Sample records for plane longitudinal wave

  1. Tissue elasticity of in vivo skeletal muscles measured in the transverse and longitudinal planes using shear wave elastography.

    PubMed

    Chino, Kentaro; Kawakami, Yasuo; Takahashi, Hideyuki

    2017-07-01

    The aim of the present study was to measure in vivo skeletal muscle elasticity in the transverse and longitudinal planes using shear wave elastography and then to compare the image stability, measurement values and measurement repeatability between these imaging planes. Thirty-one healthy males participated in this study. Tissue elasticity (shear wave velocity) of the medial gastrocnemius, rectus femoris, biceps brachii and rectus abdominis was measured in both the transverse and longitudinal planes using shear wave elastography. Image stability was evaluated by the standard deviation of the colour distribution in the shear wave elastography image. Measurement repeatability was assessed by the coefficient of variance obtained from three measurement values. Image stability of all tested muscles was significantly higher in the longitudinal plane (P<0·001), but measurement repeatability did not differ significantly between the imaging planes (P>0·05), except in the biceps brachii (P = 0·001). Measurement values of the medial gastrocnemius, rectus femoris and biceps brachii were significantly different between the imaging planes (P<0·001). Image stability and measurement values of shear wave elastography images varied with imaging plane, which indicates that imaging plane should be considered when measuring skeletal muscle tissue elasticity by shear wave elastography. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  2. Trajectories of electrons with large longitudinal momenta in the phase plane during surfatron acceleration by an electromagnetic wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mkrtichyan, G. S., E-mail: hay-13@mail.ru

    2015-07-15

    The trajectories of electrons with large longitudinal momenta in the phase plane in the course of their surfatron acceleration by an electromagnetic wave propagating in space plasma across the external magnetic field are analyzed. Electrons with large longitudinal momenta are trapped immediately if the initial wave phase Ψ(0) on the particle trajectory is positive. For negative values of Ψ(0), no electrons trapping by the wave is observed over the available computational times. According to numerical calculations, the trajectories of trapped particles in the phase plane have a singular point of the stable focus type and the behavior of the trajectorymore » corresponds to the motion in a complex nonstationary effective potential well. For some initial phases, electrons are confined in the region of the accelerating electric field for relatively short time, the energy gain being about 50–130% and more.« less

  3. Simple Harmonic Motion in Harmonic Plane Waves.

    ERIC Educational Resources Information Center

    Benumof, Reuben

    1980-01-01

    Discusses the distribution of kinetic and potential energy in transverse and longitudinal waves and examines the transmission of power and momentum. This discussion is intended to aid in understanding the simple harmonic motion of a particle involved in the propagation of a harmonic mechanical plane wave. (HM)

  4. Stress wave velocity patterns in the longitudinal-radial plane of trees for defect diagnosis

    Treesearch

    Guanghui Li; Xiang Weng; Xiaocheng Du; Xiping Wang; Hailin Feng

    2016-01-01

    Acoustic tomography for urban tree inspection typically uses stress wave data to reconstruct tomographic images for the trunk cross section using interpolation algorithm. This traditional technique does not take into account the stress wave velocity patterns along tree height. In this study, we proposed an analytical model for the wave velocity in the longitudinal–...

  5. Sound pressure distribution within natural and artificial human ear canals: forward stimulation.

    PubMed

    Ravicz, Michael E; Tao Cheng, Jeffrey; Rosowski, John J

    2014-12-01

    This work is part of a study of the interaction of sound pressure in the ear canal (EC) with tympanic membrane (TM) surface displacement. Sound pressures were measured with 0.5-2 mm spacing at three locations within the shortened natural EC or an artificial EC in human temporal bones: near the TM surface, within the tympanic ring plane, and in a plane transverse to the long axis of the EC. Sound pressure was also measured at 2-mm intervals along the long EC axis. The sound field is described well by the size and direction of planar sound pressure gradients, the location and orientation of standing-wave nodal lines, and the location of longitudinal standing waves along the EC axis. Standing-wave nodal lines perpendicular to the long EC axis are present on the TM surface >11-16 kHz in the natural or artificial EC. The range of sound pressures was larger in the tympanic ring plane than at the TM surface or in the transverse EC plane. Longitudinal standing-wave patterns were stretched. The tympanic-ring sound field is a useful approximation of the TM sound field, and the artificial EC approximates the natural EC.

  6. Evaluation of the acoustoelectric effect in the thickness direction of c-plane ZnO single crystals by Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Tomita, Shota; Yanagitani, Takahiko; Takayanagi, Shinji; Ichihashi, Hayato; Shibagaki, Yoshiaki; Hayashi, Hiromichi; Matsukawa, Mami

    2017-06-01

    Longitudinal wave velocity dispersion in ZnO single crystals, owing to the acoustoelectric effect, has been investigated by Brillouin scattering. The resistivity dependence of the longitudinal wave velocity in a c-plane ZnO single crystal was theoretically estimated and experimentally investigated. Velocity dispersion owing to the acoustoelectric effect was observed in the range 0.007-10 Ωm. The observed velocity dispersion shows a similar tendency to the theoretical estimation and gives the piezoelectric stiffened and unstiffened wave velocities. However, the measured dispersion curve shows a characteristic shift from the theoretical curve. One possible reason is the carrier mobility in the sample, which could be lower than the reported value. The measurement data gave the piezoelectric stiffened and unstiffened longitudinal wave velocities, from which the electromechanical coupling coefficient k33 was determined. The value of k33 is in good agreement with reported values. This method is promising for noncontact evaluation of electromechanical coupling. In particular, it could be for evaluation of the unknown piezoelectricity in the thickness direction of semiconductive materials and film resonators.

  7. Topologically protected edge states for out-of-plane and in-plane bulk elastic waves.

    PubMed

    Huo, Shao-Yong; Chen, Jiu-Jiu; Huang, Hong-Bo

    2018-04-11

    Topological phononic insulators (TPnIs) show promise for application in the manipulation of acoustic waves for the design of low-loss transmission and perfectly integrated communication devices. Since solid phononic crystals exist as a transverse polarization mode and a mixed longitudinal-transverse polarization mode, the realization of topological edge states for both out-of-plane and in-plane bulk elastic waves is desirable to enhance the controllability of the edge waves in solid systems. In this paper, a two-dimensional (2D) solid/solid hexagonal-latticed phononic system that simultaneously supports the topologically protected edge states for out-of-plane and in-plane bulk elastic waves is investigated. Firstly, two pairs of two-fold Dirac cones, respectively corresponding to the out-of-plane and in-plane waves, are obtained at the same frequency by tuning the crystal parameters. Then, a strategy of zone folding is invoked to form double Dirac cones. By shrinking and expanding the steel scatterer, the lattice symmetry is broken, and band inversions induced, giving rise to an intriguing topological phase transition. Finally, the topologically protected edge states for both out-of-plane and in-plane bulk elastic waves, which can be simultaneously located at the frequency range from 1.223 to 1.251 MHz, are numerically observed. Robust pseudospin-dependent elastic edge wave propagation along arbitrary paths is further demonstrated. Our results will significantly broaden its practical application in the engineering field.

  8. Topologically protected edge states for out-of-plane and in-plane bulk elastic waves

    NASA Astrophysics Data System (ADS)

    Huo, Shao-Yong; Chen, Jiu-Jiu; Huang, Hong-Bo

    2018-04-01

    Topological phononic insulators (TPnIs) show promise for application in the manipulation of acoustic waves for the design of low-loss transmission and perfectly integrated communication devices. Since solid phononic crystals exist as a transverse polarization mode and a mixed longitudinal-transverse polarization mode, the realization of topological edge states for both out-of-plane and in-plane bulk elastic waves is desirable to enhance the controllability of the edge waves in solid systems. In this paper, a two-dimensional (2D) solid/solid hexagonal-latticed phononic system that simultaneously supports the topologically protected edge states for out-of-plane and in-plane bulk elastic waves is investigated. Firstly, two pairs of two-fold Dirac cones, respectively corresponding to the out-of-plane and in-plane waves, are obtained at the same frequency by tuning the crystal parameters. Then, a strategy of zone folding is invoked to form double Dirac cones. By shrinking and expanding the steel scatterer, the lattice symmetry is broken, and band inversions induced, giving rise to an intriguing topological phase transition. Finally, the topologically protected edge states for both out-of-plane and in-plane bulk elastic waves, which can be simultaneously located at the frequency range from 1.223 to 1.251 MHz, are numerically observed. Robust pseudospin-dependent elastic edge wave propagation along arbitrary paths is further demonstrated. Our results will significantly broaden its practical application in the engineering field.

  9. Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Zhu, Jiang; Miao, Yusi; Qi, Li; Qu, Yueqiao; He, Youmin; Yang, Qiang; Chen, Zhongping

    2017-05-01

    Shear wave measurements for the determination of tissue elastic properties have been used in clinical diagnosis and soft tissue assessment. A shear wave propagates as a transverse wave where vibration is perpendicular to the wave propagation direction. Previous transverse shear wave measurements could detect the shear modulus in the lateral region of the force; however, they could not provide the elastic information in the axial region of the force. In this study, we report the imaging and quantification of longitudinal shear wave propagation using optical coherence tomography to measure the elastic properties along the force direction. The experimental validation and finite element simulations show that the longitudinal shear wave propagates along the vibration direction as a plane wave in the near field of a planar source. The wave velocity measurement can quantify the shear moduli in a homogeneous phantom and a side-by-side phantom. Combining the transverse shear wave and longitudinal shear wave measurements, this system has great potential to detect the directionally dependent elastic properties in tissues without a change in the force direction.

  10. Sound pressure distribution within natural and artificial human ear canals: Forward stimulation

    PubMed Central

    Ravicz, Michael E.; Tao Cheng, Jeffrey; Rosowski, John J.

    2014-01-01

    This work is part of a study of the interaction of sound pressure in the ear canal (EC) with tympanic membrane (TM) surface displacement. Sound pressures were measured with 0.5–2 mm spacing at three locations within the shortened natural EC or an artificial EC in human temporal bones: near the TM surface, within the tympanic ring plane, and in a plane transverse to the long axis of the EC. Sound pressure was also measured at 2-mm intervals along the long EC axis. The sound field is described well by the size and direction of planar sound pressure gradients, the location and orientation of standing-wave nodal lines, and the location of longitudinal standing waves along the EC axis. Standing-wave nodal lines perpendicular to the long EC axis are present on the TM surface >11–16 kHz in the natural or artificial EC. The range of sound pressures was larger in the tympanic ring plane than at the TM surface or in the transverse EC plane. Longitudinal standing-wave patterns were stretched. The tympanic-ring sound field is a useful approximation of the TM sound field, and the artificial EC approximates the natural EC. PMID:25480061

  11. Propagation of elastic wave in nanoporous material with distributed cylindrical nanoholes

    NASA Astrophysics Data System (ADS)

    Qiang, FangWei; Wei, PeiJun; Liu, XiQiang

    2013-08-01

    The effective propagation constants of plane longitudinal and shear waves in nanoporous material with random distributed parallel cylindrical nanoholes are studied. The surface elastic theory is used to consider the surface stress effects and to derive the nontraditional boundary condition on the surface of nanoholes. The plane wave expansion method is used to obtain the scattering waves from the single nanohole. The multiple scattering effects are taken into consideration by summing the scattered waves from all scatterers and performing the configuration averaging of random distributed scatterers. The effective propagation constants of coherent waves along with the associated dynamic effective elastic modulus are numerically evaluated. The influences of surface stress are discussed based on the numerical results.

  12. Bulk Nonlinear Elastic Strain Waves in a Bilayer Coaxial Cylindrical Rod

    NASA Astrophysics Data System (ADS)

    Gula, I. A.; Samsonov, A. M.

    2017-12-01

    The problem of the propagation of long nonlinear elastic strain waves in a bilayer coaxial cylindrical rod with an ideal contact between the layers has been considered. Expressions for transverse displacements through longitudinal displacements have been derived. The former satisfies free boundary conditions and continuity conditions for displacements and stresses at the interlayer interface with the desired accuracy. It has been shown how these expressions generalize the well-known plane-section and Love hypotheses for an isotropic homogeneous rod. An equation for the propagation of a nonlinearly elastic strain longitudinal wave has been derived, and its particular solution in the form of a solitary traveling wave has been studied.

  13. Elastic properties of aspirin in its crystalline and glassy phases studied by micro-Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Ko, Jae-Hyeon; Lee, Kwang-Sei; Ike, Yuji; Kojima, Seiji

    2008-11-01

    The acoustic waves propagating along the direction perpendicular to the (1 0 0) cleavage plane of aspirin crystal were investigated using micro-Brillouin spectroscopy from which C11, C55 and C66 were obtained. The temperature dependence of the longitudinal acoustic waves could be explained by normal anharmonic lattice models, while the transverse acoustic waves showed an abnormal increase in the hypersonic attenuation at low temperatures indicating their coupling to local remnant dynamics. The sound velocity as well as the attenuation of the longitudinal acoustic waves of glassy aspirin showed a substantial change at ˜235 K confirming a transition from glassy to supercooled liquid state in vitreous aspirin.

  14. Longitudinally polarized shear wave optical coherence elastography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Miao, Yusi; Zhu, Jiang; Qi, Li; Qu, Yueqiao; He, Youmin; Gao, Yiwei; Chen, Zhongping

    2017-02-01

    Shear wave measurement enables quantitative assessment of tissue viscoelasticity. In previous studies, a transverse shear wave was measured using optical coherence elastography (OCE), which gives poor resolution along the force direction because the shear wave propagates perpendicular to the applied force. In this study, for the first time to our knowledge, we introduce an OCE method to detect a longitudinally polarized shear wave that propagates along the force direction. The direction of vibration induced by a piezo transducer (PZT) is parallel to the direction of wave propagation, which is perpendicular to the OCT beam. A Doppler variance method is used to visualize the transverse displacement. Both homogeneous phantoms and a side-by-side two-layer phantom were measured. The elastic moduli from mechanical tests closely matched to the values measured by the OCE system. Furthermore, we developed 3D computational models using finite element analysis to confirm the shear wave propagation in the longitudinal direction. The simulation shows that a longitudinally polarized shear wave is present as a plane wave in the near field of planar source due to diffraction effects. This imaging technique provides a novel method for the assessment of elastic properties along the force direction, which can be especially useful to image a layered tissue.

  15. Scatter of elastic waves by a thin flat elliptical inhomogeneity

    NASA Technical Reports Server (NTRS)

    Fu, L. S.

    1983-01-01

    Elastodynamic fields of a single, flat, elliptical inhomogeneity embedded in an infinite elastic medium subjected to plane time harmonic waves are studied. Scattered displacement amplitudes and stress intensities are obtained in series form for an incident wave in an arbitrary direction. The cases of a penny shaped crack and an elliptical crack are given as examples. The analysis is valid for alpha a up to about two, where alpha is longitudinal wave number and a is a typical geometric parameter.

  16. Electron acceleration and emission in a field of a plane and converging dipole wave of relativistic amplitudes with the radiation reaction force taken into account

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bashinov, Aleksei V; Gonoskov, Arkady A; Kim, A V

    2013-04-30

    A comparative analysis is performed of the electron emission characteristics as the electrons move in laser fields with ultra-relativistic intensity and different configurations corresponding to a plane or tightly focused wave. For a plane travelling wave, analytical expressions are derived for the emission characteristics, and it is shown that the angular distribution of the radiation intensity changes qualitatively even when the wave intensity is much less than that in the case of the radiation-dominated regime. An important conclusion is drawn that the electrons in a travelling wave tend to synchronised motion under the radiation reaction force. The characteristic features ofmore » the motion of electrons are found in a converging dipole wave, associated with the curvature of the phase front and nonuniformity of the field distribution. The values of the maximum achievable longitudinal momenta of electrons accelerated to the centre, as well as their distribution function are determined. The existence of quasi-periodic trajectories near the focal region of the dipole wave is shown, and the characteristics of the emission of both accelerated and oscillating electrons are analysed. (extreme light fields and their applications)« less

  17. Coherent electromagnetic waves in the presence of a half space of randomly distributed scatterers

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.

    1988-01-01

    The present investigation of coherent field propagation notes, upon solving the Foldy-Twersky integral equation for a half-space of small spherical scatterers illuminated by a plane wave at oblique incidence, that the coherent field for a horizontally-polarized incident wave exhibits reflectivity and transmissivity consistent with the Fresnel formula for an equivalent continuous effective medium. In the case of a vertically polarized incident wave, both the vertical and longitudinal waves obtained for the coherent field have reflectivities and transmissivities that do not agree with the Fresnel formula.

  18. Full thermomechanical coupling in modelling of micropolar thermoelasticity

    NASA Astrophysics Data System (ADS)

    Murashkin, E. V.; Radayev, Y. N.

    2018-04-01

    The present paper is devoted to plane harmonic waves of displacements and microrotations propagating in fully coupled thermoelastic continua. The analysis is carried out in the framework of linear conventional thermoelastic micropolar continuum model. The reduced energy balance equation and the special form of the Helmholtz free energy are discussed. The constitutive constants providing fully coupling of equations of motion and heat conduction are considered. The dispersion equation is derived and analysed in the form bi-cubic and bi-quadratic polynoms product. The equation are analyzed by the computer algebra system Mathematica. Algebraic forms expressed by complex multivalued square and cubic radicals are obtained for wavenumbers of transverse and longitudinal waves. The exact forms of wavenumbers of a plane harmonic coupled thermoelastic waves are computed.

  19. Observation of self-excited acoustic vortices in defect-mediated dust acoustic wave turbulence.

    PubMed

    Tsai, Ya-Yi; I, Lin

    2014-07-01

    Using the self-excited dust acoustic wave as a platform, we demonstrate experimental observation of self-excited fluctuating acoustic vortex pairs with ± 1 topological charges through spontaneous waveform undulation in defect-mediated turbulence for three-dimensional traveling nonlinear longitudinal waves. The acoustic vortex pair has helical waveforms with opposite chirality around the low-density hole filament pair in xyt space (the xy plane is the plane normal to the wave propagation direction). It is generated through ruptures of sequential crest surfaces and reconnections with their trailing ruptured crest surfaces. The initial rupture is originated from the amplitude reduction induced by the formation of the kinked wave crest strip with strong stretching through the undulation instability. Increasing rupture causes the separation of the acoustic vortex pair after generation. A similar reverse process is followed for the acoustic vortex annihilating with the opposite-charged acoustic vortex from the same or another pair generation.

  20. Anisotropic determination and correction for ultrasonic flaw detection by spectral analysis

    DOEpatents

    Adler, Laszlo; Von Cook, K.; Simpson, Jr., William A.; Lewis, D. Kent

    1978-01-01

    The anisotropic nature of a material is determined by measuring the velocity of an ultrasonic longitudinal wave and a pair of perpendicular ultrasonic shear waves through a sample of the material each at a plurality of different angles in three planes orthogonal to each other. The determined anisotropic nature is used as a correction factor in a spectral analyzing system of flaw determination.

  1. Longitudinal wave function control in single quantum dots with an applied magnetic field

    PubMed Central

    Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A.; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai

    2015-01-01

    Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots. PMID:25624018

  2. Longitudinal wave function control in single quantum dots with an applied magnetic field.

    PubMed

    Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai

    2015-01-27

    Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots.

  3. Helical localized wave solutions of the scalar wave equation.

    PubMed

    Overfelt, P L

    2001-08-01

    A right-handed helical nonorthogonal coordinate system is used to determine helical localized wave solutions of the homogeneous scalar wave equation. Introducing the characteristic variables in the helical system, i.e., u = zeta - ct and v = zeta + ct, where zeta is the coordinate along the helical axis, we can use the bidirectional traveling plane wave representation and obtain sets of elementary bidirectional helical solutions to the wave equation. Not only are these sets bidirectional, i.e., based on a product of plane waves, but they may also be broken up into right-handed and left-handed solutions. The elementary helical solutions may in turn be used to create general superpositions, both Fourier and bidirectional, from which new solutions to the wave equation may be synthesized. These new solutions, based on the helical bidirectional superposition, are members of the class of localized waves. Examples of these new solutions are a helical fundamental Gaussian focus wave mode, a helical Bessel-Gauss pulse, and a helical acoustic directed energy pulse train. Some of these solutions have the interesting feature that their shape and localization properties depend not only on the wave number governing propagation along the longitudinal axis but also on the normalized helical pitch.

  4. Dielectric supported radio-frequency cavities

    DOEpatents

    Yu, David U. L.; Lee, Terry G.

    2000-01-01

    A device which improves the electrical and thermomechanical performance of an RF cavity, for example, in a disk-loaded accelerating structure. A washer made of polycrystalline diamond is brazed in the middle to a copper disk washer and at the outer edge to the plane wave transformer tank wall, thus dissipating heat from the copper disk to the outer tank wall while at the same time providing strong mechanical support to the metal disk. The washer structure eliminates the longitudinal connecting rods and cooling channels used in the currently available cavities, and as a result minimizes problems such as shunt impedance degradation and field distortion in the plane wave transformer, and mechanical deflection and uneven cooling of the disk assembly.

  5. Reflection coefficient of qP, qS and SH at a plane boundary between viscoelastic TTI media

    NASA Astrophysics Data System (ADS)

    Wang, Hongwei; Peng, Suping

    2016-01-01

    This paper introduces a calculation method for the effective elastic stiffness tensor matrix of the viscous-elastic TTI medium based on the Chapman theory. We then obtain the phase velocity formula and seismic wave polarization formula of the viscous-elastic TTI medium, by solving the Christoffel equation; solve the phase angle of reflection and transmission wave through the numerical method in accordance with the wave slowness ellipsoid; on the basis of this assumption, and assuming that qP, qS and SH waves occurred simultaneously at the viscous-elastic anisotropic interface, establish the sixth-order Zoeppritz equation in accordance with the boundary conditions; establish the models for the upper and lower media which are viscous-elastic HTI, TTI, etc., on the basis of the sixth-order Zoeppritz equation; and study the impact of fracture dip angle, azimuth angle and frequency on the reflection coefficient. From this we obtain the following conclusions: the reflection coefficient can identify the fracture strike and dip when any information pertaining to the media is unknown; dispersion phenomenon is obvious on the axial plane of symmetry and weakened in the plane vertical to the axial plane of symmetry; the vertical-incidence longitudinal wave can stimulate the qS wave when the dip angle is not 0° or 90° under the condition of coincidence between the symmetry planes of the upper and lower media; when the symmetry planes of the upper and lower media do not coincide and the dip angle is not 0° or 90°, then the vertical-incidence qP will stimulate the qS and SH waves at the same time; the dip angle can cause the reflection coefficient curve to have a more obvious dispersion phenomenon, while the included angle between the symmetry planes of the upper and lower media will weaken the dispersion except SH; and the intercept of reflection coefficient is affected by the fracture dip and included angle between the symmetry planes of the upper and lower media.

  6. A Model for Measured Traveling Waves at End-Diastole in Human Heart Wall by Ultrasonic Imaging Method

    NASA Astrophysics Data System (ADS)

    Bekki, Naoaki; Shintani, Seine A.; Ishiwata, Shin'ichi; Kanai, Hiroshi

    2016-04-01

    We observe traveling waves, measured by the ultrasonic noninvasive imaging method, in a longitudinal beam direction from the apex to the base side on the interventricular septum (IVS) during the period from the end-diastole to the beginning of systole for a healthy human heart wall. We present a possible phenomenological model to explain part of one-dimensional cardiac behaviors for the observed traveling waves around the time of R-wave of echocardiography (ECG) in the human heart. Although the observed two-dimensional patterns of traveling waves are extremely complex and no one knows yet the exact solutions for the traveling homoclinic plane wave in the one-dimensional complex Ginzburg-Landau equation (CGLE), we numerically find that part of the one-dimensional homoclinic dynamics of the phase and amplitude patterns in the observed traveling waves is similar to that of the numerical homoclinic plane-wave solutions in the CGLE with periodic boundary condition in a certain parameter space. It is suggested that part of the cardiac dynamics of the traveling waves on the IVS can be qualitatively described by the CGLE model as a paradigm for understanding biophysical nonlinear phenomena.

  7. Longitudinal elliptically polarized electromagnetic waves in off-diagonal magnetoelectric split-ring composites.

    PubMed

    Chui, S T; Wang, Weihua; Zhou, L; Lin, Z F

    2009-07-22

    We study the propagation of plane electromagnetic waves through different systems consisting of arrays of split rings of different orientations. Many extraordinary EM phenomena were discovered in such systems, contributed by the off-diagonal magnetoelectric susceptibilities. We find a mode such that the electric field becomes elliptically polarized with a component in the longitudinal direction (i.e. parallel to the wavevector). Even though the group velocity [Formula: see text] and the wavevector k are parallel, in the presence of damping, the Poynting vector does not just get 'broadened', but can possess a component perpendicular to the wavevector. The speed of light can be real even when the product ϵμ is negative. Other novel properties are explored.

  8. Multilayer Volume Holographic Optical Memory

    NASA Technical Reports Server (NTRS)

    Markov, Vladimir; Millerd, James; Trolinger, James; Norrie, Mark; Downie, John; Timucin, Dogan; Lau, Sonie (Technical Monitor)

    1998-01-01

    We demonstrate a scheme for volume holographic storage based on the features of shift selectivity of a speckle reference wave hologram. The proposed recording method allows more efficient use of the recording medium and increases the storage density in comparison with spherical or plane-wave reference beams. Experimental results of multiple hologram storage and replay in a photorefractive crystal of iron-doped lithium niobate are presented. The mechanism of lateral and longitudinal shift selectivity are described theoretically and shown to agree with experimental measurements.

  9. Properties of Longitudinal Electromagnetic Oscillations in Metals and Their Excitation at Planar and Spherical Surfaces.

    PubMed

    Datsyuk, Vitaly V; Pavlyniuk, Oleg R

    2017-12-01

    The common definition of the spatially dispersive permittivity is revised. The response of the degenerate electron gas on an electric field satisfying the vector Helmholtz equation is found with a solution to the Boltzmann equation. The calculated longitudinal dielectric function coincides with that obtained by Klimontovich and Silin in 1952 and Lindhard in 1954. However, it depends on the square of the wavenumber, a parameter of the vector Helmholtz equation, but not the wave vector of a plane electromagnetic wave. This new concept simplifies simulation of the nonlocal effects, for example, with a generalized Lorents-Mie theory, since no Fourier transforms should be made. The Fresnel coefficients are generalized allowing for excitation of the longitudinal electromagnetic waves. To verify the theory, the extinction spectra for silver and gold nanometer-sized spheres are calculated. For these particles, the generalized Lorents-Mie theory gives the blue shift and broadening of the plasmon resonance which are in excellent agreement with experimental data. In addition, the nonlocal theory explains vanishing of the plasmon resonance observed for gold spheres with diameters less than or equal to 2 nm. The calculations using the Klimontovich-Silin-Lindhard and hydrodynamic dielectric functions for silver are found to give close results at photon energies from 3 to 4 eV. We show that the absolute values of the wavenumbers of the longitudinal waves in solids are much higher than those of the transverse waves.

  10. Properties of Longitudinal Electromagnetic Oscillations in Metals and Their Excitation at Planar and Spherical Surfaces

    NASA Astrophysics Data System (ADS)

    Datsyuk, Vitaly V.; Pavlyniuk, Oleg R.

    2017-08-01

    The common definition of the spatially dispersive permittivity is revised. The response of the degenerate electron gas on an electric field satisfying the vector Helmholtz equation is found with a solution to the Boltzmann equation. The calculated longitudinal dielectric function coincides with that obtained by Klimontovich and Silin in 1952 and Lindhard in 1954. However, it depends on the square of the wavenumber, a parameter of the vector Helmholtz equation, but not the wave vector of a plane electromagnetic wave. This new concept simplifies simulation of the nonlocal effects, for example, with a generalized Lorents-Mie theory, since no Fourier transforms should be made. The Fresnel coefficients are generalized allowing for excitation of the longitudinal electromagnetic waves. To verify the theory, the extinction spectra for silver and gold nanometer-sized spheres are calculated. For these particles, the generalized Lorents-Mie theory gives the blue shift and broadening of the plasmon resonance which are in excellent agreement with experimental data. In addition, the nonlocal theory explains vanishing of the plasmon resonance observed for gold spheres with diameters less than or equal to 2 nm. The calculations using the Klimontovich-Silin-Lindhard and hydrodynamic dielectric functions for silver are found to give close results at photon energies from 3 to 4 eV. We show that the absolute values of the wavenumbers of the longitudinal waves in solids are much higher than those of the transverse waves.

  11. Electromagnetic Wave Excitation by a Longitudinal Slot in a Broad Wall of Rectangular Waveguide in the Presence of Passive Impedance Vibrators Outside the Waveguide

    NASA Astrophysics Data System (ADS)

    Berdnik, S. L.; Katrich, V. A.; Nesterenko, M. V.; Penkin, Yu. M.

    2016-09-01

    Purpose: A problem of electromagnetic wave diffraction by a longitudinal slot cut in a waveguide wide wall is solved. The slot is cut in a wide wall of a rectangular waveguide and radiates in a half-space above a perfectly conducting plane where two vertical impedance monopoles with arbitrary lengths placed with their bases placed on the plane. The paper is aimed at studying the electrodynamic characteristics of vibratorwaveguide-slot structures which allow to form the emission fields as that in a Clavin element with two identical passive ideally conducting monopoles of a fixed length located on a set distance from a slot center on both sides of a narrow halfwave slot. Design/methodology/approach: The problem is solved by a generalized method of induced electromotive and magnetomotive forces in approximation of electric currents in the vibrators and equivalent magnetic current in the slot by the functions obtained by the asymptotic averaging method. Findings: The influence of geometric parameters of the structure on the directional characteristics of Clavin type element is analyzed on the assumption of simultaneous account for relative level of sidelobes in the E-plane and beamwidth differences at -3 dB level in the main planes. It is shown that the directional characteristics and energy characteristics of the radiators: radiation and reflection coefficients, antenna directivity and gain can be varied within wide limits by changing the electrical length and/or distributed surface impedances of the vibrators, providing at that a low level of radiation within a slot plane. Conclusions: The results obtained can be useful when designing both small-size and multi-element antenna arrays with Clavin elements.

  12. Inverse Edelstein effect induced by magnon-phonon coupling

    NASA Astrophysics Data System (ADS)

    Xu, Mingran; Puebla, Jorge; Auvray, Florent; Rana, Bivas; Kondou, Kouta; Otani, Yoshichika

    2018-05-01

    We demonstrate a spin to charge current conversion via magnon-phonon coupling and an inverse Edelstein effect on the hybrid device Ni/Cu (Ag )/Bi 2O3 . The generation of spin current (Js≈108A/m2 ) due to magnon-phonon coupling reveals the viability of acoustic spin pumping as a mechanism for the development of spintronic devices. A full in-plane magnetic field angle dependence of the power absorption and a combination of longitudinal and transverse voltage detection reveals the symmetric and asymmetric components of the inverse Edelstein effect voltage induced by Rayleigh-type surface acoustic waves. While the symmetric components are well studied, asymmetric components still need to be explored. We assign the asymmetric contributions to the interference between longitudinal and shear waves and an anisotropic charge distribution in our hybrid device.

  13. In-Plane Ultrasound Propagation in an Elastic Silicone Tube as a Function of Tension

    NASA Astrophysics Data System (ADS)

    Rajakenttä, Tina; Salmi, Ari; Akujärvi, Altti; Haapalainen, Jonne; Hæggström, Edward

    2007-03-01

    The mechanical properties of a silicone tube blood vessel phantom (outer radius 4.04±0.04 mm and wall thickness 1.00±0.02 mm) carrying in-plane ultrasound wave propagation, was studied as function of applied axial tension. A 23 kHz, 1-cycle square signal was excited into the tube with a piezoceramic pickup and received with an inductive pickup. The wave phase velocities in the tube were determined by measuring the time-of-flight (TOF) at different inter-transducer distances. The longitudinal mode sound velocity ranged from 83 m/s to 88 m/s, and from 51 m/s to 58 m/s for the shear mode respectively with tensions ranging from 31 to 364 kPa. This compares with the FEM estimate. A laser-Doppler vibrometer (LDV) detected an out-of-plane mode propagating along the tube. An increase in the sound velocity caused by artificially induced lesions was detected.

  14. Magnetization-induced second- and third-harmonic generation in transparent magnetic films

    NASA Astrophysics Data System (ADS)

    Ohkoshi, Shin-Ichi; Shimura, Jusuke; Ikeda, Katsuyoshi; Hashimoto, Kazuhito

    2005-01-01

    We describe the magnetization-induced second-harmonic (SH) generation in (FeIIxCrII1-x)1.5[CrIII(CN)6]. 7.5H2O and the magnetization-induced third-harmonic (TH) generation in Y1.5Bi1.5Fe3.8Al1.2O12 (Bi, Al:YIG). The polarization plane of a SH wave from a (FeIIxCrII1-x)1.5[CrIII(CN)6].7.5H2O film was rotated by an applied external magnetic field. This SH rotation is ascribed to the interaction between the electric polarization along the out-of-plane and spontaneous magnetizations. In particular, the magnetic linear term χijkLmagn(1) contributed to the SH rotation. Applying a longitudinal external magnetic field to a Bi,Al:YIG magnetic film rotated the polarization plane of the TH wave. This TH rotation is understood by the contribution of the magnetic term of χyxxxZmagn(1) in a third-order nonlinear optical susceptibility.

  15. Seismic shear waves as Foucault pendulum

    NASA Astrophysics Data System (ADS)

    Snieder, Roel; Sens-Schönfelder, Christoph; Ruigrok, Elmer; Shiomi, Katsuhiko

    2016-03-01

    Earth's rotation causes splitting of normal modes. Wave fronts and rays are, however, not affected by Earth's rotation, as we show theoretically and with observations made with USArray. We derive that the Coriolis force causes a small transverse component for P waves and a small longitudinal component for S waves. More importantly, Earth's rotation leads to a slow rotation of the transverse polarization of S waves; during the propagation of S waves the particle motion behaves just like a Foucault pendulum. The polarization plane of shear waves counteracts Earth's rotation and rotates clockwise in the Northern Hemisphere. The rotation rate is independent of the wave frequency and is purely geometric, like the Berry phase. Using the polarization of ScS and ScS2 waves, we show that the Foucault-like rotation of the S wave polarization can be observed. This can affect the determination of source mechanisms and the interpretation of observed SKS splitting.

  16. Resonance energy transfer: The unified theory via vector spherical harmonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grinter, Roger, E-mail: r.grinter@uea.ac.uk; Jones, Garth A., E-mail: garth.jones@uea.ac.uk

    2016-08-21

    In this work, we derive the well-established expression for the quantum amplitude associated with the resonance energy transfer (RET) process between a pair of molecules that are beyond wavefunction overlap. The novelty of this work is that the field of the mediating photon is described in terms of a spherical wave rather than a plane wave. The angular components of the field are constructed in terms of vector spherical harmonics while Hankel functions are used to define the radial component. This approach alleviates the problem of having to select physically correct solution from non-physical solutions, which seems to be inherentmore » in plane wave derivations. The spherical coordinate system allows one to easily decompose the photon’s fields into longitudinal and transverse components and offers a natural way to analyse near-, intermediate-, and far-zone RET within the context of the relative orientation of the transition dipole moments for the two molecules.« less

  17. Cluster observations of Shear-mode surface waves diverging from Geomagnetic Tail reconnection

    NASA Astrophysics Data System (ADS)

    Dai, L.; Wygant, J. R.; Dombeck, J. P.; Cattell, C. A.; Thaller, S. A.; Mouikis, C.; Balogh, A.; Reme, H.

    2010-12-01

    We present the first Cluster spacecraft study of the intense (δB/B~0.5, δE/VAB~0.5) equatorial plane surface waves diverging from magnetic reconnection in the geomagnetic tail at ~17 Re. Using phase lag analysis with multi-spacecraft measurements, we quantitatively determine the wavelength and phase velocity of the waves with spacecraft frame frequencies from 0.03 Hz to 1 Hz and wavelengths from much larger (4Re) than to comparable to the H+ gyroradius (~300km). The phase velocities track the strong variations in the equatorial plane projection of the reconnection outflow velocity perpendicular to the magnetic field. The propagation direction and wavelength of the observed surface waves resemble those of flapping waves of the magnetotail current sheet, suggesting a same origin shared by both of these waves. The observed waves appear ubiquitous in the outflows near magnetotail reconnection. Evidence is found that the observed waves are associated with velocity shear in reconnection outflows. Analysis shows that observed waves are associated with strong field-aligned Alfvenic Poynting flux directed away from the reconnection region toward Earth. These observations present a scenario in which the observed surface waves are driven and convected through a velocity-shear type instability by high-speed (~1000km) reconnection outflows tending to slow down due to power dissipation through Poynting flux. The mapped Poynting flux (100ergs/cm2s) and longitudinal scales (10-100 km) to 100km altitude suggest that the observed waves and their motions are an important boundary condition for night-side aurora. Figure: a) The BX-GSM in the geomagnetic tail current sheet. b) The phase difference wavelet spectrum between Bz_GSM from SC2 and SC3, used to determine the wave phase velocity, is correlated with the reconnection outflow velocity (represented by H+ VX-GSM) c) The spacecraft trajectory through magnetotail reconnection. d) The observed equatorial plane surface wave propagating outward from reconnection region.

  18. Absorption, scattering, and radiation force efficiencies in the longitudinal wave scattering by a small viscoelastic particle in an isotropic solid.

    PubMed

    Lopes, J H; Leão-Neto, J P; Silva, G T

    2017-11-01

    Analytical expressions of the absorption, scattering, and elastic radiation force efficiency factors are derived for the longitudinal plane wave scattering by a small viscoelastic particle in a lossless solid matrix. The particle is assumed to be much smaller than the incident wavelength, i.e., the so-called long-wavelength (Rayleigh) approximation. The efficiencies are dimensionless quantities that represent the absorbed and scattering powers and the elastic radiation force on the particle. In the quadrupole approximation, they are expressed in terms of contrast functions (bulk and shear moduli, and density) between the particle and solid matrix. The results for a high-density polyethylene particle embedded in an aluminum matrix agree with those obtained with the partial wave expansion method. Additionally, the connection between the elastic radiation force and forward scattering function is established through the optical theorem. The present results should be useful for ultrasound characterization of particulate composites, and the development of implanted devices activated by radiation force.

  19. Acoustic wave transmission through piezoelectric structured materials.

    PubMed

    Lam, M; Le Clézio, E; Amorín, H; Algueró, M; Holc, Janez; Kosec, Marija; Hladky-Hennion, A C; Feuillard, G

    2009-05-01

    This paper deals with the transmission of acoustic waves through multilayered piezoelectric materials. It is modeled in an octet formalism via the hybrid matrix of the structure. The theoretical evolution with the angle and frequency of the transmission coefficients of ultrasonic plane waves propagating through a partially depoled PZT plate is compared to finite element calculations showing that both methods are in very good agreement. The model is then used to study a periodic stack of 0.65 PMN-0.35 PT/0.90 PMN-0.10 PT layers. The transmission spectra are interpreted in terms of a dispersive behavior of the critical angles of longitudinal and transverse waves, and band gap structures are analysed. Transmission measurements confirm the theoretical calculations and deliver an experimental validation of the model.

  20. Hollow-cylinder waveguide isolators for use at millimeter wavelengths

    NASA Technical Reports Server (NTRS)

    Kanda, M.; May, W. G.

    1974-01-01

    A semiconductor waveguide isolator consisting of a hollow column of a semiconductor mounted coaxially is considered in a circular waveguide in a longitudinal dc magnetic field. An elementary and physical analysis based on the excitation of plane waves in the guide and a more rigorous mode matching analysis are presented. These theoretical predictions are compared with experimental results for an InSb isolator at 94GHz and 75 K.

  1. Transverse Momentum Distributions of Electron in Simulated QED Model

    NASA Astrophysics Data System (ADS)

    Kaur, Navdeep; Dahiya, Harleen

    2018-05-01

    In the present work, we have studied the transverse momentum distributions (TMDs) for the electron in simulated QED model. We have used the overlap representation of light-front wave functions where the spin-1/2 relativistic composite system consists of spin-1/2 fermion and spin-1 vector boson. The results have been obtained for T-even TMDs in transverse momentum plane for fixed value of longitudinal momentum fraction x.

  2. Vorticity equation for MHD fast waves in geospace environment

    NASA Technical Reports Server (NTRS)

    Yamauchi, M.; Lundin, R.; Lui, A. T. Y.

    1993-01-01

    The MHD vorticity equation is modified in order to apply it to nonlinear MHD fast waves or shocks when their extent along the magnetic field is limited. Field-aligned current (FAC) generation is also discussed on the basis of this modified vorticity equation. When the wave normal is not aligned to the finite velocity convection and the source region is spatially limited, a longitudinal polarization causes a pair of plus and minus charges inside the compressional plane waves or shocks, generating a pair of FACs. This polarization is not related to the separation between the electrons and ions caused by their difference in mass, a separation which is inherent to compressional waves. The resultant double field-aligned current structure exists both with and without the contributions from curvature drift, which is questionable in terms of its contribution to vorticity change from the viewpoint of single-particle motion.

  3. Theoretical investigations on structural, elastic and electronic properties of thallium halides

    NASA Astrophysics Data System (ADS)

    Singh, Rishi Pal; Singh, Rajendra Kumar; Rajagopalan, Mathrubutham

    2011-04-01

    Theoretical investigations on structural, elastic and electronic properties, viz. ground state lattice parameter, elastic moduli and density of states, of thallium halides (viz. TlCl and TlBr) have been made using the full potential linearized augmented plane wave method within the generalized gradient approximation (GGA). The ground state lattice parameter and bulk modulus and its pressure derivative have been obtained using optimization method. Young's modulus, shear modulus, Poisson ratio, sound velocities for longitudinal and shear waves, Debye average velocity, Debye temperature and Grüneisen parameter have also been calculated for these compounds. Calculated structural, elastic and other parameters are in good agreement with the available data.

  4. Analytical Time-Domain Solution of Plane Wave Propagation Across a Viscoelastic Rock Joint

    NASA Astrophysics Data System (ADS)

    Zou, Yang; Li, Jianchun; Laloui, Lyesse; Zhao, Jian

    2017-10-01

    The effects of viscoelastic filled rock joints on wave propagation are of great significance in rock engineering. The solutions in time domain for plane longitudinal ( P-) and transverse ( S-) waves propagation across a viscoelastic rock joint are derived based on Maxwell and Kelvin models which are, respectively, applied to describe the viscoelastic deformational behaviour of the rock joint and incorporated into the displacement discontinuity model (DDM). The proposed solutions are verified by comparing with the previous studies on harmonic waves, which are simulated by sinusoidal incident P- and S-waves. Comparison between the predicted transmitted waves and the experimental data for P-wave propagation across a joint filled with clay is conducted. The Maxwell is found to be more appropriate to describe the filled joint. The parametric studies show that wave propagation is affected by many factors, such as the stiffness and the viscosity of joints, the incident angle and the duration of incident waves. Furthermore, the dependences of the transmission and reflection coefficients on the specific joint stiffness and viscosity are different for the joints with Maxwell and Kelvin behaviours. The alternation of the reflected and transmitted waveforms is discussed, and the application scope of this study is demonstrated by an illustration of the effects of the joint thickness. The solutions are also extended for multiple parallel joints with the virtual wave source method and the time-domain recursive method. For an incident wave with arbitrary waveform, it is convenient to adopt the present approach to directly calculate wave propagation across a viscoelastic rock joint without additional mathematical methods such as the Fourier and inverse Fourier transforms.

  5. EUV focus sensor: design and modeling

    NASA Astrophysics Data System (ADS)

    Goldberg, Kenneth A.; Teyssier, Maureen E.; Liddle, J. Alexander

    2005-05-01

    We describe performance modeling and design optimization of a prototype EUV focus sensor (FS) designed for use with existing 0.3-NA EUV projection-lithography tools. At 0.3-NA and 13.5-nm wavelength, the depth of focus shrinks to 150 nm increasing the importance of high-sensitivity focal-plane detection tools. The FS is a free-standing Ni grating structure that works in concert with a simple mask pattern of regular lines and spaces at constant pitch. The FS pitch matches that of the image-plane aerial-image intensity: it transmits the light with high efficiency when the grating is aligned with the aerial image laterally and longitudinally. Using a single-element photodetector, to detect the transmitted flux, the FS is scanned laterally and longitudinally so the plane of peak aerial-image contrast can be found. The design under consideration has a fixed image-plane pitch of 80-nm, with aperture widths of 12-40-nm (1-3 wave-lengths), and aspect ratios of 2-8. TEMPEST-3D is used to model the light transmission. Careful attention is paid to the annular, partially coherent, unpolarized illumination and to the annular pupil of the Micro-Exposure Tool (MET) optics for which the FS is designed. The system design balances the opposing needs of high sensitivity and high throughput opti-mizing the signal-to-noise ratio in the measured intensity contrast.

  6. Behavior of piezoelectric wafer active sensor in various media

    NASA Astrophysics Data System (ADS)

    Kamas, Tuncay

    The dissertation addresses structural health monitoring (SHM) techniques using ultrasonic waves generated by piezoelectric wafer active sensors (PWAS) with an emphasis on the development of theoretical models of standing harmonic waves and guided waves. The focal objective of the research is to extend the theoretical study of electro-mechanical coupled PWAS as a resonator/transducer that interacts with standing and traveling waves in various media through electro-mechanical impedance spectroscopy (EMIS) method and guided wave propagation. The analytical models are developed and the coupled field finite element analysis (CF-FEA) models are simulated and verified with experiments. The dissertation is divided into two parts with respect to the developments in EMIS methods and GWP methods. In the first part, analytical and finite element models have been developed for the simulation of PWAS-EMIS in in-plane (longitudinal) and out-of-plane (thickness) mode. Temperature effects on free PWAS-EMIS are also discussed with respect to the in-plane mode. Piezoelectric material degradation on certain electrical and mechanical properties as the temperature increases is simulated by our analytical model for in-plane circular PWAS-EMIS that agrees well with the sets of experiments. Then the thickness mode PWAS-EMIS model was further developed for a PWAS resonator bonded on a plate-like structure. The latter analytical model was to determine the resonance frequencies for the normal mode expansion method through the global matrix method by considering PWAS-substrate and proof mass-PWAS-substrate models. The proof mass concept was adapted to shift the systems resonance frequencies in thickness mode. PWAS in contact with liquid medium on one of its surface has been analytically modeled and simulated the electro-mechanical response of PWAS with various liquids with different material properties such as the density and the viscosity. The second part discusses the guided wave propagation in elastic structures. The feature guided waves in thick structures and in high frequency range are discussed considering weld guided quasi-Rayleigh waves. Furthermore, the weld guided quasi Rayleigh waves and their interaction with damages in thick plates and thick walled pipes are examined by the finite element models and experiments. The dissertation finishes with a summary of contributions followed by conclusions, and suggestions for future work.

  7. Isentropic phase changes in dissociating gases and the method of sound dispersion for the investigation of homogeneous gas reactions with very high speed : Conclusion

    NASA Technical Reports Server (NTRS)

    Damkohler, Gerhard

    1950-01-01

    The analytical results of Part I are also applied to sound dispersion by friction and heat conduction, An irreversible change of momentum, energy, and type of particle corresponding to friction, heat conduction, and diffusion effects can appear both in the direction of the sound field and traverse to it. Longitudinal damping, the coupling of longitudinal damping and that due to chemical and physical changes, and coupling of diffusion and compositional changes are treated for a plane sound wave of infinite extent. The same principles are also applied to sound effects in cylindrical tubes. The limitations of the method are discussed in some detail.

  8. Mode and polarization state selected guided wave spectroscopy of orientational anisotrophy in model membrane cellulosic polymer films: relevance to lab-on-a-chip

    NASA Astrophysics Data System (ADS)

    Andrews, Mark P.; Kanigan, Tanya

    2007-06-01

    Orientation anisotropies in structural properties relevant to the use of cellulosic polymers as membranes for lab-on-chips were investigated for cellulose acetate (CA) and regenerated cellulose (RC) films deposited as slab waveguides. Anisotropy was probed with mode and polarization state selected guided wave Raman spectroscopy. CA exhibits partial chain orientation in the plane of the film, and this orientation is independent of sample substrate and film preparation conditions. RC films also show in-plane anisotropy, where the hexose sugar rings lie roughly in the plane of the film. Explanations are given of the role of artifacts in interpreting waveguide Raman spectra, including anomalous contributions to Raman spectra that arise from deviations from right angle scattering geometry, mode-dependent contributions to longitudinal electric field components and TE<-->TM mode conversion. We explore diffusion profiles of small molecules in cellulosic films by adaptations of an inverse-Wentzel-Kramers-Brillouin (iWKB) recursive, noninteger virtual mode index algorithm. Perturbations in the refractive index distribution, n(z), are recovered from the measured relative propagation constants, neffective,m, of the planar waveguide. The refractive index distribution then yields the diffusion profile.

  9. Hollow-cylinder waveguide isolators for use at millimeter wavelengths

    NASA Technical Reports Server (NTRS)

    Kanda, M.; May, W. G.

    1974-01-01

    The device considered in this study is a semiconductor waveguide isolator consisting of a hollow column of a semiconductor mounted coaxially in a circular waveguide in a longitudinal dc magnetic field. An elementary and physical analysis based on the excitation of plane waves in the guide and a more rigorous mode-matching analysis (MMA) are presented. These theoretical predictions are compared with experimental results for an InSb isolator at 94 GHz and 75 K.

  10. Experiment E89-044 on the Quasielastic 3He(e,e'p) Reaction at Jefferson Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penel-Nottaris, Emilie

    The Jefferson Lab Hall A E89-044 experiment has measured the 3He(e,e'p) reaction cross-sections. The extraction of the longitudinal and transverse response functions for the two-body break-up 3He(e,e'p)d reaction in parallel kinematics allows the study of the bound proton electromagnetic properties inside the 3He nucleus and the involved nuclear mechanisms beyond plane wave approximations.

  11. Effect of pressurization on helical guided wave energy velocity in fluid-filled pipes.

    PubMed

    Dubuc, Brennan; Ebrahimkhanlou, Arvin; Salamone, Salvatore

    2017-03-01

    The effect of pressurization stresses on helical guided waves in a thin-walled fluid-filled pipe is studied by modeling leaky Lamb waves in a stressed plate bordered by fluid. Fluid pressurization produces hoop and longitudinal stresses in a thin-walled pipe, which corresponds to biaxial in-plane stress in a plate waveguide model. The effect of stress on guided wave propagation is accounted for through nonlinear elasticity and finite deformation theory. Emphasis is placed on the stress dependence of the energy velocity of the guided wave modes. For this purpose, an expression for the energy velocity of leaky Lamb waves in a stressed plate is derived. Theoretical results are presented for the mode, frequency, and directional dependent variations in energy velocity with respect to stress. An experimental setup is designed for measuring variations in helical wave energy velocity in a thin-walled water-filled steel pipe at different levels of pressure. Good agreement is achieved between the experimental variations in energy velocity for the helical guided waves and the theoretical leaky Lamb wave solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Impact on floating membranes.

    PubMed

    Vandenberghe, Nicolas; Duchemin, Laurent

    2016-05-01

    When impacted by a rigid body, a thin elastic membrane with negligible bending rigidity floating on a liquid pool deforms. Two axisymmetric waves radiating from the impact point propagate. First, a longitudinal wave front, associated with in-plane deformation of the membrane and traveling at constant speed, separates an outward stress-free domain from a stretched domain. Then, in the stretched domain a dispersive transverse wave travels at a speed that depends on the local stretching rate. The dynamics is found to be self-similar in time. Using this property, we show that the wave dynamics is similar to the capillary waves that propagate at a liquid-gas interface but with a surface tension coefficient that depends on impact speed. During wave propagation, we observe the development of a buckling instability that gives rise to radial wrinkles. We address the dynamics of this fluid-body system, including the rapid deceleration of an impactor of finite mass, an issue that may have applications in the domain of absorption of impact energy.

  13. Observation of organ-pipe acoustic excitations in supported thin films

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Sooryakumar, R.; Every, A. G.; Manghnani, M. H.

    2001-08-01

    Brillouin light scattering from supported silicon oxynitride films reveal an extended series of acoustic excitations occurring at regular frequency intervals when the mode wave vector is perpendicular to the film surface. These periodic peaks are identified as distinct standing wave excitations that, similar to harmonics of an open-ended organ pipe, occur due to the boundary conditions imposed by the free surface and substrate-film interface. The surface ripple and volume elasto-optic scattering mechanisms contribute to the scattering cross sections and lead to dramatic interference effects at low frequencies where the surface corrugations play a dominant role. The transformation of these standing wave excitations to modes with finite in-plane wave vectors is also investigated. The results are discussed in the framework of a Green's-function formalism that reproduces the experimental features and illustrate the importance of the standing modes in evaluating the longitudinal elastic properties of the films.

  14. Spatial effects in intrinsic optical bistability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haus, J.W.; Wang, L.; Scalora, M.

    Using the nonlinear oscillator model as a prototype medium exhibiting intrinsic optical bistability, we investigate the inhomogeneous absorption of the electromagnetic field. The forward- and backward-field amplitudes and diffraction effects are retained in the mathematical description. Analytic results are given in the limit of plane-wave propagation under steady-state conditions. The transmitted and reflected intensity exhibit a structure that is determined by the spatial inhomogeneity of the absorption in the longitudinal direction. The transmitted intensity has a structure that is dependent on the length of the medium. The reflected intensity has an interference structure from light reflected at the front surfacemore » and the internal boundary separating a high-polarization from a low-polarization branch. A degenerate-four-wave-mixing experiment is predicted to be a very sensitive probe of the internal boundary and the interference between the forward and backward field. The phase-conjugate signal develops large oscillations as the input field is varied. Numerical results for diffraction effects are also given, and we find that the plane-wave results for the center of the beam remain reliable down to Fresnel numbers of order unity and in media that are smaller than the linear absorption length.« less

  15. Large magnetic to electric field contrast in azimuthally polarized vortex beams generated by a metasurface (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Veysi, Mehdi; Guclu, Caner; Capolino, Filippo

    2015-09-01

    We investigate azimuthally E-polarized vortex beams with enhanced longitudinal magnetic field. Ideally, such beams possess strong longitudinal magnetic field on the beam axis where there is no electric field. First we formulate the electric field vector and the longitudinal magnetic field of an azimuthally E-polarized beam as an interference of right- and left-hand circularly polarized Laguerre Gaussian (LG) beams carrying the orbital angular momentum (OAM) states of -1 and +1, respectively. Then we propose a metasurface design that is capable of converting a linearly polarized Gaussian beam into an azimuthally E-polarized vortex beam with longitudinal magnetic field. The metasurface is composed of a rectangular array of double-layer double split-ring slot elements, though other geometries could be adopted as well. The element is specifically designed to have nearly a 180° transmission phase difference between the two polarization components along two orthogonal axes, similar to the optical axes of a half-wave plate. By locally rotating the optical axes of each metasurface element, the transmission phase profile of the circularly polarized waves over the metasurface can be tailored. Upon focusing of the generated vortex beam through a lens with a numerical aperture of 0.7, a 41-fold enhancement of the magnetic to electric field ratio is achieved on the beam axis with respect to that of a plane wave. Generation of beams with large magnetic field to electric field contrast can find applications in future spectroscopy systems based on magnetic dipole transitions, which are usually much weaker than electric dipole transitions.

  16. Magnetic Ordering of Erbium and Uranium NICKEL(2) SILICON(2) by Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Lin, Hong

    The magnetic ordering has been studied in UNi _2Si_2 and erbium single crystals by elastic neutron scattering. Abundant results are given regarding the magnetic structure, magnetic phase transitions, and the effect of a magnetic field on these properties. Three ordered phases are observed in UNi _2Si_2. They have been determined to be an incommensurate longitudinal spin density wave with a magnetic wave vector around q = 0.74c ^* in the high temperature phase, a simple body-centred antiferromagnet in the intermediate temperature phase, and a square wave in the low temperature phase. This square wave can be viewed equivalently as a longitudinal spin density wave with q = 2/3c ^* superimposed on a ferromagnetic component. Hysteresis and sample dependence are observed in the low-temperature phase transition. The two lower temperature phase transitions are both first order. The transition to paramagnetism is second order with a critical exponent beta = 0.35 +/- 0.03. When a magnetic field is applied along the c axis, the intermediate temperature phase is destabilised and disappears above a field of 3.5T. Although there is no new phase induced by the field, there exists a reentrant point where the three ordered phases can coexist. Erbium has three distinct ordered phases: the cone phase at low temperatures, the c-axis modulated (CAM) phase at higher temperatures, and the intermediate phase with moments modulated both along c and perpendicular to c. Within these phases the modulation of the moments may lock in to the lattice. The observed weak harmonics of the wave vector q in the basal plane for the cone phase and the q = 1/4c^* structure in the intermediate phase can be explained by a basal-plane spin slip model. The effect of magnetic field along the c axis on the magnetic structure is to stabilise the cone phase and to destabilise the intermediate phase. A new lock-in structure with q = 1/4c^* in the cone phase is induced by fields above 1.8T. The presence of the field also stabilises the lock-in structure with q = 2/7c^* in both the intermediate and the CAM phases.

  17. Pushing, pulling and electromagnetic radiation force cloaking by a pair of conducting cylindrical particles

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2018-02-01

    The present analysis shows that two conducting cylindrical particles illuminated by an axially-polarized electric field of plane progressive waves at arbitrary incidence will attract, repel or become totally cloaked (i.e., invisible to the transfer of linear momentum carried by the incident waves), depending on their sizes, the interparticle distance as well as the angle of incidence of the incident field. Based on the rigorous multipole expansion method and the translational addition theorem of cylindrical wave functions, the electromagnetic (EM) radiation forces arising from multiple scattering effects between a pair of perfectly conducting cylindrical particles of circular cross-sections are derived and computed. An effective incident field on a particular particle is determined first, and used subsequently with its corresponding scattered field to derive the closed-form analytical expressions for the radiation force vector components. The mathematical expressions for the EM radiation force components (i.e. longitudinal and transverse) are exact, and have been formulated in partial-wave series expansions in cylindrical coordinates involving the angle of incidence, the interparticle distance and the expansion coefficients. Numerical examples illustrate the analysis for two perfectly conducting circular cylinders in a homogeneous nonmagnetic medium of wave propagation. The computations for the dimensionless radiation force functions are performed with particular emphasis on varying the angle of incidence, the interparticle distance, and the sizes of the particles. Depending on the interparticle distance and angle of incidence, the cylinders yield total neutrality (or invisibility); they experience no force and become unresponsive to the transfer of the EM linear momentum due to multiple scattering cancellation effects. Moreover, pushing or pulling EM forces between the two cylinders arise depending on the interparticle distance, the angle of incidence and their size parameters. This study provides a complete analytical method and computations for the longitudinal and transverse radiation force components in the multiple scattering of EM plane progressive waves with potential applications in particle manipulation, optically-engineered metamaterials with reconfigurable periodicities and cloaking devices to name a few examples.

  18. On possible plume-guided seismic waves

    USGS Publications Warehouse

    Julian, B.R.; Evans, J.R.

    2010-01-01

    Hypothetical thermal plumes in the Earth's mantle are expected to have low seismic-wave speeds and thus would support the propagation of guided elastic waves analogous to fault-zone guided seismic waves, fiber-optic waves, and acoustic waves in the oceanic SOund Fixing And Ranging channel. Plume-guided waves would be insensitive to geometric complexities in the wave guide, and their dispersion would make them distinctive on seismograms and would provide information about wave-guide structure that would complement seismic tomography. Detecting such waves would constitute strong evidence of a new kind for the existence of plumes. A cylindrical channel embedded in an infinite medium supports two classes of axially symmetric elastic-wave modes, torsional and longitudinal-radial. Torsional modes have rectilinear particle motion tangent to the cylinder surface. Longitudinal-radial modes have elliptical particle motion in planes that include the cylinder axis, with retrograde motion near the axis. The direction of elliptical particle motion reverses with distance from the axis: once for the fundamental mode, twice for the first overtone, and so on. Each mode exists only above its cut-off frequency, where the phase and group speeds equal the shear-wave speed in the infinite medium. At high frequencies, both speeds approach the shear-wave speed in the channel. All modes have minima in their group speeds, which produce Airy phases on seismograms. For shear wave-speed contrasts of a few percent, thought to be realistic for thermal plumes in the Earth, the largest signals are inversely dispersed and have dominant frequencies of about 0.1-1 Hz and durations of 15-30 sec. There are at least two possible sources of observable plume waves: (1) the intersection of mantle plumes with high-amplitude core-phase caustics in the deep mantle; and (2) ScS-like reflection at the core-mantle boundary of downward-propagating guided waves. The widespread recent deployment of broadband seismometers makes searching for these waves possible.

  19. Laser ultrasonic investigations of vertical Bridgman crystal growth

    NASA Astrophysics Data System (ADS)

    Queheillalt, Douglas Ted

    The many difficulties associated with the growth of premium quality CdTe and (Cd,Zn)Te alloys has stimulated an interest in the development of a non-invasive ultrasonic approach to monitor critical growth parameters such as the solid-liquid interface position and shape during vertical Bridgman growth. This sensor methodology is based upon the recognition that in most materials, the ultrasonic velocity (and the elastic stiffness constants that control it) of the solid and liquid phases are temperature dependent and an abrupt increase of the longitudinal wave velocity occurs upon solidification. The laser ultrasonic approach has also been used to measure the ultrasonic velocity of solid and liquid Cd0.96Zn0.04Te as a function of temperature up to 1140°C. Using longitudinal and shear wave velocity values together with data for the temperature dependent density allowed a complete evaluation of the temperature dependent single crystal elastic stiffness constants for solid and the adiabatic bulk modulus for liquid Cd0.96Zn0.04 Te. It was found that the ultrasonic velocities exhibited a strong monotonically decreasing function of temperature in the solid and liquid phases and the longitudinal wave indicated an abrupt almost 50% decrease upon melting. Because ray propagation in partially solidified bodies is complex and defines the sensing methodology, a ray tracing algorithm has been developed to analyze two-dimensional wave propagation in the diametral plane of cylindrical solid-liquid interfaces. Ray path, wavefront and time-of-flight (TOF) projections for rays that travel from a source to an arbitrarily positioned receiver on the diametral plane have been calculated and compared to experimentally measured data on a model liquid-solid interface. The simulations and the experimental results reveal that the interfacial region can be identified from transmission TOF data and when used in conjunction with a nonlinear least squares reconstruction algorithm, the interface geometry (i.e. axial location and shape) can be precisely recovered and the ultrasonic velocities of both solid and liquid phases obtained. To gain insight into the melting and solidification process, a single zone VB growth furnace was integrated with the laser ultrasonic sensor system and used to monitor the melting-solidification and directional solidification characteristics of Cd0.96Zn 0.04Te.

  20. Plane Evanescent Waves and Interface Waves

    NASA Astrophysics Data System (ADS)

    Luppé, F.; Conoir, J. M.; El Kettani, M. Ech-Cherif; Lenoir, O.; Izbicki, J. L.; Duclos, J.; Poirée, B.

    The evanescent plane wave formalism is used to obtain the characteristic equation of the normal vibration modes of a plane elastic solid embedded in a perfect fluid. Simple drawings of the real and imaginary parts of complex wave vectors make quite clear the choice of the Riemann sheets on which the roots of the characteristic equation are to be looked for. The generalized Rayleigh wave and the Scholte - Stoneley wave are then described. The same formalism is used to describe Lamb waves on an elastic plane plate immersed in water. The damping, due to energy leaking in the fluid, is shown to be directly given by the projection of evanescence vectors on the interface. Measured values of the damping coefficient are in good agreement with those derived from calculations. The width of the angular resonances associated to Lamb waves or Rayleigh waves is also directly related to this same evanescence vectors projection, as well as the excitation coefficient of a given Lamb wave excited by a plane incident wave. This study shows clearly the strong correlation between the resonance point of view and the wave one in plane interface problems.

  1. Evaluation method of TiO2-SiO2 ultra-low-expansion glasses with periodic striae using the LFB ultrasonic material characterization system.

    PubMed

    Kushibiki, Jun-ichi; Arakawa, Mototaka; Ohashi, Yuji; Suzuki, Kouji

    2006-09-01

    Experimental procedures and standard specimens for characterizing and evaluating TiO2-SiO2 ultra-low expansion glasses with periodic striae using the line-focus-beam (LFB) ultrasonic material characterization system are discussed. Two types of specimens were prepared, with specimen surfaces parallel and perpendicular to the striae plane using two different grades of glass ingots. The inhomogeneities of each of the specimens were evaluated at 225 MHz. It was clarified that parallel specimens are useful for accurately measuring velocity variations of leaky surface acoustic waves (LSAWs) excited on a water-loaded specimen surface associated with the striae. Perpendicular specimens are useful for obtaining periodicities in the striae for LSAW propagation perpendicular to the striae plane on a surface and for precisely measuring averaged velocities for LSAW propagation parallel to the striae plane. The standard velocity of Rayleigh-type LSAWs traveling parallel to the striae plane for the perpendicular specimens was numerically calculated using the measured velocities of longitudinal and shear waves and density. Consequently, a reliable standard specimen with an LSAW velocity of 3308.18 +/- 0.35 m/s at 23 degrees C and its temperature coefficient of 0.39 (m/s)/degrees C was obtained for a TiO2-SiO2 glass with a TiO2 concentration of 7.09 wt%. A basis for the striae analysis using this ultrasonic method was established.

  2. Self-interaction corrected LDA + U investigations of BiFeO3 properties: plane-wave pseudopotential method

    NASA Astrophysics Data System (ADS)

    Yaakob, M. K.; Taib, M. F. M.; Lu, L.; Hassan, O. H.; Yahya, M. Z. A.

    2015-11-01

    The structural, electronic, elastic, and optical properties of BiFeO3 were investigated using the first-principles calculation based on the local density approximation plus U (LDA + U) method in the frame of plane-wave pseudopotential density functional theory. The application of self-interaction corrected LDA + U method improved the accuracy of the calculated properties. Results of structural, electronic, elastic, and optical properties of BiFeO3, calculated using the LDA + U method were in good agreement with other calculation and experimental data; the optimized choice of on-site Coulomb repulsion U was 3 eV for the treatment of strong electronic localized Fe 3d electrons. Based on the calculated band structure and density of states, the on-site Coulomb repulsion U had a significant effect on the hybridized O 2p and Fe 3d states at the valence and the conduction band. Moreover, the elastic stiffness tensor, the longitudinal and shear wave velocities, bulk modulus, Poisson’s ratio, and the Debye temperature were calculated for U = 0, 3, and 6 eV. The elastic stiffness tensor, bulk modulus, sound velocities, and Debye temperature of BiFeO3 consistently decreased with the increase of the U value.

  3. Ground-based instruments of the PWING project to investigate dynamics of the inner magnetosphere at subauroral latitudes as a part of the ERG-ground coordinated observation network

    NASA Astrophysics Data System (ADS)

    Shiokawa, Kazuo; Katoh, Yasuo; Hamaguchi, Yoshiyuki; Yamamoto, Yuka; Adachi, Takumi; Ozaki, Mitsunori; Oyama, Shin-Ichiro; Nosé, Masahito; Nagatsuma, Tsutomu; Tanaka, Yoshimasa; Otsuka, Yuichi; Miyoshi, Yoshizumi; Kataoka, Ryuho; Takagi, Yuki; Takeshita, Yuhei; Shinbori, Atsuki; Kurita, Satoshi; Hori, Tomoaki; Nishitani, Nozomu; Shinohara, Iku; Tsuchiya, Fuminori; Obana, Yuki; Suzuki, Shin; Takahashi, Naoko; Seki, Kanako; Kadokura, Akira; Hosokawa, Keisuke; Ogawa, Yasunobu; Connors, Martin; Michael Ruohoniemi, J.; Engebretson, Mark; Turunen, Esa; Ulich, Thomas; Manninen, Jyrki; Raita, Tero; Kero, Antti; Oksanen, Arto; Back, Marko; Kauristie, Kirsti; Mattanen, Jyrki; Baishev, Dmitry; Kurkin, Vladimir; Oinats, Alexey; Pashinin, Alexander; Vasilyev, Roman; Rakhmatulin, Ravil; Bristow, William; Karjala, Marty

    2017-11-01

    The plasmas (electrons and ions) in the inner magnetosphere have wide energy ranges from electron volts to mega-electron volts (MeV). These plasmas rotate around the Earth longitudinally due to the gradient and curvature of the geomagnetic field and by the co-rotation motion with timescales from several tens of hours to less than 10 min. They interact with plasma waves at frequencies of mHz to kHz mainly in the equatorial plane of the magnetosphere, obtain energies up to MeV, and are lost into the ionosphere. In order to provide the global distribution and quantitative evaluation of the dynamical variation of these plasmas and waves in the inner magnetosphere, the PWING project (study of dynamical variation of particles and waves in the inner magnetosphere using ground-based network observations, http://www.isee.nagoya-u.ac.jp/dimr/PWING/) has been carried out since April 2016. This paper describes the stations and instrumentation of the PWING project. We operate all-sky airglow/aurora imagers, 64-Hz sampling induction magnetometers, 40-kHz sampling loop antennas, and 64-Hz sampling riometers at eight stations at subauroral latitudes ( 60° geomagnetic latitude) in the northern hemisphere, as well as 100-Hz sampling EMCCD cameras at three stations. These stations are distributed longitudinally in Canada, Iceland, Finland, Russia, and Alaska to obtain the longitudinal distribution of plasmas and waves in the inner magnetosphere. This PWING longitudinal network has been developed as a part of the ERG (Arase)-ground coordinated observation network. The ERG (Arase) satellite was launched on December 20, 2016, and has been in full operation since March 2017. We will combine these ground network observations with the ERG (Arase) satellite and global modeling studies. These comprehensive datasets will contribute to the investigation of dynamical variation of particles and waves in the inner magnetosphere, which is one of the most important research topics in recent space physics, and the outcome of our research will improve safe and secure use of geospace around the Earth.[Figure not available: see fulltext.

  4. Resonant triad in boundary-layer stability. Part 1: Fully nonlinear interaction

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda R.

    1991-01-01

    A first principles theory is developed to study the nonlinear spatial evolution of a near-resonance triad of instability waves in boundary layer transition. This triad consists of a plane wave at fundamental frequency and a pair of symmetrical, oblique waves at the subharmonic frequency. A low frequency, high Reynolds number asymptotic scaling leads to a distinct critical layer where nonlinearity first becomes important; the development of the triad's waves is determined by the critical layer's nonlinear, viscous dynamics. The resulting theory is fully nonlinear in that all nonlinearly generated oscillatory and nonoscillatory components are accounted for. The presence of the plane wave initially causes exponential of exponential growth of the oblique waves. However, the plane wave continues to follow the linear theory, even when the oblique waves' amplitude attains the same order of magnitude as that of the plane wave. A fully interactive stage then comes into effect when the oblique waves exceed a certain level compared to that of the plane wave. The oblique waves react back on the fundamental, slowing its growth rate. The oblique waves' saturation results from their self-interaction - a mechanism that does not require the presence of the plane wave. The oblique waves' saturation level is independent of their initial level, but decreases as the obliqueness angle increases.

  5. Goedel, Penrose, anti-Mach: Extra supersymmetries of time-dependent plane waves

    NASA Astrophysics Data System (ADS)

    Blau, Matthias; Meessen, Patrick; O'Loughlin, Martin

    2003-09-01

    We prove that M-theory plane waves with extra supersymmetries are necessarily homogeneous (but possibly time-dependent), and we show by explicit construction that such time-dependent plane waves can admit extra supersymmetries. To that end we study the Penrose limits of Gödel-like metrics, show that the Penrose limit of the M-theory Gödel metric (with 20 supercharges) is generically a time-dependent homogeneous plane wave of the anti-Mach type, and display the four extra Killings spinors in that case. We conclude with some general remarks on the Killing spinor equations for homogeneous plane waves.

  6. 14 CFR 27.1387 - Position light system dihedral angles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first... two intersecting vertical planes, the first parallel to the longitudinal axis of the rotorcraft, and... longitudinal axis. (d) Dihedral angle A (aft) is formed by two intersecting vertical planes making angles of 70...

  7. Scattering of a longitudinal Bessel beam by a sphere embedded in an isotropic elastic solid.

    PubMed

    Leão-Neto, J P; Lopes, J H; Silva, G T

    2017-11-01

    The scattering of a longitudinal Bessel beam of arbitrary order by a sphere embedded in an isotropic solid matrix is theoretically analyzed. The spherical inclusion can be made of a viscoelastic, elastic, or fluid-filled isotropic material. In the analysis, the absorbing, scattering, and extinction efficiency factors are obtained, e.g., the corresponding power per characteristic beam intensity per sphere's cross-section area. Furthermore, the extended optical theorem, which expresses the extinction efficiency in terms of an integral of the longitudinal scattering function is derived. Several features of zeroth- and first-order Bessel beams scattering in solids are illustrated considering a polymer adhesive (cured) sphere embedded in a stainless steel matrix. For instance, omnidirectional scattering can be achieved by choosing specific values of the half-cone angle of the Bessel beam, which is the beam's geometrical parameter. Additionally, it is demonstrated that mode suppression leads to lower absorption inside the inclusion when compared to plane wave scattering results.

  8. Scattering of three-dimensional plane waves in a self-reinforced half-space lying over a triclinic half-space

    NASA Astrophysics Data System (ADS)

    Gupta, Shishir; Pramanik, Abhijit; Smita; Pramanik, Snehamoy

    2018-06-01

    The phenomenon of plane waves at the intersecting plane of a triclinic half-space and a self-reinforced half-space is discussed with possible applications during wave propagation. Analytical expressions of the phase velocities of reflection and refraction for quasi-compressional and quasi-shear waves under initial stress are discussed carefully. The closest form of amplitude proportions on reflection and refraction factors of three quasi-plane waves are developed mathematically by applying appropriate boundary conditions. Graphics are sketched to exhibit the consequences of initial stress in the three-dimensional plane wave on reflection and refraction coefficients. Some special cases that coincide with the fundamental properties of several layers are designed to express the reflection and refraction coefficients.

  9. Ultrafast dynamic response of single crystal β-HMX

    NASA Astrophysics Data System (ADS)

    Zaug, Joseph M.; Armstrong, Michael R.; Crowhurst, Jonathan C.; Radousky, Harry B.; Ferranti, Louis; Swan, Raymond; Gross, Rick; Teslich, Nick E.; Wall, Mark A.; Austin, Ryan A.; Fried, Laurence E.

    2017-01-01

    We report results from ultrafast compression experiments conducted on β-HMX single crystals. Results consist of nominally 12 picosecond time-resolved wave profile data, (ultrafast time domain interferometry -TDI measurements), that were analyzed to determine high-velocity wave speeds as a function of piston velocity. TDI results are used to validate calculations of anisotropic stress-strain behavior of shocked loaded energetic materials. Our previous results derived using a 350 ps duration compression drive revealed anisotropic elastic wave response in single crystal β-HMX from (110) and (010) impact planes. Here we present results using a 1.05 ns duration compression drive with a 950 ps interferometry window to extend knowledge of the anisotropic dynamic response of β-HMX within eight microns of the initial impact plane. We observe two distinct wave profiles from (010) and three wave profiles from (010) impact planes. The (110) impact plane wave speeds typically exceed (010) impact plane wave speeds at the same piston velocities. The development of multiple hydrodynamic wave profiles begins at 20 GPa for the (110) impact plane and 28 GPa for the (10) impact plane. We compare our ultrafast TDI results with previous gun and plate impact results on β-HMX and PBX9501.

  10. The influence of air-filled structures on wave propagation and beam formation of a pygmy sperm whale (Kogia breviceps) in horizontal and vertical planes.

    PubMed

    Song, Zhongchang; Zhang, Yu; Thornton, Steven W; Li, Songhai; Dong, Jianchen

    2017-10-01

    The wave propagation, sound field, and transmission beam pattern of a pygmy sperm whale (Kogia breviceps) were investigated in both the horizontal and vertical planes. Results suggested that the signals obtained at both planes were similarly characterized with a high peak frequency and a relatively narrow bandwidth, close to the ones recorded from live animals. The sound beam measured outside the head in the vertical plane was narrower than that of the horizontal one. Cases with different combinations of air-filled structures in both planes were used to study the respective roles in controlling wave propagation and beam formation. The wave propagations and beam patterns in the horizontal and vertical planes elucidated the important reflection effect of the spermaceti and vocal chambers on sound waves, which was highly significant in forming intensive forward sound beams. The air-filled structures, the forehead soft tissues and skull structures formed wave guides in these two planes for emitted sounds to propagate forward.

  11. 14 CFR 29.1387 - Position light system dihedral angles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... described in this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the... formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the rotorcraft... longitudinal axis. (d) Dihedral angle A (aft) is formed by two intersecting vertical planes making angles of 70...

  12. 14 CFR 23.1387 - Position light system dihedral angles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... described in this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the... formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the airplane... longitudinal axis. (d) Dihedral angle A (aft) is formed by two intersecting vertical planes making angles of 70...

  13. A feasibility study of the use of bounded beams resembling the shape of evanescent and inhomogeneous waves.

    PubMed

    Declercq, Nico F; Leroy, Oswald

    2011-08-01

    Plane waves are solutions of the visco-elastic wave equation. Their wave vector can be real for homogeneous plane waves or complex for inhomogeneous and evanescent plane waves. Although interesting from a theoretical point of view, complex wave vectors normally only emerge naturally when propagation or scattering is studied of sound under the appearance of damping effects. Because of the particular behavior of inhomogeneous and evanescent waves and their estimated efficiency for surface wave generation, bounded beams, experimentally mimicking their infinite counterparts similar to (wide) Gaussian beams imitating infinite harmonic plane waves, are of special interest in this report. The study describes the behavior of bounded inhomogeneous and bounded evanescent waves in terms of amplitude and phase distribution as well as energy flow direction. The outcome is of importance to the applicability of bounded inhomogeneous ultrasonic waves for nondestructive testing. Copyright © 2011. Published by Elsevier B.V.

  14. Non-plane-wave Hartree-Fock states and nuclear homework potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutierrez, G.; Plastino, A.; de Llano, M.

    1979-12-01

    It is shown that non-plane-wave single-particle Hartree-Fock orbitals giving rise to a ''spin-density-wave-like'' structure give lower energy than plane waves beyond a certain relatively low density in both nuclear and neutron matter with homework pair potentials v/sub 1/ and v/sub 2/.

  15. Determination of Residual Stress in Composite Materials Using Ultrasonic Waves

    NASA Technical Reports Server (NTRS)

    Rokhlin, S. I.

    1997-01-01

    The performance of high temperature composites can be significantly affected by the presence of residual stresses. These stresses arise during cooling processes from fabrication to room temperature due to mismatch of thermal expansion coefficients between matrix and fiber materials. This effect is especially pronounced in metal matrix and intermetallic composites. It can lead to plastic deformations, matrix cracking and fiber/matrix interface debonding. In this work the feasibility of ultrasonic techniques for residual stress assessment in composites is addressed. A novel technique for absolute stress determination in orthotropic materials from angular dependencies of ultrasonic velocities is described. The technique is applicable for determination of both applied and residual stresses and does not require calibration measurements on a reference sample. The important advantage of this method is that stress is determined simultaneously with stress-dependent elastic constants and is thus decoupled from the material texture. It is demonstrated that when the principal plane stress directions coincide with acoustical axes, the angular velocity data in the plane perpendicular to the stress plane may be used to determine both stress components. When the stress is off the acoustical axes, the shear and the difference of the normal stress components may be determined from the angular dependence of group velocities in the plane of stresses. Synthetic sets of experimental data corresponding to materials with different anisotropy and stress levels are used to check the applicability of the technique. The method is also verified experimentally. A high precision ultrasonic wave transmission technique is developed to measure angular dependence of ultrasonic velocities. Examples of stress determination from experimental velocity data are given. A method is presented for determination of velocities of ultrasonic waves propagating through the composite material with residual stresses. It is based on the generalized self-consistent multiple scattering model. Calculation results for longitudinal and shear ultrasonic wave velocities propagating perpendicular to the fibers direction in SCS-6/Ti composite with and without residual stresses are presented. They show that velocity changes due to presence of stresses are of order 1%.

  16. Explosive plane-wave lens

    DOEpatents

    Marsh, Stanley P.

    1988-01-01

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive.

  17. Explosive plane-wave lens

    DOEpatents

    Marsh, S.P.

    1988-03-08

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.

  18. Longitudinal Variations of Low-Latitude Gravity Waves and Their Impacts on the Ionosphere

    NASA Astrophysics Data System (ADS)

    Cullens, C. Y.; England, S.; Immel, T. J.

    2014-12-01

    The lower atmospheric forcing has important roles in the ionospheric variability. However, influences of lower atmospheric gravity waves on the ionospheric variability are still not clear due to the simplified gravity wave parameterizations and the limited knowledge of gravity wave distributions. In this study, we aim to study the longitudinal variations of gravity waves and their impacts of longitudinal variations of low-latitude gravity waves on the ionospheric variability. Our SABER results show that longitudinal variations of gravity waves at the lower boundary of TIME-GCM are the largest in June-August and January-February. We have implemented these low-latitude gravity wave variations from SABER instrument into TIME-GCM model. TIME-GCM simulation results of ionospheric responses to longitudinal variations of gravity waves and physical mechanisms will be discussed.

  19. In-plane ultrasonic velocity measurement of longitudinal and shear waves in the machine direction with transducers in rotating wheels

    DOEpatents

    Hall, M.S.; Jackson, T.G.; Knerr, C.

    1998-02-17

    An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the MD and CD, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web. 37 figs.

  20. In-plane ultrasonic velocity measurement of longitudinal and shear waves in the machine direction with transducers in rotating wheels

    DOEpatents

    Hall, Maclin S.; Jackson, Theodore G.; Knerr, Christopher

    1998-02-17

    An improved system for measuring the velocity of ultrasonic signals within the plane of moving web-like materials, such as paper, paperboard and the like. In addition to velocity measurements of ultrasonic signals in the plane of the web in the MD and CD, one embodiment of the system in accordance with the present invention is also adapted to provide on-line indication of the polar specific stiffness of the moving web. In another embodiment of the invention, the velocity of ultrasonic signals in the plane of the web are measured by way of a plurality of ultrasonic transducers carried by synchronously driven wheels or cylinders, thus eliminating undue transducer wear due to any speed differences between the transducers and the web. In order to provide relatively constant contact force between the transducers and the webs, the transducers are mounted in a sensor housings which include a spring for biasing the transducer radially outwardly. The sensor housings are adapted to be easily and conveniently mounted to the carrier to provide a relatively constant contact force between the transducers and the moving web.

  1. Wind velocity profile reconstruction from intensity fluctuations of a plane wave propagating in a turbulent atmosphere.

    PubMed

    Banakh, V A; Marakasov, D A

    2007-08-01

    Reconstruction of a wind profile based on the statistics of plane-wave intensity fluctuations in a turbulent atmosphere is considered. The algorithm for wind profile retrieval from the spatiotemporal spectrum of plane-wave weak intensity fluctuations is described, and the results of end-to-end computer experiments on wind profiling based on the developed algorithm are presented. It is shown that the reconstructing algorithm allows retrieval of a wind profile from turbulent plane-wave intensity fluctuations with acceptable accuracy.

  2. Explosive plane-wave lens

    DOEpatents

    Marsh, S.P.

    1987-03-12

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.

  3. C-plane Reconstructions from Sheaf Acquisition for Ultrasound Electrode Vibration Elastography.

    PubMed

    Ingle, Atul; Varghese, Tomy

    2014-09-03

    This paper presents a novel algorithm for reconstructing and visualizing ablated volumes using radiofrequency ultrasound echo data acquired with the electrode vibration elastography approach. The ablation needle is vibrated using an actuator to generate shear wave pulses that are tracked in the ultrasound image plane at different locations away from the needle. This data is used for reconstructing shear wave velocity maps for each imaging plane. A C-plane reconstruction algorithm is proposed which estimates shear wave velocity values on a collection of transverse planes that are perpendicular to the imaging planes. The algorithm utilizes shear wave velocity maps from different imaging planes that share a common axis of intersection. These C-planes can be used to generate a 3D visualization of the ablated region. Experimental validation of this approach was carried out using data from a tissue mimicking phantom. The shear wave velocity estimates were within 20% of those obtained from a clinical scanner, and a contrast of over 4 dB was obtained between the stiff and soft regions of the phantom.

  4. Piezo-optic and elasto-optic properties of monoclinic triglycine sulfate crystals.

    PubMed

    Mytsyk, Bogdan; Demyanyshyn, Natalya; Erba, Alessandro; Shut, Viktor; Mozzharov, Sergey; Kost, Yaroslav; Mys, Oksana; Vlokh, Rostyslav

    2017-12-01

    For the first time, to the best of our knowledge, we have experimentally determined all of the components of the piezo-optic tensor for monoclinic crystals. This has been implemented on a specific example of triglycine sulfate crystals. Based on the results obtained, the complete elasto-optic tensor has been calculated. Acousto-optic figures of merit (AOFMs) have been estimated for the case of acousto-optic interaction occurring in the principal planes of the optical indicatrix ellipsoid and for geometries in which the highest elasto-optic coefficients are involved as effective parameters. It has been found that the highest AOFM value is equal to 6.8×10 -15   s 3 /kg for the case of isotropic acousto-optic interaction with quasi-longitudinal acoustic waves in the principal planes. This AOFM is higher than the corresponding values typical for canonic acousto-optic materials, which are transparent in the deep ultraviolet spectral range.

  5. Coded Excitation Plane Wave Imaging for Shear Wave Motion Detection

    PubMed Central

    Song, Pengfei; Urban, Matthew W.; Manduca, Armando; Greenleaf, James F.; Chen, Shigao

    2015-01-01

    Plane wave imaging has greatly advanced the field of shear wave elastography thanks to its ultrafast imaging frame rate and the large field-of-view (FOV). However, plane wave imaging also has decreased penetration due to lack of transmit focusing, which makes it challenging to use plane waves for shear wave detection in deep tissues and in obese patients. This study investigated the feasibility of implementing coded excitation in plane wave imaging for shear wave detection, with the hypothesis that coded ultrasound signals can provide superior detection penetration and shear wave signal-to-noise-ratio (SNR) compared to conventional ultrasound signals. Both phase encoding (Barker code) and frequency encoding (chirp code) methods were studied. A first phantom experiment showed an approximate penetration gain of 2-4 cm for the coded pulses. Two subsequent phantom studies showed that all coded pulses outperformed the conventional short imaging pulse by providing superior sensitivity to small motion and robustness to weak ultrasound signals. Finally, an in vivo liver case study on an obese subject (Body Mass Index = 40) demonstrated the feasibility of using the proposed method for in vivo applications, and showed that all coded pulses could provide higher SNR shear wave signals than the conventional short pulse. These findings indicate that by using coded excitation shear wave detection, one can benefit from the ultrafast imaging frame rate and large FOV provided by plane wave imaging while preserving good penetration and shear wave signal quality, which is essential for obtaining robust shear elasticity measurements of tissue. PMID:26168181

  6. Splash bar for cooling tower fill assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stackhouse, D.W.; Heidl, S.C.

    1987-11-10

    A crossflow cooling tower fill assembly for allowing liquid to fall down through the fill assembly and for allowing cooling air to flow through the fill assembly transverse to the flow of the liquid in order to cool the liquid is described. The assembly comprises: longitudinal splash bars; and means for supporting the splash bars so that the splash bars are substantially horizontal and parallel to one another and arranged in vertically spaced, substantially horizontal planes. The splash bars in each plane are horizontally spaced from one another to allow the liquid to fall down between the splash bars tomore » the planes of splash bars below. Each splash bar includes a substantially horizontal, longitudinally extending top web member having (1) longitudinally extending, downwardly projecting vertical side web members, both of the side web members having a lower longitudinal edge with a longitudinally extending, inwardly projecting flange, and (2) at least one longitudinally extending, downardly projecting rib web member between the side web members. Each rib web member has a lower longitudinal edge with a longitudinally extending, laterally projecting flange.« less

  7. Transport Theory for Propagation and Reverberation

    DTIC Science & Technology

    2016-07-20

    mentioned that our transport theory method is essentially 2-D (range and depth), so that out-of- plane forward scattering (a 3-D effect) is not treated...roughness spectrum, it is useful to consider scattering based on perturbation theory in some detail with a plane wave incident on the rough surface. The...the wave vector for the water wave. Let an incident acoustic plane wave have wave vector ki = kiH + kiz, where kiH denotes the horizontal component

  8. Matrix basis for plane and modal waves in a Timoshenko beam.

    PubMed

    Claeyssen, Julio Cesar Ruiz; Tolfo, Daniela de Rosso; Tonetto, Leticia

    2016-11-01

    Plane waves and modal waves of the Timoshenko beam model are characterized in closed form by introducing robust matrix basis that behave according to the nature of frequency and wave or modal numbers. These new characterizations are given in terms of a finite number of coupling matrices and closed form generating scalar functions. Through Liouville's technique, these latter are well behaved at critical or static situations. Eigenanalysis is formulated for exponential and modal waves. Modal waves are superposition of four plane waves, but there are plane waves that cannot be modal waves. Reflected and transmitted waves at an interface point are formulated in matrix terms, regardless of having a conservative or a dissipative situation. The matrix representation of modal waves is used in a crack problem for determining the reflected and transmitted matrices. Their euclidean norms are seen to be dominated by certain components at low and high frequencies. The matrix basis technique is also used with a non-local Timoshenko model and with the wave interaction with a boundary. The matrix basis allows to characterize reflected and transmitted waves in spectral and non-spectral form.

  9. Impact buckling of thin bars in the elastic range for any end condition

    NASA Technical Reports Server (NTRS)

    Taub, Josef

    1934-01-01

    Following a qualitative discussion of the complicated process involved in a short-period, longitudinal force applied to an originally not quite straight bar, the actual process is substituted by an idealized process for the purpose of analytical treatment. The simplifications are: the assumption of an infinitely high rate of propagation of the elastic longitudinal waves in the bar, limitation to slender bars, disregard of material damping and of rotatory inertia, the assumption of consistently small elastic deformations, the assumption of cross-sectional dimensions constant along the bar axis, the assumption of a shock-load constant in time, and the assumption of eccentricities on one plane. Then follow the mathematical principles for resolving the differential equation of the simplified problem, particularly the developability of arbitrary functions with steady first and second and intermittently steady third and fourth derivatives into one convergent series, according to the natural functions of the homogeneous differential equation.

  10. Elastic Wave Propagation through Multilayered Media

    DTIC Science & Technology

    1980-03-01

    Distilled ) 20 Water (Heavy,D^O) 19.8 o-Xylene 20 m-Xylene 20 p-Xylene 20 ■■■/ Wavespeed Long. Trans. Surf Density Ref. 10^ cm/sec gm/cm...7 3 Schematic of Three Layer Structure 15 4a Longitudinal Wave Incident on a Water /Lucite Interface 17 4b Longitudinal Wave Incident on a Lucite... Water Interface 17 5a Longitudinal Wave Incident on an Aluminum/ Water Interface 18 5b Longitudinal Wave Incident on a Steel/ Water Interface 18 6a

  11. Diffraction of a plane wave by a three-dimensional corner

    NASA Technical Reports Server (NTRS)

    Ting, L.; Kung, F.

    1971-01-01

    By the superposition of the conical solution for the diffraction of a plane pulse by a three dimensional corner, the solution for a general incident plane wave is constructed. A numerical program is presented for the computation of the pressure distribution on the surface due to an incident plane wave of any wave form and at any incident angle. Numerical examples are presented to show the pressure signature at several points on the surface due to incident wave with a front shock wave, two shock waves in succession, or a compression wave with same peak pressure. The examples show that when the distance of a point on the surface from the edges or the vertex is comparable to the distance for the front pressure raise to reach the maximum, the peak pressure at that point can be much less than that given by a regular reflection, because the diffracted wave front arrives at that point prior to the arrival of the peak incident wave.

  12. Introduction to Radar Polarimetry

    DTIC Science & Technology

    1991-04-23

    Coulomb force 11 1,2 Static etectric fields 13 1.3 Summary 15 2 ELECTROMAGNETIC WAVES 16 2.1 Harmonic plane waves 16 2.2 The average intensity of a...harmonic plane wave 17 2.3 Spherical harmonic waves 18 2.4 Summary 19 3 THE POLARIZATION OF AN ELECTROMAGNETIC WAVE 20 3.1 The polarization ellipse 20 3.2...CHANGE OF POLARIZATION 31 4.1 Simple examples 31 4.2 Scattering at a plane interface 33 4.3 Summary 36 5 THE SCATTERING MATRIX 37 5.1 Transmission

  13. Programmable hyperspectral image mapper with on-array processing

    NASA Technical Reports Server (NTRS)

    Cutts, James A. (Inventor)

    1995-01-01

    A hyperspectral imager includes a focal plane having an array of spaced image recording pixels receiving light from a scene moving relative to the focal plane in a longitudinal direction, the recording pixels being transportable at a controllable rate in the focal plane in the longitudinal direction, an electronic shutter for adjusting an exposure time of the focal plane, whereby recording pixels in an active area of the focal plane are removed therefrom and stored upon expiration of the exposure time, an electronic spectral filter for selecting a spectral band of light received by the focal plane from the scene during each exposure time and an electronic controller connected to the focal plane, to the electronic shutter and to the electronic spectral filter for controlling (1) the controllable rate at which the recording is transported in the longitudinal direction, (2) the exposure time, and (3) the spectral band so as to record a selected portion of the scene through M spectral bands with a respective exposure time t(sub q) for each respective spectral band q.

  14. Twisted gravitational waves

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Chicone, Carmen; Mashhoon, Bahram

    2018-03-01

    In general relativity (GR), linearized gravitational waves propagating in empty Minkowski spacetime along a fixed spatial direction have the property that the wave front is the Euclidean plane. Beyond the linear regime, exact plane waves in GR have been studied theoretically for a long time and many exact vacuum solutions of the gravitational field equations are known that represent plane gravitational waves. These have parallel rays and uniform wave fronts. It turns out, however, that GR also admits exact solutions representing gravitational waves propagating along a fixed direction that are nonplanar. The wave front is then nonuniform and the bundle of rays is twisted. We find a class of solutions representing nonplanar unidirectional gravitational waves and study some of the properties of these twisted waves.

  15. Sauter-Schwinger pair creation dynamically assisted by a plane wave

    NASA Astrophysics Data System (ADS)

    Torgrimsson, Greger; Schneider, Christian; Schützhold, Ralf

    2018-05-01

    We study electron-positron pair creation by a strong and constant electric field superimposed with a weaker transversal plane wave which is incident perpendicularly (or under some angle). Comparing the fully nonperturbative approach based on the world-line instanton method with a perturbative expansion into powers of the strength of the weaker plane wave, we find good agreement—provided that the latter is carried out to sufficiently high orders. As usual for the dynamically assisted Sauter-Schwinger effect, the additional plane wave induces an exponential enhancement of the pair-creation probability if the combined Keldysh parameter exceeds a certain threshold.

  16. Near ground measure and theoretical model of plane wave covariance of intensity in anisotropic turbulence.

    PubMed

    Beason, Melissa; Smith, Christopher; Coffaro, Joseph; Belichki, Sara; Spychalsky, Jonathon; Titus, Franklin; Crabbs, Robert; Andrews, Larry; Phillips, Ronald

    2018-06-01

    Experimental measurements were recently made which displayed characteristics of plane wave propagation through anisotropic optical turbulence. A near-plane wave beam was propagated a distance of 1 and 2 km at a height of 2 m above the concrete runway at the Shuttle Landing Facility, Kennedy Space Center, Florida, during January and February of 2017. The spatial-temporal fluctuations of the beam were recorded, and the covariance of intensity was calculated. These data sets were compared to a theoretical calculation of covariance of intensity for a plane wave.

  17. Interaction of an electron with coherent dipole radiation: Role of convergence and anti-dephasing

    NASA Astrophysics Data System (ADS)

    Robinson, A. P. L.; Arefiev, A. V.

    2018-05-01

    The impact of longitudinal electric fields that are present in intense focusing and defocusing electromagnetic pulses on electron acceleration is investigated. These fields are typically much weaker than the transverse fields, but it is shown that they can have a profound effect on electron energy gain. It is shown that the longitudinal electric field of a defocusing pulse is directed backward along the trajectory of an accelerated electron, which leads to a continuous net energy gain. At the same time, the effect of the transverse oscillating electric field in a defocusing pulse is to reduce the electron energy over multiple oscillations. In contrast to a well-known interaction with a plane wave, the electron is able to retain a substantial amount of energy following its interaction with a defocusing pulse. The roles of the transverse and longitudinal electric fields are reversed in a focusing pulse, which leads to a reduction in the energy retention. The present analysis underscores the importance of relatively weak oscillating electric fields in focusing and defocusing pulses.

  18. First plasma wave observations at neptune.

    PubMed

    Gurnett, D A; Kurth, W S; Poynter, R L; Granroth, L J; Cairns, I H; Macek, W M; Moses, S L; Coroniti, F V; Kennel, C F; Barbosa, D D

    1989-12-15

    The Voyager 2 plasma wave instrument detected many familiar plasma waves during the encounter with Neptune, including electron plasma oscillations in the solar wind upstream of the bow shock, electrostatic turbulence at the bow shock, and chorus, hiss, electron cyclotron waves, and upper hybrid resonance waves in the inner magnetosphere. Low-frequency radio emissions, believed to be generated by mode conversion from the upper hybrid resonance emissions, were also observed propagating outward in a disklike beam along the magnetic equatorial plane. At the two ring plane crossings many small micrometer-sized dust particles were detected striking the spacecraft. The maximum impact rates were about 280 impacts per second at the inbound ring plane crossing, and about 110 impacts per second at the outbound ring plane crossing. Most of the particles are concentrated in a dense disk, about 1000 kilometers thick, centered on the equatorial plane. However, a broader, more tenuous distribution also extends many tens of thousands of kilometers from the equatorial plane, including over the northern polar region.

  19. Screw-symmetric gravitational waves: A double copy of the vortex

    NASA Astrophysics Data System (ADS)

    Ilderton, A.

    2018-07-01

    Plane gravitational waves can admit a sixth 'screw' isometry beyond the usual five. The same is true of plane electromagnetic waves. From the point of view of integrable systems, a sixth isometry would appear to over-constrain particle dynamics in such waves; we show here, though, that no effect of the sixth isometry is independent of those from the usual five. Many properties of particle dynamics in a screw-symmetric gravitational wave are also seen in a (non-plane-wave) electromagnetic vortex; we make this connection explicit, showing that the screw-symmetric gravitational wave is the classical double copy of the vortex.

  20. A plane wave generation method by wave number domain point focusing.

    PubMed

    Chang, Ji-Ho; Choi, Jung-Woo; Kim, Yang-Hann

    2010-11-01

    A method for generation of a wave-field that is a plane wave is described. This method uses an array of loudspeakers phased so that the field in the wave-number domain is nearly concentrated at a point, this point being at the wave-number vector of the desired plane wave. The method described here for such a wave-number concentration makes use of an expansion in spherical harmonics, and requires a relatively small number of measurement points for a good approximate achievement of a plane wave. The measurement points are on a spherical surface surrounding the array of loudspeakers. The input signals for the individual loudspeakers can be derived without a matrix inversion or without explicit assumptions about the loudspeakers. The mathematical development involves spherical harmonics and three-dimensional Fourier transforms. Some numerical examples are given, with various assumptions concerning the nature of the loudspeakers, that support the premise that the method described in the present paper may be useful in applications.

  1. Picosecond phase-velocity dispersion of hypersonic phonons imaged with ultrafast electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cremons, Daniel R.; Du, Daniel X.; Flannigan, David J.

    We describe the direct imaging—with four-dimensional ultrafast electron microscopy—of the emergence, evolution, dispersion, and decay of photoexcited, hypersonic coherent acoustic phonons in nanoscale germanium wedges. Coherent strain waves generated via ultrafast in situ photoexcitation were imaged propagating with initial phase velocities of up to 35 km/s across discrete micrometer-scale crystal regions. We then observe that, while each wave front travels at a constant velocity, the entire wave train evolves with a time-varying phase-velocity dispersion, displaying a single-exponential decay to the longitudinal speed of sound (5 km/s) and with a mean lifetime of 280 ps. We also find that the wavemore » trains propagate along a single in-plane direction oriented parallel to striations introduced during specimen preparation, independent of crystallographic direction. Elastic-plate modeling indicates the dynamics arise from excitation of a single, symmetric (dilatational) guided acoustic mode. Further, by precisely determining the experiment time-zero position with a plasma-lensing method, we find that wave-front emergence occurs approximately 100 ps after femtosecond photoexcitation, which matches well with Auger recombination times in germanium. We conclude by discussing the similarities between the imaged hypersonic strain-wave dynamics and electron/hole plasma-wave dynamics in strongly photoexcited semiconductors.« less

  2. Picosecond phase-velocity dispersion of hypersonic phonons imaged with ultrafast electron microscopy

    DOE PAGES

    Cremons, Daniel R.; Du, Daniel X.; Flannigan, David J.

    2017-12-05

    We describe the direct imaging—with four-dimensional ultrafast electron microscopy—of the emergence, evolution, dispersion, and decay of photoexcited, hypersonic coherent acoustic phonons in nanoscale germanium wedges. Coherent strain waves generated via ultrafast in situ photoexcitation were imaged propagating with initial phase velocities of up to 35 km/s across discrete micrometer-scale crystal regions. We then observe that, while each wave front travels at a constant velocity, the entire wave train evolves with a time-varying phase-velocity dispersion, displaying a single-exponential decay to the longitudinal speed of sound (5 km/s) and with a mean lifetime of 280 ps. We also find that the wavemore » trains propagate along a single in-plane direction oriented parallel to striations introduced during specimen preparation, independent of crystallographic direction. Elastic-plate modeling indicates the dynamics arise from excitation of a single, symmetric (dilatational) guided acoustic mode. Further, by precisely determining the experiment time-zero position with a plasma-lensing method, we find that wave-front emergence occurs approximately 100 ps after femtosecond photoexcitation, which matches well with Auger recombination times in germanium. We conclude by discussing the similarities between the imaged hypersonic strain-wave dynamics and electron/hole plasma-wave dynamics in strongly photoexcited semiconductors.« less

  3. Precursor Wave Emission Enhanced by Weibel Instability in Relativistic Shocks

    NASA Astrophysics Data System (ADS)

    Iwamoto, Masanori; Amano, Takanobu; Hoshino, Masahiro; Matsumoto, Yosuke

    2018-05-01

    We investigated the precursor wave emission efficiency in magnetized purely perpendicular relativistic shocks in pair plasmas. We extended our previous study to include the dependence of upstream magnetic field orientations. We performed two-dimensional particle-in-cell simulations and focused on two magnetic field orientations: the magnetic field in the simulation plane (i.e., in-plane configuration) and that perpendicular to the simulation plane (i.e., out-of-plane configuration). Our simulations in the in-plane configuration demonstrated that not only extraordinary but also ordinary mode waves are excited. We quantified the emission efficiency as a function of the magnetization parameter σ e and found that the large-amplitude precursor waves are emitted for a wide range of σ e . We found that especially at low σ e , the magnetic field generated by Weibel instability amplifies the ordinary mode wave power. The amplitude is large enough to perturb the upstream plasma, and transverse density filaments are generated as in the case of the out-of-plane configuration investigated in the previous study. We confirmed that our previous conclusion holds regardless of upstream magnetic field orientations with respect to the two-dimensional simulation plane. We discuss the precursor wave emission in three dimensions and the feasibility of wakefield acceleration in relativistic shocks based on our results.

  4. Matrix basis for plane and modal waves in a Timoshenko beam

    PubMed Central

    Tolfo, Daniela de Rosso; Tonetto, Leticia

    2016-01-01

    Plane waves and modal waves of the Timoshenko beam model are characterized in closed form by introducing robust matrix basis that behave according to the nature of frequency and wave or modal numbers. These new characterizations are given in terms of a finite number of coupling matrices and closed form generating scalar functions. Through Liouville’s technique, these latter are well behaved at critical or static situations. Eigenanalysis is formulated for exponential and modal waves. Modal waves are superposition of four plane waves, but there are plane waves that cannot be modal waves. Reflected and transmitted waves at an interface point are formulated in matrix terms, regardless of having a conservative or a dissipative situation. The matrix representation of modal waves is used in a crack problem for determining the reflected and transmitted matrices. Their euclidean norms are seen to be dominated by certain components at low and high frequencies. The matrix basis technique is also used with a non-local Timoshenko model and with the wave interaction with a boundary. The matrix basis allows to characterize reflected and transmitted waves in spectral and non-spectral form. PMID:28018668

  5. Electrical modulation and switching of transverse acoustic phonons

    NASA Astrophysics Data System (ADS)

    Jeong, H.; Jho, Y. D.; Rhim, S. H.; Yee, K. J.; Yoon, S. Y.; Shim, J. P.; Lee, D. S.; Ju, J. W.; Baek, J. H.; Stanton, C. J.

    2016-07-01

    We report on the electrical manipulation of coherent acoustic phonon waves in GaN-based nanoscale piezoelectric heterostructures which are strained both from the pseudomorphic growth at the interfaces as well as through external electric fields. In such structures, transverse symmetry within the c plane hinders both the generation and detection of the transverse acoustic (TA) modes, and usually only longitudinal acoustic phonons are generated by ultrafast displacive screening of potential gradients. We show that even for c -GaN, the combined application of lateral and vertical electric fields can not only switch on the normally forbidden TA mode, but they can also modulate the amplitudes and frequencies of both modes. By comparing the transient differential reflectivity spectra in structures with and without an asymmetric potential distribution, the role of the electrical controllability of phonons was demonstrated as changes to the propagation velocities, the optical birefringence, the electrically polarized TA waves, and the geometrically varying optical sensitivities of phonons.

  6. 14 CFR 29.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... terms of minimum intensities in the horizontal plane, minimum intensities in any vertical plane, and... requirements: (1) Intensities in the horizontal plane. Each intensity in the horizontal plane (the plane containing the longitudinal axis of the rotorcraft and perpendicular to the plane of symmetry of the...

  7. 14 CFR 27.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... minimum intensities in the horizontal plane, minimum intensities in any vertical plane, and maximum...: (1) Intensities in the horizontal plane. Each intensity in the horizontal plane (the plane containing the longitudinal axis of the rotorcraft and perpendicular to the plane of symmetry of the rotorcraft...

  8. 14 CFR 25.1389 - Position light distribution and intensities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... minimum intensities in the horizontal plane, minimum intensities in any vertical plane, and maximum...: (1) Intensities in the horizontal plane. Each intensity in the horizontal plane (the plane containing the longitudinal axis of the airplane and perpendicular to the plane of symmetry of the airplane) must...

  9. Noise Equalization for Ultrafast Plane Wave Microvessel Imaging.

    PubMed

    Song, Pengfei; Manduca, Armando; Trzasko, Joshua D; Chen, Shigao

    2017-11-01

    Ultrafast plane wave microvessel imaging significantly improves ultrasound Doppler sensitivity by increasing the number of Doppler ensembles that can be collected within a short period of time. The rich spatiotemporal plane wave data also enable more robust clutter filtering based on singular value decomposition. However, due to the lack of transmit focusing, plane wave microvessel imaging is very susceptible to noise. This paper was designed to: 1) study the relationship between ultrasound system noise (primarily time gain compensation induced) and microvessel blood flow signal and 2) propose an adaptive and computationally cost-effective noise equalization method that is independent of hardware or software imaging settings to improve microvessel image quality.

  10. 49 CFR 572.153 - Neck-headform assembly and test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... subpart shall rotate in the direction of pre-impact flight with respect to the pendulum's longitudinal... shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal centerline... section, on the pendulum so the midsagittal plane of the headform is vertical and coincides with the plane...

  11. 49 CFR 572.153 - Neck-headform assembly and test procedure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... subpart shall rotate in the direction of pre-impact flight with respect to the pendulum's longitudinal... shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal centerline... section, on the pendulum so the midsagittal plane of the headform is vertical and coincides with the plane...

  12. 49 CFR 572.153 - Neck-headform assembly and test procedure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... subpart shall rotate in the direction of pre-impact flight with respect to the pendulum's longitudinal... shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal centerline... section, on the pendulum so the midsagittal plane of the headform is vertical and coincides with the plane...

  13. 49 CFR 572.153 - Neck-headform assembly and test procedure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... subpart shall rotate in the direction of pre-impact flight with respect to the pendulum's longitudinal... shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal centerline... section, on the pendulum so the midsagittal plane of the headform is vertical and coincides with the plane...

  14. 49 CFR 572.153 - Neck-headform assembly and test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... subpart shall rotate in the direction of pre-impact flight with respect to the pendulum's longitudinal... shall rotate in the direction of preimpact flight with respect to the pendulum's longitudinal centerline... section, on the pendulum so the midsagittal plane of the headform is vertical and coincides with the plane...

  15. Exchange interaction effects on waves in magnetized quantum plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trukhanova, Mariya Iv., E-mail: mar-tiv@yandex.ru; Andreev, Pavel A., E-mail: andreevpa@physics.msu.ru

    2015-02-15

    We have applied the many-particle quantum hydrodynamics that includes the Coulomb exchange interaction to magnetized quantum plasmas. We considered a number of wave phenomena that are affected by the Coulomb exchange interaction. Since the Coulomb exchange interaction affects the longitudinal and transverse-longitudinal waves, we focused our attention on the Langmuir waves, the Trivelpiece-Gould waves, the ion-acoustic waves in non-isothermal magnetized plasmas, the dispersion of the longitudinal low-frequency ion-acoustic waves, and low-frequency electromagnetic waves at T{sub e} ≫ T{sub i}. We have studied the dispersion of these waves and present the numeric simulation of their dispersion properties.

  16. Brillouin light scattering studies on the mechanical properties of ultrathin, porous low-K dielectric films

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Sooryakumar, R.; King, Sean

    2010-03-01

    Low K dielectrics have predominantly replaced silicon dioxide as the interlayer dielectric material for interconnects in state of the art integrated circuits. To further reduce interconnect resistance-capacitance (RC) delays, additional reductions in the K for these low-K materials is being pursued by the introduction of controlled levels of porosity. The main challenge for porous low-K dielectrics is the substantial reduction in mechanical properties that is accompanied by the increased pore volume content needed to reduce K. We report on the application of the nondestructive Brillouin light scattering technique to monitor and characterize the mechanical properties of these porous films at thicknesses well below 200 nm that are pertinent to present applications. Observation of longitudinal and transverse standing wave acoustic resonances and the dispersion that accompany their transformation into traveling waves with finite in-plane wave vectors provides for the principal elastic constants that completely characterize the mechanical properties of these porous films. The mode amplitudes of the standing waves, their variation within the film, and the calculated Brillouin intensities account for most aspects of the spectra. The resulting elastic constants are compared with corresponding values obtained from other experimental techniques.

  17. Brillouin light scattering studies of the mechanical properties of ultrathin low-k dielectric films

    NASA Astrophysics Data System (ADS)

    Link, A.; Sooryakumar, R.; Bandhu, R. S.; Antonelli, G. A.

    2006-07-01

    In an effort to reduce RC time delays that accompany decreasing feature sizes, low-k dielectric films are rapidly emerging as potential replacements for silicon dioxide (SiO2) at the interconnect level in integrated circuits. The main challenge in low-k materials is their substantially weaker mechanical properties that accompany the increasing pore volume content needed to reduce k. We show that Brillouin light scattering is an excellent nondestructive technique to monitor and characterize the mechanical properties of these porous films at thicknesses well below 200nm that are pertinent to present applications. Observation of longitudinal and transverse standing wave acoustic resonances and the dispersion that accompany their transformation into traveling waves with finite in-plane wave vectors provides for a direct measure of the principal elastic constants that completely characterize the mechanical properties of these ultrathin films. The mode amplitudes of the standing waves, their variation within the film, and the calculated Brillouin intensities account for most aspects of the spectra. We further show that the values obtained by this method agree well with other experimental techniques such as nanoindentation and picosecond laser ultrasonics.

  18. Letters: Noise Equalization for Ultrafast Plane Wave Microvessel Imaging

    PubMed Central

    Song, Pengfei; Manduca, Armando; Trzasko, Joshua D.

    2017-01-01

    Ultrafast plane wave microvessel imaging significantly improves ultrasound Doppler sensitivity by increasing the number of Doppler ensembles that can be collected within a short period of time. The rich spatiotemporal plane wave data also enables more robust clutter filtering based on singular value decomposition (SVD). However, due to the lack of transmit focusing, plane wave microvessel imaging is very susceptible to noise. This study was designed to: 1) study the relationship between ultrasound system noise (primarily time gain compensation-induced) and microvessel blood flow signal; 2) propose an adaptive and computationally cost-effective noise equalization method that is independent of hardware or software imaging settings to improve microvessel image quality. PMID:28880169

  19. Echocardiographic assessments of longitudinal left ventricular function in healthy English Springer spaniels.

    PubMed

    Dickson, D; Shave, R; Rishniw, M; Patteson, M

    2017-08-01

    To establish reference intervals for echocardiographic measures of longitudinal left ventricular function in adult English Springer spaniel (ESS) dogs. This study involved 42 healthy adult ESS. Animals were prospectively recruited from a general practice population in the United Kingdom. Dogs were examined twice, at least 12 months apart, to exclude dogs with progressive cardiac disease. Mitral annular plane systolic excursion, tissue Doppler imaging mitral annular velocities and two-dimensional speckle-tracking echocardiographic left ventricular longitudinal strain and strain rate were measured. Intraoperator and intraobserver variability were examined and reference intervals were calculated. The potential effects of body weight, age and heart rate on these variables were examined. Intraoperator and intraobserver variability was <10% for all parameters except tissue Doppler imaging E' (the peak velocity of early diastolic mitral annular motion as determined by pulsed wave Doppler) and two-dimensional speckle-tracking echocardiographic variables, which were all <20%. Thirty-nine dogs were used to create reference intervals. Significant (but mostly weak) effects of age, heart rate and body weight on were detected. Reference intervals were similar to previously published values in different breeds. Breed specific reference intervals for measures of longitudinal left ventricular function in the ESS are presented. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Immersion angle dependence of the resonant-frequency shift of the quartz crystal microbalance in a liquid: effects of longitudinal wave.

    PubMed

    Yoshimoto, Minoru; Kobirata, Satoshi; Aizawa, Hideo; Kurosawa, Shigeru

    2007-06-19

    We investigated the effects of the longitudinal wave on the immersion angle dependence of the resonant-frequency shift, deltaF, of the quartz crystal microbalance, QCM. In order to study exactly the effects, we employed the three types of cells: normal cell, cell with the glass beads and cell with sponge. The longitudinal wave exists in the normal cell. On the other hand, both the cell with the glass beads and the cell with sponge eliminate the longitudinal wave. As results, we have found that the tendencies of deltaF are the same in the three types of cells. That is, we conclude that the longitudinal wave does not have effects on the immersion angle dependence of deltaF.

  1. Optimized norm-conserving Hartree-Fock pseudopotentials for plane-wave calculations

    NASA Astrophysics Data System (ADS)

    Al-Saidi, W. A.; Walter, E. J.; Rappe, A. M.

    2008-02-01

    We report Hartree-Fock (HF)-based pseudopotentials suitable for plane-wave calculations. Unlike typical effective core potentials, the present pseudopotentials are finite at the origin and exhibit rapid convergence in a plane-wave basis; the optimized pseudopotential method [A. M. Rappe , Phys. Rev. B 41, 1227 (1990)] improves plane-wave convergence. Norm-conserving HF pseudopotentials are found to develop long-range non-Coulombic behavior which does not decay faster than 1/r , and is nonlocal. This behavior, which stems from the nonlocality of the exchange potential, is remedied using a recently developed self-consistent procedure [J. R. Trail and R. J. Needs, J. Chem. Phys. 122, 014112 (2005)]. The resulting pseudopotentials slightly violate the norm conservation of the core charge. We calculated several atomic properties using these pseudopotentials, and the results are in good agreement with all-electron HF values. The dissociation energies, equilibrium bond lengths, and frequencies of vibration of several dimers obtained with these HF pseudopotentials and plane waves are also in good agreement with all-electron results.

  2. Highly precise acoustic calibration method of ring-shaped ultrasound transducer array for plane-wave-based ultrasound tomography

    NASA Astrophysics Data System (ADS)

    Terada, Takahide; Yamanaka, Kazuhiro; Suzuki, Atsuro; Tsubota, Yushi; Wu, Wenjing; Kawabata, Ken-ichi

    2017-07-01

    Ultrasound computed tomography (USCT) is promising for a non-invasive, painless, operator-independent and quantitative system for breast-cancer screening. Assembly error, production tolerance, and aging-degradation variations of the hardwire components, particularly of plane-wave-based USCT systems, may hamper cost effectiveness, precise imaging, and robust operation. The plane wave is transmitted from a ring-shaped transducer array for receiving the signal at a high signal-to-noise-ratio and fast aperture synthesis. There are four signal-delay components: response delays in the transmitters and receivers and propagation delays depending on the positions of the transducer elements and their directivity. We developed a highly precise calibration method for calibrating these delay components and evaluated it with our prototype plane-wave-based USCT system. Our calibration method was found to be effective in reducing delay errors. Gaps and curves were eliminated from the plane wave, and echo images of wires were sharpened in the entire imaging area.

  3. Grating tuned unstable resonator laser cavity

    DOEpatents

    Johnson, Larry C.

    1982-01-01

    An unstable resonator to be used in high power, narrow line CO.sub.2 pump lasers comprises an array of four reflectors in a ring configuration wherein spherical and planar wavefronts are separated from each other along separate optical paths and only the planar wavefronts are impinged on a plane grating for line tuning. The reflector array comprises a concave mirror for reflecting incident spherical waves as plane waves along an output axis to form an output beam. A plane grating on the output axis is oriented to reflect a portion of the output beam off axis onto a planar relay mirror spaced apart from the output axis in proximity to the concave mirror. The relay mirror reflects plane waves from the grating to impinge on a convex expanding mirror spaced apart from the output axis in proximity to the grating. The expanding mirror reflects the incident planar waves as spherical waves to illuminate the concave mirror. Tuning is provided by rotating the plane grating about an axis normal to the output axis.

  4. 14 CFR 25.1387 - Position light system dihedral angles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the airplane, and the other at 110 degrees to the left of the first... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...

  5. 14 CFR 27.1387 - Position light system dihedral angles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the rotorcraft, and the other at 110 degrees to the left of the first... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...

  6. 14 CFR 27.1387 - Position light system dihedral angles.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the rotorcraft, and the other at 110 degrees to the left of the first... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...

  7. 14 CFR 27.1387 - Position light system dihedral angles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the rotorcraft, and the other at 110 degrees to the left of the first... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...

  8. 14 CFR 29.1387 - Position light system dihedral angles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... described in this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the rotorcraft, and the other at 110 degrees to the left of... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...

  9. 14 CFR 23.1387 - Position light system dihedral angles.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... described in this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the airplane, and the other at 110 degrees to the left of the... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...

  10. 14 CFR 25.1387 - Position light system dihedral angles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the airplane, and the other at 110 degrees to the left of the first... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...

  11. 14 CFR 23.1387 - Position light system dihedral angles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... described in this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the airplane, and the other at 110 degrees to the left of the... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...

  12. 14 CFR 25.1387 - Position light system dihedral angles.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the airplane, and the other at 110 degrees to the left of the first... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...

  13. 14 CFR 27.1387 - Position light system dihedral angles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the rotorcraft, and the other at 110 degrees to the left of the first... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...

  14. 14 CFR 29.1387 - Position light system dihedral angles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... described in this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the rotorcraft, and the other at 110 degrees to the left of... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...

  15. 14 CFR 25.1387 - Position light system dihedral angles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the airplane, and the other at 110 degrees to the left of the first... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...

  16. 14 CFR 29.1387 - Position light system dihedral angles.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... described in this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the rotorcraft, and the other at 110 degrees to the left of... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...

  17. 14 CFR 23.1387 - Position light system dihedral angles.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... described in this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the airplane, and the other at 110 degrees to the left of the... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...

  18. 14 CFR 23.1387 - Position light system dihedral angles.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... described in this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the airplane, and the other at 110 degrees to the left of the... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...

  19. 14 CFR 29.1387 - Position light system dihedral angles.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... described in this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first parallel to the longitudinal axis of the rotorcraft, and the other at 110 degrees to the left of... degrees to the right and to the left, respectively, to a vertical plane passing through the longitudinal...

  20. Quantification of right ventricular volumes and function by real time three-dimensional echocardiographic longitudinal axial plane method: validation in the clinical setting.

    PubMed

    Endo, Yuka; Maddukuri, Prasad V; Vieira, Marcelo L C; Pandian, Natesa G; Patel, Ayan R

    2006-11-01

    Measurement of right ventricular (RV) volumes and right ventricular ejection fraction (RVEF) by three-dimensional echocardiographic (3DE) short-axis disc summation method has been validated in multiple studies. However, in some patients, short-axis images are of insufficient quality for accurate tracing of the RV endocardial border. This study examined the accuracy of long-axis analysis in multiple planes (longitudinal axial plane method) for assessment of RV volumes and RVEF. 3DE images were analyzed in 40 subjects with a broad range of RV function. RV end-diastolic (RVEDV) and end-systolic volumes (RVESV) and RVEF were calculated by both short-axis disc summation method and longitudinal axial plane method. Excellent correlation was obtained between the two methods for RVEDV, RVESV, and RVEF (r = 0.99, 0.99, 0.94, respectively; P < 0.0001 for all comparisons). 3DE longitudinal-axis analysis is a promising technique for the evaluation of RV function, and may provide an alternative method of assessment in patients with suboptimal short-axis images.

  1. Full-wave and ray-based modeling of cross-beam energy transfer between laser beams with distributed phase plates and polarization smoothing

    DOE PAGES

    Follett, R. K.; Edgell, D. H.; Froula, D. H.; ...

    2017-10-20

    Radiation-hydrodynamic simulations of inertial confinement fusion (ICF) experiments rely on ray-based cross-beam energy transfer (CBET) models to calculate laser energy deposition. The ray-based models assume locally plane-wave laser beams and polarization averaged incoherence between laser speckles for beams with polarization smoothing. The impact of beam speckle and polarization smoothing on crossbeam energy transfer (CBET) are studied using the 3-D wave-based laser-plasma-interaction code LPSE. The results indicate that ray-based models under predict CBET when the assumption of spatially averaged longitudinal incoherence across the CBET interaction region is violated. A model for CBET between linearly-polarized speckled beams is presented that uses raymore » tracing to solve for the real speckle pattern of the unperturbed laser beams within the eikonal approximation and gives excellent agreement with the wavebased calculations. Lastly, OMEGA-scale 2-D LPSE calculations using ICF relevant plasma conditions suggest that the impact of beam speckle on laser absorption calculations in ICF implosions is small (< 1%).« less

  2. Full-wave and ray-based modeling of cross-beam energy transfer between laser beams with distributed phase plates and polarization smoothing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Follett, R. K.; Edgell, D. H.; Froula, D. H.

    Radiation-hydrodynamic simulations of inertial confinement fusion (ICF) experiments rely on ray-based cross-beam energy transfer (CBET) models to calculate laser energy deposition. The ray-based models assume locally plane-wave laser beams and polarization averaged incoherence between laser speckles for beams with polarization smoothing. The impact of beam speckle and polarization smoothing on crossbeam energy transfer (CBET) are studied using the 3-D wave-based laser-plasma-interaction code LPSE. The results indicate that ray-based models under predict CBET when the assumption of spatially averaged longitudinal incoherence across the CBET interaction region is violated. A model for CBET between linearly-polarized speckled beams is presented that uses raymore » tracing to solve for the real speckle pattern of the unperturbed laser beams within the eikonal approximation and gives excellent agreement with the wavebased calculations. Lastly, OMEGA-scale 2-D LPSE calculations using ICF relevant plasma conditions suggest that the impact of beam speckle on laser absorption calculations in ICF implosions is small (< 1%).« less

  3. Elastic properties of porous low-k dielectric nano-films

    NASA Astrophysics Data System (ADS)

    Zhou, W.; Bailey, S.; Sooryakumar, R.; King, S.; Xu, G.; Mays, E.; Ege, C.; Bielefeld, J.

    2011-08-01

    Low-k dielectrics have predominantly replaced silicon dioxide as the interlayer dielectric for interconnects in state of the art integrated circuits. In order to further reduce interconnect RC delays, additional reductions in k for these low-k materials are being pursued via the introduction of controlled levels of porosity. The main challenge for such dielectrics is the substantial reduction in elastic properties that accompanies the increased pore volume. We report on Brillouin light scattering measurements used to determine the elastic properties of these films at thicknesses well below 200 nm, which are pertinent to their introduction into present ultralarge scale integrated technology. The observation of longitudinal and transverse standing wave acoustic resonances and their transformation into traveling waves with finite in-plane wave vectors provides for a direct non-destructive measure of the principal elastic constants that characterize the elastic properties of these porous nano-scale films. The mode dispersion further confirms that for porosity levels of up to 25%, the reduction in the dielectric constant does not result in severe degradation in the Young's modulus and Poisson's ratio of the films.

  4. Characteristic wave speeds in the surface Brillouin scattering measurement of elastic constants of crystals

    NASA Astrophysics Data System (ADS)

    Every, A. G.; Kotane, L. M.; Comins, J. D.

    2010-06-01

    A simple and robust fitting procedure is presented for determining the three elastic constants of a cubic crystal from surface Brillouin scattering measurements carried out in the ⟨100⟩ and ⟨110⟩ directions in a (001) surface. The input data utilized are the Rayleigh surface wave velocity, the Lamb shoulder threshold velocity, and the longitudinal lateral wave velocity measured in the two directions. In fitting these velocities, use of simple closed-form expressions is made for the secular functions determining them. Corresponding expressions for the ⟨010⟩ and ⟨101¯⟩ directions in the (101) plane are also provided. The formulas for the Lamb shoulder threshold, which have not previously been available in the literature, should prove to be particularly useful, as they apply also to thin supported film structures. The procedure is applied to the determination of the elastic constants of the ternary semiconductor alloy InAs0.91Sb0.09 , yielding C11=74.4GPa , C12=40.5GPa , and C44=37.8GPa .

  5. 40 MHz high-frequency ultrafast ultrasound imaging.

    PubMed

    Huang, Chih-Chung; Chen, Pei-Yu; Peng, Po-Hsun; Lee, Po-Yang

    2017-06-01

    Ultrafast high-frame-rate ultrasound imaging based on coherent-plane-wave compounding has been developed for many biomedical applications. Most coherent-plane-wave compounding systems typically operate at 3-15 MHz, and the image resolution for this frequency range is not sufficient for visualizing microstructure tissues. Therefore, the purpose of this study was to implement a high-frequency ultrafast ultrasound imaging operating at 40 MHz. The plane-wave compounding imaging and conventional multifocus B-mode imaging were performed using the Field II toolbox of MATLAB in simulation study. In experiments, plane-wave compounding images were obtained from a 256 channel ultrasound research platform with a 40 MHz array transducer. All images were produced by point-spread functions and cyst phantoms. The in vivo experiment was performed from zebrafish. Since high-frequency ultrasound exhibits a lower penetration, chirp excitation was applied to increase the imaging depth in simulation. The simulation results showed that a lateral resolution of up to 66.93 μm and a contrast of up to 56.41 dB were achieved when using 75-angles plane waves in compounding imaging. The experimental results showed that a lateral resolution of up to 74.83 μm and a contrast of up to 44.62 dB were achieved when using 75-angles plane waves in compounding imaging. The dead zone and compounding noise are about 1.2 mm and 2.0 mm in depth for experimental compounding imaging, respectively. The structure of zebrafish heart was observed clearly using plane-wave compounding imaging. The use of fewer than 23 angles for compounding allowed a frame rate higher than 1000 frames per second. However, the compounding imaging exhibits a similar lateral resolution of about 72 μm as the angle of plane wave is higher than 10 angles. This study shows the highest operational frequency for ultrafast high-frame-rate ultrasound imaging. © 2017 American Association of Physicists in Medicine.

  6. Experimental Study on Ultrasonic Computed Tomography Using Transducers Arrayed on the Internal Surface of a Cylinder

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Soon; Kim, Moo-Joon; Kim, Jung-Ho; Ha, Kang-Lyeol

    2005-06-01

    In this study, ultrasonic array transducers with 32 vibrators arranged on the internal surface of a part of a cylinder were fabricated. The vibrators were operated by the piezoelectric transverse effect. By controlling the phase of the input signal for every vibrator, a quasi plane wave was synthesized. Using the fabricated array, inverse scattering ultrasonic computed tomography (UCT) was carried out with a phantom specimen after checking the plane wave generation. It was confirmed that the plane wave was synthesized successfully and a sound velocity image of the phantom was obtained by the plane wave. Consequently, it was noted that the array could be employed as a transmitter and receiver for data acquisition in UCT.

  7. Amplitudes on plane waves from ambitwistor strings

    NASA Astrophysics Data System (ADS)

    Adamo, Tim; Casali, Eduardo; Mason, Lionel; Nekovar, Stefan

    2017-11-01

    In marked contrast to conventional string theory, ambitwistor strings remain solvable worldsheet theories when coupled to curved background fields. We use this fact to consider the quantization of ambitwistor strings on plane wave metric and plane wave gauge field backgrounds. In each case, the worldsheet model is anomaly free as a consequence of the background satisfying the field equations. We derive vertex operators (in both fixed and descended picture numbers) for gravitons and gluons on these backgrounds from the worldsheet CFT, and study the 3-point functions of these vertex operators on the Riemann sphere. These worldsheet correlation functions reproduce the known results for 3-point scattering amplitudes of gravitons and gluons in gravitational and gauge theoretic plane wave backgrounds, respectively.

  8. Investigation on location dependent detectability in cone beam CT images with uniform and anatomical backgrounds

    NASA Astrophysics Data System (ADS)

    Han, Minah; Baek, Jongduk

    2017-03-01

    We investigate location dependent lesion detectability of cone beam computed tomography images for different background types (i.e., uniform and anatomical), image planes (i.e., transverse and longitudinal) and slice thicknesses. Anatomical backgrounds are generated using a power law spectrum of breast anatomy, 1/f3. Spherical object with a 5mm diameter is used as a signal. CT projection data are acquired by the forward projection of uniform and anatomical backgrounds with and without the signal. Then, projection data are reconstructed using the FDK algorithm. Detectability is evaluated by a channelized Hotelling observer with dense difference-of-Gaussian channels. For uniform background, off-centered images yield higher detectability than iso-centered images for the transverse plane, while for the longitudinal plane, detectability of iso-centered and off-centered images are similar. For anatomical background, off-centered images yield higher detectability for the transverse plane, while iso-centered images yield higher detectability for the longitudinal plane, when the slice thickness is smaller than 1.9mm. The optimal slice thickness is 3.8mm for all tasks, and the transverse plane at the off-center (iso-center and off-center) produces the highest detectability for uniform (anatomical) background.

  9. Ultrasonic input-output for transmitting and receiving longitudinal transducers coupled to same face of isotropic elastic plate

    NASA Technical Reports Server (NTRS)

    Williams, J. H., Jr.; Karagulle, H.; Lee, S. S.

    1982-01-01

    The quantitative understanding of ultrasonic nondestructive evaluation parameters such as the stress wave factor were studied. Ultrasonic input/output characteristics for an isotropic elastic plate with transmitting and receiving longitudinal transducers coupled to the same face were analyzed. The asymptotic normal stress is calculated for an isotropic elastic half space subjected to a uniform harmonic normal stress applied to a circular region at the surface. The radiated stress waves are traced within the plate by considering wave reflections at the top and bottom faces. The output voltage amplitude of the receiving transducer is estimated by considering only longitudinal waves. Agreement is found between the output voltage wave packet amplitudes and times of arrival due to multiple reflections of the longitudinal waves.

  10. 77 FR 24265 - Toyota Motor Corporation, Inc., on Behalf of Toyota Corporation, and Toyota Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-23

    ..., symbols or pictograms are used, their meaning is explained to the consumer in writing, such as in the... and horizontal longitudinal planes intersecting at the horizontal centerline of each lower anchorage, as illustrated in Figure 22. The center of the circle must be in the vertical longitudinal plane that...

  11. 76 FR 35271 - Toyota Motor Corporation, Inc., on Behalf of Toyota Corporation, and Toyota Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ..., symbols or pictograms are used, their meaning is explained to the consumer in writing, such as in the... vertical transverse and horizontal longitudinal planes intersecting at the horizontal centerline of each... longitudinal plane that passes through the center of the bar ( 25 mm); (4) The circle may be on a tag...

  12. New soliton solution to the longitudinal wave equation in a magneto-electro-elastic circular rod

    NASA Astrophysics Data System (ADS)

    Seadawy, Aly R.; Manafian, Jalil

    2018-03-01

    This paper examines the effectiveness of an integration scheme which called the extended trial equation method (ETEM) in exactly solving a well-known nonlinear equation of partial differential equations (PDEs). In this respect, the longitudinal wave equation (LWE) that arises in mathematical physics with dispersion caused by the transverse Poisson's effect in a magneto-electro-elastic (MEE) circular rod, which a series of exact traveling wave solutions for the aforementioned equation is formally extracted. Explicit new exact solutions are derived in different form such as dark solitons, bright solitons, solitary wave, periodic solitary wave, rational function, and elliptic function solutions of the longitudinal wave equation. The movements of obtained solutions are shown graphically, which helps to understand the physical phenomena of this longitudinal wave equation. Many other such types of nonlinear equations arising in non-destructive evaluation of structures made of the advanced MEE material can also be solved by this method.

  13. Generation of remote adaptive torsional shear waves with an octagonal phased array to enhance displacements and reduce variability of shear wave speeds: comparison with quasi-plane shear wavefronts.

    PubMed

    Ouared, Abderrahmane; Montagnon, Emmanuel; Cloutier, Guy

    2015-10-21

    A method based on adaptive torsional shear waves (ATSW) is proposed to overcome the strong attenuation of shear waves generated by a radiation force in dynamic elastography. During the inward propagation of ATSW, the magnitude of displacements is enhanced due to the convergence of shear waves and constructive interferences. The proposed method consists in generating ATSW fields from the combination of quasi-plane shear wavefronts by considering a linear superposition of displacement maps. Adaptive torsional shear waves were experimentally generated in homogeneous and heterogeneous tissue mimicking phantoms, and compared to quasi-plane shear wave propagations. Results demonstrated that displacement magnitudes by ATSW could be up to 3 times higher than those obtained with quasi-plane shear waves, that the variability of shear wave speeds was reduced, and that the signal-to-noise ratio of displacements was improved. It was also observed that ATSW could cause mechanical inclusions to resonate in heterogeneous phantoms, which further increased the displacement contrast between the inclusion and the surrounding medium. This method opens a way for the development of new noninvasive tissue characterization strategies based on ATSW in the framework of our previously reported shear wave induced resonance elastography (SWIRE) method proposed for breast cancer diagnosis.

  14. Ultrafast Ultrasound Imaging of Ocular Anatomy and Blood Flow

    PubMed Central

    Urs, Raksha; Ketterling, Jeffrey A.; Silverman, Ronald H.

    2016-01-01

    Purpose Ophthalmic ultrasound imaging is currently performed with mechanically scanned single-element probes. These probes have limited capabilities overall and lack the ability to image blood flow. Linear-array systems are able to detect blood flow, but these systems exceed ophthalmic acoustic intensity safety guidelines. Our aim was to implement and evaluate a new linear-array–based technology, compound coherent plane-wave ultrasound, which offers ultrafast imaging and depiction of blood flow at safe acoustic intensity levels. Methods We compared acoustic intensity generated by a 128-element, 18-MHz linear array operated in conventionally focused and plane-wave modes and characterized signal-to-noise ratio (SNR) and lateral resolution. We developed plane-wave B-mode, real-time color-flow, and high-resolution depiction of slow flow in postprocessed data collected continuously at a rate of 20,000 frames/s. We acquired in vivo images of the posterior pole of the eye by compounding plane-wave images acquired over ±10° and produced images depicting orbital and choroidal blood flow. Results With the array operated conventionally, Doppler modes exceeded Food and Drug Administration safety guidelines, but plane-wave modalities were well within guidelines. Plane-wave data allowed generation of high-quality compound B-mode images, with SNR increasing with the number of compounded frames. Real-time color-flow Doppler readily visualized orbital blood flow. Postprocessing of continuously acquired data blocks of 1.6-second duration allowed high-resolution depiction of orbital and choroidal flow over the cardiac cycle. Conclusions Newly developed high-frequency linear arrays in combination with plane-wave techniques present opportunities for the evaluation of ocular anatomy and blood flow, as well as visualization and analysis of other transient phenomena such as vessel wall motion over the cardiac cycle and saccade-induced vitreous motion. PMID:27428169

  15. Generalized thermoelastic diffusive waves in heat conducting materials

    NASA Astrophysics Data System (ADS)

    Sharma, J. N.

    2007-04-01

    Keeping in view the applications of diffusion processes in geophysics and electronics industry, the aim of the present paper is to give a detail account of the plane harmonic generalized thermoelastic diffusive waves in heat conducting solids. According to the characteristic equation, three longitudinal waves namely, elastodiffusive (ED), mass diffusion (MD-mode) and thermodiffusive (TD-mode), can propagate in such solids in addition to transverse waves. The transverse waves get decoupled from rest of the fields and hence remain unaffected due to temperature change and mass diffusion effects. These waves travel without attenuation and dispersion. The other generalized thermoelastic diffusive waves are significantly influenced by the interacting fields and hence suffer both attenuation and dispersion. At low frequency mass diffusion and thermal waves do not exist but at high-frequency limits these waves propagate with infinite velocity being diffusive in character. Moreover, in the low-frequency regions, the disturbance is mainly dominant by mechanical process of transportation of energy and at high-frequency regions it is significantly dominated by a close to diffusive process (heat conduction or mass diffusion). Therefore, at low-frequency limits the waves like modes are identifiable with small amplitude waves in elastic materials that do not conduct heat. The general complex characteristic equation is solved by using irreducible case of Cardano's method with the help of DeMoivre's theorem in order to obtain phase speeds, attenuation coefficients and specific loss factor of energy dissipation of various modes. The propagation of waves in case of non-heat conducting solids is also discussed. Finally, the numerical solution is carried out for copper (solvent) and zinc (solute) materials and the obtained phase velocities, attenuation coefficients and specific loss factor of various thermoelastic diffusive waves are presented graphically.

  16. Application of the wavenumber jump condition to the normal and oblique interaction of a plane acoustic wave and a plane shock

    NASA Technical Reports Server (NTRS)

    Kleinstein, G. G.; Gunzburger, M. D.

    1977-01-01

    The kinematics of normal and oblique interactions between a plane acoustic wave and a plane shock wave are investigated separately using an approach whereby the shock is considered as a sharp discontinuity surface separating two half-spaces, so that the dispersion relation on either side of the shock and the wavenumber jump condition across a discontinuity surface completely specify the kinematics of the problem in the whole space independently of the acoustic-field dynamics. The normal interaction is analyzed for a stationary shock, and the spectral change of the incident wave is investigated. The normal interaction is then examined for the case of a shock wave traveling into an ambient region where an acoustic disturbance is propagating in the opposite direction. Detailed attention is given to the consequences of the existence of a critical shock speed above which the frequency of the transmitted wave becomes negative. Finally, the oblique interaction with a fixed shock is considered, and the existence and nature of the transmitted wave is investigated, particularly as a function of the angle of incidence.

  17. Damage detection in composite panels based on mode-converted Lamb waves sensed using 3D laser scanning vibrometer

    NASA Astrophysics Data System (ADS)

    Pieczonka, Łukasz; Ambroziński, Łukasz; Staszewski, Wiesław J.; Barnoncel, David; Pérès, Patrick

    2017-12-01

    This paper introduces damage identification approach based on guided ultrasonic waves and 3D laser Doppler vibrometry. The method is based on the fact that the symmetric and antisymmetric Lamb wave modes differ in amplitude of the in-plane and out-of-plane vibrations. Moreover, the modes differ also in group velocities and normally they are well separated in time. For a given time window both modes can occur simultaneously only close to the wave source or to a defect that leads to mode conversion. By making the comparison between the in-plane and out-of-plane wave vector components the detection of mode conversion is possible, allowing for superior and reliable damage detection. Experimental verification of the proposed damage identification procedure is performed on fuel tank elements of Reusable Launch Vehicles designed for space exploration. Lamb waves are excited using low-profile, surface-bonded piezoceramic transducers and 3D scanning laser Doppler vibrometer is used to characterize the Lamb wave propagation field. The paper presents theoretical background of the proposed damage identification technique as well as experimental arrangements and results.

  18. Plane waves and structures in turbulent channel flow

    NASA Technical Reports Server (NTRS)

    Sirovich, L.; Ball, K. S.; Keefe, L. R.

    1990-01-01

    A direct simulation of turbulent flow in a channel is analyzed by the method of empirical eigenfunctions (Karhunen-Loeve procedure, proper orthogonal decomposition). This analysis reveals the presence of propagating plane waves in the turbulent flow. The velocity of propagation is determined by the flow velocity at the location of maximal Reynolds stress. The analysis further suggests that the interaction of these waves appears to be essential to the local production of turbulence via bursting or sweeping events in the turbulent boundary layer, with the additional suggestion that the fast acting plane waves act as triggers.

  19. GW/Bethe-Salpeter calculations for charged and model systems from real-space DFT

    NASA Astrophysics Data System (ADS)

    Strubbe, David A.

    GW and Bethe-Salpeter (GW/BSE) calculations use mean-field input from density-functional theory (DFT) calculations to compute excited states of a condensed-matter system. Many parts of a GW/BSE calculation are efficiently performed in a plane-wave basis, and extensive effort has gone into optimizing and parallelizing plane-wave GW/BSE codes for large-scale computations. Most straightforwardly, plane-wave DFT can be used as a starting point, but real-space DFT is also an attractive starting point: it is systematically convergeable like plane waves, can take advantage of efficient domain parallelization for large systems, and is well suited physically for finite and especially charged systems. The flexibility of a real-space grid also allows convenient calculations on non-atomic model systems. I will discuss the interfacing of a real-space (TD)DFT code (Octopus, www.tddft.org/programs/octopus) with a plane-wave GW/BSE code (BerkeleyGW, www.berkeleygw.org), consider performance issues and accuracy, and present some applications to simple and paradigmatic systems that illuminate fundamental properties of these approximations in many-body perturbation theory.

  20. A projection-free method for representing plane-wave DFT results in an atom-centered basis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunnington, Benjamin D.; Schmidt, J. R., E-mail: schmidt@chem.wisc.edu

    2015-09-14

    Plane wave density functional theory (DFT) is a powerful tool for gaining accurate, atomic level insight into bulk and surface structures. Yet, the delocalized nature of the plane wave basis set hinders the application of many powerful post-computation analysis approaches, many of which rely on localized atom-centered basis sets. Traditionally, this gap has been bridged via projection-based techniques from a plane wave to atom-centered basis. We instead propose an alternative projection-free approach utilizing direct calculation of matrix elements of the converged plane wave DFT Hamiltonian in an atom-centered basis. This projection-free approach yields a number of compelling advantages, including strictmore » orthonormality of the resulting bands without artificial band mixing and access to the Hamiltonian matrix elements, while faithfully preserving the underlying DFT band structure. The resulting atomic orbital representation of the Kohn-Sham wavefunction and Hamiltonian provides a gateway to a wide variety of analysis approaches. We demonstrate the utility of the approach for a diverse set of chemical systems and example analysis approaches.« less

  1. How to Use a Candle to Study Sound Waves

    ERIC Educational Resources Information Center

    Carvalho, P. Simeão; Briosa, E.; Rodrigues, M.; Pereira, C.; Ataíde, M.

    2013-01-01

    It is well known that sound waves in air are longitudinal waves. Although teachers use analogies such as compressing horizontal springs to demonstrate what longitudinal waves look like, students still present some difficulty in understanding that (1) sound waves correspond to oscillations of air particles, and (2) there is no "air flow"…

  2. Control of Love waves by resonant metasurfaces.

    PubMed

    Palermo, Antonio; Marzani, Alessandro

    2018-05-08

    Metasurfaces of mechanical resonators have been successfully used to control in-plane polarized surface waves for filtering, waveguiding and lensing applications across different length scales. In this work, we extend the concept of metasurfaces to anti-plane surface waves existing in semi-infinite layered media, generally known as Love waves. By means of an effective medium approach, we derive an original closed-form dispersion relation for the metasurface. This relation reveals the possibility to control the Love waves dispersive properties by varying the resonators mechanical parameters. We exploit this capability to manipulate the metasurface refractive index and design two gradient index (GRIN) metalenses, i.e. a Luneburg lens and a Maxwell lens. We confirm the performance of the designed lenses using full 3D finite element simulations. Our work demonstrates the possibility of realizing wave control devices for anti-plane waves.

  3. Ultrasound shear wave imaging

    NASA Astrophysics Data System (ADS)

    Ye, Shigong; Wu, Junru

    2000-05-01

    Shear wave propagation properties including phase velocity and attenuation coefficient are indispensable information in materials characterization and nondestructive evaluation. A computer controlled scanning shear-wave ultrasonic imaging system has been developed. It consists of a pair of focusing broadband pvdf transducers of central frequency of 50 MHz immersed in distilled water. Shear waves in a solid specimen are generated by mode-conversion. When ultrasonic waves generated by one of the pvdf transducers impinge upon a solid specimen from water with angle of incidence of θ that is greater than θcr, the critical angle of the longitudinal wave in the solid, only shear waves can propagate in the solid and longitudinal waves become evanescent waves. The shear waves pass through the specimen and received by the other pvdf transducer. Meanwhile, the specimen was scanned by a stepped motor of a step of 10 μm. The system was used to generated shear waves amplitude and phase velocity images of bone specimen of 1280 μm and they are compared with their longitudinal wave counterparts. The results have shown shear wave images can provide additional shear modulus and shear viscous information that longitudinal waves can't provide. The lateral resolution of 60 μm was achieved using shear wave imaging technique applied in bone sample.

  4. Method and apparatus for measurement of orientation in an anisotropic medium

    DOEpatents

    Gilmore, Robert Snee; Kline, Ronald Alan; Deaton, Jr., John Broddus

    1999-01-01

    A method and apparatus are provided for simultaneously measuring the anisotropic orientation and the thickness of an article. The apparatus comprises a transducer assembly which propagates longitudinal and transverse waves through the article and which receives reflections of the waves. A processor is provided to measure respective transit times of the longitudinal and shear waves propagated through the article and to calculate respective predicted transit times of the longitudinal and shear waves based on an estimated thickness, an estimated anisotropic orientation, and an elasticity of the article. The processor adjusts the estimated thickness and the estimated anisotropic orientation to reduce the difference between the measured transit times and the respective predicted transit times of the longitudinal and shear waves.

  5. Plane wave gravitons, curvature singularities and string physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brooks, R.

    1991-03-21

    This paper discusses bounded (compactifying) potentials arising from a conspiracy between plane wave graviton and dilaton condensates. So are string propagation and supersymmetry in spacetimes with curvature singularities.

  6. Bumps of the wave structure function in non-Kolmogorov turbulence

    NASA Astrophysics Data System (ADS)

    Qiao, Chunhong; Lu, Lu; Zhang, Pengfei; Wang, Haitao; Huang, Honghua; Fan, Chengyu

    2015-10-01

    The analytical expressions for wave structure function of plane and spherical waves are derived both in the viscous dissipation and inertial range. Due to previously research, there is a discrepancy between theoretical results and the experimental datum in viscous dissipation range. In this paper, only considering the inertial range, taking plane waves for example, we give a comparison of results of WSF calculated by the analytical formula obtained in this paper and the numerical calculations of the definition at the fixed parameter (i.e., the generalized exponent α), it can be seen that the two results are in agreement with each other exactly. Based on non-Kolmogorov power spectrum, new characteristics for wave structure function (WSF) have been found for plane and spherical wave models when the different ratio of inner scale l0 and outer scale of turbulence L0 is obtained. In outer scale assumed finite case (i.e., L0 =1m), WSF obtains the maximum when α approximates to 3.3 both for plane and spherical wave models. In outer scale assumed infinite case (i.e., L0 = ∞), the WSF can be sorted into three parts, including two rapid-rising regions (i.e., 3.0 < α < 3.3 and 3.8 < α < 4.0 ) and one gently rising region (i.e., 3.3 < α < 3.8 ).Further, the changes of scaled WSF versus the ratio of separation distance and inner scale ( p/ l0 ) are investigated under mentioned above conditions for two models. In L0 = 1m case, both for plane and spherical waves, the value of α determines the bump position of WSF. In L0 = ∞ case, the bump of scaled WSF disappears when the generalized exponent has large values. The changings of scaled WSF monotonically increase as α increased when the generalized exponent is larger than11/3 for two models. Besides, the properties of spherical waves are similar to plane waves, except which the values of WSF and the scaled WSF are smaller than plane ones.

  7. Propagation of magnetostatic spin waves in an yttrium iron garnet film for out-of-plane magnetic fields

    NASA Astrophysics Data System (ADS)

    Bang, Wonbae; Lim, Jinho; Trossman, Jonathan; Tsai, C. C.; Ketterson, John B.

    2018-06-01

    We have observed the propagation of spin waves across a thin yttrium iron garnet film on (1 1 1) gadolinium gallium garnet for magnetic fields inclined with respect to the film plane. Two principle planes were studied: that for H in the plane defined by the wave vector k and the plane normal, n, with limiting forms corresponding to the Backward Volume and Forward Volume modes, and that for H in the plane perpendicular to k, with limiting forms corresponding to the Damon-Eshbach and Forward Volume modes. By exciting the wave at one edge of the film and observing the field dependence of the phase of the received signal at the opposing edge we determined the frequency vs. wavevector relation, ω = ω (k), of various propagating modes in the film. Avoided crossings are observed in the Damon-Eshbach and Forward Volume regimes when the propagating mode intersects the higher, exchange split, volume modes, leading to an extinction of the propagating mode; analysis of the resulting behavior allows a determination of the exchange parameter. The experimental results are compared with theoretical simulations.

  8. The Relativistic Wave Vector

    ERIC Educational Resources Information Center

    Houlrik, Jens Madsen

    2009-01-01

    The Lorentz transformation applies directly to the kinematics of moving particles viewed as geometric points. Wave propagation, on the other hand, involves moving planes which are extended objects defined by simultaneity. By treating a plane wave as a geometric object moving at the phase velocity, novel results are obtained that illustrate the…

  9. An anisotropic lens for transitioning plane waves between media of different permittivities

    NASA Astrophysics Data System (ADS)

    Stone, Alexander P.; Baum, Carl E.

    1988-11-01

    A particularly simple geometry is considered in which an inhomogeneous and anisotropic lens is specified for the transition of plane waves between media of different permittivities. The permittivities of the regions outside of the lens can be constant, but the permittivity of the lens region depends on position. Results are presented for a plane wave in the second medium propagating normally to the assumed plane boundary of that medium. The results for the case of normal incidence are then generalized to the case of nonnormal incidence. The conditions of transit time conservation and impedance matching are related to the Brewster angle.

  10. Helicons in uniform fields. I. Wave diagnostics with hodograms

    NASA Astrophysics Data System (ADS)

    Urrutia, J. M.; Stenzel, R. L.

    2018-03-01

    The wave equation for whistler waves is well known and has been solved in Cartesian and cylindrical coordinates, yielding plane waves and cylindrical waves. In space plasmas, waves are usually assumed to be plane waves; in small laboratory plasmas, they are often assumed to be cylindrical "helicon" eigenmodes. Experimental observations fall in between both models. Real waves are usually bounded and may rotate like helicons. Such helicons are studied experimentally in a large laboratory plasma which is essentially a uniform, unbounded plasma. The waves are excited by loop antennas whose properties determine the field rotation and transverse dimensions. Both m = 0 and m = 1 helicon modes are produced and analyzed by measuring the wave magnetic field in three dimensional space and time. From Ampère's law and Ohm's law, the current density and electric field vectors are obtained. Hodograms for these vectors are produced. The sign ambiguity of the hodogram normal with respect to the direction of wave propagation is demonstrated. In general, electric and magnetic hodograms differ but both together yield the wave vector direction unambiguously. Vector fields of the hodogram normal yield the phase flow including phase rotation for helicons. Some helicons can have locally a linear polarization which is identified by the hodogram ellipticity. Alternatively the amplitude oscillation in time yields a measure for the wave polarization. It is shown that wave interference produces linear polarization. These observations emphasize that single point hodogram measurements are inadequate to determine the wave topology unless assuming plane waves. Observations of linear polarization indicate wave packets but not plane waves. A simple qualitative diagnostics for the wave polarization is the measurement of the magnetic field magnitude in time. Circular polarization has a constant amplitude; linear polarization results in amplitude modulations.

  11. Geometrical optics in the near field: local plane-interface approach with evanescent waves.

    PubMed

    Bose, Gaurav; Hyvärinen, Heikki J; Tervo, Jani; Turunen, Jari

    2015-01-12

    We show that geometrical models may provide useful information on light propagation in wavelength-scale structures even if evanescent fields are present. We apply a so-called local plane-wave and local plane-interface methods to study a geometry that resembles a scanning near-field microscope. We show that fair agreement between the geometrical approach and rigorous electromagnetic theory can be achieved in the case where evanescent waves are required to predict any transmission through the structure.

  12. Existence and Stability of Spatial Plane Waves for the Incompressible Navier-Stokes in R^3

    NASA Astrophysics Data System (ADS)

    Correia, Simão; Figueira, Mário

    2018-03-01

    We consider the three-dimensional incompressible Navier-Stokes equation on the whole space. We observe that this system admits a L^∞ family of global spatial plane wave solutions, which are connected with the two-dimensional equation. We then proceed to prove local well-posedness over a space which includes L^3(R^3) and these solutions. Finally, we prove L^3-stability of spatial plane waves, with no condition on their size.

  13. Exciting surface plasmon polaritons in the Kretschmann configuration by a light beam

    NASA Astrophysics Data System (ADS)

    Vinogradov, A. P.; Dorofeenko, A. V.; Pukhov, A. A.; Lisyansky, A. A.

    2018-06-01

    We consider exciting surface plasmon polaritons in the Kretschmann configuration. Contrary to common belief, we show that a plane-wave incident at an angle greater than the angle of total internal reflection does not excite surface plasmon polaritons. These excitations do arise, however, if the incident light forms a narrow beam composed of an infinite number of plane waves. The surface plasmon polariton is formed at the geometrical edge of the beam as a result of interference of reflected plane waves.

  14. Practical stability and controllability of airplanes

    NASA Technical Reports Server (NTRS)

    Norton, F H

    1923-01-01

    The effect of the characteristics of an airplane on balance, stability, and controllability, based on free flight tests, is discussed particularly in respect to the longitudinal motion. It is shown that the amount of longitudinal stability can be varied by changing the position of the center of gravity or by varying the aspect ratio of the tail plane, and that the stability for any particular air speed can be varied by changing the camber of the tail plane. It is found that complete longitudinal stability may be obtained even when the tail plane is at all times a lifting surface. Empirical values are given for the characteristics of a new airplane for producing any desired amount of stability and control, or to correct the faults of an airplane already constructed. (author)

  15. Multiplane wave imaging increases signal-to-noise ratio in ultrafast ultrasound imaging.

    PubMed

    Tiran, Elodie; Deffieux, Thomas; Correia, Mafalda; Maresca, David; Osmanski, Bruno-Felix; Sieu, Lim-Anna; Bergel, Antoine; Cohen, Ivan; Pernot, Mathieu; Tanter, Mickael

    2015-11-07

    Ultrafast imaging using plane or diverging waves has recently enabled new ultrasound imaging modes with improved sensitivity and very high frame rates. Some of these new imaging modalities include shear wave elastography, ultrafast Doppler, ultrafast contrast-enhanced imaging and functional ultrasound imaging. Even though ultrafast imaging already encounters clinical success, increasing even more its penetration depth and signal-to-noise ratio for dedicated applications would be valuable. Ultrafast imaging relies on the coherent compounding of backscattered echoes resulting from successive tilted plane waves emissions; this produces high-resolution ultrasound images with a trade-off between final frame rate, contrast and resolution. In this work, we introduce multiplane wave imaging, a new method that strongly improves ultrafast images signal-to-noise ratio by virtually increasing the emission signal amplitude without compromising the frame rate. This method relies on the successive transmissions of multiple plane waves with differently coded amplitudes and emission angles in a single transmit event. Data from each single plane wave of increased amplitude can then be obtained, by recombining the received data of successive events with the proper coefficients. The benefits of multiplane wave for B-mode, shear wave elastography and ultrafast Doppler imaging are experimentally demonstrated. Multiplane wave with 4 plane waves emissions yields a 5.8  ±  0.5 dB increase in signal-to-noise ratio and approximately 10 mm in penetration in a calibrated ultrasound phantom (0.7 d MHz(-1) cm(-1)). In shear wave elastography, the same multiplane wave configuration yields a 2.07  ±  0.05 fold reduction of the particle velocity standard deviation and a two-fold reduction of the shear wave velocity maps standard deviation. In functional ultrasound imaging, the mapping of cerebral blood volume results in a 3 to 6 dB increase of the contrast-to-noise ratio in deep structures of the rodent brain.

  16. From plane waves to local Gaussians for the simulation of correlated periodic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booth, George H., E-mail: george.booth@kcl.ac.uk; Tsatsoulis, Theodoros; Grüneis, Andreas, E-mail: a.grueneis@fkf.mpg.de

    2016-08-28

    We present a simple, robust, and black-box approach to the implementation and use of local, periodic, atom-centered Gaussian basis functions within a plane wave code, in a computationally efficient manner. The procedure outlined is based on the representation of the Gaussians within a finite bandwidth by their underlying plane wave coefficients. The core region is handled within the projected augment wave framework, by pseudizing the Gaussian functions within a cutoff radius around each nucleus, smoothing the functions so that they are faithfully represented by a plane wave basis with only moderate kinetic energy cutoff. To mitigate the effects of themore » basis set superposition error and incompleteness at the mean-field level introduced by the Gaussian basis, we also propose a hybrid approach, whereby the complete occupied space is first converged within a large plane wave basis, and the Gaussian basis used to construct a complementary virtual space for the application of correlated methods. We demonstrate that these pseudized Gaussians yield compact and systematically improvable spaces with an accuracy comparable to their non-pseudized Gaussian counterparts. A key advantage of the described method is its ability to efficiently capture and describe electronic correlation effects of weakly bound and low-dimensional systems, where plane waves are not sufficiently compact or able to be truncated without unphysical artifacts. We investigate the accuracy of the pseudized Gaussians for the water dimer interaction, neon solid, and water adsorption on a LiH surface, at the level of second-order Møller–Plesset perturbation theory.« less

  17. Reconfigurable lateral optical force achieved by selectively exciting plasmonic dark modes near Fano resonance

    NASA Astrophysics Data System (ADS)

    Chen, Huajin; Ye, Qian; Zhang, Yiwen; Shi, Lei; Liu, Shiyang; Jian, Zi; Lin, Zhifang

    2017-08-01

    We demonstrate a reconfigurable lateral optical force (OF) on a plasmonic nanoparticle immersed in a simple optical field invariant along the lateral direction and formed by two interfering plane waves. This lateral OF is shown, from the multipolar expansion technique, attributed to several coupling channels established between multiple multipoles excited on a plasmonic nanoparticle, in particular, the adjacent electric multipole modes that bring about the Fano interferences, which can substantially enhance the lateral scattering asymmetry, leading to an augmented lateral OF comparable to the longitudinal OF. More importantly, by engineering Fano interference either intrinsically through particle size or extrinsically through selectively exciting narrow plasmonic dark modes the direction of the lateral OF is reversibly switchable. The lateral OF can even be modulated continuously from positive to negative by controlling the incident angle of the interfering plane waves due to the variation of relative phase of the excited plasmonic dark modes near Fano resonance, facilitating the plasmonic nanoparticle as a controllable conveyor as well as the optical selection and separation. Besides, a fundamental and counterintuitive physical consequence emerges in that the simple proportional relation between the lateral OF and the Belinfante spin momentum derived in the small particle limit breaks down when the Fano interference comes into play, in particular, a negative lateral OF opposite the Belinfante spin momentum can be induced by properly controlling the selective excitation.

  18. The elliptical Gaussian wave transformation due to diffraction by an elliptical hologram

    NASA Astrophysics Data System (ADS)

    Janicijevic, L.

    1985-03-01

    Realized as an interferogram of a spherical and a cylindrical wave, the elliptical hologram is treated as a plane diffracting grating which produces Fresnel diffraction of a simple astigmatic Gaussian incident wave. It is shown that if the principal axes of the incident beam coincide with the principal axes of the hologram, the diffracted wave field is composed of three different astigmatic Gaussian waves, with their waists situated in parallel but distinct planes. The diffraction pattern, observed on a transverse screen, is the result of the interference of the three diffracted wave components. It consists of three systems of overlapped second-order curves, whose shape depends on the distance of the observation screen from the hologram, as well as on the parameters of the incident wave beam and the hologram. The results are specialized for gratings in the form of circular and linear holograms and for the case of a stigmatic Gaussian incident wave, as well as for the normal plane-wave incidence on the three mentioned types of hologram.

  19. An impedance analysis of double-stream interaction in semiconductors

    NASA Technical Reports Server (NTRS)

    Chen, P. W.; Durney, C. H.

    1972-01-01

    The electromagnetic waves propagating through a drifting semiconductor plasma are studied from a macroscopic point of view in terms of double-stream interaction. The possible existing waves (helicon waves, longitudinal waves, ordinary waves, and pseudolongitudinal waves) which depend upon the orientation of the dc external magnetic field are derived. A powerful impedance concept is introduced to investigate the wave behavior of longitudinal (space charge) waves or pseudolongitudinal waves in a semiconductor plasma. The impedances due to one- and two-carrier stream interactions were calculated theoretically.

  20. Isotropic transmission of magnon spin information without a magnetic field.

    PubMed

    Haldar, Arabinda; Tian, Chang; Adeyeye, Adekunle Olusola

    2017-07-01

    Spin-wave devices (SWD), which use collective excitations of electronic spins as a carrier of information, are rapidly emerging as potential candidates for post-semiconductor non-charge-based technology. Isotropic in-plane propagating coherent spin waves (magnons), which require magnetization to be out of plane, is desirable in an SWD. However, because of lack of availability of low-damping perpendicular magnetic material, a usually well-known in-plane ferrimagnet yttrium iron garnet (YIG) is used with a large out-of-plane bias magnetic field, which tends to hinder the benefits of isotropic spin waves. We experimentally demonstrate an SWD that eliminates the requirement of external magnetic field to obtain perpendicular magnetization in an otherwise in-plane ferromagnet, Ni 80 Fe 20 or permalloy (Py), a typical choice for spin-wave microconduits. Perpendicular anisotropy in Py, as established by magnetic hysteresis measurements, was induced by the exchange-coupled Co/Pd multilayer. Isotropic propagation of magnon spin information has been experimentally shown in microconduits with three channels patterned at arbitrary angles.

  1. Isotropic transmission of magnon spin information without a magnetic field

    PubMed Central

    Haldar, Arabinda; Tian, Chang; Adeyeye, Adekunle Olusola

    2017-01-01

    Spin-wave devices (SWD), which use collective excitations of electronic spins as a carrier of information, are rapidly emerging as potential candidates for post-semiconductor non-charge-based technology. Isotropic in-plane propagating coherent spin waves (magnons), which require magnetization to be out of plane, is desirable in an SWD. However, because of lack of availability of low-damping perpendicular magnetic material, a usually well-known in-plane ferrimagnet yttrium iron garnet (YIG) is used with a large out-of-plane bias magnetic field, which tends to hinder the benefits of isotropic spin waves. We experimentally demonstrate an SWD that eliminates the requirement of external magnetic field to obtain perpendicular magnetization in an otherwise in-plane ferromagnet, Ni80Fe20 or permalloy (Py), a typical choice for spin-wave microconduits. Perpendicular anisotropy in Py, as established by magnetic hysteresis measurements, was induced by the exchange-coupled Co/Pd multilayer. Isotropic propagation of magnon spin information has been experimentally shown in microconduits with three channels patterned at arbitrary angles. PMID:28776033

  2. Photoelectron wave function in photoionization: Plane wave or Coulomb wave? [Does photoionization of neutral targets produce Coulomb or plane waves?

    DOE PAGES

    Gozem, Samer; Gunina, Anastasia O.; Ichino, Takatoshi; ...

    2015-10-28

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectronmore » wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. Finally, the results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.« less

  3. A combined representation method for use in band structure calculations. 1: Method

    NASA Technical Reports Server (NTRS)

    Friedli, C.; Ashcroft, N. W.

    1975-01-01

    A representation was described whose basis levels combine the important physical aspects of a finite set of plane waves with those of a set of Bloch tight-binding levels. The chosen combination has a particularly simple dependence on the wave vector within the Brillouin Zone, and its use in reducing the standard one-electron band structure problem to the usual secular equation has the advantage that the lattice sums involved in the calculation of the matrix elements are actually independent of the wave vector. For systems with complicated crystal structures, for which the Korringa-Kohn-Rostoker (KKR), Augmented-Plane Wave (APW) and Orthogonalized-Plane Wave (OPW) methods are difficult to apply, the present method leads to results with satisfactory accuracy and convergence.

  4. Nonlinear mechanisms of two-dimensional wave-wave transformations in the initially coupled acoustic structure

    NASA Astrophysics Data System (ADS)

    Vorotnikov, K.; Starosvetsky, Y.

    2018-01-01

    The present study concerns two-dimensional nonlinear mechanisms of bidirectional and unidirectional channeling of longitudinal and shear waves emerging in the locally resonant acoustic structure. The system under consideration comprises an oscillatory chain of the axially coupled masses. Each mass of the chain is subject to the local linear potential along the lateral direction and incorporates the lightweight internal rotator. In the present work, we demonstrate the emergence of special resonant regimes of complete bi- and unidirectional transitions between the longitudinal and the shear waves of the locally resonant chain. These regimes are manifested by the two-dimensional energy channeling between the longitudinal and the shear traveling waves in the recurrent as well as the irreversible fashion. We show that the spatial control of the two dimensional energy flow between the longitudinal and the shear waves is solely governed by the motion of the internal rotators. Nonlinear analysis of the regimes of a bidirectional wave channeling unveils their global bifurcation structure and predicts the zones of their spontaneous transitions from a complete bi-directional wave channeling to the one-directional entrapment. An additional regime of a complete irreversible resonant transformation of the longitudinal wave into a shear wave is analyzed in the study. The intrinsic mechanism governing the unidirectional wave reorientation is described analytically. The results of the analysis of both mechanisms are substantiated by the numerical simulations of the full model and are found to be in a good agreement.

  5. Hydrodynamic waves in films flowing under an inclined plane

    NASA Astrophysics Data System (ADS)

    Rohlfs, Wilko; Pischke, Philipp; Scheid, Benoit

    2017-04-01

    This study addresses the fluid dynamics of two-dimensional falling films flowing underneath an inclined plane using the weighted integral boundary layer (WIBL) model and direct numerical simulations (DNSs). Film flows under an inclined plane are subject to hydrodynamic and Rayleigh-Taylor instabilities, leading to the formation of two- and three-dimensional waves, rivulets, and eventually dripping. The latter can only occur in film flows underneath an inclined plane such that the gravitational force acts in a destabilizing manner by pulling liquid into the gaseous atmosphere. The DNSs are performed using the solver interFoam of the open-source code OpenFOAM with a gradient limiter approach that avoids artificial oversharpening of the interface. We find good agreement between the two model approaches for wave amplitude and wave speed irrespectively of the orientation of the gravitational force and before the onset of dripping. The latter cannot be modeled with the WIBL model by nature as it is a single-value model. However, for large-amplitude solitarylike waves, the WIBL model fails to predict the velocity field within the wave, which is confirmed by a balance of viscous dissipation and the change in potential energy. In the wavy film flows, different flow features can occur such as circulating waves, i.e., circulating eddies in the main wave hump, or flow reversal, i.e., rotating vortices in the capillary minima of the wave. A phase diagram for all flow features is presented based on results of the WIBL model. Regarding the transition to circulating waves, we show that a critical ratio between the maximum and substrate film thickness (approximately 2.5) is also universal for film flows underneath inclined planes (independent of wavelength, inclination, viscous dissipation, and Reynolds number).

  6. Plane wave packet formulation of atom-plus-diatom quantum reactive scattering.

    PubMed

    Althorpe, Stuart C

    2004-07-15

    We recently interpreted several reactive scattering experiments using a plane wave packet (PWP) formulation of quantum scattering theory [see, e.g., S. C. Althorpe, F. Fernandez-Alonso, B. D. Bean, J. D. Ayers, A. E. Pomerantz, R. N. Zare, and E. Wrede, Nature (London) 416, 67 (2002)]. This paper presents the first derivation of this formulation for atom-plus-diatom reactive scattering, and explains its relation to conventional time-independent reactive scattering. We generalize recent results for spherical-particle scattering [S. C. Althorpe, Phys. Rev. A 69, 042702 (2004)] to atom-rigid-rotor scattering in the space-fixed frame, atom-rigid-rotor scattering in the body-fixed frame, and finally A+BC rearrangement scattering. The reactive scattering is initiated by a plane wave packet, describing the A+BC reagents in center-of-mass scattering coordinates, and is detected by projecting onto a series of AC+B (or AB+C) plane wave "probe" packets. The plane wave packets are localized at the closest distance from the scattering center at which the interaction potential can be neglected. The time evolution of the initial plane wave packet provides a clear visualization of the scattering into space of the reaction products. The projection onto the probe packets yields the time-independent, state-to-state scattering amplitude, and hence the differential cross section. We explain how best to implement the PWP approach in a numerical computation, and illustrate this with a detailed application to the H+D2 reaction. (c) 2004 American Institute of Physics

  7. Vectorial diffraction properties of THz vortex Bessel beams.

    PubMed

    Wu, Zhen; Wang, Xinke; Sun, Wenfeng; Feng, Shengfei; Han, Peng; Ye, Jiasheng; Yu, Yue; Zhang, Yan

    2018-01-22

    A vortex Bessel beam combines the merits of an optical vortex and a Bessel beam, including a spiral wave front and a non-diffractive feature, which has immense application potentials in optical trapping, optical fabrication, optical communications, and so on. Here, linearly and circularly polarized vortex Bessel beams in the terahertz (THz) frequency range are generated by utilizing a THz quarter wave plate, a spiral phase plate, and Teflon axicons with different opening angles. Taking advantage of a THz focal-plane imaging system, vectorial diffraction properties of the THz vortex Bessel beams are comprehensively characterized and discussed, including the transverse (Ex, Ey) and longitudinal (Ez) polarization components. The experimental phenomena are accurately simulated by adopting the vectorial Rayleigh diffraction integral. By varying the opening angle of the axicon, the characteristic parameters of these THz vortex Bessel beams are exhibited and compared, including the light spot size, the diffraction-free range, and the phase evolution process. This work provides the precise experimental and theoretical bases for the comprehension and application of a THz vortex Bessel beam.

  8. Absolute instabilities of travelling wave solutions in a Keller-Segel model

    NASA Astrophysics Data System (ADS)

    Davis, P. N.; van Heijster, P.; Marangell, R.

    2017-11-01

    We investigate the spectral stability of travelling wave solutions in a Keller-Segel model of bacterial chemotaxis with a logarithmic chemosensitivity function and a constant, sublinear, and linear consumption rate. Linearising around the travelling wave solutions, we locate the essential and absolute spectrum of the associated linear operators and find that all travelling wave solutions have parts of the essential spectrum in the right half plane. However, we show that in the case of constant or sublinear consumption there exists a range of parameters such that the absolute spectrum is contained in the open left half plane and the essential spectrum can thus be weighted into the open left half plane. For the constant and sublinear consumption rate models we also determine critical parameter values for which the absolute spectrum crosses into the right half plane, indicating the onset of an absolute instability of the travelling wave solution. We observe that this crossing always occurs off of the real axis.

  9. Evanescent-Wave Filtering in Images Using Remote Terahertz Structured Illumination

    NASA Astrophysics Data System (ADS)

    Flammini, M.; Pontecorvo, E.; Giliberti, V.; Rizza, C.; Ciattoni, A.; Ortolani, M.; DelRe, E.

    2017-11-01

    Imaging with structured illumination allows for the retrieval of subwavelength features of an object by conversion of evanescent waves into propagating waves. In conditions in which the object plane and the structured-illumination plane do not coincide, this conversion process is subject to progressive filtering of the components with high spatial frequency when the distance between the two planes increases, until the diffraction-limited lateral resolution is restored when the distance exceeds the extension of evanescent waves. We study the progressive filtering of evanescent waves by developing a remote super-resolution terahertz imaging system operating at a wavelength λ =1.00 mm , based on a freestanding knife edge and a reflective confocal terahertz microscope. In the images recorded with increasing knife-edge-to-object-plane distance, we observe the transition from a super-resolution of λ /17 ≃60 μ m to the diffraction-limited lateral resolution of Δ x ≃λ expected for our confocal microscope. The extreme nonparaxial conditions are analyzed in detail, exploiting the fact that, in the terahertz frequency range, the knife edge can be positioned at a variable subwavelength distance from the object plane. Electromagnetic simulations of radiation scattering by the knife edge reproduce the experimental super-resolution achieved.

  10. 49 CFR 571.226 - Standard No. 226; Ejection Mitigation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... Zero displacement plane means, a vertical plane parallel to the vehicle longitudinal centerline and... millimeters beyond the zero displacement plane. S4.2.1.1No vehicle shall use movable glazing as the sole means..., target locations are identified (S5.2) and the zero displacement plane location is determined (S5.3). The...

  11. Probing the smearing effect by a pointlike graviton in the plane-wave matrix model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Bum-Hoon; Nam, Siyoung; Shin, Hyeonjoon

    2010-08-15

    We investigate the interaction between a flat membrane and pointlike graviton in the plane-wave matrix model. The one-loop effective potential in the large-distance limit is computed and is shown to be of r{sup -3} type where r is the distance between two objects. This type of interaction has been interpreted as the one incorporating the smearing effect due to the configuration of a flat membrane in a plane-wave background. Our results support this interpretation and provide more evidence about it.

  12. Applicability of geometrical optics to in-plane liquid-crystal configurations.

    PubMed

    Sluijter, M; Xu, M; Urbach, H P; de Boer, D K G

    2010-02-15

    We study the applicability of geometrical optics to inhomogeneous dielectric nongyrotropic optically anisotropic media typically found in in-plane liquid-crystal configurations with refractive indices n(o)=1.5 and n(e)=1.7. To this end, we compare the results of advanced ray- and wave-optics simulations of the propagation of an incident plane wave to a special anisotropic configuration. Based on the results, we conclude that for a good agreement between ray and wave optics, a maximum change in optical properties should occur over a distance of at least 20 wavelengths.

  13. A parallel orbital-updating based plane-wave basis method for electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Pan, Yan; Dai, Xiaoying; de Gironcoli, Stefano; Gong, Xin-Gao; Rignanese, Gian-Marco; Zhou, Aihui

    2017-11-01

    Motivated by the recently proposed parallel orbital-updating approach in real space method [1], we propose a parallel orbital-updating based plane-wave basis method for electronic structure calculations, for solving the corresponding eigenvalue problems. In addition, we propose two new modified parallel orbital-updating methods. Compared to the traditional plane-wave methods, our methods allow for two-level parallelization, which is particularly interesting for large scale parallelization. Numerical experiments show that these new methods are more reliable and efficient for large scale calculations on modern supercomputers.

  14. Solid explosive plane-wave lenses pressed-to-shape with dies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olinger, B.

    2007-11-01

    Solid-explosive plane-wave lenses 1", 2" and 4¼" in diameter have been mass-produced from components pressed-to-shape with aluminum dies. The method used to calculate the contour between the solid plane-wave lens components pressed-to-shape with the dies is explained. The steps taken to press, machine, and assemble the lenses are described. The method of testing the lenses, the results of those tests, and the corrections to the dies are reviewed. The work on the ½", 8", and 12" diameter lenses is also discussed.

  15. RCS measurements, transformations, and comparisons under cylindrical and plane wave illumination

    NASA Astrophysics Data System (ADS)

    Vokura, V. J.; Balanis, Constantine A.; Birtcher, Craig R.

    1994-03-01

    Monostatic RCS measurements of a long bar (at X-band) and of a scale model aircraft (at C-band) were performed under the quasi-plane wave illumination produced by a dual parabolic-cylinder CATR. At Arizona State University's ElectroMagnetic Anechoic Chamber (EMAC) facility, these measurements were repeated under the cylindrical wave illumination produced by a March Microwave Single-Plane Collimating Range (SPCR). The SPRC measurements were corrected using corrected using the 'reference target method.' The corrected SPCR measurements are in good agreement with the CATR measurements.

  16. Regional seismic-wave propagation from the M5.8 23 August 2011, Mineral, Virginia, earthquake

    USGS Publications Warehouse

    Pollitz, Fred; Mooney, Walter D.

    2015-01-01

    The M5.8 23 August 2011 Mineral, Virginia, earthquake was felt over nearly the entire eastern United States and was recorded by a wide array of seismic broadband instruments. The earthquake occurred ~200 km southeast of the boundary between two distinct geologic belts, the Piedmont and Blue Ridge terranes to the southeast and the Valley and Ridge Province to the northwest. At a dominant period of 3 s, coherent postcritical P-wave (i.e., direct longitudinal waves trapped in the crustal waveguide) arrivals persist to a much greater distance for propagation paths toward the northwest quadrant than toward other directions; this is probably related to the relatively high crustal thickness beneath and west of the Appalachian Mountains. The seismic surface-wave arrivals comprise two distinct classes: those with weakly dispersed Rayleigh waves and those with strongly dispersed Rayleigh waves. We attribute the character of Rayleigh wave arrivals in the first class to wave propagation through a predominantly crystalline crust (Blue Ridge Mountains and Piedmont terranes) with a relatively thin veneer of sedimentary rock, whereas the temporal extent of the Rayleigh wave arrivals in the second class are well explained as the effect of the thick sedimentary cover of the Valley and Ridge Province and adjacent Appalachian Plateau province to its northwest. Broadband surface-wave ground velocity is amplified along both north-northwest and northeast azimuths from the Mineral, Virginia, source. The former may arise from lateral focusing effects arising from locally thick sedimentary cover in the Appalachian Basin, and the latter may result from directivity effects due to a northeast rupture propagation along the finite fault plane.

  17. Novel high-gain, improved-bandwidth, finned-ladder V-band Traveling-Wave Tube slow-wave circuit design

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Wilson, Jeffrey D.

    1994-01-01

    The V-band frequency range of 59-64 GHz is a region of the millimeter-wave spectrum that has been designated for inter-satellite communications. As a first effort to develop a high-efficiency V-band Traveling-Wave Tube (TWT), variations on a ring-plane slow-wave circuit were computationally investigated to develop an alternative to the more conventional ferruled coupled-cavity circuit. The ring-plane circuit was chosen because of its high interaction impedance, large beam aperture, and excellent thermal dissipation properties. Despite these advantages, however, low bandwidth and high voltage requirements have, until now, prevented its acceptance outside the laboratory. In this paper, the three-dimensional electrodynamic simulation code MAFIA (solution of MAxwell's Equation by the Finite-Integration-Algorithm) is used to investigate methods of increasing the bandwidth and lowering the operating voltage of the ring-plane circuit. Calculations of frequency-phase dispersion, beam on-axis interaction impedance, attenuation and small-signal gain per wavelength were performed for various geometric variations and loading distributions of the ring-plane TWT slow-wave circuit. Based on the results of the variations, a circuit termed the finned-ladder TWT slow-wave circuit was designed and is compared here to the scaled prototype ring-plane and a conventional ferruled coupled-cavity TWT circuit over the V-band frequency range. The simulation results indicate that this circuit has a much higher gain, significantly wider bandwidth, and a much lower voltage requirement than the scaled ring-plane prototype circuit, while retaining its excellent thermal dissipation properties. The finned-ladder circuit has a much larger small-signal gain per wavelength than the ferruled coupled-cavity circuit, but with a moderate sacrifice in bandwidth.

  18. Understanding the power reflection and transmission coefficients of a plane wave at a planar interface

    NASA Astrophysics Data System (ADS)

    Ye, Qian; Jiang, Yikun; Lin, Haoze

    2017-03-01

    In most textbooks, after discussing the partial transmission and reflection of a plane wave at a planar interface, the power (energy) reflection and transmission coefficients are introduced by calculating the normal-to-interface components of the Poynting vectors for the incident, reflected and transmitted waves, separately. Ambiguity arises among students since, for the Poynting vector to be interpreted as the energy flux density, on the incident (reflected) side, the electric and magnetic fields involved must be the total fields, namely, the sum of incident and reflected fields, instead of the partial fields which are just the incident (reflected) fields. The interpretation of the cross product of partial fields as energy flux has not been obviously justified in most textbooks. Besides, the plane wave is actually an idealisation that is only ever found in textbooks, then what do the reflection and transmission coefficients evaluated for a plane wave really mean for a real beam of limited extent? To provide a clearer physical picture, we exemplify a light beam of finite transverse extent by a fundamental Gaussian beam and simulate its reflection and transmission at a planar interface. Due to its finite transverse extent, we can then insert the incident fields or reflected fields as total fields into the expression of the Poynting vector to evaluate the energy flux and then power reflection and transmission coefficients. We demonstrate that the power reflection and transmission coefficients of a beam of finite extent turn out to be the weighted sum of the corresponding coefficients for all constituent plane wave components that form the beam. The power reflection and transmission coefficients of a single plane wave serve, in turn, as the asymptotes for the corresponding coefficients of a light beam as its width expands infinitely.

  19. Anisotropy of critical correlations in moderately delocalized cerium and actinide systems

    NASA Astrophysics Data System (ADS)

    Kioussis, Nicholas; Cooper, Bernard R.

    1986-09-01

    The equilibrium and excitation magnetic behavior of a class of cerium and light actinide compounds have been explained previously, in a theory first developed by Siemann and Cooper, in terms of a band-f-electron anisotropic hybridization-mediated two-ion interaction of the Coqblin-Schrieffer type. Using the same theory, we present here a calculation, within the random-phase approximation, of the longitudinal component of the static wave-vector-dependent susceptibility in the paramagnetic phase. The calculations have been performed in the presence of a cubic crystal field (CF) and yield results for the ratio of inverse critical correlation lengths, κ/κ⊥, parallel and perpendicular to the moment direction, that compare well with those of diffuse critical neutron scattering experiments. In Ce3+ (f1) compounds, we find that as the CF interaction (Γ7 ground state) predominates over the two-ion interaction, the relative strength of the coupling within the ferromagnetic \\{001\\} planes (with moments perpendicular to the planes) and that between the \\{001\\} planes is gradually reversed, resulting in a ratio κ/κ⊥ smaller than unity, as is experimentally observed. We also present results for the effect of differing intraionic (L-S, intermediate, and j-j) coupling on κ/κ⊥ for the case of Pu3+(f5) and U3+(f3) compounds.

  20. Strings on AdS_3 x S^3 and the Plane-Wave Limit. Issues on PP-Wave/CFT Holography

    NASA Astrophysics Data System (ADS)

    Zapata, Oswaldo

    2005-10-01

    In this thesis we give explicit results for bosonic string amplitudes on AdS_3 x S^3 and the corresponding plane-wave limit. We also analyze the consequences of our approach for understanding holography in this set up, as well as its possible generalization to other models.

  1. The Relativistic Transformation for an Electromagnetic Plane Wave with General Time Dependence

    ERIC Educational Resources Information Center

    Smith, Glenn S.

    2012-01-01

    In special relativity, the transformation between inertial frames for an electromagnetic plane wave is usually derived for the time-harmonic case (the field is a sinusoid of infinite duration), even though all practical waves are of finite duration and may not even contain a dominant sinusoid. This paper presents an alternative derivation in which…

  2. Selectively transporting small chiral particles with circularly polarized Airy beams.

    PubMed

    Lu, Wanli; Chen, Huajin; Guo, Sandong; Liu, Shiyang; Lin, Zhifang

    2018-05-01

    Based on the full wave simulation, we demonstrate that a circularly polarized vector Airy beam can selectively transport small chiral particles along a curved trajectory via the chirality-tailored optical forces. The transverse optical forces can draw the chiral particles with different particle chirality towards or away from the intensity maxima of the beam, leading to the selective trapping in the transverse plane. The transversely trapped chiral particles are then accelerated along a curved trajectory of the Airy beam by the chirality-tailored longitudinal scattering force, rendering an alternative way to sort and/or transport chiral particles with specified helicity. Finally, the underlying physics of the chirality induced transverse trap and de-trap phenomena are examined by the analytical theory within the dipole approximation.

  3. On a quantum particle in laser channels

    NASA Astrophysics Data System (ADS)

    Dik, A. V.; Frolov, E. N.; Dabagov, S. B.

    2018-02-01

    In this paper the effective potential describing interaction of a scalar quantum particle with arbitrary nonuniform laser field is derived for a wide spectrum of the particle energies. The presented method allows to take into account all the features of the effective potential for a scalar particle. The derived expression for effective potential for quantum particle has the same form as the one presented earlier for a classical particle. A special case for channeling of a quantum particle as well as accompanying channeling radiation in a field formed by two crossed plane laser waves is considered. It is shown that relativistic particles moving near the laser channel bottom should be examined as quantum ones at both arbitrarily large longitudinal energies and laser fields of accessible intensities.

  4. Plane waves in magneto-thermoelastic anisotropic medium based on (L-S) theory under the effect of Coriolis and centrifugal forces

    NASA Astrophysics Data System (ADS)

    Alesemi, Meshari

    2018-04-01

    The objective of this research is to illustrate the effectiveness of the thermal relaxation time based on the theory of Lord-Shulman (L-S), Coriolis and Centrifugal Forces on the reflection coefficients of plane waves in an anisotropic magneto-thermoelastic medium. Assuming the elastic medium is rotating with stable angular velocity and the imposed magnetic field is parallel to the boundary of the half-space. The basic equations of a transversely isotropic rotating magneto-thermoelastic medium are formulated according to thermoelasticity theory of Lord-Shulman (L-S). Next to that, getting the velocity equation which is illustrated to show existence of three quasi-plane waves propagating in the medium. The amplitude ratios coefficients of these plane waves have been given and then computed numerically and plotted graphically to demonstrate the influences of the rotation on the Zinc material.

  5. First evidence of non-locality in real band-gap metamaterials: determining parameters in the relaxed micromorphic model

    PubMed Central

    Barbagallo, Gabriele; d’Agostino, Marco Valerio; Placidi, Luca; Neff, Patrizio

    2016-01-01

    In this paper, we propose the first estimate of some elastic parameters of the relaxed micromorphic model on the basis of real experiments of transmission of longitudinal plane waves across an interface separating a classical Cauchy material (steel plate) and a phononic crystal (steel plate with fluid-filled holes). A procedure is set up in order to identify the parameters of the relaxed micromorphic model by superimposing the experimentally based profile of the reflection coefficient (plotted as function of the wave-frequency) with the analogous profile obtained via numerical simulations. We determine five out of six constitutive parameters which are featured by the relaxed micromorphic model in the isotropic case, plus the determination of the micro-inertia parameter. The sixth elastic parameter, namely the Cosserat couple modulus μc, still remains undetermined, since experiments on transverse incident waves are not yet available. A fundamental result of this paper is the estimate of the non-locality intrinsically associated with the underlying microstructure of the metamaterial. We show that the characteristic length Lc measuring the non-locality of the phononic crystal is of the order of 13 of the diameter of its fluid-filled holes. PMID:27436984

  6. First evidence of non-locality in real band-gap metamaterials: determining parameters in the relaxed micromorphic model.

    PubMed

    Madeo, Angela; Barbagallo, Gabriele; d'Agostino, Marco Valerio; Placidi, Luca; Neff, Patrizio

    2016-06-01

    In this paper, we propose the first estimate of some elastic parameters of the relaxed micromorphic model on the basis of real experiments of transmission of longitudinal plane waves across an interface separating a classical Cauchy material (steel plate) and a phononic crystal (steel plate with fluid-filled holes). A procedure is set up in order to identify the parameters of the relaxed micromorphic model by superimposing the experimentally based profile of the reflection coefficient (plotted as function of the wave-frequency) with the analogous profile obtained via numerical simulations. We determine five out of six constitutive parameters which are featured by the relaxed micromorphic model in the isotropic case, plus the determination of the micro-inertia parameter. The sixth elastic parameter, namely the Cosserat couple modulus μ c , still remains undetermined, since experiments on transverse incident waves are not yet available. A fundamental result of this paper is the estimate of the non-locality intrinsically associated with the underlying microstructure of the metamaterial. We show that the characteristic length L c measuring the non-locality of the phononic crystal is of the order of [Formula: see text] of the diameter of its fluid-filled holes.

  7. Innovative Technologies for Maskless Lithography and Non-Conventional Patterning

    DTIC Science & Technology

    2008-08-01

    wave sources are used and quantitative data is produced on the local field intensities and scattered plane and plasmon wave amplitudes and phases...transistors”, Transducers 2007, Lyon, France, 3EH5.P, 2007. 9. D. Huang and V. Subramanian “Iodine-doped pentacene schottky diodes for high-frequency RFID...wave sources are used and quantitative data is produced on the local field intensities and scattered plane and plasmon wave amplitudes and phases

  8. Forward volume and surface magnetostatic modes in an yttrium iron garnet film for out-of-plane magnetic fields: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Lim, Jinho; Bang, Wonbae; Trossman, Jonathan; Amanov, Dovran; Ketterson, John B.

    2018-05-01

    We present experimental and theoretical results on the propagation of magnetostatic spin waves in a film of yttrium iron garnet (YIG) for out-of-plane magnetic fields for which propagation in opposite directions is nonreciprocal in the presence of a metal layer. The plane studied is defined by the film normal n and n × k where k is the wave vector of the mode. Spin waves in this setting are classified as forward volume waves or surface waves and display non-reciprocity in the presence of an adjacent metal layer except for when H//n. The measurements are carried out in a transmission geometry, and a microwave mixer is used to measure the change of phase, and with it the evolution of wavevector, of the arriving spin wave with external magnetic field.

  9. Transcranial functional ultrasound imaging of the brain using microbubble-enhanced ultrasensitive Doppler

    PubMed Central

    Errico, Claudia; Osmanski, Bruno-Félix; Pezet, Sophie; Couture, Olivier; Lenkei, Zsolt; Tanter, Mickael

    2016-01-01

    Functional ultrasound (fUS) is a novel neuroimaging technique, based on high-sensitivity ultrafast Doppler imaging of cerebral blood volume, capable of measuring brain activation and connectivity in rodents with high spatiotemporal resolution (100 μm, 1 ms). However, the skull attenuates acoustic waves, so fUS in rats currently requires craniotomy or a thinned-skull window. Here we propose a non-invasive approach by enhancing the fUS signal with a contrast agent, inert gas microbubbles. Plane-wave illumination of the brain at high frame rate (500 Hz compounded sequence with three tilted plane waves, PRF = 1500Hz with a 128 element 15 MHz linear transducer), yields highly-resolved neurovascular maps. We compared fUS imaging performance through the intact skull bone (transcranial fUS) versus a thinned-skull window in the same animal. First, we show that the vascular network of the adult rat brain can be imaged transcranially only after a bolus intravenous injection of microbubbles, which leads to a 9 dB gain in the contrast-to-tissue ratio. Next, we demonstrate that functional increase in the blood volume of the primary sensory cortex after targeted electrical-evoked stimulations of the sciatic nerve is observable transcranially in presence of contrast agents, with high reproducibility (Pearson's coefficient ρ = 0.7 ± 0.1, p = 0.85). Our work demonstrates that the combination of ultrafast Doppler imaging and injection of contrast agent allows non-invasive functional brain imaging through the intact skull bone in rats. These results should ease non-invasive longitudinal studies in rodents and open a promising perspective for the adoption of highly resolved fUS approaches for the adult human brain. PMID:26416649

  10. 49 CFR 572.124 - Thorax assembly and test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... horizontally and forward, parallel to the midsagittal plane, the midsagittal plane vertical within ±1 degree... the impact point at the chest midsagittal plane so that the impact point of the longitudinal centerline of the probe coincides with the midsagittal plane of the dummy within ±2.5 mm (0.1 in) and is 12.7...

  11. Planetary wave-like oscillations in the ionosphere retrieved with a longitudinal chain of ionosondes at high northern latitudes

    NASA Astrophysics Data System (ADS)

    Stray, Nora H.; Espy, Patrick J.

    2018-06-01

    This paper examines the influence of neutral dynamics on the high latitude ionosphere. Using a longitudinal chain of ionosondes at high northern latitudes (52°-65° N), planetary wave-like structures were observed in the spatial structure of the peak electron density in the ionosphere. Longitudinal wavenumbers S0, S1 and S2 have been extracted from these variations of the F layer. The observed wave activity in wavenumber one and two does not show any significant correlation with indices of magnetic activity, suggesting that this is not the primary driver. In addition, the motion of the S1 ionospheric wave structures parallels that of the S1 planetary waves observed in the winds of the mesosphere-lower-thermosphere derived from a longitudinal array of SuperDARN meteor-radar wind measurements. The time delay between the motions of the wave structures would indicate a indirect coupling, commensurate with the diffusion to the ionosphere of mesospheric atomic oxygen perturbations.

  12. Sound field reconstruction within an entire cavity by plane wave expansions using a spherical microphone array.

    PubMed

    Wang, Yan; Chen, Kean

    2017-10-01

    A spherical microphone array has proved effective in reconstructing an enclosed sound field by a superposition of spherical wave functions in Fourier domain. It allows successful reconstructions surrounding the array, but the accuracy will be degraded at a distance. In order to extend the effective reconstruction to the entire cavity, a plane-wave basis in space domain is used owing to its non-decaying propagating characteristic and compared with the conventional spherical wave function method in a low frequency sound field within a cylindrical cavity. The sensitivity to measurement noise, the effects of the numbers of plane waves, and measurement positions are discussed. Simulations show that under the same measurement conditions, the plane wave function method is superior in terms of reconstruction accuracy and data processing efficiency, that is, the entire sound field imaging can be achieved by only one time calculation instead of translations of local sets of coefficients with respect to every measurement position into a global one. An experiment was conducted inside an aircraft cabin mock-up for validation. Additionally, this method provides an alternative possibility to recover the coefficients of high order spherical wave functions in a global coordinate system without coordinate translations with respect to local origins.

  13. Formation of Bragg band gaps in anisotropic phononic crystals analyzed with the empty lattice model

    DOE PAGES

    Wang, Yan -Feng; Maznev, Alexei; Laude, Vincent

    2016-05-11

    Bragg band gaps of phononic crystals generally, but not always, open at Brillouin zone boundaries. The commonly accepted explanation stems from the empty lattice model: assuming a small material contrast between the constituents of the unit cell, avoided crossings in the phononic band structure appear at frequencies and wavenumbers corresponding to band intersections; for scalar waves the lowest intersections coincide with boundaries of the first Brillouin zone. However, if a phononic crystal contains elastically anisotropic materials, its overall symmetry is not dictated solely by the lattice symmetry. We construct an empty lattice model for phononic crystals made of isotropic andmore » anisotropic materials, based on their slowness curves. We find that, in the anisotropic case, avoided crossings generally do not appear at the boundaries of traditionally defined Brillouin zones. Furthermore, the Bragg "planes" which give rise to phononic band gaps, are generally not flat planes but curved surfaces. Lastly, the same is found to be the case for avoided crossings between shear (transverse) and longitudinal bands in the isotropic case.« less

  14. Formation of Bragg band gaps in anisotropic phononic crystals analyzed with the empty lattice model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yan -Feng; Maznev, Alexei; Laude, Vincent

    Bragg band gaps of phononic crystals generally, but not always, open at Brillouin zone boundaries. The commonly accepted explanation stems from the empty lattice model: assuming a small material contrast between the constituents of the unit cell, avoided crossings in the phononic band structure appear at frequencies and wavenumbers corresponding to band intersections; for scalar waves the lowest intersections coincide with boundaries of the first Brillouin zone. However, if a phononic crystal contains elastically anisotropic materials, its overall symmetry is not dictated solely by the lattice symmetry. We construct an empty lattice model for phononic crystals made of isotropic andmore » anisotropic materials, based on their slowness curves. We find that, in the anisotropic case, avoided crossings generally do not appear at the boundaries of traditionally defined Brillouin zones. Furthermore, the Bragg "planes" which give rise to phononic band gaps, are generally not flat planes but curved surfaces. Lastly, the same is found to be the case for avoided crossings between shear (transverse) and longitudinal bands in the isotropic case.« less

  15. An Apparatus for Constructing an Electromagnetic Plane Wave Model

    ERIC Educational Resources Information Center

    Kneubil, Fabiana Botelho; Loures, Marcus Vinicius Russo; Amado, William

    2015-01-01

    In this paper we report on an activity aimed at building an electromagnetic wave. This was part of a class on the concept of mass offered to a group of 20 pre-service Brazilian physics teachers. The activity consisted of building a plane wave using an apparatus in which it is possible to fit some rods representing electric and magnetic fields into…

  16. Nonlinear longitudinal resonance interaction of energetic charged particles and VLF waves in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Tkalcevic, S.

    1982-01-01

    The longitudinal resonance of waves and energetic electrons in the Earth's magnetosphere, and the possible role this resonance may play in generating various magnetospheric phenomena are studied. The derivation of time-averaged nonlinear equations of motion for energetic particles longitudinally resonant with a whistler mode wave propagating with nonzero wave normal is considered. It is shown that the wave magnetic forces can be neglected at lower particle pitch angles, while they become equal to or larger than the wave electric forces for alpha 20 deg. The time-averaged equations of motion were used in test particle simulation which were done for a wide range of wave amplitudes, wave normals, particle pitch angles, particle parallel velocities, and in an inhomogeneous medium such as the magnetosphere. It was found that there are two classes of particles, trapped and untrapped, and that the scattering and energy exchange for those two groups exhibit significantly different behavior.

  17. Conical Refraction of Elastic Waves by Anisotropic Metamaterials and Application for Parallel Translation of Elastic Waves.

    PubMed

    Ahn, Young Kwan; Lee, Hyung Jin; Kim, Yoon Young

    2017-08-30

    Conical refraction, which is quite well-known in electromagnetic waves, has not been explored well in elastic waves due to the lack of proper natural elastic media. Here, we propose and design a unique anisotropic elastic metamaterial slab that realizes conical refraction for horizontally incident longitudinal or transverse waves; the single-mode wave is split into two oblique coupled longitudinal-shear waves. As an interesting application, we carried out an experiment of parallel translation of an incident elastic wave system through the anisotropic metamaterial slab. The parallel translation can be useful for ultrasonic non-destructive testing of a system hidden by obstacles. While the parallel translation resembles light refraction through a parallel plate without angle deviation between entry and exit beams, this wave behavior cannot be achieved without the engineered metamaterial because an elastic wave incident upon a dissimilar medium is always split at different refraction angles into two different modes, longitudinal and shear.

  18. Magnetic resonance elastography to observe deep areas: comparison of external vibration systems.

    PubMed

    Suga, Mikio; Obata, Takayuki; Hirano, Masaya; Tanaka, Takashi; Ikehira, Hiroo

    2007-01-01

    MRE methods deform the sample using an external vibration system. We have been using a transverse driver, which generates shear waves at the object surface. One of the problems is that shear waves rapidly attenuate at the surface of tissue and do not propagate into the body. In this study, we compared the shear waves generated by transverse and longitudinal drivers. The longitudinal driver was found to induce shear waves deep inside a porcine liver phantom. These results suggest that the longitudinal driver will allow measurement of the shear modulus deep inside the body.

  19. A numerical comparison with an exact solution for the transient response of a cylinder immersed in a fluid. [computer simulated underwater tests to determine transient response of a submerged cylindrical shell

    NASA Technical Reports Server (NTRS)

    Giltrud, M. E.; Lucas, D. S.

    1979-01-01

    The transient response of an elastic cylindrical shell immersed in an acoustic media that is engulfed by a plane wave is determined numerically. The method applies to the USA-STAGS code which utilizes the finite element method for the structural analysis and the doubly asymptotic approximation for the fluid-structure interaction. The calculations are compared to an exact analysis for two separate loading cases: a plane step wave and an exponentially decaying plane wave.

  20. Globally Convergent Inverse Reconstruction Algorithm for Detection of IEDs via Imaging of Spatially Distributed Dielectric Constants using Microwave

    DTIC Science & Technology

    2010-04-27

    Dirichlet boundary data DP̃ (x, y) at the entire plane P̃ . Then one can solve the following boundary value problem in the half space below P̃ ∆w − s2w...which we wanted to be a plane wave when reaching the bottom side of the prism of Figure 1, where measurements were conducted. But actually this 14 was a...initializing wave field is a plane wave. On the other hand, a visual inspection of the output experimental data has revealed to us that actually we had a

  1. Plane-wave scattering by self-complementary metasurfaces in terms of electromagnetic duality and Babinet's principle

    NASA Astrophysics Data System (ADS)

    Nakata, Yosuke; Urade, Yoshiro; Nakanishi, Toshihiro; Kitano, Masao

    2013-11-01

    We investigate theoretically electromagnetic plane-wave scattering by self-complementary metasurfaces. By using Babinet's principle extended to metasurfaces with resistive elements, we show that the frequency-independent transmission and reflection are realized for normal incidence of a circularly polarized plane wave onto a self-complementary metasurface, even if there is diffraction. Next, we consider two special classes of self-complementary metasurfaces. We show that self-complementary metasurfaces with rotational symmetry can act as coherent perfect absorbers, and those with translational symmetry compatible with their self-complementarity can split the incident power equally, even for oblique incidences.

  2. A Fresh Look at Longitudinal Standing Waves on a Spring

    ERIC Educational Resources Information Center

    Rutherford, Casey

    2013-01-01

    Transverse standing waves produced on a string, as shown in Fig. 1, are a common demonstration of standing wave patterns that have nodes at both ends. Longitudinal standing waves can be produced on a helical spring that is mounted vertically and attached to a speaker, as shown in Fig. 2, and used to produce both node-node (NN) and node-antinode…

  3. Asymmetric spin-wave dispersion in ferromagnetic nanotubes induced by surface curvature

    NASA Astrophysics Data System (ADS)

    Otálora, Jorge A.; Yan, Ming; Schultheiss, Helmut; Hertel, Riccardo; Kákay, Attila

    2017-05-01

    We present a detailed analytical derivation of the spin wave (SW) dispersion relation in magnetic nanotubes with magnetization along the azimuthal direction. The obtained formula can be used to calculate the dispersion relation for any longitudinal and azimuthal mode. The obtained dispersion is asymmetric for all azimuthal modes traveling along the axial direction. As reported in our recent publication [Phys. Rev. Lett. 117, 227203 (2016), 10.1103/PhysRevLett.117.227203], the asymmetry is a curvature-induced effect originating from the dipole-dipole interaction. Here, we discuss the asymmetry of the dispersion for azimuthal modes by analyzing the SW asymmetry Δ f (kz) =fn(kz) -fn(-kz) , where fn(kz) is the eigenfrequency of a magnon with a longitudinal and azimuthal wave vectors, kz and n , respectively; and the dependence of the maximum asymmetry with the nanotube radius R . The analytical results are in perfect agreement with micromagnetic simulations. Furthermore, we show that the dispersion relation simplifies to the thin-film dispersion relation with in-plane magnetization when analyzing the three limiting cases: (i) kz=0 , (ii) kz≫1 /R , and (iii) kz≪1 /R . In the first case, for the zeroth-order modes the thin-film Kittel formula is obtained. For modes with higher order the dispersion relation for the Backward-Volume geometry is recovered. In the second case, for the zeroth-order mode the exchange dominated dispersion relation for SW in Damon-Esbach configuration is obtained. For the case kz≪1 /R , we find that the dispersion relation can be reduced to a formula similar to the Kalinikos-Slavin [J. Phys. C: Sol. State Phys. 19, 7013 (1986), 10.1088/0022-3719/19/35/014] type.

  4. Generalized thermoelastic wave band gaps in phononic crystals without energy dissipation

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Yu, Kaiping; Li, Xiao; Zhou, Haotian

    2016-01-01

    We present a theoretical investigation of the thermoelastic wave propagation in the phononic crystals in the context of Green-Nagdhi theory by taking thermoelastic coupling into account. The thermal field is assumed to be steady. Thermoelastic wave band structures of 3D and 2D are derived by using the plane wave expansion method. For the 2D problem, the anti-plane shear mode is not affected by the temperature difference. Thermoelastic wave bands of the in-plane x-y mode are calculated for lead/silicone rubber, aluminium/silicone rubber, and aurum/silicone rubber phononic crystals. The new findings in the numerical results indicate that the thermoelastic wave bands are composed of the pure elastic wave bands and the thermal wave bands, and that the thermal wave bands can serve as the low boundary of the first band gap when the filling ratio is low. In addition, for the lead/silicone rubber phononic crystals the effects of lattice type (square, rectangle, regular triangle, and hexagon) and inclusion shape (circle, oval, and square) on the normalized thermoelastic bandwidth and the upper/lower gap boundaries are analysed and discussed. It is concluded that their effects on the thermoelastic wave band structure are remarkable.

  5. Scattering Matrix for the Interaction between Solar Acoustic Waves and Sunspots. I. Measurements

    NASA Astrophysics Data System (ADS)

    Yang, Ming-Hsu; Chou, Dean-Yi; Zhao, Hui

    2017-01-01

    Assessing the interaction between solar acoustic waves and sunspots is a scattering problem. The scattering matrix elements are the most commonly used measured quantities to describe scattering problems. We use the wavefunctions of scattered waves of NOAAs 11084 and 11092 measured in the previous study to compute the scattering matrix elements, with plane waves as the basis. The measured scattered wavefunction is from the incident wave of radial order n to the wave of another radial order n‧, for n=0{--}5. For a time-independent sunspot, there is no mode mixing between different frequencies. An incident mode is scattered into various modes with different wavenumbers but the same frequency. Working in the frequency domain, we have the individual incident plane-wave mode, which is scattered into various plane-wave modes with the same frequency. This allows us to compute the scattering matrix element between two plane-wave modes for each frequency. Each scattering matrix element is a complex number, representing the transition from the incident mode to another mode. The amplitudes of diagonal elements are larger than those of the off-diagonal elements. The amplitude and phase of the off-diagonal elements are detectable only for n-1≤slant n\\prime ≤slant n+1 and -3{{Δ }}k≤slant δ {k}x≤slant 3{{Δ }}k, where δ {k}x is the change in the transverse component of the wavenumber and Δk = 0.035 rad Mm-1.

  6. Theory and application of equivalent transformation relationships between plane wave and spherical wave

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Yang, Zailin; Zhang, Jianwei; Yang, Yong

    2017-10-01

    Based on the governing equations and the equivalent models, we propose an equivalent transformation relationships between a plane wave in a one-dimensional medium and a spherical wave in globular geometry with radially inhomogeneous properties. These equivalent relationships can help us to obtain the analytical solutions of the elastodynamic issues in an inhomogeneous medium. The physical essence of the presented equivalent transformations is the equivalent relationships between the geometry and the material properties. It indicates that the spherical wave problem in globular geometry can be transformed into the plane wave problem in the bar with variable property fields, and its inverse transformation is valid as well. Four different examples of wave motion problems in the inhomogeneous media are solved based on the presented equivalent relationships. We obtain two basic analytical solution forms in Examples I and II, investigate the reflection behavior of inhomogeneous half-space in Example III, and exhibit a special inhomogeneity in Example IV, which can keep the traveling spherical wave in constant amplitude. This study implies that our idea makes solving the associated problem easier.

  7. A Non-Intrusive Pressure Sensor by Detecting Multiple Longitudinal Waves

    PubMed Central

    Zhou, Hongliang; Lin, Weibin; Ge, Xiaocheng; Zhou, Jian

    2016-01-01

    Pressure vessels are widely used in industrial fields, and some of them are safety-critical components in the system—for example, those which contain flammable or explosive material. Therefore, the pressure of these vessels becomes one of the critical measurements for operational management. In the paper, we introduce a new approach to the design of non-intrusive pressure sensors, based on ultrasonic waves. The model of this sensor is built based upon the travel-time change of the critically refracted longitudinal wave (LCR wave) and the reflected longitudinal waves with the pressure. To evaluate the model, experiments are carried out to compare the proposed model with other existing models. The results show that the proposed model can improve the accuracy compared to models based on a single wave. PMID:27527183

  8. Argand-plane vorticity singularities in complex scalar optical fields: an experimental study using optical speckle.

    PubMed

    Rothschild, Freda; Bishop, Alexis I; Kitchen, Marcus J; Paganin, David M

    2014-03-24

    The Cornu spiral is, in essence, the image resulting from an Argand-plane map associated with monochromatic complex scalar plane waves diffracting from an infinite edge. Argand-plane maps can be useful in the analysis of more general optical fields. We experimentally study particular features of Argand-plane mappings known as "vorticity singularities" that are associated with mapping continuous single-valued complex scalar speckle fields to the Argand plane. Vorticity singularities possess a hierarchy of Argand-plane catastrophes including the fold, cusp and elliptic umbilic. We also confirm their connection to vortices in two-dimensional complex scalar waves. The study of vorticity singularities may also have implications for higher-dimensional fields such as coherence functions and multi-component fields such as vector and spinor fields.

  9. Influence of Tissue Microstructure on Shear Wave Speed Measurements in Plane Shear Wave Elastography: A Computational Study in Lossless Fibrotic Liver Media.

    PubMed

    Wang, Yu; Jiang, Jingfeng

    2018-01-01

    Shear wave elastography (SWE) has been used to measure viscoelastic properties for characterization of fibrotic livers. In this technique, external mechanical vibrations or acoustic radiation forces are first transmitted to the tissue being imaged to induce shear waves. Ultrasonically measured displacement/velocity is then utilized to obtain elastographic measurements related to shear wave propagation. Using an open-source wave simulator, k-Wave, we conducted a case study of the relationship between plane shear wave measurements and the microstructure of fibrotic liver tissues. Particularly, three different virtual tissue models (i.e., a histology-based model, a statistics-based model, and a simple inclusion model) were used to represent underlying microstructures of fibrotic liver tissues. We found underlying microstructures affected the estimated mean group shear wave speed (SWS) under the plane shear wave assumption by as much as 56%. Also, the elastic shear wave scattering resulted in frequency-dependent attenuation coefficients and introduced changes in the estimated group SWS. Similarly, the slope of group SWS changes with respect to the excitation frequency differed as much as 78% among three models investigated. This new finding may motivate further studies examining how elastic scattering may contribute to frequency-dependent shear wave dispersion and attenuation in biological tissues.

  10. The observation of AE events under uniaxial compression and the quantitative relationship between the anisotropy index and the main failure plane

    NASA Astrophysics Data System (ADS)

    Zhang, Zhibo; Wang, Enyuan; Chen, Dong; Li, Xuelong; Li, Nan

    2016-11-01

    In this paper, the P-wave velocities in different directions of sandstone samples under uniaxial compression are measured. The results indicate that the changes in the P-wave velocity in different directions are almost the same. In the initial stage of loading, the P-wave velocity exhibits a rising trend due to compaction and closure of preexisting fissures. As the stress increase, preexisting fissures are closed but induced fractures are not yet generated. The sandstone samples become denser and more uniform. The P-wave velocity remains in a steady state at a high level. In the late stage of loading, the P-wave velocity drops significantly due to the expansion and breakthrough of induced fractures. The P-wave velocity anisotropy index ε is analyzed during the process of loading. It can be observed that the change in the degree of wave velocity anisotropy can be divided into three stages: the AB stage, the BC stage and the CD stage, with a changing trend from decline to incline. In the initial stage of loading, the preexisting fissures have a randomized distribution, and the change is large-scale and uniform. The difference in each spatial point decreases gradually, and synchronization increases gradually. Thus, the P-wave velocity anisotropy declines. As the stress increases gradually, with the expansion and breakthrough of induced fractures, the difference in each spatial point increases. Before failure of rock samples, the violent change region of the rock samples' internal structure is focused on a narrow two-dimensional zone, and the rock samples' structural change is obviously local. Therefore, the degree of velocity anisotropy rises after declining, and it also has good corresponding relation among the AE count, the location of AE events and the degree of wave velocity anisotropy. The projection plane of the main fracture plane on the axis plane is recorded as M plane. Based on the AFF equation, for the CD stage, we analyze the quantitative relationship between the velocity anisotropy index ε and angle θ, which is the difference between the angle of the M plane and the X plane and the angle of the M plane and the Y plane from the theoretical point. The results indicate that 1/ε and cotθ/2 have good negative linear relationship that can be expressed as cotθ/2 = a ∗1/ε + b. According to experimental data, the linear fit of 1/ε and cotθ/2 is found, obtaining cotθ/2 = - 0.04721/ε + 0.03, with a linear fit index of 0.908. From an experimental point of view, the linear relationship between 1/ε and cotθ/2 is verified. Through this research, we propose a new method for quantitatively predicting the main fracture occurrence position by P-wave velocity anisotropy. This work has an important significance for understanding buckling failure of rocks.

  11. 49 CFR 572.144 - Thorax assembly and test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the midsagittal plane, the midsagittal plane being vertical within ±1 degree and the ribs level in the... midsagittal plane so that the impact point of the longitudinal centerline of the probe coincides with the dummy's mid-sagittal plane and is centered on the center of No. 2 rib within ±2.5 mm (0.1 in.) and 0.5...

  12. Influence of Aggregate Gradation on the Longitudinal Wave Velocity Changes in Unloaded Concrete

    NASA Astrophysics Data System (ADS)

    Teodorczyk, Michał

    2017-10-01

    Diagnosis is an important factor in the assessment of structural and operational condition of a concrete structure. Among diagnostic methods, non-destructive testing methods play a special role. Acoustic emission evaluation based on the identification and location of destructive processes is one of such methods. The 3D location of AE events and moment tensor of fracture analysis are calculated by longitudinal wave velocity. Therefore, determining the velocity of longitudinal wave of concrete and the impact of the material and destructive factors are of essential importance. This paper reports the investigation of the effect of aggregate gradation on the change in wave velocity of unloaded concrete. The investigation was carried out on six 150 x 150 x 600 mm elements. Three elements contained aggregate fraction 8/16 mm and the other three were made with aggregate fraction 2/16 mm. Two acoustic emission sensors were used on the surface of the elements, and the wave was generated by the Hsu - Nielsen source. Longitudinal wave velocities for each group of elements were calculated and statistical test of significance was used for the comparison of two means. The results of the test indicated a substantial effect of the aggregate grain size on the change in longitudinal wave velocity. The average wave velocity in the concrete containing 8/16 mm fraction was 4672 m/s. In the concrete with 2/16 mm fraction, the velocity decreased to 4373 m/s. The velocity of the wave decreases at larger quantities of aggregate. The propagating longitudinal wave encounters more aggregate grains on its way and is reflected, also from air voids, multiple times and so its velocity is noticeably lower in the concrete with the 2/16 fraction. Thus, to be able to accurately locate AE events and analyse moment tensor during concrete structure testing, the aggregate grain size used in the concrete should be taken into account.

  13. Pulse wave imaging using coherent compounding in a phantom and in vivo

    NASA Astrophysics Data System (ADS)

    Zacharias Apostolakis, Iason; McGarry, Matthew D. J.; Bunting, Ethan A.; Konofagou, Elisa E.

    2017-03-01

    Pulse wave velocity (PWV) is a surrogate marker of arterial stiffness linked to cardiovascular morbidity. Pulse wave imaging (PWI) is a technique developed by our group for imaging the pulse wave propagation in vivo. PWI requires high temporal and spatial resolution, which conventional ultrasonic imaging is unable to simultaneously provide. Coherent compounding is known to address this tradeoff and provides full aperture images at high frame rates. This study aims to implement PWI using coherent compounding within a GPU-accelerated framework. The results of the implemented method were validated using a silicone phantom against static mechanical testing. Reproducibility of the measured PWVs was assessed in the right common carotid of six healthy subjects (n  =  6) approximately 10-15 mm before the bifurcation during two cardiac cycles over the course of 1-3 d. Good agreement of the measured PWVs (3.97  ±  1.21 m s-1, 4.08  ±  1.15 m s-1, p  =  0.74) was obtained. The effects of frame rate, transmission angle and number of compounded plane waves on PWI performance were investigated in the six healthy volunteers. Performance metrics such as the reproducibility of the PWVs, the coefficient of determination (r 2), the SNR of the PWI axial wall velocities (\\text{SN}{{\\text{R}}{{\\text{v}_{\\text{PWI}}}}} ) and the percentage of lateral positions where the pulse wave appears to arrive at the same time-point, indicating inadequacy of the temporal resolution (i.e. temporal resolution misses) were used to evaluate the effect of each parameter. Compounding plane waves transmitted at 1° increments with a linear array yielded optimal performance, generating significantly higher r 2 and \\text{SN}{{\\text{R}}{{\\text{v}_{\\text{PWI}}}}} values (p  ⩽  0.05). Higher frame rates (⩾1667 Hz) produced improvements with significant gains in the r 2 coefficient (p  ⩽  0.05) and significant increase in both r 2 and \\text{SN}{{\\text{R}}{{\\text{v}_{\\text{PWI}}}}} from single plane wave imaging to 3-plane wave compounding (p  ⩽  0.05). Optimal performance was established at 2778 Hz with 3 plane waves and at 1667 Hz with 5 plane waves.

  14. Finite-amplitude strain waves in laser-excited plates.

    PubMed

    Mirzade, F Kh

    2008-07-09

    The governing equations for two-dimensional finite-amplitude longitudinal strain waves in isotropic laser-excited solid plates are derived. Geometric and weak material nonlinearities are included, and the interaction of longitudinal displacements with the field of concentration of non-equilibrium laser-generated atomic defects is taken into account. An asymptotic approach is used to show that the equations are reducible to the Kadomtsev-Petviashvili-Burgers nonlinear evolution equation for a longitudinal self-consistent strain field. It is shown that two-dimensional shock waves can propagate in plates.

  15. Spread-Spectrum Beamforming and Clutter Filtering for Plane-Wave Color Doppler Imaging.

    PubMed

    Mansour, Omar; Poepping, Tamie L; Lacefield, James C

    2016-07-21

    Plane-wave imaging is desirable for its ability to achieve high frame rates, allowing the capture of fast dynamic events and continuous Doppler data. In most implementations of plane-wave imaging, multiple low-resolution images from different plane wave tilt angles are compounded to form a single high-resolution image, thereby reducing the frame rate. Compounding improves the lateral beam profile in the high-resolution image, but it also acts as a low-pass filter in slow time that causes attenuation and aliasing of signals with high Doppler shifts. This paper introduces a spread-spectrum color Doppler imaging method that produces high-resolution images without the use of compounding, thereby eliminating the tradeoff between beam quality, maximum unaliased Doppler frequency, and frame rate. The method uses a long, random sequence of transmit angles rather than a linear sweep of plane wave directions. The random angle sequence randomizes the phase of off-focus (clutter) signals, thereby spreading the clutter power in the Doppler spectrum, while keeping the spectrum of the in-focus signal intact. The ensemble of randomly tilted low-resolution frames also acts as the Doppler ensemble, so it can be much longer than a conventional linear sweep, thereby improving beam formation while also making the slow-time Doppler sampling frequency equal to the pulse repetition frequency. Experiments performed using a carotid artery phantom with constant flow demonstrate that the spread-spectrum method more accurately measures the parabolic flow profile of the vessel and outperforms conventional plane-wave Doppler in both contrast resolution and estimation of high flow velocities. The spread-spectrum method is expected to be valuable for Doppler applications that require measurement of high velocities at high frame rates.

  16. 14 CFR 25.1387 - Position light system dihedral angles.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... this section. (b) Dihedral angle L (left) is formed by two intersecting vertical planes, the first... two intersecting vertical planes, the first parallel to the longitudinal axis of the airplane, and the... axis. (d) Dihedral angle A (aft) is formed by two intersecting vertical planes making angles of 70...

  17. Inverse methods for 3D quantitative optical coherence elasticity imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Dong, Li; Wijesinghe, Philip; Hugenberg, Nicholas; Sampson, David D.; Munro, Peter R. T.; Kennedy, Brendan F.; Oberai, Assad A.

    2017-02-01

    In elastography, quantitative elastograms are desirable as they are system and operator independent. Such quantification also facilitates more accurate diagnosis, longitudinal studies and studies performed across multiple sites. In optical elastography (compression, surface-wave or shear-wave), quantitative elastograms are typically obtained by assuming some form of homogeneity. This simplifies data processing at the expense of smearing sharp transitions in elastic properties, and/or introducing artifacts in these regions. Recently, we proposed an inverse problem-based approach to compression OCE that does not assume homogeneity, and overcomes the drawbacks described above. In this approach, the difference between the measured and predicted displacement field is minimized by seeking the optimal distribution of elastic parameters. The predicted displacements and recovered elastic parameters together satisfy the constraint of the equations of equilibrium. This approach, which has been applied in two spatial dimensions assuming plane strain, has yielded accurate material property distributions. Here, we describe the extension of the inverse problem approach to three dimensions. In addition to the advantage of visualizing elastic properties in three dimensions, this extension eliminates the plane strain assumption and is therefore closer to the true physical state. It does, however, incur greater computational costs. We address this challenge through a modified adjoint problem, spatially adaptive grid resolution, and three-dimensional decomposition techniques. Through these techniques the inverse problem is solved on a typical desktop machine within a wall clock time of 20 hours. We present the details of the method and quantitative elasticity images of phantoms and tissue samples.

  18. Equatorial Plasma Bubbles: Effect of Thermospheric Winds Modulated by DE3 Tidal Waves

    NASA Astrophysics Data System (ADS)

    Sidorova, L. N.; Filippov, S. V.

    2018-03-01

    A hypothesis about the effect of the tropospheric source on the longitudinal distributions of the equatorial plasma bubbles observed in the topside ionosphere was proposed earlier. It was supposed that this influence is transferred mainly by the thermospheric winds modulated by the DE3 tropospheric tidal waves. This conclusion was based on the discovered high degree correlation ( R ≅ 0.79) between the variations of the longitudinal distribution of the plasma bubbles and the neutral atmospheric density. In this work, the hypothesis of the effect of the thermospheric tidal waves on the plasma bubbles at the stage of their generation is subjected to further verification. With this purpose, the longitudinal distributions of the frequency of the plasma bubble observations at the different ionospheric altitudes ( 600 km, ROCSAT-1; 1100 km, ISS-b) are analyzed; their principal similarity is revealed. Comparative analysis of these distributions with the longitudinal profile of the deviations of the zonal thermospheric wind ( 400 km, CHAMP) modulated by the DE3 tidal wave is carried out; their considerable correlation ( R ≅ 0.69) is revealed. We conclude that the longitudinal variations of the zonal wind associated with DE3 tidal waves can effect the longitudinal variations in the appearance frequency of the initial "seeding" perturbations, which further evolve into the plasma bubbles.

  19. The January 2001, El Salvador event: a multi-data analysis

    NASA Astrophysics Data System (ADS)

    Vallee, M.; Bouchon, M.; Schwartz, S. Y.

    2001-12-01

    On January 13, 2001, a large normal event (Mw=7.6) occured 100 kilometers away from the Salvadorian coast (Central America) with a centroid depth of about 50km. The size of this event is surprising according to the classical idea that such events have to be much weaker than thrust events in subduction zones. We analysed this earthquake with different types of data: because teleseismic waves are the only data which offer a good azimuthal coverage, we first built a kinematic source model with P and SH waves provided by the IRIS-GEOSCOPE networks. The ambiguity between the 30o plane (plunging toward Pacific Ocean) and the 60o degree plane (plunging toward Central America) leaded us to do a parallel analysis of the two possible planes. We used a simple point-source modelling in order to define the main characteristics of the event and then used an extended source to retrieve the kinematic features of the rupture. For the 2 possible planes, this analysis reveals a downdip and northwest rupture propagation but the difference of fit remains subtle even when using the extended source. In a second part we confronted our models for the two planes with other seismological data, which are (1) regional data, (2) surface wave data through an Empirical Green Function given by a similar but much weaker earthquake which occured in July 1996 and lastly (3) nearfield data provided by Universidad Centroamericana (UCA) and Centro de Investigationes Geotecnicas (CIG). Regional data do not allow to discriminate the 2 planes neither but surface waves and especially near field data confirm that the fault plane is the steepest one plunging toward Central America. Moreover, the slight directivity toward North is confirmed by surface waves.

  20. Scattering on plane waves and the double copy

    NASA Astrophysics Data System (ADS)

    Adamo, Tim; Casali, Eduardo; Mason, Lionel; Nekovar, Stefan

    2018-01-01

    Perturbatively around flat space, the scattering amplitudes of gravity are related to those of Yang–Mills by colour-kinematic duality, under which gravitational amplitudes are obtained as the ‘double copy’ of the corresponding gauge theory amplitudes. We consider the question of how to extend this relationship to curved scattering backgrounds, focusing on certain ‘sandwich’ plane waves. We calculate the 3-point amplitudes on these backgrounds and find that a notion of double copy remains in the presence of background curvature: graviton amplitudes on a gravitational plane wave are the double copy of gluon amplitudes on a gauge field plane wave. This is non-trivial in that it requires a non-local replacement rule for the background fields and the momenta and polarization vectors of the fields scattering on the backgrounds. It must also account for new ‘tail’ terms arising from scattering off the background. These encode a memory effect in the scattering amplitudes, which naturally double copies as well.

  1. Magnetic Helicity of Alfven Simple Waves

    NASA Technical Reports Server (NTRS)

    Webb, Gary M.; Hu, Q.; Dasgupta, B.; Zank, G. P.; Roberts, D.

    2010-01-01

    The magnetic helicity of fully nonlinear, multi-dimensional Alfven simple waves are investigated, by using relative helicity formulae and also by using an approach involving poloidal and toroidal decomposition of the magnetic field and magnetic vector potential. Different methods to calculate the magnetic vector potential are used, including the homotopy and Biot-Savart formulas. Two basic Alfven modes are identified: (a) the plane 1D Alfven simple wave given in standard texts, in which the Alfven wave propagates along the z-axis, with wave phase varphi=k_0(z-lambda t), where k_0 is the wave number and lambda is the group velocity of the wave, and (b)\\ the generalized Barnes (1976) simple Alfven wave in which the wave normal {bf n} moves in a circle in the xy-plane perpendicular to the mean field, which is directed along the z-axis. The plane Alfven wave (a) is analogous to the slab Alfven mode and the generalized Barnes solution (b) is analogous to the 2D mode in Alfvenic, incompressible turbulence. The helicity characteristics of these two basic Alfven modes are distinct. The helicity characteristics of more general multi-dimensional simple Alfven waves are also investigated. Applications to nonlinear Aifvenic fluctuations and structures observed in the solar wind are discussed.

  2. Reference Values for Shear Wave Elastography of Neck and Shoulder Muscles in Healthy Individuals.

    PubMed

    Ewertsen, Caroline; Carlsen, Jonathan; Perveez, Mohammed Aftab; Schytz, Henrik

    2018-01-01

    to establish reference values for ultrasound shear-wave elastography for pericranial muscles in healthy individuals (m. trapezius, m. splenius capitis, m. semispinalis capitis, m. sternocleidomastoideus and m. masseter). Also to evaluate day-to-day variations in the shear-wave speeds and evaluate the effect of the pennation of the muscle fibers, ie scanning parallel or perpendicularly to the fibers. 10 healthy individuals (5 males and 5 females) had their pericranial muscles examined with shear-wave elastography in two orthogonal planes on two different days for their dominant and non-dominant side. Mean shear wave speeds from 5 ROI's in each muscle, for each scan plane for the dominant and non-dominant side for the two days were calculated. The effect of the different parameters - muscle pennation, gender, dominant vs non-dominant side and day was evaluated. The effect of scan plane in relation to muscle pennation was statistically significant (p<0.0001). The mean shear-wave speed when scanning parallel to the muscle fibers was significantly higher than the mean shear-wave speed when scanning perpendicularly to the fibers. The day-to-day variation was statistically significant (p=0.0258), but not clinically relevant. Shear-wave speeds differed significantly between muscles. Mean shear wave speeds (m/s) for the muscles in the parallel plane were: for masseter 2.45 (SD:+/-0.25), semispinal 3.36 (SD:+/-0.75), splenius 3.04 (SD:+/-0.65), sternocleidomastoid 2.75 (SD:+/-0.23), trapezius 3.20 (SD:+/-0.27) and trapezius lateral 3.87 (SD:+/-3.87). The shear wave speed variation depended on the direction of scanning. Shear wave elastography may be a method to evaluate muscle stiffness in patients suffering from chronic neck pain.

  3. High temperature integrated ultrasonic shear and longitudinal wave probes

    NASA Astrophysics Data System (ADS)

    Ono, Y.; Jen, C.-K.; Kobayashi, M.

    2007-02-01

    Integrated ultrasonic shear wave probes have been designed and developed using a mode conversion theory for nondestructive testing and characterization at elevated temperatures. The probes consisted of metallic substrates and high temperature piezoelectric thick (>40μm) films through a paint-on method. Shear waves are generated due to mode conversion from longitudinal to shear waves because of reflection inside the substrate having a specific shape. A novel design scheme is proposed to reduce the machining time of substrates and thick film fabrication difficulty. A probe simultaneously generating and receiving both longitudinal and shear waves is also developed and demonstrated. In addition, a shear wave probe using a clad buffer rod consisting of an aluminum core and stainless steel cladding has been developed. All the probes were tested and successfully operated at 150°C.

  4. An efficient 3-dim FFT for plane wave electronic structure calculations on massively parallel machines composed of multiprocessor nodes

    NASA Astrophysics Data System (ADS)

    Goedecker, Stefan; Boulet, Mireille; Deutsch, Thierry

    2003-08-01

    Three-dimensional Fast Fourier Transforms (FFTs) are the main computational task in plane wave electronic structure calculations. Obtaining a high performance on a large numbers of processors is non-trivial on the latest generation of parallel computers that consist of nodes made up of a shared memory multiprocessors. A non-dogmatic method for obtaining high performance for such 3-dim FFTs in a combined MPI/OpenMP programming paradigm will be presented. Exploiting the peculiarities of plane wave electronic structure calculations, speedups of up to 160 and speeds of up to 130 Gflops were obtained on 256 processors.

  5. Improvement of both bandwidth and driving voltage of polymer phase modulators using buried in-plane coupled micro-strip driving electrodes

    NASA Astrophysics Data System (ADS)

    Hadjloum, Massinissa; El Gibari, Mohammed; Li, Hongwu; Daryoush, Afshin S.

    2017-06-01

    A large performance improvement of polymer phase modulators is reported by using buried in-plane coupled microstrip (CMS) driving electrodes, instead of standard vertical Micro-Strip electrodes. The in-plane CMS driving electrodes have both low radio frequency (RF) losses and high overlap integral between optical and RF waves compared to the vertical designs. Since the optical waveguide and CMS electrodes are located in the same plane, optical injection and microwave driving access cannot be separated perpendicularly without intersection between them. A via-less transition between grounded coplanar waveguide access and CMS driving electrodes is introduced in order to provide broadband excitation of optical phase modulators and avoid the intersection of the optical core and the electrical probe. Simulation and measurement results of the benzocyclobutene polymer as a cladding material and the PMMI-CPO1 polymer as an optical core with an electro-optic coefficient of 70 pm/V demonstrate a broadband operation of 67 GHz using travelling-wave driving electrodes with a half-wave voltage of 4.5 V, while satisfying its low RF losses and high overlap integral between optical and RF waves of in-plane CMS electrodes.

  6. Detection of in-plane displacements of acoustic wave fields using extrinsic Fizeau fiber interferometric sensors

    NASA Technical Reports Server (NTRS)

    Dhawan, R.; Gunther, M. F.; Claus, R. O.

    1991-01-01

    Quantitative measurements of the in-plane particle displacement components of ultrasonic surface acoustic wave fields using extrinsic Fizeau fiber interferometric (EFFI) sensors are reported. Wave propagation in materials and the fiber sensor elements are briefly discussed. Calibrated experimental results obtained for simulated acoustic emission events on homogeneous metal test specimens are reported and compared to previous results obtained using piezoelectric transducers.

  7. 49 CFR 572.134 - Thorax assembly and test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the midsagittal plane, the midsagittal plane vertical within ±1 degree and the ribs level in the... midsagittal plane so that the impact point of the longitudinal centerline of the probe coincides with the midsagittal plane of the dummy within ±2.5 mm (0.1 in) and is 12.7 ±1.1 mm (0.5 ±0.04 in) below the horizontal...

  8. Longitudinal Surveys of Australian Youth (LSAY) 1998 Cohort: Wave 12 (2009)--Questionnaire. Technical Report 58A

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2010

    2010-01-01

    The Longitudinal Surveys of Australian Youth (LSAY) program studies the progress of several groups of young Australians as they move from school into post-secondary education and work. This technical paper contains the questionnaire for the LSAY 1998 cohort Wave 12 (2009) data set. [For the accompanying frequency tables, "Longitudinal Surveys…

  9. Coordinated Polar Spacecraft, Geosynchronous Spacecraft, and Ground-based Observations of Magnetopause Oscillations and Pc5 Waves in the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Le, G.; Chen, S.; Zheng, Y.; Russell, C. T.; Slavin, J. A.; Huang, C.-S.; Petrinec, S. S.; Moore, T. E.; Samson, J.; Singer, H. J.

    2005-01-01

    In this paper, we present in situ observations of surface waves at the magnetopause and oscillatory magnetospheric field lines, and coordinated observations Pc5 waves at geosynchronous orbit by the GOES spacecraft, and on the ground by CANOPUS and 210 Degree Magnetic Meridian (210MMJ magnetometer arrays. On February 7,2002 during a highspeed solar wind stream, the Polar spacecraft was skimming the magnetopause in a post-noon meridian plane for approximately 3 hours. During this interval, it made two short excursions and a few partial crossings into the magnetosheath and observed quasi-periodic cold ion bursts in the region adjacent to the magnetopause current layer. The multiple magnetopause crossings as well as the velocity of the cold ion bursts indicate that the magnetopause was oscillating with about 6 minute period. Simultaneous observations of Pc5 waves at geosynchronous orbit by the GOES spacecraft and on the ground by the CANOPUS magnetometer array reveal that these magnetospheric pulsations were forced oscillations of magnetic field lines directly driven by the magnetopause oscillations. The magnetospheric pulsations occurred only in a limited longitudinal region in the post-noon dayside sector, and were not a global phenomenon as one would expect for global field line resonance. Thus, the magnetopause oscillations at the source were also limited to a localized region spanning about 4 hours in local time.

  10. Mechanical property quantification of endothelial cells using scanning acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Shelke, A.; Brand, S.; Kundu, T.; Bereiter-Hahn, J.; Blase, C.

    2012-04-01

    The mechanical properties of cells reflect dynamic changes of cellular organization which occur during physiologic activities like cell movement, cell volume regulation or cell division. Thus the study of cell mechanical properties can yield important information for understanding these physiologic activities. Endothelial cells form the thin inner lining of blood vessels in the cardiovascular system and are thus exposed to shear stress as well as tensile stress caused by the pulsatile blood flow. Endothelial dysfunction might occur due to reduced resistance to mechanical stress and is an initial step in the development of cardiovascular disease like, e.g., atherosclerosis. Therefore we investigated the mechanical properties of primary human endothelial cells (HUVEC) of different age using scanning acoustic microscopy at 1.2 GHz. The HUVECs are classified as young (tD < 90 h) and old (tD > 90 h) cells depending upon the generation time for the population doubling of the culture (tD). Longitudinal sound velocity and geometrical properties of cells (thickness) were determined using the material signature curve V(z) method for variable culture condition along spatial coordinates. The plane wave technique with normal incidence is assumed to solve two-dimensional wave equation. The size of the cells is modeled using multilayered (solid-fluid) system. The propagation of transversal wave and surface acoustic wave are neglected in soft matter analysis. The biomechanical properties of HUVEC cells are quantified in an age dependent manner.

  11. Current induced multi-mode propagating spin waves in a spin transfer torque nano-contact with strong perpendicular magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Mohseni, S. Morteza; Yazdi, H. F.; Hamdi, M.; Brächer, T.; Mohseni, S. Majid

    2018-03-01

    Current induced spin wave excitations in spin transfer torque nano-contacts are known as a promising way to generate exchange-dominated spin waves at the nano-scale. It has been shown that when these systems are magnetized in the film plane, broken spatial symmetry of the field around the nano-contact induced by the Oersted field opens the possibility for spin wave mode co-existence including a non-linear self-localized spin-wave bullet and a propagating mode. By means of micromagnetic simulations, here we show that in systems with strong perpendicular magnetic anisotropy (PMA) in the free layer, two propagating spin wave modes with different frequency and spatial distribution can be excited simultaneously. Our results indicate that in-plane magnetized spin transfer nano-contacts in PMA materials do not host a solitonic self-localized spin-wave bullet, which is different from previous studies for systems with in plane magnetic anisotropy. This feature renders them interesting for nano-scale magnonic waveguides and crystals since magnon transport can be configured by tuning the applied current.

  12. Modern developments in shear flow control with swirl

    NASA Technical Reports Server (NTRS)

    Farokhi, Saeed; Taghavi, R.

    1990-01-01

    Passive and active control of swirling turbulent jets is experimentally investigated. Initial swirl distribution is shown to dominate the free jet evolution in the passive mode. Vortex breakdown, a manifestation of high intensity swirl, was achieved at below critical swirl number (S = 0.48) by reducing the vortex core diameter. The response of a swirling turbulent jet to single frequency, plane wave acoustic excitation was shown to depend strongly on the swirl number, excitation Strouhal number, amplitude of the excitation wave, and core turbulence in a low speed cold jet. A 10 percent reduction of the mean centerline velocity at x/D = 9.0 (and a corresponding increase in the shear layer momentum thickness) was achieved by large amplitude internal plane wave acoustic excitation. Helical instability waves of negative azimuthal wave numbers exhibit larger amplification rates than the plane waves in swirling free jets, according to hydrodynamic stability theory. Consequently, an active swirling shear layer control is proposed to include the generation of helical instability waves of arbitrary helicity and the promotion of modal interaction, through multifrequency forcing.

  13. A new standing-wave-type linear ultrasonic motor based on in-plane modes.

    PubMed

    Shi, Yunlai; Zhao, Chunsheng

    2011-05-01

    This paper presents a new standing-wave-type linear ultrasonic motor using combination of the first longitudinal and the second bending modes. Two piezoelectric plates in combination with a metal thin plate are used to construct the stator. The superior point of the stator is its isosceles triangular structure part of the stator, which can amplify the displacement in horizontal direction of the stator in perpendicular direction when the stator is operated in the first longitudinal mode. The influence of the base angle θ of the triangular structure part on the amplitude of the driving foot has been analyzed by numerical analysis. Four prototype stators with different angles θ have been fabricated and the experimental investigation of these stators has validated the numerical simulation. The overall dimensions of the prototype stators are no more than 40 mm (length) × 20 mm (width) × 5 mm (thickness). Driven by an AC signal with the driving frequency of 53.3 kHz, the no-load speed and the maximal thrust of the prototype motor using the stator with base angle 20° were 98 mm/s and 3.2N, respectively. The effective elliptical motion trajectory of the contact point of the stator can be achieved by the isosceles triangular structure part using only two PZTs, and thus it makes the motor low cost in fabrication, simple in structure and easy to realize miniaturization. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Longitudinal waves in carbon nanotubes in the presence of transverse magnetic field and elastic medium

    NASA Astrophysics Data System (ADS)

    Liu, Hu; Liu, Hua; Yang, Jialing

    2017-09-01

    In the present paper, the coupling effect of transverse magnetic field and elastic medium on the longitudinal wave propagation along a carbon nanotube (CNT) is studied. Based on the nonlocal elasticity theory and Hamilton's principle, a unified nonlocal rod theory which takes into account the effects of small size scale, lateral inertia and radial deformation is proposed. The existing rod theories including the classic rod theory, the Rayleigh-Love theory and Rayleigh-Bishop theory for macro solids can be treated as the special cases of the present model. A two-parameter foundation model (Pasternak-type model) is used to represent the elastic medium. The influence of transverse magnetic field, Pasternak-type elastic medium and small size scale on the longitudinal wave propagation behavior of the CNT is investigated in detail. It is shown that the influences of lateral inertia and radial deformation cannot be neglected in analyzing the longitudinal wave propagation characteristics of the CNT. The results also show that the elastic medium and the transverse magnetic field will also affect the longitudinal wave dispersion behavior of the CNT significantly. The results obtained in this paper are helpful for understanding the mechanical behaviors of nanostructures embedded in an elastic medium.

  15. Several localized waves induced by linear interference between a nonlinear plane wave and bright solitons

    NASA Astrophysics Data System (ADS)

    Qin, Yan-Hong; Zhao, Li-Chen; Yang, Zhan-Ying; Yang, Wen-Li

    2018-01-01

    We investigate linear interference effects between a nonlinear plane wave and bright solitons, which are admitted by a pair-transition coupled two-component Bose-Einstein condensate. We demonstrate that the interference effects can induce several localized waves possessing distinctive wave structures, mainly including anti-dark solitons, W-shaped solitons, multi-peak solitons, Kuznetsov-Ma like breathers, and multi-peak breathers. Specifically, the explicit conditions for them are clarified by a phase diagram based on the linear interference properties. Furthermore, the interactions between these localized waves are discussed. The detailed analysis indicates that the soliton-soliton interaction induced phase shift brings the collision between these localized waves which can be inelastic for solitons involving collision and can be elastic for breathers. These characters come from the fact that the profile of solitons depends on the relative phase between bright solitons and a plane wave, and the profile of breathers does not depend on the relative phase. These results would motivate more discussions on linear interference between other nonlinear waves. Specifically, the solitons or breathers obtained here are not related to modulational instability. The underlying reasons are discussed in detail. In addition, possibilities to observe these localized waves are discussed in a two species Bose-Einstein condensate.

  16. 49 CFR 572.18 - Thorax.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... plane. The joints of the limbs are adjusted at any setting between 1g and 2g, which just supports the... chest midsagittal plane so that it is 1.5 inches below the longitudinal centerline of the bolt that... plane at the surface on the thorax immediately adjacent to the designated impact point is vertical and...

  17. An Experimental Study of Droplets Produced by a Plunging Breakers

    NASA Astrophysics Data System (ADS)

    Erinin, Martin; Wang, Dan; Towle, David; Liu, Xinan; Duncan, James

    2016-11-01

    In this study, the production of droplets by a mechanically generated plunging breaking water wave is investigated in a wave tank. The breaker, with an amplitude of 0.070 m, is generated repeatedly with a programmable wave maker by using a dispersively focused wave packet (average frequency 1.15 Hz). The profile histories of the breaking wave crests along the center plane of the tank are measured using cinematic laser-induced fluorescence. The droplets are measured using a cinematic digital in-line holographic system positioned at 30 locations along a horizontal plane that is 1 cm above the maximum wave crest height. This measurement plane covers the entire region in the tank where the wave breaks. The holographic system is used to obtain the droplet diameters (d, for d >100 microns) and the three components of the droplet velocities. From these measurements and counting only the droplets that are moving up, the spatio-temporal distribution of droplet generation by the breaking wave is obtained. The main features of the droplet generation are correlated with the features and phases of the breaking process. The support of the National Science Foundation under Grant OCE0751853 from the Division of Ocean Sciences is gratefully acknowledged.

  18. Sensor Modelling for the ’Cyclops’ Focal Plane Detector Array Based Technology Demonstrator

    DTIC Science & Technology

    1992-12-01

    Detector Array IFOV Instantaneous field of view IRFPDA Infrared Focal Plane Detector Array LWIR Long-Wave Infrared 0 MCT Mercury Cadmium Telluride MTF...scale focal plane detector array (FPDA). The sensor system operates in the long-wave infrared ( LWIR ) spectral region. The detector array consists of...charge transfer inefficiencies in the readout circuitry. The performance of the HgCdTe FPDA based sensor is limited by the nonuniformity of the

  19. Third All-Union Symposium on Wave Diffraction.

    DTIC Science & Technology

    1982-08-02

    the Half - Plane of Waves, Formed on the Surface of Liquid and on the Interface in the Laminar Liquid by the Periodically Functioning Source, by...majority of the cases is of basic practical interest. For this way of integration it is displaced into lower half - plane Im xɘ and are computed deductions...and f(x) exponentially decrease, then u(x, p) is continued as meromorphic function for the variable/alternating p into half - plane Re p>-b,

  20. Reflection and Refraction of Acoustic Waves by a Shock Wave

    NASA Technical Reports Server (NTRS)

    Brillouin, J.

    1957-01-01

    The presence of sound waves in one or the other of the fluid regions on either side of a shock wave is made apparent, in the region under superpressure, by acoustic waves (reflected or refracted according to whether the incident waves lie in the region of superpressure or of subpressure) and by thermal waves. The characteristics of these waves are calculated for a plane, progressive, and uniform incident wave. In the case of refraction, the refracted acoustic wave can, according to the incidence, be plane, progressive, and uniform or take the form of an 'accompanying wave' which remains attached to the front of the shock while sliding parallel to it. In all cases, geometrical constructions permit determination of the kinematic characteristics of the reflected or refractive acoustic waves. The dynamic relationships show that the amplitude of the reflected wave is always less than that of the incident wave. The amplitude of the refracted wave, whatever its type, may in certain cases be greater than that of the incident wave.

  1. Optimizing snake locomotion on an inclined plane

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolin; Osborne, Matthew T.; Alben, Silas

    2014-01-01

    We develop a model to study the locomotion of snakes on inclined planes. We determine numerically which snake motions are optimal for two retrograde traveling-wave body shapes, triangular and sinusoidal waves, across a wide range of frictional parameters and incline angles. In the regime of large transverse friction coefficients, we find power-law scalings for the optimal wave amplitudes and corresponding costs of locomotion. We give an asymptotic analysis to show that the optimal snake motions are traveling waves with amplitudes given by the same scaling laws found in the numerics.

  2. Self-sustained oscillations of a sinusoidally-deformed plate

    NASA Astrophysics Data System (ADS)

    Muriel, Diego F.; Cowen, Edwin A.

    2015-11-01

    Motivated by energy harvesting, the oscillatory motion of a deformed elastic material with aspect ratio Length/Width=2, immerse in an incompressible flow is studied experimentally. To induce the wave-like deformation a polycarbonate sheet is placed under longitudinal compression with external forcing provided by equispaced tension lines anchored in a frame. No additional constrains are placed in the material. Based on quantitative image-based edge detection, ADV, and PIV measurements, we document the existence of three natural states of motion. Bellow a critical velocity, a stable state presents a sinusoidal-like deformation with weak small perturbations. Above a critical velocity, instability appears in the form of a traveling wave with predictable dominant frequency accompanied by higher-order harmonics. As the flow velocity increases the instability converges faster to its limit cycle in the phase plane (e.g., vertical velocity and position), until the stable oscillatory mode transitions to chaos showing a broad energy spectrum and unstable limit cycle. The underlying objective is to induce the onset of the instability at lower critical velocities for higher bending rigidities, promoting possible energy extraction and increasing the range at which stable oscillations appear.

  3. Oblique superposition of two elliptically polarized lightwaves using geometric algebra: is energy-momentum conserved?

    PubMed

    Sze, Michelle Wynne C; Sugon, Quirino M; McNamara, Daniel J

    2010-11-01

    In this paper, we use Clifford (geometric) algebra Cl(3,0) to verify if electromagnetic energy-momentum density is still conserved for oblique superposition of two elliptically polarized plane waves with the same frequency. We show that energy-momentum conservation is valid at any time only for the superposition of two counter-propagating elliptically polarized plane waves. We show that the time-average energy-momentum of the superposition of two circularly polarized waves with opposite handedness is conserved regardless of the propagation directions of the waves. And, we show that the resulting momentum density of the superposed waves generally has a vector component perpendicular to the momentum densities of the individual waves.

  4. Longitudinal Surveys of Australian Youth (LSAY) 1998 Cohort: Wave 12 (2009)--Frequency Tables. Technical Report 58B

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2010

    2010-01-01

    The Longitudinal Surveys of Australian Youth (LSAY) program studies the progress of several groups of young Australians as they move from school into post-secondary education and work. This technical paper contains the frequency tables for the LSAY 1998 cohort Wave 12 (2009) data set. [For the accompanying questionnaire, "Longitudinal Surveys…

  5. Recruitment Modeling Applied to Longitudinal Studies of Group Differences in Intelligence

    ERIC Educational Resources Information Center

    Madhyastha, Tara M.; Hunt, Earl; Deary, Ian J.; Gale, Catharine R.; Dykiert, Dominika

    2009-01-01

    In longitudinal studies data is collected in a series of waves. Each wave after the first suffers from attrition. Therefore it can be difficult to discriminate between changes in sample parameters due to a longitudinal process (e.g. ageing) and changes due to attrition. The problem is particularly vexing if one of the purposes is to compare…

  6. Longitudinal Surveys of Australian Youth (LSAY): 2006 Cohort Wave 4 (2009)--Frequency Tables. Technical Report 56B

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2010

    2010-01-01

    The Longitudinal Surveys of Australian Youth (LSAY) program studies the progress of several groups of young Australians as they move from school into post-secondary education and work. This technical paper contains the frequency tables for the LSAY 2006 cohort Wave 4 (2009) data set. [For the "Longitudinal Surveys of Australian Youth (LSAY):…

  7. Longitudinal Surveys of Australian Youth (LSAY): 2006 Cohort Wave 4 (2009)--Questionnaire. Technical Report 56A

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2010

    2010-01-01

    The Longitudinal Surveys of Australian Youth (LSAY) program studies the progress of several groups of young Australians as they move from school into post-secondary education and work. This technical paper contains the questionnaire for the LSAY 2006 cohort Wave 4 (2009) data set. [For the "Longitudinal Surveys of Australian Youth (LSAY):…

  8. The effects of longitudinal chromatic aberration and a shift in the peak of the middle-wavelength sensitive cone fundamental on cone contrast

    PubMed Central

    Rucker, F. J.; Osorio, D.

    2009-01-01

    Longitudinal chromatic aberration is a well-known imperfection of visual optics, but the consequences in natural conditions, and for the evolution of receptor spectral sensitivities are less well understood. This paper examines how chromatic aberration affects image quality in the middle-wavelength sensitive (M-) cones, viewing broad-band spectra, over a range of spatial frequencies and focal planes. We also model the effects on M-cone contrast of moving the M-cone fundamental relative to the long- and middle-wavelength (L- and M-cone) fundamentals, while the eye is accommodated at different focal planes or at a focal plane that maximizes luminance contrast. When the focal plane shifts towards longer (650 nm) or shorter wavelengths (420 nm) the effects on M-cone contrast are large: longitudinal chromatic aberration causes total loss of M-cone contrast above 10 to 20 c/d. In comparison, the shift of the M-cone fundamental causes smaller effects on M-cone contrast. At 10 c/d a shift in the peak of the M-cone spectrum from 560 nm to 460 nm decreases M-cone contrast by 30%, while a 10 nm blue-shift causes only a minor loss of contrast. However, a noticeable loss of contrast may be seen if the eye is focused at focal planes other than that which maximizes luminance contrast. The presence of separate long- and middle-wavelength sensitive cones therefore has a small, but not insignificant cost to the retinal image via longitudinal chromatic aberration. This aberration may therefore be a factor limiting evolution of visual pigments and trichromatic color vision. PMID:18639571

  9. Coupling of an acoustic wave to shear motion due to viscous heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bin; Goree, J.

    2016-07-15

    Viscous heating due to shear motion in a plasma can result in the excitation of a longitudinal acoustic wave, if the shear motion is modulated in time. The coupling mechanism is a thermal effect: time-dependent shear motion causes viscous heating, which leads to a rarefaction that can couple into a longitudinal wave, such as an acoustic wave. This coupling mechanism is demonstrated in an electrostatic three-dimensional (3D) simulation of a dusty plasma, in which a localized shear flow is initiated as a pulse, resulting in a delayed outward propagation of a longitudinal acoustic wave. This coupling effect can be profoundmore » in plasmas that exhibit localized viscous heating, such as the dusty plasma we simulated using parameters typical of the PK-4 experiment. We expect that a similar phenomenon can occur with other kinds of plasma waves.« less

  10. Coupling of transverse and longitudinal waves in piano strings.

    PubMed

    Etchenique, Nikki; Collin, Samantha R; Moore, Thomas R

    2015-04-01

    The existence of longitudinal waves in vibrating piano strings has been previously established, as has their importance in producing the characteristic sound of the piano. Modeling of the coupling between the transverse and longitudinal motion of strings indicates that the amplitude of the longitudinal waves are quadratically related to the transverse displacement of the string, however, experimental verification of this relationship is lacking. In the work reported here this relationship is tested by driving the transverse motion of a piano string at only two frequencies, which simplifies the task of unambiguously identifying the constituent signals. The results indicate that the generally accepted relationship between the transverse motion and the longitudinal motion is valid. It is further shown that this dependence on transverse displacement is a good approximation when a string is excited by the impact of the hammer during normal play.

  11. Method for measuring liquid viscosity and ultrasonic viscometer

    DOEpatents

    Sheen, Shuh-Haw; Lawrence, William P.; Chien, Hual-Te; Raptis, Apostolos C.

    1994-01-01

    An ultrasonic viscometer and method for measuring fluid viscosity are provided. Ultrasonic shear and longitudinal waves are generated and coupled to the fluid. Reflections from the generated ultrasonic shear and longitudinal waves are detected. Phase velocity of the fluid is determined responsive to the detected ultrasonic longitudinal waves reflections. Viscosity of the fluid is determined responsive to the detected ultrasonic shear waves reflections. Unique features of the ultrasonic viscometer include the use of a two-interface fluid and air transducer wedge to measure relative signal change and to enable self calibration and the use of a ratio of reflection coefficients for two different frequencies to compensate for environmental changes, such as temperature.

  12. Study on longitudinal dispersion relation in one-dimensional relativistic plasma: Linear theory and Vlasov simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, H.; Wu, S. Z.; Zhou, C. T.

    2013-09-15

    The dispersion relation of one-dimensional longitudinal plasma waves in relativistic homogeneous plasmas is investigated with both linear theory and Vlasov simulation in this paper. From the Vlasov-Poisson equations, the linear dispersion relation is derived for the proper one-dimensional Jüttner distribution. Numerically obtained linear dispersion relation as well as an approximate formula for plasma wave frequency in the long wavelength limit is given. The dispersion of longitudinal wave is also simulated with a relativistic Vlasov code. The real and imaginary parts of dispersion relation are well studied by varying wave number and plasma temperature. Simulation results are in agreement with establishedmore » linear theory.« less

  13. Monitoring uniform and localized corrosion in reinforced mortar using high-frequency guided longitudinal wages

    NASA Astrophysics Data System (ADS)

    Ervin, Benjamin L.; Reis, Henrique; Bernhard, Jennifer T.; Kuchma, Daniel A.

    2008-03-01

    High-frequency guided longitudinal waves have been used in a through-transmission arrangement to monitor reinforced mortar specimens undergoing both accelerated uniform and localized corrosion. High-frequency guided longitudinal waves were chosen because they have the fastest propagation velocity and lowest theoretical attenuation for the rebar/mortar system. This makes the modes easily discernible and gives them the ability to travel over long distances. The energy of the high-frequency longitudinal waves is located primarily in the center of the rebar, leading to less leakage into the surrounding mortar. The results indicate that the guided mechanical waves are sensitive to both forms of corrosion attack in the form of attenuation, with less sensitivity at higher frequencies. Also promising is the ability to discern uniform corrosion from localized corrosion in a through-transmission arrangement by examination of the frequency domain.

  14. A comprehensive analysis of ion cyclotron waves in the equatorial magnetosphere of Saturn

    NASA Astrophysics Data System (ADS)

    Meeks, Zachary; Simon, Sven; Kabanovic, Slawa

    2016-09-01

    We present a comprehensive analysis of ion cyclotron waves in the equatorial magnetosphere of Saturn, considering all magnetic field data collected during the Cassini era (totaling to over 4 years of data from the equatorial plane). This dataset includes eight targeted flybys of Enceladus, three targeted flybys of Dione, and three targeted flybys of Rhea. Because all remaining orbits of Cassini are high-inclination, our study provides the complete map of ion cyclotron waves in Saturn's equatorial magnetosphere during the Cassini era. We provide catalogs of the radial and longitudinal dependencies of the occurrence rate and amplitude of the ion cyclotron fundamental and first harmonic wave modes. The fundamental wave mode is omnipresent between the orbits of Enceladus and Dione and evenly distributed across all Local Times. The occurrence rate of the fundamental mode displays a Fermi-Dirac-like profile with respect to radial distance from Saturn. Detection of the first harmonic mode is a rare event occurring in only 0.49% of measurements taken and always in conjunction with the fundamental mode. We also search for a dependency of the ion cyclotron wave field on the orbital positions of the icy moons Enceladus, Dione, and Rhea. On magnetospheric length scales, the wave field is independent of the moons' orbital positions. For Enceladus, we analyze wave amplitude profiles of seven close flybys (E9, E12, E13, E14, E17, E18, and E19), which occurred during the studied trajectory segments, to look for any local effects of Enceladan plume variability on the wave field. We find that even in the close vicinity of Enceladus, the wave amplitudes display no discernible dependency on Enceladus' angular distance to its orbital apocenter. Thus, the correlation between plume activity and angular distance to apocenter proposed by Hedman et al. (2013) does not leave a clearly distinguishable imprint in the ion cyclotron wave field.

  15. Efficient evaluation of Coulomb integrals in a mixed Gaussian and plane-wave basis using the density fitting and Cholesky decomposition.

    PubMed

    Čársky, Petr; Čurík, Roman; Varga, Štefan

    2012-03-21

    The objective of this paper is to show that the density fitting (resolution of the identity approximation) can also be applied to Coulomb integrals of the type (k(1)(1)k(2)(1)|g(1)(2)g(2)(2)), where k and g symbols refer to plane-wave functions and gaussians, respectively. We have shown how to achieve the accuracy of these integrals that is needed in wave-function MO and density functional theory-type calculations using mixed Gaussian and plane-wave basis sets. The crucial issues for achieving such a high accuracy are application of constraints for conservation of the number electrons and components of the dipole moment, optimization of the auxiliary basis set, and elimination of round-off errors in the matrix inversion. © 2012 American Institute of Physics

  16. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    PubMed

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.

  17. X-ray plane-wave diffraction effects in a crystal with third-order nonlinearity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balyan, M. K., E-mail: mbalyan@ysu.am

    The two-wave dynamical diffraction in the Laue geometry has been theoretically considered for a plane X-ray wave in a crystal with a third-order nonlinear response to the external field. An analytical solution to the problem stated is found for certain diffraction conditions. A nonlinear pendulum effect is analyzed. The nonlinear extinction length is found to depend on the incident-wave intensity. A pendulum effect of a new type is revealed: the intensities of the transmitted and diffracted waves periodically depend on the incidentwave intensity at a fixed crystal thickness. The rocking curves and Borrmann nonlinear effect are numerically calculated.

  18. Free energy and phase transition of the matrix model on a plane wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hadizadeh, Shirin; Ramadanovic, Bojan; Semenoff, Gordon W.

    2005-03-15

    It has recently been observed that the weakly coupled plane-wave matrix model has a density of states which grows exponentially at high energy. This implies that the model has a phase transition. The transition appears to be of first order. However, its exact nature is sensitive to interactions. In this paper, we analyze the effect of interactions by computing the relevant parts of the effective potential for the Polyakov loop operator in the finite temperature plane-wave matrix model to three-loop order. We show that the phase transition is indeed of first order. We also compute the correction to the Hagedornmore » temperature to order two loops.« less

  19. Penrose limits of Abelian and non-Abelian T-duals of AdS 5 × S 5 and their field theory duals

    NASA Astrophysics Data System (ADS)

    Itsios, Georgios; Nastase, Horatiu; Núñez, Carlos; Sfetsos, Konstantinos; Zacarías, Salomón

    2018-01-01

    We consider the backgrounds obtained by Abelian and non-Abelian T-duality applied on AdS 5 × S 5. We study geodesics, calculate Penrose limits and find the associated plane-wave geometries. We quantise the weakly coupled type-IIA string theory on these backgrounds. We study the BMN sector, finding operators that wrap the original quiver CFT. For the non-Abelian plane wave, we find a `flow' in the frequencies. We report some progress to understand this, in terms of deconstruction of a higher dimensional field theory. We explore a relation with the plane-wave limit of the Janus solution, which we also provide.

  20. Size Reduction of Hamiltonian Matrix for Large-Scale Energy Band Calculations Using Plane Wave Bases

    NASA Astrophysics Data System (ADS)

    Morifuji, Masato

    2018-01-01

    We present a method of reducing the size of a Hamiltonian matrix used in calculations of electronic states. In the electronic states calculations using plane wave basis functions, a large number of plane waves are often required to obtain precise results. Even using state-of-the-art techniques, the Hamiltonian matrix often becomes very large. The large computational time and memory necessary for diagonalization limit the widespread use of band calculations. We show a procedure of deriving a reduced Hamiltonian constructed using a small number of low-energy bases by renormalizing high-energy bases. We demonstrate numerically that the significant speedup of eigenstates evaluation is achieved without losing accuracy.

  1. Simulation of cold magnetized plasmas with the 3D electromagnetic software CST Microwave Studio®

    NASA Astrophysics Data System (ADS)

    Louche, Fabrice; Křivská, Alena; Messiaen, André; Wauters, Tom

    2017-10-01

    Detailed designs of ICRF antennas were made possible by the development of sophisticated commercial 3D codes like CST Microwave Studio® (MWS). This program allows for very detailed geometries of the radiating structures, but was only considering simple materials like equivalent isotropic dielectrics to simulate the reflection and the refraction of RF waves at the vacuum/plasma interface. The code was nevertheless used intensively, notably for computing the coupling properties of the ITER ICRF antenna. Until recently it was not possible to simulate gyrotropic medias like magnetized plasmas, but recent improvements have allowed programming any material described by a general dielectric or/and diamagnetic tensor. A Visual Basic macro was developed to exploit this feature and was tested for the specific case of a monochromatic plane wave propagating longitudinally with respect to the magnetic field direction. For specific cases the exact solution can be expressed in 1D as the sum of two circularly polarized waves connected by a reflection coefficient that can be analytically computed. Solutions for stratified media can also be derived. This allows for a direct comparison with MWS results. The agreement is excellent but accurate simulations for realistic geometries require large memory resources that could significantly restrict the possibility of simulating cold plasmas to small-scale machines.

  2. A research about characteristics of longitudinal variations of ES layers irregularities based on CHAMP occultation measurements

    NASA Astrophysics Data System (ADS)

    Liao, Sunmin

    2018-04-01

    Based on the data of CHAMP occultation measurements, this paper makes a preliminary analysis of the longitudinal variations of ES irregular structure by using Fourier decomposition and reconstruction technique. It is found that the longitudinal variations of the ES irregular structure show the features of multiple wave-numbers, which is dominated by the wave number 1 to the wave number 5 components, and decrease from the amplitudes of the wave number 6 components. The features of wave number structures are very different in different DIP latitude and different seasons. The number of crests in summer and autumn is mostly 3 or 4 crest structures, while the number of crests in spring achieves 5 at DIP 15°N with small fluctuates, the crests number of winter is the least. In the multiple wave-numbers structure, the wave number 4 component shows a significant dependence on the season, mainly in the summer and autumn, particularly obvious from July to October.

  3. A Fresh Look at Longitudinal Standing Waves on a Spring

    NASA Astrophysics Data System (ADS)

    Rutherford, Casey

    2013-01-01

    Transverse standing waves produced on a string, as shown in Fig. 1, are a common demonstration of standing wave patterns that have nodes at both ends. Longitudinal standing waves can be produced on a helical spring that is mounted vertically and attached to a speaker, as shown in Fig. 2, and used to produce both node-node (NN) and node-antinode (NA) standing waves. The resonant frequencies of the two standing wave patterns are related with theory that is accessible to students in algebra-based introductory physics courses, and actual measurements show good agreement with theoretical predictions.

  4. Numerical study of electromagnetic waves generated by a prototype dielectric logging tool

    USGS Publications Warehouse

    Ellefsen, K.J.; Abraham, J.D.; Wright, D.L.; Mazzella, A.T.

    2004-01-01

    To understand the electromagnetic waves generated by a prototype dielectric logging tool, a numerical study was conducted using both the finite-difference, time-domain method and a frequency-wavenumber method. When the propagation velocity in the borehole was greater than that in the formation (e.g., an air-filled borehole in the unsaturated zone), only a guided wave propagated along the borehole. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave radiated electromagnetic energy into the formation, causing its amplitude to decrease. When the propagation velocity in the borehole was less than that in the formation (e.g., a water-filled borehole in the saturated zone), both a refracted wave and a guided wave propagated along the borehole. The velocity of the refracted wave equaled the phase velocity of a plane wave in the formation, and the refracted wave preceded the guided wave. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave did not radiate electromagnetic energy into the formation. To analyze traces recorded by the prototype tool during laboratory tests, they were compared to traces calculated with the finite-difference method. The first parts of both the recorded and the calculated traces were similar, indicating that guided and refracted waves indeed propagated along the prototype tool. ?? 2004 Society of Exploration Geophysicists. All rights reserved.

  5. SU-G-IeP2-08: Investigation On Signal Detectability in Volumetric Cone Beam CT Images with Anatomical Background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, M; Baek, J

    2016-06-15

    Purpose: To investigate the slice direction dependent detectability in cone beam CT images with anatomical background. Methods: We generated 3D anatomical background images using breast anatomy model. To generate 3D breast anatomy, we filtered 3D Gaussian noise with a square root of 1/f{sup 3}, and then assigned the attenuation coefficient of glandular (0.8cm{sup −1}) and adipose (0.46 cm{sup −1}) tissues based on voxel values. Projections were acquired by forward projection, and quantum noise was added to the projection data. The projection data were reconstructed by FDK algorithm. We compared the detectability of a 3 mm spherical signal in the imagemore » reconstructed from four different backprojection Methods: Hanning weighted ramp filter with linear interpolation (RECON1), Hanning weighted ramp filter with Fourier interpolation (RECON2), ramp filter with linear interpolation (RECON3), and ramp filter with Fourier interpolation (RECON4), respectively. We computed task SNR of the spherical signal in transverse and longitudinal planes using channelized Hotelling observer with Laguerre-Gauss channels. Results: Transverse plane has similar task SNR values for different backprojection methods, while longitudinal plane has a maximum task SNR value in RECON1. For all backprojection methods, longitudinal plane has higher task SNR than transverse plane. Conclusion: In this work, we investigated detectability for different slice direction in cone beam CT images with anatomical background. Longitudinal plane has a higher task SNR than transverse plane, and backprojection with hanning weighted ramp filter with linear interpolation method (i.e., RECON1) produced the highest task SNR among four different backprojection methods. This research was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the IT Consilience Creative Programs(IITP-2015-R0346-15-1008) supervised by the IITP (Institute for Information & Communications Technology Promotion), Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the MSIP (2015R1C1A1A01052268) and framework of international cooperation program managed by NRF (NRF-2015K2A1A2067635).« less

  6. Bolt axial stress measurement based on a mode-converted ultrasound method using an electromagnetic acoustic transducer.

    PubMed

    Ding, Xu; Wu, Xinjun; Wang, Yugang

    2014-03-01

    A method is proposed to measure the stress on a tightened bolt using an electromagnetic acoustic transducer (EMAT). A shear wave is generated by the EMAT, and a longitudinal wave is obtained from the reflection of the shear wave due to the mode conversion. The ray paths of the longitudinal and the shear wave are analyzed, and the relationship between the bolt axial stress and the ratio of time of flight between two mode waves is then formulated. Based on the above outcomes, an EMAT is developed to measure the bolt axial stress without loosening the bolt, which is required in the conventional EMAT test method. The experimental results from the measurement of the bolt tension show that the shear and the mode-converted longitudinal waves can be received successfully, and the ratio of the times of flight of the shear and the mode-converted longitudinal waves is linearly proportional to the bolt axial tension. The non-contact characteristic of EMAT eliminates the effect of the couplant and also makes the measurement more convenient than the measurement performed using the piezoelectric transducer. This method provides a promising way to measure the stress on tightened bolts. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Instability of Longitudinal Wave in Magnetized Strongly Coupled Dusty Plasma

    NASA Astrophysics Data System (ADS)

    Xie, Bai-Song

    2003-12-01

    Instability of longitudinal wave in magnetized strongly coupled dusty plasmas is investigated. The dust charging relaxation is taken into account. It is found that there exists threshold of interdust distance for the instability of wave, which is determined significantly by the dust charging relaxation, the coupling parameter of high correlation of dust as well the strength of magnetic field.

  8. The pattern space factor and quality factor of cylindrical source antennas

    NASA Astrophysics Data System (ADS)

    Jarem, John M.

    1982-09-01

    For the first time the quality factor of cylindrical source antennas is derived by a plane wave expansion. The evanescent energy (and therefore the quality factor) as defined by a plane wave expansion is shown to be different from Collin and Rothschild's [IEEE Trans. Antennas Propagation AP-12, 23 (1964)] quality factor.

  9. Determination of plane stress state using terahertz time-domain spectroscopy

    PubMed Central

    Wang, Zhiyong; Kang, Kai; Wang, Shibin; Li, Lin'an; Xu, Ningning; Han, Jiaguang; He, Mingxia; Wu, Liang; Zhang, Weili

    2016-01-01

    THz wave has been increasingly applied in engineering practice. One of its outstanding advantages is the penetrability through certain optically opaque materials, whose interior properties could be therefore obtained. In this report, we develop an experimental method to determine the plane stress state of optically opaque materials based on the stress-optical law using terahertz time-domain spectroscopy (THz-TDS). In this method, two polarizers are combined into the conventional THz-TDS system to sense and adjust the polarization state of THz waves and a theoretical model is established to describe the relationship between phase delay of the received THz wave and the plane stress applied on the specimen. Three stress parameters that represent the plane stress state are finally determined through an error function of THz wave phase-delay. Experiments were conducted on polytetrafluoroethylene (PTFE) specimen and a reasonably good agreement was found with measurement using traditional strain gauges. The presented results validate the effectiveness of the proposed method. The proposed method could be further used in nondestructive tests for a wide range of optically opaque materials. PMID:27824112

  10. Determination of plane stress state using terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyong; Kang, Kai; Wang, Shibin; Li, Lin'an; Xu, Ningning; Han, Jiaguang; He, Mingxia; Wu, Liang; Zhang, Weili

    2016-11-01

    THz wave has been increasingly applied in engineering practice. One of its outstanding advantages is the penetrability through certain optically opaque materials, whose interior properties could be therefore obtained. In this report, we develop an experimental method to determine the plane stress state of optically opaque materials based on the stress-optical law using terahertz time-domain spectroscopy (THz-TDS). In this method, two polarizers are combined into the conventional THz-TDS system to sense and adjust the polarization state of THz waves and a theoretical model is established to describe the relationship between phase delay of the received THz wave and the plane stress applied on the specimen. Three stress parameters that represent the plane stress state are finally determined through an error function of THz wave phase-delay. Experiments were conducted on polytetrafluoroethylene (PTFE) specimen and a reasonably good agreement was found with measurement using traditional strain gauges. The presented results validate the effectiveness of the proposed method. The proposed method could be further used in nondestructive tests for a wide range of optically opaque materials.

  11. Phase function of a spherical particle when scattering an inhomogeneous electromagnetic plane wave.

    PubMed

    Frisvad, Jeppe Revall

    2018-04-01

    In absorbing media, electromagnetic plane waves are most often inhomogeneous. Existing solutions for the scattering of an inhomogeneous plane wave by a spherical particle provide no explicit expressions for the scattering components. In addition, current analytical solutions require evaluation of the complex hypergeometric function F 1 2 for every term of a series expansion. In this work, I develop a simpler solution based on associated Legendre functions with argument zero. It is similar to the solution for homogeneous plane waves but with new explicit expressions for the angular dependency of the far-field scattering components, that is, the phase function. I include recurrence formulas for practical evaluation and provide numerical examples to evaluate how well the new expressions match previous work in some limiting cases. The predicted difference in the scattering phase function due to inhomogeneity is not negligible for light entering an absorbing medium at an oblique angle. The presented theory could thus be useful for predicting scattering behavior in dye-based random lasing and in solar cell absorption enhancement.

  12. System alignment using the Talbot effect

    NASA Astrophysics Data System (ADS)

    Chevallier, Raymond; Le Falher, Eric; Heggarty, Kevin

    1990-08-01

    The Talbot effect is utilized to correct an alignment problem related to a neural network used for image recognition, which required the alignment of a spatial light modulator (SLM) with the input module. A mathematical model which employs the Fresnel diffraction theory is presented to describe the method. The calculation of the diffracted amplitude describes the wavefront sphericity and the original object transmittance function in order to qualify the lateral shift of the Talbot image. Another explanation is set forth in terms of plane-wave illumination in the neural network. Using a Fourier series and by describing planes where all the harmonics are in phase, the reconstruction of Talbot images is explained. The alignment is effective when the lenslet array is aligned on the even Talbot images of the SLM pixels and the incident wave is a plane wave. The alignment is evaluated in terms of source and periodicity errors, tilt of the incident plane waves, and finite object dimensions. The effects of the error sources are concluded to be negligible, the lenslet array is shown to be successfully aligned with the SLM, and other alignment applications are shown to be possible.

  13. Electromagnetic absorption in a multilayered slab model of tissue under near-field exposure conditions.

    PubMed

    Chatterjee, I; Hagmann, M J; Gandhi, O P

    1980-01-01

    The electromagnetic energy deposited in a semi-infinite slab model consisting of skin, fat, and muscle layers is calculated for both plane-wave and near-field exposures. The plane-wave spectrum (PWS) approach is used to calculate the energy deposited in the model by fields present due to leakage from equipment using electromagnetic energy. This analysis applies to near-field exposures where coupling of the target to the leakage source can be neglected. Calculations were made for 2,450 MHz, at which frequency the layered slab adequately models flat regions of the human body. Resonant absorption due to layering is examined as a function of the skin and fat thicknesses for plane-wave exposure and as a function of the physical extent of the near-field distribution. Calculations show that for fields that are nearly constant over at least a free-space wavelength, the energy deposition (for skin, fat, and muscle combination that gives resonant absorption) is equal to or less than that resulting from plane-wave exposure, but is appreciably greater than that obtained for a homogeneous muscle slab model.

  14. Non-contact measurements of ultrasonic waves on paper webs using a photorefractive interferometer

    DOEpatents

    Brodeur, Pierre H.; Lafond, Emmanuel F.

    2000-01-01

    An apparatus and method for non-contact measurement of ultrasonic waves on moving paper webs employs a photorefractive interferometer. The photorefractive interferometer employs an optical head in which the incident beam and reflected beam are coaxial, thus enabling detection of both in-plane and out-of-plane waves with a single apparatus. The incident beam and reference beams are focused into a line enabling greater power to be used without damaging the paper.

  15. High-Resolution Large-Field-of-View Ultrasound Breast Imager

    DTIC Science & Technology

    2012-06-01

    plane waves all having the same wave vector magnitude 0k but propagating in different directions . This observation forms the mathematical basis of the...origin of the object Fourier space and is oriented opposite the propagation direction of the probing plane wave field. Moreover, the 43 radius of...in water. Each element was electrically tuned to match to the 50-Ohm impedance of an RF Amplifier powered by a 4.0 MHz electrical signal from a

  16. Alignment error of mirror modules of advanced telescope for high-energy astrophysics due to wavefront aberrations

    NASA Astrophysics Data System (ADS)

    Zocchi, Fabio E.

    2017-10-01

    One of the approaches that is being tested for the integration of the mirror modules of the advanced telescope for high-energy astrophysics x-ray mission of the European Space Agency consists in aligning each module on an optical bench operated at an ultraviolet wavelength. The mirror module is illuminated by a plane wave and, in order to overcome diffraction effects, the centroid of the image produced by the module is used as a reference to assess the accuracy of the optical alignment of the mirror module itself. Among other sources of uncertainty, the wave-front error of the plane wave also introduces an error in the position of the centroid, thus affecting the quality of the mirror module alignment. The power spectral density of the position of the point spread function centroid is here derived from the power spectral density of the wave-front error of the plane wave in the framework of the scalar theory of Fourier diffraction. This allows the defining of a specification on the collimator quality used for generating the plane wave starting from the contribution to the error budget allocated for the uncertainty of the centroid position. The theory generally applies whenever Fourier diffraction is a valid approximation, in which case the obtained result is identical to that derived by geometrical optics considerations.

  17. Longitudinal associations of intimate partner violence attitudes and perpetration: Dyadic couples data from a randomized controlled trial in rural India

    PubMed Central

    Shakya, Holly B.; Fleming, Paul; Saggurti, Niranjan; Donta, Balaiah; Silverman, Jay; Raj, Anita

    2018-01-01

    We conducted longitudinal analyses examining the associations between intimate partner violence (IPV) attitudes and women’s reported IPV in couples (N = 762) using 3 waves of data from a randomized controlled trial in Maharashtra, India. We found that, between Waves 1 and 2, men’s and women’s acceptance of IPV in the overall population decreased significantly while reports of IPV increased. These changes, we hypothesize, are evidence of an exogenous shock, possibly a high profile rape in Delhi in December 2012, that may have impacted the entire population. Cross-sectional associations between men’s attitudes towards IPV and reported IPV were not significant in Wave 1, while positively and significantly associated in Waves 2 and 3. Longitudinal analysis showed that reduction in men’s acceptance of IPV between Waves 1 and 2 was associated with a lower likelihood of reported IPV in Wave 3. Women’s Wave 1 acceptance of IPV was positively associated with reported IPV in the Wave 1 cross-sectional analysis, while Wave 2 and Wave 3 measures of IPV acceptance were negatively associated with reported IPV in Waves 2 and 3 respectively. Longitudinal analyses of the change in women’s attitudes towards IPV from Wave 1 to 2 and reported IPV in Wave 3 were insignificant. However, When women first reported IPV in Waves 2 or 3 they were less likely to report acceptance of IPV in that same wave. Findings suggest that changes in husbands’ IPV acceptance is predictive of subsequent IPV, while newly experienced IPV predicts decreased IPV acceptance for women. Wave 2 and Wave 3 results were significant for the control group only, evidence that the intervention affected those associations, potentially changing attitudes more quickly than behavior. We recommend interventions that expose community opposition to IPV as a new social norm, and analysis of how the 2012 Delhi rape case may have affected these norms. PMID:28260640

  18. Wave propagation in piezoelectric layered structures of film bulk acoustic resonators.

    PubMed

    Zhu, Feng; Qian, Zheng-Hua; Wang, Bin

    2016-04-01

    In this paper, we studied the wave propagation in a piezoelectric layered plate consisting of a piezoelectric thin film on an electroded elastic substrate with or without a driving electrode. Both plane-strain and anti-plane waves were taken into account for the sake of completeness. Numerical results on dispersion relations, cut-off frequencies and vibration distributions of selected modes were given. The effects of mass ratio of driving electrode layer to film layer on the dispersion curve patterns and cut-off frequencies of the plane-strain waves were discussed in detail. Results show that the mass ratio does not change the trend of dispersion curves but larger mass ratio lowers corresponding frequency at a fixed wave number and may extend the frequency range for energy trapping. Those results are of fundamental importance and can be used as a reference to develop effective two-dimensional plate equations for structural analysis and design of film bulk acoustic resonators. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. A Spherical to Plane Wave Transformation Using a Reflectarray

    NASA Technical Reports Server (NTRS)

    Zaman, Afroz J.; Lee, Richard Q.

    1997-01-01

    A reflectarray has generally been used as a replacement for a reflector antenna. Using in this capacity, different configurations (prime focus, offset etc.) and various applications (dual frequency, scanning etc.) have been demonstrated with great success. Another potential application that has not been explored previously is the use of reflectarrays to compensate for phase errors in space power combining applications such as space-fed lens and power combining amplifier. In these applications, it is required to convert a spherical wave to a plane wave with proper phase correction added to each element of the reflectarray. This paper reports an experiment to investigate the feasibility of using a reflectarray as an alternative to a lens in space power combining. The experiment involves transforming a spherical wave from a orthomode horn to a plane wave at the horn aperture. The reflcctarray consists of square patches terminated in open stubs to provide necessary phase compensation. In this paper, preliminary results will be presented and the feasibility of such compensation scheme will be discussed.

  20. Helicon mysteries: fitting a plane wave into a cylinder

    NASA Astrophysics Data System (ADS)

    Boswell, Rod

    2011-10-01

    Since the first reports in the 1960s, the dispersion of helicon waves in a plasma cylinder has been difficult to describe theoretically for axial wavelengths that are greater than the plasma radius. About 10 years ago, Breizman and Arefiev showed how radial density gradients make the plasma column similar to a coaxial cable, allowing the helicon waves to propagate below the cut-off frequency. The resulting dispersion relation is similar to that of a plane wave propagating parallel to the magnetic field. A few years later, Degeling et. al. presented experimental evidence demonstrating such a plane wave dispersion for a broad range of axial wave numbers. The reason lies in the decoupling of the Hall and electron inertial terms in the dispersion, the former describing the electromagnetic propagation and the latter the electrostatic propagation. Combining the experimental and theoretical results has recently thrown further light on this phenomenon that is applicable to both space and laboratory situations. Radially Localized Helicon Modes in Nonuniform Plasma, Boris N. Breizman and Alexey V. Arefiev, Phys. Rev. Letts. 84, 3863 (2000). Transitions from electrostatic to electromagnetic whistler wave excitation, A. W. Degeling, G. G. Borg and R. W. Boswell, Phys. Plasmas, 11, 2144, (2004).

  1. An Experimental Study Comparing Droplet Production by a Strong Plunging and a Weak Spilling Breaking Water Waves

    NASA Astrophysics Data System (ADS)

    Erinin, Martin; Wang, Dan; Towle, David; Liu, Xinan; Duncan, James

    2017-11-01

    In this study, the production of droplets by two mechanically generated breaking water waves is investigated in a wave tank. A strong plunging breaker and weak spilling breaker are generated repeatedly with a programmable wave maker by using two dispersively focused wave packets with the same wave maker motion profile shape (average frequency 1.15 Hz) and two overall amplitude factors. The profile histories of the breaking wave crests along the center plane of the tank are measured using cinematic laser-induced fluorescence. The droplets are measured using a high speed (650 Hz) cinematic digital in-line holographic system positioned at various locations along a horizontal plane that is 1 cm above the maximum wave crest height. The measurement plane covers the entire region in the tank where the wave breaks. The holographic system is used to obtain the droplet diameters (d, for d >100 microns) and the three components of the droplet velocities. From these measurements and counting only the droplets that are moving up, the spatio-temporal distribution of droplet generation by the two breaking waves is obtained. The main features of the droplet generation are correlated with the features and phases of the breaking process. The support of the National Science Foundation under Grant OCE0751853 from the Division of Ocean Sciences is gratefully acknowledged.

  2. Peri-Elastodynamic Simulations of Guided Ultrasonic Waves in Plate-Like Structure with Surface Mounted PZT.

    PubMed

    Patra, Subir; Ahmed, Hossain; Banerjee, Sourav

    2018-01-18

    Peridynamic based elastodynamic computation tool named Peri-elastodynamics is proposed herein to simulate the three-dimensional (3D) Lamb wave modes in materials for the first time. Peri-elastodynamics is a nonlocal meshless approach which is a scale-independent generalized technique to visualize the acoustic and ultrasonic waves in plate-like structure, micro-electro-mechanical systems (MEMS) and nanodevices for their respective characterization. In this article, the characteristics of the fundamental Lamb wave modes are simulated in a sample plate-like structure. Lamb wave modes are generated using a surface mounted piezoelectric (PZT) transducer which is actuated from the top surface. The proposed generalized Peri-elastodynamics method is not only capable of simulating two dimensional (2D) in plane wave under plane strain condition formulated previously but also capable of accurately simulating the out of plane Symmetric and Antisymmetric Lamb wave modes in plate like structures in 3D. For structural health monitoring (SHM) of plate-like structures and nondestructive evaluation (NDE) of MEMS devices, it is necessary to simulate the 3D wave-damage interaction scenarios and visualize the different wave features due to damages. Hence, in addition, to simulating the guided ultrasonic wave modes in pristine material, Lamb waves were also simulated in a damaged plate. The accuracy of the proposed technique is verified by comparing the modes generated in the plate and the mode shapes across the thickness of the plate with theoretical wave analysis.

  3. E-cigarette advertising exposure in e-cigarette naïve adolescents and subsequent e-cigarette use: A longitudinal cohort study.

    PubMed

    Camenga, Deepa; Gutierrez, Kevin M; Kong, Grace; Cavallo, Dana; Simon, Patricia; Krishnan-Sarin, Suchitra

    2018-06-01

    Electronic (E-) cigarettes are one of the most popular tobacco products used by adolescents today. This study examined whether exposure to advertisements in (1) social networking sites (Facebook, Twitter, YouTube, Pinterest/Google Plus), (2) traditional media (television/radio, magazines, billboards), or (3) retail stores (convenience stores, mall kiosks, tobacco shops) was associated with subsequent e-cigarette use in a longitudinal cohort of adolescents. Data were drawn from longitudinal surveys conducted in fall 2013 (wave 1) and spring 2014 (wave 2) of a school-based cohort attending 3 high schools and 2 middle schools in Connecticut. Adolescents were asked about tobacco use behaviors and where they had recently seen e-cigarette advertising at wave 1. We used logistic regression to determine whether advertising exposure at wave 1 increased the odds of e-cigarette use by wave 2, controlling for demographics and cigarette smoking status at wave 1. Among those who have never used e-cigarettes in wave 1 (n = 1742), 9.6% reported e-cigarette use at wave 2. Multivariate logistic regression demonstrated that exposure to e-cigarette advertising on Facebook (OR 2.12 = p < 0.02) at wave 1, but not other venues, significantly increased the odds of subsequent e-cigarette use wave 2. Age, white race, and cigarette smoking at wave 1 also was associated with e-cigarette use at wave 2. This study provides one of the first longitudinal examinations demonstrating that exposure to e-cigarette advertising on social networking sites among youth who had never used e-cigarettes increases the likelihood of subsequent e-cigarette use. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. MASW Seismic Method in Brebu Landslide Area, Romania

    NASA Astrophysics Data System (ADS)

    Mihai, Marinescu; Paul, Cristea; Cristian, Marunteanu; Matei, Mezincescu

    2017-12-01

    This paper is focused on assessing the possibility of enhancing the geotechnical information in perimeters with landslides, especially through applications of the Multichannel Analysis of Surface Waves (MASW) method. The technology enables the determination of the phase velocities of Rayleigh waves and, recursively, the evaluation of shear wave velocities (Vs) related to depth. Finally, using longitudinal wave velocities (Vp), derived from the seismic refraction measurements, in situ dynamic elastic properties in a shallow section can be obtained. The investigation was carried out in the Brebu landslide (3-5 m depth of bedrock), located on the southern flank of the Slanic Syncline (110 km North of Bucharest) and included a drilling program and geotechnical laboratory observations. The seismic refraction records (seismic sources placed at the centre, ends and outside of the geophone spread) have been undertaken on two lines, 23 m and 46 m long respectively) approximately perpendicular to the downslope direction of the landslide and on different local morpho-structures. A Geode Geometrics seismograph was set for 1 ms sampling rate and pulse summations in real-time for five blows. Twenty-four vertical Geometrics SpaceTech geophones (14 Hz resonance frequency) were disposed at 1 m spacing. The seismic source was represented by the impact of an 8kg weight sledge hammer on a metal plate. Regarding seismic data processing, the distinctive feature is related to performing more detailed analyses of MASW records. The proposed procedure consists of the spread split in groups with fewer receivers and several interval-geophones superposed. 2D Fourier analysis, f-k (frequency-wave number) spectrum, for each of these groups assures the information continuity and, all the more, accuracy to pick out the amplitude maximums of the f-k spectra. Finally, combining both values VS (calculated from 2D spectral analyses of Rayleigh waves) and VP (obtained from seismic refraction records) plots of mean geodynamic parameter evolution related to depth were constructed. Parameter value differentiations referring to slope stability are revealed. Lowest values of VS and both shear and longitudinal elastic moduli are defined for the area with landslide rockmass, in opposition with stable land for which the biggest values for same parameters are revealed. Intermediate values are signalized above the main plane of sliding, zone classified unstable.

  5. Spatial correlation of atmospheric wind at scales relevant for large scale wind turbines

    NASA Astrophysics Data System (ADS)

    Bardal, L. M.; Sætran, L. R.

    2016-09-01

    Wind measurements a short distance upstream of a wind turbine can provide input for a feedforward wind turbine controller. Since the turbulent wind field will be different at the point/plane of measurement and the rotor plane the degree of correlation between wind speed at two points in space both in the longitudinal and lateral direction should be evaluated. This study uses a 2D array of mast mounted anemometers to evaluate cross-correlation of longitudinal wind speed. The degree of correlation is found to increase with height and decrease with atmospheric stability. The correlation is furthermore considerably larger for longitudinal separation than for lateral separation. The integral length scale of turbulence is also considered.

  6. Quantum-shutter approach to tunneling time scales with wave packets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Norifumi; Garcia-Calderon, Gaston; Villavicencio, Jorge

    2005-07-15

    The quantum-shutter approach to tunneling time scales [G. Garcia-Calderon and A. Rubio, Phys. Rev. A 55, 3361 (1997)], which uses a cutoff plane wave as the initial condition, is extended to consider certain type of wave packet initial conditions. An analytical expression for the time-evolved wave function is derived. The time-domain resonance, the peaked structure of the probability density (as the function of time) at the exit of the barrier, originally found with the cutoff plane wave initial condition, is studied with the wave packet initial conditions. It is found that the time-domain resonance is not very sensitive to themore » width of the packet when the transmission process occurs in the tunneling regime.« less

  7. Formulation of the rotational transformation of wave fields and their application to digital holography.

    PubMed

    Matsushima, Kyoji

    2008-07-01

    Rotational transformation based on coordinate rotation in Fourier space is a useful technique for simulating wave field propagation between nonparallel planes. This technique is characterized by fast computation because the transformation only requires executing a fast Fourier transform twice and a single interpolation. It is proved that the formula of the rotational transformation mathematically satisfies the Helmholtz equation. Moreover, to verify the formulation and its usefulness in wave optics, it is also demonstrated that the transformation makes it possible to reconstruct an image on arbitrarily tilted planes from a wave field captured experimentally by using digital holography.

  8. Brillouin light scattering on Fe/Cr/Fe thin-film sandwiches

    NASA Astrophysics Data System (ADS)

    Kabos, P.; Patton, C. E.; Dima, M. O.; Church, D. B.; Stamps, R. L.; Camley, R. E.

    1994-04-01

    The aim of this work is to perform Brillouin light scattering measurements of the field and wave-vector dependencies of the frequencies of the fundamental magnetic excitations in Fe/Cr/Fe thin film sandwiches with antiferromagnetically coupled magnetic layers, correlate these results with magnetization versus field data on such films, and compare the observed dependencies with theory for low-wave number spin-wave modes in sandwich films. The measurements were made for the in-plane static magnetic field H along the crystallographic and directions, with the in-plane wave vector k always perpendicular to H.

  9. Trapped waves on the mid-latitude β-plane

    NASA Astrophysics Data System (ADS)

    Paldor, Nathan; Sigalov, Andrey

    2008-08-01

    A new type of approximate solutions of the Linearized Shallow Water Equations (LSWE) on the mid-latitude β-plane, zonally propagating trapped waves with Airy-like latitude-dependent amplitude, is constructed in this work, for sufficiently small radius of deformation. In contrast to harmonic Poincare and Rossby waves, these newly found trapped waves vanish fast in the positive half-axis, and their zonal phase speed is larger than that of the corresponding harmonic waves for sufficiently large meridional domains. Our analysis implies that due to the smaller radius of deformation in the ocean compared with that in the atmosphere, the trapped waves are relevant to observations in the ocean whereas harmonic waves typify atmospheric observations. The increase in the zonal phase speed of trapped Rossby waves compared with that of harmonic ones is consistent with recent observations that showed that Sea Surface Height features propagated westwards faster than the phase speed of harmonic Rossby waves.

  10. Photonic band structures solved by a plane-wave-based transfer-matrix method.

    PubMed

    Li, Zhi-Yuan; Lin, Lan-Lan

    2003-04-01

    Transfer-matrix methods adopting a plane-wave basis have been routinely used to calculate the scattering of electromagnetic waves by general multilayer gratings and photonic crystal slabs. In this paper we show that this technique, when combined with Bloch's theorem, can be extended to solve the photonic band structure for 2D and 3D photonic crystal structures. Three different eigensolution schemes to solve the traditional band diagrams along high-symmetry lines in the first Brillouin zone of the crystal are discussed. Optimal rules for the Fourier expansion over the dielectric function and electromagnetic fields with discontinuities occurring at the boundary of different material domains have been employed to accelerate the convergence of numerical computation. Application of this method to an important class of 3D layer-by-layer photonic crystals reveals the superior convergency of this different approach over the conventional plane-wave expansion method.

  11. Quantum scattering beyond the plane-wave approximation

    NASA Astrophysics Data System (ADS)

    Karlovets, Dmitry

    2017-12-01

    While a plane-wave approximation in high-energy physics works well in a majority of practical cases, it becomes inapplicable for scattering of the vortex particles carrying orbital angular momentum, of Airy beams, of the so-called Schrödinger cat states, and their generalizations. Such quantum states of photons, electrons and neutrons have been generated experimentally in recent years, opening up new perspectives in quantum optics, electron microscopy, particle physics, and so forth. Here we discuss the non-plane-wave effects in scattering brought about by the novel quantum numbers of these wave packets. For the well-focused electrons of intermediate energies, already available at electron microscopes, the corresponding contribution can surpass that of the radiative corrections. Moreover, collisions of the cat-like superpositions of such focused beams with atoms allow one to probe effects of the quantum interference, which have never played any role in particle scattering.

  12. Hygrothermal wave propagation in viscoelastic graphene under in-plane magnetic field based on nonlocal strain gradient theory

    NASA Astrophysics Data System (ADS)

    Karami, Behrouz; Shahsavari, Davood; Li, Li

    2018-03-01

    A size-dependent model is developed for the hygrothermal wave propagation analysis of an embedded viscoelastic single layer graphene sheet (SLGS) under the influence of in-plane magnetic field. The bi-Helmholtz nonlocal strain gradient theory involving three small scale parameters is introduced to account for the size-dependent effects. The size-dependent model is deduced based on Hamilton's principle. The closed-form solution of eigenfrequency relation between wave number and phase velocity is achieved. By studying the size-dependent effects on the flexural wave of SLGS, the dispersion relation predicted by the developed size-dependent model can show a good match with experimental data. The influence of in-plane magnetic field, temperature and moisture of environs, structural damping, damped substrate, lower and higher order nonlocal parameters and the material characteristic parameter on the phase velocity of SLGS is explored.

  13. Evolution of pressures and correlations in the glasma produced in high energy nuclear collisions

    NASA Astrophysics Data System (ADS)

    Ruggieri, M.; Liu, J. H.; Oliva, L.; Peng, G. X.; Greco, V.

    2018-04-01

    We consider the SU(2) glasma with Gaussian fluctuations and study its evolution by means of classical Yang-Mills equations solved numerically on a lattice. Neglecting in this first study the longitudinal expansion, we follow the evolution of the pressures of the system and compute the effect of the fluctuations in the early stage up to t ≈2 fm /c , that is the time range in which the glasma is relevant for high energy collisions. We measure the ratio of the longitudinal over the transverse pressure, PL/PT, and we find that unless the fluctuations carry a substantial amount of the energy density at the initial time, they do not change significantly the evolution of PL/PT in the early stage and that the system remains quite anisotropic. We also measure the longitudinal fields correlators both in the transverse plane and along the longitudinal direction: while at initial time fields appear to be anticorrelated in the transverse plane, this anticorrelation disappears in the very early stage, and the correlation length in the transverse plane increases. On the other hand, we find a dependence of the gauge invariant correlator on the longitudinal coordinate, which we interpret as a partial loss of correlation induced by the dynamics that we dub the gauge invariant string breaking. We finally study the effect of fluctuations on the longitudinal correlations: we find that string breaking is accelerated by the fluctuations and waiting for a sufficiently long time fluctuations lead to the complete breaking of the color strings.

  14. Effects of the horizontal component of the Earth's rotation on wave propagation on an f-plane

    NASA Astrophysics Data System (ADS)

    Beckmann, Aike; Diebels, Stefan

    Scaling arguments are used to show that effects due to the horizontal component of the Coriolis force should be taken into account as a first correction to the traditional hydrostatic theory, before frequency dispersion due to vertical acceleration and nonlinearity are included. It is shown analytically that wave propagation of the f--plane becomes anisotropic and that amphidromic systems do not exist in their usual definition. Another important consequence is the existence of free wave solutions at subinertial frequencies.

  15. Revisiting the Plane Electromagnetic Wave Transmission and Reflection Coefficients for the Layer with AN Alternating-Sign Disturbance of Relative Dielectric Permittivity

    NASA Astrophysics Data System (ADS)

    Milov, V. R.; Kogan, L. P.; Gorev, P. V.; Kuzmichev, P. N.; Egorova, P. A.

    2017-01-01

    In this paper, we consider the question of the plane electromagnetic wave incidence at the inhomogeneity with an arbitrary profile of the relative permittivity disturbance. Module estimation of Neumann series remainder is carried out for the field of the wave passing through the nonhomogeneous section. Based on that, the number of summands in the series, required to calculate with a given accuracy, the transmission and reflection coefficients have been determined.

  16. Delay-Encoded Harmonic Imaging (DE-HI) in Multiplane-Wave Compounding.

    PubMed

    Gong, Ping; Song, Pengfei; Chen, Shigao

    2017-04-01

    The development of ultrafast ultrasound imaging brings great opportunities to improve imaging technologies such as shear wave elastography and ultrafast Doppler imaging. In ultrafast imaging, several tilted plane or diverging wave images are coherently combined to form a compounded image, leading to trade-offs among image signal-to-noise ratio (SNR), resolution, and post-compounded frame rate. Multiplane wave (MW) imaging is proposed to solve this trade-off by encoding multiple plane waves with Hadamard matrix during one transmission event (i.e. pulse-echo event), to improve image SNR without sacrificing the resolution or frame rate. However, it suffers from stronger reverberation artifacts in B-mode images compared to standard plane wave compounding due to longer transmitted pulses. If harmonic imaging can be combined with MW imaging, the reverberation artifacts and other clutter noises such as sidelobes and multipath scattering clutters should be suppressed. The challenge, however, is that the Hadamard codes used in MW imaging cannot encode the 2 nd harmonic component by inversing the pulse polarity. In this paper, we propose a delay-encoded harmonic imaging (DE-HI) technique to encode the 2 nd harmonic with a one quarter period delay calculated at the transmit center frequency, rather than reversing the pulse polarity during multiplane wave emissions. Received DE-HI signals can then be decoded in the frequency domain to recover the signals as in single plane wave emissions, but mainly with improved SNR at the 2 nd harmonic component instead of the fundamental component. DE-HI was tested experimentally with a point target, a B-mode imaging phantom, and in-vivo human liver imaging. Improvements in image contrast-to-noise ratio (CNR), spatial resolution, and lesion-signal-to-noise ratio ( l SNR) have been achieved compared to standard plane wave compounding, MW imaging, and standard harmonic imaging (maximal improvement of 116% on CNR and 115% on l SNR as compared to standard HI around 55 mm depth in the B-mode imaging phantom study). The potential high frame rate and the stability of encoding and decoding processes of DE-HI were also demonstrated, which made DE-HI promising for a wide spectrum of imaging applications.

  17. Type IIB Colliding Plane Waves

    NASA Astrophysics Data System (ADS)

    Gutperle, M.; Pioline, B.

    2003-09-01

    Four-dimensional colliding plane wave (CPW) solutions have played an important role in understanding the classical non-linearities of Einstein's equations. In this note, we investigate CPW solutions in 2n+2-dimensional Einstein gravity with a n+1-form flux. By using an isomorphism with the four-dimensional problem, we construct exact solutions analogous to the Szekeres vacuum solution in four dimensions. The higher-dimensional versions of the Khan-Penrose and Bell-Szekeres CPW solutions are studied perturbatively in the vicinity of the light-cone. We find that under small perturbations, a curvature singularity is generically produced, leading to both space-like and time-like singularities. For n = 4, our results pertain to the collision of two ten-dimensional type-IIB Blau-Figueroa o'Farrill-Hull-Papadopoulos plane waves.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatano, H.; Watanabe, T.

    A new system was developed for the reciprocity calibration of acoustic emission transducers in Rayleigh-wave and longitudinal-wave sound fields. In order to reduce interference from spurious waves due to reflections and mode conversions, a large cylindrical block of forged steel was prepared for the transfer medium, and direct and spurious waves were discriminated between on the basis of their arrival times. Frequency characteristics of velocity sensitivity to both the Rayleigh wave and longitudinal wave were determined in the range of 50 kHz{endash}1 MHz by means of electrical measurements without the use of mechanical sound sources or reference transducers. {copyright} {italmore » 1997 Acoustical Society of America.}« less

  19. Wave propagation in fluid-conveying viscoelastic carbon nanotubes under longitudinal magnetic field with thermal and surface effect via nonlocal strain gradient theory

    NASA Astrophysics Data System (ADS)

    Zhen, Yaxin; Zhou, Lin

    2017-03-01

    Based on nonlocal strain gradient theory, wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes (SWCNTs) is studied in this paper. With consideration of thermal effect and surface effect, wave equation is derived for fluid-conveying viscoelastic SWCNTs under longitudinal magnetic field utilizing Euler-Bernoulli beam theory. The closed-form expressions are derived for the frequency and phase velocity of the wave motion. The influences of fluid flow velocity, structural damping coefficient, temperature change, magnetic flux and surface effect are discussed in detail. SWCNTs’ viscoelasticity reduces the wave frequency of the system and the influence gets remarkable with the increase of wave number. The fluid in SWCNTs decreases the frequency of wave propagation to a certain extent. The frequency (phase velocity) gets larger due to the existence of surface effect, especially when the diameters of SWCNTs and the wave number decrease. The wave frequency increases with the increase of the longitudinal magnetic field, while decreases with the increase of the temperature change. The results may be helpful for better understanding the potential applications of SWCNTs in nanotechnology.

  20. Effects of exposure to rocket attacks on adolescent distress and violence: a 4-year longitudinal study.

    PubMed

    Henrich, Christopher C; Shahar, Golan

    2013-06-01

    The effects of Israeli adolescents' exposure to rocket attacks over time were examined, focusing on anxiety, depression, aggression, and violence commission. A sample of 362 adolescents from southern Israel was followed from 2008 through 2011 with four annual assessments. Measures included exposure to rocket attacks (gauging whether children were affected by rocket attacks, both directly and indirectly, through friends and family), anxiety (items from the State Anxiety Inventory), depression (the Center for Epidemiological Studies Child Depression Scale), aggression (the Orpinas Aggression Scale), and violence commission (from the Social and Health Assessment). Concurrent and longitudinal findings differed. Wave 1 exposure to rockets attacks was associated with Wave 1 anxiety, depression, and aggression. Longitudinal results evinced only modest effects of exposure on anxiety and depression, no effects on aggression, but robust effects on violence commission. Exposure to terror attacks before the study predicted increased odds of violence commission at the fourth and final wave, controlling for violence commission at the first, second, and third wave. Exposure to rocket attacks in the second wave predicted increased odds of violence commission at the third wave. This is the first longitudinal study attesting to the prospective longitudinal effect of exposure to terrorism on adolescent violence. Findings should serve as a red flag for health care practitioners working in civil areas afflicted by terrorism and political violence. Copyright © 2013 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. A two degrees-of-freedom piezoelectric single-crystal micromotor

    NASA Astrophysics Data System (ADS)

    Chen, Zhijiang; Li, Xiaotian; Liu, Guoxi; Dong, Shuxiang

    2014-12-01

    A two degrees-of-freedom (DOF) ultrasonic micromotor made of piezoelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystal square-bar (dimensions 2 × 2 × 9 mm3) was developed. The PIN-PMN-PT square-bar stator can generate standing wave elliptical motions in two orthogonal vertical planes by combining the first longitudinal and second bending vibration modes, enabling it to drive a slider in two orthogonal directions. The relatively large driving forces of 0.25 N and motion speed of 35 mm/s were obtained under a voltage of 80 Vpp at its resonance frequency of 87.5 kHz. The proposed micromotor has potential for applications in micro robots, cell manipulators, and digital cameras as a two-DOF actuator.

  2. Field lens multiplexing in holographic 3D displays by using Bragg diffraction based volume gratings

    NASA Astrophysics Data System (ADS)

    Fütterer, G.

    2016-11-01

    Applications, which can profit from holographic 3D displays, are the visualization of 3D data, computer-integrated manufacturing, 3D teleconferencing and mobile infotainment. However, one problem of holographic 3D displays, which are e.g. based on space bandwidth limited reconstruction of wave segments, is to realize a small form factor. Another problem is to provide a reasonable large volume for the user placement, which means to provide an acceptable freedom of movement. Both problems should be solved without decreasing the image quality of virtual and real object points, which are generated within the 3D display volume. A diffractive optical design using thick hologram gratings, which can be referred to as Bragg diffraction based volume gratings, can provide a small form factor and high definition natural viewing experience of 3D objects. A large collimated wave can be provided by an anamorphic backlight unit. The complex valued spatial light modulator add local curvatures to the wave field he is illuminated with. The modulated wave field is focused onto to the user plane by using a volume grating based field lens. Active type liquid crystal gratings provide 1D fine tracking of approximately +/- 8° deg. Diffractive multiplex has to be implemented for each color and for a set of focus functions providing coarse tracking. Boundary conditions of the diffractive multiplexing are explained. This is done in regards to the display layout and by using the coupled wave theory (CWT). Aspects of diffractive cross talk and its suppression will be discussed including longitudinal apodized volume gratings.

  3. Evaluating the Improvement in Shear Wave Speed Image Quality Using Multidimensional Directional Filters in the Presence of Reflection Artifacts.

    PubMed

    Lipman, Samantha L; Rouze, Ned C; Palmeri, Mark L; Nightingale, Kathryn R

    2016-08-01

    Shear waves propagating through interfaces where there is a change in stiffness cause reflected waves that can lead to artifacts in shear wave speed (SWS) reconstructions. Two-dimensional (2-D) directional filters are commonly used to reduce in-plane reflected waves; however, SWS artifacts arise from both in- and out-of-imaging-plane reflected waves. Herein, we introduce 3-D shear wave reconstruction methods as an extension of the previous 2-D estimation methods and quantify the reduction in image artifacts through the use of volumetric SWS monitoring and 4-D-directional filters. A Gaussian acoustic radiation force impulse excitation was simulated in phantoms with Young's modulus ( E ) of 3 kPa and a 5-mm spherical lesion with E = 6, 12, or 18.75 kPa. The 2-D-, 3-D-, and 4-D-directional filters were applied to the displacement profiles to reduce in-and out-of-plane reflected wave artifacts. Contrast-to-noise ratio and SWS bias within the lesion were calculated for each reconstructed SWS image to evaluate the image quality. For 2-D SWS image reconstructions, the 3-D-directional filters showed greater improvements in image quality than the 2-D filters, and the 4-D-directional filters showed marginal improvement over the 3-D filters. Although 4-D-directional filters can further reduce the impact of large magnitude out-of-plane reflection artifacts in SWS images, computational overhead and transducer costs to acquire 3-D data may outweigh the modest improvements in image quality. The 4-D-directional filters have the largest impact in reducing reflection artifacts in 3-D SWS volumes.

  4. Out-of-plane measurements of the fifth response function of the exclusive electronuclear response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolfini, S. M.; Arizona State University, Tempe, Arizona 85287-1504; Alarcon, R. O.

    1999-12-01

    The first measurements of f{sub LT}{sup '}, known as the fifth response function, have been made for the {sup 2}H(e(vector sign),e{sup '}p) and {sup 12}C(e(vector sign),e{sup '}p) reactions. This response is directly related to the imaginary part of the interference between the transverse and longitudinal nuclear electromagnetic currents. Its observation requires longitudinally polarized electron beams and out-of-plane detection, the latter made possible by the newly developed out-of-plane spectrometer system. The initial measurements were made by using a 560-MeV polarized electron beam and quasielastic kinematics at Q{sup 2}=3.3 fm{sup -2}. The development of the methodology for out-of-plane physics, and the analysismore » of the data from the initial experiments are described in detail. The measured fifth response and the related asymmetry in the coincidence cross section are in agreement, albeit with large statistical errors, with the theoretical predictions. Future extensions of the out-of-plane program are also discussed. (c) 1999 The American Physical Society.« less

  5. Students dance longitudinal standing waves

    NASA Astrophysics Data System (ADS)

    Ruiz, Michael J.

    2017-05-01

    A demonstration is presented that involves students dancing longitudinal standing waves. The resulting kinaesthetic experience and visualization both contribute towards an understanding of the natural modes of vibrations in open and closed pipes. A video of this fun classroom activity is provided (http://mjtruiz.com/ped/dance/).

  6. Gaussian and Airy wave packets of massive particles with orbital angular momentum

    NASA Astrophysics Data System (ADS)

    Karlovets, Dmitry V.

    2015-01-01

    While wave-packet solutions for relativistic wave equations are oftentimes thought to be approximate (paraxial), we demonstrate, by employing a null-plane- (light-cone-) variable formalism, that there is a family of such solutions that are exact. A scalar Gaussian wave packet in the transverse plane is generalized so that it acquires a well-defined z component of the orbital angular momentum (OAM), while it may not acquire a typical "doughnut" spatial profile. Such quantum states and beams, in contrast to the Bessel states, may have an azimuthal-angle-dependent probability density and finite uncertainty of the OAM, which is determined by the packet's width. We construct a well-normalized Airy wave packet, which can be interpreted as a one-particle state for a relativistic massive boson, show that its center moves along the same quasiclassical straight path, and, which is more important, spreads with time and distance exactly as a Gaussian wave packet does, in accordance with the uncertainty principle. It is explained that this fact does not contradict the well-known "nonspreading" feature of the Airy beams. While the effective OAM for such states is zero, its uncertainty (or the beam's OAM bandwidth) is found to be finite, and it depends on the packet's parameters. A link between exact solutions for the Klein-Gordon equation in the null-plane-variable formalism and the approximate ones in the usual approach is indicated; generalizations of these states for a boson in the external field of a plane electromagnetic wave are also presented.

  7. Competing spin density wave, collinear, and helical magnetism in Fe 1 + x Te

    DOE PAGES

    Stock, C.; Rodriguez, E. E.; Bourges, P.; ...

    2017-04-07

    The Fe 1+xTe phase diagram consists of two distinct magnetic structures with collinear order present at low interstitial iron concentrations and a helical phase at large values of x with these phases separated by a Lifshitz point. In this paper, we use unpolarized single-crystal diffraction to confirm the helical phase for large interstitial iron concentrations and polarized single-crystal diffraction to demonstrate the collinear order for the iron-deficient side of the Fe 1+xTe phase diagram. Polarized neutron inelastic scattering shows that the fluctuations associated with this collinear order are predominately transverse at low-energy transfers, consistent with a localized magnetic moment picture.more » We then apply neutron inelastic scattering and polarization analysis to investigate the dynamics and structure near the boundary between collinear and helical orders in the Fe 1+xTe phase diagram. We first show that the phase separating collinear and helical orders is characterized by a spin density wave with a single propagation wave vector of (~0.45, 0, 0.5). We do not observe harmonics or the presence of a charge density wave. The magnetic fluctuations associated with this wave vector are different from the collinear phase, being strongly longitudinal in nature and correlated anisotropically in the (H,K) plane. The excitations preserve the C 4 symmetry of the lattice but display different widths in momentum along the two tetragonal directions at low-energy transfers. Finally, while the low-energy excitations and minimal magnetic phase diagram can be understood in terms of localized interactions, we suggest that the presence of the density wave phase implies the importance of electronic and orbital properties.« less

  8. Competing spin density wave, collinear, and helical magnetism in Fe 1 + x Te

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stock, C.; Rodriguez, E. E.; Bourges, P.

    The Fe 1+xTe phase diagram consists of two distinct magnetic structures with collinear order present at low interstitial iron concentrations and a helical phase at large values of x with these phases separated by a Lifshitz point. In this paper, we use unpolarized single-crystal diffraction to confirm the helical phase for large interstitial iron concentrations and polarized single-crystal diffraction to demonstrate the collinear order for the iron-deficient side of the Fe 1+xTe phase diagram. Polarized neutron inelastic scattering shows that the fluctuations associated with this collinear order are predominately transverse at low-energy transfers, consistent with a localized magnetic moment picture.more » We then apply neutron inelastic scattering and polarization analysis to investigate the dynamics and structure near the boundary between collinear and helical orders in the Fe 1+xTe phase diagram. We first show that the phase separating collinear and helical orders is characterized by a spin density wave with a single propagation wave vector of (~0.45, 0, 0.5). We do not observe harmonics or the presence of a charge density wave. The magnetic fluctuations associated with this wave vector are different from the collinear phase, being strongly longitudinal in nature and correlated anisotropically in the (H,K) plane. The excitations preserve the C 4 symmetry of the lattice but display different widths in momentum along the two tetragonal directions at low-energy transfers. Finally, while the low-energy excitations and minimal magnetic phase diagram can be understood in terms of localized interactions, we suggest that the presence of the density wave phase implies the importance of electronic and orbital properties.« less

  9. Competing spin density wave, collinear, and helical magnetism in Fe1 +xTe

    NASA Astrophysics Data System (ADS)

    Stock, C.; Rodriguez, E. E.; Bourges, P.; Ewings, R. A.; Cao, H.; Chi, S.; Rodriguez-Rivera, J. A.; Green, M. A.

    2017-04-01

    The Fe1 +xTe phase diagram consists of two distinct magnetic structures with collinear order present at low interstitial iron concentrations and a helical phase at large values of x with these phases separated by a Lifshitz point. We use unpolarized single-crystal diffraction to confirm the helical phase for large interstitial iron concentrations and polarized single-crystal diffraction to demonstrate the collinear order for the iron-deficient side of the Fe1 +xTe phase diagram. Polarized neutron inelastic scattering shows that the fluctuations associated with this collinear order are predominately transverse at low-energy transfers, consistent with a localized magnetic moment picture. We then apply neutron inelastic scattering and polarization analysis to investigate the dynamics and structure near the boundary between collinear and helical orders in the Fe1 +xTe phase diagram. We first show that the phase separating collinear and helical orders is characterized by a spin density wave with a single propagation wave vector of (˜0.45 , 0, 0.5). We do not observe harmonics or the presence of a charge density wave. The magnetic fluctuations associated with this wave vector are different from the collinear phase, being strongly longitudinal in nature and correlated anisotropically in the (H ,K ) plane. The excitations preserve the C4 symmetry of the lattice but display different widths in momentum along the two tetragonal directions at low-energy transfers. While the low-energy excitations and minimal magnetic phase diagram can be understood in terms of localized interactions, we suggest that the presence of the density wave phase implies the importance of electronic and orbital properties.

  10. Experimental study of inertial waves in a spherical shell induced by librations of the inner sphere

    NASA Astrophysics Data System (ADS)

    Hoff, Michael; Harlander, Uwe; Jahangir, Saad; Egbers, Christoph

    2015-04-01

    Many planetary bodies do not rotate with a constant velocity but undergo rotations with superposed oscillations called longitudinal librations. This is the case e.g. for the Earth's moon, Mars' moon, Mercury and many other moons of Jupiter and Saturn and some of them have a solid inner core and a molten outer core. It is worth to know the interaction between the libration of the core and the interior of the fluid to understand tidal heating, fluid mixing, and the generation of magnetic fields. Here we present an experimental investigation of inertial waves in a spherical shell. The shell rotates with a mean angular velocity Ω around its vertical axis overlaid by a time periodic oscillation of the inner sphere in the range 0 < ω < 2Ω, in order to excite inertial waves with a known frequency. We want to show the influence of the libration amplitude ɛ on different libration frequencies ω and how efficient libration is, to excite inertial waves in the given frequency range. For low ω and high ɛ instability starts to grow and, beside the excited inertial waves, several low frequency structures can be found. Quantitative PIV analyses of the horizontal plane in the co-rotation frame show clear spiral structures with different wave numbers for high libration amplitudes due to strong shear, similar to differential rotation. Another question, we like to address, is whether high libration amplitudes can also excite very low frequency Rossby wave structures? If the frequency increases, it can be seen from Poincaré plots that large attractor windows for inertial waves appear. We want to show PIV analyses for such flows dominated by wave attractors. It is known that for large excitation frequencies subharmonic parametric instability starts to grow and triads will be excited. Our experimental data show hints for the existence of triads and preliminary results will be discussed.

  11. Visible and shortwave infrared focal planes for remote sensing instruments

    NASA Astrophysics Data System (ADS)

    Tower, J. R.; McCarthy, B. M.; Pellon, L. E.; Strong, R. T.; Elabd, H.

    1984-01-01

    The development of solid-state sensor technology for multispectral linear array (MLA) instruments is described. A buttable four-spectral-band linear-format CCD and a buttable two-spectral band linear-format short-wave IR CCD have been designed, and first samples have been demonstrated. In addition, first-sample four-band interference filters have been fabricated, and hybrid packaging technology is being developed. Based on this development work, the design and construction of focal planes for a Shuttle sortie MLA instrument have begun. This work involves a visible and near-IR focal plane with 2048 pixels x 4 spectral bands and a short-wave IR focal plane with 1024 pixels x 2 spectral bands.

  12. A Method of Poisson's Ration Imaging Within a Material Part

    NASA Technical Reports Server (NTRS)

    Roth, Don J. (Inventor)

    1994-01-01

    The present invention is directed to a method of displaying the Poisson's ratio image of a material part. In the present invention, longitudinal data is produced using a longitudinal wave transducer and shear wave data is produced using a shear wave transducer. The respective data is then used to calculate the Poisson's ratio for the entire material part. The Poisson's ratio approximations are then used to display the data.

  13. Method of Poisson's ratio imaging within a material part

    NASA Technical Reports Server (NTRS)

    Roth, Don J. (Inventor)

    1996-01-01

    The present invention is directed to a method of displaying the Poisson's ratio image of a material part. In the present invention longitudinal data is produced using a longitudinal wave transducer and shear wave data is produced using a shear wave transducer. The respective data is then used to calculate the Poisson's ratio for the entire material part. The Poisson's ratio approximations are then used to displayed the image.

  14. Optical generation and detection of gigahertz-frequency longitudinal and shear acoustic waves in liquids: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Klieber, Christoph; Pezeril, Thomas; Andrieu, Stéphane; Nelson, Keith A.

    2012-07-01

    We describe an adaptation of picosecond laser ultrasonics tailored for study of GHz-frequency longitudinal and shear acoustic waves in liquids. Time-domain coherent Brillouin scattering is used to detect multicycle acoustic waves after their propagation through variable thickness liquid layers into a solid substrate. A specialized optical pulse shaping method is used to generate sequences of pulses whose repetition rate determines the acoustic frequency. The measurements reveal the viscoelastic liquid properties and also include signatures of the optical and acoustic cavities formed by the multilayer sample assembly. Modeling of the signals allows their features to be distinguished so that liquid properties can be extracted reliably. Longitudinal and shear acoustic wave data from glycerol and from the silicon oil DC704 are presented.

  15. Japanese space gravitational wave antenna DECIGO and DPF

    NASA Astrophysics Data System (ADS)

    Musha, Mitsuru

    2017-11-01

    The gravitational wave detection will open a new gravitational wave astronomy, which gives a fruitful insight about early universe or birth and death of stars. In order to detect gravitational wave, we planed a space gravitational wave detector, DECIGO (DECi-heltz Interferometer Gravitational wave Observatory), which consists of three drag-free satellites forming triangle shaped Fabry-Perot laser interferometer with the arm length of 1000 km, and whose strain sensitivity is designed to be 2x10-24 /√Hz around 0.1 Hz. Before launching DECIGO around 2030, a milestone mission named DECIGO pathfinder (DPF) is planed to be launched whose main purpose is the feasibility test of the key technologies for DECIGO. In the present paper, the conceptual design and current status of DECIGO and DPF are reviewed.

  16. Excitation of plane Lamb wave in plate-like structures under applied surface loading

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Xu, Xinsheng; Zhao, Zhen; Yang, Zhengyan; Zhou, Zhenhuan; Wu, Zhanjun

    2018-02-01

    Lamb waves play an important role in structure health monitoring (SHM) systems. The excitation of Lamb waves has been discussed for a long time with absorbing results. However, little effort has been made towards the precise characterization of Lamb wave excitation by various transducer models with mathematical foundation. In this paper, the excitation of plane Lamb waves with plane strain assumption in isotropic plate structures under applied surface loading is solved with the Hamiltonian system. The response of the Lamb modes excited by applied loading is expressed analytically. The effect of applied loading is divided into the product of two parts as the effect of direction and the effect of distribution, which can be changed by selecting different types of transducer and the corresponding transducer configurations. The direction of loading determines the corresponding displacement of each mode. The effect of applied loading on the in-plane and normal directions depends on the in-plane and normal displacements at the surface respectively. The effect of the surface loading distribution on the Lamb mode amplitudes is mainly reflected by amplitude versus frequency or wavenumber. The frequencies at which the maxima and minima of the S0 or A0 mode response occur depend on the distribution of surface loading. The numerical results of simulations conducted on an infinite aluminum plate verify the theoretical prediction of not only the direction but also the distribution of applied loading. A pure S0 or A0 mode can be excited by selecting the appropriate direction and distribution at the corresponding frequency.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ping; Deng, Yuqun; Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi'an 710024

    In relativistic backward wave oscillators (RBWOs), although the slow wave structure (SWS) and electron beam determine the main characteristics of beam-wave interaction, many other factors can also significantly affect the microwave generation process. This paper investigates the influence of voltage rise time on beam-wave interaction in RBWOs. Preliminary analysis and PIC simulations demonstrate if the voltage rise time is moderately long, the microwave frequency will gradually increase during the startup process until the voltage reaches its amplitude, which can be explained by the dispersion relation. However, if the voltage rise time is long enough, the longitudinal resonance of the finitely-longmore » SWS will force the RBWO to work with unwanted longitudinal modes for a while and then gradually hop to the wanted longitudinal mode, and this will lead to an impure microwave frequency spectrum. Besides, a longer voltage rise time will delay the startup process and thus lead to a longer microwave saturation time. And if unwanted longitudinal modes are excited due to long voltage rise time, the microwave saturation time will be further lengthened. Therefore, the voltage rise time of accelerators adopted in high power microwave technology should not be too long in case unwanted longitudinal modes are excited.« less

  18. Visualizing the Vibration of Laryngeal Tissue during Phonation Using Ultrafast Plane Wave Ultrasonography.

    PubMed

    Jing, Bowen; Tang, Shanshan; Wu, Liang; Wang, Supin; Wan, Mingxi

    2016-12-01

    Ultrafast plane wave ultrasonography is employed in this study to visualize the vibration of the larynx and quantify the vibration phase as well as the vibration amplitude of the laryngeal tissue. Ultrasonic images were obtained at 5000 to 10,000 frames/s in the coronal plane at the level of the glottis. Although the image quality degraded when the imaging mode was switched from conventional ultrasonography to ultrafast plane wave ultrasonography, certain anatomic structures such as the vocal folds, as well as the sub- and supraglottic structures, including the false vocal folds, can be identified in the ultrafast plane wave ultrasonic image. The periodic vibration of the vocal fold edge could be visualized in the recorded image sequence during phonation. Furthermore, a motion estimation method was used to quantify the displacement of laryngeal tissue from hundreds of frames of ultrasonic data acquired. Vibratory displacement waveforms of the sub- and supraglottic structures were successfully obtained at a high level of ultrasonic signal correlation. Moreover, statistically significant differences in vibration pattern between the sub- and supraglottic structures were found. Variation of vibration amplitude along the subglottic mucosal surface is significantly smaller than that along the supraglottic mucosal surface. Phase delay of vibration along the subglottic mucosal surface is significantly smaller than that along the supraglottic mucosal surface. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. Laser backscattered from partially convex targets of large sizes in random media for E-wave polarization.

    PubMed

    El-Ocla, Hosam

    2006-08-01

    The characteristics of a radar cross section (RCS) of partially convex targets with large sizes up to five wavelengths in free space and random media are studied. The nature of the incident wave is an important factor in remote sensing and radar detection applications. I investigate the effects of beam wave incidence on the performance of RCS, drawing on the method I used in a previous study on plane-wave incidence. A beam wave can be considered a plane wave if the target size is smaller than the beam width. Therefore, to have a beam wave with a limited spot on the target, the target size should be larger than the beam width (assuming E-wave incidence wave polarization. The effects of the target configuration, random medium parameters, and the beam width on the laser RCS and the enhancement in the radar cross section are numerically analyzed, resulting in the possibility of having some sort of control over radar detection using beam wave incidence.

  20. Nanoscale measurement of Nernst effect in two-dimensional charge density wave material 1T-TaS 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Stephen M.; Luican-Mayer, Adina; Bhattacharya, Anand

    Advances in nanoscale material characterization on two-dimensional van der Waals layered materials primarily involve their optical and electronic properties. The thermal properties of these materials are harder to access due to the difficulty of thermal measurements at the nanoscale. In this work, we create a nanoscale magnetothermal device platform to access the basic out-of-plane magnetothermal transport properties of ultrathin van der Waals materials. Specifically, the Nernst effect in the charge density wave transition metal dichalcogenide 1T-TaS 2 is examined on nano-thin flakes in a patterned device structure. It is revealed that near the commensurate charge density wave (CCDW) to nearlymore » commensurate charge density wave (NCCDW) phase transition, the polarity of the Nernst effect changes. Since the Nernst effect is especially sensitive to changes in the Fermi surface, this suggests that large changes are occurring in the out-of-plane electronic structure of 1T-TaS 2, which are otherwise unresolved in just in-plane electronic transport measurements. This may signal a coherent evolution of out-of-plane stacking in the CCDW! NCCDW transition.« less

  1. Evolution of the frequency chirp of Gaussian pulses and beams when passing through a pulse compressor.

    PubMed

    Li, Derong; Lv, Xiaohua; Bowlan, Pamela; Du, Rui; Zeng, Shaoqun; Luo, Qingming

    2009-09-14

    The evolution of the frequency chirp of a laser pulse inside a classical pulse compressor is very different for plane waves and Gaussian beams, although after propagating through the last (4th) dispersive element, the two models give the same results. In this paper, we have analyzed the evolution of the frequency chirp of Gaussian pulses and beams using a method which directly obtains the spectral phase acquired by the compressor. We found the spatiotemporal couplings in the phase to be the fundamental reason for the difference in the frequency chirp acquired by a Gaussian beam and a plane wave. When the Gaussian beam propagates, an additional frequency chirp will be introduced if any spatiotemporal couplings (i.e. angular dispersion, spatial chirp or pulse front tilt) are present. However, if there are no couplings present, the chirp of the Gaussian beam is the same as that of a plane wave. When the Gaussian beam is well collimated, the introduced frequency chirp predicted by the plane wave and Gaussian beam models are in closer agreement. This work improves our understanding of pulse compressors and should be helpful for optimizing dispersion compensation schemes in many applications of femtosecond laser pulses.

  2. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yongfeng; Qu, Shaobo; Wang, Jiafu

    2014-06-02

    Phase gradient metasurface (PGMs) are artificial surfaces that can provide pre-defined in-plane wave-vectors to manipulate the directions of refracted/reflected waves. In this Letter, we propose to achieve wideband radar cross section (RCS) reduction using two-dimensional (2D) PGMs. A 2D PGM was designed using a square combination of 49 split-ring sub-unit cells. The PGM can provide additional wave-vectors along the two in-plane directions simultaneously, leading to either surface wave conversion, deflected reflection, or diffuse reflection. Both the simulation and experiment results verified the wide-band, polarization-independent, high-efficiency RCS reduction induced by the 2D PGM.

  3. CMS-Wave

    DTIC Science & Technology

    2015-10-30

    Coastal Inlets Research Program CMS -Wave CMS -Wave is a two-dimensional spectral wind-wave generation and transformation model that employs a forward...marching, finite-difference method to solve the wave action conservation equation. Capabilities of CMS -Wave include wave shoaling, refraction... CMS -Wave can be used in either on a half- or full-plane mode, with primary waves propagating from the seaward boundary toward shore. It can

  4. Noise reduction in digital holography based on a filtering algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Wenhui; Cao, Liangcai; Zhang, Hua; Jin, Guofan; Brady, David

    2018-02-01

    Holography is a tool to record the object wavefront by interference. Complex amplitude of the object wave is coded into a two dimensional hologram. Unfortunately, the conjugate wave and background wave would also appear at the object plane during reconstruction, as noise, which blurs the reconstructed object. From the perspective of wave, we propose a filtering algorithm to get a noise-reduced reconstruction. Due to the fact that the hologram is a kind of amplitude grating, three waves would appear when reconstruction, which are object wave, conjugate wave and background wave. The background is easy to eliminate by frequency domain filtering. The object wave and conjugate wave are signals to be dealt with. These two waves, as a whole, propagate in the space. However, when detected at the original object plane, the object wave would diffract into a sparse pattern while the conjugate wave would diffract into a diffused pattern forming the noise. Hence, the noise can be reduced based on these difference with a filtering algorithm. Both amplitude and phase distributions are truthfully retrieved in our simulation and experimental demonstration.

  5. Longitudinal direct and indirect pathways linking older sibling competence to the development of younger sibling competence.

    PubMed

    Brody, Gene H; Kim, Sooyeon; Murry, Velma McBride; Brown, Anita C

    2003-05-01

    A 4-wave longitudinal model tested direct and indirect links between older sibling (OS; M = 11.7 years) and younger sibling (YS; M = 9.2 years) competence in 152 rural African American families. Data were collected at 1-year intervals. At each wave, different teachers assessed OS competence, YS competence, and YS self-regulation. Mothers reported their own psychological functioning; mothers and YSs reported parenting practices toward the YS. OS competence was stable across time and was linked with positive changes in mothers' psychological functioning from Wave 1 to Wave 2. Mothers' Wave 2 psychological functioning was associated with involved-supportive parenting of the YS at Wave 3. OS Wave 2 competence and Wave 3 parenting were indirectly linked with Wave 4 YS competence, through Wave 3 YS self-regulation. Structural equation modeling controlled for Wave 1 YS competence; thus, the model accounted for change in YS competence across 3 years.

  6. Ionic wave propagation and collision in an excitable circuit model of microtubules

    NASA Astrophysics Data System (ADS)

    Guemkam Ghomsi, P.; Tameh Berinyoh, J. T.; Moukam Kakmeni, F. M.

    2018-02-01

    In this paper, we report the propensity to excitability of the internal structure of cellular microtubules, modelled as a relatively large one-dimensional spatial array of electrical units with nonlinear resistive features. We propose a model mimicking the dynamics of a large set of such intracellular dynamical entities as an excitable medium. We show that the behavior of such lattices can be described by a complex Ginzburg-Landau equation, which admits several wave solutions, including the plane waves paradigm. A stability analysis of the plane waves solutions of our dynamical system is conducted both analytically and numerically. It is observed that perturbed plane waves will always evolve toward promoting the generation of localized periodic waves trains. These modes include both stationary and travelling spatial excitations. They encompass, on one hand, localized structures such as solitary waves embracing bright solitons, dark solitons, and bisolitonic impulses with head-on collisions phenomena, and on the other hand, the appearance of both spatially homogeneous and spatially inhomogeneous stationary patterns. This ability exhibited by our array of proteinic elements to display several states of excitability exposes their stunning biological and physical complexity and is of high relevance in the description of the developmental and informative processes occurring on the subcellular scale.

  7. Ionic wave propagation and collision in an excitable circuit model of microtubules.

    PubMed

    Guemkam Ghomsi, P; Tameh Berinyoh, J T; Moukam Kakmeni, F M

    2018-02-01

    In this paper, we report the propensity to excitability of the internal structure of cellular microtubules, modelled as a relatively large one-dimensional spatial array of electrical units with nonlinear resistive features. We propose a model mimicking the dynamics of a large set of such intracellular dynamical entities as an excitable medium. We show that the behavior of such lattices can be described by a complex Ginzburg-Landau equation, which admits several wave solutions, including the plane waves paradigm. A stability analysis of the plane waves solutions of our dynamical system is conducted both analytically and numerically. It is observed that perturbed plane waves will always evolve toward promoting the generation of localized periodic waves trains. These modes include both stationary and travelling spatial excitations. They encompass, on one hand, localized structures such as solitary waves embracing bright solitons, dark solitons, and bisolitonic impulses with head-on collisions phenomena, and on the other hand, the appearance of both spatially homogeneous and spatially inhomogeneous stationary patterns. This ability exhibited by our array of proteinic elements to display several states of excitability exposes their stunning biological and physical complexity and is of high relevance in the description of the developmental and informative processes occurring on the subcellular scale.

  8. A rod type linear ultrasonic motor utilizing longitudinal traveling waves: proof of concept

    NASA Astrophysics Data System (ADS)

    Wang, Liang; Wielert, Tim; Twiefel, Jens; Jin, Jiamei; Wallaschek, Jörg

    2017-08-01

    This paper proposes a non-resonant linear ultrasonic motor utilizing longitudinal traveling waves. The longitudinal traveling waves in the rod type stator are generated by inducing longitudinal vibrations at one end of the waveguide and eliminating reflections at the opposite end by a passive damper. Considering the Poisson’s effect, the stator surface points move on elliptic trajectories and the slider is driven forward by friction. In contrast to many other flexural traveling wave linear ultrasonic motors, the driving direction of the proposed motor is identical to the wave propagation direction. The feasibility of the motor concept is demonstrated theoretically and experimentally. First, the design and operation principle of the motor are presented in detail. Then, the stator is modeled utilizing the transfer matrix method and verified by experimental studies. In addition, experimental parameter studies are carried out to identify the motor characteristics. Finally, the performance of the proposed motor is investigated. Overall, the results indicate very dynamic drive characteristics. The motor prototype achieves a maximum mean velocity of 115 mm s-1 and a maximum load of 0.25 N. Thereby, the start-up and shutdown times from the maximum speed are lower than 5 ms.

  9. Ultrasonic modeling of an embedded elliptic crack

    NASA Astrophysics Data System (ADS)

    Fradkin, Larissa Ju.; Zalipaev, Victor

    2000-05-01

    Experiments indicate that the radiating near zone of a compressional circular transducer directly coupled to a homogeneous and isotropic solid has the following structure: there are geometrical zones where one can distinguish a plane compressional wave and toroidal waves, both compressional and shear, radiated by the transducer rim. As has been shown previously the modern diffraction theory allows to describe these explicitly. It also gives explicit asymptotic description of waves present in the transition zones. In case of a normal incidence of a plane compressional wave the explicit expressions have been obtained by Achenbach and co-authors for the fields diffracted by a penny-shaped crack. We build on the above work by applying the uniform GTD to model an oblique incidence of a plane compressional wave on an elliptical crack. We compare our asymptotic results with numerical results based on the boundary integral code as developed by Glushkovs, Krasnodar University, Russia. The asymptotic formulas form a basis of a code for high-frequency simulation of ultrasonic scattering by elliptical cracks situated in the vicinity of a compressional circular transducer, currently under development at our Center.

  10. Backscattering enhancement with a finite beam width for millimeter-wavelength weather radars

    NASA Astrophysics Data System (ADS)

    Kobayashi, Satoru; Tanelli, Simone; Iguchi, Toshio; Im, Eastwood

    2004-12-01

    Backscattering enhancement from random hydrometeors should increase as wavelengths of radars reach millimeter regions. For 95 GHz radars, the reflectivity of backscattering is expected to increase by 2 dB, due to multiple scattering including backscattering enhancement, for water droplets of diameter of 1 mm with a density of 5 x 103 m-3. Previous theoretical studies of backscattering enhancement considered infinitely extending plane waves. In this paper, we expand the theory to spherical waves with a Gaussian antenna pattern, including depolarizing effects. While the differences from the plane wave results are not great when the optical thickness is small, as the latter increases the differences become significant, and essentially depend on the ratio of radar footprint radius to the mean free path of hydrometeors. In this regime, for a radar footprint that is smaller than the mean free path, the backscattering-enhancement reflectivity corresponding to spherical waves is significantly less pronounced than in the case of the plane wave theory. Hence this reduction factor must be taken into account when analyzing radar reflectivity factors for use in remote sensing applications.

  11. Two-dimensional model of the interaction of a plane acoustic wave with nozzle edge and wing trailing edge.

    PubMed

    Faranosov, Georgy A; Bychkov, Oleg P

    2017-01-01

    The interaction of a plane acoustic wave with two-dimensional model of nozzle edge and trailing edge is investigated theoretically by means of the Wiener-Hopf technique. The nozzle edge and the trailing edge are simulated by two half-planes with offset edges. Shear layer behind the nozzle edge is represented by a vortex sheet supporting Kelvin-Helmholtz instability waves. The considered configuration combines two well-known models (nozzle edge and trailing edge), and reveals additional interesting physical aspects. To obtain the solution, the matrix Wiener-Hopf equation is solved in conjunction with a requirement that the full Kutta condition is imposed at the edges. Factorization of the kernel matrix is performed by the combination of Padé approximation and the pole removal technique. This procedure is used to obtain numerical results. The results indicate that the diffracted acoustic field may be significantly intensified due to scattering of hydrodynamic instability waves into sound waves provided that the trailing edge is close enough to the vortex sheet. Similar mechanism may be responsible for the intensification of jet noise near a wing.

  12. Elastic metamaterials with simultaneously negative effective shear modulus and mass density.

    PubMed

    Wu, Ying; Lai, Yun; Zhang, Zhao-Qing

    2011-09-02

    We propose a type of elastic metamaterial comprising fluid-solid composite inclusions which can possess a negative shear modulus and negative mass density over a large frequency region. Such a material has the unique property that only transverse waves can propagate with a negative dispersion while longitudinal waves are forbidden. This leads to many interesting phenomena such as negative refraction, which is demonstrated by using a wedge sample and a significant amount of mode conversion from transverse waves to longitudinal waves that cannot occur on the interface of two natural solids.

  13. Self-injection of electrons in a laser-wakefield accelerator by using longitudinal density ripple

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahiya, Deepak; Sharma, A. K.; Sajal, Vivek

    By introducing a longitudinal density ripple (periodic modulation in background plasma density), we demonstrate self-injection of electrons in a laser-wakefield accelerator. The wakefield driven plasma wave, in presence of density ripple excites two side band waves of same frequency but different wave numbers. One of these side bands, having smaller phase velocity compared to wakefield driven plasma wave, preaccelerates the background plasma electrons. Significant number of these preaccelerated electrons get trapped in the laser-wakefield and further accelerated to higher energies.

  14. Apparatus for checking the direction of polarization of shear-wave ultrasonic transducers

    DOEpatents

    Karplus, Henry H. B.

    1980-01-01

    An apparatus for checking the direction of polarization of shear-wave ultrasonic transducers comprises a first planar surface for mounting the shear-wave transducer, a second planar surface inclined at a predetermined angle to the first surface to generate longitudinal waves by mode conversion, and a third planar surface disposed at a second predetermined angle to the first for mounting a longitudinal-wave ultrasonic transducer. In an alternate embodiment, two second planar surfaces at the predetermined angle are placed at an angle to each other. The magnitude of the shear wave is a function of the angle between the direction of polarization of the transducer and the mode-conversion surface.

  15. Apparatus for checking the direction of polarization of shear-wave ultrasonic transducers

    DOEpatents

    Karplus, H.H.B.; Forster, G.A.

    An apparatus for checking the direction of polarization of shear-wave ultrasonic transducers comprises a first planar surface for mounting the shear-wave transducer, a second planar surface inclined at a predetermined angle to the first surface to generate longitudinal waves by mode conversion, and a third planar surface disposed at a second predetermined angle to the first for mounting a longitudinal-wave ultransonic transducer. In an alternate embodiment, two second planar surfaces at the predetermined angle are placed at an angle to each other. The magnitude of the shear wave is a function of the angle between the direction of polarization of the transducer and the mode-conversion surface.

  16. Retaining young people in a longitudinal sexual health survey: a trial of strategies to maintain participation

    PubMed Central

    2010-01-01

    Background There is an increasing trend towards lower participation in questionnaire surveys. This reduces representativeness, increases costs and introduces particular challenges to longitudinal surveys, as researchers have to use complex statistical techniques which attempt to address attrition. This paper describes a trial of incentives to retain longitudinal survey cohorts from ages 16 to 20, to question them on the sensitive topic of sexual health. Methods A longitudinal survey was conducted with 8,430 eligible pupils from two sequential year groups from 25 Scottish schools. Wave 1 (14 years) and Wave 2 (16 years) were conducted largely within schools. For Wave 3 (18 years), when everyone had left school, the sample was split into 4 groups that were balanced across predictors of survey participation: 1) no incentive; 2) chance of winning one of twenty-five vouchers worth £20; 3) chance of winning one £500 voucher; 4) a definite reward of a £10 voucher sent on receipt of their completed questionnaire. Outcomes were participation at Wave 3 and two years later at Wave 4. Analysis used logistic regression and adjusted for clustering at school level. Results The only condition that had a significant and beneficial impact for pupils was to offer a definite reward for participation (Group 4). Forty-one percent of Group 4 participated in Wave 3 versus 27% or less for Groups 1 to 3. At Wave 4, 35% of Group 4 took part versus 25% or less for the other groups. Similarly, 22% of Group 4 participated in all four Waves of the longitudinal study, whereas for the other three groups it was 16% or less that participated in full. Conclusions The best strategy for retaining all groups of pupils and one that improved retention at both age 18 and age 20 was to offer a definite reward for participation. This is expensive, however, given the many benefits of retaining a longitudinal sample, we recommend inclusion of this as a research cost for cohort and other repeat-contact studies. PMID:20109221

  17. Stress waves in transversely isotropic media: The homogeneous problem

    NASA Technical Reports Server (NTRS)

    Marques, E. R. C.; Williams, J. H., Jr.

    1986-01-01

    The homogeneous problem of stress wave propagation in unbounded transversely isotropic media is analyzed. By adopting plane wave solutions, the conditions for the existence of the solution are established in terms of phase velocities and directions of particle displacements. Dispersion relations and group velocities are derived from the phase velocity expressions. The deviation angles (e.g., angles between the normals to the adopted plane waves and the actual directions of their propagation) are numerically determined for a specific fiber-glass epoxy composite. A graphical method is introduced for the construction of the wave surfaces using magnitudes of phase velocities and deviation angles. The results for the case of isotropic media are shown to be contained in the solutions for the transversely isotropic media.

  18. Acoustic plane waves incident on an oblique clamped panel in a rectangular duct

    NASA Technical Reports Server (NTRS)

    Unz, H.; Roskam, J.

    1980-01-01

    The theory of acoustic plane waves incident on an oblique clamped panel in a rectangular duct was developed from basic theoretical concepts. The coupling theory between the elastic vibrations of the panel (plate) and the oblique incident acoustic plane wave in infinite space was considered in detail, and was used for the oblique clamped panel in the rectangular duct. The partial differential equation which governs the vibrations of the clamped panel (plate) was modified by adding to it stiffness (spring) forces and damping forces. The Transmission Loss coefficient and the Noise Reduction coefficient for oblique incidence were defined and derived in detail. The resonance frequencies excited by the free vibrations of the oblique finite clamped panel (plate) were derived and calculated in detail for the present case.

  19. Comparison of localized basis and plane-wave basis for density-functional calculations of organic molecules on metals

    NASA Astrophysics Data System (ADS)

    Lee, Kyuho; Yu, Jaejun; Morikawa, Yoshitada

    2007-01-01

    Localized pseudoatomic orbitals (PAOs) are mainly optimized and tested for the strong chemical bonds within molecules and solids with their proven accuracy and efficiency, but are prone to significant basis set superposition error (BSSE) for weakly interacting systems. Here we test the accuracy of PAO basis in comparison with the BSSE-free plane-wave basis for the physisorption of pentacene molecule on Au (001) by calculating the binding energy, adsorption height, and energy level alignment. We show that both the large cutoff radius for localized PAOs and the counter-poise correction for BSSE are necessary to obtain well-converged physical properties. Thereby obtained results are as accurate as the plane-wave basis results. The comparison with experiment is given as well.

  20. Parametric Investigation on the Use of Lateral and Logitudinal Rotor Trim Flapping for Tiltrotor Noise Reduction

    NASA Technical Reports Server (NTRS)

    Malpica, Carlos

    2017-01-01

    This paper presents an acoustics parametric study of the effect of varying lateral and longitudinal rotor trim flapping angles (tip-path-plane tilt) on noise radiated by an isolated 26-ft diameter proprotor, similar to that of the AW609 tiltrotor, in edgewise flight. Three tip-path-plane angle of attack operating conditions of -9, 0 and 6 deg, at 80 knots, were investigated. Results showed that: 1) minimum noise was attained for the tip-path-plane angle of attack value of -9 deg, and 2) changing the cyclic trim state (i.e., controls) altered the airloads and produced noticeable changes to the low-frequency (LF) and blade-vortex interaction (BVI) radiated-noise magnitude and directionality. In particular, by trimming the rotor to a positive (inboard) lateral flapping angle of 4 deg, further reductions up to 3 dB in the low-frequency noise sound pressure level were attained without significantly impacting the BVI noise for longitudinal tip-path-plane angles of -9 and 6 deg.

  1. Distribution of Longitudinal Wave Velocities in Bovine Cortical Bone in vitro

    NASA Astrophysics Data System (ADS)

    Yamato, Yu; Kataoka, Hideo; Matsukawa, Mami; Yamazaki, Kaoru; Otani, Takahiko; Nagano, Akira

    2005-06-01

    The distribution of longitudinal wave velocities and longitudinal moduli in a bovine femoral cortical bone was experimentally investigated. In all parts of the long cylindrical bone, the velocities and longitudinal moduli in the axial direction were the highest. In the anterior (A) part, the velocities in the axial direction were high and almost constant, whereas the velocities in the proximal postero medial (PM) and distal postero lateral (PL) parts markedly decreased. Classifying the cortical bone into three structures (plexiform, Haversian, and porotic), we clarify the velocity distributions in the bone with discussion from an anatomical point of view.

  2. A wavenumber approach to analysing the active control of plane waves with arrays of secondary sources

    NASA Astrophysics Data System (ADS)

    Elliott, Stephen J.; Cheer, Jordan; Bhan, Lam; Shi, Chuang; Gan, Woon-Seng

    2018-04-01

    The active control of an incident sound field with an array of secondary sources is a fundamental problem in active control. In this paper the optimal performance of an infinite array of secondary sources in controlling a plane incident sound wave is first considered in free space. An analytic solution for normal incidence plane waves is presented, indicating a clear cut-off frequency for good performance, when the separation distance between the uniformly-spaced sources is equal to a wavelength. The extent of the near field pressure close to the source array is also quantified, since this determines the positions of the error microphones in a practical arrangement. The theory is also extended to oblique incident waves. This result is then compared with numerical simulations of controlling the sound power radiated through an open aperture in a rigid wall, subject to an incident plane wave, using an array of secondary sources in the aperture. In this case the diffraction through the aperture becomes important when its size is compatible with the acoustic wavelength, in which case only a few sources are necessary for good control. When the size of the aperture is large compared to the wavelength, and diffraction is less important but more secondary sources need to be used for good control, the results then become similar to those for the free field problem with an infinite source array.

  3. A New Algorithm with Plane Waves and Wavelets for Random Velocity Fields with Many Spatial Scales

    NASA Astrophysics Data System (ADS)

    Elliott, Frank W.; Majda, Andrew J.

    1995-03-01

    A new Monte Carlo algorithm for constructing and sampling stationary isotropic Gaussian random fields with power-law energy spectrum, infrared divergence, and fractal self-similar scaling is developed here. The theoretical basis for this algorithm involves the fact that such a random field is well approximated by a superposition of random one-dimensional plane waves involving a fixed finite number of directions. In general each one-dimensional plane wave is the sum of a random shear layer and a random acoustical wave. These one-dimensional random plane waves are then simulated by a wavelet Monte Carlo method for a single space variable developed recently by the authors. The computational results reported in this paper demonstrate remarkable low variance and economical representation of such Gaussian random fields through this new algorithm. In particular, the velocity structure function for an imcorepressible isotropic Gaussian random field in two space dimensions with the Kolmogoroff spectrum can be simulated accurately over 12 decades with only 100 realizations of the algorithm with the scaling exponent accurate to 1.1% and the constant prefactor accurate to 6%; in fact, the exponent of the velocity structure function can be computed over 12 decades within 3.3% with only 10 realizations. Furthermore, only 46,592 active computational elements are utilized in each realization to achieve these results for 12 decades of scaling behavior.

  4. Sound

    NASA Astrophysics Data System (ADS)

    Capstick, J. W.

    2013-01-01

    1. The nature of sound; 2. Elasticity and vibrations; 3. Transverse waves; 4. Longitudinal waves; 5. Velocity of longitudinal waves; 6. Reflection and refraction. Doppler's principle; 7. Interference. Beats. Combination tones; 8. Resonance and forced vibrations; 9. Quality of musical notes; 10. Organ pipes; 11. Rods. Plates. Bells; 12. Acoustical measurements; 13. The phonograph, microphone and telephone; 14. Consonance; 15. Definition of intervals. Scales. Temperament; 16. Musical instruments; 17. Application of acoustical principles to military purposes; Questions; Answers to questions; Index.

  5. Re-evaluation of ``;The Propagation of Radiation in the Spherical Wave Form''

    NASA Astrophysics Data System (ADS)

    Joshi, Narahari V.

    2012-03-01

    It is well accepted that radiation propagates in the free space (without obstacles) in a spherical wave form as well as in a plane wave form. Almost all observed phenomena such as interference, diffraction etc are explained satisfactorily on the basis of spherical wave propagation with a slight alteration in the mathematical treatment. However, one of the fundamental aspects, namely the intensity of the radiation as a function of the distance still remains an unsolved problem as the intensity varies with 1/(distance)2 when one represents the propagation in terms of spherical waves while it is independent of the distance if it is considered as a plane wave. In order to understand this puzzle, the propagation by a spherical wave form is reexamined. It is found that conversion of fields into particle (vice versa), via the field quantization process, explains several dilemma related with the radiation propagation.

  6. Monochromatic plane-fronted waves in conformal gravity are pure gauge

    NASA Astrophysics Data System (ADS)

    Fabbri, Luca; Paranjape, M. B.

    2011-05-01

    We consider plane-fronted, monochromatic gravitational waves on a Minkowski background, in a conformally invariant theory of general relativity. By this we mean waves of the form: gμν=ημν+γμνF(k·x), where γμν is a constant polarization tensor, and kμ is a lightlike vector. We also assume the coordinate gauge condition |g|-1/4∂τ(|g|1/4gστ)=0 which is the conformal analog of the harmonic gauge condition gμνΓμνσ=-|g|-1/2∂τ(|g|1/2gστ)=0, where det⁡[gμν]≡g. Requiring additionally the conformal gauge condition g=-1 surprisingly implies that the waves are both transverse and traceless. Although the ansatz for the metric is eminently reasonable when considering perturbative gravitational waves, we show that the metric is reducible to the metric of Minkowski space-time via a sequence of coordinate transformations which respect the gauge conditions, without any perturbative approximation that γμν be small. This implies that we have, in fact, exact plane-wave solutions; however, they are simply coordinate/conformal artifacts. As a consequence, they carry no energy. Our result does not imply that conformal gravity does not have gravitational wave phenomena. A different, more generalized ansatz for the deviation, taking into account the fourth-order nature of the field equation, which has the form gμν=ημν+Bμν(n·x)G(k·x), indeed yields waves which carry energy and momentum [P. D. Mannheim, Gen. Relativ. Gravit.GRGVA80001-7701 43, 703 (2010)10.1007/s10714-010-1088-z]. It is just surprising that transverse, traceless, plane-fronted gravitational waves, those that would be used in any standard, perturbative, quantum analysis of the theory, simply do not exist.

  7. A Comprehensive Analysis of Ion Cyclotron Waves in the Equatorial Magnetosphere of Saturn

    NASA Astrophysics Data System (ADS)

    Meeks, Z. C.; Simon, S.

    2016-12-01

    We present a comprehensive analysis of ion cyclotron waves in the equatorial magnetosphere of Saturn, considering all magnetic field data collected during the Cassini era (totaling to over 4 years of data from the equatorial plane). This dataset includes eight targeted flybys of Enceladus, three targeted flybys of Dione, and three targeted flybys of Rhea. Because all remaining orbits of Cassini are high-inclination, our study provides the complete map of ion cyclotron waves in Saturn's equatorial magnetosphere during the Cassini era. We provide catalogs of the radial and longitudinal dependencies of the occurrence rate and amplitude of the ion cyclotron fundamental and first harmonic wave modes. The fundamental wave mode is omnipresent between the orbits of Enceladus and Dione and evenly distributed across all Local Times. The occurrence rate of the fundamental mode displays a Fermi-Dirac-like profile with respect to radial distance from Saturn. Detection of the first harmonic mode is a rare event occurring in only 0.49% of measurements taken and always in conjunction with the fundamental mode. We also search for a dependency of the ion cyclotron wave field on the orbital positions of the icy moons Enceladus, Dione, and Rhea. On magnetospheric length scales, the wave field is independent of the moons' orbital positions. For Enceladus, we analyze wave amplitude profiles of seven close flybys (E9, E12, E13, E14, E17, E18, and E19), which occurred during the studied trajectory segments, to look for any local effects of Enceladan plume variability on the wave field. We find that even in the close vicinity of Enceladus, the wave amplitudes display no discernible dependency on Enceladus' angular distance to its orbital apocenter. Thus, the correlation between plume activity and angular distance to apocenter proposed by Hedman et al. (2013) does not leave a clearly distinguishable imprint in the ion cyclotron wave field. Reference: Meeks, Z., Simon, S., Kabanovic, S., 2016. A comprehensive analysis of ion cyclotron waves in the equatorial magnetosphere of Saturn. Planetary and Space Sciences 129, 47-60.

  8. Comment on "Collision of plane gravitational waves without singularities"

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    1981-08-01

    An incorrect paper was published by B. J. Stoyanov carrying the title above. Here we shall point out a coordinate transformation whereby "the new exact solution" of his paper is recognized as a Kasner universe. Further, we shall show that Stoyanov's interpretation of the Kasner solution as colliding plane gravitational waves runs into the difficulty that the Einstein field equations are not satisfied everywhere.

  9. Comment on ''Collision of plane gravitational waves without singularities''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nutku, Y.

    1981-08-15

    An incorrect paper was published by B. J. Stoyanov carrying the title above. Here we shall point out a coordinate transformation whereby ''the new exact solution'' of his paper is recognized as a Kasner universe. Further, we shall show that Stoyanov's interpretation of the Kasner solution as colliding plane gravitational waves runs into the difficulty that the Einstein field equations are not satisfied everywhere.

  10. Wind-Tunnel Investigation at Low Speed of the Effects of Chordwise Wing Fences and Horizontal-Tail Position on the Static Longitudinal Stability Characteristics of an Airplane Model with a 35 Degree Sweptback Wing

    NASA Technical Reports Server (NTRS)

    Queijo, M J; Jaquet, Byron M; Wolhart, Walter D

    1954-01-01

    Low-speed tests of a model with a wing swept back 35 degrees at the 0.33-chord line and a horizontal tail located well above the extended wing-chord plane indicated static longitudinal instability at moderate angles of attack for all configurations tested. An investigation therefore was made to determine whether the longitudinal stability could be improved by the use of chordwise wing fences, by lowering the horizontal tail, or by a combination of both. The results of the investigation showed that the longitudinal stability characteristics of the model with slats retracted could be improved at moderate angles of attack by placing chordwise wing fences at a spanwise station of about 73 percent of the wing semispan from the plane of symmetry provided the nose of the fence extended slightly beyond or around the wing leading edge.

  11. Modeling and experimental analysis of the linear ultrasonic motor with in-plane bending and longitudinal mode.

    PubMed

    Wan, Zhijian; Hu, Hong

    2014-03-01

    A novel linear ultrasonic motor based on in-plane longitudinal and bending mode vibration is presented in this paper. The stator of the motor is composed of a metal plate and eight piezoelectric ceramic patches. There are four long holes in the plate, designed for consideration of the longitudinal and bending mode coupling. The corresponding model is developed to optimize the mechanical and electrical coupling of the stator, which causes an ellipse motion at the contact tip of the stator when the composite vibrations with longitudinal and bending are excited. Its harmonic and transient responses are simulated and inspected. A prototype based on the model is fabricated and used to conduct experiments. Results show that the amplitude of the stator's contact tips is significantly increased, which helps to amplify the driving force and speed of the motor. It is therefore feasible to implement effective linear movement using the developed prototype. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Movement compatibility for configurations of displays located in three cardinal orientations and ipsilateral, contralateral and overhead controls.

    PubMed

    Chan, Alan H S; Hoffmann, Errol R

    2012-01-01

    Stereotype strength and reversibility were determined for displays that were in the Front, Right and Left orientations relative to the operator, along with rotary, horizontally and vertically-moving controls located in the overhead, left-sagittal and right-sagittal planes. In each case, responses were made using the left and right hands. The arrangements used were (i) rotary control with a circular display (ii) horizontal/transverse control moving forward/rearward in the left and right-sagittal planes or transversely in the overhead plane and (iii) vertical/longitudinal control moving vertically in the left and right-sagittal planes and longitudinally in the overhead plane. These are all combinations not previously researched. Stereotype strength varied with display plane, type of control and plane of control. Models for the stereotype strength are developed, showing the contribution of various components to the overall stereotype strength. The major component for horizontally-moving controls comes from the "visual field" model of Worringham and Beringer (1998); for the rotary control important factors are "clockwise-for-clockwise" and the hand/control location effect (Hoffmann, 2009a). Vertically-moving controls are governed by a simple 'up-for-up' relationship between displays and controls. Overall stereotype strength is a maximum when all components add positively. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  13. Propagation of Sound at Moderate and High Intensities in Absorbent and Hard-Walled Cylindrical Ducts. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Mcdaniel, Oliver Herbert

    1975-01-01

    The propagation of plane wave and higher order acoustic modes in both hard-walled and absorbent cylindrical ducts was studied at moderate sound intensities where the linear wave equation is valid, and at high intensities where nonlinear effects can be observed. The experiments were conducted with an anechoically terminated twelve-inch inside-diameter transite pipe. Various types of sound sources were mounted at one end of the duct to generate the desired acoustic fields within the duct. Arrays of conventional loudspeakers were used to generate plane waves and higher order acoustic modes at moderate intensities, and an array of four high intensity electro-pneumatic sound sources was used for the experiments in the nonlinear region. The attenuation of absorbent liners made of several different materials was obtained at moderate intensities for both plane waves and high order modes. It was found that the characteristics of the liners studied did not change appreciably at high intensities.

  14. Anisotropic itinerant magnetism and spin fluctuations in BaFe2As2 : A neutron scattering study

    NASA Astrophysics Data System (ADS)

    Matan, K.; Morinaga, R.; Iida, K.; Sato, T. J.

    2009-02-01

    Neutron scattering measurements were performed to investigate magnetic excitations in a single-crystal sample of the ternary iron arsenide BaFe2As2 , a parent compound of a recently discovered family of Fe-based superconductors. In the ordered state, we observe low energy spin-wave excitations with a gap energy Δ=9.8(4)meV . The in-plane spin-wave velocity vab and out-of-plane spin-wave velocity vc measured at 12 meV are 280(150) and 57(7)meVÅ , respectively. At high energy, we observe anisotropic scattering centered at the antiferromagnetic wave vectors. This scattering indicates two-dimensional spin dynamics, which possibly exist inside the Stoner continuum. At TN=136(1)K , the gap closes and quasielastic scattering is observed above TN , indicative of short-range spin fluctuations. In the paramagnetic state, the scattering intensity along the L direction becomes “rodlike,” characteristic of uncorrelated out-of-plane spins, attesting to the two-dimensionality of the system.

  15. Incentive and Architecture of Multi-Band Enabled Small Cell and UE for Up-/Down-Link and Control-/User-Plane Splitting for 5G Mobile Networks

    NASA Astrophysics Data System (ADS)

    Saha, Rony Kumer; Aswakul, Chaodit

    2017-01-01

    In this paper, a multi-band enabled femtocell base station (FCBS) and user equipment (UE) architecture is proposed in a multi-tier network that consists of small cells, including femtocells and picocells deployed over the coverage of a macrocell for splitting uplink and downlink (UL/DL) as well as control-plane and user-plane (C-/U-plane) for 5G mobile networks. Since splitting is performed at the same FCBS, we define this architecture as the same base station based split architecture (SBSA). For multiple bands, we consider co-channel (CC) microwave and different frequency (DF) 60 GHz millimeter wave (mmWave) bands for FCBSs and UEs with respect to the microwave band used by their over-laid macrocell base station. All femtocells are assumed to be deployed in a 3-dimensional multi-storage building. For CC microwave band, cross-tier CC interference of femtocells with macrocell is avoided using almost blank subframe based enhanced inter-cell interference coordination techniques. The co-existence of CC microwave and DF mmWave bands for SBSA on the same FCBS and UE is first studied to show their performance disparities in terms of system capacity and spectral efficiency in order to provide incentives for employing multiple bands at the same FCBS and UE and identify a suitable band for routing decoupled UL/DL or C-/U-plane traffic. We then present a number of disruptive architectural design alternatives of multi-band enabled SBSA for 5G mobile networks for UL/DL and C-/U-plane splitting, including a disruptive and complete splitting of UL/DL and C-/U-plane as well as a combined UL/DL and C-/U-plane splitting, by exploiting dual connectivity on CC microwave and DF mmWave bands. The outperformances of SBSA in terms of system level capacity, average spectral efficiency, energy efficiency, and control-plane overhead traffic capacity in comparison with different base stations based split architecture (DBSA) are shown. Finally, a number of technical and business perspectives as well as key research issues of SBSA are discussed.

  16. Gravitational waves in Einstein-æther and generalized TeVeS theory after GW170817

    NASA Astrophysics Data System (ADS)

    Gong, Yungui; Hou, Shaoqi; Liang, Dicong; Papantonopoulos, Eleftherios

    2018-04-01

    In this work we discuss the polarization contents of Einstein-æther theory and the generalized tensor-vector-scalar (TeVeS) theory, as both theories have a normalized timelike vector field. We derive the linearized equations of motion around the flat spacetime background using the gauge-invariant variables to easily separate physical degrees of freedom. We find the plane wave solutions and identify the polarizations by examining the geodesic deviation equations. We find that there are five polarizations in Einstein-æther theory and six polarizations in the generalized TeVeS theory. In particular, the transverse breathing mode is mixed with the pure longitudinal mode. We also discuss the experimental tests of the extra polarizations in Einstein-æther theory using pulsar timing arrays combined with the gravitational-wave speed bound derived from the observations on GW 170817 and GRB 170817A. It turns out that it might be difficult to use pulsar timing arrays to distinguish different polarizations in Einstein-æther theory. The same speed bound also forces one of the propagating modes in the generalized TeVeS theory to travel much faster than the speed of light. Since the strong coupling problem does not exist in some parameter subspaces, the generalized TeVeS theory is excluded in these parameter subspaces.

  17. Fluid coupling in a discrete model of cochlear mechanics.

    PubMed

    Elliott, Stephen J; Lineton, Ben; Ni, Guangjian

    2011-09-01

    A discrete model of cochlear mechanics is introduced that includes a full, three-dimensional, description of fluid coupling. This formulation allows the fluid coupling and basilar membrane dynamics to be analyzed separately and then coupled together with a simple piece of linear algebra. The fluid coupling is initially analyzed using a wavenumber formulation and is separated into one component due to one-dimensional fluid coupling and one comprising all the other contributions. Using the theory of acoustic waves in a duct, however, these two components of the pressure can also be associated with a far field, due to the plane wave, and a near field, due to the evanescent, higher order, modes. The near field components are then seen as one of a number of sources of additional longitudinal coupling in the cochlea. The effects of non-uniformity and asymmetry in the fluid chamber areas can also be taken into account, to predict both the pressure difference between the chambers and the mean pressure. This allows the calculation, for example, of the effect of a short cochlear implant on the coupled response of the cochlea. © 2011 Acoustical Society of America

  18. Design of Transverse Spinning of Light with Globally Unique Handedness

    NASA Astrophysics Data System (ADS)

    Piao, Xianji; Yu, Sunkyu; Park, Namkyoo

    2018-05-01

    Access to the transverse spin of light has unlocked new regimes in topological photonics. To achieve the transverse spin from nonzero longitudinal fields, various platforms that derive transversely confined waves based on focusing, interference, or evanescent waves have been suggested. Nonetheless, because of the transverse confinement inherently accompanying sign reversal of the field derivative, the resulting transverse spin handedness of each field experiences spatial inversion, which leads to a mismatch between the intensities of the field and its spin component and hinders the global observation of the transverse spin. Here, we reveal a globally pure transverse spin of the electric field in which the field intensity signifies the spin distribution. Starting from the target spin mode for the inverse design of required spatial profiles of anisotropic permittivities, we show that the elliptic-hyperbolic transition around the epsilon-near-zero permittivity allows for the global conservation of transverse spin handedness of the electric field across the topological interface between anisotropic metamaterials. Extending to the non-Hermitian regime, we develop annihilated transverse spin modes to cover the entire Poincaré sphere of the meridional plane. This result realizes the complete optical analogy of three-dimensional quantum spin states.

  19. Theoretical study on elastic properties of Si2N2O by ab initio calculation

    NASA Astrophysics Data System (ADS)

    Tsuboi, Seiya; Adachi, Kanta; Nagakubo, Akira; Ogi, Hirotsugu

    2018-07-01

    The elastic constants of crystalline Si2N2O remain unknown since it was discovered in the 1960s. We determine the nine independent elastic constants of orthorhombic Si2N2O by ab initio calculations. We applied various deformation modes with strains up to ±0.01 to a unit cell, calculated the energy-strain relationships, and deduced all the elastic constants by fitting the harmonic-oscillation function. Our results are as follows: C 11 = 311.1, C 22 = 238.5, C 33 = 317.9, C 44 = 136.1, C 55 = 57.6, C 66 = 73.9, C 12 = 79.6, C 13 = 52.2, and C 23 = 33.6 GPa. Despite the different crystal structures and symmetries, the direction-over-averaged Young’s modulus of Si2N2O is well explained by the nitrogen content and Young’s moduli of α-SiO2 and β-Si3N4. The anisotropy of sound-wave velocity was investigated, and its origin was examined on the basis of the crystallographic structure. The quasi-isotropic plane for the longitudinal-wave propagation was identified.

  20. Scattering of antiplane shear waves by a circular cylinder in a traction-free plate

    PubMed

    Wang; Ying; Li

    2000-09-01

    Following a well-established formula used by many researchers, the scattering of an anti-plane shear wave by an infinite elastic cylinder of arbitrary relative radius centered in a traction-free two-dimensional isotropic plate has been examined. The plate is divided into three regions by introducing two imaginary planes located symmetrically away from the surface of the cylinder and perpendicular to surfaces of the plate. The wave field is expanded into cylinder wave modes in the central bounded region containing the cylinder, while the fields in the other two outer regions are expanded into plate wave modes. A system of equations determining the expansion coefficients is obtained according to the traction-free boundary conditions on the plate walls and the stress and displacement continuity conditions across the imaginary planes. By taking an appropriate finite number of terms of the infinite expansion series and a few selected points on the two properly chosen virtual planes and the surfaces of the plate through convergence and precision tests, a matrix equation to numerically evaluate the expansion coefficients is found. The method of how to choose the locations of the imaginary planes and the terms of the expansion series as well as the points on each respective boundary is given in Sec. III in detail. Curves of the reflection and transmission coefficients against the relative radius of the cylinder in welded and slip or cracked interfacial conditions are shown. Analysis on the contrast variations of the reflection and transmission coefficients for a cylinder in bonded and debonded interfacial situations is made. The relative errors estimated by the deviation of the numerical results from the principle of the conservation of energy are found to be less than 2%.

  1. The effect of transverse wave vector and magnetic fields on resonant tunneling times in double-barrier structures

    NASA Astrophysics Data System (ADS)

    Wang, Hongmei; Zhang, Yafei; Xu, Huaizhe

    2007-01-01

    The effect of transverse wave vector and magnetic fields on resonant tunneling times in double-barrier structures, which is significant but has been frequently omitted in previous theoretical methods, has been reported in this paper. The analytical expressions of the longitudinal energies of quasibound levels (LEQBL) and the lifetimes of quasibound levels (LQBL) in symmetrical double-barrier (SDB) structures have been derived as a function of transverse wave vector and longitudinal magnetic fields perpendicular to interfaces. Based on our derived analytical expressions, the LEQBL and LQBL dependence upon transverse wave vector and longitudinal magnetic fields has been explored numerically for a SDB structure. Model calculations show that the LEQBL decrease monotonically and the LQBL shorten with increasing transverse wave vector, and each original LEQBL splits to a series of sub-LEQBL which shift nearly linearly toward the well bottom and the lifetimes of quasibound level series (LQBLS) shorten with increasing Landau-level indices and magnetic fields.

  2. Negative emotions and behaviour: The role of regulatory emotional self-efficacy.

    PubMed

    Mesurado, Belén; Vidal, Elisabeth Malonda; Mestre, Anna Llorca

    2018-04-01

    The objective of this study is to test a longitudinal model that analyses the direct effect of negative emotions (anger, depression and anxiety, wave 1) on prosocial and aggressive behaviour (wave 2) in adolescents. And the indirect effect of negative emotions (wave 1) on prosocial and aggressive behaviour (wave 2) through regulatory emotional self-efficacy. Data was obtained from 417 adolescents in a two-wave longitudinal study (225 girls, M age = 14.70 years) from schools located in Valencia, Spain. SEM was employed to explore longitudinal models. The results showed that anger had a direct relationship with prosocial behaviour and aggression, measured two years later. However, the depression and anxiety states did not predict prosociality and aggressiveness. The mediation role of regulatory emotional self-efficacy between negative emotion and behaviours was only partially confirmed. Finally, only the perception of self-efficacy in expressing positive affect is related to prosociality and aggressiveness. Copyright © 2018 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  3. Longitudinal Surveys of Australian Youth (LSAY) 2009 Cohort: Wave 2 (2010)-- Questionnaire. Technical Report 71A

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2012

    2012-01-01

    The Longitudinal Surveys of Australian Youth (LSAY) program studies the progress of several groups of young Australians as they move from school into post-secondary education and work. This technical paper contains the questionnaire for the LSAY 2009 cohort Wave 2 (2010) data set.

  4. Longitudinal Surveys of Australian Youth (LSAY) 2009 Cohort: Wave 3 (2011)--Questionnaire. Technical Report 72A

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2012

    2012-01-01

    The Longitudinal Surveys of Australian Youth (LSAY) program studies the progress of several groups of young Australians as they move from school into post-secondary education and work. This technical paper contains the questionnaire for the LSAY 2009 cohort Wave 3 (2011) data set.

  5. Longitudinal Surveys of Australian Youth (LSAY) 2009 Cohort: Wave 2 (2010)--Frequency Tables. Technical Report 71B

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2012

    2012-01-01

    The Longitudinal Surveys of Australian Youth (LSAY) program studies the progress of several groups of young Australians as they move from school into post-secondary education and work. This technical paper contains the frequency tables for the LSAY 2009 cohort Wave 2 (2010) data set.

  6. Scattering of plane evanescent waves by cylindrical shells and wave vector coupling conditions for exciting flexural waves

    NASA Astrophysics Data System (ADS)

    Marston, Philip L.

    2002-05-01

    The coupling of sound to buried targets can be associated with acoustic evanescent waves when the sea bottom is smooth. To understand the excitation of flexural waves on buried shells by acoustic evanescent waves, the partial wave series for the scattering is found for cylindrical shells at normal incidence in an unbounded medium. The formulation uses the simplifications of thin-shell dynamics. In the case of ordinary waves incident on a shell, a ray formulation is available to describe the coupling to subsonic flexural waves [P. L. Marston and N. H. Sun, J. Acoust. Soc. Am. 97, 777-783 (1995)]. When the incident wave is evanescent, the distance between propagating plane wavefronts is smaller than the ordinary acoustical wavelength at the same frequency and the coupling condition for the excitation of flexural waves on shells or plates is modified. Instead of matching the flexural wave number with the propagating part of the acoustic wave number only at the coincidence frequency, a second low-frequency wave number matching condition is found for highly evanescent waves. Numerical evaluation of the modified partial-wave-series appropriate for an evanescent wave is used to investigate the low-frequency coupling of evanescent waves with flexural wave resonances of shells.

  7. Rogue Wave Modes for the Long Wave-Short Wave Resonance and the Derivative Nonlinear Schrödinger Models

    NASA Astrophysics Data System (ADS)

    Chan, Hiu Ning; Chow, Kwok Wing; Kedziora, David Jacob; Grimshaw, Roger Hamilton James; Ding, Edwin

    2014-11-01

    Rogue waves are unexpectedly large displacements of the water surface and will obviously pose threat to maritime activities. Recently, the formation of rogue waves is correlated with the onset of modulation instabilities of plane waves of the system. The long wave-short wave resonance and the derivative nonlinear Schrödinger models are considered. They are relevant in a two-layer fluid and a fourth order perturbation expansion of free surface waves respectively. Analytical solutions of rogue wave modes for the two models are derived by the Hirota bilinear method. Properties and amplitudes of these rogue wave modes are investigated. Conditions for modulation instability of the plane waves are shown to be precisely the requirements for the occurrence of rogue waves. In contrast with the nonlinear Schrödinger equation, rogue wave modes for the derivative nonlinear Schrödinger model exist even if the dispersion and cubic nonlinearity are of the opposite signs, provided that a sufficiently strong self-steepening nonlinearity is present. Extensions to the coupled case (multiple waveguides) will be discussed. This work is partially supported by the Research Grants Council General Research Fund Contract HKU 711713E.

  8. Single-longitudinal mode Nd:YVO4 microchip laser with orthogonal-polarization bidirectional traveling-waves mode.

    PubMed

    Ma, Yingjun; Wu, Li; Wu, Hehui; Chen, Weimin; Wang, Yanli; Gu, Shijie

    2008-11-10

    We present a single longitudinal mode, diode pumped Nd:YVO(4) microchip laser where a pair of quarter-wave plates (QWPs) sandwich Nd:YVO(4) and the principle axes of QWPs are oriented at 45 degrees to the c-axis of Nd:YVO(4). Three pieces of crystals were optically bonded together as a microchip without adhesive. Owing to large birefringence of Nd:YVO(4), two standing waves with orthogonal polarizations compensate their hole-burning effects with each other, which diminish total spatial hole-burning effects in Nd:YVO(4). The maximum pump power of greater than 25 times the threshold for single longitudinal mode operation has been theoretically shown and experimentally demonstrated. The power of output, slope efficiencies and temperature range of single longitudinal mode operation are greater than 730 mw (at 1.25 W pump), 60% and 30 degrees C, respectively.

  9. Resonant Triad in Boundary-Layer Stability. Part 2; Composite Solution and Comparison with Observations

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda R.

    1991-01-01

    Here, numerical results are computed from an asymptotic near-resonance triad analysis. The analysis considers a resonant triad of instability waves consisting of a plane fundamental wave and a pair of symmetrical oblique subharmonic waves. The relevant scaling ensures that nonlinearity is confined to a distinct critical layer. The analysis is first used to form a composite solution that accounts for both the flow divergence and nonlinear effects. It is shown that the backreaction on the plane Tollmien Schlichting (TS) fundamental wave, although fully accounted for, is of little significance. The observed enhancement at the fundamental frequency disturbance is not in the plane TS wave, but is caused by nonlinearly generated waves at the fundamental frequency that result from nonlinear interactions in the critical layer. The saturation of the oblique waves is caused by their self-interaction. The nonlinear phase-locking phenomenon, the location of resonance with respect to the neutral stability curve, low frequency effects, detuning in the streamwise wave numbers, and nonlinear distortion of the mode shapes are discussed. Nonlinearity modifies the initially two dimensional Blasius profile into a fuller one with spanwise periodicity. The interactions at a wide range of unstable spanwise wave numbers are considered, and the existence of a preferred spanwise wave number is explained by means of the vorticity distribution in the critical layer. Besides presenting novel features of the phenomena and explaining the delicate mechanisms of the interactions, the results of the theory are in excellent agreement with experimental and numerical observations for all stages of the development and for various input parameters.

  10. The 3D modeling of high numerical aperture imaging in thin films

    NASA Technical Reports Server (NTRS)

    Flagello, D. G.; Milster, Tom

    1992-01-01

    A modelling technique is described which is used to explore three dimensional (3D) image irradiance distributions formed by high numerical aperture (NA is greater than 0.5) lenses in homogeneous, linear films. This work uses a 3D modelling approach that is based on a plane-wave decomposition in the exit pupil. Each plane wave component is weighted by factors due to polarization, aberration, and input amplitude and phase terms. This is combined with a modified thin-film matrix technique to derive the total field amplitude at each point in a film by a coherent vector sum over all plane waves. Then the total irradiance is calculated. The model is used to show how asymmetries present in the polarized image change with the influence of a thin film through varying degrees of focus.

  11. Reflection of Lamb waves obliquely incident on the free edge of a plate.

    PubMed

    Santhanam, Sridhar; Demirli, Ramazan

    2013-01-01

    The reflection of obliquely incident symmetric and anti-symmetric Lamb wave modes at the edge of a plate is studied. Both in-plane and Shear-Horizontal (SH) reflected wave modes are spawned by an obliquely incident in-plane Lamb wave mode. Energy reflection coefficients are calculated for the reflected wave modes as a function of frequency and angle of incidence. This is done by using the method of orthogonal mode decomposition and by enforcing traction free conditions at the plate edge using the method of collocation. A PZT sensor network, affixed to an Aluminum plate, is used to experimentally verify the predictions of the analysis. Experimental results provide support for the analytically determined results. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Invertible propagator for plane wave illumination of forward-scattering structures.

    PubMed

    Samelsohn, Gregory

    2017-05-10

    Propagation of directed waves in forward-scattering media is considered. It is assumed that the evolution of the wave field is governed by the standard parabolic wave equation. An efficient one-step momentum-space propagator, suitable for a tilted plane wave illumination of extended objects, is derived. It is expressed in terms of a propagation operator that transforms (the complex exponential of) a linogram of the illuminated object into a set of its diffraction patterns. The invertibility of the propagator is demonstrated, which permits a multiple-shot scatter correction to be performed, and makes the solution especially attractive for either projective or tomographic imaging. As an example, high-resolution tomograms are obtained in numerical simulations implemented for a synthetic phantom, with both refractive and absorptive inclusions.

  13. Transmission of sound across a vortex layer enclosing a cylindrical column of jet

    NASA Technical Reports Server (NTRS)

    Luh, R.; Chao, C. C.

    1982-01-01

    An approximate solution to the problem of transmission of sound across a cylindrical vortex was obtained. Results are considerably different from the plane vortex sheet case because of the added role played by the curvature of the jet. In comparison with the plane case, the specularly transmitted waves are more complex and require some numerical integration. Resonance waves are identically predicted for M 2, but there is also a wave field whose modified effect appears to extend the region of resonance just as the instability waves cover a region in space and time. The instability waves are predicted to exist for all Mach numbers but vanish for wavelengths that are large compared to the jet radius. The region of propagation is similarly wavelength dependent.

  14. Expressions for the spherical-wave-structure function based on a bump spectrum model for the index of refraction

    NASA Astrophysics Data System (ADS)

    Richardson, Christina E.; Andrews, Larry C.

    1991-07-01

    New spectra models have recently been developed for the spatial power spectra of temperature and refractive index fluctuations in the atmospheric boundary layer showing the characteristic 'bump' just prior to the dissipation ranges. Theoretical work involving these new models has led to new expressions for the phase structure function associated with a plane optical wave, although most experimental work has involved spherical waves. Following techniques similar to those used for the plane wave analysis, new expressions valid in geometrical and diffraction regimes are developed here for the phase structure function of a spherical optical wave propagating through clear-air atmospheric turbulence. Useful asymptotic formulas for small separation distances and the inertial subrange are derived from these general expressions.

  15. Reconstruction of transient vibration and sound radiation of an impacted plate using time domain plane wave superposition method

    NASA Astrophysics Data System (ADS)

    Geng, Lin; Zhang, Xiao-Zheng; Bi, Chuan-Xing

    2015-05-01

    Time domain plane wave superposition method is extended to reconstruct the transient pressure field radiated by an impacted plate and the normal acceleration of the plate. In the extended method, the pressure measured on the hologram plane is expressed as a superposition of time convolutions between the time-wavenumber normal acceleration spectrum on a virtual source plane and the time domain propagation kernel relating the pressure on the hologram plane to the normal acceleration spectrum on the virtual source plane. By performing an inverse operation, the normal acceleration spectrum on the virtual source plane can be obtained by an iterative solving process, and then taken as the input to reconstruct the whole pressure field and the normal acceleration of the plate. An experiment of a clamped rectangular steel plate impacted by a steel ball is presented. The experimental results demonstrate that the extended method is effective in visualizing the transient vibration and sound radiation of an impacted plate in both time and space domains, thus providing the important information for overall understanding the vibration and sound radiation of the plate.

  16. High power single-longitudinal-mode Ho:YLF unidirectional ring laser based on a composite structure of acousto-optic device and wave plate

    NASA Astrophysics Data System (ADS)

    Dai, T. Y.; Fan, Z. G.; Wu, J.; Ju, Y. L.; Yao, B. Q.; Zhang, Z. G.; Teng, K.; Xu, X. G.; Duan, X. M.

    2017-05-01

    We report a unidirectional single-longitudinal-mode Ho:YLF ring laser. An acousto-optic modulator and two half-wave plates were used to enforce the Ho:YLF ring laser in a unidirectional operation. The single-longitudinal-mode output power could reach 3.73 W successfully when the incident pump power was 16.4 W. The corresponding slope efficiency was 27.1%. The wavelength of the single-longitudinal-mode Ho:YLF ring laser was 2063.8 nm. The M2 factor was 1.12. The results illustrated that the single-longitudinal-mode output power could be further enhanced by increasing the radio frequency power of the acousto-optic modulator.

  17. Two different kinds of rogue waves in weakly crossing sea states

    NASA Astrophysics Data System (ADS)

    Ruban, V. P.

    2009-06-01

    Formation of giant waves in sea states with two spectral maxima centered at close wave vectors k0±Δk/2 in the Fourier plane is numerically simulated using the fully nonlinear model for long-crested water waves [V. P. Ruban, Phys. Rev. E 71, 055303(R) (2005)]. Depending on an angle θ between the vectors k0 and Δk , which determines a typical orientation of interference stripes in the physical plane, rogue waves arise having different spatial structure. If θ≲arctan(1/2) , then typical giant waves are relatively long fragments of essentially two-dimensional (2D) ridges, separated by wide valleys and consisting of alternating oblique crests and troughs. At nearly perpendicular k0 and Δk , the interference minima develop to coherent structures similar to the dark solitons of the nonlinear Schrodinger equation, and a 2D freak wave looks much as a piece of a one-dimensional freak wave bounded in the transversal direction by two such dark solitons.

  18. Evolution of a Directional Wave Spectrum in a 3D Marginal Ice Zone with Random Floe Size Distribution

    NASA Astrophysics Data System (ADS)

    Montiel, F.; Squire, V. A.

    2013-12-01

    A new ocean wave/sea-ice interaction model is proposed that simulates how a directional wave spectrum evolves as it travels through a realistic marginal ice zone (MIZ), where wave/ice dynamics are entirely governed by coherent conservative wave scattering effects. Field experiments conducted by Wadhams et al. (1986) in the Greenland Sea generated important data on wave attenuation in the MIZ and, particularly, on whether the wave spectrum spreads directionally or collimates with distance from the ice edge. The data suggest that angular isotropy, arising from multiple scattering by ice floes, occurs close to the edge and thenceforth dominates wave propagation throughout the MIZ. Although several attempts have been made to replicate this finding theoretically, including by the use of numerical models, none have confronted this problem in a 3D MIZ with fully randomised floe distribution properties. We construct such a model by subdividing the discontinuous ice cover into adjacent infinite slabs of finite width parallel to the ice edge. Each slab contains an arbitrary (but finite) number of circular ice floes with randomly distributed properties. Ice floes are modeled as thin elastic plates with uniform thickness and finite draught. We consider a directional wave spectrum with harmonic time dependence incident on the MIZ from the open ocean, defined as a continuous superposition of plane waves traveling at different angles. The scattering problem within each slab is then solved using Graf's interaction theory for an arbitrary incident directional plane wave spectrum. Using an appropriate integral representation of the Hankel function of the first kind (see Cincotti et al., 1993), we map the outgoing circular wave field from each floe on the slab boundaries into a directional spectrum of plane waves, which characterizes the slab reflected and transmitted fields. Discretizing the angular spectrum, we can obtain a scattering matrix for each slab. Standard recursive techniques are then used to solve the problem for the full MIZ. Wave attenuation data are obtained using ensemble averaging and preliminary comparisons with field experiment data will be given in the presentation. The model also offers important insights in regards to the spreading of the directional wave spectrum as it penetrates deeper into the MIZ. Cincotti, G., Gori, F., Santarsiero, M., Frezza, F., Furno, F., and Schettini, G. (1993). Plane wave expansion of cylindrical functions. Opt. Commun., 95(4):192-198. Wadhams, P., Squire, V. A., Ewing, J. A., and Pascal, R. W. (1986). The effect of the marginal ice zone on the directional wave spectrum of the ocean. J. Phys. Oceanogr., 16:358-376.

  19. Orthogonal wave propagation of epileptiform activity in the planar mouse hippocampus in vitro.

    PubMed

    Kibler, Andrew B; Durand, Dominique M

    2011-09-01

    In vitro brain preparations have been used extensively to study the generation and propagation of epileptiform activity. Transverse and longitudinal slices of the rodent hippocampus have revealed various patterns of propagation. Yet intact connections between the transverse and longitudinal pathways should generate orthogonal (both transverse and longitudinal) propagation of seizures involving the entire hippocampus. This study utilizes the planar unfolded mouse hippocampus preparation to reveal simultaneous orthogonal epileptiform propagation and to test a method of arresting propagation. This study utilized an unfolded mouse hippocampus preparation. It was chosen due to its preservation of longitudinal neuronal processes, which are thought to play an important role in epileptiform hyperexcitability. 4-Aminopyridine (4-AP), microelectrodes, and voltage-sensitive dye imaging were employed to investigate tissue excitability. In 50-μm 4-AP, stimulation of the stratum radiatum induced transverse activation of CA3 cells but also induced a longitudinal wave of activity propagating along the CA3 region at a speed of 0.09 m/s. Without stimulation, a wave originated at the temporal CA3 and propagated in a temporal-septal direction could be suppressed with glutamatergic receptor antagonists. Orthogonal propagation traveled longitudinally along the CA3 pathway, secondarily invading the CA1 region at a velocity of 0.22 ± 0.024 m/s. Moreover, a local lesion restricted to the CA3 region could arrest wave propagation. These results reveal a complex two-dimensional epileptiform wave propagation pattern in the hippocampus that is generated by a combination of synaptic transmission and axonal propagation in the CA3 recurrent network. Epileptiform propagation block via a transverse selective CA3 lesion suggests a potential surgical technique for the treatment of temporal lobe epilepsy. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.

  20. Orthogonal Wave Propagation of Epileptiform Activity in the Planar Mouse Hippocampus in vitro

    PubMed Central

    Kibler, Andrew B; Durand, Dominique M

    2011-01-01

    Purpose In vitro brain preparations have been used extensively to study the generation and propagation of epileptiform activity. Transverse and longitudinal slices of the rodent hippocampus have revealed various patterns of propagation. Yet intact connections between the transverse and longitudinal pathways should generate orthogonal (both transverse and longitudinal) propagation of seizures involving the entire hippocampus. This study utilizes the planar unfolded mouse hippocampus preparation to reveal simultaneous orthogonal epileptiform propagation and to test a method of arresting propagation. Methods This study utilized an unfolded mouse hippocampus preparation. It was chosen due to its preservation of longitudinal neuronal processes which are thought to play an important role in epileptiform hyper-excitability. 4-aminopyridine (4-AP), micro-electrodes, and voltage sensitive dye imaging were employed to investigate tissue excitability. Key Findings In 50 μM 4-AP, stimulation of the stratum radiatum induced transverse activation of CA3 cells but also induced a longitudinal wave of activity propagating along the CA3 region at a speed of 0.09 m/s. Without stimulation, a wave originated at the temporal CA3 and propagated in a temporal–septal direction and could be suppressed with glutamatergic antagonists. Orthogonal propagation traveled longitudinally along the CA3 pathway, secondarily invading the CA1 region at a velocity of 0.22±0.024 m/s. Moreover, a local lesion restricted to the CA3 region could arrest wave propagation. Significance These results reveal a complex two-dimensional epileptiform wave propagation pattern in the hippocampus that is generated by a combination of synaptic transmission and axonal propagation in the CA3 recurrent network. Epileptiform propagation block via a transverse selective CA3 lesion suggests a potential surgical technique for the treatment of temporal lobe epilepsy. PMID:21668440

  1. Determination of the resistivity anisotropy of orthorhombic materials via transverse resistivity measurements

    DOE PAGES

    Walmsley, P.; Fisher, I. R.

    2017-04-05

    Measurements of the resistivity anisotropy can provide crucial information about the electronic structure and scattering processes in anisotropic and low-dimensional materials, but quantitative measurements by conventional means often suffer very significant systematic errors. Here we describe a novel approach to measuring the resistivity anisotropy of orthorhombic materials, using a single crystal and a single measurement that is derived from a π/4 rotation of the measurement frame relative to the crystallographic axes. In this new basis, the transverse resistivity gives a direct measurement of the resistivity anisotropy, which combined with the longitudinal resistivity also gives the in-plane elements of the conventionalmore » resistivity tensor via a 5-point contact geometry. In conclusion, this is demonstrated through application to the charge-density wave compound ErTe 3, and it is concluded that this method presents a significant improvement on existing techniques, particularly when measuring small anisotropies.« less

  2. A high-power ultrasonic microreactor and its application in gas-liquid mass transfer intensification.

    PubMed

    Dong, Zhengya; Yao, Chaoqun; Zhang, Xiaoli; Xu, Jie; Chen, Guangwen; Zhao, Yuchao; Yuan, Quan

    2015-02-21

    The combination of ultrasound and microreactor is an emerging and promising area, but the report of designing high-power ultrasonic microreactor (USMR) is still limited. This work presents a robust, high-power and highly efficient USMR by directly coupling a microreactor plate with a Langevin-type transducer. The USMR is designed as a longitudinal half wavelength resonator, for which the antinode plane of the highest sound intensity is located at the microreactor. According to one dimension design theory, numerical simulation and impedance analysis, a USMR with a maximum power of 100 W and a resonance frequency of 20 kHz was built. The strong and uniform sound field in the USMR was then applied to intensify gas-liquid mass transfer of slug flow in a microfluidic channel. Non-inertial cavitation with multiple surface wave oscillation was excited on the slug bubbles, enhancing the overall mass transfer coefficient by 3.3-5.7 times.

  3. Stochastic particle instability for electron motion in combined helical wiggler, radiation, and longitudinal wave fields

    NASA Astrophysics Data System (ADS)

    Davidson, Ronald C.; McMullin, Wayne A.

    1982-07-01

    The relativistic motion of an electron is calculated in the combined fields of a transverse helical wiggler field (axial wavelength is λ0=2πk0) and the constant-amplitude, circularly polarized primary electromagnetic wave (δBT,ω,k) propagating in the z direction. For particle velocity near the beat-wave phase velocity ω(k+k0) of the primary wave, it is shown that the presence of a second, moderate-amplitude longitudinal wave (δÊL,ω,k) or transverse electromagnetic wave (δB2,ω2,k2) can lead to stochastic particle instability in which particles trapped near the separatrix of the primary wave undergo a systematic departure from the potential well. The condition for onset of instability is calculated, and the importance of these results for free-electron-laser (FEL) application is discussed. For development of long-pulse or steady-state free-electron lasers, the maintenance of beam integrity for an extended period of time will be of considerable practical importance. The fact that the presence of secondary, moderate-amplitude longitudinal or transverse electromagnetic waves can destroy coherent motion for certain classes of beam particles moving with velocity near ω(k+k0) may lead to a degradation of beam quality and concomitant modification of FEL emission properties.

  4. Possible acceleration of cosmic rays in a rotating system: Uehling-Uhlenbeck model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwang-Hua, Chu Rainer, E-mail: 1559877413@qq.com

    2016-11-15

    We illustrate the possible acceleration of cosmic rays passing through a kind of amplification channel (via diffusion modes of propagating plane-wave fronts) induced by a rotating system. Our analysis is mainly based on the quantum discrete kinetic model (considering a discrete Uehling-Uhlenbeck collision term), which has been used to study the propagation of plane (e.g., acoustic) waves in a system of rotating gases.

  5. Worldline approach to helicity flip in plane waves

    NASA Astrophysics Data System (ADS)

    Ilderton, Anton; Torgrimsson, Greger

    2016-04-01

    We apply worldline methods to the study of vacuum polarization effects in plane wave backgrounds, in both scalar and spinor QED. We calculate helicity-flip probabilities to one loop order and treated exactly in the background field, and provide a toolkit of methods for use in investigations of higher-order processes. We also discuss the connections between the worldline, S-matrix, and lightfront approaches to vacuum polarization effects.

  6. Analytically reduced form for the class of integrals containing multicenter products of 1s hydrogenic orbitals, Coulomb or Yukawa potentials, and plane waves

    NASA Technical Reports Server (NTRS)

    Straton, Jack C.

    1989-01-01

    The class of integrals containing the product of N 1s hydrogenic orbitals and M Coulomb or Yukawa potentials with m plane waves is investigated analytically. The results obtained by Straton (1989) are extended and generalized. It is shown that the dimensionality of the entire class can be reduced from 3m to M+N-1.

  7. Separation of Migration and Tomography Modes of Full-Waveform Inversion in the Plane Wave Domain

    NASA Astrophysics Data System (ADS)

    Yao, Gang; da Silva, Nuno V.; Warner, Michael; Kalinicheva, Tatiana

    2018-02-01

    Full-waveform inversion (FWI) includes both migration and tomography modes. The migration mode acts like a nonlinear least squares migration to map model interfaces with reflections, while the tomography mode behaves as tomography to build a background velocity model. The migration mode is the main response of inverting reflections, while the tomography mode exists in response to inverting both the reflections and refractions. To emphasize one of the two modes in FWI, especially for inverting reflections, the separation of the two modes in the gradient of FWI is required. Here we present a new method to achieve this separation with an angle-dependent filtering technique in the plane wave domain. We first transform the source and residual wavefields into the plane wave domain with the Fourier transform and then decompose them into the migration and tomography components using the opening angles between the transformed source and residual plane waves. The opening angles close to 180° contribute to the tomography component, while the others correspond to the migration component. We find that this approach is very effective and robust even when the medium is relatively complicated with strong lateral heterogeneities, highly dipping reflectors, and strong anisotropy. This is well demonstrated by theoretical analysis and numerical tests with a synthetic data set and a field data set.

  8. Skyrmion motion induced by plane stress waves

    NASA Astrophysics Data System (ADS)

    Gungordu, Utkan; Kovalev, Alexey A.

    Skyrmions are typically driven by currents and magnetic fields. We propose an alternative method of driving skyrmions using plane stress waves in a chiral ferromagnetic nanotrack. We find that the effective force due to surface acoustic waves couples both to the helicity and the topological charge of the skyrmion. This coupling can be used to probe the helicity of the skyrmion as well as the nature of the Dzyaloshinskii-Moriya interaction. This is particularly important when a ferromagnet lacks both surface- and bulk-inversion symmetry. Plane stress waves can be generated using a pair of interdigital transducers (IDTs). As the nanowire is subject to half-open space boundary conditions, the skyrmion is driven by normal stress in this setup. We find that skyrmions get pinned at the antinodes of the stress wave, much similar to domain walls, which enables skyrmion motion by detuned IDTs. We also consider a nanotrack sandwiched between a piezoelectric layer and a substrate, with electrical contacts placed on top, which results in shear stress in addition to normal stress in nanotrack. We find that unlike domain walls, skyrmions can be driven using shear component of a standing stress wave. This work was supported primarily by the DOE Early Career Award DE-SC0014189, and in part by the NSF under Grants Nos. Phy-1415600, and DMR-1420645 (UG).

  9. Band transition and topological interface modes in 1D elastic phononic crystals.

    PubMed

    Yin, Jianfei; Ruzzene, Massimo; Wen, Jihong; Yu, Dianlong; Cai, Li; Yue, Linfeng

    2018-05-01

    In this report, we design a one-dimensional elastic phononic crystal (PC) comprised of an Aluminum beam with periodically arranged cross-sections to study the inversion of bulk bands due to the change of topological phases. As the geometric parameters of the unit cell varies, the second bulk band closes and reopens forming a topological transition point. This phenomenon is confirmed for both longitudinal waves and bending waves. By constructing a structural system formed by two PCs with different topological phases, for the first time, we experimentally demonstrate the existence of interface mode within the bulk band gap as a result of topological transition for both longitudinal and bending modes in elastic systems, although for bending modes, additional conditions have to be met in order to have the interface mode due to the dispersive nature of the bending waves in uniform media compared to the longitudinal waves.

  10. NUCLEAR REACTORS

    DOEpatents

    Long, E.; Ashby, J.W.

    1958-09-16

    ABS>A graphite moderator structure is presented for a nuclear reactor compriscd of an assembly of similarly orientated prismatic graphite blocks arranged on spaced longitudinal axes lying in common planes wherein the planes of the walls of the blocks are positioned so as to be twisted reintive to the planes of said axes so thatthe unlmpeded dtrect paths in direction wholly across the walls of the blocks are limited to the width of the blocks plus spacing between the blocks.

  11. WKB solution 4×4 for electromagnetic waves in a planar magnetically anisotropic inhomogeneous layer

    NASA Astrophysics Data System (ADS)

    Moiseeva, Natalya Michailovna; Moiseev, Anton Vladimirovich

    2018-04-01

    In the paper, an oblique incidence of a plane electromagnetic wave on a planar magnetically anisotropic inhomogeneous layer is considered. We consider the case when all the components of the magnetic permeability tensor are non zero and vary with distance from the interface of media. The WKB method gives a matrix 4 × 4 solution for the projections of the electromagnetic wave fields during its propagation. The dependence of the cross-polarized components on the orientation of the anisotropic medium relative to the plane of incidence of the medium is analyzed.

  12. Noise shielding by a hot subsonic jet

    NASA Technical Reports Server (NTRS)

    Vijayaraghavan, A.; Parthasarathy, S. P.

    1981-01-01

    An analysis is conducted of the shielding of the noise emitted by a high speed round jet by a hot, subsonic, semicircular jet. A plane wave front in the primary jet is resolved into elementary plane waves which undergo multiple reflections at the jet boundaries of the primary and the shielding jets. The jet boundaries are idealized to be vortex sheets. The far field sound is evaluated asymptotically by a superposition of the waves that penetrate the shielding jet. The angular directivities are plotted for several values of jet temperature and velocity to examine the effectiveness of shielding by the semicircular jet layer.

  13. Ultrasonic measurements of the reflection coefficient at a water/polyurethane foam interface.

    PubMed

    Sagers, Jason D; Haberman, Michael R; Wilson, Preston S

    2013-09-01

    Measured ultrasonic reflection coefficients as a function of normal incidence angle are reported for several samples of polyurethane foam submerged in a water bath. Three reflection coefficient models are employed as needed in this analysis to approximate the measured data: (1) an infinite plane wave impinging on an elastic halfspace, (2) an infinite plane wave impinging on a single fluid layer overlying a fluid halfspace, and (3) a finite acoustic beam impinging on an elastic halfspace. The compressional wave speed in each sample is calculated by minimizing the sum of squared error (SSE) between the measured and modeled data.

  14. 2-D Versus 3-D Cross-Correlation-Based Radial and Circumferential Strain Estimation Using Multiplane 2-D Ultrafast Ultrasound in a 3-D Atherosclerotic Carotid Artery Model.

    PubMed

    Fekkes, Stein; Swillens, Abigail E S; Hansen, Hendrik H G; Saris, Anne E C M; Nillesen, Maartje M; Iannaccone, Francesco; Segers, Patrick; de Korte, Chris L

    2016-10-01

    Three-dimensional (3-D) strain estimation might improve the detection and localization of high strain regions in the carotid artery (CA) for identification of vulnerable plaques. This paper compares 2-D versus 3-D displacement estimation in terms of radial and circumferential strain using simulated ultrasound (US) images of a patient-specific 3-D atherosclerotic CA model at the bifurcation embedded in surrounding tissue generated with ABAQUS software. Global longitudinal motion was superimposed to the model based on the literature data. A Philips L11-3 linear array transducer was simulated, which transmitted plane waves at three alternating angles at a pulse repetition rate of 10 kHz. Interframe (IF) radio-frequency US data were simulated in Field II for 191 equally spaced longitudinal positions of the internal CA. Accumulated radial and circumferential displacements were estimated using tracking of the IF displacements estimated by a two-step normalized cross-correlation method and displacement compounding. Least-squares strain estimation was performed to determine accumulated radial and circumferential strain. The performance of the 2-D and 3-D methods was compared by calculating the root-mean-squared error of the estimated strains with respect to the reference strains obtained from the model. More accurate strain images were obtained using the 3-D displacement estimation for the entire cardiac cycle. The 3-D technique clearly outperformed the 2-D technique in phases with high IF longitudinal motion. In fact, the large IF longitudinal motion rendered it impossible to accurately track the tissue and cumulate strains over the entire cardiac cycle with the 2-D technique.

  15. Validity of measurement of shear modulus by ultrasound shear wave elastography in human pennate muscle.

    PubMed

    Miyamoto, Naokazu; Hirata, Kosuke; Kanehisa, Hiroaki; Yoshitake, Yasuhide

    2015-01-01

    Ultrasound shear wave elastography is becoming a valuable tool for measuring mechanical properties of individual muscles. Since ultrasound shear wave elastography measures shear modulus along the principal axis of the probe (i.e., along the transverse axis of the imaging plane), the measured shear modulus most accurately represents the mechanical property of the muscle along the fascicle direction when the probe's principal axis is parallel to the fascicle direction in the plane of the ultrasound image. However, it is unclear how the measured shear modulus is affected by the probe angle relative to the fascicle direction in the same plane. The purpose of the present study was therefore to examine whether the angle between the principal axis of the probe and the fascicle direction in the same plane affects the measured shear modulus. Shear modulus in seven specially-designed tissue-mimicking phantoms, and in eleven human in-vivo biceps brachii and medial gastrocnemius were determined by using ultrasound shear wave elastography. The probe was positioned parallel or 20° obliquely to the fascicle across the B-mode images. The reproducibility of shear modulus measurements was high for both parallel and oblique conditions. Although there was a significant effect of the probe angle relative to the fascicle on the shear modulus in human experiment, the magnitude was negligibly small. These findings indicate that the ultrasound shear wave elastography is a valid tool for evaluating the mechanical property of pennate muscles along the fascicle direction.

  16. 49 CFR 572.113 - Neck assembly.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Using neck brackets 78051-303 and -307, mount the head/neck assembly to the part 572 pendulum test... to the plane of motion of the pendulum's longitudinal centerline (see § 572.33, Figure 20, except... (horizontal surface at the base of the skull) rotation with respect to the pendulum's longitudinal centerline...

  17. 49 CFR 572.113 - Neck assembly.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Using neck brackets 78051-303 and -307, mount the head/neck assembly to the part 572 pendulum test... to the plane of motion of the pendulum's longitudinal centerline (see § 572.33, Figure 20, except... (horizontal surface at the base of the skull) rotation with respect to the pendulum's longitudinal centerline...

  18. 49 CFR 572.113 - Neck assembly.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Using neck brackets 78051-303 and -307, mount the head/neck assembly to the part 572 pendulum test... to the plane of motion of the pendulum's longitudinal centerline (see § 572.33, Figure 20, except... (horizontal surface at the base of the skull) rotation with respect to the pendulum's longitudinal centerline...

  19. 49 CFR 572.113 - Neck assembly.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Using neck brackets 78051-303 and -307, mount the head/neck assembly to the part 572 pendulum test... to the plane of motion of the pendulum's longitudinal centerline (see § 572.33, Figure 20, except... (horizontal surface at the base of the skull) rotation with respect to the pendulum's longitudinal centerline...

  20. 49 CFR 572.113 - Neck assembly.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Using neck brackets 78051-303 and -307, mount the head/neck assembly to the part 572 pendulum test... to the plane of motion of the pendulum's longitudinal centerline (see § 572.33, Figure 20, except... (horizontal surface at the base of the skull) rotation with respect to the pendulum's longitudinal centerline...

  1. Test of a General Formula for Black Hole Gravitational Wave Kicks

    NASA Technical Reports Server (NTRS)

    van Meter, James R.; Miller, M. Coleman; Baker, John G.; Boggs, William D.; Kelly, Bernard J.

    2010-01-01

    Although the gravitational wave kick velocity in the orbital plane of coalescing black holes has been understood for some time, apparently conflicting formulae have been proposed for the dominant outof- plane kick, each a good fit to different data sets. This is important to resolve because it is only the out-of-plane kicks that can reach more than 500 km s-l and can thus eject merged remnants from galaxies. Using a different ansatz for the out-of-plane kick, we show that we can fit almost all existing data to better than 5%. This is good enough for any astrophysical calculation and shows that the previous apparent conflict was only because the two data sets explored different aspects of the kick parameter space.

  2. Interference effects in phased beam tracing using exact half-space solutions.

    PubMed

    Boucher, Matthew A; Pluymers, Bert; Desmet, Wim

    2016-12-01

    Geometrical acoustics provides a correct solution to the wave equation for rectangular rooms with rigid boundaries and is an accurate approximation at high frequencies with nearly hard walls. When interference effects are important, phased geometrical acoustics is employed in order to account for phase shifts due to propagation and reflection. Error increases, however, with more absorption, complex impedance values, grazing incidence, smaller volumes and lower frequencies. Replacing the plane wave reflection coefficient with a spherical one reduces the error but results in slower convergence. Frequency-dependent stopping criteria are then applied to avoid calculating higher order reflections for frequencies that have already converged. Exact half-space solutions are used to derive two additional spherical wave reflection coefficients: (i) the Sommerfeld integral, consisting of a plane wave decomposition of a point source and (ii) a line of image sources located at complex coordinates. Phased beam tracing using exact half-space solutions agrees well with the finite element method for rectangular rooms with absorbing boundaries, at low frequencies and for rooms with different aspect ratios. Results are accurate even for long source-to-receiver distances. Finally, the crossover frequency between the plane and spherical wave reflection coefficients is discussed.

  3. Plane Wave SH₀ Piezoceramic Transduction Optimized Using Geometrical Parameters.

    PubMed

    Boivin, Guillaume; Viens, Martin; Belanger, Pierre

    2018-02-10

    Structural health monitoring is a prominent alternative to the scheduled maintenance of safety-critical components. The nondispersive nature as well as the through-thickness mode shape of the fundamental shear horizontal guided wave mode (SH 0 ) make it a particularly attractive candidate for ultrasonic guided wave structural health monitoring. However, plane wave excitation of SH 0 at a high level of purity remains challenging because of the existence of the fundamental Lamb modes (A 0 and S 0 ) below the cutoff frequency thickness product of high-order modes. This paper presents a piezoelectric transducer concept optimized for plane SH 0 wave transduction based on the transducer geometry. The transducer parameter exploration was initially performed using a simple analytical model. A 3D multiphysics finite element model was then used to refine the transducer design. Finally, an experimental validation was conducted with a 3D laser Doppler vibrometer system. The analytical model, the finite element model, and the experimental measurement showed excellent agreement. The modal selectivity of SH 0 within a 20 ∘ beam opening angle at the design frequency of 425 kHz in a 1.59 mm aluminum plate was 23 dB, and the angle of the 6 dB wavefront was 86 ∘ .

  4. Reciprocal Associations between Identity and Civic Engagement in Adolescence: A Two-Wave Longitudinal Study

    ERIC Educational Resources Information Center

    Crocetti, Elisabetta; Garckija, Renata; Gabrialaviciute, Ingrida; Vosylis, Rimantas; Zukauskiene, Rita

    2014-01-01

    The purpose of this two-wave longitudinal study was to analyze reciprocal associations between identity styles (i.e., socio-cognitive strategies that individuals adopt in processing, structuring, utilizing, and revising self-relevant information) and civic engagement in adolescence. Participants were 1,308 high school students (9-11 grades; 52.9%…

  5. Teacher-Child Relationships and Social Competence: A Two-Year Longitudinal Study of Chinese Preschoolers

    ERIC Educational Resources Information Center

    Zhang, Xiao; Nurmi, Jari-Erik

    2012-01-01

    Based on a two-year and three-wave longitudinal sample of 118 Chinese preschoolers, the present study examined the cross-lagged associations between teacher-child relationships and social competence, and the cross-system generalization of social competence between home and school. At each of the three waves, teachers rated the children's…

  6. Can continuous scans in orthogonal planes improve diagnostic performance of shear wave elastography for breast lesions?

    PubMed

    Yang, Pan; Peng, Yulan; Zhao, Haina; Luo, Honghao; Jin, Ya; He, Yushuang

    2015-01-01

    Static shear wave elastography (SWE) is used to detect breast lesions, but slice and plane selections result in discrepancies. To evaluate the intraobserver reproducibility of continuous SWE, and whether quantitative elasticities in orthogonal planes perform better in the differential diagnosis of breast lesions. One hundred and twenty-two breast lesions scheduled for ultrasound-guided biopsy were recruited. Continuous SWE scans were conducted in orthogonal planes separately. Quantitative elasticities and histopathology results were collected. Reproducibility in the same plane and diagnostic performance in different planes were evaluated. The maximum and mean elasticities of the hardest portion, and standard deviation of whole lesion, had high inter-class correlation coefficients (0.87 to 0.95) and large areas under receiver operation characteristic curve (0.887 to 0.899). Without loss of accuracy, sensitivities had increased in orthogonal planes compared with single plane (from 73.17% up to 82.93% at most). Mean elasticity of whole lesion and lesion-to-parenchyma ratio were significantly less reproducible and less accurate. Continuous SWE is highly reproducible for the same observer. The maximum and mean elasticities of the hardest portion and standard deviation of whole lesion are most reliable. Furthermore, the sensitivities of the three parameters are improved in orthogonal planes without loss of accuracies.

  7. Ready steady push--a study of the role of arm posture in manual exertions.

    PubMed

    Okunribido, Olanrewaju O; Haslegrave, Christine M

    2008-02-01

    This study investigated arm posture and hand forces during bi-manual pushing. Nine male and eight female participants performed isometric exertions at two reach distances (0 and elbow-grip) and six different positions of the hand interface (handle), defined by the plane (longitudinal, lateral, horizontal) and orientation (0 degrees and 45 degrees). Electrogoniometer instruments were used to measure the displacements/postures of the wrist and elbow joints and the forearm, and force measuring strain gauges were used to measure the exerted hand forces (x-, y- and z-components). The results showed that ability to vary arm posture, particularly the forearm, is important during build up of force and that people tend to seek for a balance in the forces applied at the hands by exerting more in the vertical direction. Also, lateral plane handle positions permitted exertion of greater forces than longitudinal and horizontal plane positions.

  8. Numerical Simulations of Shock Wave Refraction at Inclined Gas Contact Discontinuity

    ERIC Educational Resources Information Center

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    When a shock wave interacts with a contact discontinuity, there may appear a reflected rarefaction wave, a deflected contact discontinuity and a refracted supersonic shock. The numerical simulation of shock wave refraction at a plane contact discontinuity separating gases with different densities is performed. Euler equations describing inviscid…

  9. Longitudinal waves in a perpendicular collisionless plasma shock. IV - Gradient B.

    NASA Technical Reports Server (NTRS)

    Gary, S. P.

    1972-01-01

    The consideration of elastic waves in a Vlasov plasma of unmagnetized ions and magnetized electrons undergoing E x B electron drift and gradient B drift, pursued in the earlier three parts, is brought to conclusion in this last part of the longitudinal wave study in a collisionless plasma shock. Detailed calculations of the effects of the beta sub e dimensionless parameter on the E x B electron drift instability are presented. It is shown that the range of propagation of the elastic waves about the perpendicular remains quite narrow, and that, for oblique propagation, the already narrow angular range of unstable waves is decreased by increases in the value of the beta sub e dimensionless parameter. Also, increases in wave number generally reduce the growth rate and the angular range of propagation.

  10. Protective longitudinal paths linking child competence to behavioral problems among African American siblings.

    PubMed

    Brody, Gene H; Kim, Sooyeon; Murry, Velma McBride; Brown, Anita C

    2004-01-01

    A 4-wave longitudinal design was used to examine protective links from child competence to behavioral problems in first- (M=10.97 years) and second- (M=8.27 years) born rural African American children. At 1-year intervals, teachers assessed child behavioral problems, mothers reported their psychological functioning, and both mothers and children reported parenting practices. Structural equation modeling indicated that child competence was linked with residualized positive changes in mothers' psychological functioning from Wave 1 to Wave 2. Mothers' psychological functioning and child competence at Wave 2 forecast involved-supportive parenting at Wave 3, which was associated negatively with externalizing and internalizing problems at Wave 4. The importance of replicating processes leading to outcomes among children in the same study is discussed.

  11. Rogue wave modes for a derivative nonlinear Schrödinger model.

    PubMed

    Chan, Hiu Ning; Chow, Kwok Wing; Kedziora, David Jacob; Grimshaw, Roger Hamilton James; Ding, Edwin

    2014-03-01

    Rogue waves in fluid dynamics and optical waveguides are unexpectedly large displacements from a background state, and occur in the nonlinear Schrödinger equation with positive linear dispersion in the regime of positive cubic nonlinearity. Rogue waves of a derivative nonlinear Schrödinger equation are calculated in this work as a long-wave limit of a breather (a pulsating mode), and can occur in the regime of negative cubic nonlinearity if a sufficiently strong self-steepening nonlinearity is also present. This critical magnitude is shown to be precisely the threshold for the onset of modulation instabilities of the background plane wave, providing a strong piece of evidence regarding the connection between a rogue wave and modulation instability. The maximum amplitude of the rogue wave is three times that of the background plane wave, a result identical to that of the Peregrine breather in the classical nonlinear Schrödinger equation model. This amplification ratio and the resulting spectral broadening arising from modulation instability correlate with recent experimental results of water waves. Numerical simulations in the regime of marginal stability are described.

  12. The Fermionic Signature Operator and Hadamard States in the Presence of a Plane Electromagnetic Wave

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Reintjes, Moritz

    2017-05-01

    We give a non-perturbative construction of a distinguished state for the quantized Dirac field in Minkowski space in the presence of a time-dependent external field of the form of a plane electromagnetic wave. By explicit computation of the fermionic signature operator, it is shown that the Dirac operator has the strong mass oscillation property. We prove that the resulting fermionic projector state is a Hadamard state.

  13. Imaging performance of an isotropic negative dielectric constant slab.

    PubMed

    Shivanand; Liu, Huikan; Webb, Kevin J

    2008-11-01

    The influence of material and thickness on the subwavelength imaging performance of a negative dielectric constant slab is studied. Resonance in the plane-wave transfer function produces a high spatial frequency ripple that could be useful in fabricating periodic structures. A cost function based on the plane-wave transfer function provides a useful metric to evaluate the planar slab lens performance, and using this, the optimal slab dielectric constant can be determined.

  14. Pseudopotential plane-wave calculation of the structural properties of yttrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Y.; Chou, M.Y.

    1991-11-01

    The structural properties of hexagonal-close-packed yttrium are studied by using the plane-wave basis within the pseudopotential method and local-density-functional approximation. By employing a soft'' pseudopotential proposed by Troullier and Martins, satisfactory convergence is achieved with a plane-wave energy cutoff of 30--40 Ry for this early-transition-metal element. The overall results for the structural properties are in good agreement with experiment. It is found that the charge overlap between core and valence electrons has a substantial effect on the accuracy of the calculated structural properties. Two different calculations are performed with and without the outer-core 4{ital p} orbital included as a valencemore » state. In addition, as found in some other local-density calculations, the uncertainty in the results due to different exchange-correlation energy functionals may not be negligible in transition metals.« less

  15. Comparing photonic band structure calculation methods for diamond and pyrochlore crystals.

    PubMed

    Vermolen, E C M; Thijssen, J H J; Moroz, A; Megens, M; van Blaaderen, A

    2009-04-27

    The photonic band diagrams of close-packed colloidal diamond and pyrochlore structures, have been studied using Korringa-Kohn-Rostoker (KKR) and plane-wave calculations. In addition, the occurrence of a band gap has been investigated for the binary Laves structures and their constituent large- and small-sphere substructures. It was recently shown that these Laves structures give the possibility to fabricate the diamond and pyrochlore structures by self-organization. The comparison of the two calculation methods opens the possibility to study the validity and the convergence of the results, which have been an issue for diamond-related structures in the past. The KKR calculations systematically give a lower value for the gap width than the plane-wave calculations. This difference can partly be ascribed to a convergence issue in the plane-wave code when a contact point of two spheres coincides with the grid.

  16. Scattering of targets over layered half space using a semi-analytic method in conjunction with FDTD algorithm.

    PubMed

    Cao, Le; Wei, Bing

    2014-08-25

    Finite-difference time-domain (FDTD) algorithm with a new method of plane wave excitation is used to investigate the RCS (Radar Cross Section) characteristics of targets over layered half space. Compare with the traditional excitation plane wave method, the calculation memory and time requirement is greatly decreased. The FDTD calculation is performed with a plane wave incidence, and the RCS of far field is obtained by extrapolating the currently calculated data on the output boundary. However, methods available for extrapolating have to evaluate the half space Green function. In this paper, a new method which avoids using the complex and time-consuming half space Green function is proposed. Numerical results show that this method is in good agreement with classic algorithm and it can be used in the fast calculation of scattering and radiation of targets over layered half space.

  17. Printed circuit board impedance matching step for microwave (millimeter wave) devices

    DOEpatents

    Pao, Hsueh-Yuan; Aguirre, Jerardo; Sargis, Paul

    2013-10-01

    An impedance matching ground plane step, in conjunction with a quarter wave transformer section, in a printed circuit board provides a broadband microwave matching transition from board connectors or other elements that require thin substrates to thick substrate (>quarter wavelength) broadband microwave (millimeter wave) devices. A method of constructing microwave and other high frequency electrical circuits on a substrate of uniform thickness, where the circuit is formed of a plurality of interconnected elements of different impedances that individually require substrates of different thicknesses, by providing a substrate of uniform thickness that is a composite or multilayered substrate; and forming a pattern of intermediate ground planes or impedance matching steps interconnected by vias located under various parts of the circuit where components of different impedances are located so that each part of the circuit has a ground plane substrate thickness that is optimum while the entire circuit is formed on a substrate of uniform thickness.

  18. Comparison of finite source and plane wave scattering from corrugated surfaces

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1977-01-01

    The choice of a plane wave to represent incident radiation in the analysis of scatter from corrugated surfaces was examined. The physical optics solution obtained for the scattered fields due to an incident plane wave was compared with the solution obtained when the incident radiation is produced by a source of finite size and finite distance from the surface. The two solutions are equivalent if the observer is in the far field of the scatterer and the distance from observer to scatterer is large compared to the radius of curvature at the scatter points, condition not easily satisfied with extended scatterers such as rough surfaces. In general, the two solutions have essential differences such as in the location of the scatter points and the dependence of the scattered fields on the surface properties. The implication of these differences to the definition of a meaningful radar cross section was examined.

  19. Contribution to study of interfaces instabilities in plane, cylindrical and spherical geometry

    NASA Astrophysics Data System (ADS)

    Toque, Nathalie

    1996-12-01

    This thesis proposes several experiments of hydrodynamical instabilities which are studied, numerically and theoretically. The experiments are in plane and cylindrical geometry. Their X-ray radiographies show the evolution of an interface between two solid media crossed by a detonation wave. These materials are initially solid. They become liquide under shock wave or stay between two phases, solid and liquid. The numerical study aims at simulating with the codes EAD and Ouranos, the interfaces instabilities which appear in the experiments. The experimental radiographies and the numerical pictures are in quite good agreement. The theoretical study suggests to modelise a spatio-temporal part of the experiments to obtain the quantitative development of perturbations at the interfaces and in the flows. The models are linear and in plane, cylindrical and spherical geometry. They preceed the inoming study of transition between linear and non linear development of instabilities in multifluids flows crossed by shock waves.

  20. A standing wave linear ultrasonic motor operating in in-plane expanding and bending modes.

    PubMed

    Chen, Zhijiang; Li, Xiaotian; Ci, Penghong; Liu, Guoxi; Dong, Shuxiang

    2015-03-01

    A novel standing wave linear ultrasonic motor operating in in-plane expanding and bending modes was proposed in this study. The stator (or actuator) of the linear motor was made of a simple single Lead Zirconate Titanate (PZT) ceramic square plate (15 × 15 × 2 mm(3)) with a circular hole (D = 6.7 mm) in the center. The geometric parameters of the stator were computed with the finite element analysis to produce in-plane bi-mode standing wave vibration. The calculated results predicted that a driving tip attached at midpoint of one edge of the stator can produce two orthogonal, approximate straight-line trajectories, which can be used to move a slider in linear motion via frictional forces in forward or reverse direction. The investigations showed that the proposed linear motor can produce a six times higher power density than that of a previously reported square plate motor.

  1. Nonlinear modes of the tensor Dirac equation and CPT violation

    NASA Technical Reports Server (NTRS)

    Reifler, Frank J.; Morris, Randall D.

    1993-01-01

    Recently, it has been shown that Dirac's bispinor equation can be expressed, in an equivalent tensor form, as a constrained Yang-Mills equation in the limit of an infinitely large coupling constant. It was also shown that the free tensor Dirac equation is a completely integrable Hamiltonian system with Lie algebra type Poisson brackets, from which Fermi quantization can be derived directly without using bispinors. The Yang-Mills equation for a finite coupling constant is investigated. It is shown that the nonlinear Yang-Mills equation has exact plane wave solutions in one-to-one correspondence with the plane wave solutions of Dirac's bispinor equation. The theory of nonlinear dispersive waves is applied to establish the existence of wave packets. The CPT violation of these nonlinear wave packets, which could lead to new observable effects consistent with current experimental bounds, is investigated.

  2. Phase-shifting point diffraction interferometer

    DOEpatents

    Medecki, H.

    1998-11-10

    Disclosed is a point diffraction interferometer for evaluating the quality of a test optic. In operation, the point diffraction interferometer includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams. 8 figs.

  3. Phase-shifting point diffraction interferometer

    DOEpatents

    Medecki, Hector

    1998-01-01

    Disclosed is a point diffraction interferometer for evaluating the quality of a test optic. In operation, the point diffraction interferometer includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams.

  4. Controlling the position of a stabilized detonation wave in a supersonic gas mixture flow in a plane channel

    NASA Astrophysics Data System (ADS)

    Levin, V. A.; Zhuravskaya, T. A.

    2017-03-01

    Stabilization of a detonation wave in a stoichiometric hydrogen-air mixture flowing at a supersonic velocity into a plane symmetric channel with constriction has been studied in the framework of a detailed kinetic mechanism of the chemical interaction. Conditions ensuring the formation of a thrust-producing f low with a stabilized detonation wave in the channel are determined. The inf luence of the inf low Mach number, dustiness of the combustible gas mixture supplied to the channel, and output cross-section size on the position of a stabilized detonation wave in the f low has been analyzed with a view to increasing the efficiency of detonation combustion of the gas mixture. It is established that thrust-producing flow with a stabilized detonation wave can be formed in the channel without any energy consumption.

  5. 49 CFR 572.33 - Neck.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (b) of this section, on a rigid pendulum as shown in Figure 22 so that the head's midsagittal plane is vertical and coincides with the plane of motion of the pendulum's longitudinal axis. ER02JN11.011 (4) Release the pendulum and allow it to fall freely from a height such that the tangential velocity...

  6. 49 CFR 572.33 - Neck.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (b) of this section, on a rigid pendulum as shown in Figure 22 so that the head's midsagittal plane is vertical and coincides with the plane of motion of the pendulum's longitudinal axis. EC01AU91.165 (4) Release the pendulum and allow it to fall freely from a height such that the tangential velocity...

  7. 49 CFR 572.33 - Neck.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (b) of this section, on a rigid pendulum as shown in Figure 22 so that the head's midsagittal plane is vertical and coincides with the plane of motion of the pendulum's longitudinal axis. ER02JN11.011 (4) Release the pendulum and allow it to fall freely from a height such that the tangential velocity...

  8. 49 CFR 572.33 - Neck.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (b) of this section, on a rigid pendulum as shown in Figure 22 so that the head's midsagittal plane is vertical and coincides with the plane of motion of the pendulum's longitudinal axis. EC01AU91.165 (4) Release the pendulum and allow it to fall freely from a height such that the tangential velocity...

  9. 49 CFR 572.33 - Neck.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (b) of this section, on a rigid pendulum as shown in Figure 22 so that the head's midsagittal plane is vertical and coincides with the plane of motion of the pendulum's longitudinal axis. ER02JN11.011 (4) Release the pendulum and allow it to fall freely from a height such that the tangential velocity...

  10. Analysis of wave propagation in a two-dimensional photonic crystal with negative index of refraction: plane wave decomposition of the Bloch modes.

    PubMed

    Martínez, Alejandro; Míguez, Hernán; Sánchez-Dehesa, José; Martí, Javier

    2005-05-30

    This work presents a comprehensive analysis of electromagnetic wave propagation inside a two-dimensional photonic crystal in a spectral region in which the crystal behaves as an effective medium to which a negative effective index of refraction can be associated. It is obtained that the main plane wave component of the Bloch mode that propagates inside the photonic crystal has its wave vector k' out of the first Brillouin zone and it is parallel to the Poynting vector ( S' ? k'> 0 ), so light propagation in these composites is different from that reported for left-handed materials despite the fact that negative refraction can take place at the interface between air and both kinds of composites. However, wave coupling at the interfaces is well explained using the reduced wave vector ( k' ) in the first Brillouin zone, which is opposed to the energy flow, and agrees well with previous works dealing with negative refraction in photonic crystals.

  11. Link between EMIC waves in a plasmaspheric plume and a detached sub-auroral proton arc with observations of Cluster and IMAGE satellites

    NASA Astrophysics Data System (ADS)

    Yuan, Zhigang; Deng, Xiaohua; Lin, Xi; Pang, Ye; Zhou, Meng; Décréau, P. M. E.; Trotignon, J. G.; Lucek, E.; Frey, H. U.; Wang, Jingfang

    2010-04-01

    In this paper, we report observations from a Cluster satellite showing that ULF wave occurred in the outer boundary of a plasmaspheric plume on September 4, 2005. The band of observed ULF waves is between the He+ ion gyrofrequency and O+ ion gyrofrequency at the equatorial plane, implying that those ULF waves can be identified as EMIC waves generated by ring current ions in the equatorial plane and strongly affected by rich cold He+ ions in plasmaspheric plumes. During the interval of observed EMIC waves, the footprint of Cluster SC3 lies in a subauroral proton arc observed by the IMAGE FUV instrument, demonstrating that the subauroral proton arc was caused by energetic ring current protons scattered into the loss cone under the Ring Current (RC)-EMIC interaction in the plasmaspheric plume. Therefore, the paper provides a direct proof that EMIC waves can be generated in the plasmaspheric plume and scatter RC ions to cause subauroral proton arcs.

  12. Assessment of cardiac function in absence of congenital and acquired heart disease in patients with Down syndrome.

    PubMed

    Balli, Sevket; Yucel, Ilker Kemal; Kibar, Ayse Esin; Ece, Ibrahim; Dalkiran, Eylem Sen; Candan, Sukru

    2016-11-01

    Extra genetic material in patients with Down syndrome (DS) may affect the function of any organ system. We evaluated cardiac functions using conventional tissue Doppler and two-dimensional speckle tracking echocardiography in patients with DS in the absence of congenital and acquired heart disease in patients. A total of 115 patients with DS between 6 and 13 years of age with clinically and anatomically normal heart and 55 healthy children were included in this cross-sectional study. DS was diagnosed by a karyotype test. Patients with mosaic type were not included in this study. Systolic and diastolic functions were evaluated by echocardiography. Pulsed waved Doppler transmitral early/late inflow velocity (E/A), tissue Doppler mitral annular early/late diastolic peak velocity (Ea/Aa), transtricuspid E/A and tricuspid valve annulus Ea/Aa, pulmonary venous Doppler systolic/diastolic (S/D) wave ratio were lower in patients with Down syndrome than in the control group (P=0.04, P=0.001, P<0.05, P<0.001, P<0.001, respectively). Mitral and tricuspid annular Ea were lower in patients with DS (P<0.001). The right and left ventricular myocardial performance indexes were higher in patients with DS than in the controls (P<0.01). They had significantly higher left ventricular mass, ejection fraction, the mitral annular plane systolic excursion values. However, the Down syndrome group compared with the controls had a lower strain values examined by two-dimensional longitudinal speckle-tracking strain echocardiography. These findings suggest conventional tissue Doppler and two-dimensional longitudinal speckletracking strain echocardiography were useful methods of investigating ventricular function and identifying a higher incidence of biventricular dysfunction in patients with Down syndrome compared with the healthy controls.

  13. Shear Wave Generation by Explosions in Anisotropic Crystalline Rock

    NASA Astrophysics Data System (ADS)

    Rogers-Martinez, M. A.; Sammis, C. G.; Stroujkova, A. F.

    2015-12-01

    The use of seismic waves to discriminate between earthquakes and underground explosions is complicated by the observation that explosions routinely radiate strong S waves. Whether these S waves are primarily generated by non-linear processes at the source, or by mode conversions and scattering along the path remains an open question. It has been demonstrated that S waves are generated at the source by any mechanism that breaks the spherical symmetry of the explosion. Examples of such mechanisms include tectonic shear stress, spall, and anisotropy in the emplacement medium. Many crystalline rock massifs are transversely isotropic because they contain aligned fractures over a range of scales from microfractures at the grain scale (called the rift) to regional sets of joints. In this study we use a micromechanical damage mechanics to model the fracture damage patterns and seismic radiation generated by explosions in a material in which the initial distribution of fractures has a preferred direction. Our simulations are compared with a set of field experiments in a granite quarry in Barre, VT conducted by New England Research and Weston Geophysical. Barre granite has a strong rift plane of aligned microfractures. Our model captures two important results of these field studies: 1) the spatial extent of rock fracture and generation of S waves depends on the burn-rate of the explosion and 2) the resultant damage is anisotropic with most damage occurring in the preferred direction of the microfractures (the rift plane in the granite). The physical reason damage is enhanced in the rift direction is that the mode I stress intensity factor is large for each fracture in the array of parallel fractures in the rift plane. Tensile opening on the rift plane plus sliding on the preexisting fractures make strong non-spherical contributions to the moment tensor in the far-field.

  14. Material mechanical characterization method for multiple strains and strain rates

    DOEpatents

    Erdmand, III, Donald L.; Kunc, Vlastimil; Simunovic, Srdjan; Wang, Yanli

    2016-01-19

    A specimen for measuring a material under multiple strains and strain rates. The specimen including a body having first and second ends and a gage region disposed between the first and second ends, wherein the body has a central, longitudinal axis passing through the first and second ends. The gage region includes a first gage section and a second gage section, wherein the first gage section defines a first cross-sectional area that is defined by a first plane that extends through the first gage section and is perpendicular to the central, longitudinal axis. The second gage section defines a second cross-sectional area that is defined by a second plane that extends through the second gage section and is perpendicular to the central, longitudinal axis and wherein the first cross-sectional area is different in size than the second cross-sectional area.

  15. A highly optimized code for calculating atomic data at neutron star magnetic field strengths using a doubly self-consistent Hartree-Fock-Roothaan method

    NASA Astrophysics Data System (ADS)

    Schimeczek, C.; Engel, D.; Wunner, G.

    2012-07-01

    Our previously published code for calculating energies and bound-bound transitions of medium-Z elements at neutron star magnetic field strengths [D. Engel, M. Klews, G. Wunner, Comput. Phys. Comm. 180 (2009) 302-311] was based on the adiabatic approximation. It assumes a complete decoupling of the (fast) gyration of the electrons under the action of the magnetic field and the (slow) bound motion along the field under the action of the Coulomb forces. For the single-particle orbitals this implied that each is a product of a Landau state and an (unknown) longitudinal wave function whose B-spline coefficients were determined self-consistently by solving the Hartree-Fock equations for the many-electron problem on a finite-element grid. In the present code we go beyond the adiabatic approximation, by allowing the transverse part of each orbital to be a superposition of Landau states, while assuming that the longitudinal part can be approximated by the same wave function in each Landau level. Inserting this ansatz into the energy variational principle leads to a system of coupled equations in which the B-spline coefficients depend on the weights of the individual Landau states, and vice versa, and which therefore has to be solved in a doubly self-consistent manner. The extended ansatz takes into account the back-reaction of the Coulomb motion of the electrons along the field direction on their motion in the plane perpendicular to the field, an effect which cannot be captured by the adiabatic approximation. The new code allows for the inclusion of up to 8 Landau levels. This reduces the relative error of energy values as compared to the adiabatic approximation results by typically a factor of three (1/3 of the original error), and yields accurate results also in regions of lower neutron star magnetic field strengths where the adiabatic approximation fails. Further improvements in the code are a more sophisticated choice of the initial wave functions, which takes into account the shielding of the core potential for outer electrons by inner electrons, and an optimal finite-element decomposition of each individual longitudinal wave function. These measures largely enhance the convergence properties compared to the previous code, and lead to speed-ups by factors up to two orders of magnitude compared with the implementation of the Hartree-Fock-Roothaan method used by Engel and Wunner in [D. Engel, G. Wunner, Phys. Rev. A 78 (2008) 032515]. New version program summaryProgram title: HFFER II Catalogue identifier: AECC_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECC_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: v 55 130 No. of bytes in distributed program, including test data, etc.: 293 700 Distribution format: tar.gz Programming language: Fortran 95 Computer: Cluster of 1-13 HP Compaq dc5750 Operating system: Linux Has the code been vectorized or parallelized?: Yes, parallelized using MPI directives. RAM: 1 GByte per node Classification: 2.1 External routines: MPI/GFortran, LAPACK, BLAS, FMlib (included in the package) Catalogue identifier of previous version: AECC_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 302 Does the new version supersede the previous version?: Yes Nature of problem: Quantitative modellings of features observed in the X-ray spectra of isolated magnetic neutron stars are hampered by the lack of sufficiently large and accurate databases for atoms and ions up to the last fusion product, iron, at strong magnetic field strengths. Our code is intended to provide a powerful tool for calculating energies and oscillator strengths of medium-Z atoms and ions at neutron star magnetic field strengths with sufficient accuracy in a routine way to create such databases. Solution method: The Slater determinants of the atomic wave functions are constructed from single-particle orbitals ψi which are products of a wave function in the z direction (the direction of the magnetic field) and an expansion of the wave function perpendicular to the direction of the magnetic field in terms of Landau states, ψi(ρ,φ,z)=Pi(z)∑n=0NLtinϕni(ρ,φ). The tin are expansion coefficients, and the expansion is cut off at some maximum Landau level quantum number n=NL. In the previous version of the code only the lowest Landau level was included (NL=0), in the new version NL can take values of up to 7. As in the previous version of the code, the longitudinal wave functions are expanded in terms of sixth-order B-splines on finite elements on the z axis, with a combination of equidistant and quadratically widening element borders. Both the B-spline expansion coefficients and the Landau weights tin of all orbitals have to be determined in a doubly self-consistent way: For a given set of Landau weights tin, the system of linear equations for the B-spline expansion coefficients, which is equivalent to the Hartree-Fock equations for the longitudinal wave functions, is solved numerically. In the second step, for frozen B-spline coefficients new Landau weights are determined by minimizing the total energy with respect to the Landau expansion coefficients. Both steps require solving non-linear eigenvalue problems of Roothaan type. The procedure is repeated until convergence of both the B-spline coefficients and the Landau weights is achieved. Reasons for new version: The former version of the code was restricted to the adiabatic approximation, which assumes the quantum dynamics of the electrons in the plane perpendicular to the magnetic field to be fixed in the lowest Landau level, n=0. This approximation is valid only if the magnetic field strengths are large compared to the reference magnetic field BZ, for a nuclear charge Z,BZ=Z24.70108×105 T. Summary of revisions: In the new version, the transverse parts of the orbitals are expanded in terms of Landau states up to n=7, and the expansion coefficients are determined, together with the longitudinal wave functions, in a doubly self-consistent way. Thus the back-reaction of the quantum dynamics along the magnetic field direction on the quantum dynamics in the plane perpendicular to it is taken into account. The new ansatz not only increases the accuracy of the results for energy values and transition strengths obtained so far, but also allows their calculation for magnetic field strengths down to B≳BZ, where the adiabatic approximation fails. Restrictions: Intense magnetic field strengths are required, since the expansion of the transverse single-particle wave functions using 8 Landau levels will no longer produce accurate results if the scaled magnetic field strength parameter βZ=B/BZ becomes much smaller than unity. Unusual features: A huge program speed-up is achieved by making use of pre-calculated binary files. These can be calculated with additional programs provided with this package. Running time: 1-30 min.

  16. Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular

    PubMed Central

    Okasaka, Shozo; Weiler, Richard J.; Keusgen, Wilhelm; Pudeyev, Andrey; Maltsev, Alexander; Karls, Ingolf; Sakaguchi, Kei

    2016-01-01

    The fifth-generation mobile networks (5G) will not only enhance mobile broadband services, but also enable connectivity for a massive number of Internet-of-Things devices, such as wireless sensors, meters or actuators. Thus, 5G is expected to achieve a 1000-fold or more increase in capacity over 4G. The use of the millimeter-wave (mmWave) spectrum is a key enabler to allowing 5G to achieve such enhancement in capacity. To fully utilize the mmWave spectrum, 5G is expected to adopt a heterogeneous network (HetNet) architecture, wherein mmWave small cells are overlaid onto a conventional macro-cellular network. In the mmWave-integrated HetNet, splitting of the control plane (CP) and user plane (UP) will allow continuous connectivity and increase the capacity of the mmWave small cells. mmWave communication can be used not only for access linking, but also for wireless backhaul linking, which will facilitate the installation of mmWave small cells. In this study, a proof-of-concept (PoC) was conducted to demonstrate the practicality of a prototype mmWave-integrated HetNet, using mmWave technologies for both backhaul and access. PMID:27571074

  17. Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular.

    PubMed

    Okasaka, Shozo; Weiler, Richard J; Keusgen, Wilhelm; Pudeyev, Andrey; Maltsev, Alexander; Karls, Ingolf; Sakaguchi, Kei

    2016-08-25

    The fifth-generation mobile networks (5G) will not only enhance mobile broadband services, but also enable connectivity for a massive number of Internet-of-Things devices, such as wireless sensors, meters or actuators. Thus, 5G is expected to achieve a 1000-fold or more increase in capacity over 4G. The use of the millimeter-wave (mmWave) spectrum is a key enabler to allowing 5G to achieve such enhancement in capacity. To fully utilize the mmWave spectrum, 5G is expected to adopt a heterogeneous network (HetNet) architecture, wherein mmWave small cells are overlaid onto a conventional macro-cellular network. In the mmWave-integrated HetNet, splitting of the control plane (CP) and user plane (UP) will allow continuous connectivity and increase the capacity of the mmWave small cells. mmWave communication can be used not only for access linking, but also for wireless backhaul linking, which will facilitate the installation of mmWave small cells. In this study, a proof-of-concept (PoC) was conducted to demonstrate the practicality of a prototype mmWave-integrated HetNet, using mmWave technologies for both backhaul and access.

  18. Three Dimensional Sheaf of Ultrasound Planes Reconstruction (SOUPR) of Ablated Volumes

    PubMed Central

    Ingle, Atul; Varghese, Tomy

    2014-01-01

    This paper presents an algorithm for three dimensional reconstruction of tumor ablations using ultrasound shear wave imaging with electrode vibration elastography. Radiofrequency ultrasound data frames are acquired over imaging planes that form a subset of a sheaf of planes sharing a common axis of intersection. Shear wave velocity is estimated separately on each imaging plane using a piecewise linear function fitting technique with a fast optimization routine. An interpolation algorithm then computes velocity maps on a fine grid over a set of C-planes that are perpendicular to the axis of the sheaf. A full three dimensional rendering of the ablation can then be created from this stack of C-planes; hence the name “Sheaf Of Ultrasound Planes Reconstruction” or SOUPR. The algorithm is evaluated through numerical simulations and also using data acquired from a tissue mimicking phantom. Reconstruction quality is gauged using contrast and contrast-to-noise ratio measurements and changes in quality from using increasing number of planes in the sheaf are quantified. The highest contrast of 5 dB is seen between the stiffest and softest regions of the phantom. Under certain idealizing assumptions on the true shape of the ablation, good reconstruction quality while maintaining fast processing rate can be obtained with as few as 6 imaging planes suggesting that the method is suited for parsimonious data acquisitions with very few sparsely chosen imaging planes. PMID:24808405

  19. Three-dimensional sheaf of ultrasound planes reconstruction (SOUPR) of ablated volumes.

    PubMed

    Ingle, Atul; Varghese, Tomy

    2014-08-01

    This paper presents an algorithm for 3-D reconstruction of tumor ablations using ultrasound shear wave imaging with electrode vibration elastography. Radio-frequency ultrasound data frames are acquired over imaging planes that form a subset of a sheaf of planes sharing a common axis of intersection. Shear wave velocity is estimated separately on each imaging plane using a piecewise linear function fitting technique with a fast optimization routine. An interpolation algorithm then computes velocity maps on a fine grid over a set of C-planes that are perpendicular to the axis of the sheaf. A full 3-D rendering of the ablation can then be created from this stack of C-planes; hence the name "Sheaf Of Ultrasound Planes Reconstruction" or SOUPR. The algorithm is evaluated through numerical simulations and also using data acquired from a tissue mimicking phantom. Reconstruction quality is gauged using contrast and contrast-to-noise ratio measurements and changes in quality from using increasing number of planes in the sheaf are quantified. The highest contrast of 5 dB is seen between the stiffest and softest regions of the phantom. Under certain idealizing assumptions on the true shape of the ablation, good reconstruction quality while maintaining fast processing rate can be obtained with as few as six imaging planes suggesting that the method is suited for parsimonious data acquisitions with very few sparsely chosen imaging planes.

  20. Laminated piezoelectric transformer

    NASA Technical Reports Server (NTRS)

    Vazquez Carazo, Alfredo (Inventor)

    2006-01-01

    A laminated piezoelectric transformer is provided using the longitudinal vibration modes for step-up voltage conversion applications. The input portions are polarized to deform in a longitudinal plane and are bonded to an output portion. The deformation of the input portions is mechanically coupled to the output portion, which deforms in the same longitudinal direction relative to the input portion. The output portion is polarized in the thickness direction relative its electrodes, and piezoelectrically generates a stepped-up output voltage.

  1. Shear waves in vegetal tissues at ultrasonic frequencies

    NASA Astrophysics Data System (ADS)

    Fariñas, M. D.; Sancho-Knapik, D.; Peguero-Pina, J. J.; Gil-Pelegrín, E.; Gómez Álvarez-Arenas, T. E.

    2013-03-01

    Shear waves are investigated in leaves of two plant species using air-coupled ultrasound. Magnitude and phase spectra of the transmission coefficient around the first two orders of the thickness resonances (normal and oblique incidence) have been measured. A bilayer acoustic model for plant leaves (comprising the palisade parenchyma and the spongy mesophyll) is proposed to extract, from measured spectra, properties of these tissues like: velocity and attenuation of longitudinal and shear waves and hence Young modulus, rigidity modulus, and Poisson's ratio. Elastic moduli values are typical of cellular solids and both, shear and longitudinal waves exhibit classical viscoelastic losses. Influence of leaf water content is also analyzed.

  2. Global strength assessment in oblique waves of a large gas carrier ship, based on a non-linear iterative method

    NASA Astrophysics Data System (ADS)

    Domnisoru, L.; Modiga, A.; Gasparotti, C.

    2016-08-01

    At the ship's design, the first step of the hull structural assessment is based on the longitudinal strength analysis, with head wave equivalent loads by the ships' classification societies’ rules. This paper presents an enhancement of the longitudinal strength analysis, considering the general case of the oblique quasi-static equivalent waves, based on the own non-linear iterative procedure and in-house program. The numerical approach is developed for the mono-hull ships, without restrictions on 3D-hull offset lines non-linearities, and involves three interlinked iterative cycles on floating, pitch and roll trim equilibrium conditions. Besides the ship-wave equilibrium parameters, the ship's girder wave induced loads are obtained. As numerical study case we have considered a large LPG liquefied petroleum gas carrier. The numerical results of the large LPG are compared with the statistical design values from several ships' classification societies’ rules. This study makes possible to obtain the oblique wave conditions that are inducing the maximum loads into the large LPG ship's girder. The numerical results of this study are pointing out that the non-linear iterative approach is necessary for the computation of the extreme loads induced by the oblique waves, ensuring better accuracy of the large LPG ship's longitudinal strength assessment.

  3. Turbulence in the Ott-Antonsen equation for arrays of coupled phase oscillators

    NASA Astrophysics Data System (ADS)

    Wolfrum, M.; Gurevich, S. V.; Omel'chenko, O. E.

    2016-02-01

    In this paper we study the transition to synchrony in an one-dimensional array of oscillators with non-local coupling. For its description in the continuum limit of a large number of phase oscillators, we use a corresponding Ott-Antonsen equation, which is an integro-differential equation for the evolution of the macroscopic profiles of the local mean field. Recently, it was reported that in the spatially extended case at the synchronisation threshold there appear partially coherent plane waves with different wave numbers, which are organised in the well-known Eckhaus scenario. In this paper, we show that for Kuramoto-Sakaguchi phase oscillators the phase lag parameter in the interaction function can induce a Benjamin-Feir-type instability of the partially coherent plane waves. The emerging collective macroscopic chaos appears as an intermediate stage between complete incoherence and stable partially coherent plane waves. We give an analytic treatment of the Benjamin-Feir instability and its onset in a codimension-two bifurcation in the Ott-Antonsen equation as well as a numerical study of the transition from phase turbulence to amplitude turbulence inside the Benjamin-Feir unstable region.

  4. Simulation of Guided Wave Interaction with In-Plane Fiber Waviness

    NASA Technical Reports Server (NTRS)

    Leckey, Cara A. C.; Juarez, Peter D.

    2016-01-01

    Reducing the timeline for certification of composite materials and enabling the expanded use of advanced composite materials for aerospace applications are two primary goals of NASA's Advanced Composites Project (ACP). A key a technical challenge area for accomplishing these goals is the development of rapid composite inspection methods with improved defect characterization capabilities. Ongoing work at NASA Langley is focused on expanding ultrasonic simulation capabilities for composite materials. Simulation tools can be used to guide the development of optimal inspection methods. Custom code based on elastodynamic finite integration technique is currently being developed and implemented to study ultrasonic wave interaction with manufacturing defects, such as in-plane fiber waviness (marcelling). This paper describes details of validation comparisons performed to enable simulation of guided wave propagation in composites containing fiber waviness. Simulation results for guided wave interaction with in-plane fiber waviness are also discussed. The results show that the wavefield is affected by the presence of waviness on both the surface containing fiber waviness, as well as the opposite surface to the location of waviness.

  5. Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid

    PubMed Central

    Sapozhnikov, Oleg A.; Bailey, Michael R.

    2013-01-01

    A theoretical approach is developed to calculate the radiation force of an arbitrary acoustic beam on an elastic sphere in a liquid or gas medium. First, the incident beam is described as a sum of plane waves by employing conventional angular spectrum decomposition. Then, the classical solution for the scattering of a plane wave from an elastic sphere is applied for each plane-wave component of the incident field. The net scattered field is expressed as a superposition of the scattered fields from all angular spectrum components of the incident beam. With this formulation, the incident and scattered waves are superposed in the far field to derive expressions for components of the radiation stress tensor. These expressions are then integrated over a spherical surface to analytically describe the radiation force on an elastic sphere. Limiting cases for particular types of incident beams are presented and are shown to agree with known results. Finally, the analytical expressions are used to calculate radiation forces associated with two specific focusing transducers. PMID:23363086

  6. Simulation of guided wave interaction with in-plane fiber waviness

    NASA Astrophysics Data System (ADS)

    Leckey, Cara A. C.; Juarez, Peter D.

    2017-02-01

    Reducing the timeline for certification of composite materials and enabling the expanded use of advanced composite materials for aerospace applications are two primary goals of NASA's Advanced Composites Project (ACP). A key a technical challenge area for accomplishing these goals is the development of rapid composite inspection methods with improved defect characterization capabilities. Ongoing work at NASA Langley is focused on expanding ultrasonic simulation capabilities for composite materials. Simulation tools can be used to guide the development of optimal inspection methods. Custom code based on elastodynamic finite integration technique is currently being developed and implemented to study ultrasonic wave interaction with manufacturing defects, such as in-plane fiber waviness (marcelling). This paper describes details of validation comparisons performed to enable simulation of guided wave propagation in composites containing fiber waviness. Simulation results for guided wave interaction with in-plane fiber waviness are also discussed. The results show that the wavefield is affected by the presence of waviness on both the surface containing fiber waviness, as well as the opposite surface to the location of waviness.

  7. Longitudinal Surveys of Australian Youth (LSAY): 2003 Cohort Wave 7 (2009)--Frequency Tables. Technical Report 57B

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2010

    2010-01-01

    The Longitudinal Surveys of Australian Youth (LSAY) program studies the progress of several groups of young Australians as they move from school into post-secondary education and work. This technical paper contains the frequency tables for the LSAY 2003 cohort Wave 7 (2009) data set. [For the related questionnaire, see ED512164.

  8. Longitudinal Surveys of Australian Youth (LSAY) 2009 Cohort: Wave 3 (2011)--Frequency Tables. Technical Report 72B

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2012

    2012-01-01

    The Longitudinal Surveys of Australian Youth (LSAY) program studies the progress of several groups of young Australians as they move from school into post-secondary education and work. This technical paper contains the frequency tables for the LSAY 2009 cohort Wave 3 (2011) data set. [For the related questionnaire, see ED536306.

  9. Longitudinal Surveys of Australian Youth (LSAY) 2003 Cohort: Wave 7 (2009)--Questionnaire. Technical Report 57A

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2010

    2010-01-01

    The Longitudinal Surveys of Australian Youth (LSAY) program studies the progress of several groups of young Australians as they move from school into post-secondary education and work. This technical paper contains the questionnaire for the LSAY 2003 cohort Wave 7 (2009) data set. [For the related frequency tables, see ED512163.

  10. Longitudinal Surveys of Australian Youth (LSAY) 2006 Cohort: Wave 6 (2011)--Questionnaire. Technical Report 75A

    ERIC Educational Resources Information Center

    National Centre for Vocational Education Research (NCVER), 2012

    2012-01-01

    The Longitudinal Surveys of Australian Youth (LSAY) program studies the progress of several groups of young Australians as they move from school into post-secondary education and work. This series of documents provides supporting information for the LSAY data set of the 2006 cohort at wave 6 (2011). The document presents the questionnaire for LSAY…

  11. Electromagnetic plasma wave propagation along a magnetic field. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Olson, C. L.

    1970-01-01

    The linearized response of a Vlasov plasma to the steady-state excitation of transverse plasma waves along an external magnetic field is examined. Assuming a delta-function excitation mechanism, and performing a detailed Vlasov-Maxwell equation analysis using Fourier-Laplace transforms, the plasma response is found to consist of three terms: a branch-cut term, a free-streaming term, and a dielectric-pole term. Also considered is the phenomenon of plasma wave echoes. The case of longitudinal electrostatic waves is extended to the case of transverse plasma waves that propagate along an external magnetic field. It is shown that a transverse echo results in lowest order only when one excitation is transverse and the other is longitudinal.

  12. Observing (non)linear lattice dynamics in graphite by ultrafast Kikuchi diffraction

    PubMed Central

    Liang, Wenxi; Vanacore, Giovanni M.; Zewail, Ahmed H.

    2014-01-01

    In materials, the nature of the strain–stress relationship, which is fundamental to their properties, is determined by both the linear and nonlinear elastic responses. Whereas the linear response can be measured by various techniques, the nonlinear behavior is nontrivial to probe and to reveal its nature. Here, we report the methodology of time-resolved Kikuchi diffraction for mapping the (non)linear elastic response of nanoscale graphite following an ultrafast, impulsive strain excitation. It is found that the longitudinal wave propagating along the c-axis exhibits echoes with a frequency of 9.1 GHz, which indicates the reflections of strain between the two surfaces of the material with a speed of ∼4 km/s. Because Kikuchi diffraction enables the probing of strain in the transverse direction, we also observed a higher-frequency mode at 75.5 GHz, which has a relatively long lifetime, on the order of milliseconds. The fluence dependence and the polarization properties of this nonlinear mode are entirely different from those of the linear, longitudinal mode, and here we suggest a localized breather motion in the a-b plane as the origin of the nonlinear shear dynamics. The approach presented in this contribution has the potential for a wide range of applications because most crystalline materials exhibit Kikuchi diffraction. PMID:24706785

  13. Designing broad phononic band gaps for in-plane modes

    NASA Astrophysics Data System (ADS)

    Li, Yang Fan; Meng, Fei; Li, Shuo; Jia, Baohua; Zhou, Shiwei; Huang, Xiaodong

    2018-03-01

    Phononic crystals are known as artificial materials that can manipulate the propagation of elastic waves, and one essential feature of phononic crystals is the existence of forbidden frequency range of traveling waves called band gaps. In this paper, we have proposed an easy way to design phononic crystals with large in-plane band gaps. We demonstrated that the gap between two arbitrarily appointed bands of in-plane mode can be formed by employing a certain number of solid or hollow circular rods embedded in a matrix material. Topology optimization has been applied to find the best material distributions within the primitive unit cell with maximal band gap width. Our results reveal that the centroids of optimized rods coincide with the point positions generated by Lloyd's algorithm, which deepens our understandings on the formation mechanism of phononic in-plane band gaps.

  14. Modified screening interaction potential on dust lattice waves in dusty plasma ring

    NASA Astrophysics Data System (ADS)

    He, Kerong; Chen, Hui; Liu, Sanqiu

    2017-05-01

    In the present paper, the modified screening interaction potential was adopted to investigate the dust lattice waves in dusty ring. Firstly, the influence of parameter ε on the modified screening interaction potential was analyzed; and it was found that the parameter ε has a long-range effect on the pairwise interaction between the particles. Secondly, the dispersion relations of longitudinal and transverse waves are obtained, and the effect of long-range action parameter ε, dimensionless lattice parameter α and dimensionless shielding parameter \\tilde{κ } on the dust lattice waves propagation in dusty ring are studied. Some interesting phenomena, such as the coupling of longitudinal and transverse waves, and instabilities of transverse waves are found, which are in good agreement with some previous works. Finally, the transverse wave instabilities and the relevant critical lattice parameter αc are presented and discussed.

  15. Longitudinal links among parenting, self-presentations to peers, and the development of externalizing and internalizing symptoms in African American siblings.

    PubMed

    Brody, Gene H; Kim, Sooyeon; Murry, Velma McBride; Brown, Anita C

    2005-01-01

    A longitudinal model that linked involved-supportive parenting and siblings' ability-camouflaging self-presentations to peers with the development of externalizing and internalizing symptoms was tested with 152 pairs of first- and second-born African American siblings (mean ages 12.7 years and 10.2 years at the first wave of data collection). Three waves of data were collected at 1-year intervals. Teachers assessed siblings' externalizing symptoms, internalizing symptoms, and academic competence; siblings reported their own self-presentations and desire for peer acceptance; and mothers and siblings provided multiinformant assessments of involved-supportive parenting. Involved-supportive parenting at Wave 1 was linked with peer-directed self-presentations at Wave 2. Wave 2 self-presentations were linked indirectly with changes from Wave 1 to Wave 3 in externalizing and internalizing symptoms through their association with academic competence.

  16. Propagation and Dissipation of MHD Waves in Coronal Holes

    NASA Astrophysics Data System (ADS)

    Dwivedi, B. N.

    2006-11-01

    bholadwivedi@gmail.com In view of the landmark result on the solar wind outflow, starting between 5 Mm and 20 Mm above the photosphere in magnetic funnels, we investigate the propagation and dissipation of MHD waves in coronal holes. We underline the importance of Alfvén wave dissipation in the magnetic funnels through the viscous and resistive plasma. Our results show that Alfvén waves are one of the primary energy sources in the innermost part of coronal holes where the solar wind outflow starts. We also consider compressive viscosity and thermal conductivity to study the propagation and dissipation of long period slow longitudinal MHD waves in polar coronal holes. We discuss their likely role in the line profile narrowing, and in the energy budget for coronal holes and the solar wind. We compare the contribution of longitudinal MHD waves with high frequency Alfvén waves.

  17. Analytical investigation of the dynamics of tethered constellations in earth orbit

    NASA Technical Reports Server (NTRS)

    Lorenzini, Enrico C.; Gullahorn, Gordon E.; Estes, Robert D.

    1988-01-01

    This Quarterly Report on Tethering in Earth Orbit deals with three topics: (1) Investigation of the propagation of longitudinal and transverse waves along the upper tether. Specifically, the upper tether is modeled as three massive platforms connected by two perfectly elastic continua (tether segments). The tether attachment point to the station is assumed to vibrate both longitudinally and transversely at a given frequency. Longitudinal and transverse waves propagate along the tethers affecting the acceleration levels at the elevator and at the upper platform. The displacement and acceleration frequency-response functions at the elevator and at the upper platform are computed for both longitudinal and transverse waves. An analysis to optimize the damping time of the longitudinal dampers is also carried out in order to select optimal parameters. The analytical evaluation of the performance of tuned vs. detuned longitudinal dampers is also part of this analysis. (2) The use of the Shuttle primary Reaction Control System (RCS) thrusters for blowing away a recoiling broken tether is discussed. A microcomputer system was set up to support this operation. (3) Most of the effort in the tether plasma physics study was devoted to software development. A particle simulation code has been integrated into the Macintosh II computer system and will be utilized for studying the physics of hollow cathodes.

  18. The memory effect for plane gravitational waves

    NASA Astrophysics Data System (ADS)

    Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.

    2017-09-01

    We give an account of the gravitational memory effect in the presence of the exact plane wave solution of Einstein's vacuum equations. This allows an elementary but exact description of the soft gravitons and how their presence may be detected by observing the motion of freely falling particles. The theorem of Bondi and Pirani on caustics (for which we present a new proof) implies that the asymptotic relative velocity is constant but not zero, in contradiction with the permanent displacement claimed by Zel'dovich and Polnarev. A non-vanishing asymptotic relative velocity might be used to detect gravitational waves through the "velocity memory effect", considered by Braginsky, Thorne, Grishchuk, and Polnarev.

  19. The thermal-wave model: A Schroedinger-like equation for charged particle beam dynamics

    NASA Technical Reports Server (NTRS)

    Fedele, Renato; Miele, G.

    1994-01-01

    We review some results on longitudinal beam dynamics obtained in the framework of the Thermal Wave Model (TWM). In this model, which has recently shown the capability to describe both longitudinal and transverse dynamics of charged particle beams, the beam dynamics is ruled by Schroedinger-like equations for the beam wave functions, whose squared modulus is proportional to the beam density profile. Remarkably, the role of the Planck constant is played by a diffractive constant epsilon, the emittance, which has a thermal nature.

  20. Modulational instability of finite-amplitude, circularly polarized Alfven waves

    NASA Technical Reports Server (NTRS)

    Derby, N. F., Jr.

    1978-01-01

    The simple theory of the decay instability of Alfven waves is strictly applicable only to a small-amplitude parent wave in a low-beta plasma, but, if the parent wave is circularly polarized, it is possible to analyze the situation without either of these restrictions. Results show that a large-amplitude circularly polarized wave is unstable with respect to decay into three waves, one longitudinal and one transverse wave propagating parallel to the parent wave and one transverse wave propagating antiparallel. The transverse decay products appear at frequencies which are the sum and difference of the frequencies of the parent wave and the longitudinal wave. The decay products are not familiar MHD modes except in the limit of small beta and small amplitude of the parent wave, in which case the decay products are a forward-propagating sound wave and a backward-propagating circularly polarized wave. In this limit the other transverse wave disappears. The effect of finite beta is to reduce the linear growth rate of the instability from the value suggested by the simple theory. Possible applications of these results to the theory of the solar wind are briefly touched upon.

  1. Standing Sound Waves in Air with DataStudio

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2010-01-01

    Two experiments related to standing sound waves in air are adapted for using the ScienceWorkshop data-acquisition system with the DataStudio software from PASCO scientific. First, the standing waves are created by reflection from a plane reflector. The distribution of the sound pressure along the standing wave is measured. Second, the resonance…

  2. Treatment of Ion-Atom Collisions Using a Partial-Wave Expansion of the Projectile Wavefunction

    ERIC Educational Resources Information Center

    Wong, T. G.; Foster, M.; Colgan, J.; Madison, D. H.

    2009-01-01

    We present calculations of ion-atom collisions using a partial-wave expansion of the projectile wavefunction. Most calculations of ion-atom collisions have typically used classical or plane-wave approximations for the projectile wavefunction, since partial-wave expansions are expected to require prohibitively large numbers of terms to converge…

  3. Explaining Electromagnetic Plane Waves in a Vacuum at the Introductory Level

    ERIC Educational Resources Information Center

    Allred, Clark L.; Della-Rose, Devin J.; Flusche, Brian M.; Kiziah, Rex R.; Lee, David J.

    2010-01-01

    A typical introduction to electromagnetic waves in vacuum is illustrated by the following quote from an introductory physics text: "Maxwell's equations predict that an electromagnetic wave consists of oscillating electric and magnetic fields. The changing fields induce each other, which maintains the propagation of the wave; a changing electric…

  4. Application of the Finite Element Method to Reveal the Causes of Loss of Planeness of Hot-Rolled Steel Sheets during Laser Cutting

    NASA Astrophysics Data System (ADS)

    Garber, E. A.; Bolobanova, N. L.; Trusov, K. A.

    2018-01-01

    A finite element technique is developed to simulate the stresses and the strains during strip flattening to reveal the causes of the cutting-assisted loss of planeness of hot-rolled steel sheets processed in roller levelers. The loss of planeness is found to be caused by a nonuniform distribution of the flattening-induced longitudinal tensile stresses over the strip thickness and width. The application of tensile forces to a strip in a roller leveler decreases this nonuniformity and prevents loss of planeness in cutting.

  5. Structural properties of lanthanide and actinide compounds within the plane wave pseudopotential approach

    PubMed

    Pickard; Winkler; Chen; Payne; Lee; Lin; White; Milman; Vanderbilt

    2000-12-11

    We show that plane wave ultrasoft pseudopotential methods readily extend to the calculation of the structural properties of lanthanide and actinide containing compounds. This is demonstrated through a series of calculations performed on UO, UO2, UO3, U3O8, UC2, alpha-CeC2, CeB6, CeSe, CeO2, NdB6, TmOI, LaBi, LaTiO3, YbO, and elemental Lu.

  6. Wavespace-Based Coherent Deconvolution

    NASA Technical Reports Server (NTRS)

    Bahr, Christopher J.; Cattafesta, Louis N., III

    2012-01-01

    Array deconvolution is commonly used in aeroacoustic analysis to remove the influence of a microphone array's point spread function from a conventional beamforming map. Unfortunately, the majority of deconvolution algorithms assume that the acoustic sources in a measurement are incoherent, which can be problematic for some aeroacoustic phenomena with coherent, spatially-distributed characteristics. While several algorithms have been proposed to handle coherent sources, some are computationally intractable for many problems while others require restrictive assumptions about the source field. Newer generalized inverse techniques hold promise, but are still under investigation for general use. An alternate coherent deconvolution method is proposed based on a wavespace transformation of the array data. Wavespace analysis offers advantages over curved-wave array processing, such as providing an explicit shift-invariance in the convolution of the array sampling function with the acoustic wave field. However, usage of the wavespace transformation assumes the acoustic wave field is accurately approximated as a superposition of plane wave fields, regardless of true wavefront curvature. The wavespace technique leverages Fourier transforms to quickly evaluate a shift-invariant convolution. The method is derived for and applied to ideal incoherent and coherent plane wave fields to demonstrate its ability to determine magnitude and relative phase of multiple coherent sources. Multi-scale processing is explored as a means of accelerating solution convergence. A case with a spherical wave front is evaluated. Finally, a trailing edge noise experiment case is considered. Results show the method successfully deconvolves incoherent, partially-coherent, and coherent plane wave fields to a degree necessary for quantitative evaluation. Curved wave front cases warrant further investigation. A potential extension to nearfield beamforming is proposed.

  7. Improved Plane-Wave Ultrasound Beamforming by Incorporating Angular Weighting and Coherent Compounding in Fourier Domain.

    PubMed

    Chen, Chuan; Hendriks, Gijs A G M; van Sloun, Ruud J G; Hansen, Hendrik H G; de Korte, Chris L

    2018-05-01

    In this paper, a novel processing framework is introduced for Fourier-domain beamforming of plane-wave ultrasound data, which incorporates coherent compounding and angular weighting in the Fourier domain. Angular weighting implies spectral weighting by a 2-D steering-angle-dependent filtering template. The design of this filter is also optimized as part of this paper. Two widely used Fourier-domain plane-wave ultrasound beamforming methods, i.e., Lu's f-k and Stolt's f-k methods, were integrated in the framework. To enable coherent compounding in Fourier domain for the Stolt's f-k method, the original Stolt's f-k method was modified to achieve alignment of the spectra for different steering angles in k-space. The performance of the framework was compared for both methods with and without angular weighting using experimentally obtained data sets (phantom and in vivo), and data sets (phantom) provided by the IEEE IUS 2016 plane-wave beamforming challenge. The addition of angular weighting enhanced the image contrast while preserving image resolution. This resulted in images of equal quality as those obtained by conventionally used delay-and-sum (DAS) beamforming with apodization and coherent compounding. Given the lower computational load of the proposed framework compared to DAS, to our knowledge it can, therefore, be concluded that it outperforms commonly used beamforming methods such as Stolt's f-k, Lu's f-k, and DAS.

  8. RCS Diversity of Electromagnetic Wave Carrying Orbital Angular Momentum.

    PubMed

    Zhang, Chao; Chen, Dong; Jiang, Xuefeng

    2017-11-13

    An electromagnetic (EM) wave with orbital angular momentum (OAM) has a helical wave front, which is different from that of the plane wave. The phase gradient can be found perpendicular to the direction of propagation and proportional to the number of OAM modes. Herein, we study the backscattering property of the EM wave with different OAM modes, i.e., the radar cross section (RCS) of the target is measured and evaluated with different OAM waves. As indicated by the experimental results, different OAM waves have the same RCS fluctuation for the simple target, e.g., a small metal ball as the target. However, for complicated targets, e.g., two transverse-deployed small metal balls, different RCSs can be identified from the same incident angle. This valuable fact helps to obtain RCS diversity, e.g., equal gain or selective combining of different OAM wave scattering. The majority of the targets are complicated targets or expanded targets; the RCS diversity can be utilized to detect a weak target traditionally measured by the plane wave, which is very helpful for anti-stealth radar to detect the traditional stealth target by increasing the RCS with OAM waves.

  9. Real-time Monitoring of High Intensity Focused Ultrasound (HIFU) Ablation of In Vitro Canine Livers Using Harmonic Motion Imaging for Focused Ultrasound (HMIFU).

    PubMed

    Grondin, Julien; Payen, Thomas; Wang, Shutao; Konofagou, Elisa E

    2015-11-03

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a technique that can perform and monitor high-intensity focused ultrasound (HIFU) ablation. An oscillatory motion is generated at the focus of a 93-element and 4.5 MHz center frequency HIFU transducer by applying a 25 Hz amplitude-modulated signal using a function generator. A 64-element and 2.5 MHz imaging transducer with 68kPa peak pressure is confocally placed at the center of the HIFU transducer to acquire the radio-frequency (RF) channel data. In this protocol, real-time monitoring of thermal ablation using HIFU with an acoustic power of 7 W on canine livers in vitro is described. HIFU treatment is applied on the tissue during 2 min and the ablated region is imaged in real-time using diverging or plane wave imaging up to 1,000 frames/second. The matrix of RF channel data is multiplied by a sparse matrix for image reconstruction. The reconstructed field of view is of 90° for diverging wave and 20 mm for plane wave imaging and the data are sampled at 80 MHz. The reconstruction is performed on a Graphical Processing Unit (GPU) in order to image in real-time at a 4.5 display frame rate. 1-D normalized cross-correlation of the reconstructed RF data is used to estimate axial displacements in the focal region. The magnitude of the peak-to-peak displacement at the focal depth decreases during the thermal ablation which denotes stiffening of the tissue due to the formation of a lesion. The displacement signal-to-noise ratio (SNRd) at the focal area for plane wave was 1.4 times higher than for diverging wave showing that plane wave imaging appears to produce better displacement maps quality for HMIFU than diverging wave imaging.

  10. Real-time Monitoring of High Intensity Focused Ultrasound (HIFU) Ablation of In Vitro Canine Livers Using Harmonic Motion Imaging for Focused Ultrasound (HMIFU)

    PubMed Central

    Grondin, Julien; Payen, Thomas; Wang, Shutao; Konofagou, Elisa E.

    2015-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a technique that can perform and monitor high-intensity focused ultrasound (HIFU) ablation. An oscillatory motion is generated at the focus of a 93-element and 4.5 MHz center frequency HIFU transducer by applying a 25 Hz amplitude-modulated signal using a function generator. A 64-element and 2.5 MHz imaging transducer with 68kPa peak pressure is confocally placed at the center of the HIFU transducer to acquire the radio-frequency (RF) channel data. In this protocol, real-time monitoring of thermal ablation using HIFU with an acoustic power of 7 W on canine livers in vitro is described. HIFU treatment is applied on the tissue during 2 min and the ablated region is imaged in real-time using diverging or plane wave imaging up to 1,000 frames/second. The matrix of RF channel data is multiplied by a sparse matrix for image reconstruction. The reconstructed field of view is of 90° for diverging wave and 20 mm for plane wave imaging and the data are sampled at 80 MHz. The reconstruction is performed on a Graphical Processing Unit (GPU) in order to image in real-time at a 4.5 display frame rate. 1-D normalized cross-correlation of the reconstructed RF data is used to estimate axial displacements in the focal region. The magnitude of the peak-to-peak displacement at the focal depth decreases during the thermal ablation which denotes stiffening of the tissue due to the formation of a lesion. The displacement signal-to-noise ratio (SNRd) at the focal area for plane wave was 1.4 times higher than for diverging wave showing that plane wave imaging appears to produce better displacement maps quality for HMIFU than diverging wave imaging. PMID:26556647

  11. Contrasts Between Young Males Dying by Suicide, Those Dying From Other Causes and Those Still Living: Observations From the National Longitudinal Survey of Adolescent to Adult Health.

    PubMed

    Feigelman, William; Joiner, Thomas; Rosen, Zohn; Silva, Caroline; Mueller, Anna S

    2016-07-02

    Utilizing Add Health longitudinal data, we compared 21 male suicide casualties to 10,101 living respondents identifying suicide correlates. 21 suicide decedents completed surveys in 1994/1995 (Wave 1) and 11 completed at Wave 3; responses were compared with Chi-square and oneway ANOVA tests. Suicide decedents were prone to higher delinquency and fighting at Wave 1, but not at Wave 3. At Wave 1 suicide decedents remained undistinguished from living respondents in depression, self-esteem, and drug uses. Yet, after Wave 3, the 11 respondents dying by suicide showed significantly higher depression, drug use and lower self-esteem. Delinquency trends can readily understood, but more complex causes are needed to account for unexpected changes in self-esteem, depression and drug uses.

  12. Wavefront sensor for the GAIA Mission

    NASA Astrophysics Data System (ADS)

    Vosteen, Amir; Draaisma, Folkert; van Werkhoven, Willem; van Riel, Luud; Mol, Margreet; Gielesen, Wim

    2017-11-01

    TNO has developed, built and tested the Wave Front Sensor (WFS) for ESA's Gaia mission. The WFS will help Gaia create an extraordinarily precise three-dimensional map of more than one billion stars in our Galaxy. Part of ESA's Cosmic Vision programme, Gaia's build is led by EADS Astrium and is scheduled for launch in 2012. The Wave Front Sensor will be used to monitor the wave front errors of the two main telescopes mounted on the GAIA satellite. These mirrors include a 5-degree of freedom (DOF) mechanism that can be used to minimize the wave front errors during operation. The GAIA-WFS will operate over a broad wavelength (450 to 900 nm) and under cryogenic conditions (130 to 200 K operation temperature). The WFS uses an all reflective, a-thermal design and is of the type of Shack-Hartmann. The boundary condition for the design is that the focal plane of the WFS is the same plane as the focal plane of the GAIA telescopes. The spot pattern generated after a micro lens array ( MLA) by a star is compared to the pattern of one of the three calibration sources that is included in the WFS, allowing in flight calibration. We show the robust and lightweight opto mechanical design that is optimised for launch and cryogenic operation. Details are given on its alignment and commissioning. The WFS is able to measure relative wave front distortions in the order of lambda/1000, and can determine the optimum position of the focal plane with an accuracy of 50 μm

  13. Shape optimization of solid-air porous phononic crystal slabs with widest full 3D bandgap for in-plane acoustic waves

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Luca; Bahr, Bichoy; Daniel, Luca; Weinstein, Dana; Ardito, Raffaele

    2017-09-01

    The use of Phononic Crystals (PnCs) as smart materials in structures and microstructures is growing due to their tunable dynamical properties and to the wide range of possible applications. PnCs are periodic structures that exhibit elastic wave scattering for a certain band of frequencies (called bandgap), depending on the geometric and material properties of the fundamental unit cell of the crystal. PnCs slabs can be represented by plane-extruded structures composed of a single material with periodic perforations. Such a configuration is very interesting, especially in Micro Electro-Mechanical Systems industry, due to the easy fabrication procedure. A lot of topologies can be found in the literature for PnCs with square-symmetric unit cell that exhibit complete 2D bandgaps; however, due to the application demand, it is desirable to find the best topologies in order to guarantee full bandgaps referred to in-plane wave propagation in the complete 3D structure. In this work, by means of a novel and fast implementation of the Bidirectional Evolutionary Structural Optimization technique, shape optimization is conducted on the hole shape obtaining several topologies, also with non-square-symmetric unit cell, endowed with complete 3D full bandgaps for in-plane waves. Model order reduction technique is adopted to reduce the computational time in the wave dispersion analysis. The 3D features of the PnC unit cell endowed with the widest full bandgap are then completely analyzed, paying attention to engineering design issues.

  14. An Arctic Ice/Ocean Coupled Model with Wave Interactions

    DTIC Science & Technology

    2013-09-30

    motion in the presence of currents and waves. In the wave attenuation experiments, between 35 and 80 ‘ice floes’ (0.99 m diameter wooden disks) were...moored with springs to the tank floor and plane waves were sent down, with an array of wave probes to measure the reflected and transmitted waves...waves propagating in the MIZ as opposed to the acoustic wave solution shown. This outcome offers significant new capabilities for tracking fully

  15. Longitudinal Waves Organize and Control Plants and Other Life

    NASA Astrophysics Data System (ADS)

    Wagner, Orvin E.

    2002-04-01

    Since the discovery of longitudinal waves in plants (W-waves) in 1988 I have taken data related to influences of these waves. These data include spacings between structures on plants, sap flow data, electrical data from probes traceable to effects produced by these waves, data related to the influences of gravity, data related to these waves traveling between plants and on and on. All of the data suggest that these waves provide a basis for a unified theory for plant growth and development. They likely provide a basis for growth and development for all life. The wave influences are present on the microscopic level in live plants but may not show in the microscopic pieces of material often scrutinized by the usual researcher. It is this author's conclusion that the waves mentioned are important in all life and provide what we call life which has been so difficult to pinpoint in previous work. The waves show in dead material but generally are of a much smaller amplitude than in resonating live material. In the wave theory one might compare something alive to a properly operating laser. See the

  16. Locating knots by industrial tomography- A feasibility study

    Treesearch

    Fred W. Taylor; Francis G. Wagner; Charles W. McMillin; Ira L. Morgan; Forrest F. Hopkins

    1984-01-01

    Industrial photon tomography was used to scan four southern pine logs and one red oak log. The logs were scanned at 16 cross-sectional slice planes located 1 centimeter apart along their longitudinal axes. Tomographic reconstructions were made from the scan data collected at these slice planes, and a cursory image analysis technique was developed to locate the log...

  17. Independent Controls of Differently-Polarized Reflected Waves by Anisotropic Metasurfaces

    PubMed Central

    Ma, Hui Feng; Wang, Gui Zhen; Kong, Gu Sheng; Cui, Tie Jun

    2015-01-01

    We propose a kind of anisotropic planar metasurface, which has capacity to manipulate the orthogonally-polarized electromagnetic waves independently in the reflection mode. The metasurface is composed of orthogonally I-shaped structures and a metal-grounded plane spaced by a dielectric isolator, with the thickness of about 1/15 wavelength. The normally incident linear-polarized waves will be totally reflected by the metal plane, but the reflected phases of x- and y-polarized waves can be controlled independently by the orthogonally I-shaped structures. Based on this principle, we design four functional devices using the anisotropic metasurfaces to realize polarization beam splitting, beam deflection, and linear-to-circular polarization conversion with a deflection angle, respectively. Good performances have been observed from both simulation and measurement results, which show good capacity of the anisotropic metasurfaces to manipulate the x- and y-polarized reflected waves independently. PMID:25873323

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaston, C. C.; Bonnell, J. W.; Reeves, Geoffrey D.

    We show how dispersive Alfvén waves observed in the inner magnetosphere during geomagnetic storms can extract O + ions from the topside ionosphere and accelerate these ions to energies exceeding 50 keV in the equatorial plane. This occurs through wave trapping, a variant of “shock” surfing, and stochastic ion acceleration. These processes in combination with the mirror force drive field-aligned beams of outflowing ionospheric ions into the equatorial plane that evolve to provide energetic O + distributions trapped near the equator. These waves also accelerate preexisting/injected ion populations on the same field lines. We show that the action of dispersivemore » Alfvén waves over several minutes may drive order of magnitude increases in O + ion pressure to make substantial contributions to magnetospheric ion energy density. These wave accelerated ions will enhance the ring current and play a role in the storm time evolution of the magnetosphere.« less

  19. Localized parallel parametric generation of spin waves in a Ni{sub 81}Fe{sub 19} waveguide by spatial variation of the pumping field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brächer, T.; Graduate School Materials Science in Mainz, Gottlieb-Daimler-Strasse 47, D-67663 Kaiserslautern; Pirro, P.

    2014-03-03

    We present the experimental observation of localized parallel parametric generation of spin waves in a transversally in-plane magnetized Ni{sub 81}Fe{sub 19} magnonic waveguide. The localization is realized by combining the threshold character of parametric generation with a spatially confined enhancement of the amplifying microwave field. The latter is achieved by modulating the width of the microstrip transmission line which is used to provide the pumping field. By employing microfocussed Brillouin light scattering spectroscopy, we analyze the spatial distribution of the generated spin waves and compare it with numerical calculations of the field distribution along the Ni{sub 81}Fe{sub 19} waveguide. Thismore » provides a local spin-wave excitation in transversally in-plane magnetized waveguides for a wide wave-vector range which is not restricted by the size of the generation area.« less

  20. Photoelastic Analysis of Cracked Thick Walled Cylinders

    NASA Astrophysics Data System (ADS)

    Pastramă, Ştefan Dan

    2017-12-01

    In this paper, the experimental determination of the stress intensity factor in thick walled cylinders subject to uniform internal pressure and having longitudinal non-penetrating cracks is presented. Photoelastic measurements were used together with the expressions of the stress field near the crack tip for Mode I crack extension and a specific methodology for stress intensity factor determination. Two types of longitudinal cracks - internal and external - were considered. Four plane models were manufactured and analyzed in a plane polariscope at different values of the applied internal pressure. The values of the normalized stress intensity factor were calculated and the results were compared to those reported by other authors. A good accuracy was noticed, showing the reliability of the experimental procedure.

Top