Science.gov

Sample records for plane arrays based

  1. Optical-based spectral modeling of infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Mouzali, Salima; Lefebvre, Sidonie; Rommeluère, Sylvain; Ferrec, Yann; Primot, Jérôme

    2016-07-01

    We adopt an optical approach in order to model and predict the spectral signature of an infrared focal plane array. The modeling is based on a multilayer description of the structure and considers a one-dimensional propagation. It provides a better understanding of the physical phenomena occurring within the pixels, which is useful to perform radiometric measurements, as well as to reliably predict the spectral sensitivity of the detector. An exhaustive model is presented, covering the total spectral range of the pixel response. A heuristic model is also described, depicting a complementary approach that separates the different optical phenomena inside the pixel structure. Promising results are presented, validating the models through comparison with experimental results. Finally, advantages and limitations of this approach are discussed.

  2. Status of AlGaN based focal plane arrays for UV solar blind detection

    NASA Astrophysics Data System (ADS)

    Reverchon, Jean-Luc; Mazzeo, Giovanni; Dussaigne, Amélie; Duboz, Jean-Yves

    2005-10-01

    The fast development of nitrides has given the opportunity to investigate AlGaN as a material for ultraviolet solar blind detection in competition with technologies based on photocathodes, MCP intensifiers, back thinned CCD or hybrid CMOS focal plane arrays. All of the them must be associated to UV blocking filters. These new detectors present both an intrinsic spectral selectivity and an extremely low dark current at room temperature. First we will present the ultimate properties of the AlGaN based devices. These spectral properties are analysed in regards to the sharp cut off required for solar blind detection around 280nm, and we will quantify how the stringent difficulties to achieve solar blind filters can be reduced. We also investigated the electrical capabilities of Schottky diodes or Metal-Semiconductor-Metal (MSM) technologies to detect extremely low UV signal. We will especially present results from a linear array based on a CCD readout multiplexor.

  3. Range-gated imaging with an indium-gallium-arsenide-based focal plane array

    NASA Astrophysics Data System (ADS)

    Brubaker, Robert M.; Ettenberg, Martin H.; O'Grady, Matthew T.; Blessinger, Michael A.; Dries, J. C.

    2004-08-01

    Range-gated imaging using indium gallium arsenide based focal plane arrays enables both depth and intensity imaging with eye-safe lasers while remaining covert to night vision goggles. We report on a focal plane array consisting of an indium gallium arsenide photodiode array hybrid-integrated with a CMOS readout circuit, resulting in an all solid state device. A 5 V supply avoids the complication of high voltage supplies and improves reliability, while also allowing the device to be small and lightweight. The spectral sensitivity of InGaAs extends from 0.9 microns to 1.7 microns, allowing the use of commercially available pulsed lasers with 1.5 micron wavelength, several millijoule pulse energies, and nanosecond scale pulse durations. SUI is developing a 320 x 256 pixel imager with the ability to conduct range gated imaging with sub-100 ns gates, while also allowing a 16 ms integration time for imaging in a staring mode. The pixels are fabricated on a 25 micron pitch for a compact device, and all pixels are gated simultaneously for "snapshot" exposure. High in-pixel gain with nearly noiseless amplification and low dark current enable high sensitivity imaging from ultra-short gates to video rate imaging.

  4. High Sensitivity Long-Wavelength Infrared QWIP Focal Plane Array Based Instrument for Remote Sensing of Icy Satellites

    NASA Technical Reports Server (NTRS)

    Gunapala, S.; Bandara, S.; Ivanov, A.

    2003-01-01

    GaAs based Quantum Well Infrared Photodetector (QWIP) technology has shown remarkable success in advancing low cost, highly uniform, high-operability, large format multi-color focal plane arrays. QWIPs afford greater flexibility than the usual extrinsically doped semiconductor IR detectors. The wavelength of the peak response and cutoff can be continuously tailored over a range wide enough to enable light detection at any wavelength range between 6 and 20 micron. The spectral band-width of these detectors can be tuned from narrow (Deltalambda/lambda is approximately 10%) to wide (Deltalambda/lambda is approximately 40%) allowing various applications. Furthermore, QWIPs offer low cost per pixel and highly uniform large format focal plane arrays due to mature GaAs/AlGaAs growth and processing technologies. The other advantages of GaAs/AlGaAs based QWIPS are higher yield, lower l/f noise and radiation hardness (1.5 Mrad). In this presentation, we will discuss our recent demonstrations of 640x512 pixel narrow-band, broad-band, multi-band focal plane arrays, and the current status of the development of 1024x1024 pixel long-wavelength infrared QWIP focal plane arrays.

  5. Portable sequential multicolor thermal imager based on a MCT 384 x 288 focal plane array

    NASA Astrophysics Data System (ADS)

    Breiter, Rainer; Cabanski, Wolfgang A.; Mauk, Karl-Heinz; Rode, Werner; Ziegler, Johann

    2001-10-01

    AIM has developed a sequential multicolor thermal imager to provide customers with a test system to realize real-time spectral selective thermal imaging. In contrast to existing PC based laboratory units, the system is miniaturized with integrated signal processing like non-uniformity correction and post processing functions such as image subtraction of different colors to allow field tests in military applications like detection of missile plumes or camouflaged targets as well as commercial applications like detection of chemical agents, pollution control, etc. The detection module used is a 384 X 288 mercury cadmium telluride (MCT) focal plane array (FPA) available in the mid wave (MWIR) or long wave spectral band LWIR). A compact command and control electronics (CCE) provides clock and voltage supply for the detector as well as 14 bit deep digital conversion of the analog detector output. A continuous rotating wheel with four facets for filters provides spectral selectivity. The customer can choose between various types of filter characteristics, e.g. a 4.2 micrometer bandpass filter for CO2 detection in the MWIR band. The rotating wheel can be synchronized to an external source giving the rotation speed, typical 25 l/s. A position sensor generates the four frame start signals for synchronous operation of the detector -- 100 Hz framerate for the four frames per rotation. The rotating wheel is exchangeable for different configurations and also plates for a microscanner operation to improve geometrical resolution are available instead of a multicolor operation. AIM's programmable MVIP image processing unit is used for signal processing like non- uniformity correction and controlling the detector parameters. The MVIP allows to output the four subsequent images as four quarters of the video screen to prior to any observation task set the integration time for each color individually for comparable performance in each spectral color and after that also to determine

  6. Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Cunningham, Thomas J. (Inventor); Krabach, Timothy N. (Inventor); Staller, Craig O. (Inventor)

    1995-01-01

    A monolithic semiconductor imager includes an indium-based III-V compound semiconductor monolithic active layer of a first conductivity type, an array of plural focal plane cells on the active layer, each of the focal plane cells including a photogate over a top surface of the active layer, a readout circuit dedicated to the focal plane cell including plural transistors formed monolithically with the monolithic active layer and a single-stage charge coupled device formed monolithically with the active layer between the photogate and the readout circuit for transferring photo-generated charge accumulated beneath the photogate during an integration period to the readout circuit. The photogate includes thin epitaxial semiconductor layer of a second conductivity type overlying the active layer and an aperture electrode overlying a peripheral portion of the thin epitaxial semiconductor layer, the aperture electrode being connectable to a photogate bias voltage.

  7. Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Cunningham, Thomas J. (Inventor); Krabach, Timothy N. (Inventor); Staller, Craig O. (Inventor)

    1994-01-01

    A monolithic semiconductor imager includes an indium-based III-V compound semiconductor monolithic active layer of a first conductivity type, an array of plural focal plane cells on the active layer, each of the focal plane cells including a photogate over a top surface of the active layer, a readout circuit dedicated to the focal plane cell including plural transistors formed monolithically with the monolithic active layer and a single-stage charge coupled device formed monolithically with the active layer between the photogate and the readout circuit for transferring photo-generated charge accumulated beneath the photogate during an integration period to the readout circuit. The photogate includes thin epitaxial semiconductor layer of a second conductivity type overlying the active layer and an aperture electrode overlying a peripheral portion of the thin epitaxial semiconductor layer, the aperture electrode being connectable to a photogate bias voltage.

  8. Room acoustics analysis using circular arrays: an experimental study based on sound field plane-wave decomposition.

    PubMed

    Torres, Ana M; Lopez, Jose J; Pueo, Basilio; Cobos, Maximo

    2013-04-01

    Plane-wave decomposition (PWD) methods using microphone arrays have been shown to be a very useful tool within the applied acoustics community for their multiple applications in room acoustics analysis and synthesis. While many theoretical aspects of PWD have been previously addressed in the literature, the practical advantages of the PWD method to assess the acoustic behavior of real rooms have been barely explored so far. In this paper, the PWD method is employed to analyze the sound field inside a selected set of real rooms having a well-defined purpose. To this end, a circular microphone array is used to capture and process a number of impulse responses at different spatial positions, providing angle-dependent data for both direct and reflected wavefronts. The detection of reflected plane waves is performed by means of image processing techniques applied over the raw array response data and over the PWD data, showing the usefulness of image-processing-based methods for room acoustics analysis.

  9. Focal plane array with modular pixel array components for scalability

    SciTech Connect

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  10. Si:Ga focal plane arrays for satellite and ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Mottier, P.; Agnese, P.; Lagage, P. O.

    1991-09-01

    A brief description of IR sensor devices for astronomical observation in the 4-17 micron wavelength band using Si:Ga detectors is given. These devices are to equip ISOCAM, a camera which will operate from the Infrared Space Observatory, the European satellite expected to be launched in May 1993, and C10-mu, a French astronomical camera based at the Canadian French Hawaii Telescope. These sensor devices are polylithic dies: the photoconductor array is hybridized by indium bumps to the readout circuit. Reliability tests show that neither thermal cycles nor strong acceleration or vibrations degrade the mechanical behavior of such a structure. A comparison between ISOCAM and the C10-mu detector is presented in tabular form.

  11. Dual band QWIP focal plane array

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D. (Inventor); Choi, Kwong Kit (Inventor); Bandara, Sumith V. (Inventor)

    2005-01-01

    A quantum well infrared photodetector (QWIP) that provides two-color image sensing. Two different quantum wells are configured to absorb two different wavelengths. The QWIPs are arrayed in a focal plane array (FPA). The two-color QWIPs are selected for readout by selective electrical contact with the two different QWIPs or by the use of two different wavelength sensitive gratings.

  12. A readout integrated circuit based on DBI-CTIA and cyclic ADC for MEMS-array-based focal plane

    NASA Astrophysics Data System (ADS)

    Miao, Liu; Dong, Wu; Zheyao, Wang

    2016-11-01

    A readout integrated circuit (ROIC) for a MEMS (microelectromechanical system)-array-based focal plane (MAFP) intended for imaging applications is presented. The ROIC incorporates current sources for diode detectors, scanners, timing sequence controllers, differential buffered injection-capacitive trans-impedance amplifier (DBI-CTIA) and 10-bit cyclic ADCs, and is integrated with MAFP using 3-D integration technology. A small-signal equivalent model is built to include thermal detectors into circuit simulations. The biasing current is optimized in terms of signal-to-noise ratio and power consumption. Layout design is tailored to fulfill the requirements of 3-D integration and to adapt to the size of MAFP elements, with not all but only the 2 bottom metal layers to complete nearly all the interconnections in DBI-CTIA and ADC in a 40 μm wide column. Experimental chips are designed and fabricated in a 0.35 μm CMOS mixed signal process, and verified in a code density test of which the results indicate a (0.29/-0.31) LSB differential nonlinearity (DNL) and a (0.61/-0.45) LSB integral nonlinearity (INL). Spectrum analysis shows that the effective number of bits (ENOB) is 9.09. The ROIC consumes 248 mW of power at most if not to cut off quiescent current paths when not needed. Project supported by by National Natural Science Foundation of China (No. 61271130), the Beijing Municipal Science and Tech Project (No. D13110100290000), the Tsinghua University Initiative Scientific Research Program (No. 20131089225), and the Shenzhen Science and Technology Development Fund (No. CXZZ20130322170740736).

  13. Deep ultraviolet (254 nm) focal plane array

    NASA Astrophysics Data System (ADS)

    Cicek, Erdem; Vashaei, Zahra; McClintock, Ryan; Razeghi, Manijeh

    2011-10-01

    We report the synthesis, fabrication and testing of a 320 × 256 focal plane array (FPA) of back-illuminated, solarblind, p-i-n, AlxGa1-xN-based detectors, fully realized within our research laboratory. We implemented a novel pulsed atomic layer deposition technique for the metalorganic chemical vapor deposition (MOCVD) growth of crackfree, thick, and high Al composition AlxGa1-xN layers. Following the growth, the wafer was processed into a 320 × 256 array of 25 μm × 25 μm pixels on a 30 μm pixel-pitch and surrounding mini-arrays. A diagnostic mini-array was hybridized to a silicon fan-out chip to allow the study of electrical and optical characteristics of discrete pixels of the FPA. At a reverse bias of 1 V, an average photodetector exhibited a low dark current density of 1.12×10-8 A/cm2. Solar-blind operation is observed throughout the array with peak detection occurring at wavelengths of 256 nm and lower and falling off three orders of magnitude by 285 nm. After indium bump deposition and dicing, the FPA is hybridized to a matching ISC 9809 readout integrated circuit (ROIC). By developing a novel masking technology, we significantly reduced the visible response of the ROIC and thus the need for external filtering to achieve solar- and visible-blind operation is eliminated. This allowed the FPA to achieve high external quantum efficiency (EQE): at 254 nm, average pixels showed unbiased peak responsivity of 75 mA/W, which corresponds to an EQE of ~37%. Finally, the uniformity of the FPA and imaging properties are investigated.

  14. Solid-state curved focal plane arrays

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh (Inventor); Hoenk, Michael (Inventor); Jones, Todd (Inventor)

    2010-01-01

    The present invention relates to curved focal plane arrays. More specifically, the present invention relates to a system and method for making solid-state curved focal plane arrays from standard and high-purity devices that may be matched to a given optical system. There are two ways to make a curved focal plane arrays starting with the fully fabricated device. One way, is to thin the device and conform it to a curvature. A second way, is to back-illuminate a thick device without making a thinned membrane. The thick device is a special class of devices; for example devices fabricated with high purity silicon. One surface of the device (the non VLSI fabricated surface, also referred to as the back surface) can be polished to form a curved surface.

  15. Monolithically integrated HgCdTe focal plane arrays

    NASA Astrophysics Data System (ADS)

    Velicu, Silviu; Lee, Tae-Seok; Ashokan, Renganathan; Grein, Christoph H.; Boieriu, Paul; Chen, Y. P.; Dinan, John H.; Lianos, Dimitrios

    2003-12-01

    The cost and performance of hybrid HgCdTe infrared focal plane arrays are constrained by the necessity of fabricating the detector arrays on a CdZnTe substrate. These substrates are expensive, fragile, are available only in small rectangular formats, and are not a good thermal expansion match to the silicon readout integrated circuit. We discuss in this paper an infrared sensor technology based on monolithically integrated infrared focal plane arrays that could replace the conventional hybrid focal plane array technology. We have investigated the critical issues related to the growth of HgCdTe on Si read-out integrated circuits and the fabrication of monolithic focal plane arrays: (1) the design of Si read-out integrated circuits and focal plane array layouts, (2) the low temperature cleaning of Si(001) wafers, (3) growth of CdTe and HgCdTe layers on read-out integrated circuits, (4) array fabrication, interconnection between focal plane array and read-out integrated circuit input nodes and demonstration of the photovoltaic operation, and (5) maintenance of the read-out integrated circuit characteristics after substrate cleaning, molecular beam epitaxy growth and device fabrication. Crystallographic, optical and electrical properties of the grown layers are presented. Electrical properties for diodes fabricated on misoriented Si and read-out integrated circuit substrates are discussed. The fabrication of arrays with demonstrated I-V properties show that monolithic integration of HgCdTe-based infrared focal plane arrays on Si read-out integrated circuits is feasible and could be implemented in the 3rd generation of infrared systems.

  16. Improved performance of HgCdTe infrared detector focal plane arrays by modulating light field based on photonic crystal structure

    SciTech Connect

    Liang, Jian; Hu, Weida Ye, Zhenhua; Li, Zhifeng; Chen, Xiaoshuang Lu, Wei; Liao, Lei

    2014-05-14

    An HgCdTe long-wavelength infrared focal plane array photodetector is proposed by modulating light distributions based on the photonic crystal. It is shown that a promising prospect of improving performance is better light harvest and dark current limitation. To optimize the photon field distributions of the HgCdTe-based photonic crystal structure, a numerical method is built by combining the finite-element modeling and the finite-difference time-domain simulation. The optical and electrical characteristics of designed HgCdTe mid-wavelength and long-wavelength photon-trapping infrared detector focal plane arrays are obtained numerically. The results indicate that the photon crystal structure, which is entirely compatible with the large infrared focal plane arrays, can significantly reduce the dark current without degrading the quantum efficiency compared to the regular mesa or planar structure.

  17. Real-time 3D millimeter wave imaging based FMCW using GGD focal plane array as detectors

    NASA Astrophysics Data System (ADS)

    Levanon, Assaf; Rozban, Daniel; Kopeika, Natan S.; Yitzhaky, Yitzhak; Abramovich, Amir

    2014-03-01

    Millimeter wave (MMW) imaging systems are required for applications in medicine, communications, homeland security, and space technology. This is because there is no known ionization hazard for biological tissue, and atmospheric attenuation in this range of the spectrum is relatively low. The lack of inexpensive room temperature imaging systems makes it difficult to give a suitable MMW system for many of the above applications. 3D MMW imaging system based on chirp radar was studied previously using a scanning imaging system of a single detector. The system presented here proposes to employ a chirp radar method with a Glow Discharge Detector (GDD) Focal Plane Array (FPA) of plasma based detectors. Each point on the object corresponds to a point in the image and includes the distance information. This will enable 3D MMW imaging. The radar system requires that the millimeter wave detector (GDD) will be able to operate as a heterodyne detector. Since the source of radiation is a frequency modulated continuous wave (FMCW), the detected signal as a result of heterodyne detection gives the object's depth information according to value of difference frequency, in addition to the reflectance of the image. In this work we experimentally demonstrate the feasibility of implementing an imaging system based on radar principles and FPA of GDD devices. This imaging system is shown to be capable of imaging objects from distances of at least 10 meters.

  18. Optical interconnections to focal plane arrays

    SciTech Connect

    Rienstra, J.L.; Hinckley, M.K.

    2000-11-01

    The authors have successfully demonstrated an optical data interconnection from the output of a focal plane array to the downstream data acquisition electronics. The demonstrated approach included a continuous wave laser beam directed at a multiple quantum well reflectance modulator connected to the focal plane array analog output. The output waveform from the optical interconnect was observed on an oscilloscope to be a replica of the input signal. They fed the output of the optical data link to the same data acquisition system used to characterize focal plane array performance. Measurements of the signal to noise ratio at the input and output of the optical interconnection showed that the signal to noise ratio was reduced by a factor of 10 or more. Analysis of the noise and link gain showed that the primary contributors to the additional noise were laser intensity noise and photodetector receiver noise. Subsequent efforts should be able to reduce these noise sources considerably and should result in substantially improved signal to noise performance. They also observed significant photocurrent generation in the reflectance modulator that imposes a current load on the focal plane array output amplifier. This current loading is an issue with the demonstrated approach because it tends to negate the power saving feature of the reflectance modulator interconnection concept.

  19. Low SWaP MWIR detector based on XBn focal plane array

    NASA Astrophysics Data System (ADS)

    Klipstein, P. C.; Gross, Y.; Aronov, D.; ben Ezra, M.; Berkowicz, E.; Cohen, Y.; Fraenkel, R.; Glozman, A.; Grossman, S.; Klin, O.; Lukomsky, I.; Marlowitz, T.; Shkedy, L.; Shtrichman, I.; Snapi, N.; Tuito, A.; Yassen, M.; Weiss, E.

    2013-06-01

    Over the past few years, a new type of High Operating Temperature (HOT) photon detector has been developed at SCD, which operates in the blue part of the MWIR window of the atmosphere (3.4-4.2 μm). This window is generally more transparent than the red part of the MWIR window (4.4-4.9 μm), especially for mid and long range applications. The detector has an InAsSb active layer, and is based on the new "XBn" device concept. We have analyzed various electrooptical systems at different atmospheric temperatures, based on XBn-InAsSb operating at 150K and epi-InSb at 95K, respectively, and find that the typical recognition ranges of both detector technologies are similar. Therefore, for very many applications there is no disadvantage to using XBn-InAsSb instead of InSb. On the other hand XBn technology confers many advantages, particularly in low Size, Weight and Power (SWaP) and in the high reliability of the cooler and Integrated Detector Cooler Assembly (IDCA). In this work we present a new IDCA, designed for 150K operation. The 15 μm pitch 640×512 digital FPA is housed in a robust, light-weight, miniaturised Dewar, attached to Ricor's K562S Stirling cycle cooler. The complete IDCA has a diameter of 28 mm, length of 80 mm and weight of < 300 gm. The total IDCA power consumption is ~ 3W at a 60Hz frame rate, including an external miniature proximity card attached to the outside of the Dewar. We describe some of the key performance parameters of the new detector, including its NETD, RNU and operability, pixel cross-talk, and early stage yield results from our production line.

  20. Development of High-Performance eSWIR HgCdTe-Based Focal-Plane Arrays on Silicon Substrates

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Pepping, J.; Mukhortova, A.; Ketharanathan, S.; Kodama, R.; Zhao, J.; Hansel, D.; Velicu, S.; Aqariden, F.

    2016-09-01

    We report the development of high-performance and low-cost extended short-wavelength infrared (eSWIR) focal-plane arrays (FPAs) fabricated from molecular beam epitaxial (MBE)-grown HgCdTe on Si-based substrates. High-quality n-type eSWIR HgCdTe (cutoff wavelength ˜2.68 μm at 77 K, electron carrier concentration 5.82 × 1015 cm-3) layers were grown on CdTe/Si substrates by MBE. High degrees of uniformity in composition and thickness were demonstrated over three-inch areas, and low surface defect densities (voids 9.56 × 101 cm-2, micro-defects 1.67 × 103 cm-2) were measured. This material was used to fabricate 320 × 256 format, 30 μm pitch FPAs with a planar device architecture using arsenic implantation to achieve p-type doping. The dark current density of test devices showed good uniformity between 190 K and room temperature, and high-quality eSWIR imaging from hybridized FPAs was obtained with a median dark current density of 2.63 × 10-7 A/cm2 at 193 K with a standard deviation of 1.67 × 10-7 A/cm2.

  1. Advanced dynamic pyroelectric focal plane array

    NASA Astrophysics Data System (ADS)

    Unglaub, Ricardo A. G.; Celinska, Jolanta B.; McWilliams, Christopher R.; Paz de Araujo, Carlos A.; Forbes, Timothy; Pankin, Jayson D.

    2010-04-01

    The pyroelectric effect has been characterized for single-pixel elements consisting of strontium bismuth tantalate (SBT) ferroelectric material as the sensing elements. These pixels have been integrated into second-generation focal plane arrays. The constituent second-generation pixels include thermal insulating layers and an infrared absorber layer. The MEMS-less arrays are operated in active mode, a technique that eliminates radiation choppers found in other passive pyroelectric IR imagers. This paper addresses the results of precursor 2x2 to 14x14 second-generation arrays of SBT elements, the active detection mechanism, and the unique read-out, interrogation signal, and the synchronization electronics. The second-generation 14x14 pixels array was implemented to demonstrate the performance of an active pyroelectric array as a precursor to larger size arrays using different pixel dimensions. The active mode detection eliminates the use of a chopper, enables the dynamic partition of the array into pixel domains in which pixel sensitivity in the domains can be adjusted independently. This unique feature in IR detection can be applied to the simultaneous tracking of diverse contrast objects. In addition, by controlling the thickness of the absorber material the arrays can be optimized for maximum response at specified wavelengths by means of quarter-wavelength interferometry.

  2. Identification and Quantification of Microplastics in Wastewater Using Focal Plane Array-Based Reflectance Micro-FT-IR Imaging.

    PubMed

    Tagg, Alexander S; Sapp, Melanie; Harrison, Jesse P; Ojeda, Jesús J

    2015-06-16

    Microplastics (<5 mm) have been documented in environmental samples on a global scale. While these pollutants may enter aquatic environments via wastewater treatment facilities, the abundance of microplastics in these matrices has not been investigated. Although efficient methods for the analysis of microplastics in sediment samples and marine organisms have been published, no methods have been developed for detecting these pollutants within organic-rich wastewater samples. In addition, there is no standardized method for analyzing microplastics isolated from environmental samples. In many cases, part of the identification protocol relies on visual selection before analysis, which is open to bias. In order to address this, a new method for the analysis of microplastics in wastewater was developed. A pretreatment step using 30% hydrogen peroxide (H2O2) was employed to remove biogenic material, and focal plane array (FPA)-based reflectance micro-Fourier-transform (FT-IR) imaging was shown to successfully image and identify different microplastic types (polyethylene, polypropylene, nylon-6, polyvinyl chloride, polystyrene). Microplastic-spiked wastewater samples were used to validate the methodology, resulting in a robust protocol which was nonselective and reproducible (the overall success identification rate was 98.33%). The use of FPA-based micro-FT-IR spectroscopy also provides a considerable reduction in analysis time compared with previous methods, since samples that could take several days to be mapped using a single-element detector can now be imaged in less than 9 h (circular filter with a diameter of 47 mm). This method for identifying and quantifying microplastics in wastewater is likely to provide an essential tool for further research into the pathways by which microplastics enter the environment.

  3. Antenna arrays for producing plane whistler waves

    NASA Astrophysics Data System (ADS)

    Stenzel, Reiner; Urrutia, J. Manuel

    2014-10-01

    Linear whistler modes with ω ~= 0 . 3ωce <<ωpe are excited in a large laboratory plasma with magnetic loop antennas. A single antenna always produces a spatially bounded wave packet whose propagation cannot be directly compared to plane wave theories. By superimposing the fields from spatially separated antennas, the wavenumber along the antenna array can be nearly eliminated. 2D arrays nearly produce plane waves. The angle θ of wave propagation has been varied by a phase shift along the array. The refractive index surface n (θ) has been measured. The parallel phase and group velocities for Gendrin modes has been demonstrated. The interference between two oblique plane whistlers creates a whistler ``waveguide'' mode, i.e. standing waves for k ⊥B0 and propagation for k | |B0 . It also describes the reflection of oblique whistlers from a sharp discontinuity in the refractive index or conductivity. Radial reflections are also a dominant factor in small plasma columns of helicon devices. These results are of interest to space and laboratory plasmas. Work supported by NSF/DOE.

  4. MCT-Based LWIR and VLWIR 2D Focal Plane Detector Arrays for Low Dark Current Applications at AIM

    NASA Astrophysics Data System (ADS)

    Hanna, S.; Eich, D.; Mahlein, K.-M.; Fick, W.; Schirmacher, W.; Thöt, R.; Wendler, J.; Figgemeier, H.

    2016-09-01

    We present our latest results on n-on- p as well as on p-on- n low dark current planar mercury cadmium telluride (MCT) photodiode technology long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) two-dimensional focal plane arrays (FPAs) with quantum efficiency (QE) cut-off wavelength >11 μm at 80 K and a 512 × 640 pixel format FPA at 20 μm pitch stitched from two 512 × 320 pixel photodiode arrays. Significantly reduced dark currents as compared with Tennant's "Rule 07" are demonstrated in both polarities while retaining good detection efficiency ≥60% for operating temperatures between 30 K and 100 K. This allows for the same dark current performance at 20 K higher operating temperature than with previous AIM INFRAROT-MODULE GmbH (AIM) technology. For p-on- n LWIR MCT FPAs, broadband photoresponse nonuniformity of only about 1.2% is achieved at 55 K with low defective pixel numbers. For an n-on- p VLWIR MCT FPA with 13.6 μm cut-off at 55 K, excellent photoresponse nonuniformity of about 3.1% is achieved at moderate defective pixel numbers. This advancement in detector technology paves the way for outstanding signal-to-noise ratio performance infrared detection, enabling cutting-edge next-generation LWIR/VLWIR detectors for space instruments and devices with higher operating temperature and low size, weight, and power for field applications.

  5. Design of diffractive microlens array integration with focal plane arrays

    NASA Astrophysics Data System (ADS)

    Chen, Sihai; Yi, Xinjian; Li, Yi; He, Miao; Chen, Sixiang; Kong, Lingbin

    2000-10-01

    The IR spectrum from 3 to 5micrometers has numerous applications in both military and civil industries. High performance at high operating temperature is often important in these applications. Conventional Focal Plane Arrays (FPAs) without integration with concentrator such as microlens have poor sensitivity and low signal-to-noise ratio because of their lower fill factor. The binary optics microlens arrays reported in this paper are designed for integration with FPAs. Thus, the FPAs' fill factor, sensitivity, and signal- to-noise ratio can be improved while retaining a given image resolution and optical collection area. In the paper, we discussed the 256(Horizontal)x290(Vertical) microlens arrays designed for a center wavelength of 4micrometers , with 50micrometers (Horizontalx33micrometers (Vertical) quadrate pixel dimension and a speed (F number) of F/1.96. PtSi FPAs were fabricated on the front side of a 400-micrometers -thick Si substrate. The designed diffractive microlens arrays will be etched on the back side of the same wafer in a register fashion and it will be reported in other paper. Considering the diffraction efficiency, 8-phase-level approximation is enough. For the diffraction efficiency of 8-phase-level diffractive microlens reaches 95%. The process only need three mask-level, so we designed and fabricated three masks with the same dimension 4'x4'. Also, a set of fine verniers was designed and fabricated on each mask to allow accurate alignment during the fabrication process. Through a computer simulation, the microlens arrays are nearly diffraction limited, with the diffraction efficiency of 93%, a bit lower than the theoretical value of 95%. Introduction of microlens arrays has the ability to increase the FPAs' fill factor to 100%, while it is only about 21.6% without microlens. To our knowledge, this is the first trial of integration large area microlens arrays with FPAs at home.

  6. Uncooled infrared focal plane array imaging in China

    NASA Astrophysics Data System (ADS)

    Lei, Shuyu

    2015-06-01

    This article reviews the development of uncooled infrared focal plane array (UIFPA) imaging in China in the past decade. Sensors based on optical or electrical read-out mechanism were developed but the latter dominates the market. In resistive bolometers, VOx and amorphous silicon are still the two major thermal-sensing materials. The specifications of the IRFPA made by different manufactures were collected and compared. Currently more than five Chinese companies and institutions design and fabricate uncooled infrared focal plane array. Some devices have sensitivity as high as 30 mK; the largest array for commercial products is 640×512 and the smallest pixel size is 17 μm. Emphasis is given on the pixel MEMS design, ROIC design, fabrication, and packaging of the IRFPA manufactured by GWIC, especially on design for high sensitivities, low noise, better uniformity and linearity, better stabilization for whole working temperature range, full-digital design, etc.

  7. Smart trigger logic for focal plane arrays

    DOEpatents

    Levy, James E; Campbell, David V; Holmes, Michael L; Lovejoy, Robert; Wojciechowski, Kenneth; Kay, Randolph R; Cavanaugh, William S; Gurrieri, Thomas M

    2014-03-25

    An electronic device includes a memory configured to receive data representing light intensity values from pixels in a focal plane array and a processor that analyzes the received data to determine which light values correspond to triggered pixels, where the triggered pixels are those pixels that meet a predefined set of criteria, and determines, for each triggered pixel, a set of neighbor pixels for which light intensity values are to be stored. The electronic device also includes a buffer that temporarily stores light intensity values for at least one previously processed row of pixels, so that when a triggered pixel is identified in a current row, light intensity values for the neighbor pixels in the previously processed row and for the triggered pixel are persistently stored, as well as a data transmitter that transmits the persistently stored light intensity values for the triggered and neighbor pixels to a data receiver.

  8. Low dark current MCT-based focal plane detector arrays for the LWIR and VLWIR developed at AIM

    NASA Astrophysics Data System (ADS)

    Gassmann, Kai Uwe; Eich, Detlef; Fick, Wolfgang; Figgemeier, Heinrich; Hanna, Stefan; Thöt, Richard

    2015-10-01

    For nearly 40 years AIM develops, manufactures and delivers photo-voltaic and photo-conductive infrared sensors and associated cryogenic coolers which are mainly used for military applications like pilotage, weapon sights, UAVs or vehicle platforms. In 2005 AIM started to provide the competences also for space applications like IR detector units for the SLSTR instrument on board of the Sentinel 3 satellite, the hyperspectral SWIR Imager for EnMAP or pushbroom detectors for high resolution Earth observation satellites. Meanwhile AIM delivered more than 25 Flight Models for several customers. The first European pulse-tube cooler ever operating on-board of a satellite is made by AIM. AIM homes the required infrared core capabilities such as design and manufacturing of focal plane assemblies, detector housing technologies, development and manufacturing of cryocoolers and also data processing for thermal IR cameras under one roof which enables high flexibility to react to customer needs and assures economical solutions. Cryogenically cooled Hg(1-x)CdxTe (MCT) quantum detectors are unequalled for applications requiring high imaging as well as high radiometric performance in the infrared spectral range. Compared with other technologies, they provide several advantages, such as the highest quantum efficiency, lower power dissipation compared to photoconductive devices and fast response times, hence outperforming micro-bolometer arrays. However, achieving an excellent MCT detector performance at long (LWIR) and very long (VLWIR) infrared wavelengths is challenging due to the exponential increase in the thermally generated photodiode dark current with increasing cut-off wavelength and / or operating temperature. Dark current is a critical design driver, especially for LWIR / VLWIR multi-spectral imagers with moderate signal levels or hyper-spectral Fourier spectrometers operating deep into the VLWIR spectral region. Consequently, low dark current (LDC) technologies are the

  9. Signal processing on the focal plane array: an overview

    NASA Astrophysics Data System (ADS)

    Graham, Roger W.; Trautfield, Walter C.; Taylor, Scott M.; Murray, Mark P.; Mesh, Frank J.; Horn, Stuart B.; Finch, James A.; Dang, Khoa V.; Caulfield, John T.

    2000-12-01

    Raytheon's Infrared Operations (RIO) has invented and developed a new class of focal plane arrays; the Adaptive IR Sensor (AIRS) and Thinfilm Analog Image Processor (TAIP). The AIRS FPA is based upon biologically inspired on-focal- plane circuitry, which adaptively removes detector and optic temperature drift and l/f induced fixed pattern noise. This third-generation multimode IRFPA, also called a Smart FPA, is a 256x256-array format capable of operation in four modes: 1) Direct Injection (DI), 2) Adaptive Non-uniformity Correction (NUC), 3) Motion/Edge Detection, and 4) Subframe Averaging. Also the 320x240 TAIP results have shown excellent image processing in the form of Spatial and Temporal processing.

  10. Multiwavelength infrared focal plane array detector

    NASA Technical Reports Server (NTRS)

    Forrest, Stephen R. (Inventor); Olsen, Gregory H. (Inventor); Kim, Dong-Su (Inventor); Lange, Michael J. (Inventor)

    1995-01-01

    A multiwavelength focal plane array infrared detector is included on a common substrate having formed on its top face a plurality of In.sub.x Ga.sub.1-x As (x.ltoreq.0.53) absorption layers, between each pair of which a plurality of InAs.sub.y P.sub.1-y (y<1) buffer layers are formed having substantially increasing lattice parameters, respectively, relative to said substrate, for preventing lattice mismatch dislocations from propagating through successive ones of the absorption layers of decreasing bandgap relative to said substrate, whereby a plurality of detectors for detecting different wavelengths of light for a given pixel are provided by removing material above given areas of successive ones of the absorption layers, which areas are doped to form a pn junction with the surrounding unexposed portions of associated absorption layers, respectively, with metal contacts being formed on a portion of each of the exposed areas, and on the bottom of the substrate for facilitating electrical connections thereto.

  11. AlGaN-based focal plane arrays for selective UV imaging at 310nm and 280nm and route toward deep UV imaging

    NASA Astrophysics Data System (ADS)

    Reverchon, Jean-Luc; Robo, Jean-Alexandre; Truffer, Jean-Patrick; Caumes, Jean-Pascal; Mourad, Idir; Brault, Julien; Duboz, Jean-Yves

    2007-10-01

    The fast development of nitrides has given the opportunity to investigate AlGaN as a material for ultraviolet detection. Such camera present an intrinsic spectral selectivity and an extremely low dark current at room temperature. It can compete with technologies based on photocathodes, MCP intensifiers, back thinned CCD or hybrid CMOS focal plane arrays (FPA) for low flux measurements. AlGaN based cameras allow UV imaging without filters or with simplified ones in harsh solar blind conditions. Few results on camera have been shown in the last years, but the ultimate performances of AlGaN photodiodes couldn't be achieved due to parasitic illumination of multiplexers, responsivity of p layers in p-i-n structures, or use of cooled readout circuit. Such issues have prevented up to now a large development of this technology. We present results on focal plane array of 320x256 pixels with a pitch of 30μm for which Schottky photodiodes are multiplexed with a readout circuit protected by black matrix at room temperature. Theses focal plane present a peak reponsivity around 280nm and 310nm with a rejection of visible light of four decades only limited by internal photoemission in contact. Then we will show the capability to outdoor measurements. The noise figure is due to readout noise of the multiplexer and we will investigate the ultimate capabilities of Schottky diodes or Metal- Semiconductor-Metal (MSM) technologies to detect extremely low signal. Furthermore, we will consider deep UV measurements on single pixels MSM from 32nm to 61nm in a front side illumination configuration. Finally, we will define technology process allowing backside illumination and deep UV imaging.

  12. System and method for generating a deselect mapping for a focal plane array

    DOEpatents

    Bixler, Jay V; Brandt, Timothy G; Conger, James L; Lawson, Janice K

    2013-05-21

    A method for generating a deselect mapping for a focal plane array according to one embodiment includes gathering a data set for a focal plane array when exposed to light or radiation from a first known target; analyzing the data set for determining which pixels or subpixels of the focal plane array to add to a deselect mapping; adding the pixels or subpixels to the deselect mapping based on the analysis; and storing the deselect mapping. A method for gathering data using a focal plane array according to another embodiment includes deselecting pixels or subpixels based on a deselect mapping; gathering a data set using pixels or subpixels in a focal plane array that are not deselected upon exposure thereof to light or radiation from a target of interest; and outputting the data set.

  13. Antenna coupled detectors for 2D staring focal plane arrays

    NASA Astrophysics Data System (ADS)

    Gritz, Michael A.; Kolasa, Borys; Lail, Brian; Burkholder, Robert; Chen, Leonard

    2013-06-01

    Millimeter-wave (mmW)/sub-mmW/THz region of the electro-magnetic spectrum enables imaging thru clothing and other obscurants such as fog, clouds, smoke, sand, and dust. Therefore considerable interest exists in developing low cost millimeter-wave imaging (MMWI) systems. Previous MMWI systems have evolved from crude mechanically scanned, single element receiver systems into very complex multiple receiver camera systems. Initial systems required many expensive mmW integrated-circuit low-noise amplifiers. In order to reduce the cost and complexity of the existing systems, attempts have been made to develop new mmW imaging sensors employing direct detection arrays. In this paper, we report on Raytheon's recent development of a unique focal plane array technology, which operates broadly from the mmW through the sub-mmW/THz region. Raytheon's innovative nano-antenna based detector enables low cost production of 2D staring mmW focal plane arrays (mmW FPA), which not only have equivalent sensitivity and performance to existing MMWI systems, but require no mechanical scanning.

  14. Analysis and modeling for thermal focal plane arrays

    NASA Astrophysics Data System (ADS)

    Tuer, T. W.; Ball, B. W.; Freeling, J. R.; Lennington, J. W.; Lindquist, G. H.

    1984-07-01

    The development of a first principles computer simulation of a generic pyroelectric thermal detector is described. Formulation of the pertinent equations (based on a thorough literature survey) is presented. This simulation incorporates a finite difference treatment of the transient three-dimensional thermal response of composite focal plane arrays, with treatments of the signal generation, readout and processing including all pertinent noise sources. A number of simplified problems having analytical solutions were treated to validate various portions of the simulation to within a few percent. Performance estimates were made for conceptual several configurations and materials.

  15. Robust Approach for Nonuniformity Correction in Infrared Focal Plane Array

    PubMed Central

    Boutemedjet, Ayoub; Deng, Chenwei; Zhao, Baojun

    2016-01-01

    In this paper, we propose a new scene-based nonuniformity correction technique for infrared focal plane arrays. Our work is based on the use of two well-known scene-based methods, namely, adaptive and interframe registration-based exploiting pure translation motion model between frames. The two approaches have their benefits and drawbacks, which make them extremely effective in certain conditions and not adapted for others. Following on that, we developed a method robust to various conditions, which may slow or affect the correction process by elaborating a decision criterion that adapts the process to the most effective technique to ensure fast and reliable correction. In addition to that, problems such as bad pixels and ghosting artifacts are also dealt with to enhance the overall quality of the correction. The performance of the proposed technique is investigated and compared to the two state-of-the-art techniques cited above. PMID:27834893

  16. UV photodetectors, focal plane arrays, and avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    McClintock, Ryan

    2007-12-01

    The study of III-Nitride based optoelectronics devices is a maturing field, but there are still many underdeveloped areas in which to make a contribution of new and original research. This work specifically targets the goals of realizing high-efficiency back-illuminated solar-blind photodetectors, solar-blind focal plane arrays, and visible- and solar-blind Avalanche photodiodes. Achieving these goals has required systematic development of the material growth and characterization, device modeling and design, device fabrication and processing, and the device testing and qualification. This work describes the research conducted and presents relevant devices results. The AlGaN material system has a tunable direct bandgap that is ideally suited to detection of ultraviolet light, however this material system suffers from several key issues, making realization of high-efficiency photodetectors difficult: large dislocation densities, low n-type and p-type doping efficiency, and lattice and thermal expansion mismatches leading to cracking of the material. All of these problems are exacerbated by the increased aluminum compositions necessary in back-illuminated and solar-blind devices. Overcoming these obstacles has required extensive development and optimization of the material growth techniques necessary: this includes everything from the growth of the buffer and template, to the growth of the active region. The broad area devices realized in this work demonstrate a quantum efficiency that is among the highest ever reported for a back-illuminated solar-blind photodetector (responsivity of 157 mA/W at 280nm, external quantum efficiency of 68%). Taking advantage of the back illuminated nature of these detectors, we have successfully developed the technology to hybridize and test a solar-blind focal plane array camera. The initial focal plane array shows good uniformity and reasonable operability, and several images from this first camera are presented. However, in order to

  17. Synchrotron based infrared imaging and spectroscopy via focal plane array on live fibroblasts in D2O enriched medium

    SciTech Connect

    Quaroni, Luca; Zlateva, Theodora; Sarafimov, Blagoj; Kreuzer, Helen W.; Wehbe, Katia; Hegg, Eric L.; Cinque, Gianfelice

    2014-03-26

    We tested the viability of using synchrotron based infrared imaging to study biochemical processes inside living cells. As a model system, we studied fibroblast cells exposed to a medium highly enriched with D2O. We could show that the experimental technique allows us to reproduce at the cellular level measurements that are normally performed on purified biological molecules. We can obtain information about lipid conformation and distribution, kinetics of hydrogen/deuterium exchange, and the formation of concentration gradients of H and O isotopes in water that are associated with cell metabolism. The implementation of the full field technique in a sequential imaging format gives a description of cellular biochemistry and biophysics that contains both spatial and temporal information.

  18. Wavelet Transform of Fixed Pattern Noise in Focal Plane Arrays

    DTIC Science & Technology

    1994-02-01

    AD-A276 963 1111111111 I NAWCWPNS TP 8185 Wavelet Transform of Fixed Pattern Noise in Focal Plane Arrays OTIC by ELECTE Dr. Gary Hewer MAR 151994 and...REPORT TYPE AND DATES COVERED IFebruary 1994 Final; 199 ,L TTLE ND SBTILE LFUNDNG UBER Wavelet Transform of Fixed Pattern Noise in Focal Plane Arrays...nonlinearity 71,(w) = sgn(w)(IwI-t). with threshold t to each empirical sample value w in the wavelet transform d scales. After thresholding the wavelet

  19. Integrated focal-plane array /IFPA/ approach to large-area infrared focal plane architecture

    NASA Astrophysics Data System (ADS)

    Warren, R. E.

    1980-01-01

    A modular approach to IFPA design is presented which makes it possible to obtain a high-density infrared focal plane amendable to parallel manufacturing techniques as well as to serial plane integration and test. The percent fill factor of the design is dependent on the dimension of the individual detectors; each submodule is manufactured from identical components. The technologies including cables, interconnects, multilayer interconnect structures, and subassembly test requirements, which have direct application to scanning as well as staring integrated focal plane arrays, are discussed.

  20. Fast speed MWIR imager for uncooled focal plane array

    NASA Astrophysics Data System (ADS)

    Lin, Liu

    2007-12-01

    Recent advances of uncooled detector technology especially the development of uncooled micro-bolometer array hold promise for us to develop low-cost and compact MWIR earth observation imager. For comparative lower radiometric performance of uncooled focal plane array, fast speed optical system operating in large spectral bands is compatible. In addition, in order to exhibit advantages over imagers based on cooled detector technology, the optical system should be as compact as possible which means fewer elements, smaller size and light weight. In this article, a high speed optical design meeting these requirement is provided with 100mm focal length, F/1 F number,+/-2.5°field of view woking in 3-5um wave band. The fast speed MWIR imager has properties mentioned as follows: First, the optical system utilizes a hybrid system including refractive and diffractive elements. Second, the optical system realizes athermalization in simple passive way through distributing power among the refractive elements. It can work under typical temperature scope from -20°C to 60°C for typical space application. Third, Because of high speed aperture, the design makes use of aspheric surface to correct spherical aberration and spherochromatism .Finally, we use Ge and Si material. instead of expensive ZnS material.

  1. Isolating stem cells in the inter-follicular epidermis employing synchrotron radiation-based Fourier-transform infrared microspectroscopy and focal plane array imaging.

    PubMed

    Patel, Imran I; Harrison, Wesley J; Kerns, Jemma G; Filik, Jacob; Wehbe, Katia; Carmichael, Paul L; Scott, Andrew D; Philpott, Mike P; Frogley, Mark D; Cinque, Gianfelice; Martin, Francis L

    2012-10-01

    Normal function and physiology of the epidermis is maintained by the regenerative capacity of this tissue via adult stem cells (SCs). However, definitive identifying markers for SCs remain elusive. Infrared (IR) spectroscopy exploits the ability of cellular biomolecules to absorb in the mid-IR region (λ = 2.5-25 μm), detecting vibrational transitions of chemical bonds. In this study, we exploited the cell's inherent biochemical composition to discriminate SCs of the inter-follicular skin epidermis based on IR-derived markers. Paraffin-embedded samples of human scalp skin (n = 4) were obtained, and 10-μm thick sections were mounted for IR spectroscopy. Samples were interrogated in transmission mode using synchrotron radiation-based Fourier-transform IR (FTIR) microspectroscopy (15 × 15 μm) and also imaged employing globar-source FTIR focal plane array (FPA) imaging (5.4 × 5.4 μm). Dependent on the location of derived spectra, wavenumber-absorbance/intensity relationships were examined using unsupervised principal component analysis. This approach showed clear separation and spectral differences dependent on cell type. Spectral biomarkers concurrently associated with segregation of SCs, transit-amplifying cells and terminally-differentiated cells of epidermis were primarily PO(2)(-) vibrational modes (1,225 and 1,080 cm(-1)), related to DNA conformational alterations. FPA imaging coupled with hierarchical cluster analysis also indicated the presence of specific basal layer cells potentially originating from the follicular bulge, suggested by co-clustering of spectra. This study highlights PO (2) (-) vibrational modes as potential putative SC markers.

  2. Focal Plane Array Technology for IR Detectors

    DTIC Science & Technology

    1996-06-01

    Bulk Crystals CdTe, CdSe , CdS, CdO, ZnTe, Cd(SSe) Continue: (HgCd)Te, (CdZn)Te Crystal growth: Vertical Bridgman Method (VBM), Horizontal Bridgman ...Method (HBM), Vertical Zone Melting (VZM), Vapour Phase Transport Method (VPTM), Travelling Heater Method (THM) Continue: Bridgman Growth from Melt of...growth of (HgCd)Te, is shown in Figs.2.1-2.2. Our Bridgman growth from melt of constant composition (BGCC) is based on a demand to ensure melt of

  3. Integrated focal plane arrays for millimeter-wave astronomy

    NASA Astrophysics Data System (ADS)

    Bock, James J.; Goldin, Alexey; Hunt, Cynthia; Lange, Andrew E.; Leduc, Henry G.; Day, Peter K.; Vayonakis, Anastasios; Zmuidzinas, Jonas

    2002-02-01

    We are developing focal plane arrays of bolometric detectors for sub-millimeter and millimeter-wave astrophysics. We propose a flexible array architecture using arrays of slot antennae coupled via low-loss superconducting Nb transmission line to microstrip filters and antenna-coupled bolometers. By combining imaging and filtering functions with transmission line, we are able to realize unique structures such as a multi-band polarimeter and a planar, dispersive spectrometer. Micro-strip bolometers have significantly smaller active volume than standard detectors with extended absorbers, and can realize higher sensitivity and speed of response. The integrated array has natural immunity to stray radiation or spectral leaks, and minimizes the suspended mass operating at 0.1-0.3 K. We also discuss future space-borne spectroscopy and polarimetry applications. .

  4. Curved-Focal-Plane Arrays Using Deformed-Membrane Photodetectors

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh; Jones, Todd

    2004-01-01

    A versatile and simple approach to the design and fabrication of curved-focal-plane arrays of silicon-based photodetectors is being developed. This approach is an alternative to the one described in "Curved Focal-Plane Arrays Using Back- Illuminated High-Purity Photodetectors" (NPO-30566), NASA Tech Briefs, Vol. 27, No. 10 (October 2003), page 10a. As in the cited prior article, the basic idea is to improve the performance of an imaging instrument and simplify the optics needed to obtain a given level of performance by making an image sensor (in this case, an array of photodetectors) conform to a curved focal surface, instead of designing the optics to project an image onto a flat focal surface. There is biological precedent for curved-focal-surface designs: retinas - the image sensors in eyes - conform to the naturally curved focal surfaces of eye lenses. The present approach is applicable to both front-side- and back-side-illuminated, membrane photodetector arrays and is being demonstrated on charge-coupled devices (CCDs). The very-large scale integrated (VLSI) circuitry of such a CCD or other array is fabricated on the front side of a silicon substrate, then the CCD substrate is attached temporarily to a second substrate for mechanical support, then material is removed from the back to obtain the CCD membrane, which typically has a thickness between 10 and 20 m. In the case of a CCD designed to operate in back-surface illumination, delta doping can be performed after thinning to enhance the sensitivity. This approach is independent of the design and method of fabrication of the front-side VLSI circuitry and does not involve any processing of a curved silicon substrate. In this approach, a third substrate would be prepared by polishing one of its surfaces to a required focal-surface curvature. A CCD membrane fabricated as described above would be pressed against, deformed into conformity with, and bonded to, the curved surface. The technique used to press and

  5. Precise annealing of focal plane arrays for optical detection

    DOEpatents

    Bender, Daniel A.

    2015-09-22

    Precise annealing of identified defective regions of a Focal Plane Array ("FPA") (e.g., exclusive of non-defective regions of the FPA) facilitates removal of defects from an FPA that has been hybridized and/or packaged with readout electronics. Radiation is optionally applied under operating conditions, such as under cryogenic temperatures, such that performance of an FPA can be evaluated before, during, and after annealing without requiring thermal cycling.

  6. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging.

    PubMed

    Mintenig, S M; Int-Veen, I; Löder, M G J; Primpke, S; Gerdts, G

    2017-01-01

    The global presence of microplastic (MP) in aquatic ecosystems has been shown by various studies. However, neither MP concentrations nor their sources or sinks are completely known. Waste water treatment plants (WWTPs) are considered as significant point sources discharging MP to the environment. This study investigated MP in the effluents of 12 WWTPs in Lower Saxony, Germany. Samples were purified by a plastic-preserving enzymatic-oxidative procedure and subsequent density separation using a zinc chloride solution. For analysis, attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FT-IR) and focal plane array (FPA)-based transmission micro-FT-IR imaging were applied. This allowed the identification of polymers of all MP down to a size of 20 μm. In all effluents MP was found with quantities ranging from 0 to 5 × 10(1) m(-3) MP > 500 μm and 1 × 10(1) to 9 × 10(3) m(-3) MP < 500 μm. By far, polyethylene was the most frequent polymer type in both size classes. Quantities of synthetic fibres ranged from 9 × 10(1) to 1 × 10(3) m(-3) and were predominantly made of polyester. Considering the annual effluxes of tested WWTPs, total discharges of 9 × 10(7) to 4 × 10(9) MP particles and fibres per WWTP could be expected. Interestingly, one tertiary WWTP had an additionally installed post-filtration that reduced the total MP discharge by 97%. Furthermore, the sewage sludge of six WWTPs was examined and the existence of MP, predominantly polyethylene, revealed. Our findings suggest that WWTPs could be a sink but also a source of MP and thus can be considered to play an important role for environmental MP pollution.

  7. Blocked impurity band hybrid infrared focal plane arrays for astronomy

    NASA Technical Reports Server (NTRS)

    Reynolds, D. B.; Seib, D. H.; Stetson, S. B.; Herter, T.; Rowlands, N.

    1989-01-01

    High-performance infrared hybrid focal plane arrays using 10- x 50-element Si:As blocked-impurity-band (BIB) detectors (cutoff wavelength = 28 microns) and matching switched MOSFET multiplexers have been developed and characterized for space astronomy. Use of impurity-band-conduction technology provides detectors which are nuclear-radiation-hard and free of the many anomalies associated with conventional silicon photoconductive detectors. Emphasis in the present work is on recent advances in detector material quality which have led to significantly improved detector and hybrid characteristics. Results demonstrating increased quantum efficiency (particularly at short-wavelength infrared), obtained by varying the BIB detector properties (infrared active layer thickness and arsenic doping profile), are summarized. Measured read noise and dark current for different temperatures are reported. The hybrid array performance achieved demonstrates that BIB detectors are well suited for use in astronomical instrumentation.

  8. Strained layer superlattice focal plane array having a planar structure

    DOEpatents

    Kim, Jin K; Carroll, Malcolm S; Gin, Aaron; Marsh, Phillip F; Young, Erik W; Cich, Michael J

    2012-10-23

    An infrared focal plane array (FPA) is disclosed which utilizes a strained-layer superlattice (SLS) formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5 epitaxially grown on a GaSb substrate. The FPA avoids the use of a mesa structure to isolate each photodetector element and instead uses impurity-doped regions formed in or about each photodetector for electrical isolation. This results in a substantially-planar structure in which the SLS is unbroken across the entire width of a 2-D array of the photodetector elements which are capped with an epitaxially-grown passivation layer to reduce or eliminate surface recombination. The FPA has applications for use in the wavelength range of 3-25 .mu.m.

  9. MAGPIS: A MULTI-ARRAY GALACTIC PLANE IMAGING SURVEY

    SciTech Connect

    Helfand, D J; Becker, R H; White, R L; Fallon, A; Tuttle, S

    2005-11-10

    We present the Multi-Array Galactic Plane Imaging Survey (MAGPIS), which maps portions of the first Galactic quadrant with an angular resolution, sensitivity and dynamic range that surpasses existing radio images of the Milky Way by more than an order of magnitude. The source detection threshold at 20 cm is in the range 1-2 mJy over the 85% of the survey region (5{sup o} < l < 32{sup o}, |b| < 0.8{sup o}) not covered by bright extended emission; the angular resolution is {approx} 6''. We catalog over 3000 discrete sources (diameters mostly < 30'') and present an atlas of {approx} 400 diffuse emission regions. New and archival data at 90 cm for the whole survey area are also presented. Comparison of our catalogs and images with the MSX mid-infrared data allow us to provide preliminary discrimination between thermal and non-thermal sources. We identify 49 high-probability supernova remnant candidates, increasing by a factor of seven the number of known remnants with diameters smaller than 50 in the survey region; several are pulsar wind nebula candidates and/or very small diameter remnants (D < 45''). We report the tentative identification of several hundred H II regions based on a comparison with the mid-IR data; they range in size from unresolved ultra-compact sources to large complexes of diffuse emission on scales of half a degree. In several of the latter regions, cospatial nonthermal emission illustrates the interplay between stellar death and birth. We comment briefly on plans for followup observations and our extension of the survey; when complemented by data from ongoing X-ray and mid-IR observations, we expect MAGPIS to provide an important contribution to our understanding of the birth and death of massive stars in the Milky Way.

  10. Radiometric infrared focal plane array imaging system for thermographic applications

    NASA Technical Reports Server (NTRS)

    Esposito, B. J.; Mccafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.

    1992-01-01

    This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).

  11. On-chip ADC for infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Gao, Lei; Chen, Guo-qiang; Wang, Pan; Ding, Rui-jun

    2013-09-01

    This paper presents a low power and small area analog-digital converter (ADC) for infrared focal plane arrays (IRFPA) readout integrated circuit (ROIC). Successive approximation register (SAR) ADC architecture is used in this IRFPA readout integrated circuit. Each column of the IRFPA shares one SAR ADC. The most important part is the three-level DAC. Compared to the previous design, this three-level DAC needs smaller area, has lower power, and more suitable for IRFPA ROIC. In this DAC, its most significant bit (MSB) sub-DAC uses charge scaling, while the least significant bit (LSB) sub-DAC uses voltage scaling. Where the MSB sub-DAC consists of a four-bit charge scaling DAC and a five-bit sub-charge scaling DAC. We need to put a scaling capacitor Cs between these two sub-DACs. Because of the small area, we have more design methods to make the ADC has a symmetrical structure and has higher accuracy. The ADC also needs a high resolution comparator. In this design the comparator uses three-stage operational amplifier structure to have a 77dB differential gain. As the IR focal plane readout circuit signal is stepped DC signal, the circuit design time without adding the sample and hold circuit, so we can use a DC signal instead of infrared focal plane readout circuit output analog signals to be simulated. The simulation result shows that the resolution of the ADC is 12 bit.

  12. Reusable, adhesiveless and arrayed in-plane microfluidic interconnects

    NASA Astrophysics Data System (ADS)

    Lo, R.; Meng, E.

    2011-05-01

    A reusable, arrayed interconnect capable of providing multiple simultaneous connections to and from a microfluidic device in an in-plane manner without the use of adhesives is presented. This method uses a 'pin-and-socket' design in which an SU-8 anchor houses multiple polydimethysiloxane septa (the socket) that each receive a syringe needle (the pin). A needle array containing multiple commercially available 33G (203 µm outer diameter) needles (up to eight) spaced either 2.54 or 1 mm (center-to-center) pierces the septa to access the microfluidic device interior. Finite element modeling and photoelastic stress experiments were used to determine the stress distribution during needle insertion; these results guided the SU-8 septa housing and septa design. The impact of needle diameter, needle tip style, insertion rate and number of needles on pre-puncture, post-puncture and removal forces was characterized. Pressurized connections to SU-8 channel systems withstood up to 62 kPa of pressurized water and maintained 25 kPa of pressurized water for over 24 h. The successful integration and functionality of the interconnect design with surface micromachined Parylene C microchannels was verified using Rhodamine B dye. Dual septa systems to access a single microchannel were demonstrated. Arrayed interconnects were compatible with integrated microfluidic systems featuring electrochemical sensors and actuators.

  13. Focal-Plane Arrays of Quantum-Dot Infrared Photodetectors

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath; Wilson, Daniel; Hill, Cory; Liu, John; Bandara, Sumith; Ting, David

    2007-01-01

    Focal-plane arrays of semiconductor quantum-dot infrared photodetectors (QDIPs) are being developed as superior alternatives to prior infrared imagers, including imagers based on HgCdTe devices and, especially, those based on quantum-well infrared photodetectors (QWIPs). HgCdTe devices and arrays thereof are difficult to fabricate and operate, and they exhibit large nonunformities and high 1/f (where f signifies frequency) noise. QWIPs are easier to fabricate and operate, can be made nearly uniform, and exhibit lower 1/f noise, but they exhibit larger dark currents, and their quantization only along the growth direction prevents them from absorbing photons at normal incidence, thereby limiting their quantum efficiencies. Like QWIPs, QDIPs offer the advantages of greater ease of operation, greater uniformity, and lower 1/f noise, but without the disadvantages: QDIPs exhibit lower dark currents, and quantum efficiencies of QDIPs are greater because the three-dimensional quantization of QDIPs is favorable to the absorption of photons at normal or oblique incidence. Moreover, QDIPs can be operated at higher temperatures (around 200 K) than are required for operation of QWIPs. The main problem in the development of QDIP imagers is to fabricate quantum dots with the requisite uniformity of size and spacing. A promising approach to be tested soon involves the use of electron-beam lithography to define the locations and sizes of quantum dots. A photoresist-covered GaAs substrate would be exposed to the beam generated by an advanced, high-precision electron beam apparatus. The exposure pattern would consist of spots typically having a diameter of 4 nm and typically spaced 20 nm apart. The exposed photoresist would be developed by either a high-contrast or a low-contrast method. In the high-contrast method, the spots would be etched in such a way as to form steep-wall holes all the way down to the substrate. The holes would be wider than the electron beam spots perhaps as

  14. Integration of IR focal plane arrays with massively parallel processor

    NASA Astrophysics Data System (ADS)

    Esfandiari, P.; Koskey, P.; Vaccaro, K.; Buchwald, W.; Clark, F.; Krejca, B.; Rekeczky, C.; Zarandy, A.

    2008-04-01

    The intent of this investigation is to replace the low fill factor visible sensor of a Cellular Neural Network (CNN) processor with an InGaAs Focal Plane Array (FPA) using both bump bonding and epitaxial layer transfer techniques for use in the Ballistic Missile Defense System (BMDS) interceptor seekers. The goal is to fabricate a massively parallel digital processor with a local as well as a global interconnect architecture. Currently, this unique CNN processor is capable of processing a target scene in excess of 10,000 frames per second with its visible sensor. What makes the CNN processor so unique is that each processing element includes memory, local data storage, local and global communication devices and a visible sensor supported by a programmable analog or digital computer program.

  15. Development and production of the H4RG-15 focal plane array

    NASA Astrophysics Data System (ADS)

    Blank, Richard; Beletic, James W.; Cooper, Donald; Farris, Mark; Hall, Donald N. B.; Hodapp, Klaus; Luppino, Gerard; Piquette, Eric; Xu, Min

    2012-07-01

    In preparation for the large number of infrared pixels required in the era of Extremely Large Telescopes, Teledyne, in partnership with the University of Hawaii and GL Scientific, has been funded to develop the next generation of largeformat infrared focal plane array for ground-based astronomy; the 4096 × 4096 pixel (15 micron pitch) H4RG-15. Teledyne has successfully designed, produced, and tested the first generation H4RG-15 prototype arrays. This paper reports on the functionality and performance test results of the H4RG-15 prototypes and provides status of the 2012 pilot production effort.

  16. Development of a 2K x 2K GaAs QWIP Focal Plane Array

    NASA Technical Reports Server (NTRS)

    Jhabvala, M.; Choi, K.; Jhabvala, C.; Kelly, D.; Hess, L.; Ewin, A.; La, A.; Wacynski, A.; Sun, J.; Adachi, T.; Costen, N.; Ni, Q.; Snodgrass, Stephen; Foltz, Roger

    2013-01-01

    We are developing the next generation of GaAs Quantum Well Infrared Photodetector (QWIP) focal plane arrays (FPAs) in preparation for future NASA space-borne Earth observing missions. It is anticipated that these missions will require both wider ground spatial coverage as well as higher ground imaging resolution. In order to demonstrate our capability in meeting these future goals we have taken a two-tiered approach in the next stage of advanced QWIP focal plane array development. We will describe our progress in the development of a 512 x 3,200 (512 x 3K) array format for this next generation thermal imaging array for the NASA Landsat project. However, there currently is no existing readout integrated circuit (ROIC) for this format array.so to demonstrate the ability to scale-up an existing ROIC we developed a 1,920 x 2,048 (2K x 2K) array and it hybridized to a Raytheon SB419 CTIA readout integrated circuit that was scaled up from their existing 512 x 640 SB339 ROIC. Two versions of the 512 x 3K QWIP array were fabricated to accommodate a future design scale-up of both the Indigo 9803 ROIC based on a 25 micron pixel dimension and a scale up of the Indigo 9705 ROIC based on a 30 micron pixel dimension. Neither readout for the 512 x 3K has yet to be developed but we have fabricated both versions of the array. We describe the design, development and test results of this effort as well as the specific applications these FPAs are intended to address.

  17. Solar-Driven Background Intensity Variations in a Focal Plane Array

    SciTech Connect

    Eyer, H.H.; Guillen, J.L.L.; Vittitoe, C.N.

    1998-12-03

    Portions of a series of end-of-life tests are described for a Sandia National Li~boratories- designed space-based sensor that utilizes a mercury-cadmium-telluride focal plane array. Variations in background intensity are consistent with the hypothesis that seasonal variations in solar position cause changes in the pattern of shadows falling across the compartment containing the optical elements, filter-band components, and focal plane array. When the sensor compartment is most fully illuminated by the sun, background intensities are large and their standard deviations tend to be large. During the winter season, when the compartment is most fully shadowed by surrounding structure, backgrounci intensities are small and standard deviations tend to be small. Details in the surrounding structure are speculated to produce transient shadows that complicate background intensifies as a function of time or of sensor position in orbit.

  18. Method of fabricating multiwavelength infrared focal plane array detector

    NASA Technical Reports Server (NTRS)

    Forrest, Stephen R. (Inventor); Olsen, Gregory H. (Inventor); Kim, Dong-Su (Inventor); Lange, Michael J. (Inventor)

    1996-01-01

    A multiwavelength local plane array infrared detector is included on a common substrate having formed on its top face a plurality of In.sub.x Ga.sub.1-x As (x.ltoreq.0.53) absorption layers, between each pair of which a plurality of InAs.sub.y P.sub.1-y (y.ltoreq.1) buffer layers are formed having substantially increasing lattice parameters, respectively, relative to said substrate, for preventing lattice mismatch dislocations from propagating through successive ones of the absorption layers of decreasing bandgap relative to said substrate, whereby a plurality of detectors for detecting different wavelengths of light for a given pixel are provided by removing material above given areas of successive ones of the absorption layers, which areas are doped to form a pn junction with the surrounding unexposed portions of associated absorption layers, respectively, with metal contacts being formed on a portion of each of the exposed areas, and on the bottom of the substrate for facilitating electrical connections thereto.

  19. Advancement in 17-micron pixel pitch uncooled focal plane arrays

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Skidmore, George; Howard, Christopher; Clarke, Elwood; Han, C. J.

    2009-05-01

    This paper provides an update of 17 micron pixel pitch uncooled microbolometer development at DRS. Since the introduction of 17 micron pitch 640x480 focal plane arrays (FPAs) in 2006, significant progress has been made in sensor performance and manufacturing processes. The FPAs are now in initial production with an FPA noise equivalent temperature difference (NETD), detector thermal time constant, and pixel operability equivalent or better than that of the current 25 micron pixel pitch production FPAs. NETD improvement was achieved without compromising detector thermal response or thermal time constant by simultaneous reduction in bolometer heat capacity and thermal conductance. In addition, the DRS unique "umbrella" microbolometer cavities were optically tuned to optimize detector radiation absorption for specific spectral band applications. The 17 micron pixel pitch FPAs are currently being considered for the next generation soldier systems such as thermal weapon sights (TWS), vehicle driver vision enhancers (DVE), digitally fused enhanced night vision goggles (DENVG) and unmanned air vehicle (UAV) surveillance sensors, because of overall thermal imaging system size, weight and power advantages.

  20. Multi-spectral Infrared Photodetectors and Focal Plane Arrays based on Band-engineered Type-II Indium-Arsenic / Gallium-Antimony Superlattices and its Variants

    NASA Astrophysics Data System (ADS)

    Huang, Edward Kwei-wei

    designs used in LWIR detectors were more "resistant" to the surface traps generated from the optimized ICP etching developed, than higher bandgap superlattices from the SWIR to the MWIR. Empirical evidence suggests that such a phenomenon could be explained through relative surface trap positions to the Fermi level, as well as to the conduction and valence band-edges of the designed superlattice. From an optical standpoint, high quantum efficiencies demand thick active regions and therefore high aspect ratio trenches to be defined in the semiconductor in order to preserve the optical detector volume or fill factor. Etched trenches as deep as 12microm and roughly 3microm in width have been demonstrated. These achievements provide the foundation for focal plane array development, especially for multi-spectral detectors where multiple p-n junctions are stacked together. Understanding how to etch the superlattice pixel has enabled a wide variety of hybrid IR FPAs to be demonstrated. Prior to multi-color camera development, single color cameras were first evaluated in the MWIR and LWIR. Background limited performances were achieved in both wavelength regimes with temperature sensitivities as low as 9mK (MWIR F#2.3 lens) and 19mK (LWIR F#2.0 lens) where as high as 99% of the pixels were found operable. The milestones achieved and realized make T2SLs a prime candidate for multi-color sensing. As requirements for infrared sensing become more stringent, demanding identification of the object rather than mere detection, imagers sensitive to a single waveband are no longer adequate in some applications. In these scenarios, the ability to see in multiple infrared wavebands through a single aperture camera is indispensable. In this work, dual-band material structures that sense the active SWIR to the passive LWIR were designed in combinations of SWIR/MWIR, MWIR/MWIR, MWIRL/LWIR, and LWIR/LWIR to operate as back-to-back diodes where both bands could either be imaged sequentially or

  1. Validating Phasing and Geometry of Large Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Standley, Shaun P.; Gautier, Thomas N.; Caldwell, Douglas A.; Rabbette, Maura

    2011-01-01

    The Kepler Mission is designed to survey our region of the Milky Way galaxy to discover hundreds of Earth-sized and smaller planets in or near the habitable zone. The Kepler photometer is an array of 42 CCDs (charge-coupled devices) in the focal plane of a 95-cm Schmidt camera onboard the Kepler spacecraft. Each 50x25-mm CCD has 2,200 x 1,024 pixels. The CCDs accumulate photons and are read out every six seconds to prevent saturation. The data is integrated for 30 minutes, and then the pixel data is transferred to onboard storage. The data is subsequently encoded and transmitted to the ground. During End-to-End Information System (EEIS) testing of the Kepler Mission System (KMS), there was a need to verify that the pixels requested by the science team operationally were correctly collected, encoded, compressed, stored, and transmitted by the FS, and subsequently received, decoded, uncompressed, and displayed by the Ground Segment (GS) without the outputs of any CCD modules being flipped, mirrored, or otherwise corrupted during the extensive FS and GS processing. This would normally be done by projecting an image on the focal plane array (FPA), collecting the data in a flight-like way, and making a comparison between the original data and the data reconstructed by the science data system. Projecting a focused image onto the FPA through the telescope would normally involve using a collimator suspended over the telescope opening. There were several problems with this approach: the collimation equipment is elaborate and expensive; as conceived, it could only illuminate a limited section of the FPA (.25 percent) during a given test; the telescope cover would have to be deployed during testing to allow the image to be projected into the telescope; the equipment was bulky and difficult to situate in temperature-controlled environments; and given all the above, test setup, execution, and repeatability were significant concerns. Instead of using this complicated approach of

  2. Large-format and multispectral QWIP infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Goldberg, Arnold C.; Choi, Kwong-Kit; Jhabvala, Murzy; La, Anh; Uppal, Parvez N.; Winn, Michael L.

    2003-09-01

    The next generation of infrared (IR) focal plane arrays (FPAs) will need to be a significant improvement in capability over those used in present-day second generation FLIRs. The Army's Future Combat System requires that the range for target identification be greater than the range of detection for an opposing sensor. To accomplish this mission, the number of pixels on the target must be considerably larger than that possible with 2nd generation FLIR. Therefore, the 3rd generation FLIR will need to be a large format staring FPA with more than 1000 pixels on each side. In addition, a multi-spectral capability will be required to allow operability in challenging ambient environments, discriminate targets from decoys, and to take advantage of the smaller diffraction blur in the MWIR for enhanced image resolution. We report on laboratory measurements of a large format (1024 x 1024 pixels) single-color LWIR IR FPA made using the corrugated quantum well infrared photodetector (QWIP) structure by the ARL/NASA team. The pixel pitch is 18 μm and the spectral response peaks at 8.8 μm with a 9.2 μm cutoff. We report on recent results using a MWIR/LWIR QWIP FPA to image the boost phase of a launch vehicle for missile defense applications and a LWIR/LWIR FPA designed specifically for detecting the disturbed soil associated with buried land mines. Finally, we report on the fabrication of a new read-out integrated circuit (ROIC) specifically designed for multi-spectral operation.

  3. Development of high performance SWIR InGaAs focal plane array

    NASA Astrophysics Data System (ADS)

    Nagi, Richie; Bregman, Jeremy; Mizuno, Genki; Oduor, Patrick; Olah, Robert; Dutta, Achyut K.; Dhar, Nibir K.

    2015-05-01

    Banpil Photonics has developed a novel InGaAs based photodetector array for Short-Wave Infrared (SWIR) imaging, for the most demanding security, defense, and machine vision applications. These applications require low noise from both the detector and the readout integrated circuit arrays. In order to achieve high sensitivity, it is crucial to minimize the dark current generated by the photodiode array. This enables the sensor to function in extremely low light situations, which enables it to successfully exploit the benefits of the SWIR band. In addition to minimal dark current generation, it is essential to develop photodiode arrays with higher operating temperatures. This is critical for reducing the power consumption of the device, as less energy is spent in cooling down the focal plane array (in order to reduce the dark current). We at Banpil Photonics are designing, simulating, fabricating and testing SWIR InGaAs arrays, and have achieved low dark current density at room temperature. This paper describes Banpil's development of the photodetector array. We also highlight the fabrication technique used to reduce the amount of dark current generated by the photodiode array, in particular the surface leakage current. This technique involves the deposition of strongly negatively doped semiconductor material in the area between the pixels. This process reduces the number of dangling bonds present on the edges of each pixel, which prevents electrons from being swept across the surface of the pixels. This in turn drastically reduces the amount of surface leakage current at each pixel, which is a major contributor towards the total dark current. We present the optical and electrical characterization data, as well as the analysis that illustrates the dark current mechanisms. Also highlighted are the challenges and potential opportunities for further reduction of dark current, while maintaining other parameters of the photodiode array, such as size, weight, temperature

  4. Focal plane arrays from UV up to VLWIR

    NASA Astrophysics Data System (ADS)

    Costard, E.; Nedelcu, A.; Achouche, M.; Reverchon, J. L.; Truffer, J. P.; Huet, O.; Dua, L.; Robo, J. A.; Marcadet, X.; Brière de l'Isle, N.; Facoetti, H.; Bois, P.

    2007-10-01

    Since 2002, the THALES Group has been manufacturing sensitive arrays using QWIP technology based on GaAs and related III-V compounds, at the Alcatel-Thales-III-V Lab (formerly part of THALES Research and Technology Laboratory). In the past researchers claimed many advantages of QWIPs. Uniformity was one of these and has been the key parameter for the production to start. Another widely claimed advantage for QWIPs was the so-called band-gap engineering and versatility of the III-V processing allowing the custom design of quantum structures to fulfil the requirements of specific applications such as very long wavelength (VLWIR) or multispectral detection. In this presentation, we give the status of our LWIR QWIP production line, and also the current status of QWIPs for MWIR (<5μm) and VLWIR (>15μm) arrays. As the QWIP technology cannot cover the full electromagnetic spectrum, we develop other semiconductor compounds for SWIR and UV applications. We present here the status of our first FPA realization in UV with GaN alloy, and at 1.5μm with InGaAs photodiodes.

  5. Optically coupled focal plane arrays using lenslets and multiplexers

    DOEpatents

    Veldkamp, Wilfrid B.

    1991-01-01

    A detector array including a substrate having an array of diffractive lenses formed on the top side of the substrate and an array of sensor elements formed on the backside of the substrate. The sensor elements within the sensor array are oriented on the backside so that each sensor is aligned to receive light from a corresponding diffractive lens of the lens array. The detector array may also include a second substrate having an array of diffractive elements formed on one of its surfaces, the second substrate being disposed above and in proximity to the top side of the other substrate so that the elements on the second substrate are substantially aligned with corresponding sensor elements and diffractive lenses on the other substrate.

  6. Plane-wave decomposition by spherical-convolution microphone array

    NASA Astrophysics Data System (ADS)

    Rafaely, Boaz; Park, Munhum

    2004-05-01

    Reverberant sound fields are widely studied, as they have a significant influence on the acoustic performance of enclosures in a variety of applications. For example, the intelligibility of speech in lecture rooms, the quality of music in auditoria, the noise level in offices, and the production of 3D sound in living rooms are all affected by the enclosed sound field. These sound fields are typically studied through frequency response measurements or statistical measures such as reverberation time, which do not provide detailed spatial information. The aim of the work presented in this seminar is the detailed analysis of reverberant sound fields. A measurement and analysis system based on acoustic theory and signal processing, designed around a spherical microphone array, is presented. Detailed analysis is achieved by decomposition of the sound field into waves, using spherical Fourier transform and spherical convolution. The presentation will include theoretical review, simulation studies, and initial experimental results.

  7. Mechanical design of mounts for IGRINS focal plane arrays and field flattening lenses

    NASA Astrophysics Data System (ADS)

    Oh, Jae Sok; Park, Chan; Cha, Sang-Mok; Yuk, In-Soo; Kim, Kang-Min; Chun, Moo-Young; Ko, Kyeongyeon; Oh, Heeyeong; Jeong, Ueejeong; Nah, Jakyoung; Lee, Hanshin; Pavel, Michael; Jaffe, Daniel T.

    2014-07-01

    IGRINS, the Immersion GRating INfrared Spectrometer, is a near-infrared wide-band high-resolution spectrograph jointly developed by the Korea Astronomy and Space Science Institute and the University of Texas at Austin. IGRINS employs three HAWAII-2RG focal plane array (FPA) detectors. The mechanical mounts for these detectors and for the final (field-flattening) lens in the optical train serve a critical function in the overall instrument design: Optically, they permit the only positional compensation in the otherwise "build to print" design. Thermally, they permit setting and control of the detector operating temperature independently of the cryostat bench. We present the design and fabrication of the mechanical mount as a single module. The detector mount includes the array housing, housing for the SIDECAR ASIC, a field flattener lens holder, and a support base. The detector and ASIC housing will be kept at 65 K and the support base at 130 K. G10 supports thermally isolate the detector and ASIC housing from the support base. The field flattening lens holder attaches directly to the FPA array housing and holds the lens with a six-point kinematic mount. Fine adjustment features permit changes in axial position and in yaw and pitch angles. We optimized the structural stability and thermal characteristics of the mount design using computer-aided 3D modeling and finite element analysis. Based on the computer simulation, the designed detector mount meets the optical and thermal requirements very well.

  8. Focal Plane Arrays of Voltage-Biased Superconducting Bolometers

    NASA Technical Reports Server (NTRS)

    Myers, Michael J.; Clarke, John; Gildemeister, J. M.; Lee, Adrian T.; Richards, P. L.; Schwan, Dan; Skidmore, J. T.; Spieler, Helmuth; Yoon, Jongsoo

    2001-01-01

    The 200-micrometer to 3-mm wavelength range has great astronomical and cosmological significance. Science goals include characterization of the cosmic microwave background, measurement of the Sunyaev-Zel'dovich effect in galaxy clusters, and observations of forming galaxies. Cryogenic bolometers are the most sensitive broadband detectors in this frequency range. Because single bolometer pixels are reaching the photon noise limit for many observations, the development of large arrays will be critical for future science progress. Voltage-biased superconducting bolometers (VSBs) have several advantages compared to other cryogenic bolometers. Their strong negative electrothermal feedback enhances their linearity, speed, and stability. The large noise margin of the SQUID readout enables multiplexed readout schemes, which are necessary for developing large arrays. In this paper, we discuss the development of a large absorber-coupled array, a frequency-domain SQUID readout multiplexer, and an antenna-coupled VSB design.

  9. Galactic Plane SETI Observations with the Allen Telescope Array

    NASA Astrophysics Data System (ADS)

    Backus, P. R.; Tarter, J. C.; Davis, M. M.; Jordan, J. C.; Kilsdonk, T. N.; Shostak, G. S.; Ackerman, R.; DeBoer, D. R.; Dreher, J. W.; Harp, G. R.; Ross, J. E.; Stauduhar, R.

    2005-12-01

    In the spring of 2006, the Allen Telescope Array (ATA), a joint effort of the U.C. Berkeley Radio Astronomy Lab and the SETI Institute, will begin initial operations. Starting with 42 antennas out of a planned 350, the array will be equivalent to a single 40 meter dish. Using three phased beams, we will survey twenty square degrees around the galactic center for narrowband signals in the frequency range from 1410 to 1730 MHz (the "Water Hole"). Comparison of results from the beams will be used to eliminate signals from terrestrial and satellite sources. At these frequencies, the wide field of view of the array allows us to cover the 2 x 10 degree strip with five antenna positions. The field of view will track one of the five positions for up to five hours, while the phased beams are pointed within the field of view for 98 seconds per 20 MHz frequency band. During these SETI observations spanning approximately seven months, other radio astronomy observations of this very interesting region will run in parallel using two other independently tunable IF systems with a correlator and other phase array beams feeding other backend processors. Construction of the ATA is supported by private funding, primarily from the Paul G. Allen Foundation. The correlator for the ATA is supported by NSF Grant AST-0322309 to the UCB Radio Astronomy Lab.

  10. On-sky performance evaluation and calibration of a polarization-sensitive focal plane array

    NASA Astrophysics Data System (ADS)

    Vorobiev, Dmitry; Ninkov, Zoran; Brock, Neal; West, Ray

    2016-07-01

    The advent of pixelated micropolarizer arrays (MPAs) has facilitated the development of polarization-sensitive focal plane arrays (FPAs) based on charge-coupled devices (CCDs) and active pixel sensors (APSs), which are otherwise only able to measure the intensity of light. Polarization sensors based on MPAs are extremely compact, light-weight, mechanically robust devices with no moving parts, capable of measuring the degree and angle of polarization of light in a single snapshot. Furthermore, micropolarizer arrays based on wire grid polarizers (so called micro-grid polarizers) offer extremely broadband performance, across the optical and infrared regimes. These devices have potential for a wide array of commercial and research applications, where measurements of polarization can provide critical information, but where conventional polarimeters could be practically implemented. To date, the most successful commercial applications of these devices are 4D Technology's PhaseCam laser interferometers and PolarCam imaging polarimeters. Recently, MPA-based polarimeters have been identified as a potential solution for space-based telescopes, where the small size, snapshot capability and low power consumption (offered by these devices) are extremely desirable. In this work, we investigated the performance of MPA-based polarimeters designed for astronomical polarimetry using the Rochester Institute of Technology Polarization Imaging Camera (RITPIC). We deployed RITPIC on the 0.9 meter SMARTS telescope at the Cerro Tololo Inter-American Observatory and observed a variety of astronomical objects (calibration stars, variable stars, reflection nebulae and planetary nebulae). We use our observations to develop calibration procedures that are unique to these devices and provide an estimate for polarimetric precision that is achievable.

  11. Hemispherical infrared focal plane arrays: a new design parameter for the instruments

    NASA Astrophysics Data System (ADS)

    Fendler, M.; Dumas, D.; Chemla, F.; Cohen, M.; Laporte, P.; Tekaya, K.; Le Coarer, E.; Primot, J.; Ribot, H.

    2012-07-01

    In ground based astronomy, mainly all designs of sky survey telescopes are limited by the requirement that the detecting surface is flat whereas the focal surface is curved. Two kinds of solution have been investigated up to now. The first one consists in adding optical systems to flatten the image surface; however this solution complicates the design and increases the system size. Somehow, this solution increases, in the same time, the weight and price of the instrument. The second solution consists in curving artificially the focal surface by using a mosaic of several detectors, which are positioned in a spherical shape. However, this attempt is dedicated to low curvature and is limited by the technical difficulty to control the detectors alignment and tilt between each others. Today we would like to propose an ideal solution which is to curve the focal plane array in a spherical shape, thanks to our monolithic process developed at CEA-LETI based on thinned silicon substrates which allows a 100% optical fill factor. Two infrared uncooled cameras have been performed, using 320 x 256 pixels and 25 μm pitch micro-bolometer arrays curved at a bending radius of 80 mm. These two micro-cameras illustrate the optical system simplification and miniaturization involved by curved focal plane arrays. Moreover, the advantages of curved detectors on the optical performances (Point Spreading Function), as well as on volume and cost savings have been highlighted by the simulation of the opto-mechanical architecture of the spectrometer OptiMOS-EVE for the European Extremely Large Telescope (E-ELT).

  12. Materials, devices, techniques, and applications for Z-plane focal plane array technology II; Proceedings of the Meeting, San Diego, CA, July 12, 13, 1990

    NASA Astrophysics Data System (ADS)

    Carson, John C.

    1990-11-01

    Various papers on materials, devices, techniques, and applications for X-plane focal plane array technology are presented. Individual topics addressed include: application of Z-plane technology to the remote sensing of the earth from GEO, applications of smart neuromorphic focal planes, image-processing of Z-plane technology, neural network Z-plane implementation with very high interconnection rates, using a small IR surveillance satellite for tactical applications, establishing requirements for homing applications, Z-plane technology. Also discussed are: on-array spike suppression signal processing, algorithms for on-focal-plane gamma circumvention and time-delay integration, current HYMOSS Z-technology, packaging of electrons for on- and off-FPA signal processing, space/performance qualification of tape automated bonded devices, automation in tape automated bonding, high-speed/high-volume radiometric testing of Z-technology focal planes, 128-layer HYMOSS-module fabrication issues, automation of IRFPA production processes.

  13. Concurrent array-based queue

    SciTech Connect

    Heidelberger, Philip; Steinmacher-Burow, Burkhard

    2015-01-06

    According to one embodiment, a method for implementing an array-based queue in memory of a memory system that includes a controller includes configuring, in the memory, metadata of the array-based queue. The configuring comprises defining, in metadata, an array start location in the memory for the array-based queue, defining, in the metadata, an array size for the array-based queue, defining, in the metadata, a queue top for the array-based queue and defining, in the metadata, a queue bottom for the array-based queue. The method also includes the controller serving a request for an operation on the queue, the request providing the location in the memory of the metadata of the queue.

  14. Next generation sub-millimeter wave focal plane array coupling concepts: an ESA TRP project to develop multichroic focal plane pixels for future CMB polarization experiments

    NASA Astrophysics Data System (ADS)

    Trappe, N.; Bucher, M.; De Bernardis, P.; Delabrouille, J.; Deo, P.; DePetris, M.; Doherty, S.; Ghribi, A.; Gradziel, M.; Kuzmin, L.; Maffei, B.; Mahashabde, S.; Masi, S.; Murphy, J. A.; Noviello, F.; O'Sullivan, C.; Pagano, L.; Piacentini, F.; Piat, M.; Pisano, G.; Robinson, M.; Stompor, R.; Tartari, A.; van der Vorst, M.; Verhoeve, P.

    2016-07-01

    The main objective of this activity is to develop new focal plane coupling array concepts and technologies that optimise the coupling from reflector optics to the large number of detectors for next generation sub millimetre wave telescopes particularly targeting measurement of the polarization of the cosmic microwave background (CMB). In this 18 month TRP programme the consortium are tasked with developing, manufacturing and experimentally verifying a prototype multichroic pixel which would be suitable for the large focal plane arrays which will be demanded to reach the required sensitivity of future CMB polarization missions. One major development was to have multichroic operation to potentially reduce the required focal plane size of a CMB mission. After research in the optimum telescope design and definition of requirements based on a stringent science case review, a number of compact focal plane architecture concepts were investigated before a pixel demonstrator consisting of a planar mesh lens feeding a backend Resonant Cold Electron Bolometer RCEB for filtering and detection of the dual frequency signal was planned for manufacture and test. In this demonstrator the frequencies of the channels was chosen to be 75 and 105 GHz in the w band close to the peak CMB signal. In the next year the prototype breadboards will be developed to test the beams produced by the manufactured flat lenses fed by a variety of antenna configurations and the spectral response of the RCEBs will also be verified.

  15. Hierarchical Phased Array Antenna Focal Plane for Cosmic Microwave Background Polarization and Sub-mm Observations

    NASA Astrophysics Data System (ADS)

    Lee, Adrian

    We propose to develop planar-antenna-coupled superconducting bolometer arrays for observations at sub-millimeter to millimeter wavelengths. Our pixel architecture features a dual-polarization, log-periodic antenna with a 5:1 bandwidth ratio, followed by a filter bank that divides the total bandwidth into several broad photometric bands. We propose to develop an hierarchical phased array of our basic pixel type that gives optimal mapping speed (sensitivity) over a much broader range of frequencies. The advantage of this combination of an intrinsically broadband pixel with hierarchical phase arraying include a combination of greatly reduced focal-plane mass, higher array sensitivity, and a larger number of spectral bands compared to focal-plane designs using conventional single-color pixels. These advantages have the potential to greatly reduce cost and/or increase performance of NASA missions in the sub-millimeter to millimeter bands. For CMB polarization, a wide frequency range of about 30 to 400 GHz is required to subtract galactic foregrounds. As an example, the multichroic architecture we propose could reduce the focal plane mass of the EPIC-IM CMB polarization mission study concept by a factor of 4, with great savings in required cryocooler performance and therefore cost. We have demonstrated the lens-coupled antenna concept in the POLARBEAR groundbased CMB polarization experiment which is now operating in Chile. That experiment uses a single-band planar antenna that gives excellent beam properties and optical efficiency. POLARBEAR recently succeeded in detecting gravitational lensing B-modes in the CMB polarization. In the laboratory, we have measured two octaves of total bandwidth in the log-periodic sinuous antenna. We have built filter banks of 2, 3, and 7 bands with 4, 6, and 14 bolometers per pixel for two linear polarizations. Pixels of this type are slated to be deployed on the ground in POLARBEAR and SPT-3G and proposed to be used on a balloon by EBEX

  16. Guided torsional wave generation of a linear in-plane shear piezoelectric array in metallic pipes.

    PubMed

    Zhou, Wensong; Yuan, Fuh-Gwo; Shi, Tonglu

    2016-02-01

    Cylindrical guided waves based techniques are effective and promising tools for damage detection in long pipes. The essential operations are generation and reception of guided waves in the structures utilizing transducers. A novel in-plane shear (d36 type) PMNT wafer is proposed to generate and receive the guided wave, especially the torsional waves, in metallic pipes. In contrast to the traditional wafer, this wafer will directly introduce in-plane shear deformation when electrical field is conveniently applied through its thickness direction. A single square d36 PMNT wafer is bonded on the surface of the pipe positioned collinearly with its axis, when actuated can predominantly generate torsional (T) waves along the axial direction, circumferential shear horizontal (C-SH) waves along circumferential direction, and other complex cylindrical Lamb-like wave modes along other helical directions simultaneously. While a linear array of finite square size d36 PMNT wafers was equally spaced circumferentially, when actuated simultaneously can nearly uniform axisymmetric torsional waves generate in pipes and non-symmetric wave modes can be suppressed greatly if the number of the d36 PMNT wafer is sufficiently large. This paper first presents the working mechanism of the linear d36 PMNT array from finite element analysis (FEA) by examining the constructive and destructive displacement wavefield phenomena in metallic pipes. Furthermore, since the amplitude of the received fundamental torsional wave signal strongly depends on frequency, a series of experiments are conducted to determine the frequency tuning curve for the torsional wave mode. All results indicate the linear d36 PMNT array has potential for efficiently generating uniform torsional wavefield of the fundamental torsional wave mode, which is more effective in monitoring structural health in metallic pipes.

  17. Extrinsic charge-extraction device /XCED/ - An extrinsic-silicon focal-plane array architecture

    NASA Astrophysics Data System (ADS)

    Pocock, D. N.; Chiu, K. Y.; Missman, R. A.; Nuttall, D. E.

    1980-01-01

    The XCED (extrinsic charge-extraction device) is a unique focal-plane array structure designed for staring infrared-imaging applications. Extrinsic-silicon detectors, MOS integrating storage capacitors, and unique accumulation mode multiplexing devices are combined in a two-dimensional array within a single monolithic chip. Zinc-doped silicon has been studied and utilized to fabricate detectors sensitive in the 2 to 4 micron spectral band with BLIP operating temperatures above 110 K. The potentially severe problems for staring arrays of element-to-element nonuniformities and detector storage saturation have been solved. Preliminary results and thermal imagery are shown for a 16 x 16 element array.

  18. A superconducting focal plane array for ultraviolet, optical, and near-infrared astrophysics.

    PubMed

    Mazin, Benjamin A; Bumble, Bruce; Meeker, Seth R; O'Brien, Kieran; McHugh, Sean; Langman, Eric

    2012-01-16

    Microwave Kinetic Inductance Detectors, or MKIDs, have proven to be a powerful cryogenic detector technology due to their sensitivity and the ease with which they can be multiplexed into large arrays. A MKID is an energy sensor based on a photon-variable superconducting inductance in a lithographed microresonator, and is capable of functioning as a photon detector across the electromagnetic spectrum as well as a particle detector. Here we describe the first successful effort to create a photon-counting, energy-resolving ultraviolet, optical, and near infrared MKID focal plane array. These new Optical Lumped Element (OLE) MKID arrays have significant advantages over semiconductor detectors like charge coupled devices (CCDs). They can count individual photons with essentially no false counts and determine the energy and arrival time of every photon with good quantum efficiency. Their physical pixel size and maximum count rate is well matched with large telescopes. These capabilities enable powerful new astrophysical instruments usable from the ground and space. MKIDs could eventually supplant semiconductor detectors for most astronomical instrumentation, and will be useful for other disciplines such as quantum optics and biological imaging.

  19. Characteristics of stereo images from detectors in focal plane array.

    PubMed

    Son, Jung-Young; Yeom, Seokwon; Chun, Joo-Hwan; Guschin, Vladmir P; Lee, Dong-Su

    2011-07-01

    The equivalent ray geometry of two horizontally aligned detectors at the focal plane of the main antenna in a millimeter wave imaging system is analyzed to reveal the reason why the images from the detectors are fused as an image with a depth sense. Scanning the main antenna in both horizontal and vertical directions makes each detector perform as a camera, and the two detectors can work like a stereo camera in the millimeter wave range. However, the stereo camera geometry is different from that of the stereo camera used in the visual spectral range because the detectors' viewing directions are diverging to each other and they are a certain distance apart. The depth sense is mainly induced by the distance between detectors. The images obtained from the detectors in the millimeter imaging system are perceived with a good depth sense. The disparities responsible for the depth sense are identified in the images.

  20. A new monolithic approach for mid-IR focal plane arrays

    NASA Astrophysics Data System (ADS)

    Xie, Chengzhi; Pusino, Vincenzo; Khalid, Ata; Aziz, Mohsin; Steer, Matthew J.; Cumming, David R. S.

    2016-10-01

    Antimonide-based photodetectors have recently been grown on a GaAs substrate by molecular beam epitaxy (MBE) and reported to have comparable performance to the devices grown on more expensive InSb and GaSb substrates. We demonstrated that GaAs, in addition to providing a cost saving substrate for antimonide-based semiconductor growth, can be used as a functional material to fabricate transistors and realize addressing circuits for the heterogeneously grown photodetectors. Based on co-integration of a GaAs MESFET with an InSb photodiode, we recently reported the first demonstration of a switchable and mid-IR sensible photo-pixel on a GaAs substrate that is suitable for large-scale integration into a focal plane array. In this work we report on the fabrication steps that we had to develop to deliver the integrated photo-pixel. Various highly controllable etch processes, both wet and dry etch based, were established for distinct material layers. Moreover, in order to avoid thermally-induced damage to the InSb detectors, a low temperature annealed Ohmic contact was used, and the processing temperature never exceeded 180 °C. Furthermore, since there is a considerable etch step (> 6 μm) that metal must straddle in order to interconnect the fabricated devices, we developed an intermediate step using polyimide to provide a smoothing section between the lower MESFET and upper photodiode regions of the device. This heterogeneous technology creates great potential to realize a new type of monolithic focal plane array of addressable pixels for imaging in the medium wavelength infrared range without the need for flip-chip bonding to a CMOS readout chip.

  1. Curved Focal-Plane Arrays Using Back-Illuminated High-Purity Photodetectors

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh; Hoenk, Michael E.

    2003-01-01

    Curved-focal-plane arrays of back-illuminated silicon-based photodetectors are being developed. The basic idea is to improve the performance of an imaging instrument and simplify the optics needed to obtain a given level of performance by making an image sensor (e.g., a photographic film or an array of photodetectors) conform to a curved focal surface, instead of following the customary practice of designing the optics to project an image onto a flat focal surface. Eyes are natural examples of optical systems that have curved focal surfaces on which image sensors (retinas) are located. One prior approach to implementation of this concept involves the use of curved-input-surface microchannel plates as arrays of photodetectors. In comparison with microchannel plates, these curved-focal-plane arrays would weigh less, operate at much lower voltages, and consume less power. It should also be possible to fabricate the proposed devices at lower cost. It would be possible to fabricate an array of photodetectors and readout circuitry in the form of a very-large-scale integrated (VLSI) circuit on a curved focal surface, but it would be difficult and expensive to do so. In a simple and inexpensive alternate approach, a device (see figure) would have (1) a curved back surface, onto which light would be focused; and (2) a flat front surface, on which VLSI circuitry would be fabricated by techniques that are well established for flat surfaces. The device would be made from ultrapure silicon, in which it is possible to form high-resistivity, thick photodetectors that are fully depleted through their thicknesses. (As used here, "thick means having a thickness between a fraction of a millimeter and a few millimeters.) The back surface would be polished to the curvature of the focal surface of the intended application. To enable the collection of charge carriers excited by photons near the back surface or in the bulk of the device, it would be necessary to form a transparent or

  2. New developments on InGaAs focal plane array

    NASA Astrophysics Data System (ADS)

    Coussement, J.; Rouvié, A.; Oubensaid, E. H.; Huet, O.; Hamard, S.; Truffer, J.-P.; Pozzi, M.; Maillart, P.; Reibel, Y.; Costard, E.; Billon-Lanfrey, D.

    2014-06-01

    SWIR detection band benefits from natural (sun, night glow, thermal radiation) or artificial (eye safe lasers) photons sources combined to low atmospheric absorption and specific contrast compared to visible wavelengths. It gives the opportunity to address a large spectrum of applications such as defense and security (night vision, active imaging), space (earth observation), transport (automotive safety) or industry (non destructive process control). InGaAs material appears as a good candidate to satisfy SWIR detection needs. The lattice matching with InP constitutes a double advantage to this material: attractive production capacity and uncooled operation thanks to low dark current level induced by high quality material. The recent transfer of imagery activities from III-VLab to Sofradir provides a framework for the production activity with the manufacturing of high performances products: CACTUS320 SW and CACTUS640 SW. The developments, begun at III-Vlab towards VGA format with 15μm pixel pitch, lead today to the industrialization of a new product: SNAKE SW. On one side, the InGaAs detection array presents high performances in terms of dark current and quantum efficiency. On the other side, the low noise ROIC has different additional functionalities. Then this 640×512 @ 15μm module appears as well suited to answer the needs of a wide range of applications. In this paper, we will present the Sofradir InGaAs technology, some performances optimization and the last developments leading to SNAKE SW.

  3. 480 x 8 hybrid HgCdTe infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Kobayashi, Masako; Wada, Hideo; Okamura, Toshihiro; Kudo, Jun-ichi; Tanikawa, Kunihiro; Hikida, Soichiro; Miyamoto, Yoshihiro; Miyazaki, Shinji; Yoshida, Yukihiro

    2001-10-01

    This paper explains the technologies used for high-performance long linear arrays based on HgCdTe/CMOS hybrid multiplexers with bidirectional Time Delay and Integration (TDI) functions, and it describes the development of the first high-resolution Forward Looking Infrared (FLIR) system with the SXGA format. Long-wavelength Infrared (LWIR) photodiode arrays are fabricated using liquid-phase epitaxially grown HgCdTe on a CdZnTe substrate. Each photodiode array consists of 480x8-element n+/n-on-p diodes formed by B+ implantation. Each photodiode is surrounded by a crosswise drain diode to define the detection area. The diodes with a 10.3-μm cutoff wavelength had a typical zero-bias resistance of 10 MΩ and a shunt resistance of 1 GΩ. Four CMOS Read Out Integrated Circuits (ROICs) were used for bidirectional TDI and multiplex operations where each ROIC summed up and multiplexed eight signals from 120 channels. The ROIC also includes pixel deselection and gain control circuits along with the corresponding memory and writing means. The Infrared Focal Plane Arrays (IRFPAs) had a typical Noise Equivalent Temperature Difference (NETD) of 18 mK after TDI with F/1.55 optics and 10-μs integration. The FLIR system using the 480x8 IRFPA demonstrated a high spatial resolution of 1280 horizontal lines by 960 vertical lines (SXGA format) and NETD of less than 30 mK. The unique algorithm for image enhancement was successfully confirmed to be efficient.

  4. Space-based radar array system simulation and validation

    NASA Astrophysics Data System (ADS)

    Schuman, H. K.; Pflug, D. R.; Thompson, L. D.

    1981-08-01

    The present status of the space-based radar phased array lens simulator is discussed. Huge arrays of thin wire radiating elements on either side of a ground screen are modeled by the simulator. Also modeled are amplitude and phase adjust modules connecting radiating elements between arrays, feedline to radiator mismatch, and lens warping. A successive approximation method is employed. The first approximation is based on a plane wave expansion (infinite array) moment method especially suited to large array analysis. the first approximation results then facilitate higher approximation computations that account for effects of nonuniform periodicities (lens edge, lens section interfaces, failed modules, etc.). The programming to date is discussed via flow diagrams. An improved theory is presented in a consolidated development. The use of the simulator is illustrated by computing active impedances and radiating element current distributions for infinite planar arrays of straight and 'swept back' dipoles (arms inclined with respect to the array plane) with feedline scattering taken into account.

  5. Modeling of HgCdTe focal plane array spectral inhomogeneities

    NASA Astrophysics Data System (ADS)

    Mouzali, Salima; Lefebvre, Sidonie; Rommeluère, Sylvain; Ferrec, Yann; Primot, Jérôme

    2015-06-01

    Infrared focal plane arrays (IRFPA) are widely used to perform high quality measurements such as spectrum acquisition at high rate, ballistic missile defense, gas detection, and hyperspectral imaging. For these applications, the fixed pattern noise represents one of the major limiting factors of the array performance. This sensor imperfection refers to the nonuniformity between pixels, and is partially caused by disparities of the cut-off wavenumbers. In this work, we focus particularly on mercury cadmium telluride (HgCdTe), which is the most important material of IR cooled detector applications. Among the many advantages of this ternary alloy is the tunability of the bandgap energy with Cadmium composition, as well as the high quantum efficiency. In order to predict and understand spectral inhomogeneities of HgCdTe-based IRFPA, we propose a modeling approach based on the description of optical phenomena inside the pixels. The model considers the p-n junctions as a unique absorbent bulk layer, and derives the sensitivity of the global structure to both Cadmium composition and HgCdTe layer thickness. For this purpose, HgCdTe optical and material properties were necessary to be known at low temperature (80K), in our operating conditions. We therefore achieved the calculation of the real part of the refractive index using subtracti

  6. Long-Wavelength Infrared (LWIR) Quantum Dot Infrared Photodetector (QDIP) Focal Plane Array

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Bandara, S. V.; Liu, J. K.; Hill, C. J.; Rafol, S. B.; Mumolo, J. M.; Shott, C. A.

    2006-01-01

    We have exploited the artificial atomlike properties of epitaxially self-assembled quantum dots for the development of high operating temperature long wavelength infrared (LWIR) focal plane arrays. Quantum dots are nanometer-scale islands that form spontaneously on a semiconductor substrate due to lattice mismatch. QDIPs are expected to outperform quantum well infrared detectors (QWIPs) and are expected to offer significant advantages over II-VI material based focal plane arrays. QDIPs are fabricated using robust wide bandgap III-V materials which are well suited to the production of highly uniform LWIR arrays. We have used molecular beam epitaxy (MBE) technology to grow multi-layer LWIR quantum dot structures based on the InAs/InGaAs/GaAs material system. JPL is building on its significant QWIP experience and is basically building a Dot-in-the-Well (DWELL) device design by embedding InAs quantum dots in a QWIP structure. This hybrid quantum dot/quantum well device offers additional control in wavelength tuning via control of dot-size and/or quantum well sizes. In addition the quantum wells can trap electrons and aide in ground state refilling. Recent measurements have shown a 10 times higher photoconductive gain than the typical QWIP device, which indirectly confirms the lower relaxation rate of excited electrons (photon bottleneck) in QDPs. Subsequent material and device improvements have demonstrated an absorption quantum efficiency (QE) of approx. 3%. Dot-in-the-well (DWELL) QDIPs were also experimentally shown to absorb both 45 deg. and normally incident light. Thus we have employed a reflection grating structure to further enhance the quantum efficiency. JPL has demonstrated wavelength control by progressively growing material and fabricating devices structures that have continuously increased in LWIR response. The most recent devices exhibit peak responsivity out to 8.1 microns. Peak detectivity of the 8.1 micrometer devices has reached approx. 1 x 10(exp 10

  7. Chemical imaging of cotton fibers using an infrared microscope and a focal-plane array detector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this presentation, the chemical imaging of cotton fibers with an infrared microscope and a Focal-Plane Array (FPA) detector will be discussed. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In addition, FPA detectors allow for simultaneous spe...

  8. Radiation-Induced Transient Effects in Near Infrared Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Reed, Robert A.; Pickel, J.; Marshall, P.; Waczynski, A.; McMurray, R.; Gee, G.; Polidan, E.; Johnson, S.; McKeivey, M.; Ennico, K.; Johnson, R.

    2004-01-01

    This viewgraph presentation describes a test simulate the transient effects of cosmic ray impacts on near infrared focal plane arrays. The objectives of the test are to: 1) Characterize proton single events as function of energy and angle of incidence; 2) Measure charge spread (crosstalk) to adjacent pixels; 3) Assess transient recovery time.

  9. Resonance properties of bi-component arrays of magnetic dots magnetized perpendicular to their planes

    NASA Astrophysics Data System (ADS)

    Kostylev, Mikhail; Zhong, Shudan; Ding, Junjia; Adeyeye, Adekunle O.

    2013-09-01

    The spin wave spectrum of dense arrays of rectangular elements periodically arranged in a two-dimensional magnonic crystal with a complex unit cell and magnetized perpendicularly to the array plane has been characterized using broadband ferromagnetic resonance (FMR) spectroscopy. The crystal's unit cell consists of non-collinear orientations of constituting elongated rectangular elements. We found that only one mode is excited in the perpendicular-to-plane FMR in complete magnetic saturation. We also conducted out-of-plane angle resolved measurements of the FMR resonance field. We observe splitting of the singlet observed for the perfect perpendicular-to-plane orientation of the applied field into a doublet upon a tilt of the field from this orientation. The splitting of the singlet into a doublet is explained as an experimental evidence of dipole coupling of the elements on the arrays. Our experimental observations are in good agreement with the theory we developed to describe the magnetization dynamics on this periodic array.

  10. A novel design of infrared focal plane array with digital read out interface

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyang; Ding, Ruijun; Lu, Wei; Zhou, Chun

    2010-10-01

    Infrared focal plane array (IRFPA) with digital read out interface is a key sign of the third generation IRFPA, which plays an important role in the reliability and miniaturization of infrared systems. A readout integrated circuit (ROIC) of IRFPA with digital readout interface based on dual ramp single slope (DRSS) analog to digital converter (ADC) architecture is presented in the paper. The design is realized using shared ADCs in column-wise and these ADCs are consisted of simplified DRSS architecture and shared units. Sample, conversion and readout are proceeded simultaneously in order to adapt large scale and high readout frame rate application. This circuit also shows many advantages, including small area and low power consumption. Simulation result shows that this architecture can be expand to 320×256 pixel array with a frame rate of 100 frames per second or a larger size whit lower frame rate, the quantized resolution of this circuit is 12 bit, and the analog power consumption is only 17μw per ADC.

  11. Focal plane resolution and overlapped array time delay and integrate imaging

    NASA Astrophysics Data System (ADS)

    Grycewicz, Thomas J.; Cota, Stephen A.; Lomheim, Terrence S.; Kalman, Linda S.

    2010-06-01

    In this paper we model sub-pixel image registration for a generic earth-observing satellite system with a focal plane using two offset time delay and integrate (TDI) arrays in the focal plane to improve the achievable ground resolution over the resolution achievable with a single array. The modeling process starts with a high-resolution image as ground truth. The Parameterized Image Chain Analysis & Simulation Software (PICASSO) modeling tool is used to degrade the images to match the optical transfer function, sampling, and noise characteristics of the target system. The model outputs a pair of images with a separation close to the nominal half-pixel separation between the overlapped arrays. A registration estimation algorithm is used to measure the offset for image reconstruction. The two images are aligned and summed on a grid with twice the capture resolution. We compare the resolution in images between the inputs before overlap, the reconstructed image, and a simulation for the image which would have been captured on a focal plane with twice the resolution. We find the performance to always be better than the lower resolution baseline, and to approach the performance of the high-resolution array in the ideal case. We show that the overlapped array imager significantly outperforms both the conventional high- and low-resolution imagers in conditions with high image smear.

  12. Large format focal plane array integration with precision alignment, metrology and accuracy capabilities

    NASA Astrophysics Data System (ADS)

    Neumann, Jay; Parlato, Russell; Tracy, Gregory; Randolph, Max

    2015-09-01

    Focal plane alignment for large format arrays and faster optical systems require enhanced precision methodology and stability over temperature. The increase in focal plane array size continues to drive the alignment capability. Depending on the optical system, the focal plane flatness of less than 25μm (.001") is required over transition temperatures from ambient to cooled operating temperatures. The focal plane flatness requirement must also be maintained in airborne or launch vibration environments. This paper addresses the challenge of the detector integration into the focal plane module and housing assemblies, the methodology to reduce error terms during integration and the evaluation of thermal effects. The driving factors influencing the alignment accuracy include: datum transfers, material effects over temperature, alignment stability over test, adjustment precision and traceability to NIST standard. The FPA module design and alignment methodology reduces the error terms by minimizing the measurement transfers to the housing. In the design, the proper material selection requires matched coefficient of expansion materials minimizes both the physical shift over temperature as well as lowering the stress induced into the detector. When required, the co-registration of focal planes and filters can achieve submicron relative positioning by applying precision equipment, interferometry and piezoelectric positioning stages. All measurements and characterizations maintain traceability to NIST standards. The metrology characterizes the equipment's accuracy, repeatability and precision of the measurements.

  13. Terahertz 3D printed diffractive lens matrices for field-effect transistor detector focal plane arrays.

    PubMed

    Szkudlarek, Krzesimir; Sypek, Maciej; Cywiński, Grzegorz; Suszek, Jarosław; Zagrajek, Przemysław; Feduniewicz-Żmuda, Anna; Yahniuk, Ivan; Yatsunenko, Sergey; Nowakowska-Siwińska, Anna; Coquillat, Dominique; But, Dmytro B; Rachoń, Martyna; Węgrzyńska, Karolina; Skierbiszewski, Czesław; Knap, Wojciech

    2016-09-05

    We present the concept, the fabrication processes and the experimental results for materials and optics that can be used for terahertz field-effect transistor detector focal plane arrays. More specifically, we propose 3D printed arrays of a new type - diffractive multi-zone lenses of which the performance is superior to that of previously used mono-zone diffractive or refractive elements and evaluate them with GaN/AlGaN field-effect transistor terahertz detectors. Experiments performed in the 300-GHz atmospheric window show that the lens arrays offer both a good efficiency and good uniformity, and may improve the signal-to-noise ratio of the terahertz field-effect transistor detectors by more than one order of magnitude. In practice, we tested 3 × 12 lens linear arrays with printed circuit board THz detector arrays used in postal security scanners and observed significant signal-to-noise improvements. Our results clearly show that the proposed technology provides a way to produce cost-effective, reproducible, flat optics for large-size field-effect transistor THz-detector focal plane arrays.

  14. Uncooled bolometer-type Terahertz focal plane array and camera for real-time imaging

    NASA Astrophysics Data System (ADS)

    Oda, Naoki

    2010-08-01

    Real-time Terahertz (THz) imaging technologies which make use of uncooled bolometer-type infrared focal plane arrays (FPAs) and quantum cascade lasers (QCLs) will be reviewed. A description of how THz focal plane array and THz imagers have been developed on the basis of infrared technologies, especially the improvement in both THz sensitivity of bolometer-type FPA and THz transmittance of materials for lens and vacuum package window will be given. Characteristics of 320×240 THz-FPA, such as relation of noise equivalent power (NEP) to wavelength and real-time THz imageries will be presented. One of the imageries indicates that THz technology is promising for label-free detection of reaction of small molecules with proteins.

  15. A novel readout method for focal plane array imaging in the presence of large dark current

    NASA Astrophysics Data System (ADS)

    Qiu, Changqing

    1999-08-01

    This research was an investigation of a novel readout method for focal plane array (FPA) optical imaging, especially for very sensitive detectors with large dark current. The readout method is based on periodically blocking the optical input enabling the removal of the dark current integration from the output. The research demonstrated that it is feasible to modulate the optical input with the designed readout circuit and thus achieve longer signal integration time to enhance the signal-to- noise ratio. Study of a proposed circuit model showed that in theory the correlated readout method could increase the output voltage swing and reduce the noise level by attenuating low frequency noise, thereby effectively improving the FPA dynamic range. Circuits based on standard CMOS circuitry were designed, simulated by PSpice, fabricated using Orbit 2μm n-well technology, and tested with a PI-4000 system. In the circuit evaluation, the output noise due to the clock switching phenomena, the gate signal feedthrough and the charge relaxation, was considered to be the critical problem. The most promising design for minimizing this problem had a CMOS current steering circuit at the input of a high CMRR operational amplifier. Simulation and test results showed that a modified capacitive transimpedance amplifier (CTIA) could subtract dark current output and reduce the output signal due to any difference between the frequencies of the optical input modulation signal and the switch modulation signal. In conclusion, the correlated readout circuit was shown to be a promising approach for advancing FPA technology.

  16. Real Time Imaging Analysis Using a Terahertz Quantum Cascade Laser and a Microbolometer Focal Plane Array

    DTIC Science & Technology

    2008-12-01

    sensing area, assuming that the device remains approximately in thermodynamic equilibrium, the heat balance equation can be expressed as o d TP G T C...11. Modulated radiation incident on focal plane array. .........................................17 Figure 12. Temperature change in a pixel for P0...for b) 4.3 and c) 4.9 THz windows. HITRAN (solid line) and FTIR results (dashed line). Lasing spectra of QCL’s are depicted with dashed vertical

  17. Vacuum packaging of InGaAs focal plane array with four-stage thermoelectric cooler

    NASA Astrophysics Data System (ADS)

    Mo, De-feng; Liu, Da-fu; Yang, Li-yi; Xu, Qin-fei; Li, Xue

    2013-09-01

    The InGaAs focal plane array (FPA) detectors, covering the near-infrared 1~2.4 μm wavelength range, have been developed for application in space-based spectroscopy of the Earth atmosphere. This paper shows an all-metal vacuum package design for area array InGaAs detector of 1024×64 pixels, and its architecture will be given. Four-stage thermoelectric cooler (TEC) is used to cool down the FPA chip. To acquire high heat dissipation for TEC's Joule-heat, tungsten copper (CuW80) and kovar (4J29) is used as motherboard and cavity material respectively which joined by brazing. The heat loss including conduction, convection and radiation is analyzed. Finite element model is established to analyze the temperature uniformity of the chip substrate which is made of aluminum nitride (AlN). The performance of The TEC with and without heat load in vacuum condition is tested. The results show that the heat load has little influence to current-voltage relationship of TEC. The temperature difference (ΔT) increases as the input current increases. A linear relationship exists between heat load and ΔT of the TEC. Theoretical analysis and calculation show that the heat loss of radiation and conduction is about 187 mW and 82 mW respectively. Considering the Joule-heat of readout circuit and the heat loss of radiation and conduction, the FPA for a 220 K operation at room temperature can be achieved. As the thickness of AlN chip substrate is thicker than 1 millimeter, the temperature difference can be less than 0.3 K.

  18. Accuracy and uncertainty in random speckle modulation transfer function measurement of infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Barnard, Kenneth J.; Jacobs, Eddie L.; Plummer, Philip J.

    2016-12-01

    This paper expands upon a previously reported random speckle technique for measuring the modulation transfer function of midwave infrared focal plane arrays by considering a number of factors that impact the accuracy of the estimated modulation transfer function. These factors arise from assumptions in the theoretical derivation and bias in the estimation procedure. Each factor is examined and guidelines are determined to maintain accuracy within 2% of the true value. The uncertainty of the measurement is found by applying a one-factor ANOVA analysis and confidence intervals are established for the results. The small magnitude of the confidence intervals indicates a very robust technique capable of distinguishing differences in modulation transfer function among focal plane arrays on the order of a few percent. This analysis directly indicates the high quality of the random speckle modulation transfer function measurement technique. The methodology is applied to a focal plane array and results are presented that emphasize the need for generating independent random speckle realizations to accurately assess measured values.

  19. Low power, highly linear output buffer. [for infrared focal plane arrays

    NASA Technical Reports Server (NTRS)

    Foley, D.; Butler, N.; Stobie, J.

    1992-01-01

    A class AB CMOS output buffer has been designed for use on an IR focal plane array. Given the requirements for power dissipation and load capacitance a class A output, such as a source follower, would be unsuitable. The approach taken uses a class AB amplifier configured as a charge integrator. Thus it converts a charge packet in the focal plane multiplexer to a voltage which is then the output of the focal plane. With a quiescent current of 18 micro-a and a load capacitance of 100 pf, the amplifier has an open loop unity gain bandwidth of 900 khz. Integral nonlinearity is better than .03 percent over 5.5 volts when run with VDD-VSS = 6v.

  20. Solid-state image sensor with focal-plane digital photon-counting pixel array

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Pain, Bedabrata (Inventor)

    1995-01-01

    A photosensitive layer such as a-Si for a UV/visible wavelength band is provided for low light level imaging with at least a separate CMOS amplifier directly connected to each PIN photodetector diode to provide a focal-plane array of NxN pixels, and preferably a separate photon-counting CMOS circuit directly connected to each CMOS amplifier, although one row of counters may be time shared for reading out the photon flux rate of each diode in the array, together with a buffer memory for storing all rows of the NxN image frame before transfer to suitable storage. All CMOS circuitry is preferably fabricated in the same silicon layer as the PIN photodetector diode for a monolithic structure, but when the wavelength band of interest requires photosensitive material different from silicon, the focal-plane array may be fabricated separately on a different semiconductor layer bump-bonded or otherwise bonded for a virtually monolithic structure with one free terminal of each diode directly connected to the input terminal of its CMOS amplifier and digital counter for integration of the photon flux rate at each photodetector of the array.

  1. NOTE: Design and fabrication of a high sensitivity focal plane array for uncooled IR imaging

    NASA Astrophysics Data System (ADS)

    Yu, Xiaomei; Yi, Yuliang; Ma, Shenglin; Liu, Ming; Liu, Xiaohua; Dong, Liquan; Zhao, Yuejin

    2008-05-01

    This note reports on the development of a novel cantilever-based focal plane array (FPA) for uncooled infrared (IR) imaging. The FPA of 160 × 120 pixels consisted of a 1 µm thick low stress SiNx structure layer, a thin gold reflection layer and a thick gold bimaterial layer. A bulk silicon process that includes silicon-glass anodic bonding and deep reactive ion etching techniques was developed selectively to remove the substrate silicon and form silicon frames for every FPA pixel. The thermomechanical sensitivity of the cantilever pixel was measured as 0.11 µm K-1, the noise-equivalent temperature difference of the FPA was theoretically estimated to be below 60 mK and the response time was calculated to be 15 ms. An optical readout system was used to measure deflections of all cantilevers in the FPA simultaneously, and thermal images of the human body were captured in good time. One of the unique advantages of this honeycomb-like FPA is the selective removal of the silicon substrate, which could increase the IR absorption efficiency by 48% compared with that fabricated by a traditional surface sacrificial layer process.

  2. Using a focal-plane array to estimate antenna pointing errors

    NASA Technical Reports Server (NTRS)

    Zohar, S.; Vilnrotter, V. A.

    1991-01-01

    The use of extra collecting horns in the focal plane of an antenna as a means of determining the Direction of Arrival (DOA) of the signal impinging on it, provided it is within the antenna beam, is considered. Our analysis yields a relatively simple algorithm to extract the DOA from the horns' outputs. An algorithm which, in effect, measures the thermal noise of the horns' signals and determines its effect on the uncertainty of the extracted DOA parameters is developed. Both algorithms were implemented in software and tested in simulated data. Based on these tests, it is concluded that this is a viable approach to the DOA determination. Though the results obtained are of general applicability, the particular motivation for the present work is their application to the pointing of a mechanically deformed antenna. It is anticipated that the pointing algorithm developed for a deformed antenna could be obtained as a small perturbation of the algorithm developed for an undeformed antenna. In this context, it should be pointed out that, with a deformed antenna, the array of horns and its associated circuitry constitute the main part of the deformation-compensation system. In this case, the pointing system proposed may be viewed as an additional task carried out by the deformation-compensation hardware.

  3. Micromachined room-temperature microbolometer for millimeter-wave detection and focal-plane imaging arrays

    NASA Astrophysics Data System (ADS)

    Rahman, Arifur; Duerr, Erik K.; de Lange, Gert; Hu, Qing

    1997-06-01

    We have combined silicon micromachining technology with planar circuits to fabricated room-temperature niobium microbolometers for millimeter-wave detection. In this type of detector, a thin niobium film, with a dimension much smaller than the wavelength, is fabricated on a 1-micrometers thick Si3N4 membrane of square and cross geometries. The Nb film acts both as a radiation absorber and temperature sensor. Incident radiation is coupled into the microbolometer by a 0.37 (lambda) dipole antenna with a center frequency of 95 GHz and a 3-db bandwidth of 15%, which is impedance matched with the Nb film. The dipole antennas is placed inside a micromachined pyramidal cavity formed by anisotropically etched Si wafers. To increase the Gaussian beam coupling efficiency, a machined square or circular horn is placed in front of the micromachined section. Circular horns interface more easily with die-based manufacturing processes; therefore, we have developed simulation tools that allow us to model circular machined horns. We have fabricated both single element receivers and 3 X 3 focal-plane arrays using uncooled Nb microbolometers. An electrical NEP level of 8.3 X 10-11 W/(root)Hz has been achieved for a single- element receiver. This NEP level is better than that of the commercial room-temperature pyroelectric millimeter-wave detectors. The frequency response of the microbolometer has a ln(1/f) dependence with frequency, and the roll-off frequency is approximately 35 kHz.

  4. High-Performance MWIR HgCdTe on Si Substrate Focal Plane Array Development

    NASA Astrophysics Data System (ADS)

    Bommena, R.; Ketharanathan, S.; Wijewarnasuriya, P. S.; Dhar, N. K.; Kodama, R.; Zhao, J.; Buurma, C.; Bergeson, J. D.; Aqariden, F.; Velicu, S.

    2015-09-01

    The development of low noise-equivalent differential temperature (NEDT), high-operability midwave infrared (MWIR) focal plane arrays (FPAs) fabricated from molecular beam epitaxial (MBE)-grown HgCdTe on Si-based substrates is reported. High-quality n-type MWIR HgCdTe layers with a cutoff wavelength of 4.90 μm at 77 K and a carrier concentration of 1-2 × 1015 cm-3 were grown on CdTe/Si substrates by MBE. Highly uniform composition and thickness over 3-inch areas were demonstrated, and low surface defect densities (voids ~5 × 102 cm-2, micro-defects ~5 × 103 cm-2) and etch pit density (~3.5 × 106 cm-2) were measured. This material was used to fabricate 320 × 256, 30 μm pitch FPAs with planar device architecture; arsenic implantation was used to achieve p-type doping. Radiometric and noise characterization was also performed. A low NEDT of 13.8 m K at 85 K for a 1 ms integration time with f/#2 optics was measured. The NEDT operability was 99% at 120 K with a mean dark current noise of 8.14 × 10-13 A/pixel. High-quality thermal images were obtained from the FPA up to a temperature of 150 K.

  5. Optical sensitivity non-uniformity analysis and optimization of a tilt optical readout focal plane array

    NASA Astrophysics Data System (ADS)

    Fu, Jianyu; Shang, Haiping; Shi, Haitao; Li, Zhigang; Ou, Yi; Chen, Dapeng; Zhang, Qingchuan

    2016-02-01

    An optical readout focal plane array (FPA) usually has a differently tilted reflector/absorber at the initial state due to the micromachining technique. The angular deviation of the reflector/absorber has a strong impact on the optical sensitivity non-uniformity, which is a key factor which affects the imaging uniformity. In this study, a theoretical analysis has been developed, and it is found that the stress matching in SiO2-Aluminum (Al) bilayer leg could make a contribution towards reducing the optical sensitivity non-uniformity. Ion implantation of phosphorus (P) has been utilized to control the stress in SiO2 film. By controlling the implantation energy and dose, the stress and stress stability are modified. The optical readout FPA has been successfully fabricated with the stress-control technique based on P+ implantation. It is demonstrated that the gray response non-uniformity of optical readout FPA has decreased from 25.69% to 10.7%.

  6. Argus: A W-band 16-pixel focal plane array for the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Devaraj, Kiruthika; Church, Sarah; Cleary, Kieran; Frayer, David; Gawande, Rohit; Goldsmith, Paul; Gundersen, Joshua; Harris, Andrew; Kangaslahti, Pekka; Readhead, Tony; Reeves, Rodrigo; Samoska, Lorene; Sieth, Matt; Voll, Patricia

    2015-05-01

    We are building Argus, a 16-pixel square-packed focal plane array that will cover the 75-115.3 GHz frequency range on the Robert C. Byrd Green Bank Telescope (GBT). The primary research area for Argus is the study of star formation within our Galaxy and nearby galaxies. Argus will map key molecules that trace star formation, including carbon monoxide (CO) and hydrogen cyanide (HCN). An additional key science area is astrochemistry, which will be addressed by observing complex molecules in the interstellar medium, and the study of formation of solar systems, which will be addressed by identifying dense pre-stellar cores and by observing comets in our solar system. Argus has a highly scalable architecture and will be a technology path finder for larger arrays. The array is modular in construction, which will allow easy replacement of malfunctioning and poorly performing components.

  7. Transport in arrays of submicron Josephson junctions over a ground plane

    SciTech Connect

    Ho, Teressa Rae

    1997-12-01

    One-dimensional (1D) and two-dimensional (2D) arrays of Al islands linked by submicron Al/AlxOy/Al tunnel junctions were fabricated on an insulating layer grown on a ground plane. The arrays were cooled to temperatures as low as 20 mK where the Josephson coupling energy EJ of each junction and the charging energy EC of each island were much greater than the thermal energy kBT. The capacitance Cg between each island and the ground plane was much greater than the junction capacitance C. Two classes of arrays were studied. In the first class, the normal state tunneling resistance of the junctions was much larger than the resistance quantum for single electrons, RN>> RQe≡ h/e2 ~ 25.8 kΩ, and the islands were driven normal by an applied magnetic field such that EJ = 0 and the array was in the Coulomb blockade regime. The arrays were made on degenerately-doped Si, thermally oxidized to a thickness of approximately 100 nm. The current-voltage (I - V) characteristics of a 1D and a 2D array were measured and found to display a threshold voltage VT below which little current flows. In the second class of arrays, the normal state tunneling resistance of the junctions was close to the resistance quantum for Cooper pairs, RN≈RQ≡h/4e2≈6.45kΩ, such that EJ/EC≈1. The arrays were made on GaAs/Al0.3Ga0.7As heterostructures with a two-dimensional electron gas approximately 100 nm below the surface. One array displayed superconducting behavior at low temperature. Two arrays displayed insulating behavior at low temperature, and the size of the Coulomb gap increased with increasing Rg.

  8. Object tracking based on bit-planes

    NASA Astrophysics Data System (ADS)

    Li, Na; Zhao, Xiangmo; Liu, Ying; Li, Daxiang; Wu, Shiqian; Zhao, Feng

    2016-01-01

    Visual object tracking is one of the most important components in computer vision. The main challenge for robust tracking is to handle illumination change, appearance modification, occlusion, motion blur, and pose variation. But in surveillance videos, factors such as low resolution, high levels of noise, and uneven illumination further increase the difficulty of tracking. To tackle this problem, an object tracking algorithm based on bit-planes is proposed. First, intensity and local binary pattern features represented by bit-planes are used to build two appearance models, respectively. Second, in the neighborhood of the estimated object location, a region that is most similar to the models is detected as the tracked object in the current frame. In the last step, the appearance models are updated with new tracking results in order to deal with environmental and object changes. Experimental results on several challenging video sequences demonstrate the superior performance of our tracker compared with six state-of-the-art tracking algorithms. Additionally, our tracker is more robust to low resolution, uneven illumination, and noisy video sequences.

  9. Fabricating process of hollow out-of-plane Ni microneedle arrays and properties of the integrated microfluidic device

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Cao, Ying; Wang, Hong; Li, Yigui; Chen, Xiang; Chen, Di

    2013-07-01

    Although microfluidic devices that integrate microfluidic chips with hollow out-of-plane microneedle arrays have many advantages in transdermal drug delivery applications, difficulties exist in their fabrication due to the special three-dimensional structures of hollow out-of-plane microneedles. A new, cost-effective process for the fabrication of a hollow out-of-plane Ni microneedle array is presented. The integration of PDMS microchips with the Ni hollow microneedle array and the properties of microfluidic devices are also presented. The integrated microfluidic devices provide a new approach for transdermal drug delivery.

  10. Effect of the out-of-plane stress on the properties of epitaxial SrTiO3 films with nano-pillar array on Si-substrate

    NASA Astrophysics Data System (ADS)

    Bai, Gang; Xie, Qiyun; Liu, Zhiguo; Wu, Dongmei

    2015-08-01

    A nonlinear thermodynamic formalism has been proposed to calculate the physical properties of the epitaxial SrTiO3 films containing vertical nano-pillar array on Si-substrate. The out-of-plane stress induced by the mismatch between film and nano-pillars provides an effective way to tune the physical properties of ferroelectric SrTiO3 films. Tensile out-of-plane stress raises the phase transition temperature and increases the out-of-plane polarization, but decreases the out-of-plane dielectric constant below Curie temperature, pyroelectric coefficient, and piezoelectric coefficient. These results showed that by properly controlling the out-of-plane stress, the out-of-plane stress induced paraelectric-ferroelectric phase transformation will appear near room temperature. Excellent dielectric, pyroelectric, piezoelectric properties of these SrTiO3 films similar to PZT and other lead-based ferroelectrics can be expected.

  11. HEB heterodyne focal plane arrays: a terahertz technology for high sensitivity near-range security imaging systems

    NASA Astrophysics Data System (ADS)

    Gerecht, Eyal; Gu, Dazhen; Yngvesson, Sigfrid; Rodriguez-Morales, Fernando; Zannoni, R.; Nicholson, John

    2005-05-01

    We have achieved the first demonstration of a low-noise heterodyne array operating at a frequency above 1 THz (1.6 THz). The prototype array has three elements, consisting of NbN hot electron bolometer (HEB) detectors on silicon substrates. We use a quasi-optical design to couple the signal and local oscillator (LO) power to the detector. We also demonstrate, for the first time, how the HEB detectors can be intimately integrated in the same block with monolithic microwave integrated circuit (MMIC) IF amplifiers. Such focal plane arrays can be increased in size to a few hundred elements using the next generation fabrication architecture for compact and easy assembly. Future HEB-based focal plane arrays will make low-noise heterodyne imaging systems with high angular resolution possible from 500 GHz to several terahertz. Large low-noise HEB arrays are well suited for real-time video imaging at any frequency over the entire terahertz spectrum. This is made possible by virtue of the extremely low local oscillator power requirements of the HEB detectors (a few hundred nanowatts to a microwatt per pixel). The operating temperature is 4 to 6 K, which can be provided by a compact and mobile cryocooler system, developed as a spin-off from the space program. The terahertz HEB imager consists of a computer-controlled optical system mounted on an elevation and azimuth scanning translator which provides a two-dimensional image of the target. We present preliminary measured data at the symposium for a terahertz security system of this type.

  12. Review of Concepts and Applications for Multispectral/Hyperspectral Focal Plane Array (FPA) Technology

    NASA Technical Reports Server (NTRS)

    McAdoo, James A.

    2001-01-01

    Multispectral, and ultimately hyperspectral, focal plane arrays (FPAs) represent the logical extension of two-color FPA technology, which has already shown its utility in military applications. Incorporating the spectral discrimination function directly in the FPA would offer the potential for orders-of-magnitude increase in remote sensor system performance. It would allow reduction or even elimination of optical components currently required to provide spectral discrimination in atmospheric remote sensors. The result would be smaller, simpler instruments with higher performance than exist today.

  13. MUSTANG 2: A Large Focal Plane Array for the 100 m Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Dicker, S. R.; Ade, P. A. R.; Aguirre, J.; Brevik, J. A.; Cho, H. M.; Datta, R.; Devlin, M. J.; Dober, B.; Egan, D.; Ford, J.; Ford, P.; Hilton, G.; Irwin, K. D.; Mason, B. S.; Marganian, P.; Mello, M.; McMahon, J. J.; Mroczkowski, T.; Rosenman, M.; Tucker, C.; Vale, L.; White, S.; Whitehead, M.; Young, A. H.

    2014-09-01

    This paper describes MUSTANG 2, a 338 element focal plane array that is being built for the Green Bank Telescope. Each element consists of a profiled feedhorn coupled to two transition edge sensor bolometers, one for each polarization. Initial deployment will be with 32 detectors, but once fully populated, MUSTANG 2 will be capable of mapping a area to Jy in 1 h with good image fidelity on angular scales from to . As well as an instrument overview, the choice of bandpass and the design of the feeds, detectors and readout are given.

  14. Quantum Well and Quantum Dot Modeling for Advanced Infrared Detectors and Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Ting, David; Gunapala, S. D.; Bandara, S. V.; Hill, C. J.

    2006-01-01

    This viewgraph presentation reviews the modeling of Quantum Well Infrared Detectors (QWIP) and Quantum Dot Infrared Detectors (QDIP) in the development of Focal Plane Arrays (FPA). The QWIP Detector being developed is a dual band detector. It is capable of running on two bands Long-Wave Infrared (LWIR) and Medium Wavelength Infrared (MWIR). The same large-format dual-band FPA technology can be applied to Quantum Dot Infrared Photodetector (QDIP) with no modification, once QDIP exceeds QWIP in single device performance. Details of the devices are reviewed.

  15. HgCdTe p-on- n Focal-Plane Array Fabrication Using Arsenic Incorporation During MBE Growth

    NASA Astrophysics Data System (ADS)

    Gravrand, O.; Ballet, Ph.; Baylet, J.; Baier, N.

    2009-08-01

    Extrinsic p-type doping during molecular-beam epitaxy (MBE) growth represents an essential generic toolbox for advanced heterostructures based on the HgCdTe material system: PiN diodes, mesa avalanche photodiodes (APD) or third-generation multispectral focal-plane arrays. Today, arsenic appears to be the best candidate to fulfill this role and our group is actively working on its incorporation during MBE growth, using an original radio frequency (RF) plasma source for arsenic. Such a cell is supposed to deliver a monatomic As flux, and as expected we observed high As electrical activation rates after annealing short-wave (SW), mid-wave (MW), and long-wave (LW) layers. At last, a couple of technological runs have been carried out in the MW range in order to validate the approach on practical devices. p-on- n focal-plane arrays (FPA) have been fabricated using a mesa delineated technology on an As-on-In doped metallurgical heterojunction layer grown on a lattice-matched CdZnTe layer (320 × 256, 30 μm pitch, 5 μm cutoff at 77 K). Observed diodes exhibit very interesting electro-optical characteristics: large shunt impedance, high quantum efficiency, and no noticeable excess noise. The resulting focal-plane arrays were observed to be very uniform, leading to high operabilities. Noise equivalent temperature difference (NETD) distributions are very similar to those observed with the As ion-implanted p-on- n technology, fabricated in our laboratory as well. In our opinion, those excellent results demonstrate the feasibility of our MBE in situ arsenic doping process. Good electrical activation rates and high-quality layers can be obtained. We believe that such an approach allows precise control of the p-doping profile in the HgCdTe layer, which is necessary for advanced structure designs.

  16. Trade-offs and difficulties of the vertical photoconductor: a novel device structure suitable for HgCdTe two-dimensional infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Bhan, R. K.; Dhar, V.; Mittal, Vandana

    1999-10-01

    Recently Siliquini and Faraone [J.F. Siliquini, L. Faraone, Infrared Phys. Technol. 38 (1997) 205] have proposed vertical photoconductive device (PC) based two-dimensional long wavelength infrared region focal plane arrays (LWIR FPAs). In this note, we examine some trade-offs and difficulties of this proposed structure.

  17. Multiple detector focal plane array ultraviolet spectrometer for the AMPS laboratory

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.

    1975-01-01

    The possibility of meeting the requirements of the amps spectroscopic instrumentation by using a multi-element focal plane detector array in a conventional spectrograph mount was examined. The requirements of the detector array were determined from the optical design of the spectrometer which in turn depends on the desired level of resolution and sensitivity required. The choice of available detectors and their associated electronics and controls was surveyed, bearing in mind that the data collection rate from this system is so great that on-board processing and reduction of data are absolutely essential. Finally, parallel developments in instrumentation for imaging in astronomy were examined, both in the ultraviolet (for the Large Space Telescope as well as other rocket and satellite programs) and in the visible, to determine what progress in that area can have direct bearing on atmospheric spectroscopy.

  18. Strained-layer superlattice focal plane array having a planar structure

    DOEpatents

    Kim, Jin K.; Carroll, Malcolm S.; Gin, Aaron; Marsh, Phillip F.; Young, Erik W.; Cich, Michael J.

    2010-07-13

    An infrared focal plane array (FPA) is disclosed which utilizes a strained-layer superlattice (SLS) formed of alternating layers of InAs and In.sub.xGa.sub.1-xSb with 0.ltoreq.x.ltoreq.0.5 epitaxially grown on a GaSb substrate. The FPA avoids the use of a mesa structure to isolate each photodetector element and instead uses impurity-doped regions formed in or about each photodetector for electrical isolation. This results in a substantially-planar structure in which the SLS is unbroken across the entire width of a 2-D array of the photodetector elements which are capped with an epitaxially-grown passivation layer to reduce or eliminate surface recombination. The FPA has applications for use in the wavelength range of 3-25 .mu.m.

  19. Low dark current LWIR HgCdTe focal plane arrays at AIM

    NASA Astrophysics Data System (ADS)

    Haiml, M.; Eich, D.; Fick, W.; Figgemeier, H.; Hanna, S.; Mahlein, M.; Schirmacher, W.; Thöt, R.

    2016-05-01

    Cryogenically cooled HgCdTe (MCT) quantum detectors are unequalled for applications requiring high imaging as well as high radiometric performance in the infrared spectral range. Compared with other technologies, they provide several advantages, such as the highest quantum efficiency, lower power dissipation compared to photoconductive devices, and fast response times, hence outperforming micro-bolometer arrays. AIM will present its latest results on n-on-p as well as p-on-n low dark current planar MCT photodiode focal plane detector arrays at cut-off wavelengths >11 μm at 80 K. Dark current densities below the Rule'07 have been demonstrated for n-on-p devices. Slightly higher dark current densities and excellent cosmetics with very low cluster and point defect densities have been demonstrated for p-on-n devices.

  20. Experimental characterization, evaluation, and diagnosis of advanced hybrid infrared focal plane array electro-optical performance

    NASA Astrophysics Data System (ADS)

    Lomheim, Terrence S.; Schumann, Lee W.; Kohn, Stanley E.

    1998-07-01

    High performance scanning time-delay-and-integration and staring hybrid focal plane devices with very large formats, small pixel sizes, formidable frame and line rates, on-chip digital programmability, and high dynamic ranges, are being developed for a myriad of defense, civil, and commercial applications that span the spectral range from shortwave infrared (SWIR) to longwave infrared (LWIR). An essential part in the development of such new advanced hybrid infrared focal planes is empirical validation of their electro-optical (EO) performance. Many high-reliability, high-performance applications demand stringent and near flawless EO performance over a wide variety of operating conditions and environments. Verification of focal plane performance compliance over this wide range of parametric conditions requires the development and use of accurate, flexible, and statistically complete test methods and associated equipment. In this paper we review typical focal plane requirements, the ensuing measurement requirements (quantity, accuracy, repeatability, etc.), test methodologies, test equipment requirements, electronics and computer-based data acquisition requirements, statistical data analysis and display requirements, and associated issues. We also discuss special test requirements for verifying the performance of panchromatic thermal and multispectral imaging focal planes where characterization of dynamic modulation transfer function (MTF), and point-image response and optical overload is generally required. We briefly overview focal plane radiation testing. We conclude with a discussion of the technical challenges of characterizing future advanced hybrid focal plane testing where it is anticipated that analog-to- digital conversion will be included directly on focal plane devices, thus creating the scenario of 'photons-in-to-bits- out' within the focal plane itself.

  1. 320 x 256 Complementary Barrier Infrared Detector Focal Plane Array for Long-Wave Infrared Imaging

    NASA Technical Reports Server (NTRS)

    Nguyen, Jean; Rafol, Sir B.; Soibel, Alexander; Khoskhlagh, Arezou; Ting, David Z.-Y.; Liu, John K.; Mumolo, Jason M.; Gunapala, Sarath D.

    2012-01-01

    A 320 x 256 Complementary Barrier Infrared (CBIRD) focal plane array for long-wavelength infrared (LWIR) imaging is reported. The arrays were grown by molecular beam expitaxy (MBE) with a 300 period 1.9 um thick absorber. The mean dark current density of 2.2 x 10-4 A/cm2 was measured at an operating bias of 128 mV with a long wavelength cutoff of 8.8 ?m observed at 50% of the peak. The maximum quantum efficiency was 54% measured at 5.6 ?m. Operating at T = 80K, the array yielded an 81% fill factor with 97% operability. Good imagery with a mean noise equivalent different temperature (NE?T) of 18.6 mK and a mean detectivity of D* = 1.3 x 1011 cm-Hz1/2/W was achieved. The substrate was thinned using mechanical lapping and neither an AR coating nor a passivation layer was applied. This article provides the details of the fabrication process for achieving low-dark current LWIR CBIRD arrays. Discussion for an effective hard mask for excellent pattern transfer is given and appropriate mounting techniques for good thermal contact during the dry etching process is described. The challenges and differences between etching large 200 ?m test diodes and small 28 ?m FPA pixels are given.

  2. Design, development, characterization and qualification of infrared focal plane area array detectors for space-borne imaging applications

    NASA Astrophysics Data System (ADS)

    Jain, Ankur; Banerjee, Arup

    2016-05-01

    This paper discusses the design, development, characterization and qualification aspects of large format Infrared Focal Plane Arrays (IRFPA) required for panchromatic, multi-, hyper- and ultra-spectral imaging applications from a space-borne imager. Detection of feeble radiant flux from the intended target in narrow spectral bands requires a highly sensitive low noise sensor array with high well capacity. For this the photodiode arrays responsive in desired spectral band are grown using different growth techniques and flip-chip bonded with a suitable Si Read-out ICs (ROICs) for signal conditioning. IR detectors require cryogenic cooling to achieve background limited performance. Although passive radiative cooling is always the preferred choice of cooling in space, it is not suitable for cooling IRFPAs due to high thermal loads. To facilitate characterization of IRFPAs and cool them to desired cryogenic temperature, an Integrated Detector Dewar Cooler Assembly (IDDCA) is essential where the detector array sits over the cold tip of an active cooler and the detector cooler assembly is vacuum sealed in a thermally isolated Dewar. A cold shield above the sensor array inside the Dewar restricts its field-of-view and a cold filter fine tunes its spectral response. In this paper, various constituents of an IRFPA like sensor array materials, growth techniques, ROICs, filters, cold shields, cooling techniques etc., their types and selection criteria for different applications are discussed in detail. Design aspects of IRFPA characterization test bench, challenges involved in radiometric and spectral characterization and space qualification of such IDDCA based IRFPAs are also discussed.

  3. Performance enhancement of uncooled infrared focal plane array by integrating metamaterial absorber

    SciTech Connect

    Ma, Wei; Wen, Yongzheng; Yu, Xiaomei

    2015-03-16

    This letter presents an infrared (IR) focal plane array (FPA) with metamaterial absorber (MMA) integrated to enhance its performance. A glass substrate, on which arrays of bimaterial cantilevers are fabricated as the thermal-sensitive pixels by a polyimide surface sacrificial process, is employed to allow the optical readout from the back side of the substrate. Whereas the IR wave radiates onto the FPA from the front side, which consequently avoids the energy loss caused by the silicon substrate compared with the previous works. This structure also facilitates the integration of MMA by introducing a layer of periodic square resonators atop the SiN{sub x} structural layer to form a metal/dielectric/metal stack with the gold mirror functioning as the ground plane. A comparative experiment was carried out on the FPAs that use MMA and ordinary SiN{sub x} as the absorbers, respectively. The performance improvement was verified by the evaluation of the absorbers as well as the imaging results of both FPAs.

  4. Performance enhancement of uncooled infrared focal plane array by integrating metamaterial absorber

    NASA Astrophysics Data System (ADS)

    Ma, Wei; Wen, Yongzheng; Yu, Xiaomei; Feng, Yun; Zhao, Yuejin

    2015-03-01

    This letter presents an infrared (IR) focal plane array (FPA) with metamaterial absorber (MMA) integrated to enhance its performance. A glass substrate, on which arrays of bimaterial cantilevers are fabricated as the thermal-sensitive pixels by a polyimide surface sacrificial process, is employed to allow the optical readout from the back side of the substrate. Whereas the IR wave radiates onto the FPA from the front side, which consequently avoids the energy loss caused by the silicon substrate compared with the previous works. This structure also facilitates the integration of MMA by introducing a layer of periodic square resonators atop the SiNx structural layer to form a metal/dielectric/metal stack with the gold mirror functioning as the ground plane. A comparative experiment was carried out on the FPAs that use MMA and ordinary SiNx as the absorbers, respectively. The performance improvement was verified by the evaluation of the absorbers as well as the imaging results of both FPAs.

  5. Device localization and dynamic scan plane selection using a wireless MRI detector array

    PubMed Central

    Riffe, Matthew J.; Yutzy, Stephen R.; Jiang, Yun; Twieg, Michael D.; Blumenthal, Colin J.; Hsu, Daniel P.; Pan, Li; Gilson, Wesley D.; Sunshine, Jeffrey L.; Flask, Christopher A.; Duerk, Jeffrey L.; Nakamoto, Dean; Gulani, Vikas; Griswold, Mark A.

    2013-01-01

    Purpose A prototype wireless guidance device using single sideband amplitude modulation (SSB) is presented for a 1.5T MRI system. Methods The device contained three fiducial markers each mounted to an independent receiver coil equipped with wireless SSB technology. Acquiring orthogonal projections of these markers determined the position and orientation of the device, which was used to define the scan plane for a subsequent image acquisition. Device localization and scan plane update required approximately 30 ms, so it could be interleaved with high temporal resolution imaging. Since the wireless device is used for localization and doesn’t require full imaging capability, the design of the SSB wireless system was simplified by allowing an asynchronous clock between the transmitter and receiver. Results When coupled to a high readout bandwidth, the error caused by the lack of a shared frequency reference was quantified to be less than one pixel (0.78 mm) in the projection acquisitions. Image-guidance with the prototype was demonstrated with a phantom where a needle was successfully guided to a target and contrast was delivered. Conclusion The feasibility of active tracking with a wireless detector array is demonstrated. Wireless arrays could be incorporated into devices to assist in image-guided procedures. PMID:23900921

  6. A method for pulsed scannerless laser imaging using focal plane array

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-peng; Wang, Ke-yong; Deng, Jia-hao; Hai, Yan

    2011-06-01

    Laser imaging techniques have advantages for EMI (Electro Magnetic Interference) immunity and abundant image information. This contribution describes the research activity on the scannerless laser imaging detection technique using direct detection aimed at laser fuze applications. The technique using a pulsed laser to illuminate the target and a focal plane array can be used as a receiver. The range information is achieved by means of a direct time of light measurement. Information about the reflectivity of the target is gathered by recording the amplitude of the received pulse. In this paper a high-repetition-frequency, narrow pulse semiconductor laser floodlight emitting system is designed; corresponding optics is used to generate the homogenously illuminated FOI (field of illumination). The echo of laser is collected by receiving optical system fed to focal plane array. Some experiments were done with the emitting and receiving systems that had been designed. Experiments show the validity and rationality of this method. The scannerless structure is robust and provides instantaneous snapshot-type imaging. Avoiding any moving mechanical parts, scannerless laser imaging system have distinct characteristics such as small, compact, high frame rate, wide field of view and high reliability. It is an optimal approach to realize laser imaging fuze.

  7. Determining the Ice-binding Planes of Antifreeze Proteins by Fluorescence-based Ice Plane Affinity

    PubMed Central

    Basu, Koli; Garnham, Christopher P.; Nishimiya, Yoshiyuki; Tsuda, Sakae; Braslavsky, Ido; Davies, Peter

    2014-01-01

    Antifreeze proteins (AFPs) are expressed in a variety of cold-hardy organisms to prevent or slow internal ice growth. AFPs bind to specific planes of ice through their ice-binding surfaces. Fluorescence-based ice plane affinity (FIPA) analysis is a modified technique used to determine the ice planes to which the AFPs bind. FIPA is based on the original ice-etching method for determining AFP-bound ice-planes. It produces clearer images in a shortened experimental time. In FIPA analysis, AFPs are fluorescently labeled with a chimeric tag or a covalent dye then slowly incorporated into a macroscopic single ice crystal, which has been preformed into a hemisphere and oriented to determine the a- and c-axes. The AFP-bound ice hemisphere is imaged under UV light to visualize AFP-bound planes using filters to block out nonspecific light. Fluorescent labeling of the AFPs allows real-time monitoring of AFP adsorption into ice. The labels have been found not to influence the planes to which AFPs bind. FIPA analysis also introduces the option to bind more than one differently tagged AFP on the same single ice crystal to help differentiate their binding planes. These applications of FIPA are helping to advance our understanding of how AFPs bind to ice to halt its growth and why many AFP-producing organisms express multiple AFP isoforms. PMID:24457629

  8. In-plane spin wave modes in permalloy antidot arrays observation and analysis

    NASA Astrophysics Data System (ADS)

    Yu, Chengtao; Mankey, Gary

    2005-03-01

    Previously, we have reported demagnetization field induced localized modes[1] in-plane at 35 GHz ferromagnetic resonance, and dipolar-exchange governed lateral standing spin waves out-of-plane at 9.7 GHz in permalloy antidots. Here we present in-plane investigations at 9.7 GHz on various hole arrays (hole diameter 1.5μm; hole lattice 3μm x 3, 4, 5, and 7μm). In addition to the two main localized modes, which arise from regions confined by holes along the long axis and short axis (region A and B, respectively), spin wave manifolds pertinent to each peak are identified. Owing to the confinement imposed by the holes as well as the demagnetization field, region A and B exhibit distinct resonance geometry. For instance, for field along short axis, region A and B are in Damon-Esbach and magnetostatic backward volume mode geometry respectively, with the spin wave vectors determined by hole separations along long and short axis. This is reversed with field along long axis. The dispersion of the observed spin waves is analyzed accordingly. Supported by US DOE FG02-86ER45281 (MU) and NSF DMR-0213985 (UA). ^1Chengtao Yu, Michael J. Pechan, G. J. Mankey, Appl. Phys. Lett. 83, 3948 (2003).

  9. Low dark current LWIR and VLWIR HgCdTe focal plane arrays at AIM

    NASA Astrophysics Data System (ADS)

    Hanna, S.; Eich, D.; Fick, W.; Figgemeier, H.; Mahlein, M.; Schirmacher, W.; Thöt, R.

    2016-10-01

    In this paper AIM presents an update on its results for both n-on-p and p-on-n low dark current planar MCT photodiode technology LWIR and VLWIR two-dimensional focal plane detector arrays with a cut-off wavelength >11μm at 80K and a 640×512 pixel format. The arrays are stitched from two 512×320 pixel photodiode arrays at a 20μm pixel pitch. Thermal dark currents significantly reduced as compared to `Tennant's Rule 07' at a yet good detection efficiency <60% as well as results from NETD and photo response performance characterization are presented over a wide operating temperature range. The improvements made allow for the same dark current performance at a 20K higher operating temperature than with previous AIM technology. The demonstrated detector performance paces the way for a new generation of higher operating temperature low SWaP LWIR MCT FPAs with a <30mK NETD up to a 110K detector operating temperature and with good operability. Alternatively, lower dark currents at common operating temperatures may be attained, enabling cutting edge next generation LWIR/VLWIR detectors for space instruments.

  10. Performance bounds for passive sensor arrays operating in a turbulent medium: Plane-wave analysis

    NASA Astrophysics Data System (ADS)

    Collier, S. L.; Wilson, D. K.

    2003-05-01

    The performance bounds of a passive acoustic array operating in a turbulent medium with fluctuations described by a von Kármán spectrum are investigated. This treatment considers a single, monochromatic, plane-wave source at near-normal incidence. A line-of-sight propagation path is assumed. The primary interests are in calculating the Cramer-Rao lower bounds of the azimuthal and elevational angles of arrival and in observing how these bounds change with the introduction of additional unknowns, such as the propagation distance, turbulence parameters, and signal-to-noise ratio. In both two and three dimensions, it is found that for large values of the index-of-refraction variance, the Cramer-Rao lower bounds of the angles of arrival increase significantly at large values of the normalized propagation distance. For small values of the index-of-refraction variance and normalized propagation distance, the signal-to-noise ratio is found to be the limiting factor. In the two-dimensional treatment, it is found that the estimate of the angle of arrival will decouple from the estimates of the other parameters with the appropriate choice of array geometry. In three dimensions, again with an appropriate choice of array geometry, the estimates of the azimuth and elevation will decouple from the estimates of the other parameters, but due to the constraints of the model, will remain coupled to one another.

  11. High-resolution focal plane array IR detection modules and digital signal processing technologies at AIM

    NASA Astrophysics Data System (ADS)

    Cabanski, Wolfgang A.; Breiter, Rainer; Koch, R.; Mauk, Karl-Heinz; Rode, Werner; Ziegler, Johann; Eberhardt, Kurt; Oelmaier, Reinhard; Schneider, Harald; Walther, Martin

    2000-07-01

    Full video format focal plane array (FPA) modules with up to 640 X 512 pixels have been developed for high resolution imaging applications in either mercury cadmium telluride (MCT) mid wave (MWIR) infrared (IR) or platinum silicide (PtSi) and quantum well infrared photodetector (QWIP) technology as low cost alternatives to MCT for high performance IR imaging in the MWIR or long wave spectral band (LWIR). For the QWIP's, a new photovoltaic technology was introduced for improved NETD performance and higher dynamic range. MCT units provide fast frame rates > 100 Hz together with state of the art thermal resolution NETD < 20 mK for short snapshot integration times of typically 2 ms. PtSi and QWIP modules are usually operated in a rolling frame integration mode with frame rates of 30 - 60 Hz and provide thermal resolutions of NETD < 80 mK for PtSi and NETD < 20 mK for QWIP, respectively. Due to the lower quantum efficiency compared to MCT, however, the integration time is typically chosen to be as long 10 - 20 ms. The heat load of the integrated detector cooler assemblies (IDCAs) could be reduced to an amount as low, that a 1 W split liner cooler provides sufficient cooling power to operate the modules -- including the QWIP with 60 K operation temperature -- at ambient temperatures up to 65 degrees Celsius. Miniaturized command/control electronics (CCE) available for all modules provide a standardized digital interface, with 14 bit analogue to digital conversion for state to the art correctability, access to highly dynamic scenes without any loss of information and simplified exchangeability of the units. New modular image processing hardware platforms and software for image visualization and nonuniformity correction including scene based self learning algorithms had to be developed to accomplish for the high data rates of up to 18 M pixels/s with 14-bit deep data, allowing to take into account nonlinear effects to access the full NETD by accurate reduction of residual

  12. Progress in development of H4RG-10 infrared focal plane arrays for WFIRST-AFTA

    NASA Astrophysics Data System (ADS)

    Piquette, Eric C.; McLevige, William; Auyeung, John; Wong, Andre

    2014-07-01

    We describe progress in the development and demonstration of Teledyne's new high resolution large format FPA for astronomy, the H4RG-10 IR. The H4RG-10 is the latest in Teledyne's H×RG line of sensors, in a 4096×4096 format using 10 micron pixels. It is offered as a hybrid sensor using either a silicon p-i-n detector array (HyViSI) or a HgCdTe photodiode array with standard infrared cutoff wavelength of 1.75μm, 2.5μm, or 5.3μm (with custom cutoff wavelengths also available). The HgCdTe sensor arrays are fully substrate removed to provide high quantum efficiency, response to visible wavelengths, and minimize cosmic ray and fringing mitigation. Packaging using either CE6 or SiC bases is available. Teledyne is currently fabricating H4RG-10 SWIR FPAs for NASA's WFIRST space telescope instrument. Initial array performance has been tested and will be presented. Key results include the demonstration of low dark current (array mean dark current of <0.01e-/s/pixel at 100K), low noise (<10 e-/CDS read noise), and high array operability (>99% pixels). The paper discusses the sensor configuration and features, the performance achieved to date including QE, dark current, noise maps and histograms, and the remaining challenges.

  13. Coaxial Dual-wavelength Interferometric Method for a Thermal Infrared Focal-plane-array with Integrated Gratings

    NASA Astrophysics Data System (ADS)

    Shang, Yuanfang; Ye, Xiongying; Cao, Liangcai; Song, Pengfei; Feng, Jinyang

    2016-05-01

    Uncooled infrared (IR) focal-plane-array (FPA) with both large sensing range and high sensitivity is a great challenge due to the limited dynamic range of the detected signals. A coaxial dual-wavelength interferometric system was proposed here to detect thermal-induced displacements of an ultrasensitive FPA based on polyvinyl-chloride(PVC)/gold bimorph cantilevers and carbon nanotube (CNT)-based IR absorbing films. By alternately selecting the two displacement measurements performed by λ1 (=640 nm) and λ2 (=660 nm), the temperature measuring range with greater than 50% maximum sensitivity can be extended by eight-fold in comparison with the traditional single-wavelength mode. Meanwhile, the relative measurement error over the full measuring range is below 0.4%. In addition, it offers a feasible approach for on-line and on-wafer FPA characterization with great convenience and high efficiency.

  14. Visualization of Subsurface Defects in Composites using a Focal Plane Array Infrared Camera

    NASA Technical Reports Server (NTRS)

    Plotnikov, Yuri A.; Winfree, William P.

    1999-01-01

    A technique for enhanced defect visualization in composites via transient thermography is presented in this paper. The effort targets automated defect map construction for multiple defects located in the observed area. Experimental data were collected on composite panels of different thickness with square inclusions and flat bottom holes of different depth and orientation. The time evolution of the thermal response and spatial thermal profiles are analyzed. The pattern generated by carbon fibers and the vignetting effect of the focal plane array camera make defect visualization difficult. An improvement of the defect visibility is made by the pulse phase technique and the spatial background treatment. The relationship between a size of a defect and its reconstructed image is analyzed as well. The image processing technique for noise reduction is discussed.

  15. Methodology for testing infrared focal plane arrays in simulated nuclear radiation environments

    NASA Astrophysics Data System (ADS)

    Divita, E. L.; Mills, R. E.; Koch, T. L.; Gordon, M. J.; Wilcox, R. A.; Williams, R. E.

    1992-07-01

    This paper summarizes test methodology for focal plane array (FPA) testing that can be used for benign (clear) and radiation environments, and describes the use of custom dewars and integrated test equipment in an example environment. The test methodology, consistent with American Society for Testing Materials (ASTM) standards, is presented for the total accumulated gamma dose, transient dose rate, gamma flux, and neutron fluence environments. The merits and limitations of using Cobalt 60 for gamma environment simulations and of using various fast-neutron reactors and neutron sources for neutron simulations are presented. Test result examples are presented to demonstrate test data acquisition and FPA parameter performance under different measurement conditions and environmental simulations.

  16. Time resolved photo-luminescent decay characterization of mercury cadmium telluride focal plane arrays

    DOE PAGES

    Soehnel, Grant

    2015-01-20

    The minority carrier lifetime is a measurable material property that is an indication of infrared detector device performance. To study the utility of measuring the carrier lifetime, an experiment has been constructed that can time resolve the photo-luminescent decay of a detector or wafer sample housed inside a liquid nitrogen cooled Dewar. Motorized stages allow the measurement to be scanned over the sample surface, and spatial resolutions as low as 50µm have been demonstrated. A carrier recombination simulation was developed to analyze the experimental data. Results from measurements performed on 4 mercury cadmium telluride focal plane arrays show strong correlationmore » between spatial maps of the lifetime, dark current, and relative response.« less

  17. Time resolved photo-luminescent decay characterization of mercury cadmium telluride focal plane arrays

    SciTech Connect

    Soehnel, Grant

    2015-01-20

    The minority carrier lifetime is a measurable material property that is an indication of infrared detector device performance. To study the utility of measuring the carrier lifetime, an experiment has been constructed that can time resolve the photo-luminescent decay of a detector or wafer sample housed inside a liquid nitrogen cooled Dewar. Motorized stages allow the measurement to be scanned over the sample surface, and spatial resolutions as low as 50µm have been demonstrated. A carrier recombination simulation was developed to analyze the experimental data. Results from measurements performed on 4 mercury cadmium telluride focal plane arrays show strong correlation between spatial maps of the lifetime, dark current, and relative response.

  18. Using Measured Plane-of-Array Data Directly in Photovoltaic Modeling: Methodology and Validation

    SciTech Connect

    Freeman, Janine; Freestate, David; Hobbs, William; Riley, Cameron

    2016-06-05

    Measured plane-of-array (POA) irradiance may provide a lower-cost alternative to standard irradiance component data for photovoltaic (PV) system performance modeling without loss of accuracy. Previous work has shown that transposition models typically used by PV models to calculate POA irradiance from horizontal data introduce error into the POA irradiance estimates, and that measured POA data can correlate better to measured performance data. However, popular PV modeling tools historically have not directly used input POA data. This paper introduces a new capability in NREL's System Advisor Model (SAM) to directly use POA data in PV modeling, and compares SAM results from both POA irradiance and irradiance components inputs against measured performance data for eight operating PV systems.

  19. Using Measured Plane-of-Array Data Directly in Photovoltaic Modeling: Methodology and Validation: Preprint

    SciTech Connect

    Freeman, Janine; Freestate, David; Riley, Cameron; Hobbs, William

    2016-11-01

    Measured plane-of-array (POA) irradiance may provide a lower-cost alternative to standard irradiance component data for photovoltaic (PV) system performance modeling without loss of accuracy. Previous work has shown that transposition models typically used by PV models to calculate POA irradiance from horizontal data introduce error into the POA irradiance estimates, and that measured POA data can correlate better to measured performance data. However, popular PV modeling tools historically have not directly used input POA data. This paper introduces a new capability in NREL's System Advisor Model (SAM) to directly use POA data in PV modeling, and compares SAM results from both POA irradiance and irradiance components inputs against measured performance data for eight operating PV systems.

  20. Using Measured Plane-of-Array Data Directly in Photovoltaic Modeling: Methodology and Validation

    SciTech Connect

    Freeman, Janine; Freestate, David; Hobbs, William; Riley, Cameron

    2016-11-21

    Measured plane-of-array (POA) irradiance may provide a lower-cost alternative to standard irradiance component data for photovoltaic (PV) system performance modeling without loss of accuracy. Previous work has shown that transposition models typically used by PV models to calculate POA irradiance from horizontal data introduce error into the POA irradiance estimates, and that measured POA data can correlate better to measured performance data. However, popular PV modeling tools historically have not directly used input POA data. This paper introduces a new capability in NREL's System Advisor Model (SAM) to directly use POA data in PV modeling, and compares SAM results from both POA irradiance and irradiance components inputs against measured performance data for eight operating PV systems.

  1. Noise analysis for infrared focal plane arrays CMOS readout integrated circuit

    NASA Astrophysics Data System (ADS)

    Lin, Jiamu; Ding, Ruijun; Chen, Honglei; Shen, Xiao; Liu, Fei

    2008-12-01

    With the development of the infrared focal plane detectors, the internal noises in the infrared focal plane arrays (IRFPAs) CMOS readout integrated circuit gradually became an important factor of the development of the IRFPAs. The internal noises in IRFPAs CMOS readout integrated circuit are researched in this work. Part of the motivation for this work is to analyze the mechanism and influence of the internal noises in readout integrated circuit. And according to the signal transporting process, many kinds of internal noises are analyzed. According to the results of theory analysis, it is shown that 1/f noise, KTC noise and pulse switch noise have greater amplitude in frequency domain. These noises have seriously affected the performance of output signal. Also this work has frequency test on the signals of a readout integrated circuit chip which is using DI readout mode. After analyzing the frequency test results, it is shown that 1/f noises and pulse switch noises are the main components of the internal noises in IRFPAS CMOS readout integrated circuit and they are the noises which give a major impact to the output signal. In accordance with the type of noise, some design methods for noise suppression are put forward. And after the simulation of these methods with EDA software, the results show that noises have been reduced. The results of this work gave the referenced gist for improving the noise suppression design of IRFPAs CMOS readout integrated circuit.

  2. Optical MEMS-based arrays

    NASA Astrophysics Data System (ADS)

    Ruffin, Paul B.

    2003-07-01

    Industrial Micro Electro Mechanical Systems (MEMS) developers are rapidly bringing to demonstration inertial radio frequency, and optical MEMS devices and components. The Army has a requirement for compact, highly reliable, and inexpensive laser beam steering components for missile seekers and unmanned aerial vehicles remote sensing components to provide a fast scanning capability for pointing, acquisition, tracking, and data communication. The coupling of this requirement with recent developments in the micro-optics area, has led scientists and engineers at the Army Aviation and Missile Command (AMCOM) to consider optical MEMS-based phased arrays, which have potential applications in the commercial industry as well as in the military, as a replacement for gimbals. Laser beam steering in commercial applications such as free space communicataion, scanning display, bar-code reading, and gimbaled seekers; require relatively large monolithic micro-mirrors to accomplish the required optical resolution. The Army will benefit from phased arrays composed of relatively small micro-mirrors that can be actuated through large deflection angles with substantially reduced volume times. The AMCOM Aviation and Missile Research, Development, and Engineering Center (AMRDEC) has initiated a research project to develop MEMS-based phased arrays for use in a small volume, inexpensive Laser Detection and Ranging (LADAR) seeker that is particularly attractive because of its ability to provide large field-of-regard and autonomous target acquisition for reconnaissance mission applications. The primary objective of the collaborative project with the Defence Advanced Research Projects Agency (DARPA) is to develop a rugged, MEMS-based phased arrays for incorporation into the 2-D scanner of a LADAR seeker. Design challenges and approach to achieving performance requirements will be discussed.

  3. WSPEC: A Waveguide Filter-Bank Focal Plane Array Spectrometer for Millimeter Wave Astronomy and Cosmology

    NASA Astrophysics Data System (ADS)

    Bryan, Sean; Aguirre, James; Che, George; Doyle, Simon; Flanigan, Daniel; Groppi, Christopher; Johnson, Bradley; Jones, Glenn; Mauskopf, Philip; McCarrick, Heather; Monfardini, Alessandro; Mroczkowski, Tony

    2016-07-01

    Imaging and spectroscopy at (sub-)millimeter wavelengths are key frontiers in astronomy and cosmology. Large area spectral surveys with moderate spectral resolution (R=50-200) will be used to characterize large-scale structure and star formation through intensity mapping surveys in emission lines such as the CO rotational transitions. Such surveys will also be used to study the the Sunyaev Zeldovich (SZ) effect, and will detect the emission lines and continuum spectrum of individual objects. WSPEC is an instrument proposed to target these science goals. It is a channelizing spectrometer realized in rectangular waveguide, fabricated using conventional high-precision metal machining. Each spectrometer is coupled to free space with a machined feed horn, and the devices are tiled into a 2D array to fill the focal plane of the telescope. The detectors will be aluminum lumped-element kinetic inductance detectors (LEKIDs). To target the CO lines and SZ effect, we will have bands at 135-175 and 190-250 GHz, each Nyquist-sampled at R≈ 200 resolution. Here, we discuss the instrument concept and design, and successful initial testing of a WR10 (i.e., 90 GHz) prototype spectrometer. We recently tested a WR5 (180 GHz) prototype to verify that the concept works at higher frequencies, and also designed a resonant backshort structure that may further increase the optical efficiency. We are making progress towards integrating a spectrometer with a LEKID array and deploying a prototype device to a telescope for first light.

  4. Solid-state Image Sensor with Focal-plane Digital Photon-counting Pixel Array

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R.; Pain, Bedabrata

    1997-01-01

    A solid-state focal-plane imaging system comprises an NxN array of high gain. low-noise unit cells. each unit cell being connected to a different one of photovoltaic detector diodes, one for each unit cell, interspersed in the array for ultra low level image detection and a plurality of digital counters coupled to the outputs of the unit cell by a multiplexer(either a separate counter for each unit cell or a row of N of counters time shared with N rows of digital counters). Each unit cell includes two self-biasing cascode amplifiers in cascade for a high charge-to-voltage conversion gain (greater than 1mV/e(-)) and an electronic switch to reset input capacitance to a reference potential in order to be able to discriminate detection of an incident photon by the photoelectron (e(-))generated in the detector diode at the input of the first cascode amplifier in order to count incident photons individually in a digital counter connected to the output of the second cascade amplifier. Reseting the input capacitance and initiating self-biasing of the amplifiers occurs every clock cycle of an integratng period to enable ultralow light level image detection by the may of photovoltaic detector diodes under such ultralow light level conditions that the photon flux will statistically provide only a single photon at a time incident on anyone detector diode during any clock cycle.

  5. In plane optical sensor based on organic electronic devices

    NASA Astrophysics Data System (ADS)

    Koetse, Marc; Rensing, Peter; van Heck, Gert; Sharpe, Ruben; Allard, Bart; Wieringa, Fokko; Kruijt, Peter; Meulendijks, Nicole; Jansen, Henk; Schoo, Herman

    2008-08-01

    Sensors based on organic electronic devices are emerging in a wide range of application areas. Here we present a sensor platform using organic light emitting diodes (OLED) and organic photodiodes (OPD) as active components. By means of lamination and interconnection technology the functional foils with OLED and OPD arrays form an in-plane optical sensor platform (IPOS). This platform can be extended with a wireless data and signal processing unit yielding a sensor node. The focus of our research is to engage the node in a healthcare application, in which a bandage is able to monitor the vital signs of a person, a so-called Smart Bandage. One of the principles that is described here is based on measuring the absorption modulation of blood volume induced by the pulse (photoplethysmography). The information from such a bandage could be used to monitor wound healing by measuring the perfusion in the skin. The OLED and OPD devices are manufactured on separate foils and glass substrates by means of printing and coating technologies. Furthermore, the modular approach allows for the application of the optical sensing unit in a variety of other fields including chemical sensing. This, ultimately enables the measurement of a large variety of physiological parameters using the same bandage and the same basic sensor architecture. Here we discuss the build-up of our device in general terms. Specific characteristics of the used OLEDs and OPDs are shown and finally we demonstrate the functionality by simultaneously recorded photoplethysmograms of our device and a clinical pulseoximeter.

  6. Experimental study on the push-broom infrared imaging system based on line-plane-switching fiber bundle

    NASA Astrophysics Data System (ADS)

    Yan, Xingtao; Li, Fu; Ma, Xiaolong; Lv, Juan; He, Yinghong; Zhao, Yiyi; Bu, Fan

    2016-10-01

    The use of line-plane-switching infrared fiber bundle to achieve wide field of view push-broom infrared imaging has been studied with experiment. In this technology, the linear array end of the imaging fiber bundle is used as a long-linear array infrared detector, and the plane array end of the bundle is coupled by a mature small scale Infrared Focal Plane Array (IRFPA). It can evade the difficulty of getting the long-linear array infrared detector directly, and has a signally significance to the development of internal infrared imaging technology. Based on the introduction of the composition, working principle of this novel infrared optical system, the system principle-demonstrating experiment has been accomplished. The line-plane-switching fiber bundle used in this experiment is 64×9 format plane array and 192×3 format linear array. It is made from chalcogenide glass fibers, possessing core (As40S59.5Se0.5) of 45 μm, cladding (As40S60) of 5 μm, and error of 1% in diameter. Perfect imaging results prove that this novel technology is feasibility and superiority. The analysis of the experiment makes a foundation for the subsequent further verification experiments.

  7. The strain in the array is mainly in the plane (waves below ~1 Hz)

    USGS Publications Warehouse

    Gomberg, J.; Pavlis, G.; Bodin, P.

    1999-01-01

    We compare geodetic and single-station methods of measuring dynamic deformations and characterize their causes in the frequency bands 0.5-1.0 Hz and 4.0-8.0 Hz. The geodetic approach utilizes data from small-aperture seismic arrays, applying techniques from geodesy. It requires relatively few assumptions and a priori information. The single-station method uses ground velocities recorded at isolated or single stations and assumes all the deformation is due to plane-wave propagation. It also requires knowledge of the azimuth and horizontal velocity of waves arriving at the recording station. Data employed come from a small-aperture, dense seismic array deployed in Geyokcha, Turkmenistan, and include seismograms recorded by broadband STS2 and short-period L28 sensors. Poor agreement between geodetic and single-station estimates in the 4.0-8.0 Hz passband indicates that the displacement field may vary nonlinearly with distance over distances of ~50 m. STS2 geodetic estimates provide a robust standard in the 0.5-1.0 Hz passband because they appear to be computationally stable and require fewer assumptions than single-station estimates. The agreement between STS2 geodetic estimates and single-station L28 estimates is surprisingly good for the S-wave and early surface waves, suggesting that the single-station analysis should be useful with commonly available data. These results indicate that, in the 0.5 to 1.0 Hz passband, the primary source of dynamic deformation is plane-wave propagation along great-circle source-receiver paths. For later arriving energy, the effects of scattering become important. The local structure beneath the array exerts a strong control on the geometry of the dynamic deformation, implying that it may be difficult to infer source characteristics of modern or paleoearthquakes from indicators of dynamic deformations. However, strong site control also suggests that the dynamic deformations may be predictable, which would be useful for engineering

  8. Antennas for Terahertz Applications: Focal Plane Arrays and On-chip Non-contact Measurement Probes

    NASA Astrophysics Data System (ADS)

    Trichopoulos, Georgios C.

    The terahertz (THz) band provides unique sensing opportunities that enable several important applications such as biomedical imaging, remote non-destructive inspection of packaged goods, and security screening. THz waves can penetrate most materials and can provide unique spectral information in the 0.1--10 THz band with high resolution. In contrast, other imaging modalities, like infrared (IR), suffer from low penetration depths and are thus not attractive for non-destructive evaluation. However, state-of-the-art THz imaging systems typically employ mechanical raster scans using a single detector to acquire two-dimensional images. Such devices tend to be bulky and complicated due to the mechanical parts, and are thus rather expensive to develop and operate. Thus, large-format (e.g. 100x100 pixels) and all-electronics based THz imaging systems are badly needed to alleviate the space, weight and power (SWAP) factors and enable cost effective utilization of THz waves for sensing and high-data-rate communications. In contrast, photonic sensors are very compact because light can couple directly to the photodiode without residing to radiation coupling topologies. However, in the THz band, due to the longer wavelengths and much lower photon energies, highly efficient antennas with optimized input impedance have to be integrated with THz sensors. Here, we implement novel antenna engineering techniques that are optimized to take advantage of recent technological advances in solid-state THz sensing devices. For example, large-format focal plane arrays (FPAs) have been the Achilles' heel of THz imaging systems. Typically, optical components (lenses, mirrors) are employed in order to improve the optical performance of FPAs, however, antenna sensors suffer from degraded performance when they are far from the optical axis, thus minimizing the number of useful FPA elements. By modifying the radiation pattern of FPA antennas we manage to alleviate the off-axis aberration

  9. Focal plane array detectors with micro-bolometer structure and its application in IR and THz imaging

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Mou, Wenchao; Gou, Jun; Jiang, Yadong

    2016-10-01

    Focal Plane Array (FPA) detector has characteristics of low cost, operating at room temperature, compatibility with the silicon CMOS technology, and high detecting performance, therefore it becomes a hot spot in infrared (IR) or terahertz (THz) detect field recently. However, the tradition structure of micro-bolometer has the conflict of the pixel size and thermal performance. In order to improve the detecting performance of small pixel size bolometer, high fill factor and low thermal conductance design should be considered. In IR detecting, double layers structure is an efficient method to improve the absorption of micro-bolometer and reduce thermal conductance. The three-dimension model of small size micro-bolometer was built in this article. The thermal and mechanical characters of those models were simulated and optimized, and finally the double layer structure micro-bolometer was fabricated with multifarious semiconductor recipes on the readout integrated chip wafer. For THz detecting, to improve the detecting performance, different dimension THz detectors based on micro-bridge structure were designed and fabricated to get optimizing micro-bolometer parameters from the test results of membrane deformation. A nanostructured titanium thin film absorber is integrated in the micro-bridge structure of the VOx micro-bolometer to enhance the absorption of THz radiation. Continuous-wave THz detection and imaging are demonstrated with a 2.52 THz far infrared CO2 laser and fabricated 320×240 vanadium oxide micro-bolometer focal plane array with optimized cell structure. With this detecting system, THz imaging of metal concealed in wiping cloth and envelope is demonstrated.

  10. Long-Wavelength 640 x 484 GaAs/Al(x)Ga(1-x)As Quantum Well Infrared Photodetector Focal Plane Array Camera

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Hong, W.; Sundaram, M.; Carralejo, R.; Shott, C. A.; Maker, P. D.; Miller, R. E.

    1997-01-01

    A 9 micrometers cutoff 640 x 484 hand-held quantum well infrared photodetector (QWIP) camera has been demonstrated. Excellent imagery, with a noise equivalent differential temperature (NE.deltaT) of 43 mK has been achieved. In this paper, we discuss the development of this very sensitive long wavelength infrared (LWIR) camera based on a GaAs/AlGaAs QWIP focal plane array (FPA) and its performance in quantum efficiency, NE.deltaT, uniformity, and operability.

  11. Investigating the molecular mechanisms of in-plane mechanochemistry on cantilever arrays.

    PubMed

    Watari, Moyu; Galbraith, Jane; Lang, Hans-Peter; Sousa, Marilyne; Hegner, Martin; Gerber, Christoph; Horton, Mike A; McKendry, Rachel A

    2007-01-24

    Free-standing cantilevers, which directly translate specific biochemical reactions into micromechanical motion, have recently attracted much attention as label-free biosensors and micro/nano robotic devices. To exploit this mechanochemical sensing technology, it is essential to develop a fundamental understanding of the origins of surface stress. Here we report a detailed study into the molecular basis of stress generation in aqueous environments focusing on the pH titration of model mercaptohexadecanoic acid self-assembled monolayers (SAMs), using in situ reference cantilevers coated with nonionizable hexadecanethiol SAMs. Semiautomated data analysis and a statistical model were developed to quantify cyclic deprotonation/protonation reactions on multiple arrays. In-plane force titrations were found to have the sensitivity to detect ionic hydrogen bond formation between protonated and nonprotonated carboxylic acid groups in the proximity of the surface pK1/2, which generated a mean tensile differential surface stress of +1.2 +/- 0.3 mN/m at pH 6.0, corresponding to 1 pN attractive force between two adjacent MHA molecules. Conversely, the magnitude of compressive differential surface stress was found to increase progressively with pH >/= 7.0, reaching a maximum of -14.5 +/- 0.5 mN/m at pH 9.0, attributed to enhanced electrostatic repulsion between deprotonated carboxylic acid groups. However, striking differences were observed in the micromechanical responses to different ionic strength and ion species present in the aqueous environment, highlighting the critical role of counter- and co-ions on surface stress. Our findings provide fundamental insights into the molecular mechanisms of in-plane mechanochemistry, which may be exploited for biosensing and nanoactuation applications.

  12. Mercury-Cadmium-Telluride Focal Plane Array Performance Under Non-Standard Operating Conditions

    NASA Technical Reports Server (NTRS)

    Richardson, Brandon S.; Eastwood, Michael L.; Bruce, Carl F.; Green, Robert O.; Coles, J. B.

    2011-01-01

    This paper highlights a new technique that allows the Teledyne Scientific & Imaging LLC TCM6604A Mercury-Cadmium-Telluride (MCT) Focal Plane Array (FPA) to operate at room temperature. The Teledyne MCT FPA has been a standard in Imaging Spectroscopy since its creation in the 1980's. This FPA has been used in applications ranging from space instruments such as CRISM, M3 and ARTEMIS to airborne instruments such as MaRS and the Next Generation AVIRIS Instruments1. Precise focal plane alignment is always a challenge for such instruments. The current FPA alignment process results in multiple cold cycles requiring week-long durations, thereby increasing the risk and cost of a project. These alignment cycles are necessary because optimal alignment is approached incrementally and can only be measured with the FPA and Optics at standard operating conditions, requiring a cold instrument. Instruments using this FPA are normally cooled to temperatures below 150K for the MCT FPA to properly function. When the FPA is run at higher temperatures the dark current increases saturating the output. This paper covers the prospect of warm MCT FPA operation from a theoretical and experimental perspective. We discuss the empirical models and physical laws that govern MCT material properties and predict the optimal settings that will result in the best MCT PA performance at 300K. Theoretical results are then calculated for the proposed settings. We finally present the images and data obtained using the actual system with the warm MCT FPA settings. The paper concludes by emphasizing the strong positive correlation between the measured values and the theoretical results.

  13. Examination of cotton fibers and common contaminants using an infrared microscope and a focal-plane array detector

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The chemical imaging of cotton fibers and common contaminants in fibers is presented. Chemical imaging was performed with an infrared microscope equipped with a Focal-Plane Array (FPA) detector. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In a...

  14. High performance type II superlattice focal plane array with 6μm cutoff wavelength

    NASA Astrophysics Data System (ADS)

    Miura, Kouhei; Machinaga, Ken-ichi; Balasekaran, Sundararajan; Kawahara, Takahiko; Migita, Masaki; Inada, Hiroshi; Iguchi, Yasuhiro; Sakai, Michito; Murooka, Junpei; Katayama, Haruyoshi; Kimata, Masafumi

    2016-05-01

    The cutoff wavelength of 6μm is preferable for the full usage of the atmospheric window in the mid-wavelength region. An InAs/GaSb type-II superlattice (T2SL) is the only known infrared material that has a theoretically predicted high performance and also the cutoff wavelength can be easily controlled by changing the thickness of InAs and GaSb. In this study, we used a p-i-n structure with InAs/GaSb T2SL absorber and also barrier layers which was grown on a Tedoped GaSb substrate by molecular beam epitaxy. A mesa-type focal plane array (FPA) with 320×256 pixels and 30μm pixel pitch was fabricated. Mesa structures were formed by inductively coupled plasma reactive ion etching with halogen gas mixture. Prior to the deposition of the SiO2 passivation film, N2 plasma treatment was applied for reducing the dark currents. Measured dark current of the sensor was 4x10-7A/cm2 at temperature of 77K and reverse bias of -20mV. The quantum efficiency was 0.35 and the detectivity was 4.1x1012cm/Hz1/2W. The sensor array was hybridized with the commercially available readout integrated circuit using indium bumps. The noise equivalent differential temperature measured with F/2.3 optics was 31mK at 77K. The operability was over 99%. This FPA is suitable for full usage of the atmospheric window in the mid-wavelength region.

  15. Two-dimensional focal plane detector arrays for LWIR/VLWIR space and airborne sounding missions

    NASA Astrophysics Data System (ADS)

    Hanna, S.; Bauer, A.; Bitterlich, H.; Bruder, M.; Haas, L.-D.; Haiml, M.; Hofmann, K.; Mahlein, K.-M.; Nothaft, H.-P.; Schallenberg, T.; Weber, A.; Wendler, J.; Wollrab, R.; Ziegler, J.

    2010-10-01

    An increasing need for high-precision atmospheric data especially in the long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) spectral ranges has arisen in the past years not only for the analysis of climate change and its effect on the earth's ecosystem, but also for weather forecast and atmospheric monitoring purposes. Spatially and spectrally resolved atmospheric emission data are advantageously gathered through limb or nadir sounding using an imaging Fourier transform (FT) interferometer with a two-dimensional (2D) high-speed focal plane detector array (FPA). In this paper, AIM reports on its latest results on MCT VLWIR FPAs for Fourier transform infrared sounding applications in the 8-15μm spectral range. The performance of a (112x112) pixel photodiode array with a 40μm pixel pitch incorporating extrinsic p-doping for low dark current, a technique for linearity improvement at high photon fluxes, pixel guards, pixel select/de-select, and a (2x2) super-pixel architecture is discussed. The customized read-out integrated circuit (ROIC) supporting integrate while-read (IWR) operation has a buffered direct injection (BDI) input stage and a full well capacity (FWC) of 143 Megaelectrons per super-pixel. It consists of two independently operating halves with two analog video outputs each. The full frame rate is typically 4k frames/sec, making it suitable for use with rapid scan FT infrared spectrometers. At a 55K operating temperature and an ~14.4μm cut-off wavelength, a photo response of 12.1mV/K and a noise equivalent temperature difference of 24.8mK at half well filling are demonstrated for a 286K reference scene. The nonlinearity error is <0.5%.

  16. Performance of 128×128 solar-blind AlGaN ultraviolet focal plane arrays

    NASA Astrophysics Data System (ADS)

    Yuan, Yongang; Zhang, Yan; Liu, Dafu; Chu, Kaihui; Wang, Ling; Li, Xiangyang

    2009-07-01

    Ozone layer intensively absorbs 240nm to 285 nm incidence, when the sunshine goes through stratospheric. There is almost no UVC (200nm-280nm) band radiation existing below stratospheric. Because the radiation target presents a strong contrast between atmosphere and background, solar-blind band radiation is very useful. Wide band gap materials, especially III-V nitride materials, have attracted extensive interest. The direct band gap of GaN and A1N is 3.4 and 6.2 eV, respectively. Since they are miscible with each other and form a complete series of AlGaN alloys, AlGaN has direct band gaps from 3.4 to 6.2 eV, corresponding to cutoff wavelengths from 365 to 200 nm. A back-illuminated hybrid FPA has been developed by Shanghai Institute of Technical Physics Chinese Academy of Science. This paper reports the performance of the 128x128 solar-blind AlGaN UV Focal Plane Arrays (FPAs). More and more a CTIA (capacitivetransimpedance) readout circuit architecture has been proven to be well suited for AlGaN detectors arrays. The bared readout circuit was first tested to find out optimal analog reference voltage. Second, this ROIC was tested in a standard 20-pin shielded dewar at 115 K to 330K. Then, a new test system was set up to obtain test UV FPA noise, swing voltage, data valid time, operating speed, dynamic range, UV response etc. The results show that 128x128 back-illuminated AlGaN PIN detector SNR is as high as 74db at the speed of above30 frame per second. Also, some noise test method is mentioned.

  17. Very large scale heterogeneous integration (VLSHI) and wafer-level vacuum packaging for infrared bolometer focal plane arrays

    NASA Astrophysics Data System (ADS)

    Forsberg, Fredrik; Roxhed, Niclas; Fischer, Andreas C.; Samel, Björn; Ericsson, Per; Hoivik, Nils; Lapadatu, Adriana; Bring, Martin; Kittilsland, Gjermund; Stemme, Göran; Niklaus, Frank

    2013-09-01

    Imaging in the long wavelength infrared (LWIR) range from 8 to 14 μm is an extremely useful tool for non-contact measurement and imaging of temperature in many industrial, automotive and security applications. However, the cost of the infrared (IR) imaging components has to be significantly reduced to make IR imaging a viable technology for many cost-sensitive applications. This paper demonstrates new and improved fabrication and packaging technologies for next-generation IR imaging detectors based on uncooled IR bolometer focal plane arrays. The proposed technologies include very large scale heterogeneous integration for combining high-performance, SiGe quantum-well bolometers with electronic integrated read-out circuits and CMOS compatible wafer-level vacuum packing. The fabrication and characterization of bolometers with a pitch of 25 μm × 25 μm that are arranged on read-out-wafers in arrays with 320 × 240 pixels are presented. The bolometers contain a multi-layer quantum well SiGe thermistor with a temperature coefficient of resistance of -3.0%/K. The proposed CMOS compatible wafer-level vacuum packaging technology uses Cu-Sn solid-liquid interdiffusion (SLID) bonding. The presented technologies are suitable for implementation in cost-efficient fabless business models with the potential to bring about the cost reduction needed to enable low-cost IR imaging products for industrial, security and automotive applications.

  18. 1024 x 1024 pixel mid-wavelength and long-wavelength infrared QWIP focal plane arrays for imaging applications

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Hill, C. J.; Rafol, S. B.; Mumolo, J. M.; Trinh, J. T.; Tidrow, M. Z.; LeVan, P. D.

    2005-01-01

    Mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) 10(24) x 10(24) pixel quantum well infrared photodetector (QWIP) focal planes have been demonstrated with excellent imaging performance. The MWIR QWIP detector array has demonstrated a noise equivalent differential temperature (NEAT) of 17 mK at a 95 K operating temperature with f/2.5 optics at 300 K background and the LWIR detector array has demonstrated a NEAT of 13 mK at a 70 K operating temperature with the same optical and background conditions as the MWIR detector array after the subtraction of system noise. Both MWIR and LWIR focal planes have shown background limited performance (BLIP) at 90 K and 70 K operating temperatures respectively, with similar optical and background conditions. In this paper, we will discuss the performance in terms of quantum efficiency, NE(delta)T, uniformity, operability and modulation transfer functions.

  19. Microbolometer Terahertz Focal Plane Array and Camera with Improved Sensitivity in the Sub-Terahertz Region

    NASA Astrophysics Data System (ADS)

    Oda, Naoki; Kurashina, Seiji; Miyoshi, Masaru; Doi, Kohei; Ishi, Tsutomu; Sudou, Takayuki; Morimoto, Takao; Goto, Hideki; Sasaki, Tokuhito

    2015-10-01

    A pixel in an uncooled microbolometer terahertz (THz) focal plane array (FPA) has a suspended structure above read-out integrated circuit (ROIC) substrate. An optical cavity structure is formed between a thin metallic layer deposited on the suspended structure and a thick metallic layer deposited on the ROIC surface. The geometrical optical cavity length for our previous pixel structure, 3-4 μm, is extended three times, so that responsivity can be increased in the sub-THz region. This modification is carried out by depositing a thick SiN layer on the thick metallic layer. The modified pixel structure is applied to 640 × 480 and 320 × 240 THz-FPAs with 23.5 μm pixel pitch. Minimum detectable powers per pixel (MDP) are evaluated for these FPAs at 4.3, 2.5, 0.6, and 0.5 THz, and the MDP values are found to be improved by a factor of ten at 0.6 and 0.5 THz. The MDP values of the THz-FPAs developed in this work are compared with those of other THz detectors, such as uncooled antenna-coupled CMOS (complimentary metal-oxide semiconductor) THz-FPAs and cooled bolometer arrays. It is found that our THz-FPAs are more sensitive in the sub-THz region than the CMOS THz-FPAs, while they are much less sensitive than the cooled bolometer arrays. These THz-FPAs are incorporated into a 640 × 480 THz camera and 320 × 240 THz camera, and imaging equipment is developed. The equipment consists of a linearly polarized sub-THz source, a collimator lens, a beam homogenizer, two wire grids, a quarter-wave plate, and two THz cameras, and sub-THz images are demonstrated. It should be mentioned for the equipment that imaging of transmission and reflection is realized by moving only the quarter-wave plate, and the reflection image is taken along a direction normal to a sample surface so that the reflection image is hardly deformed.

  20. Carbon nanotube array based sensor

    DOEpatents

    Lee, Christopher L.; Noy, Aleksandr; Swierkowski, Stephan P.; Fisher, Karl A.; Woods, Bruce W.

    2005-09-20

    A sensor system comprising a first electrode with an array of carbon nanotubes and a second electrode. The first electrode with an array of carbon nanotubes and the second electrode are positioned to produce an air gap between the first electrode with an array of carbon nanotubes and the second electrode. A measuring device is provided for sensing changes in electrical capacitance between the first electrode with an array of carbon nanotubes and the second electrode.

  1. Evolution of miniature detectors and focal plane arrays for infrared sensors

    NASA Technical Reports Server (NTRS)

    Watts, Louis A.

    1993-01-01

    Sensors that are sensitive in the infrared spectral region have been under continuous development since the WW2 era. A quest for the military advantage of 'seeing in the dark' has pushed thermal imaging technology toward high spatial and temporal resolution for night vision equipment, fire control, search track, and seeker 'homing' guidance sensing devices. Similarly, scientific applications have pushed spectral resolution for chemical analysis, remote sensing of earth resources, and astronomical exploration applications. As a result of these developments, focal plane arrays (FPA) are now available with sufficient sensitivity for both high spatial and narrow bandwidth spectral resolution imaging over large fields of view. Such devices combined with emerging opto-electronic developments in integrated FPA data processing techniques can yield miniature sensors capable of imaging reflected sunlight in the near IR and emitted thermal energy in the Mid-wave (MWIR) and longwave (LWIR) IR spectral regions. Robotic space sensors equipped with advanced versions of these FPA's will provide high resolution 'pictures' of their surroundings, perform remote analysis of solid, liquid, and gas matter, or selectively look for 'signatures' of specific objects. Evolutionary trends and projections of future low power micro detector FPA developments for day/night operation or use in adverse viewing conditions are presented in the following test.

  2. THE VERY LONG BASELINE ARRAY GALACTIC PLANE SURVEY-VGaPS

    SciTech Connect

    Petrov, L.; Fomalont, E. B.; Gordon, D. E-mail: yyk@asc.rssi.ru E-mail: David.Gordon-1@nasa.gov

    2011-08-15

    This paper presents accurate absolute positions from a 24 GHz Very Long Baseline Array (VLBA) search for compact extragalactic sources in an area where the density of known calibrators with precise coordinates is low. The goals were to identify additional sources suitable for use as phase calibrators for galactic sources, determine their precise positions, and produce radio images. In order to achieve these goals, we developed a new software package, PIMA, for determining group delays from wide-band data with much lower detection limits. With the use of PIMA, we have detected 327 sources out of 487 targets observed in three 24 hr VLBA experiments. Among the 327 detected objects, 176 are within 10 deg. of the Galactic plane. This VGaPS catalog of source positions, plots of correlated flux density versus projected baseline length, contour plots, as well as weighted CLEAN images, and calibrated visibility data are available on the Web in FITS format. Approximately one-half of objects from the 24 GHz catalog were observed at dual-band 8.6 GHz and 2.3 GHz experiments. Position differences at 24 GHz versus 8.6/2.3 GHz for all but two objects on average are strictly within reported uncertainties. We found that for two objects with complex structures, positions at different frequencies correspond to different components of a source.

  3. Evolution of miniature detectors and focal plane arrays for infrared sensors

    NASA Astrophysics Data System (ADS)

    Watts, Louis A.

    1993-06-01

    Sensors that are sensitive in the infrared spectral region have been under continuous development since the WW2 era. A quest for the military advantage of 'seeing in the dark' has pushed thermal imaging technology toward high spatial and temporal resolution for night vision equipment, fire control, search track, and seeker 'homing' guidance sensing devices. Similarly, scientific applications have pushed spectral resolution for chemical analysis, remote sensing of earth resources, and astronomical exploration applications. As a result of these developments, focal plane arrays (FPA) are now available with sufficient sensitivity for both high spatial and narrow bandwidth spectral resolution imaging over large fields of view. Such devices combined with emerging opto-electronic developments in integrated FPA data processing techniques can yield miniature sensors capable of imaging reflected sunlight in the near IR and emitted thermal energy in the Mid-wave (MWIR) and longwave (LWIR) IR spectral regions. Robotic space sensors equipped with advanced versions of these FPA's will provide high resolution 'pictures' of their surroundings, perform remote analysis of solid, liquid, and gas matter, or selectively look for 'signatures' of specific objects. Evolutionary trends and projections of future low power micro detector FPA developments for day/night operation or use in adverse viewing conditions are presented in the following test.

  4. The nonuniformity measurement and image processing algorithm evaluation for uncooled microbolometer infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Qian, Yunsheng; Chang, BenKang; Zhang, Junju; Xing, Suxia; Yu, Shuizhong; Yang, Ji

    2005-01-01

    The great achievements were achieved in the manufacturing of uncooled microbolometer infrared focal plane arrays(UFPA). By this technique infrared system can be made in the formation of small volume, light weight, low price and being portable. It promotes greatly the utilization of infrared system in many fields. The main disadvantage of UFPA is non-uniformity. Despite non-uniformity of UFPA has been greatly improved, non-uniformity still restricts the performance of uncooled infrared system. In this paper, the attention is focused on the technology and methods measuring the non-uniformity of UFPA. The system that can measure the non-uniformity of UFPA and evaluate the image processing algorithms is developed. The measurement system consists of blackbody, infrared optics, control units, processing circuit, high-speed A/D converter, computer and software. To obtain the output signals of UFPA, the drive circuit and control circuit of thermoelectric stabilizer(TEC) of UFPA are developed. In the drive circuit, the CPLD device is employed to insure a small size circuit. In the TEC circuit, a kind of highly integrated and cost-effective, high-effiency, switch-mode driver is used to insure temperature stability of 0.01°C. The system is used to measure non-uniformity of microbolometer detectors which are produced by ULIS company. It can also present the evaluation of algorithm. The results are given and analyzed.

  5. Effects of Non-Elevation-Focalized Linear Array Transducer on Ultrasound Plane-Wave Imaging

    PubMed Central

    Wang, Congzhi; Xiao, Yang; Xia, Jingjing; Qiu, Weibao; Zheng, Hairong

    2016-01-01

    Plane-wave ultrasound imaging (PWUS) has become an important method of ultrasound imaging in recent years as its frame rate has exceeded 10,000 frames per second, allowing ultrasound to be used for two-dimensional shear wave detection and functional brain imaging. However, compared to the traditional focusing and scanning method, PWUS images always suffer from a degradation of lateral resolution and contrast. To improve the image quality of PWUS, many different beamforming algorithms have been proposed and verified. Yet the influence of transducer structure is rarely studied. For this paper, the influence of using an acoustic lens for PWUS was evaluated. Two linear array transducers were fabricated. One was not self-focalized in the elevation direction (non-elevation-focalized transducer, NEFT); the other one was a traditional elevation-focalized transducer (EFT). An initial simulation was conducted to show the influence of elevation focusing. Then the images obtained with NEFT on a standard ultrasound imaging phantom were compared with those obtained with EFT. It was demonstrated that, in a relatively deep region, the contrast of an NEFT image is better than that of an EFT image. These results indicate that a more sophisticated design of ultrasound transducer would further improve the image quality of PWUS. PMID:27845751

  6. Performance of Hg1‑xCdxTe infrared focal plane array at elevated temperature

    NASA Astrophysics Data System (ADS)

    Singh, Anand; Pal, Ravinder

    2017-04-01

    The simulated optical and electrical performance of the infrared HgCdTe focal plane array (FPA) for elevated operation temperature is reported. The depleted absorber layer is explored for equilibrium mode of operation up to 160 K. A resonant cavity is created to improve photon-matter interaction and hence, reduces the required absorption volume. The volume of the active region of HgCdTe detector is reduced by 70% in this manner. Dark current density is decreased without compromising the quantum efficiency. The effect of the reduced band filling effect leading to higher absorption coefficient and more efficient utilization of incident flux is employed. High quantum efficiency is achieved in a thin compositionally graded n+/ν/π/p HgCdTe photo-diode. This architecture helps to minimize the requirement of charge handling capacity in the CMOS read-out integrated circuit (ROIC) as the operation temperature is increased. Quantum efficiency ∼30% or above is shown to be sufficient for Noise Equivalent Temperature Difference (NETD) less than 20 mK with the reported design.

  7. Large-sized out-of-plane stretchable electrodes based on poly-dimethylsiloxane substrate

    SciTech Connect

    Chou, Namsun; Lee, Jongho; Kim, Sohee

    2014-12-15

    This paper describes a reliable fabrication method of stretchable electrodes based on poly-dimethylsiloxane (PDMS) substrate. The electrode traces and pads were formed in out-of-plane structures to improve the flexibility and stretchability of the electrode array. The suspended traces and pads were attached to the PDMS substrate via parylene posts that were located nearby the traces and under the pads. As only conventional micro-electro-mechanical systems techniques were used, the out-of-plane electrode arrays were clearly fabricated at wafer level with high yield and reliability. Also, bi-layer out-of-plane electrodes were formed through additional fabrication steps in addition to mono-layer out-of-plane electrodes. The mechanical characteristics such as the stretchability, flexibility, and foldability of the fabricated electrodes were evaluated, resulting in stable electrical connection of the metal traces with up to 32.4% strain and up to 360° twist angle over 25 mm. The durability in stretched condition was validated by cyclic stretch test with 10% and 20% strain, resulting in electrical disconnection at 8600 cycles when subjected to 20% strain. From these results, it is concluded that the proposed fabrication method produced highly reliable, out-of-plane and stretchable electrodes, which would be used in various flexible and stretchable electronics applications.

  8. Automated optical testing of LWIR objective lenses using focal plane array sensors

    NASA Astrophysics Data System (ADS)

    Winters, Daniel; Erichsen, Patrik; Domagalski, Christian; Peter, Frank; Heinisch, Josef; Dumitrescu, Eugen

    2012-10-01

    The image quality of today's state-of-the-art IR objective lenses is constantly improving while at the same time the market for thermography and vision grows strongly. Because of increasing demands on the quality of IR optics and increasing production volumes, the standards for image quality testing increase and tests need to be performed in shorter time. Most high-precision MTF testing equipment for the IR spectral bands in use today relies on the scanning slit method that scans a 1D detector over a pattern in the image generated by the lens under test, followed by image analysis to extract performance parameters. The disadvantages of this approach are that it is relatively slow, it requires highly trained operators for aligning the sample and the number of parameters that can be extracted is limited. In this paper we present lessons learned from the R and D process on using focal plane array (FPA) sensors for testing of long-wave IR (LWIR, 8-12 m) optics. Factors that need to be taken into account when switching from scanning slit to FPAs are e.g.: the thermal background from the environment, the low scene contrast in the LWIR, the need for advanced image processing algorithms to pre-process camera images for analysis and camera artifacts. Finally, we discuss 2 measurement systems for LWIR lens characterization that we recently developed with different target applications: 1) A fully automated system suitable for production testing and metrology that uses uncooled microbolometer cameras to automatically measure MTF (on-axis and at several o-axis positions) and parameters like EFL, FFL, autofocus curves, image plane tilt, etc. for LWIR objectives with an EFL between 1 and 12mm. The measurement cycle time for one sample is typically between 6 and 8s. 2) A high-precision research-grade system using again an uncooled LWIR camera as detector, that is very simple to align and operate. A wide range of lens parameters (MTF, EFL, astigmatism, distortion, etc.) can be

  9. Theory and design of compact hybrid microphone arrays on two-dimensional planes for three-dimensional soundfield analysis.

    PubMed

    Chen, Hanchi; Abhayapala, Thushara D; Zhang, Wen

    2015-11-01

    Soundfield analysis based on spherical harmonic decomposition has been widely used in various applications; however, a drawback is the three-dimensional geometry of the microphone arrays. In this paper, a method to design two-dimensional planar microphone arrays that are capable of capturing three-dimensional (3D) spatial soundfields is proposed. Through the utilization of both omni-directional and first order microphones, the proposed microphone array is capable of measuring soundfield components that are undetectable to conventional planar omni-directional microphone arrays, thus providing the same functionality as 3D arrays designed for the same purpose. Simulations show that the accuracy of the planar microphone array is comparable to traditional spherical microphone arrays. Due to its compact shape, the proposed microphone array greatly increases the feasibility of 3D soundfield analysis techniques in real-world applications.

  10. Hemispherical curved monolithic cooled and uncooled infrared focal plane arrays for compact cameras

    NASA Astrophysics Data System (ADS)

    Tekaya, Kevin; Fendler, Manuel; Dumas, Delphine; Inal, Karim; Massoni, Elisabeth; Gaeremynck, Yann; Druart, Guillaume; Henry, David

    2014-06-01

    InfraRed (IR) sensor systems like night vision goggles, missile approach warning systems and telescopes have an increasing interest in decreasing their size and weight. At the same time optical aberrations are always more difficult to optimize with larger Focal Plane Arrays (FPAs) and larger field of view. Both challenges can now take advantage of a new optical parameter thanks to flexible microelectronics technologies: the FPA spherical curvature. This bio-inspired approach can correct optical aberrations and reduce the number of lenses in camera conception. Firstly, a new process to curve thin monolithic devices has been applied to uncooled microbolometers FPAs. A functional 256×320 25μm pitch (roughly 1cm2) uncooled FPA has been thinned and curved. Its electrical response showed no degradation after our process (variation of less than 2.3% on the response). Then a two lenses camera with a curved FPA is designed and characterized in comparison with a two lenses camera with a flat FPA. Their Modulation Transfer Functions (MTFs) show clearly an improvement in terms of beams dispersion. Secondly, a new process to fabricate monolithic cooled flip-chip MCT-IRCMOS FPAs was developed leading to the first spherical cooled IR FPA: with a radius of 550 mm. Other radii are achieved. A standard opto-electrical characterization at 80 K of the imager shows no additional short circuit and no mean response alteration compared to a standard IRCMOS shown in reference. Noise is also studied with a black body between 20 and 30°C.

  11. A K-band spectroscopic focal plane array for the Robert C. Byrd Green Bank radio telescope

    NASA Astrophysics Data System (ADS)

    Morgan, Matthew; White, Steve; Lockman, Jay; Bryerton, Eric; Saini, Kamaljeet; Norrod, Rorger; Simon, Bob; Srikanth, Sivasankaran; Anderson, Gary; Pisano, Daniel

    2008-08-01

    This paper presents the design and current status of a K-Band Focal Plane Array (KFPA) for the Green Bank Telescope (GBT). The prototype array will go online with 7 independent dual-polarized beams, but the design target is a fully-populated instrument with approximately 60 beams on the sky. This project presents a number of technical challenges, including the architecture of a cryostat capable of supporting 60 independent receivers, design of high- performance components that fit behind the aperture of a compact feedhorn, and stable transmission of the large-volume of receiver data from the telescope to a remote building for back-end processing.

  12. Focal plane arrays for submillimeter waves using two-dimensional electron gas elements: A grant under the Innovative Research Program

    NASA Technical Reports Server (NTRS)

    Yngvesson, K. Sigfrid; Lau, Kei-May

    1992-01-01

    This final report describes a three-year research effort, aimed at developing new types of THz low noise receivers, based on bulk effect ('hot electron') nonlinearities in the Two-Dimensional Electron Gas (2DEG) Medium, and the inclusion of such receivers in focal plane arrays. 2DEG hot electron mixers have been demonstrated at 35 and 94 GHz with three orders of magnitude wider bandwidth than previous hot electron mixers, which use bulk InSb. The 2DEG mixers employ a new mode of operation, which was invented during this program. Only moderate cooling is required for this mode, to temperatures in the range 20-77 K. Based on the results of this research, it is now possible to design a hot electron mixer focal plane array for the THz range, which is anticipated to have a DSB receiver noise temperature of 500-1000K. In our work on this grant, we have found similar results the the Cronin group (resident at the University of Bath, UK). Neither group has so far demonstrated heterodyne detection in this mode, however. We discovered and explored some new effects in the magnetic field mode, and these are described in the report. In particular, detection of 94 GHz and 238 GHz, respectively, by a new effect, 'Shubnikov de Haas detection', was found to be considerably stronger in our materials than the cyclotron resonance detection. All experiments utilized devices with an active 2DEG region of size of the order of 10-40 micrometers long, and 20-200 micrometers wide, formed at the heterojunction between AlGaAs and GaAs. All device fabrication was performed in-house. The materials for the devices were also grown in-house, utilizing OMCVD (Organo Metallic Chemical Vapor Deposition). In the course of this grant, we developed new techniques for growing AlGaAs/GaAs with mobilities equalling the highest values published by any laboratory. We believe that the field of hot electron mixers and detectors will grow substantially in importance in the next few years, partly as a result of

  13. Enchanced interference cancellation and telemetry reception in multipath environments with a single paraboic dish antenna using a focal plane array

    NASA Technical Reports Server (NTRS)

    Mukai, Ryan (Inventor); Vilnrotter, Victor A. (Inventor)

    2011-01-01

    An Advanced Focal Plane Array ("AFPA") for parabolic dish antennas that exploits spatial diversity to achieve better channel equalization performance in the presence of multipath (better than temporal equalization alone), and which is capable of receiving from two or more sources within a field-of-view in the presence of multipath. The AFPA uses a focal plane array of receiving elements plus a spatio-temporal filter that keeps information on the adaptive FIR filter weights, relative amplitudes and phases of the incoming signals, and which employs an Interference Cancelling Constant Modulus Algorithm (IC-CMA) that resolves multiple telemetry streams simultaneously from the respective aero-nautical platforms. This data is sent to an angle estimator to calculate the target's angular position, and then on to Kalman filters FOR smoothing and time series prediction. The resulting velocity and acceleration estimates from the time series data are sent to an antenna control unit (ACU) to be used for pointing control.

  14. A per-pixel Log2ADC for high dynamic range, 1000FPS digital focal plane arrays (DFPA)

    NASA Astrophysics Data System (ADS)

    Petilli, Eugene

    2016-09-01

    Intrinsix has developed a Digital Focal Plane Array (DFPA) architecture based on a novel piecewise linear Log2 ADC (LADC) with "lossless" analog compression which enables ultra-high dynamic range ROICs that use less power than other extended dynamic range technologies. The LADC provides dynamic range of 126dB with a constant 75dB SNR over the entire frame. The companding 13bit mantissa, 3bit radix per pixel LADCs compress the 21bit signals into efficient 16 bit data words. The Read Out IC (ROIC) is compatible with most IR and LWIR detectors including two-color SLS (photodiode) and uBolometers. The DFPA architecture leverages two (staggered frame prime and redundant) MIPI CSI-3 interfaces to achieve full HD DFPA at 1000 frames/sec; an equivalent uncompressed data rate of 100Gb/sec. The LADC uses direct injection into a moderate sized integrating capacitor and several comparators create a stream of multi-bit data values. These values are accumulated in an SRAM based log2ALU and the radix of the ALU is combined with the data to generate a feedback current to the integrating capacitor, closing the delta loop. The integration time and a single pole low pass IIR filter are configurable using control signals to the log2ALU. The feedback current is at least partially generated using PWM for high linearity.

  15. W-band planar antennas for next generation sub-millimeter focal plane arrays

    NASA Astrophysics Data System (ADS)

    Deo, Prafulla; Robinson, Matthew; Maffei, Bruno; Pisano, Giampaolo; Trappe, Neil

    2016-07-01

    Current and future generations of astronomical instruments in the millimetre (mm) and sub-mm range are in need of increased sensitivity through the use of ever larger focal planes with 1000s of pixels. Mass, dimensions and manufacture requirements, mainly for new space missions, is driving the technology to go from feedhorn, and generally waveguide based cold optics to planar coupled detectors, while maintaining RF performance. The present results of a current ESA TRP are presented with respect to the work on planar antennae that will be coupled to cold bolometric detectors through the use of planar mesh lenses. Two planar antennae operating at W-band are developed, namely, a broadband sinuous antenna and a variation on the classical dual-slot antenna to realise multi-band functionality.

  16. Uncooled SWIR InGaAs/GaAsSb type-II quantum well focal plane array

    NASA Astrophysics Data System (ADS)

    Inada, H.; Miura, K.; Mori, H.; Nagai, Y.; Iguchi, Y.; Kawamura, Y.

    2010-04-01

    Low dark current photodiodes (PDs) in the short wavelength infrared (SWIR) upto 2.5μm region, are expected for many applications. HgCdTe (MCT) is predominantly used for infrared imaging applications. However, because of high dark current, MCT device requires a refrigerator such as stirling cooler, which increases power consumption, size and cost of the sensing system. Recently, InGaAs/GaAsSb type II quantum well structures were considered as attractive material system for realizing low dark current PDs owing to lattice-matching to InP substrate. Planar type PIN-PDs were successfully fabricated. The absorption layer with 250 pair-InGaAs(5nm)/GaAsSb(5nm) quantum well structures was grown on S-doped (100) InP substrates by solid source molecular beam epitaxy method. InP and InGaAs were used for cap layer and buffer layer, respectively. The p-n junctions were formed in the absorption layer by the selective diffusion of zinc. Diameter of light-receiving region was 140μm. Low dark current was obtained by improving GaAsSb crystalline quality. Dark current density was 0.92mA/cm2 which was smaller than that of a conventional MCT. Based on the same process as the discrete device, a 320x256 planar type focal plane array was also fabricated. Each PD has 15μm diameter and 30μm pitch and it was bonded to read-out IC by using indium bump flip chip process. Finally, we have successfully demonstrated the 320 x256 SWIR image at room temperature. This result means that planer type PD array with the type II InGaAs/GaAsSb quantum well structure is a promising candidate for uncooled applications.

  17. Effects of crystallographic plane and co-deposited element on the growth of ion-sputter induced Si nano-cone arrays: a mechanism study

    NASA Astrophysics Data System (ADS)

    Song, Sheng-Chi; Qiu, Ying; Hao, Hong-Chen; Lu, Ming

    2015-06-01

    Self-organized Si nano-cone arrays induced by Ar+ ion sputtering on different Si crystallographic planes with different co-deposited alien atoms are investigated. The Si planes are (100), (110), and (111) ones, and the alien elements are Ta, Mo, Fe, and C, respectively. It is found that the growth of Si nano-cone arrays is insensitive to the initial crystallographic plane, but depends strongly on the co-deposited element. For the same Ar+ ion dose and sample temperature, the smaller the activation energy between the co-deposited element and Si is, the larger the average cone height and base diameter are. It is found that the preferential sputtering does not play an important role in the nano-cone formation. A model based on the concepts of classical surface-curvature-dependent sputtering yield and the formation of stationary silicide is proposed, which explains the observed results. The results of microstructural and compositional analysis support the proposed model.

  18. The development of InGaAs short wavelength infrared focal plane arrays with high performance

    NASA Astrophysics Data System (ADS)

    Li, Xue; Gong, Haimei; Fang, Jiaxiong; shao, Xiumei; Tang, Hengjing; Huang, Songlei; Li, Tao; Huang, Zhangcheng

    2017-01-01

    High performance, various specifications InGaAs focal plane arrays(FPAs) were studied in Shanghai Institute of Technical Physics (SITP). On the one hand, the typical linear 256 × 1, 512 × 1 and 1024 × 1 FPAs were obtained for response wavelengths from 0.9 μm to 1.7 μm. The typical 320 × 256 FPAs and special sizes 512 × 128, 512 × 256 FPAs for the near infrared multi-spectral imaging were studied. The performance of InGaAs FPAs from 0.9 μm to 1.7 μm has improved enormously. The average peak detectivity, the response non-uniformity and non-operable pixel of the FPAs are superior to 3 × 1012 cm Hz1/2/W, 5% and 1% at the room temperature. On the other hand, the development of the extended InGaAs FPAs was also focused in SITP. The dark current of InGaAs detectors with the response wavelength from 1.0 μm to 2.5 μm decreases to about 10 nA/cm2 at 200 K. The dark current mechanisms for extended InGaAs detectors were studied by P/A photodiodes. The special sizes 512 × 256 FPAs has been fabricated since 2011. The average peak detectivity, the response non-uniformity and non-operable pixel of the FPAs are superior to 5 × 1011 cm Hz1/2/W, 8% and 2% at 200 K. In order to verify the performance of FPAs, the short wavelength infrared lens was used to form optical imaging system. The buildings, water, trees are sharply imaged by 320 × 256 FPAs with 0.9-1.7 μm wavelength and 512 × 1 FPAs with 0.9-2.5 μm wavelength at about hundreds of meters distance as target at daylight.

  19. Design, fabrication and testing of 17um pitch 640x480 uncooled infrared focal plane array detector

    NASA Astrophysics Data System (ADS)

    Jiang, Lijun; Liu, Haitao; Chi, Jiguang; Qian, Liangshan; Pan, Feng; Liu, Xiang

    2015-10-01

    Uncooled infrared focal plane array (UIRFPA) detectors are widely used in industrial thermography cameras, night vision goggles, thermal weapon sights, as well as automotive night vision systems. To meet the market requirement for smaller pixel pitch and higher resolution, we have developed a 17um pitch 640x480 UIRFPA detector. The detector is based on amorphous silicon (a-Si) microbolometer technology, the readout integrated circuit (ROIC) is designed and manufactured with 0.35um standard CMOS technology on 8 inch wafer, the microbolometer is fabricated monolithically on the ROIC using an unique surface micromachining process developed inside the company, the fabricated detector is vacuum packaged with hermetic metal package and tested. In this paper we present the design, fabrication and testing of the 17um 640x480 detector. The design trade-off of the detector ROIC and pixel micro-bridge structure will be discussed, by comparison the calculation and simulation to the testing results. The novel surface micromachining process using silicon sacrificial layer will be presented, which is more compatible with the CMOS process than the traditional process with polyimide sacrificial layer, and resulted in good processing stability and high fabrication yield. The performance of the detector is tested, with temperature equivalent temperature difference (NETD) less than 60mK at F/1 aperture, operability better than 99.5%. The results demonstrate that the detector can meet the requirements of most thermography and night vision applications.

  20. Effect of the out-of-plane stress on the properties of epitaxial SrTiO{sub 3} films with nano-pillar array on Si-substrate

    SciTech Connect

    Bai, Gang; Xie, Qiyun; Liu, Zhiguo; Wu, Dongmei

    2015-08-21

    A nonlinear thermodynamic formalism has been proposed to calculate the physical properties of the epitaxial SrTiO{sub 3} films containing vertical nano-pillar array on Si-substrate. The out-of-plane stress induced by the mismatch between film and nano-pillars provides an effective way to tune the physical properties of ferroelectric SrTiO{sub 3} films. Tensile out-of-plane stress raises the phase transition temperature and increases the out-of-plane polarization, but decreases the out-of-plane dielectric constant below Curie temperature, pyroelectric coefficient, and piezoelectric coefficient. These results showed that by properly controlling the out-of-plane stress, the out-of-plane stress induced paraelectric-ferroelectric phase transformation will appear near room temperature. Excellent dielectric, pyroelectric, piezoelectric properties of these SrTiO{sub 3} films similar to PZT and other lead-based ferroelectrics can be expected.

  1. Monolithic Micromachined Quartz Resonator based Infrared Focal Plane Arrays

    DTIC Science & Technology

    2012-05-05

    Ping Kao, David L. Allara, Srinivas Tadigadapa. Study of Adsorption of Globular Proteins on Hydrophobic Surfaces, IEEE Sensors Journal, (11 2011): 0...David Allara, Srinivas Tadigadapa. Investigation of spontaneously adsorbed globular protein films using high-frequency bulk acoustic wave resonators...Conference. 2010/09/05 00:00:00, . : , 2012/05/08 20:19:32 9 Ping Kao, Matthew P. Chang, David Allara, Srinivas Tadigadapa. Systematic studies on globular

  2. 15-micro-m 128 x 128 GaAs/Al(x)Ga(1-x) As Quantum Well Infrared Photodetector Focal Plane Array Camera

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Park, Jin S.; Sarusi, Gabby; Lin, True-Lon; Liu, John K.; Maker, Paul D.; Muller, Richard E.; Shott, Craig A.; Hoelter, Ted

    1997-01-01

    In this paper, we discuss the development of very sensitive, very long wavelength infrared GaAs/Al(x)Ga(1-x)As quantum well infrared photodetectors (QWIP's) based on bound-to-quasi-bound intersubband transition, fabrication of random reflectors for efficient light coupling, and the demonstration of a 15 micro-m cutoff 128 x 128 focal plane array imaging camera. Excellent imagery, with a noise equivalent differential temperature (N E(delta T)) of 30 mK has been achieved.

  3. Array-based photoacoustic spectroscopy

    DOEpatents

    Autrey, S. Thomas; Posakony, Gerald J.; Chen, Yu

    2005-03-22

    Methods and apparatus for simultaneous or sequential, rapid analysis of multiple samples by photoacoustic spectroscopy are disclosed. A photoacoustic spectroscopy sample array including a body having at least three recesses or affinity masses connected thereto is used in conjunction with a photoacoustic spectroscopy system. At least one acoustic detector is positioned near the recesses or affinity masses for detection of acoustic waves emitted from species of interest within the recesses or affinity masses.

  4. Infrared hyperspectral imaging using a broadly tunable external cavity quantum cascade laser and microbolometer focal plane array

    SciTech Connect

    Phillips, Mark C.; Ho, Nicolas

    2008-02-04

    A versatile mid-infrared hyperspectral imaging system is demonstrated by combining a broadly tunable external cavity quantum cascade laser and a microbolometer focal plane array. The tunable mid-infrared laser provided high brightness illumination over a tuning range from 985 cm-1 to 1075 cm-1 (9.30-10.15 μm). Hypercubes containing images at 300 wavelengths separated by 0.3 cm 1 were obtained in 12 s. High spectral resolution chemical imaging of methanol vapor was demonstrated for both static and dynamic systems. The system was also used to image and characterize multiple component liquid and solid samples.

  5. The Constellation-X Focal Plane Microcalorimeter Array: An NTD-Germanium Solution

    NASA Technical Reports Server (NTRS)

    Beeman, J.; Silver, E.; Bandler, S.; Schnopper, H.; Murray, S.; Madden, N.; Landis, D.; Haller, E. E.; Barbera, M.

    2001-01-01

    The hallmarks of Neutron Transmutation Doped (NTD) germanium cryogenic thermistors include high reliability, reproducibility, and long term stability of bulk carrier transport properties. Using micro-machined NTD Ge thermistors with integral 'flying' leads, we can now fabricate two-dimensional arrays that are built up from a series of stacked linear arrays. We believe that this modular approach of building, assembling, and perhaps replacing individual modules of detectors is essential to the successful fabrication and testing of large multi-element instruments. Details of construction are presented.

  6. Real-time, continuous-wave terahertz imaging using a microbolometer focal-plane array

    NASA Technical Reports Server (NTRS)

    Hu, Qing (Inventor); Min Lee, Alan W. (Inventor)

    2010-01-01

    The present invention generally provides a terahertz (THz) imaging system that includes a source for generating radiation (e.g., a quantum cascade laser) having one or more frequencies in a range of about 0.1 THz to about 10 THz, and a two-dimensional detector array comprising a plurality of radiation detecting elements that are capable of detecting radiation in that frequency range. An optical system directs radiation from the source to an object to be imaged. The detector array detects at least a portion of the radiation transmitted through the object (or reflected by the object) so as to form a THz image of that object.

  7. Microfabrication and Device Parameter Testing of the Focal Plane Arrays for the Spider and BICEP2/Keck CMB Polarimeters

    NASA Astrophysics Data System (ADS)

    Bonetti, J. A.; Turner, A. D.; Kenyon, M.; Orlando, A.; Brevik, J. A.; Trangsrud, A.; Sudiwala, R.; Leduc, H. G.; Nguyen, H. T.; Day, P. K.; Bock, J. J.; Golwala, S. R.; Sayers, J.; Kovac, J. M.; Lange, A. E.; Jones, W. C.; Kuo, C. L.

    2009-12-01

    Spider and BICEP2/Keck are projects to study the polarization of the cosmic microwave background (CMB). The focal planes for both require large format arrays of superconducting transition edge sensors (TES's). A major challenge for these projects is fabricating arrays with high uniformity in device parameters. A microfabrication process is described that meets this challenge. The results from device testing are discussed. Each focal plane is composed of 4 square wafers (tiles), and each wafer contains 128 membrane-isolated, polarization-sensitive, antenna-coupled TES's. After processing, selected wafers are pre-screened in a quick-turn-around, cryogen-free, 3He fridge. The pre-screening is performed with a commercial resistance bridge and measures transition temperatures (Tc) and normal state resistances (Rn). After pre-screening, 4 tiles at a time are fully characterized in a testbed employing a SQUID readout and SQUID mulitplexing. The tests demonstrate the values of Tc, Rn, thermal conductance, g, and the standard deviations of each, across a wafer and from wafer to wafer, are within design specifications.

  8. Full-wave model and numerical study of electromagnetic plane wave scattering by multilayered, fiber-based periodic composites

    NASA Astrophysics Data System (ADS)

    Li, C. Y.; Lesselier, D.; Zhong, Y.

    2015-07-01

    The present work aims at building up a full-wave computational model of electromagnetic nondestructive testing of composite materials produced by stacking up dielectric slabs one over the other. In each such dielectric slab, a periodic array of infinite cylindrical fibers is embedded. Electromagnetic scattering of such a multilayered, fiber-based periodic composite is investigated here for an obliquely incident plane wave, the plane of incidence of which differs from the plane orthogonal to the fibers' axes. Full-wave field representations are given first by multipole and plane wave expansions. Mode matching at boundaries between layers then yields the propagating matrices, which are applied to connect reflection and transmission coefficients of the longitudinal field components. Power reflection and transmission coefficients are obtained from time-averaged Poynting vectors. Numerical experiments with comparisons with known results illustrate the accuracy of the model proposed.

  9. An abuttable CCD imager for visible and X-ray focal plane arrays

    NASA Technical Reports Server (NTRS)

    Burke, Barry E.; Mountain, Robert W.; Harrison, David C.; Bautz, Marshall W.; Doty, John P.

    1991-01-01

    A frame-transfer silicon charge-coupled-device (CCD) imager has been developed that can be closely abutted to other imagers on three sides of the imaging array. It is intended for use in multichip arrays. The device has 420 x 420 pixels in the imaging and frame-store regions and is constructed using a three-phase triple-polysilicon process. Particular emphasis has been placed on achieving low-noise charge detection for low-light-level imaging in the visible and maximum energy resolution for X-ray spectroscopic applications. Noise levels of 6 electrons at 1-MHz and less than 3 electrons at 100-kHz data rates have been achieved. Imagers have been fabricated on 1000-Ohm-cm material to maximize quantum efficiency and minimize split events in the soft X-ray regime.

  10. Digital readout integrated circuit (DROIC) implementing time delay and integration (TDI) for scanning type infrared focal plane arrays (IRFPAs)

    NASA Astrophysics Data System (ADS)

    Ceylan, Omer; Shafique, Atia; Burak, Abdurrahman; Caliskan, Can; Yazici, Melik; Abbasi, Shahbaz; Galioglu, Arman; Kayahan, Huseyin; Gurbuz, Yasar

    2016-11-01

    This paper presents a digital readout integrated circuit (DROIC) implementing time delay and integration (TDI) for scanning type infrared focal plane arrays (IRFPAs) with a charge handling capacity of 44.8 Me- while achieving quantization noise of 198 e- and power consumption of 14.35 mW. Conventional pulse frequency modulation (PFM) method is supported by a single slope ramp ADC technique to have a very low quantization noise together with a low power consumption. The proposed digital TDI ROIC converts the photocurrent into digital domain in two phases; in the first phase, most significant bits (MSBs) are generated by the conventional PFM technique in the charge domain, while in the second phase least significant bits (LSBs) are generated by a single slope ramp ADC in the time domain. A 90 × 8 prototype has been fabricated and verified, showing a significantly improved signal-to-noise ratio (SNR) of 51 dB for low illumination levels (280,000 collected electrons), which is attributed to the TDI implementation method and very low quantization noise due to the single slope ADC implemented for LSBs. Proposed digital TDI ROIC proves the benefit of digital readouts for scanning arrays enabling smaller pixel pitches, better SNR for the low illumination levels and lower power consumption compared to analog TDI readouts for scanning arrays.

  11. Plane Tidal Waves Generated by an Array of Simultaneous Underwater Explosions.

    DTIC Science & Technology

    1981-03-01

    shallow water theory verify the formation of a plane tidal wave. The wave energy resulting from the underwater explosion was approximated with an initial...thle fol lowing ajiproxi mt ion- and calculations. The energy reu ’rd to ior thle hemi spheri cal bubble i s approxiniat ed by the energy requ ired to...form an eql voIlme spherical bubble with coinciding cent roids. Approximately half of the explosion’s energy is absorbed by thle ocean floor (Ref 5

  12. 4K×4K format 10μm pixel pitch H4RG-10 hybrid CMOS silicon visible focal plane array for space astronomy

    NASA Astrophysics Data System (ADS)

    Bai, Yibin; Tennant, William; Anglin, Selmer; Wong, Andre; Farris, Mark; Xu, Min; Holland, Eric; Cooper, Donald; Hosack, Joseph; Ho, Kenneth; Sprafke, Thomas; Kopp, Robert; Starr, Brian; Blank, Richard; Beletic, James W.; Luppino, Gerard A.

    2012-07-01

    Teledyne’s silicon hybrid CMOS focal plane array technology has matured into a viable, high performance and high- TRL alternative to scientific CCD sensors for space-based applications in the UV-visible-NIR wavelengths. This paper presents the latest results from Teledyne’s low noise silicon hybrid CMOS visible focal place array produced in 4K×4K format with 10 μm pixel pitch. The H4RG-10 readout circuit retains all of the CMOS functionality (windowing, guide mode, reference pixels) and heritage of its highly successful predecessor (H2RG) developed for JWST, with additional features for improved performance. Combined with a silicon PIN detector layer, this technology is termed HyViSI™ (Hybrid Visible Silicon Imager). H4RG-10 HyViSI™ arrays achieve high pixel interconnectivity (<99.99%), low readout noise (<10 e- rms single CDS), low dark current (<0.5 e-/pixel/s at 193K), high quantum efficiency (<90% broadband), and large dynamic range (<13 bits). Pixel crosstalk and interpixel capacitance (IPC) have been predicted using detailed models of the hybrid structure and these predictions have been confirmed by measurements with Fe-55 Xray events and the single pixel reset technique. For a 100-micron thick detector, IPC of less than 3% and total pixel crosstalk of less than 7% have been achieved for the HyViSI™ H4RG-10. The H4RG-10 array is mounted on a lightweight silicon carbide (SiC) package and has been qualified to Technology Readiness Level 6 (TRL-6). As part of space qualification, the HyViSI™ H4RG-10 array passed radiation testing for low earth orbit (LEO) environment.

  13. Solid state active/passive night vision imager using continuous-wave laser diodes and silicon focal plane arrays

    NASA Astrophysics Data System (ADS)

    Vollmerhausen, Richard H.

    2013-04-01

    Passive imaging offers covertness and low power, while active imaging provides longer range target acquisition without the need for natural or external illumination. This paper describes a focal plane array (FPA) concept that has the low noise needed for state-of-the-art passive imaging and the high-speed gating needed for active imaging. The FPA is used with highly efficient but low-peak-power laser diodes to create a night vision imager that has the size, weight, and power attributes suitable for man-portable applications. Video output is provided in both the active and passive modes. In addition, the active mode is Class 1 eye safe and is not visible to the naked eye or to night vision goggles.

  14. State of the art of AIM LWIR and VLWIR MCT 2D focal plane detector arrays for higher operating temperatures

    NASA Astrophysics Data System (ADS)

    Figgemeier, H.; Hanna, S.; Eich, D.; Mahlein, K.-M.; Fick, W.; Schirmacher, W.; Thöt, R.

    2016-05-01

    In this paper AIM presents its latest results on both n-on-p and p-on-n low dark current planar MCT photodiode technology LWIR and VLWIR two-dimensional focal plane detector arrays with a cut-off wavelength >11μm at 80K and a 640x512 pixel format at a 20μm pitch. Thermal dark currents significantly reduced as compared to `Tennant's Rule 07' at a yet good detection efficiency >60% as well as results from NETD and photo response performance characterization are presented. The demonstrated detector performance paces the way for a new generation of higher operating temperature LWIR MCT FPAs with a <30mK NETD up to a 110K detector operating temperature and with good operability.

  15. 640 x 512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) Imaging Focal Plane Array

    NASA Technical Reports Server (NTRS)

    Gunapala, Sarath D.; Bandara, Sumith V.; Hill, Cory J.; Ting, David Z.; Liu, John K.; Rafol, Sir B.; Blazejewski, Edward R.; Mumolo, Jason M.; Keo, Sam A.; Krishna, Sanjay; Chang, Y. -C.; Shott, Craig A.

    2007-01-01

    Epitaxially grown self-assembled. InAs-InGaAs-GaAs quantum dots (QDs) are exploited for the development of large-format long-wavelength infrared focal plane arrays (FPAs). The dot-in-a-well (DWELL) structures were experimentally shown to absorb both 45 degrees and normal incident light, therefore, a reflection grating structure was used to enhance the quantum efficiency. The devices exhibit peak responsivity out to 8.1 micrometers, with peak detectivity reaching approximately 1 X 10(exp 10) Jones at 77 K. The devices were fabricated into the first long-wavelength 640 x 512 pixel QD infrared photodetector imaging FPA, which has produced excellent infrared imagery with noise equivalent temperature difference of 40 mK at 60-K operating temperature.

  16. Evaluation of global horizontal irradiance to plane-of-array irradiance models at locations across the United States

    SciTech Connect

    Lave, Matthew; Hayes, William; Pohl, Andrew; Hansen, Clifford W.

    2015-02-02

    We report an evaluation of the accuracy of combinations of models that estimate plane-of-array (POA) irradiance from measured global horizontal irradiance (GHI). This estimation involves two steps: 1) decomposition of GHI into direct and diffuse horizontal components and 2) transposition of direct and diffuse horizontal irradiance (DHI) to POA irradiance. Measured GHI and coincident measured POA irradiance from a variety of climates within the United States were used to evaluate combinations of decomposition and transposition models. A few locations also had DHI measurements, allowing for decoupled analysis of either the decomposition or the transposition models alone. Results suggest that decomposition models had mean bias differences (modeled versus measured) that vary with climate. Transposition model mean bias differences depended more on the model than the location. Lastly, when only GHI measurements were available and combinations of decomposition and transposition models were considered, the smallest mean bias differences were typically found for combinations which included the Hay/Davies transposition model.

  17. A 160 x 120 pixel uncooled TEC-less infrared radiation focal plane array on a standard ceramic package

    NASA Astrophysics Data System (ADS)

    Funaki, Hideyuki; Honda, Hiroto; Fujiwara, Ikuo; Yagi, Hitoshi; Ishii, Kouichi; Sasaki, Keita

    2009-05-01

    We have developed a 32 μm pitch and 160 × 120 pixel uncooled infrared radiation focal plane array (IRFPA) on SOI by 0.35 μm CMOS technology and bulk-micromachining. For IR detection, we use silicon single crystal series p-n junctions which can realize high uniformity of temperature coefficient and low voltage drift. We have also developed a low-noise CMOS readout circuit on the same SOI which can calibrate the substrate temperature variation in every frame period, comparing two types of pixels, a bulk-micromachined infrared detection pixel and a non-micromachined reference pixel. Then the FPA requires no thermo-electric cooler (TEC) and is mounted on a low-cost standard ceramic package for the consumer products market.

  18. Color image encryption based on paired interpermuting planes

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Yu, Hai; Zhu, Zhi-liang

    2015-03-01

    A number of chaos-based image encryption algorithms have been proposed in recent years, and most of them employ confusion-diffusion architecture. This paper presents a new confusion scheme based on paired interpermuting planes. In the proposed new confusion operation, an "exchange and random access strategy" is employed to replace the traditional confusion operations. The efficiency of the proposed scheme was analyzed by evaluating its histogram distribution, its correlation coefficients, its ability to resist differential attacks, its ability to retain information (entropy analysis), its computational speed, and its ability to guarantee the security of its key scheme. Simulations have been carried out and the results confirmed the superior security and computing speed of our scheme compared to other comparable algorithms.

  19. Stretchable and transparent electrodes based on in-plane structures

    NASA Astrophysics Data System (ADS)

    Kim, Kukjoo; Kim, Joohee; Hyun, Byung Gwan; Ji, Sangyoon; Kim, So-Yun; Kim, Sungwon; An, Byeong Wan; Park, Jang-Ung

    2015-08-01

    Stretchable electronics has attracted great interest with compelling potential applications that require reliable operation under mechanical deformation. Achieving stretchability in devices, however, requires a deeper understanding of nanoscale materials and mechanics beyond the success of flexible electronics. In this regard, tremendous research efforts have been dedicated toward developing stretchable electrodes, which are one of the most important building blocks for stretchable electronics. Stretchable transparent thin-film electrodes, which retain their electrical conductivity and optical transparency under mechanical deformation, are particularly important for the favourable application of stretchable devices. This minireview summarizes recent advances in stretchable transparent thin-film electrodes, especially employing strategies based on in-plane structures. Various approaches using metal nanomaterials, carbon nanomaterials, and their hybrids are described in terms of preparation processes and their optoelectronic/mechanical properties. Some challenges and perspectives for further advances in stretchable transparent electrodes are also discussed.

  20. Buffer direct injection readout integrated circuit design for dual band infrared focal plane array detector

    NASA Astrophysics Data System (ADS)

    Sun, Tai-Ping; Lu, Yi-Chuan; Shieh, Hsiu-Li; Tang, Shiang-Feng; Lin, Wen-Jen

    2013-05-01

    This paper proposes dual-mode buffer direct injection (BDI) and direct injection (DI) readout circuit design. The DI readout circuit has the advantage of being a simple circuit, requiring a small layout area, and low power consumption. The internal resistance of the photodetector will affect the photocurrent injection efficiency. We used a buffer amplifier to design the BDI readout circuit since it would reduce the input impedance and raise the injection efficiency. This paper will discuss and analyze the power consumption, injection efficiency, layout area, and circuit noise. The circuit is simulated using a TSMC 0.35 um Mixed Signal 2P4M CMOS 5 V process. The dimension of the pixel area is 30×30 μm. We have designed a 10×8 array for the readout circuit of the interlaced columns. The input current ranges from 1 nA to 10 nA, when the measurement current is 10 pA to 10 nA. The integration time was varied. The circuit output swing was 2 V. The total root mean square noise voltage was 4.84 mV. The signal to noise ratio was 52 dB, and the full chip circuit power consumption was 9.94 mW.

  1. Phase measurement profilometry based on a virtual reference plane method

    NASA Astrophysics Data System (ADS)

    Ren, Hongbing; Lee, Jinlong; Gao, Xiaorong

    2016-09-01

    In Phase Measurement Profilometry(PMP), the setting of the reference plane plays an important role. It is a critical step to capture the grating fringe projected onto the reference plane in PMP. However, it is sometimes difficult to choose and place the reference plane in practical applications. In this paper, a virtual reference plane is introduced into PMP, with which 3D measurement can be realized without using the physical reference plane. The virtual reference plane is generated through extracting a partial area of the deformed fringe image that corresponds to a planar region and employing the interpolation algorithm. The method is proved theoretically through simulation experiments, providing a new suggestion for actual measurement by PMP.

  2. Flagging and correction of pattern noise in the Kepler focal plane array

    NASA Astrophysics Data System (ADS)

    Kolodziejczak, Jeffery J.; Caldwell, Douglas A.; Van Cleve, Jeffery E.; Clarke, Bruce D.; Jenkins, Jon M.; Cote, Miles T.; Klaus, Todd C.; Argabright, Vic S.

    2010-07-01

    In order for Kepler to achieve its required <20 PPM photometric precision for magnitude 12 and brighter stars, instrument-induced variations in the CCD readout bias pattern (our "2D black image"), which are either fixed or slowly varying in time, must be identified and the corresponding pixels either corrected or removed from further data processing. The two principle sources of these readout bias variations are crosstalk between the 84 science CCDs and the 4 fine guidance sensor (FGS) CCDs and a high frequency amplifier oscillation on <40% of the CCD readout channels. The crosstalk produces a synchronous pattern in the 2D black image with time-variation observed in <10% of individual pixel bias histories. We will describe a method of removing the crosstalk signal using continuously-collected data from masked and over-clocked image regions (our "collateral data"), and occasionally-collected full-frame images and reverse-clocked readout signals. We use this same set to detect regions affected by the oscillating amplifiers. The oscillations manifest as time-varying moiré pattern and rolling bands in the affected channels. Because this effect reduces the performance in only a small fraction of the array at any given time, we have developed an approach for flagging suspect data. The flags will provide the necessary means to resolve any potential ambiguity between instrument-induced variations and real photometric variations in a target time series. We will also evaluate the effectiveness of these techniques using flight data from background and selected target pixels.

  3. Flagging and Correction of Pattern Noise in the Kepler Focal Plane Array

    NASA Technical Reports Server (NTRS)

    Kolodziejczak, Jeffery J.; Caldwell, Douglas A.; VanCleve, Jeffrey E.; Clarke, Bruce D.; Jenkins, Jon M.; Cote, Miles T.; Klaus, Todd C.; Argabright, Vic S.

    2010-01-01

    In order for Kepler to achieve its required less than 20 PPM photometric precision for magnitude 12 and brighter stars, instrument-induced variations in the CCD readout bias pattern (our "2D black image"), which are either fixed or slowly varying in time, must be identified and the corresponding pixels either corrected or removed from further data processing. The two principle sources of these readout bias variations are crosstalk between the 84 science CCDs and the 4 fine guidance sensor (FGS) CCDs and a high frequency amplifier oscillation on less than 40% of the CCD readout channels. The crosstalk produces a synchronous pattern in the 2D black image with time-variation observed in less than 10% of individual pixel bias histories. We will describe a method of removing the crosstalk signal using continuously-collected data from masked and over-clocked image regions (our "collateral data"), and occasionally-collected full-frame images and reverse-clocked readout signals. We use this same set to detect regions affected by the oscillating amplifiers. The oscillations manifest as time-varying moir pattern and rolling bands in the affected channels. Because this effect reduces the performance in only a small fraction of the array at any given time, we have developed an approach for flagging suspect data. The flags will provide the necessary means to resolve any potential ambiguity between instrument-induced variations and real photometric variations in a target time series. We will also evaluate the effectiveness of these techniques using flight data from background and selected target pixels.

  4. Short wave infrared InGaAs focal plane arrays detector: the performance optimization of photosensitive element

    NASA Astrophysics Data System (ADS)

    Gao, Xin-jiang; Tang, Zun-lie; Zhang, Xiu-chuan; Chen, Yang; Jiang, Li-qun; Cheng, Hong-bing

    2009-07-01

    Significant progress has been achieved in technology of the InGaAs focal plane arrays (FPA) detector operating in short wave infrared (SWIR) last two decades. The no cryogenic cooling, low manufacturing cost, low power, high sensitivity and maneuverability features inherent of InGaAs FPA make it as a mainstream SWIR FPA in a variety of critical military, national security, aerospace, telecommunications and industrial applications. These various types of passive image sensing or active illumination image detecting systems included range-gated imaging, 3-Dimensional Ladar, covert surveillance, pulsed laser beam profiling, machine vision, semiconductor inspection, free space optical communications beam tracker, hyperspectroscopy imaging and many others. In this paper the status and perspectives of hybrid InGaAs FPA which is composed of detector array (PDA) and CMOS readout integrate circuit (ROIC) are reviewed briefly. For various low light levels applications such as starlight or night sky illumination, we have made use of the interface circuit of capacitive feedback transimpedance amplifier (CTIA) in which the integration capacitor was adjustable, therefore implements of the physical and electrical characteristics matches between detector arrays and readout intergrate circuit was achieved excellently. Taking into account the influences of InGaAs detector arrays' optoelectronic characteristics on performance of the FPA, we discussed the key parameters of the photodiode in detailed, and the tradeoff between the responsivity, dark current, impedance at zero bias and junction capacitance of photosensitive element has been made to root out the impact factors. As a result of the educed approach of the photodiode's characteristics optimizing which involve with InGaAs PDA design and process, a high performance InGaAs FPA of 30um pixel pitch and 320×256 format has been developed of which the response spectrum range over 0.9um to 1.7um, the mean peak detectivity (λ=1.55

  5. Microphone array based novel infant deafness detector.

    PubMed

    Agnihotri, Chinmayee; Thiyagarajan, S; Kalyansundar, Archana

    2010-01-01

    This work focuses on an infant deafness detector unit, using the concept of microphone array. This instrument is based on the principle of evoked acoustic emissions (OAEs). The key feature of the microphone array is its ability to increase signal-to-noise ratio (SNR) and reproducibility of the OAE responses. These further significantly contribute to improve the sensitivity and specificity of the overall system. Low level sound pressure values are recorded by the sensitive microphones in microphone array unit and processed using TI's DSP6416. The sound stimulus transmitted to human ear is generated and controlled by the 6416 DSP (Digital signal processor). Hardware circuit details and the algorithm used in signal processing are discussed in this paper. Standard averaging technique is used in the implemented algorithm. The final result speaks about the hearing capacity of a patient. The proof that the usage of microphone arrays leads to better SNR values than using a single microphone in an OAE probe, is successfully carried out in this work.

  6. Broadband and multi-color large format infrared focal plane arrays for static imaging interferometers

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Rafol, S. B.; Mumolo, J. M.; Reininger, F. M.; Fastenau, J. M.; Liu, A. K.

    2001-01-01

    In this presentation, we will discuss the development of this large format broadband infrared FPA based on a GaAs/AlGaAs materials system and its performance in quantum efficiency, noise equivalent differential temperature, uniformity, and operability.

  7. Cavity-based linear polarizer immune to the polarization direction of an incident plane wave.

    PubMed

    Wang, Jiang; Shen, Zhongxiang; Gao, Xiang; Wu, Wen

    2016-01-15

    We herein report a linear polarizer based on a 2D array of substrate integrated waveguide cavities, which can convert an arbitrary linearly polarized (LP) incident wave into an outgoing LP wave in a specified polarization direction with constant transmittance. Two orthogonal slots etched on the front surface of the cavity are utilized to couple a wave of arbitrary polarization into the cavity, while another slot on the back side helps to couple the field out along a desired polarization direction. Microwave experiments are performed as a proof of concept. The proposed polarizer exhibits very good performance with stable transmittance as 50% and a polarization extinction ratio over 45 dB. The new polarizer is potentially useful in novel polarization-selective devices that are immune to the polarization direction of an incident plane wave.

  8. HgCdTe heterostructures on Si (310) substrates for midinfrared focal plane arrays

    SciTech Connect

    Yakushev, M. V. Brunev, D. V.; Varavin, V. S.; Vasilyev, V. V.; Dvoretskii, S. A.; Marchishin, I. V.; Predein, A. V.; Sabinina, I. V.; Sidorov, Yu. G.; Sorochkin, A. V.

    2011-03-15

    Results of studies of the molecular beam epitaxial growth of HgCdTe alloys on Si substrates as large as 100 mm in diameter are presented. Optimum conditions for obtaining HgCdTe/Si(310) heterostructures of the device quality for the spectral range of 3-5 {mu}m are determined. The results of measurements and discussion of photoelectric parameters of an infrared photodetector of a format of 320 Multiplication-Sign 256 elements with a step of 30 {mu}m based on a hybrid assembly of a matrix photosensitive cell with a Si multiplexer are presented. A high stability of photodetector parameters to thermocycling from room temperature to liquid-nitrogen temperature is shown.

  9. Development of Biosensors Based on Carbon Nanotube Nanoelectrode Arrays

    SciTech Connect

    Lin, Yuehe; Tu, Yi; Lu, Fang; Ren, Zhifeng

    2004-12-28

    The fabrication, electrochemical characterization, and sensing applications of low-site density carbon nanotubes based nanoelectrode arrays (CNT-NEAs) are reported in this work. Spin-coating of an epoxy resin provides a new way to create the electrode passivation layer that effectively reduces the current leakage and eliminates the electrode capacitance by sealing the side-wall of CNTs. The CNT-NEAs fabricated in our work effectively use the open ends of CNTs for electrochemical sensing. The open ends of the CNTs have fast electron transfer rates similar to a graphite edge-plane electrode, while the side-walls present very slow electron transfer rates similar to the graphitic basal plane. Cyclic voltammetry showed the sigmoidal shape curves with low capacitive current and scan-rate-independent limiting current. The successful development of a glucose biosensor based on CNT-NEAs for the selective detection of glucose is also described. Glucose oxidase was covalently immobilized on the CNTs tips via carbodiimide chemistry by forming amide linkages between the amine residues and carboxylic acid groups on the open ends of CNTs. The biosensor effectively performs selective electrochemical detections of glucose in the presence of common interferences.

  10. Carbon Nanotubes Based Nanoelectrode Arrays: Fabrication, Evaluation, and Sensing Applications

    SciTech Connect

    Lin, Yuehe; Tu, Yi; Lu, Fang; Yantasee, Wassana; Ren, Zhifeng

    2004-10-05

    The fabrication, electrochemical characterization, and applications of low-site density carbon nanotubes based nanoelectrode arrays (CNT-NEAs) are reported in this work. Spin-coating of an epoxy resin provides a new way to create the electrode passivation layer that effectively reduces the current leakage and eliminates the electrode capacitance by sealing the side-wall of CNTs. The CNT-NEAs fabricated in our work effectively use the open ends of CNTs for electrochemical sensing. The open ends of the CNTs have fast electron transfer rates similar to a graphite edge-plane electrode, while the side-walls present very slow electron transfer rates similar to the graphitic basal plane. Cyclic voltammetry showed the sigmoidal shape curves with low capacitive current and scan-rate-independent limiting current. The CNT-NEAs were used successfully for voltammetric detection of trace concentrations of lead (II) at ppb level. The successful development of a glucose biosensor based on CNT-NEAs for the selective detection of glucose is also described. Glucose oxidase was covalently immobilized on the CNTs tips via carbodiimide chemistry by forming amide linkages between the amine residues and carboxylic acid groups on the open ends of CNTs. The biosensor effectively performs selective electrochemical detections of glucose in the presence of common interferences. The CNT-NEAs provide an excellent platform for ultra sensitive electrochemical sensors for chemical and biological sensing.

  11. Toward 17µm pitch heterogeneously integrated Si/SiGe quantum well bolometer focal plane arrays

    NASA Astrophysics Data System (ADS)

    Ericsson, Per; Fischer, Andreas C.; Forsberg, Fredrik; Roxhed, Niclas; Samel, Björn; Savage, Susan; Stemme, Göran; Wissmar, Stanley; Öberg, Olof; Niklaus, Frank

    2011-06-01

    Most of today's commercial solutions for un-cooled IR imaging sensors are based on resistive bolometers using either Vanadium oxide (VOx) or amorphous Silicon (a-Si) as the thermistor material. Despite the long history for both concepts, market penetration outside high-end applications is still limited. By allowing actors in adjacent fields, such as those from the MEMS industry, to enter the market, this situation could change. This requires, however, that technologies fitting their tools and processes are developed. Heterogeneous integration of Si/SiGe quantum well bolometers on standard CMOS read out circuits is one approach that could easily be adopted by the MEMS industry. Due to its mono crystalline nature, the Si/SiGe thermistor material has excellent noise properties that result in a state-ofthe- art signal-to-noise ratio. The material is also stable at temperatures well above 450°C which offers great flexibility for both sensor integration and novel vacuum packaging concepts. We have previously reported on heterogeneous integration of Si/SiGe quantum well bolometers with pitches of 40μm x 40μm and 25μm x 25μm. The technology scales well to smaller pixel pitches and in this paper, we will report on our work on developing heterogeneous integration for Si/SiGe QW bolometers with a pixel pitch of 17μm x 17μm.

  12. Crack-free AlGaN for solar-blind focal plane arrays through reduced area epitaxy

    NASA Astrophysics Data System (ADS)

    Cicek, E.; McClintock, R.; Vashaei, Z.; Zhang, Y.; Gautier, S.; Cho, C. Y.; Razeghi, M.

    2013-02-01

    We report on crack reduction for solar-blind ultraviolet detectors via the use of a reduced area epitaxy (RAE) method to regrow on patterned AlN templates. With the RAE method, a pre-deposited AlN template is patterned into isolated mesas in order to reduce the formation of cracks in the subsequently grown high Al-content AlxGa1-xN structure. By restricting the lateral dimensions of the epitaxial growth area, the biaxial strain is relaxed by the edges of the patterned squares, which resulted in ˜97% of the pixels being crack-free. After successful implementation of RAE method, we studied the optical characteristics, the external quantum efficiency, and responsivity of average pixel-sized detectors of the patterned sample increased from 38% and 86.2 mA/W to 57% and 129.4 mA/W, respectively, as the reverse bias is increased from 0 V to 5 V. Finally, we discussed the possibility of extending this approach for focal plane array, where crack-free large area material is necessary for high quality imaging.

  13. Evaluation of global horizontal irradiance to plane-of-array irradiance models at locations across the United States

    DOE PAGES

    Lave, Matthew; Hayes, William; Pohl, Andrew; ...

    2015-02-02

    We report an evaluation of the accuracy of combinations of models that estimate plane-of-array (POA) irradiance from measured global horizontal irradiance (GHI). This estimation involves two steps: 1) decomposition of GHI into direct and diffuse horizontal components and 2) transposition of direct and diffuse horizontal irradiance (DHI) to POA irradiance. Measured GHI and coincident measured POA irradiance from a variety of climates within the United States were used to evaluate combinations of decomposition and transposition models. A few locations also had DHI measurements, allowing for decoupled analysis of either the decomposition or the transposition models alone. Results suggest that decompositionmore » models had mean bias differences (modeled versus measured) that vary with climate. Transposition model mean bias differences depended more on the model than the location. Lastly, when only GHI measurements were available and combinations of decomposition and transposition models were considered, the smallest mean bias differences were typically found for combinations which included the Hay/Davies transposition model.« less

  14. Neuroelectronic device based on nanocoax arrays

    NASA Astrophysics Data System (ADS)

    Naughton, Jeffrey R.; Lundberg, Jaclyn N.; Varela, Juan A.; Burns, Michael J.; Chiles, Thomas C.; Christianson, John P.; Naughton, Michael J.

    2015-03-01

    We report on development of a nanocoax-based neuroelectronic array. The device has been used in real time to noninvasively couple to a ganglion sac located along the main nerve cord of the leech Hirudo medicinalis. This allowed for extracellular recording of synaptic activity in the form of spontaneous synapse firing in pre- and post-synaptic somata, with the next target being recording of local field potentials from rat hippocampal cells. We also discuss an alteration of the architecture to facilitate optical integration of the nanoarray, toward utilizing the so-modified device to elicit / inhibit action potentials in optogenetically-modified cells.

  15. Recent development of SWIR focal plane array with InGaAs/GaAsSb type-II quantum wells

    NASA Astrophysics Data System (ADS)

    Inada, Hiroshi; Machinaga, Kenichi; Balasekaran, Sundararajan; Miura, Kouhei; Kawahara, Takahiko; Migita, Masaki; Akita, Katsushi; Iguchi, Yasuhiro

    2016-05-01

    HgCdTe (MCT) is predominantly used for infrared imaging applications even in SWIR region. However, MCT is expensive and contains environmentally hazardous substances. Therefore, its application has been restricted mainly military and scientific use and was not spread to commercial use. InGaAs/GaAsSb type-II quantum well structures are considered as an attractive material for realizing low dark current PDs owing to lattice-matching to InP substrate. Moreover, III-V compound material systems are suitable for commercial use. In this report, we describe successful operation of focal plane array (FPA) with InGaAs/GaAsSb quantum wells and mention improvement of optical characteristics. Planar type pin-PDs with 250-pairs InGaAs(5nm)/GaAsSb(5nm) quantum well absorption layer were fabricated. The p-n junction was formed in the absorption layer by the selective diffusion of zinc. Electrical and optical characteristics of FPA or pin-PDs were investigated. Dark current of 1μA/cm2 at 210K, which showed good uniformity and led to good S/N ratio in SWIR region, was obtained. Further, we could successfully reduce of stray light in the cavity of FPA with epoxy resin. As a result, the clear image was taken with 320x256 format and 7% contrast improvement was achieved. Reliability test of 10,000 heat cycles was carried out. No degradations were found in FPA characteristics of the epoxy coated sample. This result means FPA using InGaAs/GaAsSb type-II quantum wells is a promising candidate for commercial applications.

  16. Array-on-Array Strategy For Activity-Based Enzyme Profiling.

    PubMed

    Sieow, Brendan Fu-Long; Uttamchandani, Mahesh

    2017-01-01

    We describe a novel array on array strategy intended to enhance the throughput of enzymatic activity screening using microarrays. This strategy consists of spotting a first array with large droplets of enzymes with varying concentrations and subsequently spotting a second array with small droplets of fluorogenic substrate on top of the enzyme array. By varying the array on array spotting patterns of different classes of enzyme (e.g., proteases, phosphatases, kinases) and their corresponding fluorogenic substrates, we have the unprecedented ability for testing enzymes and mixed samples in a multiplexed fashion within a single microarray slide. This new approach enables rapid enzyme characterization building upon a one enzyme on one slide droplet-based screening concept previously established.

  17. Cell imaging techniques based on digital image plane holography

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoji; Gong, Wendi; Liu, Feifei; Wang, Huaying

    2010-11-01

    This paper has further studied the implementation methods and recording conditions of digital microscopic image plane holography (DMIPH). Two optical systems of DMIPH were built: one is recording hologram by using plane waves as reference light, the other is recording hologram by spherical reference light. Breast cancer cells and USAF resolution test target is used as tested samples in the experiment. Then the intensity distribution and three-dimensional shape information of the cells are got accurately. The experiment results show that DMIPH avoids the process of finding recording distance by using auto-focusing approach. The recording and reconstruction process of DMIPH is simple. Therefore DMIPH can be applied to the microscopic imaging of cells more effectively.

  18. Focused, phased-array plane piston and spherically-shaped concave piston transducers: comparison for the same aperture and focal point.

    PubMed

    Warriner, Renée K; Cobbold, Richard S C

    2012-04-01

    It has sometimes been assumed that the phased-array plane piston transducer and the spherically-shaped concave piston transducer are equivalent structures when both have the same aperture and focal point. This assumption has not been previously examined, nor has an expression for the on-axis impulse response of the focused, phased-array plane piston transducer been derived. It is shown in this paper how such an expression can be obtained. Comparisons of the impulse response for both structures show similarities, as well as some differences that could be significant as the observation point approaches the focal point. Comparisons are also performed for wide-band pulses close to the focus as well as for sinusoidal excitation. A physical explanation for the cause of the impulse response discrepancy is shown to be due to the nature of the piston focusing delay and its effect on the Rayleigh integral.

  19. Synchrotron Infrared Confocal Microspectroscopic Spatial Resolution or a Customized Synchrotron/focal Plane Array System Enhances Chemical Imaging of Biological Tissue or Cells

    SciTech Connect

    D Wetzel; M Nasse; =

    2011-12-31

    Spectroscopy and spatially resolved chemical imaging of biological materials using an infrared microscope is greatly enhanced with confocal image plane masking to 5-6 {mu} with a third generation microspectrometer and illumination with a synchrotron radiation source compared to globar illuminated and array detection or singly masked system. Steps toward this instrumental achievement are illustrated with spectra and images of biological tissue sections, including single cells, brain, aorta, and grain specimens. A recent, customized synchrotron infrared microspectrometer installation enables focal plane array detection to achieve both rapid and high definition chemical imaging. Localization of the ester carbonyl population in single modified starch granules was used to provide direct comparison of the two advanced imaging capabilities.

  20. Evaluation of in-plane local stress distribution in stacked IC chip using dynamic random access memory cell array for highly reliable three-dimensional IC

    NASA Astrophysics Data System (ADS)

    Tanikawa, Seiya; Kino, Hisashi; Fukushima, Takafumi; Koyanagi, Mitsumasa; Tanaka, Tetsu

    2016-04-01

    As three-dimensional (3D) ICs have many advantages, IC performances can be enhanced without scaling down of transistor size. However, 3D IC has mechanical stresses inside Si substrates owing to its 3D stacking structure, which induces negative effects on transistor performances such as carrier mobility changes. One of the mechanical stresses is local bending stress due to organic adhesive shrinkage among stacked IC chips. In this paper, we have proposed an evaluation method for in-plane local stress distribution in the stacked IC chips using retention time modulation of a dynamic random access memory (DRAM) cell array. We fabricated a test structure composed of a DRAM chip bonded on a Si interposer with dummy Cu/Sn microbumps. As a result, we clarified that the DRAM cell array can precisely evaluate the in-plane local stress distribution in the stacked IC chips.

  1. Synchrotron infrared confocal microspectroscopic spatial resolution or a customized synchrotron/focal plane array system enhances chemical imaging of biological tissue or cells

    NASA Astrophysics Data System (ADS)

    Wetzel, David L.; Nasse, Michael J.

    2011-09-01

    Spectroscopy and spatially resolved chemical imaging of biological materials using an infrared microscope is greatly enhanced with confocal image plane masking to 5-6 μm with a third generation microspectrometer and illumination with a synchrotron radiation source compared to globar illuminated and array detection or singly masked system. Steps toward this instrumental achievement are illustrated with spectra and images of biological tissue sections, including single cells, brain, aorta, and grain specimens. A recent, customized synchrotron infrared microspectrometer installation enables focal plane array detection to achieve both rapid and high definition chemical imaging. Localization of the ester carbonyl population in single modified starch granules was used to provide direct comparison of the two advanced imaging capabilities.

  2. Microfluidic System for Solution Array Based Bioassays

    SciTech Connect

    Dougherty, G M; Tok, J B; Pannu, S S; Rose, K A

    2006-02-10

    The objective of this project is to demonstrate new enabling technology for multiplex biodetection systems that are flexible, miniaturizable, highly automated, low cost, and high performance. It builds on prior successes at LLNL with particle-based solution arrays, such as those used in the Autonomous Pathogen Detection System (APDS) successfully field deployed to multiple locations nationwide. We report the development of a multiplex solution array immunoassay based upon engineered metallic nanorod particles. Nanobarcodes{reg_sign} particles are fabricated by sequential electrodeposition of dissimilar metals within porous alumina templates, yielding optically encoded striping patterns that can be read using standard laboratory microscope optics and PC-based image processing software. The addition of self-assembled monolayer (SAM) coatings and target-specific antibodies allows each encoded class of nanorod particles to be directed against a different antigen target. A prototype assay panel directed against bacterial, viral, and soluble protein targets demonstrates simultaneous detection at sensitivities comparable to state of the art immunoassays, with minimal cross-reactivity. Studies have been performed to characterize the colloidal properties (zeta potential) of the suspended nanorod particles as a function of pH, the ionic strength of the suspending solution, and surface functionalization state. Additional studies have produced means for the non-contact manipulation of the particles, including the insertion of magnetic nickel stripes within the encoding pattern, and control via externally applied electromagnetic fields. Using the results of these studies, the novel Nanobarcodes{reg_sign} based assay was implemented in a prototype automated system with the sample processing functions and optical readout performed on a microfluidic card. The unique physical properties of the nanorod particles enable the development of integrated microfluidic systems for

  3. Multi-Band GaAs/AlGaAs Quantum Well Infrared Photodetector (QWIP) Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Bandara, S. V.; Gunapala, S. D.; Liu, J. K.; Rafol, S. B.; Shott, C. A.

    2002-01-01

    The GaAs/AlGaAs based Quantum Well Infrared Photodetectors (QWIPs) afford greater flexibility than the usual extrinsically doped semiconductor IR detectors because the wavelength of the peak response and cutoff can be continuously tailored over any wavelength between 6-20 micrometers. The spectral band width of these detectors can be tuned from narrow (DELTA)lamba/lamba approx. 10 %)) to wide (DELTA)lamba/lamba approx. 50 %) allowing various applications. Also, QWIP offers multi-color infrared cameras which is capable of simultaneously acquiring images in different infrared bands. Each pixel of such array consists of vertically stacked, independently readable, QWIP detectors sensitive in different narrow infrared bands. In this article, we discuss the development and results of the 640 x 512 dual-band and four-band QWIP FPAs.

  4. Determination of charge-carrier diffusion length in the photosensing layer of HgCdTe n-on-p photovoltaic infrared focal plane array detectors

    SciTech Connect

    Vishnyakov, A. V.; Stuchinsky, V. A. Brunev, D. V.; Zverev, A. V.; Dvoretsky, S. A.

    2014-03-03

    In the present paper, we propose a method for evaluating the bulk diffusion length of minority charge carriers in the photosensing layer of photovoltaic focal plane array (FPA) photodetectors. The method is based on scanning a strip-shaped illumination spot with one of the detector diodes at a low level of photocurrents j{sub ph} being registered; such scanning provides data for subsequent analysis of measured spot-scan profiles within a simple diffusion model. The asymptotic behavior of the effective (at j{sub ph} ≠ 0) charge-carrier diffusion length l{sub d} {sub eff} as a function of j{sub ph} for j{sub ph} → 0 inferred from our experimental data proved to be consistent with the behavior of l{sub d} {sub eff} vs j{sub ph} as predicted by the model, while the obtained values of the bulk diffusion length of minority carriers (electrons) in the p-HgCdTe film of investigated HgCdTe n-on-p FPA photodetectors were found to be in a good agreement with the previously reported carrier diffusion-length values for HgCdTe.

  5. Determination of charge-carrier diffusion length in the photosensing layer of HgCdTe n-on-p photovoltaic infrared focal plane array detectors

    NASA Astrophysics Data System (ADS)

    Vishnyakov, A. V.; Stuchinsky, V. A.; Brunev, D. V.; Zverev, A. V.; Dvoretsky, S. A.

    2014-03-01

    In the present paper, we propose a method for evaluating the bulk diffusion length of minority charge carriers in the photosensing layer of photovoltaic focal plane array (FPA) photodetectors. The method is based on scanning a strip-shaped illumination spot with one of the detector diodes at a low level of photocurrents jph being registered; such scanning provides data for subsequent analysis of measured spot-scan profiles within a simple diffusion model. The asymptotic behavior of the effective (at jph ≠ 0) charge-carrier diffusion length ld eff as a function of jph for jph → 0 inferred from our experimental data proved to be consistent with the behavior of ld eff vs jph as predicted by the model, while the obtained values of the bulk diffusion length of minority carriers (electrons) in the p-HgCdTe film of investigated HgCdTe n-on-p FPA photodetectors were found to be in a good agreement with the previously reported carrier diffusion-length values for HgCdTe.

  6. Silicon-based wire electrode array for neural interfaces

    NASA Astrophysics Data System (ADS)

    Pei, Weihua; Zhao, Hui; Zhao, Shanshan; Fang, Xiaolei; Chen, Sanyuan; Gui, Qiang; Tang, Rongyu; Chen, Yuanfang; Hong, Bo; Gao, Xiaorong; Chen, Hongda

    2014-09-01

    Objectives. Metal-wire electrode arrays are widely used to record and stimulate neurons. Commonly, these devices are fabricated from a long insulated metal wire by cutting it into the proper length and using the cross-section as the electrode site. The assembly of a micro-wire electrode array with regular spacing is difficult. With the help of micro-machine technology, a silicon-based wire electrode array (SWEA) is proposed to simplify the assembling process and provide a wire-type electrode with tapered tips. Approach. Silicon wires with regular spacing coated with metal are generated from a silicon wafer through micro-fabrication and are ordered into a 3D array. A silicon wafer is cut into a comb-like structure with hexagonal teeth on both sides by anisotropic etching. To establish an array of silicon-based linear needles through isotropic wet etching, the diameters of these hexagonal teeth are reduced; their sharp edges are smoothed out and their tips are sharpened. The needle array is coated with a layer of parylene after metallization. The tips of the needles are then exposed to form an array of linear neural electrodes. With these linear electrode arrays, an array of area electrodes can be fabricated. Main results. A 6  ×  6 array of wire-type electrodes based on silicon is developed using this method. The time required to manually assemble the 3D array decreases significantly with the introduction of micro-fabricated 2D array. Meanwhile, the tip intervals in the 2D array are accurate and are controlled at no more than 1%. The SWEA is effective both in vitro and in vivo. Significance. Using this method, the SWEA can be batch-prepared in advance along with its parameters, such as spacing, length, and diameter. Thus, neural scientists can assemble proper electrode arrays in a short time.

  7. Polymer-based micro-array sensors

    NASA Astrophysics Data System (ADS)

    Sharpe, Ruben B. A.; Rensing, Peter A.; van Heck, Gert T.; Allard, Bart A. M.; Koetse, Marc M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; de Zwart, René M.; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.

    2007-09-01

    The introduction in the market of ubiquitous sensing applications relies heavily on the availability of affordable sensors. Key in the cost of a sensor is its modus of manufacture. In this paper a sensing scheme is presented, in which the signal transduction is based on an induced change in the optical path between an organic light emitting diode (OLED) and an organic photovoltaic (OPV) array. Using this platform, several aspects of cost efficient manufacturing technology are investigated. These aspects include the intrinsic printability of the active (OLED, responsive coating and OPV) components, which allows control of the local sensor functionality and sensitivity. It offers a large amount of freedom in sensor layout, while using relatively few process steps. Also investigated is the ability to realize the active devices on foil, which enables high throughput processing (e.g. in a reel-to-reel scheme). Moreover, the presented generic sensing scheme is of a modular design. It allows easy switching of the sensor functionality mostly by simply changing the transduction module. Since this does not affect the production parameters of the other components, these may be standardized, thus invoking favorable economies of scale.

  8. Bionic ommatidia based on microlens array

    NASA Astrophysics Data System (ADS)

    Hao, Liu; Sihai, Chen; Shan, Dong; Xinjian, Yi

    2009-06-01

    A simple method is reported to manufacture a planar compound eye using a microlens array. The compound eye, inspired by insects, consists of a microlens array and a waveguide coupled with it. A microlens array with lenses of 50 μm in diameter is fabricated by melting AZ1500 photoresist and then transferring it onto SU-8. With the self-focus method applied, a waveguide array is formed, and each is exactly coupled to a lens. The formation of the waveguide is simulated using finite difference time domain (FDTD) arithmetic, resembling the ommatidia produced in our experiment. The ommatidia is also testified to astrict beam, just as the natural compound eyes do.

  9. A Digital Camcorder Image Stabilizer Based on Gray Coded Bit-Plane Block Matching

    DTIC Science & Technology

    2000-07-01

    Matching", IEEE 1998. [9] Sung- Hee Lee, Seung -Won Jeon, Eui-Sung Kang and Sung-Jea Ko, "Fast Digital Stabilizer based on Gray Coded Bit- Plane Matching...Jea Ko and Sung- Hee Lee adopted bit-plane or gray-coded bit-plane block matching to greatly reduce the computational complexity. However, their...Yong Chul Park, and Dong Wook Kim , "An Adaptive Motion Decision System for Digital Image Stabilizer Based on Edge Pattern Matching", IEEE Trans. on

  10. Capillarity-based preparation system for optical colorimetric sensor arrays

    NASA Astrophysics Data System (ADS)

    Luo, Xiao-gang; Yi, Xin; Bu, Xiang-nan; Hou, Chang-jun; Huo, Dan-qun; Yang, Mei; Fa, Huan-bao; Lei, Jin-can

    2017-03-01

    In recent years, optical colorimetric sensor arrays have demonstrated beneficial features, including rapid response, high selectivity, and high specificity; as a result, it has been extensively applied in food inspection and chemical studies, among other fields. There are instruments in the current market available for the preparation of an optical colorimetric sensor array, but it lacks the corresponding research of the preparation mechanism. Therefore, in connection with the main features of this kind of sensor array such as consistency, based on the preparation method of contact spotting, combined with a capillary fluid model, Washburn equation, Laplace equation, etc., this paper develops a diffusion model of an optical colorimetric sensor array during its preparation and sets up an optical colorimetric sensor array preparation system based on this diffusion model. Finally, this paper compares and evaluates the sensor arrays prepared by the system and prepared manually in three aspects such as the quality of array point, response of array, and response result, and the results show that the performance index of the sensor array prepared by a system under this diffusion model is better than that of the sensor array of manual spotting, which meets the needs of the experiment.

  11. Capillarity-based preparation system for optical colorimetric sensor arrays.

    PubMed

    Luo, Xiao-Gang; Yi, Xin; Bu, Xiang-Nan; Hou, Chang-Jun; Huo, Dan-Qun; Yang, Mei; Fa, Huan-Bao; Lei, Jin-Can

    2017-03-01

    In recent years, optical colorimetric sensor arrays have demonstrated beneficial features, including rapid response, high selectivity, and high specificity; as a result, it has been extensively applied in food inspection and chemical studies, among other fields. There are instruments in the current market available for the preparation of an optical colorimetric sensor array, but it lacks the corresponding research of the preparation mechanism. Therefore, in connection with the main features of this kind of sensor array such as consistency, based on the preparation method of contact spotting, combined with a capillary fluid model, Washburn equation, Laplace equation, etc., this paper develops a diffusion model of an optical colorimetric sensor array during its preparation and sets up an optical colorimetric sensor array preparation system based on this diffusion model. Finally, this paper compares and evaluates the sensor arrays prepared by the system and prepared manually in three aspects such as the quality of array point, response of array, and response result, and the results show that the performance index of the sensor array prepared by a system under this diffusion model is better than that of the sensor array of manual spotting, which meets the needs of the experiment.

  12. Genetic optimisation of a plane array geometry for beamforming. Application to source localisation in a high speed train

    NASA Astrophysics Data System (ADS)

    Le Courtois, Florent; Thomas, Jean-Hugh; Poisson, Franck; Pascal, Jean-Claude

    2016-06-01

    Thanks to its easy implementation and robust performance, beamforming is applied for source localisation in several fields. Its effectiveness depends greatly on the array sensor configuration. This paper introduces a criterion to improve the array beampattern and increase the accuracy of sound source localisation. The beamwidth and the maximum sidelobe level are used to quantify the spatial variation of the beampattern through a new criterion. This criterion is shown to be useful, especially for the localisation of moving sources. A genetic algorithm is proposed for the optimisation of microphone placement. Statistical analysis of the optimised arrays provides original results on the algorithm performance and on the optimal microphone placement. An optimised array is tested to localise the sound sources of a high speed train. The results show an accurate separation.

  13. C-scan transmission ultrasound based on a hybrid microelectronic sensor array and its physical performance

    NASA Astrophysics Data System (ADS)

    Lo, Shih-Chung B.; Rich, David; Lasser, Marvin E.; Kula, John; Zhao, Hui; Lasser, Bob; Freedman, Matthew T.

    2001-05-01

    A C-scan through-transmission ultrasound system has been constructed based on a patented hybrid microelectronic array that is capable of generating ultrasound images with fluoroscopic presentation. To generate real-time images, ultrasound is introduced into the object under study with a large unfocused plane wave source. The resultant pressure wave strikes the object and is attenuated and scattered. The device detects scattered as well as attenuated ultrasound energy which allows the use of an acoustic lens to focus on detected energy from an object plane. The acoustic lens collects the transmitted energy and focuses it onto the ultrasound sensitive array. The array is made up to two components, a silicon detector/readout array and a piezoelectric material that is deposited onto the array through semiconductor processing. The array is 1 cm on a side consisting of 128x128 pixel elements with 85micrometers pixel spacing. The energy that strikes the piezoelectric material is converted to an analog voltage that is digitized and processed by low cost commercial video electronics. The images generated by the device appear with no speckle artifact with fluoroscopy-like presentation. The images show no obvious geometrical distortion. The experimental results indicated that the system has a spatial resolution of 0.32 mm. It can resolve 3mm objects with low differential contrast and an attenuation coefficient difference less than 0.07 dB/cm/MHz. Phase contrast of the objects are also clearly measurable. A presentation of a C- scan image guided breast biopsy was demonstrated. In addition, punctured needle tracks in a tumor was clearly observed. This implies the potential of observing the spiculation of masses in vivo.

  14. Demonstration of microcantilever-based sensor array with integrated microfluidics

    NASA Astrophysics Data System (ADS)

    Nordin, Gregory P.; Anderson, Ryan R.; Ness, Stanley J.; Hu, Weisheng; Gustafson, Timothy M.; Noh, Jong W.; Richards, Danny C.; Kim, Seunghyun

    2011-05-01

    We report the integration of a nanomechanical sensor consisting of 16 silicon microcantilevers and polydimethylsiloxane (PDMS) microfluidics. With our recently developed in-plane photonic transduction method we routinely achieve microcantilever transduction responsivities in the range of 0.5-1.1 μm-1, which is comparable to the best reported for the laser reflection readout method used in atomic force microscopy (AFM). Prior work has established that differential surface stress as low as 0.23 mN/m is readily measurable with our arrays. In this paper we show biotin-streptavidin sensing with a differential surface stress of ~2.3 mN/m as a first step toward characterizing integrated microcantilever array/microfluidic sensors.

  15. Aptamer-based cantilever array sensors for oxytetracycline detection.

    PubMed

    Hou, Hui; Bai, Xiaojing; Xing, Chunyan; Gu, Ningyu; Zhang, Bailin; Tang, Jilin

    2013-02-19

    We present a new method for specific detection of oxytetracycline (OTC) at nanomolar concentrations based on a microfabricated cantilever array. The sensing cantilevers in the array are functionalized with self-assembled monolayers (SAMs) of OTC-specific aptamer, which acts as a recognition molecule for OTC. While the reference cantilevers in the array are functionalized with 6-mercapto-1-hexanol SAMs to eliminate the influence of environmental disturbances. The cantilever sensor shows a good linear relationship between the deflection amplitude and the OTC concentration in the range of 1.0-100 nM. The detection limit of the cantilever array sensor is as low as 0.2 nM, which is comparable to some traditional methods. Other antibiotics such as doxycycline and tetracycline do not cause significant deflection of the cantilevers. It is demonstrated that the cantilever array sensors can be used as a powerful tool to detect drugs with high sensitivity and selectivity.

  16. A two-axis in-plane motion measurement system based on optical beam deflection

    SciTech Connect

    Sriramshankar, R.; Mrinalini, R. Sri Muthu; Jayanth, G. R.

    2013-10-15

    Measurement of in-plane motion with high resolution and large bandwidth enables model-identification and real-time control of motion-stages. This paper presents an optical beam deflection based system for measurement of in-plane motion of both macro- and micro-scale motion stages. A curved reflector is integrated with the motion stage to achieve sensitivity to in-plane translational motion along two axes. Under optimal settings, the measurement system is shown to theoretically achieve sub-angstrom measurement resolution over a bandwidth in excess of 1 kHz and negligible cross-sensitivity to linear motion. Subsequently, the proposed technique is experimentally demonstrated by measuring the in-plane motion of a piezo flexure stage and a scanning probe microcantilever. For the former case, reflective spherical balls of different radii are employed to measure the in-plane motion and the measured sensitivities are shown to agree with theoretical values, on average, to within 8.3%. For the latter case, a prototype polydimethylsiloxane micro-reflector is integrated with the microcantilever. The measured in-plane motion of the microcantilever probe is used to identify nonlinearities and the transient dynamics of the piezo-stage upon which the probe is mounted. These are subsequently compensated by means of feedback control.

  17. Liquid crystal-based hydrophone arrays

    NASA Astrophysics Data System (ADS)

    Brodzeli, Zourab; Silvestri, Leonardo; Michie, Andrew; Chigrinov, Vladimir G.; Guo, Qi; Pozhidaev, Eugene P.; Kiselev, Alexei D.; Ladouceur, Francois

    2012-09-01

    We describe a fiber optic hydrophone array system that could be used for underwater acoustic surveillance applications (e.g. military, counter terrorist, and customs authorities in protecting ports and harbors), offshore production facilities or coastal approaches as well as various marine applications. In this paper, we propose a new approach to underwater sonar systems using the voltage-controlled liquid crystals and simple multiplexing method. The proposed method permits measurement of sound under water at multiple points along an optical fiber using the low cost components and standard single mode fiber, without complex interferometric measurement techniques, electronics or demodulation software.

  18. Tactile sensing array based on conductive rubber

    NASA Astrophysics Data System (ADS)

    Qin, Lan; Liu, Ying; Li, Qing

    2006-11-01

    As a very important part in the robot sensory system, tactile sensing, like hearing and vision, is a particular means by which the robot acquires information from outside environment. In this paper, the theory model of intelligent robot tactile sensing costume is demonstrated, and further, according to the piezo-resistive property of conductive rubber the sensing costume made of tactile array is proposed. In the system, a practical system is designed for signal processing, data gathering and displaying. Results got from experiments are satisfactory.

  19. Reconstruction of nonstationary sound fields based on the time domain plane wave superposition method.

    PubMed

    Zhang, Xiao-Zheng; Thomas, Jean-Hugh; Bi, Chuan-Xing; Pascal, Jean-Claude

    2012-10-01

    A time-domain plane wave superposition method is proposed to reconstruct nonstationary sound fields. In this method, the sound field is expressed as a superposition of time convolutions between the estimated time-wavenumber spectrum of the sound pressure on a virtual source plane and the time-domain propagation kernel at each wavenumber. By discretizing the time convolutions directly, the reconstruction can be carried out iteratively in the time domain, thus providing the advantage of continuously reconstructing time-dependent pressure signals. In the reconstruction process, the Tikhonov regularization is introduced at each time step to obtain a relevant estimate of the time-wavenumber spectrum on the virtual source plane. Because the double infinite integral of the two-dimensional spatial Fourier transform is discretized directly in the wavenumber domain in the proposed method, it does not need to perform the two-dimensional spatial fast Fourier transform that is generally used in time domain holography and real-time near-field acoustic holography, and therefore it avoids some errors associated with the two-dimensional spatial fast Fourier transform in theory and makes possible to use an irregular microphone array. The feasibility of the proposed method is demonstrated by numerical simulations and an experiment with two speakers.

  20. Hydrogen sensing array based on weak fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Bai, Wei; Yang, Minghong; Hu, Chenyuan; Dai, Jixiang; Li, Zhi; Yu, Haihu

    2015-09-01

    Optical fiber hydrogen sensing system based on weak fiber Bragg grating (WFBG) array deposited with palladium (Pd) film is proposed and experimentally demonstrated. For multi-point measurement, three hydrogen WFBG sensors array are weld in a single optical fiber. A time-division multiplexing (TDM) interrogation system is employed to demodulate the sensing array. Sensing experiments to different hydrogen concentrations ranging from 0 to 3.6% are conducted, and the results show good agreement with standard FBG technology. Due to its strong multiplexing capability of weak FBG, the system is possible to integrate thousands of WFBG hydrogen sensors in a single optical fiber.

  1. A buffer direct injection and direct injection readout circuit with mode selection design for infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Sun, Tai-Ping; Lu, Yi-Chuan; Kang, Lai-Li; Shieh, Hsiu-Li

    2014-03-01

    This paper proposes a solution to the excessive area penalty associated with traditional buffer direct injection (BDI) for single pixel. The proposed solution reduces the area and power consumption of BDI to combine the direct injection (DI) within a shared architecture, while a dual-mode readout circuit expands the functionality and performance of the array readout circuit of infrared sensor. An experimental array of 10 × 8 readout circuits was fabricated using TSMC 2P4M 0.35 μm 5 V technology. Measurements were obtained using a main clock with a frequency of 3 MHz and power consumption of 9.94 mW. The minimum input current was 119 pA in BDI and 1.85 pA in DI. The signal swing was 2 V, the root mean square noise voltage was 1.84 mV, and the signal-to-noise ratio was 60 dB. This approach is applicable to mid- and long-band sensors to increase injection efficiency and resolution.

  2. Arrays of hollow out-of-plane microneedles made by metal electrodeposition onto solvent cast conductive polymer structures

    NASA Astrophysics Data System (ADS)

    Mansoor, I.; Liu, Y.; Häfeli, U. O.; Stoeber, B.

    2013-08-01

    Transdermal drug delivery using microneedles is a technique to potentially replace hypodermic needles for injection of many vaccines and drugs. Fabrication of hollow metallic microneedles so far has been associated with time-consuming steps that restrict batch production of these devices. Here, we are presenting a novel method for making metallic microneedles with any desired height, spacing, and lumen size. In our process, we use solvent casting to coat a mold, which contains an array of pillars, with a conductive polymer composite layer. The conductive layer is then used as a seed layer in a metal electrodeposition process. To characterize the process, the conductivity of the polymer composite with respect to different filler concentrations was investigated. In addition, plasma etching of the polymer was characterized. The electroplating process was also studied further to control the thickness of the microneedle array plate. The strength of the microneedle devices was evaluated through a series of compression tests, while their performance for transdermal drug delivery was tested by injection of 2.28 µm fluorescent microspheres into animal skin. The fabricated metallic microneedles seem appropriate for subcutaneous delivery of drugs and microspheres.

  3. An Energy-Based Method for Computing Radial Stiffness of Single Archimedes Spiral Plane Supporting Spring

    NASA Astrophysics Data System (ADS)

    Zheng, Enlai; Jia, Fang; Lu, Changhui; Chen, He; Ji, Xin

    With space-based adaptive performance of lower stiffness and greater deformation energy, the plane supporting spring finds its wide application in fields like aeronautics, astronautics, etc. In the current study, the radial stiffness formula of a single Archimedes spiral plane supporting spring is derived by means of energy approach, with three key parameters of the supporting spring as independent variables. A series of the supporting spring FEA models are established via APDL speedy modeling. According to the isolation requirements of electronic equipment for a fighter, an example is presented in the form of finite element analysis. The theoretical calculation and analysis data are studied and fitted by MATLAB using the least-square method to obtain the discipline of the radial stiffness of single spiral plane supporting spring with the changes of its three key parameters. The validity of energy-based radial stiffness formula of the spring is confirmed by the comparison between the theoretical calculation and finite element analysis results.

  4. Optimum plane selection for transport-of-intensity-equation-based solvers.

    PubMed

    Martinez-Carranza, J; Falaggis, K; Kozacki, T

    2014-10-20

    Deterministic single beam phase retrieval techniques based on the transport of intensity equation (TIE) use the axial intensity derivative obtained from a series of intensities recorded along the propagation axis as an input to the TIE-based solver. The common belief is that, when reducing the error present in the axial intensity derivative, there will be minimal error in the retrieved phase. Thus, reported optimization schemes of measurement condition focuses on the minimization of error in the axial intensity derivative. As it is shown in this contribution, this assumption is not correct and leads to underestimating the value of plane separation, which increases the phase retrieval errors and sensitivity to noise of the TIE-based measurement system. Therefore, in this paper, a detailed analysis that shows the existence of an optimal separation that minimizes the error in the retrieved phase for a given TIE-based solver is carried out. The developed model is used to derive analytical expressions that provide an optimal plane separation for a given number of planes and level of noise for the case of equidistant plane separation. The obtained results are derived for the widely used Fourier-transform-based TIE solver, but it is shown that they can also be applied to multigrid-based techniques.

  5. Characterization of winds through the rotor plane using a phased array SODAR and recommendations for future work.

    SciTech Connect

    Deola, Regina Anne

    2010-02-01

    Portable remote sensing devices are increasingly needed to cost effectively characterize the meteorology at a potential wind energy site as the size of modern wind turbines increase. A short term project co-locating a Sound Detection and Ranging System (SODAR) with a 200 meter instrumented meteorological tower at the Texas Tech Wind Technology Field Site was performed to collect and summarize wind information through an atmospheric layer typical of utility scale rotor plane depths. Data collected identified large speed shears and directional shears that may lead to unbalanced loads on the rotors. This report identifies suggestions for incorporation of additional data in wind resource assessments and a few thoughts on the potential for using a SODAR or SODAR data to quantify or investigate other parameters that may be significant to the wind industry.

  6. Microfabricated artificial-muscle-based microvalve array

    NASA Astrophysics Data System (ADS)

    He, KeQin; Peteu, Serban F.; Madou, Marc J.

    2001-09-01

    Artificial muscle is defined herein as a blend of a hydrogel and a redox polymer, which dramatically swells and shrinks under environmental stimuli. This actuator can be applied to micro fabricating valves for controlled delivery systems. Previous work in our group has shown that a blend of poly(2- hydroxy ethyl)methacrylate (polyHEMA) and polyaniline displayed significant swelling and shrinking upon application of an electrochemical bias. In this type of artificial muscle, polyaniline, a redox polymer, acts as the 'electronic backbone' for transferring for most of the swelling and shrinking. However, polyHEMA showed only weak swelling an shrinking in a chemimechanical system, thus purpose of the current study is to enhance the artificial muscle actuating properties. An optimized hydrogel swelled up to 1000 percent in alkaline solution and contracted 70 percent in acid solution. An artificial muscle microvalve array was also micro fabricated and tested. These results could lead to a smart wireless drug delivery implanted system.

  7. On the potential of atmospheric Cherenkov telescope arrays for resolving TeV gamma-ray sources in the Galactic plane

    NASA Astrophysics Data System (ADS)

    Ambrogi, L.; De Oña Wilhelmi, E.; Aharonian, F.

    2016-07-01

    The potential of an array of imaging atmospheric Cherenkov telescopes to detect gamma-ray sources in complex regions has been investigated. The basic characteristics of the gamma-ray instrument have been parameterized using simple analytic representations. In addition to the ideal (Gaussian form) point spread function (PSF), the impact of more realistic non-Gaussian PSFs with tails has been considered. Simulations of isolated point-like and extended sources have been used as a benchmark to test and understand the response of the instrument. The capability of the instrument to resolve multiple sources has been analyzed and the corresponding instrument sensitivities calculated. The results are of particular interest for weak gamma-ray emitters located in crowded regions of the Galactic plane, where the chance of clustering of two or more gamma-ray sources within 1 deg is high.

  8. Analysis of the Maillard reaction in human hair using Fourier transform infrared spectroscopic imaging and a focal-plane array detector.

    PubMed

    Jung, In-Keun; Park, Sang-Chul; Bin, Sung-Ah; Roh, Young Sup; Lee, John Hwan; Kim, Boo-Min

    2016-03-01

    The Maillard reaction has been well researched and used in the food industry and the fields of environmental science and organic chemistry. Here, we induced the Maillard reaction inside human hair and analyzed its effects by using Fourier transform infrared spectroscopy with a focal-plane array (FTIR-FPA) detector. We used arginine (A), glycine (G), and D-xylose (X) to generate the Maillard reaction by dissolving them in purified water and heating it to 150 °C. This label-free process generated a complex compound (named AGX after its ingredients) with a monomer structure, which was determined by using nuclear magnetic resonance (NMR) and FTIR-FPA. This compound was stable in hair and substantially increased its tensile strength. To our knowledge, we are the first to report the formation of this monomer in human hair, and our study provides insights into a new method that could be used to improve the condition of damaged or aging hair.

  9. Autofocus technique for three-dimensional imaging, direct-detection laser radar using Geiger-mode avalanche photodiode focal-plane array.

    PubMed

    Oh, Min Seok; Kong, Hong Jin; Kim, Tae Hoon; Jo, Sung Eun

    2010-12-15

    An autofocus technique is proposed for a three-dimensional imaging, direct-detection laser radar system that uses a Geiger-mode avalanche photodiode focal plane array (GmAPD-FPA). This technique is implemented by pointing laser pulses on a target of interest and observing its scattered photon distribution on a GmAPD-FPA. Measuring the standard deviation of the photon distribution on a GmAPD-FPA enables the best focus condition to be found. The feasibility of this technique is demonstrated experimentally by employing a 1 × 8 pixel GmAPD-FPA. It is shown that the spatial resolution improves when the GmAPD-FPA is located in the best focus position found by the autofocus technique.

  10. Learning-based scan plane identification from fetal head ultrasound images

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoming; Annangi, Pavan; Gupta, Mithun; Yu, Bing; Padfield, Dirk; Banerjee, Jyotirmoy; Krishnan, Kajoli

    2012-03-01

    Acquisition of a clinically acceptable scan plane is a pre-requisite for ultrasonic measurement of anatomical features from B-mode images. In obstetric ultrasound, measurement of gestational age predictors, such as biparietal diameter and head circumference, is performed at the level of the thalami and cavum septum pelucidi. In an accurate scan plane, the head can be modeled as an ellipse, the thalami looks like a butterfly, the cavum appears like an empty box and the falx is a straight line along the major axis of a symmetric ellipse inclined either parallel to or at small angles to the probe surface. Arriving at the correct probe placement on the mother's belly to obtain an accurate scan plane is a task of considerable challenge especially for a new user of ultrasound. In this work, we present a novel automated learning-based algorithm to identify an acceptable fetal head scan plane. We divide the problem into cranium detection and a template matching to capture the composite "butterfly" structure present inside the head, which mimics the visual cues used by an expert. The algorithm uses the stateof- the-art Active Appearance Models techniques from the image processing and computer vision literature and tie them to presence or absence of the inclusions within the head to automatically compute a score to represent the goodness of a scan plane. This automated technique can be potentially used to train and aid new users of ultrasound.

  11. Study on application of capillary plane radiation air conditioning system based on the slope roof

    NASA Astrophysics Data System (ADS)

    Li, Y. G.; Wang, T. T.; Liu, X. L.; Dong, X. Z.

    2016-08-01

    In this paper, based on the principle of the capillary plane radiation air conditioning system, taking the slope roof as an example, the application of the capillary plane radiation airconditioning system is studied and analysed. Then the numerical solution of differential equations is obtained by the technology of CFD. Finally, we analyze the distribution of indoor temperature of the slope roof and the predicted mean votes (PMV) using Airpak simulation software by establishing a physical model. The results show that the PMV of different sections ranges from 0 to 2.5, which meets the requirement of the comfort. These provide a theoretical basis for application and promotion of capillary plane in the slope roof.

  12. Image-based pupil plane characterization via principal component analysis for EUVL tools

    NASA Astrophysics Data System (ADS)

    Levinson, Zac; Burbine, Andrew; Verduijn, Erik; Wood, Obert; Mangat, Pawitter; Goldberg, Kenneth A.; Benk, Markus P.; Wojdyla, Antoine; Smith, Bruce W.

    2016-03-01

    We present an approach to image-based pupil plane amplitude and phase characterization using models built with principal component analysis (PCA). PCA is a statistical technique to identify the directions of highest variation (principal components) in a high-dimensional dataset. A polynomial model is constructed between the principal components of through-focus intensity for the chosen binary mask targets and pupil amplitude or phase variation. This method separates model building and pupil characterization into two distinct steps, thus enabling rapid pupil characterization following data collection. The pupil plane variation of a zone-plate lens from the Semiconductor High-NA Actinic Reticle Review Project (SHARP) at Lawrence Berkeley National Laboratory will be examined using this method. Results will be compared to pupil plane characterization using a previously proposed methodology where inverse solutions are obtained through an iterative process involving least-squares regression.

  13. Phased-array sources based on nonlinear metamaterial nanocavities

    SciTech Connect

    Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P.; Liu, Sheng; Luk, Ting S.; Kadlec, Emil Andrew; Shaner, Eric A.; Klem, John Frederick; Sinclair, Michael B.; Brener, Igal

    2015-07-01

    Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (~5 μm): a beam splitter and a polarizing beam splitter. As a result, proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.

  14. Phased-array sources based on nonlinear metamaterial nanocavities.

    PubMed

    Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P; Liu, Sheng; Luk, Ting S; Kadlec, Emil A; Shaner, Eric A; Klem, John F; Sinclair, Michael B; Brener, Igal

    2015-07-01

    Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5 μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.

  15. Pixel isolation of low dark-current large-format InAs/GaSb superlattice complementary barrier infrared detector focal plane arrays with high fill factor

    NASA Astrophysics Data System (ADS)

    Nguyen, Jean; Hill, Cory J.; Rafol, Don; Keo, Sam; Soibel, Alexander; Ting, David Z.-Y.; Mumolo, Jason; Liu, John; Gunapala, Sarath D.

    2011-01-01

    Low dark current and high fill factor are two crucial characteristics for the realization of the InAs/GaSb superlattice (SL) technology as third generation focal plane arrays (FPAs). Recent development proved high performance results for the complementary barrier infrared detector (CBIRD) design, and a high-quality etch technique is required to minimize surface leakage currents. We report on a n-CBIRD with 10.3 μm cutoff, exhibiting a responsivity of 1.7 A/W and dark current density of 1×10-5 A/cm2 at 77K under 0.2 V bias, without AR coating and without passivation. Results from four different mesa isolation techniques are compared on single element diodes: chemical wet etch using C4H6O6:H3PO4:H2O2:H2O, BCl3/Ar inductively coupled plasma (ICP), CH4/H2/Ar ICP, and CH4/H2/BCl3/Cl2/Ar ICP. The CH4/H2/BCl3/Cl2/Ar etched structures yielded more than 2.5 times improvement in dark current density and nearvertical sidewalls. Using this etching technique, we then implement a 1k x 1k p-CBIRD array with 11.5 μm cutoff and peak responsivity of 3 A/W. Operating at T = 80K, the array yielded a 81% fill factor with 98% operability and performance results of 21% quantum efficiency, 53 mK NE▵T, and NEI of 6.9×1013 photons/sec-cm2.

  16. A Transmission Line Matrix model for sound propagation in arrays of cylinders normal to an impedance plane

    NASA Astrophysics Data System (ADS)

    Chobeau, Pierre; Guillaume, Gwenaël; Picaut, Judicaël; Ecotière, David; Dutilleux, Guillaume

    2017-02-01

    The present paper focuses on two of the acoustic phenomena involved in sound propagation through forested areas, namely multiple scattering caused by tree trunks at mid-frequencies and ground effect at low frequencies. The use of time domain methods can be of interest for the simulation of transient phenomena such as scattering. The study aims at evaluating the ability of an alternative time-domain approach, the Transmission Line Matrix (TLM) method, to model sound scattering by cylindrical scatterers. The TLM method is applied to the study of both single and multiple scattering coupled to ground effects, in two- and three-dimensional domains. Keeping in mind the initial purpose of this study, the size and the location of the scatterers (tree trunks), as well as the noise frequency range, are related to outdoor noise propagation in realistic forests. In order to validate the TLM method, numerical simulations are compared to analytical solutions as well as measurements on 1:10 scale-models. The most complete cases of cylinders arrays placed normal to impedance floors are in agreement with the measurement results.

  17. Vision communications based on LED array and imaging sensor

    NASA Astrophysics Data System (ADS)

    Yoo, Jong-Ho; Jung, Sung-Yoon

    2012-11-01

    In this paper, we propose a brand new communication concept, called as "vision communication" based on LED array and image sensor. This system consists of LED array as a transmitter and digital device which include image sensor such as CCD and CMOS as receiver. In order to transmit data, the proposed communication scheme simultaneously uses the digital image processing and optical wireless communication scheme. Therefore, the cognitive communication scheme is possible with the help of recognition techniques used in vision system. By increasing data rate, our scheme can use LED array consisting of several multi-spectral LEDs. Because arranged each LED can emit multi-spectral optical signal such as visible, infrared and ultraviolet light, the increase of data rate is possible similar to WDM and MIMO skills used in traditional optical and wireless communications. In addition, this multi-spectral capability also makes it possible to avoid the optical noises in communication environment. In our vision communication scheme, the data packet is composed of Sync. data and information data. Sync. data is used to detect the transmitter area and calibrate the distorted image snapshots obtained by image sensor. By making the optical rate of LED array be same with the frame rate (frames per second) of image sensor, we can decode the information data included in each image snapshot based on image processing and optical wireless communication techniques. Through experiment based on practical test bed system, we confirm the feasibility of the proposed vision communications based on LED array and image sensor.

  18. Memory cell operation based on small Josephson junctions arrays

    NASA Astrophysics Data System (ADS)

    Braiman, Y.; Nair, N.; Rezac, J.; Imam, N.

    2016-12-01

    In this paper we analyze a cryogenic memory cell circuit based on a small coupled array of Josephson junctions. All the basic memory operations (e.g., write, read, and reset) are implemented on the same circuit and different junctions in the array can in principle be utilized for these operations. The presented memory operation paradigm is fundamentally different from conventional single quantum flux operation logics (SFQ). As an example, we demonstrate memory operation driven by a SFQ pulse employing an inductively coupled array of three Josephson junctions. We have chosen realistic Josephson junction parameters based on state-of-the-art fabrication capabilities and have calculated access times and access energies for basic memory cell operations. We also implemented an optimization procedure based on the simulated annealing algorithm to calculate the optimized and typical values of access times and access energies.

  19. Applications of pyroelectric materials in array-based detectors.

    PubMed

    Holden, Anthony J

    2011-09-01

    The development of low-cost, uncooled (room temperature operation) thermal detector arrays has been accelerating in recent years and now commercial products are becoming widely available. As costs come down and volumes rise, these devices are entering the consumer marketplace, providing everything from sophisticated security and people-monitoring devices to hand-held thermal imagers for preventative maintenance and building inspection. Two technologies have established significant market shares in uncooled thermal detector array products. These are resistive microbolometers and pyroelectric ceramics. To address the true mass market, the pyroelectric arrays offer significant cost advantage. In this paper, recent developments in a variety of products based on pyroelectric ceramic arrays are described and their performance and applicability are compared and contrasted with competing technologies. This includes the use of low-element-count arrays for applications in people counting and queue measurement, and the drive for cost-effective imaging arrays for mass-market thermal imaging. The technical challenges in materials production, device development, and low-cost manufacture are reviewed and future opportunities and challenges are outlined.

  20. Deployable aerospace PV array based on amorphous silicon alloys

    NASA Technical Reports Server (NTRS)

    Hanak, Joseph J.; Walter, Lee; Dobias, David; Flaisher, Harvey

    1989-01-01

    The development of the first commercial, ultralight, flexible, deployable, PV array for aerospace applications is discussed. It is based on thin-film, amorphous silicon alloy, multijunction, solar cells deposited on a thin metal or polymer by a proprietary, roll-to-roll process. The array generates over 200 W at AM0 and is made of 20 giant cells, each 54 cm x 29 cm (1566 sq cm in area). Each cell is protected with bypass diodes. Fully encapsulated array blanket and the deployment mechanism weigh about 800 and 500 g, respectively. These data yield power per area ratio of over 60 W/sq m specific power of over 250 W/kg (4 kg/kW) for the blanket and 154 W/kg (6.5 kg/kW) for the power system. When stowed, the array is rolled up to a diameter of 7 cm and a length of 1.11 m. It is deployed quickly to its full area of 2.92 m x 1.11 m, for instant power. Potential applications include power for lightweight space vehicles, high altitude balloons, remotely piloted and tethered vehicles. These developments signal the dawning of a new age of lightweight, deployable, low-cost space arrays in the range from tens to tens of thousands of watts for near-term applications and the feasibility of multi-100 kW to MW arrays for future needs.

  1. Deployable aerospace PV array based on amorphous silicon alloys

    NASA Astrophysics Data System (ADS)

    Hanak, Joseph J.; Walter, Lee; Dobias, David; Flaisher, Harvey

    1989-04-01

    The development of the first commercial, ultralight, flexible, deployable, PV array for aerospace applications is discussed. It is based on thin-film, amorphous silicon alloy, multijunction, solar cells deposited on a thin metal or polymer by a proprietary, roll-to-roll process. The array generates over 200 W at AM0 and is made of 20 giant cells, each 54 cm x 29 cm (1566 sq cm in area). Each cell is protected with bypass diodes. Fully encapsulated array blanket and the deployment mechanism weigh about 800 and 500 g, respectively. These data yield power per area ratio of over 60 W/sq m specific power of over 250 W/kg (4 kg/kW) for the blanket and 154 W/kg (6.5 kg/kW) for the power system. When stowed, the array is rolled up to a diameter of 7 cm and a length of 1.11 m. It is deployed quickly to its full area of 2.92 m x 1.11 m, for instant power. Potential applications include power for lightweight space vehicles, high altitude balloons, remotely piloted and tethered vehicles. These developments signal the dawning of a new age of lightweight, deployable, low-cost space arrays in the range from tens to tens of thousands of watts for near-term applications and the feasibility of multi-100 kW to MW arrays for future needs.

  2. Small Arrays for Seismic Intruder Detections: A Simulation Based Experiment

    NASA Astrophysics Data System (ADS)

    Pitarka, A.

    2014-12-01

    Seismic sensors such as geophones and fiber optic have been increasingly recognized as promising technologies for intelligence surveillance, including intruder detection and perimeter defense systems. Geophone arrays have the capability to provide cost effective intruder detection in protecting assets with large perimeters. A seismic intruder detection system uses one or multiple arrays of geophones design to record seismic signals from footsteps and ground vehicles. Using a series of real-time signal processing algorithms the system detects, classify and monitors the intruder's movement. We have carried out numerical experiments to demonstrate the capability of a seismic array to detect moving targets that generate seismic signals. The seismic source is modeled as a vertical force acting on the ground that generates continuous impulsive seismic signals with different predominant frequencies. Frequency-wave number analysis of the synthetic array data was used to demonstrate the array's capability at accurately determining intruder's movement direction. The performance of the array was also analyzed in detecting two or more objects moving at the same time. One of the drawbacks of using a single array system is its inefficiency at detecting seismic signals deflected by large underground objects. We will show simulation results of the effect of an underground concrete block at shielding the seismic signal coming from an intruder. Based on simulations we found that multiple small arrays can greatly improve the system's detection capability in the presence of underground structures. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

  3. Midsagittal plane extraction from brain images based on 3D SIFT

    NASA Astrophysics Data System (ADS)

    Wu, Huisi; Wang, Defeng; Shi, Lin; Wen, Zhenkun; Ming, Zhong

    2014-03-01

    Midsagittal plane (MSP) extraction from 3D brain images is considered as a promising technique for human brain symmetry analysis. In this paper, we present a fast and robust MSP extraction method based on 3D scale-invariant feature transform (SIFT). Unlike the existing brain MSP extraction methods, which mainly rely on the gray similarity, 3D edge registration or parameterized surface matching to determine the fissure plane, our proposed method is based on distinctive 3D SIFT features, in which the fissure plane is determined by parallel 3D SIFT matching and iterative least-median of squares plane regression. By considering the relative scales, orientations and flipped descriptors between two 3D SIFT features, we propose a novel metric to measure the symmetry magnitude for 3D SIFT features. By clustering and indexing the extracted SIFT features using a k-dimensional tree (KD-tree) implemented on graphics processing units, we can match multiple pairs of 3D SIFT features in parallel and solve the optimal MSP on-the-fly. The proposed method is evaluated by synthetic and in vivo datasets, of normal and pathological cases, and validated by comparisons with the state-of-the-art methods. Experimental results demonstrated that our method has achieved a real-time performance with better accuracy yielding an average yaw angle error below 0.91° and an average roll angle error no more than 0.89°.

  4. Research on battery array based on solar power

    NASA Astrophysics Data System (ADS)

    Li, Junhong

    2017-03-01

    Almost all of the energy of solar power supply system comes from solar energy, which is a kind of pollution-free green energy, using independent photovoltaic system as base station power supply. In this paper, taking the solar power system as the research object, we made MATLAB simulation analysis of the independent solar photovoltaic system battery array. The simulation results showed that the output voltage and the output current of the solar array based on solar power system are affected by the illumination intensity and temperature change. In addition, it also showed that at any temperature and illumination intensity, there will a largest output power.

  5. Low Power Systolic Array Based Digital Filter for DSP Applications

    PubMed Central

    Karthick, S.; Valarmathy, S.; Prabhu, E.

    2015-01-01

    Main concepts in DSP include filtering, averaging, modulating, and correlating the signals in digital form to estimate characteristic parameter of a signal into a desirable form. This paper presents a brief concept of low power datapath impact for Digital Signal Processing (DSP) based biomedical application. Systolic array based digital filter used in signal processing of electrocardiogram analysis is presented with datapath architectural innovations in low power consumption perspective. Implementation was done with ASIC design methodology using TSMC 65 nm technological library node. The proposed systolic array filter has reduced leakage power up to 8.5% than the existing filter architectures. PMID:25922854

  6. Low Power Systolic Array Based Digital Filter for DSP Applications.

    PubMed

    Karthick, S; Valarmathy, S; Prabhu, E

    2015-01-01

    Main concepts in DSP include filtering, averaging, modulating, and correlating the signals in digital form to estimate characteristic parameter of a signal into a desirable form. This paper presents a brief concept of low power datapath impact for Digital Signal Processing (DSP) based biomedical application. Systolic array based digital filter used in signal processing of electrocardiogram analysis is presented with datapath architectural innovations in low power consumption perspective. Implementation was done with ASIC design methodology using TSMC 65 nm technological library node. The proposed systolic array filter has reduced leakage power up to 8.5% than the existing filter architectures.

  7. A New Multiaxial High-Cycle Fatigue Criterion Based on the Critical Plane for Ductile and Brittle Materials

    NASA Astrophysics Data System (ADS)

    Wang, Cong; Shang, De-Guang; Wang, Xiao-Wei

    2015-02-01

    An improved high-cycle multiaxial fatigue criterion based on the critical plane was proposed in this paper. The critical plane was defined as the plane of maximum shear stress (MSS) in the proposed multiaxial fatigue criterion, which is different from the traditional critical plane based on the MSS amplitude. The proposed criterion was extended as a fatigue life prediction model that can be applicable for ductile and brittle materials. The fatigue life prediction model based on the proposed high-cycle multiaxial fatigue criterion was validated with experimental results obtained from the test of 7075-T651 aluminum alloy and some references.

  8. A micromachined pressure sensor based on an array of microswitches

    NASA Astrophysics Data System (ADS)

    Park, Chang-Sin; Lee, Dong-Weon

    2010-05-01

    A micromachined pressure sensor based on an array of microswitches is presented. The pressure sensor consists of a silicon substrate that has a thin metal-deposited diaphragm and indium tin oxide (ITO)-based switch arrays patterned on a Pyrex glass. When pressure is applied to the thin diaphragm through a small tube, the diaphragm starts to deform and contact the array of switches at a certain pressure level. The increase in the contact area due to the diaphragm deformation causes the change in electrical resistance between two terminals of the ITO resistor. The change in resistance that corresponds to electrical output in the pressure sensor is measured by the use of a simple circuit. We also describe the results of numerical simulations that are carried out to find a suitable range of the pressure. The simulation results are in good agreement with the experimental results.

  9. An improved enhancement layer for octree based point cloud compression with plane projection approximation

    NASA Astrophysics Data System (ADS)

    Ainala, Khartik; Mekuria, Rufael N.; Khathariya, Birendra; Li, Zhu; Wang, Ye-Kui; Joshi, Rajan

    2016-09-01

    Recent advances in point cloud capture and applications in VR/AR sparked new interests in the point cloud data compression. Point Clouds are often organized and compressed with octree based structures. The octree subdivision sequence is often serialized in a sequence of bytes that are subsequently entropy encoded using range coding, arithmetic coding or other methods. Such octree based algorithms are efficient only up to a certain level of detail as they have an exponential run-time in the number of subdivision levels. In addition, the compression efficiency diminishes when the number of subdivision levels increases. Therefore, in this work we present an alternative enhancement layer to the coarse octree coded point cloud. In this case, the base layer of the point cloud is coded in known octree based fashion, but the higher level of details are coded in a different way in an enhancement layer bit-stream. The enhancement layer coding method takes the distribution of the points into account and projects points to geometric primitives, i.e. planes. It then stores residuals and applies entropy encoding with a learning based technique. The plane projection method is used for both geometry compression and color attribute compression. For color coding the method is used to enable efficient raster scanning of the color attributes on the plane to map them to an image grid. Results show that both improved compression performance and faster run-times are achieved for geometry and color attribute compression in point clouds.

  10. MEMS-based sensor arrays for military applications

    NASA Astrophysics Data System (ADS)

    Ruffin, Paul B.

    2002-07-01

    Scientists and engineers at the Army Aviation Missile Command's (AMCOM) Research, Development and Engineering Center (RDEC) are cooperatively working with the Defense Advanced Research Projects Agency (DARPA), other Army agencies, and industry to provide technical solutions for the Army's transformation efforts into the 21st Century force. Advanced technologies are being exposed to achieve the performance and cost goals dictated by the emerging missions of the Transformed Army. It is well established that MEMS technology offers the potential solution to cost, size, and weight issues for the soldier, missile, gun, ground vehicles, and aircraft applications. MEMS sensor arrays are currently being investigated to meet system performance requirements and provide more robust mission capability. A Science and Technology Objective, Research and Development Project is underway at AMCOM/RDEC to develop controlled MEMS sensor arrays to provide for full military dynamic performance ranges using miniature sensor system. MEMS-based angular rate sensors are enhanced with vibration feedback form MEMS accelerometers for output signal stabilization in high-vibration environments. Multi-range MEMS-based accelerometers, cooperatively developed by Government and industry, are being multiplexed to provide dynamic range expansion. An array of integrated accelerometers is expected to increase the dynamic range by an order of magnitude. Future projections suggest that MEMS sensor array technology will be applicable to a broad range of military applications, which include environmental sensor suites for structural health monitoring and forward reconnaissance and surveillance; and optical and radio frequency phased arrays for fast beam steering.

  11. Stochastic dual-plane on-axis digital holography based on Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Fengpeng; Wang, Dayong; Rong, Lu; Wang, Yunxin; Zhao, Jie

    2016-09-01

    For traditional dual-plane on-axis digital holography, the robustness is lower because it is difficult to maintain the stability of the phase difference between the object beam and the reference beam, and it may be invalid when the objects are on the surface of a medium with uneven thickness. An improved dual-plane digital holographic method based on Mach-Zehnder interferometer is presented to address these problems. Two holograms are recorded at two different planes separated by a small distance. Then, the zero-order image and conjugated image are eliminated by Fourier domain processing. In order to enhance the robustness of the system, the object is illuminated by a stochastic beam that is a speckle wave produced by a diffuser. Simulated and experimental results are shown to demonstrate that the proposed method has greater robustness than the traditional dual-plane on-axis digital holography and it can be used to imaging on the irregular surface of a transparent medium.

  12. Design and optimization of arrays of neodymium iron boron-based magnets for magnetic tweezers applications

    SciTech Connect

    Zacchia, Nicholas A.; Valentine, Megan T.

    2015-05-15

    We present the design methodology for arrays of neodymium iron boron (NdFeB)-based magnets for use in magnetic tweezers devices. Using finite element analysis (FEA), we optimized the geometry of the NdFeB magnet as well as the geometry of iron yokes designed to focus the magnetic fields toward the sample plane. Together, the magnets and yokes form a magnetic array which is the basis of the magnetic tweezers device. By systematically varying 15 distinct shape parameters, we determined those features that maximize the magnitude of the magnetic field gradient as well as the length scale over which the magnetic force operates. Additionally, we demonstrated that magnetic saturation of the yoke material leads to intrinsic limitations in any geometric design. Using this approach, we generated a compact and light-weight magnetic tweezers device that produces a high field gradient at the image plane in order to apply large forces to magnetic beads. We then fabricated the optimized yoke and validated the FEA by experimentally mapping the magnetic field of the device. The optimization data and iterative FEA approach outlined here will enable the streamlined design and construction of specialized instrumentation for force-sensitive microscopy.

  13. Design and optimization of arrays of neodymium iron boron-based magnets for magnetic tweezers applications

    NASA Astrophysics Data System (ADS)

    Zacchia, Nicholas A.; Valentine, Megan T.

    2015-05-01

    We present the design methodology for arrays of neodymium iron boron (NdFeB)-based magnets for use in magnetic tweezers devices. Using finite element analysis (FEA), we optimized the geometry of the NdFeB magnet as well as the geometry of iron yokes designed to focus the magnetic fields toward the sample plane. Together, the magnets and yokes form a magnetic array which is the basis of the magnetic tweezers device. By systematically varying 15 distinct shape parameters, we determined those features that maximize the magnitude of the magnetic field gradient as well as the length scale over which the magnetic force operates. Additionally, we demonstrated that magnetic saturation of the yoke material leads to intrinsic limitations in any geometric design. Using this approach, we generated a compact and light-weight magnetic tweezers device that produces a high field gradient at the image plane in order to apply large forces to magnetic beads. We then fabricated the optimized yoke and validated the FEA by experimentally mapping the magnetic field of the device. The optimization data and iterative FEA approach outlined here will enable the streamlined design and construction of specialized instrumentation for force-sensitive microscopy.

  14. Small-Size Waveguide Diplexer Based on E-Plane Quasi-Planar Filters

    NASA Astrophysics Data System (ADS)

    Manuilov, M. B.; Kobrin, K. V.

    2016-09-01

    We propose a new small-size version of a waveguide diplexer based on quasi-planar filters with E-plane ridge sections and inductive diaphragms on a single metal inset made of a thin foil. The diplexer contains an E-plane waveguide bifurcation and a matching stepwise transition. The effective hybrid method, which is based on the Galerkin method allowing for the field singularity at the edges, the mode matching method, and the generalized scattering matrix method, has been developed for electrodynamic analysis of the given class of diplexers. We present characteristics of the optimized version of the design of a centimeter-wave diplexer, whose length is approximately 1.5 times shorter compared with known counerparts.

  15. Small Area Array-Based LED Luminaire Design

    SciTech Connect

    Thomas Yuan

    2008-01-09

    This report contains a summary of technical achievements during a three-year project to demonstrate high efficiency LED luminaire designs based on small area array-based gallium nitride diodes. Novel GaN-based LED array designs are described, specifically addressing the thermal, optical, electrical and mechanical requirements for the incorporation of such arrays into viable solid-state LED luminaires. This work resulted in the demonstration of an integrated luminaire prototype of 1000 lumens cool white light output with reflector shaped beams and efficacy of 89.4 lm/W at CCT of 6000oK and CRI of 73; and performance of 903 lumens warm white light output with reflector shaped beams and efficacy of 63.0 lm/W at CCT of 2800oK and CRI of 82. In addition, up to 1275 lumens cool white light output at 114.2 lm/W and 1156 lumens warm white light output at 76.5 lm/W were achieved if the reflector was not used. The success to integrate small area array-based LED designs and address thermal, optical, electrical and mechanical requirements was clearly achieved in these luminaire prototypes with outstanding performance and high efficiency.

  16. Detectors based on silicon photomultiplier arrays for medical imaging applications

    SciTech Connect

    Llosa, G.; Barrio, J.; Cabello, J.; Lacasta, C.; Oliver, J. F.; Stankova, V.; Solaz, C.

    2011-07-01

    Silicon photomultipliers (SiPMs) have experienced a fast development and are now employed in different research fields. The availability of 2D arrays that provide information of the interaction position in the detector has had a high interest for medical imaging. Continuous crystals combined with segmented photodetectors can provide higher efficiency than pixellated crystals and very high spatial resolution. The IRIS group at IFIC is working on the development of detector heads based on continuous crystals coupled to SiPM arrays for different applications, including a small animal PET scanner in collaboration with the Univ. of Pisa and INFN Pisa, and a Compton telescope for dose monitoring in hadron therapy. (authors)

  17. Mixed Linear/Square-Root Encoded Single Slope Ramp Provides a Fast, Low Noise Analog to Digital Converter with Very High Linearity for Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Wrigley, Christopher James (Inventor); Hancock, Bruce R. (Inventor); Newton, Kenneth W. (Inventor); Cunningham, Thomas J. (Inventor)

    2014-01-01

    An analog-to-digital converter (ADC) converts pixel voltages from a CMOS image into a digital output. A voltage ramp generator generates a voltage ramp that has a linear first portion and a non-linear second portion. A digital output generator generates a digital output based on the voltage ramp, the pixel voltages, and comparator output from an array of comparators that compare the voltage ramp to the pixel voltages. A return lookup table linearizes the digital output values.

  18. Fabrication of bifocal microlens arrays based on controlled electrohydrodynamic reflowing of pre-patterned polymer

    NASA Astrophysics Data System (ADS)

    Hu, Hong; Tian, Hongmiao; Shao, Jinyou; Ding, Yucheng; Jiang, Chengbao; Liu, Hongzhong

    2014-09-01

    An easy method based on electrohydrodynamic (EHD) reflowing of pre-patterned polymer is proposed in this study for the fabrication of bifocal microlens arrays (MLAs). The method comprises two sequential steps, i.e. hot embossing for generating a polymer-based micropillar array and EHD reflowing of the micropillars for the formation of a bifocal MLA with controllable surface shape and optical performance. The EHD reflowing process is achieved by applying a voltage across an electrode pair sandwiching an air gap and the pre-patterned polymer, and the EHD force induced on the air-polymer interface reshapes the pillar array into the MLA. The complex bifocal microlens can be achieved only when the electric intensity is stronger than that required to produce a commonly known Taylor cone, which is formed when the EHD force exactly surpasses the surface tension. Finally, the light through MLA is imaged on a moving charge-coupled device (CCD) camera and leads to an observation of two focal planes.

  19. Radiation-hard/high-speed array-based optical engine

    NASA Astrophysics Data System (ADS)

    Gan, K. K.; Buchholz, P.; Heidbrink, S.; Kagan, H. P.; Kass, R. D.; Moore, J.; Smith, D. S.; Vogt, M.; Ziolkowski, M.

    2016-12-01

    We have designed and fabricated a compact array-based optical engine for transmitting data at 10 Gb/s. The device consists of a 4-channel ASIC driving a VCSEL (Vertical Cavity Surface Emitting Laser) array in an optical package. The ASIC is designed using only core transistors in a 65 nm CMOS process to enhance the radiation-hardness. The ASIC contains an 8-bit DAC to control the bias and modulation currents of the individual channels in the VCSEL array. The DAC settings are stored in SEU (single event upset) tolerant registers. Several devices were irradiated with 24 GeV/c protons and the performance of the devices is satisfactory after the irradiation.

  20. Tin Oxide Nanorod Array-Based Electrochemical Hydrogen Peroxide Biosensor

    PubMed Central

    2010-01-01

    SnO2 nanorod array grown directly on alloy substrate has been employed as the working electrode of H2O2 biosensor. Single-crystalline SnO2 nanorods provide not only low isoelectric point and enough void spaces for facile horseradish peroxidase (HRP) immobilization but also numerous conductive channels for electron transport to and from current collector; thus, leading to direct electrochemistry of HRP. The nanorod array-based biosensor demonstrates high H2O2 sensing performance in terms of excellent sensitivity (379 μA mM−1 cm−2), low detection limit (0.2 μM) and high selectivity with the apparent Michaelis–Menten constant estimated to be as small as 33.9 μM. Our work further demonstrates the advantages of ordered array architecture in electrochemical device application and sheds light on the construction of other high-performance enzymatic biosensors. PMID:20596358

  1. Tin Oxide Nanorod Array-Based Electrochemical Hydrogen Peroxide Biosensor

    NASA Astrophysics Data System (ADS)

    Liu, Jinping; Li, Yuanyuan; Huang, Xintang; Zhu, Zhihong

    2010-07-01

    SnO2 nanorod array grown directly on alloy substrate has been employed as the working electrode of H2O2 biosensor. Single-crystalline SnO2 nanorods provide not only low isoelectric point and enough void spaces for facile horseradish peroxidase (HRP) immobilization but also numerous conductive channels for electron transport to and from current collector; thus, leading to direct electrochemistry of HRP. The nanorod array-based biosensor demonstrates high H2O2 sensing performance in terms of excellent sensitivity (379 μA mM-1 cm-2), low detection limit (0.2 μM) and high selectivity with the apparent Michaelis-Menten constant estimated to be as small as 33.9 μM. Our work further demonstrates the advantages of ordered array architecture in electrochemical device application and sheds light on the construction of other high-performance enzymatic biosensors.

  2. A multiple access communication network based on adaptive arrays

    NASA Technical Reports Server (NTRS)

    Zohar, S.

    1981-01-01

    A single frequency communication system is considered consisting of K possibly moving users distributed in space simultaneously communicating with a central station equipped with a computationally adapted array of n = or K antennas. Such a configuration could result if K spacecraft were to be simultaneously tracked by a single DSN complex consisting of an n antennas array. The array employs K sets of n weights to segregate the signals received from the K users. The weights are determined by direct computation based on known position information of the K users. Currently known techniques require (for n = K) about (4/3)K to the 4th power computer operations (multiply and add) to perform such computations. A technique that accomplishes this same goal in 8 K to the 3rd power operations, yielding a reduction by a factor K/6, was developed.

  3. Optical carbon dioxide sensor based on fluorescent capillary array

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Wen, Zhihui; Yang, Bo; Yang, Xuefeng

    A novel carbon dioxide (CO2) gas sensor based on capillary array is presented. The capillary array is composed of 51 capillaries and modified by fluorescent dye 8-hydroxy-1,3,6-pyrenetrisulfonic acid trisodium salt (HPTS, PTS-) and tetraoctylammonium cation (TOA+) doped porous ethyl cellulose. A Y-fiber is used to transmit exciting light and fluorescence. A fiber optic pigtail-contained spectrophotometer is used to collect and deal with optical signals. Due to its structural features, each capillary has the two rolling-up layers of inner and outer sensing films, which make the 2 cm long capillary array has large sensing area about 12.81 cm2 and the fluorescence signal easily be collected. The sensing probe has advantages such as small volume, compact structure and large sensing area. The results demonstrate that the sensor has a linear response in the CO2 volume ratio range from 0 to 10%.

  4. Neural network based analysis for chemical sensor arrays

    SciTech Connect

    Hashem, S.; Keller, P.E.; Kouzes, R.T.; Kangas, L.J.

    1995-04-01

    Compact, portable systems capable of quickly identifying contaminants in the field are of great importance when monitoring the environment. In this paper, we examine the effectiveness of using artificial neural networks for real-time data analysis of a sensor array. Analyzing the sensor data in parallel may allow for rapid identification of contaminants in the field without requiring highly selective individual sensors. We use a prototype sensor array which consists of nine tin-oxide Taguchi-type sensors, a temperature sensor, and a humidity sensor. We illustrate that by using neural network based analysis of the sensor data, the selectivity of the sensor array may be significantly improved, especially when some (or all) the sensors are not highly selective.

  5. Domain overlap matrices from plane-wave-based methods of electronic structure calculation

    NASA Astrophysics Data System (ADS)

    Golub, Pavlo; Baranov, Alexey I.

    2016-10-01

    Plane waves are one of the most popular and efficient basis sets for electronic structure calculations of solids; however, their delocalized nature makes it difficult to employ for them classical orbital-based methods of chemical bonding analysis. The quantum chemical topology approach, introducing chemical concepts via partitioning of real space into chemically meaningful domains, has no difficulties with plane-wave-based basis sets. Many popular tools employed within this approach, for instance delocalization indices, need overlap integrals over these domains—the elements of the so called domain overlap matrices. This article reports an efficient algorithm for evaluation of domain overlap matrix elements for plane-wave-based calculations as well as evaluation of its implementation for one of the most popular projector augmented wave (PAW) methods on the small set of simple and complex solids. The stability of the obtained results with respect to PAW calculation parameters has been investigated, and the comparison of the results with the results from other calculation methods has also been made.

  6. Telescope Array Control System Based on Wireless Touch Screen Platform

    NASA Astrophysics Data System (ADS)

    Fu, X. N.; Huang, L.; Wei, J. Y.

    2016-07-01

    GWAC (Ground-based Wide Angle Cameras) are the ground-based observational instruments of the Sino-French cooperation SVOM (Space Variable Objects Monitor) astronomical satellite, and Mini-GWAC is a pathfinder and supplement of GWAC. In the context of the Mini-GWAC telescope array, this paper introduces the design and implementation of a kind of telescope array control system, which is based on wireless serial interface module to communicate. We describe the development and implementation of the system in detail in terms of control system principle, system hardware structure, software design, experiment, and test. The system uses the touch-control PC which is based on the Windows CE system as the upper-computer, the wireless transceiver module and PLC (Programmable Logic Controller) as the core. It has the advantages of low cost, reliable data transmission, and simple operation. So far, the control system has been applied to Mini-GWAC successfully.

  7. Engineering of optical polarization based on electronic band structures of A-plane ZnO layers under biaxial strains

    SciTech Connect

    Matsui, Hiroaki Tabata, Hitoshi; Hasuike, Noriyuki; Harima, Hiroshi

    2014-09-21

    In-plane anisotropic strains in A-plane layers on the electronic band structure of ZnO were investigated from the viewpoint of optical polarization anisotropy. Investigations utilizing k·p perturbation theory revealed that energy transitions and associated oscillation strengths were dependent on in-plane strains. The theoretical correlation between optical polarizations and in-plane strains was experimentally demonstrated using A-plane ZnO layers with different in-plane strains. Finally, optical polarization anisotropy and its implications for in-plane optical properties are discussed in relation to the energy shift between two orthogonal directions. Higher polarization rotations were obtained in an A-plane ZnO layer with in-plane biaxially compressive strains as compared to strain-free ZnO. This study provides detailed information concerning the role played by in-plane strains in optically polarized applications based on nonpolar ZnO in the ultra-violet region.

  8. An automated image-based tool for pupil plane characterization of EUVL tools

    NASA Astrophysics Data System (ADS)

    Levinson, Zac; Smith, Jack S.; Fenger, Germain; Smith, Bruce W.

    2016-03-01

    Pupil plane characterization will play a critical role in image process optimization for EUV lithography (EUVL), as it has for several lithography generations. In EUVL systems there is additional importance placed on understanding the ways that thermally-induced system drift affect pupil variation during operation. In-situ full pupil characterization is therefore essential for these tools. To this end we have developed Quick Inverse Pupil (QUIP)—a software suite developed for rapid characterization of pupil plane behavior based on images formed by that system. The software consists of three main components: 1) an image viewer, 2) the model builder, and 3) the wavefront analyzer. The image viewer analyzes CDSEM micrographs or actinic mask micrographs to measure either CDs or through-focus intensity volumes. The software is capable of rotation correction and image registration with subpixel accuracy. The second component pre-builds a model for a particular imaging system to enable rapid pupil characterization. Finally, the third component analyzes the results from the image viewer and uses the optional pre-built model for inverse solutions of pupil plane behavior. Both pupil amplitude and phase variation can be extracted using this software. Inverse solutions are obtained through a model based algorithm which is built on top of commercial rigorous full-vector simulation software.

  9. Study of LWIR and VLWIR Focal Plane Array Developments: Comparison Between p-on- n and Different n-on- p Technologies on LPE HgCdTe

    NASA Astrophysics Data System (ADS)

    Gravrand, O.; Mollard, L.; Largeron, C.; Baier, N.; Deborniol, E.; Chorier, Ph.

    2009-08-01

    The very long infrared wavelength (>14 μm) is a very challenging range for the design of mercury cadmium telluride (HgCdTe) large focal plane arrays (FPAs). The need (mainly expressed by the space industry) for very long wave FPAs appears very difficult to fulfil. High homogeneity, low defect rate, high quantum efficiency, low dark current, and low excess noise are required. Indeed, for such wavelength, the corresponding HgCdTe gap becomes smaller than 100 meV and each step from the metallurgy to the technology becomes critical. This paper aims at presenting a status of long and very long wave FPAs developments at DEFIR (LETI-LIR/Sofradir joint venture). This study will focus on results obtained in our laboratory for three different ion implanted technologies: n-on- p mercury vacancies doped technology, n-on- p extrinsic doped technology, and p-on- n arsenic on indium technology. Special focus is given to 15 μm cutoff n/ p FPA fabricated in our laboratory demonstrating high uniformity, diffusion and shot noise limited photodiodes at 50 K.

  10. Composite x-ray image assembly for large-field digital mammography with one- and two-dimensional positioning of a focal plane array

    NASA Technical Reports Server (NTRS)

    Halama, G.; McAdoo, J.; Liu, H.

    1998-01-01

    To demonstrate the feasibility of a novel large-field digital mammography technique, a 1024 x 1024 pixel Loral charge-coupled device (CCD) focal plane array (FPA) was positioned in a mammographic field with one- and two-dimensional scan sequences to obtain 950 x 1800 pixel and 3600 x 3600 pixel composite images, respectively. These experiments verify that precise positioning of FPAs produced seamless composites and that the CCD mosaic concept has potential for high-resolution, large-field imaging. The proposed CCD mosaic concept resembles a checkerboard pattern with spacing left between the CCDs for the driver and readout electronics. To obtain a complete x-ray image, the mosaic must be repositioned four times, with an x-ray exposure at each position. To reduce the patient dose, a lead shield with appropriately patterned holes is placed between the x-ray source and the patient. The high-precision motorized translation stages and the fiber-coupled-scintillating-screen-CCD sensor assembly were placed in the position usually occupied by the film cassette. Because of the high mechanical precision, seamless composites were constructed from the subimages. This paper discusses the positioning, image alignment procedure, and composite image results. The paper only addresses the formation of a seamless composite image from subimages and will not consider the effects of the lead shield, multiple CCDs, or the speed of motion.

  11. Bottom-Up Fabrication of Single-Layered Nitrogen-Doped Graphene Quantum Dots through Intermolecular Carbonization Arrayed in a 2D Plane.

    PubMed

    Li, Rui; Liu, Yousong; Li, Zhaoqian; Shen, Jinpeng; Yang, Yuntao; Cui, Xudong; Yang, Guangcheng

    2016-01-04

    A single-layered intermolecular carbonization method was applied to synthesize single-layered nitrogen-doped graphene quantum dots (N-GQDs) by using 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) as the only precursor. In this method, the gas produced in the pyrolysis of TATB assists with speeding up of the reactions and expanding the layered distance, so that it facilitates the formation of single-layered N-GQDs (about 80 %). The symmetric intermolecular carbonizations of TATB arrayed in a plane and six nitrogen-containing groups ensure small, uniform sizes (2-5 nm) of the resulting products, and provide high nitrogen-doping concentrations (N/C atomic ratio ca. 10.6 %). In addition to release of the produced gas, TATB is almost completely converted into aggregated N-GQDs; thus, relatively higher production rates are possible with this approach. Investigations show that the as-produced N-GQDs have superior fluorescent characteristics; high water solubility, biocompatibility, and low toxicity; and are ready for potential applications, such as biomedical imaging and optoelectronic devices.

  12. An out-of-plane linear motion measurement system based on optical beam deflection

    NASA Astrophysics Data System (ADS)

    Piyush, P.; Jayanth, G. R.

    2016-02-01

    Measurement of out-of-plane linear motion with high precision and bandwidth is indispensable for development of precision motion stages and for dynamic characterization of mechanical structures. This paper presents an optical beam deflection (OBD) based system for measurement of out-of-plane linear motion for fully reflective samples. The system also achieves nearly zero cross-sensitivity to angular motion, and a large working distance. The sensitivities to linear and angular motion are analytically obtained and employed to optimize the system design. The optimal shot-noise limited resolution is shown to be less than one angstrom over a bandwidth in excess of 1 kHz. Subsequently, the system is experimentally realized and the sensitivities to out-of-plane motions are calibrated using a novel strategy. The linear sensitivity is found to be in agreement with theory. The angular sensitivity is shown to be over 7.5-times smaller than that of conventional OBD. Finally, the measurement system is employed to measure the transient response of a piezo-positioner, and, with the aid of an open-loop controller, reduce the settling time by about 90%. It is also employed to operate the positioner in closed-loop and demonstrate significant minimization of hysteresis and positioning error.

  13. MIXS on BepiColombo and its DEPFET based focal plane instrumentation

    NASA Astrophysics Data System (ADS)

    Treis, J.; Andricek, L.; Aschauer, F.; Heinzinger, K.; Herrmann, S.; Hilchenbach, M.; Lauf, T.; Lechner, P.; Lutz, G.; Majewski, P.; Porro, M.; Richter, R. H.; Schaller, G.; Schnecke, M.; Schopper, F.; Soltau, H.; Stefanescu, A.; Strüder, L.; de Vita, G.

    2010-12-01

    Focal plane instrumentation based on DEPFET Macropixel devices, being a combination of the Detector-Amplifier structure DEPFET with a silicon drift chamber (SDD), has been proposed for the MIXS (Mercury Imaging X-ray Spectrometer) instrument on ESA's Mercury exploration mission BepiColombo. MIXS images X-ray fluorescent radiation from the Mercury surface with a lightweight X-ray mirror system on the focal plane detector to measure the spatially resolved element abundance in Mercury's crust. The sensor needs to have an energy resolution better than 200 eV FWHM at 1 keV and is required to cover an energy range from 0.5 to 10 keV, for a pixel size of 300×300μm2. Main challenges for the instrument are radiation damage and the difficult thermal environment in the mercury orbit. The production of the first batch of flight devices has been finished at the MPI semiconductor laboratory. Prototype modules have been assembled to verify the electrical properties of the devices; selected results are presented here. The prototype devices, Macropixel prototypes for the SIMBOL-X focal plane, are electrically fully compatible, but have a pixel size of 0.5×0.5 mm2. Excellent homogeneity and near Fano-limited energy resolution at high readout speeds have been observed on these devices.

  14. Phased-array sources based on nonlinear metamaterial nanocavities

    PubMed Central

    Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P.; Liu, Sheng; Luk, Ting S.; Kadlec, Emil A.; Shaner, Eric A.; Klem, John F.; Sinclair, Michael B.; Brener, Igal

    2015-01-01

    Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5 μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum. PMID:26126879

  15. Experiences with array-based sequence capture; toward clinical applications

    PubMed Central

    Almomani, Rowida; van der Heijden, Jaap; Ariyurek, Yavuz; Lai, Yuching; Bakker, Egbert; van Galen, Michiel; Breuning, Martijn H; den Dunnen, Johan T

    2011-01-01

    Although sequencing of a human genome gradually becomes an option, zooming in on the region of interest remains attractive and cost saving. We performed array-based sequence capture using 385K Roche NimbleGen, Inc. arrays to zoom in on the protein-coding and immediate intron-flanking sequences of 112 genes, potentially involved in mental retardation and congenital malformation. Captured material was sequenced using Illumina technology. A data analysis pipeline was built that detects sequence variants, positions them in relation to the gene, checks for presence in databases (eg, db single-nucleotide polymorphism (SNP)) and predicts the potential consequences at the level of RNA splicing and protein translation. In the samples analyzed, all known variants were reliably detected, including pathogenic variants from control cases and SNPs derived from array experiments. Although overall coverage varied considerably, it was reproducible per region and facilitated the detection of large deletions and duplications (copy number variations), including a partial deletion in the B3GALTL gene from a patient sample. For ultimate diagnostic application, overall results need to be improved. Future arrays should contain probes from both DNA strands, and to obtain a more even coverage, one could add fewer probes from densely and more probes from sparsely covered regions. PMID:21102627

  16. Nine-analyte detection using an array-based biosensor

    NASA Technical Reports Server (NTRS)

    Taitt, Chris Rowe; Anderson, George P.; Lingerfelt, Brian M.; Feldstein, s. Mark. J.; Ligler, Frances S.

    2002-01-01

    A fluorescence-based multianalyte immunosensor has been developed for simultaneous analysis of multiple samples. While the standard 6 x 6 format of the array sensor has been used to analyze six samples for six different analytes, this same format has the potential to allow a single sample to be tested for 36 different agents. The method described herein demonstrates proof of principle that the number of analytes detectable using a single array can be increased simply by using complementary mixtures of capture and tracer antibodies. Mixtures were optimized to allow detection of closely related analytes without significant cross-reactivity. Following this facile modification of patterning and assay procedures, the following nine targets could be detected in a single 3 x 3 array: Staphylococcal enterotoxin B, ricin, cholera toxin, Bacillus anthracis Sterne, Bacillus globigii, Francisella tularensis LVS, Yersiniapestis F1 antigen, MS2 coliphage, and Salmonella typhimurium. This work maximizes the efficiency and utility of the described array technology, increasing only reagent usage and cost; production and fabrication costs are not affected.

  17. Phased-array sources based on nonlinear metamaterial nanocavities

    DOE PAGES

    Wolf, Omri; Campione, Salvatore; Benz, Alexander; ...

    2015-07-01

    Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization.more » As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (~5 μm): a beam splitter and a polarizing beam splitter. As a result, proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.« less

  18. Mode-locked fiber lasers based on doped fiber arrays.

    PubMed

    Zhang, Xiao; Song, Yanrong

    2014-05-10

    We designed a new kind of mode-locked fiber laser based on fiber arrays, where the central core is doped. A theoretical model is given for an all-fiber self-starting mode-locked laser based on this kind of doped fiber array. Two different kinds of fiber lasers with negative dispersion and positive dispersion are simulated and discussed. The stable mode-locked pulses are generated from initial noise conditions by the realistic parameters. The process of self-starting mode-locking multipulse transition and the relationship between the energy of the central core and the propagation distance of the pulses are discussed. Finally, we analyze the difference between the averaged mode-locked laser and the discrete mode-locked laser.

  19. EzArray: A web-based highly automated Affymetrix expression array data management and analysis system

    PubMed Central

    Zhu, Yuerong; Zhu, Yuelin; Xu, Wei

    2008-01-01

    Background Though microarray experiments are very popular in life science research, managing and analyzing microarray data are still challenging tasks for many biologists. Most microarray programs require users to have sophisticated knowledge of mathematics, statistics and computer skills for usage. With accumulating microarray data deposited in public databases, easy-to-use programs to re-analyze previously published microarray data are in high demand. Results EzArray is a web-based Affymetrix expression array data management and analysis system for researchers who need to organize microarray data efficiently and get data analyzed instantly. EzArray organizes microarray data into projects that can be analyzed online with predefined or custom procedures. EzArray performs data preprocessing and detection of differentially expressed genes with statistical methods. All analysis procedures are optimized and highly automated so that even novice users with limited pre-knowledge of microarray data analysis can complete initial analysis quickly. Since all input files, analysis parameters, and executed scripts can be downloaded, EzArray provides maximum reproducibility for each analysis. In addition, EzArray integrates with Gene Expression Omnibus (GEO) and allows instantaneous re-analysis of published array data. Conclusion EzArray is a novel Affymetrix expression array data analysis and sharing system. EzArray provides easy-to-use tools for re-analyzing published microarray data and will help both novice and experienced users perform initial analysis of their microarray data from the location of data storage. We believe EzArray will be a useful system for facilities with microarray services and laboratories with multiple members involved in microarray data analysis. EzArray is freely available from . PMID:18218103

  20. A range-dependent propagation model based on a combination of ray theory and plane-wave reflection coefficients

    NASA Astrophysics Data System (ADS)

    Hovem, Jens M.; Knobles, D. P.

    2002-11-01

    The paper describes a range-dependent propagation model based on a combination of range-dependent ray tracing and plane-wave bottom responses. The ray-tracing module of the model determines all the eigenrays between any source/receiver pairs and stores the ray histories. The received wave field is then synthesized by adding the contributions of all the eigenrays, taking into account the reflections from the bottom and the surface. The model can treat arbitrarily varying bottom topography and a layered elastic bottom as long as the layers are parallel. In the current version, the bottom is modeled with a sedimentary layer over an elastic half space, but more complicated structures are easily implemented. The new model has been tested against other models on several benchmark problems and also applied in the analysis and modeling of up-slope and down-slope propagation data recorded on a 52-element center-tapered array that was deployed at two locations about 70 miles east of Jacksonville, FL. The paper presents the results of these tests with an assessment of the potential use in connection with geo-acoustic inversion of range-dependent and elastic scenarios. [Work supported by Applied Research Laboratories, The University of Texas.

  1. Performance of Ground-Based High-Frequency Receiving Arrays with Electrically-Small Ground Planes

    DTIC Science & Technology

    1991-09-01

    Most of the available input power is transmitted into the dielectric Earth at an angle of transmission equal to the critical angle. Goos and Hanchen ...surface wave at all points in space for a wide variety of cases, including the case of Goos - Hanchen . Brekhovskikh’s analysis is applicable to... Goos , F., and H. Hanchen , 1947, Ann Phys., Vol. 6, No. 1, p. 333. A simplified description in English is found in A. R. VonHippel, Dielectric and Waves

  2. Physics-based signal processing algorithms for micromachined cantilever arrays

    DOEpatents

    Candy, James V; Clague, David S; Lee, Christopher L; Rudd, Robert E; Burnham, Alan K; Tringe, Joseph W

    2013-11-19

    A method of using physics-based signal processing algorithms for micromachined cantilever arrays. The methods utilize deflection of a micromachined cantilever that represents the chemical, biological, or physical element being detected. One embodiment of the method comprises the steps of modeling the deflection of the micromachined cantilever producing a deflection model, sensing the deflection of the micromachined cantilever and producing a signal representing the deflection, and comparing the signal representing the deflection with the deflection model.

  3. Assessment of planarity of the golf swing based on the functional swing plane of the clubhead and motion planes of the body points.

    PubMed

    Kwon, Young-Hoo; Como, Christopher S; Singhal, Kunal; Lee, Sangwoo; Han, Ki Hoon

    2012-06-01

    The purposes of this study were (1) to determine the functional swing plane (FSP) of the clubhead and the motion planes (MPs) of the shoulder/arm points and (2) to assess planarity of the golf swing based on the FSP and the MPs. The swing motions of 14 male skilled golfers (mean handicap = -0.5 +/- 2.0) using three different clubs (driver, 5-iron, and pitching wedge) were captured by an optical motion capture system (250Hz). The FSP and MPs along with their slope/relative inclination and direction/direction of inclination were obtained using a new trajectory-plane fitting method. The slope and direction of the FSP revealed a significant club effect (p < 0.001). The relative inclination and direction of inclination of the MP showed significant point (p < 0.001) and club (p < 0.001) effects and interaction (p < 0.001). Maximum deviations of the points from the FSP revealed a significant point effect (p < 0.001) and point-club interaction (p < 0.001). It was concluded that skilled golfers exhibited well-defined and consistent FSP and MPs, and the shoulder/arm points moved on vastly different MPs and exhibited large deviations from the FSP. Skilled golfers in general exhibited semi-planar downswings with two distinct phases: a transition phase and a planar execution phase.

  4. Magnetoresistance in Co /Pt based magnetic tunnel junctions with out-of-plane magnetization

    NASA Astrophysics Data System (ADS)

    Ducruet, C.; Carvello, B.; Rodmacq, B.; Auffret, S.; Gaudin, G.; Dieny, B.

    2008-04-01

    Submicron magnetic tunnel junctions exhibiting perpendicular magnetic anisotropy have been prepared by sputtering. They associate a hard and a soft electrode based on Co /Pt multilayers, separated by an amorphous alumina barrier. The soft electrode is either free or exchange biased by an antiferromagnetic layer. The magnetoresistance ratio reaches 8% at room temperature after patterning junctions with diameter down to 200nm. The macroscopic magnetic properties were investigated by extraordinary Hall effect and conventional magnetometry measurements. The magnetic moments of both electrodes are out of plane. Two well-separated switching fields allow the realization of well-defined parallel and antiparallel configurations of the magnetizations.

  5. Speckle-based volume holographic microscopy for optically sectioned multi-plane fluorescent imaging.

    PubMed

    Chen, Hsi-Hsun; Singh, Vijay Raj; Luo, Yuan

    2015-03-23

    Structured illumination microscopy has been widely used to reconstruct optically sectioned fluorescence images in wide-field fashion; however, it still requires axial scanning to obtain multiple depth information of a volumetric sample. In this paper, a new imaging scheme, called speckle-based volume holographic microscopy system, is presented. The proposed system incorporates volumetric speckle illumination and multiplexed volume holographic gratings to acquire multi-plane images with optical sectioning capability, without any axial scanning. We present the design, implementation, and experimental image data demonstrating the proposed system's ability to simultaneously obtain wide-field, optically sectioned, and multi-depth resolved images of fluorescently labeled microspheres and tissue structures.

  6. An Array of Ice-Based Observatories for Arctic Studies

    NASA Astrophysics Data System (ADS)

    Plueddemann, A.; Proshutinsky, A.; Toole, J.; Ashjian, C.; Krishfield, R.; Carmack, E.; Dethloff, K.; Fahrbach, E.; Gascard, J.; Perovich, D.; Pryamikov, S.

    2004-12-01

    The Arctic Ocean's role in global climate - while now widely appreciated - remains poorly understood. Lack of information about key processes within the oceanic, cryospheric, biologic, atmospheric and geologic disciplines will continue to impede physical understanding, model validation, and climate prediction until a practical observing system is designed and implemented. Requirements, challenges and recommendations for Ice-Based Observatories (IBO?s) for the Arctic Ocean were formulated by workshop participants of an international workshop entitled "Arctic Observing Based on Ice-Tethered Platforms" held at the Woods Hole Oceanographic Institution in Woods Hole, Massachusetts, USA, June 28-30, 2004. The principal conclusion from the workshop was that practical, cost-effective and proven IBO designs presently exist, can be readily extended to provide interdisciplinary observations, and should be implemented expeditiously as part of a coordinated Arctic observing system. Ice-based instrument systems are a proven means of acquiring unattended high quality air, ice, and ocean data from the central Arctic during all seasons. Arctic Change is ongoing and measurements need to begin now. An array of approximately 25-30 IBO units maintained throughout the Arctic Ocean is envisioned to observe the annual and interannual variations of the polar atmosphere-ice-ocean environment. An international body will be required to coordinate the various national programs (eliminate overlap, insure no data holes) and insure compatibility of data and their widespread distribution. A long-term, internationally coordinated logistics plan should be implemented as an essential complement to scientific and technical plans for an IBO array. The 25 years of IABP drift trajectories, existing data climatologies and available numerical simulations should be exploited to derive insight to optimal array design, deployment strategies, sampling intervals, and expected performance of an IBO array. IBO

  7. Iterative diagonalization in augmented plane wave based methods in electronic structure calculations

    SciTech Connect

    Blaha, P.; Laskowski, R.; Schwarz, K.

    2010-01-20

    Due to the increased computer power and advanced algorithms, quantum mechanical calculations based on Density Functional Theory are more and more widely used to solve real materials science problems. In this context large nonlinear generalized eigenvalue problems must be solved repeatedly to calculate the electronic ground state of a solid or molecule. Due to the nonlinear nature of this problem, an iterative solution of the eigenvalue problem can be more efficient provided it does not disturb the convergence of the self-consistent-field problem. The blocked Davidson method is one of the widely used and efficient schemes for that purpose, but its performance depends critically on the preconditioning, i.e. the procedure to improve the search space for an accurate solution. For more diagonally dominated problems, which appear typically for plane wave based pseudopotential calculations, the inverse of the diagonal of (H - ES) is used. However, for the more efficient 'augmented plane wave + local-orbitals' basis set this preconditioning is not sufficient due to large off-diagonal terms caused by the local orbitals. We propose a new preconditioner based on the inverse of (H - {lambda}S) and demonstrate its efficiency for real applications using both, a sequential and a parallel implementation of this algorithm into our WIEN2k code.

  8. Interface and facet control during Czochralski growth of (111) InSb crystals for cost reduction and yield improvement of IR focal plane array substrates

    NASA Astrophysics Data System (ADS)

    Gray, Nathan W.; Perez-Rubio, Victor; Bolke, Joseph G.; Alexander, W. B.

    2014-10-01

    Focal plane arrays (FPAs) made on InSb wafers are the key cost-driving component in IR imaging systems. The electronic and crystallographic properties of the wafer directly determine the imaging device performance. The "facet effect" describes the non-uniform electronic properties of crystals resulting from anisotropic dopant segregation during bulk growth. When the segregation coefficient of dopant impurities changes notably across the melt/solid interface of a growing crystal the result is non-uniform electronic properties across wafers made from these crystals. The effect is more pronounced in InSb crystals grown on the (111) axis compared with other orientations and crystal systems. FPA devices made on these wafers suffer costly yield hits due to inconsistent device response and performance. Historically, InSb crystal growers have grown approximately 9-19 degree off-axis from the (111) to avoid the facet effect and produced wafers with improved uniformity of electronic properties. It has been shown by researchers in the 1960s that control of the facet effect can produce uniform small diameter crystals. In this paper, we share results employing a process that controls the facet effect when growing large diameter crystals from which 4, 5, and 6" wafers can be manufactured. The process change resulted in an increase in wafers yielded per crystal by several times, all with high crystal quality and uniform electronic properties. Since the crystals are grown on the (111) axis, manufacturing (111) oriented wafers is straightforward with standard semiconductor equipment and processes common to the high-volume silicon wafer industry. These benefits result in significant manufacturing cost savings and increased value to our customers.

  9. All-transparent graphene-based flexible pressure sensor array

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Wu, Yichuan; Wang, Xudong; Wang, Xiaohao

    2017-03-01

    In this work, we propose and demonstrate a flexible capacitive tactile sensor array based on graphene served as electrodes. The sensor array consists of 3 × 3 units with 3 mm spatial resolution, similar to that of human skin. Each unit has three layers. The middle layer with microstructured PDMS served as an insulator is sandwiched by two perpendicular graphene-based electrodes. The size of each unit is 3 mm × 3 mm and the initial capacitance is about 0.2 pF. High sensitivities of 0.73 kPa‑1 between 0 and 1.2 kPa and 0.26 kPa‑1 between 1.2 and 2.5 kPa were achieved on the fabricated graphene pressure sensors. The proposed flexible pressure sensor array shows a great potential on the application of electric skin or 3D touch control.

  10. PATL: A RFID Tag Localization based on Phased Array Antenna.

    PubMed

    Qiu, Lanxin; Liang, Xiaoxuan; Huang, Zhangqin

    2017-03-15

    In RFID systems, how to detect the position precisely is an important and challenging research topic. In this paper, we propose a range-free 2D tag localization method based on phased array antenna, called PATL. This method takes advantage of the adjustable radiation angle of the phased array antenna to scan the surveillance region in turns. By using the statistics of the tags' number in different antenna beam directions, a weighting algorithm is used to calculate the position of the tag. This method can be applied to real-time location of multiple targets without usage of any reference tags or additional readers. Additionally, we present an optimized weighting method based on RSSI to increase the locating accuracy. We use a Commercial Off-the-Shelf (COTS) UHF RFID reader which is integrated with a phased array antenna to evaluate our method. The experiment results from an indoor office environment demonstrate the average distance error of PATL is about 21 cm and the optimized approach achieves an accuracy of 13 cm. This novel 2D localization scheme is a simple, yet promising, solution that is especially applicable to the smart shelf visualized management in storage or retail area.

  11. PATL: A RFID Tag Localization based on Phased Array Antenna

    PubMed Central

    Qiu, Lanxin; Liang, Xiaoxuan; Huang, Zhangqin

    2017-01-01

    In RFID systems, how to detect the position precisely is an important and challenging research topic. In this paper, we propose a range-free 2D tag localization method based on phased array antenna, called PATL. This method takes advantage of the adjustable radiation angle of the phased array antenna to scan the surveillance region in turns. By using the statistics of the tags’ number in different antenna beam directions, a weighting algorithm is used to calculate the position of the tag. This method can be applied to real-time location of multiple targets without usage of any reference tags or additional readers. Additionally, we present an optimized weighting method based on RSSI to increase the locating accuracy. We use a Commercial Off-the-Shelf (COTS) UHF RFID reader which is integrated with a phased array antenna to evaluate our method. The experiment results from an indoor office environment demonstrate the average distance error of PATL is about 21 cm and the optimized approach achieves an accuracy of 13 cm. This novel 2D localization scheme is a simple, yet promising, solution that is especially applicable to the smart shelf visualized management in storage or retail area. PMID:28295014

  12. Printed paper-based arrays as substrates for biofilm formation

    PubMed Central

    2014-01-01

    The suitability of paper-based arrays for biofilm formation studies by Staphylococcus aureus is demonstrated. Laboratory-coated papers with different physicochemical properties were used as substrates. The array platform was fabricated by patterning the coated papers with vinyl-substituted polydimethylsiloxane (PDMS) -based ink. The affinity of bacteria onto the flexographically printed hydrophobic and smooth PDMS film was very low whereas bacterial adhesion and biofilm formation occurred preferentially on the unprinted areas, i.e. in the reaction arrays. The concentration of the attached bacteria was quantified by determining the viable colony forming unit (CFU/cm2) numbers. The distribution and the extent of surface coverage of the biofilms were determined by atomic force microscopy. In static conditions, the highest bacterial concentration and most highly organized biofilms were observed on substrates with high polarity. On a rough paper surface with low polarity, the biofilm formation was most hindered. Biofilms were effectively removed from a polar substrate upon exposure to (+)-dehydroabietic acid, an anti-biofilm compound. PMID:25006538

  13. Microtubule-based gold nanowires and nanowire arrays.

    PubMed

    Zhou, Jing C; Gao, Yao; Martinez-Molares, Alfredo A; Jing, Xiaoye; Yan, Dong; Lau, Joseph; Hamasaki, Toshikazu; Ozkan, Cengiz S; Ozkan, Mihrimah; Hu, Evelyn; Dunn, Bruce

    2008-09-01

    Biological structures are attractive as templates to form nanoscale architectures for electronics because of their dimensions and the ability to interact with inorganic materials. In this study, we report the fabrication and electrical properties of microtubule (MT)-templated Au nanowires, and methods for assembling Au nanowire arrays based on these templates. The adsorption of MTs on silicon substrates is an effective means for preserving the conformation of the MT and provides a convenient platform for electrical measurements. To improve the metallization of MTs, a photochemical route for gold reduction is adapted, which leads to continuous coverage. The conductivity values measured on micrometer-long nanowires are similar to those reported for other biotemplated gold nanowires. A protocol for fabricating arrays of MT-templated gold nanowires is demonstrated.

  14. Heterodyne detection with mismatch correction based on array detector

    NASA Astrophysics Data System (ADS)

    Dong, Hongzhou; Li, Guoqiang; Yang, Ruofu; Yang, Chunping; Ao, Mingwu

    2016-07-01

    Based on an array detector, a new heterodyne detection system, which can correct the mismatches of amplitude and phase between signal and local oscillation (LO) beams, is presented in this paper. In the light of the fact that, for a heterodyne signal, there is a certain phase difference between the adjacent two samples of analog-to-digital converter (ADC), we propose to correct the spatial phase mismatch by use of the time-domain phase difference. The corrections can be realized by shifting the output sequences acquired from the detector elements in the array, and the steps of the shifting depend on the quantity of spatial phase mismatch. Numerical calculations of heterodyne efficiency are conducted to confirm the excellent performance of our system. Being different from previous works, our system needs not extra optical devices, so it provides probably an effective means to ease the problem resulted from the mismatches.

  15. Heterodyne detection with mismatch correction base on array detector

    NASA Astrophysics Data System (ADS)

    Hongzhou, Dong; Guoqiang, Li; Ruofu, Yang; Chunping, Yang; Mingwu, Ao

    2016-07-01

    Based on an array detector, a new heterodyne detection system, which can correct the mismatches of amplitude and phase between signal and local oscillation (LO) beams, is presented in this paper. In the light of the fact that, for a heterodyne signal, there is a certain phase difference between the adjacent two samples of analog-to-digital converter (ADC), we propose to correct the spatial phase mismatch by use of the time-domain phase difference. The corrections can be realized by shifting the output sequences acquired from the detector elements in the array, and the steps of the shifting depend on the quantity of spatial phase mismatch. Numerical calculations of heterodyne efficiency are conducted to confirm the excellent performance of our system. Being different from previous works, our system needs not extra optical devices, so it provides probably an effective means to ease the problem resulted from the mismatches.

  16. A Cosmic Dust Sensor Based on an Array of Grid Electrodes

    NASA Astrophysics Data System (ADS)

    Li, Y. W.; Bugiel, S.; Strack, H.; Srama, R.

    2014-04-01

    We described a low mass and high sensitivity cosmic dust trajectory sensor using a array of grid segments[1]. the sensor determines the particle velocity vector and the particle mass. An impact target is used for the detection of the impact plasma of high speed particles like interplanetary dust grains or high speed ejecta. Slower particles are measured by three planes of grid electrodes using charge induction. In contrast to conventional Dust Trajectory Sensor based on wire electrodes, grid electrodes a robust and sensitive design with a trajectory resolution of a few degree. Coulomb simulation and laboratory tests were performed in order to verify the instrument design. The signal shapes are used to derive the particle plane intersection points and to derive the exact particle trajectory. The accuracy of the instrument for the incident angle depends on the particle charge, the position of the intersection point and the signal-to-noise of the charge sensitive amplifier (CSA). There are some advantages of this grid-electrodes based design with respect to conventional trajectory sensor using individual wire electrodes: the grid segment electrodes show higher amplitudes (close to 100%induced charge) and the overall number of measurement channels can be reduced. This allows a compact instrument with low power and mass requirements.

  17. Application of Hybrid Fillers for Improving the Through-Plane Heat Transport in Graphite Nanoplatelet-Based Thermal Interface Layers

    PubMed Central

    Tian, Xiaojuan; Itkis, Mikhail E.; Haddon, Robert C.

    2015-01-01

    The in-plane alignment of graphite nanoplatelets (GNPs) in thin thermal interface material (TIM) layers suppresses the though-plane heat transport thus limiting the performance of GNPs in the geometry normally required for thermal management applications. Here we report a disruption of the GNP in-plane alignment by addition of spherical microparticles. The degree of GNP alignment was monitored by measurement of the anisotropy of electrical conductivity which is extremely sensitive to the orientation of high aspect ratio filler particles. Scanning Electron Microscopy images of TIM layer cross-sections confirmed the suppression of the in-plane alignment. The hybrid filler formulations reported herein resulted in a synergistic enhancement of the through-plane thermal conductivity of GNP/Al2O3 and GNP/Al filled TIM layers confirming that the control of GNP alignment is an important parameter in the development of highly efficient GNP and graphene-based TIMs. PMID:26279183

  18. Physical nature of ethidium and proflavine interactions with nucleic acid bases in the intercalation plane.

    PubMed

    Langner, Karol M; Kedzierski, Pawel; Sokalski, W Andrzej; Leszczynski, Jerzy

    2006-05-18

    On the basis of the crystallographic structures of three nucleic acid intercalation complexes involving ethidium and proflavine, we have analyzed the interaction energies between intercalator chromophores and their four nearest bases, using a hybrid variation-perturbation method at the second-order Møller-Plesset theory level (MP2) with a 6-31G(d,p) basis set. A total MP2 interaction energy minimum precisely reproduces the crystallographic position of the ethidium chromophore in the intercalation plane between UA/AU bases. The electrostatic component constitutes the same fraction of the total energy for all three studied structures. The multipole electrostatic interaction energy, calculated from cumulative atomic multipole moments (CAMMs), was found to converge only after including components above the fifth order. CAMM interaction surfaces, calculated on grids in the intercalation planes of these structures, reasonably reproduce the alignment of intercalators in crystal structures; they exhibit additional minima in the direction of the DNA grooves, however, which also need to be examined at higher theory levels if no crystallographic data are given.

  19. Observer-based beamforming algorithm for acoustic array signal processing.

    PubMed

    Bai, Long; Huang, Xun

    2011-12-01

    In the field of noise identification with microphone arrays, conventional delay-and-sum (DAS) beamforming is the most popular signal processing technique. However, acoustic imaging results that are generated by DAS beamforming are easily influenced by background noise, particularly for in situ wind tunnel tests. Even when arithmetic averaging is used to statistically remove the interference from the background noise, the results are far from perfect because the interference from the coherent background noise is still present. In addition, DAS beamforming based on arithmetic averaging fails to deliver real-time computational capability. An observer-based approach is introduced in this paper. This so-called observer-based beamforming method has a recursive form similar to the state observer in classical control theory, thus holds a real-time computational capability. In addition, coherent background noise can be gradually rejected in iterations. Theoretical derivations of the observer-based beamforming algorithm are carefully developed in this paper. Two numerical simulations demonstrate the good coherent background noise rejection and real-time computational capability of the observer-based beamforming, which therefore can be regarded as an attractive algorithm for acoustic array signal processing.

  20. Cell pairing using microwell array electrodes based on dielectrophoresis.

    PubMed

    Yoshimura, Yuki; Tomita, Masahiro; Mizutani, Fumio; Yasukawa, Tomoyuki

    2014-07-15

    We report a simple device with an array of 10,000 (100 × 100) microwells for producing vertical pairs of cells in individual microwells with a rapid manipulation based on positive dielectrophoresis (p-DEP). The areas encircled with micropoles which fabricated from an electrical insulating photosensitive polymer were used as microwells. The width (14 μm) and depth (25 μm) of the individual microwells restricted the size to two vertically aligned cells. The DEP device for the manipulation of cells consisted of a microfluidic channel with an upper indium tin oxide (ITO) electrode and a lower microwell array electrode fabricated on an ITO substrate. Mouse myeloma cells stained in green were trapped within 1 s in the microwells by p-DEP by applying an alternating current voltage between the upper ITO and the lower microwell array electrode. The cells were retained inside the wells even after switching off the voltage and washing with a fluidic flow. Other myeloma cells stained in blue were then trapped in the microwells occupied by the cells stained in green to form the vertical cell pairing in the microwells. Cells stained in different colors were paired within only 1 min and a pairing efficiency of over 50% was achieved.

  1. Implications of adopting plane angle as a base quantity in the SI

    NASA Astrophysics Data System (ADS)

    Quincey, Paul; Brown, Richard J. C.

    2016-06-01

    The treatment of angles within the SI is anomalous compared with other quantities, and there is a case for removing this anomaly by declaring plane angle to be an additional base quantity within the system. It is shown that this could bring several benefits in terms of treating angle on an equal basis with other metrics, removing potentially harmful ambiguities, and bringing SI units more in line with concepts in basic physics, but at the expense of significant upheaval to familiar equations within mathematics and physics. This paper sets out the most important of these changes so that an alternative unit system containing angle as a base quantity can be seen in the round, irrespective of whether it is ever widely adopted. The alternative formulas and units can be treated as the underlying, more general equations of mathematical physics, independent of the units used for angle, which are conventionally simplified by implicitly assuming that the unit used for angle is the radian.

  2. A feasibility study of a molecular-based patient setup verification method using a parallel-plane PET system

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Satoshi; Ishikawa, Masayori; Bengua, Gerard; Sutherland, Kenneth; Nishio, Teiji; Tanabe, Satoshi; Miyamoto, Naoki; Suzuki, Ryusuke; Shirato, Hiroki

    2011-02-01

    A feasibility study of a novel PET-based molecular image guided radiation therapy (m-IGRT) system was conducted by comparing PET-based digitally reconstructed planar image (PDRI) registration with radiographic registration. We selected a pair of opposing parallel-plane PET systems for the practical implementation of this system. Planar images along the in-plane and cross-plane directions were reconstructed from the parallel-plane PET data. The in-plane and cross-plane FWHM of the profile of 2 mm diameter sources was approximately 1.8 and 8.1 mm, respectively. Therefore, only the reconstructed in-plane image from the parallel-plane PET data was used in the PDRI registration. In the image registration, five different sizes of 18F cylindrical sources (diameter: 8, 12, 16, 24, 32 mm) were used to determine setup errors. The data acquisition times were 1, 3 and 5 min. Image registration was performed by five observers to determine the setup errors from PDRI registration and radiographic registration. The majority of the mean registration errors obtained from the PDRI registration were not significantly different from those obtained from the radiographic registration. Acquisition time did not appear to result in significant differences in the mean registration error. The mean registration error for the PDRI registration was found to be 0.93 ± 0.33 mm. This is not statistically different from the radiographic registration which had a mean registration error of 0.92 ± 0.27 mm. Our results suggest that m-IGRT image registration using PET-based reconstructed planar images along the in-plane direction is feasible for clinical use if PDRI registration is performed at two orthogonal gantry angles.

  3. Research on the effect of coherent beam combination based on array of liquid crystal optical phased arrays

    NASA Astrophysics Data System (ADS)

    Yang, Zhenming; Kong, Lingjiang; Xiao, Feng; Chen, Jian

    2014-12-01

    On the basis of Coherent Beam Combination(CBC) based on Array of Liquid Crystal Optical Phased Arrays(LCOPA array), two major contributions are made in this article. Firstly, grating lobes and side lobes of combined beam are analyzed. Furthermore, according to interference theory the methods to suppress grating lobes and side lobes are put forward. Secondly, a new beam quality factor Q(θ0) is proposed to evaluate the beam quality of combined beam and several influence factors are discussed. These analysis results help to obtain combined beam with better beam quality.

  4. Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism.

    PubMed

    Wang, Sihong; Lin, Long; Xie, Yannan; Jing, Qingshen; Niu, Simiao; Wang, Zhong Lin

    2013-05-08

    Aiming at harvesting ambient mechanical energy for self-powered systems, triboelectric nanogenerators (TENGs) have been recently developed as a highly efficient, cost-effective and robust approach to generate electricity from mechanical movements and vibrations on the basis of the coupling between triboelectrification and electrostatic induction. However, all of the previously demonstrated TENGs are based on vertical separation of triboelectric-charged planes, which requires sophisticated device structures to ensure enough resilience for the charge separation, otherwise there is no output current. In this paper, we demonstrated a newly designed TENG based on an in-plane charge separation process using the relative sliding between two contacting surfaces. Using Polyamide 6,6 (Nylon) and polytetrafluoroethylene (PTFE) films with surface etched nanowires, the two polymers at the opposite ends of the triboelectric series, the newly invented TENG produces an open-circuit voltage up to ~1300 V and a short-circuit current density of 4.1 mA/m(2) with a peak power density of 5.3 W/m(2), which can be used as a direct power source for instantaneously driving hundreds of serially connected light-emitting diodes (LEDs). The working principle and the relationships between electrical outputs and the sliding motion are fully elaborated and systematically studied, providing a new mode of TENGs with diverse applications. Compared to the existing vertical-touching based TENGs, this planar-sliding TENG has a high efficiency, easy fabrication, and suitability for many types of mechanical triggering. Furthermore, with the relationship between the electrical output and the sliding motion being calibrated, the sliding-based TENG could potentially be used as a self-powered displacement/speed/acceleration sensor.

  5. Reduction in the amount of crosstalk with reduced number of focal spot rows in a grating array based zonal wavefront sensor

    NASA Astrophysics Data System (ADS)

    Pathak, Biswajit; Boruah, Bosanta R.

    2015-06-01

    The Shack Hartmann wavefront sensor (SHWS), named after Johannes Franz Hartmann and Roland Shack, is one of the most well-known and popularly used optical wavefront sensor that finds numerous applications in various optical technologies. SHWS samples the incident wavefront by means of a lenslet array to produce an array of regular 2D array of focal spots on the detector plane of a digital camera, in the case of an unaberrated plane wavefront. If the incident wavefront is aberrated or deviates from a plane wavefront, the respective focal spots get shifted from its reference positions corresponding to the regular grid. If the incident wavefront aberration increases or has a very large curvature, the focal spot of one lenslet may enter the detector sub-aperture of the nearby lenslet. Thus, the SHWS has a limited dynamic range that is restricted to aberrations which do not allow the sub-images to be displaced out from their own detector sub-array. It makes the SHWS sensitive to cross-talk when higher order aberrations are present thereby unavoidably a ecting the wavefront estimation process. The array of tiny lenses of the SHWS can be replaced by an array of gratings followed by a focusing lens, generating an array of focal spots which is similar to that as in the case of a SHWS. In this paper, the spatial frequency of such a grating array based zonal wavefront sensor is configured to produce lesser number of rows of focal spots. The reduction in the number of focal spot rows reduces the amount of cross talk in the vertical direction. In this paper we present preliminary experimental results to demonstrate the above stated reduction in crosstalk.

  6. Optimized Equivalent Staggered-grid FD Method for Elastic Wave Modeling Based on Plane Wave Solutions

    NASA Astrophysics Data System (ADS)

    Yong, Peng; Huang, Jianping; Li, Zhenchun; Liao, Wenyuan; Qu, Luping; Li, Qingyang; Liu, Peijun

    2016-12-01

    In finite difference (FD) method, numerical dispersion is the dominant factor influencing the accuracy of seismic modeling. Various optimized FD schemes for scalar wave modeling have been proposed to reduce grid dispersion, while the optimized time-space domain FD schemes for elastic wave modeling have not been fully investigated yet. In this paper, an optimized FD scheme with Equivalent Staggered Grid (ESG) for elastic modelling has been developed. We start from the constant P- and S-wave speed elastic wave equations and then deduce analytical plane wave solutions in the wavenumber domain with eigenvalue decomposition method. Based on the elastic plane wave solutions, three new time-space domain dispersion relations of ESG elastic modeling are obtained, which are represented by three equations corresponding to P-, S- and converted wave terms in the elastic equations, respectively. By using these new relations, we can study the dispersion errors of different spatial FD terms independently. The dispersion analysis showed that different spatial FD terms have different errors. It is therefore suggested that different FD coefficients to be used to approximate the three spatial derivative terms. In addition, the relative dispersion error in L2-norm is minimized through optimizing FD coefficients using Newton's method. Synthetic examples have demonstrated that this new optimal FD schemes have superior accuracy for elastic wave modeling compared to Taylor-series expansion and optimized space domain FD schemes.

  7. Automatic decomposition of a complex hologram based on the virtual diffraction plane framework

    NASA Astrophysics Data System (ADS)

    Jiao, A. S. M.; Tsang, P. W. M.; Poon, T.-C.; Liu, J.-P.; Lee, C.-C.; Lam, Y. K.

    2014-07-01

    Holography is a technique for capturing the hologram of a three-dimensional scene. In many applications, it is often pertinent to retain specific items of interest in the hologram, rather than retaining the full information, which may cause distraction in the analytical process that follows. For a real optical image that is captured with a camera or scanner, this process can be realized by applying image segmentation algorithms to decompose an image into its constituent entities. However, because it is different from an optical image, classic image segmentation methods cannot be applied directly to a hologram, as each pixel in the hologram carries holistic, rather than local, information of the object scene. In this paper, we propose a method to perform automatic decomposition of a complex hologram based on a recently proposed technique called the virtual diffraction plane (VDP) framework. Briefly, a complex hologram is back-propagated to a hypothetical plane known as the VDP. Next, the image on the VDP is automatically decomposed, through the use of the segmentation on the magnitude of the VDP image, into multiple sub-VDP images, each representing the diffracted waves of an isolated entity in the scene. Finally, each sub-VDP image is reverted back to a hologram. As such, a complex hologram can be decomposed into a plurality of subholograms, each representing a discrete object in the scene. We have demonstrated the successful performance of our proposed method by decomposing a complex hologram that is captured through the optical scanning holography (OSH) technique.

  8. Optimized equivalent staggered-grid FD method for elastic wave modelling based on plane wave solutions

    NASA Astrophysics Data System (ADS)

    Yong, Peng; Huang, Jianping; Li, Zhenchun; Liao, Wenyuan; Qu, Luping; Li, Qingyang; Liu, Peijun

    2017-02-01

    In finite-difference (FD) method, numerical dispersion is the dominant factor influencing the accuracy of seismic modelling. Various optimized FD schemes for scalar wave modelling have been proposed to reduce grid dispersion, while the optimized time-space domain FD schemes for elastic wave modelling have not been fully investigated yet. In this paper, an optimized FD scheme with Equivalent Staggered Grid (ESG) for elastic modelling has been developed. We start from the constant P- and S-wave speed elastic wave equations and then deduce analytical plane wave solutions in the wavenumber domain with eigenvalue decomposition method. Based on the elastic plane wave solutions, three new time-space domain dispersion relations of ESG elastic modelling are obtained, which are represented by three equations corresponding to P-, S- and converted-wave terms in the elastic equations, respectively. By using these new relations, we can study the dispersion errors of different spatial FD terms independently. The dispersion analysis showed that different spatial FD terms have different errors. It is therefore suggested that different FD coefficients to be used to approximate the three spatial derivative terms. In addition, the relative dispersion error in L2-norm is minimized through optimizing FD coefficients using Newton's method. Synthetic examples have demonstrated that this new optimal FD schemes have superior accuracy for elastic wave modelling compared to Taylor-series expansion and optimized space domain FD schemes.

  9. Transparent and flexible force sensor array based on optical waveguide.

    PubMed

    Kim, Youngsung; Park, Suntak; Park, Seung Koo; Yun, Sungryul; Kyung, Ki-Uk; Sun, Kyung

    2012-06-18

    This paper suggests a force sensor array measuring contact force based on intensity change of light transmitted throughout optical waveguide. For transparency and flexibility of the sensor, two soft prepolymers with different refractive index have been developed. The optical waveguide consists of two cladding layers and a core layer. The top cladding layer is designed to allow light scattering at the specific area in response to finger contact. The force sensor shows a distinct tendency that output intensity decreases with input force and measurement range is from 0 to -13.2 dB.

  10. Fabric-based Pressure Sensor Array for Decubitus Ulcer Monitoring

    PubMed Central

    Chung, Philip; Rowe, Allison; Etemadi, Mozziyar; Lee, Hanmin; Roy, Shuvo

    2015-01-01

    Decubitus ulcers occur in an estimated 2.5 million Americans each year at an annual cost of $11 billion to the U.S. health system. Current screening and prevention techniques for assessing risk for decubitus ulcer formation and repositioning patients every 1–2 hours are labor-intensive and can be subjective. We propose use of a Bluetooth-enabled fabric-based pressure sensor array as a simple tool to objectively assess and continuously monitor decubitus ulcer risk. PMID:24111232

  11. Research on optical fiber microphone array based on Sagnac interferometer

    NASA Astrophysics Data System (ADS)

    Wu, Hongyan; Wang, Jian

    2015-05-01

    Extensive attention has been paid to optical fiber microphone because of its especial merits, such as anti-electromagnetic interference, corrosion resistance, high sensitivity, safety and reliability. In the present study, a kind of optical fiber microphone array based on Sagnac interferometer using a broadband source is proposed. On the basis of the high sound quality and wide bandwidth of optical fiber microphones, the acoustic source localization theory is tested and verified in practice. The results prove the possibility of determine the location of acoustic source in a wide range of frequencies accurately. Besides its feasibility, the scientific value and application prospect, such as in battlefield and ultrasonic detection field, are great.

  12. Fabrication of polydimethylsiloxane (PDMS) - based multielectrode array for neural interface.

    PubMed

    Kim, Jun-Min; Oh, Da-Rong; Sanchez, Joaquin; Kim, Shang-Hyub; Seo, Jong-Mo

    2013-01-01

    Flexible multielectrode arrays (MEAs) are being developed with various materials, and polyimide has been widely used due to the conveniece of process. Polyimide is developed in the form of photoresist. And this enable precise and reproducible fabrication. PDMS is another good candidate for MEA base material, but it has poor surface energy and etching property. In this paper, we proposed a better fabrication process that could modify PDMS surface for a long time and open the site of electrode and pad efficiently without PDMS etching.

  13. Electro-Optical Characteristics of P+n In0.53Ga0.47As Hetero-Junction Photodiodes in Large Format Dense Focal Plane Arrays

    NASA Astrophysics Data System (ADS)

    DeWames, R.; Littleton, R.; Witte, K.; Wichman, A.; Bellotti, E.; Pellegrino, J.

    2015-08-01

    This paper is concerned with focal plane array (FPA) data and use of analytical and three-dimensional numerical simulation methods to determine the physical effects and processes limiting performance. For shallow homojunction P+n designs the temperature dependence of dark current for T < 300 K depends on the intrinsic carrier concentration of the In0.53Ga0.47As material, implying that the dominant dark currents are generation and recombination (G-R) currents originating in the depletion regions of the double layer planar heterostructure (DLPH) photodiode. In the analytical model differences from bulk G-R behavior are modeled with a G-R like perimeter-dependent shunt current conjectured to originate at the InP/InGaAs interface. In this description the fitting property is the effective conductivity, σ eff( T), in mho cm-1. Variation in the data suggests σ eff (300 K) values of 1.2 × 10-11-4.6 × 10-11 mho cm-1). Substrate removal extends the quantum efficiency (QE) spectral band into the visible region. However, dead-layer effects limit the QE to 10% at a wavelength of 0.5 μm. For starlight-no moon illumination conditions, the signal-to-noise ratio is estimated to be 50 at an operating temperature of 300 K. A major result of the 3D numerical simulation of the device is the prediction of a perimeter G-R current not associated with the properties of the metallurgical interface. Another is the prediction that for a junction positioned in the larger band gap InP cap layer the QE is bias-dependent and that a relatively large reverse bias ≥0.9 V is needed for the QE to saturate to the shallow homojunction value. At this higher bias the dark current is larger than the shallow homojunction value. The 3D numerical model and the analytical model agree in predicting and explaining the measured radiatively limited diffusion current originating at the n-side of the junction. The calculations of the area-dependent G-R current for the condition studied are also in agreement

  14. Glide-plane symmetry and superconducting gap structure of iron-based superconductors

    DOE PAGES

    Wang, Yan; Berlijn, Tom; Hirschfeld, Peter J.; ...

    2015-03-10

    We consider the effect of glide-plane symmetry of the Fe-pnictogen/chalcogen layer in Fe-based superconductors on pairing in spin fluctuation models. Recent theories propose that so-called η-pairing states with nonzero total momentum can be realized and possess such exotic properties as odd parity spin singlet symmetry and time-reversal symmetry breaking. Here we show that when there is orbital weight at the Fermi level from orbitals with even and odd mirror reflection symmetry in z, η pairing is inevitable; however, we conclude from explicit calculation that the gap function appearing in observable quantities is identical to that found in earlier pseudocrystal momentummore » calculations with 1 Fe per unit cell.« less

  15. Glide-plane symmetry and superconducting gap structure of iron-based superconductors

    SciTech Connect

    Wang, Yan; Berlijn, Tom; Hirschfeld, Peter J.; Scalapino, Douglas J.; Maier, Thomas A.

    2015-03-10

    We consider the effect of glide-plane symmetry of the Fe-pnictogen/chalcogen layer in Fe-based superconductors on pairing in spin fluctuation models. Recent theories propose that so-called η-pairing states with nonzero total momentum can be realized and possess such exotic properties as odd parity spin singlet symmetry and time-reversal symmetry breaking. Here we show that when there is orbital weight at the Fermi level from orbitals with even and odd mirror reflection symmetry in z, η pairing is inevitable; however, we conclude from explicit calculation that the gap function appearing in observable quantities is identical to that found in earlier pseudocrystal momentum calculations with 1 Fe per unit cell.

  16. Characterization of PolyMUMPs-based in-plane electromagnetic actuator

    NASA Astrophysics Data System (ADS)

    Ahmed, Mawahib Gafare; Dennis, John-Ojur; Khir, Mohd-Haris; Rabih, Almur; Mian, Muhammad Umer

    2016-11-01

    This paper presents a synopsis of the design and fabrication of an in-plane electromagnetic actuator using Polysilicon Multi-Users MEMS Process (PolyMUMPs). The electromagnetic actuator is driven by Lorentz force. This article is based on the premise that the proportionality of Lorentz force to magnetic field and driving current controls lateral displacement. The fabricated actuator consists of two plates; moving plate supported by four beams and a stationary plate in order to form a capacitor setup for sensing. This work experimentally demonstrates the actuation of the device using low frequencies of 0.5 Hz, 1 Hz and 2Hz. The characterization of the micro actuator using a Leica optical microscope showed a displacement exceeding 8 µm. This displacement is attained with a magnetic field of 20mT and applied current of approximately 5 mA.

  17. LOBSTER: A tool to extract chemical bonding from plane-wave based DFT.

    PubMed

    Maintz, Stefan; Deringer, Volker L; Tchougréeff, Andrei L; Dronskowski, Richard

    2016-04-30

    The computer program LOBSTER (Local Orbital Basis Suite Towards Electronic-Structure Reconstruction) enables chemical-bonding analysis based on periodic plane-wave (PAW) density-functional theory (DFT) output and is applicable to a wide range of first-principles simulations in solid-state and materials chemistry. LOBSTER incorporates analytic projection routines described previously in this very journal [J. Comput. Chem. 2013, 34, 2557] and offers improved functionality. It calculates, among others, atom-projected densities of states (pDOS), projected crystal orbital Hamilton population (pCOHP) curves, and the recently introduced bond-weighted distribution function (BWDF). The software is offered free-of-charge for non-commercial research. © 2016 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  18. Plane-based optimization for 3D object reconstruction from single line drawings.

    PubMed

    Liu, Jianzhuang; Cao, Liangliang; Li, Zhenguo; Tang, Xiaoou

    2008-02-01

    In previous optimization-based methods of 3D planar-faced object reconstruction from single 2D line drawings, the missing depths of the vertices of a line drawing (and other parameters in some methods) are used as the variables of the objective functions. A 3D object with planar faces is derived by finding values for these variables that minimize the objective functions. These methods work well for simple objects with a small number N of variables. As N grows, however, it is very difficult for them to find expected objects. This is because with the nonlinear objective functions in a space of large dimension N, the search for optimal solutions can easily get trapped into local minima. In this paper, we use the parameters of the planes that pass through the planar faces of an object as the variables of the objective function. This leads to a set of linear constraints on the planes of the object, resulting in a much lower dimensional nullspace where optimization is easier to achieve. We prove that the dimension of this nullspace is exactly equal to the minimum number of vertex depths which define the 3D object. Since a practical line drawing is usually not an exact projection of a 3D object, we expand the nullspace to a larger space based on the singular value decomposition of the projection matrix of the line drawing. In this space, robust 3D reconstruction can be achieved. Compared with two most related methods, our method not only can reconstruct more complex 3D objects from 2D line drawings, but also is computationally more efficient.

  19. High responsivity A-plane GaN-based metal-semiconductor-metal photodetectors for polarization-sensitive applications

    SciTech Connect

    Navarro, A.; Rivera, C.; Pereiro, J.; Munoz, E.; Imer, B.; DenBaars, S. P.; Speck, J. S.

    2009-05-25

    The fabrication and characterization of metal-semiconductor-metal polarization-sensitive photodetectors based on A-plane GaN grown on R-plane sapphire substrates is reported. These photodetectors take advantage of the in-plane crystal anisotropy, which results in linear dichroism near the band gap energy. The high resistivity of the A-plane GaN material leads to extremely low dark currents. For an optimized finger spacing of 1 {mu}m, dark current density and responsivity at 30 V are 0.3 nA/mm{sup 2} and 2 A/W, respectively. A maximum polarization sensitivity ratio of 1.8 was determined. In a differential configuration, the full width at half maximum of the polarization-sensitive region is 8.5 nm.

  20. A diffraction-based optical method for the detection of in-plane motion of lamb waves.

    PubMed

    Yang, Che-Hua; Tsai, Yua-Ching

    2005-08-01

    This paper describes a laser optical technique that allows the detection of in-plane motion of Lamb waves. This interference-based laser optical technique includes a tiny square indentation with a width of about 30 micron on the sample surface and a relatively simple optical arrangement. The current technique is applied for the detection of in-plane motions of Lamb waves propagating in a 70-micron thick brass plate. Measurement of So mode dominated by in-plane motion in the low fd (frequency times thickness) regime is successfully demonstrated with the current technique. With the indentation replaced by a microreflector in a microelectromechanical (MEMS) structure, this technique is applicable for the detection of in-plane motion in MEMS structures.

  1. Fully converged plane-wave-based self-consistent G W calculations of periodic solids

    NASA Astrophysics Data System (ADS)

    Cao, Huawei; Yu, Zhongyuan; Lu, Pengfei; Wang, Lin-Wang

    2017-01-01

    The G W approximation is a well-known method to obtain the quasiparticle and spectral properties of systems ranging from molecules to solids. In practice, G W calculations are often employed with many different approximations and truncations. In this work, we describe the implementation of a fully self-consistent G W approach based on the solution of the Dyson equation using a plane wave basis set. Algorithmic, numerical, and technical details of the self-consistent G W approach are presented. The fully self-consistent G W calculations are performed for GaAs, ZnO, and CdS including semicores in the pseudopotentials. No further approximations and truncations apart from the truncation on the plane wave basis set are made in our implementation of the G W calculation. After adopting a special potential technique, a ˜100 Ry energy cutoff can be used without the loss of accuracy. We found that the self-consistent G W (sc-G W ) significantly overestimates the bulk band gaps, and this overestimation is likely due to the underestimation of the macroscopic dielectric constants. On the other hand, the sc-G W accurately predicts the d -state positions, most likely because the d -state screening does not sensitively depend on the macroscopic dielectric constant. Our work indicates the need to include the high-order vertex term in order for the many-body perturbation theory to accurately predict the semiconductor band gaps. It also sheds some light on why, in some cases, the G0W0 bulk calculation is more accurate than the fully self-consistent G W calculation, because the initial density-functional theory has a better dielectric constant compared to experiments.

  2. Tunable elastomer-based virtually imaged phased array.

    PubMed

    Metz, Philipp; Block, Hendrik; Behnke, Christopher; Krantz, Matthias; Gerken, Martina; Adam, Jost

    2013-02-11

    Virtually imaged phased arrays (VIPAs) offer a high potential for wafer-level integration and superior optical properties compared to conventional gratings. We introduce an elastomer-based tunable VIPA enabling fine tuning of the dispersion characteristics. It consists of a poly-dimethylsiloxane (PDMS) layer sandwiched between silver bottom and top coatings, which form the VIPA's high reflective and semi-transparent mirror, respectively. The latter also acts as an electrode for Joule heating, such that the optical PDMS resonator cavity tuning is carried out via a combination of thermal expansion and the thermo-optic effect. Analogous to the free spectral range (FSR), based on a VIPA specific dispersion law, we introduce a new characteristic VIPA performance measure, namely the free angular range (FAR). We report a tuning span of one FAR achieved by a 7.2K temperature increase of a 170μm PDMS VIPA. Both resonance quality and tunability are analyzed in numerical simulations and experiments.

  3. A Paper-Based Electrochromic Array for Visualized Electrochemical Sensing

    PubMed Central

    Zhang, Fengling; Cai, Tianyi; Ma, Liang; Zhan, Liyuan; Liu, Hong

    2017-01-01

    We report a battery-powered, paper-based electrochromic array for visualized electrochemical sensing. The paper-based sensing system consists of six parallel electrochemical cells, which are powered by an aluminum-air battery. Each single electrochemical cell uses a Prussian Blue spot electrodeposited on an indium-doped tin oxide thin film as the electrochromic indicator. Each electrochemical cell is preloaded with increasing amounts of analyte. The sample activates the battery for the sensing. Both the preloaded analyte and the analyte in the sample initiate the color change of Prussian Blue to Prussian White. With a reaction time of 60 s, the number of electrochemical cells with complete color changes is correlated to the concentration of analyte in the sample. As a proof-of-concept analyte, lactic acid was detected semi-quantitatively using the naked eye. PMID:28146120

  4. Acetylcholinesterase biosensor for carbaryl detection based on interdigitated array microelectrodes.

    PubMed

    Gong, Zhili; Guo, Yemin; Sun, Xia; Cao, Yaoyao; Wang, Xiangyou

    2014-10-01

    In this study, an acetylcholinesterase (AChE) biosensor with superior accuracy and sensitivity was successfully developed based on interdigitated array microelectrodes (IAMs). IAMs have a series of parallel microband electrodes with alternating microbands connected together. Chitosan was used as the enzyme immobilization material, and AChE was used as the model enzyme for carbaryl detection to fabricate AChE biosensor. Electrochemical impedance spectroscopy was used in conjunction with the fabricated biosensor to detect pesticide residues. Based on the inhibition of pesticides on the AChE activity, using carbaryl as model compounds, the biosensor exhibited a wide range, low detection limit, and high stability. Moreover, the biosensor can also be used as a new promising tool for pesticide residue analysis.

  5. Evolutionary Based Techniques for Fault Tolerant Field Programmable Gate Arrays

    NASA Technical Reports Server (NTRS)

    Larchev, Gregory V.; Lohn, Jason D.

    2006-01-01

    The use of SRAM-based Field Programmable Gate Arrays (FPGAs) is becoming more and more prevalent in space applications. Commercial-grade FPGAs are potentially susceptible to permanently debilitating Single-Event Latchups (SELs). Repair methods based on Evolutionary Algorithms may be applied to FPGA circuits to enable successful fault recovery. This paper presents the experimental results of applying such methods to repair four commonly used circuits (quadrature decoder, 3-by-3-bit multiplier, 3-by-3-bit adder, 440-7 decoder) into which a number of simulated faults have been introduced. The results suggest that evolutionary repair techniques can improve the process of fault recovery when used instead of or as a supplement to Triple Modular Redundancy (TMR), which is currently the predominant method for mitigating FPGA faults.

  6. A Paper-Based Electrochromic Array for Visualized Electrochemical Sensing.

    PubMed

    Zhang, Fengling; Cai, Tianyi; Ma, Liang; Zhan, Liyuan; Liu, Hong

    2017-01-31

    We report a battery-powered, paper-based electrochromic array for visualized electrochemical sensing. The paper-based sensing system consists of six parallel electrochemical cells, which are powered by an aluminum-air battery. Each single electrochemical cell uses a Prussian Blue spot electrodeposited on an indium-doped tin oxide thin film as the electrochromic indicator. Each electrochemical cell is preloaded with increasing amounts of analyte. The sample activates the battery for the sensing. Both the preloaded analyte and the analyte in the sample initiate the color change of Prussian Blue to Prussian White. With a reaction time of 60 s, the number of electrochemical cells with complete color changes is correlated to the concentration of analyte in the sample. As a proof-of-concept analyte, lactic acid was detected semi-quantitatively using the naked eye.

  7. ABINIT: Plane-Wave-Based Density-Functional Theory on High Performance Computers

    NASA Astrophysics Data System (ADS)

    Torrent, Marc

    2014-03-01

    For several years, a continuous effort has been produced to adapt electronic structure codes based on Density-Functional Theory to the future computing architectures. Among these codes, ABINIT is based on a plane-wave description of the wave functions which allows to treat systems of any kind. Porting such a code on petascale architectures pose difficulties related to the many-body nature of the DFT equations. To improve the performances of ABINIT - especially for what concerns standard LDA/GGA ground-state and response-function calculations - several strategies have been followed: A full multi-level parallelisation MPI scheme has been implemented, exploiting all possible levels and distributing both computation and memory. It allows to increase the number of distributed processes and could not be achieved without a strong restructuring of the code. The core algorithm used to solve the eigen problem (``Locally Optimal Blocked Congugate Gradient''), a Blocked-Davidson-like algorithm, is based on a distribution of processes combining plane-waves and bands. In addition to the distributed memory parallelization, a full hybrid scheme has been implemented, using standard shared-memory directives (openMP/openACC) or porting some comsuming code sections to Graphics Processing Units (GPU). As no simple performance model exists, the complexity of use has been increased; the code efficiency strongly depends on the distribution of processes among the numerous levels. ABINIT is able to predict the performances of several process distributions and automatically choose the most favourable one. On the other hand, a big effort has been carried out to analyse the performances of the code on petascale architectures, showing which sections of codes have to be improved; they all are related to Matrix Algebra (diagonalisation, orthogonalisation). The different strategies employed to improve the code scalability will be described. They are based on an exploration of new diagonalization

  8. High-throughput PCR in silicon based microchamber array.

    PubMed

    Nagai, H; Murakami, Y; Yokoyama, K; Tamiya, E

    2001-12-01

    Highly integrated hybridization assay and capillary electrophoresis have improved the throughput of DNA analysis. The shift to high throughput analysis requires a high speed DNA amplification system, and several rapid PCR systems have been developed. In these thermal cyclers, the temperature was controlled by effective methodology instead of a large heating/cooling block preventing rapid thermal cycling. In our research, high speed PCR was performed using a silicon-based microchamber array and three heat blocks. The highly integrated microchamber array was fabricated by semiconductor microfabrication techniques. The temperature of the PCR microchamber was controlled by alternating between three heat blocks of different temperature. In general, silicon has excellent thermal conductivity, and the heat capacity is small in the miniaturized sample volume. Hence, the heating/cooling rate was rapid, approximately 16 degrees C/s. The rapid PCR was therefore completed in 18 min for 40 cycles. The thermal cycle time was reduced to 1/10 of a commercial PCR instrument (Model 9600, PE Applied Biosystems-3 h).

  9. Electrochemical DNA biosensor based on the BDD nanograss array electrode

    PubMed Central

    2013-01-01

    Background The development of DNA biosensor has attracted considerable attention due to their potential applications, including gene analysis, clinical diagnostics, forensic study and more medical applications. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry in this study. Results Electrochemical DNA biosensor was developed based on the BDD film electrode (fBDD) and BDD nanograss array electrode (nBDD). In comparison with fBDD and AuNPs/CA/fBDD electrode, the lower semicircle diameter of electrochemical impedance spectroscopy obtained on nBDD and AuNPs/CA/nBDD electrode indicated that the presence of nanograss array improved the reactive site, reduced the interfacial resistance, and made the electron transfer easier. Using electroactive daunomycin as an indicator, the hybridization detection was measured by differential pulse voltammetry. Conclusions The experimental results demonstrated that the prepared AuNPs/CA/nBDD electrode was suitable for DNA hybridization with favorable performance of faster response, higher sensitivity, lower detection limit and satisfactory selectivity, reproducibility and stability. PMID:23575250

  10. Performance comparison of Fresnel-based concentrator arrays

    NASA Astrophysics Data System (ADS)

    Mohedano, Rubén; Cvetkovic, Aleksandra; Benítez, Pablo; Zamora, Pablo; Miñano, Juan C.; Chaves, Julio; Hernandez, Maikel; Buljan, Marina; Vilaplana, Juan

    2010-08-01

    At module level (one single solar cell), the Fresnel-Köhler (FK) concentrator comprises a perfect irradiance uniformity along with quite high concentration-acceptance angle product. At the same time, it maintains the efficiency/simplicity of other Fresnel-based concentrators. In this work we will show the FK concentrator has loose manufacturing tolerances as well. All these facts, along with the pill-box shape of its transmission curve, permit an enhanced performance of this device, compared to its competitors, at array level, because the system is more insensitive to manufacturing errors, and current mismatch is less likely to occur. Or the same performance can be achieved at a lower cost, exhausting the tolerance budget by using inexpensive fabrication techniques. Depending on the concentrator, the actual power delivered by an array might drop significantly with respect to the sum of the power delivered by single modules. Under certain circumstances, the FK can reach a 1-10% electrical efficiency increase with regards to other concentrators sharing the same technology.

  11. T-L Plane Abstraction-Based Energy-Efficient Real-Time Scheduling for Multi-Core Wireless Sensors.

    PubMed

    Kim, Youngmin; Lee, Ki-Seong; Pham, Ngoc-Son; Lee, Sun-Ro; Lee, Chan-Gun

    2016-07-08

    Energy efficiency is considered as a critical requirement for wireless sensor networks. As more wireless sensor nodes are equipped with multi-cores, there are emerging needs for energy-efficient real-time scheduling algorithms. The T-L plane-based scheme is known to be an optimal global scheduling technique for periodic real-time tasks on multi-cores. Unfortunately, there has been a scarcity of studies on extending T-L plane-based scheduling algorithms to exploit energy-saving techniques. In this paper, we propose a new T-L plane-based algorithm enabling energy-efficient real-time scheduling on multi-core sensor nodes with dynamic power management (DPM). Our approach addresses the overhead of processor mode transitions and reduces fragmentations of the idle time, which are inherent in T-L plane-based algorithms. Our experimental results show the effectiveness of the proposed algorithm compared to other energy-aware scheduling methods on T-L plane abstraction.

  12. Cell division plane orientation based on tensile stress in Arabidopsis thaliana

    PubMed Central

    Louveaux, Marion; Julien, Jean-Daniel; Mirabet, Vincent; Boudaoud, Arezki; Hamant, Olivier

    2016-01-01

    Cell geometry has long been proposed to play a key role in the orientation of symmetric cell division planes. In particular, the recently proposed Besson–Dumais rule generalizes Errera’s rule and predicts that cells divide along one of the local minima of plane area. However, this rule has been tested only on tissues with rather local spherical shape and homogeneous growth. Here, we tested the application of the Besson–Dumais rule to the divisions occurring in the Arabidopsis shoot apex, which contains domains with anisotropic curvature and differential growth. We found that the Besson–Dumais rule works well in the central part of the apex, but fails to account for cell division planes in the saddle-shaped boundary region. Because curvature anisotropy and differential growth prescribe directional tensile stress in that region, we tested the putative contribution of anisotropic stress fields to cell division plane orientation at the shoot apex. To do so, we compared two division rules: geometrical (new plane along the shortest path) and mechanical (new plane along maximal tension). The mechanical division rule reproduced the enrichment of long planes observed in the boundary region. Experimental perturbation of mechanical stress pattern further supported a contribution of anisotropic tensile stress in division plane orientation. Importantly, simulations of tissues growing in an isotropic stress field, and dividing along maximal tension, provided division plane distributions comparable to those obtained with the geometrical rule. We thus propose that division plane orientation by tensile stress offers a general rule for symmetric cell division in plants. PMID:27436908

  13. Intensity information extraction in Geiger mode detector array based three-dimensional imaging applications

    NASA Astrophysics Data System (ADS)

    Wang, Fei

    2013-09-01

    Geiger-mode detectors have single photon sensitivity and picoseconds timing resolution, which make it a good candidate for low light level ranging applications, especially in the case of flash three dimensional imaging applications where the received laser power is extremely limited. Another advantage of Geiger-mode APD is their capability of large output current which can drive CMOS timing circuit directly, which means that larger format focal plane arrays can be easily fabricated using the mature CMOS technology. However Geiger-mode detector based FPAs can only measure the range information of a scene but not the reflectivity. Reflectivity is a major characteristic which can help target classification and identification. According to Poisson statistic nature, detection probability is tightly connected to the incident number of photon. Employing this relation, a signal intensity estimation method based on probability inversion is proposed. Instead of measuring intensity directly, several detections are conducted, then the detection probability is obtained and the intensity is estimated using this method. The relation between the estimator's accuracy, measuring range and number of detections are discussed based on statistical theory. Finally Monte-Carlo simulation is conducted to verify the correctness of this theory. Using 100 times of detection, signal intensity equal to 4.6 photons per detection can be measured using this method. With slight modification of measuring strategy, intensity information can be obtained using current Geiger-mode detector based FPAs, which can enrich the information acquired and broaden the application field of current technology.

  14. Deep traps in nonpolar m-plane GaN grown by ammonia-based molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Hurni, C. A.; Arehart, A. R.; Yang, J.; Myers, R. C.; Speck, J. S.; Ringel, S. A.

    2012-01-01

    Deep level defects in nonpolar m-plane GaN grown by ammonia-based molecular beam epitaxy were characterized using deep level transient spectroscopy (DLTS) and deep level optical spectroscopy (DLOS) and compared with polar c-plane GaN that was grown simultaneously in the same growth run. Significant differences in both the levels present and their concentrations were observed upon comparison of both growth orientations. DLTS revealed electron traps with activation energies of 0.14 eV, 0.20 eV, and 0.66 eV in the m-plane material, with concentrations that were ˜10-50 × higher than traps of similar activation energies in the c-plane material. Likewise, DLOS measurements showed ˜20 × higher concentrations of both a CN acceptor-like state at EC - 3.26 eV, which correlates with a high background carbon concentration observed by secondary ion mass spectroscopy for the m-plane material [A. Armstrong, A. R. Arehart, B. Moran, S. P. DenBaars, U. K. Mishra, J. S. Speck, and S. A. Ringel, Appl. Phys. Lett. 84, 374 (2004)], and the VGa-related state level at EC - 2.49 eV, which is consistent with an enhanced yellow luminescence observed by photoluminescence. The findings suggest a strong impact of growth dynamics on the incorporation of impurities and electrically active native point defects as a function of GaN growth plane polarity.

  15. Automatic standard plane adjustment on mobile C-Arm CT images of the calcaneus using atlas-based feature registration

    NASA Astrophysics Data System (ADS)

    Brehler, Michael; Görres, Joseph; Wolf, Ivo; Franke, Jochen; von Recum, Jan; Grützner, Paul A.; Meinzer, Hans-Peter; Nabers, Diana

    2014-03-01

    Intraarticular fractures of the calcaneus are routinely treated by open reduction and internal fixation followed by intraoperative imaging to validate the repositioning of bone fragments. C-Arm CT offers surgeons the possibility to directly verify the alignment of the fracture parts in 3D. Although the device provides more mobility, there is no sufficient information about the device-to-patient orientation for standard plane reconstruction. Hence, physicians have to manually align the image planes in a position that intersects with the articular surfaces. This can be a time-consuming step and imprecise adjustments lead to diagnostic errors. We address this issue by introducing novel semi-/automatic methods for adjustment of the standard planes on mobile C-Arm CT images. With the semi-automatic method, physicians can quickly adjust the planes by setting six points based on anatomical landmarks. The automatic method reconstructs the standard planes in two steps, first SURF keypoints (2D and newly introduced pseudo-3D) are generated for each image slice; secondly, these features are registered to an atlas point set and the parameters of the image planes are transformed accordingly. The accuracy of our method was evaluated on 51 mobile C-Arm CT images from clinical routine with manually adjusted standard planes by three physicians of different expertise. The average time of the experts (46s) deviated from the intermediate user (55s) by 9 seconds. By applying 2D SURF key points 88% of the articular surfaces were intersected correctly by the transformed standard planes with a calculation time of 10 seconds. The pseudo-3D features performed even better with 91% and 8 seconds.

  16. Mixed Linear/Square-Root Encoded Single-Slope Ramp Provides Low-Noise ADC with High Linearity for Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Wrigley, Chris J.; Hancock, Bruce R.; Newton, Kenneth W.; Cunningham, Thomas J.

    2013-01-01

    Single-slope analog-to-digital converters (ADCs) are particularly useful for onchip digitization in focal plane arrays (FPAs) because of their inherent monotonicity, relative simplicity, and efficiency for column-parallel applications, but they are comparatively slow. Squareroot encoding can allow the number of code values to be reduced without loss of signal-to-noise ratio (SNR) by keeping the quantization noise just below the signal shot noise. This encoding can be implemented directly by using a quadratic ramp. The reduction in the number of code values can substantially increase the quantization speed. However, in an FPA, the fixed pattern noise (FPN) limits the use of small quantization steps at low signal levels. If the zero-point is adjusted so that the lowest column is onscale, the other columns, including those at the center of the distribution, will be pushed up the ramp where the quantization noise is higher. Additionally, the finite frequency response of the ramp buffer amplifier and the comparator distort the shape of the ramp, so that the effective ramp value at the time the comparator trips differs from the intended value, resulting in errors. Allowing increased settling time decreases the quantization speed, while increasing the bandwidth increases the noise. The FPN problem is solved by breaking the ramp into two portions, with some fraction of the available code values allocated to a linear ramp and the remainder to a quadratic ramp. To avoid large transients, both the value and the slope of the linear and quadratic portions should be equal where they join. The span of the linear portion must cover the minimum offset, but not necessarily the maximum, since the fraction of the pixels above the upper limit will still be correctly quantized, albeit with increased quantization noise. The required linear span, maximum signal and ratio of quantization noise to shot noise at high signal, along with the continuity requirement, determines the number of

  17. Error analysis of marker-based object localization using a single-plane XRII

    SciTech Connect

    Habets, Damiaan F.; Pollmann, Steven I.; Yuan, Xunhua; Peters, Terry M.; Holdsworth, David W.

    2009-01-15

    The role of imaging and image guidance is increasing in surgery and therapy, including treatment planning and follow-up. Fluoroscopy is used for two-dimensional (2D) guidance or localization; however, many procedures would benefit from three-dimensional (3D) guidance or localization. Three-dimensional computed tomography (CT) using a C-arm mounted x-ray image intensifier (XRII) can provide high-quality 3D images; however, patient dose and the required acquisition time restrict the number of 3D images that can be obtained. C-arm based 3D CT is therefore limited in applications for x-ray based image guidance or dynamic evaluations. 2D-3D model-based registration, using a single-plane 2D digital radiographic system, does allow for rapid 3D localization. It is our goal to investigate - over a clinically practical range - the impact of x-ray exposure on the resulting range of 3D localization precision. In this paper it is assumed that the tracked instrument incorporates a rigidly attached 3D object with a known configuration of markers. A 2D image is obtained by a digital fluoroscopic x-ray system and corrected for XRII distortions ({+-}0.035 mm) and mechanical C-arm shift ({+-}0.080 mm). A least-square projection-Procrustes analysis is then used to calculate the 3D position using the measured 2D marker locations. The effect of x-ray exposure on the precision of 2D marker localization and on 3D object localization was investigated using numerical simulations and x-ray experiments. The results show a nearly linear relationship between 2D marker localization precision and the 3D localization precision. However, a significant amplification of error, nonuniformly distributed among the three major axes, occurs, and that is demonstrated. To obtain a 3D localization error of less than {+-}1.0 mm for an object with 20 mm marker spacing, the 2D localization precision must be better than {+-}0.07 mm. This requirement was met for all investigated nominal x-ray exposures at 28 cm

  18. Error analysis of marker-based object localization using a single-plane XRII.

    PubMed

    Habets, Damiaan F; Pollmann, Steven I; Yuan, Xunhua; Peters, Terry M; Holdsworth, David W

    2009-01-01

    The role of imaging and image guidance is increasing in surgery and therapy, including treatment planning and follow-up. Fluoroscopy is used for two-dimensional (2D) guidance or localization; however, many procedures would benefit from three-dimensional (3D) guidance or localization. Three-dimensional computed tomography (CT) using a C-arm mounted x-ray image intensifier (XRII) can provide high-quality 3D images; however, patient dose and the required acquisition time restrict the number of 3D images that can be obtained. C-arm based 3D CT is therefore limited in applications for x-ray based image guidance or dynamic evaluations. 2D-3D model-based registration, using a single-plane 2D digital radiographic system, does allow for rapid 3D localization. It is our goal to investigate-over a clinically practical range-the impact of x-ray exposure on the resulting range of 3D localization precision. In this paper it is assumed that the tracked instrument incorporates a rigidly attached 3D object with a known configuration of markers. A 2D image is obtained by a digital fluoroscopic x-ray system and corrected for XRII distortions (+/- 0.035 mm) and mechanical C-arm shift (+/- 0.080 mm). A least-square projection-Procrustes analysis is then used to calculate the 3D position using the measured 2D marker locations. The effect of x-ray exposure on the precision of 2D marker localization and on 3D object localization was investigated using numerical simulations and x-ray experiments. The results show a nearly linear relationship between 2D marker localization precision and the 3D localization precision. However, a significant amplification of error, nonuniformly distributed among the three major axes, occurs, and that is demonstrated. To obtain a 3D localization error of less than +/- 1.0 mm for an object with 20 mm marker spacing, the 2D localization precision must be better than +/- 0.07 mm. This requirement was met for all investigated nominal x-ray exposures at 28 cm FOV

  19. Planar patterned stretchable electrode arrays based on flexible printed circuits

    NASA Astrophysics Data System (ADS)

    Taylor, R. E.; Boyce, C. M.; Boyce, M. C.; Pruitt, B. L.

    2013-10-01

    For stretchable electronics to achieve broad industrial application, they must be reliable to manufacture and must perform robustly while undergoing large deformations. We present a new strategy for creating planar stretchable electronics and demonstrate one such device, a stretchable microelectrode array based on flex circuit technology. Stretchability is achieved through novel, rationally designed perforations that provide islands of low strain and continuous low-strain pathways for conductive traces. This approach enables the device to maintain constant electrical properties and planarity while undergoing applied strains up to 15%. Materials selection is not limited to polyimide composite devices and can potentially be implemented with either soft or hard substrates and can incorporate standard metals or new nano-engineered conductors. By using standard flex circuit technology, our planar microelectrode device achieved constant resistances for strains up to 20% with less than a 4% resistance offset over 120 000 cycles at 10% strain.

  20. Undersampling Correction for Array Detector-Based Satellite Spectrometers

    NASA Technical Reports Server (NTRS)

    Chance, Kelly; Kurosu, Thomas P.; Sioris, Christopher E.

    2004-01-01

    Array detector-based instruments are now fundamental to measurements of ozone and other atmospheric trace gases from space in the ultraviolet, visible, and infrared. The present generation of such instruments suffers, to a greater or lesser degree, from undersampling of the spectra, leading to difficulties in the analysis of atmospheric radiances. We provide extended analysis of the undersampling suffered by modem satellite spectrometers, which include Global Ozone Monitoring Experiment (GOME), Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), Ozone Monitoring Instrument (OMI), and Ozone Mapping and Profiler Suite (OMPS). The analysis includes basic undersampling, the effects of binning into separate detector pixels, and the application of high-resolution Fraunhofer spectral data to correct for undersampling in many useful cases.

  1. An infrared light polarized beam splitter based on graphene array

    NASA Astrophysics Data System (ADS)

    Chen, Dingbo; Yang, Junbo; Zhang, Jingjing; Wu, Wenjun; Huang, Jie; Zhang, Feifei; Wang, Hongqing

    2016-10-01

    Metamaterials have attracted a lot of attention in the past decade, because of its remarkable properties in electronics and photonics. Recently, a new kind of two-dimensional metamaterial named metasurface have led the research front. Metasurfaces show up excellent optical properties by patterning planar nanostructures. Novel optical phenomena based on graphene include ultra-thin focusing, anomalous reflection or refraction strong spin-orbit and so on. In this work, we have designed a novel infrared light polarized beam splitter by combining the 2D array of graphene with a subwavelength-thickness optical cavity, which demonstrated great splitting effect in infrared wavelength. Our demonstration pave a novel way for the infrared light polarized beam splitting.

  2. Photonic crystal fiber sensor array based on modes overlapping.

    PubMed

    Cárdenas-Sevilla, Guillermo A; Finazzi, Vittoria; Villatoro, Joel; Pruneri, Valerio

    2011-04-11

    An alternative method to build point and sensor array based on photonic crystal fibers (PCFs) is presented. A short length (in the 9-12 mm range) of properly selected index-guiding PCF is fusion spliced between conventional single mode fibers. By selective excitation and overlapping of specific modes in the PCF we make the transmission spectra of the sensors to exhibit a single and narrow notch. The notch position changes with external perturbation which allows sensing diverse parameters. The well-defined single notch, the extinction ratio exceeding 30 dB and the low overall insertion loss allow placing the sensors in series. This makes the implementation of sensor networks possible.

  3. ArraySearch: A Web-Based Genomic Search Engine.

    PubMed

    Wilson, Tyler J; Ge, Steven X

    2012-01-01

    Recent advances in microarray technologies have resulted in a flood of genomics data. This large body of accumulated data could be used as a knowledge base to help researchers interpret new experimental data. ArraySearch finds statistical correlations between newly observed gene expression profiles and the huge source of well-characterized expression signatures deposited in the public domain. A search query of a list of genes will return experiments on which the genes are significantly up- or downregulated collectively. Searches can also be conducted using gene expression signatures from new experiments. This resource will empower biological researchers with a statistical method to explore expression data from their own research by comparing it with expression signatures from a large public archive.

  4. Planar patterned stretchable electrode arrays based on flexible printed circuits

    PubMed Central

    Taylor, R E; Boyce, C M; Boyce, M C; Pruitt, B L

    2013-01-01

    For stretchable electronics to achieve broad industrial application, they must be reliable to manufacture and must perform robustly while undergoing large deformations. We present a new strategy for creating planar stretchable electronics and demonstrate one such device, a stretchable microelectrode array based on flex circuit technology. Stretchability is achieved through novel, rationally designed perforations that provide islands of low strain and continuous low-strain pathways for conductive traces. This approach enables the device to maintain constant electrical properties and planarity while undergoing applied strains up to 15%. Materials selection is not limited to polyimide composite devices and can potentially be implemented with either soft or hard substrates and can incorporate standard metals or new nano-engineered conductors. By using standard flex circuit technology, our planar microelectrode device achieved constant resistances for strains up to 20% with less than a 4% resistance offset over 120,000 cycles at 10% strain. PMID:24244075

  5. Establishment of an AAV Reverse Infection-Based Array

    PubMed Central

    Wang, Gang; Dong, Zheyue; Shen, Wei; Zheng, Gang; Wu, Xiaobing; Xue, Jinglun; Wang, Yue; Chen, Jinzhong

    2010-01-01

    Background The development of a convenient high-throughput gene transduction approach is critical for biological screening. Adeno-associated virus (AAV) vectors are broadly used in gene therapy studies, yet their applications in in vitro high-throughput gene transduction are limited. Principal Findings We established an AAV reverse infection (RI)-based method in which cells were transduced by quantified recombinant AAVs (rAAVs) pre-coated onto 96-well plates. The number of pre-coated rAAV particles and number of cells loaded per well, as well as the temperature stability of the rAAVs on the plates, were evaluated. As the first application of this method, six serotypes or hybrid serotypes of rAAVs (AAV1, AAV2, AAV5/5, AAV8, AAV25 m, AAV28 m) were compared for their transduction efficiencies using various cell lines, including BHK21, HEK293, BEAS-2BS, HeLaS3, Huh7, Hepa1-6, and A549. AAV2 and AAV1 displayed high transduction efficiency; thus, they were deemed to be suitable candidate vectors for the RI-based array. We next evaluated the impact of sodium butyrate (NaB) treatment on rAAV vector-mediated reporter gene expression and found it was significantly enhanced, suggesting that our system reflected the biological response of target cells to specific treatments. Conclusions/Significance Our study provides a novel method for establishing a highly efficient gene transduction array that may be developed into a platform for cell biological assays. PMID:20976058

  6. Towards the development of a SiPM-based camera for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Ambrosi, G.; Bissaldi, E.; Di Venere, L.; Fiandrini, E.; Giglietto, N.; Giordano, F.; Ionica, M.; Paoletti, R.; Simone, D.; Vagelli, V.

    2017-03-01

    The Italian National Institute for Nuclear Physics (INFN) is involved in the development of a prototype for a camera based on Silicon Photomultipliers (SiPMs) for the Cherenkov Telescope Array (CTA), a new generation of telescopes for ground-based gamma-ray astronomy. In this framework, an R&D program within the `Progetto Premiale TElescopi CHErenkov made in Italy (TECHE.it)' for the development of SiPMs suitable for Cherenkov light detection in the Near-Ultraviolet (NUV) has been carried out. The developed device is a NUV High-Density (NUV-HD) SiPM based on a micro cell of 30 μm × 30 μm and an area of 6 mm × 6 mm, produced by Fondazione Bruno Kessler (FBK). A full characterization of the single NUV-HD SiPM will be presented. A matrix of 8 × 8 single NUV-HD SiPMs will be part of the focal plane of the Schwarzschild- Couder Telescope prototype (pSCT) for CTA. An update on recent tests on the detectors arranged in this matrix configuration and on the front-end electronics will be given.

  7. Magnetic wire trap arrays for biomarker-based molecular detection

    NASA Astrophysics Data System (ADS)

    Vieira, Gregory; Mahajan, Kalpesh; Ruan, Gang; Winter, Jessica; Sooryakumar, R.

    2012-02-01

    Submicrometer-scale magnetic devices built on chip-based platforms have recently been shown to present opportunities for new particle trapping and manipulation technologies. Meanwhile, advances in nanoparticle fabrication allow for the building of custom-made particles with precise control of their size, composition, and other properties such as magnetism, fluorescence, and surface biomarker characteristics. In particular, carefully tailored surface biomarkers facilitate precise binding to targeted molecules, self-actuated construction of hybrid structures, and fluorescence-based detection schemes. Based on these progresses, we present an on-chip detection mechanism for molecules with known surface markers. Hybrid nanostructures consisting of micelle nanoparticles, fluorescent quantum dots, and superparamagnetic iron oxide nanoparticles are used to detect proteins or DNA molecules. The target is detected by the magnetic and fluorescent functionalities of the composite nanostructure, whereas in the absence of the target these signals are not present. Underlying this approach is the simultaneous manipulation via ferromagnetic zigzag nanowire arrays and imaging via quantum dot excitation. This chip-based detection technique could provide a powerful, low cost tool for ultrasensitive molecule detection with ramifications in healthcare diagnostics and small-scale chemical synthesis.

  8. Optimized Color Filter Arrays for Sparse Representation Based Demosaicking.

    PubMed

    Li, Jia; Bai, Chenyan; Lin, Zhouchen; Yu, Jian

    2017-03-08

    Demosaicking is the problem of reconstructing a color image from the raw image captured by a digital color camera that covers its only imaging sensor with a color filter array (CFA). Sparse representation based demosaicking has been shown to produce superior reconstruction quality. However, almost all existing algorithms in this category use the CFAs which are not specifically optimized for the algorithms. In this paper, we consider optimally designing CFAs for sparse representation based demosaicking, where the dictionary is well-chosen. The fact that CFAs correspond to the projection matrices used in compressed sensing inspires us to optimize CFAs via minimizing the mutual coherence. This is more challenging than that for traditional projection matrices because CFAs have physical realizability constraints. However, most of the existing methods for minimizing the mutual coherence require that the projection matrices should be unconstrained, making them inapplicable for designing CFAs. We consider directly minimizing the mutual coherence with the CFA's physical realizability constraints as a generalized fractional programming problem, which needs to find sufficiently accurate solutions to a sequence of nonconvex nonsmooth minimization problems. We adapt the redistributed proximal bundle method to address this issue. Experiments on benchmark images testify to the superiority of the proposed method. In particular, we show that a simple sparse representation based demosaicking algorithm with our specifically optimized CFA can outperform LSSC [1]. To the best of our knowledge, it is the first sparse representation based demosaicking algorithm that beats LSSC in terms of CPSNR.

  9. Simultaneous in-plane and out-of-plane displacement measurement based on a dual-camera imaging system and its application to inspection of large-scale space structures

    NASA Astrophysics Data System (ADS)

    Ri, Shien; Tsuda, Hiroshi; Yoshida, Takeshi; Umebayashi, Takashi; Sato, Akiyoshi; Sato, Eiichi

    2015-07-01

    Optical methods providing full-field deformation data have potentially enormous interest for mechanical engineers. In this study, an in-plane and out-of-plane displacement measurement method based on a dual-camera imaging system is proposed. The in-plane and out-of-plane displacements are determined simultaneously using two measured in-plane displacement data observed from two digital cameras at different view angles. The fundamental measurement principle and experimental results of accuracy confirmation are presented. In addition, we applied this method to the displacement measurement in a static loading and bending test of a solid rocket motor case (CFRP material; 2.2 m diameter and 2.3 m long) for an up-to-date Epsilon rocket developed by JAXA. The effectiveness and measurement accuracy is confirmed by comparing with conventional displacement sensor. This method could be useful to diagnose the reliability of large-scale space structures in the rocket development.

  10. Magnetization Reversal by Out-of-plane Voltage in BiFeO3-based Multiferroic Heterostructures

    PubMed Central

    Wang, J. J.; Hu, J.M.; Peng, Ren-Ci; Gao, Y.; Shen, Y.; Chen, L. Q.; Nan, C. W.

    2015-01-01

    Voltage controlled 180° magnetization reversal has been achieved in BiFeO3-based multiferroic heterostructures, which is promising for the future development of low-power spintronic devices. However, all existing reports involve the use of an in-plane voltage that is unfavorable for practical device applications. Here, we investigate, using phase-field simulations, the out-of-plane (i.e., perpendicular to heterostructures) voltage controlled magnetism in heterostructures consisting of CoFe nanodots and (110) BiFeO3 thin film or island. It is predicted that the in-plane component of the canted magnetic moment at the CoFe/BiFeO3 interface can be reversed repeatedly by applying a perpendicular voltage across the bottom (110) BiFeO3 thin film, which further leads to an in-plane magnetization reversal in the overlaying CoFe nanodot. The non-volatility of such perpendicular voltage controlled magnetization reversal can be achieved by etching the continuous BiFeO3 film into isolated nanoislands with the same in-plane sizes as the CoFe nanodot. The findings would provide general guidelines for future experimental and engineering efforts on developing the electric-field controlled spintronic devices with BiFeO3-based multiferroic heterostructures. PMID:25995062

  11. Thermally Conductive Tape Based on Carbon Nanotube Arrays

    NASA Technical Reports Server (NTRS)

    Kashani, Ali

    2011-01-01

    array of CNTs was measured to be as high as 10 W/K. The high thermal conductivity and the nanoscale size make CNTs ideal as thermal interface materials. The CNT-based thermal tape can be used for the thermal management of microelectronic packages and electronic systems. It also can be integrated with current device technology and packaging. The material would allow for an efficient method to manage excess heat generation without requiring any additional power. Lastly, the CNT tape can be used to enhance thermal contact conductance across two mating surfaces on some NASA missions.

  12. Quantum-Well Infrared Photodetector (QWIP) Focal Plane Assembly

    NASA Technical Reports Server (NTRS)

    Jhabvala, Murzy; Jhabvala, Christine A.; Ewin, Audrey J.; Hess, Larry A.; Hartmann, Thomas M.; La, Anh T.

    2012-01-01

    A paper describes the Thermal Infrared Sensor (TIRS), a QWIP-based instrument intended to supplement the Operational Land Imager (OLI) for the Landsat Data Continuity Mission (LDCM). The TIRS instrument is a far-infrared imager operating in the pushbroom mode with two IR channels: 10.8 and 12 microns. The focal plane will contain three 640x512 QWIP arrays mounted on a silicon substrate. The silicon substrate is a custom-fabricated carrier board with a single layer of aluminum interconnects. The general fabrication process starts with a 4-in. (approx.10-cm) diameter silicon wafer. The wafer is oxidized, a single substrate contact is etched, and aluminum is deposited, patterned, and alloyed. This technology development is aimed at incorporating three large-format infrared detecting arrays based on GaAs QWIP technology onto a common focal plane with precision alignment of all three arrays. This focal plane must survive the rigors of flight qualification and operate at a temperature of 43 K (-230 C) for five years while orbiting the Earth. The challenges presented include ensuring thermal compatibility among all the components, designing and building a compact, somewhat modular system and ensuring alignment to very tight levels. The multi-array focal plane integrated onto a single silicon substrate is a new application of both QWIP array development and silicon wafer scale integration. The Invar-based assembly has been tested to ensure thermal reliability.

  13. Measuring method of diffraction efficiency for plane grating based on Fourier spectral technology.

    PubMed

    Ma, Zhenyu; Qi, Xiangdong; Li, Xiaotian; Zhang, Shanwen; Bayanheshig; Yu, Hongzhu; Yu, Haili; Jiao, Qingbin

    2016-01-20

    A traditional double monochromatic measurement instrument of diffraction efficiency for a plane grating involves two major problems: one is the differences of output spectrum bandwidths during measurement of a standard reflection mirror and the tested grating; the other is overlapping of diffracted spectra, which influence testing accuracy of diffraction efficiency. In this paper, a new measuring method of diffraction efficiency based on Fourier spectral technology is presented. The mathematical model of diffraction efficiency is first deduced and then verified by ray tracing and Fourier optics simulation. The influences of the moving cube corner's tilt error, lateral shift error, and maximal moving distance error on the measurement accuracy are analyzed in detail. The analyses provide theoretical references for designing diffraction efficiency instruments. Compared with the traditional diffraction efficiency measurement instrument with double monochromator structure, our method not only improves the measurement accuracy of diffraction efficiency but also has the advantage of high luminous flux, high spectral resolution, multiwavelength measurement in mean time, and high wavenumber accuracy.

  14. Glide plane symmetry and gap structure in the iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Berlijn, Tom; Hirschfeld, Peter; Scalapino, Douglas; Maier, Thomas

    2015-03-01

    We consider the effect of glide plane symmetry of the Fe-pnictogen/chalcogen layer in Fe-based superconductors for pairing in spin fluctuation models. Recent theories have proposed that so-called η-pairing states with nonzero total momentum can be realized and possess exotic properties such as odd parity spin singlet symmetry and time-reversal symmetry breaking. Here we show that η-pairing is inevitable when there is orbital weight at the Fermi level from orbitals with even and odd mirror reflection symmetry in z; however, by explicit calculation, we conclude that the gap function that appears in observable quantities is identical to that found in earlier, 1 Fe per unit cell pseudo-crystal momentum calculations. P.J.H. and Y.W. were supported by Grant No. DOE DE-FG02-05ER46236 and T.B. was supported as a Wigner Fellow at the Oak Ridge National Laboratory. A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy.

  15. Computer Program for Thin Wire Antenna over a Perfectly Conducting Ground Plane. [using Galerkins method and sinusoidal bases

    NASA Technical Reports Server (NTRS)

    Richmond, J. H.

    1974-01-01

    A computer program is presented for a thin-wire antenna over a perfect ground plane. The analysis is performed in the frequency domain, and the exterior medium is free space. The antenna may have finite conductivity and lumped loads. The output data includes the current distribution, impedance, radiation efficiency, and gain. The program uses sinusoidal bases and Galerkin's method.

  16. Model-based Processing of Microcantilever Sensor Arrays

    SciTech Connect

    Tringe, J W; Clague, D S; Candy, J V; Sinensky, A K; Lee, C L; Rudd, R E; Burnham, A K

    2005-04-27

    We have developed a model-based processor (MBP) for a microcantilever-array sensor to detect target species in solution. We perform a proof-of-concept experiment, fit model parameters to the measured data and use them to develop a Gauss-Markov simulation. We then investigate two cases of interest, averaged deflection data and multi-channel data. For this evaluation we extract model parameters via a model-based estimation, perform a Gauss-Markov simulation, design the optimal MBP and apply it to measured experimental data. The performance of the MBP in the multi-channel case is evaluated by comparison to a ''smoother'' (averager) typically used for microcantilever signal analysis. It is shown that the MBP not only provides a significant gain ({approx} 80dB) in signal-to-noise ratio (SNR), but also consistently outperforms the smoother by 40-60 dB. Finally, we apply the processor to the smoothed experimental data and demonstrate its capability for chemical detection. The MBP performs quite well, apart from a correctable systematic bias error.

  17. Decision optimization for face recognition based on an alternate correlation plane quantification metric.

    PubMed

    Alfalou, A; Brosseau, C; Katz, P; Alam, M S

    2012-05-01

    We consider a new approach for enhancing the discrimination performance of the VanderLugt correlator. Instead of trying to optimize the correlation filter, or propose a new decision correlation peak detection criterion, we propose herein to denoise the correlation plane before applying the peak-to-correlation energy (PCE) criterion. For that purpose, we use a linear functional model to express a given correlation plane as a linear combination of the correlation peak, noise, and residual components. The correlation peak is modeled using an orthonormalized function and the singular value decomposition method. A set of training correlation planes is then selected to create the correlation noise components. Finally, an optimized correlation plane is reconstructed while discarding the noise components. Independently of the filter correlation used, this technique denoises the correlation plane by lowering the correlation noise magnitude in case of true correlation and decreases the false alarm rate when the target image does not belong to the desired class. Test results are presented, using a composite filter and a face recognition application, to verify the effectiveness of the proposed technique.

  18. Microbead-based electrochemical immunoassay with interdigitated array electrodes.

    PubMed

    Thomas, Jennifer H; Kim, Sang Kyung; Hesketh, Peter J; Halsall, H Brian; Heineman, William R

    2004-05-15

    The objective of this study was to develop a sensitive and miniaturized immunoassay by coupling a microbead-based immunoassay with an interdigitated array (IDA) electrode. An IDA electrode amplifies the signal by recycling an electrochemically redox-reversible molecule. The microfabricated platinum electrodes had 25 pairs of electrodes with 1.6-microm gaps and 2.4-microm widths. An enzyme-labeled sandwich immunoassay on paramagnetic microbeads with mouse IgG as the analyte and beta-galactosidase as the enzyme label was used as the model system. beta-Galactosidase converted p-aminophenyl beta-D-galactopyranoside to p-aminophenol (PAP). This enzyme reaction was measured continuously by positioning the microbeads near the electrode surface with a magnet. Electrochemical recycling occurred with PAP oxidation to p-quinone imine (PQI) at +290 mV followed by PQI reduction to PAP at -300 mV vs Ag/AgCl. Dual-electrode detection amplified the signal fourfold compared to single-electrode detection, and the recycling efficiency reached 87%. A calibration curve of PAP concentration vs anodic current was linear between 10(-4) and 10(-6)M. A signal from 1000 beads in a 20-microL drop was detectable and the immunoassay was complete within 10 min with a detection limit of 3.5x10(-15)mol mouse IgG.

  19. Interdigitated electrode array based sensors for environmental monitoring of caesium

    NASA Astrophysics Data System (ADS)

    Nickson, I. D.; Boxall, C.; Port, S. N.

    2010-03-01

    The requirement for on-line and in-situ monitoring of analytes in process and effluent streams and in ground waters has become increasingly more important in recent years. We therefore describe the development of the transduction element for a fully automated online instrument for the detection of caesium. The sensor layer for this instrument employs an Ion Selective Conductimetric Microsensor (ISCOM) as the detector. This is based upon a plasticized polymeric membrane incorporating a selective ionophore, overlaying two interdigitated microelectrode arrays. A direct relationship has been observed between the bulk conductance (as determined by the microelectrodes) of the ionophore loaded membrane and the concentration of the primary ions in solution. Caesium selective ISCOMs were prepared using an ion selective membrane containing the commercially available ionophore Calix [6]arene-hexaacetic acid hexaethyl ester, polyvinylchloride (PVC) and plasticiser Nitrophenylether (NPOE). The relative levels of membrane components have also been varied in order to further enhance the ISCOM response. We also present preliminary data concerning the caesium selectivity with respect to a range of possible interferents, including rubidium.

  20. Array-based GNSS Ionospheric Sensing: Estimability and Precision Analyses

    NASA Astrophysics Data System (ADS)

    Teunissen, Peter

    2016-04-01

    Array-based GNSS Ionospheric Sensing: Estimability and Precision Analyses PJG Teunissen1,2, A Khodabandeh1 and B Zhang1 1GNSS Research Centre, Curtin University, Perth, Australia 2Geoscience and Remote Sensing, Delft University of Technology, The Netherlands Introduction: The Global Navigation Satellite Systems (GNSS) have proved to be an effective means of measuring the Earth's ionosphere. The well-known geometry-free linear combinations of the GNSS data serve as the input of an external ionospheric model to capture both the spatial and temporal characteristics of the ionosphere. Next to the slant ionospheric delays experienced by the GNSS antennas, the geometry-free combinations also contain additional unknown delays that are caused by the presence of the carrier-phase ambiguous cycles and/or the code instrumental delays. That the geometry-free combinations, without an external ionospheric model, cannot unbiasedly determine the slant ionospheric delays reveals the lack of information content in the GNSS data. Motivation and objectives: With the advent of modernized multi-frequency signals, one is confronted with many different combinations of the GNSS data that are capable of sensing the ionosphere. Owing to such diversity and the lack of information content in the GNSS data, various estimable ionospheric delays of different interpretations (and of different precision) can therefore be formed. How such estimable ionospheric delays should be interpreted and the extent to which they contribute to the precision of the unbiased slant ionosphere are the topics of this contribution. Approach and results: In this contribution, we apply S-system theory to study the estimability and precision of the estimable slant ionospheric delays that are measured by the multi-frequency GNSS data. Two different S-systems are presented, leading to two different estimable parameters of different precision: 1) the phase-driven ionospheric delays and 2) the code-driven ionospheric delays

  1. Model-based Processing of Micro-cantilever Sensor Arrays

    SciTech Connect

    Tringe, J W; Clague, D S; Candy, J V; Lee, C L; Rudd, R E; Burnham, A K

    2004-11-17

    We develop a model-based processor (MBP) for a micro-cantilever array sensor to detect target species in solution. After discussing the generalized framework for this problem, we develop the specific model used in this study. We perform a proof-of-concept experiment, fit the model parameters to the measured data and use them to develop a Gauss-Markov simulation. We then investigate two cases of interest: (1) averaged deflection data, and (2) multi-channel data. In both cases the evaluation proceeds by first performing a model-based parameter estimation to extract the model parameters, next performing a Gauss-Markov simulation, designing the optimal MBP and finally applying it to measured experimental data. The simulation is used to evaluate the performance of the MBP in the multi-channel case and compare it to a ''smoother'' (''averager'') typically used in this application. It was shown that the MBP not only provides a significant gain ({approx} 80dB) in signal-to-noise ratio (SNR), but also consistently outperforms the smoother by 40-60 dB. Finally, we apply the processor to the smoothed experimental data and demonstrate its capability for chemical detection. The MBP performs quite well, though it includes a correctable systematic bias error. The project's primary accomplishment was the successful application of model-based processing to signals from micro-cantilever arrays: 40-60 dB improvement vs. the smoother algorithm was demonstrated. This result was achieved through the development of appropriate mathematical descriptions for the chemical and mechanical phenomena, and incorporation of these descriptions directly into the model-based signal processor. A significant challenge was the development of the framework which would maximize the usefulness of the signal processing algorithms while ensuring the accuracy of the mathematical description of the chemical-mechanical signal. Experimentally, the difficulty was to identify and characterize the non

  2. Isotropic-resolution linear-array-based photoacoustic computed tomography through inverse Radon transform

    NASA Astrophysics Data System (ADS)

    Li, Guo; Xia, Jun; Li, Lei; Wang, Lidai; Wang, Lihong V.

    2015-03-01

    Linear transducer arrays are readily available for ultrasonic detection in photoacoustic computed tomography. They offer low cost, hand-held convenience, and conventional ultrasonic imaging. However, the elevational resolution of linear transducer arrays, which is usually determined by the weak focus of the cylindrical acoustic lens, is about one order of magnitude worse than the in-plane axial and lateral spatial resolutions. Therefore, conventional linear scanning along the elevational direction cannot provide high-quality three-dimensional photoacoustic images due to the anisotropic spatial resolutions. Here we propose an innovative method to achieve isotropic resolutions for three-dimensional photoacoustic images through combined linear and rotational scanning. In each scan step, we first elevationally scan the linear transducer array, and then rotate the linear transducer array along its center in small steps, and scan again until 180 degrees have been covered. To reconstruct isotropic three-dimensional images from the multiple-directional scanning dataset, we use the standard inverse Radon transform originating from X-ray CT. We acquired a three-dimensional microsphere phantom image through the inverse Radon transform method and compared it with a single-elevational-scan three-dimensional image. The comparison shows that our method improves the elevational resolution by up to one order of magnitude, approaching the in-plane lateral-direction resolution. In vivo rat images were also acquired.

  3. Microhole Array Electrodes Based on Microporous Alumina Membranes

    DTIC Science & Technology

    1992-02-25

    Furthermore, this microhole array electrode combines very deep microholes with the smallest microhole diameters (200 nm) to be reported in the literature to date. Cyclic voltammetry was used to characterize these electrodes.

  4. In-plane magnetized YIG substrates self-biased by SmCo based sputtered film coatings

    NASA Astrophysics Data System (ADS)

    Cadieu, F. J.; Hegde, H.; Schloemann, E.; van Hook, H. J.

    1994-11-01

    Highly anisotropic SmCo based films with the TbCu7-type structure have been sputter deposited directly onto YIG substrates. The SmCo crystallites have the c axes approximately randomly splayed about the substrate plane such that the easy direction of magnetization of the SmCo film is in the film plane. The in-plane static energy product of the SmCo film layers was about 16 MG Oe. In-plane vibrating sample magnetometer hysteresis loops of the SmCo film and YIG substrate exhibit a composite form with the YIG field reversal shifted into the first quadrant by the looping field from the SmCo film layer. Approximately 4x4 sq mm pieces of YIG substrate have been measured to determine the YIG bias field and field required for reverse saturation of the YIG as a function of the SmCo based film layer thickness to YIG substrate thickness. It is observed that for SmCo to YIG thickness ratios greater than 0.22, the looping field from the SmCo film layer is sufficient to saturate the YIG magnetization in the reverse direction. SmCo film thicknesses in the range from 80 to 120 microns have been used in these studies. Special boundary layers have been used to promote thick film adhesion to the YIG substrates.

  5. Design of acoustic logging signal source of imitation based on field programmable gate array

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Ju, X. D.; Lu, J. Q.; Men, B. Y.

    2014-08-01

    An acoustic logging signal source of imitation is designed and realized, based on the Field Programmable Gate Array (FPGA), to improve the efficiency of examining and repairing acoustic logging tools during research and field application, and to inspect and verify acoustic receiving circuits and corresponding algorithms. The design of this signal source contains hardware design and software design,and the hardware design uses an FPGA as the control core. Four signals are made first by reading the Random Access Memory (RAM) data which are inside the FPGA, then dealing with the data by digital to analog conversion, amplification, smoothing and so on. Software design uses VHDL, a kind of hardware description language, to program the FPGA. Experiments illustrate that the ratio of signal to noise for the signal source is high, the waveforms are stable, and also its functions of amplitude adjustment, frequency adjustment and delay adjustment are in accord with the characteristics of real acoustic logging waveforms. These adjustments can be used to imitate influences on sonic logging received waveforms caused by many kinds of factors such as spacing and span of acoustic tools, sonic speeds of different layers and fluids, and acoustic attenuations of different cementation planes.

  6. Study of cell secretion using MEMS-based arrays

    NASA Astrophysics Data System (ADS)

    Feng, Xiaojun; Szaro, Ben G.; Castracane, James

    2004-01-01

    This paper focuses on the development of a custom MEMS-based array which will facilitate cell secretion studies by enabling parallel electrochemical detection of secretion events from separate cells with millisecond resolution. Initial prototypes of the microarrays have been fabricated with well-shaped gold electrodes which roughly conform to the shape of a single cell. Amperometric measurements on bovine adrenal chromaffin cells using the prototype microarrays concluded that 80% of the catecholamine secreted from the cells was captured by the well-electrodes. This was a 4-fold increase in detection efficiency over the conventional carbon fiber electrode method. To expand the applicability of this method, additional cell-lines and microarray designs are under investigation. An amphibian fibroblast cell-line (FT cell-line, American Tissue Culture Collection) is being used in our lab. FT cells can take up hormones or other biological compounds from the culture media through a non-specific uptake mechanism which is still under investigation. Microarrays of a new design have been fabricated with patterned gold electrodes on polyimide. A different testing method will be applied to these new microarrays. The FT cells will be cultured directly on top of the microarrays to cover the gold electrodes. Cells will then be loaded with norepinephrine by incubation in media containing 1mM norepinephrine. Rapid elevation of intracellular Ca2+ levels triggers the exocytosis of norepinephrine which then can be detected by the gold electrode. The new polyimide based microarrays have been successfully used to support confluent growth of the FT cells. Loading of the FT cells with norepinephrine and electrochemical detection tests are underway.

  7. Study of cell secretion using MEMS-based arrays

    NASA Astrophysics Data System (ADS)

    Feng, Xiaojun; Szaro, Ben G.; Castracane, James

    2003-12-01

    This paper focuses on the development of a custom MEMS-based array which will facilitate cell secretion studies by enabling parallel electrochemical detection of secretion events from separate cells with millisecond resolution. Initial prototypes of the microarrays have been fabricated with well-shaped gold electrodes which roughly conform to the shape of a single cell. Amperometric measurements on bovine adrenal chromaffin cells using the prototype microarrays concluded that 80% of the catecholamine secreted from the cells was captured by the well-electrodes. This was a 4-fold increase in detection efficiency over the conventional carbon fiber electrode method. To expand the applicability of this method, additional cell-lines and microarray designs are under investigation. An amphibian fibroblast cell-line (FT cell-line, American Tissue Culture Collection) is being used in our lab. FT cells can take up hormones or other biological compounds from the culture media through a non-specific uptake mechanism which is still under investigation. Microarrays of a new design have been fabricated with patterned gold electrodes on polyimide. A different testing method will be applied to these new microarrays. The FT cells will be cultured directly on top of the microarrays to cover the gold electrodes. Cells will then be loaded with norepinephrine by incubation in media containing 1mM norepinephrine. Rapid elevation of intracellular Ca2+ levels triggers the exocytosis of norepinephrine which then can be detected by the gold electrode. The new polyimide based microarrays have been successfully used to support confluent growth of the FT cells. Loading of the FT cells with norepinephrine and electrochemical detection tests are underway.

  8. Optical sensor array platform based on polymer electronic devices

    NASA Astrophysics Data System (ADS)

    Koetse, Marc M.; Rensing, Peter A.; Sharpe, Ruben B. A.; van Heck, Gert T.; Allard, Bart A. M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; De Zwart, René M.; Houben, René J.; Enting, Erik; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.

    2007-10-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrated in clothing, be worn on the skin, or may even be placed inside the body. This implies that flexibility and wearability of the systems is essential for their success. Devices based on polymer semiconductors allow for these demands since they can be fabricated with thin film technology. The use of thin film device technology allows for the fabrication of very thin sensors (e.g. integrated in food product packaging), flexible or bendable sensors in wearables, large area/distributed sensors, and intrinsically low-cost applications in disposable products. With thin film device technology a high level of integration can be achieved with parts that analyze signals, process and store data, and interact over a network. Integration of all these functions will inherently lead to better cost/performance ratios, especially if printing and other standard polymer technology such as high precision moulding is applied for the fabrication. In this paper we present an optical transmission sensor array based on polymer semiconductor devices made by thin film technology. The organic devices, light emitting diodes, photodiodes and selective medium chip, are integrated with classic electronic components. Together they form a versatile sensor platform that allows for the quantitative measurement of 100 channels and communicates wireless with a computer. The emphasis is given to the sensor principle, the design, fabrication technology and integration of the thin film devices.

  9. Fabrication of ultra-dense sub-10 nm in-plane Si nanowire arrays by using a novel block copolymer method: optical properties.

    PubMed

    Ghoshal, Tandra; Ntaras, Christos; O'Connell, John; Shaw, Matthew T; Holmes, Justin D; Avgeropoulos, Apostolos; Morris, Michael A

    2016-01-28

    The use of a low-χ, symmetric block copolymer as an alternative to the high-χ systems currently being translated towards industrial silicon chip manufacture has been demonstrated. Here, the methodology for generating on-chip, etch resistant masks and subsequent pattern transfer to the substrate using ultra-small dimension, lamellar, microphase separated polystyrene-b-poly(ethylene oxide) (PS-b-PEO) block copolymer (BCP) is described. Well-controlled films of a perpendicularly oriented lamellar pattern with a domain size of ∼8 nm were achieved through amplification of an effective interaction parameter (χeff) of the BCP system. The self-assembled films were used as 'templates' for the generation of inorganic oxides nanowire arrays through selective metal ion inclusion and subsequent processing. Inclusion is a significant challenge because the lamellar systems have less chemical and mechanical robustness than the cylinder forming materials. The oxide nanowires of uniform diameter (∼8 nm) were isolated and their structure mimics the original BCP nanopatterns. We demonstrate that these lamellar phase iron oxide nanowire arrays could be used as a resist mask to fabricate densely packed, identical ordered, good fidelity silicon nanowire arrays on the substrate. Possible applications of the materials prepared are discussed, in particular, in the area of photonics and photoluminescence where the properties are found to be similar to those of surface-oxidized silicon nanocrystals and porous silicon.

  10. Evaluation of the Astrometric Potential of NIR Focal Plane Arrays for Determination of Parallaxes and Proper Motions of L and T Dwarfs

    NASA Astrophysics Data System (ADS)

    Vrba, F. J.; Henden, A. A.; Luginbuhl, C. B.; Guetter, H. H.; Monet, D. G.

    2000-05-01

    The capability of carrying out astrometric observations at near-infrared wavelengths has been long sought, as the region between 1.2-2.2 microns offers smaller atmospheric refractive distortions and measurement of objects which are not easily detectable at optical wavelengths. The recent discoveries by 2MASS, DENIS, and SDSS of numerous nearby L- and T-dwarfs whose SEDs peak in the near-infrared makes the capability of determining parallaxes and proper motions at these wavelengths especially attractive. We have carried out astrometric test observations using a Rockwell 256x256 HgCdTe (NICMOS 3) array at the USNO 1.55-m telescope to gain understanding of the prospects and problems inherent in a long-term near-infrared astrometric program. We routinely obtain accuracies of about 10 mas for a single measurement for well-exposed stars between 1.2 and 2.2 microns. We expect this accuracy to allow distance determinations to 2% or better for the majority of known L and T dwarfs within a two to three year observation series. These tests were carried out in anticipation of the use of an ALADDIN 1024x1024 InSb array, which will provide a larger FOV and increased sensitivity at 2.2 microns, for routine near-infrared parallax observations at USNO beginning in summer 2000. We report preliminary astrometric results obtained with engineering-grade ALADDIN arrays employed in NOAO instrumentation.

  11. Design of a multilayer-based collimated plane-grating monochromator for tender X-ray range

    PubMed Central

    Yang, Xiaowei; Wang, Hongchang; Hand, Matthew; Sawhney, Kawal; Kaulich, Burkhard; Kozhevnikov, Igor V.; Huang, Qiushi; Wang, Zhanshan

    2017-01-01

    Collimated plane-grating monochromators (cPGMs), consisting of a plane mirror and plane diffraction grating, are essential optics in synchrotron radiation sources for their remarkable flexibility and good optical characteristics in the soft X-ray region. However, the poor energy transport efficiency of a conventional cPGM (single-layer-coated) degrades the source intensity and leaves reduced flux at the sample, especially for the tender X-ray range (1–4 keV) that covers a large number of K- and L-edges of medium-Z elements, and M-edges of high-Z elements. To overcome this limitation, the use of a multilayer-based cPGM is proposed, combining a multilayer-coated plane mirror with blazed multilayer gratings. With this combination, the effective efficiency of cPGMs can be increased by an order of magnitude compared with the conventional single-layer cPGMs. In addition, higher resolving power can be achieved with improved efficiency by increasing the blaze angle and working at higher diffraction order. PMID:28009556

  12. Design of a multilayer-based collimated plane-grating monochromator for tender X-ray range.

    PubMed

    Yang, Xiaowei; Wang, Hongchang; Hand, Matthew; Sawhney, Kawal; Kaulich, Burkhard; Kozhevnikov, Igor V; Huang, Qiushi; Wang, Zhanshan

    2017-01-01

    Collimated plane-grating monochromators (cPGMs), consisting of a plane mirror and plane diffraction grating, are essential optics in synchrotron radiation sources for their remarkable flexibility and good optical characteristics in the soft X-ray region. However, the poor energy transport efficiency of a conventional cPGM (single-layer-coated) degrades the source intensity and leaves reduced flux at the sample, especially for the tender X-ray range (1-4 keV) that covers a large number of K- and L-edges of medium-Z elements, and M-edges of high-Z elements. To overcome this limitation, the use of a multilayer-based cPGM is proposed, combining a multilayer-coated plane mirror with blazed multilayer gratings. With this combination, the effective efficiency of cPGMs can be increased by an order of magnitude compared with the conventional single-layer cPGMs. In addition, higher resolving power can be achieved with improved efficiency by increasing the blaze angle and working at higher diffraction order.

  13. SERS based immuno-microwell arrays for multiplexed detection of foodborne pathogenic bacteria

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Hankus, Mikella E.; Cullum, Brian M.

    2009-05-01

    A novel surface enhanced Raman scattering (SERS)-based immuno-microwell array has been developed for multiplexed detection of foodborne pathogenic bacteria. The immuno-microwell array was prepared by immobilizing the optical addressable immunomagnetic beads (IMB) into the microwell array on one end of a fiber optic bundle. The IMBs, magnetic beads coated with specific antibody to specific bacteria, were used for immunomagnetic separation (IMS) of corresponding bacteria. The magnetic separation by the homemade magnetic separation system was evaluated in terms of the influences of several important parameters including the beads concentration, the sample volume and the separation time. IMS separation efficiency of the model bacteria E.coli O157:H7 was 63% in 3 minutes. The microwell array was fabricated on hydrofluoric acid etched end of a fiber optic bundle containing 30,000 fiber elements. After being coated with silver, the microwell array was used as a uniform SERS substrate with the relative standard deviation of the SERS enhancement across the microwell array < 2% and the enhancement factor as high as 2.18 x 107. The antibody modified microwell array was prepared for bacteria immobilization into the microwell array, which was characterized by a sandwich immunoassay. To demonstrate the potential of multiplexed SERS detection with the immuno-microwell array, the SERS spectra of different Raman dye labeled magnetic beads as well as mixtures were measured on the mircrowell array. In bead mixture, different beads were identified by the characteristic SERS bands of the corresponding Raman label.

  14. Cell-Based Odorant Sensor Array for Odor Discrimination Based on Insect Odorant Receptors.

    PubMed

    Termtanasombat, Maneerat; Mitsuno, Hidefumi; Misawa, Nobuo; Yamahira, Shinya; Sakurai, Takeshi; Yamaguchi, Satoshi; Nagamune, Teruyuki; Kanzaki, Ryohei

    2016-07-01

    The olfactory system of living organisms can accurately discriminate numerous odors by recognizing the pattern of activation of several odorant receptors (ORs). Thus, development of an odorant sensor array based on multiple ORs presents the possibility of mimicking biological odor discrimination mechanisms. Recently, we developed novel odorant sensor elements with high sensitivity and selectivity based on insect OR-expressing Sf21 cells that respond to target odorants by displaying increased fluorescence intensity. Here we introduce the development of an odorant sensor array composed of several Sf21 cell lines expressing different ORs. In this study, an array pattern of four cell lines expressing Or13a, Or56a, BmOR1, and BmOR3 was successfully created using a patterned polydimethylsiloxane film template and cell-immobilizing reagents, termed biocompatible anchor for membrane (BAM). We demonstrated that BAM could create a clear pattern of Sf21 sensor cells without impacting their odorant-sensing performance. Our sensor array showed odorant-specific response patterns toward both odorant mixtures and single odorant stimuli, allowing us to visualize the presence of 1-octen-3-ol, geosmin, bombykol, and bombykal as an increased fluorescence intensity in the region of Or13a, Or56a, BmOR1, and BmOR3 cell lines, respectively. Therefore, we successfully developed a new methodology for creating a cell-based odorant sensor array that enables us to discriminate multiple target odorants. Our method might be expanded into the development of an odorant sensor capable of detecting a large range of environmental odorants that might become a promising tool used in various applications including the study of insect semiochemicals and food contamination.

  15. Pose measurement of Anterior Pelvic Plane based on inertial measurement unit in total hip replacement surgeries.

    PubMed

    Zhe Cao; Shaojie Su; Hong Chen; Hao Tang; Yixin Zhou; Zhihua Wang

    2016-08-01

    In Total Hip Replacement (THR), inaccurate measurement of Anterior Pelvic Plane (APP), which is usually used as a reference plane, will lead to malposition of the acetabular prosthesis. As a result, the risk of impingement, dislocation and wear will increase and the safe range of motion will be limited. In order to acquire the accurate pose of APP, a measurement system is designed in this paper, which includes two parts: one is used to estimate the initial pose of APP and the other is used to trail dynamic motion of APP. Both parts are composed of an Inertial Measurement Unit (IMU) and magnetometer sensors. An Extended Kalman Filter (EKF) is adopted to fuse the data from IMU and the magnetometer sensors to estimate the orientation of the pelvis. The test results show that the error angle between calculated axis and true axis of the pelvis in geodetic coordinate frame is less than 1.2 degree, which meets the requirement of the surgery.

  16. Plane-wave Fresnel diffraction by elliptic apertures: a Fourier-based approach.

    PubMed

    Borghi, Riccardo

    2014-10-01

    A simple theoretical approach to evaluate the scalar wavefield, produced, within paraxial approximation, by the diffraction of monochromatic plane waves impinging on elliptic apertures or obstacles is presented. We find that the diffracted field can be mathematically described in terms of a Fourier series with respect to an angular variable suitably related to the elliptic parametrization of the observation plane. The convergence features of such Fourier series are analyzed, and a priori truncation criterion is also proposed. Two-dimensional maps of the optical intensity diffraction patterns are then numerically generated and compared, at a visual level, with several experimental pictures produced in the past. The last part of this work is devoted to carrying out an analytical investigation of the diffracted field along the ellipse axis. A uniform approximation is derived on applying a method originally developed by Schwarzschild, and an asymptotic estimate, valid in the limit of small eccentricities, is also obtained via the Maggi-Rubinowicz boundary wave theory.

  17. Multiple Plane Phase Retrieval Based On Inverse Regularized Imaging and Discrete Diffraction Transform

    NASA Astrophysics Data System (ADS)

    Migukin, Artem; Katkovnik, Vladimir; Astola, Jaakko

    2010-04-01

    The phase retrieval is formulated as an inverse problem, where the forward propagation is defined by Discrete Diffraction Transform (DDT) [1], [2]. This propagation model is precise and aliasing free for pixelwise invariant (pixelated) wave field distributions in the sensor and object planes. Because of finite size of sensors DDT can be ill-conditioned and the regularization is an important component of the inverse. The proposed algorithm is designed for multiple plane observations and can be treated as a generalization of the Gerchberg-Saxton iterative algorithm. The proposed algorithm is studied by numerical experiments produced for phase and amplitude modulated object distributions. Comparison versus the conventional forward propagation models such as the angular spectrum decomposition and the convolutional model used in the algorithm of the same structure shows a clear advantage of DDT enabling better accuracy and better imaging.

  18. Note: A resonating reflector-based optical system for motion measurement in micro-cantilever arrays

    SciTech Connect

    Sathishkumar, P.; Punyabrahma, P.; Sri Muthu Mrinalini, R.; Jayanth, G. R.

    2015-09-15

    A robust, compact optical measurement unit for motion measurement in micro-cantilever arrays enables development of portable micro-cantilever sensors. This paper reports on an optical beam deflection-based system to measure the deflection of micro-cantilevers in an array that employs a single laser source, a single detector, and a resonating reflector to scan the measurement laser across the array. A strategy is also proposed to extract the deflection of individual cantilevers from the acquired data. The proposed system and measurement strategy are experimentally evaluated and demonstrated to measure motion of multiple cantilevers in an array.

  19. An IBM PC-based math model for space station solar array simulation

    NASA Technical Reports Server (NTRS)

    Emanuel, E. M.

    1986-01-01

    This report discusses and documents the design, development, and verification of a microcomputer-based solar cell math model for simulating the Space Station's solar array Initial Operational Capability (IOC) reference configuration. The array model is developed utilizing a linear solar cell dc math model requiring only five input parameters: short circuit current, open circuit voltage, maximum power voltage, maximum power current, and orbit inclination. The accuracy of this model is investigated using actual solar array on orbit electrical data derived from the Solar Array Flight Experiment/Dynamic Augmentation Experiment (SAFE/DAE), conducted during the STS-41D mission. This simulator provides real-time simulated performance data during the steady state portion of the Space Station orbit (i.e., array fully exposed to sunlight). Eclipse to sunlight transients and shadowing effects are not included in the analysis, but are discussed briefly. Integrating the Solar Array Simulator (SAS) into the Power Management and Distribution (PMAD) subsystem is also discussed.

  20. Analysis of dynamic optical arbitrary waveform generation based on three FBG arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Ailing; Li, Changxiu

    2013-11-01

    A dynamic optical arbitrary waveform generation (O-AWG) structure based on three fiber Bragg grating (FBG) arrays is proposed and its performances are analyzed. The first two arrays are used for amplitude control. The third array is used for phase control. Dynamic O-AWG can be realized by adjusting fiber stretchers (FSs) in the second array and the third array. In this paper, it is demonstrated that the phase controller is independent from the amplitude controller to achieve less complicated FSs adjustment and more phase distortion tolerance. Moreover, phase controller can be used for compensating dispersion caused by the first two arrays, and it also can be used for pulse repetition rate multiplication (RRM), which is preferable to amplitude controller for RRM with regard to phase sensitivity.

  1. Nanoengineered Thermal Materials Based on Carbon Nanotube Array Composites

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Meyyappan, Meyya (Inventor)

    2007-01-01

    A method for providing for thermal conduction using an array of carbon nanotubes (CNTs). An array of vertically oriented CNTs is grown on a substrate having high thermal conductivity, and interstitial regions between adjacent CNTs in the array are partly or wholly filled with a filler material having a high thermal conductivity so that at least one end of each CNT is exposed. The exposed end of each CNT is pressed against a surface of an object from which heat is to be removed. The CNT-filler composite adjacent to the substrate provides improved mechanical strength to anchor CNTs in place and also serves as a heat spreader to improve diffusion of heat flux from the smaller volume (CNTs) to a larger heat sink.

  2. Nanoengineered thermal materials based on carbon nanotube array composites

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Meyyappan, Meyya (Inventor); Dangelo, Carlos (Inventor)

    2010-01-01

    A method for providing for thermal conduction using an array of carbon nanotubes (CNTs). An array of vertically oriented CNTs is grown on a substrate having high thermal conductivity, and interstitial regions between adjacent CNTs in the array are partly or wholly filled with a filler material having a high thermal conductivity so that at least one end of each CNT is exposed. The exposed end of each CNT is pressed against a surface of an object from which heat is to be removed. The CNT-filler composite adjacent to the substrate provides improved mechanical strength to anchor CNTs in place and also serves as a heat spreader to improve diffusion of heat flux from the smaller volume (CNTs) to a larger heat sink.

  3. Nanoengineered thermal materials based on carbon nanotube array composites

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Meyyappan, Meyya (Inventor)

    2007-01-01

    A method for providing for thermal conduction using an array of carbon nanotubes (CNTs). An array of vertically oriented CNTs is grown on a substrate having high thermal conductivity, and interstitial regions between adjacent CNTs in the array are partly or wholly filled with a filler material having a high thermal conductivity so that at least one end of each CNT is exposed. The exposed end of each CNT is pressed against a surface of an object from which heat is to be removed. The CNT-filler composite adjacent to the substrate provides improved mechanical strength to anchor CNTs in place and also serves as a heat spreader to improve diffusion of heat flux from the smaller volume (CNTs) to a larger heat sink.

  4. Fabrication of ultra-dense sub-10 nm in-plane Si nanowire arrays by using a novel block copolymer method: optical properties

    NASA Astrophysics Data System (ADS)

    Ghoshal, Tandra; Ntaras, Christos; O'Connell, John; Shaw, Matthew T.; Holmes, Justin D.; Avgeropoulos, Apostolos; Morris, Michael A.

    2016-01-01

    The use of a low-χ, symmetric block copolymer as an alternative to the high-χ systems currently being translated towards industrial silicon chip manufacture has been demonstrated. Here, the methodology for generating on-chip, etch resistant masks and subsequent pattern transfer to the substrate using ultra-small dimension, lamellar, microphase separated polystyrene-b-poly(ethylene oxide) (PS-b-PEO) block copolymer (BCP) is described. Well-controlled films of a perpendicularly oriented lamellar pattern with a domain size of ~8 nm were achieved through amplification of an effective interaction parameter (χeff) of the BCP system. The self-assembled films were used as `templates' for the generation of inorganic oxides nanowire arrays through selective metal ion inclusion and subsequent processing. Inclusion is a significant challenge because the lamellar systems have less chemical and mechanical robustness than the cylinder forming materials. The oxide nanowires of uniform diameter (~8 nm) were isolated and their structure mimics the original BCP nanopatterns. We demonstrate that these lamellar phase iron oxide nanowire arrays could be used as a resist mask to fabricate densely packed, identical ordered, good fidelity silicon nanowire arrays on the substrate. Possible applications of the materials prepared are discussed, in particular, in the area of photonics and photoluminescence where the properties are found to be similar to those of surface-oxidized silicon nanocrystals and porous silicon.The use of a low-χ, symmetric block copolymer as an alternative to the high-χ systems currently being translated towards industrial silicon chip manufacture has been demonstrated. Here, the methodology for generating on-chip, etch resistant masks and subsequent pattern transfer to the substrate using ultra-small dimension, lamellar, microphase separated polystyrene-b-poly(ethylene oxide) (PS-b-PEO) block copolymer (BCP) is described. Well-controlled films of a

  5. Highly sensitive detection of the soft tissues based on refraction contrast by in-plane diffraction-enhanced imaging CT

    NASA Astrophysics Data System (ADS)

    Yuasa, Tetsuya; Hashimoto, Eiko; Maksimenko, Anton; Sugiyama, Hiroshi; Arai, Yoshinori; Shimao, Daisuke; Ichihara, Shu; Ando, Masami

    2008-07-01

    We discuss the recently proposed computed tomography (CT) technique based on refractive effects for biomedical use, which reconstructs the in-plane refractive-index gradient vector field in a cross-sectional plane of interest by detecting the angular deviation of the beam, refracted by a sample, from the incident beam, using the diffraction-enhanced imaging (DEI) method. The CT has advantages for delineating biological weakly absorbing soft tissues over the conventional absorption-contrast CT because of the use of phase sensitive detection. The paper aims to define the imaging scheme rigidly and to demonstrate its efficacy for non-destructive measurement of biomedical soft-tissue samples without imaging agent. We first describe the imaging principle of in-plane DEI-CT from the physico-mathematical viewpoints in detail, and investigate what physical quantities are extracted from the reconstructed images. Then, we introduce the imaging system using the synchrotron radiation as a light source, constructed at beamline BL-14B in KEK, Japan. Finally, we demonstrate the advantage of the refraction-based image for non-destructive analysis of biological sample by investigating the image of human breast cancer tumors obtained using the imaging system. Here, the refraction- and the apparent absorption-based images obtained simultaneously by the in-plane DEI-CT are compared. Also, the conventional absorption-based image obtained using micro-computed tomography (μCT) imaging system is compared with them. Thereby, it is shown that the refraction contrast much more sensitively delineates the soft tissues than the absorption contrast. In addition, the radiologic-histologic correlation study not only validates the efficacy for imaging soft tissues, but also produces the potential that the pathological inspection for the breast cancer tumors may be feasible non-destructively.

  6. Status of the photomultiplier-based FlashCam camera for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Pühlhofer, G.; Bauer, C.; Eisenkolb, F.; Florin, D.; Föhr, C.; Gadola, A.; Garrecht, F.; Hermann, G.; Jung, I.; Kalekin, O.; Kalkuhl, C.; Kasperek, J.; Kihm, T.; Koziol, J.; Lahmann, R.; Manalaysay, A.; Marszalek, A.; Rajda, P. J.; Reimer, O.; Romaszkan, W.; Rupinski, M.; Schanz, T.; Schwab, T.; Steiner, S.; Straumann, U.; Tenzer, C.; Vollhardt, A.; Weitzel, Q.; Winiarski, K.; Zietara, K.

    2014-07-01

    The FlashCam project is preparing a camera prototype around a fully digital FADC-based readout system, for the medium sized telescopes (MST) of the Cherenkov Telescope Array (CTA). The FlashCam design is the first fully digital readout system for Cherenkov cameras, based on commercial FADCs and FPGAs as key components for digitization and triggering, and a high performance camera server as back end. It provides the option to easily implement different types of trigger algorithms as well as digitization and readout scenarios using identical hardware, by simply changing the firmware on the FPGAs. The readout of the front end modules into the camera server is Ethernet-based using standard Ethernet switches and a custom, raw Ethernet protocol. In the current implementation of the system, data transfer and back end processing rates of 3.8 GB/s and 2.4 GB/s have been achieved, respectively. Together with the dead-time-free front end event buffering on the FPGAs, this permits the cameras to operate at trigger rates of up to several ten kHz. In the horizontal architecture of FlashCam, the photon detector plane (PDP), consisting of photon detectors, preamplifiers, high voltage-, control-, and monitoring systems, is a self-contained unit, mechanically detached from the front end modules. It interfaces to the digital readout system via analogue signal transmission. The horizontal integration of FlashCam is expected not only to be more cost efficient, it also allows PDPs with different types of photon detectors to be adapted to the FlashCam readout system. By now, a 144-pixel mini-camera" setup, fully equipped with photomultipliers, PDP electronics, and digitization/ trigger electronics, has been realized and extensively tested. Preparations for a full-scale, 1764 pixel camera mechanics and a cooling system are ongoing. The paper describes the status of the project.

  7. Array-Based Detection of Persistent Organic Pollutants via Cyclodextrin Promoted Energy Transfer

    PubMed Central

    Serio, Nicole; Moyano, Daniel F.; Rotello, Vincent M.; Levine, Mindy

    2015-01-01

    We report herein the selective array-based detection of 30 persistent organic pollutants via cyclodextrin-promoted energy transfer. The use of three fluorophores enabled the development of an array that classified 30 analytes with 100% accuracy and identified unknown analytes with 96% accuracy, as well as identifying 92% of analytes in urine. PMID:26096542

  8. Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film

    NASA Astrophysics Data System (ADS)

    Qiu, Lin; Wang, Xiaotian; Su, Guoping; Tang, Dawei; Zheng, Xinghua; Zhu, Jie; Wang, Zhiguo; Norris, Pamela M.; Bradford, Philip D.; Zhu, Yuntian

    2016-02-01

    It has been more than a decade since the thermal conductivity of vertically aligned carbon nanotube (VACNT) arrays was reported possible to exceed that of the best thermal greases or phase change materials by an order of magnitude. Despite tremendous prospects as a thermal interface material (TIM), results were discouraging for practical applications. The primary reason is the large thermal contact resistance between the CNT tips and the heat sink. Here we report a simultaneous sevenfold increase in in-plane thermal conductivity and a fourfold reduction in the thermal contact resistance at the flexible CNT-SiO2 coated heat sink interface by coupling the CNTs with orderly physical overlapping along the horizontal direction through an engineering approach (shear pressing). The removal of empty space rapidly increases the density of transport channels, and the replacement of the fine CNT tips with their cylindrical surface insures intimate contact at CNT-SiO2 interface. Our results suggest horizontally aligned CNT arrays exhibit remarkably enhanced in-plane thermal conductivity and reduced out-of-plane thermal conductivity and thermal contact resistance. This novel structure makes CNT film promising for applications in chip-level heat dissipation. Besides TIM, it also provides for a solution to anisotropic heat spreader which is significant for eliminating hot spots.

  9. Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film

    PubMed Central

    Qiu, Lin; Wang, Xiaotian; Su, Guoping; Tang, Dawei; Zheng, Xinghua; Zhu, Jie; Wang, Zhiguo; Norris, Pamela M.; Bradford, Philip D.; Zhu, Yuntian

    2016-01-01

    It has been more than a decade since the thermal conductivity of vertically aligned carbon nanotube (VACNT) arrays was reported possible to exceed that of the best thermal greases or phase change materials by an order of magnitude. Despite tremendous prospects as a thermal interface material (TIM), results were discouraging for practical applications. The primary reason is the large thermal contact resistance between the CNT tips and the heat sink. Here we report a simultaneous sevenfold increase in in-plane thermal conductivity and a fourfold reduction in the thermal contact resistance at the flexible CNT-SiO2 coated heat sink interface by coupling the CNTs with orderly physical overlapping along the horizontal direction through an engineering approach (shear pressing). The removal of empty space rapidly increases the density of transport channels, and the replacement of the fine CNT tips with their cylindrical surface insures intimate contact at CNT-SiO2 interface. Our results suggest horizontally aligned CNT arrays exhibit remarkably enhanced in-plane thermal conductivity and reduced out-of-plane thermal conductivity and thermal contact resistance. This novel structure makes CNT film promising for applications in chip-level heat dissipation. Besides TIM, it also provides for a solution to anisotropic heat spreader which is significant for eliminating hot spots. PMID:26880221

  10. Sensor based on Fano resonances of plane metamaterial with narrow slits

    NASA Astrophysics Data System (ADS)

    Huang, Wan-Xia; Guo, Juan-Juan; Wang, Mao-Sheng; Zhao, Guo-Ren

    2017-03-01

    The optical properties of a composite metamaterial composed of narrow slits and nano hole pairs have been investigated experimentally and numerically. The strength of the transmission peak originating from the interference between the coupled surface plasmon polaritons (SPP) of the narrow slit and the SPP modes of the hole array is modulated by the degree of symmetry breaking. Some SPP modes can be inhibited by controlling the spacer layer thickness. Our metamaterial has potential applications in sensing and weak signal detection.

  11. Joint Image and Pupil Plane Reconstruction Algorithm based on Bayesian Techniques

    DTIC Science & Technology

    2007-12-01

    a system would also potentially allow for the formation of large synthetic apertures. The algorithm developed used many frames of coherent pupil and...1.2.1 Deconvolution . . . . . . . . . . . . . . . . . . . 2 1.2.2 Phase Retrieval/Imaging Correlography . . . . . 2 1.2.3 Prior Synthetic Aperture...Augmentation of existing systems . . . . . . . . 87 7.4.2 Conformal Arrays . . . . . . . . . . . . . . . . . 88 7.4.3 Synthetic aperture LADAR

  12. Phased arrays. Citations from the NTIS data base

    NASA Astrophysics Data System (ADS)

    Reed, W. E.

    1980-04-01

    The design, performance, radiation patterns, and applications of phased arrays are presented in these Federally-sponsored research reports. Applications include communications, radar, optical, spacecraft, and navigational aids. This updated bibliography contains 244 abstracts, 44 of which are new entries to the previous edition.

  13. Out-of-Plane Computed-Tomography-Guided Biopsy Using a Magnetic-Field-Based Navigation System

    SciTech Connect

    Wallace, Michael J. Gupta, Sanjay; Hicks, Marshall E.

    2006-02-15

    The purpose of this article is to report our clinical experience with out-of-plane computed-tomography (CT)-guided biopsies using a magnetic-field-based navigation system. Between February 2002 and March 2003, 20 patients underwent CT-guided biopsy in which an adjunct magnetic-field-based navigation system was used to aid an out-of-plane biopsy approach. Eighteen patients had an underlying primary malignancy. All biopsies involved the use of a coaxial needle system in which an outer 18G guide needle was inserted to the lesion using the navigation system and an inner 22G needle was then used to obtain fine-needle aspirates. Complications and technical success were recorded. Target lesions were located in the adrenal gland (n = 7), liver (n = 6), pancreas (n = 3), lung (n = 2), retroperitoneal lymph node (n = 1), and pelvis (n = 1). The mean lesion size (maximum transverse diameter) was 26.5 mm (range: 8-70 mm) and the mean and median cranial-caudal distance, between the transaxial planes of the final needle tip location and the needle insertion site, was 40 mm (range: 18-90 mm). Needle tip positioning was successfully placed within the lesion in all 20 biopsies. A diagnosis of malignancy was obtained in 14 biopsies. Benign diagnoses were encountered in the remaining six biopsies and included a benign adrenal gland (n = 2), fibroelastic tissue (n = 1), hepocytes with steatosis (n = 2) and reactive hepatocytes (n = 1). No complications were encountered. A magnetic-field-based navigation system is an effective adjunct tool for accurate and safe biopsy of lesions that require an out-of-plane CT approach.

  14. Infrared ground-based astronomy with the Hughes 256 X 256 PtSi array

    NASA Technical Reports Server (NTRS)

    Fowler, A.; Joyce, R.; Gatley, I.; Gates, J.; Herring, J.

    1989-01-01

    It is shown that large format PtSi Schottky diode infrared arrays, the Hughes 256 X 256 hybrid Schottky array in particular, are competitive alternatives to the smaller format photovoltaic arrays for ground-based astronomy. The modest quantum efficiency of the PtSi compared to the photovoltaic devices is more than compensated for by the larger format. The use of hybrid technology yields effective fill factors of nearly 100 percent, and the low dark current, noise, excellent imaging characteristics, cost, and solid nitrogen operating temperature add to the effectiveness of this array for ground-based imaging. In addition to discussing the characteristics of this array, researchers present laboratory test data and astronomical results achieved at Kitt Peak.

  15. Fast fabrication of curved microlens array using DMD-based lithography

    NASA Astrophysics Data System (ADS)

    Zhang, Zhimin; Gao, Yiqing; Luo, Ningning; Zhong, Kejun

    2016-01-01

    Curved microlens array is the core element of the biologically inspired artificial compound eye. Many existing fabrication processes remain expensive and complicated, which limits a broad range of application of the artificial compound eye. In this paper, we report a fast fabrication method for curved microlens array by using DMD-based maskless lithography. When a three-dimensional (3D) target curved profile is projected into a two-dimensional (2D) mask, arbitrary curved microlens array can be flexibly and efficiently obtained by utilizing DMD-based lithography. In order to verify the feasibility of this method, a curved PDMS microlens array with 90 micro lenslets has been fabricated. The physical and optical characteristics of the fabricated microlens array suggest that this method is potentially suitable for applications in artificial compound eye.

  16. Liquid-crystal phase grating based on in-plane switching.

    PubMed

    Fujieda, I

    2001-12-01

    A simple phase grating is constructed by insertion of a liquid-crystal layer between two glass plates, upon one of which a pair of transparent interdigitated electrodes is formed. With a bias application, liquid-crystal molecules align themselves along the electric field lines, which are substantially parallel to the glass plates. By controlling the degree of this in-plane switching for the liquid-crystal molecules, one can generate various phase-shift distributions for the light passing through the device. The grating characteristics are altered accordingly. Versatile design and ease of fabrication are potential advantages of this device for some future applications.

  17. Fermi-liquid-based theory for the in-plane magnetic anisotropy in untwinned high-Tc superconductors.

    PubMed

    Eremin, I; Manske, D

    2005-02-18

    Using a generalized RPA-type theory we calculate the in-plane anisotropy of the magnetic excitations in hole-doped high-Tc superconductors. Extending our earlier Fermi-liquid-based studies on the resonance peak by inclusion of orthorhombicity we still find two-dimensional spin excitations, however, being strongly anisotropic. This reflects the underlying anisotropy of the hopping matrix elements and of the resultant superconducting gap function. We compare our calculations with new experimental data on fully untwinned YBa2Cu3O6.85 and find good agreement. Our results are in contrast to earlier interpretations on the in-plane anisotropy in terms of stripes [H. Mook, Nature (London) 404, 729 (2000)], but reveal a conventional solution to this important problem.

  18. A microfluidic paper-based electrochemical biosensor array for multiplexed detection of metabolic biomarkers

    NASA Astrophysics Data System (ADS)

    Zhao, Chen; Thuo, Martin M.; Liu, Xinyu

    2013-10-01

    Paper-based microfluidic devices have emerged as simple yet powerful platforms for performing low-cost analytical tests. This paper reports a microfluidic paper-based electrochemical biosensor array for multiplexed detection of physiologically relevant metabolic biomarkers. Different from existing paper-based electrochemical devices, our device includes an array of eight electrochemical sensors and utilizes a handheld custom-made electrochemical reader (potentiostat) for signal readout. The biosensor array can detect several analytes in a sample solution and produce multiple measurements for each analyte from a single run. Using the device, we demonstrate simultaneous detection of glucose, lactate and uric acid in urine, with analytical performance comparable to that of the existing commercial and paper-based platforms. The paper-based biosensor array and its electrochemical reader will enable the acquisition of high-density, statistically meaningful diagnostic information at the point of care in a rapid and cost-efficient way.

  19. A microfluidic paper-based electrochemical biosensor array for multiplexed detection of metabolic biomarkers

    PubMed Central

    Zhao, Chen; Thuo, Martin M; Liu, Xinyu

    2013-01-01

    Paper-based microfluidic devices have emerged as simple yet powerful platforms for performing low-cost analytical tests. This paper reports a microfluidic paper-based electrochemical biosensor array for multiplexed detection of physiologically relevant metabolic biomarkers. Different from existing paper-based electrochemical devices, our device includes an array of eight electrochemical sensors and utilizes a handheld custom-made electrochemical reader (potentiostat) for signal readout. The biosensor array can detect several analytes in a sample solution and produce multiple measurements for each analyte from a single run. Using the device, we demonstrate simultaneous detection of glucose, lactate and uric acid in urine, with analytical performance comparable to that of the existing commercial and paper-based platforms. The paper-based biosensor array and its electrochemical reader will enable the acquisition of high-density, statistically meaningful diagnostic information at the point of care in a rapid and cost-efficient way. PMID:27877606

  20. Suspension arrays based on nanoparticle-encoded microspheres for high-throughput multiplexed detection

    PubMed Central

    Leng, Yuankui

    2017-01-01

    Spectrometrically or optically encoded microsphere based suspension array technology (SAT) is applicable to the high-throughput, simultaneous detection of multiple analytes within a small, single sample volume. Thanks to the rapid development of nanotechnology, tremendous progress has been made in the multiplexed detecting capability, sensitivity, and photostability of suspension arrays. In this review, we first focus on the current stock of nanoparticle-based barcodes as well as the manufacturing technologies required for their production. We then move on to discuss all existing barcode-based bioanalysis patterns, including the various labels used in suspension arrays, label-free platforms, signal amplification methods, and fluorescence resonance energy transfer (FRET)-based platforms. We then introduce automatic platforms for suspension arrays that use superparamagnetic nanoparticle-based microspheres. Finally, we summarize the current challenges and their proposed solutions, which are centered on improving encoding capacities, alternative probe possibilities, nonspecificity suppression, directional immobilization, and “point of care” platforms. Throughout this review, we aim to provide a comprehensive guide for the design of suspension arrays, with the goal of improving their performance in areas such as multiplexing capacity, throughput, sensitivity, and cost effectiveness. We hope that our summary on the state-of-the-art development of these arrays, our commentary on future challenges, and some proposed avenues for further advances will help drive the development of suspension array technology and its related fields. PMID:26021602

  1. Regression forest-based automatic estimation of the articular margin plane for shoulder prosthesis planning.

    PubMed

    Tschannen, Michael; Vlachopoulos, Lazaros; Gerber, Christian; Székely, Gábor; Fürnstahl, Philipp

    2016-07-01

    In shoulder arthroplasty, the proximal humeral head is resected by sawing along the cartilage-bone transition and replaced by a prosthetic implant. The resection plane, called articular margin plane (AMP), defines the orientation, position and size of the prosthetic humeral head in relation to the humeral shaft. Therefore, the correct definition of the AMP is crucial for the computer-assisted preoperative planning of shoulder arthroplasty. We present a fully automated method for estimating the AMP relying only on computed tomography (CT) images of the upper arm. It consists of two consecutive steps, each of which uses random regression forests (RFs) to establish a direct mapping from the CT image to the AMP parameters. In the first step, image intensities serve as features to compute a coarse estimate of the AMP. The second step builds upon this estimate, calculating a refined AMP using novel feature types that combine a bone enhancing sheetness measure with ray features. The proposed method was evaluated on a dataset consisting of 72 CT images of upper arm cadavers. A mean localization error of 2.40mm and a mean angular error of 6.51° was measured compared to manually annotated ground truth.

  2. Round-off errors in cutting plane algorithms based on the revised simplex procedure

    NASA Technical Reports Server (NTRS)

    Moore, J. E.

    1973-01-01

    This report statistically analyzes computational round-off errors associated with the cutting plane approach to solving linear integer programming problems. Cutting plane methods require that the inverse of a sequence of matrices be computed. The problem basically reduces to one of minimizing round-off errors in the sequence of inverses. Two procedures for minimizing this problem are presented, and their influence on error accumulation is statistically analyzed. One procedure employs a very small tolerance factor to round computed values to zero. The other procedure is a numerical analysis technique for reinverting or improving the approximate inverse of a matrix. The results indicated that round-off accumulation can be effectively minimized by employing a tolerance factor which reflects the number of significant digits carried for each calculation and by applying the reinversion procedure once to each computed inverse. If 18 significant digits plus an exponent are carried for each variable during computations, then a tolerance value of 0.1 x 10 to the minus 12th power is reasonable.

  3. Nanoscale neuroelectronic interface based on open-ended nanocoax arrays

    NASA Astrophysics Data System (ADS)

    Naughton, Jeffrey R.; Rizal, Binod; Burns, Michael J.; Yeom, Jee; Heyse, Shannon; Archibald, Michelle; Shepard, Stephen; McMahon, Gregory; Chiles, Thomas C.; Naughton, Michael J.

    2012-02-01

    We describe the development of a nanoscale neuroelectronic array with submicron pixelation for recording and stimulation with high spatial resolution. The device is composed of an array of nanoscale coaxial electrodes, either network- or individually-configured. As a neuroelectronic interface, it will employ noninvasive real-time capacitive coupling to the plasma membrane with potential for extracellular recording of intra- and interneural synaptic activity, with one target being precision measurement of electrical signals associated with induced and spontaneous synapse firing in pre- and post-synaptic somata. Subarrays or even individual pixels can also be actuated for precisely-localized stimulation. We report initial results from measurements using the rat adrenal pheochromocytoma PC12 cell line, which terminally differentiates in response to nerve growth factor, as well as SH-SY5Y neuroblastoma cells in response to retinoic acid, characterizing the basic performance of the fabricated device.

  4. Advanced materials based on carbon nanotube arrays, yarns and papers

    NASA Astrophysics Data System (ADS)

    Bradford, Phlip David

    Carbon nanotubes have hundreds of potential applications but require innovative processing techniques to manipulate the microscopic carbon dust into useful devices and products. This thesis describes efforts to process carbon nanotubes (CNTs) using novel methods with the goals of: (1) improving the properties of energy absorbing and composite carbon nanotube materials and (2) increasing understanding of fundamental structure-property relationships within these materials. Millimeter long CNTs, in the form of arrays, yarns and papers, were used to produce energy absorbing foams and high volume fraction CNT composites. Vertically aligned CNT arrays were grown on silicon substrates using chemical vapor deposition (CVD) of ethylene gas over iron nano-particles. The low density, millimeter thick arrays were tested under compression as energy absorbing foams. With additional CVD processing steps, it was possible to tune the compressive properties of the arrays. After the longest treatment, the compressive strength of the arrays was increased by a factor of 35 with a density increase of only six fold, while also imparting recovery from compression to the array. Microscopy revealed that the post-synthesis CVD treatment increased the number of CNT walls through an epitaxial type radial growth on the surface of the as-grown tubes. The increase in tube radius and mutual support between nanotubes explained the increases in compressive strength while an increase in nanotube roughness was proposed as the morphological change responsible for recovery in the array. Carbon nanotube yarns were used as the raw material for macroscopic textile preforms with a multi-level hierarchical carbon nanotube (CNT) structure: nanotubes, bundles, spun single yarns, plied yarns and 3-D braids. In prior tensile tests, composites produced from the 3-D braids exhibited unusual mechanical behavior effects. The proposed physical hypotheses explained those effects by molecular level interactions and

  5. An Artificial Nose Based on Microcantilever Array Sensors

    NASA Astrophysics Data System (ADS)

    Lang, H. P.; Ramseyer, J. P.; Grange, W.; Braun, T.; Schmid, D.; Hunziker, P.; Jung, C.; Hegner, M.; Gerber, C.

    2007-03-01

    We used microfabricated cantilever array sensors for an artificial nose setup. Each cantilever is coated on its top surface with a polymer layer. Volatile gaseous analytes are detected by tracking the diffusion process of the molecules into the polymer layers, resulting in swelling of the polymer layers and therewith bending of the cantilevers. From the bending pattern of all cantilevers in the array, a characteristic 'fingerprint' of the analyte is obtained, which is evaluated using principal component analysis. In a flow of dry nitrogen gas, the bending of the cantilevers is reverted to its initial state before exposure to the analyte, which allows reversible and reproducible operation of the sensor. We show examples of detection of solvents, perfume essences and beverage flavors. In a medical application, the setup provides indication of presence of diseases in patient's breath samples.

  6. Field Programmable Gate Array-Based Attitude Stabilization

    DTIC Science & Technology

    2008-07-01

    Conversion ω θ RPM ω Inertial Interface Attitude Update Floating Point Figure 5. FPGA Block Diagram Inertial Interface A generic signal interface for the...With the FPGA operating at 50 MHz, the PWM interface is able to provide a command signal resolution of 1/50,000. The ability of the speed controller to...Center, Ohio University, Athens, OH 45701 A system for determining vehicle attitude using a field programmable gate array ( FPGA ) and low cost gyroscopes

  7. A Nitinol-Based Solar Array Deployment Mechanism

    NASA Technical Reports Server (NTRS)

    Choi, Shin John; Lu, Chia-Ao; Feland, John

    1996-01-01

    This document describes a simple, light weight, and scalable mechanism capable of deploying flexible or rigid substrate solar arrays that have been configured in an accordion-like folding scheme. This mechanism is unique in that it incorporates a Shape Memory Alloy (SMA) actuator made of Nitinol. This paper documents the design of the mechanism in full detail while offering to designers a foundation of knowledge by which they can develop future applications with SMA's.

  8. Liquid Crystal Based Optical Phased Array for Steering Lasers

    DTIC Science & Technology

    2009-10-01

    OPD3 E1 → E2a E2b Fourier T f θ1 θ2 θ r1 r2 Fig. 2.3 Scalar integral approach of three-layer decentered micro-lens array...1987). 38 Robert Guenther, “Modern Optics”, John Wiley & Sons, NY, 345-346 (1990). 39 L. Nikolova, T. Todorov, Optica Acta, vol. 31, pp. 579-588

  9. Nanoengineered Thermal Materials Based on Carbon Nanotube Array Composites

    NASA Technical Reports Server (NTRS)

    Li, Jun; Meyyappan, Meyya; Dangelo, Carols

    2012-01-01

    State-of-the-art integrated circuits (ICs) for microprocessors routinely dissipate power densities on the order of 50 W/cm2. This large power is due to the localized heating of ICs operating at high frequencies and must be managed for future high-frequency microelectronic applications. As the size of components and devices for ICs and other appliances becomes smaller, it becomes more difficult to provide heat dissipation and transport for such components and devices. A thermal conductor for a macro-sized thermal conductor is generally inadequate for use with a microsized component or device, in part due to scaling problems. A method has been developed for providing for thermal conduction using an array of carbon nanotubes (CNTs). An array of vertically oriented CNTs is grown on a substrate having high thermal conductivity, and interstitial regions between adjacent CNTs in the array are partly or wholly filled with a filler material having a high thermal conductivity so that at least one end of each CNT is exposed. The exposed end of each CNT is pressed against a surface of an object from which heat is to be removed. The CNT-filler-composite adjacent to the substrate provides improved mechanical strength to anchor CNTs in place, and also serves as a heat spreader to improve diffusion of heat flux from the smaller volume (CNTs) to a larger heat sink.

  10. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Civil Engineering Storage Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  11. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Microwave Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  12. Semiconductor wire array structures, and solar cells and photodetectors based on such structures

    SciTech Connect

    Kelzenberg, Michael D.; Atwater, Harry A.; Briggs, Ryan M.; Boettcher, Shannon W.; Lewis, Nathan S.; Petykiewicz, Jan A.

    2014-08-19

    A structure comprising an array of semiconductor structures, an infill material between the semiconductor materials, and one or more light-trapping elements is described. Photoconverters and photoelectrochemical devices based on such structure also described.

  13. Array-based sensing using nanoparticles: an alternative approach for cancer diagnostics

    PubMed Central

    Le, Ngoc DB; Yazdani, Mahdieh; Rotello, Vincent M

    2015-01-01

    Array-based sensing using nanoparticles (NPs) provides an attractive alternative to specific biomarker-focused strategies for cancer diagnosis. The physical and chemical properties of NPs provide both the recognition and transduction capabilities required for biosensing. Array-based sensors utilize a combined response from the interactions between sensors and analytes to generate a distinct pattern (fingerprint) for each analyte. These interactions can be the result of either the combination of multiple specific biomarker recognition (specific binding) or multiple selective binding responses, known as chemical nose sensing. The versatility of the latter array-based sensing using NPs can facilitate the development of new personalized diagnostic methodologies in cancer diagnostics, a necessary evolution in the current healthcare system to better provide personalized treatments. This review will describe the basic principle of array-based sensors, along with providing examples of both invasive and noninvasive samples used in cancer diagnosis. PMID:25253497

  14. Design a New Strategy Based on Nanoparticle-Enhanced Chemiluminescence Sensor Array for Biothiols Discrimination

    PubMed Central

    Shahrajabian, Maryam; Hormozi-Nezhad, M. Reza

    2016-01-01

    Array-based sensor is an interesting approach that suggests an alternative to expensive analytical methods. In this work, we introduce a novel, simple, and sensitive nanoparticle-based chemiluminescence (CL) sensor array for discrimination of biothiols (e.g., cysteine, glutathione and glutathione disulfide). The proposed CL sensor array is based on the CL efficiencies of four types of enhanced nanoparticle-based CL systems. The intensity of CL was altered to varying degrees upon interaction with biothiols, producing unique CL response patterns. These distinct CL response patterns were collected as “fingerprints” and were then identified through chemometric methods, including linear discriminant analysis (LDA) and hierarchical cluster analysis (HCA). The developed array was able to successfully differentiate between cysteine, glutathione and glutathione disulfide in a wide concentration range. Moreover, it was applied to distinguish among the above analytes in human plasma. PMID:27574247

  15. Design a New Strategy Based on Nanoparticle-Enhanced Chemiluminescence Sensor Array for Biothiols Discrimination

    NASA Astrophysics Data System (ADS)

    Shahrajabian, Maryam; Hormozi-Nezhad, M. Reza

    2016-08-01

    Array-based sensor is an interesting approach that suggests an alternative to expensive analytical methods. In this work, we introduce a novel, simple, and sensitive nanoparticle-based chemiluminescence (CL) sensor array for discrimination of biothiols (e.g., cysteine, glutathione and glutathione disulfide). The proposed CL sensor array is based on the CL efficiencies of four types of enhanced nanoparticle-based CL systems. The intensity of CL was altered to varying degrees upon interaction with biothiols, producing unique CL response patterns. These distinct CL response patterns were collected as “fingerprints” and were then identified through chemometric methods, including linear discriminant analysis (LDA) and hierarchical cluster analysis (HCA). The developed array was able to successfully differentiate between cysteine, glutathione and glutathione disulfide in a wide concentration range. Moreover, it was applied to distinguish among the above analytes in human plasma.

  16. 75 FR 32484 - Array-Based Cytogenetic Tests: Questions on Performance Evaluation, Result Reporting and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... hybridization (FISH) provide the information about chromosome abnormalities at specific loci. The recent... copy number alterations associated with chromosome abnormalities. Array-based cytogenetic testing is... anomalies, dysmorphic features, developmental disabilities, etc. Traditionally, chromosomes were...

  17. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Satellite Communications Terminal, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  18. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Techinical Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  19. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Techinical Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  20. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Emergency Generator Enclosure, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  1. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Clean Lubrication Oil Storage Tank & Enclosure, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  2. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Supply Warehouse, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  3. Beale Air Force Base, Perimeter Acquisition Vehicle Entry PhasedArray Warning ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Electric Substation, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  4. Development of a wind turbine wake in the infinite turbine array characterized via wall-normal-spanwise planes and cylindrical coordinates

    NASA Astrophysics Data System (ADS)

    Cal, Raúl Bayoán; Hamilton, Nicholas

    2014-11-01

    A wind turbine wake was investigated experimentally through a wind tunnel experiment. Velocity fields oriented normal to the mean convective flow were measured using stereo-PIV every half-rotor diameter (6cm) in the wake. The full Reynolds stress tensor is available through SPIV measurements and shows that very near to the turbine the presence of the mast has a large influence over the stress fields. Further downstream gradients in the mean velocity soften and the stress fields become roughly axisymmetric. In the far wake of the wind turbine, the flow is well mixed and becomes more homogeneous, with vertical and spanwise velocities an order of magnitude less than inlet velocity. Previous research indicates that the flux in the vertical direction is the dominant contributor to the flux tensor in a plane aligned with the hub of the turbine. Data from the current experiment indicate that spanwise components of the flux tensor make a significant contribution at the edges of the wake. In polar-cylindrical coordinates, flux is considered radially inward from outside of the wake. In this frame of reference turbulence phenomena are assessed in a more natural sense. In a polar coordinate system, the production and flux tensors show a single dominant component, emphasizing the suitability of the current analysis.

  5. Line-feature-based calibration method of structured light plane parameters for robot hand-eye system

    NASA Astrophysics Data System (ADS)

    Qi, Yuhan; Jing, Fengshui; Tan, Min

    2013-03-01

    For monocular-structured light vision measurement, it is essential to calibrate the structured light plane parameters in addition to the camera intrinsic parameters. A line-feature-based calibration method of structured light plane parameters for a robot hand-eye system is proposed. Structured light stripes are selected as calibrating primitive elements, and the robot moves from one calibrating position to another with constraint in order that two misaligned stripe lines are generated. The images of stripe lines could then be captured by the camera fixed at the robot's end link. During calibration, the equations of two stripe lines in the camera coordinate system are calculated, and then the structured light plane could be determined. As the robot's motion may affect the effectiveness of calibration, so the robot's motion constraints are analyzed. A calibration experiment and two vision measurement experiments are implemented, and the results reveal that the calibration accuracy can meet the precision requirement of robot thick plate welding. Finally, analysis and discussion are provided to illustrate that the method has a high efficiency fit for industrial in-situ calibration.

  6. Common-path on-axis Fresnel holography based on a pinhole array plate.

    PubMed

    Zhang, Xin-Ting; Guo, Cheng-Shan

    2015-01-01

    A common-path and on-axis configuration for improving the resolution power of a lensless Fresnel holographic imaging system is proposed. In this configuration, a pinhole array plate (PAP) is inserted between the object and the recording plane. We demonstrated that the complex amplitude of the object wave can be directly extracted from a single Fresnel hologram of the object wave sampled by the PAP, and the numerical aperture of the effective imaging system can be increased because of the diffraction effect of the pinhole array. It may provide one approach for improving the capabilities of digital holography available for a wide range of wavelengths from far-infrared to x-ray and electron beams.

  7. A Design of Focal-plane Compensation of Aviation Imaging Equipment Based on MS5534C

    NASA Astrophysics Data System (ADS)

    Lina, Zheng; Xue, Leng; Jiufei, Zhou; Yong, He; Jinbao, Fu

    This paper proposes an auto-compensation method for defocusing distance caused by temperature and pressure in aviation imaging equipment. As the host computer, the TMS320F2812 is the core controller and the digital pressure sensor MS5534C from Intersema Company is used as slave computer. The controller acquires the output of the temperature and the pressure from the sensor through MCBSP interface. By the change of temperature and pressure which results in defocusing distance, the software is adopted to compensate the defocusing distance and thereby keeps the stabilization of focal plane in aviation imaging equipment. The design proposal and the software flow is shown in the paper, furthermore the new system has simple interface, small size and real-time function. With many flight tests, the defocusing distance after the compensation of temperature and pressure is far less than the half focal depth of the optical system and it is fully satisfied with the requirements of imaging.

  8. Rotman Lens-Based Circular Array for Generating Five-mode OAM Radio Beams

    PubMed Central

    Bai, Xu-Dong; Liang, Xian-Ling; Li, Jian-Ping; Wang, Kun; Geng, Jun-Ping; Jin, Rong-Hong

    2016-01-01

    Recently, vortex beam carrying orbital angular momentum (OAM) for radio communications has attracted much attention for its potential of transmitting multiple signals simultaneously at the same frequency, which can be used to increase the channel capacity. However, most of the methods for getting multi-mode OAM radio beams remain up to now mainly at simulation level, since their implementations are of complicated structure and very high cost. This paper provides an effective design of generating five-mode OAM radio beams by using the Rotman lens-fed antenna array. The Rotman lens is a viable beamforming approach instead of electronically scanned arrays for its low cost and the ease of implementation. The lens-fed array employs a two-layer structure for size reduction, and the lens body and the antenna array are segregated by a common ground plane to eliminate spurious radiation and thus improve the performance of the OAM beams. The measured results coincide with the simulated ones, which verified the effectiveness of the proposed design for generating multi-mode OAM beams. PMID:27283738

  9. Large scale rock slope release planes imaged by differential ground based InSAR at Randa, Switzerland

    NASA Astrophysics Data System (ADS)

    Gischig, V.; Loew, S.; Kos, A.; Raetzo, H.

    2009-04-01

    In April and May of 1991 a steep rock slope above the village of Randa (Valais, Switzerland) failed in two events, releasing a total rock volume of 30 million m3. The rock mass behind the back scarp contains several million cubic meters of unstable gneisses and schists which are moving with a maximum rate of about 2 cm/yr. Different geodetic, geotechnical and geophysical techniques were applied to monitor this new instability and to determine its spatial extent. However, the boundaries of the instability could only be roughly estimated so far. For this reason five ground based differential InSAR surveys (GB-DInSAR) were carried out between 2005 and 2007 from the opposite valley flank at a distance to target of 1.3 to 1.9 km. These surveys provide displacements maps of four different time intervals with a spatial resolution of 2 to 6 m and an accuracy of less than 1 mm. These datasets reveal interesting new insights into the spatial distribution of displacements and significantly contribute to the kinematic interpretation of the ongoing movements. We found that the lower boundary of the instability is a narrow rupture plane which coincides with a primary lithological boundary on the slope. The intersection line between this basal rupture plane and the steep rock cliff extents over at least 200 m meters. It is possible to identify this structure on helicopter-based high resolution images and a LiDAR DTM of the failure surface. The eastern boundary of the instability also presents itself as a sharp line separating stable bedrock from a strongly fractured rock mass moving about 1 cm/yr along the line of sight. This lateral release plane is formed by a steeply east dipping tectonic fault plane, with subhorizontal striations and an exposed surface area of about 10'000 square meters. In the north-east of the instability the lateral boundaries crop out on surfaces that have an acute angle to the line of sight or lie in the shadow of the radar. Here the boundaries of the

  10. A Lagrangian parcel based mixing plane method for calculating water based mixed phase particle flows in turbo-machinery

    NASA Astrophysics Data System (ADS)

    Bidwell, Colin S.

    2015-05-01

    A method for calculating particle transport through turbo-machinery using the mixing plane analogy was developed and used to analyze the energy efficient engine . This method allows the prediction of temperature and phase change of water based particles along their path and the impingement efficiency and particle impact property data on various components in the engine. This methodology was incorporated into the LEWICE3D V3.5 software. The method was used to predict particle transport in the low pressure compressor of the . The was developed by NASA and GE in the early 1980s as a technology demonstrator and is representative of a modern high bypass turbofan engine. The flow field was calculated using the NASA Glenn ADPAC turbo-machinery flow solver. Computations were performed for a Mach 0.8 cruise condition at 11,887 m assuming a standard warm day for ice particle sizes of 5, 20 and 100 microns and a free stream particle concentration of . The impingement efficiency results showed that as particle size increased average impingement efficiencies and scoop factors increased for the various components. The particle analysis also showed that the amount of mass entering the inner core decreased with increased particle size because the larger particles were less able to negotiate the turn into the inner core due to particle inertia. The particle phase change analysis results showed that the larger particles warmed less as they were transported through the low pressure compressor. Only the smallest 5 micron particles were warmed enough to produce melting with a maximum average melting fraction of 0.18. The results also showed an appreciable amount of particle sublimation and evaporation for the 5 micron particles entering the engine core (22.6 %).

  11. Plasmon switching effect based on graphene nanoribbon pair arrays

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Wu, Lingxi; Liu, Qiong; Zhou, Renlong; Xie, Suxia; Chen, Jiangjiamin; Wu, Mengxiong; Zeng, Lisan

    2016-10-01

    We theoretically demonstrate the existence of plasmon switching effect in graphene nanostructure. By using finite-difference time-domain (FDTD) method, the plasmon resonance modes are studied in graphene nanoribbon pair arrays with the change of Fermi level, graphene width, and carrier mobility. It is found that the Fermi level and graphene width play an important role in changing the distribution of electric energy on different graphene nanoribbons, resulting in a significant plasmon switching effect. Moreover, we study the characteristic of resonance mode of one graphene ribbon by using glass rod with different shape. The effect of kerr material sandwiched between graphene nanoribbon pair is also considered.

  12. Distributed hydrophone array based on liquid crystal cell

    NASA Astrophysics Data System (ADS)

    Brodzeli, Zourab; Ladouceur, Francois; Silvestri, Leonardo; Michie, Andrew; Chigrinov, Vladimir; Guo, Grace Qi; Pozhidaev, Eugene P.; Kiselev, Alexei D.

    2012-02-01

    We describe a fibre optic hydrophone array system that could be used for underwater acoustic surveillance applications e.g. military, counter terrorist and customs authorities in protecting ports and harbors, offshore production facilities or coastal approaches as well as various marine applications. In this paper we propose a new approach to underwater sonar systems using voltage-controlled Liquid Crystals (LC) and simple multiplexing method. The proposed method permits measurements of sound under water at multiple points along an optical fibre using low cost components (LC cells), standard single mode fibre, without complex interferometric measurement techniques, electronics or demodulation software.

  13. Array-based electrical detection of DNA with nanoparticle probes.

    PubMed

    Park, So-Jung; Taton, T Andrew; Mirkin, Chad A

    2002-02-22

    A DNA array detection method is reported in which the binding of oligonucleotides functionalized with gold nanoparticles leads to conductivity changes associated with target-probe binding events. The binding events localize gold nanoparticles in an electrode gap; silver deposition facilitated by these nanoparticles bridges the gap and leads to readily measurable conductivity changes. An unusual salt concentration-dependent hybridization behavior associated with these nanoparticle probes was exploited to achieve selectivity without a thermal-stringency wash. Using this method, we have detected target DNA at concentrations as low as 500 femtomolar with a point mutation selectivity factor of approximately 100,000:1.

  14. Simulations of light scattering spectra of a nanoshell on plane interface based on the discrete sources method

    NASA Astrophysics Data System (ADS)

    Eremina, Elena; Eremin, Yuri; Wriedt, Thomas

    2006-11-01

    The resonance properties of nanoshells are of great interest in nanosensing applications such as surface enhanced Raman scattering or biological sensing. In this paper the discrete sources method has been applied to analyze the spectrum of evanescent light scattering from a nanoshell particle deposited near a plane surface. Based on the rigorous theoretical model, which allows to take into account all features of the scattering problem as: medium with frequency dispersion, presence of the interface, the objective aperture and its location and core-shell asphericity, the scattering spectrum of nanoshells was calculated. The dependence of the local nanoshell spectral density behavior on its properties is discussed.

  15. Quantitative kinetics of proteolytic enzymes determined by a surface concentration-based assay using peptide arrays.

    PubMed

    Jung, Se-Hui; Kong, Deok-Hoon; Park, Seoung-Woo; Kim, Young-Myeong; Ha, Kwon-Soo

    2012-08-21

    Peptide arrays have emerged as a key technology for drug discovery, diagnosis, and cell biology. Despite the promise of these arrays, applications of peptide arrays to quantitative analysis of enzyme kinetics have been limited due to the difficulty in obtaining quantitative information of enzymatic reaction products. In this study, we developed a new approach for the quantitative kinetics analysis of proteases using fluorescence-conjugated peptide arrays, a surface concentration-based assay with solid-phase peptide standards using dry-off measurements, and compared it with an applied concentration-based assay. For fabrication of the peptide arrays, substrate peptides of cMMP-3, caspase-3, caspase-9, and calpain-1 were functionalized with TAMRA and cysteine, and were immobilized onto amine-functionalized arrays using a heterobifunctional linker, N-[γ-maleimidobutyloxy]succinimide ester. The proteolytic activities of the four enzymes were quantitatively analyzed by calculating changes induced by enzymatic reactions in the concentrations of peptides bound to array surfaces. In addition, this assay was successfully applied for calculating the Michaelis constant (K(m,surf)) for the four enzymes. Thus, this new assay has a strong potential for use in the quantitative evaluation of proteases, and for drug discovery through kinetics studies including the determination of K(m) and V(max).

  16. A bead-based suspension array for the multiplexed detection of begomoviruses and their whitefly vectors.

    PubMed

    van Brunschot, S L; Bergervoet, J H W; Pagendam, D E; de Weerdt, M; Geering, A D W; Drenth, A; van der Vlugt, R A A

    2014-03-01

    Bead-based suspension array systems enable simultaneous fluorescence-based identification of multiple nucleic acid targets in a single reaction. This study describes the development of a novel approach to plant virus and vector diagnostics, a multiplexed 7-plex array that comprises a hierarchical set of assays for the simultaneous detection of begomoviruses and Bemisia tabaci, from both plant and whitefly samples. The multiplexed array incorporates genus, species and strain-specific assays, offering a unique approach for identifying both known and unknown viruses and B. tabaci species. When tested against a large panel of sequence-characterized begomovirus and whitefly samples, the array was shown to be 100% specific to the homologous target. Additionally, the multiplexed array was highly sensitive, efficiently and concurrently determining both virus and whitefly identity from single viruliferous whitefly samples. The detection limit for one assay within the multiplexed array that specifically detects Tomato yellow leaf curl virus-Israel (TYLCV-IL) was quantified as 200fg of TYLCV-IL DNA, directly equivalent to that of TYLCV-specific qPCR. Highly reproducible results were obtained over multiple tests. The flexible multiplexed array described in this study has great potential for use in plant quarantine, biosecurity and disease management programs worldwide.

  17. Omnidirectional multiview three-dimensional display based on direction-selective light-emitting diode array

    NASA Astrophysics Data System (ADS)

    Yan, Caijie; Liu, Xu; Liu, Di; Xie, Jing; Xia, Xin Xing; Li, Haifeng

    2011-03-01

    A volumetric display system based on a rotating light-emitting diode (LED) array panel can realize a three-dimensional (3-D) display truthfully in the space, but the drawback is missing the occlusion of a 3-D image. We propose an omnidirectional 3-D display with correct occlusion based on a direction-selective LED array panel, which is realized by setting a direction-convergent diaphragm array in front of the LED array. Every diaphragm restricts a light-emitting characteristic of every LED. By using direction-convergent diaphragm array, the observer around the display system can only see one image displayed by the LED array at the corresponding position. With the high-speed rotation of the LED panel, a series of views of a 3-D scene are displayed every angle patch in one circle. We set up an acquisition system to record 180 views of the 3-D scene with a rotating camera along a circle, and then the 180 images are displayed sequentially on the rotating direction-selective LED array to get a 360 deg 3-D display. This 3-D display technology has two main advantages: easy to get viewer-position-dependent correct occlusion and simplify the 3-D data preprocessing process which is helpful to real-time 3-D display.

  18. Membrane based thermoelectric sensor array for space debris detection

    NASA Astrophysics Data System (ADS)

    Haenschke, Frank; Kessler, Ernst; Ihring, Andreas; Bunte, Karl Dietrich; Herbst, Christian; Mohaupt, Matthias; Fichna, Torsten; Hagedorn, Daniel; Meyer, Hans-Georg

    2014-06-01

    As manmade space debris in the low earth orbit becomes an increasing risk to space missions, which could even result in total mission loss, it has become even more critical to have detailed knowledge of the properties of these particles like the mass, the velocity and the trajectory. In this paper, we present a newly designed, highly sensitive impact detector array with 16 pixels for space debris analysis. The thermopile sensor array, which was developed in the project, consists of 16 miniaturized multi-junction thermopile sensors made by modern thin-film technology on Si wafers. Each thermopile sensor consists of 100 radially arranged junction pairs formed from evaporated antimony and bismuth thin films. The centrally located active (hot) junctions comprise the active area of 1 mm². The output e.m.f. of the sensor is proportional to the temperature difference between the active and the reference junctions. The thermopile requires no cooling and no bias voltage or current for operation. It generates no 1/f noise but only the thermal resistance (Nyquist) noise. The sensor can be used for DC and low frequency AC measurements. The impact energy of micro sized particles is measured by a calorimetric principle. This means that the kinetic energy of the particle is converted into heat by hitting the absorbing foil, which is glued on the surface of the membrane area. This setup in combination with a preceded velocity detector allows the measurement of the most interesting particle quantities mass, velocity and trajectory.

  19. Accommodating Thickness in Origami-Based Deployable Arrays

    NASA Technical Reports Server (NTRS)

    Zirbel, Shannon A.; Magleby, Spencer P.; Howell, Larry L.; Lang, Robert J.; Thomson, Mark W.; Sigel, Deborah A.; Walkemeyer, Phillip E.; Trease, Brian P.

    2013-01-01

    The purpose of this work is to create deployment systems with a large ratio of stowed-to-deployed diameter. Deployment from a compact form to a final flat state can be achieved through origami-inspired folding of panels. There are many models capable of this motion when folded in a material with negligible thickness; however, when the application requires the folding of thick, rigid panels, attention must be paid to the effect of material thickness not only on the final folded state, but also during the folding motion (i.e., the panels must not be required to flex to attain the final folded form). The objective is to develop new methods for deployment from a compact folded form to a large circular array (or other final form). This paper describes a mathematical model for modifying the pattern to accommodate material thickness in the context of the design, modeling, and testing of a deployable system inspired by an origami six-sided flasher model. The model is demonstrated in hardware as a 1/20th scale prototype of a deployable solar array for space applications. The resulting prototype has a ratio of stowed-to-deployed diameter of 9.2 (or 1.25 m deployed outer diameter to 0.136 m stowed outer diameter).

  20. Ultrasonic array for obstacle detection based on CDMA with Kasami codes.

    PubMed

    Diego, Cristina; Hernández, Alvaro; Jiménez, Ana; Alvarez, Fernando J; Sanz, Rebeca; Aparicio, Joaquín

    2011-01-01

    This paper raises the design of an ultrasonic array for obstacle detection based on Phased Array (PA) techniques, which steers the acoustic beam through the environment by electronics rather than mechanical means. The transmission of every element in the array has been encoded, according to Code Division for Multiple Access (CDMA), which allows multiple beams to be transmitted simultaneously. All these features together enable a parallel scanning system which does not only improve the image rate but also achieves longer inspection distances in comparison with conventional PA techniques.

  1. Multispectral information hiding in RGB image using bit-plane-based watermarking and its application

    NASA Astrophysics Data System (ADS)

    Shinoda, Kazuma; Watanabe, Aya; Hasegawa, Madoka; Kato, Shigeo

    2015-06-01

    Although it was expected that multispectral images would be implemented in many applications, such as remote sensing and medical imaging, their use has not been widely diffused in these fields. The development of a compact multispectral camera and display will be needed for practical use, but the format compatibility between multispectral and RGB images is also important for reducing the introduction cost and having high usability. We propose a method of embedding the spectral information into an RGB image by watermarking. The RGB image is calculated from the multispectral image, and then, the original multispectral image is estimated from the RGB image using Wiener estimation. The residual data between the original and the estimated multispectral image are compressed and embedded in the lower bit planes of the RGB image. The experimental results show that, as compared with Wiener estimation, the proposed method leads to more than a 10 dB gain in the peak signal-to-noise ratio of the reconstructed multispectral image, while there are almost no significant perceptual differences in the watermarked RGB image.

  2. Coronagraph Focal-Plane Phase Masks Based on Photonic Crystal Technology: Recent Progress and Observational Strategy

    NASA Technical Reports Server (NTRS)

    Murakami, Naoshi; Nishikawa, Jun; Sakamoto, Moritsugu; Ise, Akitoshi; Oka, Kazuhiko; Baba, Naoshi; Murakami, Hiroshi; Tamura, Motohide; Traub, Wesley A.; Mawet, Dimitri; Moody, Dwight C.; Kern, Brian D.; Trauger, John T.; Serabyn, Eugene; Hamaguchi, Shoki; Oshiyama, Fumika

    2012-01-01

    Photonic crystal, an artificial periodic nanostructure of refractive indices, is one of the attractive technologies for coronagraph focal-plane masks aiming at direct imaging and characterization of terrestrial extrasolar planets. We manufactured the eight-octant phase mask (8OPM) and the vector vortex mask (VVM) very precisely using the photonic crystal technology. Fully achromatic phase-mask coronagraphs can be realized by applying appropriate polarization filters to the masks. We carried out laboratory experiments of the polarization-filtered 8OPM coronagraph using the High-Contrast Imaging Testbed (HCIT), a state-of-the-art coronagraph simulator at the Jet Propulsion Laboratory (JPL). We report the experimental results of 10-8-level contrast across several wavelengths over 10% bandwidth around 800nm. In addition, we present future prospects and observational strategy for the photonic-crystal mask coronagraphs combined with differential imaging techniques to reach higher contrast. We proposed to apply a polarization-differential imaging (PDI) technique to the VVM coronagraph, in which we built a two-channel coronagraph using polarizing beam splitters to avoid a loss of intensity due to the polarization filters. We also proposed to apply an angular-differential imaging (ADI) technique to the 8OPM coronagraph. The 8OPM/ADI mode avoids an intensity loss due to a phase transition of the mask and provides a full field of view around central stars. We present results of preliminary laboratory demonstrations of the PDI and ADI observational modes with the phase-mask coronagraphs.

  3. Polarization rotator of arbitrary angle based on simple slot-array

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoming; Cao, Xiaohang; Yu, Junsheng; Chen, Xiaodong; Yao, Yuan; Qi, Limei; Chen, Zhijiao; Zhou, Jun

    2015-12-01

    A novel polarization rotator of arbitrary angle was proposed and realized based on simple slot arrays. To achieve the rotation of an arbitrary angle α, the slots on the first layer have to be at an angle of α to the slots on the second layer. Consequently, 90° rotation can be realized using two perpendicularly oriented slot arrays, which overturns the conventional notion of that perpendicular slot arrays are not possible to pass electromagnetic wave. In addition, such structure provides the same bandwidth comparing to its counterpart utilized for frequency selective surface (FSS). Furthermore, such structure is much easier to be fabricated compared to the substrate integrated waveguide (SIW) array. Moreover, low insertion loss can be achieved based on metallic material.

  4. Graphene circular polarization analyzer based on spiral metal triangle antennas arrays.

    PubMed

    Zhu, Bofeng; Ren, Guobin; Gao, Yixiao; Wu, Beilei; Wan, Chenglong; Jian, Shuisheng

    2015-09-21

    In this paper we propose a circular polarization analyzer based on spiral metal triangle antenna arrays deposited on graphene. Via the dipole antenna resonances, plasmons are excited on graphene surface and the wavefront can be tailed by arranging metal antennas into linetype, circular or spiral arrays. Especially, for spiral antenna arrays, the geometric phase effect can be cancelled by or superposed on the chirality carried within circular polarization incidence, producing spatially separated solid dot or donut shape fields at the center. Such a phenomenon enables the graphene based spiral metal triangle antennas arrays to achieve functionality as a circular polarization analyzer. Extinction ratio over 550 can be achieved and the working wavelength can be tuned by adjusting graphene Fermi level dynamically. The proposed analyzer may find applications in analyzing chiral molecules using different circularly polarized waves.

  5. A Quantitative Tool for Producing DNA-Based Diagnostic Arrays

    SciTech Connect

    Tom J. Whitaker

    2008-07-11

    The purpose of this project was to develop a precise, quantitative method to analyze oligodeoxynucleotides (ODNs) on an array to enable a systematic approach to quality control issues affecting DNA microarrays. Two types of ODN's were tested; ODN's formed by photolithography and ODN's printed onto microarrays. Initial work in Phase I, performed in conjunction with Affymetrix, Inc. who has a patent on a photolithographic in situ technique for creating DNA arrays, was very promising but did seem to indicate that the atomization process was not complete. Soon after Phase II work was under way, Affymetrix had further developed fluorescent methods and indicated they were no longer interested in our resonance ionization technique. This was communicated to the program manager and it was decided that the project would continue and be focused on printed ODNs. The method being tested is called SIRIS, Sputter-Initiated Resonance Ionization Spectroscopy. SIRIS has been shown to be a highly sensitive, selective, and quantitative tool for atomic species. This project was aimed at determining if an ODN could be labeled in such a way that SIRIS could be used to measure the label and thus provide quantitative measurements of the ODN on an array. One of the largest problems in this study has been developing a method that allows us to know the amount of an ODN on a surface independent of the SIRIS measurement. Even though we could accurately determine the amount of ODN deposited on a surface, the amount that actually attached to the surface is very difficult to measure (hence the need for a quantitative tool). A double-labeling procedure was developed in which 33P and Pt were both used to label ODNs. The radioactive 33P could be measured by a proportional counter that maps the counts in one dimension. This gave a good measurement of the amount of ODN remaining on a surface after immobilization and washing. A second label, Pt, was attached to guanine nucleotides in the ODN. Studies

  6. Influence of truncation factor on coherent beam combining based on a triangular fiber laser array

    NASA Astrophysics Data System (ADS)

    Zhi, Dong; Ma, Yan-xing; Wang, Xiao-lin; Zhou, Pu; Si, Lei

    2016-10-01

    In this paper, we present an experimental comparison of coherent beam combining (CBC) effect with different truncation factors based on a triangle fiber laser array for the first time to our best knowledge. First, we fabricate a triangle fiber laser array based on adaptive fiber optics collimators with the fixed focusing length of 0.18m and clear aperture of 50mm. Two output fiber arrays (6/125 fiber array and 20/400 fiber array) with different numerical apertures (0.12 and 0.065, respectively) are used to generate different truncation factors. The direct measurement method is used to measure the intensity distribution of the two collimated beams with different sizes. Results show that the beam diameters are 14.5mm and 27.6mm for 20/400 output fiber and 6/125 output fiber, separately. This means that two fiber laser arrays with truncation factors of 0.29 and 0.55 are achieved. Then we numerically calculate the CBC efficiencies of two situations with different truncation factors. The analytical results show that the CBC efficiency improves from 0.144 with truncation factor of 0.29 to 0.413 with truncation factor of 0.55. At last, a CBC experiment platform is set up. Throughout the whole experiment, single frequency dithering algorithm and SPGD algorithm are separately used to perform the phase-locking control and the tilt control. Two CBC experiments of triangle fiber laser arrays are achieved successfully both with residual phase errors about λ/15. By analysis the experimental results, we get the CBC efficiencies are 0.099 (69% of 0.144) and 0.264 (64% of 0.413) for the two fiber arrays. The experimental results identify the importance of truncation factor on CBC efficiency and provide an important reference on the selection of fiber array parameters in order to achieve the largest energy proportion in the central lobe.

  7. Nanoband array electrode as a platform for high sensitivity enzyme-based glucose biosensing.

    PubMed

    Falk, Magnus; Sultana, Reshma; Swann, Marcus J; Mount, Andrew R; Freeman, Neville J

    2016-12-01

    We describe a novel glucose biosensor based on a nanoband array electrode design, manufactured using standard semiconductor processing techniques, and bio-modified with glucose oxidase immobilized at the nanoband electrode surface. The nanoband array architecture allows for efficient diffusion of glucose and oxygen to the electrode, resulting in a thousand-fold improvement in sensitivity and wide linear range compared to a conventional electrode. The electrode constitutes a robust and manufacturable sensing platform.

  8. Multispectral Detector Based on Array of Carbon-Nanotube Quantum Wells

    DTIC Science & Technology

    2009-09-30

    2006-Mar 2009 4. TITLE AND SUBTITLE MULTISPECTRAL DETECTOR BASED ON AN ARRAY OF CARBON- NANOTUBE QUANTUM WELLS 5. FUNDING NUMBERS FA9550-06-1-0366...carbon nanotube quantum wells exposed to external weak THz fields. Each of the individual well in the array had been independently controlled by a dc...the intrinsic noises considerably. 14. SUBJECT TERMS 15. NUMBER OF PAGES 23 THz field nanosensors, carbon nanotube quantum wells, Luttinger

  9. Detection of impulsive sources from an aerostat-based acoustic array data collection system

    NASA Astrophysics Data System (ADS)

    Prather, Wayne E.; Clark, Robert C.; Strickland, Joshua; Frazier, Wm. Garth; Singleton, Jere

    2009-05-01

    An aerostat based acoustic array data collection system was deployed at the NATO TG-53 "Acoustic Detection of Weapon Firing" Joint Field Experiment conducted in Bourges, France during the final two weeks of June 2008. A variety of impulsive sources including mortar, artillery, gunfire, RPG, and explosive devices were fired during the test. Results from the aerostat acoustic array will be presented against the entire range of sources.

  10. Design, implementation and investigation of an image guide-based optical flip-flop array

    NASA Technical Reports Server (NTRS)

    Griffith, P. C.

    1987-01-01

    Presented is the design for an image guide-based optical flip-flop array created using a Hughes liquid crystal light valve and a flexible image guide in a feedback loop. This design is used to investigate the application of image guides as a communication mechanism in numerical optical computers. It is shown that image guides can be used successfully in this manner but mismatch match between the input and output fiber arrays is extremely limiting.

  11. ISE-based sensor array system for classification of foodstuffs

    NASA Astrophysics Data System (ADS)

    Ciosek, Patrycja; Sobanski, Tomasz; Augustyniak, Ewa; Wróblewski, Wojciech

    2006-01-01

    A system composed of an array of polymeric membrane ion-selective electrodes and a pattern recognition block—a so-called 'electronic tongue'—was used for the classification of liquid samples: milk, fruit juice and tonic. The task of this system was to automatically recognize a brand of the product. To analyze the measurement set-up responses various non-parametric classifiers such as k-nearest neighbours, a feedforward neural network and a probabilistic neural network were used. In order to enhance the classification ability of the system, standard model solutions of salts were measured (in order to take into account any variation in time of the working parameters of the sensors). This system was capable of recognizing the brand of the products with accuracy ranging from 68% to 100% (in the case of the best classifier).

  12. Development of eddy current probes based on magnetoresistive sensors arrays

    NASA Astrophysics Data System (ADS)

    Sergeeva-Chollet, N.; Decitre, J.-M.; Fermon, C.; Pelkner, M.; Reimund, V.; Kreutzbruck, M.

    2014-02-01

    Eddy Current Technique is a powerful method for detection of surface notches and of buried flaws during inspection of metallic parts. Recent EC array probes have demonstrated a fast and efficient control of large surfaces. Nevertheless, when the size of flaws decreases or the defect is rather deep, traditional winding coil probes turn out to be useless. Magnetoresistive sensors present the advantages of flat frequency response and micron size. These sensors are hence very attractive for the detection of buried defects that require low frequencies because of skin depth effect. An optimization of the probe with magnetoresistive sensors as receivers has been made by simulations using CIVA software and finite elements methods with OPERA. EC probes for buried flaw detection have been designed. Experimental results have been compared with simulations.

  13. Fluorescence detection in capillary arrays based on galvanometer step scanning.

    PubMed

    Xue, G; Yeung, E S

    2001-10-01

    A computer-controlled galvanometer scanner is adapted for scanning a focused laser beam across a 96-capillary array for laser-induced fluorescence detection. The signal at a single photomultiplier tube is temporally sorted to distinguish among the capillaries. The limit of detection for fluoresceins is 3 x 10(-11) M (S/N = 3) for 5 mW of total laser power scanned at 4 Hz. The observed cross-talk among capillaries is 0.2%. Advantages include the efficient utilization of light due to the high duty-cycle of step scan, good detection performance due to the reduction of stray light, ruggedness due to the small mass of the galvanometer mirror, low cost due to the simplicity of components, and flexibility due to the independent paths for excitation and emission.

  14. SP1 protein-based nanostructures and arrays.

    PubMed

    Medalsy, Izhar; Dgany, Or; Sowwan, Mukhles; Cohen, Hezy; Yukashevska, Alevtyna; Wolf, Sharon G; Wolf, Amnon; Koster, Abraham; Almog, Orna; Marton, Ira; Pouny, Yehonathan; Altman, Arie; Shoseyov, Oded; Porath, Danny

    2008-02-01

    Controlled formation of complex nanostructures is one of the main goals of nanoscience and nanotechnology. Stable Protein 1 (SP1) is a boiling-stable ring protein complex, 11 nm in diameter, which self-assembles from 12 identical monomers. SP1 can be utilized to form large ordered arrays; it can be easily modified by genetic engineering to produce various mutants; it is also capable of binding gold nanoparticles (GNPs) and thus forming protein-GNP chains made of alternating SP1s and GNPs. We report the formation and the protocols leading to the formation of those nanostructures and their characterization by transmission electron microscopy, atomic force microscopy, and electrostatic force microscopy. Further control over the GNP interdistances within the protein-GNP chains may lead to the formation of nanowires and structures that may be useful for nanoelectronics.

  15. 10-16 meu broadband 640X512 GaAs/AlGaAs quantum well infrared photodetector (QWIP) focal plane array

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Bandara, S. V.; Liu, J. K.; Rafol, S. B.; Mumolo, J. M.; Reininger, F. M.; Fastenau, J. M.; Liu, A. K.

    2001-01-01

    In this presentation, we will discuss the development of this large format broadband infrared FPA based on a GaAs/AlGaAs materials system and its performance in quantum efficiency, uniformity, and operability.

  16. Evolutionary insights from suffix array-based genome sequence analysis.

    PubMed

    Poddar, Anindya; Chandra, Nagasuma; Ganapathiraju, Madhavi; Sekar, K; Klein-Seetharaman, Judith; Reddy, Raj; Balakrishnan, N

    2007-08-01

    Gene and protein sequence analyses, central components of studies in modern biology are easily amenable to string matching and pattern recognition algorithms. The growing need of analysing whole genome sequences more efficiently and thoroughly, has led to the emergence of new computational methods. Suffix trees and suffix arrays are data structures, well known in many other areas and are highly suited for sequence analysis too. Here we report an improvement to the design of construction of suffix arrays. Enhancement in versatility and scalability, enabled by this approach, is demonstrated through the use of real-life examples. The scalability of the algorithm to whole genomes renders it suitable to address many biologically interesting problems. One example is the evolutionary insight gained by analysing unigrams, bi-grams and higher n-grams, indicating that the genetic code has a direct influence on the overall composition of the genome. Further, different proteomes have been analysed for the coverage of the possible peptide space, which indicate that as much as a quarter of the total space at the tetra-peptide level is left un-sampled in prokaryotic organisms, although almost all tri-peptides can be seen in one protein or another in a proteome. Besides, distinct patterns begin to emerge for the counts of particular tetra and higher peptides, indicative of a 'meaning' for tetra and higher n-grams. The toolkit has also been used to demonstrate the usefulness of identifying repeats in whole proteomes efficiently. As an example, 16 members of one COG,coded by the genome of Mycobacterium tuberculosis H37Rv have been found to contain a repeating sequence of 300 amino acids.

  17. Robust angle-independent blood velocity estimation based on dual-angle plane wave imaging.

    PubMed

    Fadnes, Solveig; Ekroll, Ingvild Kinn; Nyrnes, Siri Ann; Torp, Hans; Lovstakken, Lasse

    2015-10-01

    Two-dimensional blood velocity estimation has shown potential to solve the angle-dependency of conventional ultrasound flow imaging. Clutter filtering, however, remains a major challenge for large beam-to-flow angles, leading to signal drop-outs and corrupted velocity estimates. This work presents and evaluates a compounding speckle tracking (ST) algorithm to obtain robust angle-independent 2-D blood velocity estimates for all beam-to-flow angles. A dual-angle plane wave imaging setup with full parallel receive beamforming is utilized to achieve high-frame-rate speckle tracking estimates from two scan angles, which may be compounded to obtain velocity estimates of increased robustness. The acquisition also allows direct comparison with vector Doppler (VD) imaging. Absolute velocity bias and root-mean-square (RMS) error of the compounding ST estimations were investigated using simulations of a rotating flow phantom with low velocities ranging from 0 to 20 cm/s. In a challenging region where the estimates were influenced by clutter filtering, the bias and RMS error for the compounding ST estimates were 11% and 2 cm/s, a significant reduction compared with conventional single-angle ST (22% and 4 cm/s) and VD (36% and 6 cm/s). The method was also tested in vivo for vascular and neonatal cardiac imaging. In a carotid artery bifurcation, the obtained blood velocity estimates showed that the compounded ST method was less influenced by clutter filtering than conventional ST and VD methods. In the cardiac case, it was observed that ST velocity estimation is more affected by low signal-to-noise (SNR) than VD. However, with sufficient SNR the in vivo results indicated that a more robust angle-independent blood velocity estimator is obtained using compounded speckle tracking compared with conventional ST and VD methods.

  18. Generation of remote adaptive torsional shear waves with an octagonal phased array to enhance displacements and reduce variability of shear wave speeds: comparison with quasi-plane shear wavefronts.

    PubMed

    Ouared, Abderrahmane; Montagnon, Emmanuel; Cloutier, Guy

    2015-10-21

    A method based on adaptive torsional shear waves (ATSW) is proposed to overcome the strong attenuation of shear waves generated by a radiation force in dynamic elastography. During the inward propagation of ATSW, the magnitude of displacements is enhanced due to the convergence of shear waves and constructive interferences. The proposed method consists in generating ATSW fields from the combination of quasi-plane shear wavefronts by considering a linear superposition of displacement maps. Adaptive torsional shear waves were experimentally generated in homogeneous and heterogeneous tissue mimicking phantoms, and compared to quasi-plane shear wave propagations. Results demonstrated that displacement magnitudes by ATSW could be up to 3 times higher than those obtained with quasi-plane shear waves, that the variability of shear wave speeds was reduced, and that the signal-to-noise ratio of displacements was improved. It was also observed that ATSW could cause mechanical inclusions to resonate in heterogeneous phantoms, which further increased the displacement contrast between the inclusion and the surrounding medium. This method opens a way for the development of new noninvasive tissue characterization strategies based on ATSW in the framework of our previously reported shear wave induced resonance elastography (SWIRE) method proposed for breast cancer diagnosis.

  19. Fabrication and testing of polyimide-based microelectrode arrays for cortical mapping of evoked potentials.

    PubMed

    Myllymaa, Sami; Myllymaa, Katja; Korhonen, Hannu; Töyräs, Juha; Jääskeläinen, Juha E; Djupsund, Kaj; Tanila, Heikki; Lappalainen, Reijo

    2009-06-15

    Modern microfabrication techniques make it possible to develop microelectrode arrays that may be utilized not only in neurophysiological research but also in the clinic, e.g. in neurosurgery and as elements of neural prostheses. The aim of this study was to test whether a flexible microelectrode array is suitable for recording cortical surface field potentials in rats. Polyimide-based microelectrode arrays were fabricated by utilizing microfabrication techniques e.g. photolithography and magnetron sputter deposition. The present microelectrode array consists of eight platinum microelectrodes (round-shaped, Ø: 200 microm), transmission lines and connector pads sandwiched between two thin layers of biocompatible polyimide. The microelectrode arrays were electrochemically characterized by impedance spectroscopy in physiological saline solution and successfully tested in vivo by conducting acute and chronic measurements of evoked potentials on the surface of rat cortex. The arrays proved excellent flexibility and mechanical strength during handling and implantation onto the surface of cortex. The excellent electrochemical characteristics and stable in vivo recordings with high spatiotemporal resolution highlight the potential of these arrays. The fabrication protocol described here allows implementation of several other neural interfaces with different layouts, material selections or target areas either for recording or stimulation purposes.

  20. Comparison of spectral beam combining based on an external cavity with and without microlens array

    NASA Astrophysics Data System (ADS)

    Zhan, Sheng-bao; Wu, Zhuo-liang; Zhang, Jie; Wen, Jun; Liu, Quan-jin

    2016-03-01

    An experimental system of spectral beam combining based on external cavity with a microlens array has been designed and built. According to the theoretical models established, the influence of the transverse offsets on coupling efficiency and beam quality with and without a microlens array were compared. The simulation results show that the incorporation of microlens can significantly improve the coupling efficiency and beam quality. In the experiment of individual fiber laser, the fiber laser can be tunable in a range of 40.23 nm with a microlens, wider than the one without the microlens (36.25 nm). In the spectral beam combining experiment of two fiber lasers with a microlens array, the combined efficiency is 77% with the output power of 695 mW and the beam quality factor (Mx2 ) of 1.27, and for the system without the microlens array, the combining efficiency is 75% with the output power of 660 mW and the beam quality factor (Mx2) of 1.31. The experiment results show that the SBC system with a microlens array has slightly better performance than that without the microlens array, which is almost consistent with the theoretical analysis results for the fiber array width of 0-2.5 mm.

  1. Evaluation of an image-based tracking workflow with Kalman filtering for automatic image plane alignment in interventional MRI.

    PubMed

    Neumann, M; Cuvillon, L; Breton, E; de Matheli, M

    2013-01-01

    Recently, a workflow for magnetic resonance (MR) image plane alignment based on tracking in real-time MR images was introduced. The workflow is based on a tracking device composed of 2 resonant micro-coils and a passive marker, and allows for tracking of the passive marker in clinical real-time images and automatic (re-)initialization using the microcoils. As the Kalman filter has proven its benefit as an estimator and predictor, it is well suited for use in tracking applications. In this paper, a Kalman filter is integrated in the previously developed workflow in order to predict position and orientation of the tracking device. Measurement noise covariances of the Kalman filter are dynamically changed in order to take into account that, according to the image plane orientation, only a subset of the 3D pose components is available. The improved tracking performance of the Kalman extended workflow could be quantified in simulation results. Also, a first experiment in the MRI scanner was performed but without quantitative results yet.

  2. New optical sensing technique of tissue viability and blood flow based on nanophotonic iterative multi-plane reflectance measurements

    PubMed Central

    Yariv, Inbar; Haddad, Menashe; Duadi, Hamootal; Motiei, Menachem; Fixler, Dror

    2016-01-01

    Physiological substances pose a challenge for researchers since their optical properties change constantly according to their physiological state. Examination of those substances noninvasively can be achieved by different optical methods with high sensitivity. Our research suggests the application of a novel noninvasive nanophotonics technique, ie, iterative multi-plane optical property extraction (IMOPE) based on reflectance measurements, for tissue viability examination and gold nanorods (GNRs) and blood flow detection. The IMOPE model combines an experimental setup designed for recording light intensity images with the multi-plane iterative Gerchberg-Saxton algorithm for reconstructing the reemitted light phase and calculating its standard deviation (STD). Changes in tissue composition affect its optical properties which results in changes in the light phase that can be measured by its STD. We have demonstrated this new concept of correlating the light phase STD and the optical properties of a substance, using transmission measurements only. This paper presents, for the first time, reflectance based IMOPE tissue viability examination, producing a decrease in the computed STD for older tissues, as well as investigating their organic material absorption capability. Finally, differentiation of the femoral vein from adjacent tissues using GNRs and the detection of their presence within blood circulation and tissues are also presented with high sensitivity (better than computed tomography) to low quantities of GNRs (<3 mg). PMID:27785024

  3. Inkjet-printed paper-based colorimetric sensor array for the discrimination of volatile primary amines.

    PubMed

    Soga, Tamaki; Jimbo, Yusuke; Suzuki, Koji; Citterio, Daniel

    2013-10-01

    This paper describes a colorimetric sensor array for the discrimination of volatile amines. Analyte discrimination is achieved by combining two functional elements: (1) a "chemical class-selective" single chromogenic sensing dye with selectivity for amines in general, encapsulated into (2) polymer nanoparticles with different polarities. The resulting array has the ability to distinguish one closely related amine from another, relying on a polarity-based approach. In order to achieve reproducible, cost efficient, and flexible sensor array fabrication with the potential for mass production, inkjet-printing technology combined with standard copy paper as a sensor substrate is applied. Printing of 6 types of inks, which are prepared by mixing two dye encapsulating nanoparticles of different polarity in different mixture ratios, results in a colorimetric sensor array with a polarity gradient. Seven primary amines with increasing alkyl chain lengths have been selected to demonstrate the performance of the sensor array. The RGB color differences (ΔR, ΔG, ΔB) of the sensor array spots before and after gas exposure were analyzed by principal component analysis (PCA) and agglomerative hierarchical clustering (AHC) analysis. Under the selected measurement conditions, results of PCA and AHC analysis indicated high discrimination ability with high reproducibility of the sensor array down to amine concentrations of 50 ppm. The discrimination ability was maintained at relative humidities between 10% and 80%. Furthermore, the sensor array showed no significant response to common volatile organic compounds, confirming the high selectivity toward amines. This is, to the best of our knowledge, the first report of a colorimetric sensor array with selectivity for a specific chemical class of analytes and the ability to discriminate compounds of the same class, which is obtained by simply mixing two types of single dye-encapsulating polymer nanoparticles.

  4. Design and verification of focal plane assembly thermal control system of one space-based astronomy telescope

    NASA Astrophysics Data System (ADS)

    Yang, Wen-gang; Fan, Xue-wu; Wang, Chen-jie; Wang, Ying-hao; Feng, Liang-jie; Du, Yun-fei; Ren, Guo-rui; Wang, Wei; Li, Chuang; Gao, Wei

    2015-10-01

    One space-based astronomy telescope will observe astronomy objects whose brightness should be lower than 23th magnitude. To ensure the telescope performance, very low system noise requirements need extreme low CCD operating temperature (lower than -65°C). Because the satellite will be launched in a low earth orbit, inevitable space external heat fluxes will result in a high radiator sink temperature (higher than -65°C). Only passive measures can't meet the focal plane cooling specification and active cooling technologies must be utilized. Based on detailed analysis on thermal environment of the telescope and thermal characteristics of focal plane assembly (FPA), active cooling system which is based on thermo-electric cooler (TEC) and heat rejection system (HRS) which is based on flexible heat pipe and radiator have been designed. Power consumption of TECs is dependent on the heat pumped requirements and its hot side temperature. Heat rejection capability of HRS is mainly dependent on the radiator size and temperature. To compromise TEC power consumption and the radiator size requirement, thermal design of FPA must be optimized. Parasitic heat loads on the detector is minimized to reduce the heat pumped demands of TECs and its power consumption. Thermal resistance of heat rejection system is minimized to reject the heat dissipation of TECs from the hot side to the radiator efficiently. The size and surface coating of radiator are optimized to compromise heat reject ion requirements and system constraints. Based on above work, transient thermal analysis of FPA is performed. FPA prototype model has been developed and thermal vacuum/balance test has been accomplished. From the test, temperature of key parts and working parameters of TECs in extreme cases have been acquired. Test results show that CCD can be controlled below -65°C and all parts worked well during the test. All of these verified the thermal design of FPA and some lessons will be presented in this

  5. Dielectrophoresis-Based Particle Sensor Using Nanoelectrode Arrays

    NASA Technical Reports Server (NTRS)

    Li, Jun; Cassell, Alan M.; Arumugam, Prabhu U.

    2013-01-01

    A method has been developed for concentrating, or partly separating, particles of a selected species from a liquid or gas containing these particles, and flowing in a channel. An example of this is to promote an accumulation (and thus concentration) of the selected particle (e.g., biological species such as E. coli, salmonella, anthrax, tobacco mosaic virus or herpes simplex, and non-biological materials such as nano- and microparticles, quantum dots, nanowires, nano - tubes, and other inorganic particles) adjacent to the first surface. Additionally, this method can also determine if the particle species is present in the liquid. This is accomplished by providing an insulating material in an interstitial volume between two or more adjacent nanostructure electrodes. It can also be accomplished by providing a functionalizing substance, located on a selected region of the insulating material surface, which promotes attachment of the selected species particles to the functionalized surface, and measuring a selected electrical property such as electrical impedance, conductance, or capacitance. A time-varying electrical field E, having a root-mean-square intensity of E(sup 2) rms, with a non-zero gradient in a direction transverse to the liquid or fluid flow direction, is produced by a nanostructure electrode array with a very high-magnitude gradient near exposed electrode tips. A dielectrophoretic force causes the selected particles to accumulate near the electrode tips, if the medium and selected particles have substantially different dielectric constants. An insulating material surrounds most of the nanostructure electrodes, and a region of the insulating material surface is functionalized to promote attachment of the selected particle species to the surface. An electrical property value Z(meas) is measured at the functionalized surface, and is compared with a reference value Z(ref) to determine if the selected species particles are attached to the functionalized

  6. Correlation-based imaging technique using ultrasonic transmit-receive array for Non-Destructive Evaluation.

    PubMed

    Quaegebeur, Nicolas; Masson, Patrice

    2012-12-01

    This paper describes a novel array post-processing method for Non-Destructive Evaluation (NDE) using phased-array ultrasonic probes. The approach uses the capture and processing of the full matrix of all transmit-receive time-domain signals from a transducer array as in the case of the Total Focusing Method (TFM), referred as the standard of imaging algorithms. The proposed technique is based on correlation of measured signals with theoretical propagated signals computed over a given grid of points. In that case, real-time imaging can be simply implemented using discrete signal product. The advantage of the present technique is to take into account transducer directivity, dynamics and complex propagation patterns, such that the number of required array elements for a given imaging performance can be greatly reduced. Numerical and experimental application to contact inspection of isotropic structure is presented and real-time implementation issues are discussed.

  7. A novel wearable electronic nose for healthcare based on flexible printed chemical sensor array.

    PubMed

    Lorwongtragool, Panida; Sowade, Enrico; Watthanawisuth, Natthapol; Baumann, Reinhard R; Kerdcharoen, Teerakiat

    2014-10-22

    A novel wearable electronic nose for armpit odor analysis is proposed by using a low-cost chemical sensor array integrated in a ZigBee wireless communication system. We report the development of a carbon nanotubes (CNTs)/polymer sensor array based on inkjet printing technology. With this technique both composite-like layer and actual composite film of CNTs/polymer were prepared as sensing layers for the chemical sensor array. The sensor array can response to a variety of complex odors and is installed in a prototype of wearable e-nose for monitoring the axillary odor released from human body. The wearable e-nose allows the classification of different armpit odors and the amount of the volatiles released as a function of level of skin hygiene upon different activities.

  8. Gallium arsenide quantum well-based far infrared array radiometric imager

    NASA Technical Reports Server (NTRS)

    Forrest, Kathrine A.; Jhabvala, Murzy D.

    1991-01-01

    We have built an array-based camera (FIRARI) for thermal imaging (lambda = 8 to 12 microns). FIRARI uses a square format 128 by 128 element array of aluminum gallium arsenide quantum well detectors that are indium bump bonded to a high capacity silicon multiplexer. The quantum well detectors offer good responsivity along with high response and noise uniformity, resulting in excellent thermal images without compensation for variation in pixel response. A noise equivalent temperature difference of 0.02 K at a scene temperature of 290 K was achieved with the array operating at 60 K. FIRARI demonstrated that AlGaAS quantum well detector technology can provide large format arrays with performance superior to mercury cadmium telluride at far less cost.

  9. Ion Trap Array-Based Systems And Methods For Chemical Analysis

    DOEpatents

    Whitten, William B [Oak Ridge, TN; Ramsey, J Michael [Knoxville, TN

    2005-08-23

    An ion trap-based system for chemical analysis includes an ion trap array. The ion trap array includes a plurality of ion traps arranged in a 2-dimensional array for initially confining ions. Each of the ion traps comprise a central electrode having an aperture, a first and second insulator each having an aperture sandwiching the central electrode, and first and second end cap electrodes each having an aperture sandwiching the first and second insulator. A structure for simultaneously directing a plurality of different species of ions out from the ion traps is provided. A spectrometer including a detector receives and identifies the ions. The trap array can be used with spectrometers including time-of-flight mass spectrometers and ion mobility spectrometers.

  10. High speed vision processor with reconfigurable processing element array based on full-custom distributed memory

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Yang, Jie; Shi, Cong; Qin, Qi; Liu, Liyuan; Wu, Nanjian

    2016-04-01

    In this paper, a hybrid vision processor based on a compact full-custom distributed memory for near-sensor high-speed image processing is proposed. The proposed processor consists of a reconfigurable processing element (PE) array, a row processor (RP) array, and a dual-core microprocessor. The PE array includes two-dimensional processing elements with a compact full-custom distributed memory. It supports real-time reconfiguration between the PE array and the self-organized map (SOM) neural network. The vision processor is fabricated using a 0.18 µm CMOS technology. The circuit area of the distributed memory is reduced markedly into 1/3 of that of the conventional memory so that the circuit area of the vision processor is reduced by 44.2%. Experimental results demonstrate that the proposed design achieves correct functions.

  11. Cryogenic time-domain multiplexer based on SQUID arrays and superconducting/normal conducting switches

    NASA Astrophysics Data System (ADS)

    Beev, N.; Kiviranta, M.; van der Kuur, J.; Bruijn, M.; Brandel, O.; Linzen, S.; Fritzsch, L.; Ahoranta, J.; Penttilä, J.; Roschier, L.

    2014-05-01

    We have demonstrated the operation of a 12-channel Beyer-style SQUID-based time domain multiplexer. It was manufactured using a fabrication process that is cross-compatible between VTT and IPHT-Jena. The multiplexer consists of twelve 12-SQUID series arrays, each shunted by a Zappe-style interferometer array acting as a flux-controlled superconducting/normal conducting switch. By keeping all switches but one in the superconducting state, it is possible to select one active readout channel at a time. A flux feedback coil common to all SQUID arrays allows realization of a flux-locked loop. We present characteristics of the multiplexer and measurement data from experiments with a 25-pixel X-ray calorimeter array operated at T < 100 mK in a dilution refrigerator.

  12. A Novel Wearable Electronic Nose for Healthcare Based on Flexible Printed Chemical Sensor Array

    PubMed Central

    Lorwongtragool, Panida; Sowade, Enrico; Watthanawisuth, Natthapol; Baumann, Reinhard R.; Kerdcharoen, Teerakiat

    2014-01-01

    A novel wearable electronic nose for armpit odor analysis is proposed by using a low-cost chemical sensor array integrated in a ZigBee wireless communication system. We report the development of a carbon nanotubes (CNTs)/polymer sensor array based on inkjet printing technology. With this technique both composite-like layer and actual composite film of CNTs/polymer were prepared as sensing layers for the chemical sensor array. The sensor array can response to a variety of complex odors and is installed in a prototype of wearable e-nose for monitoring the axillary odor released from human body. The wearable e-nose allows the classification of different armpit odors and the amount of the volatiles released as a function of level of skin hygiene upon different activities. PMID:25340447

  13. Focal plane scanner with reciprocating spatial window

    NASA Technical Reports Server (NTRS)

    Mao, Chengye (Inventor)

    2000-01-01

    A focal plane scanner having a front objective lens, a spatial window for selectively passing a portion of the image therethrough, and a CCD array for receiving the passed portion of the image. All embodiments have a common feature whereby the spatial window and CCD array are mounted for simultaneous relative reciprocating movement with respect to the front objective lens, and the spatial window is mounted within the focal plane of the front objective. In a first embodiment, the spatial window is a slit and the CCD array is one-dimensional, and successive rows of the image in the focal plane of the front objective lens are passed to the CCD array by an image relay lens interposed between the slit and the CCD array. In a second embodiment, the spatial window is a slit, the CCD array is two-dimensional, and a prism-grating-prism optical spectrometer is interposed between the slit and the CCD array so as to cause the scanned row to be split into a plurality of spectral separations onto the CCD array. In a third embodiment, the CCD array is two-dimensional and the spatial window is a rectangular linear variable filter (LVF) window, so as to cause the scanned rows impinging on the LVF to be bandpass filtered into spectral components onto the CCD array through an image relay lens interposed between the LVF and the CCD array.

  14. Generation of miniaturized planar ecombinant antibody arrays using a microcantilever-based printer

    NASA Astrophysics Data System (ADS)

    Petersson, Linn; Berthet Duroure, Nathalie; Auger, Angèle; Dexlin-Mellby, Linda; Borrebaeck, Carl AK; Ait Ikhlef, Ali; Wingren, Christer

    2014-07-01

    Miniaturized (Ø 10 μm), multiplexed (>5-plex), and high-density (>100 000 spots cm-2) antibody arrays will play a key role in generating protein expression profiles in health and disease. However, producing such antibody arrays is challenging, and it is the type and range of available spotters which set the stage. This pilot study explored the use of a novel microspotting tool, BioplumeTM—consisting of an array of micromachined silicon cantilevers with integrated microfluidic channels—to produce miniaturized, multiplexed, and high-density planar recombinant antibody arrays for protein expression profiling which targets crude, directly labelled serum. The results demonstrated that 16-plex recombinant antibody arrays could be produced—based on miniaturized spot features (78.5 um2, Ø 10 μm) at a 7-125-times increased spot density (250 000 spots cm-2), interfaced with a fluorescent-based read-out. This prototype platform was found to display adequate reproducibility (spot-to-spot) and an assay sensitivity in the pM range. The feasibility of the array platform for serum protein profiling was outlined.

  15. Mobile Ultrasound Plane Wave Beamforming on iPhone or iPad using Metal- based GPU Processing

    NASA Astrophysics Data System (ADS)

    Hewener, Holger J.; Tretbar, Steffen H.

    Mobile and cost effective ultrasound devices are being used in point of care scenarios or the drama room. To reduce the costs of such devices we already presented the possibilities of consumer devices like the Apple iPad for full signal processing of raw data for ultrasound image generation. Using technologies like plane wave imaging to generate a full image with only one excitation/reception event the acquisition times and power consumption of ultrasound imaging can be reduced for low power mobile devices based on consumer electronics realizing the transition from FPGA or ASIC based beamforming into more flexible software beamforming. The massive parallel beamforming processing can be done with the Apple framework "Metal" for advanced graphics and general purpose GPU processing for the iOS platform. We were able to integrate the beamforming reconstruction into our mobile ultrasound processing application with imaging rates up to 70 Hz on iPad Air 2 hardware.

  16. Focal-plane wavefront sensing for active optics in the VST based on an analytical optical aberration model

    NASA Astrophysics Data System (ADS)

    Holzlöhner, R.; Taubenberger, S.; Rakich, A. P.; Noethe, L.; Schipani, P.; Kuijken, K.

    2016-08-01

    We study a novel focal plane wavefront sensing and active optics control scheme at the VST on Cerro Paranal, an f/5.5 survey telescope with a 1x1 degree field of view and a 2.6m primary mirror. This scheme analyzes the elongation pattern of stellar PSFs across the full science image (256 Mpixels) and compares their second moments with an analytical model based on 5th-order geometrical optics. We consider 11 scalar degrees of freedom in mirror misalignments and deformations (M2 piston, tip/tilt and lateral displacement, detector tip/tilt, plus M1 figure astigmatism and trefoil). Using a numerical optimization method, we extract up to 4000 stars and complete the fitting process in under one minute. We demonstrate successful closed-loop active optics control based on maximum likelihood filtering.

  17. Dielectrophoresis-based particle sensor using nanoelectrode arrays

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Cassell, Alan M. (Inventor); Arumugam, Prabhu U. (Inventor)

    2009-01-01

    A method for concentrating or partly separating particles of a selected species from a liquid or fluid containing these particles and flowing in a channel, and for determining if the selected species particle is present in the liquid or fluid. A time varying electrical field E, having a root-mean-square intensity E.sup.2.sub.rms with a non-zero gradient in a direction transverse to the liquid or fluid flow direction, is produced by a nanostructure electrode array, with a very high magnitude gradient near exposed electrode tips. A dielectrophoresis force causes the selected particles to accumulate near the electrode tips, if the medium and selected particles have substantially different dielectric constants. An insulating material surrounds most of each of the nanostructure electrodes, and a region of the insulating material surface is functionalized to promote attachment of the selected species particles to the surface. An electrical property value Z(meas) is measured at the functionalized surface and is compared with a reference value Z(ref) to determine if the selected species particles are attached to the functionalized surface.

  18. Editor's highlight: Evaluation of a Microelectrode Array-based ...

    EPA Pesticide Factsheets

    Thousands of compounds in the environment have not been characterized for developmental neurotoxicity (DNT) hazard. To address this issue, methods to screen compounds rapidly for DNT hazard evaluation are necessary and are being developed for key neurodevelopmental processes. In order to develop an assay for network formation, the current study evaluated effects of a training set of chemicals on network ontogeny by measuring spontaneous electrical activity in neural networks grown on microelectrode arrays (MEA). Rat (0-24 h old) primary cortical cells were plated in 48 well MEA plates and exposed to six compounds: acetaminophen, bisindolylmaleimide-1 (Bis-1), domoic acid, mevastatin, sodium orthovanadate, and loperamide for a period of 12 days. Spontaneous network activity was recorded on days 2, 5, 7, 9, and 12 and viability was assessed using the Cell Titer Blue® assay on day 12. Network activity (e.g. mean firing rate (MFR), burst rate (BR), etc), increased between days 5 and 12. Random Forest analysis indicated that across all compounds and times, temporal correlation of firing patterns (r), MFR, BR, #of active electrodes and % of spikes in a burst were the most influential parameters in separating control from treated wells. All compounds except acetaminophen (≤ 30 µM) caused concentration-related effects on one or more of these parameters. Domoic acid and sodium orthovanadate altered several of these parameters in the absence of cytotoxicity. Although

  19. [Modeling and simulation of responses from ultrasonic linear phased array].

    PubMed

    He, Wenjing; Zhu, Yuanzhong; Wang, Yufeng; He, Lingli; Lai, Siyu

    2012-10-01

    Phased array transducers are very attractive because the beam generated by the arrays can be electronically focused and steered. The present work characterizes far-field 2D properties of phased array system by functions that are deduced from rectangle source, rectangle line array and phased array based on point source. Results are presented for the distribution of ultrasound intensity on plane xoz and on x-axis by simulation using numerical calculation. It is shown that the shape of response of rectangle line array is modulated by the single array element. It is also demonstrated that the delay time of phased array is the key to steer the beam, sacrificing the value of main lobe and increasing the number of side lobes.

  20. Terahertz Wide-Angle Imaging and Analysis on Plane-wave Criteria Based on Inverse Synthetic Aperture Techniques

    NASA Astrophysics Data System (ADS)

    Gao, Jing Kun; Qin, Yu Liang; Deng, Bin; Wang, Hong Qiang; Li, Jin; Li, Xiang

    2016-04-01

    This paper presents two parts of work around terahertz imaging applications. The first part aims at solving the problems occurred with the increasing of the rotation angle. To compensate for the nonlinearity of terahertz radar systems, a calibration signal acquired from a bright target is always used. Generally, this compensation inserts an extra linear phase term in the intermediate frequency (IF) echo signal which is not expected in large-rotation angle imaging applications. We carried out a detailed theoretical analysis on this problem, and a minimum entropy criterion was employed to estimate and compensate for the linear-phase errors. In the second part, the effects of spherical wave on terahertz inverse synthetic aperture imaging are analyzed. Analytic criteria of plane-wave approximation were derived in the cases of different rotation angles. Experimental results of corner reflectors and an aircraft model based on a 330-GHz linear frequency-modulated continuous wave (LFMCW) radar system validated the necessity and effectiveness of the proposed compensation. By comparing the experimental images obtained under plane-wave assumption and spherical-wave correction, it also showed to be highly consistent with the analytic criteria we derived.