOS resulted in close agreement with historical shock compression experiments. More recent experiments on dynamic reaction threshold were also reproduced by inclusion of a global kinetics model. The complete model was shown to reproduce accurately the expected response of this heterogeneous material to shock loading. Mesoscale simulations were shown to provide clear insight into the nature of threshold behavior, and are a way to understand complex physical phenomena.« less

  16. Laser-excited optical emission response of CdTe quantum dot/polymer nanocomposite under shock compression

    NASA Astrophysics Data System (ADS)

    Xiao, Pan; Kang, Zhitao; Bansihev, Alexandr A.; Breidenich, Jennifer; Scripka, David A.; Christensen, James M.; Summers, Christopher J.; Dlott, Dana D.; Thadhani, Naresh N.; Zhou, Min

    2016-01-01

    Laser-driven shock compression experiments and corresponding finite element method simulations are carried out to investigate the blueshift in the optical emission spectra under continuous laser excitation of a dilute composite consisting of 0.15% CdTe quantum dots by weight embedded in polyvinyl alcohol polymer. This material is a potential candidate for use as internal stress sensors. The analyses focus on the time histories of the wavelength blue-shift for shock loading with pressures up to 7.3 GPa. The combined measurements and calculations allow a relation between the wavelength blueshift and pressure for the loading conditions to be extracted. It is found that the blueshift first increases with pressure to a maximum and subsequently decreases with pressure. This trend is different from the monotonic increase of blueshift with pressure observed under conditions of quasistatic hydrostatic compression. Additionally, the blueshift in the shock experiments is much smaller than that in hydrostatic experiments at the same pressure levels. The differences in responses are attributed to the different stress states achieved in the shock and hydrostatic experiments and the time dependence of the mechanical response of the polymer in the composite. The findings offer a potential guide for the design and development of materials for internal stress sensors for shock conditions.

  17. Quartz microstructures in the Younger Dryas boundary layer ~12.9 ka.

    NASA Astrophysics Data System (ADS)

    van Hoesel, A.; Hoek, W. Z.; Pennock, G. M.; Drury, M. R.

    2012-04-01

    In 2007, Firestone et al. proposed that an extraterrestrial impact occurred at the end of the Allerød interstadial, destabilizing the North American ice sheet and initiating the colder Younger Dryas (YD) stadial. Up to now, the evidence for this proposed impact has been heavily debated (Pinter et al., 2011) and no one has been able to provide convincing evidence in favour of the hypothesis. Two years later, Mahaney et al. (2009) claimed that they had frequently found planar deformation features (PDFs) in quartz from a possible YD boundary layer in Venezuela. However, the data presented consisted of an SEM image of the surface of a quartz grain only, and in following work Mahaney et al. (2010) stated that they had found no irrefutable evidence of PDFs. Instead, they showed grains with oriented cracks along their edges, which they claimed to be related to the 'mass impact and extreme heat' from incoming ejecta material. However, oriented cracks are not accepted evidence for an impact (French, Koeberl, 2010). We investigate the quartz fraction of samples from the European Usselo horizon, an Allerød-YD age soil, as well as one sample from the North American Black Mat, which marks the onset of the YD. Possible shocked quartz grains were isolated using density separation, mounted in epoxy and polished. No evidence for oriented cracks along grain edges, like those reported by Mahaney et al. (2010), has been found so far. Transmitted light microscopy showed that a number of grains contained tectonic deformation lamellae. One grain from the Usselo horizon contains at least two sets of closely spaced, straight, and narrow lamellae, similar to PDFs. In SEM-CL imaging however, only some of these lamellae showed up as non-luminescent, while most had the same intensity as the host grain. This is not typical for PDFs (Hamers, Drury 2011). It is possible that these lamellae represent planar fractures, which also form by low pressure shock processes. It must be noted that even if these closely spaced features are indeed shock related, one or two grains do not prove the YD impact hypothesis. Although, the quartz in the YD boundary layer is derived from regional aeolian activity, their source material was transported to the area by major rivers systems or the Scandinavian ice sheet. It is thus possible that these grains were eroded from an older crater or impact horizon. Furthermore, low shock level deformation might also occur during a large volcanic eruption. In that case, the planar features we find might possibly be related to the colossal Laacher See eruption (Van den Bogaard, Schminke, 1985), which occurred only two centuries before the onset of the YD.

  18. Nonlinear analysis of a shock-loaded membrane.

    NASA Technical Reports Server (NTRS)

    Madden, R.; Remington, P. J.

    1973-01-01

    Results from a computer method for analyzing the unsteady interaction of a fluid stream and a flat circular elastic membrane are presented. The loading on the membrane is assumed to be caused by the firing of a shock tube. The fluid pressures and velocities are determined from a scheme based on the numerical method of characteristics, and the membrane is analyzed using exact relations for membrane strain. The interactive solution is found to give peak stresses 40% lower than a solution which assumes a pressure invariant in space and time.

  19. The Shock and Vibration Bulletin. Part 3: Structure Medium Interaction, Case Studies in Dynamics

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Structure and medium interactions topics are addressed. Topics include: a failure analysis of underground concrete structures subjected to blast loadings, an optimization design procedure for concrete slabs, and a discussion of the transient response of a cylindrical shell submerged in a fluid. Case studies in dynamics are presented which include an examination of a shock isolation platform for a seasparrow launcher, a discussion of hydrofoil fatigue load environments, and an investigation of the dynamic characteristics of turbine generators and low tuned foundations.

  20. Numeric spectral radiation hydrodynamic calculations of supernova shock breakouts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sapir, Nir; Halbertal, Dorri

    2014-12-01

    We present here an efficient numerical scheme for solving the non-relativistic one-dimensional radiation-hydrodynamics equations including inelastic Compton scattering, which is not included in most codes and is crucial for solving problems such as shock breakout. The devised code is applied to the problems of a steady-state planar radiation mediated shock (RMS) and RMS breakout from a stellar envelope. The results are in agreement with those of a previous work on shock breakout, in which Compton equilibrium between matter and radiation was assumed and the 'effective photon' approximation was used to describe the radiation spectrum. In particular, we show that themore » luminosity and its temporal dependence, the peak temperature at breakout, and the universal shape of the spectral fluence derived in this earlier work are all accurate. Although there is a discrepancy between the spectral calculations and the effective photon approximation due to the inaccuracy of the effective photon approximation estimate of the effective photon production rate, which grows with lower densities and higher velocities, the difference in peak temperature reaches only 30% for the most discrepant cases of fast shocks in blue supergiants. The presented model is exemplified by calculations for supernova 1987A, showing the detailed evolution of the burst spectrum. The incompatibility of the stellar envelope shock breakout model results with observed properties of X-ray flashes (XRFs) and the discrepancy between the predicted and observed rates of XRFs remain unexplained.« less

Top