NASA Astrophysics Data System (ADS)
Sakimura, Takeshi; Watanabe, Yojiro; Ando, Toshiyuki; Kameyama, Shumpei; Asaka, Kimio; Tanaka, Hisamichi; Yanagisawa, Takayuki; Hirano, Yoshihito; Inokuchi, Hamaki
2012-11-01
We have developed a 1.5-μm eye-safe wavelength high average power laser amplifier using an Er,Yb:glass planar waveguide for coherent Doppler LIDAR. Large cooling surface of the planar waveguide enabled high average power pumping for Er,Yb:glass which has low thermal fracture limit. Nonlinear effects are suppressed by the large beam size which is designed by the waveguide thickness and the beam width of the planar direction. Multi-bounce optical path configuration and high-intensity pumping provide high-gain and high-efficient operation using three-level laser material. With pulsed operation, the maximum pulse energy of 1.9 mJ was achieved at the repetition rate of 4 kHz. Output average power of the amplified signal was 7.6W with the amplified gain of more than 20dB. This amplifier is suitable for coherent Doppler LIDAR to enhance the measurable range.
Internal gain in Er-doped As₂S₃ chalcogenide planar waveguides.
Yan, Kunlun; Vu, Khu; Madden, Steve
2015-03-01
Low-loss erbium-doped As₂S₃ planar waveguides are fabricated by cothermal evaporation and plasma etching. Internal gain in the telecommunications band is demonstrated for the first time in any chalcogenide glass and additionally in a thin film planar waveguide amplifier configuration.
Compact cladding-pumped planar waveguide amplifier and fabrication method
Bayramian, Andy J.; Beach, Raymond J.; Honea, Eric; Murray, James E.; Payne, Stephen A.
2003-10-28
A low-cost, high performance cladding-pumped planar waveguide amplifier and fabrication method, for deployment in metro and access networks. The waveguide amplifier has a compact monolithic slab architecture preferably formed by first sandwich bonding an erbium-doped core glass slab between two cladding glass slabs to form a multi-layer planar construction, and then slicing the construction into multiple unit constructions. Using lithographic techniques, a silver stripe is deposited and formed at a top or bottom surface of each unit construction and over a cross section of the bonds. By heating the unit construction in an oven and applying an electric field, the silver stripe is then ion diffused to increase the refractive indices of the core and cladding regions, with the diffusion region of the core forming a single mode waveguide, and the silver diffusion cladding region forming a second larger waveguide amenable to cladding pumping with broad area diodes.
The hybrid photonic planar integrated receiver with a polymer optical waveguide
NASA Astrophysics Data System (ADS)
Busek, Karel; Jerábek, Vitezslav; Armas Arciniega, Julio; Prajzler, Václav
2008-11-01
This article describes design of the photonic receiver composed of the system polymer planar waveguides, InGaAs p-i-n photodiode and integrated HBT amplifier on a low loss composite substrate. The photonic receiver was the main part of the hybrid integrated microwave optoelectronic transceiver TRx (transciever TRx) for the optical networks PON (passive optical networks) with FTTH (fiber-to-the-home) topology. In this article are presented the research results of threedimensional field between output facet of a optical waveguide and p-i-n photodiode. In terms of our research, there was optimized the optical coupling among the facet waveguide and pi-n photodiode and the electrical coupling among p-i-n photodiode and input of HBT amplifier. The hybrid planar lightwave circuit (PLC) of the transceiver TRx will be composed from a two parts - polymer optical waveguide including VHGT filter section and a optoelectronic microwave section.
Sm 3+-doped polymer optical waveguide amplifiers
NASA Astrophysics Data System (ADS)
Huang, Lihui; Tsang, Kwokchu; Pun, Edwin Yue-Bun; Xu, Shiqing
2010-04-01
Trivalent samarium ion (Sm 3+) doped SU8 polymer materials were synthesized and characterized. Intense red emission at 645 nm was observed under UV laser light excitation. Spectroscopic investigations show that the doped materials are suitable for realizing planar optical waveguide amplifiers. About 100 μm wide multimode Sm 3+-doped SU8 channel waveguides were fabricated using a simple UV exposure process. At 250 mW, 351 nm UV pump power, a signal enhancement of ˜7.4 dB at 645 nm was obtained for a 15 mm long channel waveguide.
NASA Astrophysics Data System (ADS)
Jiang, Shibin; Honkanen, Seppo; Luo, Tao; Hwang, Bor-Chyuan; Nunzi Conti, Gualtiero; Myers, Michael J.; Rhonehouse, Daniel L.; Peyghambarian, Nasser
1998-04-01
A new Er3+ doped phosphate glass exhibiting an excellent durability in both boiling water and NaNO3 molten salt was developed. Ion-exchange process of this glass was investigated by treating glass samples in a variety of salt bathes with various exposure times. Planar waveguide with one mode at 1.54 micrometers and three modes at 632.8 nm was demonstrated. Spectral properties of Er3+ in this glass were characterized by measuring absorption and emission spectra, and fluorescence lifetimes. Emission cross section of Er3+ in this glass was calculated to be 0.76 X 10-20 cm2 using McCumber theory. Our preliminary experimental results indicate this new Er3+ doped glass is an excellent material for ion-exchanged waveguide lasers and amplifiers.
1.5 kW efficient CW Nd:YAG planar waveguide MOPA laser.
Wang, Juntao; Wu, Zhenhai; Su, Hua; Zhou, Tangjian; Lei, Jun; Lv, Wenqiang; He, Jing; Xu, Liu; Chen, Yuejian; Wang, Dan; Tong, Lixin; Hu, Hao; Gao, Qingsong; Tang, Chun
2017-08-15
In this Letter, we report a 1064 nm continuous wave Nd:YAG planar waveguide laser with an output power of 1544 W based on the structure of the master oscillator power amplification. A fiber laser is used as the master oscillator, and diode laser arrays are used as the pump source of the waveguide laser amplifier. The dimension of the waveguide is 1 mm (T)×10 mm (W)×60 mm (L), and the dual end oblique pumping is adopted with different angles. After a single-pass amplification, the power is scaled from 323 to 1544 W with the pump power of 2480 W, leading to an optical-to-optical efficiency of 49%. At the maximum output, the beam quality M 2 are measured to be 2.8 and 7.0 in the guided direction and the unguided direction, respectively. To the best of our knowledge, this is the highest output power of a Nd:YAG planar waveguide laser to date.
Waveguide Transition for Submillimeter-Wave MMICs
NASA Technical Reports Server (NTRS)
Leong, Kevin M.; Deal, William R.; Radisic, Vesna; Mei, Xiaobing; Uyeda, Jansen; Lai, Richard; Fung, King Man; Gaier, Todd C.
2009-01-01
An integrated waveguide-to-MMIC (monolithic microwave integrated circuit) chip operating in the 300-GHz range is designed to operate well on high-permittivity semiconductor substrates typical for an MMIC amplifier, and allows a wider MMIC substrate to be used, enabling integration with larger MMICs (power amplifiers). The waveguide-to- CBCPW (conductor-backed coplanar waveguide) transition topology is based on an integrated dipole placed in the E-plane of the waveguide module. It demonstrates low loss and good impedance matching. Measurement and simulation demonstrate that the loss of the transition and waveguide loss is less than 1-dB over a 340-to-380-GHz bandwidth. A transition is inserted along the propagation direction of the waveguide. This transition uses a planar dipole aligned with the maximum E-field of the TE10 waveguide mode as an inter face between the waveguide and the MMIC. Mode conversion between the coplanar striplines (CPS) that feed the dipole and the CBCPW transmission line is accomplished using a simple air-bridge structure. The bottom side ground plane is truncated at the same reference as the top-side ground plane, leaving the end of the MMIC suspended in air.
Precision Laser Development for Gravitational Wave Space Mission
NASA Technical Reports Server (NTRS)
Numata, Kenji; Camp, Jordan
2011-01-01
Optical fiber and semiconductor laser technologies have evolved dramatically over the last decade due to the increased demands from optical communications. We are developing a laser (master oscillator) and optical amplifier based on those technologies for interferometric space missions, such as the gravitational-wave mission LISA, and GRACE follow-on, by fully utilizing the mature wave-guided optics technologies. In space, where a simple and reliable system is preferred, the wave-guided components are advantageous over bulk, crystal-based, free-space laser, such as NPRO (Non-planar Ring Oscillator) and bulk-crystal amplifier, which are widely used for sensitive laser applications on the ground.
Laser Development for Gravitational-Wave Interferometry in Space
NASA Technical Reports Server (NTRS)
Numata, Kenji; Camp, Jordan
2012-01-01
We are reporting on our development work on laser (master oscillator) and optical amplifier systems for gravitational-wave interferometry in space. Our system is based on the mature, wave-guided optics technologies, which have advantages over bulk, crystal-based, free-space optics. We are investing in a new type of compact, low-noise master oscillator, called the planar-waveguide external cavity diode laser. We made measurements, including those of noise, and performed space-qualification tests.
Ultra-Low Loss Waveguides with Application to Photonic Integrated Circuits
NASA Astrophysics Data System (ADS)
Bauters, Jared F.
The integration of photonic components using a planar platform promises advantages in cost, size, weight, and power consumption for optoelectronic systems. Yet, the typical propagation loss of 5-10 dB/m in a planar silica waveguide is nearly five orders-of-magnitude larger than that in low loss optical fibers. For some applications, the miniaturization of the photonic system and resulting smaller propagation lengths from integration are enough to overcome the increase in propagation loss. For other more demanding systems or applications, such as those requiring long optical time delays or high-quality-factor (Q factor) resonators, the high propagation loss can degrade system performance to a degree that trumps the potential advantages offered by integration. Thus, the reduction of planar waveguide propagation loss in a Si3-N4 based waveguide platform is a primary focus of this dissertation. The ultra-low loss stoichiometric Si3-N4 waveguide platform offers the additional advantages of fabrication process stability and repeatability. Yet, active devices such as lasers, amplifiers, and photodetectors have not been monolithically integrated with ultra-low loss waveguides due to the incompatibility of the active and ultra-low loss processing thermal budgets (ultra-low loss waveguides are annealed at temperatures exceeding 1000 °C in order to drive out impurities). So a platform that enables the integration of active devices with the ultra-low losses of the Si3- N4 waveguide platform is this dissertation's second focus. The work enables the future fabrication of sensor, gyroscope, true time delay, and low phase noise oscillator photonic integrated circuits.
Hybrid-integrated coherent receiver using silica-based planar lightwave circuit technology
NASA Astrophysics Data System (ADS)
Kim, Jong-Hoi; Choe, Joong-Seon; Choi, Kwang-Seong; Youn, Chun-Ju; Kim, Duk-Jun; Jang, Sun-Hyok; Kwon, Yong-Hwan; Nam, Eun-Soo
2011-12-01
A hybrid-integrated coherent receiver module has been achieved using flip-chip bonding technology, consisting of a silica-based 90°-hybrid planar lightwave circuit (PLC) platform, a spot-size converter integrated waveguide photodiode (SSC-WG-PD), and a dual-channel transimpedance amplifier (TIA). The receiver module shows error-free operation up to 40Gb/s and OSNR sensitivity of 11.5 dB for BER = 10-3 at 25 Gb/s.
Side-polished fiber based gain-flattening filter for erbium doped fiber amplifiers
NASA Astrophysics Data System (ADS)
Varshney, R. K.; Singh, A.; Pande, K.; Pal, B. P.
2007-03-01
A simple and accurate novel normal mode analysis has been developed to take into account the effect of the non-uniform depth of polishing in the study of the transmission characteristics of optical waveguide devices based on loading of a side-polished fiber half-coupler with a multimode planar waveguide. We apply the same to design and fabricate a gain-flattening filter suitable for fiber amplifiers. The wavelength dependent filtering action of the overall device could demonstrate flattening of an EDFA gain spectrum within ±0.7 dB over a bandwidth of 30 nm in the C-band. Results obtained by the present analysis agree very well with our experimental results. This present analysis should be very useful in the accurate design and analysis of any SPF-MMOW device/component including side-polished fiber based sensors.
[Optical Design of Miniature Infrared Gratings Spectrometer Based on Planar Waveguide].
Li, Yang-yu; Fang, Yong-hua; Li, Da-cheng; Liu, Yang
2015-03-01
In order to miniaturize an infrared spectrometer, we analyze the current optical design of miniature spectrometers and propose a method for designing a miniature infrared gratings spectrometer based on planar waveguide. Common miniature spectrometer uses miniature optical elements to reduce the size of system, which also shrinks the effective aperture. So the performance of spectrometer has dropped. Miniaturization principle of planar waveguide spectrometer is different from the principle of common miniature spectrometer. In planar waveguide spectrometer, the propagation of light is limited in a thin planar waveguide, which looks like the whole optical system is squashed flat. In the direction parallel to the planar waveguide, the light through the slit is collimated, dispersed and focused. And a spectral image is formed in the detector plane. This propagation of light is similar to the light in common miniature spectrometer. In the direction perpendicular to the planar waveguide, light is multiple reflected by the upper and lower surfaces of the planar waveguide and propagates in the waveguide. So the size of corresponding optical element could be very small in the vertical direction, which can reduce the size of the optical system. And the performance of the spectrometer is still good. The design method of the planar waveguide spectrometer can be separated into two parts, Czerny-Turner structure design and planar waveguide structure design. First, by using aberration theory an aberration-corrected (spherical aberration, coma, focal curve) Czerny-Turner structure is obtained. The operation wavelength range and spectral resolution are also fixed. Then, by using geometrical optics theory a planar waveguide structure is designed for reducing the system size and correcting the astigmatism. The planar waveguide structure includes a planar waveguide and two cylindrical lenses. Finally, they are modeled together in optical design software and are optimized as a whole. An infrared planar waveguide spectrometer is designed using this method. The operation wavelength range is 8 - 12 μm, the numerical aperture is 0.22, and the linear array detector contains 64 elements. By using Zemax software, the design is optimized and analyzed. The results indicate that the size of the optical system is 130 mm x 125 mm x 20 mm and the spectral resolution of spectrometer is 80 nm, which satisfy the requirements of design index. Thus it is this method that can be used for designing a miniature spectrometer without movable parts and sizes in the range of several cubic centimeters.
Hermetic Packages For Millimeter-Wave Circuits
NASA Technical Reports Server (NTRS)
Herman, Martin I.; Lee, Karen A.; Lowry, Lynn E.; Carpenter, Alain; Wamhof, Paul
1994-01-01
Advanced hermetic packages developed to house electronic circuits operating at frequencies from 1 to 100 gigahertz and beyond. Signals coupled into and out of packages electromagnetically. Provides circuit packages small, lightweight, rugged, and inexpensive in mass production. Packages embedded in planar microstrip and coplanar waveguide circuits, in waveguide-to-planar and planar-to-waveguide circuitry, in waveguide-to-waveguide circuitry, between radiating (antenna) elements, and between planar transmission lines and radiating elements. Other applications in automotive, communication, radar, remote sensing, and biomedical electronic systems foreseen.
670-GHz Schottky Diode-Based Subharmonic Mixer with CPW Circuits and 70-GHz IF
NASA Technical Reports Server (NTRS)
Chattopadhyay, Goutam; Schlecht, Erich T.; Lee, Choonsup; Lin, Robert H.; Gill, John J.; Mehdi, Imran; Sin, Seth; Deal, William; Loi, Kwok K.; Nam, Peta;
2012-01-01
GaAs-based, sub-harmonically pumped Schottky diode mixers offer a number of advantages for array implementation in a heterodyne receiver system. Since the radio frequency (RF) and local oscillator (LO) signals are far apart, system design becomes much simpler. A proprietary planar GaAs Schottky diode process was developed that results in very low parasitic anodes that have cutoff frequencies in the tens of terahertz. This technology enables robust implementation of monolithic mixer and frequency multiplier circuits well into the terahertz frequency range. Using optical and e-beam lithography, and conventional epitaxial layer design with innovative usage of GaAs membranes and metal beam leads, high-performance terahertz circuits can be designed with high fidelity. All of these mixers use metal waveguide structures for housing. Metal machined structures for RF and LO coupling hamper these mixers to be integrated in multi-pixel heterodyne array receivers for spectroscopic and imaging applications. Moreover, the recent developments of terahertz transistors on InP substrate provide an opportunity, for the first time, to have integrated amplifiers followed by Schottky diode mixers in a heterodyne receiver at these frequencies. Since the amplifiers are developed on a planar architecture to facilitate multi-pixel array implementation, it is quite important to find alternative architecture to waveguide-based mixers.
Kim, Chur; Kim, Dohyun; Cheong, YeonJoon; Kwon, Dohyeon; Choi, Sun Young; Jeong, Hwanseong; Cha, Sang Jun; Lee, Jeong-Woo; Yeom, Dong-Il; Rotermund, Fabian; Kim, Jungwon
2015-10-05
We show the implementation of fiber-pigtailed, evanescent-field-interacting, single-walled carbon nanotube (CNT)-based saturable absorbers (SAs) using standard planar lightwave circuit (PLC) fabrication processes. The implemented PLC-CNT-SA device is employed to realize self-starting, high-repetition-rate, all-fiber ring oscillators at telecommunication wavelength. We demonstrate all-fiber Er ring lasers operating at 303-MHz (soliton regime) and 274-MHz (stretched-pulse regime) repetition-rates. The 303-MHz (274-MHz) laser centered at 1555 nm (1550 nm) provides 7.5 nm (19 nm) spectral bandwidth. After extra-cavity amplilfication, the amplified pulse train of the 303-MHz (274-MHz) laser delivers 209 fs (178 fs) pulses. To our knowledge, this corresponds to the highest repetition-rates achieved for femtosecond lasers employing evanescent-field-interacting SAs. The demonstrated SA fabrication method, which is based on well-established PLC processes, also shows a potential way for mass-producible and lower-cost waveguide-type SA devices suitable for all-fiber and waveguide lasers.
New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers
NASA Astrophysics Data System (ADS)
Jiang, Shibin; Luo, Tao; Hwang, Bor-Chyuan; Nunzi Conti, Gualtiero; Myers, Michael J.; Rhonehouse, Daniel L.; Honkanen, Seppo; Peyghambarian, Nasser
1998-12-01
A new Er(superscript 3+)-doped phosphate glass exhibiting an excellent durability in both boiling water and NaNO(subscript 3) molten salt is developed. The ion-exchange process of this glass is investigated by treating glass samples in a variety of salt baths with various exposure times. A planar waveguide with one mode at 1.54 micrometers and three modes at 632.8 nm is demonstrated. The spectral properties of Er(superscript 3+) in this glass are characterized by measuring absorption and emission spectra and fluorescence lifetimes. The emission cross section of Er(superscript 3+) in this glass is calculated to be 0.76 X 10(superscript 20) cm(superscript 2) using McCumber theory.
Waveguide Power-Amplifier Module for 80 to 150 GHz
NASA Technical Reports Server (NTRS)
Samoska, Lorene; Weinreb, Sander; Peralta, Alejandro
2006-01-01
A waveguide power-amplifier module capable of operating over the frequency range from 80 to 150 GHz has been constructed. The module comprises a previously reported power amplifier packaged in a waveguide housing that is compatible with WR-8 waveguides. (WR- 8 is a standard waveguide size for the nominal frequency range from 90 to 140 GHz.) The waveguide power-amplifier module is robust and can be bolted to test equipment and to other electronic circuits with which the amplifier must be connected for normal operation.
CO2 laser drives extreme ultraviolet nano-lithography — second life of mature laser technology
NASA Astrophysics Data System (ADS)
Nowak, K. M.; Ohta, T.; Suganuma, T.; Fujimoto, J.; Mizoguchi, H.; Sumitani, A.; Endo, A.
2013-12-01
It was shown both theoretically and experimentally that nanosecond order laser pulses at 10.6 micron wavelength were superior for driving the Sn plasma extreme ultraviolet (EUV) source for nano-lithography for the reasons of higher conversion efficiency, lower production of debris and higher average power levels obtainable in CO2 media without serious problems of beam distortions and nonlinear effects occurring in competing solid-state lasers at high intensities. The renewed interest in such pulse format, wavelength, repetition rates in excess of 50 kHz and average power levels in excess of 18 kiloWatt has sparked new opportunities for a matured multi-kiloWatt CO2 laser technology. The power demand of EUV source could be only satisfied by a Master-Oscillator-Power-Amplifier system configuration, leading to a development of a new type of hybrid pulsed CO2 laser employing a whole spectrum of CO2 technology, such as fast flow systems and diffusion-cooled planar waveguide lasers, and relatively recent quantum cascade lasers. In this paper we review briefly the history of relevant pulsed CO2 laser technology and the requirements for multi-kiloWatt CO2 laser, intended for the laser-produced plasma EUV source, and present our recent advances, such as novel solid-state seeded master oscillator and efficient multi-pass amplifiers built on planar waveguide CO2 lasers.
Development of Fiber-Based Laser Systems for LISA
NASA Technical Reports Server (NTRS)
Numata, Kenji; Camp, Jordan
2010-01-01
We present efforts on fiber-based laser systems for the LISA mission at the NASA Goddard Space Flight Center. A fiber-based system has the advantage of higher robustness against external disturbances and easier implementation of redundancies. For a master oscillator, we are developing a ring fiber laser and evaluating two commercial products, a DBR linear fiber laser and a planar-waveguide external cavity diode laser. They all have comparable performance to a traditional NPRO at LISA band. We are also performing reliability tests of a 2-W Yb fiber amplifier and radiation tests of fiber laser/amplifier components. We describe our progress to date and discuss the path to a working LISA laser system design.
Liao, Qiang; Sun, Yahui; Huang, Yun; Xia, Ao; Fu, Qian; Zhu, Xun
2017-11-01
Interval between adjacent planar waveguides and light intensity emitted from waveguide surface were the primary two factors affecting light distribution characteristics in the planar waveguide flat-plate photobioreactor (PW-PBR). In this paper, the synergy effect between light and nitrate in the PW-PBR was realized to simultaneously enhance microalgae growth and lipid accumulation. Under an interval of 10mm between adjacent planar waveguides, 100% of microalgae cells in regions between adjacent waveguides could be illuminated. Chlorella vulgaris growth and lipid accumulation were synchronously elevated as light intensities emitted from planar waveguide surface increasing. With an identical initial nitrate concentration of 18mM, the maximum lipid content (41.66% in dry biomass) and lipid yield (2200.25mgL -1 ) were attained under 560μmolm -2 s -1 , which were 86.82% and 133.56% higher relative to those obtained under 160μmolm -2 s -1 , respectively. The PW-PBR provides a promising way for microalgae lipid production. Copyright © 2017 Elsevier Ltd. All rights reserved.
THz semiconductor-based front-end receiver technology for space applications
NASA Technical Reports Server (NTRS)
Mehdi, Imran; Siegel, Peter
2004-01-01
Advances in the design and fabrication of very low capacitance planar Schottky diodes and millimeter-wave power amplifiers, more accurate device and circuit models for commercial 3-D electromagnetic simulators, and the availability of both MEMS and high precision metal machining, have enabled RF engineers to extend traditional waveguide-based sensor and source technologies well into the TI-Iz frequency regime. This short paper will highlight recent progress in realizing THz space-qualified receiver front-ends based on room temperature semiconductor devices.
Zhou, Yong Jin; Yang, Bao Jia
2015-05-10
Although subwavelength planar terahertz (THz) plasmonic devices can be implemented based on planar spoof surface plasmons (SPs), they still suffer from a little high propagation loss. Here the dispersion and propagation characteristics of the spoof plasmonic waveguide composed of double metal strips corrugated with dumbbell shaped grooves have been investigated. It has been found that much lower propagation loss and longer propagation length can be achieved based on the waveguide compared with the conventional spoof plasmonic waveguide with rectangular grooves. Moreover, the waveguide can implement a decrease in size of about 22%. An ultra-wideband THz plasmonic filter for planar circuits has been demonstrated based on the proposed waveguide. The experimental verification at the microwave frequency has been conducted by scaling up the geometry size of the filter.
Multistaged stokes injected Raman capillary waveguide amplifier
Kurnit, Norman A.
1980-01-01
A multistaged Stokes injected Raman capillary waveguide amplifier for providing a high gain Stokes output signal. The amplifier uses a plurality of optically coupled capillary waveguide amplifiers and one or more regenerative amplifiers to increase Stokes gain to a level sufficient for power amplification. Power amplification is provided by a multifocused Raman gain cell or a large diameter capillary waveguide. An external source of CO.sub.2 laser radiation can be injected into each of the capillary waveguide amplifier stages to increase Raman gain. Devices for injecting external sources of CO.sub.2 radiation include: dichroic mirrors, prisms, gratings and Ge Brewster plates. Alternatively, the CO.sub.2 input radiation to the first stage can be coupled and amplified between successive stages.
Capillary Array Waveguide Amplified Fluorescence Detector for mHealth
Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham
2013-01-01
Mobile Health (mHealth) analytical technologies are potentially useful for carrying out modern medical diagnostics in resource-poor settings. Effective mHealth devices for underserved populations need to be simple, low cost, and portable. Although cell phone cameras have been used for biodetection, their sensitivity is a limiting factor because currently it is too low to be effective for many mHealth applications, which depend on detection of weak fluorescent signals. To improve the sensitivity of portable phones, a capillary tube array was developed to amplify fluorescence signals using their waveguide properties. An array configured with 36 capillary tubes was demonstrated to have a ~100X increase in sensitivity, lowering the limit of detection (LOD) of mobile phones from 1000 nM to 10 nM for fluorescein. To confirm that the amplification was due to waveguide behavior, we coated the external surfaces of the capillaries with silver. The silver coating interfered with the waveguide behavior and diminished the fluorescence signal, thereby proving that the waveguide behavior was the main mechanism for enhancing optical sensitivity. The optical configuration described here is novel in several ways. First, the use of capillaries waveguide properties to improve detection of weak florescence signal is new. Second we describe here a three dimensional illumination system, while conventional angular laser waveguide illumination is spot (or line), which is functionally one-dimensional illumination, can illuminate only a single capillary or a single column (when a line generator is used) of capillaries and thus inherently limits the multiplexing capability of detection. The planar illumination demonstrated in this work enables illumination of a two dimensional capillary array (e.g. x columns and y rows of capillaries). In addition, the waveguide light propagation via the capillary wall provides a third dimension for illumination along the axis of the capillaries. Such an array can potentially be used for sensitive analysis of multiple fluorescent detection assays simultaneously. The simple phone based capillary array approach presented in this paper is capable of amplifying weak fluorescent signals thereby improving the sensitivity of optical detectors based on mobile phones. This may allow sensitive biological assays to be measured with low sensitivity detectors and may make mHealth practical for many diagnostics applications, especially in resource-poor and global health settings. PMID:24039345
Combination ring cavity and backward Raman waveguide amplifier
Kurnit, Norman A.
1983-01-01
A combination regenerative ring and backward Raman waveguide amplifier and a combination regenerative ring oscillator and backward Raman waveguide amplifier which produce Raman amplification, pulse compression, and efficient energy extraction from the CO.sub.2 laser pump signal for conversion into a Stokes radiation signal. The ring cavity configuration allows the CO.sub.2 laser pump signal and Stokes signal to copropagate through the Raman waveguide amplifier. The backward Raman waveguide amplifier configuration extracts a major portion of the remaining energy from the CO.sub.2 laser pump signal for conversion to Stokes radiation. Additionally, the backward Raman amplifier configuration produces a Stokes radiation signal which has a high intensity and a short duration. Adjustment of the position of overlap of the Stokes signal and the CO.sub.2 laser pump signal in the backward Raman waveguide amplifiers alters the amount of pulse compression which can be achieved.
Prebunched-beam free electron maser
NASA Astrophysics Data System (ADS)
Arbel, M.; Ben-Chaim, D.; Cohen, M.; Draznin, M.; Eichenbaum, A.; Gover, Abraham; Kleinman, H.; Kugel, A.; Pinhasi, Yosef; Witman, S.; Yakover, Y. M.
1994-05-01
The development status of a prebunched FEM is described. We are developing a 70 KeV FEM to allow high gain wideband operation and to enable variation of the degree of prebunching. We intend to investigate its operation as an amplifier and as an oscillator. Effects of prebunching, frequency variation, linear and nonlinear effects, will be investigated. The prebuncher consists of a Pierce e-gun followed by a beam modulating section. The prebunched beam is accelerated to 70 KeV and injected into a planar wiggler containing a waveguide. The results obtained to date will be presented. These include: characterization of the e-gun, e-beam transport to and through the wiggler, use of field modifying permanent magnets near the entrance and along the wiggler to obtain good e-beam transport through the wiggler, waveguide selection and characterization.
Planar Submillimeter-Wave Mixer Technology with Integrated Antenna
NASA Technical Reports Server (NTRS)
Chattopadhyay, Gautam; Mehdi, Imran; Gill, John J.; Lee, Choonsup; lombart, Muria L.; Thomas, Betrand
2010-01-01
High-performance mixers at terahertz frequencies require good matching between the coupling circuits such as antennas and local oscillators and the diode embedding impedance. With the availability of amplifiers at submillimeter wavelengths and the need to have multi-pixel imagers and cameras, planar mixer architecture is required to have an integrated system. An integrated mixer with planar antenna provides a compact and optimized design at terahertz frequencies. Moreover, it leads to a planar architecture that enables efficient interconnect with submillimeter-wave amplifiers. In this architecture, a planar slot antenna is designed on a thin gallium arsenide (GaAs) membrane in such a way that the beam on either side of the membrane is symmetric and has good beam profile with high coupling efficiency. A coplanar waveguide (CPW) coupled Schottky diode mixer is designed and integrated with the antenna. In this architecture, the local oscillator (LO) is coupled through one side of the antenna and the RF from the other side, without requiring any beam sp litters or diplexers. The intermediate frequency (IF) comes out on a 50-ohm CPW line at the edge of the mixer chip, which can be wire-bonded to external circuits. This unique terahertz mixer has an integrated single planar antenna for coupling both the radio frequency (RF) input and LO injection without any diplexer or beamsplitters. The design utilizes novel planar slot antenna architecture on a 3- mthick GaAs membrane. This work is required to enable future multi-pixel terahertz receivers for astrophysics missions, and lightweight and compact receivers for planetary missions to the outer planets in our solar system. Also, this technology can be used in tera hertz radar imaging applications as well as for testing of quantum cascade lasers (QCLs).
Fabrication of planar waveguide in KNSBN crystal by swift heavy ion beam irradiation
NASA Astrophysics Data System (ADS)
Guan, Jing; Wang, Lei; Qin, Xifeng
2013-11-01
We report on the fabrication of the planar waveguides in the KNSBN crystal by using 17 MeV C5+ ions at a fluence of 2 × 1014 ions/cm2. After implantation, near surface regions of the crystal, there has a positive extraordinary refractive index (ne) change and the light inside the waveguides can propagate in a non-leaky manner. The two-dimensional modal profiles of the planar waveguides, measured by using the end-coupling arrangement, are in good agreement with the reconstructed modal distributions. The propagation loss for C5+ irradiated waveguide is ∼0.8 dB/cm at 633 nm and ∼0.72 dB/cm at 1064 nm. The waveguide gives good confinement of waveguide modes, which exhibits acceptable guiding qualities for potential applications in integrated optics.
Infrared evanescent field sensing with quantum cascade lasers and planar silver halide waveguides.
Charlton, Christy; Katzir, Abraham; Mizaikoff, Boris
2005-07-15
We demonstrate the first midinfrared evanescent field absorption measurements with an InGaAs/AlInAs/InP distributed feedback (DFB) quantum cascade laser (QCL) light source operated at room temperature coupled to a free-standing, thin-film, planar, silver halide waveguide. Two different analytes, each matched to the emission frequency of a QCL, were investigated to verify the potential of this technique. The emission of a 1650 cm(-1) QCL overlaps with the amide absorption band of urea, which was deposited from methanol solution, forming urea crystals at the waveguide surface after solvent evaporation. Solid urea was detected down to 80.7 microg of precipitate at the waveguide surface. The emission frequency of a 974 cm(-1) QCL overlaps with the CH3-C absorption feature of acetic anhydride. Solutions of acetic anhydride in acetonitrile have been detected down to a volume of 0.01 microL (10.8 microg) of acetic anhydride solution after deposition at the planar waveguide (PWG) surface. Free-standing, thin-film, planar, silver halide waveguides were produced by press-tapering heated, cylindrical, silver halide fiber segments to create waveguides with a thickness of 300-190 microm, a width of 3 mm, and a length of 35 mm. In addition, Fourier transform infrared (FT-IR) evanescent field absorption measurements with planar silver halide waveguides and transmission absorption QCL measurements verify the obtained results.
NASA Astrophysics Data System (ADS)
Ye, Longfang; Xiao, Yifan; Liu, Yanhui; Zhang, Liang; Cai, Guoxiong; Liu, Qing Huo
2016-12-01
We demonstrate a novel route to achieving highly efficient and strongly confined spoof surface plasmon polaritons (SPPs) waveguides at subwavelength scale enabled by planar staggered plasmonic waveguides (PSPWs). The structure of these new waveguides consists of an ultrathin metallic strip with periodic subwavelength staggered double groove arrays supported by a flexible dielectric substrate, leading to unique staggered EM coupling and waveguiding phenomenon. The spoof SPP propagation properties, including dispersion relations and near field distributions, are numerically investigated. Furthermore, broadband coplanar waveguide (CPW) to planar staggered plasmonic waveguide (PSPW) transitions are designed to achieve smooth momentum matching and highly efficient spoof SPP mode conversion. By applying these transitions, a CPW-PSPW-CPW structure is designed, fabricated and measured to verify the PSPW’s propagation performance at microwave frequencies. The investigation results show the proposed PSPWs have excellent performance of deep subwavelength spoof SPPs confinement, long propagation length and low bend loss, as well as great design flexibility to engineer the propagation properties by adjusting their geometry dimensions and material parameters. Our work opens up a new avenue for development of various advanced planar integrated plasmonic devices and circuits in microwave and terahertz regimes.
Ye, Longfang; Xiao, Yifan; Liu, Yanhui; Zhang, Liang; Cai, Guoxiong; Liu, Qing Huo
2016-12-05
We demonstrate a novel route to achieving highly efficient and strongly confined spoof surface plasmon polaritons (SPPs) waveguides at subwavelength scale enabled by planar staggered plasmonic waveguides (PSPWs). The structure of these new waveguides consists of an ultrathin metallic strip with periodic subwavelength staggered double groove arrays supported by a flexible dielectric substrate, leading to unique staggered EM coupling and waveguiding phenomenon. The spoof SPP propagation properties, including dispersion relations and near field distributions, are numerically investigated. Furthermore, broadband coplanar waveguide (CPW) to planar staggered plasmonic waveguide (PSPW) transitions are designed to achieve smooth momentum matching and highly efficient spoof SPP mode conversion. By applying these transitions, a CPW-PSPW-CPW structure is designed, fabricated and measured to verify the PSPW's propagation performance at microwave frequencies. The investigation results show the proposed PSPWs have excellent performance of deep subwavelength spoof SPPs confinement, long propagation length and low bend loss, as well as great design flexibility to engineer the propagation properties by adjusting their geometry dimensions and material parameters. Our work opens up a new avenue for development of various advanced planar integrated plasmonic devices and circuits in microwave and terahertz regimes.
FIBER AND INTEGRATED OPTICS: Waveguide characteristics of real optical strip waveguides
NASA Astrophysics Data System (ADS)
Shmal'ko, A. V.; Frolov, V. V.
1990-01-01
A study is reported of the influence of the parameters of real thin-film optical strip waveguides on their waveguide characteristics (propagation constants, localization of the mode field, etc.) allowing for the presence of transition layers in a transverse cross section of the base planar waveguide, for the real geometry of this section (which is nearly trapezoidal), and for the thickness of the guiding strip. Analytic expressions are obtained for the optical confinement coefficient and the effective mode format of a weakly guiding symmetric strip waveguide. It is shown that the coefficient representing the fundamental E11x(y) mode is practically independent of the relative thickness t /h (h is the thickness of the base planar waveguide) of the guiding strip provided t /h>=0.5. The corrections to the normalized effective refractive indices of the base planar and strip waveguides are found in order to allow for the real geometry and for the refractive index profile in the strip waveguide.
Planar optical waveguides for optical panel having gradient refractive index core
Veligdan, James T.
2001-01-01
An optical panel is disclosed. A plurality of stacked planar optical waveguides are used to guide light from an inlet face to an outlet face of an optical panel. Each of the optical waveguides comprises a planar sheet of core material having a central plane. The core material has an index of refraction which decreases as the distance from the central plane increases. The decrease in the index of refraction occurs gradually and continuously.
Planar optical waveguides for optical panel having gradient refractive index core
Veligdan, James T.
2004-08-24
An optical panel is disclosed. A plurality of stacked planar optical waveguides are used to guide light from an inlet face to an outlet face of an optical panel. Each of the optical waveguides comprises a planar sheet of core material having a central plane. The core material has an index of refraction which decreases as the distance from the central plane increases. The decrease in the index of refraction occurs gradually and continuously.
Design and investigation of properties of nanocrystalline diamond optical planar waveguides.
Prajzler, Vaclav; Varga, Marian; Nekvindova, Pavla; Remes, Zdenek; Kromka, Alexander
2013-04-08
Diamond thin films have remarkable properties comparable with natural diamond. Because of these properties it is a very promising material for many various applications (sensors, heat sink, optical mirrors, chemical and radiation wear, cold cathodes, tissue engineering, etc.) In this paper we report about design, deposition and measurement of properties of optical planar waveguides fabricated from nanocrystalline diamond thin films. The nanocrystalline diamond planar waveguide was deposited by microwave plasma enhanced chemical vapor deposition and the structure of the deposited film was studied by scanning electron microscopy and Raman spectroscopy. The design of the presented planar waveguides was realized on the bases of modified dispersion equation and was schemed for 632.8 nm, 964 nm, 1 310 nm and 1 550 nm wavelengths. Waveguiding properties were examined by prism coupling technique and it was found that the diamond based planar optical element guided one fundamental mode for all measured wavelengths. Values of the refractive indices of our NCD thin film measured at various wavelengths were almost the same as those of natural diamond.
Rare-earth doped polymer waveguides and light emitting diodes
NASA Astrophysics Data System (ADS)
Slooff, L. H.
2000-11-01
Polymer-based optical waveguide amplifiers offer a low-cost alternative for inorganic waveguide amplifiers. Due to the fact that their refractive index is almost similar to that of standard optical fibers, they can be easily coupled with existing fibers at low coupling losses. Doping the polymer with rare-earth ions that can yield optical gain is not straightforward, as the rare-earth salts are poorly soluble in the polymer matrix. This thesis studies two different approaches to dope a polymer waveguide with rare-earth ions. The first one is based on organic cage-like complexes that encapsulate the rare-earth ion and are designed to provide enough coordination sites to bind the rare-earth ion and to shield it from the surrounding matrix. Chapter 2 describes the optical properties of Er-doped organic polydentate cage complexes. The complexes show clear photoluminescence at 1.54 mm with a bandwidth of 70 nm, the highest reported for an erbium-doped material so far. The luminescence lifetime is very short (~1 ms) due to coupling to vibrational overtones of O-H and C-H bonds. Due to this short luminescence lifetime, high pump powers (~1 W) are needed for optical gain in a waveguide amplifier based on these complexes. The pump power can be reduced if the Er is excited via the aromatic part of the complex, which has a higher absorption cross section. In Chapter 3 a lissamine-functionalised neodymium complex is studied in which the highly absorbing lissamine acts as a sensitiser. The lissamine is first excited into the singlet state from which intersystem crossing to the triplet state can take place. From there it can transfer its energy to the Nd ion by a Dexter transfer mechanism. Room-temperature photoluminescence at 890, 1060, and 1340 nm from Nd is observed, together with luminescence from the lissamine sensitiser at 600 nm. Photodegradation of the lissamine sensitiser is observed, which is studied in more detail in Chapter 4. The observed change in time of the spectral shape of the lissamine luminescence can be explained by assuming that two types of complexes exist. One type in which energy transfer to the Nd3+ ion can take place, and one that is not coupled to Nd. The highly absorbing sensitiser makes the standard butt-end coupling of the pump light into a waveguide amplifier impractical. The pump power can be used more efficiently by using a novel coupled waveguide system as described in Chapter 5. This employs gradual evanescent field coupling between parallel pump and signal waveguides. An alternative approach to make a rare-earth doped polymer waveguide is by combining the excellent properties of SiO2 as a host for the rare-earth with the easy processing of polymers. The optical properties of Er-doped silica films made by an acid-catalysed sol-gel synthesis are reported in Chapter 6. The Er exhibits long luminescence lifetimes of 10-12 ms, which indicates that OH from the wet chemical synthesis is successfully removed during the vacuum anneal treatment. Using a base-catalysed sol-gel synthesis, silica colloidal spheres with diameters of 175 and 340 nm were grown. Chapter 7 describes the luminescence properties of the 340 nm spheres, implanted with Er up to concentrations of 1.0 at.%. The Er shows a very long luminescence lifetime of 17 ms, and the radiative lifetime is estimated to be 20-22 ms, indicating a high quantum efficiency. This long luminescence lifetime is partly due to the low local optical density of states (DOS) in the free standing silica colloids. Optical gain calculations are made for the colloid/polymer waveguide that predicts a net gain of 8.7 dB at a pump power of 30 mW, for a 15 cm long waveguide. Such a length can be rolled up on an area of 16 mm2. In Chapter 8, calculations of the DOS are described for thin films as well as the spherical colloids. By comparing the calculation with experimentally probed decay rates, radiative and non-radiative components in the decay of Er are determined. Besides optical pumping of planar waveguide amplifiers it would be interesting if electrical pumping could be achieved. As a first step in this direction Chapter 9 reports 890 nm electroluminescence from lissamine-functionalised Nd complexes in a polymer light emitting diode. It is shown that the lissamine sensitiser plays a crucial role in mediating the energy transfer from the conjugated polymer to the Nd3+ ion, via singlet-singlet and triplet-triplet energy transfer. Finally, Chapter 10 gives an overview of important device considerations for the fabrication of optically and electrically pumped polymer-based planar optical amplifiers based on the novel materials concepts described in this thesis.
NASA Astrophysics Data System (ADS)
Chernushich, A. P.; Shkerdin, G. N.; Shukin, Yu M.
1992-10-01
The angular distribution of the reflection coefficient of an asymmetric multilayer planar structure containing a thin metal film and a planar optical waveguide has been found by accurate numerical calculations. There are resonances in the reflection coefficient associated with hybrid modes of the structure. The cases of strong and weak coupling of the surface polariton modes with the waveguide modes are discussed. The results of the numerical analysis agree with solutions of Maxwell's equations for a multilayer planar structure.
NASA Astrophysics Data System (ADS)
Abramov, A. S.; Zolotovskii, I. O.; Moiseev, S. G.; Sementsov, D. I.
2018-01-01
The peculiarities of propagation and amplification of surface waves of plasmon polariton type in a planar semiconductor film - dielectric structure are considered for the THz frequency region, with allowance for dissipation in a semiconductor. Two spectral regions are found, where the group velocity of surface plasmon polaritons is negative. It is shown that in these regions the structure can be considered as an amplifying waveguide with distributed feedback and a high gain with respect to the reflected and transmitted signals. The possibility of generation of electromagnetic radiation in such structures is established.
Field of view of limitations in see-through HMD using geometric waveguides.
DeHoog, Edward; Holmstedt, Jason; Aye, Tin
2016-08-01
Geometric waveguides are being integrated into head-mounted display (HMD) systems, where having see-through capability in a compact, lightweight form factor is required. We developed methods for determining the field of view (FOV) of such waveguide HMD systems and have analytically derived the FOV for waveguides using planar and curved geometries. By using real ray-tracing methods, we are able to show how the geometry and index of refraction of the waveguide, as well as the properties of the coupling optics, impact the FOV. Use of this analysis allows one to determine the maximum theoretical FOV of a planar or curved waveguide-based system.
Linear guided waves in a hyperbolic planar waveguide. Dispersion relations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyashko, E I; Maimistov, A I
2015-11-30
We have theoretically investigated waveguide modes propagating in a planar waveguide formed by a layer of an isotropic dielectric surrounded by hyperbolic media. The case, when the optical axis of hyperbolic media is perpendicular to the interface, is considered. Dispersion relations are derived for the cases of TE and TM waves. The differences in the characteristics of a hyperbolic and a conventional dielectric waveguide are found. In particular, it is shown that in hyperbolic waveguides for each TM mode there are two cut-off frequencies and the number of propagating modes is always limited. (metamaterials)
Process technologies of MPACVD planar waveguide devices and fiber attachment
NASA Astrophysics Data System (ADS)
Li, Cheng-Chung; Qian, Fan; Boudreau, Robert A.; Rowlette, John R., Sr.; Bowen, Terry P.
1999-03-01
Optical circuits based on low-loss glass waveguide on silicon are a practical and promising approach to integrate different functional components. Fiber attachment to planar waveguide provides a practical application for optical communications. Microwave Plasma Assisted Chemical Vapor Deposition (MPACVD) produces superior quality, low birefringence, low-loss, planar waveguides for integrated optical devices. Microwave plasma initiates the chemical vapor of SiCl4, GeCl4 and oxygen. A Ge-doped silica layer is thus deposited with a compatible high growth rate (i.e. 0.4 - 0.5 micrometer/min). Film properties are based on various parameters, such as chemical flow rates, chamber pressure and temperature, power level and injector design. The resultant refractive index can be varied between 1.46 (i.e. pure silica) and 1.60 (i.e. pure germania). Waveguides can be fabricated with any desired refractive index profile. Standard photolithography defines the waveguide pattern on a mask layer. The core layer is removed by plasma dry etch which has been investigated by both reactive ion etch (RIE) and inductively coupled plasma (ICP) etch. Etch rates of 3000 - 4000 angstrom/min have been achieved using ICP compared to typical etch rates of 200 - 300 angstrom/min using conventional RIE. Planar waveguides offer good mode matching to optical fiber. A polished fiber end can be glued to the end facet of waveguide with a very low optical coupling loss. In addition, anisotropic etching of silicon V- grooves provides a passive alignment capability. Epoxy and solder were used to fix the fiber within the guiding groove. Several designs of waveguide-fiber attachment will be discussed.
Xie, Peng; Lin, Huichuan; Liu, Yong; Li, Baojun
2014-10-20
We present a waveguide coupling approach for planar waveguide solar concentrator. In this approach, total internal reflection (TIR)-based symmetric air prisms are used as couplers to increase the coupler reflectivity and to maximize the optical efficiency. The proposed concentrator consists of a line focusing cylindrical lens array over a planar waveguide. The TIR-based couplers are located at the focal line of each lens to couple the focused sunlight into the waveguide. The optical system was modeled and simulated with a commercial ray tracing software (Zemax). Results show that the system used with optimized TIR-based couplers can achieve 70% optical efficiency at 50 × geometrical concentration ratio, resulting in a flux concentration ratio of 35 without additional secondary concentrator. An acceptance angle of ± 7.5° is achieved in the x-z plane due to the use of cylindrical lens array as the primary concentrator.
Index-antiguided planar waveguide lasers with large mode area
NASA Astrophysics Data System (ADS)
Liu, Yuanye
The on-going research and application interests with high power large-mode-area (LMA) waveguide lasers, especially in fiber geometry, at the beginning of this century drive the development of many novel waveguide designs. Index antiguiding, proposed by Siegman in 2003, is among one of them. The goal for index antiguiding is to introduce transversal modal loss with the relative simple waveguide design while maintain single transverse mode operation for good beam quality. The idea which is selectively support of fundamental mode is facilitated by involving certain level of signal regeneration inside the waveguide core. Since the modal loss is closed associated with waveguide design parameters such as core size and refractive index, the amount of gain inside the core provides active control of transverse modes inside index-antiguiding waveguide. For example, fundamental transverse mode inside such waveguide can be excited and propagate lossless when sufficient optical gain is provided. This often requires doped waveguide core and optical pumping at corresponding absorption band. However, the involvement of optical pumping also has its consequences. Phenomena such as thermal-optic effect and gain spatial hole-burning which are commonly found in bulk lasers request attention when scaling up output power with LMA index-antiguided waveguide amplifiers and resonators. In response, three key challenges of index-antiguided planar waveguide lasers, namely, guiding mechanism, power efficiency and transverse mode discrimination, are analyzed theoretically and experimentally in this dissertation. Experiments are based on two index-antiguided planar waveguide chips, whose core thickness are 220 microm and 400 microm respectively. The material of waveguide core is 1% Neodymium-doped Yttrium Aluminium garnet, or Nd:YAG while the cladding is made from Terbium Gallium garnet, or TGG. Due to the face pumping and limited pump power, it is found, with 220 microm-thick-core chip, that the guidance of the fundamental transverse mode along two orthogonal directions in a transverse plane is different. Along the bounded direction, index antiguiding prevails with negligible thermal refractive focusing while along the unbounded direction, the lasing mode is guided by thermal refractive focusing with negligible quadratic gain focusing. It is also founded that the quadratic thermal focusing will dominate the mode guidance in 220 microm chip with the help of additional pump. All these discovery calls for an active thermal control. The modal discriminative loss, though beneficial for transverse mode control, yet reduces the lasing efficiency. To model it, a 3-D lasing output power calculation model is developed based on spatial rate equations. The simulation results show good agreement with experiment data where slope efficiency curve are measured using multiple output couplers. The 10% slope efficiency with respect to incident pump power is the highest slope efficiency recorded in index-antiguided waveguide continuous-wave lasers. The model indicates more efficient pump absorption can facilitate further power scaling. The role of the modal discriminative loss in transverse mode competition is discussed. A theoretical model based on Rigrod analysis and spatial hole-burning is developed. The simulation shows reasonable agreement with experiment results in both chips. The single fundamental mode operation up to 10 times above the lasing threshold for 220 microm chip is achieved, which is limited by the incident pump power. However, as the core size increases, the modal distributed loss due to the index antiguiding is found to be less effective in transverse mode control. Other modal loss is needed to facilitate the suppression of higher-order modes. Based on the model, a strategy is proposed aiming to maximize the single mode output. It is also noted that the transverse mode competition model is also suitable for other lasers system with well-defined modal loss. Based on the models and experiment data, the index-antiguided planar waveguide lasers are proved to be capable of maintaining large-mode-area single transverse mode operation with the potential of power scaling. However, it is also shown that proper waveguide design is essential. The remaining challenges are the material choices for waveguide fabrication, especially for high power applications.
Jedrzejczyk, Daniel; Güther, Reiner; Paschke, Katrin; Jeong, Woo-Jin; Lee, Han-Young; Erbert, Götz
2011-02-01
We report on efficient single-pass, high-power second-harmonic generation in a periodically poled MgO-doped LiNbO3 planar waveguide using a distributed Bragg reflector tapered diode laser as a pump source. A coupling efficiency into the planar waveguide of 73% was realized, and 1.07 W of visible laser light at 532 nm was generated. Corresponding optical and electro-optical conversion efficiencies of 26% and 8.4%, respectively, were achieved. Good agreement between the experimental data and the theoretical predictions was observed.
Ring cavity for a Raman capillary waveguide amplifier
Kurnit, N.A.
1981-01-27
A regenerative ring amplifier and regenerative ring oscillator are described which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplified Stokes signal is synchronous with the mode-locked spikes of the incoming CO/sub 2/ laser pump signal.
Ring cavity for a raman capillary waveguide amplifier
Kurnit, Norman A.
1983-07-19
A regenerative ring amplifier and regenerative ring oscillator which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO.sub.2 laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplifier Stokes signal is synchronous with the mode-locked spikes of the incoming CO.sub.2 laser pump signal.
Update on Waveguide-Embedded Differential MMIC Amplifiers
NASA Technical Reports Server (NTRS)
Kangaslahti, Pekka; Schleht, Erich
2010-01-01
There is an update on the subject matter of Differential InP HEMT MMIC Amplifiers Embedded in Waveguides (NPO-42857) NASA Tech Briefs, Vol. 33, No. 9 (September 2009), page 35. To recapitulate: Monolithic microwave integrated-circuit (MMIC) amplifiers of a type now being developed for operation at frequencies of hundreds of gigahertz contain InP high-electron-mobility transistors (HEMTs) in a differential configuration. The MMICs are designed integrally with, and embedded in, waveguide packages. The instant work does not mention InP HEMTs but otherwise reiterates part of the subject matter of the cited prior article, with emphasis on the following salient points: An MMIC is mounted in the electric-field plane ("E-plane") of a waveguide and includes a finline transition to each differential-amplifier stage. The differential configuration creates a virtual ground within each pair of transistor-gate fingers, eliminating the need for external radio-frequency grounding. This work concludes by describing a single-stage differential submillimeter-wave amplifier packaged in a rectangular waveguide and summarizing results of tests of this amplifier at frequencies of 220 and 305 GHz.
Amplifier Module for 260-GHz Band Using Quartz Waveguide Transitions
NASA Technical Reports Server (NTRS)
Padmanabhan, Sharmila; Fung, King Man; Kangaslahti, Pekka P.; Peralta, Alejandro; Soria, Mary M.; Pukala, David M.; Sin, Seth; Samoska, Lorene A.; Sarkozy, Stephen; Lai, Richard
2012-01-01
Packaging of MMIC LNA (monolithic microwave integrated circuit low-noise amplifier) chips at frequencies over 200 GHz has always been problematic due to the high loss in the transition between the MMIC chip and the waveguide medium in which the chip will typically be used. In addition, above 200 GHz, wire-bond inductance between the LNA and the waveguide can severely limit the RF matching and bandwidth of the final waveguide amplifier module. This work resulted in the development of a low-loss quartz waveguide transition that includes a capacitive transmission line between the MMIC and the waveguide probe element. This capacitive transmission line tunes out the wirebond inductance (where the wire-bond is required to bond between the MMIC and the probe element). This inductance can severely limit the RF matching and bandwidth of the final waveguide amplifier module. The amplifier module consists of a quartz E-plane waveguide probe transition, a short capacitive tuning element, a short wire-bond to the MMIC, and the MMIC LNA. The output structure is similar, with a short wire-bond at the output of the MMIC, a quartz E-plane waveguide probe transition, and the output waveguide. The quartz probe element is made of 3-mil quartz, which is the thinnest commercially available material. The waveguide band used is WR4, from 170 to 260 GHz. This new transition and block design is an improvement over prior art because it provides for better RF matching, and will likely yield lower loss and better noise figure. The development of high-performance, low-noise amplifiers in the 180-to- 700-GHz range has applications for future earth science and planetary instruments with low power and volume, and astrophysics array instruments for molecular spectroscopy. This frequency band, while suitable for homeland security and commercial applications (such as millimeter-wave imaging, hidden weapons detection, crowd scanning, airport security, and communications), also has applications to future NASA missions. The Global Atmospheric Composition Mission (GACM) in the NRC Decadel Survey will need low-noise amplifiers with extremely low noise temperatures, either at room temperature or for cryogenic applications, for atmospheric remote sensing.
Optical sensor in planar configuration based on multimode interference
NASA Astrophysics Data System (ADS)
Blahut, Marek
2017-08-01
In the paper a numerical analysis of optical sensors based on multimode interference in planar one-dimensional step-index configuration is presented. The structure consists in single-mode input and output waveguides and multimode waveguide which guide only few modes. Material parameters discussed refer to a SU8 polymer waveguide on SiO2 substrate. The optical system described will be designed to the analysis of biological substances.
Submillimeter-Wave Amplifier Module with Integrated Waveguide Transitions
NASA Technical Reports Server (NTRS)
Samoska, Lorene; Chattopadhyay, Goutam; Pukala, David; Gaier, Todd; Soria, Mary; ManFung, King; Deal, William; Mei, Gerry; Radisic, Vesna; Lai, Richard
2009-01-01
To increase the usefulness of monolithic millimeter-wave integrated circuit (MMIC) components at submillimeter-wave frequencies, a chip has been designed that incorporates two integrated, radial E-plane probes with an MMIC amplifier in between, thus creating a fully integrated waveguide module. The integrated amplifier chip has been fabricated in 35-nm gate length InP high-electron-mobility-transistor (HEMT) technology. The radial probes were mated to grounded coplanar waveguide input and output lines in the internal amplifier. The total length of the internal HEMT amplifier is 550 m, while the total integrated chip length is 1,085 m. The chip thickness is 50 m with the chip width being 320 m. The internal MMIC amplifier is biased through wire-bond connections to the gates and drains of the chip. The chip has 3 stages, employing 35-nm gate length transistors in each stage. Wire bonds from the DC drain and gate pads are connected to off-chip shunt 51-pF capacitors, and additional off-chip capacitors and resistors are added to the gate and drain bias lines for low-frequency stability of the amplifier. Additionally, bond wires to the grounded coplanar waveguide pads at the RF input and output of the internal amplifier are added to ensure good ground connections to the waveguide package. The S-parameters of the module, not corrected for input or output waveguide loss, are measured at the waveguide flange edges. The amplifier module has over 10 dB of gain from 290 to 330 GHz, with a peak gain of over 14 dB at 307 GHz. The WR2.2 waveguide cutoff is again observed at 268 GHz. The module is biased at a drain current of 27 mA, a drain voltage of 1.24 V, and a gate voltage of +0.21 V. Return loss of the module is very good between 5 to 25 dB. This result illustrates the usefulness of the integrated radial probe transition, and the wide (over 10-percent) bandwidth that one can expect for amplifier modules with integrated radial probes in the submillimeter-regime (>300 GHz).
Mid-infrared supercontinuum generation in tapered As2S3 chalcogenide planar waveguide
NASA Astrophysics Data System (ADS)
Zhang, Xiang; Hu, Hongyu; Li, Wenbo; Dutta, Niloy K.
2016-10-01
We numerically demonstrate mid-infrared supercontinuum generation in a non-uniformly tapered chalcogenide planar waveguide. This planar rib waveguide of As2S3 glass on MgF2 is 2 cm long with increasing etch depth longitudinally to manage the total dispersion. This waveguide has zero dispersion at two wavelengths. The dispersion profile varies along the propagation distance, leading to continuous modification of the phase-matching condition for dispersive wave emission and enhancement of energy transfer efficiency between solitons and dispersive waves. Numerical simulations are conducted for secant input pulses at a wavelength of 1.55 μm with a width of 50 fs and peak power of 2 kW. Results show this proposed scheme significantly broadens the generated continuum, extending from ~1 to ~7 μm.
Low Loss Nanostructured Polymers for Chip-scale Waveguide Amplifiers.
Chen, George F R; Zhao, Xinyu; Sun, Yang; He, Chaobin; Tan, Mei Chee; Tan, Dawn T H
2017-06-13
On-chip waveguide amplifiers offer higher gain in small device sizes and better integration with photonic devices than the commonly available fiber amplifiers. However, on-chip amplifiers have yet to make its way into the mainstream due to the limited availability of materials with ideal light guiding and amplification properties. A low-loss nanostructured on-chip channel polymeric waveguide amplifier was designed, characterized, fabricated and its gain experimentally measured at telecommunication wavelength. The active polymeric waveguide core comprises of NaYF 4 :Yb,Er,Ce core-shell nanocrystals dispersed within a SU8 polymer, where the nanoparticle interfacial characteristics were tailored using hydrolyzed polyhedral oligomeric silsesquioxane-graft-poly(methyl methacrylate) to improve particle dispersion. Both the enhanced IR emission intensity from our nanocrystals using a tri-dopant scheme and the reduced scattering losses from our excellent particle dispersion at a high solid loading of 6.0 vol% contributed to the outstanding optical performance of our polymeric waveguide. We achieved one of the highest reported gain of 6.6 dB/cm using a relatively low coupled pump power of 80 mW. These polymeric waveguide amplifiers offer greater promise for integrated optical circuits due to their processability and integration advantages which will play a key role in the emerging areas of flexible communication and optoelectronic devices.
NASA Astrophysics Data System (ADS)
Avrutskiĭ, I. A.; Sychugov, V. A.
1989-02-01
The problem of reflection of light from the surface of an amplifying corrugated waveguide is solved. An increase in the waveguide gain increases considerably the reflection coefficient and reduces the spectral width of the reflection peak.
Improved optical efficiency of bulk laser amplifiers with femtosecond written waveguides
NASA Astrophysics Data System (ADS)
Bukharin, Mikhail A.; Lyashedko, Andrey; Skryabin, Nikolay N.; Khudyakov, Dmitriy V.; Vartapetov, Sergey K.
2016-04-01
In the paper we proposed improved technique of three-dimensional waveguides writing with direct femtosecond laser inscription technology. The technique allows, for the first time of our knowledge, production of waveguides with mode field diameter larger than 200 μm. This result broadens field of application of femtosecond writing technology into bulk laser schemes and creates an opportunity to develop novel amplifiers with increased efficiency. We proposed a novel architecture of laser amplifier that combines free-space propagation of signal beam with low divergence and propagation of pump irradiation inside femtosecond written waveguide with large mode field diameter due to total internal reflection effect. Such scheme provides constant tight confinement of pump irradiation over the full length of active laser element (3-10 cm). The novel amplifier architecture was investigated numerically and experimentally in Nd:phosphate glass. Waveguides with 200 μm mode field diameter were written with high frequency femtosecond oscillator. Proposed technique of three-dimensional waveguides writing based on decreasing and compensation of spherical aberration effect due to writing in heat cumulative regime and dynamic pulse energy adjustment at different depths of writing. It was shown, that written waveguides could increase optical efficiency of amplifier up to 4 times compared with corresponding usual free-space schemes. Novelty of the results consists in technique of femtosecond writing of waveguides with large mode field diameter. Actuality of the results consists in originally proposed architecture allows to improve up to 4 times optical efficiency of conventional bulk laser schemes and especially ultrafast pulse laser amplifiers.
Ceramic planar waveguide laser of non-aqueous tape casting fabricated YAG/Yb:YAG/YAG
Wang, Chao; Li, Wenxue; Yang, Chao; Bai, Dongbi; Li, Jiang; Ge, Lin; Pan, Yubai; Zeng, Heping
2016-01-01
Ceramic YAG/Yb:YAG/YAG planar waveguide lasers were realized on continuous-wave and mode-locked operations. The straight waveguide, fabricated by non-aqueous tape casting and solid state reactive sintering, enabled highly efficient diode-pumped waveguide continuous-wave laser with the slope efficiency of 66% and average output power of more than 3 W. The influence of the waveguide structure on the wavelength tunability was also experimentally investiccgated with a dispersive prism. Passively mode-locked operation of the ceramic waveguide laser was achieved by using a semiconductor saturable absorber mirror (SESAM), output 2.95 ps pulses with maximum power of 385 mW at the central wavelength of 1030 nm. PMID:27535577
Ring cavity for a Raman capillary waveguide amplifier
Kurnit, N.A.
1983-07-19
Disclosed is a regenerative ring amplifier and regenerative ring oscillator which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO[sub 2] laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplifier Stokes signal is synchronous with the mode-locked spikes of the incoming CO[sub 2] laser pump signal. 6 figs.
Er 3+-Yb 3+ co-doped glass waveguide amplifiers using ion exchange and field-assisted annealing
NASA Astrophysics Data System (ADS)
Zhang, X. Z.; Liu, K.; Mu, S. K.; Tan, C. Z.; Zhang, D.; Pun, E. Y. B.; Zhang, D. M.
2006-12-01
Er 3+-Yb 3+ co-doped waveguide amplifiers fabricated using thermal two-step ion-exchange are demonstrated. K +-Na + ion-exchange process was first carried out in pure KNO 3 molten bath, and then field-assisted annealing (FAA) was used to make the buried waveguides. The effective buried depth is estimated to be ˜3.4 μm for the buried FAA waveguides. With the use of cut-back method, the fiber-to-guide coupling loss of ˜4.38 dB, the waveguide loss of ˜2.27 dB/cm, and Er 3+ absorption loss ˜5.7 dB were measured for a ˜1.24-cm-long waveguide. Peak relative gain of ˜7.0 dB is obtained for a ˜1.24-cm-long waveguide. The potential for the fabrication of compact optical amplifiers operating in the range of 1520-1580 nm is also demonstrated.
Planar waveguide sensor of ammonia
NASA Astrophysics Data System (ADS)
Rogoziński, Roman; Tyszkiewicz, Cuma; Karasiński, Paweł; Izydorczyk, Weronika
2015-12-01
The paper presents the concept of forming ammonia sensor based on a planar waveguide structure. It is an amplitude sensor produced on the basis of the multimode waveguide. The technological base for this kind of structure is the ion exchange method and the sol-gel method. The planar multimode waveguide of channel type is produced in glass substrate (soda-lime glass of Menzel-Glaser company) by the selective Ag+↔Na+ ion exchange. On the surface of the glass substrate a porous (~40%) silica layer is produced by the sol-gel method. This layer is sensitized to the presence of ammonia in the surrounding atmosphere by impregnation with Bromocresol Purple (BCP) dye. Therefore it constitutes a sensor layer. Spectrophotometric tests carried out showed about 50% reduction of cross-transmission changes of such sensor layer for a wave λ=593 nm caused by the presence of 25% ammonia water vapor in its ambience. The radiation source used in this type of sensor structure is a light emitting diode LED. The gradient channel waveguide is designed for frontal connection (optical glue) with a standard multimode telecommunications waveguide 62.5/125μm.
Theory of absorption integrated optical sensor of gaseous materials
NASA Astrophysics Data System (ADS)
Egorov, A. A.
2010-10-01
The eigen and noneigen (leaky) modes of a three-layer planar integrated optical waveguide are described. The dispersion relation of a three-layer planar waveguide and other dependences are derived, and the cutoff conditions are analyzed. The diagram of propagation constants of the guided and radiation modes of an irregular asymmetric three-layer waveguide and the dependence of the electric field amplitudes of radiation modes of substrate on vertical coordinate in a tantalum integrated optical waveguide are presented. The operating principles of an absorption integrated optical waveguide sensor are investigated. The dependences of sensitivity of an integrated optical waveguide sensor on the sensory cell length, the coupling efficiency of the laser radiation into the waveguide, the absorption cross-section of the studied material, and the level of additive statistical noise are investigated. Some of the prospective areas of application of integrated-optical waveguide sensors are outlined.
NASA Astrophysics Data System (ADS)
Wang, Yixiao; Wolfer, Tim; Lange, Alex; Overmeyer, Ludger
2016-05-01
Large scale, planar optronic systems allowing spatially distributed functionalities can be well used in diverse sensor networks, such as for monitoring the environment by measuring various physical quantities in medicine or aeronautics. In these systems, mechanically flexible and optically transparent polymeric foils, e.g. polymethyl methacrylate (PMMA) and polyethylene terephthalate (PET), are employed as carrier materials. A benefit of using these materials is their low cost. The optical interconnections from light sources to light transmission structures in planar optronic systems occupy a pivotal position for the sensing functions. As light sources, we employ the optoelectronic components, such as edgeemitting laser diodes, in form of bare chips, since their extremely small structures facilitate a high integration compactness and ensure sufficient system flexibility. Flexographically printed polymer optical waveguides are deployed as light guiding structures for short-distance communication in planar optronic systems. Printing processes are utilized for this generation of waveguides to achieve a cost-efficient large scale and high-throughput production. In order to attain a high-functional optronic system for sensing applications, one of the most essential prerequisites is the high coupling efficiency between the light sources and the waveguides. Therefore, in this work, we focus on the multimode polymer waveguide with a parabolic cross-section and investigate its optical coupling with the bare laser diode. We establish the geometrical model of the alignment based on the previous works on the optodic bonding of bare laser diodes and the fabrication process of polymer waveguides with consideration of various parameters, such as the beam profile of the laser diode, the employed polymer properties of the waveguides as well as the carrier substrates etc. Accordingly, the optical coupling of the bare laser diodes and the polymer waveguides was simulated. Additionally, we demonstrate optical links by adopting the aforementioned processes used for defining the simulation. We verify the feasibility of the developed processes for planar optronic systems by using an active alignment and conduct discussions for further improvements of optical alignment.
Ridge waveguide laser in Nd:LiNbO3 by Zn-diffusion and femtosecond-laser structuring
NASA Astrophysics Data System (ADS)
Martínez de Mendívil, Jon; del Hoyo, Jesús; Solís, Javier; Lifante, Ginés
2016-12-01
Ridge waveguide lasers have been fabricated on Nd3+ doped LiNbO3 crystals. The fs-laser writing technique was used to define ridge structures on a gradient-index planar waveguide fabricated by Zn-diffusion. This planar waveguide was formed in a z-cut LiNbO3 substrate homogeneously doped with a 0.23% of Nd3+ ions. To obtain lateral light confinement, the surface was then micromachined using a multiplexed femtosecond laser writing beam, forming the ridge structures. By butting two mirrors at the channel waveguide end-facets, forming a waveguide laser cavity, TM-polarized laser action at 1085 nm was achieved by end-fire TM-pumping at 815 nm. The waveguide laser shows a threshold of 31 mW, with a 7% of slope efficiency.
Optical waveguides in Nd:GdVO4 crystals fabricated by swift N3+ ion irradiation
NASA Astrophysics Data System (ADS)
Dong, Ningning; Yao, Yicun; Chen, Feng
2012-12-01
Optical planar waveguides have been manufactured in Nd:GdVO4 crystal by swift N3+ ions irradiation at fluence of 1.5 × 1014 ions/cm2. A typical "barrier"-style refractive index profile was formed and the light can be well confined in the waveguide region. The modal distribution of the guided modes obtained from numerical calculation has a good agreement with the experimental modal distribution. The measured photoluminescence spectra revealed that the fluorescence properties of the Nd3+ ions have been modified to some extent in the waveguide's volume. The propagation loss of the planar waveguide can decrease to lower than 1 dB/cm after adequate annealing.
Senspex, Inc. proposes to investigate a novel diagnostic tool based upon evanescent field planar waveguide sensing and complementary nanostructured mediated molecular vibration spectroscopy methods for rapid detection and analysis of hazardous biological and chemical targets i...
Investigation for connecting waveguide in off-planar integrated circuits.
Lin, Jie; Feng, Zhifang
2017-09-01
The transmission properties of a vertical waveguide connected by different devices in off-planar integrated circuits are designed, investigated, and analyzed in detail by the finite-difference time-domain method. The results show that both guide bandwidth and transmission efficiency can be adjusted effectively by shifting the vertical waveguide continuously. Surprisingly, the wide guide band (0.385[c/a]∼0.407[c/a]) and well transmission (-6 dB) are observed simultaneously in several directions when the vertical waveguide is located at a specific location. The results are very important for all-optical integrated circuits, especially in compact integration.
NASA Astrophysics Data System (ADS)
Galechyan, M. G.; Dianov, Evgenii M.; Lyndin, N. M.; Tishchenko, A. V.
1989-02-01
A new method for electrodiffusion of Cs+ ions from molten CsNO3 into glass was developed. A study was made of the dependences of the parameters of the refractive index profile of planar waveguides on the conditions during diffusion. These waveguides were characterized by low losses (less than 0.2 dB/cm) in a wide spectral range and they were stable under heating to 300 °C.
Ring cavity for a Raman capillary waveguide amplifir
Kurnit, N.A.
1981-01-27
A regenerative ring amplifier and regenerative ring oscillator are described which function to feed back a portion of the Stokes signal to complete the ring cavity. The ring cavity configuration allows the CO/sub 2/ laser pump signal and Stokes signal to copropagate through the Raman capillary waveguide amplifier. A Raman capillary waveguide amplifier is also provided in the return leg of the ring cavity to increase gain without increasing the round trip time. Additionally, the ring cavity can be designed such that the amplified Stokes signal is synchronous with the mode-locked spikes of the incoming CO/sub 2/ laser pump signal.
Development of a wavelength tunable filter using MEMS technology
NASA Astrophysics Data System (ADS)
Liu, Junting
Microelectromechanical systems (MEMS) for optical applications have received intensive attention in recent years because of their potential applications in optical telecommunication. Traditional wavelength division multiplexing (WDM) offers high capacity but requires the fabrication of selective add-drop filters. MEMS technology offers an effective way to fabricate these components at low cost. This thesis presents the development of a device that tunes the Bragg wavelength by coupling into the evanescent field of the grating. A Bragg grating is a periodic perturbation of the refractive index along a fiber or a periodic perturbation of the structure of a planar waveguide. The Bragg wavelength can be tuned by changing the degree to which a dielectric slab couples into the evanescent field. The result is a change in the effective index of the grating, and thus a change in the wavelength that which it reflects. In this thesis Bragg gratings were successfully written into an optical fiber using phase mask technique. Mechanical polishing was used to side-polish the fiber and remove cladding to expose the core. Grating structures were also fabricated in planar waveguide using E-beam writing and dry etching. In order to achieve the smoothest possible morphology of the waveguide, plasma dry etching of transparent substrates was studied in great detail. It is found that the pre-etch cleaning procedure greatly influences the ability to obtain a smooth etched surface. Upper limits of evanescent field tuning were investigated by applying different index liquids such as D. I. water and index matching oils or by positioning different dielectric materials such as glass and silicon close to the grating. Planar waveguides were found to be more sensitive to effective index change. Two kinds of computer simulation were carried out to understand the mode profile and to estimate the value of effective index of planar waveguide under "dry" and "wet" conditions. The first one used an average depth of grating approximation. The second explicitly considered the corrugated structure of the waveguide. Results of both simulations were compared with the experimental results in order to find the proper simulation approach. The fiber or planar waveguide gratings were "device" integrated and their pro and cons were compared. Devices using an optical fiber employed a microactuator driven by electrothermal vibromotor to change the degree of coupling between fiber and "tuning block". Device using planar waveguides used an electrostatic force actuated membrane, flip-chip mounted atop the waveguide. All devices were fabricated using polysilicon surface micromachining processes. I concluded that devices driven by electrostatic force were easier to actuate and their integration with waveguide less challenging.
NASA Astrophysics Data System (ADS)
Dianov, Evgenii M.; Zubov, Vladimir A.; Putilin, A. N.
1995-02-01
An analysis is made of a variant of a system for spatial—temporal transformation of spatially one-dimensional information for its transfer along a single-mode fibre waveguide. Information is coupled into a fibre by a waveguide hologram. This hologram forms a light-beam structure which matches the fibre-guided mode. A report is given of the use of ion-exchange planar glass waveguides as waveguide holograms. An amorphous chalcogenide semiconductor film or a photoresist was deposited by evaporation on such a planar waveguide. Reconstruction of the waveguide hologram made it possible to achieve a high read rate, up to 1011 pixels per second, when a short radiation pulse was used. Multisectioned injection semiconductor lasers, operating under Q-switching conditions, were used as the radiation sources.
NASA Astrophysics Data System (ADS)
Wang, Y.; Klittnick, A.; Clark, N. A.; Keller, P.
2008-10-01
We demonstrate an easily fabricated all-optical and freely reconfigurable method of controlling the propagating characteristics of the optic path within a planar waveguide with low insertion losses by employing the optical patterning of the refractive index of an erasable and rewriteable photosensitive liquid crystal polymer cladding layer.
NASA Astrophysics Data System (ADS)
Zel'dovich, Boris Ya; Miklyaev, Yu V.; Safonov, V. I.
1995-02-01
An analysis is made of the mechanism of formation of a stationary grating in a planar photorefractive waveguide by a travelling interference pattern with the aid of an alternating electric field applied perpendicular to the waveguide layer. A theoretical calculation is reported of the distribution of the space-charge field in a transverse section of the waveguide. Finite drift lengths and trap saturation are taken into account in these calculations, which are carried out on the assumption of a weak contrast in the interference pattern.
New biorthogonality relations for inhomogeneous biisotropic planar waveguides
NASA Astrophysics Data System (ADS)
Topa, Antonio L.; Paiva, Carlos R.; Barbosa, Afonso M.
1994-04-01
Using a linear operator formalism this paper presents new biorthogonality relations for the hybrid modes supported by planar waveguides inhomogeneously filled with general biisotropic media. In the special case of lossless biisotropic media, the linear operator is self-adjoint, the original and adjoint waveguides are identical, and new orthogonality relations can be derived. As an example of application, the radiation modes of a grounded nonreciprocal and lossless biisotropic slab waveguide are analyzed in terms of a pair of incident transverse electric (ITE) and incident transverse magnetic (ITM) continuous modes, which have the advantage of being mutually orthogonal and of having a clear physical interpretation.
Planar polymer and glass graded index waveguides for data center applications
NASA Astrophysics Data System (ADS)
Pitwon, Richard; Yamauchi, Akira; Brusberg, Lars; Wang, Kai; Ishigure, Takaaki; Schröder, Henning; Neitz, Marcel; Worrall, Alex
2016-03-01
Embedded optical waveguide technology for optical printed circuit boards (OPCBs) has advanced considerably over the past decade both in terms of materials and achievable waveguide structures. Two distinct classes of planar graded index multimode waveguide have recently emerged based on polymer and glass materials. We report on the suitability of graded index polymer waveguides, fabricated using the Mosquito method, and graded index glass waveguides, fabricated using ion diffusion on thin glass foils, for deployment within future data center environments as part of an optically disaggregated architecture. To this end, we first characterize the wavelength dependent performance of different waveguide types to assess their suitability with respect to two dominant emerging multimode transceiver classes based on directly modulated 850 nm VCSELs and 1310 silicon photonics devices. Furthermore we connect the different waveguide types into an optically disaggregated data storage system and characterize their performance with respect to different common high speed data protocols used at the intra and inter rack level including 10 Gb Ethernet and Serial Attached SCSI.
NASA Astrophysics Data System (ADS)
Rosenberger, M.; Girschikofsky, M.; Förthner, M.; Belle, S.; Rommel, M.; Frey, L.; Schmauss, B.; Hellmann, R.
2018-01-01
We demonstrate the applicability of a planar waveguide Bragg grating in cyclo-olefin copolymer (COC) for refractive index sensing. The polymer planar waveguide Bragg grating fabricated using a single writing step technique is coated with a high-index layer of titanium dioxide (TiO2) leading to a distinct birefringence. This in turn results in the splitting of the Bragg reflection into two distinct Bragg wavelengths, which strongly differ regarding their refractive index sensitivities. Where one wavelength is only slightly affected by the ambient refractive index, the second Bragg peak shows a strong sensitivity. Furthermore, we investigate the temperature behaviour of the functionalized sensor and discuss it with respect to applications in refractive index sensing.
Planar waveguide integrated spatial filter array
NASA Astrophysics Data System (ADS)
Ai, Jun; Dimov, Fedor; Lyon, Richard; Rakuljic, Neven; Griffo, Chris; Xia, Xiaowei; Arik, Engin
2013-09-01
An innovative integrated spatial filter array (iSFA) was developed for the nulling interferometer for the detection of earth-like planets and life beyond our solar system. The coherent iSFA comprised a 2D planar lightwave circuit (PLC) array coupled with a pair of 2D lenslet arrays in a hexagonal grid to achieve the optimum fill factor and throughput. The silica-on-silicon waveguide mode field diameter and numerical aperture (NA) were designed to match with the Airy disc and NA of the microlens for optimum coupling. The lenslet array was coated with a chromium pinhole array at the focal plane to pass the single-mode waveguide but attenuate the higher modes. We assembled a 32 by 30 array by stacking 32 chips that were produced by photolithography from a 6-in. silicon wafer. Each chip has 30 planar waveguides. The PLC array is inherently polarization-maintaining (PM) and requires much less alignment in contrast to a fiber array, where each PM fiber must be placed individually and oriented correctly. The PLC array offers better scalability than the fiber bundle array for large arrays of over 1,000 waveguides.
USDA-ARS?s Scientific Manuscript database
Substrate integrated waveguide- based sensors balance the performance and well known design techniques of classical waveguides with the cheaper and more adaptable aspects of planar circuits. Propagation characteristics are similar to waveguides with the design retaining many positive aspects of wave...
NASA Astrophysics Data System (ADS)
Benedik, Andrey I.; Karetnikova, Tatiana A.; Torgashov, Roman A.; Terentyuk, Artem G.; Rozhnev, Andrey G.; Torgashov, Gennadiy V.; Ryskin, Nikita M.
2018-04-01
Microfabricated vacuum-tube millimeter- and THz-band sources are of great interest for numerous applications such as communications, radar, sensors, imaging, etc. Recently, miniaturized sheet-beam traveling-wave tubes for sub-THz and THz operation have attracted a considerable interest. In this paper, we present the results of modeling and development of slow-wave structures (SWS) for medium power (10-100 W) traveling-wave tube (TWT) amplifiers and backwardwave oscillators (BWO) in near-THz frequency band. Different types of SWSs are considered, such as double-vane SWS for TWT with a sheet electron beam, a folded-waveguide SWS, and novel planar SWSs on dielectric substrates.
NASA Astrophysics Data System (ADS)
Peřina, Jan, Jr.; Sibilia, Concita; Tricca, Daniela; Bertolotti, Mario
2005-04-01
Optical parametric process occurring in a nonlinear planar waveguide can serve as a source of light with nonclassical properties. The properties of the generated fields are substantially modified by scattering of the nonlinearly interacting fields in a photonic-band-gap structure inside the waveguide. A general quantum model of linear operator amplitude corrections to the amplitude mean values and its numerical analysis provide conditions for efficient squeezed-light generation as well as generation of light with sub-Poissonian photon-number statistics. The destructive influence of phase mismatch of the nonlinear interaction can fully be compensated using a suitable photonic-band-gap structure inside the waveguide. Also an increase of the signal-to-noise ratio of the incident optical field can be reached in the waveguide.
Polymer waveguide grating sensor integrated with a thin-film photodetector
Song, Fuchuan; Xiao, Jing; Xie, Antonio Jou; Seo, Sang-Woo
2014-01-01
This paper presents a planar waveguide grating sensor integrated with a photodetector (PD) for on-chip optical sensing systems which are suitable for diagnostics in the field and in-situ measurements. III–V semiconductor-based thin-film PD is integrated with a polymer based waveguide grating device on a silicon platform. The fabricated optical sensor successfully discriminates optical spectral characteristics of the polymer waveguide grating from the on-chip PD. In addition, its potential use as a refractive index sensor is demonstrated. Based on a planar waveguide structure, the demonstrated sensor chip may incorporate multiple grating waveguide sensing regions with their own optical detection PDs. In addition, the demonstrated processing is based on a post-integration process which is compatible with silicon complementary metal-oxide semiconductor (CMOS) electronics. Potentially, this leads a compact, chip-scale optical sensing system which can monitor multiple physical parameters simultaneously without need for external signal processing. PMID:24466407
NASA Astrophysics Data System (ADS)
Shen, Xiao-Liang; Dai, Han-Qing; Zhang, Liao-Lin; Wang, Yue; Zhu, Qi-Feng; Guo, Hai-Tao; Li, Wei-Nan; Liu, Chun-Xiao
2018-04-01
We report the fabrication of a planar optical waveguide by silicon ion implantation into Nd-doped phosphate glass at an energy of 6.0 MeV and a dose of 5.0 × 1014 ions/cm2. The change in the surface morphology of the glass after the implantation can be clearly observed by scanning electron microscopy. The measurement of the dark mode spectrum of the waveguide is conducted using a prism coupler at 632.8 nm. The refractive index distribution of the waveguide is reconstructed by the reflectivity calculation method. The near-field optical intensity profile of the waveguide is measured using an end-face coupling system. The waveguide with good optical properties on the glass matrix may be valuable for the application of the Nd-doped phosphate glass in integrated optical devices.
Polymer planar waveguide Bragg gratings: fabrication, characterization, and sensing applications
NASA Astrophysics Data System (ADS)
Rosenberger, M.; Hessler, S.; Pauer, H.; Girschikofsky, M.; Roth, G. L.; Adelmann, B.; Woern, H.; Schmauss, B.; Hellmann, R.
2017-02-01
In this contribution, we give a comprehensive overview of the fabrication, characterization, and application of integrated planar waveguide Bragg gratings (PPBGs) in cyclo-olefin copolymers (COC). Starting with the measurement of the refractive index depth profile of integrated UV-written structures in COC by phase shifting Mach-Zehnder- Interferometry, we analyze the light propagation using numerical simulations. Furthermore, we show the rapid fabrication of humidity insensitive polymer waveguide Bragg gratings in cyclo-olefin copolymers and discuss the influence of the UV-dosage onto the spectral characteristics and the transmission behavior of the waveguide. Based on these measurements we exemplify that our Bragg gratings exhibit a reflectivity of over 99 % and are highly suitable for sensing applications. With regard to a negligible affinity to absorb water and in conjunction with high temperature stability these polymer devices are ideal for mechanical deformation sensing. Since planar structures are not limited to tensile but can also be applied for measuring compressive strain, we manufacture different functional devices and corroborate their applicability as optical sensors. Exemplarily, we highlight a temperature referenced PPBG sensor written into a femtosecond-laser cut tensile test geometry for tensile and compressive strain sensing. Furthermore, a flexible polymer planar shape sensor is presented.
NASA Astrophysics Data System (ADS)
Brüske, Dominik; Suntsov, Sergiy; Volk, Martin F.; Rüter, Christian E.; Kip, Detlef
2018-02-01
Erbium-ytterbium-codoped titanium in-diffused ridge waveguides optical amplifiers in x-cut congruent LiNbO3 substrates pumped at 980.5 nm and 1486 nm are reported for the first time. An internal gain of 2.8 dB/cm has been measured in 2.3 cm long Yb:Er:Ti:LiNbO3 ridge waveguides for the coupled pump power of 145 mW at 980.5 nm, which is the highest gain ever reported, to the best of our knowledge, for erbium-based LiNbO3 waveguide amplifiers under 980 nm excitation. Furthermore, we realized an internal gain of 3.2 dB/cm for the coupled pump power of 200 mW at 1486 nm, which also exceeds the best literature values for Er:Ti:LiNbO3 waveguide amplifiers pumped at this wavelength. In addition, we report on a method for local periodic poling (periods of 30 μm and 18.4 μm) of ridge waveguides in LiNbO3, which allows for future integration of waveguide lasers and nonlinear frequency converters on the same substrate.
Hydrodynamic evolution of plasma waveguides for soft-x-ray amplifiers
NASA Astrophysics Data System (ADS)
Oliva, Eduardo; Depresseux, Adrien; Cotelo, Manuel; Lifschitz, Agustín; Tissandier, Fabien; Gautier, Julien; Maynard, Gilles; Velarde, Pedro; Sebban, Stéphane
2018-02-01
High-density, collisionally pumped plasma-based soft-x-ray lasers have recently delivered hundreds of femtosecond pulses, breaking the longstanding barrier of one picosecond. To pump these amplifiers an intense infrared pulse must propagate focused throughout all the length of the amplifier, which spans several Rayleigh lengths. However, strong nonlinear effects hinder the propagation of the laser beam. The use of a plasma waveguide allows us to overcome these drawbacks provided the hydrodynamic processes that dominate the creation and posterior evolution of the waveguide are controlled and optimized. In this paper we present experimental measurements of the radial density profile and transmittance of such waveguide, and we compare them with numerical calculations using hydrodynamic and particle-in-cell codes. Controlling the properties (electron density value and radial gradient) of the waveguide with the help of numerical codes promises the delivery of ultrashort (tens of femtoseconds), coherent soft-x-ray pulses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofschen, S.; Wolff, I.
1996-08-01
Time-domain simulation results of two-dimensional (2-D) planar waveguide finite-difference time-domain (FDTD) analysis are normally analyzed using Fourier transform. The introduced method of time series analysis to extract propagation and attenuation constants reduces the desired computation time drastically. Additionally, a nonequidistant discretization together with an adequate excitation technique is used to reduce the number of spatial grid points. Therefore, it is possible to reduce the number of spatial grid points. Therefore, it is possible to simulate normal- and superconducting planar waveguide structures with very thin conductors and small dimensions, as they are used in MMIC technology. The simulation results are comparedmore » with measurements and show good agreement.« less
Optofluidic waveguides: I. Concepts and implementations
Schmidt, Holger; Hawkins, Aaron R.
2011-01-01
We review recent developments and current status of liquid-core optical waveguides in optofluidics with emphasis on suitability for creating fully planar optofluidic labs-on-a-chip. In this first of two contributions, we give an overview of the different waveguide types that are being considered for effectively combining micro and nanofluidics with integrated optics. The large number of approaches is separated into conventional index-guided waveguides and more recent implementations using wave interference. The underlying principle for waveguiding and the current status are described for each type. We then focus on reviewing recent work on microfabricated liquid-core antiresonant reflecting optical (ARROW) waveguides, including the development of intersecting 2D waveguide networks and optical fluorescence and Raman detection with planar beam geometry. Single molecule detection capability and addition of electrical control for electrokinetic manipulation and analysis of single bioparticles are demonstrated. The demonstrated performance of liquid-core ARROWs is representative of the potential of integrated waveguides for on-chip detection with ultrahigh sensitivity, and points the way towards the next generation of high-performance, low-cost and portable biomedical instruments. PMID:21442048
Beyond G-band : a 235 GHz InP MMIC amplifier
NASA Technical Reports Server (NTRS)
Dawson, Douglas; Samoska, Lorene; Fung, A. K.; Lee, Karen; Lai, Richard; Grundbacher, Ronald; Liu, Po-Hsin; Raja, Rohit
2005-01-01
We present results on an InP monolithic millimeter- wave integrated circuit (MMIC) amplifier having 10-dB gain at 235 GHz. We designed this circuit and fabricated the chip in Northrop Grumman Space Technology's (NGST) 0.07- m InP high electron mobility transistor (HEMT) process. Using a WR3 (220-325 GHz) waveguide vector network analyzer system interfaced to waveguide wafer probes, we measured this chip on-wafer for -parameters. To our knowledge, this is the first time a WR3 waveguide on-wafer measurement system has been used to measure gain in a MMIC amplifier above 230 GHz.
Optical waveguides in magneto-optical glasses fabricated by proton implantation
NASA Astrophysics Data System (ADS)
Liu, Chun-Xiao; Li, Yu-Wen; Zheng, Rui-Lin; Fu, Li-Li; Zhang, Liao-Lin; Guo, Hai-Tao; Zhou, Zhi-Guang; Li, Wei-Nan; Lin, She-Bao; Wei, Wei
2016-11-01
Planar waveguides in magneto-optical glasses (Tb3+-doped aluminum borosilicate glasses) have been produced by a 550-keV proton implantation at a dose of 4.0×1016 ions/cm2 for the first time to our knowledge. After annealing at 260 °C for 1.0 h, the dark-mode spectra and near-field intensity distributions are measured by the prism-coupling and end-face coupling methods. The damage profile, refractive index distribution and light propagation mode of the planar waveguide are numerically calculated by SRIM 2010, RCM and FD-BPM, respectively. The effects of implantation on the structural and optical properties are investigated by Raman and absorption spectra. It suggests that the proton-implanted Tb3+-doped aluminum borosilicate glass waveguide is a good candidate for a waveguide isolator in optical fiber communication and all-optical communication.
Four-Way Ka-Band Power Combiner
NASA Technical Reports Server (NTRS)
Perez, Raul; Li, Samuel
2007-01-01
A waveguide structure for combining the outputs of four amplifiers operating at 35 GHz (Ka band) is based on a similar prior structure used in the X band. The structure is designed to function with low combining loss and low total reflected power at a center frequency of 35 GHz with a 160 MHz bandwidth. The structure (see figure) comprises mainly a junction of five rectangular waveguides in a radial waveguide. The outputs of the four amplifiers can be coupled in through any four of the five waveguide ports. Provided that these four signals are properly phased, they combine and come out through the fifth waveguide port.
Wide Band Gyrotron Traveling Wave Amplifier Analysis.
1987-12-01
phase versus frequency characteristics. It is in these aspects that the gyrotron amplifier effort has been less than successful. A C-band gyro- TWT ...proposals were made several years ago, no experimental results have yet been reported. Another concept for increasing the bandwidth of the gyro- TWT is to...including dielectric loading of the waveguide [24], helix loaded waveguide (25]-[26], and disc-loaded waveguide [26]-(27). No experimental results on
Erbium-doped zinc-oxide waveguide amplifiers for hybrid photonic integrated circuits
NASA Astrophysics Data System (ADS)
O'Neal, Lawrence; Anthony, Deion; Bonner, Carl; Geddis, Demetris
2016-02-01
CMOS logic circuits have entered the sub-100nm regime, and research is on-going to investigate the quantum effects that are apparent at this dimension. To avoid some of the constraints imposed by fabrication, entropy, energy, and interference considerations for nano-scale devices, many have begun designing hybrid and/or photonic integrated circuits. These circuits consist of transistors, light emitters, photodetectors, and electrical and optical waveguides. As attenuation is a limiting factor in any communications system, it is advantageous to integrate a signal amplifier. There are numerous examples of electrical amplifiers, but in order to take advantage of the benefits provided by optically integrated systems, optical amplifiers are necessary. The erbium doped fiber amplifier is an example of an optical amplifier which is commercially available now, but the distance between the amplifier and the device benefitting from amplification can be decreased and provide greater functionality by providing local, on-chip amplification. Zinc oxide is an attractive material due to its electrical and optical properties. Its wide bandgap (≍3.4 eV) and high refractive index (≍2) make it an excellent choice for integrated optics systems. Moreover, erbium doped zinc oxide (Er:ZnO) is a suitable candidate for optical waveguide amplifiers because of its compatibility with semiconductor processing technology, 1.54 μm luminescence, transparency, low resistivity, and amplification characteristics. This research presents the characterization of radio frequency magnetron sputtered Er:ZnO, the design and fabrication of integrated waveguide amplifiers, and device analysis.
Squeezed-light generation in a nonlinear planar waveguide with a periodic corrugation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perina, Jan Jr.; Haderka, Ondrej; Sibilia, Concita
Two-mode nonlinear interaction (second-harmonic and second-subharmonic generation) in a planar waveguide with a small periodic corrugation at the surface is studied. Scattering of the interacting fields on the corrugation leads to constructive interference that enhances the nonlinear process provided that all the interactions are phase matched. Conditions for the overall phase matching are found. Compared with a perfectly quasi-phase-matched waveguide, better values of squeezing as well as higher intensities are reached under these conditions. Procedure for finding optimum values of parameters for squeezed-light generation is described.
Chi 3 dispersion in planar tantalum pentoxide waveguides in the telecommunications window.
Chen, Ruiqi Y; Charlton, Martin D B; Lagoudakis, Pavlos G
2009-04-01
We report on the dispersion of the third-order nonlinear susceptibility (chi(3) or "Chi 3") in planar Ta2O5 waveguides in the telecommunications spectral window. We utilize the observation of third-harmonic generation under ultrashort pulsed excitation as a reference-free characterization method of chi(3) and obtain a large nonlinear coefficient, 2x10(-13) esu, at 1550 nm. Our observation of efficient third-harmonic generation in Ta2O5 waveguides in the telecoms window reveals the potential of this material system in high-speed integrated nonlinear optical switches.
Laser printed glass planar lightwave circuits with integrated fiber alignment structures
NASA Astrophysics Data System (ADS)
Desmet, A.; Radosavljevic, A.; Missinne, J.; Van Thourhout, D.; Van Steenberge, G.
2018-02-01
Femtosecond laser inscription allows straightforward manufacturing of glass planar lightwave circuits such as waveguides, interferometers, directional couplers, resonators and more complex structures. Fiber alignment structures are needed to facilitate communication with the glass planar lightwave circuit. In this study, a technique is described to create optical waveguides and alignment structures in the same laser exposure step. Using an industrial ytterbium-doped 1030 nm fiber laser pulses of 400 fs were focused into glass with a 0.4 NA objective causing permanent alteration of the material. Depending on laser parameters this modification allows direct writing of waveguides or the creation of channels after exposing the irradiated volumes to an etchant such as KOH. Writing of channels and waveguides with different laser powers, frequencies, polarisations, stage translation speeds and scan densities were investigated in fused silica and borosilicate glass. Waveguides with controlled dimensions were created, as well as etched U-grooves with a diameter of 126 μm and a sidewall roughness Ra of 255 nm. Cut back measurements were performed giving a waveguide propagation loss of 1.1 dB/cm in borosilicate glass. A coupling loss of 0.7 dB was measured for a transition between the waveguide and standard single mode fiber at 1550 nm, using index matching liquid. The described technique eliminates active alignment requirements and is useful for many applications such as microfluidic sensing, PLCs, fan-out connectors for multicore fibers and quantum optical networks.
NASA Astrophysics Data System (ADS)
Wang, Yue; Shen, Xiao-Liang; Zheng, Rui-Lin; Guo, Hai-Tao; Lv, Peng; Liu, Chun-Xiao
2018-01-01
Ion implantation has demonstrated to be an efficient and reliable technique for the fabrication of optical waveguides in a diversity of transparent materials. Photo-thermal-refractive glass (PTR) is considered to be durable and stable holographic recording medium. Optical planar waveguide structures in the PTR glasses were formed, for the first time to our knowledge, by the C3+-ion implantation with single-energy (6.0 MeV) and double-energy (5.5+6.0 MeV), respectively. The process of the carbon ion implantation was simulated by the stopping and range of ions in matter code. The morphologies of the waveguides were recorded by a microscope operating in transmission mode. The guided beam distributions of the waveguides were measured by the end-face coupling technique. Comparing with the single-energy implantation, the double-energy implantation improves the light confinement for the dark-mode spectrum. The guiding properties suggest that the carbon-implanted PTR glass waveguides have potential for the manufacture of photonic devices.
Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles.
Pennanen, Antti M; Toppari, J Jussi
2013-01-14
Coupling of light into a thin layer of high refractive index material by plasmonic nanoparticles has been widely studied for application in photovoltaic devices, such as thin-film solar cells. In numerous studies this coupling has been investigated through measurement of e.g. quantum efficiency or photocurrent enhancement. Here we present a direct optical measurement of light coupling into a waveguide by plasmonic nanoparticles. We investigate the coupling efficiency into the guided modes within the waveguide by illuminating the surface of a sample, consisting of a glass slide coated with a high refractive index planar waveguide and plasmonic nanoparticles, while directly measuring the intensity of the light emitted out of the waveguide edge. These experiments were complemented by transmittance and reflectance measurements. We show that the light coupling is strongly affected by thin-film interference, localized surface plasmon resonances of the nanoparticles and the illumination direction (front or rear).
Observation of extraordinary optical activity in planar chiral photonic crystals.
Konishi, Kuniaki; Bai, Benfeng; Meng, Xiangfeng; Karvinen, Petri; Turunen, Jari; Svirko, Yuri P; Kuwata-Gonokami, Makoto
2008-05-12
Control of light polarization is a key technology in modern photonics including application to optical manipulation of quantum information. The requisite is to obtain large rotation in isotropic media with small loss. We report on extraordinary optical activity in a planar dielectric on-waveguide photonic crystal structure, which has no in-plane birefringence and shows polarization rotation of more than 25 degrees for transmitted light. We demonstrate that in the planar chiral photonic crystal, the coupling of the normally incident light wave with low-loss waveguide and Fabry-Pérot resonance modes results in a dramatic enhancement of the optical activity.
Optical waveguide loop for planar trapping of blood cells and microspheres
NASA Astrophysics Data System (ADS)
Ahluwalia, Balpreet S.; Hellesø, Olav G.
2013-09-01
The evanescent field from a waveguide can be used to trap and propel a particle. An optical waveguide loop with an intentional gap at the center is used for planar transport and stable trapping of particles. The waveguide acts as a conveyor belt to trap and deliver spheres towards the gap. At the gap, the counter-diverging light fields hold the sphere at a fixed position. Numerical simulation based on the finite element method was performed in three dimensions using a computer cluster. The field distribution and optical forces for rib and strip waveguide designs are compared and discussed. The optical force on a single particle was computed for various positions of the particle in the gap. Simulation predicted stable trapping of particles in the gap. Depending on the gap separation (2-50 μm) a single or multiple spheres and red blood cells were trapped at the gap. Waveguides were made of tantalum pentaoxide material. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip.
Brillouin scattering in planar waveguides. II. Experiments
NASA Astrophysics Data System (ADS)
Chiasera, A.; Montagna, M.; Moser, E.; Rossi, F.; Tosello, C.; Ferrari, M.; Zampedri, L.; Caponi, S.; Gonçalves, R. R.; Chaussedent, S.; Monteil, A.; Fioretto, D.; Battaglin, G.; Gonella, F.; Mazzoldi, P.; Righini, G. C.
2003-10-01
Silica-titania planar waveguides of different thicknesses and compositions have been produced by radio-frequency sputtering and dip coating on silica substrates. Waveguides were also produced by silver exchange on a soda-lime silicate glass substrate. Brillouin scattering of the samples has been studied by coupling the exciting laser beam with a prism to different transverse-electric (TE) modes of the waveguides, and collecting the scattered light from the front surface. In multimode waveguides, the spectra depend on the m mode of excitation. For waveguides with a step index profile, two main peaks due to longitudinal phonons are present, apart from the case of the TE0 excitation, where a single peak is observed. The energy separation between the two peaks increases with the mode index. In graded-index waveguides, m-1 peaks of comparable intensities are observed. The spectra are reproduced very well by a model which considers the space distribution of the exciting field in the mode, a simple space dependence of the elasto-optic coefficients, through the value of the refraction index, and neglects the refraction of phonons. A single-fit parameter, i.e., the longitudinal sound velocity, is used to calculate as many spectra as is the number of modes in the waveguide.
NASA Technical Reports Server (NTRS)
Dudgeon, J. E.
1972-01-01
A computerized simulation of a planar phased array of circular waveguide elements is reported using mutual coupling and wide angle impedance matching in phased arrays. Special emphasis is given to circular polarization. The aforementioned computer program has as variable inputs: frequency, polarization, grid geometry, element size, dielectric waveguide fill, dielectric plugs in the waveguide for impedance matching, and dielectric sheets covering the array surface for the purpose of wide angle impedance matching. Parameter combinations are found which produce reflection peaks interior to grating lobes, while dielectric cover sheets are successfully employed to extend the usable scan range of a phased array. The most exciting results came from the application of computer aided optimization techniques to the design of this type of array.
Optical study of Erbium-doped-porous silicon based planar waveguides
NASA Astrophysics Data System (ADS)
Najar, A.; Ajlani, H.; Charrier, J.; Lorrain, N.; Haesaert, S.; Oueslati, M.; Haji, L.
2007-06-01
Planar waveguides were formed from porous silicon layers obtained on P + substrates. These waveguides were then doped by erbium using an electrochemical method. Erbium concentration in the range 2.2-2.5 at% was determined by energy dispersive X-ray (EDX) analysis performed on SEM cross sections. The refractive index of layers was studied before and after doping and thermal treatments. The photoluminescence of Er 3+ ions in the IR range and the decay curve of the 1.53 μm emission peak were studied as a function of the excitation power. The value of excited Er density was equal to 0.07%. Optical loss contributions were analyzed on these waveguides and the losses were equal to 1.1 dB/cm at 1.55 μm after doping.
NASA Astrophysics Data System (ADS)
Shams El-Din, M. A.
2018-04-01
The UV-laser lithographic method is used for the preparation of Polymeric integrated-optical waveguides in a planar polymer chip. The waveguide samples are irradiated by an excimer laser of wavelength 248 nm with different doses and with the same fluencies. The refractive index depth profile for the waveguides, in the first zone is found to have a parabolic shape and Gaussian shape in the second one that can be determined by Mach-Zehnder interferometer. Both the mode field distribution and the effective mode indices for the first zone only are determined by making use of the theoretical mode and the experimental data. It is found that the model field distribution is strongly dependent on the refractive indices for each zone.
NASA Astrophysics Data System (ADS)
Bollgruen, Patrick; Gleissner, Uwe; Wolfer, Tim; Megnin, Christof; Mager, Dario; Overmeyer, Ludger; Korvink, Jan G.; Hanemann, Thomas
2016-10-01
Polymer-based optical sensor networks on foils (planar optronic systems) are a promising research field, but it can be challenging to supply them with light. We present a solvent-free, ink-jet printable material system with optically active substances to create planar light sources for these networks. The ink is based on a UV-curable monomer, the fluorescent agents are EuDBMPhen or 9,10-diphenylantracene, which fluoresce at 612 or 430 nm, respectively. We demonstrate the application as light source by printing a small area of fluorescent material on an optical waveguide fabricated by flexographic printing on PMMA foil, resulting in a simple polymer-optical device fabricated entirely by additive deposition techniques. When excited by a 405-nm laser of 10 mW, the emitted light couples into the waveguide and appears at the end of the waveguide. In comparison to conventional light sources, the intensity is weak but could be detected with a photodiode power sensor. In return, the concept has the advantage of being completely independent of any electrical elements or external cable connections.
Application of holographic elements in displays and planar illuminators
NASA Astrophysics Data System (ADS)
Putilin, Andrew; Gustomiasov, Igor
2007-05-01
Holographic Optical Elements (HOE's) on planar waveguides can be used to design the planar optics for backlit units, color selectors or filters, lenses for virtual reality displays. The several schemes for HOE recording are proposed to obtain planar stereo backlit unit and private eye displays light source. It is shown in the paper that the specific light transformation grating permits to construct efficient backlit units for display holograms and LCD. Several schemes of reflection/transmission backlit units and scattering films based on holographic optical elements are also proposed. The performance of the waveguide HOE can be optimized using the parameters of recording scheme and etching parameters. The schemes of HOE application are discussed and some experimental results are shown.
Performance of Planar-Waveguide External Cavity Laser for Precision Measurements
NASA Technical Reports Server (NTRS)
Numata, Kenji; Camp, Jordan; Krainak, Michael A.; Stolpner, Lew
2010-01-01
A 1542-nm planar-waveguide external cavity laser (PW-ECL) is shown to have a sufficiently low level of frequency and intensity noise to be suitable for precision measurement applications. The frequency noise and intensity noise of the PW-ECL was comparable or better than the nonplanar ring oscillator (NPRO) and fiber laser between 0.1 mHz to 100 kHz. Controllability of the PW-ECL was demonstrated by stabilizing its frequency to acetylene (13C2H2) at 10(exp -13) level of Allan deviation. The PW-ECL also has the advantage of the compactness of a standard butterfly package, low cost, and a simple design consisting of a semiconductor gain media coupled to a planar-waveguide Bragg reflector. These features would make the PW-ECL suitable for precision measurements, including compact optical frequency standards, space lidar, and space interferometry
Color waveguide transparent screen using lens array holographic optical element
NASA Astrophysics Data System (ADS)
Liu, Siqi; Sun, Peng; Wang, Chang; Zheng, Zhenrong
2017-11-01
A color transparent screen was designed in this paper, a planar glass was used as a waveguide structure and the lens array holographic optical element (HOE) was used as a display unit. The lens array HOE was exposed by two coherent beams. One was the reference wave which directly illuminated on the holographic material and the other was modulated by the micro lens array. The lens array HOE can display the images with see-through abilities. Unlike the conventional lens array HOE, a planar glass was adopted as the waveguide in the experiment. The projecting light was totally internal-reflected in the planar glass to eliminate the undesired zero-order diffracted light. By using waveguide, it also brings advantage of compact structure. Colorful display can be realized in our system as the holographic materials were capable for multi-wavelength display. In this paper, a color transparent screen utilizing the lens array HOE and waveguide were designed. Experiment results showed a circular display area on the transparent screen. The diameter of the area is 20 mm and it achieved the pixel resolution of 100 μm. This simple and effective method could be an alternative in the augment reality (AR) applications, such as transparent phone and television.
NASA Astrophysics Data System (ADS)
Missinne, Jeroen; Misseeuw, Lara; Liu, Xiang; Salter, Patrick S.; Van Steenberge, Geert; Adesanya, Kehinde; Van Vlierberghe, Sandra; Booth, Martin J.; Dubruel, Peter
2018-02-01
Graded-index waveguides are known to exhibit lower losses and considerably larger bandwidths compared to step-index waveguides. The present work reports on a new concept for realizing such waveguides on a planar substrate by capillary filling microchannels (cladding) with monomer solution (core). A graded-index profile is obtained by intermixing between the core and cladding material at the microchannel interface. To this end, various ratios of methyl methacrylate (MMA) and octafluoropentyl methacrylate (OFPMA) were evaluated as starting monomers and the results showed that the polymers P50:50 (50:50 MMA:OFPMA) and P0:100 (100% OFPMA) were suitable to be applied as waveguide core and cladding material respectively. Light guiding in the resulting P50:50/P0:100 waveguides was demonstrated and the refractive-index profile was quantified and compared with that of conventional step-index waveguides. The results for both cases were clearly different and a gradual refractive index transition between the core and cladding was found for the newly developed waveguides. Although the concept has been demonstrated in a research environment, it also has potential for upscaling by employing drop-on-demand dispensing of polymer waveguide material in pre-patterned microchannels, for example in a roll-to-roll environment.
Power-Amplifier Module for 145 to 165 GHz
NASA Technical Reports Server (NTRS)
Samoska, Lorene; Peralta, Alejandro
2007-01-01
A power-amplifier module that operates in the frequency range of 145 to 165 GHz has been designed and constructed as a combination of (1) a previously developed monolithic microwave integrated circuit (MMIC) power amplifier and (2) a waveguide module. The amplifier chip was needed for driving a high-electron-mobility-transistor (HEMT) frequency doubler. While it was feasible to connect the amplifier and frequency-doubler chips by use of wire bonds, it was found to be much more convenient to test the amplifier and doubler chips separately. To facilitate separate testing, it was decided to package the amplifier and doubler chips in separate waveguide modules. Figure 1 shows the resulting amplifier module. The amplifier chip was described in "MMIC HEMT Power Amplifier for 140 to 170 GHz" (NPO-30127), NASA Tech Briefs, Vol. 27, No. 11, (November 2003), page 49. To recapitulate: This is a three-stage MMIC power amplifier that utilizes HEMTs as gain elements. The amplifier was originally designed to operate in the frequency range of 140 to 170 GHz. The waveguide module is based on a previously developed lower frequency module, redesigned to support operation in the frequency range of 140 to 220 GHz. Figure 2 presents results of one of several tests of the amplifier module - measurements of output power and gain as functions of input power at an output frequency of 150 GHz. Such an amplifier module has many applications to test equipment for power sources above 100 GHz.
Design, fabrication and analysis of integrated optical waveguide devices
NASA Astrophysics Data System (ADS)
Sikorski, Yuri
Throughout the present dissertation, the main effort has been to develop the set of design rules for optical integrated circuits (OIC). At the present time, when planar optical integrated circuits seem to be the leading technology, and industry is heading towards much higher levels of integration, such design rules become necessary. It is known that analysis of light propagation in rectangular waveguides can not be carried out exactly. Various approximations become necessary, and their validity is discussed in this text. Various methods are used in the text for calculating the same problems, and results are compared. A few new concepts have been suggested to avoid approximations used elsewhere. The second part of this dissertation is directed to the development of a new technique for the fabrication of optical integrated circuits inside optical glass. This technique is based on the use of ultrafast laser pulses to alter the properties of glasses. Using this method we demonstrated the possibility of changing the refractive index of various passive and active optical glasses as well as ablating the material on the surface in a controlled fashion. A number of optical waveguide devices (e.g. waveguides, directional couplers, diffraction gratings, fiber Bragg gratings, V-grooves in dual-clad optical fibers, optical waveguide amplifiers) were fabricated and tested. Testing included measurements of loss/throughput, near-field mode profiles, efficiency and thermal stability. All of the experimental setup and test results are reported in the dissertation. We also demonstrated the possibility of using this technique to fabricate future bio-optical devices that will incorporate an OIC and a microfluidic circuit on a single substrate. Our results are expected to serve as a guide for the design and fabrication of a new generation of integrated optical and bio-optical devices.
Multifrequency synthetic aperture radar antenna comparison study. [for remote sensing
NASA Technical Reports Server (NTRS)
Blevins, B. A.
1983-01-01
Three multifrequency, dual polarization SAR antenna designs are reviewed. The SAR antenna design specifications were for a "straw man' SAR which would approximate the requirements for projected shuttle-based SAR's. Therefore, the physical dimensions were constrained to be compatible with the space shuttle. The electrical specifications were similar to those of SIR-A and SIR-B with the addition of dual polarization and the addition of C and X band operation. Early in the antenna design considerations, three candidate technologies emerged as having promise. They were: (1) microstrip patch planar array antennas, (2) slotted waveguide planar array antennas, and (3) open-ended waveguide planar array antennas.
Waveguide structures in anisotropic nonlinear crystals
NASA Astrophysics Data System (ADS)
Li, Da; Hong, Pengda; Meissner, Helmuth E.
2017-02-01
We report on the design and manufacturing parameters of waveguiding structures of anisotropic nonlinear crystals that are employed for harmonic conversions, using Adhesive-Free Bonding (AFB®). This technology enables a full range of predetermined refractive index differences that are essential for the design of single mode or low-mode propagation with high efficiency in anisotropic nonlinear crystals which in turn results in compact frequency conversion systems. Examples of nonlinear optical waveguides include periodically bonded walk-off corrected nonlinear optical waveguides and periodically poled waveguide components, such as lithium triborate (LBO), beta barium borate (β-BBO), lithium niobate (LN), potassium titanyl phosphate (KTP), zinc germanium phosphide (ZGP) and silver selenogallate (AGSE). Simulation of planar LN waveguide shows that when the electric field vector E lies in the k-c plane, the power flow is directed precisely along the propagation direction, demonstrating waveguiding effect in the planar waveguide. Employment of anisotropic nonlinear optical waveguides, for example in combination with AFB® crystalline fiber waveguides (CFW), provides access to the design of a number of novel high power and high efficiency light sources spanning the range of wavelengths from deep ultraviolet (as short as 200 nm) to mid-infrared (as long as about 18 μm). To our knowledge, the technique is the only generally applicable one because most often there are no compatible cladding crystals available to nonlinear optical cores, especially not with an engineer-able refractive index difference and large mode area.
Millimeter And Submillimeter-Wave Integrated Circuits On Quartz
NASA Technical Reports Server (NTRS)
Mehdi, Imran; Mazed, Mohammad; Siegel, Peter; Smith, R. Peter
1995-01-01
Proposed Quartz substrate Upside-down Integrated Device (QUID) relies on UV-curable adhesive to bond semiconductor with quartz. Integrated circuits including planar GaAs Schottky diodes and passive circuit elements (such as bandpass filters) fabricated on quartz substrates. Circuits designed to operate as mixers in waveguide circuit at millimeter and submillimeter wavelengths. Integrated circuits mechanically more robust, larger, and easier to handle than planar Schottky diode chips. Quartz substrate more suitable for waveguide circuits than GaAs substrate.
DEB Type I Reconstitution Package Deployment Manual (RPDM).
1981-05-01
Waveguide Assembly (d) 1177H02 TWT Power Amplifier (e) TCM-6RK-I Transmit and Receive Remote Kits 20 C" I--I- CL* Figure 8. Terminal 21 17 February...Twist Six Waveguide to Coax Adapters 1.2.1.1.1(d) TWT Power Amplifier. The power amplifier utilizes a periodic permanent magnetic focused travelling...possible to adjust input power while observing TWT output with a power meter and directional coupler. The capability of controlling the TWT drive
NASA Astrophysics Data System (ADS)
Schröder, Henning; Brusberg, Lars; Pitwon, Richard; Whalley, Simon; Wang, Kai; Miller, Allen; Herbst, Christian; Weber, Daniel; Lang, Klaus-Dieter
2015-03-01
Optical interconnects for data transmission at board level offer increased energy efficiency, system density, and bandwidth scalability compared to purely copper driven systems. We present recent results on manufacturing of electrooptical printed circuit board (PCB) with integrated planar glass waveguides. The graded index multi-mode waveguides are patterned inside commercially available thin-glass panels by performing a specific ion-exchange process. The glass waveguide panel is embedded within the layer stack-up of a PCB using proven industrial processes. This paper describes the design, manufacture, assembly and characterization of the first electro-optical backplane demonstrator based on integrated planar glass waveguides. The electro-optical backplane in question is created by laminating the glass waveguide panel into a conventional multi-layer electronic printed circuit board stack-up. High precision ferrule mounts are automatically assembled, which will enable MT compliant connectors to be plugged accurately to the embedded waveguide interfaces on the glass panel edges. The demonstration platform comprises a standardized sub-rack chassis and five pluggable test cards each housing optical engines and pluggable optical connectors. The test cards support a variety of different data interfaces and can support data rates of up to 32 Gb/s per channel.
NASA Astrophysics Data System (ADS)
Najar, Adel; Charrier, Joël; Lorrain, Nathalie; Haji, Lazhar; Oueslati, Mehrezi
2007-09-01
The on-off optical gain measurements as a function of the pump power were performed on porous silicon planar waveguides codoped by erbium and ytterbium ions. These measurements were obtained for different ratios of Yb concentration to Er concentration. The highest value of the gain was reached when the Yb concentration is three times higher than that of Er at a moderate 980nm pump power value equal to 70mW. Optical losses measurements have been performed on these waveguides and were equal to 2.1dB/cm and an internal gain of about 6.4dB/cm was obtained.
NASA Astrophysics Data System (ADS)
Xifré-Pérez, E.; Marsal, L. F.; Ferré-Borrull, J.; Pallarès, J.
2007-09-01
The use of omnidirectional mirrors (an special case of distributed Bragg reflectors) as cladding for planar waveguides is proposed and analyzed. The proposed structure is an all-porous silicon multilayer consisting of a core layer inserted between two omnidirectional mirrors. The transfer matrix method is applied for the modal analysis. The influence of the parameters of the waveguide structure on the guided modes is analyzed. These parameters are the layer thickness and number of periods of the omnidirectional mirror, and the refractive index and thickness of the core layer. Finally, the confinement of the omnidirectional mirror cladding is analyzed with respect to two other different distributed Bragg reflector claddings.
FIBER AND INTEGRATED OPTICS: Optimization of optical film waveguides
NASA Astrophysics Data System (ADS)
Adamson, P. V.
1990-10-01
Theoretical investigations were made of the possibility of optimization of the effective thickness, of the optical confinement factor Γ1, and of the birefringence of a planar dielectric waveguide as a function of the waveguide parameter V and the waveguide asymmetry. For a given value of V it is possible to ensure higher values of Γ1, for an asymmetric waveguide than for a symmetric one. An approximate expression is proposed for the factor Γ1, of an asymmetric waveguide directly in terms of its thickness and the refractive indices of the layers.
Passively aligned multichannel fiber-pigtailing of planar integrated optical waveguides
NASA Astrophysics Data System (ADS)
Kremmel, Johannes; Lamprecht, Tobias; Crameri, Nino; Michler, Markus
2017-02-01
A silicon device to simplify the coupling of multiple single-mode fibers to embedded single-mode waveguides has been developed. The silicon device features alignment structures that enable a passive alignment of fibers to integrated waveguides. For passive alignment, precisely machined V-grooves on a silicon device are used and the planar lightwave circuit board features high-precision structures acting as a mechanical stop. The approach has been tested for up to eight fiber-to-waveguide connections. The alignment approach, the design, and the fabrication of the silicon device as well as the assembly process are presented. The characterization of the fiber-to-waveguide link reveals total coupling losses of (0.45±0.20 dB) per coupling interface, which is significantly lower than the values reported in earlier works. Subsequent climate tests reveal that the coupling losses remain stable during thermal cycling but increases significantly during an 85°C/85 Rh-test. All applied fabrication and bonding steps have been performed using standard MOEMS fabrication and packaging processes.
Lampert, Zach E; Reynolds, C Lewis; Papanikolas, John M; Aboelfotoh, M Osama
2012-10-25
We report the results of a detailed investigation that addresses the influence of polymer morphology and chain aggregation, as controlled by the chemical nature of the solvent, on the optical gain properties of the conjugated polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV). Using the variable stripe length technique in the picosecond regime, we have extensively studied the optical gain performance of asymmetric planar waveguides formed with thin MEH-PPV films spin-cast from concentrated chlorobenzene (CB) and tetrahydrofuran (THF) solutions onto thermally oxidized silicon substrates. CB and THF solvents were chosen based on their known ability to promote and effectively limit aggregate formation, respectively. Very large net gain coefficients are demonstrated, reaching values of 330 and 365 cm(-1), respectively, when optically pumping the waveguides with a maximum energy density of 85 μJ/cm(2). Our results clearly demonstrate that polymer morphology, and hence, the chain conformation dependence of the degree of aggregation in the films as controlled by the solvent, has minimal impact on the net gain. Moreover, the waveguides exhibit low loss coefficients of 10-20 cm(-1) at the ASE wavelength. These results question the importance of polymer morphology and aggregate formation in polymer-based optical devices operating at high excitation densities in the stimulated emission regime as would be characteristic of lasers and optical amplifiers.
FIBER AND INTEGRAL OPTICS: Properties of active bent waveguides
NASA Astrophysics Data System (ADS)
Kobyl'chak, V. V.; Parygin, V. N.; Shapaev, A. G.
1989-06-01
A bent dielectric waveguide with a continuous profile of the complex refractive nc is investigated. It is shown that a negative perturbation of the real part of nc can reduce the losses in a bent waveguide. For a given radius of curvature and given parameters of the medium there is an optimal width of a planar waveguide layer for which the losses are minimal. It is shown that the properties of straight and bent waveguides of this type are different.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barabanenkov, M. Yu., E-mail: barab@iptm.ru; Vyatkin, A. F.; Volkov, V. T.
2015-12-15
Single-mode submicrometer-thick strip waveguides on silicon-on-insulator substrates, fabricated by silicon-planar-technology methods are considered. To solve the problem of 1.5-µm wavelength radiation input-output and its frequency filtering, strip diffraction gratings and two-dimensional photonic crystals are integrated into waveguides. The reflection and transmission spectra of gratings and photonic crystals are calculated. The waveguide-mode-attenuation coefficient for a polycrystalline silicon waveguide is experimentally estimated.
A flexible CPW package for a 30 GHz MMIC amplifier. [coplanar waveguide
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Taub, Susan R.
1992-01-01
A novel package, which consists of a carrier housing, has been developed for monolithic-millimeter wave Integrated Circuit amplifiers which operate at 30 giga-Hz. The carrier has coplanar waveguide (CPW) interconnects and provides heat-sinking, tuning, and cascading capabilities. The housing provides electrical isolation, mechanical protection and a feed-thru for biasing.
Multimode waveguide speckle patterns for compressive sensing.
Valley, George C; Sefler, George A; Justin Shaw, T
2016-06-01
Compressive sensing (CS) of sparse gigahertz-band RF signals using microwave photonics may achieve better performances with smaller size, weight, and power than electronic CS or conventional Nyquist rate sampling. The critical element in a CS system is the device that produces the CS measurement matrix (MM). We show that passive speckle patterns in multimode waveguides potentially provide excellent MMs for CS. We measure and calculate the MM for a multimode fiber and perform simulations using this MM in a CS system. We show that the speckle MM exhibits the sharp phase transition and coherence properties needed for CS and that these properties are similar to those of a sub-Gaussian MM with the same mean and standard deviation. We calculate the MM for a multimode planar waveguide and find dimensions of the planar guide that give a speckle MM with a performance similar to that of the multimode fiber. The CS simulations show that all measured and calculated speckle MMs exhibit a robust performance with equal amplitude signals that are sparse in time, in frequency, and in wavelets (Haar wavelet transform). The planar waveguide results indicate a path to a microwave photonic integrated circuit for measuring sparse gigahertz-band RF signals using CS.
Nonclassical-light generation in a photonic-band-gap nonlinear planar waveguide
NASA Astrophysics Data System (ADS)
Peřina, Jan, Jr.; Sibilia, Concita; Tricca, Daniela; Bertolotti, Mario
2004-10-01
The optical parametric process occurring in a photonic-band-gap planar waveguide is studied from the point of view of nonclassical-light generation. The nonlinearly interacting optical fields are described by the generalized superposition of coherent signals and noise using the method of operator linear corrections to a classical strong solution. Scattered backward-propagating fields are taken into account. Squeezed light as well as light with sub-Poissonian statistics can be obtained in two-mode fields under the specified conditions.
Planar dielectric waveguides in rotation are optical fibers: comparison with the classical model.
Peña García, Antonio; Pérez-Ocón, Francisco; Jiménez, José Ramón
2008-01-21
A novel and simpler method to calculate the main parameters in fiber optics is presented. This method is based in a planar dielectric waveguide in rotation and, as an example, it is applied to calculate the turning points and the inner caustic in an optical fiber with a parabolic refractive index. It is shown that the solution found using this method agrees with the standard (and more complex) method, whose solutions for these points are also summarized in this paper.
NASA Astrophysics Data System (ADS)
Luo, Yang; Huang, Yongqing; Ren, Xiaomin; Duan, Xiaofeng; Wang, Qi
2014-01-01
In order to integrate photonic devices with electronic devices to realize the low-loss hybrid integrated devices. A wide spectral hybrid integrated optoelectronic receiver was fabricated by using quasi-monolithic integration technology (QMIT) in this paper. It consisted of a 8.5 GHz InGaAs photodetector and a 1.25 Gbps mature transimpedance pre-amplifier (TIA) complementrary metal oxide semiconductor (CMOS) chip. The Au layer was deposited on a designed Si platform to form planar waveguide electrode which replaced a part of bonding wire, so it reduced the parasitic parameters of the optoelectronic receiver, and then enhanced high-speed response characteristics and the stability of the hybrid integrated receiver. Finally, a 3 Gbps clear open eye diagram of the hybrid integrated optoelectronic receiver was obtained.
Cr:ZnSe planar waveguide mid-IR laser
NASA Astrophysics Data System (ADS)
Willimas, J. E.; Martyshkin, D. V.; Fedorov, V. V.; Moskalev, I. S.; Camata, R. P.; Mirov, S. B.
2011-02-01
Middle infrared (mid-IR) chromium-doped zinc selenide (Cr:ZnSe) bulk lasers have attracted a lot of attention due to their unique combination of optical and laser properties facilitating a wide range of potential scientific, industrial, and medical applications. Utilization of thin film waveguide geometry enabling good thermal management and control of beam quality is a viable pathway for compact chip-integrated optical laser design. Cr:ZnSe thin films are also promising as saturable absorbers and mode-lockers of the cavities of solid state lasers operating over 1.3-2.1 μm. We recently reported the first successful demonstration of mid-IR Cr:ZnSe planar waveguide lasing at 2.6 μm under gain-switched short-pulse (5 ns) 1.56 μm excitation as well as the passive Q-switching of the cavity of a fiber-pumped Er:YAG laser operating at 1645 nm using a highly doped Cr:ZnSe thin film. PLD grown Cr:ZnSe waveguide were fabricated on sapphire substrates (Cr:ZnSe/sapphire) with chromium concentration of 1018-1019 cm-3. Further development of mid-IR lasing in the Cr:ZnSe planar waveguide under continuous wave excitation were investigated. In addition, deposition of Cr:ZnSe-based thin film structures on n-type GaAs substrates were also investigated for possible mid-IR electroluminescence.
NASA Technical Reports Server (NTRS)
Numata, Kenji; Alalusi, Mazin; Stolpner, Lew; Margaritis, Georgios; Camp, Jordan B.; Krainak, Michael A.
2014-01-01
We describe the characteristics of the planar-waveguide external cavity diode laser (PW-ECL). To the best of our knowledge, it is the first butterfly-packaged 1064-nm semiconductor laser that is stable enough to be locked to an external frequency reference. We evaluated its performance from the viewpoint of precision experiments. Especially, using a hyperfine absorption line of iodine, we suppressed its frequency noise by a factor of up to104 at 10 mHz. The PW-ECLs compactness and low cost make it a candidate to replace traditional Nd:YAGnon-planar ring oscillators and fiber lasers in applications which require a single longitudinal-mode.
Plunkett, S E; Jonas, R E; Braiman, M S
1997-01-01
We have used miniature planar IR waveguides, consisting of Ge strips 30-50 microm thick and 2 mm wide, as evanescent-wave sensors to detect the mid-(IR) evanescent-wave absorbance spectra of small areas of biomolecular monolayers and multilayers. Examples include picomolar quantities of an integral transmembrane protein (bacteriorhodopsin) and lipid (dimyristoyl phosphatidylcholine). IR bands due to the protein and lipid components of the plasma membrane of individual 1.5-mm-diameter devitellinized Xenopus laevis oocytes, submerged in buffer and sticking to the waveguide surface, were also detected. A significant improvement in sensitivity was observed, as compared to previous sizes and geometries of evanescent-wave sensors (e.g., commercially available internal reflection elements or tapered optical fibers). These measurements suggest the feasibility of using such miniature supported planar IR waveguides to observe structural changes in transmembrane proteins functioning in vivo in single cells. PMID:9336219
Two-Dimensional Planar Lightwave Circuit Integrated Spatial Filter Array and Method of Use Thereof
NASA Technical Reports Server (NTRS)
Dimov, Fedor (Inventor); Ai, Jun (Inventor)
2015-01-01
A large coherent two-dimensional (2D) spatial filter array (SFA), 30 by 30 or larger, is produced by coupling a 2D planar lightwave circuit (PLC) array with a pair of lenslet arrays at the input and output side. The 2D PLC array is produced by stacking a plurality of chips, each chip with a plural number of straight PLC waveguides. A pupil array is coated onto the focal plane of the lenslet array. The PLC waveguides are produced by deposition of a plural number of silica layers on the silicon wafer, followed by photolithography and reactive ion etching (RIE) processes. A plural number of mode filters are included in the silica-on-silicon waveguide such that the PLC waveguide is transparent to the fundamental mode but higher order modes are attenuated by 40 dB or more.
Lu, Zhaolin; Prather, Dennis W
2004-08-01
We present a method for parallel coupling from a single-mode fiber, or fiber ribbon, into a silicon-on-insulator waveguide for integration with silicon optoelectronic circuits. The coupler incorporates the advantages of the vertically tapered waveguides and prism couplers, yet offers the flexibility of planar integration. The coupler can be fabricated by use of either wafer polishing technology or gray-scale photolithography. When optimal coupling is achieved in our experimental setup, the coupler can be packaged by epoxy bonding to form a fiber-waveguide parallel coupler or connector. Two-dimensional electromagnetic calculation predicts a coupling efficiency of 77% (- 1.14-dB insertion loss) for a silicon-to-silicon coupler with a uniform tunnel layer. The coupling efficiency is experimentally achieved to be 46% (-3.4-dB insertion loss), excluding the loss in silicon and the reflections from the input surface and the output facet.
Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers.
Lancaster, D G; Gross, S; Fuerbach, A; Heidepriem, H Ebendorff; Monro, T M; Withford, M J
2012-12-03
We report performance characteristics of a thulium doped ZBLAN waveguide laser that supports the largest fundamental modes reported in a rare-earth doped planar waveguide laser (to the best of our knowledge). The high mode quality of waveguides up to 45 um diameter (~1075 μm(2) mode-field area) is validated by a measured beam quality of M(2)~1.1 ± 0.1. Benefits of these large mode-areas are demonstrated by achieving 1.9 kW peak-power output Q-switched pulses. The 1.89 μm free-running cw laser produces 205 mW and achieves a 67% internal slope efficiency corresponding to a quantum efficiency of 161%. The 9 mm long planar chip developed for concept demonstration is rapidly fabricated by single-step optical processing, contains 15 depressed-cladding waveguides, and can operate in semi-monolithic or external cavity laser configurations.
NASA Astrophysics Data System (ADS)
Xiao-Hong, Zhou; Lan-Hua, Liu; Wei-Qi, Xu; Bao-Dong, Song; Jian-Wu, Sheng; Miao, He; Han-Chang, Shi
2014-04-01
This paper proposed a compact and portable planar waveguide evanescent wave immunosensor (EWI) for highly sensitive detection of BPA. The incident light is coupled into the planar waveguide chip via a beveled angle through undergoing total internal reflection, where the evanescent wave field forms and excites the binding fluorophore-tagged antibodies on the chip surface. Typical calibration curves obtained for BPA has detection limits of 0.03 μg/L. Linear response for BPA ranged from 0.124 μg/L-9.60 μg/L with 50% inhibition concentration for BPA of 1.09 +/- 0.25 μg/L. The regeneration of the planar optical waveguide chip allows the performance of more than 300 assay cycles within an analysis time of about 20 min for each assay cycle. By application of effective pretreatment procedure, the recoveries of BPA in real water samples gave values from 88.3% +/- 8.5% to 103.7% +/- 3.5%, confirming its application potential in the measurement of BPA in reality.
Theory of a Traveling Wave Feed for a Planar Slot Array Antenna
NASA Technical Reports Server (NTRS)
Rengarajan, Sembiam
2012-01-01
Planar arrays of waveguide-fed slots have been employed in many radar and remote sensing applications. Such arrays are designed in the standing wave configuration because of high efficiency. Traveling wave arrays can produce greater bandwidth at the expense of efficiency due to power loss in the load or loads. Traveling wave planar slot arrays may be designed with a long feed waveguide consisting of centered-inclined coupling slots. The feed waveguide is terminated in a matched load, and the element spacing in the feed waveguide is chosen to produce a beam squinted from the broadside. The traveling wave planar slot array consists of a long feed waveguide containing resonant-centered inclined coupling slots in the broad wall, coupling power into an array of stacked radiating waveguides orthogonal to it. The radiating waveguides consist of longitudinal offset radiating slots in a standing wave configuration. For the traveling wave feed of a planar slot array, one has to design the tilt angle and length of each coupling slot such that the amplitude and phase of excitation of each radiating waveguide are close to the desired values. The coupling slot spacing is chosen for an appropriate beam squint. Scattering matrix parameters of resonant coupling slots are used in the design process to produce appropriate excitations of radiating waveguides with constraints placed only on amplitudes. Since the radiating slots in each radiating waveguide are designed to produce a certain total admittance, the scattering (S) matrix of each coupling slot is reduced to a 2x2 matrix. Elements of each 2x2 S-matrix and the amount of coupling into the corresponding radiating waveguide are expressed in terms of the element S11. S matrices are converted into transmission (T) matrices, and the T matrices are multiplied to cascade the coupling slots and waveguide sections, starting from the load end and proceeding towards the source. While the use of non-resonant coupling slots may provide an additional degree of freedom in the design, resonant coupling slots simplify the design process. The amplitude of the wave going to the load is set at unity. The S11 parameter, r of the coupling slot closest to the load, is assigned an arbitrary value. A larger value of r will reduce the power dissipated in the load while increasing the reflection coefficient at the input port. It is now possible to obtain the excitation of the radiating waveguide closest to the load and the coefficients of the wave incident and reflected at the input port of this coupling slot. The next coupling slot parameter, r , is chosen to realize the excitation of that radiating waveguide. One continues this process moving towards the source, until all the coupling slot parameters r and hence the S11 parameter of the 4-port coupler, r, are known for each coupling slot. The goal is to produce the desired array aperture distribution in the feed direction. From an interpolation of the computed moment method data for the slot parameters, all the coupling slot tilt angles and lengths are obtained. From the excitations of the radiating waveguides computed from the coupling values, radiating slot parameters may be obtained so as to attain the desired total normalized slot admittances. This process yields the radiating slot parameters, offsets, and lengths. The design is repeated by choosing different values of r for the last coupling slot until the percentage of power dissipated in the load and the input reflection coefficient values are satisfactory. Numerical results computed for the radiation pattern, the tilt angles and lengths of coupling slots, and excitation phases of the radiating waveguides, are presented for an array with uniform amplitude excitation. The design process has been validated using computer simulations. This design procedure is valid for non-uniform amplitude excitations as well.
Design of Planar Leaky Wave Antenna Fed by Substrate Integrated Waveguide Horn
NASA Astrophysics Data System (ADS)
Cai, Yang; Zhang, Yingsong; Qian, Zuping
2017-12-01
A metal strip grating leaky wave antenna (MSG-LWA) fed by substrate integrated waveguide (SIW) horn is proposed. The planar horn shares the same substrate with the MSG-LWA, which leads to a compact structure of the proposed antenna. Furthermore, through introducing phase-corrected structure by embedding metallized vias into the SIW horn, a nearly uniform phase distribution at the horn aperture is obtained, which effectively enhances the radiating performance of the MSG-LWA. Results indicate that the proposed antenna scans from -50° to -25° in the frequency band ranging from 15.3 GHz to 17.3 GHz. Besides, effectiveness of the proposed design is validated by comparing with a same MSG-LWA fed by an ideal rectangular waveguide.
HEMT Amplifiers and Equipment for their On-Wafer Testing
NASA Technical Reports Server (NTRS)
Fung, King man; Gaier, Todd; Samoska, Lorene; Deal, William; Radisic, Vesna; Mei, Xiaobing; Lai, Richard
2008-01-01
Power amplifiers comprising InP-based high-electron-mobility transistors (HEMTs) in coplanar-waveguide (CPW) circuits designed for operation at frequencies of hundreds of gigahertz, and a test set for onwafer measurement of their power levels have been developed. These amplifiers utilize an advanced 35-nm HEMT monolithic microwave integrated-circuit (MMIC) technology and have potential utility as local-oscillator drivers and power sources in future submillimeter-wavelength heterodyne receivers and imaging systems. The test set can reduce development time by enabling rapid output power characterization, not only of these and similar amplifiers, but also of other coplanar-waveguide power circuits, without the necessity of packaging the circuits.
Design and analysis of optically pumped submillimeter waveguide maser amplifiers and oscillators
NASA Technical Reports Server (NTRS)
Galantowicz, T. A.
1975-01-01
The design and experimental measurements are described of an optically pumped far-infrared (FIR) waveguide maser; preliminary measurements on a FIR waveguide amplifier are presented. The FIR maser was found to operate satisfactorily in a chopped CW mode using either methanol (CH3OH) or acetonitrile (CH3CN) as the active molecule. Two other gases, difluoroethane and difluoroethylene, produced an unstable output with high threshold and low output power when operated in the chopped CW mode. Experimental measurements include FIR output versus cavity length, output beam pattern, output power versus pressure, and input power. The FIR output was the input to an amplifier which was constructed similar to the oscillator. An increase of 10% in output power was noted on the 118.8 microns line of methanol.
Design and analysis of optical waveguide elements in planar geometry
NASA Astrophysics Data System (ADS)
Mirkov, Mirko Georgiev
1998-10-01
This dissertation presents the theoretical analysis and practical design considerations for planar optical waveguide devices. The analysis takes into account both transverse dimensions of the waveguides and is based on the supermode theory combined with the resonance method for determination of the propagation constants and field profiles of the supermodes. An improved accuracy has been achieved by including the corrections due to the fields in the corner regions of the waveguides using perturbation theory. The following two classes of devices have been analyzed in detail. Curved rectangular waveguides are a common element in an integrated optics circuit. The theoretical analysis in this work shows that some commonly used approximations for determination of the propagation constants of the quasi-modes of the bent waveguides are not necessary. Specifically the imaginary part of the mode propagation constant, which determines the power loss, is calculated exactly using the resonance method, combined with a two- dimensional optimization routine for determination of the real and the imaginary parts of the propagation constants. Subsequently, the results are corrected for the effects of the fields in the corner regions. The latter corrections have not been previously computed and are shown to be significant. Power splitters are another common element of an integrated optical circuit. A new 'bend-free' splitter is suggested and analyzed. The new splitter design consists of only straight parallel channels, which considerably simplify both the analysis and the fabrication of the device. It is shown that a single design parameter determines the power splitting ratio, which can take any given value. The intrinsic power loss in the proposed splitter is minimal, which makes it an attractive alternative to the conventional Y-splitters. The accurate methods of analysis of planar optical waveguides developed in the present work can easily be applied to other integrated optic devices consisting of rectangular waveguides.
Novel analytical approach for strongly coupled waveguide arrays
NASA Astrophysics Data System (ADS)
Kohli, Niharika; Srivastava, Sangeeta; Sharma, Enakshi K.
2018-02-01
Coupled Mode theory and Variational methods are the most extensively used analytical methods for the study of coupled optical waveguides. In this paper we have discussed a variation of the Ritz Galerkin Variational method (RGVM) wherein the trial field is a superposition of an orthogonal basis set which in turn is generated from superposition of the individual waveguide modal fields using Gram Schmidt Orthogonalization Procedure (GSOP). The conventional coupled mode theory (CCMT), a modified coupled mode theory (MCMT) incorporating interaction terms that are neglected in CCMT, and an RGVM using orthogonal basis set (RG-GSOP) are compared for waveguide arrays of different materials. The exact effective indices values for these planar waveguide arrays are also studied. The different materials have their index-contrasts ranging between the GaAs/ AlGaAs system to Si/SiO2 system. It has been shown that the error in the effective indices values obtained from MCMT and CCMT is higher than RGVM-GSOP especially in the case of higher index-contrast. Therefore, for accurate calculations of the modal characteristics of planar waveguide arrays, even at higher index-contrasts, RGVM-GSOP is the best choice. Moreover, we obtain obviously orthogonal supermode fields and Hermitian matrix from RGVM-GSOP.
Planar waveguide nanolaser configured by dye-doped hybrid nanofilm on substrate
NASA Astrophysics Data System (ADS)
Tikhonov, E. A.; Yashchuk, V. P.; Telbiz, G. M.
2018-04-01
Dye-doped hybrid silicate/titanium nanofilms on the glass substrate structures of asymmetrical waveguides were studied by way of laser systems. The threshold, spatial and spectral features of the laser oscillation of genuine and hollow waveguides were determined. The pattern of stimulated radiation included two concurrent processes: single-mode waveguide lasing and lateral small divergence emission. Comparison of the open angle of the lateral beams and grazing angles of the waveguide lasing mode provides an insight into the effect of leaky mode emission followed by Lummer-Gehrcke interference.
Rippled beam free electron laser amplifier
Carlsten, Bruce E.
1999-01-01
A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Wintucky, Edwin G.
2017-01-01
This paper presents the design, fabrication, and test results for a novel waveguide multimode directional coupler (MDC). The coupler fabricated from dissimilar frequency band waveguides, is capable of isolating power at the 2nd harmonic frequency from the fundamental power at the output port of traveling-wave tube amplifiers. Test results from proof-of-concept demonstrations are presented for Ku/Ka-band and Ka/E-band MDCs, which demonstrate sufficient power in the 2nd harmonic for a space borne beacon source for mm-wave atmospheric propagation studies.
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Wintucky, Edwin G.
2017-01-01
The paper presents the design, fabrication, and test results for a novel waveguide multimode directional coupler (MDC). The coupler fabricated from dissimilar frequency band waveguides, is capable of isolating power at the 2nd harmonic frequency from the fundamental power at the output port of a high power traveling-wave tube amplifier. The major advantage of the MDC is significantly lower insertion loss compared to a diplexer. The presentation slides for the paper that was approved is attached. The tracking number for the paper that was approved is TN 37015.
Dielectric Covered Planar Antennas
NASA Technical Reports Server (NTRS)
Llombart Juan, Nuria (Inventor); Lee, Choonsup (Inventor); Chattopadhyay, Goutam (Inventor); Gill, John J. (Inventor); Skalare, Anders J. (Inventor); Siegel, Peter H. (Inventor)
2014-01-01
An antenna element suitable for integrated arrays at terahertz frequencies is disclosed. The antenna element comprises an extended spherical (e.g. hemispherical) semiconductor lens, e.g. silicon, antenna fed by a leaky wave waveguide feed. The extended spherical lens comprises a substantially spherical lens adjacent a substantially planar lens extension. A couple of TE/TM leaky wave modes are excited in a resonant cavity formed between a ground plane and the substantially planar lens extension by a waveguide block coupled to the ground plane. Due to these modes, the primary feed radiates inside the lens with a directive pattern that illuminates a small sector of the lens. The antenna structure is compatible with known semiconductor fabrication technology and enables production of large format imaging arrays.
Teng, Tun-Chien; Lai, Wei-Che
2014-12-15
This study proposed a planar solar concentrator featuring alignment-free total-internal-reflection (TIR) collectors and an innovative compound tracker. The compound tracker, combining a mechanical single-axis tracker and scrollable prism sheets, can achieve a performance on a par with dual-axis tracking while reducing the cost of the tracking system and increasing its robustness. The alignment-free TIR collectors are assembled on the waveguide without requiring alignment, so the planar concentrator is relatively easily manufactured and markedly increases the feasibility for use in large concentrators. Further, the identical TIR collector is applicable to various-sized waveguide slab without requiring modification, which facilitates flexibility regarding the size of the waveguide slab. In the simulation model, the thickness of the slab was 2 mm, and its maximal length reached 6 m. With an average angular tolerance of ±0.6°, and after considering both the Fresnel loss and the angular spread of the sun, the simulation indicates that the waveguide concentrator of a 1000-mm length provides the optical efficiencies of 62-77% at the irradiance concentrations of 387-688, and the one of a 2000-mm length provides the optical efficiencies of 52-64.5% at the irradiance concentrations of 645-1148. Alternatively, if a 100-mm horizontally staggered waveguide slab is collocated with the alignment-free TIR collectors, the optical efficiency would be greatly improved up to 91.5% at an irradiance concentration of 1098 (C(geo) = 1200X).
Plasmon resonant cavities in vertical nanowire arrays
Bora, Mihail; Bond, Tiziana C.; Fasenfest, Benjamin J.; Behymer, Elaine M.
2014-07-15
Tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides are presented. Resonances can be observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides can satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap. Confinement factors of over 10.sup.3 are possible due to plasmon focusing in the inter-wire space.
Four-port coupled channel-guide device based on 2D photonic crystal structure
NASA Astrophysics Data System (ADS)
Camargo, Edilson A.; Chong, Harold M. H.; De La Rue, Richard M.
2004-12-01
We have fabricated and measured a four-port coupled channel-waveguide device using W1 channel waveguides oriented along ΓK directions in a two-dimensional (2D) hole-based planar photonic crystal (PhC) based on silicon-on-insulator (SOI) waveguide material, at operation wavelengths around 1550 nm. 2D FDTD simulations and experimental results are shown and compared. The structure has been designed using a mode conversion approach, combined with coupled-mode concepts. The overall length of the photonic crystal structure is typically about 39 μm and the structure has been fabricated using a combination of direct-write electron-beam lithography (EBL) and dry-etch processing. Devices were measured using a tunable laser with end-fire coupling into the planar structure.
Monolayer Graphene Bolometer as a Sensitive Far-IR Detector
NASA Technical Reports Server (NTRS)
Karasik, Boris S.; McKitterick, Christopher B.; Prober, Daniel E.
2014-01-01
In this paper we give a detailed analysis of the expected sensitivity and operating conditions in the power detection mode of a hot-electron bolometer (HEB) made from a few micro m(sup 2) of monolayer graphene (MLG) flake which can be embedded into either a planar antenna or waveguide circuit via NbN (or NbTiN) superconducting contacts with critical temperature approx. 14 K. Recent data on the strength of the electron-phonon coupling are used in the present analysis and the contribution of the readout noise to the Noise Equivalent Power (NEP) is explicitly computed. The readout scheme utilizes Johnson Noise Thermometry (JNT) allowing for Frequency-Domain Multiplexing (FDM) using narrowband filter coupling of the HEBs. In general, the filter bandwidth and the summing amplifier noise have a significant effect on the overall system sensitivity.
NASA Astrophysics Data System (ADS)
Salhi, Mohammed Adnan; Kazemipour, Alireza; Gentille, Gennaro; Spirito, Marco; Kleine-Ostmann, Thomas; Schrader, Thorsten
2016-09-01
We present the design and characterization of planar mm-wave patch antenna arrays with waveguide-to-microstrip transition using both near- and far-field methods. The arrays were designed for metrological assessment of error sources in antenna measurement. One antenna was designed for the automotive radar frequency range at 77 GHz, while another was designed for the frequency of 94 GHz, which is used, e.g., for imaging radar applications. In addition to the antennas, a simple transition from rectangular waveguide WR-10 to planar microstrip line on Rogers 3003™ substrate has been designed based on probe coupling. For determination of the far-field radiation pattern of the antennas, we compare results from two different measurement methods to simulations. Both a far-field antenna measurement system and a planar near-field scanner with near-to-far-field transformation were used to determine the antenna diagrams. The fabricated antennas achieve a good matching and a good agreement between measured and simulated antenna diagrams. The results also show that the far-field scanner achieves more accurate measurement results with regard to simulations than the near-field scanner. The far-field antenna scanning system is built for metrological assessment and antenna calibration. The antennas are the first which were designed to be tested with the measurement system.
Hutchinson, Donald P.; Richards, Roger K.
2003-07-22
A micro-laser is disclosed which includes a waveguide, a first and a second subwavelength resonant grating in the waveguide, and at least one photonic band gap resonant structure (PBG) in the waveguide and at least one amplifying medium in the waveguide. PBG features are positioned between the first and second subwavelength resonant gratings and allow introduction of amplifying mediums into the highly resonant guided micro-laser microcavity. The micro-laser may be positioned on a die of a bulk substrate material with one or more electronic and optical devices and may be communicably connected to the same. A method for fabricating a micro-laser is disclosed. A method for tuning the micro-laser is also disclosed. The micro-laser may be used as an optical regenerator, or a light source for data transfer or for optical computing.
Gain determination of optical active doped planar waveguides
NASA Astrophysics Data System (ADS)
Šmejcký, J.; Jeřábek, V.; Nekvindová, P.
2017-12-01
This paper summarizes the results of the gain transmission characteristics measurement carried out on the new ion exchange Ag+ - Na+ optical Er3+ and Yb3+ doped active planar waveguides realized on a silica based glass substrates. The results were used for optimization of the precursor concentration in the glass substrates. The gain measurements were performed by the time domain method using a pulse generator, as well as broadband measurement method using supercontinuum optical source in the wavelength domain. Both methods were compared and the results were graphically processed. It has been confirmed that pulse method is useful as it provides a very accurate measurement of the gain - pumping power characteristics for one wavelength. In the case of radiation spectral characteristics, our measurement exactly determined the maximum gain wavelength bandwidth of the active waveguide. The spectral characteristics of the pumped and unpumped waveguides were compared. The gain parameters of the reported silica-based glasses can be compared with the phosphate-based parameters, typically used for optical active devices application.
Characterization of Si3N4/SiO2 optical channel waveguides by photon scanning tunneling microscopy
NASA Technical Reports Server (NTRS)
Wang, Yan; Chudgar, Mona H.; Jackson, Howard E.; Miller, Jeffrey S.; De Brabander, Gregory N.; Boyd, Joseph T.
1993-01-01
Photon scanning tunneling microscopy (PSTM) is used to characterize Si3N4/Si02 optical channel waveguides being used for integrated optical-micromechanical sensors. PSTM utilizes an optical fiber tapered to a fine point which is piezoelectrically positioned to measure the decay of the evanescent field intensity associated with the waveguide propagating mode. Evanescent field decays are recorded for both ridge channel waveguides and planar waveguide regions. Values for the local effective refractive index are calculated from the data for both polarizations and compared to model calculations.
Xiao-hong, Zhou; Lan-hua, Liu; Wei-qi, Xu; Bao-dong, Song; Jian-wu, Sheng; Miao, He; Han-chang, Shi
2014-01-01
This paper proposed a compact and portable planar waveguide evanescent wave immunosensor (EWI) for highly sensitive detection of BPA. The incident light is coupled into the planar waveguide chip via a beveled angle through undergoing total internal reflection, where the evanescent wave field forms and excites the binding fluorophore-tagged antibodies on the chip surface. Typical calibration curves obtained for BPA has detection limits of 0.03 μg/L. Linear response for BPA ranged from 0.124 μg/L–9.60 μg/L with 50% inhibition concentration for BPA of 1.09 ± 0.25 μg/L. The regeneration of the planar optical waveguide chip allows the performance of more than 300 assay cycles within an analysis time of about 20 min for each assay cycle. By application of effective pretreatment procedure, the recoveries of BPA in real water samples gave values from 88.3% ± 8.5% to 103.7% ± 3.5%, confirming its application potential in the measurement of BPA in reality. PMID:24699239
Pulsed laser deposited ZnO film on side-polished fiber as a gas sensing element.
Dikovska, Anna Og; Atanasov, Petar A; Stoyanchov, Toshko R; Andreev, Andrey T; Karakoleva, Elka I; Zafirova, Blagovesta S
2007-05-01
A simple sensor element consisting of a side-polished single-mode fiber and a planar metal oxide waveguide is described. The thin ZnO planar waveguide was produced on the polished fiber surface by pulsed laser deposition at optimized processing parameters. A measurement scheme for in situ control of the film thickness during the deposition process was developed and used. X-ray diffraction measurements and scanning electron microscopy were used to characterize the structure and the surface morphology of the planar waveguide, respectively. The numerical evaluation of the sensor sensitivity predicts the possibility to detect refractive index changes of less than 10(-4). Furthermore, preliminary gas sensor tests were performed by using a mixture of 1.5% butane diluted in N(2) and pure butane. A shift of the spectral position of the resonance points was observed from 3 to 5 s after gas exposure, which corresponds to refractive index changes of 3 x 10(-5) and 1.2 x 10(-3) for 1.5% butane and for pure butane, respectively.
Planar waveguide microlenses for nonblocking photonic switches and optical interconnects
NASA Astrophysics Data System (ADS)
Glebov, Alexei L.; Huang, Lidu; Lee, Michael; Aoki, Shigenori; Yokouchi, Kishio
2004-09-01
Different types of planar waveguide microlenses are fabricated with PLC technologies from a variety of optical materials such as silica, photo-definable epoxy resins, and a number of other optical polymers. Hybrid microlenses are also fabricated in which the base of the lens, with a double concave gap, is formed from silica and the gap is filled with an optical polymer. The optimized lens structures provide the maximum coupling efficiencies between the input and output channels at distances up to 100 mm with a minimum channel pitch of 0.5-0.7 mm. Experimental and theoretical studies provide results on collimation and focusing properties of single and double microlenses made of silica, polymer, and silica/polymer. The evaluation of the temperature and wavelength effects on the collimation characteristics of the lenses demonstrate that the single lenses are more stable and, thus, more suitable for operations under varying conditions. Examples of the planar waveguide microlens applications are presented. In one application the microlens arrays are integrated in fast electrooptic photonic switching modules. In the other application the microlenses are embedded in the backplanes with nonblocking optical interconnects.
Low- and high-index sol-gel films for planar and channel-doped waveguides
NASA Astrophysics Data System (ADS)
Canva, Michael; Chaput, Frederic; Lahlil, Khalid; Rachet, Vincent; Goudket, Helene; Boilot, Jean-Pierre; Levy, Yves
2001-11-01
In view of realizing integrated optic components based on effects such as electro-optic, chi(2):chi(2) cascading, stimulated emission,... one has to first synthesize materials with the proper functionality; this may be achieved by doping solid state matrices by the appropriate organic chromophores. Second, and as important, these materials have to be properly structured into the final optical guiding structures. We shall report on issues related to the realization of chromophore-doped planar waveguides as well as channel waveguides. These structures were realized by either photo-transformation such as photo- chromism and photo-bleaching or reactive ion etching technique, starting with chromophore doped sol-gel materials at high loading contents for which optical index may be controlled via the local dopant concentration. With these materials and techniques, waveguides and components characterized by propagation losses of the order of a cm-1, measured off the edge of the absorption band of the doping species, were fabricated. In order to be also able to study and use waveguide functionalized with low concentration of chromophore species, we developed new sol-gel materials of high optical index, yet low temperature processed. These new films are under study to evaluate their potential as host for organic doped waveguides devices.
Gas Sensors Based on Single-Arm Waveguide Interferometers
NASA Technical Reports Server (NTRS)
Sarkisov, Sergey; Curley, Michael; Diggs, Darnell; Adamovsky, Grigory
1998-01-01
Various optical technologies can be implemented in chemical sensing. Sensitive, rugged, and compact systems will be more likely built using interferometric waveguide sensors. Currently existing sensors comprise dual-arm systems with external reference arm, dual-arm devices with internal reference arm such as integrated Mach-Zehnder interferometer, and single-arm systems which employ the interference between different waveguide modes. These latter ones are the most compact and rugged but still sensitive enough to monitor volatile pollutants such as NH3 coming out of industrial refrigerators and fertilizer plants and stocks, NO, NO2, SO2, emitted by industrial burning processes. Single-arm devices in planar waveguide configuration most frequently use two orthogonally polarized modes TE (sub i) and TM (sub i) of the same order i. Sensing effect is based on the difference in propagation conditions for the modes caused by the environment. However, dual-mode single-order interferometers still have relatively low sensitivity with respect to the environment related changes in the waveguide core because of small difference between propagation constants of TE (sub i) and TM (sub i) modes of the same order. Substantial sensitivity improvement without significant complication can be achieved for planar waveguide interferometers using modes of different orders with much greater difference between propagation constants.
The waveguide laser - A review
NASA Technical Reports Server (NTRS)
Degnan, J. J.
1976-01-01
The present article reviews the fundamental physical principles essential to an understanding of waveguide gas and liquid lasers, and the current technological state of these devices. At the present time, waveguide laser transitions span the visible through submillimeter regions of the wavelength spectrum. The introduction discusses the many applications of waveguide lasers and the wide variety of laser configurations that are possible. Section 1 summarizes the properties of modes in hollow dielectric waveguides of circular, rectangular, and planar cross section. Section 2 considers various approaches to optical feedback including internal and external mirror Fabry-Perot type resonators, hollow waveguide distributed feedback structures, and ring-resonant configurations. Section 3 discusses those aspects of molecular kinetic and laser theory pertinent to the design and optimization of waveguide gas lasers.
Kivijärvi, Ville; Nyman, Markus; Shevchenko, Andriy; Kaivola, Matti
2018-04-02
Planar optical waveguides made of designable spatially dispersive nanomaterials can offer new capabilities for nanophotonic components. As an example, a thin slab waveguide can be designed to compensate for optical diffraction and provide divergence-free propagation for strongly focused optical beams. Optical signals in such waveguides can be transferred in narrow channels formed by the light itself. We introduce here a theoretical method for characterization and design of nanostructured waveguides taking into account their inherent spatial dispersion and anisotropy. Using the method, we design a diffraction-compensating slab waveguide that contains only a single layer of silver nanorods. The waveguide shows low propagation loss and broadband diffraction compensation, potentially allowing transfer of optical information at a THz rate.
Dimensional effects on the magnetic domains in planar magnetophotonic crystal waveguides
NASA Astrophysics Data System (ADS)
Huang, Xiaoyue
2007-05-01
The application of photonic crystal technology in magneto-optic media can yield significant improvements in polarization rotation efficiency and optical switching capability and an overall reduction in magneto-optic device dimensions. Resonant photonic crystal structures in planar ferrimagnetic film waveguides are of interest because they may lead to the development of on-chip magneto-optical switches and isolators for photonic device integration. In the present work, two different methods for the fabrication of on-chip waveguide magnetophotonic crystals, through electron beam lithography and focused ion beam milling, are discussed and demonstrated. A high precision photonic measurement system was set up for testing and analysis of the waveguide devices. The results obtained show photonic band gaps with resonant transmission in the gap, and enhanced magneto-optic rotation efficiency. The character of waveguide modes therein, birefringence effects, and structural variation effects were studied extensively and are presented in this thesis. Planar magnetization control produced by manipulation of the magnetic shape anisotropy in the photonic crystal micro-cavity was demonstrated in this work. By introducing strip structures into the resonant cavity formed on magnetic garnet films with in-plane anisotropy, a bi-stable magnetic state and an enhanced magnetic field reversal mechanism were demonstrated. This effect was extensively studied through experimental and micromagnetic simulation analysis of the polarization rotation hysteresis. The results discussed herein show that domain closure loops between the strips limit the magnification of the coercivity in the resonant cavity and that these limitations can be overcome by the formation of isolated single-domain magnetic microstrips in the cavity.
NASA Astrophysics Data System (ADS)
Zhao, Jin-Hua; Qin, Xi-Feng; Wang, Feng-Xiang; Jiao, Yang; Guan, Jing; Fu, Gang
2017-10-01
As one kind of prominent laser crystal, Nd:Y3Ga5O12 (Nd:YGG) crystal has outstanding performance on laser excitation at multi-wavelength which have shown promising applications in optical communication field. In addition, Nd:YGG crystal has potential applications in medical field due to its ability of emit the laser at 1110 nm. Optical waveguide structure with high quality could improve the efficiency of laser emission. In this work, we fabricated the optical planar waveguide on Nd:YGG crystal by medium mass ion implantation which was convinced an effective method to realize a waveguide structure with superior optical properties. The sample is implanted by C ions at energy of 5.0 MeV with the fluence of 1 × 1015 ions/cm2. We researched the optical propagation properties in the Nd:YGG waveguide by end-face coupling and prism coupling method. The Nd ions fluorescent properties are obtained by a confocal micro-luminescence measurement. The fluorescent properties of Nd ions obtained good reservation after C ion implantation. Our work has reference value for the application of Nd:YGG crystal in the field of optical communication.
Martinez, Jennifer S [Santa Fe, NM; Swanson, Basil I [Los Alamos, NM; Grace, Karen M [Los Alamos, NM; Grace, Wynne K [Los Alamos, NM; Shreve, Andrew P [Santa Fe, NM
2009-06-02
An assay element is described including recognition ligands bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of a biological target is described including injecting a biological target-containing sample into a sensor cell including the assay element, with the recognition ligands adapted for binding to selected biological targets, maintaining the sample within the sensor cell for time sufficient for binding to occur between selected biological targets within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting the fluorescent-label in any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.
Martinez, Jennifer S [Santa Fe, NM; Swanson, Basil I [Los Alamos, NM; Shively, John E [Arcadia, CA; Li, Lin [Monrovia, CA
2009-06-02
An assay element is described including recognition ligands adapted for binding to carcinoembryonic antigen (CEA) bound to a film on a single mode planar optical waveguide, the film from the group of a membrane, a polymerized bilayer membrane, and a self-assembled monolayer containing polyethylene glycol or polypropylene glycol groups therein and an assay process for detecting the presence of CEA is described including injecting a possible CEA-containing sample into a sensor cell including the assay element, maintaining the sample within the sensor cell for time sufficient for binding to occur between CEA present within the sample and the recognition ligands, injecting a solution including a reporter ligand into the sensor cell; and, interrogating the sample within the sensor cell with excitation light from the waveguide, the excitation light provided by an evanescent field of the single mode penetrating into the biological target-containing sample to a distance of less than about 200 nanometers from the waveguide thereby exciting any bound reporter ligand within a distance of less than about 200 nanometers from the waveguide and resulting in a detectable signal.
Waveguide-based optical chemical sensor
Grace, Karen M [Ranchos de Taos, NM; Swanson, Basil I [Los Alamos, NM; Honkanen, Seppo [Tucson, AZ
2007-03-13
The invention provides an apparatus and method for highly selective and sensitive chemical sensing. Two modes of laser light are transmitted through a waveguide, refracted by a thin film host reagent coating on the waveguide, and analyzed in a phase sensitive detector for changes in effective refractive index. Sensor specificity is based on the particular species selective thin films of host reagents which are attached to the surface of the planar optical waveguide. The thin film of host reagents refracts laser light at different refractive indices according to what species are forming inclusion complexes with the host reagents.
Subwavelength hybrid terahertz waveguides.
Nam, Sung Hyun; Taylor, Antoinette J; Efimov, Anatoly
2009-12-07
We introduce and present general properties of hybrid terahertz waveguides. Weakly confined Zenneck waves on a metal-dielectric interface at terahertz frequencies can be transformed to a strongly confined yet low-loss subwavelength mode through coupling with a photonic mode of a nearby high-index dielectric strip. We analyze confinement, attenuation, and dispersion properties of this mode. The proposed design is suitable for planar integration and allows easy fabrication on chip scale. The superior waveguiding properties at terahertz frequencies could enable the hybrid terahertz waveguides as building blocks for terahertz integrated circuits.
NASA Astrophysics Data System (ADS)
Gomaa, M. L.; Chartier, G.
1985-04-01
The performances of distributed coupling wavelength multiplexer-demultiplexer devices for optical telecommunications applications, i.e., data transfer, are assessed theoretically. The values used for the refraction indices and waveguide dimensions are based on the ionic exchange between the glass layer and a base salt bath. Gradients in the indices are also considered. A shift of indices is assumed to be present between parallel waveguides of different thicknesses separated by a liquid bath. The behavior of the two waveguides is then the variations of the coupling and energy exchanged as functions of the wavelength transmitted. Attention is also given to the case of identical coupled waveguides.
NASA Astrophysics Data System (ADS)
Liu, Qifa; Wang, Wei
2018-01-01
Gallium Nitride (GaN) free-standing planar photonic device at telecommunication wavelength based on GaN-on-silicon platform was presented. The free-standing structure was realized by particular double-side fabrication process, which combining GaN front patterning, Si substrate back releasing and GaN slab etching. The actual device parameters were identified via the physical characterizations employing scanning electron microscope (SEM), atomic force microscope (AFM) and reflectance spectra testing. High coupling efficiency and good light confinement properties of the gratings and rib waveguide at telecommunication wavelength range were verified by finite element method (FEM) simulation. This work illustrates the potential of new GaN photonic structure which will enable new functions for planar photonics in communication and sensing applications, and is favorable for the realization of integrated optical circuit.
Integrated optical refractometer based on bend waveguide with air trench structure
NASA Astrophysics Data System (ADS)
Ryu, Jin Hwa; Park, Jaehoon; Kang, Chan-mo; Son, Youngdal; Do, Lee-Mi; Baek, Kyu-Ha
2015-07-01
This study proposed a novel optical sensor based on a refractometer integrating a bend waveguide and a trench structure. The optical sensor is a planar lightwave circuit (PLC) device involving a bend waveguide with maximum optical loss. A trench structure was aligned with the partially exposed core layer's sidewall of the bend waveguide, providing a quantitative measurement condition. The insertion losses of the proposed 1 x 2 single-mode optical splitter-type sensor were 4.38 dB and 8.67 dB for the reference waveguide and sensing waveguide, respectively, at a wavelength of 1,550 nm. The optical loss of the sensing waveguide depends on the change in the refractive index of the material in contact with the trench, but the reference waveguide had stable optical propagating characteristic regardless of the variations of the refractive index.
Optical panel system including stackable waveguides
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeSanto, Leonard; Veligdan, James T.
An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, whereinmore » each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.« less
Optical panel system including stackable waveguides
DeSanto, Leonard; Veligdan, James T.
2007-03-06
An optical panel system including stackable waveguides is provided. The optical panel system displays a projected light image and comprises a plurality of planar optical waveguides in a stacked state. The optical panel system further comprises a support system that aligns and supports the waveguides in the stacked state. In one embodiment, the support system comprises at least one rod, wherein each waveguide contains at least one hole, and wherein each rod is positioned through a corresponding hole in each waveguide. In another embodiment, the support system comprises at least two opposing edge structures having the waveguides positioned therebetween, wherein each opposing edge structure contains a mating surface, wherein opposite edges of each waveguide contain mating surfaces which are complementary to the mating surfaces of the opposing edge structures, and wherein each mating surface of the opposing edge structures engages a corresponding complementary mating surface of the opposite edges of each waveguide.
Numerical model of the polymer electro-optic waveguide
NASA Astrophysics Data System (ADS)
Fan, Guofang; Li, Yuan; Han, Bing; Wang, Qi; Liu, Xinhou; Zhen, Zhen
2012-09-01
A numerical design model is presented for the polymer waveguide in an electro-optic modulator. The effective index method is used to analyze the height of the core waveguide and rib waveguide, an improved Marcatili method is presented to design the rib waveguide width in order to keep the strong single mode operation and have a good match with the standard fiber. Also, the thickness of the upper cladding layer is discussed through calculating the effective index of the multilayer planar waveguide structure has been obtained by setting the optical loss due to the metallic absorption to an acceptable value (<0.1 dB/cm). As a consequence, we take the EO polymer waveguide structure of UV15:CLD/APC:UFC170 as an example, an optimized design is reported.
Erbium-implanted silica colloids with 80% luminescence quantum efficiency
NASA Astrophysics Data System (ADS)
Slooff, L. H.; de Dood, M. J. A.; van Blaaderen, A.; Polman, A.
2000-06-01
Silica colloids with a diameter of 240-360 nm, grown by wet chemical synthesis using ethanol, ammonia, water, and tetraethoxysilane, were implanted with 350 keV Er ions, to peak concentrations of 0.2-1.1 at. % and put onto a silicon or glass substrate. After annealing at 700-900 °C the colloids show clear room-temperature photoluminescence at 1.53 μm, with lifetimes as high as 17 ms. By comparing data of different Er concentrations, the purely radiative lifetime is estimated to be 20-22 ms, indicating a high quantum efficiency of about 80%. This high quantum efficiency indicates that, after annealing, the silica colloids are almost free of OH impurities. Spinning a layer of polymethylmethacrylate over the silica spheres results in an optically transparent nanocomposite layer, that can be used as a planar optical waveguide amplifier at 1.5 μm that is fully compatible with polymer technology.
Femtosecond laser inscribed cladding waveguide lasers in Nd:LiYF4 crystals
NASA Astrophysics Data System (ADS)
Li, Shi-Ling; Huang, Ze-Ping; Ye, Yong-Kai; Wang, Hai-Long
2018-06-01
Depressed circular cladding, buried waveguides were fabricated in Nd:LiYF4 crystals with an ultrafast Yb-doped fiber master-oscillator power amplifier laser. Waveguides were optimized by varying the laser writing conditions, such as pulse energy, focus depth, femtosecond laser polarization and scanning velocity. Under optical pump at 799 nm, cladding waveguides showed continuous-wave laser oscillation at 1047 nm. Single- and multi-transverse modes waveguide laser were realized by varying the waveguide diameter. The maximum output power in the 40 μm waveguide is ∼195 mW with a slope efficiency of 34.3%. The waveguide lasers with hexagonal and cubic cladding geometry were also realized.
Multiple temperature sensors embedded in an ultrasonic "spiral-like" waveguide
NASA Astrophysics Data System (ADS)
Periyannan, Suresh; Rajagopal, Prabhu; Balasubramaniam, Krishnan
2017-03-01
This paper studies the propagation of ultrasound in spiral waveguides, towards distributed temperature measurements on a plane. Finite Element (FE) approach was used for understanding the velocity behaviour and consequently designing the spiral waveguide. Temperature measurements were experimentally carried out on planar surface inside a hot chamber. Transduction was performed using a piezo-electric crystal that is attached to one end of the waveguide. Lower order axisymmetric guided ultrasonic modes L(0,1) and T(0,1) were employed. Notches were introduced along the waveguide to obtain ultrasonic wave reflections. Time of fight (TOF) differences between the pre-defined reflectors (notches) located on the waveguides were used to infer local temperatures. The ultrasonic temperature measurements were compared with commercially available thermocouples.
Integrated Lloyd's mirror on planar waveguide facet as a spectrometer.
Morand, Alain; Benech, Pierre; Gri, Martine
2017-12-10
A low-cost and simple Fourier transform spectrometer based on the Lloyd's mirror configuration is proposed in order to have a very stable interferogram. A planar waveguide coupled to a fiber injection is used to spatially disperse the optical beam. A second beam superposed to the previous one is obtained by a total reflection of the incident beam on a vertical glass face integrated in the chip by dicing with a specific circular precision saw. The interferogram at the waveguide output is imaged on a near-infrared camera with an objective lens. The contrast and the fringe period are thus dependent on the type and the fiber position and can be optimized to the pixel size and the length of the camera. Spectral resolution close to λ/Δλ=80 is reached with a camera with 320 pixels of 25 μm width in a wavelength range from O to L bands.
GRIN planar waveguide concentrator used with a single axis tracker.
Bouchard, Sébastien; Thibault, Simon
2014-03-10
It is generally accepted that small to medium level concentrators could be used as cost-competitive replacements for tracked solar panels. The objective is to design a system that can reach a good level of sun concentration with only one sun-tracking axis and is cheap to fabricate. As the most critical parameter for all concentrator designs, optical efficiency needed improvement to reduce the cost of power produced by our system. By using a graded-index planar waveguide with an index profile similar to SELFOC fiber, the ray's path can be controlled. Also, the concentrator can be fabricated in a single block, which reduces Fresnel reflections. Overall, the optical efficiency can be improved by as much as 33% compared to the same system made with a homogeneous waveguide. Furthermore, the ability to cost-effectively fabricate the concentrator by molding can be preserved, making it possible to reduce the cost of the solar power produced.
GRIN planar waveguide concentrator used with a single axis tracker.
Bouchard, Sébastien; Thibault, Simon
2014-03-10
It is generally accepted that small to medium level concentrators could be used as cost-competitive replacements for tracked solar panels. The objective is to design a system that can reach a good level of sun concentration with only one sun-tracking axis and is cheap to fabricate. As the most critical parameter for all concentrator designs, optical efficiency needed improvement to reduce the cost of power produced by our system. By using a graded-index planar waveguide with an index profile similar to SELFOC fiber, the ray’s path can be controlled. Also, the concentrator can be fabricated in a single block, which reduces Fresnel reflections. Overall, the optical efficiency can be improved by as much as 33% compared to the same system made with a homogeneous waveguide. Furthermore, the ability to cost-effectively fabricate the concentrator by molding can be preserved, making it possible to reduce the cost of the solar power produced.
Planar integrated metasurfaces for highly-collimated terahertz quantum cascade lasers
Liang, Guozhen; Dupont, Emmanuel; Fathololoumi, Saeed; Wasilewski, Zbigniew R.; Ban, Dayan; Liang, Hou Kun; Zhang, Ying; Yu, Siu Fung; Li, Lianhe H.; Davies, Alexander Giles; Linfield, Edmund H.; Liu, Hui Chun; Wang, Qi Jie
2014-01-01
We report planar integration of tapered terahertz (THz) frequency quantum cascade lasers (QCLs) with metasurface waveguides that are designed to be spoof surface plasmon (SSP) out-couplers by introducing periodically arranged SSP scatterers. The resulting surface-emitting THz beam profile is highly collimated with a divergence as narrow as ~4° × 10°, which indicates a good waveguiding property of the metasurface waveguide. In addition, the low background THz power implies a high coupling efficiency for the THz radiation from the laser cavity to the metasurface structure. Furthermore, since all the structures are in-plane, this scheme provides a promising platform where well-established surface plasmon/metasurface techniques can be employed to engineer the emitted beam of THz QCLs controllably and flexibly. More importantly, an integrated active THz photonic circuit for sensing and communication applications could be constructed by incorporating other optoelectronic devices such as Schottky diode THz mixers, and graphene modulators and photodetectors. PMID:25403796
Planar waveguide concentrator used with a seasonal tracker.
Bouchard, Sébastien; Thibault, Simon
2012-10-01
Solar concentrators offer good promise for reducing the cost of solar power. Planar waveguides equipped with a microlens slab have already been proposed as an excellent approach to produce medium to high concentration levels. Instead, we suggest the use of a cylindrical microlens array to get useful concentration without tracking during the day. To use only a seasonal tracking system and get the highest possible concentration, cylindrical microlenses are placed in the east-west orientation. Our new design has an acceptance angle in the north-south direction of ±9° and ±54° in the east-west axis. Simulation of our optimized system achieves a 4.6× average concentration level from 8:30 to 16:30 with a maximum of 8.1× and 80% optical efficiency. The low-cost advantage of waveguide-based solar concentrators could support their use in roof-mounted solar panels and eliminate the need for an expensive and heavy active tracker.
TE and TM guided modes in an air waveguide with negative-index-material cladding.
D'Aguanno, G; Mattiucci, N; Scalora, M; Bloemer, M J
2005-04-01
We numerically demonstrate that a planar waveguide in which the inner layer is a gas with refractive index n0 = 1, sandwiched between two identical semi-infinite layers of a negative index material, can support both transverse electric and transverse magnetic guided modes with low losses. Recent developments in the design of metamaterials with an effective negative index suggest that this waveguide could operate in the infrared region of the spectrum.
Multichannel waveguides for the simultaneous detection of disease biomarkers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukundan, Harshini; Price, Dominique Z; Grace, Wynne K
2009-01-01
The sensor team at the Los Alamos National Laboratory has developed a waveguide-based optical biosensor that has previously been used for the detection of biomarkers associated with diseases such as tuberculosis, breast cancer, anthrax and influenza in complex biological samples (e.g., serum and urine). However, no single biomarker can accurately predict disease. To address this issue, we developed a multiplex assay for the detection of components of the Bacillus anthracis lethal toxin on single mode planar optical waveguides with tunable quantum dots as the fluorescence reporter. This limited ability to multiplex is still insufficient for accurate detection of disease ormore » for monitoring prognosis. In this manuscript, we demonstrate for the first time, the design, fabrication and successful evaluation of a multichannel planar optical waveguide for the simultaneous detection of at least three unknown samples in quadruplicate. We demonstrate the simultaneous, rapid (30 min), quantitative (with internal standard) and sensitive (limit of detection of 1 pM) detection of protective antigen and lethal factor of Bacillus anthracis in complex biological samples (serum) using specific monoclonal antibodies labeled with quantum dots as the fluorescence reporter.« less
The near-infrared waveguide properties of an LGS crystal formed by swift Kr8+ ion irradiation
NASA Astrophysics Data System (ADS)
Zhou, Yu-Fan; Liu, Peng; Liu, Tao; Zhang, Lian; Sun, Jian-Rong; Wang, Zhi-Guang; Wang, Xue-Lin
2013-11-01
In this work, we report on the optical properties in the near-infrared region of a LGS crystal planar waveguide formed by swift heavy ion irradiation. The planar optical waveguide in a LGS crystal was fabricated by 330 MeV Kr8+-ion implantation at a fluence of 1 × 1012 cm-2. The initial beam had an energy of 2.1 GeV and was slowed down by passing it through a 259 μm thick Al foil. The guided mode was measured using a prism coupler at a wavelength of 1539 nm. The near-field intensity distribution of the mode was recorded by a CCD camera using the end-face coupling method. The FD-BPM was used to simulate the guided mode profile. The lattice damage induced by SHI irradiation in the LGS crystal was studied using micro-Raman spectroscopy. The Raman spectra are consistent with the stopping power distributions of the Kr8+ ions simulated by SRIM and with the micro-photograph of the waveguide taken by a microscope using polarized light.
NASA Astrophysics Data System (ADS)
Brusberg, Lars; Lang, Günter; Schröder, Henning
2011-01-01
The proposed novel packaging approach merges micro-system packaging and glass integrated optics. It provides 3D optical single-mode intra system links to bridge the gap between novel photonic integrated circuits and the glass fibers for inter system interconnects. We introduce our hybrid 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip links. Optical mirrors and lenses provide optical mode matching for photonic IC assemblies and optical fiber interconnects. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties as reviewed in the paper. That makes it perfect for micro-system packaging. The adopted planar waveguide process based on ion-exchange technology is capable for high-volume manufacturing. This ion-exchange process and the optical propagation are described in detail for thin glass substrates. An extensive characterization of all basic circuit elements like straight and curved waveguides, couplers and crosses proves the low attenuation of the optical circuit elements.
NASA Technical Reports Server (NTRS)
Numata, Kenji; Alalusi, Mazin; Stolpner, Lew; Margaritis, Georgios; Camp, Jordan; Krainak, Michael
2014-01-01
We describe the characteristics of the planar-waveguide external cavity diode laser (PW-ECL). To the best of our knowledge, it is the first butterfly-packaged 1064 nm semiconductor laser that is stable enough to be locked to an external frequency reference. We evaluated its performance from the viewpoint of precision experiments. Using a hyperfine absorption line of iodine, we suppressed its frequency noise by a factor of up to 104 at 10 mHz. The PWECL's compactness and low cost make it a candidate to replace traditional Nd:YAG nonplanar ring oscillators and fiber lasers in applications that require a single longitudinal mode.
NASA Technical Reports Server (NTRS)
Itoh, Tatsuo
1991-01-01
The analysis and modeling of superconducting planar transmission lines were performed. Theoretically, the highest possible Q values of superconducting microstrip line was calculated and, as a result, it provided the Q value that the experiment can aim for. As an effort to search for a proper superconducting transmission line structure, the superconducting microstrip line and coplanar waveguide were compared in terms of loss characteristics and their design aspects. Also, the research was expanded to a superconducting coplanar waveguide family in the microwave packaging environment. Theoretically, it was pointed out that the substrate loss is critical in the superconducting transmission line structures.
Sheppard, Colin J R; Kou, Shan S; Lin, Jiao
2014-12-01
Highly convergent beam modes in two dimensions are considered based on rigorous solutions of the scalar wave (Helmholtz) equation, using the complex source point formalism. The modes are applicable to planar waveguide or surface plasmonic structures and nearly concentric microcavity resonator modes in two dimensions. A novel solution is that of a vortex beam, where the direction of propagation is in the plane of the vortex. The modes also can be used as a basis for the cross section of propagationally invariant beams in three dimensions and bow-tie-shaped optical fiber modes.
Hu, Ming Zhe; Zhang, Hao Chi; Yin, Jia Yuan; Ding, Zhao; Liu, Jun Feng; Tang, Wen Xuan; Cui, Tie Jun
2016-01-01
Novel ultra-wideband filtering of spoof surface plasmon polaritons (SPPs) is proposed in the microwave frequency using deep subwavelength planar structures printed on thin and flexible dielectric substrate. The proposed planar SPPs waveguide is composed of two mirror-oriented metallic corrugated strips, which are further decorated with parallel-arranged slots in the main corrugated strips. This compound structure provides deep subwavelength field confinement as well as flexible parameters when employed as a plasmonic waveguide, which is potential to construct miniaturization. Using momentum and impedance matching technology, we achieve a smooth conversion between the proposed SPPs waveguide and the conventional transmission line. To verify the validity of the design, we fabricate a spoof SPPs filter, and the measured results illustrate excellent performance, in which the reflection coefficient is less than −10 dB within the −3 dB passband from 1.21 GHz to 7.21 GHz with the smallest insertion loss of 1.23 dB at 2.21 GHz, having very good agreements with numerical simulations. The ultra-wideband filter with low insertion loss and high transmission efficiency possesses great potential in modern communication systems. PMID:27883028
Hu, Ming Zhe; Zhang, Hao Chi; Yin, Jia Yuan; Ding, Zhao; Liu, Jun Feng; Tang, Wen Xuan; Cui, Tie Jun
2016-11-24
Novel ultra-wideband filtering of spoof surface plasmon polaritons (SPPs) is proposed in the microwave frequency using deep subwavelength planar structures printed on thin and flexible dielectric substrate. The proposed planar SPPs waveguide is composed of two mirror-oriented metallic corrugated strips, which are further decorated with parallel-arranged slots in the main corrugated strips. This compound structure provides deep subwavelength field confinement as well as flexible parameters when employed as a plasmonic waveguide, which is potential to construct miniaturization. Using momentum and impedance matching technology, we achieve a smooth conversion between the proposed SPPs waveguide and the conventional transmission line. To verify the validity of the design, we fabricate a spoof SPPs filter, and the measured results illustrate excellent performance, in which the reflection coefficient is less than -10 dB within the -3 dB passband from 1.21 GHz to 7.21 GHz with the smallest insertion loss of 1.23 dB at 2.21 GHz, having very good agreements with numerical simulations. The ultra-wideband filter with low insertion loss and high transmission efficiency possesses great potential in modern communication systems.
Muñoz, P; Pastor, D; Capmany, J; Martínez, A
2003-09-22
In this paper, the procedure to optimize flat-top Arrayed Waveguide Grating (AWG) devices in terms of transmission and dispersion properties is presented. The systematic procedure consists on the stigmatization and minimization of the Light Path Function (LPF) used in classic planar spectrograph theory. The resulting geometry arrangement for the Arrayed Waveguides (AW) and the Output Waveguides (OW) is not the classical Rowland mounting, but an arbitrary geometry arrangement. Simulation using previous published enhanced modeling show how this geometry reduces the passband ripple, asymmetry and dispersion, in a design example.
A Compact, Pi-Mode Extraction Scheme for the Axial B-Field Recirculating Planar Magnetron
2012-07-23
Figure 4). Thus, in a planar magnetron, the minimum phase velocity, vph , to stay above cutoff in the rectangular waveguide is ℎ = ...as magnetrons, electrons must be accelerated such that they are in synchronism with the phase velocity, vph , of the electromagnetic wave for an
Sakamaki, Yohei; Shikama, Kota; Ikuma, Yuichiro; Suzuki, Kenya
2017-08-21
We propose a waveguide frontend with integrated polarization diversity optics for a wavelength selective switch (WSS) array with a liquid crystal on silicon switching engine to simplify the free space optics configuration and the alignment process in optical modules. The polarization diversity function is realized by the integration of a waveguide-type polarization beam splitter and a polarization rotating half-wave plate in a beam launcher using silica-based planar lightwave circuit technology. We confirmed experimentally the feasibility of using our proposed waveguide frontend in a two-in-one 1 × 20 WSS. The experimental results show that the fabricated waveguide frontend provides a polarization diversity function without any degradation in optical performance.
Tests of Low-Noise MMIC Amplifier Module at 290 to 340 GHz
NASA Technical Reports Server (NTRS)
Gaier, Todd; Samoska, Lorene; Fung, King Man; Deal, William; Mei, Xiaobing; Lai, Richard
2009-01-01
A document presents data from tests of a low-noise amplifier module operating in the frequency range from 290 to 340 GHz said to be the highest-frequency low-noise, solid-state amplifier ever developed. The module comprised a three-stage monolithic microwave integrated circuit (MMIC) amplifier integrated with radial probe MMIC/waveguide transitions and contained in a compact waveguide package, all according to the concepts described in the immediately preceding article and in the referenced prior article, "Integrated Radial Probe Transition From MMIC to Waveguide" (NPO-43957), NASA Tech Briefs Vol. 31, No. 5 (May 2007), page 38. The tests included measurements by the Y-factor method, in which noise figures are measured repeatedly with an input noise source alternating between an "on" (hot-load) condition and an "off" (cold-load) condition. (The Y factor is defined as the ratio between the "on" and "off" noise power levels.) The test results showed that, among other things, the module exhibited a minimum noise figure of about 8.7 dB at 325 GHz and that the gain at that frequency under the bias conditions that produced the minimum noise figure was between about 9 and 10 dB.
Modeling of induction-linac based free-electron laser amplifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jong, R.A.; Fawley, W.M.; Scharlemann, E.T.
We describe the modeling of an induction-linac based free-electron laser (IFEL) amplifier for producing multimegawatt levels of microwave power. We have used the Lawrence Livermore National Laboratory (LLNL) free-electron laser simulation code, FRED, and the simulation code for sideband calculations, GINGER for this study. For IFEL amplifiers in the frequency range of interest (200 to 600 GHz), we have devised a wiggler design strategy which incorporates a tapering algorithm that is suitable for free-electron laser (FEL) systems with moderate space-charge effects and that minimizes spontaneous noise growth at frequencies below the fundamental, while enhancing the growth of the signal atmore » the fundamental. In addition, engineering design considerations of the waveguide wall loading and electron beam fill factor in the waveguide set limits on the waveguide dimensions, the wiggler magnet gap spacing, the wiggler period, and the minimum magnetic field strength in the tapered region of the wiggler. As an example, we shall describe an FEL amplifier designed to produce an average power of about 10 MW at a frequency of 280 GHz to be used for electron cyclotron resonance heating of tokamak fusion devices. 17 refs., 4 figs.« less
Features and technologies of ERS-1 (ESA) and X-SAR antennas
NASA Technical Reports Server (NTRS)
Schuessler, R.; Wagner, R.
1986-01-01
Features and technologies of planar waveguide array antennas developed for spaceborne microwave sensors are described. Such antennas are made from carbon fiber reinforced plastic (CFRP) employing special manufacturing and metallization techniques to achieve satisfactory electrical properties. Mechanical design enables deployable antenna structures necessary for satellite applications (e.g., ESA ERS-1). The slotted waveguide concept provides high aperture efficiency, good beamshaping capabilities, and low losses. These CFRP waveguide antennas feature low mass, high accuracy and stiffness, and can be operated within wide temperature ranges.
Optical property modification of PMMA by ion-beam implantation
NASA Astrophysics Data System (ADS)
Hong, Wan; Woo, Hyung-Joo; Choi, Han-Woo; Kim, Young-Suk; Kim, Gi-dong
2001-01-01
Polymeric waveguides were fabricated by proton implantation on poly(methyl methacrylate) (PMMA). Depth profiles of the refractive indices of modified regions were obtained and were found to be in good agreement with the stopping power curve of protons in PMMA. It means that the waveguides are formed at the depths where the stopping power is the maximum value. Light losses for 635 nm wavelength were measured using planar waveguides to verify if the transmittance is enough for the application of the technique to optical devices.
Low loss InGaAs/InP multiple quantum well waveguides
NASA Astrophysics Data System (ADS)
Koren, U.; Miller, B. I.; Koch, T. L.; Boyd, G. D.; Capik, R. J.
1986-12-01
Double heterostructure planar waveguides with an InGaAs/InP multiple quantum well (MQW) core and InP cladding layers were grown by atmospheric pressure metalorganic chemical vapor deposition. Ridge waveguides had a low propagation loss of 0.8 dB/cm for 1.52 micron input light. The indices of refraction for the guided TE and TM modes have been measured and the bulk dispersion curves of the MQW material for the 1.46-1.55 micron wavelength region were derived.
2007-11-01
waveguide approach in which a right-angled gadolinium gallium garnet (GGG) glass prism of index 1.965 at 633 nm is used to couple light from a HeNe laser of...SPARROW sensor consists of two planar, single mode aluminum oxide waveguides separated vertically by a lower refractive index silicon dioxide layer...and high stability could be formed on aluminum oxide, the binding of an alkyl carboxylic acid, stearic acid (n-octadecanoic acid), was investigated
NASA Astrophysics Data System (ADS)
Ito, Yuka; Terada, Shinsuke; Arai, Shinya; Fujiwara, Makoto; Mori, Tetsuya; Choki, Koji; Fukushima, Takafumi; Koyanagi, Mitsumasa
2012-04-01
We proposed a rigid/flex optoelectronic (O/E) module with 48-channel polymeric waveguides for short-distance board-level optical interconnection. A flexible O/E test module was fabricated in the following two steps by using standard packaging processes. First, two vertical cavity surface emitting laser diodes (VCSELs) and one VCSEL driver (VD) were flip-chip bonded to a completed flexible printed circuit board (PCB), and two photodiodes (PDs) and one transimpedance amplifier/limiting amplifier (TIA/LA) to another flexible PCB. Second, the two flexible PCBs were attached with a polynorbornene (PNB) sheet in which high-density PNB waveguides were formed by UV exposure. Active areas of VCSELs and PDs on the flexible PCBs were aligned to micromirrors of the waveguides with -6 µm offset toward the signal propagation direction. We successfully demonstrated data transmission over 10 Gbps and low inter-channel crosstalk of less than -20 dB was achieved in the flexible O/E test module with 120-mm-long and 62.5-µm-pitch waveguides.
NASA Astrophysics Data System (ADS)
Raghuwanshi, Sanjeev Kumar; Palodiya, Vikram
2017-08-01
Waveguide dispersion can be tailored but not the material dispersion. Hence, the total dispersion can be shifted at any desired band by adjusting the waveguide dispersion. Waveguide dispersion is proportional to {d^2}β/d{k^2} and need to be computed numerically. In this paper, we have tried to compute analytical expression for {d^2}β/d{k^2} in terms of {d^2}β/d{k^2} accurately with numerical technique, ≈ 10^{-5} decimal point. This constraint sometimes generates the error in calculation of waveguide dispersion. To formulate the problem we will use the graphical method. Our study reveals that we can compute the waveguide dispersion enough accurately for various modes by knowing - β only.
Single-mode glass waveguide technology for optical interchip communication on board level
NASA Astrophysics Data System (ADS)
Brusberg, Lars; Neitz, Marcel; Schröder, Henning
2012-01-01
The large bandwidth demand in long-distance telecom networks lead to single-mode fiber interconnects as result of low dispersion, low loss and dense wavelength multiplexing possibilities. In contrast, multi-mode interconnects are suitable for much shorter lengths up to 300 meters and are promising for optical links between racks and on board level. Active optical cables based on multi-mode fiber links are at the market and research in multi-mode waveguide integration on board level is still going on. Compared to multi-mode, a single-mode waveguide has much more integration potential because of core diameters of around 20% of a multi-mode waveguide by a much larger bandwidth. But light coupling in single-mode waveguides is much more challenging because of lower coupling tolerances. Together with the silicon photonics technology, a single-mode waveguide technology on board-level will be the straight forward development goal for chip-to-chip optical interconnects integration. Such a hybrid packaging platform providing 3D optical single-mode links bridges the gap between novel photonic integrated circuits and the glass fiber based long-distance telecom networks. Following we introduce our 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip interconnects. This novel packaging approach merges micro-system packaging and glass integrated optics. It consists of a thin glass substrate with planar integrated singlemode waveguide circuits, optical mirrors and lenses providing an integration platform for photonic IC assembly and optical fiber interconnect. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties. That makes it perfect for microsystem packaging. The paper presents recent results in single-mode waveguide technology on wafer level and waveguide characterization. Furthermore the integration in a hybrid packaging process and design issues are discussed.
NASA Astrophysics Data System (ADS)
Haji, L.; Hiraoui, M.; Lorrain, N.; Guendouz, M.
2012-03-01
In this letter we report on the use of an electrochemical process for the fabrication of anti resonant reflecting optical waveguide based on oxidized porous silicon. This method is known to allow the formation of various photonic structures (Bragg mirror, microcavity), thanks to the easy and in situ modulation of the porosity and thus of the refractive index. Planar anti resonant reflecting optical waveguide structure made from porous silicon is demonstrated to be very effective for low losses as compared to conventional resonant waveguide. Optical measurements carried out for TE and TM polarizations are reported and related to optical sensing.
Waves in a plane graphene - dielectric waveguide structure
NASA Astrophysics Data System (ADS)
Evseev, Dmitry A.; Eliseeva, Svetlana V.; Sementsov, Dmitry I.
2017-10-01
The features of the guided TE modes propagation have been investigated on the basis of computer simulations in a planar structure consisting of a set of alternating layers of dielectric and graphene. Within the framework of the effective medium approximation, the dispersion relations have been received for symmetric and antisymmetric waveguide modes, determined by the frequency range of their existence. The wave field distribution by structure, frequency dependences of the constants of propagation and transverse components of the wave vectors, as well as group and phase velocities of waveguide modes have been obtained, the effect of the graphene part in a structure on the waveguide mode behavior has been shown.
Temporal waveguides for optical pulses
Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.
2016-05-12
Here we discuss, temporal total internal reflection (TIR), in analogy to the conventional TIR of an optical beam at a dielectric interface, is the total reflection of an optical pulse inside a dispersive medium at a temporal boundary across which the refractive index changes. A pair of such boundaries separated in time acts as the temporal analog of planar dielectric waveguides. We study the propagation of optical pulses inside such temporal waveguides, both analytically and numerically, and show that the waveguide supports a finite number of temporal modes. We also discuss how a single-mode temporal waveguide can be created inmore » practice. In contrast with the spatial case, the confinement can occur even when the central region has a lower refractive index.« less
NASA Technical Reports Server (NTRS)
Wintucky, Edwin G.; Simons, Rainee N.
2015-01-01
This paper presents the design, fabrication and test results for a novel waveguide multimode directional coupler (MDC). The coupler, fabricated from two dissimilar frequency band waveguides, is capable of isolating power at the second harmonic frequency from the fundamental power at the output port of a traveling-wave tube (TWT) amplifier. Test results from proof-of-concept demonstrations are presented for a Ku-band/Ka-band MDC and a Ka-band/E-band MDC. In addition to power measurements at harmonic frequencies, a potential application of the MDC is in the design of a satellite borne beacon source for atmospheric propagation studies at millimeter-wave (mm-wave) frequencies (Ka-band and E-band).
Monolithic integration of SOI waveguide photodetectors and transimpedance amplifiers
NASA Astrophysics Data System (ADS)
Li, Shuxia; Tarr, N. Garry; Ye, Winnie N.
2018-02-01
In the absence of commercial foundry technologies offering silicon-on-insulator (SOI) photonics combined with Complementary Metal Oxide Semiconductor (CMOS) transistors, monolithic integration of conventional electronics with SOI photonics is difficult. Here we explore the implementation of lateral bipolar junction transistors (LBJTs) and Junction Field Effect Transistors (JFETs) in a commercial SOI photonics technology lacking MOS devices but offering a variety of n- and p-type ion implants intended to provide waveguide modulators and photodetectors. The fabrication makes use of the commercial Institute of Microelectronics (IME) SOI photonics technology. Based on knowledge of device doping and geometry, simple compact LBJT and JFET device models are developed. These models are then used to design basic transimpedance amplifiers integrated with optical waveguides. The devices' experimental current-voltage characteristics results are reported.
Wang, Zhaolu; Liu, Hongjun; Sun, Qibing; Huang, Nan; Li, Xuefeng
2014-12-15
A width-modulated silicon waveguide is proposed to realize non-degenerate phase sensitive optical parametric amplification. It is found that the relative phase at the input of the phase sensitive amplifier (PSA) θIn-PSA can be tuned by tailoring the width and length of the second segment of the width-modulated silicon waveguide, which will influence the gain in the parametric amplification process. The maximum gain of PSA is larger by 9 dB compared with the phase insensitive amplifier (PIA) gain, and the gain bandwidth of PSA is larger by 35 nm compared with the gain bandwidth of PIA. Our on-chip PSA can find important potential applications in highly integrated optical circuits for optical chip-to-chip communication and computers.
Excitation of the Uller-Zenneck electromagnetic surface waves in the prism-coupled configuration
NASA Astrophysics Data System (ADS)
Rasheed, Mehran; Faryad, Muhammad
2017-08-01
A configuration to excite the Uller-Zenneck surface electromagnetic waves at the planar interfaces of homogeneous and isotropic dielectric materials is proposed and theoretically analyzed. The Uller-Zenneck waves are surface waves that can exist at the planar interface of two dissimilar dielectric materials of which at least one is a lossy dielectric material. In this paper, a slab of a lossy dielectric material was taken with lossless dielectric materials on both sides. A canonical boundary-value problem was set up and solved to find the possible Uller-Zenneck waves and waveguide modes. The Uller-Zenneck waves guided by the slab of the lossy dielectric material were found to be either symmetric or antisymmetric and transmuted into waveguide modes when the thickness of that slab was increased. A prism-coupled configuration was then successfully devised to excite the Uller-Zenneck waves. The results showed that the Uller-Zenneck waves are excited at the same angle of incidence for any thickness of the slab of the lossy dielectric material, whereas the waveguide modes can be excited when the slab is sufficiently thick. The excitation of Uller-Zenneck waves at the planar interfaces with homogeneous and all-dielectric materials can usher in new avenues for the applications for electromagnetic surface waves.
Real-time label-free biosensing with integrated planar waveguide ring resonators
NASA Astrophysics Data System (ADS)
Sohlström, Hans; Gylfason, Kristinn B.; Hill, Daniel
2010-05-01
We review the use of planar integrated optical waveguide ring resonators for label free bio-sensing and present recent results from two European biosensor collaborations: SABIO and InTopSens. Planar waveguide ring resonators are attractive for label-free biosensing due to their small footprint, high Q-factors, and compatibility with on-chip optics and microfluidics. This enables integrated sensor arrays for compact labs-on-chip. One application of label-free sensor arrays is for point-of-care medical diagnostics. Bringing such powerful tools to the single medical practitioner is an important step towards personalized medicine, but requires addressing a number of issues: improving limit of detection, managing the influence of temperature, parallelization of the measurement for higher throughput and on-chip referencing, efficient light-coupling strategies to simplify alignment, and packaging of the optical chip and integration with microfluidics. From the SABIO project we report refractive index measurement and label-free biosensing in an 8-channel slotwaveguide ring resonator sensor array, within a compact cartridge with integrated microfluidics. The sensors show a volume sensing detection limit of 5 x 10-6 RIU and a surface sensing detection limit of 0.9 pg/mm2. From the InTopSens project we report early results on silicon-on-insulator racetrack resonators.
Ultra-wideband surface plasmonic Y-splitter.
Gao, Xi; Zhou, Liang; Yu, Xing Yang; Cao, Wei Ping; Li, Hai Ou; Ma, Hui Feng; Cui, Tie Jun
2015-09-07
We present an ultra-wideband Y-splitter based on planar THz plasmonic metamaterials, which consists of a straight waveguide with composite H-shaped structure and two branch waveguides with H-shaped structure. The spoof surface plasmonic polaritons (SSPPs) supported by the straight waveguide occupy the similar dispersion relation and mode characteristic to the ones confined by the branch waveguides. Attributing to these features, the two branch waveguides can equally separate the SSPPs wave propagating along the straight plasmonic waveguide to form a 3dB power divider in an ultra-wideband frequency range. To verify the functionality and performance of the proposed Y-splitter, we scaled down the working frequency to microwave and implemented microwave experiments. The tested device performances have clearly validated the functionality of our designs. It is believed to be applicable for future plasmonic circuit in microwave and THz ranges.
Free space and waveguide Talbot effect: phase relations and planar light circuit applications
NASA Astrophysics Data System (ADS)
Nikkhah, H.; Zheng, Q.; Hasan, I.; Abdul-Majid, S.; Hall, T. J.
2012-10-01
Optical fields that are periodic in the transverse plane self-image periodically as they propagate along the optical axis: a phenomenon known as the Talbot effect. A transfer matrix may be defined that relates the amplitude and phase of point sources placed on a particular grid at the input to their respective multiple images at an image plane. The free-space Talbot effect may be mapped to the waveguide Talbot effect. Applying this mapping to the transfer matrix enables the prediction of the phase and amplitude relations between the ports of a Multimode Interference (MMI) coupler- a planar waveguide device. The transfer matrix approach has not previously been applied to the free-space case and its mapping to the waveguide case provides greater clarity and physical insight into the phase relationships than previous treatments. The paper first introduces the underlying physics of the Talbot effect in free space with emphasis on the positions along the optical axis at which images occur; their multiplicity; and their relative phase relations determined by the Gauss Quadratic Sum of number theory. The analysis is then adapted to predict the phase relationships between the ports of an MMI. These phase relationships are critical to planar light circuit (PLC) applications such as 90° optical hybrids for coherent optical receiver front-ends, external optical I-Q modulators for coherent optical transmitters; and optical phased array switches. These applications are illustrated by results obtained from devices that have been fabricated and tested by the PTLab in Si micro-photonic integration platforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Xin; Arbabi, Ehsan; Goddard, Lynford L.
2015-07-20
We demonstrate a self-rolled-up microtube-based vertical photonic coupler monolithically integrated on top of a ridge waveguide to achieve three-dimensional (3D) photonic integration. The fabrication process is fully compatible with standard planar silicon processing technology. Strong light coupling between the vertical coupler and the ridge waveguide was observed experimentally, which may provide an alternative route for 3D heterogeneous photonic integration. The highest extinction ratio observed in the transmission spectrum passing through the ridge waveguide was 23 dB.
Effects of rare-earth doping on femtosecond laser waveguide writing in zinc polyphosphate glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fletcher, Luke B.; Witcher, Jon J.; Troy, Neil
We have investigated waveguide writing in Er-Yb doped zinc polyphosphate glass using a femtosecond laser with a repetition rate of 1 KHz. We find that fabrication of good waveguides requires a glass composition with an O/P ratio of 3.25. The dependence on laser writing parameters including laser fluence, focusing conditions, and scan speed is reported. Waveguide properties together with absorption and emission data indicate that these glasses can be used for the fabrication of compact, high gain amplifying devices.
FIBER AND INTEGRATED OPTICS: Propagation of radiation in a light-induced active waveguide
NASA Astrophysics Data System (ADS)
Afanas'ev, Anatolii A.; Samson, B. A.; Drits, V. V.; Yukhimenko, S. I.; Yakite, R. V.
1990-10-01
An investigation is reported of the properties of the normal modes of an active light-induced waveguide. It is shown that, in contrast to a dielectric waveguide, the presence of the active component may increase considerably the number of the normal modes and the angles of their scattering. In the case of an active light-induced waveguide in the form of a thin filament the normal modes exist and are amplified only in the case when the nonlinear correction to the refractive index is positive.
NASA Astrophysics Data System (ADS)
Wang, H.; Knepper, R.; Hossain, N.; Marthi, P.; Milithaler, J.-F.; Margala, M.
2017-10-01
In this paper a new waveguide design is proposed to be implemented as part of Ballistic Deflection Transistor (BDT) Traveling Wave Amplifier Design. The BDT is designed to be operated in the Terahertz regime. Due to its relatively low transconductance (gm=200µA/V), the entire structure will consist of ten stages, with 15 BDTs/stage, to reach a total gain of 30mA/V. In this case, the total length of the transmission line will be more than 400µm. We did the investigation for different structures and materials of the transmission line. For our Parallel Plate Dielectric Waveguide with Signal Line inserted (PPDWS) design, we are able to get an average loss of 0.46dB/mm at 0.8-1.4THz from ANSYS HFSS simulation. The return loss for input and output are better than -20dB at 0.8-1.7THz. Although it is designed for our future travelling wave amplifier, it can also be used for various other THz frequency applications.
NASA Astrophysics Data System (ADS)
Malekabadi, Ali; Paoloni, Claudio
2016-09-01
A microfabrication process based on UV LIGA (German acronym of lithography, electroplating and molding) is proposed for the fabrication of relatively high aspect ratio sub-terahertz (100-1000 GHz) metal waveguides, to be used as a slow wave structure in sub-THz vacuum electron devices. The high accuracy and tight tolerances required to properly support frequencies in the sub-THz range can be only achieved by a stable process with full parameter control. The proposed process, based on SU-8 photoresist, has been developed to satisfy high planar surface requirements for metal sub-THz waveguides. It will be demonstrated that, for a given thickness, it is more effective to stack a number of layers of SU-8 with lower thickness rather than using a single thick layer obtained at lower spin rate. The multiple layer approach provides the planarity and the surface quality required for electroforming of ground planes or assembly surfaces and for assuring low ohmic losses of waveguides. A systematic procedure is provided to calculate soft and post-bake times to produce high homogeneity SU-8 multiple layer coating as a mold for very high quality metal waveguides. A double corrugated waveguide designed for 0.3 THz operating frequency, to be used in vacuum electronic devices, was fabricated as test structure. The proposed process based on UV LIGA will enable low cost production of high accuracy sub-THz 3D waveguides. This is fundamental for producing a new generation of affordable sub-THz vacuum electron devices, to fill the technological gap that still prevents a wide diffusion of numerous applications based on THz radiation.
NASA Technical Reports Server (NTRS)
Clauss, R. C.; Quinn, R. B. (Inventor)
1980-01-01
A dielectrically loaded four port waveguide circulator is used with a reflected wave maser connected to a second port between first and third ports to form one of a plurality of cascaded maser waveguide structures. The fourth port is connected to a waveguide loaded with microwave energy absorbing material. The third (output signal) port of one maser waveguide structure is connected by a waveguide loaded with dielectric material to the first (input) port of an adjacent maser waveguide structure, and the second port is connected to a reflected wave maser by a matching transformer which passes the signal to be amplified into and out of the reflected wavemaser and blocks pumping energy in the reflected wave maser from entering the circulator. A number of cascaded maser waveguide structures are thus housed in a relatively small volume of conductive material placed within a cryogenically cooled magnet assembly.
Er3+-doped BaY2F8 crystal waveguides for broadband optical amplification at 1.5 μm
NASA Astrophysics Data System (ADS)
Toccafondo, V.; Cerqueira S., A.; Faralli, S.; Sani, E.; Toncelli, A.; Tonelli, M.; Di Pasquale, F.
2007-01-01
Integrated waveguide amplifiers based on high concentration Er3+ doped BaY2F8 crystals are numerically studied by combining a full-vectorial finite element based modal analysis and propagation-rate equations. Using realistic input data, such as the absorption/emission cross sections and Er level lifetimes measured on grown crystal samples, we investigate the amplifier performance by optimizing the total Er concentration. We predict optimum gain coefficient up to 5dB/cm and broad amplification bandwidth exceeding 80nm with 1480nm pumping.
Precision Laser Development for Interferometric Space Missions NGO, SGO, and GRACE Follow-On
NASA Technical Reports Server (NTRS)
Numata, Kenji; Camp, Jordan
2011-01-01
Optical fiber and semiconductor laser technologies have evolved dramatically over the last decade due to the increased demands from optical communications. We are developing a laser (master oscillator) and optical amplifier based on those technologies for interferometric space missions, including the gravitational-wave missions NGO/SGO (formerly LISA) and the climate monitoring mission GRACE Follow-On, by fully utilizing the matured wave-guided optics technologies. In space, where simpler and more reliable system is preferred, the wave-guided components are advantageous over bulk, crystal-based, free-space laser, such as NPRO (Nonplanar Ring Oscillator) and bulk-crystal amplifier.
Low Noise Amplifiers for 140 Ghz Wide-Band Cryogenic Receivers
NASA Technical Reports Server (NTRS)
Larkoski, Patricia V.; Kangaslahti, Pekka; Samoska, Lorene; Lai, Richard; Sarkozy, Stephen
2013-01-01
We report S-parameter and noise measurements for three different Indium Phosphide 35-nanometer-gate-length High Electron Mobility Transistor (HEMT) Low Noise Amplifier (LNA) designs operating in the frequency range centered on 140 gigahertz. When packaged in a Waveguide Rectangular-6.1 waveguide housing, the LNAs have an average measured noise figure of 3.0 decibels - 3.6 decibels over the 122-170 gigahertz band. One LNA was cooled to 20 degrees Kelvin and a record low noise temperature of 46 Kelvin, or 0.64 decibels noise figure, was measured at 152 gigahertz. These amplifiers can be used to develop receivers for instruments that operate in the 130-170 gigahertz atmospheric window, which is an important frequency band for ground-based astronomy and millimeter-wave imaging applications.
Radio Frequency Power Load and Associated Method
NASA Technical Reports Server (NTRS)
Srinivasan, V. Karthik (Inventor); Freestone, Todd M. (Inventor); Sims, William Herbert, III (Inventor)
2014-01-01
A radio frequency power load and associated method. A radio frequency power load apparatus may include a container with an ionized fluid therein. The apparatus may include one conductor immersed in a fluid and another conductor electrically connected to the container. A radio frequency transmission system may include a radio frequency transmitter, a radio frequency amplifier connected to the transmitter and a radio frequency power load apparatus connected to the amplifier. The apparatus may include a fluid having an ion source therein, one conductor immersed in a fluid, and another conductor electrically connected to the container. A method of dissipating power generated by a radio frequency transmission system may include constructing a waveguide with ionized fluid in a container and connecting the waveguide to an amplifier of the transmission system.
Efficient 30-W, 140-MHz rf amplifier for CW CO2 waveguide laser excitation
NASA Technical Reports Server (NTRS)
Hochuli, U. E.; Haldemann, P. R.
1988-01-01
Details of a 30-W, 140-MHz rf amplifier for CW CO2 waveguide laser excitation are presented. The amplifier delivers 30 W into a 50-Ohm load while requiring only 40 W of dc power from a 28-V supply and 100 mW of rf drive power for an overall efficiency of 75 percent. A coupling-starting network design theory is given that provides the initiation over voltage for the discharge plasma from an rf power source of limited output voltage capability. The network then matches the drive circuit to the new input impedance of the operating discharge without any adjustments. This design theory applies to the whole class of networks whose losses can be approximated by a loss conductance in parallel with the gas discharge.
Dual-polarization 8.45 GHz traveling-wave maser
NASA Technical Reports Server (NTRS)
Quinn, R. B.
1987-01-01
An 8.5 GHz dual-channel, dual-polarization traveling-wave maser (TWM) amplifier was installed in the XKR solar system radar cone at DSS 14. The TWM is based on the Blk IIA 8.45 GHz maser structure, with two of the four maser stages being used for each channel, and each maser half then followed by a high-performance GaAs FET amplifier to achieve the desired net gain. A shortened low-noise input waveguide and an orthogonal-mode junction which is cooled to 4.5 K feeds each amplifier chain. The rotation of an external polarizer permits the polarization of each channel to be defined as either linear or circular. A circular waveguide switch was also developed to provide for noise calibration and to protect the maser from incident transmitter power.
Laser Amplifier Development for the Remote Sensing of CO2 from Space
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Abshire, James B.; Storm, Mark; Betin, Alexander
2015-01-01
Accurate global measurements of tropospheric CO2 mixing ratios are needed to study CO2 emissions and CO2 exchange with the land and oceans. NASA Goddard Space Flight Center (GSFC) is developing a pulsed lidar approach for an integrated path differential absorption (IPDA) lidar to allow global measurements of atmospheric CO2 column densities from space. Our group has developed, and successfully flown, an airborne pulsed lidar instrument that uses two tunable pulsed laser transmitters allowing simultaneous measurement of a single CO2 absorption line in the 1570 nm band, absorption of an O2 line pair in the oxygen A-band (765 nm), range, and atmospheric backscatter profiles in the same path. Both lasers are pulsed at 10 kHz, and the two absorption line regions are sampled at typically a 300 Hz rate. A space-based version of this lidar must have a much larger lidar power-area product due to the approximately x40 longer range and faster along track velocity compared to airborne instrument. Initial link budget analysis indicated that for a 400 km orbit, a 1.5 m diameter telescope and a 10 second integration time, a approximately 2 mJ laser energy is required to attain the precision needed for each measurement. To meet this energy requirement, we have pursued parallel power scaling efforts to enable space-based lidar measurement of CO2 concentrations. These included a multiple aperture approach consists of multi-element large mode area fiber amplifiers and a single-aperture approach consists of a multi-pass Er:Yb:Phosphate glass based planar waveguide amplifier (PWA). In this paper we will present our laser amplifier design approaches and preliminary results.
Coupling Ideality of Integrated Planar High-Q Microresonators
NASA Astrophysics Data System (ADS)
Pfeiffer, Martin H. P.; Liu, Junqiu; Geiselmann, Michael; Kippenberg, Tobias J.
2017-02-01
Chip-scale optical microresonators with integrated planar optical waveguides are useful building blocks for linear, nonlinear, and quantum-optical photonic devices alike. Loss reduction through improving fabrication processes results in several integrated microresonator platforms attaining quality (Q ) factors of several millions. Beyond the improvement of the quality factor, the ability to operate the microresonator with high coupling ideality in the overcoupled regime is of central importance. In this regime, the dominant source of loss constitutes the coupling to a single desired output channel, which is particularly important not only for quantum-optical applications such as the generation of squeezed light and correlated photon pairs but also for linear and nonlinear photonics. However, to date, the coupling ideality in integrated photonic microresonators is not well understood, in particular, design-dependent losses and their impact on the regime of high ideality. Here we investigate design-dependent parasitic losses described by the coupling ideality of the commonly employed microresonator design consisting of a microring-resonator waveguide side coupled to a straight bus waveguide, a system which is not properly described by the conventional input-output theory of open systems due to the presence of higher-order modes. By systematic characterization of multimode high-Q silicon nitride microresonator devices, we show that this design can suffer from low coupling ideality. By performing 3D simulations, we identify the coupling to higher-order bus waveguide modes as the dominant origin of parasitic losses which lead to the low coupling ideality. Using suitably designed bus waveguides, parasitic losses are mitigated with a nearly unity ideality and strong overcoupling (i.e., a ratio of external coupling to internal resonator loss rate >9 ) are demonstrated. Moreover, we find that different resonator modes can exchange power through the coupler, which, therefore, constitutes a mechanism that induces modal coupling, a phenomenon known to distort resonator dispersion properties. Our results demonstrate the potential for significant performance improvements of integrated planar microresonators for applications in quantum optics and nonlinear photonics achievable by optimized coupler designs.
Dispersion Characteristics of a Helix Loaded Waveguide.
1985-09-01
be employed to increase the bandwidth of gyroton amplifiers. The structure consists of helical wires contained concentrially 6. in a cylindrical...bandwidth of gyroton amplifiers. The structure consists of helical wires contained concentrially in a cylindrical conductor. The helical wires are close
NASA Technical Reports Server (NTRS)
Wollack, E.; Cao, N.; Chuss, D.; Denis, K.; Hsieh, W.-T.; Moseley, S. Harvey; Schneider, G.; Stevenson, T.; Travers, D.; U-yen, K.
2008-01-01
Four probe antennas transfer signals from waveguide to microstrip lines. The probes not only provide broadband impedance matching, but also thermally isolate waveguide and detector. In addition, we developed a new photonic waveguide choke joint design, with four-fold symmetry, to suppress power leakage at the interface. We have developed facilities to test superconducting circuit elements using a cryogenic microwave probe station, and more complete systems in waveguide. We used the ring resonator shown below to measure a dielectric loss tangent < 7x10(exp -4) over 10 - 45 GHz. We have combined component simulations to predict the overall coupling from waveguide modes to bolometers. The result below shows the planar circuit and waveguide interface can utilize the high beam symmetry of HE11 circular feedhorns with > 99% coupling efficiency over 30% fractional bandwidth.
NASA Astrophysics Data System (ADS)
Mart, Cody W.
In this dissertation, high-power ytterbium-doped fiber amplifiers designed with advanced waveguide concepts are characterized and power scaled. Fiber waveguides utilizing cladding microstructures to achieve wave guidance via the photonic bandgap (PBG) effect and a combination of PBG and modified total internal reflection (MTIR) have been proposed as viable single-mode waveguides. Such novel structures allow larger core diameters (>35 ?m diameters) than conventional step-index fibers while still maintaining near-diffraction limited beam quality. These microstructured fibers are demonstrated as robust single-mode waveguides at low powers and are power scaled to realize the thermal power limits of the structure. Here above a certain power threshold, these coiled few-mode fibers have been shown to be limited by modal instability (MI); where energy is dynamically transferred between the fundamental mode and higher-order modes. Nonlinear effects such as stimulated Brillouin scattering (SBS) are also studied in these fiber waveguides as part of this dissertation. Suppressing SBS is critical towards achieving narrow optical bandwidths (linewidths) necessary for efficient fiber amplifier beam combining. Towards that end, new effects that favorably reduce acoustic wave dispersion to increase the SBS threshold are discovered and reported. The first advanced waveguide examined is a Yb-doped 50/400 mum diameter core/clad PBGF. The PBGF is power scaled with a single-frequency 1064 nm seed to an MI-limited 410 W with 79% optical-to-optical efficiency and near-diffraction limited beam quality (M-Squared < 1.25) before MI onset. To this author's knowledge, this represents 2.4x improvement in power output from a PBGF amplifier without consideration for linewidth and a 16x improvement in single-frequency power output from a PBGF amplifier. During power scaling of the PBGF, a remarkably low Brillouin response was elicited from the fiber even when the ultra large diameter 50 mum core is accounted for in the SBS threshold equation. Subsequent interrogation of the Brillouin response in a pump probe Brillouin gain spectrum diagnostic estimated a Brillouin gain coefficient, gB, of 0.62E-11 m/W; which is 4x reduced from standard silica-based fiber. A finite element numerical model that solves the inhomogenous Helmholtz equation that governs the acoustic and optical coupling in SBS is utilized to verify experimental results with an estimated gB = 0.68E-11 m/W. Consequently, a novel SBS-suppression mechanism based on inclusion of sub-optical wavelength acoustic features in the core is proposed. The second advanced waveguide analyzed is a 35/350 mum diameter core/clad fiber that achieved wave guidance via both PBG and MTIR, and is referred to as a hybrid fiber. The waveguide benefits mutually from the amenable properties of PBG and MTIR wave guidance because robust single-mode propagation with minimal confinement loss is assured due to MTIR effects, and the waveguide spectrally filters unwanted wavelengths via the PBG effect. The waveguide employs annular Yb-doped gain tailoring to reduce thermal effects and mitigate MI. Moreover, it is designed to suppress Raman processes for a 1064 nm signal by attenuating wavelengths > 1110 nm via the PBG effect. When seeded with a 1064 nm signal deterministically broadened to ˜1 GHz, the hybrid fiber was power scaled to a MI-limited 820 W with 78% optical-to-optical efficiency and near diffraction limited beam quality of M_Squared ˜1.2 before MI onset. This represents a 14x improvement in power output from a hybrid fiber, and demonstrates that this type of fiber amplifier is a quality candidate for further power scaling for beam combining.
Investigation of semiconductor clad optical waveguides
NASA Technical Reports Server (NTRS)
Batchman, T. E.; Mcwright, G.
1981-01-01
The properties of semiconductor-clad optical waveguides based on glass substrates were investigated. Computer modeling studies on four-layer silicon-clad planar dielectric waveguides indicated that the attenuation and mode index should behave as exponentially damped sinusoids as the silicon thickness is decreased below one micrometer. This effect can be explained as a periodic coupling between the guided modes of the lossless structure and the lossy modes supported by the high refractive index silicon. The computer studies also show that both the attenuation and mode index of the propagating mode are significantly altered by conductivity charges in the silicon. Silicon claddings were RF sputtered onto AgNO3-NaNO3 ion exchanged waveguides and preliminary measurements of attenuation were made. An expression was developed which predicts the attenuation of the silicon clad waveguide from the attenuation and phase characteristics of a silicon waveguide. Several applications of these clad waveguides are suggested and methods for increasing the photo response of the RF sputtered silicon films are described.
Multistage Polymeric Lens Structures Integrated into Silica Waveguides
NASA Astrophysics Data System (ADS)
Tate, Atsushi; Suzuki, Takanori; Tsuda, Hiroyuki
2006-08-01
A waveguide lens, composed of multistage polymer-filled thin grooves in a silica planar lightwave circuit (PLC) is proposed and a low-loss structure has been designed. A waveguide lens in a silica slab waveguide has been fabricated using reactive ion etching (RIE) and formed by filling with polymer. Both an imagding optical system and a Fourier-transform optical system can be configured in a PLC using a waveguide lens. It renders the PLC functional and its design flexible. To obtain a shorter focal length with a low insertion loss, it is more effective to use a multistage lens structure. An imaging optical system and a Fourier-transform optical system with a focal length of less than 1000 μm were fabricated in silica waveguides using a multistage lens structure. The lens imaging waveguides incorporate a 16-24-stage lens, with insertion losses of 4-7 dB. A 4 × 4 optical coupler, using a Fourier-transform optical system, utilizes a 6-stage lens with losses of 2-4 dB.
Integration of a terahertz quantum cascade laser with a hollow waveguide
Wanke, Michael C [Albuquerque, NM; Nordquist, Christopher D [Albuquerque, NM
2012-07-03
The present invention is directed to the integration of a quantum cascade laser with a hollow waveguide on a chip to improve both the beam pattern and manufacturability. By coupling the QCL output into a single-mode rectangular waveguide the radiation mode structure can be known and the propagation, manipulation, and broadcast of the QCL radiation can then be entirely controlled by well-established rectangular waveguide techniques. By controlling the impedance of the interface, enhanced functions, such as creating amplifiers, efficient coupling to external cavities, and increasing power output from metal-metal THz QCLs, are also enabled.
Klehr, A; Wenzel, H; Fricke, J; Bugge, F; Erbert, G
2014-10-06
We have developed a diode-laser based master oscillator power amplifier (MOPA) light source which emits high-power spectrally stabilized and nearly-diffraction limited optical pulses in the nanoseconds range as required by many applications. The MOPA consists of a distributed Bragg reflector (DBR) laser as master oscillator driven by a constant current and a ridge waveguide power amplifier (PA) which can be driven by a constant current (DC) or by rectangular current pulses with a width of 5 ns at a repetition frequency of 200 kHz. Under pulsed operation the amplifier acts as an optical gate, converting the CW input beam emitted by the DBR laser into a train of short amplified optical pulses. With this experimental MOPA arrangement no relaxation oscillations occur. A continuous wave power of 1 W under DC injection and a pulse power of 4 W under pulsed operation are reached. For both operational modes the optical spectrum of the emission of the amplifier exhibits a peak at a constant wavelength of 973.5 nm with a spectral width < 10 pm.
Integrated optical tamper sensor with planar waveguide
Carson, Richard F.; Casalnuovo, Stephen A.
1993-01-01
A monolithic optical tamper sensor, comprising an optical emitter and detector, connected by an optical waveguide and placed into the critical entry plane of an enclosed sensitive region, the tamper sensor having a myriad of scraps of a material optically absorbent at the wavelength of interest, such that when the absorbent material is in place on the waveguide, an unique optical signature can be recorded, but when entry is attempted into the enclosed sensitive region, the scraps of absorbent material will be displaced and the optical/electrical signature of the tamper sensor will change and that change can be recorded.
Integrated optical tamper sensor with planar waveguide
Carson, R.F.; Casalnuovo, S.A.
1993-01-05
A monolithic optical tamper sensor, comprising an optical emitter and detector, connected by an optical waveguide and placed into the critical entry plane of an enclosed sensitive region, the tamper sensor having a myriad of scraps of a material optically absorbent at the wavelength of interest, such that when the absorbent material is in place on the waveguide, an unique optical signature can be recorded, but when entry is attempted into the enclosed sensitive region, the scraps of absorbent material will be displaced and the optical/electrical signature of the tamper sensor will change and that change can be recorded.
Two-axis tracking using translation stages for a lens-to-channel waveguide solar concentrator.
Liu, Yuxiao; Huang, Ran; Madsen, Christi K
2014-10-20
A two-axis tracking scheme designed for <250x concentration realized by a single-axis mechanical tracker and a translation stage is discussed. The translation stage is used for adjusting positions for seasonal sun movement. It has two-dimensional x-y tracking instead of horizontal movement x-only. This tracking method is compatible with planar waveguide solar concentrators. A prototype system with 50x concentration shows >75% optical efficiency throughout the year in simulation and >65% efficiency experimentally. This efficiency can be further improved by the use of anti-reflection layers and a larger waveguide refractive index.
NASA Astrophysics Data System (ADS)
Divakov, D.; Sevastianov, L.; Nikolaev, N.
2017-01-01
The paper deals with a numerical solution of the problem of waveguide propagation of polarized light in smoothly-irregular transition between closed regular waveguides using the incomplete Galerkin method. This method consists in replacement of variables in the problem of reduction of the Helmholtz equation to the system of differential equations by the Kantorovich method and in formulation of the boundary conditions for the resulting system. The formulation of the boundary problem for the ODE system is realized in computer algebra system Maple. The stated boundary problem is solved using Maples libraries of numerical methods.
Exact semi-separation of variables in waveguides with non-planar boundaries
NASA Astrophysics Data System (ADS)
Athanassoulis, G. A.; Papoutsellis, Ch. E.
2017-05-01
Series expansions of unknown fields Φ =∑φn Zn in elongated waveguides are commonly used in acoustics, optics, geophysics, water waves and other applications, in the context of coupled-mode theories (CMTs). The transverse functions Zn are determined by solving local Sturm-Liouville problems (reference waveguides). In most cases, the boundary conditions assigned to Zn cannot be compatible with the physical boundary conditions of Φ, leading to slowly convergent series, and rendering CMTs mild-slope approximations. In the present paper, the heuristic approach introduced in Athanassoulis & Belibassakis (Athanassoulis & Belibassakis 1999 J. Fluid Mech. 389, 275-301) is generalized and justified. It is proved that an appropriately enhanced series expansion becomes an exact, rapidly convergent representation of the field Φ, valid for any smooth, non-planar boundaries and any smooth enough Φ. This series expansion can be differentiated termwise everywhere in the domain, including the boundaries, implementing an exact semi-separation of variables for non-separable domains. The efficiency of the method is illustrated by solving a boundary value problem for the Laplace equation, and computing the corresponding Dirichlet-to-Neumann operator, involved in Hamiltonian equations for nonlinear water waves. The present method provides accurate results with only a few modes for quite general domains. Extensions to general waveguides are also discussed.
Toward photostable multiplex analyte detection on a single mode planar optical waveguide
NASA Astrophysics Data System (ADS)
Mukundan, Harshini; Xie, Hongzhi; Anderson, Aaron; Grace, W. Kevin; Martinez, Jennifer S.; Swanson, Basil
2009-02-01
We have developed a waveguide-based optical biosensor for the sensitive and specific detection of biomarkers associated with disease. Our technology combines the superior optical properties of single-mode planar waveguides, the robust nature of functionalized self-assembled monolayer sensing films and the specificity of fluorescence sandwich immunoassays to detect biomarkers in complex biological samples such as serum, urine and sputum. We have previously reported the adaptation of our technology to the detection of biomarkers associated with breast cancer and anthrax. However, these approaches primarily used phospholipid bilayers as the functional film and organic dyes (ex: AlexaFluors) as the fluorescence reporter. Organic dyes are easily photodegraded and are not amenable to multiplexing because of their narrow Stokes' shift. Here we have developed strategies for conjugation of the detector antibodies with quantum dots for use in a multiplex detection platform. We have previously evaluated dihydroxylipoic acid quantum dots for the detection of a breast cancer biomarker. In this manuscript, we investigate the detection of the Bacillus anthracis protective antigen using antibodies conjugated with polymer-coated quantum dots. Kinetics of binding on the waveguide-based biosensor is reported. We compare the sensitivity of quantum dot labeled antibodies to those labeled with AlexaFluor and demonstrate the photostability of the former in our assay platform. In addition, we compare sulfydryl labeling of the antibody in the hinge region to that of nonspecific amine labeling. This is but the first step in developing a multiplex assay for such biomarkers on our waveguide platform.
High Power Amplifier Harmonic Output Level Measurement
NASA Technical Reports Server (NTRS)
Perez, R. M.; Hoppe, D. J.; Khan, A. R.
1995-01-01
A method is presented for the measurement of the harmonic output power of high power klystron amplifiers, involving coherent hemispherical radiation pattern measurements of the radiated klystron output. Results are discussed for the operation in saturated and unsaturated conditions, and with a waveguide harmonic filter included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiser, L.; Veligdan, J.
A Planar Optic Display (POD) is being built and tested for suitability as a high brightness replacement for the cathode ray tube, (CRT). The POD display technology utilizes a laminated optical waveguide structure which allows a projection type of display to be constructed in a thin (I to 2 inch) housing. Inherent in the optical waveguide is a black cladding matrix which gives the display a black appearance leading to very high contrast. A Digital Micromirror Device, (DMD) from Texas Instruments is used to create video images in conjunction with a 100 milliwatt green solid state laser. An anamorphic opticalmore » system is used to inject light into the POD to form a stigmatic image. In addition to the design of the POD screen, we discuss: image formation, image projection, and optical design constraints.« less
Using a micro-molding process to fabricate polymeric wavelength filters
NASA Astrophysics Data System (ADS)
Chuang, Wei-Ching; Lee, An-Chen; Ho, Chi-Ting
2008-08-01
A procedure for fabricating a high aspect ratio periodic structure on a UV polymer at submicron order using holographic interferometry and molding processes is described. First, holographic interferometry using a He-Cd (325 nm) laser was used to create the master of the periodic line structure on an i-line sub-micron positive photoresist film. A 20 nm nickel thin film was then sputtered on the photoresist. The final line pattern on a UV polymer was obtained from casting against the master mold. Finally, a SU8 polymer was spun on the polymer grating to form a planar waveguide or a channel waveguide. The measurement results show that the waveguide length could be reduced for the waveguide having gratings with a high aspect ratio.
Thomas, Philip A; Auton, Gregory H; Kundys, Dmytro; Grigorenko, Alexander N; Kravets, Vasyl G
2017-03-24
We propose a hybrid plasmonic device consisting of a planar dielectric waveguide covering a gold nanostripe array fabricated on a gold film and investigate its guiding properties at telecom wavelengths. The fundamental modes of a hybrid device and their dependence on the key geometric parameters are studied. A communication length of 250 μm was achieved for both the TM and TE guided modes at telecom wavelengths. Due to the difference between the TM and TE light propagation associated with the diffractive plasmon excitation, our waveguides provide polarization separation. Our results suggest a practical way of fabricating metal-nanostripes-dielectric waveguides that can be used as essential elements in optoelectronic circuits.
Thomas, Philip A.; Auton, Gregory H.; Kundys, Dmytro; Grigorenko, Alexander N.; Kravets, Vasyl G.
2017-01-01
We propose a hybrid plasmonic device consisting of a planar dielectric waveguide covering a gold nanostripe array fabricated on a gold film and investigate its guiding properties at telecom wavelengths. The fundamental modes of a hybrid device and their dependence on the key geometric parameters are studied. A communication length of 250 μm was achieved for both the TM and TE guided modes at telecom wavelengths. Due to the difference between the TM and TE light propagation associated with the diffractive plasmon excitation, our waveguides provide polarization separation. Our results suggest a practical way of fabricating metal-nanostripes-dielectric waveguides that can be used as essential elements in optoelectronic circuits. PMID:28338060
Ka-Band Waveguide Hybrid Combiner for MMIC Amplifiers With Unequal and Arbitrary Power Output Ratio
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Chevalier, Christine T.; Wintucky, Edwin G.; Freeman, Jon C.
2009-01-01
The design, simulation and characterization of a novel Ka-band (32.05 +/- 0.25 GHz) rectangular waveguide branch-line hybrid unequal power combiner is presented. The manufactured combiner was designed to combine input signals, which are in phase and with an amplitude ratio of two. The measured return loss and isolation of the branch-line hybrid are better than 22 and 27 dB, respectively. The application of the branch-line hybrid for combining two MMIC power amplifiers with output power ratio of two is demonstrated. The measured combining efficiency is approximately 93 percent over the above frequency band.
Integrated Radial Probe Transition From MMIC to Waveguide
NASA Technical Reports Server (NTRS)
Samoska, Lorene; Chattopadhyay, Goutam
2007-01-01
A radial probe transition between a monolithic microwave integrated circuit (MMIC) and a waveguide has been designed for operation at frequency of 340 GHz and to be fabricated as part of a monolithic unit that includes the MMIC. Integrated radial probe transitions like this one are expected to be essential components of future MMIC amplifiers operating at frequencies above 200 GHz. While MMIC amplifiers for this frequency range have not yet been widely used because they have only recently been developed, there are numerous potential applications for them-- especially in scientific instruments, test equipment, radar, and millimeter-wave imaging systems for detecting hidden weapons.
Photorefractive steady state solitons up to telecommunication wavelengths in planar SBN waveguides
NASA Astrophysics Data System (ADS)
Wesner, M.; Herden, C.; Kip, D.; Krätzig, E.; Moretti, P.
2001-02-01
We experimentally demonstrate strong photorefractive self-focusing and soliton formation in Rh-doped strontium-barium niobate waveguides at telecommunication wavelengths up to λ=1.5 μm. A comparison of soliton formation at different wavelengths in the visible and infrared region is carried out. We measure the electrooptic coefficient r33, analyze the soliton width, the accessible intensity range, and the wavelength dependence of the so-called `dark intensity'.
Ka-Band Waveguide Three-Way Serial Combiner for MMIC Amplifiers
NASA Technical Reports Server (NTRS)
Wintucky, Edwin G.; Freeman, Jon C.; Chevalier, Christine T.
2012-01-01
In this innovation, the three-way combiner consists internally of two branch-line hybrids that are connected in series by a short length of waveguide. Each branch-line hybrid is designed to combine input signals that are in phase with an amplitude ratio of two. The combiner is constructed in an E-plane split-block arrangement and is precision machined from blocks of aluminum with standard WR-28 waveguide ports. The port impedances of the combiner are matched to that of a standard WR-28 waveguide. The component parts include the power combiner and the MMIC (monolithic microwave integrated circuit) power amplifiers (PAs). The three-way series power combiner is a six-port device. For basic operation, power that enters ports 3, 5, and 6 is combined in phase and appears at port 1. Ports 2 and 4 are isolated ports. The application of the three-way combiner for combining three PAs with unequal output powers was demonstrated. NASA requires narrow-band solid-state power amplifiers (SSPAs) at Ka-band frequencies with output power in the range of 3 to 5 W for radio or gravity science experiments. In addition, NASA also requires wideband, high-efficiency SSPAs at Ka-band frequencies with output power in the range of 5 to 15 W for high-data-rate communications from deep space to Earth. The three-way power combiner is designed to operate over the frequency band of 31.8 to 32.3 GHz, which is NASA s deep-space frequency band.
On-Wafer Measurement of a Multi-Stage MMIC Amplifier with 10 dB of Gain at 475 GHz
NASA Technical Reports Server (NTRS)
Samoska, Lorene A.; Fung, KingMan; Pukala, David M.; Kangaslahti, Pekka P.; Lai, Richard; Ferreira, Linda
2012-01-01
JPL has measured and calibrated a WR2.2 waveguide wafer probe from GGB Industries in order to allow for measurement of circuits in the 325-500 GHz range. Circuits were measured, and one of the circuits exhibited 10 dB of gain at 475 GHz. The MMIC circuit was fabricated at Northrop Grumman Corp. (NGC) as part of a NASA Innovative Partnerships Program, using NGC s 35-nm-gatelength InP HEMT process technology. The chip utilizes three stages of HEMT amplifiers, each having two gate fingers of 10 m in width. The circuits use grounded coplanar waveguide topology on a 50- m-thick substrate with through substrate vias. Broadband matching is achieved with coplanar waveguide transmission lines, on-chip capacitors, and open stubs. When tested with wafer probing, the chip exhibited 10 dB of gain at 475 GHz, with over 9 dB of gain from 445-490 GHz. Low-noise amplifiers in the 400-500 GHz range are useful for astrophysics receivers and earth science remote sensing instruments. In particular, molecular lines in the 400-500 GHz range include the CO 4-3 line at 460 GHz, and the CI fine structure line at 492 GHz. Future astrophysics heterodyne instruments could make use of high-gain, low-noise amplifiers such as the one described here. In addition, earth science remote sensing instruments could also make use of low-noise receivers with MMIC amplifier front ends. Present receiver technology typically employs mixers for frequency down-conversion in the 400-500 GHz band. Commercially available mixers have typical conversion loss in the range of 7-10 dB with noise figure of 1,000 K. A low-noise amplifier placed in front of such a mixer would have 10 dB of gain and lower noise figure, particularly if cooled to low temperature. Future work will involve measuring the noise figure of this amplifier.
Silicon micromachined waveguides for millimeter and submillimeter wavelengths
NASA Technical Reports Server (NTRS)
Yap, Markus; Tai, Yu-Chong; Mcgrath, William R.; Walker, Christopher
1992-01-01
The majority of radio receivers, transmitters, and components operating at millimeter and submillimeter wavelengths utilize rectangular waveguides in some form. However, conventional machining techniques for waveguides operating above a few hundred GHz are complicated and costly. This paper reports on the development of silicon micromachining techniques to create silicon-based waveguide circuits which can operate at millimeter and submillimeter wavelengths. As a first step, rectangular WR-10 waveguide structures have been fabricated from (110) silicon wafers using micromachining techniques. The waveguide is split along the broad wall. Each half is formed by first etching a channel completely through a wafer. Potassium hydroxide is used to etch smooth mirror-like vertical walls and LPCVD silicon nitride is used as a masking layer. This wafer is then bonded to another flat wafer using a polyimide bonding technique and diced into the U-shaped half wavelengths. Finally, a gold layer is applied to the waveguide walls. Insertion loss measurements show losses comparable to those of standard metal waveguides. It is suggested that active devices and planar circuits can be integrated with the waveguides, solving the traditional mounting problems. Potential applications in terahertz instrumentation technology are further discussed.
Coherent centres for light amplification in coupled waveguide arrays
NASA Astrophysics Data System (ADS)
Tripathi, Aditya; Kumar, Sunil
2018-07-01
In the study of optical lattices of waveguides, incorporation of nearest neighbour coupling and controllable nonlinearity can result in many interesting phenomena such as discrete diffraction, Anderson localization, diffusive transport, self-defocusing, discrete spatial solitons and discrete photonic resonances. The question of reflecting boundaries at the surfaces has been ignored most often. In the present study, we have shown through a simple one-dimensional waveguide array that light propagation gets completely modified along the length if effects from reflecting boundaries are also considered. We have shown only by considering the coupling on between neighbouring waveguides that there are periodic maximum power centres along the length of the excited waveguides which can be desirable for placing optical amplifiers in short or long distance communication and other applications.
Plasmonic waveguide with folded stubs for highly confined terahertz propagation and concentration.
Ye, Longfang; Xiao, Yifan; Liu, Na; Song, Zhengyong; Zhang, Wei; Liu, Qing Huo
2017-01-23
We proposed a novel planar terahertz (THz) plasmonic waveguide with folded stub arrays to achieve excellent terahertz propagation performance with tight field confinement and compact size based on the concept of spoof surface plasmon polaritons (spoof SPPs). It is found that the waveguide propagation characteristics can be directly manipulated by increasing the length of the folded stubs without increasing its lateral dimension, which exhibits much lower asymptotic frequency of the dispersion relation and even tighter terahertz field confinement than conventional plasmonic waveguides with rectangular stub arrays. Based on this waveguiding scheme, a terahertz concentrator with gradual step-length folded stubs is proposed to achieve high terahertz field enhancement, and an enhancement factor greater than 20 is demonstrated. This work offers a new perspective on very confined terahertz propagation and concentration, which may have promising potential applications in various integrated terahertz plasmonic circuits and devices, terahertz sensing and terahertz nonlinear optics.
Han, Jian; Liu, Juan; Yao, Xincheng; Wang, Yongtian
2015-02-09
A compact waveguide display system integrating freeform elements and volume holograms is presented here for the first time. The use of freeform elements can broaden the field of view, which limits the applications of a holographic waveguide. An optimized system can achieve a diagonal field of view of 45° when the thickness of the waveguide planar is 3mm. Freeform-elements in-coupler and the volume holograms out-coupler were designed in detail in our study, and the influence of grating configurations on diffraction efficiency was analyzed thoroughly. The off-axis aberrations were well compensated by the in-coupler and the diffraction efficiency of the optimized waveguide display system could reach 87.57%. With integrated design, stability and reliability of this monochromatic display system were achieved and the alignment of the system was easily controlled by the record of the volume holograms, which makes mass production possible.
Han, Jian; Liu, Juan; Yao, Xincheng; Wang, Yongtian
2015-01-01
A compact waveguide display system integrating freeform elements and volume holograms is presented here for the first time. The use of freeform elements can broaden the field of view, which limits the applications of a holographic waveguide. An optimized system can achieve a diagonal field of view of 45° when the thickness of the waveguide planar is 3mm. Freeform-elements in-coupler and the volume holograms out-coupler were designed in detail in our study, and the influence of grating configurations on diffraction efficiency was analyzed thoroughly. The off-axis aberrations were well compensated by the in-coupler and the diffraction efficiency of the optimized waveguide display system could reach 87.57%. With integrated design, stability and reliability of this monochromatic display system were achieved and the alignment of the system was easily controlled by the record of the volume holograms, which makes mass production possible. PMID:25836207
Low loss hollow-core waveguide on a silicon substrate
NASA Astrophysics Data System (ADS)
Yang, Weijian; Ferrara, James; Grutter, Karen; Yeh, Anthony; Chase, Chris; Yue, Yang; Willner, Alan E.; Wu, Ming C.; Chang-Hasnain, Connie J.
2012-07-01
Optical-fiber-based, hollow-core waveguides (HCWs) have opened up many new applications in laser surgery, gas sensors, and non-linear optics. Chip-scale HCWs are desirable because they are compact, light-weight and can be integrated with other devices into systems-on-a-chip. However, their progress has been hindered by the lack of a low loss waveguide architecture. Here, a completely new waveguiding concept is demonstrated using two planar, parallel, silicon-on-insulator wafers with high-contrast subwavelength gratings to reflect light in-between. We report a record low optical loss of 0.37 dB/cm for a 9-μm waveguide, mode-matched to a single mode fiber. Two-dimensional light confinement is experimentally realized without sidewalls in the HCWs, which is promising for ultrafast sensing response with nearly instantaneous flow of gases or fluids. This unique waveguide geometry establishes an entirely new scheme for low-cost chip-scale sensor arrays and lab-on-a-chip applications.
Generalized fiber Fourier optics.
Cincotti, Gabriella
2011-06-15
A twofold generalization of the optical schemes that perform the discrete Fourier transform (DFT) is given: new passive planar architectures are presented where the 2 × 2 3 dB couplers are replaced by M × M hybrids, reducing the number of required connections and phase shifters. Furthermore, the planar implementation of the discrete fractional Fourier transform (DFrFT) is also described, with a waveguide grating router (WGR) configuration and a properly modified slab coupler.
NASA Astrophysics Data System (ADS)
Sinclair, Kenneth; Florjańczyk, Mirosław; Solheim, Brian; Scott, Alan; Quine, Ben; Cheben, Pavel
Concept, theory and design of a new type of waveguide device, a multiaperture Fourier-transform planar waveguide spectrometer[1], implemented as a prototype instrument is pre-sented. The spectrometer's objective is to demonstrate the ability of the new slab waveguide technology for application in remote sensing instruments[2]. The spectrometer will use a limb viewing configuration to detect the 1.36um waveband allowing concentrations of water vapor in earth's atmosphere to be measured[3]. The most challenging aspects of the design, assembly and calibration are presented. Focus will be given to the effects of packaging the spectrometer and interfacing to the detector array. Stress-induced birefringence will affect the performance of the waveguides, therefore the design of a stress-free mounting over a range of temperatures is important. Spectral retrieval algo-rithms will have to correct for expected fabrication errors in the waveguides. Data processing algorithms will also be developed to correct for non-uniformities of input brightness through the array, making use of MMI output couplers to capture both the in-phase and anti-phase interferometer outputs. A performance assessment of an existing breadboard spectrometer will demonstrate the capability of the instrument. REFERENCES 1. M. Florjáczyk, P. Cheben, S. Janz, A. Scott, B. Solheim, and D.-X. Xu, "Multiaper-n ture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers," Opt. Expr. 15(26), 18176-18189 (2007). 2. M. Florjáczyk, P. Cheben, S. Janz, B. Lamontagne, J. n Lapointe, A. Scott, B. Solheim, and D.-X. Xu, "Slab waveguiode spatial heterodyne spectrom-eters for remote sensing from space," Optical sensors 2009. Proceedings of the SPIE, Volume 7356 (2009)., pp. 73560V-73560V-7 (2009). 3. A. Scott, M. Florjáczyk, P. Cheben, S. Janz, n B. Solheim, and D.-X. Xu, "Micro-interferometer with high throughput for remote sensing." MOEMS and Miniaturized Systems VIII. Proceedings of the SPIE, Volume 7208 (2009)., pp. 72080G-72080G-7 (2009).
NASA Astrophysics Data System (ADS)
Ducariu, A.; Constantin, G. C.; Puscas, N. N.
2005-08-01
In the small gain approximation and the unsaturated regime in this paper we report some original results concerning the evaluation of the Fano factor, statistical fluctuation and spontaneous emission factor which characterize the photon statistics on the number of excited modes, dopant concentration and power pumping in the single and double pass Er3+ - doped LiNbO, straight waveguide amplifiers pumped near 1484 nm using erfc, Gaussian and constant profile of the Er3+ ions in LiNbO, crystal. We demonstrated that for 50 mW input pump power the Poisson photon statistics are maintained in the above mentioned amplifiers for concentrations of the Er ions smaller than l026 m-3 and also high gains and low noise figures are achievable. The obtained results can be used for the design of optoelectronic integrated circuits.
22 W coherent GaAlAs amplifier array with 400 emitters
NASA Technical Reports Server (NTRS)
Krebs, D.; Herrick, R.; No, K.; Harting, W.; Struemph, F.
1991-01-01
Greater than 22 W of optical power has been demonstrated from a multiple-emitter, traveling-wave semiconductor amplifier, with approximately 87 percent of the output at the frequency of the injection source. The device integrates, in AlGaAs graded-index separate-confinement heterostructure single quantum well (GRINSCH-SQW) epitaxy, 400 ridge waveguide amplifiers with a coherent optical signal distribution circuit on a 12 x 6 mm chip.
NASA Astrophysics Data System (ADS)
Liu, Chun-Xiao; Xu, Jun; Fu, Li-Li; Zheng, Rui-Lin; Zhou, Zhi-Guang; Li, Wei-Nan; Guo, Hai-Tao; Lin, She-Bao; Wei, Wei
2015-06-01
Optical planar waveguides in Nd3+-doped phosphate glasses are fabricated by a 6.0-MeV carbon ion implantation with a dose of 6.0×1014 ions/cm2 and a 6.0-MeV oxygen ion implantation at a fluence of 6.0×1014 ions/cm2, respectively. The guided modes and the corresponding effective refractive indices were measured by a modal 2010 prism coupler. The refractive index profiles of the waveguides were analyzed based on the stopping and range of ions in matter and the RCM reflectivity calculation method. The near-field light intensity distributions were measured and simulated by an end-face coupling method and a finite-difference beam propagation method, respectively. The comparison of optical properties between the carbon-implanted waveguide and the oxygen-implanted waveguide was carried out. The microluminescence and Raman spectroscopy investigations reveal that fluorescent properties of Nd3+ ions and glass microstructure are well preserved in the waveguide region, which suggests that the carbon/oxygen-implanted waveguide is a good candidate for integrated photonic devices.
Study of porous silicon optical waveguides impregnated with organic dyes
NASA Astrophysics Data System (ADS)
Pirasteh, P.; Charrier, J.; Dumeige, Y.; Chaillou, A.; Guendouz, M.; Haji, L.
2007-01-01
Planar waveguides were made using oxidised porous silicon layers. Then, they were impregnated with Congo Red or Disperse Red 1 dyes. Optical losses were investigated before and after impregnation. In our case, the losses of impregnated waveguides were always higher than those of non-impregnated ones. In order to achieve a better understanding of the origin of these losses, we not only studied the absorbance of solutions which would impregnate the porous layers but also the reflectance spectra of the obtained composite materials. According to the measurements, the increase in losses in the visible spectrum depends on the intrinsic absorption of the dye while in NIR, the increase would be due to an accumulation of dried dye on the surface of the waveguide which would give rise to the surface scattering losses.
A Cryogenic Waveguide Mount for Microstrip Circuit and Material Characterization
NASA Technical Reports Server (NTRS)
U-yen, Kongpop; Brown, Ari D.; Moseley, Samuel H.; Noroozian, Omid; Wollack, Edward J.
2016-01-01
A waveguide split-block fixture used in the characterization of thin-film superconducting planar circuitry at millimeter wavelengths is described in detail. The test fixture is realized from a pair of mode converters, which transition from rectangular-waveguide to on-chip microstrip-line signal propagation via a stepped ridge-guide impedance transformer. The observed performance of the W-band package at 4.2K has a maximum in-band transmission ripple of 2dB between 1.53 and 1.89 times the waveguide cutoff frequency. This metrology approach enables the characterization of superconducting microstrip test structures as a function temperature and frequency. The limitations of the method are discussed and representative data for superconducting Nb and NbTiN thin film microstrip resonators on single-crystal Si dielectric substrates are presented.
Processing and optical properties of Nd3+-doped SiO2-TiO2-Al2O3 planar waveguides
NASA Astrophysics Data System (ADS)
Xiang, Qing; Zhou, Yan; Ooi, Boon Siew; Lam, Yee Loy; Chan, Yuen Chuen; Kam, Chan Hin
2000-05-01
We report here the processing and optical characterization of Nd3+-doped SiO2-TiO2-Al2O3 planar waveguides deposited on SOS substrates by the sol-gel route combined with spin-coating and rapid thermal annealing. The recipes used for preparing the solutions by sol-gel route are in mole ratio of 93SiO2:20AlO1.5: x ErO1.5. In order to verify the residual OH content in the films, FTIR spectra were measured and the morphology of the material by the XRD analysis. Five 2-layer films annealed at a maximum temperature of 500 degrees C, 700 degrees C, 900 degrees, 1000 degrees C, 1100 degrees C respectively were fabricated on silicon. The FTIR and XRD curves show that annealing at 1050 degrees C for 15s effectively removes the OH in the materia and keeps the material amorphous. The propagation loss of the planar waveguides was measured by using the method based on scattering in measurements and the result was obtained to be 1.54dB/cm. The fluorescence spectra were measured with 514nm wavelength of Ar+ laser by directly shining the pump beam on the film instead of prism coupling. The results show that the 1 mole Nd3+ content recipe has the strongest emission efficiency among the four samples investigated.
A 1-W, 30-ghz, CPW Amplifier for ACTS Small Terminal Uplink
NASA Technical Reports Server (NTRS)
Taub, Susan R.; Simons, Rainee N.
1992-01-01
The progress is described of the development of a 1 W, 30 GHz, coplanar waveguide (CPW) amplifier for the Advanced Communication Technology Satellite (ACTS)Small Terminal Uplink. The amplifier is based on Texas Instruments' monolithic microwave integrated circuit (MMIC) amplifiers; a three stage, low power amplifier, and a single stage, high power amplifier. The amplifiers have a power output of 190 mW and 0.710 W, gain of 23 and 4.2 dB, and efficiencies of 30.2 and 24 percent for the three stage and one stage amplifiers, respectively. The chips are to be combined via a CPW power divider/combiner circuit to yield the desired 1 W of output power.
1983-02-15
0.1 J/cm2 at 520 us, and Pulse Repetition Rate Was 10 Hs. 33 2-8 Nomarski Optical Micrograph of a Photodeposited Waveguide in LtNbO3 After Indiffusion...evaluate the interferometric array, the technique shown in Fig. 1-5 was used. With the two-mirror system shown, an incident planar wavefront could be...t- -’-, ,i- 1 0 110 - Fig. 2-8. Nomarski optical micrograph of a photodeposited waveguide in LiNbO3 after indiffusion. Small-scale divisions
Enhanced and tunable electric dipole-dipole interactions near a planar metal film
NASA Astrophysics Data System (ADS)
Zhou, Lei-Ming; Yao, Pei-Jun; Zhao, Nan; Sun, Fang-Wen
2017-08-01
We investigate the enhanced electric dipole-dipole interaction of surface plasmon polaritons (SPPs) supported by a planar metal film waveguide. By taking two nitrogen-vacancy (NV) center electric dipoles in diamond as an example, both the coupling strength and collective relaxation of two dipoles are studied with the numerical Green Function method. Compared to two-dipole coupling on a planar surface, metal film provides stronger and tunable coupling coefficients. Enhancement of the interaction between coupled NV center dipoles could have applications in both quantum information and energy transfer investigation. Our investigation provides systematic results for experimental applications based on a dipole-dipole interaction mediated with SPPs on a planar metal film.
Ka-Band Waveguide Hybrid Combiner for MMIC Amplifiers with Unequal and Arbitrary Power Output Ratio
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Chevalier, Christine T.; Wintucky, Edwin G.; Freeman, Jon C.
2009-01-01
The design, simulation and characterization of a novel Ka-band (32.05 +/- 0.25 GHz) rectangular waveguide branchline hybrid unequal power combiner is presented. The manufactured combiner was designed to combine input signals, which are nearly in phase and with an amplitude ratio of two. The measured return loss and isolation of the branch-line hybrid are better than 22 and 27 dB, respectively. The application of the branch-line hybrid for combining two monolithic microwave integrated circuit (MMIC) power amplifiers with output power ratio of two is demonstrated. The measured combining efficiency is 92.9% at the center frequency of 32.05 GHz.
Analysis and design of optically pumped far infrared oscillators and amplifiers
NASA Technical Reports Server (NTRS)
Galantowicz, T. A.
1978-01-01
A waveguide laser oscillator was designed and experimental measurements made of relationships among output power, pressure, pump power, pump frequency, cavity tuning, output beam pattern, and cavity mirror properties for various active gases. A waveguide regenerative amplifier was designed and gain measurements were made for various active gases. An external Fabry-Perot interferometer was fabricated and used for accurate wavelength determination and for measurements of the refractive indices of solids transparent in the far infrared. An electronic system was designed and constructed to provide an appropriate error signal for use in feedback control of pump frequency. Pump feedback from the FIR laser was decoupled using a vibrating mirror to phase modulate the pump signal.
Design, Simulation and Experiments on the Recirculating Crossed-Field Planar Amplifier
NASA Astrophysics Data System (ADS)
Exelby, Steven; Greening, Geoffrey; Jordan, Nicholas; Packard, Drew; Lau, Yue Ying; Gilgenbach, Ronald; Simon, David; Hoff, Brad
2017-10-01
The Recirculating Planar Crossed-Field Amplifier (RPCFA) is the focus of simulation and experimental work. This amplifier, inspired by the Recirculating Planar Magnetron, is driven by the Michigan Electron Long Beam Accelerator (MELBA), configured to deliver a -300 kV, 1-10 kA, 0.3-1.0 µs pulse. For these parameters, a slow wave structure (SWS), cathode, and housing were designed using the finite element frequency domain code Ansys HFSS, and verified using the PIC code, MAGIC. Simulations of this device demonstrated amplification of 1.3 MW, 3 GHz signal to approximately 29 MW (13.5 dB) with nearly 53% electronic efficiency. Simulations have also shown the device is zero-drive stable, operates under a range of voltages, with bandwidth of 10%, on par with existing CFAs. The RPCFA SWS has been fabricated using 3D printing, while the rest of the device has been developed using traditional machining. Experimental RPCFA cold tube characteristics matched those from simulation. Experiments on MELBA have demonstrated zero-drive stability and amplifier experiments are underway. This work was supported by the AFOSR Grant FA9550-15-1-0097.
Hohimer, John P.; Craft, David C.
1994-01-01
Unidirectional ring lasers formed by integrating nonreciprocal optical elements into the resonant ring cavity. These optical elements either attenuate light traveling in a nonpreferred direction or amplify light traveling in a preferred direction. In one preferred embodiment the resonant cavity takes the form of a circle with an S-shaped crossover waveguide connected to two points on the interior of the cavity such that light traveling in a nonpreferred direction is diverted from the cavity into the crossover waveguide and reinjected out of the other end of the crossover waveguide into the cavity as light traveling in the preferred direction.
Method and apparatus for use of III-nitride wide bandgap semiconductors in optical communications
Hui, Rongqing [Lenexa, KS; Jiang, Hong-Xing [Manhattan, KS; Lin, Jing-Yu [Manhattan, KS
2008-03-18
The present disclosure relates to the use of III-nitride wide bandgap semiconductor materials for optical communications. In one embodiment, an optical device includes an optical waveguide device fabricated using a III-nitride semiconductor material. The III-nitride semiconductor material provides for an electrically controllable refractive index. The optical waveguide device provides for high speed optical communications in an infrared wavelength region. In one embodiment, an optical amplifier is provided using optical coatings at the facet ends of a waveguide formed of erbium-doped III-nitride semiconductor materials.
Single Fiber Star Couplers. [optical waveguides for spacecraft communication
NASA Technical Reports Server (NTRS)
Asawa, C. K.
1979-01-01
An ion exchange process was developed and used in the fabrication of state-of-the-art planar star couplers for distribution of optical radiation between optical fibers. An 8 x 8 planar transmission star coupler was packaged for evaluation purposes with sixteen fiber connectors and sixteen pigtails. Likewise a transmission star coupler and an eight-port reflection star coupler with eight-fiber ribbons rigidly attached to these couplers, and a planar coupler with silicon guides and a parallel channel guide with pigtails were also fabricated. Optical measurements of the transmission star couplers are included with a description of the manufacturing process.
Compact, Single-Stage MMIC InP HEMT Amplifier
NASA Technical Reports Server (NTRS)
Pukala, David; Samoska, Lorene; Fung, King Man; Gaier, Todd; Deal, W. R.; Mei, Gerry; Radisic, Vesna; Lai, Richard
2008-01-01
A monolithic micro - wave integrated-circuit (MMIC) singlestage amplifier containing an InP-based high-electron-mobility transistor (HEMT) plus coplanar-waveguide (CPW) transmission lines for impedance matching and input and output coupling, all in a highly miniaturized layout as needed for high performance at operating frequencies of hundreds of gigahertz is described.
Stokes injected Raman capillary waveguide amplifier
Kurnit, Norman A.
1980-01-01
A device for producing stimulated Raman scattering of CO.sub.2 laser radiation by rotational states in a diatomic molecular gas utilizing a Stokes injection signal. The system utilizes a cryogenically cooled waveguide for extending focal interaction length. The waveguide, in conjunction with the Stokes injection signal, reduces required power density of the CO.sub.2 radiation below the breakdown threshold for the diatomic molecular gas. A Fresnel rhomb is employed to circularly polarize the Stokes injection signal and CO.sub.2 laser radiation in opposite circular directions. The device can be employed either as a regenerative oscillator utilizing optical cavity mirrors or as a single pass amplifier. Additionally, a plurality of Raman gain cells can be staged to increase output power magnitude. Also, in the regenerative oscillator embodiment, the Raman gain cell cavity length and CO.sub.2 cavity length can be matched to provide synchronism between mode locked CO.sub.2 pulses and pulses produced within the Raman gain cell.
Surface transport and stable trapping of particles and cells by an optical waveguide loop.
Hellesø, Olav Gaute; Løvhaugen, Pål; Subramanian, Ananth Z; Wilkinson, James S; Ahluwalia, Balpreet Singh
2012-09-21
Waveguide trapping has emerged as a useful technique for parallel and planar transport of particles and biological cells and can be integrated with lab-on-a-chip applications. However, particles trapped on waveguides are continuously propelled forward along the surface of the waveguide. This limits the practical usability of the waveguide trapping technique with other functions (e.g. analysis, imaging) that require particles to be stationary during diagnosis. In this paper, an optical waveguide loop with an intentional gap at the centre is proposed to hold propelled particles and cells. The waveguide acts as a conveyor belt to transport and deliver the particles/cells towards the gap. At the gap, the diverging light fields hold the particles at a fixed position. The proposed waveguide design is numerically studied and experimentally implemented. The optical forces on the particle at the gap are calculated using the finite element method. Experimentally, the method is used to transport and trap micro-particles and red blood cells at the gap with varying separations. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip, e.g. microfluidics or optical detection, to make an on-chip system for single cell analysis and to study the interaction between cells.
Handelman, Amir; Lapshina, Nadezda; Apter, Boris; Rosenman, Gil
2018-02-01
Bio-nanophotonics is a wide field in which advanced optical materials, biomedicine, fundamental optics, and nanotechnology are combined and result in the development of biomedical optical chips. Silk fibers or synthetic bioabsorbable polymers are the main light-guiding components. In this work, an advanced concept of integrated bio-optics is proposed, which is based on bioinspired peptide optical materials exhibiting wide optical transparency, nonlinear and electrooptical properties, and effective passive and active waveguiding. Developed new technology combining bottom-up controlled deposition of peptide planar wafers of a large area and top-down focus ion beam lithography provides direct fabrication of peptide optical integrated circuits. Finding a deep modification of peptide optical properties by reconformation of biological secondary structure from native phase to β-sheet architecture is followed by the appearance of visible fluorescence and unexpected transition from a native passive optical waveguiding to an active one. Original biocompatibility, switchable regimes of waveguiding, and multifunctional nonlinear optical properties make these new peptide planar optical materials attractive for application in emerging technology of lab-on-biochips, combining biomedical photonic and electronic circuits toward medical diagnosis, light-activated therapy, and health monitoring. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Vaden, Karl R.
2006-01-01
Communication systems for future NASA interplanetary spacecraft require transmitter power ranging from several hundred watts to kilowatts. Several hybrid junctions are considered as elements within a corporate combining architecture for high power Ka-band space traveling-wave tube amplifiers (TWTAs). This report presents the simulated transmission characteristics of several hybrid junctions designed for a low loss, high power waveguide based power combiner.
NASA Astrophysics Data System (ADS)
Grudinin, A. B.; Dianov, Evgenii M.; Korobkin, D. V.; Prokhorov, A. M.; Semenov, V. A.; Khrushchev, I. Yu
1990-08-01
An experimental investigation was made of the process of amplification of femtosecond pulses in single-mode fiber waveguides activated with erbium ions. The amplified pulses were compressed from 80 to 55 fs in the course of their propagation. The energy of the pulses was estimated to be 5 nJ. The maximum gain was 26 dB.
NASA Astrophysics Data System (ADS)
Choueikani, Fadi; Royer, François; Jamon, Damien; Siblini, Ali; Rousseau, Jean Jacques; Neveu, Sophie; Charara, Jamal
2009-02-01
This paper describes a way to develop magneto-optical waveguides via sol-gel process. They are made of cobalt ferrite nanoparticles embedded in a silica/zirconia matrix. Thin films are coated on glass substrate using the dip-coating technique. Annealing and UV treatment are applied to finalize sample preparation. Therefore, planar waveguides combining magneto-optical properties with a low refractive index (≈1,5) are obtained. M-lines and free space ellipsometry measurements show a specific Faraday rotation of 250°/cm and a modal birefringence of 1×10-4 at 820 nm. Thus, the mode conversion efficiency can reach a maximum value around 56%.
Bragg gratings: Optical microchip sensors
NASA Astrophysics Data System (ADS)
Watts, Sam
2010-07-01
A direct UV writing technique that can create multiple Bragg gratings and waveguides in a planar silica-on-silicon chip is enabling sensing applications ranging from individual disposable sensors for biotechnology through to multiplexed sensor networks in pharmaceutical manufacturing.
Thermocapillary Technique for Shaping and Fabricating Optical Ribbon Waveguides
NASA Astrophysics Data System (ADS)
Fiedler, Kevin; Troian, Sandra
The demand for ever increasing bandwidth and higher speed communication has ushered the next generation optoelectronic integrated circuits which directly incorporate polymer optical waveguide devices. Polymer melts are very versatile materials which have been successfully cast into planar single- and multimode waveguides using techniques such as embossing, photolithography and direct laser writing. In this talk, we describe a novel thermocapillary patterning method for fabricating waveguides in which the free surface of an ultrathin molten polymer film is exposed to a spatially inhomogeneous temperature field via thermal conduction from a nearby cooled mask pattern held in close proximity. The ensuring surface temperature distribution is purposely designed to pool liquid selectively into ribbon shapes suitable for optical waveguiding, but with rounded and not rectangular cross sectional areas due to capillary forces. The solidified waveguide patterns which result from this non-contact one step procedure exhibit ultrasmooth interfaces suitable for demanding optoelectronic applications. To complement these studies, we have also conducted finite element simulations for quantifying the influence of non-rectangular cross-sectional shapes on mode propagation and losses. Kf gratefully acknowledges support from a NASA Space Technology Research Fellowship.
Cross-guide Moreno directional coupler in empty substrate integrated waveguide
NASA Astrophysics Data System (ADS)
Miralles, E.; Belenguer, A.; Esteban, H.; Boria, V.
2017-05-01
Substrate integrated waveguides (SIWs) combine the advantages of rectangular waveguides (low losses) and planar circuits (low cost and low profile). Empty substrate integrated waveguide (ESIW) has been proposed as a novel configuration in SIWs recently. This technology significantly reduces the losses of conventional SIW by removing its inner dielectric. The cross-guide directional coupler is a well-known low-profile design for having a broadband waveguide coupler. In this paper a cross-guide coupler with ESIW technique is proposed. In such a manner, the device can be integrated with microwave circuits and other printed circuit board components. It is the first time that a cross-guide coupler is implemented in ESIW technology. The designed, fabricated, and measured device presents good results as a matter of insertion loss of 1 dB (including transitions), reflection under 20 dB, coupling between 19.5 and 21.5 dB, and directivity higher than 15 dB over targeted frequency range from 12.4 GHz to 18 GHz. The coupler implemented in ESIW improves the directivity when compared to similar solutions in other empty substrate integrated waveguide solutions.
2013-03-01
beam tunnel [5,6] for a high - power , wideband W- band traveling-wave tube (TWT) amplifier. UV-LIGA is also a promising technique at higher...wide- band , high - power operation of the amplifier [7, 8]. The interaction circuit consists of two traveling-wave stages separated by a power ...technique produces monolithic all-copper circuits, integrated with electron beam tunnel, suitable for high - power continuous-wave operation [1]. We
Characterization of a multimode coplanar waveguide parametric amplifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simoen, M., E-mail: simoen@chalmers.se; Krantz, P.; Bylander, Jonas
2015-10-21
We characterize a Josephson parametric amplifier based on a flux-tunable quarter-wavelength resonator. The fundamental resonance frequency is ∼1 GHz, but we use higher modes of the resonator for our measurements. An on-chip tuning line allows for magnetic flux pumping of the amplifier. We investigate and compare degenerate parametric amplification, involving a single mode, and nondegenerate parametric amplification, using a pair of modes. We show that we reach quantum-limited noise performance in both cases.
NASA Technical Reports Server (NTRS)
Engin, Doruk; Mathason, Brian; Stephen, Mark; Yu, Anthony; Cao, He; Fouron, Jean-Luc; Storm, Mark
2016-01-01
Accurate global measurements of tropospheric CO2 mixing ratios are needed to study CO2 emissions and CO2 exchange with the land and oceans. NASA Goddard Space Flight Center (GSFC) is developing a pulsed lidar approach for an integrated path differential absorption (IPDA) lidar to allow global measurements of atmospheric CO2 column densities from space. Our group has developed, and successfully flown, an airborne pulsed lidar instrument that uses two tunable pulsed laser transmitters allowing simultaneous measurement of a single CO2 absorption line in the 1570 nm band, absorption of an O2 line pair in the oxygen A-band (765 nm), range, and atmospheric backscatter profiles in the same path. Both lasers are pulsed at 10 kHz, and the two absorption line regions are sampled at typically a 300 Hz rate. A space-based version of this lidar must have a much larger lidar power-area product due to the x40 longer range and faster along track velocity compared to airborne instrument. Initial link budget analysis indicated that for a 400 km orbit, a 1.5 m diameter telescope and a 10 second integration time, a 2 mJ laser energy is required to attain the precision needed for each measurement. To meet this energy requirement, we have pursued parallel power scaling efforts to enable space-based lidar measurement of CO2 concentrations. These included a multiple aperture approach consists of multi-element large mode area fiber amplifiers and a single-aperture approach consists of a multi-pass Er:Yb:Phosphate glass based planar waveguide amplifier (PWA). In this paper we will present our laser amplifier design approaches and preliminary results.
Coupled equations of electromagnetic waves in nonlinear metamaterial waveguides.
Azari, Mina; Hatami, Mohsen; Meygoli, Vahid; Yousefi, Elham
2016-11-01
Over the past decades, scientists have presented ways to manipulate the macroscopic properties of a material at levels unachieved before, and called them metamaterials. This research can be considered an important step forward in electromagnetics and optics. In this study, higher-order nonlinear coupled equations in a special kind of metamaterial waveguides (a planar waveguide with metamaterial core) will be derived from both electric and magnetic components of the transverse electric mode of electromagnetic pulse propagation. On the other hand, achieving the refractive index in this research is worthwhile. It is also shown that the coupled equations are not symmetric with respect to the electric and magnetic fields, unlike these kinds of equations in fiber optics and dielectric waveguides. Simulations on the propagation of a fundamental soliton pulse in a nonlinear metamaterial waveguide near the resonance frequency (a little lower than the magnetic resonant frequency) are performed to study its behavior. These pulses are recommended to practice in optical communications in controlled switching by external voltage, even in low power.
Waveguides with Absorbing Boundaries: Nonlinearity Controlled by an Exceptional Point and Solitons
NASA Astrophysics Data System (ADS)
Midya, Bikashkali; Konotop, Vladimir V.
2017-07-01
We reveal the existence of continuous families of guided single-mode solitons in planar waveguides with weakly nonlinear active core and absorbing boundaries. Stable propagation of TE and TM-polarized solitons is accompanied by attenuation of all other modes, i.e., the waveguide features properties of conservative and dissipative systems. If the linear spectrum of the waveguide possesses exceptional points, which occurs in the case of TM polarization, an originally focusing (defocusing) material nonlinearity may become effectively defocusing (focusing). This occurs due to the geometric phase of the carried eigenmode when the surface impedance encircles the exceptional point. In its turn, the change of the effective nonlinearity ensures the existence of dark (bright) solitons in spite of focusing (defocusing) Kerr nonlinearity of the core. The existence of an exceptional point can also result in anomalous enhancement of the effective nonlinearity. In terms of practical applications, the nonlinearity of the reported waveguide can be manipulated by controlling the properties of the absorbing cladding.
Hohimer, J.P.; Craft, D.C.
1994-09-20
Unidirectional ring lasers formed by integrating nonreciprocal optical elements into the resonant ring cavity is disclosed. These optical elements either attenuate light traveling in a nonpreferred direction or amplify light traveling in a preferred direction. In one preferred embodiment the resonant cavity takes the form of a circle with an S-shaped crossover waveguide connected to two points on the interior of the cavity such that light traveling in a nonpreferred direction is diverted from the cavity into the crossover waveguide and reinjected out of the other end of the crossover waveguide into the cavity as light traveling in the preferred direction. 21 figs.
Auto-locking waveguide amplifier system for lidar and magnetometric applications
NASA Astrophysics Data System (ADS)
Pouliot, A.; Beica, H. C.; Carew, A.; Vorozcovs, A.; Carlse, G.; Kumarakrishnan, A.
2018-02-01
We describe a compact waveguide amplifier system that is suitable for optically pumping rubidium magnetometers. The system consists of an auto-locking vacuum-sealed external cavity diode laser, a semiconductor tapered amplifier and a pulsing unit based on an acousto-optic modulator. The diode laser utilises optical feedback from an interference filter to narrow the linewidth of an inexpensive laser diode to 500 kHz. This output is scannable over an 8 GHz range (at 780 nm) and can be locked without human intervention to any spectral marker in an expandable library of reference spectra, using the autolocking controller. The tapered amplifier amplifies the output from 50 mW up to 2 W with negligible distortions in the spectral quality. The system can operate at visible and near infrared wavelengths with MHz repetition rates. We demonstrate optical pumping of rubidium vapour with this system for magnetometric applications. The magnetometer detects the differential absorption of two orthogonally polarized components of a linearly polarized probe laser following optical pumping by a circularly polarized pump laser. The differential absorption signal is studied for a range of pulse lengths, pulse amplitudes and DC magnetic fields. Our results suggest that this laser system is suitable for optically pumping spin-exchange free magnetometers.
NASA Astrophysics Data System (ADS)
He, J. R.; Xu, S. L.; Xue, L.
2017-11-01
Exact chirped self-similar optical pulses propagating in tapered centrosymmetric nonlinear waveguides doped with resonant impurities are reported. The propagation behaviors of the pulses are studied by tailoring of the tapering function. Numerical simulations and stability analysis reveal that the tapering can be used to postpone the wave dispersion and the addition of a small cubic self-focusing term to the governing equation could stabilize the chirped bright pulses. An example of possible experimental protocol that may generate the pulses in realistic waveguides is given. The obtained chirped self-similar optical pulses are particularly useful in the design of amplifying or attenuating pulse compressors for chirped solitary waves in tapered centrosymmetric nonlinear waveguides doped with resonant impurities.
Practical microstructured and plasmonic terahertz waveguides
NASA Astrophysics Data System (ADS)
Markov, Andrey
The terahertz frequency range, with frequencies lying between 100 GHz and 10 THz, has strong potential for various technological and scientific applications such as sensing, imaging, communications, and spectroscopy. Most terahertz (THz) sources are immobile and THz systems use free-space propagation in dry air where losses are minimal. Designing efficient THz waveguides for flexible delivery of broadband THz radiation is an important step towards practical applications of terahertz techniques. THz waveguides can be very useful on the system integration level when used for connection of the diverse THz point devices, such as sources, filters, sensor cells, detectors, etc. The most straightforward application of waveguides is to deliver electromagnetic waves from the source to the point of detection. Cumbersome free-space optics can be replaced by waveguides operating in the THz range, which could lead to the development of compact THz time domain spectroscopy systems. Other promising applications of THz waveguides are in sensing and imaging. THz waveguides have also been shown to operate in subwavelength regimes, offering mode confinement in waveguide structures with a size smaller than the diffraction limit, and thus, surpassing the resolution of free-space THz imaging systems. In order to design efficient terahertz waveguides, the frequency dependent loss and dispersion of the waveguide must be minimized. A possible solution would be to increase the fraction of mode power propagating through air. In this thesis, the usage of planar porous air/dielectric waveguides and metal wire/dielectric hybrid terahertz fibers will be discussed. First, I present a novel design of a planar porous low-loss waveguide, describe its fabrication, and characterize it in view of its potential applications as a low-loss waveguide and sensor in the THz spectral range. The waveguide structure features a periodic sequence of layers of thin (25-50 mum) polyethylene film that are separated by low-loss air layers of comparable thickness. A large fraction of the modal fields in these waveguides is guided in the low-loss air region, thus effectively reducing the waveguide transmission losses. I consider that such waveguides can be useful not only for low-loss THz wave delivery, but also for sensing of biological and chemical specimens in the terahertz region, by placing the recognition elements directly into the waveguide microstructure. The main advantage of the proposed planar porous waveguide is the convenient access to its optical mode, since the major portion of THz power launched into such a waveguide is confined within the air layers. Moreover, small spacing between the layers promotes rapid loading of the analyte into the waveguide due to strong capillary effect (< 1 s filling of a 10 cm long waveguide with an analyte). The transmission and absorption properties of such waveguides have been investigated both experimentally using THz-TDS spectroscopy and theoretically using finite element software. The modal refractive index of porous waveguides is smaller compared to pure polymer and it is easy to adjust by changing the air spacing between the layers, as well as the number of layers in the core. The porous waveguide exhibits considerably smaller transmission losses than bulk material. In the following chapters I review another promising approach towards designing of low-loss, low-dispersion THz waveguides. The hybrid metal/dielectric waveguides use a plasmonic mode guided in the gap between two parallel wires that are, in turn, encapsulated inside a low-loss, low-refractive index, micro-structured cladding that provides mechanical stability and isolation from the environment. I describe several promising techniques that can be used to encapsulate the two-wire waveguides, while minimizing the negative impact of dielectric cladding on the waveguide optical properties. In particular, I detail the use of low-density foams and microstructured plastic claddings as two enabling materials for the two-wire waveguide encapsulation. The hybrid fiber design is more convenient for practical applications than a classic two metal wire THz waveguide as it allows direct manipulations of the fiber without the risk of perturbing its core-guided mode. I present a detailed analysis of the modal properties of the hybrid metal/dielectric waveguides, compare them with the properties of a classic two-wire waveguide, and then present strategies for the improvement of hybrid waveguide performance by using higher cladding porosity or utilizing inherently porous cladding material. I study coupling efficiency into hybrid waveguides and conclude that it can be relatively high (>50%) in the broad frequency range ˜0.5 THz. Not surprisingly, optical properties of such fibers are inferior to those of a classic two-wire waveguide due to the presence of lossy dielectric near an inter-wire gap. At the same time, composite fibers outperform porous fibers of the same geometry both in bandwidth of operation and in lower dispersion. I demonstrate that hybrid metal/dielectric porous waveguides can have a very large operational bandwidth, while supporting tightly confined, air-bound modes both at high and low frequencies. This is possible as, at higher frequencies, hybrid fibers can support ARROW-like low-loss air-bound modes, while changing their guidance mechanism to plasmonic confinement in the inter-wire air gap at lower frequencies. Finally, I describe an intriguing resonant property of some hybrid plasmonic modes of metal / dielectric waveguides that manifests itself in the strong frequency dependent change in the modal confinement from dielectric-bound to air-bound. I discuss how this property can be used to construct THz refractometers. Introduction of even lossless analytes into the fiber core leads to significant changes in the modal losses, which is used as a transduction mechanism. The resolution of the refractometer has been investigated numerically as a function of the operation frequency and the geometric parameters of the fiber. With a refractive index resolution on the order of ˜10-3 RIU, the composite fiber-based sensor is capable of identifying various gaseous analytes and aerosols or measuring the concentration of dust particles in the air.
NASA Astrophysics Data System (ADS)
Chuang, Ricky Wenkuei
2001-07-01
An effectively simple dry silver electromigration technology without the need of evaporating separate gold or aluminum film electrodes onto both sides of glass is reported to fabricate low-loss deep multimode planar and channel waveguides on BK7 and BF450 glass substrates. A relatively high electrical field ranging from 440 to 545 V/mm was applied to the glass to speed up the migration, while at the same time preventing silver ions that were driven into the glass from reducing into silver atom; a major contributor to waveguide loss. The deep planar and channel waveguides thus fabricated showed no discolors or cracks, of which the attenuation losses of less than 2dB/cm and 0.1dB/cm were later measured from channel waveguides constructed on the BK7 and BF450 glass substrates, respectively, using our 0.6328mum He-Ne laser edge-coupling setup. To complete the waveguide studies, the scanning electron microscope (SEM) equipped with energy-dispersive X-ray (EDX) detector was adopted to obtain the concentration profiles of silver and sodium ions distributed in a waveguiding region after the exchange. The EDX measurements acquired hereafter were then utilized along with the Gladstone-Dale relation altogether to deduce the refractive index profile; of which a nearly step-like profile was consistently deduced from every deep planar and channel waveguides fabricated. Finally, a numerical model utilizing the space charge approach was devised to explain the nonlinear current effect often observed during the actual waveguide fabrication. The simulation results have confirmed that the nonlinear current-versus-time profile obtained is mainly attributed to the inhomogeneous distribution of the electric field in the glass substrate due to a space charge region created by the separation between silver- and sodium-ion migration fronts as a result of their unequal mobilities; a phenomenon which is ultimately responsible for the eventual slow down in the ion exchange rate as monitored during the actual electromigration process. A fluxless oxidation-free bonding technology using multilayer composite solders based on the non eutectic binary alloys of indium-tin (In-Sn), silver-indium (Ag-In), gold-tin (Au-Sn), and bismuth-tin (Bi-Sn) has been established and studied to determine its applicability to photonics and MEMS packaging. The scanning acoustic microscopy (SAM) conducted on these solder samples has consistently shown that a nearly void-free joint fabricated from each non-eutectic binary alloy system can be reliably achieved. In addition, the scanning electron microscopy (SEM) equipped with the energy dispersive X-ray (EDX) detector was also performed on the cross section of each sample to determine its joint composition, especially of any sign of intermetallic compounds. These results will demonstrate that any intermetallic compound or phase present in a joint fabricated with a pre-determined multilayer composition based on a specific binary alloy system can be well understood and fully justified by correlating the experimental outcome with its respective binary phase diagram.
Waveguide-Mode Terahertz Free Electron Lasers Driven by Magnetron-Based Microtrons
NASA Astrophysics Data System (ADS)
Jeong, Young Uk; Miginsky, Sergey; Gudkov, Boris; Lee, Kitae; Mun, Jungho; Shim, Gyu Il; Bae, Sangyoon; Kim, Hyun Woo; Jang, Kyu-Ha; Park, Sunjeong; Park, Seong Hee; Vinokurov, Nikolay
2016-04-01
We have developed small-sized terahertz free-electron lasers by using low-cost and compact microtrons combining with magnetrons as high-power RF sources. We could stabilize the bunch repetition rate by optimizing a modulator for the magnetron and by coupling the magnetron with an accelerating cavity in the microtron. By developing high-performance undulators and low-loss waveguide-mode resonators having small cross-sectional areas, we could strengthen the interaction between the electron beam and the THz wave inside the FEL resonators to achieve lasing even with low-current electron beams from the microtron. We used a parallel-plate waveguide in a planar electromagnet undulator for our first THz FEL. We try to reduce the size of the FEL resonator by combining a dielectric-coated circular waveguide and a variable-period helical undulator to realize a table-top THz FEL for applying it to the security inspection on airports.
A unique all-optic switch based on an innovatively designed liquid crystal waveguide
NASA Astrophysics Data System (ADS)
Nam, Sung-Hyun; Su, Wei-Hung; Chavez, Jesus; Yin, Shizhuo
2003-10-01
A unique, all-optic switch based on an innovatively designed planar lightwave circuit (PLC) is presented in this paper. The switching function is achieved by using ultra large birefringence of nematic liquid crystals (NLC) filled at the trench of waveguides. The trench at the crossing forms a waveguide mirror or a matching medium when extraordinary and ordinary refractive indices of NLC are employed, respectively. The major advantages of our unique design are: (1) the limitation that refractive index of liquid crystal must be less than that of waveguide material itself is eliminated so that conventional NCL material such as E7 can be used; (2) it is a self aligned fabrication process that alleviates the tight tolerance of later tilt error; (3) the design is thermally stable. The successful fabrication of this unqiue switch could result in an enabling element for the next generation all-optic networks.
Differential InP HEMT MMIC Amplifiers Embedded in Waveguides
NASA Technical Reports Server (NTRS)
Kangaslahti, Pekka; Schlecht, Erich; Samoska, Lorene
2009-01-01
Monolithic microwave integrated-circuit (MMIC) amplifiers of a type now being developed for operation at frequencies of hundreds of gigahertz contain InP high-electron-mobility transistors (HEMTs) in a differential configuration. The differential configuration makes it possible to obtain gains greater than those of amplifiers having the single-ended configuration. To reduce losses associated with packaging, the MMIC chips are designed integrally with, and embedded in, waveguide packages, with the additional benefit that the packages are compact enough to fit into phased transmitting and/or receiving antenna arrays. Differential configurations (which are inherently balanced) have been used to extend the upper limits of operating frequencies of complementary metal oxide/semiconductor (CMOS) amplifiers to the microwave range but, until now, have not been applied in millimeter- wave amplifier circuits. Baluns have traditionally been used to transform from single-ended to balanced configurations, but baluns tend to be lossy. Instead of baluns, finlines are used to effect this transformation in the present line of development. Finlines have been used extensively to drive millimeter- wave mixers in balanced configurations. In the present extension of the finline balancing concept, finline transitions are integrated onto the affected MMICs (see figure). The differential configuration creates a virtual ground within each pair of InP HEMT gate fingers, eliminating the need for inductive vias to ground. Elimination of these vias greatly reduces parasitic components of current and the associated losses within an amplifier, thereby enabling more nearly complete utilization of the full performance of each transistor. The differential configuration offers the additional benefit of multiplying (relative to the single-ended configuration) the input and output impedances of each transistor by a factor of four, so that it is possible to use large transistors that would otherwise have prohibitively low impedances. Yet another advantage afforded by the virtual ground of the differential configuration is elimination of the need for a ground plane and, hence, elimination of the need for back-side metallization of the MMIC chip. In turn, elimination of the back-side metallization simplifies fabrication, reduces parasitic capacitances, and enables mounting of the MMIC in the electric-field plane ("E-plane") of a waveguide. E-plane mounting is consistent with (and essential for the utility of) the finline configuration, in which transmission lines lie on a dielectric sheet in the middle of a broad side of the waveguide. E-plane mounting offers a combination of low loss and ease of assembly because no millimeter-wave wire bonds or transition substrates are required. Moreover, because there is no ground plane behind the MMIC, the impedance for the detrimental even (single-ended) mode is high, suppressing coupling to that mode. Still another advantage of E-plane mounting is that the fundamental waveguide mode is inherently differential, eliminating the need for a balun to excite the differential mode.
Optical devices integrated with semiconductor optical amplifier
NASA Astrophysics Data System (ADS)
Oh, Kwang R.; Park, Moon S.; Jeong, Jong S.; Baek, Yongsoon; Oh, Dae-Kon
2000-07-01
Semiconductor optical amplifiers (SOA's) have been used as a key optical component for the high capacity communication systems. The monolithic integration is necessary for the stable operation of these devices and the wider applications. In this paper, the coupling technique between different waveguides and the integration of SSC's are discussed and the research results of optical devices integrated with SOA's are presented.
Single-Arm Double-Mode Double-Order Planar Waveguide Interferometric Sensor
NASA Technical Reports Server (NTRS)
Sarkisov, Sergey S.
2000-01-01
We have met the goals stated in section one for the project. We have demonstrated the feasibility of a single-arm double-mode double-order waveguide interferometer as a cost efficient alternative to an optical chemical sensor. Experimental prototype was built as a dye-doped polymer waveguide with propagating modes of orders <<0>> and <<1>> of the same TM polarization. The prototype demonstrated sensitivity to ammonia of the order of 200 ppm per one full oscillation of the signal. Sensor based on polyimide doped with BCP can operate at elevated temperature up to 150 C. Upon the future funding, we are planning to optimize the light source, material and the design in order to achieve sensitivity of the order of 1 ppm per full oscillations.
Building an LO source at 1036 GHz for a receiver
NASA Technical Reports Server (NTRS)
Erickson, Neal R.
1995-01-01
The goal of the UMass work on this grant was to build an LO source at 1036 GHz for a receiver which was to be built at JPL. The 1 THz source will consist of a high power Gunn oscillator at 86 GHz followed by a cascaded pair of planar diode doublers and finally a whisker contacted tripler. All multipliers will use single mode waveguide mounts. This use of single mode waveguide even for the final mount is a departure from the original plan, and reflects the progress that has been made in fabricating small structures. The advantages to the use of waveguide over a quasi-optical approach are that the complete system is much more compact, and much easier to use.
Fabrication of optical waveguides using laser direct writing method
NASA Astrophysics Data System (ADS)
Cho, Sung H.; Kim, Jung Min; Kim, Jae G.; Chang, Won S.; Lee, Eung S.
2004-09-01
Laser direct writing (LDW) process is developed using 3-rd harmonic Diode Pumped Solid State Laser (DPSSL) with the near UV wavelength of 355 nm. Photo-sensitive curable polymer is irradiated by UV laser and developed using polymer solvent to obtain quasi-3D patterns. We performed basic experiments for the various process conditions such as laser power, writing speed, laser focus, and optical polymer property to get the optimal conditions. This process could be applied to fabricate a single-mode waveguide without expensive mask projection method. Experimentally, the patterns of trapezoidal shape were manufactured into dimension of 8.4μm width and 7.5μm height. Propagation loss of planar waveguide was 1.42 dB/cm at wavelength of 1,550 nm.
Gong, Chensheng; Zhang, Jianhao; He, Sailing
2017-12-15
Unidirectional optical manipulation, especially the coupling from a vertical light beam to a waveguide unidirectionally, is desirable in photonic integration. We first propose a hybrid unidirectional meta-coupler for vertical incidence to a high-refractive-index waveguide in telecom wavelength, a periodic plasmonic metasurface composed of metal-insulator-metal unit cells is used for phase matching. Three designs are given for devices working around wavelengths 0.85, 1.31, and 1.55 μm. The simulated coupling efficiencies are all around 70%, and the 1 dB coupling bandwidths are 29, 82, and 105 nm, respectively. Our approach paves the way for the applications of optical metasurfaces to planar lightwave circuits.
Design and Performance of a 2.7 THz Waveguide Tripler
NASA Technical Reports Server (NTRS)
Maiwald, Frank; Martin, S.; Bruston, J.; Maestrini, A.; Crawford, T.; Siegel, P. H.
2001-01-01
The design and performance of a 0.9 THz to 2.7 THz waveguide tripler are presented. An unusual split block configuration with parallel input and output waveguides accommodates a monolithic membrane diode (MoMeD) circuit. Submicron planar GaAs Schottky diodes in single and antiparallel pairs are implemented with matching filters on a 3-micrometer thick suspended substrate as part of the MoMeD structure. The filters are a combination of short hammerheads and high-low impedance elements. Only a few circuit variations have been measured to date. The best current performance shows an output power of 0.1 microW and an efficiency of 0.002% at the band center frequency of 2.55 THz.
Special Component Designs for Differential-Amplifier MMICs
NASA Technical Reports Server (NTRS)
Kangaslahti, Pekka
2010-01-01
Special designs of two types of electronic components transistors and transmission lines have been conceived to optimize the performances of these components as parts of waveguide-embedded differential-amplifier monolithic microwave integrated circuits (MMICs) of the type described in the immediately preceding article. These designs address the following two issues, the combination of which is unique to these particular MMICs: Each MMIC includes a differential double-strip transmission line that typically has an impedance between 60 and 100 W. However, for purposes of matching of impedances, transmission lines having lower impedances are also needed. The transistors in each MMIC are, more specifically, one or more pair(s) of InP-based high-electron-mobility transistors (HEMTs). Heretofore, it has been common practice to fabricate each such pair as a single device configured in the side-to-side electrode sequence source/gate/drain/gate/source. This configuration enables low-inductance source grounding from the sides of the device. However, this configuration is not suitable for differential operation, in which it is necessary to drive the gates differentially and to feed the output from the drain electrodes differentially. The special transmission-line design provides for three conductors, instead of two, in places where lower impedance is needed. The third conductor is a metal strip placed underneath the differential double-strip transmission line. The third conductor increases the capacitance per unit length of the transmission line by such an amount as to reduce the impedance to between 5 and 15 W. In the special HEMT-pair design, the side-to-side electrode sequence is changed to drain/gate/source/gate/ drain. In addition, the size of the source is reduced significantly, relative to corresponding sizes in prior designs. This reduction is justified by the fact that, by virtue of the differential configuration, the device has an internal virtual ground, and therefore there is no need for a low-resistance contact between the source and the radio-frequency circuitry. The source contact is needed only for DC biasing. These designs were implemented in a single-stage-amplifier MMIC. In a test at a frequency of 305 GHz, the amplifier embedded in a waveguide exhibited a gain of 0 dB; after correcting for the loss in the waveguide, the amplifier was found to afford a gain of 0.9 dB. In a test at 220 GHz, the overall gain of the amplifier- and-waveguide assembly was found to be 3.5 dB.
Stable operating regime for traveling wave devices
Carlsten, Bruce E.
2000-01-01
Autophase stability is provided for a traveling wave device (TWD) electron beam for amplifying an RF electromagnetic wave in walls defining a waveguide for said electromagnetic wave. An off-axis electron beam is generated at a selected energy and has an energy noise inherently arising from electron gun. The off-axis electron beam is introduced into the waveguide. The off-axis electron beam is introduced into the waveguide at a second radius. The waveguide structure is designed to obtain a selected detuning of the electron beam. The off-axis electron beam has a velocity and the second radius to place the electron beam at a selected distance from the walls defining the waveguide, wherein changes in a density of the electron beam due to the RF electromagnetic wave are independent of the energy of the electron beam to provide a concomitant stable operating regime relative to the energy noise.
Coplanar waveguide metamaterials: The role of bandwidth modifying slots
NASA Astrophysics Data System (ADS)
Ibraheem, Ibraheem A.; Koch, Martin
2007-09-01
The authors propose a coplanar waveguide stopband metasurface based on the Babinet principle. The resulting layout is a compact planar metal structure with complementary split ring resonators, which exhibits a high rejection stop band. The complementary rings provide a frequency band with an effective negative dielectric permittivity. Moreover, the rejected bandwidth can be expanded by introducing slots close to the rings. The authors provide a simple physical model which explains the impact of the slots. Simulations confirm the expected behavior and are in excellent agreement with the measurements.
Glass and glass-ceramic photonic systems
NASA Astrophysics Data System (ADS)
Zur, Lidia; Thi Ngoc Tran, Lam; Meneghetti, Marcello; Varas, Stefano; Armellini, Cristina; Ristic, Davor; Chiasera, Alessandro; Scotognella, Francesco; Pelli, Stefano; Nunzi Conti, Gualtiero; Boulard, Brigitte; Zonta, Daniele; Dorosz, Dominik; Lukowiak, Anna; Righini, Giancarlo C.; Ramponi, Roberta; Ferrari, Maurizio
2017-02-01
The development of optically confined structure is a major topic in both basic and applied physics not solely ICT oriented but also concerning lighting, laser, sensing, energy, environment, biological and medical sciences, and quantum optics. Glasses and glass-ceramics activated by rare earth ions are the bricks of such structures. Glass-ceramics are nanocomposite systems that exhibit specific morphologic, structural and spectroscopic properties allowing developing new physical concepts, for instance the mechanism related to the transparency, as well as novel photonic devices based on the enhancement of the luminescence. The dependence of the final product on the specific parent glass and on the fabrication protocol still remain an important task of the research in material science. Looking to application, the enhanced spectroscopic properties typical of glass ceramic in respect to those of the amorphous structures constitute an important point for the development of integrated optics devices, including optical amplifiers, monolithic waveguide laser, novel sensors, coating of spherical microresonators, and up and down converters. This paper presents some results obtained by our consortium regarding glass-based photonics systems. We will comment the energy transfer mechanism in transparent glass ceramics taking as examples the up and down conversion systems and the role of SnO2 nanocrystals as sensitizers. Coating of spherical resonators by glass ceramics, 1D-Photonic Crystals for luminescence enhancement, laser action and disordered 1-D photonic structures will be also discussed. Finally, RF-Sputtered rare earth doped P2O5- SiO2-Al2O3-Na2O-Er2O3 planar waveguides, will be presented.
Propagation and switching of light in rectangular waveguiding structures
NASA Astrophysics Data System (ADS)
Sala, Anca L.
1998-10-01
In this dissertation, we investigate the conditions for the propagation and processing of temporal optical solitons in the rectangular geometry waveguides which are expected to play an important role as processing elements in optical communication systems. It is anticipated that the optical signals carrying information through optical fibers will be in the form of temporal soliton pulses, which can propagate undistorted for long distances under the condition that the dispersion is balanced by a nonlinearity in the optical fiber. An important parameter in the equation that governs temporal soliton propagation in a waveguide is the second derivative of the propagation vector with respect to the angular frequency, /omega, denoted by β/prime'. We evaluate β/prime' for rectangular waveguides using a channel model of the waveguide, which takes into account the two transverse dimensions of the rectangular channel. Significant differences are found in the values of β/prime' obtained from our model and those obtained from the more traditional, one dimensional slab model. A major additional effort in the present thesis relates to the development of a theory of temporal soliton switching in a planar geometry nonlinear directional coupler. The theory is formulated in terms of the supermodes of the total structure, and again accounts for the two transverse dimensions of the channels. To accurately determine the coupling length and switching power of the nonlinear coupler, we apply corrections to the propagation constants of the supermodes that account for the non-zero electromagnetic fields in the outer corner regions of the waveguide channels. It is shown for the case of a SiO2 based nonlinear directional coupler operating at the central wavelength of 1.55 μm, that these corrections have a significant effect on both the coupling length and the switching power. Finally, we develop the conditions under which single mode rectangular waveguides can have zero dispersion at the optical communications wavelengths 1.31 μm or 1.55 μm, and discuss the end-to-end coupling of rectangular waveguides to the standard optical fibers used in optical communications. Our results are expected to serve as a guide for the design of planar geometry based processing elements in a variety of optical communications devices.
Nonlinear optical interactions in silicon waveguides
NASA Astrophysics Data System (ADS)
Kuyken, B.; Leo, F.; Clemmen, S.; Dave, U.; Van Laer, R.; Ideguchi, T.; Zhao, H.; Liu, X.; Safioui, J.; Coen, S.; Gorza, S. P.; Selvaraja, S. K.; Massar, S.; Osgood, R. M.; Verheyen, P.; Van Campenhout, J.; Baets, R.; Green, W. M. J.; Roelkens, G.
2017-03-01
The strong nonlinear response of silicon photonic nanowire waveguides allows for the integration of nonlinear optical functions on a chip. However, the detrimental nonlinear optical absorption in silicon at telecom wavelengths limits the efficiency of many such experiments. In this review, several approaches are proposed and demonstrated to overcome this fundamental issue. By using the proposed methods, we demonstrate amongst others supercontinuum generation, frequency comb generation, a parametric optical amplifier, and a parametric optical oscillator.
High Power Broadband Multispectral Source on a Hybrid Silicon Chip
2017-03-14
insulator (SONOI) waveguide platform are demonstrated and emit over 200 mW pulsed output power at room temperature. Improvements are made to the 1.5-µm...silicon-on-nitride-on- insulator (SONOI) waveguide platform are demonstrated and emit over 200 mW pulsed output power at room temperature. Improvements are...optical bandwidth of the erbium-doped-fiber-amplifier with densely-spaced frequency channels. To extend the spectral capacity of the Si-on- insulator
Multimode Directional Coupler for Utilization of Harmonic Frequencies from TWTAs
NASA Technical Reports Server (NTRS)
Simmons, Rainee N.; Wintucky, Edwin G.
2013-01-01
A novel waveguide multimode directional coupler (MDC) intended for the measurement and potential utilization of the second and higher order harmonic frequencies from high-power traveling wave tube amplifiers (TWTAs) has been successfully designed, fabricated, and tested. The design is based on the characteristic multiple propagation modes of the electrical and magnetic field components of electromagnetic waves in a rectangular waveguide. The purpose was to create a rugged, easily constructed, more efficient waveguide- based MDC for extraction and exploitation of the second harmonic signal from the RF output of high-power TWTs used for space communications. The application would be a satellitebased beacon source needed for Qband and V/W-band atmospheric propagation studies. The MDC could function as a CW narrow-band source or as a wideband source for study of atmospheric group delay effects on highdata- rate links. The MDC is fabricated from two sections of waveguide - a primary one for the fundamental frequency and a secondary waveguide for the second harmonic - that are joined together such that the second harmonic higher order modes are selectively coupled via precision- machined slots for propagation in the secondary waveguide. In the TWTA output waveguide port, both the fundamental and the second harmonic signals are present. These signals propagate in the output waveguide as the dominant and higher order modes, respectively. By including an appropriate mode selective waveguide directional coupler, such as the MDC presented here at the output of the TWTA, the power at the second harmonic can be sampled and amplified to the power level needed for atmospheric propagation studies. The important conclusions from the preliminary test results for the multimode directional coupler are: (1) the second harmonic (Ka-band) can be measured and effectively separated from the fundamental (Ku-band) with no coupling of the latter, (2) power losses in the fundamental frequency are negligible, and (3) the power level of the extracted second harmonic is sufficient for further amplification to power levels needed for practical applications. It was also demonstrated that third order and potentially higher order harmonics are measurable with this device. The design is frequency agnostic, and with the appropriate choice of waveguides, is easily scaled to higher frequency TWTs. The MDC has the same function but with a number of important advantages over the conventional diplexer.
NASA Astrophysics Data System (ADS)
Chang, Daniel H.
The development of high speed polymer electro-optic modulators has seen steady and significant progress in recent years, enabling novel applications in RF-Photonics. Two of these are described in this Thesis: an Opto-Electronic Oscillator (OEO), which is a hybrid RF and optical oscillator capable of high spectral purity, and Photonic Time-Stretch, which is a signal processing technique for waveform spectral shifting with application to photonically-assisted A/D conversion. In both cases, the operating frequencies achieved have been the highest demonstrated to date. Application of this promising material to more complicated devices, however, is stymied by insertion loss performance. Current loss figures, while acceptable for single modulators, are too high for large arrays of modulators or intrinsically long devices such as AWGs or photonic-RF phase shifters. This is especially frustrating in light of a key virtue which polymers possess as a photonic material: its photolithographic process-ability makes patterning complex devices possible. Indeed, the current ascendancy of silica-based waveguide devices can be attributed largely to the same reason. In this Thesis, we also demonstrate the first hybrid device composed of silica planar lightwave circuits (PLCs) and polymer planar waveguides. Our approach utilizes grayscale lithography to enable vertical coupling between polymer and silica layers, minimizing entanglement of their respective fabrication processes. We have achieved coupling excess loss figures on the order of 1dB. We believe this is the natural next step in the development of electro-optic polymer devices. The two technologies are highly complementary. Silica PLCs, with excellent propagation loss and fiber coupling, are ideally suited for long passive waveguiding. By endowing them with the high-speed phase shifting capability offered by polymers, active wideband photonic devices of increasing complexity and array size can be contemplated.
Low-Noise MMIC Amplifiers for 120 to 180 GHz
NASA Technical Reports Server (NTRS)
Pukala, David; Samoska, Lorene; Peralta, Alejandro; Bayuk, Brian; Grundbacher, Ron; Oliver, Patricia; Cavus, Abdullah; Liu, Po-Hsin
2009-01-01
Three-stage monolithic millimeter-wave integrated-circuit (MMIC) amplifiers capable of providing useful amounts of gain over the frequency range from 120 to 180 GHz have been developed as prototype low-noise amplifiers (LNAs) to be incorporated into instruments for sensing cosmic microwave background radiation. There are also potential uses for such LNAs in electronic test equipment, passive millimeter- wave imaging systems, radar receivers, communication receivers, and systems for detecting hidden weapons. The main advantage afforded by these MMIC LNAs, relative to prior MMIC LNAs, is that their coverage of the 120-to-180-GHz frequency band makes them suitable for reuse in a wider variety of applications without need to redesign them. Each of these MMIC amplifiers includes InP transistors and coplanar waveguide circuitry on a 50- mthick chip (see Figure 1). Coplanar waveguide transmission lines are used for both applying DC bias and matching of input and output impedances of each transistor stage. Via holes are incorporated between top and bottom ground planes to suppress propagation of electromagnetic modes in the substrate. On the basis of computational simulations, each of these amplifiers was expected to operate with a small-signal gain of 14 dB and a noise figure of 4.3 dB. At the time of writing this article, measurements of noise figures had not been reported, but on-chip measurements had shown gains approaching their simulated values (see Figure 2).
NASA Tech Briefs, December 2010
NASA Technical Reports Server (NTRS)
2010-01-01
Topics include: Coherent Frequency Reference System for the NASA Deep Space Network; Diamond Heat-Spreader for Submillimeter-Wave Frequency Multipliers; 180-GHz I-Q Second Harmonic Resistive Mixer MMIC; Ultra-Low-Noise W-Band MMIC Detector Modules; 338-GHz Semiconductor Amplifier Module; Power Amplifier Module with 734-mW Continuous Wave Output Power; Multiple Differential-Amplifier MMICs Embedded in Waveguides; Rapid Corner Detection Using FPGAs; Special Component Designs for Differential-Amplifier MMICs; Multi-Stage System for Automatic Target Recognition; Single-Receiver GPS Phase Bias Resolution; Ultra-Wideband Angle-of-Arrival Tracking Systems; Update on Waveguide-Embedded Differential MMIC Amplifiers; Automation Framework for Flight Dynamics Products Generation; Product Operations Status Summary Metrics; Mars Terrain Generation; Application-Controlled Parallel Asynchronous Input/Output Utility; Planetary Image Geometry Library; Propulsion Design With Freeform Fabrication (PDFF); Economical Fabrication of Thick-Section Ceramic Matrix Composites; Process for Making a Noble Metal on Tin Oxide Catalyst; Stacked Corrugated Horn Rings; Refinements in an Mg/MgH2/H2O-Based Hydrogen Generator; Continuous/Batch Mg/MgH2/H2O-Based Hydrogen Generator; Strain System for the Motion Base Shuttle Mission Simulator; Ko Displacement Theory for Structural Shape Predictions; Pyrotechnic Actuator for Retracting Tubes Between MSL Subsystems; Surface-Enhanced X-Ray Fluorescence; Infrared Sensor on Unmanned Aircraft Transmits Time-Critical Wildfire Data; and Slopes To Prevent Trapping of Bubbles in Microfluidic Channels.
Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics.
Cheng, Dewen; Wang, Yongtian; Xu, Chen; Song, Weitao; Jin, Guofan
2014-08-25
Small thickness and light weight are two important requirements for a see-through near-eye display which are achieved in this paper by using two advanced technologies: geometrical waveguide and freeform optics. A major problem associated with the geometrical waveguide is the stray light which can severely degrade the display quality. The causes and solutions to this problem are thoroughly studied. A mathematical model of the waveguide is established and a non-sequential ray tracing algorithm is developed, which enable us to carefully examine the stray light of the planar waveguide and explore a global searching method to find an optimum design with the least amount of stray light. A projection optics using freeform surfaces on a wedge shaped prism is also designed. The near-eye display integrating the projection optics and the waveguide has a field of view of 28°, an exit pupil diameter of 9.6mm and an exit pupil distance of 20mm. In our final design, the proportion of the stray light energy over the image output energy of the waveguide is reduced to 2%, the modulation transfer function values across the entire field of the eyepiece are above 0.5 at 30 line pairs/mm (lps/mm). A proof-of-concept prototype of the proposed geometrical waveguide near-eye display is developed and demonstrated.
Fabrication of 8×8 MMI optical coupler in BK7 by ion-exchange
NASA Astrophysics Data System (ADS)
Li, Xia; Li, Xi-Hua; Zhou, Qiang; Jiang, Xiao-Qing; Yang, Jian-Yi; Wang, Ming-Hua
2005-01-01
The planar waveguide optical couplers are of prime importance in optical communication and optical signal processing system. Comparing with the optical fiber coupler (OFC) which fabricated by fused biconical taper technology, the planar waveguide couplers are more compact size, lower loss, better uniformity, easier manufacture and integration. Multimode interference (MMI) couplers have many advantages, such as compact size, wavelength and polarization insensitivity, fabrication tolerances and low loss, etc., which concentrate more and more attention. Conventional MMI devices are based on the uniform index waveguides. When the number of input/output waveguides becomes larger, the intrinsic propagation constant error, which will cause bad uniformity of output power, can"t be neglected. In fact, most waveguide devices are graded-index. With the enhanced compatibility of MMI coupler, the performance can be improved at the same time. Prior study shows that graded-index MMI couplers reach the best performance under certain index contrast. Among many available materials, glass is chosen to be the substrate of the coupler, because of its good features, such as low loss, ease fabrication, cheap cost, and so on. In this paper, an 8×8 MMI optical coupler is designed based on the principle of graded-index MMI. The coupler is composed of a waveguide, which is designed to support a large number of modes, and several access (usually single-mode) waveguides, which are used to launch light into and recover light from that multimode waveguide. The total length of the device is less than 3.5 centimeter, including S-bends which lead the multiple images to the output of the device with the spacing D=250μm to make the device fiber compatible. In this paper, we describe an experimental realization of the 8×8 graded-index MMI optical coupler and the measurement of its performance with the testing laser of the wavelength of 1.55μm. The device is fabricated by ion-exchange on BK7 glass substrate. During the ion-exchange process, a melting mixture of AgNO3 : (KNO3 : NaNO3) (molar ratio, 0.001:1) is used at 350~380°C for different times (range from 8 to 18 hours) to fabricate the coupler. The experimental results show that the performance of the optical coupler is quite promising. For instance, while launching light from No.5 waveguide, the uniformity of the device is approximately 0.72dB. Optimization of design and fabrication is going on to improve the total performance of the optical coupler.
Sub-wavelength grating structure on the planar waveguide (Conference Presentation)
NASA Astrophysics Data System (ADS)
Qing-Song, Zhu; Sheng-Hui, Chen
2016-10-01
Making progress in recent years, with the technology of the grating, the grating period can be reduced to shrink the size of the light coupler on a waveguide. The working wavelength of the light coupler can be in the range from the near-infrared to visible. In this study , we used E-gun evaporation system with ion-beam-assisted deposition system to fabricate bottom cladding (SiO2), guiding layer (Ta2O5) and Distributed Bragg Reflector(DBR) of the waveguide on the silicon substrate. Electron-beam lithography is used to make sub-wavelength gratings and reflector grating on the planar waveguide which is a coupling device on the guiding layer. The best fabrication parameters were analyzed to deposit the film. The exposure and development times also influenced to fabricate the grating quality. The purpose is to reduce the device size and enhance coupling efficiency which maintain normal incidence of the light . We designed and developed the device using the Finite-Difference Time-Domain (FDTD) method. The grating period, depth, fill factor, film thickness, Distributed Bragg Reflector(DBR) numbers and reflector grating period have been discussed to enhance coupling efficiency and maintained normal incidence of the light. According to the simulation results, when the wavelength is 1300 nm, the coupling grating period is 720 nm and the Ta2O5 film is 460 nm with 360 nm of reflector grating period and 2 layers of Distributed Bragg Reflector, which had the optimum coupling efficiency and normal incidence angle. In the measurement, We successfully measured the TE wave coupling efficiency of the photoresist grating coupling device.
Analysis and design of planar waveguide elements for use in filters and sensors
NASA Astrophysics Data System (ADS)
Chen, Guangzhou
In this dissertation we present both theoretical analysis and practical design considerations for planar optical waveguide devices. The analysis takes into account both transverse dimensions of the waveguides and is based on supermode theory combined with the resonance method for the determination of the propagation constants and field profiles of the supermodes. An improved accuracy has been achieved by including corrections due to the fields in the corner regions of the waveguides using perturbation theory. We analyze in detail two particular devices, an optical filter/combiner and an optical sensor. An optical wavelength filter/combiner is a common element in an integrated optical circuit. A new "bend free" filter/combiner is proposed and analyzed. The new wavelength filter consists of only straight parallel channels, which considerably simplify both the analysis and fabrication of the device. We show in detail how the operation of the device depends upon each of the design parameters. The intrinsic power loss in the proposed filter/combiner is minimized. The optical sensor is another important device and the sensitivity of measurement is an important issue in its design. Two operating mechanisms used in prior optical sensors are evanescent wave sensing or surface plasmon excitation. In this dissertation, we present a sensor with a directional coupler structure in which a measurand to be detected is interfaced with one side of the cladding. The analysis shows that it is possible to make a high resolution device by adjusting the design parameters. The dimensions and materials used in an optimized design are presented.
APTAMER CAPTURE AND OPTICAL INTERFEROMETRIC DETECTION OF CYANOBACTERIAL TOXINS
Cyanobacterial toxins have been identified as a health risk in source and finished waters passing through drinking water utilities in the United States. In this project, a rapid, sensitive and field usable sensor based on an aptamer modified planar waveguide interferometric se...
NASA Astrophysics Data System (ADS)
Kuriakose, Tintu; Baudet, Emeline; Halenkovič, Tomáš; Elsawy, Mahmoud M. R.; Němec, Petr; Nazabal, Virginie; Renversez, Gilles; Chauvet, Mathieu
2017-11-01
We present a reliable and original experimental technique based on the analysis of beam self-trapping to measure ultrafast optical nonlinearities in planar waveguides. The technique is applied to the characterization of Ge-Sb-Se chalcogenide films that allow Kerr induced self-focusing and soliton formation. Linear and nonlinear optical constants of three different chalcogenide waveguides are studied at 1200 and 1550 nm in femtosecond regime. Waveguide propagation loss and two photon absorption coefficients are determined by transmission analysis. Beam broadening and narrowing results are compared with simulations of the nonlinear Schrödinger equation solved by BPM method to deduce the Kerr n2 coefficients. Kerr optical nonlinearities obtained by our original technique compare favorably with the values obtained by Z-scan technique. Nonlinear refractive index as high as (69 ± 11) × 10-18m2 / W is measured in Ge12.5Sb25Se62.5 at 1200 nm with low nonlinear absorption and low propagation losses which reveals the great characteristics of our waveguides for ultrafast all optical switching and integrated photonic devices.
Design and fabrication of N x N optical couplers based on organic polymer optical waveguides
NASA Astrophysics Data System (ADS)
Krchnavek, Robert R.; Rode, Daniel L.
1994-08-01
In this report, we examine the design and fabrication of a planar, 10x10 optical coupler utilizing photopolymerizable organic polymers. Background information on the theory of operation of the coupler culminating in a set of design equations is presented. The details of the material processing are described, including the preparation of monomer mixtures that result in single-mode polymer waveguides (lambda = 1300 nm) that have core dimensions approximately equal to those of single-mode fiber. This is necessary to insure high coupling efficiency between the planar device and optical fiber. A unique method of aligning and attaching optical fibers to the coupler is demonstrated. This method relies on patterned alignment ways, a transcision cut, and single-mode D-fiber. A theoretical analysis of the in situ monitoring technique used to fabricate the single-mode D-fiber is presented and compared favorably with the experimental results. Finally, the 10x10 coupler is characterized. We have measured an excess loss of approximately 8 dB.
Bi-directional triplexer with butterfly MMI coupler using SU-8 polymer waveguides
NASA Astrophysics Data System (ADS)
Mareš, David; Jeřábek, Vítězslav; Prajzler, Václav
2015-01-01
We report about a design of a bi-directional planar optical multiplex/demultiplex filter (triplexer) for the optical part of planar hybrid WDM bi-directional transceiver in fiber-to-the-home (FTTH) PON applications. The triplex lightwave circuit is based on the Epoxy Novolak Resin SU-8 waveguides on the silica-on-silicon substrate with Polymethylmethacrylate cladding layer. The triplexer is comprised of a linear butterfly concept of multimode interference (MMI) coupler separating downstream optical signals of 1490 nm and 1550 nm. For the upstream channel of 1310 nm, an additional directional coupler (DC) is used to add optical signal of 1310 nm propagating in opposite direction. The optical triplexer was designed and optimized using beam propagation method. The insertion losses, crosstalk attenuation, and extinction ratio for all three inputs/outputs were investigated. The intended triplexer was designed using the parameters of the separated DC and MMI filter to approximate the idealized direct connection of both devices.
Polarization sensitive Multi-Chroic MKIDs
NASA Astrophysics Data System (ADS)
Johnson, Bradley R.; Flanigan, Daniel; Abitbol, Maximilian H.; Ade, Peter A. R.; Bryan, Sean; Cho, Hsiao-Mei; Datta, Rahul; Day, Peter; Doyle, Simon; Irwin, Kent; Jones, Glenn; Kernasovskiy, Sarah; Li, Dale; Mauskopf, Philip; McCarrick, Heather; McMahon, Jeff; Miller, Amber; Pisano, Giampaolo; Song, Yanru; Surdi, Harshad; Tucker, Carole
2016-07-01
We report on the development of scalable prototype microwave kinetic inductance detector (MKID) arrays tai- lored for future multi-kilo-pixel experiments that are designed to simultaneously characterize the polarization properties of both the cosmic microwave background (CMB) and Galactic dust emission. These modular arrays are composed of horn-coupled, polarization-sensitive MKIDs, and each pixel has four detectors: two polariza- tions in two spectral bands between 125 and 280 GHz. A horn is used to feed each array element, and a planar orthomode transducer, composed of two waveguide probe pairs, separates the incoming light into two linear po- larizations. Diplexers composed of resonant-stub band-pass filters separate the radiation into 125 to 170 GHz and 190 to 280 GHz pass bands. The millimeter-wave power is ultimately coupled to a hybrid co-planar waveguide microwave kinetic inductance detector using a novel, broadband circuit developed by our collaboration. Elec- tromagnetic simulations show the expected absorption efficiency of the detector is approximately 90%. Array fabrication will begin in the summer of 2016.
Indistinguishable and efficient single photons from a quantum dot in a planar nanobeam waveguide
NASA Astrophysics Data System (ADS)
KiršanskÄ--, Gabija; Thyrrestrup, Henri; Daveau, Raphaël S.; Dreeßen, Chris L.; Pregnolato, Tommaso; Midolo, Leonardo; Tighineanu, Petru; Javadi, Alisa; Stobbe, Søren; Schott, Rüdiger; Ludwig, Arne; Wieck, Andreas D.; Park, Suk In; Song, Jin D.; Kuhlmann, Andreas V.; Söllner, Immo; Löbl, Matthias C.; Warburton, Richard J.; Lodahl, Peter
2017-10-01
We demonstrate a high-purity source of indistinguishable single photons using a quantum dot embedded in a nanophotonic waveguide. The source features a near-unity internal coupling efficiency and the collected photons are efficiently coupled off chip by implementing a taper that adiabatically couples the photons to an optical fiber. By quasiresonant excitation of the quantum dot, we measure a single-photon purity larger than 99.4 % and a photon indistinguishability of up to 94 ±1 % by using p -shell excitation combined with spectral filtering to reduce photon jitter. A temperature-dependent study allows pinpointing the residual decoherence processes, notably the effect of phonon broadening. Strict resonant excitation is implemented as well as another means of suppressing photon jitter, and the additional complexity of suppressing the excitation laser source is addressed. The paper opens a clear pathway towards the long-standing goal of a fully deterministic source of indistinguishable photons, which is integrated on a planar photonic chip.
Ultracompact Pseudowedge Plasmonic Lasers and Laser Arrays.
Chou, Yu-Hsun; Hong, Kuo-Bin; Chang, Chun-Tse; Chang, Tsu-Chi; Huang, Zhen-Ting; Cheng, Pi-Ju; Yang, Jhen-Hong; Lin, Meng-Hsien; Lin, Tzy-Rong; Chen, Kuo-Ping; Gwo, Shangjr; Lu, Tien-Chang
2018-02-14
Concentrating light at the deep subwavelength scale by utilizing plasmonic effects has been reported in various optoelectronic devices with intriguing phenomena and functionality. Plasmonic waveguides with a planar structure exhibit a two-dimensional degree of freedom for the surface plasmon; the degree of freedom can be further reduced by utilizing metallic nanostructures or nanoparticles for surface plasmon resonance. Reduction leads to different lightwave confinement capabilities, which can be utilized to construct plasmonic nanolaser cavities. However, most theoretical and experimental research efforts have focused on planar surface plasmon polariton (SPP) nanolasers. In this study, we combined nanometallic structures intersecting with ZnO nanowires and realized the first laser emission based on pseudowedge SPP waveguides. Relative to current plasmonic nanolasers, the pseudowedge plasmonic lasers reported in our study exhibit extremely small mode volumes, high group indices, high spontaneous emission factors, and high Purell factors beneficial for the strong interaction between light and matter. Furthermore, we demonstrated that compact plasmonic laser arrays can be constructed, which could benefit integrated plasmonic circuits.
Low-cost 20-22 GHz MIC active receiver/radiometer
NASA Technical Reports Server (NTRS)
Mollenkopf, Steven; Katehi, Linda P. B.; Rebeiz, Gabriel M.
1995-01-01
A microwave integrated circuit active receiver is built and tested at 19-25 GHz. The receiver consists of a planar CPW-fed double folded-slot antenna coupled to a six-stage MESFET (metal semiconductor field effect transistors) amplifier and followed by a planar Schottky-diode detector. The folded-slot antenna on a GaAs half-space results in a wide frequency bandwidth suitable for MMIC amplifiers. The measured system performance show a video responsivity close to 1 GV/W at 20 GHz with a 3-dB bandwidth of 1500 MHz. A novel method which uses the planar video detector after the amplifier stages as an RF (radio frequency) mixer is used to measure the noise-figure of the direct detection radiometer. The system noise figure is 4.8 dB at 22 GHz. The radiometer sensitivity to a hot/cold load is 3.8 mu V/K. The measured antenna patterns show a 90% Gaussicity at 20-22 GHz. The active MIC receiver can be integrated monolithically for low-cost applications and is well suited for millimeter-wave linear imaging arrays.
Rotational MEMS mirror with latching arm for silicon photonics
NASA Astrophysics Data System (ADS)
Brière, Jonathan; Beaulieu, Philippe-Olivier; Saidani, Menouer; Nabki, Frederic; Menard, Michaël.
2015-02-01
We present an innovative rotational MEMS mirror that can control the direction of propagation of light beams inside of planar waveguides implemented in silicon photonics. Potential applications include but are not limited to optical telecommunications, medical imaging, scan and spectrometry. The mirror has a half-cylinder shape with a radius of 300 μm that provides low and constant optical losses over the full angular displacement range. A circular comb drive structure is anchored such that it allows free or latched rotation experimentally demonstrated over 8.5° (X-Y planar rotational movement) using 290V electrostatic actuation. The entire MEMS structure was implemented using the MEMSCAP SOIMUMPs process. The center of the anchor beam is designed to be the approximate rotation point of the circular comb drive to counter the rotation offset of the mirror displacement. A mechanical characterization of the MEMS mirror is presented. The latching mechanism provides up to 20 different angular locking positions allowing the mirror to counter any resonance or vibration effects and it is actuated with an electrostatic linear comb drive. An innovative gap closing structure was designed to reduce optical propagation losses due to beam divergence in the interstitial space between the mirror and the planar waveguide. The gap closing structure is also electrostatically actuated and includes two side stoppers to prevent stiction.
Propagational characteristics in a warm hybrid plasmonic waveguide
NASA Astrophysics Data System (ADS)
Mahmodi Moghadam, M.; Shahmansouri, M.; Farokhi, B.
2017-12-01
We theoretically analyze the properties of guided modes in a warm planar conductor-gap-dielectric (CGD) system. The latter consists of a high index dielectric, separated from a warm metallic plasma with a low index nano-sized dielectric layer (gap) by using the hydrodynamic model coupled to Maxwell's equations. The effects of thermal pressure on the confinement and the propagation losses of Hybrid Plasmon Polariton (HPP) modes are studied. We found that the thermal effect leads to a reduction in the effective refractive index as well as in the propagation losses of the HPP mode. Furthermore, the cutoff thickness in the warm CGD waveguide is found to be smaller than that in a cold CGD waveguide. The results may be useful in understanding the essential physics of active/passive Plasmonic devices and chip-scale systems.
Linear-log counting-rate meter uses transconductance characteristics of a silicon planar transistor
NASA Technical Reports Server (NTRS)
Eichholz, J. J.
1969-01-01
Counting rate meter compresses a wide range of data values, or decades of current. Silicon planar transistor, operating in the zero collector-base voltage mode, is used as a feedback element in an operational amplifier to obtain the log response.
High Efficiency Ka-Band Solid State Power Amplifier Waveguide Power Combiner
NASA Technical Reports Server (NTRS)
Wintucky, Edwin G.; Simons, Rainee N.; Chevalier, Christine T.; Freeman, Jon C.
2010-01-01
A novel Ka-band high efficiency asymmetric waveguide four-port combiner for coherent combining of two Monolithic Microwave Integrated Circuit (MMIC) Solid State Power Amplifiers (SSPAs) having unequal outputs has been successfully designed, fabricated and characterized over the NASA deep space frequency band from 31.8 to 32.3 GHz. The measured combiner efficiency is greater than 90 percent, the return loss greater than 18 dB and input port isolation greater than 22 dB. The manufactured combiner was designed for an input power ratio of 2:1 but can be custom designed for any arbitrary power ratio. Applications considered are NASA s space communications systems needing 6 to 10 W of radio frequency (RF) power. This Technical Memorandum (TM) is an expanded version of the article recently published in Institute of Engineering and Technology (IET) Electronics Letters.
Multiple Differential-Amplifier MMICs Embedded in Waveguides
NASA Technical Reports Server (NTRS)
Kangaslahti, Pekka; Schlecht, Erich
2010-01-01
Compact amplifier assemblies of a type now being developed for operation at frequencies of hundreds of gigahertz comprise multiple amplifier units in parallel arrangements to increase power and/or cascade arrangements to increase gains. Each amplifier unit is a monolithic microwave integrated circuit (MMIC) implementation of a pair of amplifiers in differential (in contradistinction to single-ended) configuration. Heretofore, in cascading amplifiers to increase gain, it has been common practice to interconnect the amplifiers by use of wires and/or thin films on substrates. This practice has not yielded satisfactory results at frequencies greater than 200 Hz, in each case, for either or both of two reasons: Wire bonds introduce large discontinuities. Because the interconnections are typically tens of wavelengths long, any impedance mismatches give rise to ripples in the gain-vs.-frequency response, which degrade the performance of the cascade.
NASA Astrophysics Data System (ADS)
Korenev, Vladimir V.; Savelyev, Artem V.; Zhukov, Alexey E.; Maximov, Mikhail V.; Omelchenko, Alexander V.
2015-05-01
Ways to improve beam divergence and energy consumption of quantum dot lasers emitting via the ground-state optical transitions by optimization of the key parameters of laser active region are discussed. It is shown that there exist an optimal cavity length, dispersion of inhomogeneous broadening and number of QD layers in active region allowing to obtain lasing spectrum of a given width at minimum injection current. The planar dielectric waveguide of the laser is optimized by analytical means for a better trade-off between high Γ-factor and low beam divergence.
Large core plastic planar optical splitter fabricated by 3D printing technology
NASA Astrophysics Data System (ADS)
Prajzler, Václav; Kulha, Pavel; Knietel, Marian; Enser, Herbert
2017-10-01
We report on the design, fabrication and optical properties of large core multimode optical polymer splitter fabricated using fill up core polymer in substrate that was made by 3D printing technology. The splitter was designed by the beam propagation method intended for assembling large core waveguide fibers with 735 μm diameter. Waveguide core layers were made of optically clear liquid adhesive, and Veroclear polymer was used as substrate and cover layers. Measurement of optical losses proved that the insertion optical loss was lower than 6.8 dB in the visible spectrum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tzuang, C.K.C.
1986-01-01
Various MMIC (monolithic microwave integrated circuit) planar waveguides have shown possible existence of a slow-wave propagation. In many practical applications of these slow-wave circuits, the semiconductor devices have nonuniform material properties that may affect the slow-wave propagation. In the first part of the dissertation, the effects of the nonuniform material properties are studied by a finite-element method. In addition, the transient pulse excitations of these slow-wave circuits also have great theoretical and practical interests. In the second part, the time-domain analysis of a slow-wave coplanar waveguide is presented.
Cryogenic Amplifier Based Receivers at Submillimeter Wavelengths
NASA Technical Reports Server (NTRS)
Chattopadhyay, Goutam; Reck, Theodore and; Schlecht, Erich; Lin, Robert; Deal, William
2012-01-01
The operating frequency of InP high electron mobility transistor (HEMT) based amplifiers has moved well in the submillimeter-wave frequencies over the last couple of years. Working amplifiers with usable gain in waveguide packages has been reported beyond 700 GHz. When cooled cryogenically, they have shown substantial improvement in their noise temperature. This has opened up the real possibility of cryogenic amplifier based heterodyne receivers at submillimeter wavelengths for ground-based, air-borne, and space-based instruments for astrophysics, planetary, and Earth science applications. This paper provides an overview of the science applications at submillimeter wavelengths that will benefit from this technology. It also describes the current state of the InP HEMT based cryogenic amplifier receivers at submillimeter wavelengths.
NASA Astrophysics Data System (ADS)
Puscas, Liliana A.; Galatus, Ramona V.; Puscas, Niculae N.
In this article, we report a theoretical study concerning some statistical parameters which characterize the single- and double-pass Er3+-doped Ti:LiNbO3 M-mode straight waveguides. For the derivation and the evaluation of the Fano factor, the statistical fluctuation and the spontaneous emission factor we used a quasi two-level model in the small gain approximation and the unsaturated regime. The simulation results show the evolution of these parameters under various pump regimes and waveguide lengths. The obtained results can be used for the design of complex rare earth-doped integrated circuits.
Bulla, Douglas A P; Li, Wei-Tang; Charles, Christine; Boswell, Rod; Ankiewicz, Adrian; Love, John
2004-05-10
Planar silicon dioxide optical waveguides were deposited by use of a plasma-activated reactive evaporation system, at a low deposition temperature and with reduced hydrogen contamination, on thermally oxidized silicon wafers. The deposited films show a refractive-index inhomogeneity of less than 0.1%, a thickness nonuniformity of less than 5%, and a material birefringence of approximately 5 x 10(-4). Rib-type channel waveguides were formed on the deposited films by means of hydrofluoric acid etching. The transmission loss of the rib waveguides is determined to be as low as 0.3 dB/cm at a wavelength of 1310 nm for TE polarization, after subtraction of the calculated leakage and scattering losses. Owing to the presence of the OH vibrational overtone band, an additional loss peak of 1 dB/cm is found near the 1385-nm wavelength. The experimental results of transmission loss at wavelengths of 1310 and 1550 nm are compared with analytic expressions for interface scattering and leakage loss.
Label-free silicon photonic biosensor system with integrated detector array.
Yan, Rongjin; Mestas, Santano P; Yuan, Guangwei; Safaisini, Rashid; Dandy, David S; Lear, Kevin L
2009-08-07
An integrated, inexpensive, label-free photonic waveguide biosensor system with multi-analyte capability has been implemented on a silicon photonics integrated circuit from a commercial CMOS line and tested with nanofilms. The local evanescent array coupled (LEAC) biosensor is based on a new physical phenomenon that is fundamentally different from the mechanisms of other evanescent field sensors. Increased local refractive index at the waveguide's upper surface due to the formation of a biological nanofilm causes local modulation of the evanescent field coupled into an array of photodetectors buried under the waveguide. The planar optical waveguide biosensor system exhibits sensitivity of 20%/nm photocurrent modulation in response to adsorbed bovine serum albumin (BSA) layers less than 3 nm thick. In addition to response to BSA, an experiment with patterned photoresist as well as beam propagation method simulations support the evanescent field shift principle. The sensing mechanism enables the integration of all optical and electronic components for a multi-analyte biosensor system on a chip.
NASA Astrophysics Data System (ADS)
Maru, Koichi; Abe, Yukio; Uetsuka, Hisato
2008-10-01
We demonstrated a compact and low-loss athermal arrayed-waveguide grating (AWG) module utilizing silica-based planar lightwave circuit (PLC) technology. Spot-size converters based on a vertical ridge-waveguide taper were integrated with a 2.5%-Δ athermal AWG to reduce the loss at chip-to-fiber interface. Spot-size converters based on a segmented core were formed around resin-filled trenches for athermalization formed in the slab to reduce the diffraction loss at the trenches. A 16-channel athermal AWG module with 100-GHz channel spacing was fabricated. The use of a 2.5%-Δ athermal chip with a single-side fiber array enabled a compact package of the size of 41.6×16.6×4.5 mm3. Athermal characteristics and a small insertion loss of 3.5-3.8 dB were obtained by virtue of low fiber-to-chip coupling loss and athermalization with low excess loss.
Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current.
DeRose, Christopher T; Trotter, Douglas C; Zortman, William A; Starbuck, Andrew L; Fisher, Moz; Watts, Michael R; Davids, Paul S
2011-12-05
We present a compact 1.3 × 4 μm2 Germanium waveguide photodiode, integrated in a CMOS compatible silicon photonics process flow. This photodiode has a best-in-class 3 dB cutoff frequency of 45 GHz, responsivity of 0.8 A/W and dark current of 3 nA. The low intrinsic capacitance of this device may enable the elimination of transimpedance amplifiers in future optical data communication receivers, creating ultra low power consumption optical communications.
Hawking radiation in an electromagnetic waveguide?
Schützhold, Ralf; Unruh, William G
2005-07-15
It is demonstrated that the propagation of electromagnetic waves in an appropriately designed waveguide is (for large wavelengths) analogous to that within a curved space-time--such as around a black hole. As electromagnetic radiation (e.g., microwaves) can be controlled, amplified, and detected (with present-day technology) much easier than sound, for example, we propose a setup for the experimental verification of the Hawking effect. Apart from experimentally testing this striking prediction, this would facilitate the investigation of the trans-Planckian problem.
Optimizing the G/T ratio of the DSS-13 34-meter beam-waveguide antenna
NASA Technical Reports Server (NTRS)
Esquivel, M. S.
1992-01-01
Calculations using Physical Optics computer software were done to optimize the gain-to-noise temperature (G/T) ratio of DSS-13, the DSN's 34-m beam-waveguide antenna, at X-band for operation with the ultra-low-noise amplifier maser system. A better G/T value was obtained by using a 24.2-dB far-field-gain smooth-wall dual-mode horn than by using the standard X-band 22.5-dB-gain corrugated horn.
NASA Technical Reports Server (NTRS)
Burkholder, R. J.; Pathak, P. H.
1988-01-01
The electromagnetic (EM) scattering from a planar termination located inside relatively arbitrarily shaped open-ended waveguide cavities with smoothly curved interior walls is analyzed using a Gaussian Beam (GB) expansion of the incident plane wave fields in the open end. The cavities under consideration may contain perfectly-conducting interior walls with or without a thin layer of material coating, or the walls may be characterized by an impedance boundary condition. In the present approach, the GB's are tracked only to the termination of the waveguide cavity via beam reflections from interior waveguide cavity walls. The Gaussian beams are tracked approximately only along their beam axes; this approximation which remains valid for relatively well focussed beams assumes that an incident GB gives rise to a reflected GB with parameters related to the incident beam and the radius of curvature of the wall. It is found that this approximation breaks down for GB's which come close to grazing a convex surface and when the width of the incident beam is comparable to the radius of curvature of the surface. The expansion of the fields at the open end depend on the incidence angle only through the expansion coefficients, so the GB's need to be tracked through the waveguide cavity only once for a wide range of incidence angles. At the termination, the sum of all the GB's are integrated using a result developed from a generalized reciprocity principle, to give the fields scattered from the interior of the cavity. The rim edge at the open end of the cavity is assumed to be sharp and the external scattering from the rim is added separately using Geometrical Theory of Diffraction. The results based on the present approach are compared with solutions based on the hybrid asymptotic modal method. The agreement is found to be very good for cavities made up of planar surfaces, and also for cavities with curved surfaces which are not too long with respect to their width.
Photosensitivity study of GeS2 chalcogenide glass under femtosecond laser pulses irradiation
NASA Astrophysics Data System (ADS)
Ayiriveetil, Arunbabu; Sabapathy, Tamilarasan; Kar, Ajoy K.; Asokan, Sundarrajan
2015-07-01
The present study discusses the photosensitivity of GeS2 chalcogenide glass in response to irradiation with femtosecond pulses at 1047 nm. Bulk GeS2 glasses are prepared by conventional melt quenching technique and the amorphous nature of the glass is confirmed using X-ray diffraction. Ultrafast laser inscription technique is used to fabricate the straight channel waveguides in the glass. Single scan and multi scan waveguides are inscribed in GeS2 glasses of length 0.65 cm using a master oscillator power amplifier Yb doped fiber laser (IMRA μjewel D400) with different pulse energy and translation speed. Diameters of the inscribed waveguides are measured and its dependence on the inscription parameters such as translation speed and pulse energy is studied. Butt coupling method is used to characterize the loss measurement of the inscribed optical waveguides. The mode field image of the waveguides is captured using CCD camera and compared with the mode field image of a standard SMF-28 fibers.
A 1.5 THz hot-electron bolometer mixer operated by a planar diode based local oscillator
NASA Technical Reports Server (NTRS)
Tong, C. Y. E.; Meledin, D.; Blundell, R.; Erickson, N.; Mehdi, I.; Goltsman, G.
2003-01-01
We have developed a 1.5 THz superconducting NbN Hot-Electron Bolometer mixer. It is oprated by an all-solid-state Local Oscillator comprising of a cascade of 4 planar doublers following an MMIC based W-band power amplifier.
NASA Astrophysics Data System (ADS)
Gladkii, V. P.; Nikitin, V. A.; Prokhorov, V. P.; Yakovenko, N. A.
1995-10-01
The results are given of technologic and circuit-engineering development of planar micro-optics components made of glasses and of lithium niobate. These components are intended for devices to be used in logic—arithmetic processing of information.
NASA Astrophysics Data System (ADS)
Hedayatian, F.; Salem, M. K.; Saviz, S.
2018-01-01
In this study, microwave radiation is used to excite hybrid modes in a radially inhomogeneous cold plasma-filled cylindrical waveguide in the presence of external static magnetic field applied along the waveguide axis. The analytical expressions for EH0l field components, which accelerate an injected electron in the waveguide, are calculated. To study the effects of radial inhomogeneity on the electron dynamics and its acceleration, a model based on the Bessel-Fourier expansion is used while considering hybrid modes E H0 l(l =1 ,2 ,3 ,4 ) inside the waveguide, and the results are compared with the homogeneous plasma waveguide. The numerical results show that the field components related to the coupled EH0l modes are amplified due to radial inhomogeneity, which leads to an increase in the electron's energy gain. It is found that, if the waveguide is filled with radially inhomogeneous plasma, the electron acquires a higher energy gain while covering a shorter distance along the waveguide length (60 MeV energy gain in 1.1 cm distance along the waveguide length), so, a waveguide with a lesser length and a higher energy gain can be designed. The effects of radial inhomogeneity are studied on the deflection angle, the radial position, and the trajectory of an electron in the waveguide. The effects of the initial phase of the wave, injection point of the electron, and microwave power density are also investigated on the electron's energy gain. It is shown that the present model is applicable to both homogeneous and radially inhomogeneous plasma waveguides.
Mode-independent attenuation in evanescent-field sensors
NASA Astrophysics Data System (ADS)
Gnewuch, Harald; Renner, Hagen
1995-03-01
Generally, the total power attenuation in multimode evanescent-field sensor waveguides is nonproportional to the bulk absorbance because the modal attenuation constants differ. Hence a direct measurement is difficult and is additionally aggravated because the waveguide absorbance is highly sensitive to the specific launching conditions at the waveguide input. A general asymptotic formula for the modal power attenuation in strongly asymmetric inhomogeneous planar waveguides with arbitrarily distributed weak absorption in the low-index superstrate is derived. Explicit expressions for typical refractive-index profiles are given. Except when very close to the cutoff, the predicted asymptotic attenuation behavior agrees well with exact calculations. The ratio of TM versus TE absorption has been derived to be (2 - n0 2/nf2 ) for arbitrary profiles. Waveguides with a linear refractive-index profile show mode-independent attenuation coefficients within each polarization. Further, the asymptotic sensitivity is independent of the wavelength, so that it should be possible to directly measure the spectral variation of the bulk absorption. The mode independence of the attenuation has been verified experimentally for a second-order polynomial profile, which is close to a linear refractive-index distribution. In contrast, the attenuation in the step-profile waveguide has been found to depend strongly on the mode number, as predicted by theory. A strong spread of the modal attenuation coefficients is also predicted for the parabolic-profile waveguide sensor.
Cross-fiber Bragg grating transducer
NASA Technical Reports Server (NTRS)
Albin, Sacharia (Inventor); Zheng, Jianli (Inventor); Lavarias, Arnel (Inventor)
2000-01-01
A transducer has been invented that uses specially-oriented gratings in waveguide a manner that allows the simultaneous measurement of physical phenomena (such as shear force, strain and temperature) in a single sensing element. The invention has a highly sensitive, linear response and also has directional sensitivity with regard to strain. The transducer has a waveguide with a longitudinal axis as well as two Bragg gratings. The transducer has a first Bragg grating associated with the waveguide that has an angular orientation .theta..sub.a relative to a perpendicular to the longitudinal axis such that 0.degree.<.theta..sub.a <.theta..sub.max. The second Bragg grating is associated with the waveguide in such a way that the angular orientation .theta..sub.b of the grating relative to a perpendicular to the longitudinal axis is (360.degree.-.theta..sub.max)<.theta..sub.b <360.degree.. The first Bragg grating can have a periodicity .LAMBDA..sub.a and the second Bragg grating can have a periodicity .LAMBDA..sub.b such that the periodicity .LAMBDA..sub.a of the first Bragg grating does not equal the periodicity .LAMBDA..sub.b of the second Bragg grating. The angle of the gratings can be such that .theta..sub.a =360.degree.-.theta..sub.b. The waveguide can assume a variety of configurations, including an optical fiber, a rectangular waveguide and a planar waveguide. The waveguide can be fabricated of a variety of materials, including silica and polymer material.
MWP phase shifters integrated in PbS-SU8 waveguides.
Hervás, Javier; Suárez, Isaac; Pérez, Joaquín; Cantó, Pedro J Rodríguez; Abargues, Rafael; Martínez-Pastor, Juan P; Sales, Salvador; Capmany, José
2015-06-01
We present new kind of microwave phase shifters (MPS) based on dispersion of PbS colloidal quantum dots (QDs) in commercially available photoresist SU8 after a ligand exchange process. Ridge PbS-SU8 waveguides are implemented by integration of the nanocomposite in a silicon platform. When these waveguides are pumped at wavelengths below the band-gap of the PbS QDs, a phase shift in an optically conveyed (at 1550 nm) microwave signal is produced. The strong light confinement produced in the ridge waveguides allows an improvement of the phase shift as compared to the case of planar structures. Moreover, a novel ridge bilayer waveguide composed by a PbS-SU8 nanocomposite and a SU8 passive layer is proposed to decrease the propagation losses of the pump beam and in consequence to improve the microwave phase shift up to 36.5° at 25 GHz. Experimental results are reproduced by a theoretical model based on the slow light effect produced in a semiconductor waveguide due to the coherent population oscillations. The resulting device shows potential benefits respect to the current MPS technologies since it allows a fast tunability of the phase shift and a high level of integration due to its small size.
NASA Astrophysics Data System (ADS)
Katayose, Satomi; Hashizume, Yasuaki; Itoh, Mikitaka
2016-08-01
We experimentally demonstrated a 1 × 8 silicon-silica hybrid thermo-optic switch based on an optical phased array using a multi-chip integration technique. The switch consists of a silicon chip with optical phase shifters and two silica-based planar lightwave circuit (PLC) chips composed of optical couplers and fiber connections. We adopted a rib waveguide as the silicon waveguide to reduce the coupling loss and increase the alignment tolerance for coupling between silicon and silica waveguides. As a result, we achieved a fast switching response of 81 µs, a high extinction ratio of over 18 dB and a low insertion loss of 4.9-8.1 dB including a silicon-silica coupling loss of 0.5 ± 0.3 dB at a wavelength of 1.55 µm.
NASA Astrophysics Data System (ADS)
Seddon, Angela B.; Abdel-Moneim, Nabil S.; Zhang, Lian; Pan, Wei J.; Furniss, David; Mellor, Christopher J.; Kohoutek, Tomas; Orava, Jiri; Wagner, Tomas; Benson, Trevor M.
2014-07-01
The versatility of hot embossing for shaping photonic components on-chip for mid-infrared (IR) integrated optics, using a hard mold, is demonstrated. Hot embossing via fiber-on-glass (FOG), thermally evaporated films, and radio frequency (RF)-sputtered films on glass are described. Mixed approaches of combined plasma etching and hot embossing increase the versatility still further for engineering optical circuits on a single platform. Application of these methodologies for fabricating molecular-sensing devices on-chip is discussed with a view to biomedical sensing. Future prospects for using photonic integration for the new field of mid-IR molecular sensing are appraised. Also, common methods of measuring waveguide optical loss are critically compared, regarding their susceptibility to artifacts which tend artificially to depress, or enhance, the waveguide optical loss.
NASA Astrophysics Data System (ADS)
Williams, David J.
The present volume on nonlinear optical properties of organic materials discusses organic nonlinear optics, polymers for nonlinear optics, characterization of nonlinear properties, photorefractive and second-order materials, harmonic generation in organic materials, and devices and applications. Particular attention is given to organic semiconductor-doped polymer glasses as novel nonlinear media, heterocyclic nonlinear optical materials, loss measurements in electrooptic polymer waveguides, the phase-matched second-harmonic generation in planar waveguides, electrooptic measurements in poled polymers, transient effects in spatial light modulation by nonlinearity-absorbing molecules, the electrooptic effects in organic single crystals, surface acoustic wave propagation in an organic nonlinear optical crystal, nonlinear optics of astaxanthin thin films; and advanced high-temperature polymers for integrated optical waveguides. (No individual items are abstracted in this volume)
NASA Astrophysics Data System (ADS)
Desfours, Caroline; Calas-Etienne, Sylvie; Horvath, Robert; Martin, Marta; Gergely, Csilla; Cuisinier, Frédéric; Etienne, Pascal
2014-02-01
The aim of this work is to demonstrate the sensing ability of reverse-symmetry waveguides to investigate adsorption of casein and build-up of poly-L-lysine mediated casein multilayers. A first part of this study is dedicated to the elaboration and characterization of ultra-porous thin films with very low refractive indices by an appropriate sol-gel method. This will form the basis of our planar optical sensors. Optical waveguide light mode spectroscopy is a real-time and sensitive method to study protein adsorption kinetics and lipid bilayers. We used it to test the obtained waveguides for in-situ monitoring of biomolecule adsorption. As a result, significant changes in the incoupling peak position were observed during the layer-by-layer adsorption. Finally, refractive index and thickness of the adsorbed layers were established.
3D imaging LADAR with linear array devices: laser, detector and ROIC
NASA Astrophysics Data System (ADS)
Kameyama, Shumpei; Imaki, Masaharu; Tamagawa, Yasuhisa; Akino, Yosuke; Hirai, Akihito; Ishimura, Eitaro; Hirano, Yoshihito
2009-07-01
This paper introduces the recent development of 3D imaging LADAR (LAser Detection And Ranging) in Mitsubishi Electric Corporation. The system consists of in-house-made key devices which are linear array: the laser, the detector and the ROIC (Read-Out Integrated Circuit). The laser transmitter is the high power and compact planar waveguide array laser at the wavelength of 1.5 micron. The detector array consists of the low excess noise Avalanche Photo Diode (APD) using the InAlAs multiplication layer. The analog ROIC array, which is fabricated in the SiGe- BiCMOS process, includes the Trans-Impedance Amplifiers (TIA), the peak intensity detectors, the Time-Of-Flight (TOF) detectors, and the multiplexers for read-out. This device has the feature in its detection ability for the small signal by optimizing the peak intensity detection circuit. By combining these devices with the one dimensional fast scanner, the real-time 3D range image can be obtained. After the explanations about the key devices, some 3D imaging results are demonstrated using the single element key devices. The imaging using the developed array devices is planned in the near future.
NASA Astrophysics Data System (ADS)
She, Xuan; Li, Bei; Chen, Kan; Li, Ke; Shu, Xiaowu; Liu, Cheng
2017-02-01
We present a design of a laterally tapered optical waveguide mode-size converter from super luminescent diode (SLD) to silica-based planar lightwave circuit (PLC). The mode-size converter is based on silica-based PLC. By using three dimensional semi-vectorial beam propagation methods, laterally tapered waveguides with different boundaries are simulated and compared with each other, where the factors of polarization-dependent loss and coupling loss are mainly focused on. The results show that the most influential factor for polarization-dependent loss is the ratio of the divergence angle of SLD in the horizontal direction and the vertical direction. The refractive index difference Δ between core layer and cladding layer, core width of endface and taper length influence coupling loss mostly, while the effect of all side boundaries is within 0.05 dB. We also investigate the SLD misalignment tolerance and wavelength bandwidth's impact on coupling loss. Furthermore, we examine the performance of the mode-size converter based on a particular SLD which has a divergence angle of 30°×45°. By optimizing the parameters of the tapered waveguide, the coupling efficiency is increased to 62.4% and the polarization-dependent loss is reduced to 0.035 dB. Meanwhile, it eΔnables us to reduce the coupling loss variation to 0.05dB with core width of endface fabrication tolerance of ±0.5 μm and taper length tolerance of ±0.5 mm. The proposed mode-size converter has been demonstrated to be well performed, implying its application in the optical transceiver module using SLD as light source and hybrid integration of III-V semiconductor waveguiding devices and PLCs.
Su, Hui; Kondratko, Piotr; Chuang, Shun L
2006-05-29
We investigate variable optical delay of a microwave modulated optical beam in semiconductor optical amplifier/absorber waveguides with population oscillation (PO) and nearly degenerate four-wave-mixing (NDFWM) effects. An optical delay variable between 0 and 160 ps with a 1.0 GHz bandwidth is achieved in an InGaAsP/InP semiconductor optical amplifier (SOA) and shown to be electrically and optically controllable. An analytical model of optical delay is developed and found to agree well with the experimental data. Based on this model, we obtain design criteria to optimize the delay-bandwidth product of the optical delay in semiconductor optical amplifiers and absorbers.
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Wintucky, Edwin G.
2014-01-01
This paper presents the design and test results of a CW millimeter-wave satellite beacon source, based on the second harmonic from a traveling-wave tube amplifier and utilizes a novel waveguide multimode directional coupler. A potential application of the beacon source is for investigating the atmospheric effects on Q-band (37 to 42 GHz) and V/W-band (71 to 76 GHz) satellite-to-ground signals.
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Wintucky, Edwin G.
2014-01-01
This paper presents the design and test results of a CW millimeter-wave satellite beacon source, based on the second harmonic from a traveling-wave tube amplifier and utilizes a novel waveguide multimode directional coupler. A potential application of the beacon source is for investigating the atmospheric effects on Q-band (37-42 GHz) and V/W-band (71- 76 GHz) satellite-to-ground signals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brächer, T.; Graduate School Materials Science in Mainz, Gottlieb-Daimler-Strasse 47, D-67663 Kaiserslautern; Pirro, P.
2014-03-03
We present the experimental observation of localized parallel parametric generation of spin waves in a transversally in-plane magnetized Ni{sub 81}Fe{sub 19} magnonic waveguide. The localization is realized by combining the threshold character of parametric generation with a spatially confined enhancement of the amplifying microwave field. The latter is achieved by modulating the width of the microstrip transmission line which is used to provide the pumping field. By employing microfocussed Brillouin light scattering spectroscopy, we analyze the spatial distribution of the generated spin waves and compare it with numerical calculations of the field distribution along the Ni{sub 81}Fe{sub 19} waveguide. Thismore » provides a local spin-wave excitation in transversally in-plane magnetized waveguides for a wide wave-vector range which is not restricted by the size of the generation area.« less
Large area single-mode parity-time-symmetric laser amplifiers.
Miri, Mohammad-Ali; LiKamWa, Patrik; Christodoulides, Demetrios N
2012-03-01
By exploiting recent developments associated with parity-time (PT) symmetry in optics, we here propose a new avenue in realizing single-mode large area laser amplifiers. This can be accomplished by utilizing the abrupt symmetry breaking transition that allows the fundamental mode to experience gain while keeping all the higher order modes neutral. Such PT-symmetric structures can be realized by judiciously coupling two multimode waveguides, one exhibiting gain while the other exhibits an equal amount of loss. Pertinent examples are provided for both semiconductor and fiber laser amplifiers. © 2012 Optical Society of America
High sensitivity waveguide micro-displacement sensor based on intermodal interference
NASA Astrophysics Data System (ADS)
Ji, Lanting; He, Guobing; Gao, Yang; Xu, Yan; Liang, Honglei; Sun, Xiaoqiang; Wang, Xibin; Yi, Yunji; Chen, Changming; Wang, Fei; Zhang, Daming
2017-11-01
An optical waveguide displacement sensor according to core-cladding modes interference is theoretically proposed and experimentally demonstrated. Ultraviolet sensitive SU-8 polymer on silica is used as the guiding layer. It is covered by a 12 nm thick planar gold grating. The air gap sensing head which consists of the waveguide end and the single-mode fiber facet can realize the displacement detection by monitoring the wavelength dip shifting in transmission spectra. Cladding modes propagating in the exposed SU-8 can be effectively excited by the end-fire coupling because of the mode field mismatch between the SU-8 waveguide and lead-in fiber. A sinusoidal pattern transmission spectrum in C-band with the depth of over 14 dB can be observed due to the interference between the core and cladding modes. Peaks in the transmission spectrum vary continuously with the position offset of input fiber facet from the center of waveguide end. Both the sensitivity and the stability of sensing are enhanced by the introduction of nanometric gold gratings. The fabricated displacement sensor exhibits a high sensitivity of 2.3 nm μm-1, promising potentials for micromechanical processing and integrated optics application.
Optical gain at 650 nm from a polymer waveguide with dye-doped cladding
NASA Astrophysics Data System (ADS)
Reilly, M. A.; Coleman, B.; Pun, E. Y. B.; Penty, R. V.; White, I. H.; Ramon, M.; Xia, R.; Bradley, D. D. C.
2005-12-01
Signal amplification at the polymer optical fiber low-loss window of 650 nm is reported in an SU8 rib waveguide coated with Rhodamine-640 doped poly(methyl methacrylate). A signal beam is end-fired into the facet of a 7×100μm waveguide and amplified by top pumping of the 2-μm-thick cladding region with a pulsed pump source focused into a 9-mm-long stripe. A gain of 14dB and a minimum signal-to-noise ratio of around 2 dB are achieved in a 15-mm-long device with a low threshold pump intensity of 0.25μJ/mm2, which is an order of magnitude lower than previously reported.
NASA Astrophysics Data System (ADS)
Klehr, A.; Wenzel, H.; Fricke, J.; Bugge, F.; Liero, A.; Hoffmann, Th.; Erbert, G.; Tränkle, G.
2015-03-01
Semiconductor based sources which emit high-power spectrally stable nearly diffraction-limited optical pulses in the nanosecond range are ideally suited for a lot of applications, such as free-space communications, metrology, material processing, seed lasers for fiber or solid state lasers, spectroscopy, LIDAR and frequency doubling. Detailed experimental investigations of 975 nm and 800 nm diode lasers based on master oscillator power amplifier (MOPA) light sources are presented. The MOPA systems consist of distributed Bragg reflector lasers (DBR) as master oscillators driven by a constant current and ridge waveguide power amplifiers which can be driven DC and by current pulses. In pulse regime the amplifiers modulated with rectangular current pulses of about 5 ns width and a repetition frequency of 200 kHz act as optical gates, converting the continuous wave (CW) input beam emitted by the DBR lasers into a train of short optical pulses which are amplified. With these experimental MOPA arrangements no relaxation oscillations in the pulse power occur. With a seed power of about 5 mW at a wavelength of 973 nm output powers behind the amplifier of about 1 W under DC injection and 4 W under pulsed operation, corresponding to amplification factors of 200 (amplifier gain 23 dB) and 800 (gain 29 dB) respectively, are reached. At 800 nm a CW power of 1 W is obtained for a seed power of 40 mW. The optical spectra of the emission of the amplifiers exhibit a single peak at a constant wavelength with a line width < 10 pm in the whole investigated current ranges. The ratios between laser and ASE levels were > 50 dB. The output beams are nearly diffraction limited with beam propagation ratios M2lat ~ 1.1 and M2ver ~ 1.2 up to 4 W pulse power.
Design of a Wideband 900 GHz Balanced Frequency Tripler for Radioastronomy
NASA Technical Reports Server (NTRS)
Tripon-Canseliet, Charlotte; Maestrini, Alain; Mehdi, Imran
2004-01-01
We report on the design of a fix-tuned split-block waveguide balanced frequency tripler working nominally at 900GHz. It uses a GaAs Schottky planar diode pair in a balanced configuration. The circuit will be fabricated with JPL membrane technology in order to minimize dielectric loading. The multiplier is bias-less to dramatically ease the mounting and the operating procedure. At room temperature, the expected output power is 50- 130 (micro)W in the band 800-970 GHz when the tripler is pumped with 4mW. By modifying the waveguide input and output matching circuit, the multiplier can be tuned to operate at lower frequencies.
Design and simulation of a planar micro-optic free-space receiver
NASA Astrophysics Data System (ADS)
Nadler, Brett R.; Hallas, Justin M.; Karp, Jason H.; Ford, Joseph E.
2017-11-01
We propose a compact directional optical receiver for free-space communications, where a microlens array and micro-optic structures selectively couple light from a narrow incidence angle into a thin slab waveguide and then to an edge-mounted detector. A small lateral translation of the lenslet array controls the coupled input angle, enabling the receiver to select the transmitter source direction. We present the optical design and simulation of a 10mm x 10mm aperture receiver using a 30μm thick silicon waveguide able to couple up to 2.5Gbps modulated input to a 10mm x 30μm wide detector.
Near field optical probe for critical dimension measurements
Stallard, Brian R.; Kaushik, Sumanth
1999-01-01
A resonant planar optical waveguide probe for measuring critical dimensions on an object in the range of 100 nm and below. The optical waveguide includes a central resonant cavity flanked by Bragg reflector layers with input and output means at either end. Light is supplied by a narrow bandwidth laser source. Light resonating in the cavity creates an evanescent electrical field. The object with the structures to be measured is translated past the resonant cavity. The refractive index contrasts presented by the structures perturb the field and cause variations in the intensity of the light in the cavity. The topography of the structures is determined from these variations.
Two-dimensional porous anodic alumina for optoelectronics and photocatalytic application
NASA Astrophysics Data System (ADS)
Khoroshko, L. S.
2015-11-01
Fabrication of porous anodic alumina film structures using anodizing, sol-gel synthesis and photolithography is reported. The structures receive interest as planar waveguides due to strong photoluminescence of the embedded trivalent lanthanides. Mesoporous structures comprising sol-gel derived titania in porous anodic alumina play a role of effective catalyst for water purification.
Lee, Jae-Sung; Yoon, Na-Rae; Kang, Byoung-Ho; Lee, Sang-Won; Gopalan, Sai-Anand; Jeong, Hyun-Min; Lee, Seung-Ha; Kwon, Dae-Hyuk; Kang, Shin-Won
2014-07-01
We have developed a multi-array side-polished optical-fiber gas sensor for the detection of volatile organic compound (VOC) gases. The side-polished optical-fiber coupled with a polymer planar waveguide (PWG) provides high sensitivity to alterations in refractive index. The PWG was fabricated by coating a solvatochromic dye with poly(vinylpyrrolidone). To confirm the effectiveness of the sensor, five different sensing membranes were fabricated by coating the side-polished optical-fiber using the solvatochromic dyes Reinhardt's dye, Nile red, 4-aminophthalimide, 4-amino-N-methylphthalimide, and 4-(dimethylamino)cinnamaldehyde, which have different polarities that cause changes in the effective refractive index of the sensing membrane owing to evanescent field coupling. The fabricated gas detection system was tested with five types of VOC gases, namely acetic acid, benzene, dimethylamine, ethanol, and toluene at concentrations of 1, 2,…,10 ppb. Second-regression and principal component analyses showed that the response properties of the proposed VOC gas sensor were linearly shifted bathochromically, and each gas showed different response characteristics.
A chip-integrated coherent photonic-phononic memory.
Merklein, Moritz; Stiller, Birgit; Vu, Khu; Madden, Stephen J; Eggleton, Benjamin J
2017-09-18
Controlling and manipulating quanta of coherent acoustic vibrations-phonons-in integrated circuits has recently drawn a lot of attention, since phonons can function as unique links between radiofrequency and optical signals, allow access to quantum regimes and offer advanced signal processing capabilities. Recent approaches based on optomechanical resonators have achieved impressive quality factors allowing for storage of optical signals. However, so far these techniques have been limited in bandwidth and are incompatible with multi-wavelength operation. In this work, we experimentally demonstrate a coherent buffer in an integrated planar optical waveguide by transferring the optical information coherently to an acoustic hypersound wave. Optical information is extracted using the reverse process. These hypersound phonons have similar wavelengths as the optical photons but travel at five orders of magnitude lower velocity. We demonstrate the storage of phase and amplitude of optical information with gigahertz bandwidth and show operation at separate wavelengths with negligible cross-talk.Optical storage implementations based on optomechanical resonator are limited to one wavelength. Here, exploiting stimulated Brillouin scattering, the authors demonstrate a coherent optical memory based on a planar integrated waveguide, which can operate at different wavelengths without cross-talk.
Analysis of a Waveguide-Fed Metasurface Antenna
NASA Astrophysics Data System (ADS)
Smith, David R.; Yurduseven, Okan; Mancera, Laura Pulido; Bowen, Patrick; Kundtz, Nathan B.
2017-11-01
The metasurface concept has emerged as an advantageous reconfigurable antenna architecture for beam forming and wave-front shaping, with applications that include satellite and terrestrial communications, radar, imaging, and wireless power transfer. The metasurface antenna consists of an array of metamaterial elements distributed over an electrically large structure, each subwavelength in dimension and with subwavelength separation between elements. In the antenna configuration we consider, the metasurface is excited by the fields from an attached waveguide. Each metamaterial element can be modeled as a polarizable dipole that couples the waveguide mode to radiation modes. Distinct from the phased array and electronically-scanned-antenna architectures, a dynamic metasurface antenna does not require active phase shifters and amplifiers but rather achieves reconfigurability by shifting the resonance frequency of each individual metamaterial element. We derive the basic properties of a one-dimensional waveguide-fed metasurface antenna in the approximation in which the metamaterial elements do not perturb the waveguide mode and are noninteracting. We derive analytical approximations for the array factors of the one-dimensional antenna, including the effective polarizabilities needed for amplitude-only, phase-only, and binary constraints. Using full-wave numerical simulations, we confirm the analysis, modeling waveguides with slots or complementary metamaterial elements patterned into one of the surfaces.
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Wintucky, Edwin G.
2014-01-01
The design and test results of a novel waveguide multimode directional coupler for a CW millimeter-wave satellite beacon source are presented. The coupler separates the second harmonic power from the fundamental output power of a traveling-wave tube amplifier. A potential application of the beacon source is for investigating the atmospheric effects on Q-band (37 to 42 GHz) and VW-band (71 to 76 GHz) satellite-to-ground signals.
Assessment of commercial optical amplifiers for potential use in space applications
NASA Astrophysics Data System (ADS)
Barbero, Juan; Sotom, Michel; Benazet, Benoit; Esquivias, Ignacio; López Hernández, Francisco José
2017-11-01
This paper describes the activities and results of an ESA-funded project concerned with the assessment of optical amplifier technologies and products for applications in fiber optic subsystems of future satellite payloads. On-board applications are briefly introduced, together with associated system-level requirements. Optical amplifier technologies, research achievements and products are reviewed. They are compared in terms of current performance, perspectives and suitability for the target space applications. Optical fibre amplifiers, not limited to Erbium-doped amplifiers, Erbium-doped waveguide amplifiers and Semiconductor Optical Amplifiers are covered. The review includes analysis and trade-off of all performance parameters including saturation output power, noise figure, polarisation maintaining capability, wall-plug efficiency, and mass and size. A selection of optical amplifier products for further evaluation and testing is presented. Results of extensive testing covering both functional performance and environmental behaviour (mechanical, thermal vacuum, radiations) aspects are reported. Most of the work has been completed, but an extension has been proposed for checking and comparing the behaviour of doped fibers under gamma radiation.
NASA Technical Reports Server (NTRS)
Saunier, P.; Nelson, S.
1983-01-01
Sixteen 30 dB 0.5 W amplifier modules were combined to satisfy the requirement for a graceful degradation. If one module fails, the output power drops by only 0.43 dB. Also, by incorporating all the gain stages within the combiner the overall combining efficiency is maximized. A 16 way waveguide divider combiner was developed to minimize the insertion loss associated with such a large corporate feed structure. Tests showed that the 16 way insertion loss was less than 0.5 dB. To minimize loss, a direct transition from waveguide to microstrip, using a finline on duroid substrate, was developed. The FETs fabricated on MBE grown material, demonstrated superior performances. For example, a 600 micrometer device was capable of 320 mW output power with 5 dB gain and 26.6% efficiency at 21 GHz. The 16 module amplifier gave 8.95 W saturated output power with 30 dB gain. The overall efficiency was 9%. The 3 dB bandwidth was 2.5 GHz. At 17.7 GHz the amplifier had 5 W output power and at 20.2 GHz it still had 4.4 W.
Wei, Mao-Kuo; Lin, Chii-Wann; Yang, Chih-Chung; Kiang, Yean-Woei; Lee, Jiun-Haw; Lin, Hoang-Yan
2010-01-01
In this paper, we review the emission characteristics from organic light-emitting diodes (OLEDs) and organic molecular thin films with planar and corrugated structures. In a planar thin film structure, light emission from OLEDs was strongly influenced by the interference effect. With suitable design of microcavity structure and layer thicknesses adjustment, optical characteristics can be engineered to achieve high optical intensity, suitable emission wavelength, and broad viewing angles. To increase the extraction efficiency from OLEDs and organic thin-films, corrugated structure with micro- and nano-scale were applied. Microstructures can effectively redirects the waveguiding light in the substrate outside the device. For nanostructures, it is also possible to couple out the organic and plasmonic modes, not only the substrate mode. PMID:20480033
Reflection measurements of microwave absorbers
NASA Astrophysics Data System (ADS)
Baker, Dirk E.; van der Neut, Cornelis A.
1988-12-01
A swept-frequency interferometer is described for making rapid, real-time assessments of localized inhomogeneities in planar microwave absorber panels. An aperture-matched exponential horn is used to reduce residual reflections in the system to about -37 dB. This residual reflection is adequate for making comparative measurements on planar absorber panels whose reflectivities usually fall in the -15 to -25 dB range. Reflectivity measurements on a variety of planar absorber panels show that multilayer Jaumann absorbers have the greatest inhomogeneity, while honeycomb absorbers generally have excellent homogeneity within a sheet and from sheet to sheet. The test setup is also used to measure the center frequencies of resonant absorbers. With directional couplers and aperture-matched exponential horns, the technique can be easily applied in the standard 2 to 40 GHz waveguide bands.
1999-03-22
amplifiers fabricated on Si substrates by co- sputtering, (p. 27) 11:30am IMC3 ■ Birefrlngent oxidized porous silicon-based optical waveguides, Yu. N...that integrated optical waveguides based on oxidized porous silicon have a relatively large birefringence. As a result, the modes of both... Membrane microresonator lasers with 2-D photonic bandgap crystal mirrors for compact in- plane optics, B. D’Urso, O. Painter, A. Yariv, A. Scherer
A Fully Automated Stage for Optical Waveguide Measurements
1993-09-01
method, as in the case of the out-of-plane method, also relies on a certain level of uniformity in the waveguide. Accurate loss measurements over a...2 . The S1227-66BQ has a response from 190 nm to 1000 nm with a peak at 720 nm and a typical radiant sensitivity of 0.35 A/W at the peak wavelength 3... levels . The current generated in the detector due to incident light is converted to a voltage at the output of the operational amplifier (op-amp
Optimizing the G/T ratio of the DSS-13 34-meter beam-waveguide antenna
NASA Technical Reports Server (NTRS)
Esquivel, M. S.
1992-01-01
Calculations using Physical Optics computer software were done to optimize the gain-to-noise-temperature (G/T) ratio of Deep Space Station (DSS)-13, the Deep Space Network's (DSN's) 34-m beam-waveguide antenna, at X-band for operation with the ultra-low-noise amplifier maser system. A better G/T value was obtained by using a 24.2-dB far-field-gain smooth-wall dual-mode horn than by using the standard X-band 22.5-dB-gain corrugated horn.
Multi-frequency klystron designed for high efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Aaron
A multi-frequency klystron has an electron gun which generates a beam, a circuit of bunch-align-collect (BAC) tuned cavities that bunch the beam and amplify an RF signal, a collector where the beam is collected and dumped, and a standard output cavity and waveguide coupled to a window to output RF power at a fundamental mode to an external load. In addition, the klystron has additional bunch-align-collect (BAC) cavities tuned to a higher harmonic frequency, and a harmonic output cavity and waveguide coupled via a window to an additional external load.
Low-Noise Amplifier for 100 to 180 GHz
NASA Technical Reports Server (NTRS)
Kangaslahti, Pekka; Pukala, David; Fung, King Man; Gaier, Todd; Mei, Xiaobing; Lai, Richard; Deal, William
2009-01-01
A three-stage monolithic millimeter-wave integrated-circuit (MMIC) amplifier designed to exhibit low noise in operation at frequencies from about 100 to somewhat above 180 GHz has been built and tested. This is a prototype of broadband amplifiers that have potential utility in diverse applications, including measurement of atmospheric temperature and humidity and millimeter-wave imaging for inspecting contents of opaque containers. Figure 1 depicts the amplifier as it appears before packaging. Figure 2 presents data from measurements of the performance of the amplifier as packaged in a WR-05 waveguide and tested in the frequency range from about 150 to about 190 GHz. The amplifier exhibited substantial gain throughout this frequency range. Especially notable is the fact that at 165 GHz, the noise figure was found to be 3.7 dB, and the noise temperature was found to be 370 K: This is less than half the noise temperature of the prior state of the art.
NASA Astrophysics Data System (ADS)
Belenguer, Angel; Cano, Juan Luis; Esteban, Héctor; Artal, Eduardo; Boria, Vicente E.
2017-01-01
Substrate integrated circuits (SIC) have attracted much attention in the last years because of their great potential of low cost, easy manufacturing, integration in a circuit board, and higher-quality factor than planar circuits. A first suite of SIC where the waves propagate through dielectric have been first developed, based on the well-known substrate integrated waveguide (SIW) and related technological implementations. One step further has been made with a new suite of empty substrate integrated waveguides, where the waves propagate through air, thus reducing the associated losses. This is the case of the empty substrate integrated waveguide (ESIW) or the air-filled substrate integrated waveguide (air-filled SIW). However, all these SIC are H plane structures, so classical H plane solutions in rectangular waveguides have already been mapped to most of these new SIC. In this paper a novel E plane empty substrate integrated waveguide (ESIW-E) is presented. This structure allows to easily map classical E plane solutions in rectangular waveguide to this new substrate integrated solution. It is similar to the ESIW, although more layers are needed to build the structure. A wideband transition (covering the frequency range between 33 GHz and 50 GHz) from microstrip to ESIW-E is designed and manufactured. Measurements are successfully compared with simulation, proving the validity of this new SIC. A broadband high-frequency phase shifter (for operation from 35 GHz to 47 GHz) is successfully implemented in ESIW-E, thus proving the good performance of this new SIC in a practical application.
Butt-coupled interface between stoichiometric Si3N4 and thin-film plasmonic waveguides
NASA Astrophysics Data System (ADS)
Dabos, G.; Ketzaki, D.; Tsiokos, D.; Pleros, N.
2017-02-01
Plasmonic technology has emerged as the most promising candidate to revolutionize future photonic-integrated-circuits (PICs) and deliver performance breakthroughs in diverse application areas by providing increased light-matter interaction at the nanometer scale, overcoming the diffraction limit. However, high insertion losses of plasmonic devices impede their practical deployment in PICs. To overcome this hurdle, selective integration of individual plasmonic devices on low-loss photonic platforms is considered, allowing for enhanced chip-scale functionalities with realistic power budgets. In this context, highly-efficient and fabrication-tolerant optical interfaces for co-planar plasmonic and photonic waveguides become essential, bridging these two "worlds" and ease combined high-volume manufacturing. Herein, a TM-mode butt-coupled interface for stoichiometric Si3N4 and Au-based thin-film plasmonic waveguides is proposed aiming to be utilized for bio-sensing applications. Following a systematic design process, this new configuration has been analyzed through 3D FDTD numerical simulations demonstrating coupling efficiencies up to 64% at the wavelength of 1.55 μm, with increased fabrication tolerance compared to silicon based waveguide alternatives.
Zhang, Dawei; Zhang, Kuang; Wu, Qun; Ding, Xumin; Sha, Xuejun
2017-02-06
In this paper, a planar waveguide based on spoof surface plasmon polaritons (SSPPs) with metals on both sides of the corrugated strip as grounds is firstly proposed in microwave region. Simple and efficient conversion between guided waves and SSPPs is realized by gradient corrugated strip with grounds on both sides. Compared with plasmonic waveguide with flaring ground [Laser Photonics Rev. 8, 146 (2014)], the addition of grounds suppresses the radiation loss effectively and improves the low-frequency performance with tighter field confinement, which leads to a wider operating bandwidth. Moreover, as the asymptotic frequency of SSPPs decreasing, the confinement of SSPPs is further enhanced by a defected ground structure (DGS), which is achieved by the periodic grooves symmetrical to those on the corrugated strip. Therefore, miniaturization of the proposed waveguide can be realized. Measured results validate both high efficiency of momentum and impedance matching and enhanced performance in the region of lower frequencies with the wave vectors close to those in free space. Such results have significant values in plasmonic functional devices and integrated circuits in microwave frequencies.
Microphotonic devices for compact planar lightwave circuits and sensor systems
NASA Astrophysics Data System (ADS)
Cardenas Gonzalez, Jaime
2005-07-01
Higher levels of integration in planar lightwave circuits and sensor systems can reduce fabrication costs and broaden viable applications for optical network and sensor systems. For example, increased integration and functionality can lead to sensor systems that are compact enough for easy transport, rugged enough for field applications, and sensitive enough even for laboratory applications. On the other hand, more functional and compact planar lightwave circuits can make optical networks components less expensive for the metro and access markets in urban areas and allow penetration of fiber to the home. Thus, there is an important area of opportunity for increased integration to provide low cost, compact solutions in both network components and sensor systems. In this dissertation, a novel splitting structure for microcantilever deflection detection is introduced. The splitting structure is designed so that its splitting ratio is dependent on the vertical position of the microcantilever. With this structure, microcantilevers sensitized to detect different analytes or biological agents can be integrated into an array on a single chip. Additionally, the integration of a depolarizer into the optoelectronic integrated circuit in an interferometric fiber optic gyroscope is presented as a means for cost reduction. The savings come in avoiding labor intensive fiber pigtailing steps by permitting batch fabrication of these components. In particular, this dissertation focuses on the design of the waveguides and polarization rotator, and the impact of imperfect components on the performance of the depolarizer. In the area of planar lightwave circuits, this dissertation presents the development of a fabrication process for single air interface bends (SAIBs). SAIBs can increase integration by reducing the area necessary to make a waveguide bend. Fabrication and measurement of a 45° SAIB with a bend efficiency of 93.4% for TM polarization and 92.7% for TE polarization are presented.
Highly sensitive biochemical sensor utilizing Bragg grating in submicron Si/SiO2 waveguides
NASA Astrophysics Data System (ADS)
Tripathi, Saurabh Mani; Kumar, Arun; Meunier, Jean-Pierre; Marin, Emmanuel
2009-05-01
We present a novel highly sensitive biochemical sensor based on a Bragg grating written in the cladding region of a submicron planar Si/SiO2 waveguide. Owing to the high refractive index contrast at the Si/SiO2 boundary the TM modal power is relatively high in low refractive index sensing region, leading to higher sensitivity in this configuration [1]. Waveguide parameters have been optimized to obtain maximum modal power in the sensing region (PSe) and an optimum core width corresponding to maximum sensitivity is found to exist while operating in TM mode configuration, as has been shown in Fig. 1. It has been found that operating in TM mode configuration at optimum core width the structure exhibits extremely high sensitivity, ~ 5×10-6 RIU - 1.35×10-6 RIU for the ambient refractive indices between 1.33 - 1.63. Such high sensitivities are typically attainable for Surface Plasmon Polariton (SPP) based biosensors and is much higher than any non SPP based sensors. Being free from any metallic layer or bulky prism the structure is easy to realize. Owing to its simple structure and small dimensions the proposed sensor can be integrated with planar lightwave circuits and could be used in handy lab-on-a-chip devices. The device may find application in highly sensitive biological/chemical sensing areas in civil and defense sectors where analyzing the samples at the point of need is required rather than sending it to some centralized laboratory.
NASA Astrophysics Data System (ADS)
German, Kristine A.; Kubby, Joel; Chen, Jingkuang; Diehl, James; Feinberg, Kathleen; Gulvin, Peter; Herko, Larry; Jia, Nancy; Lin, Pinyen; Liu, Xueyuan; Ma, Jun; Meyers, John; Nystrom, Peter; Wang, Yao Rong
2004-07-01
Xerox Corporation has developed a technology platform for on-chip integration of latching MEMS optical waveguide switches and Planar Light Circuit (PLC) components using a Silicon On Insulator (SOI) based process. To illustrate the current state of this new technology platform, working prototypes of a Reconfigurable Optical Add/Drop Multiplexer (ROADM) and a l-router will be presented along with details of the integrated latching MEMS optical switches. On-chip integration of optical switches and PLCs can greatly reduce the size, manufacturing cost and operating cost of multi-component optical equipment. It is anticipated that low-cost, low-overhead optical network products will accelerate the migration of functions and services from high-cost long-haul markets to price sensitive markets, including networks for metropolitan areas and fiber to the home. Compared to the more common silica-on-silicon PLC technology, the high index of refraction of silicon waveguides created in the SOI device layer enables miniaturization of optical components, thereby increasing yield and decreasing cost projections. The latching SOI MEMS switches feature moving waveguides, and are advantaged across multiple attributes relative to alternative switching technologies, such as thermal optical switches and polymer switches. The SOI process employed was jointly developed under the auspice of the NIST APT program in partnership with Coventor, Corning IntelliSense Corp., and MicroScan Systems to enable fabrication of a broad range of free space and guided wave MicroOptoElectroMechanical Systems (MOEMS).
A green-color portable waveguide eyewear display system
NASA Astrophysics Data System (ADS)
Xia, Lingbo; Xu, Ke; Wu, Zhengming; Hu, Yingtian; Li, Zhenzhen; Wang, Yongtian; Liu, Juan
2013-08-01
Waveguide display systems are widely used in various display fields, especially in head mounted display. Comparing with the traditional head mounted display system, this device dramatically reduce the size and mass. However, there are still several fatal problems such as high scatting, the cumbersome design and chromatic aberration that should be solved. We designed and fabricated a monochromatic portable eyewear display system consist of a comfortable eyewear device and waveguide system with two holographic gratings located on the substrate symmetrically. We record the gratings on the photopolymer medium with high efficiency and wavelength sensitivity. The light emitting from the micro-display is diffracted by the grating and trapped in the glass substrate by total internal reflection. The relationship between the diffraction efficiency and exposure value is studied and analyzed, and we fabricated the gratings with appropriate diffraction efficiency in a optimization condition. To avoid the disturbance of the stray light, we optimize the waveguide system numerically and perform the optical experiments. With this system, people can both see through the waveguide to obtain the information outside and catch the information from the micro display. After considering the human body engineering and industrial production, we design the structure in a compact and portable way. It has the advantage of small-type configuration and economic acceptable. It is believe that this kind of planar waveguide system is a potentially replaceable choice for the portable devices in future mobile communications.
NASA Technical Reports Server (NTRS)
Simons, Rainee N (Inventor); Chevalier, Christine T (Inventor); Wintucky, Edwin G (Inventor); Freeman, Jon C (Inventor)
2016-01-01
One or more embodiments of the present invention describe an apparatus and method to combine unequal powers. The apparatus includes a first input port, a second input port, and a combiner. The first input port is operably connected to a first power amplifier and is configured to receive a first power from the first power amplifier. The second input port is operably connected to a second power amplifier and is configured to receive a second power from the second power amplifier. The combiner is configured to simultaneously receive the first power from the first input port and the second power from the second input port. The combiner is also configured to combine the first power and second power to produce a maximized power. The first power and second power are unequal.
Ridge Waveguide Structures in Magnesium-Doped Lithium Niobate
NASA Technical Reports Server (NTRS)
Himmer, Phillip; Battle, Philip; Suckow, William; Switzer, Greg
2011-01-01
This work proposes to establish the feasibility of fabricating isolated ridge waveguides in 5% MgO:LN. Ridge waveguides in MgO:LN will significantly improve power handling and conversion efficiency, increase photonic component integration, and be well suited to spacebased applications. The key innovation in this effort is to combine recently available large, high-photorefractive-damage-threshold, z-cut 5% MgO:LN with novel ridge fabrication techniques to achieve high-optical power, low-cost, high-volume manufacturing of frequency conversion structures. The proposed ridge waveguide structure should maintain the characteristics of the periodically poled bulk substrate, allowing for the efficient frequency conversion typical of waveguides and the high optical damage threshold and long lifetimes typical of the 5% doped bulk substrate. The low cost and large area of 5% MgO:LN wafers, and the improved performance of the proposed ridge waveguide structure, will enhance existing measurement capabilities as well as reduce the resources required to achieve high-performance specifications. The purpose of the ridge waveguides in MgO:LN is to provide platform technology that will improve optical power handling and conversion efficiency compared to existing waveguide technology. The proposed ridge waveguide is produced using standard microfabrication techniques. The approach is enabled by recent advances in inductively coupled plasma etchers and chemical mechanical planarization techniques. In conjunction with wafer bonding, this fabrication methodology can be used to create arbitrarily shaped waveguides allowing complex optical circuits to be engineered in nonlinear optical materials such as magnesium doped lithium niobate. Researchers here have identified NLO (nonlinear optical) ridge waveguide structures as having suitable value to be the leading frequency conversion structures. Its value is based on having the low-cost fabrication necessary to satisfy the challenging pricing requirements as well as achieve the power handling and other specifications in a suitably compact package.
Biasable, Balanced, Fundamental Submillimeter Monolithic Membrane Mixer
NASA Technical Reports Server (NTRS)
Siegel, Peter; Schlecht, Erich; Mehdi, Imran; Gill, John; Velebir, James; Tsang, Raymond; Dengler, Robert; Lin, Robert
2010-01-01
This device is a biasable, submillimeter-wave, balanced mixer fabricated using JPL s monolithic membrane process a simplified version of planar membrane technology. The primary target application is instrumentation used for analysis of atmospheric constituents, pressure, temperature, winds, and other physical and chemical properties of the atmospheres of planets and comets. Other applications include high-sensitivity gas detection and analysis. This innovation uses a balanced configuration of two diodes allowing the radio frequency (RF) signal and local oscillator (LO) inputs to be separated. This removes the need for external diplexers that are inherently narrowband, bulky, and require mechanical tuning to change frequency. Additionally, this mixer uses DC bias-ability to improve its performance and versatility. In order to solve problems relating to circuit size, the GaAs membrane process was created. As much of the circuitry as possible is fabricated on-chip, making the circuit monolithic. The remainder of the circuitry is precision-machined into a waveguide block that holds the GaAs circuit. The most critical alignments are performed using micron-scale semiconductor technology, enabling wide bandwidth and high operating frequencies. The balanced mixer gets superior performance with less than 2 mW of LO power. This can be provided by a simple two-stage multiplier chain following an amplifier at around 90 GHz. Further, the diodes are arranged so that they can be biased. Biasing pushes the diodes closer to their switching voltage, so that less LO power is required to switch the diodes on and off. In the photo, the diodes are at the right end of the circuit. The LO comes from the waveguide at the right into a reduced-height section containing the diodes. Because the diodes are in series to the LO signal, they are both turned on and off simultaneously once per LO cycle. Conversely, the RF signal is picked up from the RF waveguide by the probe at the left, and flows rightward to the diodes. Because the RF is in a quasi- TEM (suspended, microstrip-like) mode, it impinges on the diodes in an anti-parallel mode that does not couple to the waveguide mode. This isolates the LO and RF signals. This operation is similar to a cross-bar mixer used at low frequencies, except the RF signal enters through the back-short end of the waveguide rather than through the side. The RF probe also conveys the down-converted intermediate frequency (IF) signal out to an off-chip circuit board through a simple LC low-pass filter to the left as indicated. The bias is brought to the diodes through a bypass capacitor at the top.
NASA Astrophysics Data System (ADS)
Zink, Christof; Maaβdorf, André; Fricke, Jörg; Ressel, Peter; Maiwald, Martin; Sumpf, Bernd; Erbert, Götz; Tränkle, Günther
2018-02-01
High brightness diode lasers with a spectrally narrowband emission, several watts of output power with an almost diffraction limited beam quality are requested light sources for several applications. In this work, a monolithic master oscillator power amplifier will be presented. The resonator of the master oscillator is formed by a high-reflection DBR grating on the rear side and an internal DBR mirror. Its power is amplified in a ridge waveguide followed by a tapered section. The monolithic MOPA provides over 7 W at 1064 nm with a narrow spectral emission width below 20 pm and an almost diffraction limited beam.
A 980 nm pseudomorphic single quantum well laser for pumping erbium-doped optical fiber amplifiers
NASA Technical Reports Server (NTRS)
Larsson, A.; Forouhar, S.; Cody, J.; Lang, R. J.; Andrekson, P. A.
1990-01-01
The authors have fabricated ridge waveguide pseudomorphic InGaAs/GaAs/AlGaAs GRIN-SCH SQW (graded-index separate-confinement-heterostructure single-quantum-well) lasers, emitting at 980 nm, with a maximum output power of 240 mW from one facet and a 22 percent coupling efficiency into a 1.55-micron single-mode optical fiber. These lasers satisfy the requirements on efficient and compact pump sources for Er3+-doped fiber amplifiers.
Cusp Guns for Helical-Waveguide Gyro-TWTs of a High-Gain High-Power W-Band Amplifier Cascade
NASA Astrophysics Data System (ADS)
Manuilov, V. N.; Samsonov, S. V.; Mishakin, S. V.; Klimov, A. V.; Leshcheva, K. A.
2018-02-01
The evaluation, design, and simulations of two different electron guns generating the beams for W-band second cyclotron harmonic gyro-TWTs forming a high-gain powerful amplifier cascade are presented. The optimum configurations of the systems creating nearly axis-encircling electron beams having velocity pitch-factor up to 1.5, voltage/current of 40 kV/0.5 A, and 100 kV/13 A with acceptable velocity spreads have been found and are presented.
Optical amplification at the 1. 31 wavelength
Cockroft, N.J.
1994-02-15
An optical amplifier operating at the 1.31 [mu]m wavelength for use in such applications as telecommunications, cable television, and computer systems is described. An optical fiber or other waveguide device is doped with both Tm[sup 3+] and Pr[sup 3+] ions. When pumped by a diode laser operating at a wavelength of 785 nm, energy is transferred from the Tm[sup 3+] ions to the Pr[sup 3+] ions, causing the Pr[sup 3+] ions to amplify at a wavelength of 1.31. 1 figure.
Optical amplification at the 1.31 wavelength
Cockroft, Nigel J.
1994-01-01
An optical amplifier operating at the 1.31 .mu.m wavelength for use in such applications as telecommunications, cable television, and computer systems. An optical fiber or other waveguide device is doped with both Tm.sup.3+ and Pr.sup.3+ ions. When pumped by a diode laser operating at a wavelength of 785 nm, energy is transferred from the Tm.sup.3+ ions to the Pr.sup.3+ ions, causing the Pr.sup.3+ ions to amplify at a wavelength of 1.31
NASA Technical Reports Server (NTRS)
Cook, Anthony; McNeil, Shirley; Switzer, Gregg; Battle, Philip
2010-01-01
Precise laser remote sensing of aerosol extinction and backscatter in the atmosphere requires a high-power, pulsed, frequency doubled Nd:YAG laser that is wavelength- stabilized to a narrow absorption line such as found in iodine vapor. One method for precise wavelength control is to injection seed the Nd:YAG laser with a low-power CW laser that is stabilized by frequency converting a fraction of the beam to 532 nm, and to actively frequency-lock it to an iodine vapor absorption line. While the feasibility of this approach has been demonstrated using bulk optics in NASA Langley s Airborne High Spectral Resolution Lidar (HSRL) program, an ideal, lower cost solution is to develop an all-waveguide, frequency-locked seed laser in a compact, robust package that will withstand the temperature, shock, and vibration levels associated with airborne and space-based remote sensing platforms. A key technology leading to this miniaturization is the integration of an efficient waveguide frequency doubling element, and a low-voltage phase modulation element into a single, monolithic, planar light-wave circuit (PLC). The PLC concept advances NASA's future lidar systems due to its compact, efficient and reliable design, thus enabling use on small aircraft and satellites. The immediate application for this technology is targeted for NASA Langley's HSRL system for aerosol and cloud characterization. This Phase I effort proposes the development of a potassium titanyl phosphate (KTP) waveguide phase modulator for future integration into a PLC. For this innovation, the proposed device is the integration of a waveguide-based frequency doubler and phase modulator in a single, fiber pigtail device that will be capable of efficient second harmonic generation of 1,064-nm light and subsequent phase modulation of the 532 nm light at 250 MHz, providing a properly spectrally formatted beam for HSRL s seed laser locking system. Fabrication of the integrated PLC chip for NASA Langley, planned for the Phase II effort, will require full integration and optimization of the waveguide components (SHG waveguide, splitters, and phase modulator) onto a single, monolithic device. The PLC will greatly reduce the size and weight, improve electrical- to-optical efficiency, and significantly reduce the cost of NASA Langley s current stabilized HSRL seed laser system built around a commercial off-the-shelf seed laser that is free-space coupled to a bulk doubler and bulk phase modulator.
NASA Astrophysics Data System (ADS)
Weisenbach, Lori Ann
An experimental study of the processing and attenuation characteristics of solution derived, thin film, planar waveguides was made. In this study, the densification and attenuation characteristics of a variety of compositions were compared. To insure that the effects measured reflected compositional differences and not processing artifacts, guidelines for the reproducible fabrication of optical quality layers, irrespective of composition, were established. A broad range of compositions were prepared and an effort was made to keep the various solution syntheses as simple and similar as possible. The densification and attenuation of binary SiO _2-TiO_2 compositions was measured, then compared to the densification and attenuation of SiO_2-TiO_2 -R_{rm x}O _{rm y} (where R = Al or Zn) ternary compositions. Film densification was not strongly dependent upon composition, and was successfully modelled using the Lorentz-Lorenz relation, assuming the open volume in the undensified films were filled with adsorbed water. The attenuation measured at 632.8 nm did not vary with composition, except for the Zn ternary samples. Waveguides with losses of <1dB/cm could be fabricated from all other compositions. Waveguide attenuation was measured for films of different thickness, and compared to modelled predictions. The attenuation increased as layer thickness decreased, suggesting the predominance of the surface scattering contribution. To confirm that absorption losses were negligible, the wavelength dependence of the waveguides was measured. The wavelength dependence varied with composition, suggesting the absorption varied with composition. Possible mechanisms of absorption in the waveguides were discussed; the interaction of the atmosphere with the film structure is proposed as the cause of the deterioration. Film development for the binary SiO_2 -TiO_2 films was also studied as a function of increased firing time at 500^ circC. Multiple firings at 500^ circC increased the film density and the resistance to deterioration, but also increased the surface roughness of the films. Increased surface roughness, increased the scattering losses measured for the guide. The application of solution derived thin films was demonstrated with the successful fabrication of a novel optical device. The fabrication of the Single Leakage -Channel Grating Coupler illustrated specific design tolerances could be met and the resulting device performance near the theoretical maximum.
Chemical-assisted femtosecond laser writing of lab-in-fibers.
Haque, Moez; Lee, Kenneth K C; Ho, Stephen; Fernandes, Luís A; Herman, Peter R
2014-10-07
The lab-on-chip (LOC) platform has presented a powerful opportunity to improve functionalization, parallelization, and miniaturization on planar or multilevel geometries that has not been possible with fiber optic technology. A migration of such LOC devices into the optical fiber platform would therefore open the revolutionary prospect of creating novel lab-in-fiber (LIF) systems on the basis of an efficient optical transport highway for multifunctional sensing. For the LIF, the core optical waveguide inherently offers a facile means to interconnect numerous types of sensing elements along the optical fiber, presenting a radical opportunity for optimizing the packaging and densification of diverse components in convenient geometries beyond that available with conventional LOCs. In this paper, three-dimensional patterning inside the optical fiber by femtosecond laser writing, together with selective chemical etching, is presented as a powerful tool to form refractive index structures such as optical waveguides and gratings as well as to open buried microfluidic channels and optical resonators inside the flexible and robust glass fiber. In this approach, optically smooth surfaces (~12 nm rms) are introduced for the first time inside the fiber cladding that precisely conform to planar nanograting structures when formed by aberration-free focusing with an oil-immersion lens across the cylindrical fiber wall. This process has enabled optofluidic components to be precisely embedded within the fiber to be probed by either the single-mode fiber core waveguide or the laser-formed optical circuits. We establish cladding waveguides, X-couplers, fiber Bragg gratings, microholes, mirrors, optofluidic resonators, and microfluidic reservoirs that define the building blocks for facile interconnection of inline core-waveguide devices with cladding optofluidics. With these components, more advanced, integrated, and multiplexed fiber microsystems are presented demonstrating fluorescence detection, Fabry-Perot interferometric refractometry, and simultaneous sensing of refractive index, temperature, and bending strain. The flexible writing technique and multiplexed sensors described here open powerful prospects to migrate the benefits of LOCs into a more flexible and miniature LIF platform for highly functional and distributed sensing capabilities. The waveguide backbone of the LIF inherently provides an efficient exchange of information, combining sensing data that are attractive in telecom networks, smart catheters for medical procedures, compact sensors for security and defense, shape sensors, and low-cost health care products.
Microwave cryogenic thermal-noise standards
NASA Technical Reports Server (NTRS)
Stelzried, C. T.
1971-01-01
Field operational waveguide noise standard with nominal noise temperature of 78.09 plus/minus 0.12 deg K is calibrated more precisely than before. Calibration technique applies to various disciplines such as microwave radiometry, antenna temperature and loss measurement, and low-noise amplifier performance evaluation.
NASA Astrophysics Data System (ADS)
Geary, Kevin
The development of high-frequency polymer electro-optic modulators has seen steady and significant progress in recent years, yet applications of these promising materials to more complicated integrated optic structures and arrays of devices have been limited primarily due to high optical waveguide loss characteristics. This is unfortunate since a major advantage of polymers as photonic materials is their compatibility with photolithographic processing of large components. In this Dissertation, etchless waveguide writing techniques are presented in order to improve the overall optical insertion loss of electro-optic polymer waveguide devices. These techniques include poling-induced writing, stress-induced waveguide writing, and photobleaching. Using these waveguide writing mechanisms, we have demonstrated straight waveguides, phase modulators, Mach-Zehnder intensity modulators, variable optical attenuators, and multimode interference (MMI) power splitters, all with improved loss characteristics over their etched rib waveguide counterparts. Ultimately, the insertion loss of an integrated optic device is limited by the actual material loss of the core waveguide material. In this Dissertation, passive-to-active polymer waveguide transitions are proposed to circumvent this problem. These transitions are compact, in-plane, self-aligned, and require no tapering of any physical dimensions of the waveguides. By utilizing both the time-dependent and intensity-dependent photobleaching characteristics of electro-optic polymer materials, adiabatic refractive index tapers can be seamlessly coupled to in-plane butt couple transitions, resulting in losses as low as 0.1 dB per interface. By integrating passive polymer planar lightwave circuits with the high-speed phase shifting capability of electro-optic polymers, active wideband photonic devices of increased size and complexity can be realized. Optical fiber-to-device coupling can also result in significant contributions to the overall insertion loss of an integrated electro-optic polymer device. In this Dissertation, we leverage the photobleached refractive index taper component of our proposed passive-to-active polymer waveguide transitions in order to realize a two-dimensional optical mode transformer for improved overall fiber-to-device coupling of electro-optic polymer waveguide devices.
NASA Technical Reports Server (NTRS)
Plaessmann, Henry (Inventor); Grossman, William M. (Inventor); Olson, Todd E. (Inventor)
1996-01-01
A multiple-pass laser amplifier that uses optical focusing between subsequent passes through a single gain medium so that a reproducibly stable beam size is achieved within the gain region. A resonator or a White Cell cavity is provided, including two or more mirrors (planar or curvilinearly shaped) facing each other along a resonator axis and an optical gain medium positioned on a resonator axis between the mirrors or adjacent to one of the mirrors. In a first embodiment, two curvilinear mirrors, which may include adjacent lenses, are configured so that a light beam passing through the gain medium and incident on the first mirror is reflected by that mirror toward the second mirror in a direction approximately parallel to the resonator axis. A light beam translator, such as an optical flat of transparent material, is positioned to translate this light beam by a controllable amount toward or away from the resonator axis for each pass of the light beam through the translator. A second embodiment uses two curvilinear mirrors and one planar mirror, with a gain medium positioned in the optical path between each curvilinear mirror and the planar mirror. A third embodiment uses two curvilinear mirrors and two planar mirrors, with a gain medium positioned adjacent to a planar mirror. A fourth embodiment uses a curvilinear mirror and three planar mirrors, with a gain medium positioned adjacent to a planar mirror. A fourth embodiment uses four planar mirrors and a focusing lens system, with a gain medium positioned between the four mirrors. A fifth embodiment uses first and second planar mirrors, a focusing lens system and a third mirror that may be planar or curvilinear, with a gain medium positioned adjacent to the third mirror. A sixth embodiment uses two planar mirrors and a curvilinear mirror and a fourth mirror that may be planar or curvilinear, with a gain medium positioned adjacent to the fourth mirror. In a seventh embodiment, first and second mirrors face a third mirror, all curvilinear, in a White Cell configuration, and a gain medium is positioned adjacent to one of the mirrors.
Near field optical probe for critical dimension measurements
Stallard, B.R.; Kaushik, S.
1999-05-18
A resonant planar optical waveguide probe for measuring critical dimensions on an object in the range of 100 nm and below is disclosed. The optical waveguide includes a central resonant cavity flanked by Bragg reflector layers with input and output means at either end. Light is supplied by a narrow bandwidth laser source. Light resonating in the cavity creates an evanescent electrical field. The object with the structures to be measured is translated past the resonant cavity. The refractive index contrasts presented by the structures perturb the field and cause variations in the intensity of the light in the cavity. The topography of the structures is determined from these variations. 8 figs.
Sam, Somarith; Lim, Sungjoon
2013-04-01
This paper presents the modeling, design, fabrication, and measurement of an ultra-wideband tunable twoport resonator in which the substrate-integrated waveguide, complementary split-ring resonators (CSRRs), and varactors are embedded on the same planar platform. The tuning of the passband frequency is generated by a simple single dc voltage of 0 to 36 V, which is applied to each varactor on the CSRRs. Different capacitance values and resonant frequencies are produced while a nearly constant absolute bandwidth is maintained. The resonant frequency is varied between 0.83 and 1.58 GHz and has a wide tuning ratio of 90%.
MCM Polarimetric Radiometers for Planar Arrays
NASA Technical Reports Server (NTRS)
Kangaslahti, Pekka; Dawson, Douglas; Gaier, Todd
2007-01-01
A polarimetric radiometer that operates at a frequency of 40 GHz has been designed and built as a prototype of multiple identical units that could be arranged in a planar array for scientific measurements. Such an array is planned for use in studying the cosmic microwave background (CMB). All of the subsystems and components of this polarimetric radiometer are integrated into a single multi-chip module (MCM) of substantially planar geometry. In comparison with traditional designs of polarimetric radiometers, the MCM design is expected to greatly reduce the cost per unit in an array of many such units. The design of the unit is dictated partly by a requirement, in the planned CMB application, to measure the Stokes parameters I, Q, and U of the CMB radiation with high sensitivity. (A complete definition of the Stokes parameters would exceed the scope of this article. In necessarily oversimplified terms, I is a measure of total intensity of radiation, while Q and U are measures of the relationships between the horizontally and vertically polarized components of radiation.) Because the sensitivity of a single polarimeter cannot be increased significantly, the only way to satisfy the high-sensitivity requirement is to make a large array of polarimeters that operate in parallel. The MCM includes contact pins that can be plugged into receptacles on a standard printed-circuit board (PCB). All of the required microwave functionality is implemented within the MCM; any required supporting non-microwave ("back-end") electronic functionality, including the provision of DC bias and control signals, can be implemented by standard PCB techniques. On the way from a microwave antenna to the MCM, the incoming microwave signal passes through an orthomode transducer (OMT), which splits the radiation into an h + i(nu) beam and an h - i(nu) beam (where, using complex-number notation, h denotes the horizontal component, nu denotes the vertical component, and +/-i denotes a +/-90deg phase shift). Each of these beams enters the MCM through one of two WR-22 waveguide input terminals in the lid of the MCM. The h + i(nu0 and h - i(nu) signals are amplified, then fed to a phase-discriminator hybrid designed specifically to fit the predominantly planar character of the MCM geometry and to enable determination of Q and U. The phase-discriminator hybrid generates four outputs, which are detected and used to calculate I, Q, and U.
Pan, Huapu; Assefa, Solomon; Green, William M J; Kuchta, Daniel M; Schow, Clint L; Rylyakov, Alexander V; Lee, Benjamin G; Baks, Christian W; Shank, Steven M; Vlasov, Yurii A
2012-07-30
The performance of a receiver based on a CMOS amplifier circuit designed with 90nm ground rules wire-bonded to a waveguide germanium photodetector is characterized at data rates up to 40Gbps. Both chips were fabricated through the IBM Silicon CMOS Integrated Nanophotonics process on specialty photonics-enabled SOI wafers. At the data rate of 28Gbps which is relevant to the new generation of optical interconnects, a sensitivity of -7.3dBm average optical power is demonstrated with 3.4pJ/bit power-efficiency and 0.6UI horizontal eye opening at a bit-error-rate of 10(-12). The receiver operates error-free (bit-error-rate < 10(-12)) up to 40Gbps with optimized power supply settings demonstrating an energy efficiency of 1.4pJ/bit and 4pJ/bit at data rates of 32Gbps and 40Gbps, respectively, with an average optical power of -0.8dBm.
NASA Technical Reports Server (NTRS)
Noh, H. M.; Pathak, P. H.
1986-01-01
An approximate but sufficiently accurate high frequency solution which combines the uniform geometrical theory of diffraction (UTD) and the aperture integration (AI) method is developed for analyzing the problem of electromagnetic (EM) plane wave scattering by an open-ended, perfectly-conducting, semi-infinite hollow rectangular waveguide (or duct) with a thin, uniform layer of lossy or absorbing material on its inner wall, and with a planar termination inside. In addition, a high frequency solution for the EM scattering by a two dimensional (2-D), semi-infinite parallel plate waveguide with a absorber coating on the inner walls is also developed as a first step before analyzing the open-ended semi-infinite three dimensional (3-D) rectangular waveguide geometry. The total field scattered by the semi-infinite waveguide consists firstly of the fields scattered from the edges of the aperture at the open-end, and secondly of the fields which are coupled into the waveguide from the open-end and then reflected back from the interior termination to radiate out of the open-end. The first contribution to the scattered field can be found directly via the UTD ray method. The second contribution is found via the AI method which employs rays to describe the fields in the aperture that arrive there after reflecting from the interior termination. It is assumed that the direction of the incident plane wave and the direction of observation lie well inside the forward half space tht exists outside the half space containing the semi-infinite waveguide geometry. Also, the medium exterior to the waveguide is assumed to be free space.
Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper
2009-04-01
We suggest and experimentally demonstrate a method for increasing the tunable rf phase shift of semiconductor waveguides while at the same time enabling control of the rf power. This method is based on the use of slow- and fast-light effects in a cascade of semiconductor optical amplifiers combined with the use of spectral filtering to enhance the role of refractive index dynamics. A continuously tunable phase shift of approximately 240 degrees at a microwave frequency of 19 GHz is demonstrated in a cascade of two semiconductor optical amplifiers, while maintaining an rf power change of less than 1.6 dB. The technique is scalable to more amplifiers and should allow realization of an rf phase shift of 360 degrees.
Scalable electro-photonic integration concept based on polymer waveguides
NASA Astrophysics Data System (ADS)
Bosman, E.; Van Steenberge, G.; Boersma, A.; Wiegersma, S.; Harmsma, P.; Karppinen, M.; Korhonen, T.; Offrein, B. J.; Dangel, R.; Daly, A.; Ortsiefer, M.; Justice, J.; Corbett, B.; Dorrestein, S.; Duis, J.
2016-03-01
A novel method for fabricating a single mode optical interconnection platform is presented. The method comprises the miniaturized assembly of optoelectronic single dies, the scalable fabrication of polymer single mode waveguides and the coupling to glass fiber arrays providing the I/O's. The low cost approach for the polymer waveguide fabrication is based on the nano-imprinting of a spin-coated waveguide core layer. The assembly of VCSELs and photodiodes is performed before waveguide layers are applied. By embedding these components in deep reactive ion etched pockets in the silicon substrate, the planarity of the substrate for subsequent layer processing is guaranteed and the thermal path of chip-to-substrate is minimized. Optical coupling of the embedded devices to the nano-imprinted waveguides is performed by laser ablating 45 degree trenches which act as optical mirror for 90 degree deviation of the light from VCSEL to waveguide. Laser ablation is also implemented for removing parts of the polymer stack in order to mount a custom fabricated connector containing glass fiber arrays. A demonstration device was built to show the proof of principle of the novel fabrication, packaging and optical coupling principles as described above, combined with a set of sub-demonstrators showing the functionality of the different techniques separately. The paper represents a significant part of the electro-photonic integration accomplishments in the European 7th Framework project "Firefly" and not only discusses the development of the different assembly processes described above, but the efforts on the complete integration of all process approaches into the single device demonstrator.
Metal-clad waveguide characterization for contact-based light transmission into tissue
NASA Astrophysics Data System (ADS)
Chininis, Jeffrey; Whiteside, Paul; Hunt, Heather K.
2016-02-01
As contemporary laser dermatology procedures, like tattoo removal and skin resurfacing, become more popular, the complications of their operation are also becoming more prevalent. Frequent incidences of over-exposure, ocular injury, and excessive thermal damage represent mounting concerns for those seeking such procedures; moreover, each of these problems is a direct consequence of the standard, free-space method of laser transmission predominantly used in clinical settings. Therefore, an alternative method of light transmission is needed to minimize these problems. Here, we demonstrate and characterize an alternative method that uses planar waveguides to deliver light into sample tissue via direct contact. To do this, slab substrates made from glass were clad in layers of titanium and silver, constraining the light within the waveguide along the waveguide's length. By creating active areas on the waveguide surface, the propagating light could then optically tunnel into the tissue sample, when the waveguide was brought into contact with the tissue. SEM and EDS were used to characterize the metal film thickness and deposition rates onto the glass substrates. Laser light from a Q-switched Nd:YAG source operating at 532nm was coupled into the waveguide and transmitted into samples of pig skin. The amount of light transmitted was measured using photoacoustics techniques, in conjunction with a photodiode and integrating sphere. Transmitting light into tissue in this manner effectively resolves or circumvents the complications caused by free-space propagation methods as it reduces the operating distance to 0, which prevents hazardous back-reflections and allows for the ready incorporation of contact cooling technologies.
Deterministic quantum teleportation with feed-forward in a solid state system.
Steffen, L; Salathe, Y; Oppliger, M; Kurpiers, P; Baur, M; Lang, C; Eichler, C; Puebla-Hellmann, G; Fedorov, A; Wallraff, A
2013-08-15
Engineered macroscopic quantum systems based on superconducting electronic circuits are attractive for experimentally exploring diverse questions in quantum information science. At the current state of the art, quantum bits (qubits) are fabricated, initialized, controlled, read out and coupled to each other in simple circuits. This enables the realization of basic logic gates, the creation of complex entangled states and the demonstration of algorithms or error correction. Using different variants of low-noise parametric amplifiers, dispersive quantum non-demolition single-shot readout of single-qubit states with high fidelity has enabled continuous and discrete feedback control of single qubits. Here we realize full deterministic quantum teleportation with feed-forward in a chip-based superconducting circuit architecture. We use a set of two parametric amplifiers for both joint two-qubit and individual qubit single-shot readout, combined with flexible real-time digital electronics. Our device uses a crossed quantum bus technology that allows us to create complex networks with arbitrary connecting topology in a planar architecture. The deterministic teleportation process succeeds with order unit probability for any input state, as we prepare maximally entangled two-qubit states as a resource and distinguish all Bell states in a single two-qubit measurement with high efficiency and high fidelity. We teleport quantum states between two macroscopic systems separated by 6 mm at a rate of 10(4) s(-1), exceeding other reported implementations. The low transmission loss of superconducting waveguides is likely to enable the range of this and other schemes to be extended to significantly larger distances, enabling tests of non-locality and the realization of elements for quantum communication at microwave frequencies. The demonstrated feed-forward may also find application in error correction schemes.
NASA Astrophysics Data System (ADS)
Carlsten, B. E.; Earley, L. M.; Krawczyk, F. L.; Russell, S. J.; Potter, J. M.; Ferguson, P.; Humphries, S.
2005-06-01
A sheet-beam traveling-wave amplifier has been proposed as a high-power generator of rf from 95 to 300 GHz, using a microfabricated rf slow-wave structure [Carlsten et al., IEEE Trans. Plasma Sci. 33, 85 (2005), ITPSBD, 0093-3813, 10.1109/TPS.2004.841172], for emerging radar and communications applications. The planar geometry of microfabrication technologies matches well with the nearly planar geometry of a sheet beam, and the greater allowable beam current leads to high-peak power, high-average power, and wide bandwidths. Simulations of nominal designs using a vane-loaded waveguide as the slow-wave structure have indicated gains in excess of 1 dB/mm, with extraction efficiencies greater than 20% at 95 GHz with a 120-kV, 20-A electron beam. We have identified stable sheet-beam formation and transport as the key enabling technology for this type of device. In this paper, we describe sheet-beam transport, for both wiggler and periodic permanent magnet (PPM) magnetic field configurations, with natural (or single-plane) focusing. For emittance-dominated transport, the transverse equation of motion reduces to a Mathieu equation, and to a modified Mathieu equation for a space-charge dominated beam. The space-charge dominated beam has less beam envelope ripple than an emittance-dominated beam, but they have similar stability thresholds (defined by where the beam ripple continues to grow without bound along the transport line), consistent with the threshold predicted by the Mathieu equation. Design limits are derived for an emittance-dominated beam based on the Mathieu stability threshold. The increased beam envelope ripple for emittance-dominated transport may impact these design limits, for some transport requirements. The stability of transport in a wiggler field is additionally compromised by the beam’s increased transverse motion. Stable sheet-beam transport with natural focusing is shown to be achievable for a 120-kV, 20-A, elliptical beam with a cross section of 1 cm by 0.5 mm, with both a PPM and a wiggler field, with magnetic field amplitude of about 2.5 kG.
Coplanar monolithic integrated circuits for low-noise communication and radar systems
NASA Astrophysics Data System (ADS)
Bessemoulin, Alexandre; Verweyen, Ludger; Marsetz, Waldemar; Massler, Hermann; Neumann, Markus; Hulsmann, Axel; Schlechtweg, Michael
1999-12-01
This paper presents coplanar millimeter-wave monolithic integrated circuits with high performance and small size for use in low noise communication and radar system applications. Technology and modeling issues with respect to active and passive elements are discussed first. In a second step, the potential of coplanar waveguides to realize compact ICs is illustrated through various design examples, such as low noise amplifiers, mixers and power amplifiers. The performance of multifunctional ICs is also presented by comparing simulated and measured results for a complete 77 GHz Transceive MMIC.
High-Power Copper Gratings for a Sheet-Beam Traveling-Wave Amplifier at G-Band
2013-01-01
respectively). A. Two-Port CTF The CTF was CNC machined from OFHC copper. The gratings were tightly clamped into place in the fixture. The results of the... CNC machined such that only ten slots were exposed, followed by a short for the rest of the grating. Adaptors to standard WR5 and WR10 waveguides were...of low-voltage grating Cerenkov amplifiers,” Phys. Plasmas , vol. 1, no. 1, pp. 176–188, Jan. 1994. [11] C. D. Joye, J. P. Calame, K. T. Nguyen, and M
Backplane photonic interconnect modules with optical jumpers
NASA Astrophysics Data System (ADS)
Glebov, Alexei L.; Lee, Michael G.; Yokouchi, Kishio
2005-03-01
Prototypes of optical interconnect (OI) modules for backplane applications are presented. The transceivers attached to the linecards E/O convert the signals that are passed to and from the backplane by optical jumpers terminated with MTP-type connectors. The connectors plug into adaptors attached to the backplane and the microlens arrays mounted in the adaptors couple the light between the fibers and waveguides. Planar polymer channel waveguides with 30-50 μm cross-sections route the optical signals across the board with propagation losses as low as 0.05 dB/cm @ 850 nm. The 45¦-tapered integrated micromirrors reflect the light in and out of the waveguide plane with the loss of 0.8 dB per mirror. The connector displacement measurements indicate that the adaptor lateral assembly accuracy can be at least +/-10 μm for the excess loss not exceeding 1 dB. Insertion losses of the test modules with integrated waveguides, 45¦ mirrors, and pluggable optical jumper connectors are about 5 dB. Eye diagrams at 10.7 Gb/s have typical width and height of 70 ps and 400 mV, respectively, and jitter of about 20 ps.
Reflectively Coupled Waveguide Photodetector for High Speed Optical Interconnection
Hsu*, Shih-Hsiang
2010-01-01
To fully utilize GaAs high drift mobility, techniques to monolithically integrate In0.53Ga0.47As p-i-n photodetectors with GaAs based optical waveguides using total internal reflection coupling are reviewed. Metal coplanar waveguides, deposited on top of the polyimide layer for the photodetector’s planarization and passivation, were then uniquely connected as a bridge between the photonics and electronics to illustrate the high-speed monitoring function. The photodetectors were efficiently implemented and imposed on the echelle grating circle for wavelength division multiplexing monitoring. In optical filtering performance, the monolithically integrated photodetector channel spacing was 2 nm over the 1,520–1,550 nm wavelength range and the pass band was 1 nm at the −1 dB level. For high-speed applications the full-width half-maximum of the temporal response and 3-dB bandwidth for the reflectively coupled waveguide photodetectors were demonstrated to be 30 ps and 11 GHz, respectively. The bit error rate performance of this integrated photodetector at 10 Gbit/s with 27-1 long pseudo-random bit sequence non-return to zero input data also showed error-free operation. PMID:22163502
Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide
DAVEAU, RAPHAËL S.; BALRAM, KRISHNA C.; PREGNOLATO, TOMMASO; LIU, JIN; LEE, EUN H.; SONG, JIN D.; VERMA, VARUN; MIRIN, RICHARD; NAM, SAE WOO; MIDOLO, LEONARDO; STOBBE, SØREN; SRINIVASAN, KARTIK; LODAHL, PETER
2017-01-01
Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide single-photon source relying on evanescent coupling of the light field from a tapered out-coupler to an optical fiber. A two-step approach is taken where the performance of the tapered out-coupler is recorded first on an independent device containing an on-chip reflector. Reflection measurements establish that the chip-to-fiber coupling efficiency exceeds 80 %. The detailed characterization of a high-efficiency photonic-crystal waveguide extended with a tapered out-coupling section is then performed. The corresponding overall single-photon source efficiency is 10.9 % ± 2.3 %, which quantifies the success probability to prepare an exciton in the quantum dot, couple it out as a photon in the waveguide, and subsequently transfer it to the fiber. The applied out-coupling method is robust, stable over time, and broadband over several tens of nanometers, which makes it a highly promising pathway to increase the efficiency and reliability of planar chip-based single-photon sources. PMID:28584859
Bloch surface wave structures for high sensitivity detection and compact waveguiding
NASA Astrophysics Data System (ADS)
Khan, Muhammad Umar; Corbett, Brian
2016-01-01
Resonant propagating waves created on the surface of a dielectric multilayer stack, called Bloch surface waves (BSW), can be designed for high sensitivity monitoring of the adjacent refractive index as an alternative platform to the metal-based surface plasmon resonance (SPR) sensing. The resonant wavelength and polarization can be designed by engineering of the dielectric layers unlike the fixed resonance of SPR, while the wide bandwidth low loss of dielectrics permits sharper resonances, longer propagation lengths and thus their use in waveguiding devices. The transparency of the dielectrics allows the excitation and monitoring of surface-bound fluorescent molecules. We review the recent developments in this technology. We show the advantages that can be obtained by using high index contrast layered structures. Operating at 1550 nm wavelengths will allow the BSW sensors to be implemented in the silicon photonics platform where active waveguiding can be used in the realization of compact planar integrated circuits for multi-parameter sensing.
Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs.
Gerace, Dario; Andreani, Lucio Claudio
2004-05-01
A theoretical study of photonic bands for one-dimensional (1D) lattices embedded in planar waveguides with strong refractive index contrast is presented. The approach relies on expanding the electromagnetic field on the basis of guided modes of an effective waveguide, and on treating the coupling to radiative modes by perturbation theory. Photonic mode dispersion, gap maps, and intrinsic diffraction losses of quasi guided modes are calculated for the case of self-standing membranes as well as for silicon-on-insulator structures. Photonic band gaps in a waveguide are found to depend strongly on the core thickness and on polarization, so that the gaps for transverse electric and transverse magnetic modes most often do not overlap. Radiative losses of quasiguided modes above the light line depend in a nontrivial way on structure parameters, mode index, and wave vector. The results of this study may be useful for the design of integrated 1D photonic structures with low radiative losses.
Coupling Between CPW and Slotline Modes in Finite Ground CPW with Unequal Ground Plane Widths
NASA Technical Reports Server (NTRS)
Ponchak, George E.; Papapolymerou, John; Williams, W. D. (Technical Monitor); Tentzeris, Emmanouil M.
2002-01-01
The coupling between the desired CPW mode and the unwanted, slotline, mode is presented for finite ground coplanar waveguides with unequal ground plane widths. Measurements, quasi-static conformal mapping, and Method of Moment analysis are performed to determine the dependence of the slotline mode excitation on the physical dimensions of the FGC line and on the frequency range of operation. Introduction: Finite ground coplanar waveguide (FGC) is often used in low cost Monolithic Microwave Integrated Circuits (MMICs) because of its many advantages over microstrip and conventional CoPlanar Waveguide (CPW). It is uniplanar, which facilitates easy connection of series and shunt elements without via holes, supports a low loss, quasi-TEM mode over a wide frequency band, and since the ground planes are electrically and physically narrow, typically less than lambda/5 wide where lambda is the guided wavelength, they reduce the circuit size and the influence of higher order modes. However, they still support the parasitic slotline mode that plagues all CPW transmission lines.
Label-free silicon photonic biosensor system with integrated detector array
Yan, Rongjin; Mestas, Santano P.; Yuan, Guangwei; Safaisini, Rashid; Dandy, David S.
2010-01-01
An integrated, inexpensive, label-free photonic waveguide biosensor system with multi-analyte capability has been implemented on a silicon photonics integrated circuit from a commercial CMOS line and tested with nanofilms. The local evanescent array coupled (LEAC) biosensor is based on a new physical phenomenon that is fundamentally different from the mechanisms of other evanescent field sensors. Increased local refractive index at the waveguide’s upper surface due to the formation of a biological nanofilm causes local modulation of the evanescent field coupled into an array of photodetectors buried under the waveguide. The planar optical waveguide biosensor system exhibits sensitivity of 20%/nm photocurrent modulation in response to adsorbed bovine serum albumin (BSA) layers less than 3 nm thick. In addition to response to BSA, an experiment with patterned photoresist as well as beam propagation method simulations support the evanescent field shift principle. The sensing mechanism enables the integration of all optical and electronic components for a multi-analyte biosensor system on a chip. PMID:19606292
Kinetics of antigen binding to arrays of antibodies in different sized spots
NASA Technical Reports Server (NTRS)
Sapsford, K. E.; Liron, Z.; Shubin, Y. S.; Ligler, F. S.
2001-01-01
A fluorescence-based array biosensor has been developed which can measure the binding kinetics of an antigen to an immobilized antibody in real time. A patterned array of antibodies immobilized on the surface of a planar waveguide was used to capture a Cy5-labeled antigen present in a solution that was continuously flowed over the surface. The CCD image of the waveguide was monitored continuously for 25 min. The resulting exponential rise in fluorescence signal was determined by image analysis software and fitted to a reaction-limited kinetics model, giving a kf of 3.6 x 10(5) M(-1) s(-1). Different spot sizes were then patterned on the surface of the waveguide using either a PDMS flow cell or laser exposure, producing width sizes ranging from 80 to 1145 microm. It was demonstrated that under flow conditions, the reduction of spot size did not alter the association rate of the antigen with immobilized antibody; however, as the spot width decreased to < 200 nm, the signal intensity also decreased.
Grenier, Jason R; Fernandes, Luís A; Herman, Peter R
2015-06-29
Precise alignment of femtosecond laser tracks in standard single mode optical fiber is shown to enable controllable optical tapping of the fiber core waveguide light with fiber cladding photonic circuits. Asymmetric directional couplers are presented with tunable coupling ratios up to 62% and bandwidths up to 300 nm at telecommunication wavelengths. Real-time fiber monitoring during laser writing permitted a means of controlling the coupler length to compensate for micron-scale alignment errors and to facilitate tailored design of coupling ratio, spectral bandwidth and polarization properties. Laser induced waveguide birefringence was harnessed for polarization dependent coupling that led to the formation of in-fiber polarization-selective taps with 32 dB extinction ratio. This technology enables the interconnection of light propagating in pre-existing waveguides with laser-formed devices, thereby opening a new practical direction for the three-dimensional integration of optical devices in the cladding of optical fibers and planar lightwave circuits.
NASA Astrophysics Data System (ADS)
Nozaka, Takahiro; Mukai, Kohki
2016-04-01
A tunable microcavity device composed of optical polymer and Si with a colloidal quantum dot (QD) is proposed as a single-photon source for planar optical circuit. Cavity size is controlled by electrostatic micromachine behavior with the air bridge structure to tune timing of photon injection into optical waveguide from QD. Three-dimensional positioning of a QD in the cavity structure is available using a nanohole on Si processed by scanning probe microscope lithography. We fabricated the prototype microcavity with PbS-QD-mixed polymenthyl methacrylate on a SOI (semiconductor-on-insulator) substrate to show the tunability of cavity size as the shift of emission peak wavelength of QD ensemble.
Fabrication of Silicon Backshort Assembly for Waveguide-Coupled Superconducting Detectors
NASA Technical Reports Server (NTRS)
Crowe, E.; Bennett, C. L.; Chuss, D. T.; Denis, K. L.; Eimer, J.; Lourie, N.; Marriage, T.; Moseley, S. H.; Rostem, K.; Stevenson, T. R.;
2012-01-01
The Cosmology Large Angular Scale Surveyor (CLASS) is a ground-based instrument that will measure the polarization of the cosmic microwave background to search for gravitational waves from a posited epoch of inflation early in the universe s history. We are currently developing detectors that address the challenges of this measurement by combining the excellent beam-forming attributes of feedhorns with the low-noise performance of Transition-Edge sensors. These detectors utilize a planar orthomode transducer that maps the horizontal and vertical linear polarized components in a dual-mode waveguide to separate microstrip lines. On-chip filters define the bandpass in each channel, and the signals are terminated in resistors that are thermally coupled to the transition-edge sensors operating at 150 mK.
Reusable EGaIn-Injected Substrate-Integrated-Waveguide Resonator for Wireless Sensor Applications
Memon, Muhammad Usman; Lim, Sungjoon
2015-01-01
The proposed structure in this research is constructed on substrate integrated waveguide (SIW) technology and has a mechanism that produces 16 different and distinct resonant frequencies between 2.45 and 3.05 GHz by perturbing a fundamental TE10 mode. It is a unique method for producing multiple resonances in a radio frequency planar structure without any extra circuitry or passive elements is developed. The proposed SIW structure has four vertical fluidic holes (channels); injecting eutectic gallium indium (EGaIn), also known commonly as liquid metal (LM), into these vertical channels produces different resonant frequencies. Either a channel is empty, or it is filled with LM. In total, the combination of different frequencies produced from four vertical channels is 16. PMID:26569257
Active control of electromagnetic radiation through an enhanced thermo-optic effect
Sheng, Chong; Liu, Hui; Zhu, Shining; Genov, Dentcho A.
2015-01-01
The control of electromagnetic radiation in transformation optical metamaterials brings the development of vast variety of optical devices. Of a particular importance is the possibility to control the propagation of light with light. In this work, we use a structured planar cavity to enhance the thermo-optic effect in a transformation optical waveguide. In the process, a control laser produces apparent inhomogeneous refractive index change inside the waveguides. The trajectory of a second probe laser beam is then continuously tuned in the experiment. The experimental results agree well with the developed theory. The reported method can provide a new approach toward development of transformation optical devices where active all-optical control of the impinging light can be achieved. PMID:25746689
Development of a TiO2/SiO2 waveguide-mode chip for an ultraviolet near-field fluorescence sensor.
Kuroda, Chiaki; Nakai, Midori; Fujimaki, Makoto; Ohki, Yoshimichi
2018-03-19
Aimed at detecting fluorescent-labeled biological substances sensitively, a sensor that utilizes near-field light has attracted much attention. According to our calculations, a planar structure composed of two dielectric layers can enhance the electric field of UV near-field light effectively by inducing waveguide-mode (WM) resonance. The fluorescence intensity obtainable by a WM chip with an optimized structure is 5.5 times that obtainable by an optimized surface plasmon resonance chip. We confirmed the above by making a WM chip consisting of TiO 2 and SiO 2 layers on a silica glass substrate and by measuring the fluorescence intensity of a solution of quantum dots dropped on the chip.
Design optimization of integrated BiDi triplexer optical filter based on planar lightwave circuit.
Xu, Chenglin; Hong, Xiaobin; Huang, Wei-Ping
2006-05-29
Design optimization of a novel integrated bi-directional (BiDi) triplexer filter based on planar lightwave circuit (PLC) for fiber-to-the premise (FTTP) applications is described. A multi-mode interference (MMI) device is used to filter the up-stream 1310nm signal from the down-stream 1490nm and 1555nm signals. An array waveguide grating (AWG) device performs the dense WDM function by further separating the two down-stream signals. The MMI and AWG are built on the same substrate with monolithic integration. The design is validated by simulation, which shows excellent performance in terms of filter spectral characteristics (e.g., bandwidth, cross-talk, etc.) as well as insertion loss.
Design optimization of integrated BiDi triplexer optical filter based on planar lightwave circuit
NASA Astrophysics Data System (ADS)
Xu, Chenglin; Hong, Xiaobin; Huang, Wei-Ping
2006-05-01
Design optimization of a novel integrated bi-directional (BiDi) triplexer filter based on planar lightwave circuit (PLC) for fiber-to-the premise (FTTP) applications is described. A multi-mode interference (MMI) device is used to filter the up-stream 1310nm signal from the down-stream 1490nm and 1555nm signals. An array waveguide grating (AWG) device performs the dense WDM function by further separating the two down-stream signals. The MMI and AWG are built on the same substrate with monolithic integration. The design is validated by simulation, which shows excellent performance in terms of filter spectral characteristics (e.g., bandwidth, cross-talk, etc.) as well as insertion loss.
A tunable optofluidic circular liquid fiber
NASA Astrophysics Data System (ADS)
Li, Lei; Wu, Wei; Shi, Yang; Gong, Enze; Yang, Yi
2016-01-01
This paper presents a tunable optofluidic circular liquid fiber through the numerical simulation. Fiber is a significant optical device and has been widely applied on optical fiber communication. But the fiber based solid has limited tunability. Compared to solid fiber, the fiber based liquid material is relatively infrequent. Cause for the liquid optical device has more freedom tunable properties than solid counterpart, it has attracted more interest. The traditional optofluidic waveguide is designed like a sandwich in planar channel. This two-dimensional (2D) structure liquid waveguide will face huge transmission loss in the perpendicular direction of the flow streams. In this paper, a curving microchannel is designed inside the microchip to produce centrifugal effect. Two different liquids are injected into the chip by external pumps. In a particular situation, the core flow will be totally surrounded by the cladding flow. So the liquid can form an optical waveguide. Its structure is similar to an optical fiber which high refractive index (RI) liquid is core of the waveguide and the low RI liquid is cladding of the waveguide. Profit from the reconfigurability of liquid material, this liquid fiber has excellent tunability. The diameter of the core flow can be tuned in a wider range by changing the volume ratio of the flows through the finite element analysis. It is predictable that such a tunable liquid fiber may find wider applications in lab-on-a-chip systems and integrated optical devices.
Thermal refraction focusing in planar index-antiguided lasers.
Casperson, Lee W; Dittli, Adam; Her, Tsing-Hua
2013-03-15
Thermal refraction focusing in planar index-antiguided lasers is investigated both theoretically and experimentally. An analytical model based on zero-field approximation is presented for treating the combined effects of index antiguiding and thermal focusing. At very low pumping power, the mode is antiguided by the amplifier boundary, whereas at high pumping power it narrows due to thermal focusing. Theoretical results are in reasonable agreement with experimental data.
A compressive-sensing Fourier-transform on-chip Raman spectrometer
NASA Astrophysics Data System (ADS)
Podmore, Hugh; Scott, Alan; Lee, Regina
2018-02-01
We demonstrate a novel compressive sensing Fourier-transform spectrometer (FTS) for snapshot Raman spectroscopy in a compact format. The on-chip FTS consists of a set of planar-waveguide Mach-Zehnder interferometers (MZIs) arrayed on a photonic chip, effecting a discrete Fourier-transform of the input spectrum. Incoherence between the sampling domain (time), and the spectral domain (frequency) permits compressive sensing retrieval using undersampled interferograms for sparse spectra such as Raman emission. In our fabricated device we retain our chosen bandwidth and resolution while reducing the number of MZIs, e.g. the size of the interferogram, to 1/4th critical sampling. This architecture simultaneously reduces chip footprint and concentrates the interferogram in fewer pixels to improve the signal to noise ratio. Our device collects interferogram samples simultaneously, therefore a time-gated detector may be used to separate Raman peaks from sample fluorescence. A challenge for FTS waveguide spectrometers is to achieve multi-aperture high throughput broadband coupling to a large number of single-mode waveguides. A multi-aperture design allows one to increase the bandwidth and spectral resolution without sacrificing optical throughput. In this device, multi-aperture coupling is achieved using an array of microlenses bonded to the surface of the chip, and aligned with a grid of vertically illuminated waveguide apertures. The microlens array accepts a collimated beam with near 100% fill-factor, and the resulting spherical wavefronts are coupled into the single-mode waveguides using 45& mirrors etched into the waveguide layer via focused ion-beam (FIB). The interferogram from the waveguide outputs is imaged using a CCD, and inverted via l1-norm minimization to correctly retrieve a sparse input spectrum.
Tunable geometric Fano resonances in a metal/insulator stack
NASA Astrophysics Data System (ADS)
Grotewohl, Herbert
We present a theoretical analysis of surface-plasmon-mediated mode-coupling in a planar thin film metal/insulator stack. The spatial overlap of a surface plasmon polariton (SPP) and a waveguide mode results in a Fano interference analog. Tuning of the material parameters effects the modes and output fields of the system. Lastly, the intensity and phase sensitivity of the system are compared to a standard surface plasmon resonance (SPR). We begin with background information on Fano interference, an interference effect between two indistinguishable pathways. Originally described for autoionization, we discuss the analogs in other systems. We discuss the features of Fano interference in the mode diagrams, and the Fano resonance observed in the output field. The idea of a geometric Fano resonance (GFR) occurring in the angular domain is presented. Background information on surface plasmon polaritons is covered next. The dielectric properties of metals and how they relate to surface plasmons is first reviewed. The theoretical background of SPPs on an infinite planar surface is covered. The modes of a two planar interface metal/insulator stack are reviewed and the leaky properties of the waveguide are shown in the reflectance. We solve for modes of a three interface metal/insulator stack and shows an avoided crossing in the modes indicative of Fano interference. We observe the asymmetric Fano resonance in the angular domain in the reflectance. The tunability of the material parameters tunes the GFR of the system. The GFR tuning is explored and different Fano lineshapes are observed. We also observe a reversal of the asymmetry Fano lineshape, attributed to the relate phase interactions of the non-interacting modes. The phase of the GFR is calculated and discussed for the variations of the parameters. The reflected field is explored as the insulator permittivities are varied. As the waveguide permittivity is varied, we show there is little response from the system. As the exterior permittivity is varied, the reflectance exhibits the geometric Fano resonance and the tunability of the lineshape is explored. Finally, we calculate the sensitivities of our metal/insulator stack to changes in the permittivity and compare them to the sensitivities of SPRs.
Multistage WDM access architecture employing cascaded AWGs
NASA Astrophysics Data System (ADS)
El-Nahal, F. I.; Mears, R. J.
2009-03-01
Here we propose passive/active arrayed waveguide gratings (AWGs) with enhanced performance for system applications mainly in novel access architectures employing cascaded AWG technology. Two technologies were considered to achieve space wavelength switching in these networks. Firstly, a passive AWG with semiconductor optical amplifiers array, and secondly, an active AWG. Active AWG is an AWG with an array of phase modulators on its arrayed-waveguides section, where a programmable linear phase-profile or a phase hologram is applied across the arrayed-waveguide section. This results in a wavelength shift at the output section of the AWG. These architectures can address up to 6912 customers employing only 24 wavelengths, coarsely separated by 1.6 nm. Simulation results obtained here demonstrate that cascaded AWGs access architectures have a great potential in future local area networks. Furthermore, they indicate for the first time that active AWGs architectures are more efficient in routing signals to the destination optical network units than passive AWG architectures.
Lysevych, M; Tan, H H; Karouta, F; Fu, L; Jagadish, C
2013-04-08
In this paper we report a method to overcome the limitations of gain-saturation and two-photon absorption faced by developers of high power single mode InP-based lasers and semiconductor optical amplifiers (SOA) including those based on wide-waveguide or slab-coupled optical waveguide laser (SCOWL) technology. The method is based on Y-coupling design of the laser cavity. The reduction in gain-saturation and two-photon absorption in the merged beam laser structures (MBL) are obtained by reducing the intensity of electromagnetic field in the laser cavity. Standard ridge-waveguide lasers and MBLs were fabricated, tested and compared. Despite a slightly higher threshold current, the reduced gain-saturation in MBLs results in higher output power. The MBLs also produced a single spatial mode, as well as a strongly dominating single spectral mode which is the inherent feature of MBL-type cavity.
Thermally robust semiconductor optical amplifiers and laser diodes
Dijaili, Sol P.; Patterson, Frank G.; Walker, Jeffrey D.; Deri, Robert J.; Petersen, Holly; Goward, William
2002-01-01
A highly heat conductive layer is combined with or placed in the vicinity of the optical waveguide region of active semiconductor components. The thermally conductive layer enhances the conduction of heat away from the active region, which is where the heat is generated in active semiconductor components. This layer is placed so close to the optical region that it must also function as a waveguide and causes the active region to be nearly the same temperature as the ambient or heat sink. However, the semiconductor material itself should be as temperature insensitive as possible and therefore the invention combines a highly thermally conductive dielectric layer with improved semiconductor materials to achieve an overall package that offers improved thermal performance. The highly thermally conductive layer serves two basic functions. First, it provides a lower index material than the semiconductor device so that certain kinds of optical waveguides may be formed, e.g., a ridge waveguide. The second and most important function, as it relates to this invention, is that it provides a significantly higher thermal conductivity than the semiconductor material, which is the principal material in the fabrication of various optoelectronic devices.
Optical source and apparatus for remote sensing
NASA Technical Reports Server (NTRS)
Coyle, Donald Barry (Inventor)
2011-01-01
An optical amplifier is configured to amplify an injected seed optical pulse. The optical amplifier may include two or more gain sections coupled to form a continuous solid waveguide along a primary optical path. Each gain section may include: (i) an optical isolator forming an input to that gain section; (ii) a doped optical fiber having a first end coupled to the optical isolator and having a second end; (iii) a plurality of pump laser diodes; (iv) a controller providing drive signals to each of the plurality, the controller being configured to provide at least pulsed drive signals; and (v) an optical coupler having a first input port coupled to the second end, and a second input port coupled to the plurality and an output port.
NASA Astrophysics Data System (ADS)
Burckel, David Bruce
One of the anticipated advantages of photonic crystal waveguides is the ability to tune waveguide dispersion and propagation characteristics to achieve desired properties. The majority of research into photonic crystal waveguides centers around high index contrast photonic crystal waveguides with complete in-plane bandgaps in the photonic crystal cladding. This work focuses on linear photonic crystal waveguides in moderate index materials, with insufficient index contrast to guarantee a complete in-plane bandgap. Using a technique called Interferometric Lithography (IL) as well as standard semiconductor processing steps, a process flow for creating large area (˜cm 2), linear photonic crystal waveguides in a spin-deposited photocurable polymer is outlined. The study of such low index contrast photonic crystal waveguides offers a unique opportunity to explore the mechanisms governing waveguide confinement and photonic crystal behavior in general. Results from two optical characterization experiments are provided. In the first set of experiments, rhodamine 590 organic laser dye was incorporated into the polymer prior to fabrication of the photonic crystal slab. Emission spectra from waveguide core modes exhibit no obvious spectral selectivity owing to variation in the periodicity or geometry of the photonic crystal. In addition, grating coupled waveguides were fabricated, and a single frequency diode laser was coupled into the waveguide in order to study the transverse mode structure. To this author's knowledge, the optical mode profile images are the first taken of photonic crystal slab waveguides, exhibiting both simple low order mode structure as well as complex high order mode structure inconsistent with effective index theory. However, no obvious correlation between the mode structure and photonic crystal period or geometry was evident. Furthermore, in both the laser dye-doped and grating coupled waveguides, low loss waveguiding was observed regardless of wavelength to period ratio. These optical results indicated a need for a deeper understanding of the confinement/guiding mechanisms in such waveguide structures. A simplification of the full 2-D problem to a more tractable "tilted 1-D" geometry led to the proposal of a new waveguide geometry, Generalized Transverse Bragg Waveguides (GTBW), as well as a new propagation mode characterized by spatial variation in both the transverse direction as well as the direction of propagation. GTBW demonstrate many of the same dispersion tunability traits exhibited in complete bandgap photonic crystal waveguides, under more modest fabrication demands, and moreover provide much insight into photonic crystal waveguide modes of all types. Generalized Transverse Bragg Waveguides are presented in terms of the standard physical properties associated with waveguides, including the dispersion relation, expressions for the spatial field profile, and the concepts of phase and group velocity. In addition, the proposal of at least one obvious application, semiconductor optical amplifiers, is offered.
Analysis and Synthesis of Leaky-Wave Devices in Planar Technology
NASA Astrophysics Data System (ADS)
Martinez Ros, Alejandro Javier
The work developed along this doctoral thesis has been focused on the analysis and synthesis of microwave devices in planar technology. In particular, several types of devices based on the radiation mechanism of leaky waves have been studied. Typically, the radiation properties in leaky-wave devices are determined by the complex propagation constant of the leaky mode, wherein the phase constant is responsible for the pointing angle and the leakage rate for the intensity of the radiated fields. In this manner, by controlling both amplitude and phase of the leaky mode, an effective control over the device's radiation diagram can be obtained. Moreover, with the purpose of efficiently obtaining the leaky mode's radiation properties as function of the main geometrical parameters of the structure, several modal tools based on the transverse resonance analysis of the structure have been performed. In order to demonstrate this simultaneous control over the complex propagation constant in planar technology, several types of leaky-wave devices, including antennas (LWAs), multiplexors and near-field focusing systems, have been designed and manufactured in the technology of substrate integrated waveguide (SIW). This recently proposed technology, allows the design of devices based on classical waveguide technology with standard manufacturing techniques used for printed circuit board (PCB) designs. In this way, most of the parts that form a communication system can be integrated into a single substrate, thus reducing its cost and providing a more robust and compact device, which has less losses compared to other planar technologies such as the microstrip. El trabajo llevado a cabo durante la realizacion de esta tesis doctoral, se ha centrado en el analisis y sintesis de dispositivos de microondas en tecnologia planar. En concreto, se han estudiado diferentes tipos de dispositivos basados en radiacion por ondas de fuga "leaky waves", en los cuales las propiedades de radiacion estan determinadas por la constante de fase del modo "leaky" que es el que determina el angulo de apuntamiento y por la tasa de radiacion que es la que determina la intensidad de los campos radiados. De esta manera, controlando en amplitud y fase el modo "leaky" se puede obtener un control efectivo sobre el diagrama de radiacion del dispositivo. Ademas, con el objetivo de poder obtener de una manera mas eficiente las caracteristicas de propagacion de los modos de fuga "leaky" en funcion de los principales parametros geometricos de la estructura, se han desarrollado diversas herramientas de analisis modal basadas en la tecnica de resonancia transversa de la estructura. La capacidad para obtener un control simultaneo de la constante de propagacion compleja del modo "leaky", ha sido demostrada mediante el diseno y fabricacion de varios tipos de antena "leaky wave" (LWA) y de otros dispositivos como multiplexores y sistemas de enfoque en campo cercano. Para ello, se ha utilizado la tecnologia planar de guia de onda integrada en sustrato (susbstrate integrated waveguide, SIW). Esta recientemente desarrollada tecnologia, permite disenar dispositivos de microondas basados en tecnologia clasica de guia de ondas con sistemas de fabricacion estandar usados en tecnologia de circuitos impresos (printed circuit board, PCB). De esta forma, se pueden integrar en un mismo sustrato muchas de las diferentes partes que forman un sistema de comunicaciones, mejorando asi su robustez y compactibilidad, ademas de reducir el coste y de contar con menores perdidas que otras tecnologias planares como la microstrip.
Optical biosensors for cell adhesion.
Ramsden, Jeremy J; Horvath, Robert
2009-01-01
Planar optical waveguides offer an ideal substratum for cells on which to reside. The materials from which the waveguides are made--high refractive index transparent dielectrics--correspond to the coatings of medical implants (e.g., the oxides of niobium, tantalum, and titanium) or the high molecular weight polymers used for culture flasks (e.g., polystyrene). The waveguides can furthermore be modified both chemically and morphologically while retaining their full capability for generating an evanescent optical field that has its greatest strength at the interface between the solid substratum and the liquid phase with which it is invariably in contact (i.e., the culture medium bathing the cells), decaying exponentially perpendicular to the interface at a rate controllable by varying the material parameters of the waveguide. Analysis of the perturbation of the evanescent field by the presence of living cells within it enables their size, number density, shape, refractive index (linked to their constitution) and so forth to be determined, the number of parameters depending on the number of waveguide lightmodes analyzed. No labeling of any kind is necessary, and convenient measurement setups are fully compatible with maintaining the cells in their usual environment. If the temporal evolution of the perturbation is analyzed, even more information can be obtained, such as the amount of material (microexudate) secreted by the cell while residing on the surface. Separation of parallel effects simultaneously contributing to the perturbation of the evanescent field can be accomplished by analysis of coupling peak shape when a grating coupler is used to measure the propagation constants of the waveguide lightmodes.
Process development for waveguide chemical sensors with integrated polymeric sensitive layers
NASA Astrophysics Data System (ADS)
Amberkar, Raghu; Gao, Zhan; Park, Jongwon; Henthorn, David B.; Kim, Chang-Soo
2008-02-01
Due to the proper optical property and flexibility in the process development, an epoxy-based, high-aspect ratio photoresist SU-8 is now attracting attention in optical sensing applications. Manipulation of the surface properties of SU-8 waveguides is critical to attach functional films such as chemically-sensitive layers. We describe a new integration process to immobilize fluorescence molecules on SU-8 waveguide surface for application to intensity-based optical chemical sensors. We use two polymers for this application. Spin-on, hydrophobic, photopatternable silicone is a convenient material to contain fluorophore molecules and to pattern a photolithographically defined thin layer on the surface of SU-8. We use fumed silica powders as an additive to uniformly disperse the fluorophores in the silicone precursor. In general, additional processes are not critically required to promote the adhesion between the SU-8 and silicone. The other material is polyethylene glycol diacrylate (PEGDA). Recently we demonstrated a novel photografting method to modify the surface of SU-8 using a surface bound initiator to control its wettability. The activated surface is then coated with a monomer precursor solution. Polymerization follows when the sample is exposed to UV irradiation, resulting in a grafted PEGDA layer incorporating fluorophores within the hydrogel matrix. Since this method is based the UV-based photografting reaction, it is possible to grow off photolithographically defined hydrogel patterns on the waveguide structures. The resulting films will be viable integrated components in optical bioanalytical sensors. This is a promising technique for integrated chemical sensors both for planar type waveguide and vertical type waveguide chemical sensors.
TriPleX: a versatile dielectric photonic platform
NASA Astrophysics Data System (ADS)
Wörhoff, Kerstin; Heideman, René G.; Leinse, Arne; Hoekman, Marcel
2015-04-01
Photonic applications based on planar waveguide technology impose stringent requirements on properties such as optical propagation losses, light coupling to optical fibers, integration density, as well as on reliability and reproducibility. The latter is correlated to a high level of control of the refractive index and waveguide geometry. In this paper, we review a versatile dielectric waveguide platform, called TriPleX, which is based on alternating silicon nitride and silicon dioxide films. Fabrication with CMOS-compatible equipment based on low-pressure chemical vapor deposition enables the realization of stable material compositions being a prerequisite to the control of waveguide properties and modal shape. The transparency window of both materials allows for the realization of low-loss waveguides over a wide wavelength range (400 nm-2.35 μm). Propagation losses as low as 5×10-4 dB/cm are reported. Three basic geometries (box shell, double stripe, and filled box) can be distinguished. A specific tapering technology is developed for on-chip, low-loss (<0.1 dB) spotsize convertors, allowing for combining efficient fiber to chip coupling with high-contrast waveguides required for increased functional complexity as well as for hybrid integration with other photonic platforms such as InP and SOI. The functionality of the TriPleX platform is captured by verified basic building blocks. The corresponding library and associated design kit is available for multi-project wafer (MPW) runs. Several applications of this platform technology in communications, biomedicine, sensing, as well as a few special fields of photonics are treated in more detail.
Recent activities in printed Antennas at LeRC
NASA Technical Reports Server (NTRS)
Lee, Richard Q.; Simons, Rainee N.
1993-01-01
This paper will report two recent R&D efforts in printed antennas at NASA Lewis Research Center. These efforts are: (1) to enhance the current antenna performance in gain, bandwidth and pattern characteristics, and (2) to develop coplanar waveguide/aperture coupled feeding technique for dual excitation of a patch antenna. Research in area (1) has led to the development of a nonplanar linearly tapered slot antenna (LTSA) which has exhibited over 10 dB gain with broad bandwidth and excellent radiation patterns. This endfire antenna element is most suitable for use in MMIC arrays of 'brick' construction. A space power amplifier composed of active LTSA has been demonstrated and shown to have a gain of 30 dB at 20 GHz. In each of the antenna elements, a GaAs monolithic microwave integrated circuit (MMIC) three-stage power amplifier is integrated with two LTSA's. A single active LTSA has also been demonstrated and exhibited a power gain of 6.7 dB with the MMIC amplifier turned on. The aperture coupled feeding technique with coplanar waveguide feeds has demonstrated high coupling efficiency on both LTSA and patch antennas. Recent efforts have been focused on applying this technique for dual excitation (dual frequency and/or dual polarization) of a patch antenna. Preliminary results confirm the feasibility of this approach. Further development is required to improve the coupling efficiency and antenna radiation characteristics.
A Q-band low noise GaAs pHEMT MMIC power amplifier for pulse electron spin resonance spectrometer
NASA Astrophysics Data System (ADS)
Sitnikov, A.; Kalabukhova, E.; Oliynyk, V.; Kolisnichenko, M.
2017-05-01
We present the design and development of a single stage pulse power amplifier working in the frequency range 32-38 GHz based on a monolithic microwave integrated circuit (MMIC). We have designed the MMIC power amplifier by using the commercially available packaged GaAs pseudomorphic high electron mobility transistor. The circuit fabrication and assembly process includes the elaboration of the matching networks for the MMIC power amplifier and their assembling as well as the topology outline and fabrication of the printed circuit board of the waveguide-microstrip line transitions. At room ambient temperature, the measured peak output power from the prototype amplifier is 35.5 dBm for 16.6 dBm input driving power, corresponding to 19 dB gain. The measured rise/fall time of the output microwave signal modulated by a high-speed PIN diode was obtained as 5-6 ns at 20-250 ns pulse width with 100 kHz pulse repetition rate frequency.
A Q-band low noise GaAs pHEMT MMIC power amplifier for pulse electron spin resonance spectrometer.
Sitnikov, A; Kalabukhova, E; Oliynyk, V; Kolisnichenko, M
2017-05-01
We present the design and development of a single stage pulse power amplifier working in the frequency range 32-38 GHz based on a monolithic microwave integrated circuit (MMIC). We have designed the MMIC power amplifier by using the commercially available packaged GaAs pseudomorphic high electron mobility transistor. The circuit fabrication and assembly process includes the elaboration of the matching networks for the MMIC power amplifier and their assembling as well as the topology outline and fabrication of the printed circuit board of the waveguide-microstrip line transitions. At room ambient temperature, the measured peak output power from the prototype amplifier is 35.5 dBm for 16.6 dBm input driving power, corresponding to 19 dB gain. The measured rise/fall time of the output microwave signal modulated by a high-speed PIN diode was obtained as 5-6 ns at 20-250 ns pulse width with 100 kHz pulse repetition rate frequency.
NASA Astrophysics Data System (ADS)
Cao, Jianqiu; Liu, Wenbo; Ying, Hanyuan; Chen, Jinbao; Lu, Qisheng
2018-03-01
The characteristics of a single-mode continuous-wave thermally guiding very-large-mode-area fiber amplifier are investigated numerically using the rate-equation model while taking thermal transfer into account. It is revealed that the seed power should play an important role in the fiber amplifier and should be large enough to ensure high output efficiency. The effects of three pumping schemes (i.e. the co-, counter- and bi-directional pumping schemes) and the initial refraction index difference are also studied. It is revealed that the optimum fiber length changes with the pumping scheme, and the initial refraction index difference should be lower than 10-4 in order to ensure the linear increment of the output signal power with the pump power. Furthermore, a brief comparison between the thermally induced waveguides in the fiber amplifiers for three pumping schemes is also made.
Andrianov, Alexey; Anashkina, Elena; Kim, Arkady; Meyerov, Iosif; Lebedev, Sergey; Sergeev, Alexander; Mourou, Gerard
2014-11-17
We developed a three-dimensional numerical model of Large-Mode-Area chirped pulse fiber amplifiers which includes nonlinear beam propagation in nonuniform multimode waveguides as well as gain spectrum dynamics in quasi-three-level active ions. We used our model in tapered Yb-doped fiber amplifiers and showed that single-mode propagation is maintained along the taper even in the presence of strong Kerr nonlinearity and saturated gain, allowing extraction of up to 3 mJ of output energy in 1 ns pulse. Energy scaling and its limitation as well as the influence of fiber taper bending and core irregularities on the amplifier performance were studied. We also investigated numerically the capabilities for compression and coherent combining of up to 36 perturbed amplifying channels and showed more than 70% combining efficiency, even with up to 11% of high-order modes in individual channels.
Biolayer modeling and optimization for the SPARROW biosensor
NASA Astrophysics Data System (ADS)
Feng, Ke
2007-12-01
Biosensor direct detection of molecular binding events is of significant interest in applications from molecular screening for cancer drug design to bioagent detection for homeland security and defense. The Stacked Planar Affinity Regulated Resonant Optical Waveguide (SPARROW) structure based on coupled waveguides was recently developed to achieve increased sensitivity within a fieldable biosensor device configuration. Under ideal operating conditions, modification of the effective propagation constant of the structure's sensing waveguide through selective attachment of specific targets to probes on the waveguide surface results in a change in the coupling characteristics of the guide over a specifically designed interaction length with the analyte. Monitoring the relative power in each waveguide after interaction enables 'recognition' of those targets which have selectively bound to the surface. However, fabrication tolerances, waveguide interface roughness, biolayer surface roughness and biolayer partial coverage have an effect on biosensor behavior and achievable limit of detection (LOD). In addition to these influences which play a role in device optimization, the influence of the spatially random surface loading of molecular binding events has to be considered, especially for low surface coverage. In this dissertation an analytic model is established for the SPARROW biosensor which accounts for these nonidealities with which the design of the biosensor can be guided and optimized. For the idealized case of uniform waveguide transducer layers and biolayer, both theoretical simulation (analytical expression) and computer simulation (numerical calculation) are completed. For the nonideal case of an inhomogeneous transducer with nonideal waveguide and biolayer surfaces, device output power is affected by such physical influences as surface scattering, coupling length, absorption, and percent coverage of binding events. Using grating and perturbation techniques we explore the influence of imperfect surfaces and random surface loading on scattering loss and coupling length. Results provide a range of achievable limits of detection in the SPARROW device for a given target size, surface loading, and detectable optical power.
Integrated Miniature Arrays of Optical Biomolecule Detectors
NASA Technical Reports Server (NTRS)
Iltchenko, Vladimir; Maleki, Lute; Lin, Ying; Le, Thanh
2009-01-01
Integrated miniature planar arrays of optical sensors for detecting specific biochemicals in extremely small quantities have been proposed. An array of this type would have an area of about 1 cm2. Each element of the array would include an optical microresonator that would have a high value of the resonance quality factor (Q . 107). The surface of each microresonator would be derivatized to make it bind molecules of a species of interest, and such binding would introduce a measurable change in the optical properties of the microresonator. Because each microresonator could be derivatized for detection of a specific biochemical different from those of the other microresonators, it would be possible to detect multiple specific biochemicals by simultaneous or sequential interrogation of all the elements in the array. Moreover, the derivatization would make it unnecessary to prepare samples by chemical tagging. Such interrogation would be effected by means of a grid of row and column polymer-based optical waveguides that would be integral parts of a chip on which the array would be fabricated. The row and column polymer-based optical waveguides would intersect at the elements of the array (see figure). At each intersection, the row and column waveguides would be optically coupled to one of the microresonators. The polymer-based waveguides would be connected via optical fibers to external light sources and photodetectors. One set of waveguides and fibers (e.g., the row waveguides and fibers) would couple light from the sources to the resonators; the other set of waveguides and fibers (e.g., the column waveguides and fibers) would couple light from the microresonators to the photodetectors. Each microresonator could be addressed individually by row and column for measurement of its optical transmission. Optionally, the chip could be fabricated so that each microresonator would lie inside a microwell, into which a microscopic liquid sample could be dispensed.
Push-broom imaging spectrometer based on planar lightwave circuit MZI array
NASA Astrophysics Data System (ADS)
Yang, Minyue; Li, Mingyu; He, Jian-Jun
2017-05-01
We propose a large aperture static imaging spectrometer (LASIS) based on planar lightwave circuit (PLC) MZI array. The imaging spectrometer works in the push-broom mode with the spectrum performed by interferometry. While the satellite/aircraft is orbiting, the same source, seen from the satellite/aircraft, moves across the aperture and enters different MZIs, while adjacent sources enter adjacent MZIs at the same time. The on-chip spectrometer consists of 256 input mode converters, followed by 256 MZIs with linearly increasing optical path delays and a detector array. Multiple chips are stick together to form the 2D image surface and receive light from the imaging lens. Two MZI arrays are proposed, one works in wavelength ranging from 500nm to 900nm with SiON(refractive index 1.6) waveguides and another ranging from 1100nm to 1700nm with SOI platform. To meet the requirements of imaging spectrometer applications, we choose large cross-section ridge waveguide to achieve polarization insensitive, maintain single mode propagation in broad spectrum and increase production tolerance. The SiON on-chip spectrometer has a spectral resolution of 80cm-1 with a footprint of 17×15mm2 and the SOI based on-chip spectrometer has a resolution of 38cm-1 with a size of 22×19mm2. The spectral and space resolution of the imaging spectrometer can be further improved by simply adding more MZIs. The on-chip waveguide MZI array based Fourier transform imaging spectrometer can provide a highly compact solution for remote sensing on unmanned aerial vehicles or satellites with advantages of small size, light weight, no moving parts and large input aperture.
Presi, M; Chiuchiarelli, A; Corsini, R; Choudury, P; Bottoni, F; Giorgi, L; Ciaramella, E
2012-12-10
We report enhanced 10 Gb/s operation of directly modulated bandwidth-limited reflective semiconductor optical amplifiers. By using a single suitable arrayed waveguide grating we achieve simultaneously WDM demultiplexing and optical equalization. Compared to previous approaches, the proposed system results significantly more tolerant to seeding wavelength drifts. This removes the need for wavelength lockers, additional electronic equalization or complex digital signal processing. Uniform C-band operations are obtained experimentally with < 2 dB power penalty within a wavelength drift of 10 GHz (which doubles the ITU-T standard recommendations).
Nishi, Hidetaka; Tsuchizawa, Tai; Kou, Rai; Shinojima, Hiroyuki; Yamada, Takashi; Kimura, Hideaki; Ishikawa, Yasuhiko; Wada, Kazumi; Yamada, Koji
2012-04-09
On the silicon (Si) photonic platform, we monolithically integrated a silica-based arrayed-waveguide grating (AWG) and germanium (Ge) photodiodes (PDs) using low-temperature fabrication technology. We confirmed demultiplexing by the AWG, optical-electrical signal conversion by Ge PDs, and high-speed signal detection at all channels. In addition, we mounted a multichannel transimpedance amplifier/limiting amplifier (TIA/LA) circuit on the fabricated AWG-PD device using flip-chip bonding technology. The results show the promising potential of our Si photonic platform as a photonics-electronics convergence.
NASA Astrophysics Data System (ADS)
Werner, Nils; Wegemund, Jan; Gerke, Sebastian; Feise, David; Bugge, Frank; Paschke, Katrin; Tränkle, Günther
2018-02-01
Diode lasers with ridge waveguide structures and wavelength stabilization by a distributed Bragg-reflector (DBR) are key components for many different applications. These lasers provide diffraction limited laser emission in a single spectral mode, while an arbitrary emission wavelength can be chosen as long as the semiconductor allows for amplification. Furthermore, the DBR grating can be fabricated during the lateral structuring of the device which makes them well suited for mass production. A variety of different concepts can be used for the actual realization of the laser. While standard DBR ridge waveguide lasers (DBR-RWL) with a DBR as reflection grating provide up to 1W optical output power, the DBR can be also used as transmission grating for improved efficiency. Furthermore, more complex structures like monolithic master oscillator power amplifiers (MOPA), which show less spectral mode hops than DBR-RWLs, have been fabricated. The wide range of possible applications have different requirements on the emission characteristic of the used lasers. While the lasers can fulfill the requirements on the emission spectrum and the optical output power, the effects due to optical feedback from optical elements of the setup may limit their practical use in the respective application. Thus, it is of high importance to analyze the emission behavior of the different laser designs at various operation conditions with and without optical feedback. Here, the detailed investigation of the emission characteristics of lasers at an exemplary emission wavelength of 1120 nm is be presented.
Low Frequency Acoustic Intensity Propagation Modeling in Shallow Water Waveguides
2016-06-01
REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of...release; distribution is unlimited 12b. DISTRIBUTION CODE A 13. ABSTRACT (maximum 200 words) Three popular numerical techniques are employed to...planar interfacial two-fluid transmission and reflection are used to benchmark the commercial software package COMSOL. Canonical Pekeris-type
Chen, Yuntian; Zhang, Yan; Femius Koenderink, A
2017-09-04
We study semi-analytically the light emission and absorption properties of arbitrary stratified photonic structures with embedded two-dimensional magnetoelectric point scattering lattices, as used in recent plasmon-enhanced LEDs and solar cells. By employing dyadic Green's function for the layered structure in combination with the Ewald lattice summation to deal with the particle lattice, we develop an efficient method to study the coupling between planar 2D scattering lattices of plasmonic, or metamaterial point particles, coupled to layered structures. Using the 'array scanning method' we deal with localized sources. Firstly, we apply our method to light emission enhancement of dipole emitters in slab waveguides, mediated by plasmonic lattices. We benchmark the array scanning method against a reciprocity-based approach to find that the calculated radiative rate enhancement in k-space below the light cone shows excellent agreement. Secondly, we apply our method to study absorption-enhancement in thin-film solar cells mediated by periodic Ag nanoparticle arrays. Lastly, we study the emission distribution in k-space of a coupled waveguide-lattice system. In particular, we explore the dark mode excitation on the plasmonic lattice using the so-called array scanning method. Our method could be useful for simulating a broad range of complex nanophotonic structures, i.e., metasurfaces, plasmon-enhanced light emitting systems and photovoltaics.
An acousto-optic sensor based on resonance grating waveguide structure
Xie, Antonio Jou; Song, Fuchuan; Seo, Sang-Woo
2014-01-01
This paper presents an acousto-optic (AO) sensor based on resonance grating waveguide structure. The sensor is fabricated using elastic polymer materials to achieve a good sensitivity to ultrasound pressure waves. Ultrasound pressure waves modify the structural parameters of the sensor and result in the optical resonance shift of the sensor. This converts into a light intensity modulation. A commercial ultrasound transducer at 20 MHz is used to characterize a fabricated sensor and detection sensitivity at different optical source wavelength within a resonance spectrum is investigated. Practical use of the sensor at a fixed optical source wavelength is presented. Ultimately, the geometry of the planar sensor structure is suitable for two-dimensional, optical pressure imaging applications such as pressure wave detection and mapping, and ultrasound imaging. PMID:25045203
Olivares, José; Crespillo, Miguel L; Caballero-Calero, Olga; Ynsa, María D; García-Cabañes, Angel; Toulemonde, Marcel; Trautmann, Christina; Agulló-López, Fernando
2009-12-21
Heavy mass ions, Kr and Xe, having energies in the approximately 10 MeV/amu range have been used to produce thick planar optical waveguides at the surface of lithium niobate (LiNbO3). The waveguides have a thickness of 40-50 micrometers, depending on ion energy and fluence, smooth profiles and refractive index jumps up to 0.04 (lambda = 633 nm). They propagate ordinary and extraordinary modes with low losses keeping a high nonlinear optical response (SHG) that makes them useful for many applications. Complementary RBS/C data provide consistent values for the partial amorphization and refractive index change at the surface. The proposed method is based on ion-induced damage caused by electronic excitation and essentially differs from the usual implantation technique using light ions (H and He) of MeV energies. It implies the generation of a buried low-index layer (acting as optical barrier), made up of amorphous nanotracks embedded into the crystalline lithium niobate crystal. An effective dielectric medium approach is developed to describe the index profiles of the waveguides. This first test demonstration could be extended to other crystalline materials and could be of great usefulness for mid-infrared applications.
Photonic Switching Devices Using Light Bullets
NASA Technical Reports Server (NTRS)
Goorjian, Peter M. (Inventor)
1997-01-01
The present invention is directed toward a unique ultra-fast, all-optical switching device or switch made with readily available, relatively inexpensive, highly nonlinear photonic glasses. These photonic glasses have a sufficiently negative group velocity dispersion and high nonlinear index of refraction to support stable light bullets. The light bullets counterpropagate through, and interact within the waveguide to selectively change each others' directions of propagation into predetermined channels. In one embodiment, the switch utilizes a rectangularly planar slab waveguide, and further includes two central channels and a plurality of lateral channels for guiding the light bullets into and out of the waveguide. One advantage presented by the present all-optical switching device lies in its practical use of light bullets, thus preventing the degeneration of the pulses due to dispersion and diffraction at the front and back of the pulses. Another feature of the switching device is the relative insensitivity of the collision process to the time difference in which the counter-propagating pulses enter the waveguide. since. contrary to conventional co-propagating spatial solitons, the relative phase of the colliding pulses does not affect the interaction of these pulses. Yet another feature of the present all-optical switching device is the selection of the light pulse parameters which enables the generation of light bullets in highly nonlinear glasses.
Simultaneous single-shot readout of multi-qubit circuits using a traveling-wave parametric amplifier
NASA Astrophysics Data System (ADS)
O'Brien, Kevin
Observing and controlling the state of ever larger quantum systems is critical for advancing quantum computation. Utilizing a Josephson traveling wave parametric amplifier (JTWPA), we demonstrate simultaneous multiplexed single shot readout of 10 transmon qubits in a planar architecture. We employ digital image sideband rejection to eliminate noise at the image frequencies. We quantify crosstalk and infidelity due to simultaneous readout and control of multiple qubits. Based on current amplifier technology, this approach can scale to simultaneous readout of at least 20 qubits. This work was supported by the Army Research Office.
Beamed microwave power transmitting and receiving subsystems radiation characteristics
NASA Technical Reports Server (NTRS)
Dickinson, R. M.
1980-01-01
Measured characteristics of the spectrum of typical converters and the distribution of radiated Radio Frequency (RF) energy from the terminals (transmitting antenna and rectenna) of a beamed microwave power subsystem are presented for small transmitting and receiving S-band (2.45 GHz) subarrays. Noise and harmonic levels of tube and solid-state RF power amplifiers are shown. The RF patterns and envelope of a 64 element slotted waveguide antenna are given for the fundamental frequency and harmonics through the fifth. Reflected fundamental and harmonic patterns through the fourth for a 42 element rectenna subarray are presented for various dc load and illumination conditions. Bandwidth measurements for the waveguide antenna and rectenna are shown.
Wavelength interrogation of fiber Bragg grating sensors using tapered hollow Bragg waveguides.
Potts, C; Allen, T W; Azar, A; Melnyk, A; Dennison, C R; DeCorby, R G
2014-10-15
We describe an integrated system for wavelength interrogation, which uses tapered hollow Bragg waveguides coupled to an image sensor. Spectral shifts are extracted from the wavelength dependence of the light radiated at mode cutoff. Wavelength shifts as small as ~10 pm were resolved by employing a simple peak detection algorithm. Si/SiO₂-based cladding mirrors enable a potential operational range of several hundred nanometers in the 1550 nm wavelength region for a taper length of ~1 mm. Interrogation of a strain-tuned grating was accomplished using a broadband amplified spontaneous emission (ASE) source, and potential for single-chip interrogation of multiplexed sensor arrays is demonstrated.
Soto, Horacio; Tong, Miriam A; Domínguez, Juan C; Muraoka, Ramón
2017-09-04
We have inserted into an unbiased semiconductor optical amplifier (SOA) a powerful control beam, with photon energy slightly smaller than that of the band-gap of its active region, for exciting two-photon absorption and the quadratic Stark effect. For the available SOA, we estimated these phenomena generated a nonlinear absorption coefficient β= -865 cm/GW and induced an appreciable birefringence inside the amplifier waveguide, which significantly modified the polarization-state of a probe beam. Based on these effects, we have experimentally demonstrated the operation of an all-optical buffer, using an 80 Gb/s optical pulse comb, as well as an unbiased SOA, which was therefore, devoid of amplified spontaneous emission and pattern effects.
NASA Technical Reports Server (NTRS)
Law, P. H.; Burkholder, R. J.; Pathak, P. H.
1988-01-01
The electromagnetic fields (EM) backscatter from a 3-dimensional perfectly conducting S-shaped open-ended cavity with a planar interior termination is analyzed when it is illuminated by an external plane wave. The analysis is based on a self-consistent multiple scattering method which accounts for the multiple wave interactions between the open end and the interior termination. The scattering matrices which described the reflection and transmission coefficients of the waveguide modes reflected and transmitted at each junction between the different waveguide sections, as well at the scattering from the edges at the open end are found via asymptotic high frequency methods such as the geometrical and physical theories of diffraction used in conjunction with the equivalent current method. The numerical results for an S-shaped inlet cavity are compared with the backscatter from a straight inlet cavity; the backscattered patterns are different because the curvature of an S-shaped inlet cavity redistributes the energy reflected from the interior termination in a way that is different from a straight inlet cavity.
NASA Astrophysics Data System (ADS)
Shi, Jinwei; Lin, Meng-Hsien; Chen, Yi-Tong; Estakhri, Nasim Mohammadi; Tseng, Guo-Wei; Wang, Yanrong; Chen, Hung-Ying; Chen, Chun-An; Shih, Chih-Kang; Alã¹, Andrea; Li, Xiaoqin; Lee, Yi-Hsien; Gwo, Shangjr
Recently, two-dimensional (2D) semiconductor heterostructures, i.e., atomically thin lateral heterostructures (LHSs) based on transition metal dichalcogenides (TMDs) have been demonstrated. In an optically excited LHS, exciton transport is typically limited to a rather short spatial range ( 1 micron). Furthermore, additional losses may occur at the lateral interfacial regions. Here, to overcome these challenges, we experimentally implement a planar metal-oxide-semiconductor (MOS) structure by placing a monolayer of WS2/MoS2 LHS on top of an Al2O3 capped Ag single-crystalline plate. We found that the exciton transport range can be extended to tens of microns. The process of long-range exciton transport in the MOS structure is confirmed to be mediated by an exciton-surface plasmon polariton-exciton conversion mechanism, which allows a cascaded energy transfer process. Thus, the planar MOS structure provides a platform seamlessly combining 2D light-emitting materials with plasmonic planar waveguides, offering great potential for developing integrated photonic/plasmonic functionalities.
NASA Astrophysics Data System (ADS)
Ghatge, Mayur; Tabrizian, Roozbeh
2018-03-01
A matrix of aluminum-nitride (AlN) waveguides is acoustically engineered to realize electrically isolated phase-synchronous frequency references through nonlinear wave-mixing. AlN rectangular waveguides are cross-coupled through a periodically perforated plate that is engineered to have a wide acoustic bandgap around a desirable frequency ( f1≈509 MHz). While the coupling plate isolates the matrix from resonant vibrations of individual waveguide constituents at f1, it is transparent to the third-order harmonic waves (3f1) that are generated through nonlinear wave-mixing. Therefore, large-signal excitation of the f1 mode in a constituent waveguide generates acoustic waves at 3f1 with an efficiency defined by elastic anharmonicity of the AlN film. The phase-synchronous propagation of the third harmonic through the matrix is amplified by a high quality-factor resonance mode at f2≈1529 MHz, which is sufficiently close to 3f1 (f2 ≅ 3f1). Such an architecture enables realization of frequency-multiplied and phase-synchronous, yet electrically and spectrally isolated, references for multi-band/carrier and spread-spectrum wireless communication systems.
Waveguide fabrication in PMMA using a modified cavity femtosecond oscillator
NASA Astrophysics Data System (ADS)
Wang, Ke; Klimov, Denis; Kolber, Zbigniew
2007-09-01
Poly Methyl Methacrylate (PMMA) is an advantageous material than glass in oceanographic sensing applications because of its inhospitality for marine organisms. Waveguide sensors fabricated in PMMA are often used to measure the parameters in ocean such as PH, CO II, O II concentrations, etc. A tightly-focused femtosecond laser is often used to produce such a waveguide or even more complicated structures through the nonlinear effect in the bulk of PMMA, with pulse energy at μJ or mJ level. And such a laser system requires the amplifier from chirped-pulse amplification (CPA). The oscillator itself can produce pulse energy only at nJ level which is under the threshold of nonlinear effect. However, in our experiment, a modification to the oscillator cavity, which elongates the cavity length approximately 3 times and as a result, decreases the repetition rate from 93mHz to 32 mHz, can increase the pulse energy to 15 nJ. Under a tight focusing lens (100x 1.40 microscope objective), such an intensity exceeds the nonlinear threshold of PMMA. Thus, waveguide can be fabricated in PMMA using only a femtosecond oscillator and oceanographic sensors can be also made by this simple technique.
Measurements by a Vector Network Analyzer at 325 to 508 GHz
NASA Technical Reports Server (NTRS)
Fung, King Man; Samoska, Lorene; Chattopadhyay, Goutam; Gaier, Todd; Kangaslahti, Pekka; Pukala, David; Lau, Yuenie; Oleson, Charles; Denning, Anthony
2008-01-01
Recent experiments were performed in which return loss and insertion loss of waveguide test assemblies in the frequency range from 325 to 508 GHz were measured by use of a swept-frequency two-port vector network analyzer (VNA) test set. The experiments were part of a continuing effort to develop means of characterizing passive and active electronic components and systems operating at ever increasing frequencies. The waveguide test assemblies comprised WR-2.2 end sections collinear with WR-3.3 middle sections. The test set, assembled from commercially available components, included a 50-GHz VNA scattering- parameter test set and external signal synthesizers, augmented with recently developed frequency extenders, and further augmented with attenuators and amplifiers as needed to adjust radiofrequency and intermediate-frequency power levels between the aforementioned components. The tests included line-reflect-line calibration procedures, using WR-2.2 waveguide shims as the "line" standards and waveguide flange short circuits as the "reflect" standards. Calibrated dynamic ranges somewhat greater than about 20 dB for return loss and 35 dB for insertion loss were achieved. The measurement data of the test assemblies were found to substantially agree with results of computational simulations.
Giga-Hertz Electromagnetic Wave Science and Devices for Advanced Battlefield Communications
2010-12-15
Yeal Song, Lei Lu , Zihui Wang, Yiyan Sun, and Joshua Bevivino, Seminar in the Department of Electrical and Computer Engineering, the University of...Celinski, “Spin wave resonance excitation in ferromagnetic films using planar waveguide structures”, J. Appl. Phys. 108, 023907 (2010) 6. Zihui ...Young-Yeal Song, Yiyan Sun, Lei Lu , Joshua Bevivino, and Mingzhong Wu, Appl. Phys. Lett. 97, 173502 (2010). 12. “Electric-field control of ferromagnetic
Development of chipscale chalcogenide glass based infrared chemical sensors
NASA Astrophysics Data System (ADS)
Hu, Juejun; Musgraves, J. David; Carlie, Nathan; Zdyrko, Bogdan; Luzinov, Igor; Agarwal, Anu; Richardson, Kathleen; Kimerling, Lionel
2011-01-01
In this paper, we review the design, processing, and characterization of novel planar infrared chemical sensors. Chalcogenide glasses are identified as the material of choice for sensing given their wide infrared transparency as well as almost unlimited capacity for composition alloying and property tailoring. Three generations of on-chip spectroscopic chemical sensor devices we have developed: waveguide evanescent sensors, micro-disk cavity-enhanced sensors and micro-cavity photothermal sensors are discussed.
Tunable Stimulated Brillouin Scattering in Planar Optical Circuits
2012-11-01
interaction, making it the material of choice for chip-scale SBS. SBS was characterized in a 7 cm long As2S3 rib waveguide using the backscattered ...spectrum and pump-probe measurements. Figure 2(a) shows the backscattered signal demonstrating the generation of Stokes signal as the average pump...power is increased; pulsed pump with a duty cycle of 1% and pulse width of 400ns was used for backscattering experiment. From the backscattered
A compact 10 kW solid-state RF power amplifier at 352 MHz
NASA Astrophysics Data System (ADS)
Dancila, Dragos; Hoang Duc, Long; Jobs, Magnus; Holmberg, Måns; Hjort, Adam; Rydberg, Anders; Ruber, Roger
2017-07-01
A compact 10 kW RF power amplifier at 352 MHz was developed at FREIA for the European Spallation Source, ESS. The specifications of ESS for the conception of amplifiers are related to its pulsed operation: 3.5 ms pulse length and a duty cycle of 5%. The realized amplifier is composed of eight kilowatt level modules, combined using a planar Gysel 8-way combiner. The combiner has a low insertion loss of only 0.2 dB, measured at 10 kW peak power. Each module is built around a commercially available LDMOS transistor in a singleended architecture. During the final tests, a total output peak power of 10.5 kW was measured.
Planar waveguide solar concentrator with couplers fabricated by laser-induced backside wet etching
NASA Astrophysics Data System (ADS)
Zhang, Nikai
Solar radiation can be converted directly into electricity by using the photovoltaic effect, which represents the principle of operation of solar cells. Currently, most solar cells are made of crystalline silicon and have a conversion efficiency of about 20% or less. Multi-junction solar cells, made of III-V compound semiconductors, can have efficiencies in excess of 40%. The main factor that prohibits such high-efficiency technologies from wider acceptance is the cost. An alternative approach to using large-area expensive solar cells is to employ lower cost optics and concentrate the solar radiation to smaller cell area, which is the basic principle of solar concentrators. In this thesis, we consider a solar concentrator module that consists of a combination of a lens array and a slab waveguide with etched conical holes on one side of the waveguide, which are aligned with the lenslets. Sunlight coming through each of these lenslets is focused on the backside of the waveguide, where a coupling structure (an etched cone) is fabricated. This coupler changes the propagation direction of the incident light in such a way that light is guided through total internal reflection (TIR) within the glass slab and eventually reaches a solar cell, which is properly mounted on the side of the slab. The concept of this concentrated photovoltaic (CPV) system is based on a planar light guide solar concentrator module, proposed earlier by another group. This project builds on the original idea by including the following substantial modifications. The lens array is to be made of solid glass by a mold technology and provided to us by our industrial partner, Libbey, Inc., as opposed to silicone on glass technology, in which the lenses are made out of silicone and sit on a glass substrate. The coupling structures are cone-shaped holes etched directly into the solid glass waveguide, as opposed to coupling structures that are formed by addition of polymeric layer and consequent patterning. The fabrication of the etched holes in the glass is proposed to be based on a self-aligned process using a laser-induced backside etching (LIBWE) method, which is discussed in this project and its feasibility is examined. The role of different parameters to the concentration level and the optical efficiency of the CPV system are studied by simulations in ZEMAX (which is a leading optical analysis/design software) using non-sequential ray tracing. The optical efficiency of this design under different light concentration level is studied and discussed. The main contributions of this research consist of a new design of a waveguide-based CPV system which can be made entirely of glass by a low-cost glass fabrication method, and a feasibility study in terms of critical fabrication steps and optical performance.
Er3+ phosphate glass optical waveguide amplifiers at 1.5 μm on silicon
NASA Astrophysics Data System (ADS)
Yan, Yingchao; Faber, Anne J.; de Waal, Henk
1996-01-01
RF-sputtering techniques were employed to produce Er-doped phosphate glass films on thermally oxidized silicon wafers. Film compositions were characterized by X-ray photoelectron spectroscopy. As-deposited films showed very low Er luminescence lifetimes. By postannealing of deposited films in pure oxygen, Er photoluminescence emission lifetime of the 4I13/2 - 4I15/2 transition could be increased from 1 - 2 ms to 8 - 9 ms. The long Er lifetime of the deposited films is very promising for achieving an optical gain. A dependence of measured lifetimes on pump power was observed which are related to a up-conversion quenching process. After postannealing, the sputtered waveguides showed relatively low attenuation loss at the potential pumping and signaling wavelengths. The loss spectrum from 700 nm to 1600 nm was measured by two-prism coupling. The films were easy to be patterned by lithography and ridge channel waveguides were developed by argon plasma etching.
Efficient Light Extraction from Organic Light-Emitting Diodes Using Plasmonic Scattering Layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rothberg, Lewis
2012-11-30
Our project addressed the DOE MYPP 2020 goal to improve light extraction from organic light-emitting diodes (OLEDs) to 75% (Core task 6.3). As noted in the 2010 MYPP, “the greatest opportunity for improvement is in the extraction of light from [OLED] panels”. There are many approaches to avoiding waveguiding limitations intrinsic to the planar OLED structure including use of textured substrates, microcavity designs and incorporating scattering layers into the device structure. We have chosen to pursue scattering layers since it addresses the largest source of loss which is waveguiding in the OLED itself. Scattering layers also have the potential tomore » be relatively robust to color, polarization and angular distributions. We note that this can be combined with textured or microlens decorated substrates to achieve additional enhancement.« less
Three-dimensional patterning in polymer optical waveguides using focused ion beam milling
NASA Astrophysics Data System (ADS)
Kruse, Kevin; Burrell, Derek; Middlebrook, Christopher
2016-07-01
Waveguide (WG) photonic-bridge taper modules are designed for symmetric planar coupling between silicon WGs and single-mode fibers (SMFs) to minimize photonic chip and packaging footprint requirements with improving broadband functionality. Micromachined fabrication and evaluation of polymer WG tapers utilizing high-resolution focused ion beam (FIB) milling is performed and presented. Polymer etch rates utilizing the FIB and optimal methods for milling polymer tapers are identified for three-dimensional patterning. Polymer WG tapers with low sidewall roughness are manufactured utilizing FIB milling and optically tested for fabrication loss. FIB platforms utilize a focused beam of ions (Ga+) to etch submicron patterns into substrates. Fabricating low-loss polymer WG taper prototypes with the FIB before moving on to mass-production techniques provides theoretical understanding of the polymer taper and its feasibility for connectorization devices between silicon WGs and SMFs.
Directional multimode coupler for planar magnonics: Side-coupled magnetic stripes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadovnikov, A. V., E-mail: sadovnikovav@gmail.com; Nikitov, S. A.; Kotel'nikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow 125009
We experimentally demonstrate spin waves coupling in two laterally adjacent magnetic stripes. By the means of Brillouin light scattering spectroscopy, we show that the coupling efficiency depends both on the magnonic waveguides' geometry and the characteristics of spin-wave modes. In particular, the lateral confinement of coupled yttrium-iron-garnet stripes enables the possibility of control over the spin-wave propagation characteristics. Numerical simulations (in time domain and frequency domain) reveal the nature of intermodal coupling between two magnonic stripes. The proposed topology of multimode magnonic coupler can be utilized as a building block for fabrication of integrated parallel functional and logic devices suchmore » as the frequency selective directional coupler or tunable splitter, enabling a number of potential applications for planar magnonics.« less
Suppression of Gain Ripples in Superconducting Traveling-Wave Kinetic Inductance Amplifiers
NASA Astrophysics Data System (ADS)
Bal, Mustafa; Erickson, Robert P.; Ku, Hsiang Sheng; Wu, Xian; Pappas, David P.
Superconducting traveling-wave kinetic inductance (KIT) amplifiers demonstrated gain over a wide bandwidth with high dynamic range and low noise. However, the gain curve exhibits ripples. Impedance mismatch at the input and output ports of the KIT amplifier as wells as split ground planes of the coplanar waveguide (CPW) geometry are potential contributors to the ripple in the gain curve. Here we study the origin of these ripples in KIT amplifiers configured in CPW geometry using approximately 20 nm thick NbTiN films grown by reactive co-sputtering of NbN and TiN. Our NbTiN films have non-linear kinetic inductance as a function of current, described by L =L0 (1 +(I /I*) 2) , where I* = 15 . 96 +/- 0 . 11 mA measured by time domain reflectometry. We report the results of implementing an impedance taper that takes into account a significantly reduced phase velocity as it narrows, adding Au onto the CPW split grounds, as well as employing different designs of dispersion engineering. Qubit Measurements using KIT amplifiers will also be reported.
Universal Network Access System
2003-11-01
128 Figure 37 The detail of the SCM TX , (LO; local oscillator, LPF; Low-pass filter, AMP; Amplifier, BPF ...with UNAS, ( BPF : band-pass filter, BM Rx; Burst Mode receiver, AWGR; Arrayed waveguide grating router, FBG; Fiber Bragg Grating, TL; Tunable Laser...protocols. Standard specifications and RFCs will be used as guidelines for implementation. Table 1 UNAS Serial I/O Formats Protocol Implement1
Microwave beamed power technology improvement. [magnetrons and slotted waveguide arrays
NASA Technical Reports Server (NTRS)
Brown, W. C.
1980-01-01
The magnetron directional amplifier was tested for (1) phase shift and power output as a function of gain, anode current, and anode voltage, (2) background noise and harmonics in the output, (3) long life potential of the magnetron cathode, and (4) high operational efficiency. Examples of results were an adequate range of current and voltage over which 20 dB of amplification could be obtained, spectral noise density 155 dB below the carrier, 81.7% overall efficiency, and potential cathode life of 50 years in a design for solar power satellite use. A fabrication method was used to fabricate a 64 slot, 30 in square slotted waveguide array module from 0.020 in thick aluminum sheet. The test results on the array are discussed.
First demonstration of high-order QAM signal amplification in PPLN-based phase sensitive amplifier.
Umeki, T; Tadanaga, O; Asobe, M; Miyamoto, Y; Takenouchi, H
2014-02-10
We demonstrate the phase sensitive amplification of a high-order quadrature amplitude modulation (QAM) signal using non-degenerate parametric amplification in a periodically poled lithium niobate (PPLN) waveguide. The interaction between the pump, signal, and phase-conjugated idler enables us to amplify arbitrary phase components of the signal. The 16QAM signals are amplified without distortion because of the high gain linearity of the PPLN-based phase sensitive amplifier (PSA). Both the phase and amplitude noise reduction capabilities of the PSA are ensured. Phase noise cancellation is achieved by using the interaction with the phase-conjugated idler. A degraded signal-to-noise ratio (SNR) is restored by using the gain difference between a phase-correlated signal-idler pair and uncorrelated excess noise. The applicability of the simultaneous amplification of multi-carrier signals and the amplification of two independent polarization signals are also confirmed with a view to realizing ultra-high spectrally efficient signal amplification.
Microfabrication using soft lithography
NASA Astrophysics Data System (ADS)
Zhao, Xiao-Mei
Soft Lithography is a group of non-photolithographic techniques currently being explored in our group. Four such techniques-microcontact printing (μCP), replica molding (REM), micromolding in capillaries (MIMIC), and microtransfer molding (μTM)-have been demonstrated for fabricating micro- and nanostructures of a variety of materials with dimension >=30 nm. Part I (Chapters 1-5) reviews several aspects of the three molding techniques REM, MIMIC, and μTM. Chapters 1-3 describe μTM and MIMIC, and the use of these techniques in the fabrication of functional devices. μTM is capable of generating μm-scale structures over large areas, on both planar and contoured surfaces, and is able to make 3-dimensional structures layer by layer. The capability of μTM and MIMIC has been demonstrated in the fabrication of single-mode waveguides, waveguide couplers and interferometers. The coupling between waveguides can be tailored by waveguide spacing or the differential in curing time between the waveguides and the cladding. Chapters 4-5 demonstrate the combination of REM and shrinkable polystyrene (PS) films to reduce the feature size of microstructures and to generate microstructures with high aspect ratios on both planar and curved surfaces. A shrinkable PS film is patterned with relief structures, and then heated and shrinks. Thermal shrinkage results in a 100-fold increase in the aspect ratio of the patterned microstructures in the PS film. The microstructures in the shrunken PS films can be transferred to many other materials by REM. Part II (Chapters 6-7) focuses on two issues in the microfabrication using self-assembled monolayers (SAMs) as ultrathin resists. Chapter 6 describes a selective etching solution for transferring patterns of SAMs of alkanethiolates into the underlying layers (e.g., gold, silver, and copper). This etching solution uses thiosulfate as the ligand that coordinates to the metal ions, and ferricyanide as the oxidant. It has been demonstrated to be less toxic, more efficient, and provide fewer defects in the SAM-protected metallic regions upon etching. Chapter 7 describes a technique to measure the surface density of defects in SAMs of hexadecanethiolates on gold and in the structures prepared by using the SAMs as resists and the aqueous ferricyanide solution as the etchant, under conditions that may be encountered in lithographic processing. This technique uses two steps of amplification through chemical reaction to convert pinhole defects in SAMs into easily imaged, micron-scale pits in an underlying Si support.
Waveguide Grating For Polarization Preprocessing Circuits
NASA Astrophysics Data System (ADS)
Voirin, Guy; Gradisnik, F.; Parriaux, Olivier M.; Gale, Michael T.; Kunz, Rino E.; Curtis, B. J.; Lehmann, Hans W.
1989-12-01
Periodically corrugated optical waveguides on glass with non-collinear coupling have been investigated both theoretically and experimentally. For a TE or TM polarized guided mode of a planar waveguide obliquely incident on a grating pad, there are four characteristic angles corresponding to the coupling with TE and TM reflected modes fulfilling the Bragg condition. The reflectivity is obtained by solving the coupled mode equations for the non-collinear case. The modelling shows that integrated passive functions such as polarization splitting and interference can be achieved. The polarization interference element uses the property that the coupling coefficients TM-TE and TE-TE are equal at defined incidence angles. Since the angle between the two reflected TE beams is only a few minutes of arc, the two beams can interfere. The waveguides are made by K+ ion exchange in BK7 glass for 3 hours at 380°C. The structure was designed for use at a wavelength of 633 nm and uses a 485 nm period grating which was fabricated by holographic exposure and plasma etching techniques in a 50 nm TiO2 layer e-beam evaporated onto the glass surface. The reflectivity of the grating structure was studied experimentally and compared with theory. The diffraction angles are within 30 " of arc of the predicted angles. The measured reflectivities reached 20 %. The feasibility of realizing an integrated optic preprocessing circuit for polarization interferometry has been demonstrated.
Hard and flexible optical printed circuit board
NASA Astrophysics Data System (ADS)
Lee, El-Hang; Lee, Hyun Sik; Lee, S. G.; O, B. H.; Park, S. G.; Kim, K. H.
2007-02-01
We report on the design and fabrication of hard and flexible optical printed circuit boards (O-PCBs). The objective is to realize generic and application-specific O-PCBs, either in hard form or flexible form, that are compact, light-weight, low-energy, high-speed, intelligent, and environmentally friendly, for low-cost and high-volume universal applications. The O-PCBs consist of 2-dimensional planar arrays of micro/nano-scale optical wires, circuits and devices that are interconnected and integrated to perform the functions of sensing, storing, transporting, processing, switching, routing and distributing optical signals on flat modular boards. For fabrication, the polymer and organic optical wires and waveguides are first fabricated on a board and are used to interconnect and integrate micro/nano-scale photonic devices. The micro/nano-optical functional devices include lasers, detectors, switches, sensors, directional couplers, multi-mode interference devices, ring-resonators, photonic crystal devices, plasmonic devices, and quantum devices. For flexible boards, the optical waveguide arrays are fabricated on flexible poly-ethylen terephthalate (PET) substrates by UV embossing. Electrical layer carrying VCSEL and PD array is laminated with the optical layer carrying waveguide arrays. Both hard and flexible electrical lines are replaced with high speed optical interconnection between chips over four waveguide channels up to 10Gbps on each. We discuss uses of hard or flexible O-PCBs for telecommunication systems, computer systems, transportation systems, space/avionic systems, and bio-sensor systems.
Defect modes in photonic crystal slabs studied using terahertz time-domain spectroscopy.
Jian, Zhongping; Pearce, Jeremy; Mittleman, Daniel M
2004-09-01
We describe broadband coherent transmission studies of two-dimensional photonic crystals consisting of a hexagonal array of air holes in a dielectric slab in a planar waveguide. By filling several of the air holes in the photonic crystal slab, we observe the signature of a defect mode within the stop band, in both the amplitude and phase spectra. The experimental results are in reasonable agreement with theoretical calculations using the transfer matrix method.
Optical Fiber Sensing Using Quantum Dots
Jorge, Pedro; Martins, Manuel António; Trindade, Tito; Santos, José Luís; Farahi, Faramarz
2007-01-01
Recent advances in the application of semiconductor nanocrystals, or quantum dots, as biochemical sensors are reviewed. Quantum dots have unique optical properties that make them promising alternatives to traditional dyes in many luminescence based bioanalytical techniques. An overview of the more relevant progresses in the application of quantum dots as biochemical probes is addressed. Special focus will be given to configurations where the sensing dots are incorporated in solid membranes and immobilized in optical fibers or planar waveguide platforms. PMID:28903308
Cascaded all-optical operations in a hybrid integrated 80-Gb/s logic circuit.
LeGrange, J D; Dinu, M; Sochor, T; Bollond, P; Kasper, A; Cabot, S; Johnson, G S; Kang, I; Grant, A; Kay, J; Jaques, J
2014-06-02
We demonstrate logic functionalities in a high-speed all-optical logic circuit based on differential Mach-Zehnder interferometers with semiconductor optical amplifiers as the nonlinear optical elements. The circuit, implemented by hybrid integration of the semiconductor optical amplifiers on a planar lightwave circuit platform fabricated in silica glass, can be flexibly configured to realize a variety of Boolean logic gates. We present both simulations and experimental demonstrations of cascaded all-optical operations for 80-Gb/s on-off keyed data.
Microfabricated Circuits for Terahertz Wave Amplification and Terahertz Biosensors
NASA Astrophysics Data System (ADS)
Fawole, Olutosin Charles
The terahertz frequency band extends from deep infrared (100 THz) down to millimeter waves (0.4 THz), and this band was mostly inaccessible due to the lack of appropriate sources and detectors. Those with access to this band had to endure the small-intensity pulsed signals (nanowatts to microwatts) that the terahertz sources of those times could provide. In recent years, however, sufficient development has led to the availability of terahertz sources with sufficient power (1-100 muW) and the ease of use these sources has in turn enabled researchers to develop newer sources, detectors, and application areas. The terahertz regime is interesting because a) many molecules have vibrational, rotation and transition absorption bands in this regime, b) the terahertz electromagnetic wavelength is sufficiently small to resolve centimeter to millimeter scale objects, and c) scattering and absorption in metals in the terahertz regime make it very challenging to devise terahertz signal processing circuits. Thus, performing terahertz reflection/transmission measurements may enable precise identification of chemicals in a sample. Furthermore, small wavelengths and strong scattering by metallic objects make imaging with terahertz waves quite attractive. Finally, the ability to devise terahertz communication circuits and links will provide access to a frequency domain that is restricted and not available to others. One of the main objectives of this work is to develop 0.75 - 1.1 terahertz (free space wavelength 272 mum - 400 ?mum) amplifiers. Another objective of this work is to explore the suitability of terahertz waves in biological imaging and sensing. The terahertz amplifiers developed in this work consisted of distributed components such as rectangular waveguides and cylindrical dielectric resonators. In contrast to discrete amplifiers, which are based on solid-state devices, distributed traveling wave amplifiers can potentially handle and produce larger powers. Three different distributed terahertz amplifier circuits were considered in this work. These were based on a) coupled dielectric resonators, b) dielectric waveguides with periodic slots, and c) metallic meandering waveguides. The result of the hot test of the last circuit on interaction with an electron beam energy source yielded an amplification of 12 dB of a -55 dBm, 0.9 terahertz signal over 1 gigahertz bandwidth. The electron beam acceleration voltage was 4.8 kV and its current was approximately 20 microamps. The terahertz biosensing system developed in this work was used to study the unique interaction of terahertz waves with the chemical and physical components of biological tissues, and the products of biochemical reactions. A terahertz near-field imaging system was also developed to image mouse brain slices, plants, and bug wings. In addition, this work also demonstrated the capabilities and limitations of terahertz waves for the real-time noninvasive monitoring of bioethanol production by yeast cells.
Single photons to multiple octaves: Engineering nonlinear optics in micro- and nano-structured media
2017-05-18
generation and amplification of ultrafast IR pulses. Both efforts took advantage of microstructured nonlinear media, e.g. quasi -phasematched (QPM...enhance the wave-mixing efficiency, especially for low-power devices. Because errors in fabrication of waveguides and quasi - phasematching gratings are... experimental demonstration of optical parametric chirped pulse amplifiers (OPCPA) in apodized aperiodic QPMgratings for high repetition rate, high
Integrated 220 GHz Source Development
2014-05-27
placement of the anode far enough from the emitter to prevent the deposi- tion of sputtered anode particles. Fully-Integrated High Power Amplifier The...waveguide circuit dimensions and tolerances. We demonstrated high power and good transmission with a five-beam configuration during 2012. Peak output...circuit dimensions and tolerances. We demonstrated high power and good transmission with a five-beam configuration during 2012. Peak output powers up
Dielectric Covered Planar Antennas at Submillimeter Wavelengths for Terahertz Imaging
NASA Technical Reports Server (NTRS)
Chattopadhyay, Goutam; Gill, John J.; Skalare, Anders; Lee, Choonsup; Llombart, Nuria; Siegel, Peter H.
2011-01-01
Most optical systems require antennas with directive patterns. This means that the physical area of the antenna will be large in terms of the wavelength. When non-cooled systems are used, the losses of microstrip or coplanar waveguide lines impede the use of standard patch or slot antennas for a large number of elements in a phased array format. Traditionally, this problem has been solved by using silicon lenses. However, if an array of such highly directive antennas is to be used for imaging applications, the fabrication of many closely spaced lenses becomes a problem. Moreover, planar antennas are usually fed by microstrip or coplanar waveguides while the mixer or the detector elements (usually Schottky diodes) are coupled in a waveguide environment. The coupling between the antenna and the detector/ mixer can be a fabrication challenge in an imaging array at submillimeter wavelengths. Antennas excited by a waveguide (TE10) mode makes use of dielectric superlayers to increase the directivity. These antennas create a kind of Fabry- Perot cavity between the ground plane and the first layer of dielectric. In reality, the antenna operates as a leaky wave mode where a leaky wave pole propagates along the cavity while it radiates. Thanks to this pole, the directivity of a small antenna is considerably enhanced. The antenna consists of a waveguide feed, which can be coupled to a mixer or detector such as a Schottky diode via a standard probe design. The waveguide is loaded with a double-slot iris to perform an impedance match and to suppress undesired modes that can propagate on the cavity. On top of the slot there is an air cavity and on top, a small portion of a hemispherical lens. The fractional bandwidth of such antennas is around 10 percent, which is good enough for heterodyne imaging applications.The new geometry makes use of a silicon lens instead of dielectric quarter wavelength substrates. This design presents several advantages when used in the submillimeter-wave and terahertz bands: a) Antenna fabrication compatible with lithographic techniques. b) Much simpler fabrication of the lens. c) A simple quarter-wavelength matching layer of the lens will be more efficient if a smaller portion of the lens is used. d) The directivity is given by the lens diameter instead of the leaky pole (the bandwidth will not depend anymore on the directivity but just on the initial cavity). The feed is a standard waveguide, which is compatible with proven Schottky diode mixer/detector technologies. The development of such technology will benefit applications where submillimeter- wave heterodyne array designs are required. The main fields are national security, planetary exploration, and biomedicine. For national security, wideband submillimeter radars could be an effective tool for the standoff detection of hidden weapons or bombs concealed by clothing or packaging. In the field of planetary exploration, wideband submillimeter radars can be used as a spectrometer to detect trace concentrations of chemicals in atmospheres that are too cold to rely on thermal imaging techniques. In biomedicine, an imaging heterodyne system could be helpful in detecting skin diseases.
Electromagnetic Design of a Magnetically Coupled Spatial Power Combiner
NASA Astrophysics Data System (ADS)
Bulcha, B. T.; Cataldo, G.; Stevenson, T. R.; U-Yen, K.; Moseley, S. H.; Wollack, E. J.
2018-04-01
The design of a two-dimensional spatial beam-combining network employing a parallel-plate superconducting waveguide filled with a monocrystalline silicon dielectric substrate is presented. This component uses arrays of magnetically coupled antenna elements to achieve high coupling efficiency and full sampling of the intensity distribution while avoiding diffractive losses in the multimode waveguide region. These attributes enable the structure's use in realizing compact far-infrared spectrometers for astrophysical and instrumentation applications. If unterminated, reflections within a finite-sized spatial beam combiner can potentially lead to spurious couplings between elements. A planar meta-material electromagnetic absorber is implemented to control this response within the device. This broadband termination absorbs greater than 0.99 of the power over the 1.7:1 operational band at angles ranging from normal to near-parallel incidence. The design approach, simulations and applications of the spatial power combiner and meta-material termination structure are presented.
Reconfigurable nanoscale spin-wave directional coupler
Wang, Qi; Pirro, Philipp; Verba, Roman; Slavin, Andrei; Hillebrands, Burkard; Chumak, Andrii V.
2018-01-01
Spin waves, and their quanta magnons, are prospective data carriers in future signal processing systems because Gilbert damping associated with the spin-wave propagation can be made substantially lower than the Joule heat losses in electronic devices. Although individual spin-wave signal processing devices have been successfully developed, the challenging contemporary problem is the formation of two-dimensional planar integrated spin-wave circuits. Using both micromagnetic modeling and analytical theory, we present an effective solution of this problem based on the dipolar interaction between two laterally adjacent nanoscale spin-wave waveguides. The developed device based on this principle can work as a multifunctional and dynamically reconfigurable signal directional coupler performing the functions of a waveguide crossing element, tunable power splitter, frequency separator, or multiplexer. The proposed design of a spin-wave directional coupler can be used both in digital logic circuits intended for spin-wave computing and in analog microwave signal processing devices. PMID:29376117
Exact states in waveguides with periodically modulated nonlinearity
NASA Astrophysics Data System (ADS)
Ding, E.; Chan, H. N.; Chow, K. W.; Nakkeeran, K.; Malomed, B. A.
2017-09-01
We introduce a one-dimensional model based on the nonlinear Schrödinger/Gross-Pitaevskii equation where the local nonlinearity is subject to spatially periodic modulation in terms of the Jacobi {dn} function, with three free parameters including the period, amplitude, and internal form-factor. An exact periodic solution is found for each set of parameters and, which is more important for physical realizations, we solve the inverse problem and predict the period and amplitude of the modulation that yields a particular exact spatially periodic state. A numerical stability analysis demonstrates that the periodic states become modulationally unstable for large periods, and regain stability in the limit of an infinite period, which corresponds to a bright soliton pinned to a localized nonlinearity-modulation pattern. The exact dark-bright soliton complex in a coupled system with a localized modulation structure is also briefly considered. The system can be realized in planar optical waveguides and cigar-shaped atomic Bose-Einstein condensates.
Reconfigurable nanoscale spin-wave directional coupler.
Wang, Qi; Pirro, Philipp; Verba, Roman; Slavin, Andrei; Hillebrands, Burkard; Chumak, Andrii V
2018-01-01
Spin waves, and their quanta magnons, are prospective data carriers in future signal processing systems because Gilbert damping associated with the spin-wave propagation can be made substantially lower than the Joule heat losses in electronic devices. Although individual spin-wave signal processing devices have been successfully developed, the challenging contemporary problem is the formation of two-dimensional planar integrated spin-wave circuits. Using both micromagnetic modeling and analytical theory, we present an effective solution of this problem based on the dipolar interaction between two laterally adjacent nanoscale spin-wave waveguides. The developed device based on this principle can work as a multifunctional and dynamically reconfigurable signal directional coupler performing the functions of a waveguide crossing element, tunable power splitter, frequency separator, or multiplexer. The proposed design of a spin-wave directional coupler can be used both in digital logic circuits intended for spin-wave computing and in analog microwave signal processing devices.
NASA Astrophysics Data System (ADS)
Kwon, Jong Hwa; Choi, Jae Ick; Yook, Jong Gwan
In this paper, we design and manufacture a flanged double ridged waveguide with a tapered section as a sample holder for measuring the electromagnetic shielding effectiveness (SE) of planar material in broadband frequency ranges up to 10GHz. The proposed technique overcomes the limitations of the conventional ASTM D4935 test method at high frequencies. The simulation results for the designed sample holders agree well with the fabricated ones in consideration of the design specification of S11 < -20dB within the frequency range of 1-10GHz. To verify the proposed measurement apparatus, the measured SE data of the commercial shielding materials from 1 to 10GHz were indirectly compared with those obtained from the ASTM D4935 from 30MHz to 1GHz. We observed that the SE data obtained by using both experimental techniques agree with each other.
Solitonic guides in photopolymerizable materials for optical devices
NASA Astrophysics Data System (ADS)
Dorkenoo, Kokou D.; Cregut, Olivier; Fort, Alain
2003-11-01
These last twenty years, advanced studies in integrated optics have demonstrated the capacity to elaborate optical circuits in planar substrates. Most of the optical integrated devices are realized on glass substrate and the guide areas are usually obtained by photolithography techniques. We present here a new approach based on the use of compounds photopolymerizable in the visible range. The conditions of self written channel creation by solitonic propagation inside the bulk of the photopolymerizable formulation are analyzed. Waveguides can be self-written in photopolymerizable materials1,2 due to the dependence of their refractive index on intensity and duration of the active light. This process results from the competition between the diffraction of the incident Gaussian beam and the photopolymerization which tends to increase the refractive index where light intensity is the highest. By controlling the difference between the refractive index values of the polymerized and non polymerized zones, the beam can be self-trapped along the propagation axis giving rise to a waveguide over distances as large as 10 cm without any broadening. Such permanent waveguides can be structured by inscription of gratings and doped with a dye in a plastic cell leading to the elaboration of a completely plastic laser.
NASA Astrophysics Data System (ADS)
Andrews, Mark P.; Kanigan, Tanya
2007-06-01
Orientation anisotropies in structural properties relevant to the use of cellulosic polymers as membranes for lab-on-chips were investigated for cellulose acetate (CA) and regenerated cellulose (RC) films deposited as slab waveguides. Anisotropy was probed with mode and polarization state selected guided wave Raman spectroscopy. CA exhibits partial chain orientation in the plane of the film, and this orientation is independent of sample substrate and film preparation conditions. RC films also show in-plane anisotropy, where the hexose sugar rings lie roughly in the plane of the film. Explanations are given of the role of artifacts in interpreting waveguide Raman spectra, including anomalous contributions to Raman spectra that arise from deviations from right angle scattering geometry, mode-dependent contributions to longitudinal electric field components and TE<-->TM mode conversion. We explore diffusion profiles of small molecules in cellulosic films by adaptations of an inverse-Wentzel-Kramers-Brillouin (iWKB) recursive, noninteger virtual mode index algorithm. Perturbations in the refractive index distribution, n(z), are recovered from the measured relative propagation constants, neffective,m, of the planar waveguide. The refractive index distribution then yields the diffusion profile.
TiO2 as diffusion barrier at Co/Alq3 interface studied by x-ray standing wave technique
NASA Astrophysics Data System (ADS)
Phatak Londhe, Vaishali; Gupta, A.; Ponpandian, N.; Kumar, D.; Reddy, V. R.
2018-06-01
Nano-scale diffusion at the interfaces in organic spin valve thin films plays a vital role in controlling the performance of magneto-electronic devices. In the present work, it is shown that a thin layer of titanium dioxide at the interface of Co/Alq3 can act as a good diffusion barrier. The buried interfaces of Co/Alq3/Co organic spin valve thin film has been studied using x-ray standing waves technique. A planar waveguide is formed with Alq3 layer forming the cavity and Co layers as the walls of the waveguide. Precise information about diffusion of Co into Alq3 is obtained through excitation of the waveguide modes. It is found that the top Co layer diffuses deep into the Alq3 resulting in incorporation of 3.1% Co in the Alq3 layer. Insertion of a 1.7 nm thick barrier layer of TiO2 at Co/Alq3 interface results in a drastic reduction in the diffusion of Co into Alq3 to a value of only 0.4%. This suggests a better performance of organic spin valve with diffusion barrier of TiO2.
Quantum cascade transmitters for ultrasensitive chemical agent and explosives detection
NASA Astrophysics Data System (ADS)
Schultz, John F.; Taubman, Matthew S.; Harper, Warren W.; Williams, Richard M.; Myers, Tanya L.; Cannon, Bret D.; Sheen, David M.; Anheier, Norman C., Jr.; Allen, Paul J.; Sundaram, S. K.; Johnson, Bradley R.; Aker, Pamela M.; Wu, Ming C.; Lau, Erwin K.
2003-07-01
The small size, high power, promise of access to any wavelength between 3.5 and 16 microns, substantial tuning range about a chosen center wavelength, and general robustness of quantum cascade (QC) lasers provide opportunities for new approaches to ultra-sensitive chemical detection and other applications in the mid-wave infrared. PNNL is developing novel remote and sampling chemical sensing systems based on QC lasers, using QC lasers loaned by Lucent Technologies. In recent months laboratory cavity-enhanced sensing experiments have achieved absorption sensitivities of 8.5 x 10-11 cm-1 Hz-1/2, and the PNNL team has begun monostatic and bi-static frequency modulated, differential absorption lidar (FM DIAL) experiments at ranges of up to 2.5 kilometers. In related work, PNNL and UCLA are developing miniature QC laser transmitters with the multiplexed tunable wavelengths, frequency and amplitude stability, modulation characteristics, and power levels needed for chemical sensing and other applications. Current miniaturization concepts envision coupling QC oscillators, QC amplifiers, frequency references, and detectors with miniature waveguides and waveguide-based modulators, isolators, and other devices formed from chalcogenide or other types of glass. Significant progress has been made on QC laser stabilization and amplification, and on development and characterization of high-purity chalcogenide glasses, waveguide writing techniques, and waveguide metrology.
Theory of Gyrotron Traveling Wave Amplifiers at Harmonics of the Gyration Frequency
NASA Astrophysics Data System (ADS)
Li, Qiangfa
In developing gyrotrons at millimeter and submillimeter wavelengths, a means of operation at lower applied magnetic fields is desirable because of the size and weight of convetional magnets, and the expense and complexity of cryogenic magnets. This requirement can be met by operating the devices at higher harmonics of the electron gyration frequency. In the present work, a unified theory is developed for the gyrotron traveling wave amplifers (gyro-TWA) at harmonics of the gyration frequency, both in the nonlinear regime and in the linear regime. This theory can be applied to a wide class of waveguide cross sections, arbitrary harmonic number, any waveguide mode, and generalized electron beam model. The fields in the beam-field interaction region in the waveguide are expressed in the form of an infinite series of multipoles expanded around the guiding center of the electrons. A set of equations governing the nonlinear behavior of the gyro-TWA is derived. A general dispersion equation is derived both from that set of nonlinear equations by an iteration method and from plasma kinetic theory. The latter is employed to analyze gyro-TWA devices in a systematic and generalized manner. The Laplace transformation is introduced to allow inclusion of the initial values at the input end of the waveguide. From the linear theory it is found that for a gyrotron working at s-th gyration harmonic the electrons can interact only with the 2s-th order multipole field component. It is also found that a higher order waveguide mode is not always better than a lower order mode for the gyro-TWA working at higher harmonics. A novel out-ridged waveguide is proposed and analyzed for the use in gyrotrons. The prominent features of this new waveguide include simplicity of manufacture, freedom from local modes, good separation of lower order modes, high power handling ability, and high gain per unit length at higher gyration harmonics. A comparison of the gyro-TWAs with several different waveguide structures, such as the out-ridged, magnetron-type, rectangular and circular waveguides, is made through numerical examples of the gain-frequency curves computed from the linear kinetic theory.
Photocatalytic oxidation of organic compounds via waveguide-supported titanium dioxide films
NASA Astrophysics Data System (ADS)
Miller, Lawrence W.
A photochemical reactor based on titanium dioxide (TiO2)-coated silica optical fibers was constructed to explore the use of waveguide-supported TiO2 films for photocatalytic oxidation of organic compounds. The reactor was used for the photocatalytic oxidation of 4-chlorophenol in water. It was confirmed that TiO2 films could be securely attached to silica optical fibers. The 4-chlorophenol (100 mumol/L in water) was successfully oxidized on the TiO2 surface when UV light (310 nm--380 nm) was propagated through the fibers to the films. Rates of 4-chlorophenol oxidation and UV light flux to the fibers were measured. The quantum efficiency of 4-chlorophenol oxidation [defined as the change in 4-chlorophenol concentration divided by the UV light absorbed by the catalyst] was determined as a function of TiO2 catalyst film thickness and internal incident angle of propagating UV light. A maximum quantum efficiency of 2.8% was measured when TiO2 film thickness was ca. 80 nm and the maximum internal incident angle of propagating light was 84°. Quantum efficiency increased with increasing internal angle of incidence of propagating light and decreased with TiO2 film thickness. UV-Visible internal reflection spectroscopy was used to determine whether UV light propagated through TiO2-coated silica waveguides in an ATR mode. Propagation of UV light in an ATR mode was confirmed by the similarities between internal reflection spectra of phenolphthalein obtained with uncoated and TiO2-coated silica crystals. Planar silica waveguides coated with TiO2 were employed in a photocatalytic reactor for the oxidation of formic acid (833 mumol/L in water). It was shown that the quantum yield of formic acid oxidation [defined as the moles of formic acid oxidized divided by the moles of UV photons absorbed by the catalyst] on the waveguide-supported TiO2 surface is enhanced when UV light propagates through the waveguides in an ATR mode. A maximum quantum yield of 3.9% was found for formic acid oxidation on silica waveguides. The waveguides were coated with 150 nm of TiO2 and activated with UV light (lambdamax = 360 nm) propagating through the waveguides at an internal incident angle of 68°.
Raman Amplification and Tunable Pulse Delays in Silicon Waveguides
NASA Astrophysics Data System (ADS)
Rukhlenko, Ivan D.; Garanovich, Ivan L.; Premaratne, Malin; Sukhorukov, Andrey A.; Agrawal, Govind P.
2010-10-01
The nonlinear process of stimulated Raman scattering is important for silicon photonics as it enables optical amplification and lasing. However, generally employed numerical approaches provide very little insight into the contribution of different silicon Raman amplifier (SRA) parameters. In this paper, we solve the coupled pump-signal equations analytically and derive an exact formula for the envelope of a signal pulse when picosecond optical pulses are amplified inside a SRA pumped by a continuous-wave laser beam. Our solution is valid for an arbitrary pulse shape and fully accounts for the Raman gain-dispersion effects, including temporal broadening and group-velocity reduction. Our results are useful for optimizing the performance of SRAs and for engineering controllable signal delays.
Development of Bread Board Model of TRMM precipitation radar
NASA Astrophysics Data System (ADS)
Okamoto, Ken'ichi; Ihara, Toshio; Kumagai, Hiroshi
The active array radar was selected as a reliable candidate for the TRMM (Tropical Rainfall Measuring Mission) precipitation radar after the trade off studies performed by Communications Research Laboratory (CRL) in the US-Japan joint feasibility study of TRMM in 1987-1988. Main system parameters and block diagram for TRMM precipitation radar are shown as the result of feasibility study. CRL developed key devices for the active array precipitation radar such as 8-element slotted waveguide array antenna, the 5 bit PIN diode phase shifters, solid state power amplifiers and low noise amplifiers in 1988-1990. Integration of these key devices was made to compose 8-element Bread Board Model of TRMM precipitation radar.